

POSIX. 4: Programming for the
Real World

Bill O. Gallmeister

O'Reilly & Associates, Inc.
103 Morris Street, Suite A

Sebastopol, CA 95472

POSIX.4: Programming for the Real World
by Bill O. Gallmeister

Copyright © 1995 O'Reilly & Associates, Inc. All rights reserved.
Printed in United States of America.

Editor: Mike Loukides

Production Editor: Clairemarie Fisher O'Leary

Printing History:
January 1995: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks and The JavaTM

Series is a trademark of O'Reilly & Associates, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility for
errors or omissions, or for damages resulting from the use of the information contained herein.

This book is printed on acid-free paper with 85% recycled content, 15% post-consumer waste. O'Reilly &
Associates is committed to using paper with the highest recycled content available consistent with high quality.

ISBN: 1-56592-074-0
[11/98]

To my son, Ian, and my father, who was right.

Page vii

Table of Contents

Preface xv

PART I: Programming for the Real World

1. Introduction 1

What's POSIX? 2

Doing More the POSIX Way 6

The POSIX Environment 7

The Applications Are Varied 9

The Problems Are the Same 13

Some Solutions to These Problems 16

What POSIX Does Not Do 16

2. The POSIX Way 19

What POSIX Is 19

Compile-Time Checking 24

Run-Time Checking 30

Headers and Namespace Pollution 36

Who's Got What? 39

Conclusion 39

3. The Basics of Real-Time: Multiple Tasks 41

Doing Everything at Once 41

Running in Cycles 43

Multiple Processes 47

Signals 55

Page viii

Conclusion 82

Exercises 82

4. Better Coordination: Messages, Shared Memory, and Synchronization 85

Communicating Between Processes 85

POSIX.1 Communication: Pipes and FIFOs 88

System V Message Queues 94

POSIX.4 Message Queues 94

POSIX.4 Shared Memory and File Mapping 110

Synchronizing Multiple Processes 129

Conclusion 146

Exercises 146

5. On Time: Scheduling, Time, and Memory Locking 149

Trying to Make Things Happen On Time 149

Rates and Responses 151

Standard Scheduling Solutions Under UNIX 153

Portable Real-Time Scheduling: the POSIX.4 Scheduling Interfaces 159

Making Things Happen On Time 171

Keeping Your Memory Handy: UNIX and POSIX Memory Locking 193

Brass Tacks 200

Nice but Not Necessary: How to Make the Time Readable 207

Conclusion 209

Exercises 209

6. I/O for the Real World 213

I/O Is Everything 213

I/O in Real-Time Systems 213

y

UNIX Has a Problem with Real-Time I/O 214

Standard UNIX Facilities for Real-World I/O 217

Achieving Greater Control over File Operations 219

Asynchronous I/O: I/O While You Don't Wait 224

Deterministic I/O 245

Conclusion 248

Exercises 248

Page ix

7. Performance, or How to Choose an Operating System 251

Performance in Real-Time Systems 252

Measuring the Right Thing 258

Metrics for POSIX Systems 260

Conclusion 272

Exercises 273

PART II: Manpages

<aio.h> 277

<fcntl.h> 281

<limits.h> 283

<mqueue.h> 290

<sched.h> 293

<semaphore.h> 295

<signal.h> 297

<sys/mman.h> 303

<sys/wait.h> 306

<time.h> 307

<unistd.h> 311

aio_cancel 315

aio_error 317

aio_read 319

aio_return 322

aio_suspend 324

aio_write 326

clock getres 329

_g

clock_gettime 331

clock_settime 333

close 335

exec 337

exit 341

fdatasync 343

fork 345

fsync 348

kill 351

lio_listio 354

mkfifo 358

mlock 360

Page x

mlockall 363

mmap 365

mprotect 370

mq_close 373

mq_getattr 375

mq_notify 377

mq_open 379

mq_receive 383

mq_send 385

mq_setattr 387

msync 389

munlock 392

munlockall 394

munmap 396

nanosleep 398

pathconf, fpathconf 400

pipe 403

sched_get_priority_max 405

sched_get_priority_min 407

sched_getparam 409

sched_getscheduler 411

sched_rr_get_interval 413

sched_setparam 415

sched_setscheduler 417

sched yield 420

_y

sem_close 422

sem_destroy 424

sem_getvalue 426

sem_init 428

sem_open 431

sem_post 435

sem_unlink 437

sem_wait, sem_trywait 439

sh_open 441

shm_unlink 445

sigaction 447

sigprocmask 451

sigset 453

sigsuspend 455

sigwaitinfo 457

Page xi

sysconf 460

timer_create 463

timer_delete 466

timergetoverrun 468

timer_gettime 470

timer_settime 472

wait, waitpid 475

PART III: Solutions to Problems

Appendix: Exercise Code 481

Chapter 3: The Basics of Real-Time: Multiple Tasks 482

Chapter 4: Better Coordination: Messages, Memory, and Synchronization 488

Chapter 5: On Time: Scheduling, Time, and Memory Locking 502

Chapter 6: I/O for the Real World 517

Chapter 7: Performance, or How To Choose an Operating System 520

Bibliography 529

Index 531

Page xii

List of Figures

1-1 Mandatory and optional parts of POSIX.1 and POSIX.4 3

1-2 Real-time control loop—one device 10

1-3 Real-time control loop—multiple devices 11

1-4 Terminals and server 11

1-5 Multiple servers 12

2-1 Cross development 21

2-2 POSIX conformance checking—basic outline 22

4-1 Result of simultaneous dequeue by two processes 113

4-2 mmap is used for mapping differing sorts of objects 114

4-3 How mmap's arguments refer to the mapped region 119

4-4 Acounting semaphore over time 131

4-5 Mutex and condition variables 133

5-1 Real-time device monitoring and control 152

5-2 Race condition when setting an absolute timer by yourself 188

5-3 Layers of software between you and an errant program 205

6-1 Normal UNIX disk layout and optimal layout for sequential access 216

6-2 How AIO proceeds 226

6-3 Asynchronous I/O error and return status 231

6-4 Race condition between seek and read/write 235

6-5 Preventing bad things from happening 239

7-1 The computer responds 253

7-2 Layers of an I/O implementation 262

7-3 Non-contested use of semaphores 266

7-4 Two processes (P) signalling each other with semaphores (S) 266

7-5 Ageneric performance measurement 268

7-6 Responsiveness measurement application 271

7-7 External measurement of interrupt and task response 272

Page xiii

List of Tables

1-1 Status of POSIX standards as of April, 1994 6

2-1 The Menu for POSIX.1 Functionality 22

2-2 The Menu for POSIX.4 Functionality 23

2-3 _POSIX_VERSION Possible Values 26

2-4 POSIX Feature Limits: Maxima 28

2-5 POSIX Feature Limits: Minimum Requirements 29

2-6 sysconf Options 31

2-7 pathconf and fpathconf Options 33

2-8 POSIX Reserved Namespaces 37

3-1 Signals Required by POSIX (Default Action Termination) 60

3-2 POSIX Optional Signals 61

4-1 Coordination Mechanisms 86

4-2 How to Get Various Shared Memory and File Mapping Facilities 114

5-1 Example rate-monotonic priority assignments 202

Page xv

Preface

Who and What

This book is about real-world programming: not the part of programming that's about writing tools for creating
other programs, but the part that's about interacting with the ''real world" outside of the computer. Though you
wouldn't know it by looking at a typical university computer curriculum, there's almost certainly more real-world
programming going on than general tools programming. Think about it: your VCR is controlled by a
microprocessor that has some kind of operating system and software running on it; if your car is under a dozen
years old, it's probably littered with microprocessors running everything from the ignition to the brakes, all working
together; you routinely get money from automatic tellers. And most attendees of computer shows know about the
Internet toaster!

In fact, there are aspects of real-world programming even within a workstation that's used entirely to develop
programming tools. That workstation has either a disk drive or a network interface; both disk controllers and
network controllers contain their own microprocessors running their own software that deals with hard, mechanical
devices (in the case of a disk drive) or electrical impulses running down a wire in measurably non-zero time.

So real-world programs (and real-world programmers) are all around us. What characterizes all of these real-world
applications is a critical dependence on time—the messy ingredient that always comes in whenever computers start
interacting with the real world. Applications that are formally called "real-time" are only a small part of real-world
programming. The brake controller in your car is certainly real-time software, by any definition; if it's late, your car
won't stop. But the database software that controls the ATM at your bank has very similar time-oriented
requirements, even though they aren't quite as strict. Your ATM shouldn't give you $200 at 3:15, if at 3:14 your
bank processed a check that cleaned out your account. And even if you have the money,

Page xvi

you'll get awfully nervous if your ATM takes five minutes to give it to you because the mainframe is under a heavy
load. (In the much more relaxed world of compilers, editors, and other tools, this is nowhere as significant a
problem; it's called a coffee break.)

This book is written to help programmers solve real-world problems in a portable way, using POSIX.1 (the basic
operating system interface) and POSIX.4 (real-time, real-world extensions to POSIX.1). The tools needed to solve
these problems include process scheduling, interprocess communication, and enhanced I/O. I assume most
programmers reading this book will be programming in, or familiar with, the UNIX programming environment, and
some (not all) of you will be familiar with POSIX. This is not an introductory book: I assume you know C and are
good at it, and you know UNIX programming pretty well, too. In particular, I'm not going to spend much time on
basic POSIX. 1 functionality: fork, exec, wait, signals, pipes, and standard read/write.

When people mention POSIX.4, they often speak of POSIX.4a in the same breath. This is understandable, as the
two standards were developed by the same working group. They are, however, separate standards, and POSIX.4a is
only now completing the balloting process. This book addresses only POSIX.4.

The Rest of the Book

This book starts with an introduction to real-world programming, the POSIX standards, and the problems that
POSIX does and doesn't solve.

The next several chapters are an introduction to solving real-world-oriented programming problems, with a special
emphasis on UNIX- and POSIX-based solutions. While this book is primarily a guide to POSIX.4, often the
solutions to your problems can be found in POSIX.1 or standard UNIX. In Chapter 2, The POSIX Way, I'll
introduce you to the generalities of POSIX: how you determine what parts of POSIX are present on a system, how
to test for compliance, and so forth. This chapter explains the basic operation of a POSIX system—any POSIX
system—so you should read at least the first part before moving on to the more technical material. On the other
hand, the end of Chapter 2 is a detailed discussion of the meaning of POSIX conformance, which may confuse you
until you have some grounding in the technical substance of POSIX. You can skim this part, or skip it until later if
you want.

Following Chapter 2, we get to the technical substance: Multiple Processes, Better Coordination, Scheduling, and
I/O, in that order. Chapter 3, The Basic of Real-Time: Multiple Tasks, covers the basics of process creation and
signals. Most of this is part of POSIX.1, not POSIX.4 (the exception is signal extensions that POSIX.4 provides—
the SA_SIGINFO material). Process basics are required, though, before you can talk about process scheduling or
interprocess coordination.

Page xvii

Chapter 4, Better Coordination. Messages, Shared Memory, and Synchronization, covers interprocess
communication, using pipes and FIFOs (from POSIX. 1), message queues, shared memory, and semaphores (from
POSIX.4).

In Chapter 5, On Time: Scheduling, Time, and Memory Locking, we talk about ways to get things done on time:
process priority scheduling, memory locking to prevent unwanted paging, and the clock and timer facilities that
allow you to schedule alarms, check the time, and generally perform time-based processing.

Chapter 6, I/O for the Real World, covers the I/O enhancements of POSIX.4: synchronized I/O and asynchronous
I/O. There's also a short requiem for an I/O enhancement that was kicked out of POSIX.4: real-time files. These
would have allowed for contiguous and pre-allocated disk files; we'll discuss your options to achieve this sort of
behavior, in the absence of a standard solution.

Finally, in Chapter 7, Performance, or How to Choose an Operating System, we'll talk about performance issues;
the preceding chapters will have concentrated on functional behavior, ignoring the performance domain that is so
critical for real-time applications.

Following the chapters, there are manual pages for all the functions and header files described by POSIX.4. These
provide a concise (!) reference to POSIX.4, once you think you know what you're doing.

Throughout the book, I'll refer you to other tomes for more detail on subjects that are peripheral to the topic of
discussion. There are complete references in the Bibliography.

Exercises and Sample Code

This book comes with exercises. The purpose of these is to get you thinking about the use of POSIX.4 for solving
everyday real-world problems. A secondary purpose is to provide you with more example code. Code for many the
exercises is included in the Appendix in the back.

Other code throughout the book is presented in snippet form, not usualy as complete, working programs. These
code snippets are there to illustrate and motivate the text, and are not presented in complete form in the Appendix.

Typographical Conventions

The following font conventions are used in this book:

Italic
Names of functions, header names

Courier
Code examples

Page xviii

Acknowledgments

I fell into the POSIX world by accident, starting at Sun Microsystems. Thanks to them for lavishly supporting
POSIX.4 work. The environment at Lynx Real-Time Systems allowed me to become POSIX.4 Man. I am still
trying to recover from the experience. Thanks to Lynx for the prototype software on which the examples in this
book were written and tested. Thanks, on a personal note, to the Bearded White Guys With Glasses for the
camaraderie: Chris Lanier, Greg Seibert, Randy Hendry, and, although she has no beard, June Curtis, honorary B
(WG)2. Stephe Walli at MKS, Mary Lynne Nielsen at the IEEE, and Hal Jespersen all provided invaluable help on
POSIX mechanics and status; Mike Jones at Microsoft provided insight into the status of Windows NT. My
reviewers provided invaluable insight; I thank Bob Goettge, Randy Hendry, Dan Hildebrand, David K. Hughes,
Andy Oram, Jerry Peek, Claude-Henri Sicard, Stephe Walli, and Steve Watt. Thanks to Mike Loukides, for
pointing out that I use "thing" and "stuff" an awful lot (among several billion other useful comments).

Clairemarie Fisher O'Leary copyedited the book and was the production manager, with the able assistance of Sheryl
Avruch and Frank Willison. Chris Reilley created the figures, Jennifer Niederst created the interior design of the
book, Lenny Muellner and Norm Walsh provided tools support and implemented the design, and Susan Reisler
created the index.

Page xix

PART I
Programming for the Real World

Page 1

CHAPTER 1
Introduction

This book is written to help people who are trying to use UNIX (or any other POSIXsupporting system) for real
work.

Real work includes database systems, transaction managers, and navigation systems. It includes applications for
automating a factory floor, as well as applications for controlling jet engines and your VCR, software controlling
robots, the ATM from which you get cash, and telephone networks.

While UNIX has been a popular operating system, its applicability to the real world has been rather more
problematic. Many vendors have made many attempts to add the features and performance that UNIX needs in
order to be truly useful in the real world. These attempts are now coming to fruition with the availability of
industrial-strength UNIX from major software vendors. With the increasing availability of these new features,
UNIX is now capable of supporting true real-time, real-world applications. The question is, how do you use these
new facilities for your real-world applications?

In the UNIX world, real-world functionality has come from two often contradictory camps: System V Release 4
UNIX (as described by the System V Interface Definition, or SVID), and recently, IEEE POSIX.4 (also known as
PASC 1003.4). Other specifications, including COSE (Common Operating Software Environment), XPG4 (X/Open
Portability Guide), FIPS 151-2 (Federal Information Processing Standard 151) and so forth, really are just calling
out either SVR4 or POSIX functionality. This book concentrates on the features of POSIX.4 for a couple of
reasons:

• POSIX.4 is newer than SVR4, and fewer people know about it. More to the point, there are no books about it.

• POSIX.4 has wider applicability than SVR4, since POSIX is not a UNIX standard per se.

Page 2

Although I'll spend most of my time here touting POSIX.4, I'll also cover other possible solutions to real-world
problems where they are available.

What's POSIX?

POSIX, the Portable Operating System Interface,* is an evolving, growing document that is being produced by the
IEEE and standardized by ANSI and ISO. The goal of POSIX is the source-code portability of applications: in the
best of al you to to move an application from one operating system to another by simply recompiling it. This goal is
unattainable since most applications, especially the real-world ones, require more operating system support than
you can find in any particular standard. However, POSIX has achieved a less apocalyptic version of this goal:
reducing the amount of effort in a port. POSIX-conformant applications can be easily ported to systems as diverse
as SVR4 UNIX, LynxOS and MVS.

"POSIX" refers to a couple of different things. The most important meaning of POSIX is the POSIX standards.
These are the end products of the POSIX working groups. These groups, composed of computer vendors,
applications writers, government representatives, and a modicum of hangers-on, meet quarterly in IEEE-sponsored
meetings in exotic locales such as Parsippany and Utrecht. The overall POSIX working group is composed of many
smaller groups with names like "POSIX-dot-something." For instance, POSIX.4 is the working group concerned
with real-time operations. These working groups put out proposed standards, which are often eponymously named
(The '.4 working group put out the '.4 proposed standard); however, this naming is just coincidental ('.4 also put out
the '.13 proposal). So what you have is many small groups all working towards the standardization of their small
(but crucially important) sectors of the universe.

As these small proposals pass balloting,† POSIX grows. The first such standard was POSIX.1, which specified
many of the basic calls that UNIX programmers have come to expect. Several amendments to POSIX.1 have also
been approved. POSIX.4, approved in September, 1993, is a set of real-time extensions to POSIX.1, and is the
standard we are most concerned with here. This growth, though, results in additional complexity for you, the user
of POSIX. You need to know which version of POSIX your system supports, in order to tell what features you
have. Do you have the shiny, new, real-time features of September, 1993? Or are you stuck with the old, reliable
basics of POSIX.1 (September, 1990)? Luckily, this information is encoded in header files and formal POSIX
conformance statements, so you do not need to rely on some salesperson's word for what is actually in an operating
system you may be considering buying. In Figure 1-1, you can see the basic structure of POSIX: mandatory parts,
and extra optional behavior.

* And what's an OS without an "X" on the end of it?
† The ballot process is a standard mechanism the IEEE has set up for the adoption of standards.

Page 3

Figure 1-1. Mandatory and optional parts of POSIX.1 and POSIX.4

As POSIX grows, it becomes more and more useful; it also becomes more complex and harder to understand. The
POSIX.1 facilities formed a nucleus of common operating system functions that could be used to create programs
that were portable from one UNIX system to the next, and even to non-UNIX systems, like VMS, LynxOS, QNX,
CTOS, MVS, and MPE/ix. As such, it's like the chassis of a car. POSIX.1 gives you portable versions of functions
you need for writing applications, but there's little question that you need more than POSIX.1 for most applications.
Now, a new chapter of the POSIX book has emerged: POSIX.4. POSIX.4 adds real-time (I like to call it real-world)
functionality to the chassis of the car: shared memory, priority scheduling, message queues, synchronized I/O, and
so forth. POSIX.4 is the wheels of the car. If you need POSIX.1, then you probably need POSIX.4, as well.

In a recent debate on the Internet, for instance, there was some question as to how usable POSIX is for "real work."
The opinions went two ways. A bunch of the GNU tools (GCC, Emacs, etc.) are written for the POSIX.1
environment, as are the tools provided by Mortice Kern Systems for DOS and several other operating systems.
Therefore, POSIX.1 in and of itself is useful, since these obviously useful programs can be built using only—or
mostly—POSIX.1. The other opinion holds that editors and compilers do not constitute "real work." Various anti-
free-software pejoratives get stirred into the mix, and the debate continues. However, I was intrigued to see that
some folks share my feeling that there's more to computer programming than programming tools. I mean no
disrespect to the people at MKS or the Free Software Foundation—the examples in this book were all written and
tested using GCC, a real product if ever there was one. However, you have to admit that, at some point, computers
are

Page 4

supposed to be used for something besides writing computer programs. For these applications, POSIX.1 probably
does not provide all the functionality you need.

Is POSIX Useful?

"Real work" includes database systems, transaction managers, factory floor automation programs, jet engines
controllers, etc. This is the real world! Is POSIX useful for it?

"Useful," here, means "an aid to portability," and this brings us to the goal of POSIX: source-code portability of
applications. POSIX, the Portable Operating System Interface, is supposed to make it easier to write a program that
you can easily move from one operating system to another, and from one machine to another. Portability is
important because hardware lifetimes are decreasing at a rate faster than software lifetimes. That means that old
software has to be made to run on new hardware. In addition, old operating systems are regularly retired. Who'd
have thought Sun would throw out their BSD-based operating system in favor of Solaris? Given changing hardware
and software, the more portable your applications are, the more successful they're likely to be. So, is POSIX useful?

Well, you know what I'm going to say. Of course it's useful! Nothing could be more useful than POSIX! POSIX is
the best thing to come along since high level languages! POSIX is the mythical silver bullet!*

Well, maybe it's not all that. POSIX is an incremental step towards a standard, useful operating system interface. If
you use "the POSIX way," as Don Lewine puts it, for those things which POSIX specifies, then they will be
portable from one POSIX system to the next. Until POSIX specifies a "way" for all things, it won't provide a total
portability solution. And who are we kidding? Total portability is probably unattainable, and certainly undesirable
for a lot of programs. Portability entails generality and flexibility, and generality and flexibility cost time and space.
For any given problem, a nonportable program is going to be smaller and faster, right? When you're building your
applications, you need to balance the need for portability against the need for reasonable efficiency. In all
likelihood, every program built for the real world is going to have some non-portable component. That's okay! By
using the POSIX way for the rest of your application, you avoid having to look at that part. Portability becomes
easier, not trivial-that's the point.

* "No Silver Bullet: Essence and Accidents of Software Engineering," Dr. Fred Brooks, in IEEE Computer, April 1987. In this
article, Dr. Brooks describes the mess we're in, software-wise, and how we software engineers can get out of it. He didn't mention
POSIX, but I'm sure that was accidental, not essential...

Page 5

The Limits to POSIX

Another recent thread of discussion concerns the suspicion that POSIX (the working group) is out of control,
producing more and more ill-considered standardese at a snowballing rate that will inevitably lead to an unusable
mass of documentation.

There is some substance to this fear. Certain POSIX working groups have on occasion veered off into some fairly
treacherous weeds, like language-independent specifications and poorly-planned profiling expeditions. My personal
opinion is that a lot of the later efforts of the POSIX.4 working group itself were pretty esoteric and really not ready
to be standardized—much of the POSIX.4b (Yet More Real-Time) and POSIX.13 (Real-Time Profiles) proposals,
in particular.

However, I don't see much evidence that the working groups are going to go hog-wild and inflict a bunch of useless
functionality on the world. More likely, as the working group finds itself doing weirder and weirder work, the
people doing said work will find better things to do, and the balloting groups will find themselves either unwilling
to approve the results, or too bored to proceed with the ballot at all. In other words, I think POSIX (the working
group) is bound to snuff itself out after its real useful work is done.

When people raise this "out-of-control" fear, though, they usually mention POSIX.4—my group, my standard—as
a prime example. To this, I can only say they're wrong. Real-time has been around for a while, and the functionality
you'll find is not particularly bizarre. It's based on real experience with existing operating systems, although these
are often real-time systems, not traditional UNIX boxes. Much of this is new to a standard UNIX system, and I
suppose that's why we hear the occasional sour grapes from UNIX purists.

The Grand Renumbering

One example of the advancing senility of the POSIX working group may be found in The Grand Renumbering.
After years of work on POSIX.4, POSIX.6 and so forth, the working group decided to renumber a great many of
the documents. The documents that were amendments to 1003.1 (POSIX.1) were given numbers that built upon the
"1003.1" prefix. So POSIX.4 became 1003.1b, POSIX.6 became 1003.1e, etc.* I suppose the new numbering makes
it easier to understand the published documents, since now all the "operating system" documents will be 1003.1-
something, all the commands are 1003.2-something, and so on. Remember this: wherever you see a 1003.1x, it used
to be POSIX.y. 1003.1x numbers are strictly a result of The Grand Renumbering, and are an attempt to confuse
you.

* It was called POSIX.4—IEEE 1003.4—throughout its development and balloting. As a result of The Grand Renumbering, it is
now also known as POSIX 1003.1b-1993. For the remainder of the book, I'm going to refer to POSIX.1 and POSIX.4 because
those terms are much easier to differentiate than "1003.1-1990" and "1003.1b-1993." They're also easier to say.

Page 6

Doing More the POSIX Way

So what can we do ''the POSIX way"? Until recently, only very basic and general operations were specified by
POSIX.1, the first edition of POSIX. These included mechanisms for process creation and demise (fork, exec, exit,
wait), signals, basic I/O and terminal handling, and some other miscellaneous basics. POSIX.1 is essential. It is the
basis on which the rest of POSIX resides. Without POSIX.1 there is nothing. POSIX.1 is necessary, but not
sufficient for real-world applications.

POSIX.4 (the Real-Time Extensions to POSIX) was approved in September, 1993. It is an amendment and addition
to POSIX.1, providing additional facilities necessary for realworld applications. These include process scheduling,
access to time, a couple of interprocess communication mechanisms, and enhanced I/O operations.

Another standard, POSIX.4a (renumbered as 1003.1c) provides the ability to run multiple, concurrent threads of
execution within a single POSIX process. The 1003.1c standard is completing balloting as this book goes to press,
and should be an IEEE standard within the year. POSIX.4a is a different standard than POSIX.4, and discussion of
threads would fill up another book.

POSIX and Its Amendments

POSIX is both a set of standards and an ongoing effort of standards development. As such, it can sometimes be
unclear what we're talking about when we refer to POSIX, because there are so many things that go by that name!
Table 1-1 is a quick listing of most of the proposed standards, either in progress or approved as of this writing.
Obviously the status of the standards will change as time goes by. This snaphot is as of April, 1994. Several of the
documents (like POSIX.4) have been renumbered to be part of the POSIX.1 (1003.1) standard. For these
documents, I've mentioned the new number.

Table 1-1: Status of POSIX standards as of April, 1994

Standard What is It? Status as of April, 1994

POSIX.1 Basic OS interfaces Approved (IEEE and ISO)

(1003.1-1990)

(ISO 9945-1 (1990))

POSIX.la Miscellaneous extensions Completing ballot

POSIX.2 Commands (sh and the like) Approved (IEEE and ISO)

POSIX.3 Test methods Approved by IEEE

POSIX.4 Real-time extensions Approved by IEEE

(1003.1b-1993)

POSIX.4a Threads extensions Completing ballot

(1003.1c-1994)

Page 7

Table 1-1: Status of POSIX standards as of April, 1994 (continued)

Standard What is It? Status as of April, 1994

POSIX.4b More real-time extensions In ballot

(1003.1d)

POSIX.5 ADA binding to POSIX.1 Approved by IEEE

POSIX.6 Security extensions In ballot

(1003. le)

POSIX.7 System administration In ballot

POSIX.8 Transparent file access In ballot

(1003.1f) (Network)

POSIX.9 FORTRAN-77 binding to POSIX.1 Approved by IEEE

POSIX. 10 Supercomputing profile In ballot

POSIX. 11 Transaction processing Project withdrawn

POSIX. 12 Protocol-independent communication Completing ballot

(1003.lg) (sockets)

POSIX. 13 Real-time profiles In ballot

(Subsets of POSIX)

POSIX. 14 Multiprocessor profile Early drafts

POSIX.15 Batch/supercomputer extensions In ballot

POSIX. 16 Language-independent POSIX.1 Early drafts

POSIX. 17 Directory/name services Approved by IEEE

(IEEE 1224.2) (Network)

POSIX.18 Basic POSIX system profile In ballot

POSIX. 19 FORTRAN-90 binding to POSIX.1 Project withdrawn

POSIX.20 Ada binding to POSIX.4 Early drafts

POSIX.21 Distributed real-time Early drafts

The POSIX Environment

The documents comprising POSIX together define a computing environment that you can count on being present
for your programs to use. The technical definition of what it means to "be POSIX" is currently a topic of debate,
and is getting more obscure by the minute. The confusion arises because there's a market share for any vendor who
can attach POSIX to their product, which means that different people mean different things when they say "we're
POSIX compliant." We'll discuss what it means to "be POSIX" in Chapter 2, The POSIX Way, since the issues are
complex and you need to be aware of them. For now, suffice it to say that POSIX refers to a UNIX-like, standard
computing environment. We'll elaborate on each of these features, then we'll talk briefly about a few things that
POSIX isn't.

POSIX Is Like UNIX

Because POSIX is based on UNIX, the solutions we bring to bear on our technical problems will be based on
UNIX. We'll be forking processes and sending signals, reading with read and writing with write. UNIX has
generally had a problem with the sorts of

Page 8

real-world problems we'll discuss below, so the real-time features of POSIX may be unfamiliar. That's another
reason for this book; the facilities of POSIX.4 are not as familiar as those in other parts of POSIX.

POSIX Is Standard

The second characteristic of the environment is that it is standard, and based on common practice. Those of you
who've been following, or been immersed in, the UNIX wars between Berkeley and AT&T, and later OSF, and UI
(and later, Berkeley and AT&T and OSF and UI and Novell and X/Open and Ted and Alice), are probably
scratching your heads cynically now. "What does it mean to be standard?" There are lots of so-called standard
UNIX versions, and none of them are the same. What makes POSIX any different?

There are two reasons I see why POSIX will become more of a standard than the other contenders. The first reason
is pure goodness and light: POSIX has been developed by independent, industry-wide committees with
representatives of all sides, including Berkeley, AT&T, OSF, and UI, as well as operating systems producers and
consumers. POSIX was developed using a consensus process and balloted among all interested parties. And POSIX
is an ISO standard that is not owned by anyone in particular, so no one gets any fast-track advantage if a
procurement calls for POSIX.

Yeah, yeah, yeah. If you ask me. the real reason is that governments buy a lot of computers. Governments specify
"open systems" (meaning UNIX) and conformance to a thing called The FIPS (FIPS-151, an American government
shopping list for what ought to be in a computer system the government buys). The FIPS is an American document,
but other countries have their own documents which are basically the same (Canada's is called TBITS 7.1; other
countries point to X/Open's XPG4, which in turn points to POSIX). The FIPSes of the world specify POSIX. So
guess what Big OS Vendor X (and Small OS Vendor Y) is going to support if it wants to do business with the
governments? You guessed it. POSIX allows any vendor to play in the government market, and that's important.

Whatever the reason, you can already see POSIX becoming the common nucleus of just about any UNIX system
you look at. As of this writing, UNIX SVR4 specifies POSIX.1 facilities already, as well as several portions of
POSIX.4, and claims it will evaluate the rest of POSIX.4 when it becomes available. Today, you can get a FIPS-
certified POSIX.1 on Digital's VMS and IBM's MVS (VMS, in fact, was the first system to pass the FIPS 151-2)
systems. You can get POSIX.2 support now for DOS, VMS, MVS, HP-RTE, CTOS, and a host of other non-UNIX
operating systems. You can get POSIX.1 on UNIX boxes, machines running LynxOS and QNX, and many other
vendors are claiming POSIX Real Soon Now. Even Windows NT, the bête noire of the UNIX world, has been
certified against FIPS 151-2.

Page 9

POSIX runs on nearly all the UNIX variants, and it runs on lots of non-UNIX systems. I maintain that POSIX will
become the standard operating system interface. And for maximum portability, that's what you want to write your
application for.

The Applications Are Varied

So, what are these applications that POSIX.4 is so good for? What are the real-world problems that POSIX.4 was
built to address?

There are a lot of different kinds of applications that can take advantage of the POSIX.4 interfaces. POSIX.4 was
built, however, to address the requirements of real-time applications. These are the applications where the timing of
the answer, not just the answer itself, is an integral part of the correctness of the application. We can talk about
real-time applications in a number of ways. We can split them up by the requirements the application has, or by the
sort of application it is.

Real-time applications fall into two broad categories: hard real-time and soft real-time. Hard real-time is the world
of metal, speed, and danger: software controlling steel mills, jet engines, precision medical equipment, and electric
bullet trains. In hard real-time, a late answer is of no use at all. It doesn't do you any good if the signal that cuts fuel
to the jet engine arrives a millisecond after the engine has exploded. In fact, a late response may make a bad
situation even worse.

In soft real-time, by contrast, there's more gradation. The answer that is on time is definitely the best one, but a late
answer still has some value, so long as it's not too late. Online databases generally fall into this category, such as
the software running program trades on the stock exchange or the software that runs your credit card through "the
machine." The faster, the better. You might get annoyed waiting for your credit card to be approved, but nobody is
going to die if it takes thirty seconds instead of fifteen.

Most real-time applications, whether hard or soft, have a couple of common characteristics. First, speed is of the
essence. Second, these applications tend to be in touch with the real world, through robot arms in the steel mill or
the magnetic stripe on your credit card. Third, real-time applications tend to do a lot of juggling, controlling many
activities at once. When you think about it, most real-time applications are naturally concurrent because they must
conform to the natural parallelism of the world outside the computer.

Sample Real-Time Applications

I describe a few typical real-time applications below, some hard real-time and the others soft. We'll use these
application "templates" in the rest of the book to explain how the functions of POSIX.4 might be best used. In the
figures, the boxes indicate processes, and the arrows are lines of communication or coordination.

Page 10

Real-time control loops

A very common real-time application is the software control of a particular piece of hardware. In this application,
shown in Figure 1-2, input from a sensor, together with the past state of the device under control, are combined into
a control output to the device. The application operates in a loop, continually sensing input, computing, and
outputting control to the device. Usually a control-loop application falls into the hard real-time category: you must
provide control output to the device in a timely fashion, or the device will go nuts. For example, consider a program
controlling something robotic, such as a motor or something which must be constantly "steered" lest it, literally,
crash. I saw another example recently that you may be familiar with: a SCSI controller chip. This particular chip is
used for controlling the disk and tape drives on a workstation-class machine, and it had the unfortunate
characteristic of going out to lunch if you didn't keep up a steady stream of conversation with it. In other words, the
SCSI controller on this machine needs to be controlled in a timely fashion—a perfect example of a hard real-time
application inside your workstation! Both the robot and the SCSI controller are hard real-time applications,
requiring constant, on-time responses.

Figure 1-2. Real-time control loop-one device

Not all control-loop applications must be so stringent, though. In a video game, for example, input comes from a
variety of knobs and buttons attached to the machine, and the application's job is to combine these inputs with the
previous state of the game to determine a next state (the sounds and lights) in a timely fashion. In this case, the
world's not going to come to an end if a few noises are delayed, but it makes for a better game if everything
happens on time.

The application pictured above requires only one process, since there is only one input to be received and one
output to be generated. However, if you add multiple inputs and outputs, as shown in Figure 1-3 operating at
different frequencies and with differing response requirements, you quickly come to the point where you need to
split processing into multiple processes for your own sanity. This example comes close to describing what a real,
real-time application might look like.

Page 11

Figure 1-3. Real-time control loop—multiple devices

Terminals and server

The control loop real-time application described above is presumably hard real-time: you must provide outputs to
the controlled devices at the right times, or the system will fail. Our next example, shown in Figure .4 is a soft real-
time application: a server of some sort, communicating online with users at terminals. In this application, a slow
response is not the end of the world, although it is to be avoided if at all possible.

Figure 1-4. Terminals and server

Terminals and a server separate an application into two very distinct parts, which communicate with each other. In
this sort of application, the server is pretty much eternal,

Page 12

existing at all times. The terminals, in contrast, will come and go as humans log on, do their work, and then log off
again. An important point to make here is the concept of separate entities "talking" to one another.

Database servers

Abstracting the example above, there may be more than one server process, for instance, to better exploit multiple
processors or disks. In this example, the "server" is actually multiple processes, each servicing a request from one
of the terminals. The servers must coordinate their actions to avoid messing up the database. Again, the client
terminals are more transitory processes, while the server processes hang around essentially forever. This sort of
application is shown in Figure 1-5.

Figure 1-5. Multiple servers

Servers of this sort often cooperate and communicate amongst themselves in a more free-form way than the
communication between server and terminal. That's because they are not so much separate entities talking to each
other as they are one entity, working together on a shared piece of work. Their cooperation involves sharing data
very closely.

Another important sort of real-time application is data acquisition and replay. Data acquisition means that the
application is storing data somewhere as it receives it, probably for later analysis or replay. Replay is when you use
previously-acquired data as an input for some sort of experiment analysis. Science experiments often involve data
acquisition and replay, as do multimedia systems (video and audio capture and playback). Acquisition and replay
generally lean towards the hard side of real-time. They require I/O performance and control which can stress the
capabilities of many

Page 13

systems, especially standard UNIX systems. We'll see how the POSIX.4 standard aids in this area when we get to
Chapter 6, I/Ofor the Real World.

The examples presented above represent a wide range of applications: video games, robots, databases, online
terminal systems, data acquisition systems, and multimedia systems. The applications have a number of things in
common.

The Problems Are the Same

Real-time applications and their real-world brethren face the same problems as other programs: algorithm design
numeric accuracy, user interface design and so on. However, real-world applications also face completely different
kinds of problems that arise from their dealings with the real world.

Problems Technical...

If you're trying to solve real-time sorts of problems, you are dealing with some fairly thorny technical issues. Here's
a short list of some of the things you might be wrestling with:

How to Do a Lot of Things at the Same Time
In real-world applications, you often find yourself doing a lot of things at once. In a robotics application, there are a
bunch of motors that have to be independently controlled, sensors to be polled, and so forth. In avionics, you have
to keep an eye on the fuel mix, the engines, the heading, and oh yes, you also have to check on what the pilot wants
the plane to do. In a database system, the complexity comes from controlling the access of multiple users to the
data. There are a couple of ways to get many things done at once. The most general and robust way is to use a
dedicated computer for each one. Failing that, you can run multiple virtual computers, or processes, on your one
computer. Each process can independently deal with its own little piece of the problem. Of course, since there is
really only one computer, you need to deal with the fact that these processes have to be scheduled so that they all
get their jobs done on time. You also need to worry about the processes stepping on each others' data.

What Time is It?
Getting things done on time means knowing what time it is, and being able to set things up so that something
happens at some specific point in time.

Deadlines
Once you have access to the time, you need to worry about those multiple processes. You need to ensure that every
deadline your application has is met, in both the average and the worst case. This is where scheduling comes in.
Scheduling is the art (or science; it depends who you ask) of getting things to happen on

Page 14

time. It's hard. Sometimes it's impossible. If it's impossible, you'd like to know that ahead of time, too!

How to Get Things Done Predictably On Time
Real-time means time, first and foremost. Things need to be done, and they need to be done on time every time.
You wouldn't be comfortable if, when you pressed on your car's brake pedal, there was only a 95% chance that the
brake processor would react in time!

Making Sure the Important Task Gets the Resource
Related to scheduling is the question of general resource allocation. Normally you think of scheduling as how the
processors get multiplexed among multiple processes. Computers are made up of more than processors, though.
There are also memory, disk drives, peripheral devices, and so forth, and they all need to be scheduled. It doesn't
help to give the most important process one of the resources it needs (e.g., the CPU) if some other process is still
hogging another required resource (e.g., the disk drive). Making sure the important process has what it needs when
it needs it is another difficult issue.

How to Cooperate
When you are using these dedicated virtual machines to solve the various parts of your real-world problem, you
need to worry about how the machines cooperate with each other. They don't just all go off on their own without
talking to each other. They need to share data, coordinate their actions with each other, and, in general, let each
other know what's going on. How do you do that? Do you use signals? Pipes? Message queues? Shared memory?
Semaphores? Mutexes? Condition variables? Rendezvous? Monitors? Each solution to the cooperation problem has
its uses, and each solution is poorly suited to other uses. Each solution also carts along its own share of problems,
for instance:

• How to avoid dropping signals: If you decide to use signals to communicate between processes, you
need to worry about how those signals are queued, and whether signals can be lost on the way.

• How to avoid overflowing message queues: Likewise, message queues can overflow. What happens
then?

How to Do I/O in a High-Performance, Predictable Way
Real-world applications make a lot of demands on a computer's I/O system. You want to get your data in from, or
out to, the disks and data collection devices as fast as possible, yet with some sort of predictability. Going the other
way, if some unimportant process has I/O going on, you don't want it to get in the way of your most important
process running. How do you do all this?

These are all hard problems. Coincidentally, they are also all things that standard, garden-variety UNIX has
generally had a very difficult time doing. When POSIX.4 provides

Page 15

interfaces to address these issues, therefore, don't be surprised if the facility doesn't look like anything that has
existed in UNIX before. Sometimes, the facility is very familiar. Sometimes it's not.

. . . And Logistical

Aside from the strictly technical issues of how to get your application running correctly in Environment X and on
Machine Y, there are some higher-level, logistical issues relating to your application.

How Can I Make My Real-Time Application Portable?
Real-time applications tend to have a fairly long life, either because they are part of a physical plant that doesn't go
away, or for political and bureaucratic reasons. This fact, coupled with the steadily decreasing life cycles of
computer hardware, means that porting your real-time application from the original platform to another platform is
something you will likely have to do. Portability frees you from vendors' proprietary solutions and allows you to
make the best hardware choice for your solution; you don't have to contend with artificial constraints like "will the
software run on this hardware?"

Portability, Performance, and Determinism
Portability of code is tricky, especially since every vendor in the world is out to make you think their system is
portable and standards-conformant without actually having to do all that work. There are hidden secrets and
gotchas out there just itching to break your code when you move it from system X to system Y.

In real time, the timing dimension makes this problem even stickier. Despite all the calculations and scheduling
theory, you know your real-time application meets its timing constraints on a given system because you've run
the application on that system. Another box, another set of performance problems. How can you easily achieve
real-time performance that will port from one machine to the next? That's a whole other monkey wrench thrown
into the works for you.

How do I Compare Computer Systems?
Finally, from a procurement standpoint, you need to be able to make apples-andapples comparisons of systems.
This is a realm where real-time has lagged behind the rest of the computer industry. Although their metrics are still
pretty awful, workstation vendors can at least quote the same SPECmarks and Whetstones. In real time, however,
you have to compare one vendor's average interrupt latency with another's worst-case interrupt dispatch; one
vendor's context switching time with another's task dispatch time. Given this, how can you hope to make a fair
comparison of various real-time systems?

Page 16

Some Solutions to These Problems

POSIX.4 provides portable solutions to the problems mentioned above. From the technical side, POSIX.4 has
priority-preemptive scheduling, usually considered necessary for deterministic, real-time response. POSIX.4
specifies memory locking, to avoid the non-determinism that is inevitable when some part of your memory can get
swapped out to disk. There are higher-resolution timers and improvements to signals, so you can use time and
signal mechanisms that improve on those of POSIX.1. There's the ability to do I/O asynchronously, and to bypass
the system buffer cache for guaranteed I/O completion. In the area of interprocess communication, shared memory,
message queues, and semaphores are specified.

From the logistical side, POSIX.4's advantages are less cut-and-dried. Because POSIX.4 facilities are portable, the
procurement question is made simpler. You can compare one POSIX system to the next, rather than comparing a
VMS box to a UNIX box to an MVS box. And, in doing things ''the POSIX way," you can increase the portability
of your application. However, POSIX.4 does not give you any performance guarantees; you'll have to check
performance yourself. Of course, since you're comparing POSIX systems, you can at least compare apples and
apples; but you still have to make the effort yourself. Vendors are still going to try and play games with
benchmarks to make themselves look better than everyone else. This is expected.

The thorniest logistical problem is that POSIX.4 is structured, unlike POSIX.1, as a set of options. When a vendor
trumpets, "we have POSIX!" it means, "we have POSIX.1, and some (possibly empty) subset of POSIX.4!" And
when a vendor proclaims, "we have POSIX.4!" it is pretty meaningless. Just about every facility in POSIX.4 is a
separate option. Luckily, it's easy to tell what parts any particular vendor has, by looking in system headers or in
the POSIX Conformance Statement for the operating system. Again, though, you have to look. You have to be a
crafty consumer: ask the questions, kick the tires.

What POSIX Does Not Do

POSIX won't solve all your problems. Heck, it won't even solve all your computer-related problems! Here are a few
things that you might have been wondering about: It sounds obvious when written down here, but some expect that
code written for one POSIX system will be immediately and trivially portable to another POSIX system. Just press
the Fl key and a new version of your application pops out, right? Wrong. First of all, POSIX does not provide
interfaces for all the things you may want to do in your application: windowing, networking, and other facilities are
either not standardized yet, or not planned to be standardized in POSIX. Second, POSIX is not an airtight
specification. There are options, implementation-defined behaviors, and undefined behaviors, all of which your
application may rely on. Other machines will differ in those aspects. And finally, there are assumptions built into
POSIX, and probably built into

Page 17

your application, that will make it non-portable. You can use portable interfaces to write non-portable code. A
typical example is an implicit reliance on process scheduling order. Write your application on a uniprocessor and it
works fine. Try and run it on a multiprocessor—it explodes!* Given what I've said above, it should be even more
obvious that POSIX is not a binary compatibility standard. POSIX is for the source-code portability of applications.
There are POSIX systems running on 80x86s, SPARCs, MIPSes, Precisions, Motorolas, IBM 370s, and so forth.
You're at least going to recompile your code to run it on all those machines. Finally, as mentioned above, POSIX
doesn't standardize everything. I already said that POSIX doesn't address window systems. Device characteristics
are not standardized; neither are the vagaries of machine booting and system configuration, nor development
environment. As you use these standard systems, you'll see more and more that they are not all the same, by any
stretch of the imagination. The trick is to use the standards when they're available, and encapsulate the code where
you require non-standard features. It will help to use additional standards outside of POSIX: X and Motif, for
instance, TCP/IP or RPC for networking, SCSI devices for I/O.

But enough discussing what POSIX can't do. Let's dive into some real issues: figuring out what any particular
POSIX implementation does, or doesn't support. That's what we cover in Chapter 2, The POSIX Way.

* That said, you can achieve pretty easy portability if you work very hard at it. The Free Software Foundation people have
worked hard at it, and as a result, some of their software is quite easily, often automatically, portable (Emacs and GNU C are the
examples I'm thinking of here). But still, it's often a non-trivial task to bring up GNU software on a new machine.

Page 19

CHAPTER 2
The POSIX Way

This chapter is a brief, overall introduction to the structure of POSIX on a running operating system. We'll cover
what is present in all POSIX systems, what functionality is optional, and how you can check for what a particular
system supports.

You may check for the presence or absence of POSIX features either when your application is compiled, or when it
runs. In embedded real-time environments, compile-time checks are generally sufficient, because you control the
exact operating system that will be loaded into the embedded machine. You basically check that the OS provider
has the necessary components, and then build your application without runtime checks. Run-time checks are useful
in those cases where it's possible that the underlying machine environment is going to change. A desktop UNIX
environment, where the kernel may be easily reconfigured, is a good example of such an environment.

What POSIX Is

POSIX is a standard to allow applications to be source-code portable from one system to another. On a system
conforming to a particular version of POSIX (as measured by the test suite it passed), you should be able to just
compile and run those applications which use the POSIX (and only the POSIX) functions.* That, in turn, dictates
what POSIX is. On any given system, POSIX support consists of:

• A Compilation System: A compiler, basically. Real live POSIX systems are supposed to support a standard
language. For our purposes, we'll assume that the language is ANSI C. In fact, vendors may support K&R†C in
addition to or maybe even instead of ANSI C. In any event, your system has to have some way of compiling

* A real application is not generally going to be this portable; it's bound to need something that the standards do not provide.
† Kernighan and Ritchie: C Classic.

Page 20

code, namely, a compiler and the proper options to get POSIX support linked into your application. For
instance, under LynxOS one invokes the compiler (GNU C) with gcc -mposix1b, and under QNX the POSIX.4
facilities are available by default. Using the compilation system in the approved fashion makes the POSIX
environment available to your program. This application consists of headers used when compiling source code
into object code, and libraries used when linking objects into executables.

• Headers: A set of headers that defines the POSIX interface supported on the particular system. These are
usually files in /usr/include, but they could be elsewhere, especially when you're cross-developing (building
programs on one machine with the intention of running them on another, totally different machine); they might not
even be files in the traditional sense. All you really need to know is that a line like #include <unistd.h> will
include the information from that header into your application, if you use the compiler the way you're supposed to.
Of course, if you actually need to look at a header (I find the code to be the ultimate documentation, personally),
you will want to know where the header files really are. That information should be available from your vendor.

• Libraries: Libraries are pre-compiled, vendor-supplied objects that implement the POSIX functionality for
you. The libraries are linked into your application when you build it, or in the case of dynamically-shared libraries,
when you run the program. Usually, you won't need to inspect a library, however, you may want to know which
libraries are being used to build your application, and in what order they are included, in case your application
won't link for some reason. Generally this won't be necessary unless you're trying to do something tricky. You
might also want to see what is in a particular library. An archiver tool like ar and a symboltable utility like nm are
useful in such instances. Both tools are part of the development environment option described in POSIX.2 (1003.2-
1992).

• A Run-Time System: Once you've built your program, the run-time, or operating system, allows you to run
your application. For most of you UNIX folks, the runtime system is the same system under which you built the
application. You compile the application and then you run it, just like that. However, it's important to realize that
you may compile your application in one place and run it in an entirely different environment. Especially in the
real-time world, it's common to build an application in a more user-friendly environment, such as SunOS on a
SPARC or HP-UX on a Precision machine—or even MS-DOS (everything's relative). Once the application is built,
it is then downloaded to a target machine running the run-time system. This scenario is shown in Figure 2-1. The
real run-time system is often a very light-weight, bare-bones environment, with few amenities (or none). This target
may be another workstation-class machine, a VME board in a nuclear accelerator, or a PC embedded in a hospital
bed. The distinction between compilation environment and run-time environment is crucial, because often the code
you build will not be run on the machine you build it on.

Page 21

Figure 2-1. Cross development

Now that we know how POSIX support is going to be structured, we can move on to the contents of a particular
POSIX system. Different systems support different levels of POSIX functionality. It is important that you know
what all vendors must support, what's optional, and how you can determine what a particular vendor has.

POSIX has taken care to encapsulate most of its various options within header file constants and features you can
test from a program. Using the features described below, you can automatically query a system for its degree and
quality of POSIX support, as shown in Figure 2-2.

POSIX Is Options

As I mentioned before, POSIX is not a single standard. It is several separate standards, corresponding to different
parts of a computer system. There are standards for the OS interface to programs, for different languages, like ADA
and FORTRAN, for user commands, and for test methods. For this book, we're only concerned with the
programmatic OS interface, and we're only worried about it in C. But even within this hunk o' POSIX, there are
separate, optional parts.

Prix Fixe to the Chinese Menu

So what do you have on your POSIX system? Originally, POSIX was a pretty monolithic chunk of standardese.
The first POSIX standard, POSIX.1, is a set of functionality that pretty much all has to be present before a vendor
can claim conformance. POSIX.1

Page 22

Figure 2-2. POSIX conformance checking-basic outline

defines basic, required operations that all operating systems need in order to be useful. Other POSIX standards
extend this basic functionality.

The only optional parts of POSIX. 1 are capabilities that were present in some UNIX systems, but not in others.
The basic, monolithic chunk is still at the core of any POSIX system, and you can count on it being there. The
minor optional pieces are listed in Table 2.1. (I'll explain what the option names mean and how to look for them in
the next section, "Compile-Time Checking.")

Table 2-1: The Menu for POSIX.1 Functionality

Option Name Functionality

_POSIX_JOB_CONTROL The ability to suspend and resume process groups setpgid, tcsetpgrp,
tcgetpgrp

_POSIX_CHOWN_RESTRICTED Who can do a chown, and how they can do it, are more restrictive than
usual

_POSIX_SAVED_IDS Processes maintain a "shadow," or saved set-user-id and set-group-id.
Semantics of fork, kill, setuid, setgid are somewhat affected.

Page 23

Table 2-1: The Menu for POSIX.1 Functionality (continued)

Option Name Functionality

_POSIX_NO_TRUNC Overlong pathnames generate an error, rather than being silently truncated. An extra error
condition is introduced for functions taking pathnames as arguments.

_POSIX_VDISABLE The ability to disable some terminal special characters.

NGROUPS_MAX The presence of supplementary group IDs, per process, which can be used to determine file
access permissions. getgroups, a mandatory function, returns 0 unless there are supplementary
groups. In any event, setgroups is not defined by POSIX.1.

The option names are called feature test macros in POSIX terminology because you use them to test for features.
Actually, they are preprocessor constants (#defines) you can test for in your program in order to determine what
is on your system. More on this in the next section. As you can see, the options present in POSIX.1 are tiny,
referring almost exclusively to fringe behavior of the system.

POSIX.4 on the other hand, is not considered to be basic functionality that all systems need in order to be useful
(regardless of my personal opinion). Therefore, POSIX.4 is structured as a set of well-defined options that a vendor
can support, or not. The only parts of POSIX.4 that aren't optional are some additions to the basic POSIX.1 signal
mechanism. Table 2-2 lists the POSIX.4 options:

Table 2-2: The Menu for POSIX.4 Functionality

Option Name Functionality

Not Optional Real-time, queued signals (SA_SIGINFO, SIGRTMIN,
SIGRTMAX)

_POSIX_REALTIME_SIGNALS Additional signal functions: sigwaitinfo, sigtimeduwait,
sigqueue

_POSIX_PRIORITY_SCHEDULING Process scheduling control: sched_setparam, sched getparam,
sched_setscheduler, sched_getscheduler, sched_yield,
sched_get_priority_max, sched_get_priority_min,
sched_rr_get_interval

_POSIX_TIMERS Clocks and timers: clock_settime, clock_gettime, clockgetres,
timercreate, timer_delete, timer_settime, timergettime,
timer_getoverrun, nanosleep

_POSIX_ASYNCHRONOUS_IO Asynchronous I/O: aio_read, aio_ute, lio_listio, aio_suspend,
aio_cancel, aio_error, aio_return, aio_fsync (if and only if
_POSIX_SYNCHRONIZED_IO)

Page 24

Table 2-2: The Menu for POSIX.4 Functionality (continued)

Option Name Functionality

_POSIX_PRIORITIZED_IO Prioritized asynchronous I/O: modifies asynchronous I/O queueing.

_POSIX_SYNCHRONIZED_IO Guarantees that a file's data is always out on disk: fdatasync, msync (if
and only if _POSIX_MAPPED_FILES), aio_fsync (if and only if
_POSIX_ASYNCHRONOUS_IO), additions to open and fcntl

_POSIX_FSYNC The fsync function

_POSIX_MAPPED_FILES Files mapped as memory: mmap, munmap, ftruncate, msync (if and only
if _POSIX_SYNCHRONIZED_IO)

_POSIX_MEMLOCK Lock all memory to avoid paging/swapping: mlockall, munlockall

_POSIX_MEMLOCK_RANGE Lock memory ranges: mlock, munlock

_POSIX_MEMORY_PROTECTION The ability to set memory protections: mprotect

_POSIX_MESSAGE_PASSING Message Queues: mq_open, mq_close, mq_unlink, mq_send, mq_receive,
mq_notify, mq_setattr, mq_getattr

_POSIX_SEMAPHORES Counting Semaphores: sem_init, sem_destroy, sem_open, sem_close,
sem_unlink, sem_wait, sem_trywait, sem_post, sem_getvalue

_POSIX_SHARED_MEMORY_OBJECTS Shared Memory: mmap, munmap, shm_open, shm_close, shm_unlink,
ftruncate

As you can see, there are a lot of choices when it comes to POSIX.4, and a vendor can legitimately say that it
complies with POSIX.4 by telling you that all the options are unavailable in a standard way. Aside from the abuses
of marketing hype, this is actually pretty valuable. Ideally, even non-real-time systems would comply with
POSIX.4 (and all the other POSIXes); if you ask for a real-time feature it will tell you, "Sorry, no can do," in some
standard way. The problem now is, how do you determine what your vendor gives you?

Compile-Time Checking

If you control the operating system environment in which your application is going to run, then you can check an
operating system's POSIX support at compile time, either from code in your application or in a totally separate
conformance-checking application that you run at the same time. A generic conformance checker is a useful
program because it's not tied to a particular application.

Each optional piece of POSIX comes with a constant which defines its existence, and perhaps other symbols which
define its size and shape. Existence is defined in <unistd.h>, and the numeric parameters (size and shape) for each
option are given in <limits.h>. We can determine what we need to know by looking in these header files.

Page 25

If you like reading header files, that's fine. Since they are header files, though, we can take the easier route and
write a program that does our checking for us.

_POSIX_C_SOURCE and _POSIX_SOURCE

Since every system supports more than just POSIX, you need some way to tell your system that you are using the
POSIX definitions for your application. To do this, you define a symbol (kind of a reverse feature-test macro) that
tells the system you are compiling POSIX source code. This symbol is called _POSIX_C_SOURCE, and you give
it a value that indicates which revision of POSIX you are conforming to. For instance, for the definitions of
POSIX.4 (approved in September, 1993), you'd say:

 #define _POSIX_C_SOURCE 199309

This definition tells your system that you want the POSIX definitions that were in effect for the September, 1993
version of POSIX. You don't care about POSIX work that happened after that, and you don't care about anything
other than POSIX. The description above sounds okay, but in fact there's a problem. Earlier versions of POSIX did
not use this reverse feature-test macro; they used another one, and they used it in a simpler (and less powerful) way.
They had you define _POSIX_SOURCE, not _POSIX_C_SOURCE, and you didn't have to give it a value. You
just said:

 #define _POSIX_SOURCE

Now, a system that does not define _POSIX_C_SOURCE does not conform to the September, 1993 version of
POSIX, i.e. POSIX.4. For the purposes of us real-world, realtime applications developers, then, we really should
only need to define _POSIX_C_SOURCE. If that doesn't give us the symbols we need, then the system doesn't
have what we want. However, it can provide an interesting extra piece of information if _POSIX_C_SOURCE has
no effect, but _POSIX_SOURCE does. That tells you that you have a system corresponding to the 1990 version of
POSIX, POSIX.1 (since the '93 version of POSIX is a superset of the '90 version, anyone who supports
_POSIX_C_SOURCE would also support _POSIX_SOURCE).

The _POSIX_C_SOURCE definition also, unfortunately, tells your compiler that you're not interested in any
symbols other than those defined by POSIX or ANSI C. If you are a POSIX True Believer, you think that you can
do anything using only POSIX and ANSI C, and you won't be needing anything else from your operating system.
However, you may be needing psychiatric evaluation. Of course you're going to need more for a real application! In
that case, those modules that need additional definitions from your system should not define _POSIX_C_SOURCE
(or _POSIX_SOURCE, for that matter). This can be clumsy when you need both POSIX and non-POSIX
functionality in the same module.

The lesson here is, POSIX makes your application more portable-not totally, utterly, trivially portable.

Page 26

What Pieces Do I Have?

When you are considering a new operating system, the first order of business is to find out what you have, and then
to find out how much of it you have. Correspondingly, we'll first look at <unistd.h>, which defines the POSIX
pieces a given operating system supports.

The first order of business is to determine whether or not POSIX is even present on your system.
_POSIX_SOURCE and _POSIX_C_SOURCE alone do not tell you that; you defined those symbols, remember?
The real test is to define _POSIX_C_SOURCE, and see what that definition buys you. The feature test macro
_POSIX_VERSION tells you this information. This symbol has a numeric value that tells you what version of
POSIX is present on your system. A value of 198808 (August, 1988, when POSIX.1 was approved as an IEEE
standard) means that your system conforms to the 1988 version of POSIX.1. Usually, this implies that the system
passes U.S.A. FIPS 151-1. A _POSIX_VERSION of 199009 tells you that the system conforms to the 1990, ISO
version of POSIX. This is not significantly different from the 1988 version, but the test suite, U.S.A. FIPS 151-2, is
better and harder to pass. Either value means you have the base POSIX.1, with no realtime functionality. Nuts! On
the other hand, a value of 199309 (for September, 1993, the month when POSIX.4 was approved) tells you that the
basic POSIX.1 facilities, and the POSIX.4 functions as well, are present. Values greater than 199309 indicate a
version of POSIX more recent than September, 1993. These versions should also support POSIX.4, since they will
be supersets of the 1993 edition.

Since POSIX.4 is mostly options, the fact that _POSIX_VERSION is greater than or equal to 199309 does not tell
you a lot. Speaking academically, this condition is necessary, but not sufficient, for all the functions of POSIX.4 to
be present. Table 2-3 shows the currently meaningful values of _POSIX_VERSION.

Table 2-3: _POSIX_VERSION Possible Values

Value Meaning

(not defined) POSIX is not supported on this system!

(long)198808 Only POSIX.1 is supported (FIPS 151-1).

(long)199009 Only POSIX.1 is supported (FIPS 151-2).

(long)199309 POSIX.I and POSIX.4 are both supported.

Greater than 199309 POSIX.1, POSIX.4, and some additional functions are present.

You could use this in a small test program as follows:

 #define _POSIX_SOURCE
 #define _POSIX_C_SOURCE 199309
 #include <unistd.h>
 #ifndef _POSIX_VERSION
 printf("POSIX is not supported!\n");
 #else /* _POSIX_VERSION */

Page 27

 #if _POSIX_VERSION == 199009
 printf("POSIX.1 is supported but not POSIX.4\n");
 #else
 #if _POSIX_VERSION >= 199309
 printf("POSIX.1 and POSIX.4 are supported\n");
 #else
 printf("Strange: POSIX VERSION value is between 199009 and 199309!\n");
 #endif
 #endif
 #endif /* _POSIX_VERSION */

Now, say that _POSIX_VERSION is 199309. You still need to find out which optional parts of POSIX.4 are
supported. It's actually legal for a vendor to claim _POSIX_VERSION is 199309 when none of the optional
POSIX.4 facilities are supported!

Since every optional part of POSIX.4 is flagged under a separate feature-test macro, you can write a small program
to check out the configuration of a supposed POSIX.4-conformant machine. For instance, if you wanted to check
whether POSIX.4 asynchronous I/O was supported, you might include some code like this:

 #define _POSIX_SOURCE
 #define _POSIX_C_SOURCE 199309
 #include <unistd.h>
 #ifdef _POSIX_ASYNCHRONOUS_IO
 printf("POSIX Asynchronous I/O is supported\n");
 #else
 printf ("POSIX Asynchronous I/O is not supported\n");
 #endif

This sample gives you the flavor of the sort of checking you need to do for POSIX options, but conformance testing
is far more complex than this. There are levels of checking to be done. First, there's #ifdef: whether
_POSIX_ASYNCHRONOUS_IO is defined at all. There may be dependencies between multiple #ifdefs, for
instance, checking on asynchronous I/O involves the definition and values of two constants:
_POSIX_ASYNCHRONOUS_IO and _POSIX_ASYNC_IO. Then, we check the system runtime configuration
using sysconf (discussed further on), to determine whether the system's run-time configuration agrees with the
constants. Next, we interrogate the limits to our functionality, both by checking constants in <limits.h> and also by
run-time checking (using sysconf again). Finally, we can perform ad-hoc checks to verify some functionality whose
behavior may vary from one system to the next. As an example, the I/O functionality of POSIX.4 may be supported
on some files (e.g., disk files) and not others (e.g., special device files).

The Limits to Functionality

<unistd.h> tells you what chunks of POSIX.1 are present on your system. However, there's more to the menu than
that. Each chunk may also have some numeric parameters associated with it. For semaphores, for instance, how
many can I create at once? For message queues, what is the largest message priority I can specify? These sorts of

Page 28

limits are given in, logically enough, <limits.h>. Table 2-4 shows you which limits are defined, what they mean,
and the minimum value that's allowed in a legitimate POSIX.4 implementation. The descriptions may not mean
much to you now, since they apply to POSIX.4 functions you haven't learned about yet. We'll revisit these limits in
each chapter.

Table 2-4: POSIX Feature Limits: Maxima

POSIX Feature Limits for this System Minimum Description

Asynchronous I/O AIO_LISTIO_MAX 2 Maximum number of operations you can
supply in one call to lio_listio

AIOMAX 1 Maximum concurrent asynchronous I/Os

Prioritized I/O AIO_PRIO_DELTA_MAX 0 Maximum amount you can decrease your
AIO priority

Message queues MQ_OPEN_MAX 8 Maximum number of message queues per
process

MQ_PRIO_MAX 32 Maximum number of message priorities

Real-time signals RTSIG_MAX 8 Maximum real-time signals

SIGQUEUE_MAX 32 Maximum outstanding realtime signals

sent per process

Semaphores SEM_NSEMS_MAX 256 Maximum number of semaphores that one
process can have open at a time

SEM_VALUE_MAX 32767 maximum semaphore value

Clocks and timers TIMER_MAX 32 Maximum number of timers a process can
have at one time

DELAYTIMER_MAX 32 Maximum number of times a timer can

overrun and you can still detect it.

This table says that the limit for AIO_LISTIO_MAX must be at least two. It can have a higher value—in fact, if
you're interested in list I/O at all, you'd hope it has a higher value—which is why your program should test it.
However, the POSIX standard guarantees that if list I/O is present at all (and it might not be—you need to check
_POSIX_ASYNCHRONOUS_IO), AIO_LISTIO_MAX will be at least two.

We can now begin to flesh out our conformance tester for asynchronous I/O, adding static limit interrogations.

 #define _POSIX_SOURCE /* Define old-style feature selector */
 /* Use 9/93 POSIX.1, .2, and .4 definitions only */
 #define _POSIX_C_SOURCE 199309L

Page 29

 #include <unistd.h> /* For POSIX definitions */
 #include <stdio.h>
 #include <errno.h>

 /**
 Testing for POSIX Asynchronous I/O
 **/

 #ifdef _POSIX_ASYNCHRONOUS_IO
 #include <limits.h>
 #include <fcntl.h>

 int have_asynchio(void)
 {
 int i, res, num_ok;

 printf("System claims to have POSIX_ASYNCHRONOUS_IO. \n");
 printf("AIO_LISTIO_MAX = %d\n", AIO_LISTIO_MAX);
 printf (AIO_MAX = %d\n", AIO_MAX);
 }
 #else /* _POSIX_ASYNCHRONOUS_IO */
 int have_asynchio(void) { return 0; } /* Not supported at all */
 #endif /* _POSIX_ASYNCHRONOUS_IO */

In addition to the limits described above, there are also some interesting, but pretty useless, numbers given in
<limits.h>. These are the smallest values that any POSIX system can provide for the facility. These values are
fixed by the POSIX standard, and are not going to change on your system. Why do you need these values in a
header file, if they're invariant? I don't know. But they're there. The values are listed in Table 2-5.

Table 2-5: POSIX Feature Limits: Minimum Requirements

Limit (All Systems) Description Value

_POSIXAIOLISTIO_MAX Number of operations in one listio 2

_POSIX_AIO_MAX Number of simultaneous asynchronous I/Os 1

_POSIX_MQ_OPEN_MAX Number of message queues for one process 8

_POSIX_MQ_PRIO_MAX Number of message priorities 32

_POSIX_RTSIG_MAX Number of real-time signals 8

_POSIX_SIGQUEUE_MAX Number of real-time signals a process can queue at once 32

_POSIX_SEM_NSEMS_MAX Number of semaphores per process 256

_POSIX_SEM_VALUE_MAX maximum semaphore value 32767

_POSIX_TIMER_MAX Number of timers per process 32

_POSIX_DELAYTIMER_MAX Number of times a timer can overrun 32

Page 30

Run-Time Checking

Remember that the run-time system and the compilation environment may be completely distinct. In particular,
their levels of POSIX support may differ! That's because most real-time operating systems are configurable, to
support varying memory requirements and hardware environments. In the workstation environment, it's easy
enough to solve all kinds of problems by buying more memory. In an embedded, real-time system, though,
memory, and its cost, are at a premium.

Say you've built your application to use POSIX.4 asynchronous I/O (_POSIX_ASYNCHRONOUS_IO). The
header and library support are present, and your application builds with no problem. In fact, you run and test your
application on a fully-loaded version of your target machine. No problem. Then, in a configuration management
phase of your project, some other developer tries to reduce memory usage by removing parts of the run-time
system. Say he doesn't realize that you used asynchronous I/O, and he removes it from the run-time system. What's
going to happen? Your asynchronous I/O calls are going to fail mysteriously when you run your application on this
new system!

To get around this problem, POSIX provides functions you can call to determine your machine's configuration at
run-time. These functions are called sysconf fpathconf and pathconf and are used to determine the presence,
absence, and numerical limits of options on a per-system and a per-file basis, respectively. These functions are
summarized as follows:

 #include <unistd.h>

 long sysconf(int name);
 long pathconf(const char *pathname, int name);
 long fpathconf(int fd, int name);

Real-World Costs

Costs come in different varieties: monetary cost, cost in physical space, and energy cost. In one project I
was involved with, my team was chosen over a competing system because (among other reasons) our
operating system used less power than the competition! We were referred to as a ''half-watt operating
system" while the other system weighed in at a hefty three watts. A peculiar way of comparing software,
to be sure!

Page 31

sysconf

For system-wide options, like the number of asynchronous operations that can be outstanding at once
(_POSIX_AIO_MAX), use sysconf as follows:

 long val = sysconf(_SC_AIO_MAX);

The function is simple. You pass it a particular option, and it returns to you the value associated with that option on
the current running system. For options that have numeric values (limits), sysconf returns the value of that limit.

For binary values, where the support is either there or not there (for instance,
POSIX_PRIORITY_SCHEDULING), the return value from sysconf gets more complex. If you pass in a bogus
option number, you will get back -1, with errno set to EINVAL. But say your system just doesn't support the
_POSIX_PRIORITY_SCHEDULING option. In that case, and for all options which are not supported, sysconf
returns -1 without changing errno. Thus, it's better to initialize errno before calling sysconf

 errno = 0;
 val = sysconf (_SC_PRIORITY_SCHEDULING);

 if ((val == -1) && (errno)) {
 printf("Bad option number %d (POSIX_PRIORITY_SCHEDULING)\n", option);
 printf("System does not conform to POSIX_VERSION 199309\n");
 } else if ((val == -1) && (! errno)) {
 printf("_POSIX_PRIORITY_SCHEDULING not supported\n", option);
 } else {
 /* Any return means POSIX_PRIORITY_SCHEDULING is supported */
 printf("_POSIX_PRIORITY_SCHEDULING is defined (value %d)\n", val);
 }

The currently-defined sysconf options are given in Table 2-6; true options are binary, while numeric limits are not:

Table 2-6: sysconf Options

sysconf option name System Value Returned Standard

_SC_JOB_CONTROL _POSIX_JOB_CONTROL (binary) POSIX.1

_SC_SAVED_IDS _POSIX_SAVED_IDS (binary) POSIX.1

_SC_VERSION _POSIX_VERSION (binary) POSIX.1

_SC_ARG_MAX ARG_MAX POSIX.1

_SC_CHILD_MAX CHILD_MAX POSIX.1

_SC_CLK_TCK clock ticks per second (a.k.a. HZ) POSIX.1

_SC_NGROUPS_MAX NGROUPS_MAX POSIX.1

_SC_OPEN_MAX OPEN_MAX POSIX.1

_SC_STREAM_MAX STREAM_MAX POSIX.1

_SC_TZNAME_MAX TZNAME_MAX POSIX.1

_SC_ASYNCHRONOUS_IO _POSIX_ASYNCHRONOUS_IO (binary) POSIX.4

_SC_MAPPED_FILES _POSIX_MAPPED_FILES (binary) POSIX.4

_SC_MEMLOCK _POSIX_MEMLOCK (binary) POSIX.4

Page 32

Table 2-6: sysconf Options (continued)

sysconf option name System Value Returned Standard

_SC_MEMLOCK_RANGE _POSIX_MEMLOCK_RANGE (binary) POSIX.4

_SC_MEMORY_PROTECTION _POSIX_MEMORY_PROTECTION (binary) POSIX.4

_SC_MESSAGE_PASSING _POSIX_MESSAGE_PASSING (binary) POSIX.4

_SC_PRIORITIZED_IO _POSIX_PRIORITIZED_IO (binary) POSIX.4

_SC_PRIORITY_SCHEDULING _POSIX_PRIORITY_SCHEDULING (binary) POSIX.4

_SC_REALTIME_SIGNALS _POSIX_REALTIME_SIGNALS (binary) POSIX.4

_SC_SEMAPHORES _POSIX_SEMAPHORES (binary) POSIX.4

_SC_FSYNC _POSIX_FSYNC (binary) POSIX.4

_SC_SHARED_MEMORY_OBJECTS _POSIX_SHARED_MEMORY_OBJECTS (binary) POSIX.4

_SC_SYNCHRONIZED_IO _POSIX_SYNCHRONIZED_IO (binary) POSIX.4

_SC_TIMERS _POSIX_TIMERS (binary) POSIX.4

_SC_AIO_LISTIO_MAX AIO_LISTIO_MAX POSIX.4

_SC_AIO_MAX AIO_MAX POSIX.4

_SC_AIO_PRIO_DELTA_MAX AIO_PRIO_DELTA_MAX POSIX.4

_SC_DELAYTIMER_MAX DELAYTIMER_MAX POSIX.4

_SC_MQ_OPEN_MAX MQ_OPEN_MAX POSIX.4

SC_MQ_PRIO_MAX MQ_PRIO_MAX POSIX.4

_SC_PAGESIZE PAGESIZE POSIX.4

_SC_RTSIG_MAX RTSIG_MAX POSIX.4

_SC_SEM_NSEMS_MAX SEM_NSEMS_MAX POSIX.4

_SC_SEM_VALUE_MAX SEM_VALUE_MAX POSIX.4

_SC_SIGQUEUE_MAX SIGQUEUE_MAX POSIX.4

_SC_TIMER_MAX TIMER_MAX POSIX.4

fpathconf and pathconf

You use sysconf to find out what your system supports. For options that are not file- or directory-related, that's fine.
But for options that are applied to files, like synchronized I/O or asynchronous I/O, the system may support the
option, but any given file might not. Some options are only meaningful for certain kinds of files, and some options
are interpreted differently depending on the type of file that you're working with.

Therefore, you need a version of sysconf that tells you whether a given option is supported for a particular file.
POSIX gives you two such functions: pathconf and fpathconf These perform the same function, but pathconf takes
a pathname string, while fpathconf takes the file descriptor of a file you have already successfully opened:

 #include <unistd.h>

 int val, opt, fd;
 char *pathname;

 pathname = "/random/path/in/which/i/am/interested";

 opt = _POSIX_SYNCHRONIZED_IO;
 val = pathconf(pathname, opt); /* Use the pathname... */

Page 33

 fd = open(pathname, O_RDWR); /* ...or open the file... */
 val = fpathconf(fd, opt); /* and use the descriptor! */

You can pass the options listed in Table 2-7 to pathconf. There are fewer options than for sysconf; however, their
interpretation is rather more complex, as we'll go into later in this section. Several of the POSIX.1 options are
rather complex, but that's not the focus of the book. For more detail on these you'll want to refer to the POSIX
Programmers' Guide, by Donald Lewine (O'Reilly & Associates, 1991) or the POSIX.1 standard itself.

Table 2- 7: pathconf and fpathconf Options

pathconf option name System Value Returned Standard

_PC_CHOWN_RESTRICTED _POSIX_CHOWN_RESTRICTED (binary) POSIX.1

_PC_NO_TRUNC _POSIX_NO_TRUNC (binary) POSIX.1

_PC_VDISABLE _POSIX_VDISABLE POSIX.1

_PC_LINK_MAX LINK_MAX POSIX.1

_PC_MAX_CANON MAX_CANON POSIX.1

_PC_MAX_INPUT MAX_INPUT POSIX.1

_PC_NAME_MAX NAMEMAX POSIX.1

_PC_PATH_MAX PATH_MAX POSIX.1

_PC_PIPE_BUF PIPE_BUF POSIX.1

_PC_ASYNC_IO _POSIX_ASYNC_IO (binary) POSIX.4

_PC_PRIO_IO _POSIX_PRIO_IO (binary) POSIX.4

_PC_SYNC_IO _POSIX_SYNC_IO (binary) POSIX.4

Call pathconf or fpathconf with these names and you will get the value of the associated _POSIX symbol for that
particular file. The POSIX.4 options do not allow you to pass in a directory name; some of the POSIX.1 functions
do.

The return value from pathconf can get strange, like sysconf. If the functions return -1, but do not set errno, then
there is no limit for the symbol. In other words, the functionality is supported. Since all the POSIX.4 options are
binary, you'd expect this return if the functionality were there. It's also possible, though, that the functions will
return a value other than -1 for the POSIX.4 options. This is okay, too. It means that the functionality is supported
for the file.

Here's some further detail on the meaning of each of these options:

_PC_LINK_MAX
This option returns the maximum link count for the file you pass in.

_PC_MAX_CANON, _PC_MAX_INPUT, _PC_VDISABLE
These limits and the special VDISABLE character refer to terminal characteristics. It only makes sense to pass in a
terminal special file to pathconf for these options.

_PC_NAME_MAX, _PC_NO_TRUNC
These values are the maximum length of a filename, and whether the name will be truncated if it exceeds that
length (the alternative is to return an error). These

Page 34

options make sense only when you pass in directories, because they refer to creation or access characteristics of
files. (If you think about it, you'll see that these options don't make any sense when applied to files: for
example, why would you ask, "What's the maximum name length for the file foobarbazzot.c?" It already has a
name.) The values returned refer to files within the named directory.

_PC_PATH_MAX
This value is the maximum length of a relative pathname in your current working directory.

_PC_PIPE_BUF
This value is the largest number of bytes you can write to a named pipe (or FIFO) at one time. FIFOs live in the file
system and have pathnames. If you pass in the name of a FIFO, this option refers to that FIFO; if you pass in a
directory, the option refers to FIFOs created in that directory.

_PC_POSIX_CHOWN_RESTRICTED
If this option returns true for a regular file, it means that you cannot do arbitrary chowns of files; you must have
appropriate permission (either be owner of the file, or be root), and you can only chown the file to your group's
ownership—you cannot give it away to another group ID, unless you're root. If you pass in a directory, then this
property applies to files created within that directory.

_PC_SYNC_IO, _PC_ASYNC_IO, _PC_PRIO_IO
These options indicate whether synchronized I/O, asynchronous I/O, and prioritized I/O are supported for a
particular file. Don't pass in directory or FIFO names; the effect of that is not specified by POSIX.4.

We can now complete our example test for asynchronous I/O conformance:

 #define _POSIX_SOURCE /* Define old-style feature selector */
 /* Use 9/93 POSIX.1, .2, and .4 definitions only */
 #define _POSIX_C_SOURCE 199309L

 #include <unistd.h> /* For POSIX definitions */
 #include <stdio.h>
 #include <errno.h>

 /***
 Testing for POSIX Asynchronous I/O
 **

 #ifdef _POSIX_ASYNCHRONOUS_IO

 #ifdef _POSIX_ASYNC_IO
 /*
 * If this symbol is defined in <unistd.h>, then it implies
 * system-wide support or lack thereof. Otherwise, we must go check on
 * the files in which we are interested
 */
 #if _POSIX_ASYNC_IO == -1

Page 35

int have_asynchio(void) { return 0; } /* Not supported at all */
#else
int have_asynchio(void) { return 1; } /* Supported everywhere */
#endif
#else /* _POSIX_ASYNC_IO is NOT defined */

/*
* must check on individual files using pathconf
*/
#include <limits.h>
#include <fcntl.h>

char *asynch_io_files[] = {
 "/tmp/fu",
 "/fu",
 "./fu",
 "/mnt/fu",
 "/dev/tty",
 "/dev/dsk/c2t0d0s0",
 NULL
};

int have_asynchio(void)
{
 int i, res, num_ok;

 /* Interrogate limits: compile- and run-time */
 printf("System claims to have POSIX_ASYNCHRONOUS_IO.\n");
 printf("AIO_LISTIO_MAX = %d\n", AIO_LISTIO_MAX);
 printf("AIO_MAX = %d\n", AIO_MAX);

 printf("Runtime value of AIO_LISTIO_MAX is %d\n",
 sysconf(_SC_AIO_LISTIO_MAX);
 printf ("Runtime value of AIO_MAX is %d\n", sysconf(_SC_AIO_MAX);

 /* Use pathconf to check for functionality on a per-file basis */
 for (i=num_ok=0; asynch_io_files[i]; i++) {
 printf("Checking on path %s\n", asynch_io_files[i]);
 errno = 0;
 res = pathconf (asynch_io_files [i], _PC_ASYNC_IO);
 if ((res == -1) && (! errno)) {
 printf("\tAsynch. I/O is allowed!\n");
 nun_ok++; /* No limit here */
 } else if (res < 0) {
 printf("\tAsynch. I/O is NOT allowed! (%s)\n",
 strerror(errno));
 } else {
 printf("\tAsynch. I/O is allowed\n");
 num_ok++; /* No limit here */
 }
 }
 if (num_ok == i)
 return 1;
 else
 return 0;

Page 36

 }
 #endif /* _POSIX_ASYNC_IO */
 #else /* _POSIX_ASYNCHRONOUS_IO */
 int have_asynchio(void) { return 0; } /* Not supported at all */
 #endif /* _POSIX_ASYNCHRONOUS_IO */

Notice that we have two levels of constant checking: for _POSIX_ASYNCHRONOUS_IO and for
_POSIX_ASYNC_IO. The I/O options of POSIX are special in that they each have two constants defining their
existence. The first, longer constant is defined if the functionality is there at all. The second constant is there to
save you the effort of calling pathconf for many files. If that constant is defined, its value tells you whether the
support is system-side or not.

Headers and Namespace Pollution

All the functionality of POSIX.4 is declared via header files, as described in Table 2-2. Some of these headers are
standard ones you've seen before, <signal.h>, for example. Other headers may be new to you, e.g., <aio.h>.

Likewise, the functions and constants of POSIX.4 are either existing facilities, like fsync and mmap, or they are
new, like sched_setscheduler. The new functions and macros stand out because they all use standard prefixes in
their names. For instance, all the asynchronous I/O functions start in aio_ or lio_; all the #defines start with either
AIO_ or LIO_. This peculiar naming discipline was used to avoid a curious phenomenon known as namespace
pollution.

Imagine an application you've written which you want to be portable to many different systems. How do you know
that the symbols you define for your application won't conflict with symbols that will be defined by some system
you may be porting to some day? For example, what if I'd written a program, several years ago, that defined a new
function, called mmap. Now, my mmap does nothing like what the standard UNIX mmap does. In fact, my mmap
predates the existence of UNIX mmap by several years. My application is easily portable for years, until certain
Berkeley-UNIX-based systems start coming out with their own version of mmap. Suddenly, I can't link my
application on these systems because of a duplicate name definition. Or worse, the application links, but I get the
wrong mmap function!

When vendors name their new functions whatever they want, it's called namespace pollution. Usually, it's very
unlikely that this "pollution" will have any effect at all; you're not generally going to name your functions just like
some other, system-supplied function, just by random chance. However, these conflicts do sometimes occur. And
when they occur, it's as big a problem for operating system vendors as it is for programmers. For instance, early
versions of POSIX.4 called their asynchronous I/O facilities aread, awrite, and so on—conflicting with the names
chosen by Sun for their own implementation of asynchronous I/O in SunOS 4.1.

Page 37

The solution to this problem is imperfect, but it works well for now. POSIX posts advisories, called reserved
namespaces, that tell you where they are likely to define new names for functions. These namespaces are listed in
Table 2-8. Each header file in POSIX declares that a certain set of names is off-limits. These sets of names are
those names which begin with the reserved prefixes: AIO_, sched_, and so forth. When you write an application,
you are admonished not to name any of your own constants or data structures with those prefixes. That way, you
know that you won't conflict with the definitions of the facility itself. Some operating systems have also adopted
this policy. For example, QNX calls have a standard prefix of qnx_. Another common practice is for system
vendors to name their calls and variables with an underscore as the first character. This namespace is reserved by
POSIX, as well.

The reserved names fall into two categories: those that are declared (functions, variables, and so on), and those that
are #defined: constants, macros, and so forth. The namespaces for declared objects are just plain forbidden
territory. POSIX says you can't use those names. The namespaces for the #defined things are a little more lenient: if
you must use one of these names (they are the ones that start with all capital letters), you should #undefthe name
first. For instance, if you absolutely had to have a constant AIO_MYCONSTANT in your code using asynchronous
I/O, you'd #define it as follows:

 #include <aio.h> /* Reserves aio_, lio_, AIO_, LIO_ */

 #undef AIO_MYCONSTANT
 #define AIO_MYCONSTANT 3

Now, I don't know about you, but I'd be a bit leery about undefining the symbols that the system may be using to
support the asynchronous I/O that I needed. I'd rename my symbol. You should do the same. Your code will be
more portable if you stay away from all these restricted namespaces.

Table 2-8: POSIX Reserved Namespaces

Header file Namespace Type Reserved By

aio_ declared POSIX.4

<aio.h> lio_ declared POSIX.4

AIO_ #defined POSIX.4

LIO_ #defined POSIX.4

<dirent.h> d_ declared POSIX.1

l_ declared POSIX.1

F_ #defined POSIX.1

<fcntl.h> O_ #defined POSIX.1

S_ #defined POSIX.1

<grp h> gr_ declared POSIX.1

Table continued on next page

Page 38

Table 2-8: POSIX Reserved Namespaces (continued)

Header file Namespace Type Reserved By

<limits.h> _MAX (suffix) #defined POSIX.1

<locale.h> LC_[A-Z] #defined POSIX.1

mq declared POSIX.4

<mqueue.h> MQ_ #defined POSIX.4

<pwd.h> pw_ declared POSIX.1

<sched.h> sched_ declared POSIX.4

SCHED_ #defined POSIX.4

sem_ declared POSIX.4

<semaphore.h> SEM_ #defined POSIX.4

sa_ declared POSIX.1

si_ declared POSIX.4

sigev_ declared POSIX.4

<signal.h> sival_ declared POSIX.4

SA_ #defined POSIX.1

SI_ #defined POSIX.4

SIG_ #defined POSIX.1

shm_ declared POSIX.4

MAP_ #defined POSIX.4

<sys/mman.h> MCL_ #defined POSIX.4

MS_ #defined POSIX.4

PROT_ #defined POSIX.4

<sys/stat.h> st_ declared POSIX.1

S_ #defined POSIX.1

<sys/times. h> tms_ declared POSIX.1

c declared POSIX.1

_

V #defined POSIX.1

I #defined POSIX.1

<termios.h> O #defined POSIX. 1

TC #defined POSIX.1

B[0-9] #defined POSIX.1

any _t (suffix) declared (types) POSIX.1

_ declared POSIX.1

Page 39

Who's Got What?

Since POSIX is structured as a set of options, the amount of POSIX functionality supported by different "POSIX
systems" can vary tremendously. In addition, POSIX is not usually sufficient for a total application. You're going to
need some additional facilities, whether for networking, screen handling, or just performing operations that POSIX
hasn't standardized yet. I'm thinking in particular of functionality that is provided on all reasonable UNIX systems:
select, ioctl, curses, X, and so forth. The only way to determine presence or absence of these features is to ask.

As far as POSIX goes, though, you can do a little better. The National Institute of Standards Technology maintains
an Internet mail daemon you can contact to determine who's been certified against the FIPSes, and which options
they support. It's enlightening to see that vendor S supports all the POSIX options, while vendor M supports
nothing it doesn't absolutely have to in order to get the check on the Government list! To contact the NIST mail
daemon, send email to posix@nist.gov with the following text:

 send help
 send 151-1reg
 send 151-2reg

These three requests will send you complete information on how to use the mail server, and the current lists of who
has passed FIPS 151-1 and FIPS 151-2. As a POSIX.4 FIPS becomes available, an additional list should start.

Conclusion

So what does all this mean? POSIX defines a standard interface for a large and useful operating system, one you
can use to get real work done. The headers and functions provided allow you to determine your configuration at
compile time (via <unistd.h> and <limits.h>), or at run time (via sysconf, pathconf, and fpathconf). The rules for
what names you are supposed to use for your symbols are explicitly laid out (and to be honest, you're probably not
going to run into these restrictions, as OS variable names tend to be obscure by design!). If the information I've
presented seems a bit thick at the moment, then just let it go for now, go on to the rest of the book, and then come
back to this. In the meantime, the next several chapters cover the real substance of real-world problem solving on
POSIX systems. Take a look at that stuff and then maybe come back to this once you're more fully immersed.

Page 41

CHAPTER 3
The Basics of Real-Time: Multiple Tasks

This chapter discusses the ground-level basics of real-time applications: the use of multiple tasks. You'll find, or
you already know, that real-time applications are inherently multitasking because they conform to the inherent
concurrency of the real world. The use of multiple tasks for real-time applications is therefore essential. This
chapter introduces the subject and explains the rudimentary uses of POSIX processes that are typically used to
perform tasks.* If you are well-acquainted with fork, exec, exit, and wait, the first part of this chapter will be review
for you. Following that, I'll talk about the POSIX signal model, which may differ from the traditional UNIX signal
model you're used to. At the end of the chapter, I'll talk about the POSIX.4 extensions to signals.

You'll find, once you're creating multiple processes, a significant need for some good interprocess communication
mechanisms, as well as the need for deterministic scheduling of those multiple processes. Those topics are covered
in Chapter 4, Better Coordination: Messages, Shared Memory, and Synchronization, and Chapter 5, On Time:
Scheduling, Time, and Memory Locking.

Doing Everything at Once

Real-world applications are different from other applications in a very important way: they deal with the real world,
rather than with just a keyboard, graphics tube, and a disk. An application in the real world may be talking to
communication lines, robot arms, disk farms, engine controllers, heat sensors, altitude sensors, impact detectors,
and so on.

An important aspect of this communication is that it is in general all happening at the same time. Take, for
example, a vehicle control application that might be driving some

* A task is an abstract concept meaning, ''a job that has to be done." Often, there's a one-to-one mapping between the tasks and
processes, although, as we'll see, that is not necessarily the case.

Page 42

sort of autonomous vehicle somewhere, for instance, the Mars rover. At any given time, this software might be:

• Taking in the surrounding terrain for path mapping

• Getting input from various sensors telling it whether its wheels are touching ground

• Controlling the power being put out to any and all of several different motors

• Sampling the air, temperature, and light, and scooping up little pieces of Mars

• Getting input from the humans back on Earth, telling it to unjam the silly antenna

The job of your software, in an application like this, is to provide timely-enough response to multiple inputs, all at
once. The inputs may be completely unrelated. For instance, it's unlikely that air sampling has much to do with the
status of the wheels on the Mars rover. Conversely, the inputs may be closely related. Engine control is dependent
on the speed of the vehicle, the incline the vehicle is ascending, the status of the wheels (one's in a pothole, so
deliver more power to the rest), and the course laid out for the vehicle.

So, you are writing a real-time application, whether it is a soft real-time application or a hard real-time application.
The job of your application is to provide timely response, via some set of outputs, to some other set of inputs. The
outputs may very well affect the next wave of inputs. How are you going to structure your application to meet these
constraints? How are you going to do all these different, maybe-related things at the same time? There are a few
alternatives:

• Use one process. You could service all your various inputs and outputs using a single process. This method
avoids the overhead of multiple processes, but may result in complex code for more than a few, simple tasks. The
maintenance of such a system can become extremely difficult as new features and support are added. Sometimes
merely switching the hardware will cause such an application to fail!

• Use many processes. At the other end of the scale, you could use a separate, dedicated process for every
different activity required by your application. This method can avoid the complexity of a single process, but
introduces the problem of how the multiple processes coordinate their actions. In addition, this solution has a
problem with performance (processes come with a weight that must be borne by the operating system and you), as
well as scalability issues (you can't run an infinite number of processes, because of that same weight).

• Use not quite so many processes. If one process per activity is too much, you can combine like activities into
single processes. Of course, you have to choose carefully which activities get combined, to avoid excessive
complexity in any one process. The right choice of processes can greatly simplify your programming effort.

Page 43

For mission-critical real-time systems, complexity often hides bugs. Simplicity is good.

• Use signals to emulate multiple processes (we'll cover signals in detail in the "Signals" section later in this
chapter). A signal handler can almost be thought of as an independent, asynchronous flow of control within a
process, awakened only in response to a particular signal. If you can hook up all your inputs and outputs so they
generate signals, you might be able to use this asynchronous behavior to emulate the behavior of multiple
processes, without the extra weight of processes. The problem with signals is that, while they may feel like separate
flows of control from the main program, they're not.

• Use threads. POSIX.4a threads, or pthreads, are a means of supporting multiple tasks within a single process
address space. Threads provide an easier and more efficient means of dealing with multiple, related tasks. The
POSIX.4a standard is not quite approved as of this writing, so pthreads are not really accessible to you, and I will
not cover them any further in this book. However, there are other threads packages, like Sun's LWPs and Mach's C-
threads, and pthreads will certainly be supported on many systems soon.

Each alternative has its place; however, we'll see that the first and last alternatives both have serious limitations that
restrict how big, and how portable, your solution can be.

Running in Cycles

Imagine a control-loop sort of real-time application which needs to read data from a port or two, and in response to
that input, update a display appropriately and maybe send off a couple of outputs. In other words, consider a video
game. How would you structure it?

As a first approximation of the right solution, you'd put it in a big while loop. (My strategy would be to use the
while loop approach, and if that didn't work, then to try something else. With experience, of course, you'll know
when the big while loop isn't going to work, right off.) Let's assume you start off with a game that uses the
keyboard for input, and sends its output to the screen. Your code might end up looking like this:

 while (1) {
 /* Read Keyboard */
 /* Recompute Player Positions */
 /* Update the display */
 }

Now, this is a perfectly fine little program, and for small real-time applications it will work well. You need to
figure out some way to convince the read operation not to block; instead, it should just check for input from the
keyboard and immediately return, so that if the user doesn't press any keys, the display will continue to be updated.
Conversely, you need to make sure that the display update is fast enough, so

Page 44

that no keystrokes are lost (serial ports usually buffer their input, but they can only buffer so much). There are
methods for doing this, called select, poll, and O_NONBLOCK. We'll cover the facilities POSIX provides for I/O
in that chapter.

The Cyclic Executive Approach

The "big while loop" approach to real-time programming (you can call it the "cyclic executive" approach if you
want to sound smarter) can be made to work for small, simple, real-time applications, especially where the need for
real-time response is not too stringent, and where the things going on in the loop are basically happening in synch
with each other.

One immediate problem we need to deal with, though, is that the big loop is an infinite loop, and as set up in the
example above, it's going to spin as fast as possible. This may be neither socially acceptable (other people may
want to use the machine for useful work) nor necessary. In fact, you only need to run the loop fast enough to
service the input or output with the highest frequency. You need to find some way of running the loop at exactly
that frequency, usually by using a device interrupt (if one is available), or by setting a timer to go off periodically.
We'll see how to do that in the scheduling chapter, when we talk about access to time. Remember that you only
need to run the loop as fast as the highest frequency task, assuming that all the tasks are in synch. In fact, you only
want to run the loop that fast, because otherwise you're monopolizing the CPU. Not only is that a pain on a system
that may be doing other things, it's also sloppy and inefficient programming. You want to use the least number of
cycles you can get away with.

When I say that the tasks are "in synch," I really mean something very specific: the tasks all have harmonic
frequencies. That is, the frequencies of the various tasks are all multiples of the shortest (highest) frequency.* When
this happens, you can structure your tasks in a cyclic structure (a "big while loop") without a lot of pain. For
instance, if you need to read user input 60 times a second, and you must update the screen 30 times a second for
(somewhat) smooth animation, then you can run your loop at 60 Hz (the highest frequency), only updating the
screen every other time through the loop. In contrast, imagine that you had to get user input 50 times a second, and
update the screen 30 times a second. 50 Hz is 20 milliseconds, while 30 Hz is 33.333... milliseconds. If you ran the
loop at 50 Hz, you'd have to update the screen every one and two-thirds times through the loop—not a really
pleasant thing to code up! Your other alternative is to run the loop at a higher frequency, and do both the keyboard
input and the display update every M and N iterations, respectively (M and N would be factors of that higher
frequency). Determining that higher frequency can be painful. Furthermore, if it's too high, then you cannot do all
the processing you need to do in one cycle of the loop (each iteration must become shorter in order to run at a
higher

* Technically, the frequencies could all be multiples of another frequency, like half or a third the period of the highest-frequency
task.

Page 45

frequency), and you'll need to deal with the fact that you'll overrun your cycles. Clearly, the "big while loop" has its
disadvantages.

So there are a few simple problems to be overcome with the cyclic executive approach: harmonic frequencies,
finding an appropriate timing base, and using counters to figure out what needs to be done with each iteration of the
loop. The real problems come in when we begin adding features to the game. As more and more work needs to be
done in the loop, the timing becomes progressively more complex. A bit more computation here and all of a
sudden, you're missing keystrokes there. For instance, let's add mouse support and sounds:

 while (1) {
 /* Synchronize to Highest Frequency */
 /* Read Keyboard */
 /* AND read mouse */
 /* Recompute Player Positions */
 /* Update the display */
 /* AND emit sounds */
 }

Your keyboard and mouse inputs have to be fast, and everything has to be nonblocking. Still, you can probably deal
with it, especially since this application isn't hard real-time. Just about any modern computer can be made to go fast
enough to stay ahead of mere human responses. That is, unless the graphics are really sophisticated or there are a
lot of human responses to be dealt with. Let's take this game off the UNIX box it's been prototyped on, and try it
out on the video game hardware.* Now, we're going to have a lot more output to do, because it's one of those new
force-feedback games where the game setup moves in response to what the user's doing. There's also a lot of
ancillary peripherals to be dealt with: flashing lights, and, literally, bells and whistles.

 while (1) {
 /* Synchronize to Highest Frequency */
 /* Read Keyboard */
 /* AND read mouse */
 /* Recompute Player Positions */
 /* Update the display */
 /* AND all the other lights */
 /* AND emit sounds */
 /* AND more sounds */
 /* AND move the game physically */
 }
All of a sudden, the application is getting complex.

* This is another reason why you want to use as few cycles as possible. A video arcade game is an example of an embedded
system, that is, a computer embedded in some real-world appliance. In this sort of marketplace, you'll want to use the slowest,
smallest, most energy-efficient parts you can, to save both watts and money. If your application can run on a slower processor,
you'll want to be able to use it!

Page 46

This assumes, as well, that all these jobs can still be done within a single loop without compromising your
performance. A long computation, like for course planning (often used in robotics applications, and requiring time-
consuming artificial intelligence techniques) or perhaps software video decompression (as in Intel's Indeo) may
need to be broken up across multiple iterations of a loop. Another technique that is used is to periodically poll for
other work from within a long computation. This is the classical Macintosh programming model.

At this point, a poorly-structured application may begin to show some strain. And again, it is important to point out
here that we're just talking about human responses. A video game is a soft real-time application. A hard real-time
application will be much more stringent in its requirements. A video game might seem sluggish if keyboard input
or a video frame gets dropped, whereas a jet engine may explode or a radar tear itself off its mount.

Tuning a cyclic executive for performance involves moving parts around, splitting computations, literally tuning
the application for its hardware. This may be quite difficult, and gets you into fun tricks like maintaining the state
of a computation across multiple iterations of the loop. Furthermore, the tuning relies on the performance of your
machine not changing, or else the speed of the various things in the loop changes, and your timing goes off. So
much for portability! Given all that, you may find yourself wondering, "Gee. Wouldn't it be easier if I just used a
multitasking operating system like UNIX?"

Pretending to Multitask with Signal Handlers

An alternative to the "big while loop" is the use of signal handlers, to emulate multitasking in your application. A
POSIX signal is a software analogue to a hardware interrupt; when a process gets a signal it vectors off from
whatever it was doing to the signal handler function that it set up for that signal. When the signal handler
completes, the process goes back to what it was doing. When you can arrange for signals to be delivered for many
of the important events in your application, it can sometimes seem that you have achieved the look and feel of true
multitasking.

Unfortunately, even if you have the look, you don't really have the feel. As anyone who's written an interrupt
handler knows, one is very limited in what one can do from within such a handler. Specifically, the signal handler
cannot synchronize its execution with any of the other signal-simulated tasks. Why? Because there aren't really any
other tasks. There's just this one, going off and handling various signals. Any time the signal handler blocks, the
entire process blocks. The result is one hung application.

For many uses, though, signal handlers are just what you need, and they are certainly widely used to respond to
various external events (like I/O completion and timer expiration). We'll return to this multitasking subject after
I've described how signals work. That way, you'll have a little more basis for understanding the benefits and
limitations of signal handlers that try to emulate multitasking.

Page 47

Multiple Processes

As we've seen, the cyclic executive approach can be successfully used for small, harmonic sets of tasks, but it
doesn't deal terribly well with the whole range of real-time problems. If you were to try and split computations
across multiple invocations of the loop, saving all the necessary state of each computation, you would eventually
find yourself doing something very similar to what a multitasking operating system does when it switches between
tasks or processes. Why not let the operating system do the work?

The advantage of using multiple processes is clear from the discussion of cyclic executives—simplicity. Each
process is a distinct entity, separately scheduled by the operating system. You no longer need to manhandle the
interactions between the various tasks within your single big while loop. Instead, you have a whole bunch of "little
while loops," each running at its own frequency, doing what it needs to do for its particular job. This solution is
much simpler to code, and, therefore, much more robust. It is also much more portable. In fact, for large real-world
systems where portability (to newer machines or other operating systems) is important, multitasking is the only
reasonable alternative.

Other advantages include:

• Scalability. An application that is split into multiple processes is not locked into a single process model
(duh!). You can run multiple processes on multiple processors, either on a multiprocessor computer, or in a
distributed environment. There's a bit more work to be done than just splitting the process into multiple processes,
especially if the processes want to communicate. However, at least the model is right!

• Modularity. You can add or subtract processes from your application to configure it for different target
environments and workloads. This can be quite difficult with a cyclic executive.

• Protection. Processes live in isolated, protected virtual address spaces, separated from nasty, errant processes
that might tromp their memory with broken pointers and bad algorithms. This protection leads to more robust
applications than a single, large application running in a single chunk of memory. This is important for mission-
critical applications. Modern computers come with MMUs. You should use them when you can.

What are the problems? There are a number.

Page 48

• Processes cost more. They are supported by the operating system as generalized schedulable entities,
complete with state information that may be irrelevant to your application. That state takes up memory.

• Processes are slower. It's been claimed that processes, because of this extra weight, are slower than other
methods for multitasking (like the big while loop). This is not the case. Processes are slower because the operating
system has to get involved in the scheduling decisions, and the operating system makes general choices based on a
generalized scheduling scheme, not the highly tuned system you may have had to devise in your big while loop.

• Processes have to be scheduled. Nothing happens for free. Just because you're running all your jobs in
separate processes, that doesn't imply that the operating system can magically cause all your tasks to always make
all their deadlines. Remember that the operating system is still just slicing up time on a single machine. In all but
the most trivial cases, you'll need to give the operating system some clues as to which jobs are more important and
which are less important. In other words, you'll still have to deal with the scheduling of the jobs, albeit in a much
more palatable way than the cyclic executive forced upon you!

• Processes are alone. Each process in the POSIX model executes in a protected, distinct address space,
sharing no variables or other communication channels with any other processes. Any coordination needs to be
programmed explicitly.

We'll discuss the first two issues below, along with a fast review of how to use multiple processes. Some
interprocess communication is possible using signals, which we'll cover in the "Multitasking with Signal Handlers"
section of this chapter. Better communication mechanisms are covered in Chapter 4. Process scheduling is the
subject of Chapter 5.

Making Processes

For a concise example of most every facility in POSIX.1 for process creation and destruction, we can turn to the
terminal-server application I described in Chapter 1, Introduction. Here is the server end of the application, absent
everything except the process-related functions.

 #define POSIX_C_SOURCE 199309

 #include <unistd.h>
 #include <stdio.h>
 #include <sys/types.h>
 #include <sys/wait.h>
 #include <signal.h>
 #include <errno.h>
 #include "app.h" /* Local definitions */

 main(int argc, char **argv)
 {

Page 49

 request_t r;
 pid_t terminated;
 int status;

 init_server(); /* Set things up */

 do {
 check_for_exited_children();
 r = await_request(); /* Get some input */
 service_request(r); /* Do what the terminal wants */
 send_reply(r); /* Tell them we did it. */
 } while (r != NULL);

 shutdown_server(); /* Tear things down */
 exit(0);
 }

 void
 service_request (request_t r)
 {
 pid_t child;
 switch (r->r_op) {
 case OP_NEW:
 /* Create a new client process */
 child = fork();
 if (child) {
 /* parent process */
 break;
 } else {
 /* child process */
 execlp("terminal", "terminal application",
 "/dev/coml", NULL);
 perror("execlp");
 exit(1);
 }
 break;
 default:
 printf("Bad op %d\n", r->r_op);
 break;
 }
 return;
 }

The terminal end of the application looks like this:

 #define POSIX_C_SOURCE 199309

 #include <unistd.h>
 #include <stdio.h>
 #include <sys/types.h>
 #include <sys/wait.h>
 #include <signal.h>
 #include "app.h" /* Local definitions */

 char *myname;

Page 50

 main(int argc, char **argv)
 {
 myname = argv[0];
 printf("Terminal \"%s\" here!\n", myname);
 while (1) {
 /* Deal with the screen */
 /* Await user input */
 }
 exit (0);
 }

The server operates in a loop, accepting requests, servicing those inputs, and then sending a response message to
the original requestor. One possible request is to create a new terminal process. This is the code in the case
statement which handles OP_NEW (that's my definition, and has no meaning beyond this application).

To create a new terminal, the server calls fork, which duplicates the process so that there are two, called the original
(or parent) process and the child. The parent process returns from the function and continues servicing user
requests. The child process calls one of the exec functions to overlay itself with a new process image (one stored in
the file "terminal" in this case).

The child process, transformed into the terminal program, does whatever it is that it does (presumably something
user-related), and eventually ceases to exist by calling exit.

More Details on fork, exec, and exit

The POSIX process creation, transformation, destruction and cleanup functions are defined in POSIX.1. The
POSIX Programmer's Guide has a good introduction to the use of fork and the exec functions. Here's a summary:*

 #include <sys/types.h>

 pid_t fork(void);
 int execl(const char *file, const char *arg0, ... NULL);
 int execv(const char *file, char *const argv[]);
 int execle(const char *file, const char *arg0, ... NULL, char *const envp[]);
 int execve(const char *file, char *const argv[], char *const envp);
 int execlp(const char *file, const char *arg0, ... NULL);
 int execvp(const char *file, char *const argv[]);

 void exit(int status); /* Terminate the process, cleaning up ANSI C stuff. */
 void _exit(int status); /* Terminate the process, cleaning up POSIX stuff. */

 #include <sys/types.h>
 #include <sys/wait.h>

* The syntax in this summary is not exactly ANSI C. I have taken liberties with it in the interest of clarifying the arguments.

Page 51

 pid_t wait(int *status); /* Wait for a child, any child, to die */
 pid_t waitpid(pid_t which, int *status, int options);

One process calls fork, but two return. Each of these processes is a unique, individual process in a protected,
separate virtual address space; the processes just happen to look the same. The fork call returns, to the original
process, the process ID of the new process, while the new process is returned a 0. These different return values
enable the two processes to do different things based on which one is which.

A new process costs memory. Each process consists of a number of kernel data structures, running from a couple of
hundred bytes to a few (as much as, say, fifteen) kilobytes if you include file pointers, MMU context and room for
a supervisor stack (if the operating system requires one—QNX does not require a separate kernel stack per
process). In addition, the new process has its own user memory: an exact duplicate of the address space of the
parent process, including the user stack and data areas. These days, most operating systems fault in the user context
for a new process. The new guy starts out without any memory, and then, as it tries to use its memory, the operating
system detects memory faults and supplies the required memory at that time. This has the advantage that memory
not used by the new process is not wasted. In a real-time context, though, you do not want time-consuming memory
faults happening at random times, so you will probably want to fault in all your memory as soon as you fork.

You can do this by touching everything you plan to use, assuming you can figure out where ''everything" is. A
simpler solution is to lock your memory down. If you lock memory in the parent process, don't expect it to be
locked in the child. You'll have to lock it, explicitly, in each new process. Memory locking is part of POSIX.4, and
is covered when we talk about how to do things On Time in Chapter 5.

Fork makes new processes, but they're duplicates of each other. The exec family of functions loads in new code—a
new program—to be executed. The exec'd process is actually the same process. It has the same process ID, and
some files may be left open across an exec. The newness comes from the fact that the process memory space is
reinitialized with a new executable program; this new program starts running at main (in C), or wherever it is that
programs start running (in other languages). Memory locks are lost when a process successfully calls an exec
function. There are many variants of exec. Each provides a somewhat different interface to the same functionality.
The exec functions are execl, execv, execle, execve, execlp, and execvp. The functions with an l in the suffix take a
list of arguments, a variable number terminated by NULL, as in the server example. The functions with a v take a
vector, or array of pointers to characters, which again is terminated by a NULL pointer. The presence of an e in the
suffix indicates that a second list or vector can be passed to set up the environment of the new executable image.
(Unless one of these functions is called, the new executable image inherits the environment of the caller.) Finally, a
p in the suffix specifies that the environment variable PATH should be used for looking up the executable file, so
you do not need to specify a fully-rooted pathname.

Page 52

Regardless of which exec variant you decide to use in your applications, the basic usage is the same. The first
argument to any exec function is the name of the file containing the executable image (whether fully rooted or not).
The rest of the arguments form the argv argument with which main in the new program is invoked. The first
element in this array, argv[O], is traditionally the last component of the pathname to the executable file. However,
it can be anything. argv is interpreted by the new program, and you can do anything you want with it.

Hints and notes for using processes

Here's a gotcha that I've seen enough times that I'd like to warn you about it. When you are using execlp or execvp,
make sure that your executable file name is different from the name of any utility that may already be in your path!
This is because the PATH is searched from beginning to end, according to POSIX.1. Depending on the order of
your PATH variable, you might find the program you are trying to execute, or you might find a totally unrelated
version in some other directory! This really happened to a guy who was working with me from halfway across the
country. He called me on a Tuesday, having already tried for an entire day to figure out what was going on. A test
program he was writing was giving completely bizarre results—stuff he hadn't even put in the program at all! He
was testing semaphore creation and deletion, I think, but the test program kept saying, "Argument expected." It
turns out that he had named his test program "test", and there is also a standard utility called test, a general
comparator that can be used for determining file states, doing numeric comparisons and the like. It was this general
utility that he'd been executing all this time!

But Wait! There's More

There are two exit calls (exit or _exit) that are used to terminate a process. Once a process exits, the parent process
can determine its exit status by using one of the wait functions. The _exit function is defined by POSIX.1, whereas
exit was defined by ANSI C. Both of these functions will have the desired effect of terminating your process. In
general, you want to use the ANSI function because it cleans up more than the POSIX function does. Usually, but
not always, exit is implemented as a sequence of cleanup steps, followed by a call to _exit. Neither call ever returns.
It's tedious to refer to both functions by name, so when I refer to exit, please take that to mean "exit or _exit."

The wait calls are more than just nice for determining the manner of passing of child processes. Once a process has
exited, most of its memory and other resources will usually be returned to the system (although POSIX is silent on
the subject). Some resources, however, remain occupied after the process is gone. Notably, the supervisor stack of a
process is often not freed at the time of exit (because it is difficult to free a stack the process is currently using),
and, in addition, some subset of the process control data structures will also be left out to store the exit status of the
deceased process.

Page 53

The status value passed to exit and _exit becomes the exit status of the process. This value can be retrieved by the
parent process if it so desires, by use of wait or waitpid. In the POSIX documents, wait is described as an interface
that can be used to retrieve the exit status of deceased processes. It's more than that. The wait functions serve the
important purpose of freeing the leftover resources associated with a deceased process. Historically, a process is
called a "zombie" from the time it calls exit until the time the parent process wait s for it. During the zombie period,
the process is still occupying system resources. If the parent process never calls wait, then it is possible that the
system will clog up with zombies and be unable to proceed. So, it is important that parent processes wait (or
waitpid) for their children, even though POSIX doesn't say they have to.* Not all systems require a wait for each
terminated child, but most do, so you should program with the assumption that wait calls are necessary.
Alternatively, the parent process itself can exit. In this case, the child processes are cleaned up by the system.
Zombie processes are only a problem when a parent process remains alive, creating child processes indefinitely but
not waiting for their demise.

The simple wait function blocks until a child process terminates. It returns the process ID of the deceased child and
status information encoded in the parameter passed to it. waitpid is the version of wait with the racing stripes,
chrome hubcaps, and the dingle balls in the window. You can set it to wait for only one child, or any. You can
cause it to block, or not, by setting flags in the options.

In the terminal/server example, the server had a function call that checked for deceased child processes. This
function uses the waitpid call:

 void check_for_exited_children (void)
 {
 pid_t terminated;
 /* Deal with terminated children */
 terminated = waitpid(-1, &status, WNOHANG);
 if (terminated > 0) {
 if (WIFEXITED(status)) {
 printf("Child %d exit(%d)\n",
 terminated, WEXITSTATUS(status));
 } else if (WIFSIGNALED(status)) {
 printf("Child %d got signal %d\n",
 terminated, WTERMSIG(status));
 } else if (WIFSTOPPED(status)) {
 printf("Child %d stopped by signal %d\n",
 terminated, WSTOPSIG(status));
 }
 }
 }

The first argument to waitpid, called which, specifies the set of processes you want to wait for.

* This is most likely because POSIX, as an interface standard, isn't allowed to talk much at all about the operating system
resources required for running processes.

Page 54

• If which is -1, then waitpid will wait for any process that is a child of the calling process, just like wait does.

• If which is 0, then waitpid will wait for any process that is a child of the calling process that has the same
process group ID as the calling process.*

• If which is positive, then waitpid will wait only for that process, which had better be a child of the calling
process (or else an errno, ECHILD, will be returned).

• Finally, if which is less than -1, then the absolute value of which specifies a process group ID. In this case,
waitpid will wait for any process that is a child of the calling process that has that process group ID.

The last argument, options, can have two flags set in it: WNOHANG and WUNTRACED. WNOHANG, which we
are using, tells waitpid not to wait for processes to exit. If there is a dead process handy, then WNOHANG returns
its status. Otherwise, an error is returned, indicating that no processes had exited when waitpid was called. If
WUNTRACED is set, and if _POSIX_JOB_CONTROL is supported, then waitpid will return the status for
stopped, as well as terminated, child processes. _POSIX_JOB_CONTROL does not really concern us here.

The status information for the exited process can be decoded using the macros you see in
check_for_exited_children. These macros are:

WIFEXITED(status_info)
This call returns a true value if the child process exited normally (via a call to exit, _exit, or by falling off the end of
its main routine).

WIFSIGNALED(status_info)
This macro returns true if the child was killed by a signal. Usually this means the process got a segmentation fault,
bus error, floating point exception, or some other processor fault. It may also mean that a signal was explicitly sent
to the child process. Signals are a leading cause of process death, in addition to their other uses (like stopping
processes, faux asynchrony and low-bandwidth, asynchronous interprocess communication). We'll discuss signals
below.

WIFSTOPPED(status_info)
This macro returns a true value if the process has not terminated at all, but is, instead, just stopped (this only
happens if waitpid is used, with WUNTRACED set in the options parameter). Stopped processes are usually in that
state because they received a stop signal. That implies the application is exercising some sort of job control of its
own (like a shell does), or is being debugged. The POSIX-standard job control features are supported only if
_POSIX_JOB_CONTROL is defined in

* Process group ID is inherited by child processes, and is generally not changed. The process group has to do with job control —
the running of multiple applications (jobs) from a single terminal. However, if _POSIX_JOB_CONTROL is defined, processes
can change process groups using the setpgid call.

Page 55

<unistd.h>. Job control does not concern us here, and I'll say no more on the subject.

WEXITSTATUS(status_info)
If WIFEXITED(status_info) returned true, then this macro returns the exit status for the process. Only the least
significant 8 bits of the exit status are returned by this macro. The rest are lost.

WTERMSIG(status_info)
If WIFSIGNALED(status_info) returned true, then this macro tells you which signal was responsible for the child's
termination.

WSTOPSIG(status_info)
If WIFSTOPPED(status_info) returned true, then this macro tells you which signal was responsible for the child's
being stopped.

Signals

Signals are an integral part of multitasking in the UNIX/POSIX environment. Signals are used for many purposes,
including:

• Exception handling (bad pointer accesses, divide by zero, etc.)

• Process notification of asynchronous event occurrence (I/O completion, timer expiration, etc.)

• Process termination in abnormal circumstances

• Emulation of multitasking (see below)

• Interprocess communication

A complete multitasking application has to deal with signals properly, because POSIX systems use them for so
many purposes. We'll begin by covering the basics of signals, and finish up by examining communication between
processes. As we'll see, signals are not always the best interprocess communication mechanism, and that conclusion
will lead us into the next chapter, discussing other means of communicating.

The following synopsis shows the POSIX-conformant signal functions. The first section consists of functions that
must be present on all POSIX (not just POSIX.4) systems. The POSIX.4-specific facilities are required only if
_POSIX_REALTIME_SIGNALS is defined (in <unistd.h>, remember). <unistd.h> is not required for signal
definitions themselves; only for the definition of _POSIX_REALTIME_SIGNALS.

 #include <unistd.h>
 #include <signal.h>
 /* The following are all required in all POSIX-conformant systems */
 /* Manipulate signal set data structures */
 int sigemptyset(sigsett *set);
 int sigfillset(sigset_t *set);
 int sigaddset(sigsett *set, int sig);

Page 56

 int sigdelset(sigset_t *set, int sig);
 int sigismember(sigset_t *set, int sig);

 /* Set the process's signal blockage mask */
 int sigprocmask(int op, const sigset_t *set, sigsett *oldset);

 int sigaction(int this_signal, const struct sigaction *sa,
 struct sigaction *old_response);

 /* Wait for a signal to arrive, setting the given mask */
 int sigsuspend(const sigsett *new_mask);

 /* Send a signal to a process */
 int kill(pid_t victim_id, int this_signal);

 /*
 * The remainder of the functions are part of POSIX.4, and conditional
 * on _POSIX_REALTIME_SIGNALS.
 */
 #ifdef _POSIX_REALTIME_SIGNALS
 int sigqueue(pid_t victim_id, int this_signal, union sigval extra_info);
 int sigwaitinfo(const sigset_t *one_of_these_signals, siginfo_t *addl_info);
 int sigtimedwait(const sigsett *one_of_these_signals, siginfo_t *addl_info,
 const struct timespec *timeout);
 #endif _POSIX_REALTIME_SIGNALS

There are two layers to a POSIX. signals implementation. Most of the signal behavior is dictated by POSIX.1. The
second layer consists of extensions to the POSIX.1 model which were made by POSIX.4. The next several sections
discuss the POSIX.1 signals model. Following that, I'll tell you about some of the problems with signals, and what
POSIX.4 has done about them. Finally, I'll tell you what problems still remain, even with the POSIX.4 extensions.

What Is a Signal?

A POSIX signal is the software equivalent of an interrupt or exception occurrence. When a process "gets" a signal,
it signals (pardon the pun) that something has happened which requires the process's attention.

As a simple example, let's go back to the terminal/server application. Say that the server has created a number of
terminal processes, and then gets a command to shut down. It really should shut down all its terminals as well. A
signal, sent from the server to the terminals, serves the purpose nicely. The appropriate code in the server is a single
line added to shutdown_server:

 #define SIG_GO_AWAY SIGUSR1 /* An available signal */

 void shutdown_server (void)
 {
 printf("Shutting down server\n");

Page 57

 /* Kill all children with a signal to the process group */
 kill (, SIG_GO_AWAY);
 }

This modification has the result of delivering a signal to every process in the process group of the server when the
server exits. On the terminal side, we can simply let the signal kill the process, or we can arrange for a more
graceful exit by handling the signal, as follows:

 void
 terminate_normally(int signo)
 {
 /* Exit gracefully */
 exit ();
 }

 main(int argc, char **argv)
 {
 struct sigaction sa;
 sa.sa_handler = terminate_normally;
 sigemptyset(&sa.sa_mask);
 sa.sa_flags = 0;
 if (sigaction(SIG_GO_AWAY, &sa, NULL)) {
 perror("sigaction");
 exit (1);
 }
 ...
 }

In this example, the child process sets up a signal handler using sigaction. When the signal arrives, the function
terminate_normally will be called. It, in turn, can do whatever is necessary to deal with the signal. In this case, it
just exits. In a real application, it would probably clean up the terminal screen again so it could be used for
something else.

When do signals occur?

In the example above, the signal was used as an interprocess communication mechanism. However, that's not what
signals are best at. Signals occur when:

• A machine exception occurs: a page fault, a floating point exception, and so forth. These are the
synchronously-generated signals, because they happen in immediate or near-immediate response to something the
process itself does.

• Something happens, asynchronous to the process's execution, to interrupt that process's execution. For
instance, job control (someone typed CTRL-Z at the keyboard to stop the process) or user interruption (someone
typed CTRL-C to terminate the process), or asynchronous I/O completion, timer expiration, or receipt of a message
on a message queue.

• Some other process explicitly decides to send a signal to the process.

Page 58

Should you use signals for interprocess communication?

Because a process can send a signal to another process, signals can be used for interprocess communication.
Signals are almost never the appropriate choice as a communication mechanism; they're too slow, too limited, the
queuing is insufficient, and they asynchronously interrupt your process in ways that require clumsy coding to deal
with. However, there are occasions when signals are an appropriate communication mechanism, either alone or in
combination with a secondary means. In our example, for instance, the signal was a simple means of notifying the
terminals of a simple occurrence. The mechanism interrupts the terminal's normal processing without requiring a lot
of coding on either side—exactly what we want!

Signals are mostly used for other reasons, like the timer expiration and asynchronous I/O completion mentioned
above. A real application needs to know how to deal with signals, even if it's not using signals to pass messages.
Signals are generated for a number of reasons, but in the discussions that follow, I'm going to concentrate on signal-
based interprocess communication: processes sending signals to each other as a sort of message-passing. We'll
cover signals delivered for other reasons in the chapters that discuss those reasons.

There are legitimate reasons for using signals to communicate between processes. First, signals are something of a
lowest common denominator in UNIX systems—everyone's got signals, even if they don't have anything else! If
you want a technical reason, signals offer an advantage that other, higher-performance communication mechanisms
do not support: signals are asynchronous. That is, a signal can be delivered to you while you are doing something
else. In the case of POSIX.4, signals allow you to perform I/O asynchronously, to set timers to expire some time in
the future, or to be notified when a message queue enters a particularly propitious state. In contrast, if you're using
synchronous functions, you must explicitly go look to see whether a service you want is available, and possibly
block, awaiting for your service. You wait to read data from the disk, wait on a semaphore, and wait for a message
to be delivered on a queue. The advantages of asynchrony are:

• Immediacy. You are notified immediately (for some value of immediately) when something occurs.

• Concurrency. You can be off doing something else while other processing goes on concurrently with your
application. When that other processing completes, you are notified via a signal.

There are also disadvantages to asynchrony:

• Complexity. If your application must prepare for the possibility of a signal at any point in its execution, the
application is going to become more complex. With complexity comes a lack of robustness, difficulty in
understanding and maintaining, and so on.

Page 59

• Non-determinism. You don't really know when a signal is going to arrive, relative to other signals or even to
the event that caused the signal to be delivered. Signal delivery happens "under the hood" of the operating system,
and isn't very well specified at all. This is as it should be, since different operating systems implement signals in
different ways.

• Lower performance. Signals are slower than the synchronous mechanisms for communication, because
asynchrony costs. It takes time to stop an application, set up an appropriate environment in which to call the signal
handler, and then actually call the handler. None of that overhead is required when one is just synchronously
waiting for an occurrence.

That said, signals definitely have their place. In our server/terminals application, using signals for communication
from the server and the terminals allows the terminal to be off doing something else, like responding quickly to user
keystrokes, while the database server is off humming on some humongous request submitted earlier. At the
completion of the request, the server sends a signal to the terminal process, interrupting whatever it was doing. The
terminal can then paint a particular area of the screen with a message that request #86 is now completed and ready
for perusal. This basic asynchrony is visible to the terminal user as the ability to do multiple jobs at once—a feature
that "power users" generally love.

Crush, kill, destroy

One process sends a signal to another process by using the ominously-named kill call. To send a signal, all that the
sender has to know is the process ID of the victim. There are also some permission checks done: we can't have
arbitrary processes killing off other, unrelated processes, now can we? kill is so named because the result of this
action is usually the abrupt and abnormal termination of the target process, unless the other process has done
something special, like set up a handler, in preparation for the signal.

Back to the permission-checking issue: you can send a signal to another process if your process has the same real or
effective user ID as the victim process. One of the sender's IDs has to match one of the victim's IDs. Usually, this
means that the user who created the sender process also needs to create the victim process. Getting the permissions
right can be difficult, especially in an asynchronous environment like that of the terminal/server application. One
possibility is to have an "overlord" process that spawns all terminal and server processes. This setup is also
generally useful for managing software failures: the overlord can monitor its children and deal with unexpected
failures. Another possibility is to use the setuid capability to artificially set the effective user ID of any process to
that of a particular user. You would do this by setting the S_ISUID mode bit for the executable file. Since this is an
issue marginally related to real time, and is as much a system configuration issue as anything else, I'm going to
leave its discussion to those volumes. Suffice it to say here, that you may have permission

Page 60

problems in sending signals in all but the most obvious cases (parent spawns child, parent can kill child, for
instance).

Signals are identified by their number. Each POSIX-conformant system supports a variety of signal numbers,
usually more than POSIX itself requires. Each number has a particular meaning and effect on the process that gets
the signal. For portability, you never use the actual number of the signal; you never send signal 13 to a process.
That's because 13 means something on one system, but may mean something else entirely on another system.
Instead, you include the header <signal.h> and use the symbolic names for signals which are defined in that
header. Most signal numbers are used for particular system-dictated actions, and you shouldn't go around sending
them from one process to another, because the system may also send those signals for important reasons of its own.
As Table 3-1 shows, POSIX requires several different signals, but only two are avilable for your application to use:
SIGUSR1 and SIGUSR2. POSIX.4 defines many more application-available signals, which are detailed in Table 3-
2. I recommend that you encapsulate your use of signals into a small section of code, so that if you need to change
signal numbers from one platform to another, you can do so easily. In our example, you saw how I defined my own
constant, SIG_GO_AWAY. In practice, I'd put that definition in a header file that both the terminal and the server
included.

Table 3-1: Signals Required by POSIX (Default Action Termination)

Signal Name Used For

SIGABRT Abnormal termination, abort

SIGALRM Alarm clock expired (real-time clocks)

SIGFPE Floating point exception

SIGHUP Controlling terminal hung up (Probably a modem or network connection)

SIGILL Illegal instruction exception

SIGINT Interactive termination (usually CTRL-C at the keyboard)

SIGKILL Unstoppable termination (signal 9 on most UNIX systems)

SIGPIPE Writing to a pipe with no readers

SIGQUIT Abnormal termination signal (interactive processes)

SIGSEGV Memory access exception

SIGTERM Terminate process

SIGUSRI Application-defined uses

SIGUSR2 Application-defined uses

Page 61

Table 3-2: POSIX Optional Signals

Signal Name Default Action Used For

Option: _POSIX_JOB_CONTROL

SIGCHLD Signal Ignored Child died or stopped

SIGSTOP Stop the process Stops process (uncatchable)

SIGTSTP Stop the process Stops process (from terminal)

SIGCONT Continue process Continues stopped process

SIGTTOU Stop the process that tries to write to the terminal Stop a background process

SIGTTIN Stop the process that tries to read from the terminal Stop a background process

Option: _POSIX_REALTIME_SIGNALS

SIGRTMIN-SIGRTMAX Termination Application-defined uses

Dealing with Signals

kill itself is not enough to build a complete communication interface between processes. They don't call it kill for
nothing. If your terminal process does not set itself up properly to deal with the arrival of SIGUSR1, the result will
be that the process that gets the signal will be terminated—killed. How's that for communication? In order to avoid
this abrupt termination, you need to prepare the target process (also known as the victim) for the signal.

There are three ways in which you can deal with a signal.

1. You can block the signal for a while, and get to it (by unblocking it) later. Blocking signals is only a temporary
measure.

2. You can ignore the signal, in which case it is as if the signal never arrives.

3. You can handle the signal, by setting up a function to be called whenever a signal with a particular number (e.g.,
SIGUSR1) arrives.

The terminal/server example handles the signal by calling sigaction.

Signal handlers and ignoring signals

The sigaction is used to set all the details of what your process should do when a signal arrives. The struct
sigaction encapsulates the action to be taken on receipt of a particular signal. struct sigaction has the following
form (element order may vary):

 struct sigaction {
 void (*sa_handler)();
 sigset_t sa_mask;
 int sa_flags;
 void (*sa_sigaction) (int, siginfo_t *, void *);
 };

Page 62

The most important member is sa_handler, which takes a pointer to a function. This function will be invoked
whenever the process gets a particular POSIX.1 signal. The signal handler function is declared like this:

 void handler_for_SIGUSR1(int signum);

The handler is passed the number of the signal as its sole argument. This allows you to use one handler function for
a number of different signals, and still handle the different signals differently (of course, you could use different
functions for different signal numbers, too).

POSIX.1 does not use an ANSI C function prototype for sa_handler in the sigaction structure. That means that no
compile-time checking of the arguments passed to your handlers will be done. In the future, though, an ANSI C
prototype may be used. In that case, you'd better make sure that your signal handlers all take a single, integer
argument. It's also important to note that many signal handlers take more than the single, integer argument. In
particular, POSIX.4 queued signals take additional arguments, as described later in this chapter. These signal
handlers would break under ANSI prototyping for the old-style, single-argument signal handlers. The solution is to
use a new, different field of the sigaction for these sorts of handlers. For handling POSIX.1 signals, use sa_handler.
A system-defined constant, SIG_IGN, can be assigned to sa_handler to indicate that, for this particular signal, the
system should just ignore it and not deliver it to the process. This is different than merely blocking a signal. If a
process has blocked a particular signal, and that signal is delivered to the process, then that signal occurrence will
remain pending until you unblock the signal. At that point you can expect the signal to be delivered to you.
SIG_IGN, in contrast, is essentially a null handler, a handler function that just returns, having done nothing at all. If
you wanted to reset the action for a signal to the default action (terminate the process), you could do so by
specifying SIG_DFL as the sa_handler field in a call to sigaction.

A problem that often arises with signals is that your handling of a particular signal may interfere with some other
software component's handling of the same signal. For instance, if your signal uses SIGUSR1, and you build your
application using some outside party's libraries that also use SIGUSR1, you may end up in a situation where your
handler gets replaced by the third-party library's handler for SIGUSR1. Instant program failure! Alternatively, you
may find yourself in the converse situation: if you are writing code to be used by diverse application writers, they
may unknowingly interfere with your signal handling. For instance, our ''database server and terminals" example
application may be a generic library of routines you're trying to sell to people, to build into their own specific on-
line database applications. You need to take this possibility into account. One of the things you can do in your code
is use the old_action parameter to sigaction to remember what the previous signal state was, and, when you are
done handling that particular signal, to restore the old signal action. In other words, clean up after yourself. You can
successfully use this strategy for synchronously generated

Page 63

signals. For instance, if you write some code that may possibly get a floating point error, you could bracket it with
signal handling:

 #include <signal.h>
 /* Handler for floating point exceptions */
 extern void handler_for_SIGFPE(int);
 struct sigaction action, old_action;
 int i;

 action.sa_flags = 0;
 sigemptyset(&action.sa_mask):
 action.sa_handler = handler_for_SIGFPE;

 /* Install temporary signal handling mechanism */
 i = sigaction(SIGFPE, &action, &old_action);

 /* Perform calculations, possibly generating SIGFPE */

 /* Put old signal handler back */
 i = sigaction(SIGFPE, &old_action, (struct sigaction *)NULL);

Unfortunately, this is only a partial solution and it really doesn't solve the problem, especially when the signals may
be generated asynchronously. In that case you need to leave your handler installed all the time. Really, what is
required is that components of an application have to advertise which signals they expect to be able to use. Again,
try to keep your use of signals into contained code areas, in case you need to switch signal numbers when you port
from one system to another. It's a very good idea to define your own signal names in header files, so you can easily
switch signals when porting. Finally, document the signals you rely on for your application's correct behavior. You,
and users of your code, will be thankful for such documentation later.

The second member of the struct sigaction is sa_mask, which defines the set of signals to be blocked from delivery
while your handler is executing. The mask in effect while a signal is being handled is calculated by taking the mask
currently in effect for the process, adding in the signal being delivered (SIGUSR1 in our example), and then adding
in all the signals in the set indicated by sa_mask. (The signal being delivered is added to the mask because you
usually don't want another occurrence of a signal happening while you're in the middle of handling the first one.)
None of the signals in the resulting signal mask will be delivered for the duration of the signal handler.*

The sa_flags field can have special flags set in it to indicate to the system that it should handle the signal in various
special ways. The only flag value defined by POSIX.1 is SA_NOCLDSTOP. This flag has to do with
_POSIX_JOB_CONTROL and stopping processes. Basically, the SIGCHLD signal is sent to a parent process when
a child process terminates. Optionally, systems that support job control may send SIGCHLD to the parent process
when a child process stops. If this flag is set, then the system knows not to send this signal to the parent process
when and if the child processes stop. This flag is

* Two signals are defined as unstoppable: SIGKILL and SIGSTOP. Attempts to block, ignore, or handle these signals will be
silently ignored by the operating system.

Page 64

generally of concern when you are writing command shells and other sorts of applications that are intertwined with
job control.

For SIGRTMIN through SIGRTMAX (the POSIX.4 standard's new signals), you set sa_sigaction, not sa_handler.
This is a heads-up to you; we'll discuss these enhanced handlers later in this chapter.

Blocking signals and signal masks

You may want to deal with a signal in different ways depending on where you are in your code. Think about the
terminal example. In general, we can just set up a handler for SIGUSR1 and deal with the signal when it arrives.
The only exception will be when the terminal is doing something that the signal handler code itself might also want
to do. For instance, the signal handler may paint an area of the screen, or clean it up entirely. It may be error-prone,
therefore, to get that signal when the terminal process is in the middle of updating the screen for some other reason.
Thus, the terminal process may also want to block SIGUSR1 for various sections of code. Signal blocking is
usually a temporary measure, because you can always unblock the signal and let it through. But there are times in
your application when you really don't want to have a particular signal arrive.

Each POSIX process has associated with it a signal mask that dictates which signals will be passed through to the
process, and which will be held pending, or blocked, until that signal number is removed from the mask.

Signal Sets and Masks

You'll hear about the signal mask, and about signal sets, pretty much interchangeably. You might be
confused by that, since "mask" seems to indicate a bit mask, and "set" seems to indicate an abstract data
structure. POSIX tries hard to talk about sets of signals, rather than signal numbers and masks. That's to
allow for an extensible sigset_t. One vendor may implement the sigset_t as a short, 16-bit quantity that
will only really allow you to deal with 16 signals. Another vendor might support 64 signals by using two
32-bit-long integers. A particular signal, like SIGUSR1, is a number (like 13); the system usually adds
that signal to a set by ORing the corresponding bit into a bit vector. This explanation is for your
edification; you really do need to use the POSIX "signal set" facilities, explained below, to achieve
portable signal handling.

Where does the initial signal mask come from? A process's signal mask is inherited from its parent process when
the parent forks. On exec, the process's signal mask is unchanged. Be sure to explicitly set it before you exec. You
change the process's mask

Page 65

using the sigprocmask call, or by having a new signal mask installed as part of a signal handler invocation (see
above discussion of sigaction.sa_mask).

 #include <signal.h>

 sigset_t newset, oldset;
 int i;

 i = sigprocmask(SIG_BLOCK, &newset, &oldset);
 i = sigprocmask(SIG_UNBLOCK, &newset, &oldset);
 i = sigprocmask(SIG_SETMASK, &newset, &oldset);

Using sigprocmask, you can add signals to be blocked, subtract signals from the mask, or set the mask, depending
on whether the value of the first argument is SIG_BLOCK, SIG_UNBLOCK, or SIG_SETMASK, respectively.
The signals in the argument newset are those that are added, subtracted, or become the process's signal mask. The
final argument, if it's not NULL, will have the previous signal mask of the process stored into it by the system when
you call sigprocmask. This allows you to nest calls to sigprocmask, restoring previous masks as you leave nesting
levels.

The second argument can also be NULL. If that's the case, then the system will just store the current signal mask
into oldmask. (If that parameter is also NULL, then the call doesn't do anything.)

When you have blocked a signal, and that signal is sent to your process, it remains pending for you until you
unblock the signal. When you do unblock a signal that is pending, you should immediately expect to receive the
signal.

Now, we need to know how to set up these signal sets we're passing in to sigprocmask. POSIX defines a whole set
of functions for manipulating the signal sets.

sigemptyset(sigset_t *s)
This function initializes a signal set to be empty, no signals in it.

sigfillset(sigset_t *s)
This function initializes a signal set to be full; all the signals defined by POSIX will be in the set.

You must always initialize a signal set by calling either sigemptyset or sigfillset (or by passing the set as the
oldset argument to sigprocmask). Then, you can add or subtract signals from the initialized set with the
following two functions:

sigaddset(sigset_t *s, int signum)
This function adds the signal numbered signum to the set s.

sigdelset(sigset_t s, int signum)
This function removes the signal numbered signum from the set s.

sigismember(sigset_t *s, int signum)
Finally, you can use this function to tell you whether the signal signum is in the set s.

Page 66

All of the sigset_t manipulation functions described above may return -1 and set errno to EINVAL if you pass them
a bad signal number, but they don't have to. In the usual implementation, all these functions are macros that expand
to a shift and logical operation (OR or AND), and adding a check for a bogus signal number would greatly slow
down the function. Use the symbolic signal names defined by POSIX, not actual numeric values, and you'll be
okay.

Synchronizing with signals

Signals interrupt whatever your application is doing, but what if your application runs out of things to do? For
example, our terminal process runs in an infinite loop. At the bottom of that loop, it may well wish to pause and
wait for a signal returned from the server process. Perhaps this new signal indicates something else, like the
completion of some piece of work the terminal has earlier submitted. POSIX supports this requirement with another
call, sigsuspend:

 #define SIG_GO_AWAY SIGUSR1
 #define SIG_QUERY_COMPLETE SIGUSR2

 void query_has_completed(int signo)
 {
 ...
 }
 main(int argc, char **argv)
 struct sigaction sa;
 sigset_t wait_for_these;

 sa.sa_handler = query_has_completed;
 sigemptyset (&sa.sa_mask);
 sa.sa_flags = 0;
 if (sigaction(SIG_QUERY_COMPLETE, &sa, NULL)) {
 perror (sigaction");
 exit(1);
 }
 sigemptyset(&wait_for_these);
 sigaddset(&wait_for_these, SIG_QUERY_COMPLETE);
 sigprocmask(SIG_BLOCK, &wait_for_these, NULL);
 ...
 while (1) {
 /* Deal with the screen */
 /* Await server response */
 (void)sigsuspend(&wait_for_these);
 }

sigsuspend takes the signal mask you pass in, installs it as the signal mask of the process, and then halts execution
of the process until an unblocked signal arrives. When that happens, the signal handler for that signal is invoked.
When the handler is done, sigsuspend will return; it always returns -1 with errno set to EINTR. You may as well
just ignore this return code.

Page 67

You'll notice that we've also added some signal blocking calls. In fact, the new signal, SIG_QUERY_COMPLETE
(a.k.a. SIGUSR2), is always blocked except for when sigsuspend is called. This is necessary, but why?

Imagine that, in your process, SIGUSR2 is not blocked. That means, at any point, it could arrive. You would
probably have some sort of indicator that the signal has occurred. For instance, you could use a global variable, as
in the following (buggy!) code:

 int sigusr2_occurred = 0;

 void handler_for_SIGUSR2(int signo)
 {
 ...
 sigusr2_occurred = 1;
 ...
 }

 main
 {
 ...
 /* SIGUSR2 can be delivered at any time */
 while (! sigusr2_occurred) {
 sigsuspend(mask);
 }
 ...
 }

When you look at sigusr2_occurred in the main routine, if may be zero. So you decide to block. In the instant after
you look at sigusr2_occurred and before you call sigsuspend, SIGUSR2 gets delivered, the handler goes off, and
sigusr2_occurred is set to 1. Now, your sigsuspend call will sleep arbitrarily long, waiting for a signal that has
already occurred!

In order to repair this race condition, you must check sigusr2_occurred while SIGUSR2 is blocked from arrival,
and then atomically unblock SIGUSR2 and wait for it by calling sigsuspend:

 main
 {
 sigsett block_sigusr2;

 sigemptyset(&block_sigusr2);
 sigaddset(&block_sigusr2, SIGUSR2);
 sigprocmask(SIG_BLOCK, &block_sigusr2, NULL);

 /* SIGUSR2 is blocked */
 while (! sigusr2_occurred) {
 (void)sigsuspend(mask);
 /* Atomically unblock and wait for SIGUSR2 */
 }
 ...
 }

Page 68

Problems with POSIX.1 Signalsfor Communication

POSIX.1 signals provide one basic mechanism for asynchronous communication between processes. However, they
are not ideal for this purpose. Imagine, for instance, that we want to use signals between our server and terminal
processes to indicate the completion of queries that the terminal had earlier sent to the server. Using signals for this
purpose would enable the terminal to continue processing, while the server fulfilled an earlier request. However,
there are some serious problems if you want to use the POSIX.1 signals. These problems include:

• Lack of signals for application use

• Lack of signal queueing

• No signal delivery order

• Poor information content

• Asynchrony

• Speed

POSIX.4 addresses a few of these problems, so we'll discuss those problems below as a lead-in. POSIX.4 does not
address the more serious problems with signals-as-communication-mechanism, so we'll talk about those problems
after we've discussed the POSIX.4 signals extensions.

Lack of signals

There aren't enough distinct signal numbers available for application use. SIGUSR1 and SIGUSR2, defined by
POSIX.1 and most standard UNIX systems, are simply not enough. It's easy to see that our simple application could
easily want to use more signals than POSIX.1 provides.

Signal queueing

Imagine our application fires off five queries. The server processes these, then sends back five signals (all
SIGUSR2, say) to indicate query completion. How may signals does the terminal receive? Unfortunately, it may
receive as few as two.

In traditional UNIX systems, signals are not queued. When a signal occurs and cannot be immediately delivered to
the process (because it's blocked, for instance), most signal implementations register the fact that the signal is there
by setting a bit corresponding to that signal. When the signal is actually delivered, the bit is cleared. Thereafter,
another signal will cause the bit to be set again.

But what happens when a second signal is delivered before the first signal can be handled? In general, the system
treats it just like the first signal: it sets the same bit as was set for the first signal's arrival. When the process finally
gets around to handling the signal, there is only the memory of one signal having happened!

Page 69

This lack of queueing capability is why signals are considered to be an unreliable means of communication
between processes. Messages can be lost if the messenger is a signal.*

Signal delivery order

If there are multiple signals pending for a process, POSIX.1 doesn't say anything about the order in which these
signals are delivered to the process. This can be a problem in some applications. You might want to use some
signals for high-priority messages, and other signals for less-important uses. You'd like to know that the high-
priority messages always get delivered before the low-priority messages. Using just POSIX.1 signals, there's no
way of assuring that sort of delivery order for signals.

Information content of signals

The information content implicit in a signal delivery is minimal, really almost binary. The target process only
knows that, for example, SIGUSR1 happened. Any additional information must be transmitted by ad-hoc means.
For our terminal example, for instance, the terminal process must know implicitly that a SIGUSR1 means that a
transaction has completed, and that it should go and check which transaction is done. This almost always implies
some more communication than the mere signal has to happen between the terminal and the server. Clearly, the low
bandwidth of information transfer in a signal is an impediment to using signals for serious communication.

Asynchrony

Signals can arrive at any time in a process's execution. This means that your code must be prepared for the
possibility of a signal arriving at any spot in your code. If you are modifying a data structure that a signal handler
also touches, for instance, you must go to special extremes to be sure that the signal does not occur at exactly the
wrong time—while you're in the middle of modifying your data structure. This enforced paranoia in your code
leads to additional complexity and opens the door for a whole new class of bugs: race conditions between your
process and its own signal handlers. In contrast, synchronous, event driven applications can be much simpler to
design, code, and debug.

POSIX.4 Extensions to POSIX.1 Signals

POSIX.4 has made a set of changes to the POSIX.1 signals model. The presence of the POSIX.4 signals extensions
is indicated by the constant _POSIX_REALTIME_SIGNALS being defined in <unistd.h>. These changes address,
with varying degrees of success, all the problems mentioned above (except for asynchrony, which is a necessary
evil implicit in the nature of signals). In making these changes, POSIX.4 walked a tightrope.

* In POSIX.1 (ISO 9945-1 (1990)), it's stated that the queueing, or lack thereof, of signals is implementation-defined (page 53,
lines 463-464). That means that somewhere in the conformance statement for a particular system, it will tell you whether or not
signals are queued. Some systems do queue signals. However, you certainly cannot count on it.

Page 70

On the one hand, the existing signal functions, inappropriate though they were for communication, could not be
wholly abandoned,* nor could they be altered so that existing (non-real-time) code would no longer work. The
approach that POSIX.4 took was to define a new set of signals, and then to change the semantics for this new set of
signals. That way, old code would continue to function correctly using the old signals, but code using the new
signals could reap the benefits of the POSIX.4 modifications.

As an example, here is code for our client/server application that communicates between the server and the client
using POSIX.4's real-time extended signals. The server simply sends a signal, using the new function sigqueue:

 #define SIG_QUERY_COMPLETE SIGRTMIN

 void
 send_reply(request_t r)
 {
 union sigval sval;

 /* Send a notification to the terminal */
 sval.sival_ptr = r->r_params;
 if (sigqueue(r->r_requestor, SIG_QUERY_COMPLETE, sval) < 0)
 perror (sigqueue");
 }

The client-side code is slightly more complicated, requiring a signal handler be set up:

 #define SIG_QUERY_COMPLETE SIGRTMIN

 void
 query_has_completed(int signo, siginfo_t *info, void *ignored)
 {
 /* Deal with query completion. Query identifier could
 * be stored as integer or pointer in info. */

 void *ptr_val = info->si_value.sival_ptr;
 int int_val = info->si_value.sival_int;

 printf("Val %08x completed\n", int_val);
 return;
 }

 main(int argc, char **argv)
 {
 struct sigaction sa;

 sa.sa_handler = terminate_normally;
 sigemptyset(&sa.sa_mask);
 sa.sa_flags = 0;

* The POSIX.4 working group tried this approach first, and got large numbers of ballot objections. People, it seems, like using a
single general mechanism for diverse needs. I can't say that I blame them.

Page 71

 if (sigaction(SIG_GO_AWAY, &sa, NULL)) {
 perror("sigaction");
 exit(1);
 }

 sa.sa_sigaction = query_has_completed;
 sigemptyset(&sa.sa_mask);
 sa.sa_flags = SA_SIGINFO; /* This is a queued signal */
 if (sigaction(SIG_QUERY_COMPLETE, &sa, NULL)) {
 perror (sigaction");
 exit(1);
 }
 ...

The example above points out many of the differences between POSIX.1 signals and the new, real-time extended
signals:

• A new set of signals is used: SIGRTMIN through SIGRTMAX.

• The signal handler is set up with a new flag, SA_SIGINFO, which turns on queueing of the signal.

• The signal handler is defined as a new sort of function, taking more arguments than the normal signal
function. These arguments are used to pass extra data.

There are more signals

The first, biggest perceived problems with signals were the dearth of signals for use by an application, and the lack
of signal queueing. To address this problem, POSIX.4 defines a new set of signals. The new signal numbers begin
with SIGRTMIN and proceed up through SIGRTMAX, inclusive. There must be at least RTSIG_MAX real-time
signals between SIGRTMIN and SIGRTMAX. SIGRTMIN and SIGRTMAX come from <signal.h>, while
RTSIG_MAX comes from <limits.h>. RTSIG_MAX must be at least 8. The new features described below apply
only to these new signals, so don't expect them to work for SIGUSR1 and SIGUSR2.

When you use the POSIX.4 real-time signals, refer to them in terms of SIGRTMIN and SIGRTMAX, rather than
using actual numbers. That is, your code should use SIGRTMIN+1 as the second real-time signal number. Again,
it's an even better idea to define your own signal names, for easy redefinition during a port. That's what I've done
with SIG_QUERY_COMPLETE.

Although SIGRTMIN and SIGRTMAX look like your basic constants (they're in all caps, and that's usually the
way I indicate a constant), they may not be constants. In particular, an implementation is free to resolve these
symbols at runtime in whatever way it chooses. All this really means is that you cannot use your compiler for
automatic error detection. For instance, the following code will not work:

 #include <signal.h>

 #if SIGRTMIN+300 > SIGRTMAX
 ERROR--Not enough real-time signals!

Page 72

 #else
 #define HIGH_PRIORITY_MESSAGE_SIGNAL (SIGRTMIN + 300)
 #endif

Instead, you'd need to put a check in your application, preferably in the beginning section of code where you do all
your conformance testing:

 #define HIGH_PRIORITY_MESSAGE_SIGNAL (SIGRTMIN + 300)

 if (HIGH_PRIORITY_MESSAGE_SIGNAL > SIGRTMAX) {
 fprintf(stderr, "ERROR--Not enough real-time signals!\n");
 exit(1);
 }

Real-time signals are queued and carry extra data

The queueing behavior of POSIX.4 signals, as well as the additional informationcarrying capability of these signals
is enabled by setting a new bit in the sa_flags field of the sigaction structure. This bit is called SA_SIGINFO. It
indicates that the corresponding signal number is going to be carrying a little more information than a normal
signal, and so it should be queued to the process rather than being registered, as before, by the setting of a bit.

There are two important parts to this example. One, you must set SA_SIGINFO in sa_flags in order to get queued
signal behavior. An additional, subtle point is that, for queued signals, one uses sa_sigaction, not sa_handler!
POSIX.4 has defined an additional ''field" in struct sigaction, and this field is used only to register the handler for a
queued signal. This handler field is an ANSI C prototype, and will allow for compiletime argument checking. Be
very careful in your application to use the proper field for the proper signal. If you are queueing signals, use
sa_sigaction. Otherwise, and for normal signals, use sa_handler.* When SA_SIGINFO is set for a particular signal,
multiple occurrences of the signal are queued to the process. If SIGRTMIN is generated twenty times, then it will
be delivered to the process twenty times. Period.

SA_SIGINFO also increases the amount of information delivered by each signal. Remember that a POSIX.1 signal
handler is invoked with a single parameter, the signal number. If SA_SIGINFO is set, then the signal handlers have
three parameters:

 void handler_for_SIGRTMIN(int signum, siginfo_t *data, void *extra);

The signum parameter is as before, and the extra parameter is undefined by POSIX.4 (it has meaning in several
standard UNIX systems, however, generally referring to the machine context at the time of the signal; POSIX.4
defines it so as not to gratuitously break the function prototypes used in those implementations). The real addition
is the

* The existence of two different handler fields is something that you may find slightly odiferous (I do). After thinking about it for
a little while, though, it seems to have been the easiest and cleanest way out of this issue of ANSI C prototyping of signal
handlers. That is precisely why there are two different fields. In fact, a clever-enough system can use the same storage in the
struct sigaction for both fields! So, there is not necessarily any hit taken in extra space required—but there is a price to be paid in
interface complexity. C'est la guerre.

Page 73

data parameter, which allows an additional piece of information to piggyback on a signal's delivery. The extra data
is a pointer to a structure called a siginfo_t, defined as follows:

 typedef struct {
 ...
 int si_signo;
 int si_code;
 union sigval si_value;
 ...
 } siginfo_t;

The most important field of the siginfo_t is the extra data value, passed to the handler in si_value. In our example,
the server passed a value to sigqueue in sval. That same value is the value that would appear in the client's signal
handler as info->si_value! This field is a union, so that it can contain numerous different sorts of values. The
POSIX.4 definition of sigval requires the following members:

 union sigval {
 ...
 int sival_int; /* Integer data value */
 void *sival_ptr; /* Pointer data value */
 ...
 };

This union allows either an integer or a pointer data value to be passed along with the signal number. In most code,
you'll use one or the other, not both, as in my example.

The si_signo field is the signal number, which will always be the same as the first parameter to the signal handler.

si_code yields more information about the cause of the signal, in case you are delivering one signal for various
different uses. Other sections of POSIX.4 exploit these signal extensions for their own uses: asynchronous I/O,
message passing, and timers all use signals. The si_code field tells you which POSIX facility was responsible for
the signal. It may have one of the following values:

SI_QUEUE
The signal was sent by the sigqueue function, as in our example.

SI_TIMER
The signal was delivered because of timer expiration (see timer_settime in the clocks and timers section).

SI_ASYNCIO
The signal was delivered as a result of asynchronous I/O completion (see aio_read, aio_write, lio_listio, in the
section on asynchronous I/O).

SI_MESGQ
The signal was delivered as a result of a message arriving to an empty message queue (see mq_notify in the section
on message passing).

Page 74

SI_USER
The signal was sent by kill, or some other kill-like function such as abort or raise.

Our example code did not use the si_code field, both for clarity of the example and because there was no possibility
of the signal having been sent by anything other than sigqueue.

Sending a real-time signal

The kill function is used to send a normal POSIX.1 signal, but it will not suffice for sending real-time signals.
That's because there's no way to pass that extra signal value argument along. POSIX.4 defines sigqueue, which
adds another data parameter to the signal to be sent. sigqueue looks a lot like kill, on which it is modeled. The only
real difference, aside from the name, is the third parameter, a union sigval. Notice that the sigval is passed by value,
not by address. The value is passed to the victim's signal handler as the si_value field of the siginfo_t. In most other
respects, sigqueue is identical to kill.

There is one additional failure mode for sigqueue. Each signal queued to a process requires some amount of system
resources. Eventually, the system can reach a state where no more signals can be queued, either by this process, or
perhaps even in the system as a whole. POSIX.4 defines a per-process limit on the number of signals that can be
sigqueued by a single process but not yet received by the target process(es). This limit is given in <limits.h> by
SIGQUEUE_MAX. I find it more probable that the limit will be system-wide, rather than per-process. In either
case, sigqueue will return EAGAIN when there are not enough system resources left to sigqueue another signal.

You might be wondering how the application determines which field of the union sigval should be used, pointer or
integer. The answer is that the application has to figure it out. Unlike other unions (the UNIX version of union wait,
for instance), there is nothing that can be used to determine which version of the union sigval has meaning.
Generally, applications know this by convention. You wrote the sender, you wrote the receiver. You should know.

The real-time signals are delivered in order

There is no defined delivery order for POSIX.1 signals. If multiple signals are pending, you don't know which one
will be delivered first. Not so with POSIX.4's queued signals. These signals are delivered lowest-numbered signal
first. Thus, the higher-priority communications should be given the lower-numbered signals (SIGRTMIN is highest
priority; SIGRTMAX is lowest).

The ordering of POSIX.1 signal delivery is not specified by POSIX.4, nor is the order of queued signals relative to
the basic POSIX.1 signals. (In most cases, you'd imagine that the POSIX.1 signals would be delivered first.
Notification of a segmentation fault or a floating point error should generally take precedence over a
communication signal!)

Page 75

Other real-time signals and the sigevent structure

So far, we've talked about real-time signals sent by the sigqueue function. However, most POSIX.4 signals are sent
as a result of three other facilities in POSIX.4. We'll cover these facilities in detail in their own chapters, but for
now, you need to know that realtime signals can be generated as a result of expiration of a POSIX.4 timer,
completion of asynchronous I/O, and by arrival of a message on an empty message queue.

In these three cases, there's no server process to sigqueue a signal; there's no way for that data value to be set.
Instead, the data value is set as part of initialization of the timer, the asynchronous I/O or the message queue, by
using a structure called a sigevent. This structure totally encapsulates all the information needed for the system to
send a signal later, when necessary. The sigevent structure is described below, and we'll talk about where it's used
when we talk about the individual facilities (asynchronous I/O, messages, and timers) concerned.

The sigevent structure is used to encapsulate and contain all the parts that are required to describe a signal (or some
other means of asynchronous notification). This structure has three fields:

 struct sigevent {
 ...
 int sigev_notify; /* Asynchronous mechanism being used */
 ...
 int sigev_signo; /* Number of signal to be delivered */
 ...
 union sigval sigev_value; /* Value for real-time signal */
 ...
 };

First, the field sigev_notify defines which asynchronous notification mechanism is being described by this structure.
POSIX.4 defines only one such mechanism, the signal. That makes this field seem just a little silly at first glance.
However, there are other mechanisms that could be used instead of signals, which might be much faster than
signals. POSIX.4 did not want to rule out the capability of using such mechanisms, whenever they become
available. So, for now, sigev_notify is there for future extensibility.* At the moment, you can set it to two possible
values:

• SIGEV_SIGNALS: use signals for asynchronous notification.

• SIGEV_NONE: don't use anything for asynchronous notification.

If you set sigev_notify to SIGEV_NONE, you basically turn off the asynchronous notification for whatever you're
using this sigevent for. If you set it to SIGEV_SIGNALS, you're using signals. We'll assume you're going to set it
to SIGEV_SIGNALS. In that case, the

* In fact, another POSIX document has already extended it. POSIX.4a—threads—defines a new delivery mechanism,
SIGEV_THREAD, which causes a function to be called upon completion of the asynchronous operation. Although it sounds sort
of like a signal handler function, this function might be called in any process's context, leading to better performance due to a
lack of signal-handling overhead.

Page 76

two other fields describe the signal you want delivered whenever the system decides it has to send you a signal
(because asynchronous I/O completed, a message was received, or a timer expired).

Two members completely describe a signal. First, sigev_signo indicates the number of the signal to be delivered. If
the number is between SIGRTMIN and SIGRTMAX, and you've set SA_SIGINFO for the signal action for that
signal, then there is also an associated data value to be passed to your signal handler. That value is given by the
union sigval in the sigev_value field. When the signal is delivered, that is the value that will be used for the
si_value field of the context argument to the signal handler.

As usual, implementations are allowed to define additional fields in this structure. In this case, they almost certainly
will, to support additional implementation-defined notification mechanisms besides signals.

Faster response to signals

The other thing which POSIX.4 added to the standard signals interface was another way to wait for signals to
arrive. (It's not the waiting part that's sped up, but rather the speed with which a blocked process can be awakened
when an awaited signal arrives.)

Remember how sigsuspend works. You call it, and your process is blocked until an unmasked signal arrives. When
the signal arrives, the process must first go off and handle the signal by executing the signal handler, and then, after
the handler has returned, the system will return the process from its blocked state.

Well, why do you need this clumsy approach? The whole reason for a handler function is so that the process can
asynchronously do something in response to the signal. In this case, though, you are already waiting for the signal
to arrive! There's no need for asynchrony. If sigsuspend just told you which signal had arrived, you could probably
call the handler yourself, faster than the system could. The problem with sigsuspend is speed. It takes a long time to
set up the dispatch out to a user signal handler. It takes a while to execute the handler. And it takes a long time to
clean up after the handler. All this has to happen before sigsuspend returns. The result is that sigsuspend does not
provide a very fast response to signal arrival.

To solve the problem of fast synchronous signal-waiting, POSIX.4 defined a new function, sigwaitinfo. This
function performs the wait for signals, but does not go through the hassle (and the time-consuming overhead) of
calling the signal handler for the signal that arrives. It just tells you which signal arrived. Our terminal process
could use sigwaitinfo much like it earlier used sigsuspend:

 main(int argc, char **argv)
 {
 int i;
 sigset_t look_for_these;
 siginfo_t extra;

Page 77

 sigemptyset(&look_for_these);
 sigaddset(&look_for_these, SIG_QUERY_COMPLETE);
 sigprocmask(SIG_BLOCK, &look_for_these, NULL);

 while (1) {
 /* Deal with the screen */
 /* Await server response */
 i = sigwaitinfo(&look_for_these, &extra);
 if (i < 0)
 perror ("sigwaitinfo");
 else {
 printf("Waited for sig %d, val %x\n",
 i, extra.si_value.sivalint);
 }
 }
 ...

sigwaitinfo returns the number of the signal it received, and sets the additional realtime information in the second
parameter for which you pass it the address. sigwaitinfo may also wait for non-real-time signals, in which case that
second parameter is just ignored.

If there is a signal pending when sigwaitinfo is called, it will immediately return. Otherwise, it will block until one
of the awaited signals arrives. When that signal arrives, sigwaitinfo will immediately return with that signal and its
data value. The signal will not cause a signal handler to be invoked. Hopefully, that will allow sigwaitinfo to be
much more speedy than sigsuspend.

When using sigwaitinfo, you definitely must have the signals blocked. If they do arrive and are not blocked, then
they are handled by the handler functions, not passed to sigwaitinfo. In other words, the old-style handlers take
precedence. However, with sigwaitinfo you may find there is no need for an old-style handler—just block the signal
forever, and check for it occasionally using sigwaitinfo!

If you are uncomfortable with a wait that may take arbitrarily long, sigwaitinfo also comes in a model with a
timeout. Modifying our example above to wait for no more than a second is easy:

 struct timespec timeout;

 timeout.tv_sec = 1;
 timeout.tv_nsec = 0;

 while (1) {
 /* Deal with the screen */
 /* Await server response, with timeout */
 i = sigtimedwait(&look_for_these, &extra, &timeout);
 if (i < 0) {
 if (errno == EAGAIN)
 printf("Timed out.\n");
 ...

Page 78

We'll discuss more about time and the struct timespec in Chapter 5. For now, all you need to know is that it
specifies a time interval in seconds and nanoseconds, and sigtimedwait interprets that interval as relative to the time
at which you called the function. Thus, if you set the timeout to one second, you'll wait for no more than one
second. Simple.

The same signal delivery order is enforced for sigwaitinfo and sigtimedwait as for asynchronous delivery of the
queued signals. The lowest-numbered pending queued signal gets delivered first.

Remaining Problems with Signals for Communication

Even with the POSIX.4 signal extensions, signals remain a clumsy and inefficient method for interprocess
communication. What are some of the problems that still remain?

Speed
Signals are generally slow to deliver. This is because signals carry a lot of baggage with them: handlers, masks,
interaction with system calls. But by far the worst speed problem is the asynchrony of signals. Setting up an
asynchronous trap out to user mode, and then returning from it, is a complex activity for the operating system to
perform. It takes time, more time than is really necessary for this sort of operation, and certainly more time than is
necessary for a communication and coordination mechanism!

Asynchrony
Asynchrony is a problem all its own. I've already mentioned how asynchrony makes things slower. It also makes
code less robust, more error prone. That's because of the possibility of a signal arriving at any time. If signals
arrived only at set times, you could write simpler code that didn't need to deal with the possibility of signals
arriving in the middle of something. You can code your application that way, by masking off all signals and
waiting for them when you want them. but why should you have to? If you want to do communication and
coordination, the asynchrony is pure baggage.

Lack of Bandwidth
Finally, signals, even queued, data-carrying signals, suffer from a lack of bandwidth. Each signal carries a
maximum of little more than 32 bits of information. That's a piddly number of bits for a message transfer between
processes. There are much faster ways of transferring data.

On the other hand, however, signals still do have their pluses:

Asynchrony
Perhaps the most distinguishing characteristic of signals is that they are asynchronous, interrupting whatever the
target process was doing. Thus, a terminal process could be waiting for user input when a signal arrives, and go
immediately

Page 79

to a screen update to reflect input from the server. With a message queue, in contrast, the message from the
server would sit in the queue until the terminal process explicitly fetched it by reading the queue.

Little Setup
Delivering a signal requires little prior setup: one merely needs to know the ID of the victim. On the victim's side,
the signal handlers and masks must be installed, but that's pretty simple.

Directed at a Particular Process
A signal is targeted towards a particular process. This may be a behavior you desire. Other mechanisms, in
contrast, are directed at any process that happens to be listening.

Not Terribly Restrictive
Limits on signal usage are usually less-restrictive than those on other mechanisms. Every process simply has the
ability to send and receive signals, with no particular system configuration required. In contrast, many UNIX
systems limit the number of message queues or shared memory areas (described further on) that you can have on a
system. In the terminal/server example, you might want a message queue per terminal. You might easily run out of
system resources by adding more and more terminals in such a scenario. In this case, you might consider using
signals as a communication mechanism between the servers and the terminals, especially since response to the
terminals is soft real-time.

The conclusion is this: signals definitely have their uses, mostly in non-communication areas (flagging exceptions,
asynchronous I/O completion, timer expiration, etc). Even for communication, though, signals do have their place.
That place is where information bandwidth and determinism are not terribly important, or where resource
limitations rule out other forms of communication, or where the process-specific or asynchronous nature of signals
is explicitly required. As we've seen, our online terminal-and-server example is a good example of such an
application. It's not terribly realtime, but it is real-world.

Multitasking with Signal Handlers

As I mentioned earlier in this chapter, you might consider using signal handlers to achieve a degree of multitasking
in your single-process application. This is especially possible because the other interfaces of POSIX.4
(asynchronous I/O, timers, and message queues in particular) all deliver signals upon completion of various
asynchronous processing. In the cyclic executive we were discussing earlier in this chapter, there was a need to
read the keyboard and the mouse, and that operation needed to be a nonblocking, polling sort of operation to avoid
getting in the way of the rest of the loop. What if you could set up your application so that the system was reading
the mouse and the keyboard for you, so you didn't have to do it in the loop? What if the system just sent you a
signal whenever it had actually read in data from either source? In that

Page 80

case, your loop would be simpler, and the data input operations would be handled essentially in parallel, by a
combination of the operating system and the signal handlers you set up. Using asynchronous I/O, you can achieve
that sort of multitasking look and feel. Asynchronous I/O is covered in Chapter 6, I/O for the Real World. Here, I'm
just going to provide the code to pore over.

 extern void mouse_handler(int);
 extern void keyboard_handler(int);

 /*
 * Set up the signal catching functions for the mouse
 * and keyboard signals. Which signal was actually used for
 * SIGMOUSE and SIGKEYBOARD would be up to you, the programmer.
 * That topic is covered in our discussion of the POSIX.4 real-time
 * signals extensions.
 */
 sigemptyset (sa. saask);
 sa.flags = 0;
 sa.handler = mouse_handler;
 sigaction(SIGMOUSE, &sa, NULL); /* Mouse handling function */
 sa.handler = keyboard_handler;
 sigaction(SIGKEYBOARD, &sa, NULL); /* Keyboard handling function */

 /* Fire off mouse asynchronous I/O request (one asynchronous read) */
 mouse_acb.aio_fildes = mouse_fd;
 mouse_acb.aio_offset = (long)0;
 mouse_acb.aio_buf = mousebuf;
 mouse_acb.aio_nbytes = 1;
 mouse_acb.aio_reqprio = 0;
 mouse_acb.aio_sigevent.sigev_signo = SIGMOUSE;
 mouse_acb.aio_sigevent.sigev_sigval.sival_ptr = (void *)&mouse_acb;
 aio_read(&mouse_acb);

 /* Fire off keyboard I/O request (one asynchronous read) */
 keyboard_acb.aio_fildes = keyboardfd;
 keyboard_acb.aio_offset = (long)0;
 keyboard_acb.aio_buf = keyboardbuf;
 keyboard_acb.aio_nbytes = 1;
 keyboard_acb. aio_reqprio = 0;
 keyboard_acb.aio_sigevent.sigev_signo = SIGMOUSE;
 keyboardacb.aio_sigevent.sigev_sigval.sival_ptr = (void *)&keyboard_acb;
 aio_read(&keyboard_acb);

 while (1) {
 /* Synchronize to Highest Frequency */
 /* Recompute Player Positions, using
 * asynchronously-read mouse and keyboard input */
 /* Update the display */
 }

 mouse_handler(int signo, siginfo_t *info, void *context)
 {
 /* Handle mouse I/O which has just completed. */
 /* Restart the mouse I/O. */

Page 81

 aio_read(&mouse_acb); /* Do it exactly the same, again */
 }

 keyboard_handler(int signo, siginfo_t *info, void *context)
 {
 /* Handle mouse I/O which has just completed. */
 /* Restart the mouse I/O. */
 aio_read(&keyboard_acb); /* Do it exactly the same, again */
 }

I've added a great deal of detail to the signal-handling and asynchronous I/O portions of this example to show you
how these facilities work in practice. Now, what we would seem to have created is a program with three separate
"flows" of control. There's the main flow, which is just the big while loop. Then, there are two asynchronous flows,
one for each I/O channel. On each of these channels, the flow is:

• System performs asynchronous I/O

• System notifies application of I/O completion via a signal

• Application handles signal

• Application submits another asynchronous I/O

The two I/O "flows" are not really totally asynchronous, of course. A signal handler operates as an asynchronous
transfer of control from what the main program was doing, to the signal handler. Whatever the main loop is doing,
it can be interrupted at any time by our signal handlers. When the signal handlers terminate, the main loop is
resumed exactly where it was before.

So we have successfully moved the I/O out of the while loop, at least kind of. What's the problem?

The problem is that the signal handlers cannot do everything a true, separate flow of control can do. The I/O flows
are not true parallel tasks. They are merely interruptions of what the main loop was doing so it could do something
else. As an example, think of how you would "handle the mouse I/O," as I mentioned in my example. Well, you'd
probably want to use the mouse data to update the player's position on the "screen." Meanwhile, the main loop may
be using the "screen'' for updating the display. You may have interrupted it right in the middle of using the old
player position. By just changing the position now, you'll risk leaving some screen garbage lying around from the
old display position. This is a basic illustration of the need for synchronization between multiple tasks. Essentially,
if one task (the main loop) is reading some information, another task (the mouse handler) cannot be allowed to
change that information until the first task is done. The main loop has to get a coherent snapshot of the data. How
can these tasks synchronize? The flow of control that got to the data last is going to have to wait for the first flow of
control to finish its work. And there's your problem. The signal handler is a temporary interruption of the main
thread. It cannot let the main thread proceed and still hope to get back control!

Page 82

Signal handlers are definitely useful in real-world applications, but they are not true asynchronous flows of control,
so there are important limitations on what they can do. For true asynchronous operation, you need separate flows of
control that can successfully coordinate their actions with each other.

Conclusion

Given the basic process primitives of POSIX.1, we can begin to construct real-world applications. POSIX signals
are essential to any real application, but not sufficient to meet your needs for high-bandwidth interprocess
communication. In the next three chapters, we'll cover the functionality you need for the real-world: better
coordination, time and resource control, and I/O extensions.

Exercises

The solutions to problems that require programming can be found in the Appendix, in the section listed in
parentheses after each such problem.

I said a couple of times that signals are a "low-bandwidth" means of communication. That means you can't send a
great deal of information in a short time using signals. Quantify this number by writing a program that forks, then
sends signals from one process to the other repeatedly for a period of time. How many signals can your machine
send in a minute? What bandwidth (bytes per second) does this come out to?

Above, I suggested a program where one process repeatedly kills the other process. This will not give a complete
picture of interprocess communication bandwidth. To see why not, instrument your program to tell how many
signals were received, as well as how many were sent. How do the numbers compare? (sigs_sent_noswtch.c)

To get a real picture of IPC bandwidth, you need for the two processes to context switch on each signal delivery.
One way of doing that is by both processes sending and receiving signals repeatedly. Try this approach. What is the
signal bandwidth now? (sigs_sent_swtch.c)

A complete information transfer via signal delivery consists of the following steps:

1. Process 1 sends signal to Process 2.

2. Context switch to Process 2.

3. Process 2 executes its signal handler function.

How would you go about measuring each of these components?

Extend your program to benchmark POSIX.4 real-time extended signals passing data values back and forth. Has the
number of signals per minute changed? What is the bandwidth for POSIX.4 real-time extended signals?
(sigs_sent_swtch.p4.c)

Page 83

If the number of signals per minute is less for POSIX.4 signals than for POSIX.1 signals, explain why.

How many POSIX.4 queued signals can you send to a particular process? Write a program that sets up a child with
a POSIX.4 real-time signal blocked, and then blast POSIX.4 real-time signals at it until you get an error. What's the
error message? What is the root cause of it?

How many bits of information are transferred by a regular signal? How many by a POSIX.4 real-time extended
signal? Which mechanism transfers more data per second on your system?

Page 85

CHAPTER 4
Better Coordination: Messages, Shared Memory, and Synchronization

Communicating Between Processes

So now we know how to create processes and terminate them, and we know how to wait for processes that are
terminated. We've seen how signals operate and how you can try to use them for interprocess communication.
Although signals provide asynchrony which you may desire in your application, they're really not an appropriate
means for communicating between processes, due mostly to their speed (or lack thereof). In the example from
Chapter 3, The Basics of Real-Time: Multiple Tasks, we were able to pass a signal—32 bits of information—from
one process to another, but that's not sufficient for actually passing a query from a terminal to a server, or a
meaningful response from the server back to the terminal. The next thing to figure out, then, is how to do some real
communication between processes.

Communication and coordination are synonyms here, and synchronization is a closely related term. Communication
refers to the transfer of information between multiple processes. When communicating, synchronization is usually
required, as one process or another is going to have to wait for the communication to occur. In many cases, the
synchronization is the important activity, and there is no other communication. Coordination is a vague term that
seems to cover both communication and synchronization. That's why I used it in the chapter title.

There are a lot of coordination mechanisms you may have used, or heard of being used. The mechanisms vary in
the amount of setup required, the flexibility of the service provided, the performance capabilities (transaction rate
and bandwidth), reliability, and the functionality provided. If we can leave the UNIX realm behind for a

Page 86

moment, we can see there are a lot of coordination mechanisms in the abstract, including:

• Message passing

• Shared memory

• Semaphores (binary and counting)

• Mutexes and condition variables

• Readers/writers locks

• Tasking and rendezvous

• Event flags

Moving into the UNIX/POSIX realm, the mechanisms provided seem even more diverse:

• Signals

• Pipes and FIFOs

• File locking

• System V messages

• System V shared memory

• System V semaphores

• POSIX.4 message queues

• POSIX.4 shared memory

• POSIX.4 semaphores

• POSIX.4 extended signals

It will help for us to try and categorize all these mechanisms. They really boil down to four categories, as shown in
Table 4-1.

Table 4-1: Coordination Mechanisms

Name Reliable? Flexible? Fast?

Signals Sometimes Very No

Messages Yes Not very Not particularly

Semaphores Yes Very Very (use w/shared memory)

Shared Memory Yes Very Very (use w/semaphores)

Signals
Signals are used for different things, most not related to communication or coordination. We've already seen that
signals are also usable as a means for passing small, limited messages between processes. I list them as a separate
category because the interface to signals is so different from the interface to the other communication interfaces.

Page 87

Messages
Probably the most general and abstract form of communication is message passing. The terminal/server application
generally communicates from server to terminal, and back again, via messages. In fact the majority of all
applications are probably formulated in terms of messages going back and forth between tasks, whether or not the
implementation of those applications uses actual message passing. People just seem to think in terms of small,
manageable packets of information flowing between entities. Perhaps that's because it's how people themselves
communicate.* In POSIX.1, pipes and FIFOs provide a means of passing messages between processes. In POSIX.4
and System V both, there are actual interfaces to different sorts of message queues. Signals, both POSIX.1 signals
and the POSIX.4 variety, are used for passing messages. Message queues can be made network transparent in a
fairly straightforward manner, by extending the idea of "machine" to encompass the network.

Shared memory
Shared memory is an extremely low-level way for processes to communicate with each other. It is more difficult to
use than signals or message queues, because all synchronization of access to the shared memory must be through
an additional mechanism (usually semaphores, mutexes, or condition variables). All reliability must be added by
the application itself, since the facility is so primitive (it's memory! Store stuff in it! What's there to be reliable
about?). It's unlikely that a shared-memory interface will perform terribly well in a distributed (networked) system,
while it's very conceivable that network-transparent message queues will offer reasonable performance. The
advantages of shared memory are its incredible flexibility and its great speed. Because shared memory is a basic
building block of interprocess communication, the application can use it in just about any way it chooses. And,
since the data you write into shared memory is immediately† available to the other processes sharing memory, it's
very fast. Both POSIX.4 and System V define shared memory interfaces. The example of multiple server processes
would certainly benefit from allowing the multiple servers to operate on a single, shared copy of the data in the
database.

Synchronization
If our multiple server processes were sharing their data, they would need a mechanism to ensure that no two
processes were changing the same data at the same time. Without such a mechanism, the database would become
corrupted. Shared memory in general requires additional mechanisms for synchronizing accesses to that memory.
However, synchronization itself is very useful even when shared

* At least that's how speech usually works. Occasionally, I'd swear I was listening to someone's raw Ethernet interface...
† "Immediately" is a bit of an oversimplification. I should say, immediately, subject to the whims of the processor-memory
interconnection scheme in use on the particular machine." Particularly on multiprocessors, there's an issue of when memory updates
by one processor appear to other processors. We'll talk about this issue when we discuss shared memory in more detail.

Page 88

memory is not involved. Synchronization is a low-bandwidth communication mechanism, so I suppose you
could say it's of lower performance than the other communication mechanisms. Usually, though, one uses
synchronization mechanisms not so much for communicating as for just getting processes into the proper lock-
step with each other. POSIX.4 provides counting semaphores as a synchronization mechanism, and System V
provides a semaphore facility that is a world unto itself. In addition, POSIX.1 provides file locking, which can
be misused, in my opinion, as a perfectly fine synchronization mechanism. (I won't cover file locking, since
semaphores serve the same purpose and are a more general mechanism). Finally, the message passing and
signals mechanisms can be used for synchronizing, since receiving a message usually entails some
synchronization.

At this point, I should say a brief word about distributed, networked systems. POSIX.4 explicitly does not address
either multiprocessor or distributed systems. It is defined as an interface for uniprocessors. Be that as it may,
multiprocessors and networked systems exist, and particularly in the area of interprocess coordination, you'll find
that some mechanisms are better suited for being networked than others. In particular, message queues extend well
to a network model, and the other mechanisms do not extend so well. Some implementations, QNX in particular,
support distributed POSIX.4 message queues, but I'm aware of none that support distributed POSIX.4 shared
memory or semaphores or signals. This is an additional factor to consider if a distributed system is in your future.

First, we'll discuss message passing interfaces, including both pipes, FIFOs, and POSIX.4 message queues. In a
follow-on to message passing, I'll cover shared memory, and that will bring us to the section on synchronization,
which covers POSIX.4 semaphores.

POSIX. 1 Communication: Pipes and FIFOs

POSIX.1 provides a possibility for interprocess communication with the pipe and its named cousin, the FIFO. As a
communication channel, pipes are more appropriate than signals. Pipes are built for doing communication between
processes. This means that they don't come with the extra baggage of signals (asynchrony, handler functions,
masking). They also queue data internally, unlike the majority of POSIX.1 signals. However, pipes have their
limits, too, as we'll see. FIFOs, a variation of pipes, remove one of the pipe's restrictions, but the others still remain.

 /* Pipes and fifos are required in all POSIX-conformant systems */
 int pipe(int fds[2]);

 #include <sys/types.h>
 #include <sys/stat.h>
 char *name_of_fifo;
 mode_t permissions;
 int mkfifo(const char *name_of_fifo, mode_t permissions);

Page 89

A pipe is actually two file descriptors. One of those descriptors is the writing end of the pipe, and the other
descriptor is the reading end of the pipe. You use these file descriptors just like you use basic POSIX.1 files: you
read and write data in them, using read and write. The communication aspect of these two descriptors comes from
the fact that you can cause these file descriptors to remain open in processes you create via fork and exec. The new
processes can then read data you write, and write data for you to read!

As an example, we could use a pipe to communicate results from our server process to its terminals. In the server,
we need to create a pipe before forking the child process.

 /* Create a new client process */
 if (pipe(pipe_ends) < 0) {
 perror("pipe");
 break;
 }
 global_child = child = fork();
 if (child) {
 /* parent process */
 break;
 } else {
 /* child process */
 /* Make the pipe ends be fds 3 and 4. */
 (void) close (3);
 (void) close (4);
 if (dup2(pipe_ends[0], 3) < 0)
 perror("dup2);
 if (dup2(pipe_ends[l], 4) < 0)
 perror("dup2 2");
 (void)close(pipe_ends[0]);
 (void) close (pipe_ends [1]);
 execlp(CHILD_PROCESS, CHILD_PROCESS,
 /dev/coml", NULL);
 perror("execlp");
 exit (1);
 }

The server process simply writes data to the write end of the pipe (the second file descriptor), which the child
process can then read from the read end of the pipe (the first file descriptor). Here's the relevant code for the child
terminal process:

 #include <fcntl.h>

 char buf[MAXBYTES];

 /* Set pipe in non-blocking mode to avoid waiting for input. */
 if (fcntl(channel_from_server, F_SETFL, O_NONBLOCK) < 0) {
 perror("fcntl");
 exit(2);
 }
 while (1) {
 /* Deal with the screen */

Page 90

 /* Check for server input */
 nbytes = read(channel_from_server, buf, MAXBYTES);
 if ((nbytes < 0) && (errno != EAGAIN))
 perror ("read");
 else if (nbytes > 0) {
 printf("Message from Server: \"%s\"\n", buf);
 }
 ...

The pipe call is simple. It opens up two file descriptors for the pipe ends. You read from the first file descriptor,
pipe_ends[0], and you write into pipe_ends[1]. The data you write into the pipe is read in a First In, First Out
manner, like a simple queue of bytes.

Plumbing Hints for Working with Pipes

The example above shows a complete setup for using a pipe between two processes. There are several steps
involved in getting the pipe to work between two processes. Here's a blow-by-blow summary:

1. First, you call pipe to create the pipe.

2. Then, you fork. Both the child and the parent now have access to the pipe.

3. Because the child process is going to exec a new process, you need to make sure the new child image can find
the two pipe ends you've created (pipe_ends, the data structure, will not exist in the execed process, even though
the pipe ends will be open).

4. The easiest method for placing file descriptors in a well-known location is to use dup2 to duplicate the file
descriptors into values agreed upon by both client and server. In this case, we use file descriptors 3 and 4, which we
first close to make sure they are available.

5. The child execs. In the new process, file descriptors 3 and 4 will remain open, because pipes are defined to be
created with FD_CLOEXEC cleared.

6. By default, a read on a pipe end will block until data appears in the pipe. To avoid this blocking, the child
terminal process uses fcntl to set the O_NONBLOCK flag on the file descriptors. This causes reads that would
normally block to fail with an errno of EAGAIN, instead (we'll cover O_NONBLOCK again in Chapter 6, I/O for
the Real World).

Limitations of Pipes

Pipes are set up between processes at the time when processes are forked and execed, and are mostly used for
communication in a "pipelined" manner: one process to the

Page 91

next, to the next, to the next. This matches the shell syntax you are familiar with for the use of pipes:

 % prog1 | prog2 | prog3 | prog4

This linear arrangement of processes may not be exactly what you need, but by using dup2 and close, you can
probably create just about any topology you want. One problem, though, with the pipe is that it is only one-
directional. In our example, we set up a pipe down which the server could write, and the child read. The child
cannot turn around and write into the pipe itself, because its writes will be intermingled with the server's into one
FIFO stream. For bidirectional communication, two pipes are needed.

The pipe also requires that you set it up in a parent process and then fork a child. This rigid hierarchy can be
cumbersome. For instance, our terminals-and-server example is to use pipes for communication between the server
and the terminal processes. That means that either the terminal processes are children of the server, the server
process is the child of the terminals, or both the server and the terminals are children of some overlord process. All
these approaches have their difficulties. First, the server process cannot be the child of the terminals. A process can
have only one parent, and there are presumably many terminals. Furthermore, since the server is presumed to be in
existence at all times, while terminals come and go, it will be difficult for an overlord process to create all the pipes
necessary for all the terminals, and see to it that the server gets access to all these pipes. No, the only alternative
which makes any sense at all is to have the server process fork off the terminal processes. Even this solution has its
problems: first, it adds more functionality to the server, and slows it down from its business of, well, serving.
Second, this solution only works if there is one server. What if there are several? They cannot all be parents of the
terminal process! For this example, the parent-child hierarchy required by pipes does not work out very well.

FIFOs

If the limited topology of pipes is a problem for you, you can use FIFOs. A FIFO is simply a pipe that has a name
in the file system. That means that any process with the appropriate permissions can access the pipe. That removes
restrictions on how you can lay out your processes.

One opens a FIFO using the standard open call. Obviously, in this case, you don't get two file descriptors back, like
you did by calling pipe. You get either the read end, or the write end of the pipe, depending on whether you open
the FIFO for reading (O_RDONLY) or writing (O_WRONLY). You cannot open a FIFO for both reading and
writing (O_RDWR); POSIX says the results are undefined. FIFOs would provide a dandy solution for our terminal-
and server dilemma above. Any old terminal could open up FIFOs; the server could open as many as it could deal
with. End of problem!

A FIFO, or named pipe, as it is also known, is very simple. Once created, it exists in the file system awaiting your
call to open. The only additional thing you may need to

Page 92

know is how to create a named pipe in the first place. A special POSIX.1 call is provided for this, mkfifo.

 #include <sys/types.h>
 #include <sys/stat.h>

 int mkfifo(const char *fifo_name, mode_t mode);

This call creates a FIFO named /usr/fifos/my_fifo, assuming that all the permissions and so forth are correct for
creating such a file. The second argument to the function encodes file permission bits. On a normal UNIX system,
you would specify read and write permission for the owner with the number 0600. Now, it's not the best coding
practice to use constants like that. POSIX defines macros for the various permissions. These macros are defined in
<sys/stat.h>, and encode read, write and execute permission (R, W, and X), for three sets of processes: those with
the same user ID as the caller (USR), those with the same group ID as the caller (GRP), and all the others (OTH).
You form the symbolic constants by sticking the permission together with the group, and adding the magic S_I to
the beginning:

• S_IRUSR: Read permission for processes with the same user ID

• S_IRGRP: Read permission for processes with the same group ID

• S_IROTH: Read permission for others

• S_IWUSR: Write permission for processes with the same user ID

• S_IWGRP: Write permission for processes with the same group ID

• S_IWOTH: Write permission for others

• S_IXUSR: Execute permission for processes with the same user ID Execute permissions are not important for
FIFOs, and are only included here for the sake of completeness.

• S_IXGRP: Execute permission for processes with the same group ID

• S_IXOTH: Execute permission for others

• S_IRWXU: Read, write, and execute permission for the user

• S_IRWXG: Read, write, and execute permission for the group

• S_IRWXO: Read, write, and execute permission for everyone else

One final note: FIFOs have filenames and exist in the file system until you unlink them. In this respect, they're just
like normal disk files.

More Limitations of Pipes

We've seen that pipes have topological limitations that can be overcome with FIFOs. But there are other limitations
that apply to both pipes and FIFOs. Here are a couple of the problems:

Page 93

Prioritization
One problem with the pipe stems from its very FIFOness, that is, the fact that data sent to the pipe is read in a
strictly First In, First Out fashion. This mechanism assumes that all messages sent to a pipe are of equal
importance. In fact, when processes are sending messages to one another, some messages are of low importance
(please log this mildly interesting event in the event log), while others are critical (the temperature in the reactor is
rising rapidly, so you'd better drop the control rods). Some means of prioritizing messages is required, and pipes
provide no such means. Such a mechanism could be built at the application level, by using separate pipes for
different priorities, and then using select to determine which pipes have data on them before reading any data from
any pipe at all. Unfortunately, this requires a great deal of application overhead, and select is not a part of POSIX.1
or POSIX.4—it's a standard UNIX function.*

Asynchronous operation
It would be nice to provide the ability to write messages into a pipe without having to wait for someone to read
them. In general, this is possible by using O_NONBLOCK on the file descriptor. However, there is a certain
amount of kernel buffer space the operating system uses to implement the pipe: when you write data to the pipe, it
ends up in this buffer space, and when you read data from the pipe, it comes out. Unfortunately, there's no portable
way to control (or even to know) the amount of buffer space available for a given pipe. When the kernel buffer
space fills up, the process writing to the pipe ends up blocked, waiting for a reader process to take enough data out
of the pipe so the write can finish.

Lack of control over pipe structure
Often, an application will be interested in finding out a little more about the state of its communication channel. In
particular, you may want to know how many bytes are currently in the pipe. Pipes offer no way to determine this
information. Furthermore, applications may want to size their pipes differently (e.g., to allow differing amounts of
data in the pipe). In our terminal-server example, we might want the server's request queue to hold the average
number of requests that may be pending at any given time. There is no way to control the depth of a pipe.

Lack of structure in the data stream
The pipe is a fairly pure example of the powerful UNIX file abstraction. A pipe is nothing more than a stream of
bytes. You can read, or write, as many bytes at a time as you wish. This may, however, be a problem if you are
trying to pass messages back and forth using pipes. You need to make sure that each ''message" sent is read with
the correct number of bytes, otherwise you end up with partial messages in the pipe, and so forth. This is not a big
problem if every message going

* This is why many of the operating systems that support POSIX also support non-POSIX UNIX functionality—because it's
useful. In contrast, an operating system that conforms to POSIX only as a checkoff item on a government list may not be so
interested in its usability. See Chapter 2, The POSIX Way, for more detail on this issue.

Page 94

down a pipe is of one fixed size. If variable-sized messages are being passed, then the situation becomes a little
more complex.

Limited numbers of pipes and FIFOs
A file descriptor is required for each FIFO and for each end of each pipe. Processes are limited as to the total
number of files they can have open. Imagine a server process trying to have a different FIFO open for each of 300
terminal processes! Many UNIX systems have substantially raised the number of open files a process may have,
but many have not. Furthermore, many non-UNIX POSIX systems are subject to file limitations that would come
up fairly quickly in the serverand-terminals example.

For many uses, the pipe is probably a fine solution, but it lacks the features needed to serve as a general message-
passing facility. For that reason, POSIX.4 specifies message queues.

System V Message Queues

There is another message queue option in UNIX systems, and that is the message queue facility provided by
System V UNIX. POSIX.4 message queues are not related at all to System V message queues. In fact, POSIX.4
semaphores are not like System V semaphores, nor is POSIX.4 shared memory anything like System V shared
memory.

What are these three interprocess communication facilities from System V UNIX? I think of them as an
evolutionary oddity. They do provide the desired IPC facility, sort of; but they are clumsy to use. System V
message queues are named by numbers, rather than strings. An entirely separate "namespace" for these IPC objects
is maintained by the utilities ipcs and ipcrm. Another major failing of System V messages is that they are very
slow. Their interface basically requires an in-kernel implementation, with a system call being made for each
message operation. That is not the case with the POSIX.4 offering.

When the POSIX.4 working group considered message queue interfaces, System V messages were mentioned as an
area of existing practice. However, their well-known failings—especially the performance issue—caused the
working group to decide to abandon them in favor of something new. The same decision was reached for
semaphores and shared memory, as you'll see in the rest of this chapter.

POSIX.4 Message Queues

Let's return to our example: terminals communicating with a server process. Remember the problems we had trying
to use a pipe or FIFO to communicate with the server? The topology problem was solved by using a named pipe.
However, we still had problems related to the lack of structure in a pipe and lack of control over that structure.
Message queues are named objects which operate basically as pipes do, with readers and

Page 95

writers. In addition, a message queue has more structure than does a pipe; a message queue is a priority queue of
discrete messages. POSIX.4 message queues offer a certain, basic amount of application access to, and control
over, message queue geometry. If your application is passing messages back and forth, a message queue, obviously
enough, is what you want to use!

Here's a summary of the POSIX.4 message queues facility (defined under the option
_POSIX_MESSAGE_PASSING):

 #include <unistd.h>
 #ifdef _POSIX_MESSAGE_PASSING
 #include <mqueue.h>

 mqd_t mymq;
 struct mq_attr my_attrs;
 mode_t permissions;
 char *mq_name;
 char *msgbuf;
 int msgsize;
 unsigned int msgprio;

 /* The last two arguments are needed only when creating the message queue. */
 mqd_t mq_open(const char *mq_name, int oflag,
 mode_t create_mode, struct mq_attr *create_attrs);
 int mq_close(mqd_t mqueue);
 int mq_unlink(const char *mq_name);

 /* Send a message to a message queue */
 int mq_send(mqd_t mymq, const char *msgbuf,
 size_t msgsize, unsigned int msgprio);

 /* Receive a message (oldest, highest-priority) from a message queue */
 i = mq_receive(mymq, msgbuf, &msgsize, &msgprio);

 /* Get status information regarding a message queue */
 int mq_getattr(mqd_t mymq, struct mq_attr *mq_attrs);
 /* Set (a subset of) attributes on a message queue */
 int mq_setattr(mqd_t mymq, const struct mq_attr *new_attributes,
 struct mq_attr *prev_attributes);

 /* Receive notification when a message arrives on a queue */
 int mq_notify(mqd_t mymq, const struct sigevent *notify_spec);
 #endif _POSIX_MESSAGE_PASSING

POSIX.4 message queues were designed as a fairly efficient means of communicating message data between
multiple processes. The POSIX.4 interface attempts to strike a balance between the different ways people can use
message queues (flexibility) and the need for efficiency (simplicity). In trying to achieve this goal, the interface
leans a bit more in the direction of simplicity, leaving more exotic bits of functionality for vendor extensions or
future standardization efforts.

As a bit of history, consider the message passing interface that went out to ballot in earlier drafts of POSIX.4. This
interface attempted to satisfy all the various ways in

Page 96

which people might possibly use message queues. It had bells. It had whistles. It had a million little parameters that
could be set to alter this functionality or that, and it allowed you, in theory, to do all sorts of neat, high-performance
stuff. For instance, you could pass messages without copying them from one process to another (by mapping them
from address space to address space), and small messages were specially optimized. Unfortunately, the complexity
of this early draft weighed it down so much that its implementation was, to use the vernacular, way slow. Early
versions of message queues were shouted down by the balloting group. What emerged to take its place in later
drafts is a pared-down, simple interface. It lets you send messages. It lets you get messages. It tells you a little bit
about the message queue itself, and it does the message prioritization that many, many applications desire. A lot of
the additional functionality has been stripped out of it. For instance, the asynchronous capability I spoke of in the
section on pipes is not in this interface. It would be nice, but it would add to the complexity of the facility, so it
went away after those early drafts ran into resistance. As a result, POSIX.4 message queues are not the ultimate do-
everything message interface. On the other hand, they should be fast.

The presence of POSIX.4 message queues are indicated by the constant _POSIX_MESSAGE_PASSING being
defined in <unistd.h>.

Creating and Accessing Message Queues

The first step in using a message queue is to create or open it. Message queues use a set of interfaces that parallel
UNIX file interfaces very closely. As a simple example, here's how our terminal processes might access an already-
existing message queue:

 #include <mqueue. h>
 mqd_t child_mq; /* Descriptor of opened message queue */

 child_mq = mq_open ("/terminal.0", O_RDWR);
 if (child_mq == (mqd_t)-l)
 perror ("mq_open");

As you can see, it looks an awful lot like opening a file that already exists. In fact, the only real difference is that,
with open, you'd get back an integer file descriptor value, while mq_open returns a value of type mqd_t. In fact, the
mqd_t is even required to be some sort of type that can be cast into an integer (a long, a short, a char, or, on most
sane machine architectures, a pointer), because mq_open returns a value of -1 on error. The values that can be
ORed into oflags control how the message queue is opened. The values that can be used are a subset of the flags
that can be used for regular open. First, you must set one of the following values to tell the system how you will be
using the message queue:

Page 97

• O_RDONLY: Open the message queue for reading (i.e., receiving messages) only.

• O_WRONLY: Open the message queue for writing (sending messages) only.

• O_RDWR: Open the message queue for both sending and receiving messages.

You may optionally also specify O_NONBLOCK in oflags. O_NONBLOCK tells the system not to suspend your
process when you try to receive on an empty queue or send to a queue where there's no space. Instead, the system
returns an error code telling you that the operation would have blocked (EAGAIN).

Naming a message queue

Now, we get to a part that's a little weird: the naming of the message queue. To get at a message queue, like all
other operating system objects, you need some sort of name for that object. In most of UNIX, names are character
strings—filenames, for instance. As the message queue interface parallels files very, very closely, message queues
are also named by character strings, something like files. However, you must be very clear that message queues are
not files. Message queues use a set of interfaces that are parallel to the standard file interfaces of POSIX.1. Instead
of open, mq_open is used. Likewise, close is replaced by mq_close, and mq_unlink is used to destroy a message
queue, instead of unlink. Rather than using write and read to put data in and take data out of a message queue, you
use mq_send and mq_receive.

Unlike FIFOs, pipes, and device special files, message queues are not accessed using open, read, and write. If you
do an ls to look at a directory, do not expect to see message queues. They may not be there.

Why did POSIX.4 adopt this strange "kind-of-like-a-file" naming for message queues (and shared memory, and
semaphores, as we'll see later)? It all boils down to efficiency. The file system in UNIX has a certain amount of
overhead associated with it. In particular, open, read, and so on are all system calls, and take a lot of time compared
to library calls. Because communications and synchronization are so important to real-time applications, the real-
time community wants these functions to be as fast as possible. There are ways of implementing message passing
and semaphores without requiring system calls. Thus, it is possible for a vendor to implement a message-passing
scheme that is significantly faster if that vendor is not forced to use the overhead of the UNIX file system. This
parallel naming scheme allows vendors to achieve higher-performance message passing than would otherwise be
possible. At the same time, the POSIX.4 working group still allows vendors to implement message queues, etc., as
simple calls to open, read, and so on—provided that the vendor feels that his or her version of read is fast enough
to be used as an effective means for message-passing.

Exactly how do you have to form a message queue name for POSIX.4? File names look like
this: /usr/bog/tmp/filename. That's an absolute pathname, because it begins with /. A relative pathname doesn't
begin with /, and is interpreted relative to the current

Page 98

working directory of the process, i.e., tmp/filename. In the case of message queues, a limited form of the same
pathname construction is supported. Here are the details:

Build the name like a pathname
Message queue names are a subset of normal UNIX pathnames, and must be constructed like
pathnames: /partl/part2/part3.

Further rules all have to do with the presence or absence of the "/" character in your message queue names. If you
follow the next two rules, your message queue names will work the same on all POSIX.4-conformant systems. The
interpretation of components of a message queue name is the issue. Some systems will treat the "/" as a special
character, and separate components as directories. Other systems will not treat the "/'' character differently at all.
Based on this choice, your message queue behavior can be radically different. Unfortunately, there is no compile-
time or run-time symbol that you can check to determine the behavior of your system (e.g., there is no
_POSIX_LEADING_SLASHES_REQUIRED). The good news is that the interpretation of "/" is implementation-
defined, which means that each POSIX.4 system must tell you what they do with "/" in a message queue name. You
can, if you want, use "/" characters, and run your application on the POSIX.4 systems that support the functionality
you require.

Start the name with a /
Imagine an implementation where message queues existed in the file system namespace. In such an
implementation, a name that did not start with a slash would be interpreted relative to the current working directory
of the process. If your application was in directory /usr/bog, and you opened the message queue named
my_message_queue, then you'd actually get /usr/bog/my_message_queue. Interpreting the name that way has some
advantages for structuring applications. You could run multiple copies of the same application, in different
directories, without the multiple invocations interacting with each other. But such an implementation would require
an interaction with the UNIX file system, and that's heavyweight. Most existing real-time systems, in contrast,
would rather just use the string my_message_queue as a hash key into a single, flat namespace of message queues.
Such a system would probably be faster than a system using the UNIX file system namespace. However, in such a
system the current working directory would be irrelevant—wherever you were, if you opened my_message_queue,
you would get the one message queue of that name on the system. For total portability, start off your name with a
"/" character. Then all the processes that open the message queue will open the same one—regardless of whether
message queue names are implemented using file system semantics or using simple hashing.

Don't use any other / characters
You only have a totally portable message queue name if the single slash in the name is the very first character.
Additional slash characters have an effect that may vary by implementation. In other words, some
implementations may do a full, file-

Page 99

system type pathname lookup, complete with all the permission checks and so forth that a file-system operation
entails. This has advantages for security and application structure. On the other hand, other implementations
might just treat the whole string, "/" characters and all, as a unique string of characters that can be used to hash
to a particular message queue. In that case, there would be no interpretation of the additional "/" characters at
all. For total portability, you should leave out all but the first "/".

Creating a message queue

We now know how to name message queues, and we know about the oflags argument as well. This allows us to
open existing message queues. How about creating message queues in the first place? Our server process would
need to create the message queue before the terminal could use it. Here's how:

 #include <mqueue.h>
 struct mq_attr mq_attr;
 mqd_t mymq;

 /* Create a message queue for terminal/server communication */
 mq_attr.mq_maxmsg = 100;
 mq_attr.mq_msgsize = 128;
 mq_attr.mq_flags = 0;
 mymq = mq_open(GLOBAL_MQ_NAME, O_CREAT|O_RDWR, S_IRWXU, &mq_attr);
 if (mymq == (mqd_t)-l)
 perror ("mq_open");

As with files, you create a message queue by using a special flag to mq_open: O_CREAT. When O_CREAT is
ORed into oflags, then the system will create the named message queue if it doesn't already exist. The semantics of
O_CREAT are the same as for files. The permissions on the created queue are set appropriately, as are the owner
and group ID of the message queue. As you can see, message queues really do behave a lot like files, even if they're
not necessarily in the file system. The parallelism between files and message queues extends to the ability to use
the O_EXCL flag in conjunction with O_CREAT. As I said above, O_CREAT causes the system to create a
message queue if one does not already exist. If one does already exist, then calling mq_open(..O_CREAT..) would
simply open the existing message queue. It wouldn't actually create anything. Now, you might be interested in
knowing if there was already a queue there. Specifically, the queue might have been there as a result of a previous
application that failed. It might have stale messages in it that need to be discarded. It might even be all wrong for
your application, and need to be removed and remade. If. instead of just using O_CREAT, you call mq_open with
O_CREAT and O_EXCL both set in oflags, then the system will return -1 and set errno (to EEXIST) if the message
queue existed prior to the call to mq_open.

Page 100

When you are creating a message queue, you need additional arguments to mq_open to further describe the queue
to be constructed. The two new arguments are mode, which is almost the same as the mode argument to open
(..O_CREAT..), and a struct mq_attr, which describes a few attributes of the message queue.

First the mode. This is used for files, to define the permissions on a file when it is first created. We saw creation
modes used also during the description of mkfifo. There are nine values which can be ORed into the mode
parameter: S_IRUSR, S_IWUSR, S_IXUSR, S_IRGRP, S_IWGRP, S_IXGRP, S_IROTH, S_IWOTH, and
S_IXOTH. As for FIFOs, these bits encode read, write, and execute permission for the user who creates the
message queue, members of the group that created the message queue, and everyone else (the others). No other bits
can be specified for the mode of a message queue.

Now, let's talk about the mq_attr structure. This structure is used in calls to mq_open, as well as a couple of other
calls we'll see later on. It has more fields than are used for the mq_open(.._CREAT..) call; those fields are used for
the other calls.

 struct mq_attr {
 ...
 long mq_maxmsg; /* Maximum number of messages "in the queue" */
 ...
 long mq_msgsize; /* Maximum size of a single message */
 ...
 long mq_flags; /* Modifies behavior of the message queue */
 ...
 long mq_curmsgs; /* Number of messages currently in the queue */
 ...
 };

The first two fields together describe the size of the message queue. The first tells how many messages can be in
the queue at one time; that is, this is the maximum number of messages that have been sent by a process, but not yet
received. The second attribute tells how large each individual message can be. Multiplying these numbers tells you
the minimum total data storage the system needs for message data on this queue. In our example above, we set up
the message queue for 100 messages of size 128 bytes apiece. When you call mq_open(..O_CREAT.), you should
set these two values in the mq_attr structure so the system will create a properly-sized message queue. If you send a
single message larger than mq_msgsize bytes, you'll get an error. If you send a message to a message queue that
already has mq_maxmsgs enqueued on it, you may either block, or get an error back, depending on whether you
opened the message queue with O_NONBLOCK.

The mq_flags field is not used by mq_open. O_NONBLOCK is the only flag defined for mq_flags, but the
mq_flags field is used only by mq_getattr and mq_setattr, described below. This flag is not consulted when you
create a message queue. Instead, the O_NONBLOCK flag in the oflags parameter is used, for parity with normal
file open. It can be a bit confusing that you can set O_NONBLOCK in two different places when you create a
message queue. Just remember that the mq_flags field is ignored when a

Page 101

message queue is created. The reason the flags field, and the bit, are there is to perform the function that fcntl would
normally perform if message queues were files. Since message queues are not files, special functions (mq_getattr
for fcntl(F_GETFL) and mq_setattr for fcntl(F_SETFL)) are provided.

Finally, mq_curmsgs tells you, the application, how many messages are currently on a message queue. This field is
not set by the application. Rather, it's filled in as part of another call (mq_getattr) that retrieves information about
message queues. Obviously, when you first create the message queue, there are no messages on it. Equally
obviously, the number of messages currently enqueued is not a constant; any value you get for mq_curmsgs reflects
reality at some instant during the call to mq_getattr.

You don't need to specify an mq_attr structure at all when you create your message queues. If you don't particularly
care what the geometry of the message queue is, you can just pass a NULL to mq_open as your pointer to the mq_
attr structure. In this case, the system creates a message queue, with implementation-defined default attributes.
These attributes, being implementation-defined, will appear in the POSIX conformance statement for the system
you're using. In my opinion, you should always specify the attributes of your message queues. Even if the number
of messages you can have in the queue is unimportant to you, the maximum message size probably is important,
unless your messages are all one byte long.

Cleaning Up After Yourself

Where there is a function to open something, there is also a function to close it again. And, when you can create
something, you also must be able to delete it. Two functions, mq_close and mq_unlink, provide these abilities. Each
function mimics its corresponding file-based call, close and unlink respectively.

 #include <mqueue.h>

 mqd_t my_message_queue;
 int i;

 /* Obtain access to message queue */
 my_message_queue = mq_open(...);

 /* Release access to message queue */
 i = mq_close (my_message_queue);

mq_close releases your access to the message queue described by the message queue descriptor you pass in. Calling
mq_close has no effect on the contents of the message queue, unless the message queue has been unlinked with
mq_unlink (more on that later). In other words, all the messages that were in the queue remain in the queue, even
after everyone has closed their message queue descriptors. You can open a message queue, send ten messages to
the queue, close the queue, go home, have dinner, come back to work, open the message queue and retrieve all ten
messages from the

Page 102

queue again. mq_close also removes any notification request you may have attached to the message queue with
mq_notify (described later). All message queues a process has open are closed automatically when the process calls
exit, _exit, or one of the exec functions. This is somewhat different from files, where you can clear the
FD_CLOEXEC flag (using fcntl) to keep a file from being closed when you call one of the exec s.

 #include <mqueue.h>

 char *message_queue_name;
 int i;

 /* Remove message queue name from the system */
 i = mq_unlink(message_queue_name);

mq_unlink does for message queues what unlink does for files. If no one has the named message queue open when
you call mq_unlink, then the message queue is immediately obliterated. Any messages that may have been in it are
lost. That message queue will then be inaccessible to any other process.

If there are processes that have the message queue open when mq_unlink is called, then the destruction of the
message queue is delayed until the last such process closes it. When no process has the unlinked message queue
open, then the message queue will be removed. Meanwhile, the name of the message queue is removed. This makes
it impossible for any other process to mq_open the message queue. After calling mq_unlink, the only processes that
can access this message queue are the ones that had it open before mq_unlink was called (and, if those processes
fork, their children can also use the message queue because message queues are inherited across fork, just like
files).

Since message queues do not exist in the file system, it is possible to leave them lying around with no way for you
to get rid of them unless you know their names (ls and rm do not work with message queues, at least not portably).
A good, portable application should therefore be careful to unlink its message queues when it is done with them.
Unless you really need the ability to leave messages in the queue when no processes are running, I suggest you
unlink your message queues as soon as all your processes have opened them. That way, if your processes terminate
prematurely, you won't have an extra message queue floating around. (Alternatively, you may want the message
queue left around for debugging. It's critical to realize that the queue can be left floating in the system unless you
take special measures, though.)

Sending Messages

Now that you've created and opened the message queue, you can send messages to it. The interface for this is
mq_send:

Page 103

 #include <mqueue.h>

 int mq_send(mqd_t message_queue, const char *message_data,
 size_t message_data_length, unsigned int priority);

Except for the priority parameter, sending a message looks a lot like writing to a file. This call sends a single
message, message_data, of length message_data_length, to the message queue indicated by message_queue.
Simple enough. In our terminal/server code, you could take the pipe-based code and convert it over to using
message queues by changing the write calls to mq_sends, and the read calls to mq_receives (described later).

There are a few complications to remember. First, remember that when we created the message queue, we created it
with a maximum message size. If message_data_length exceeds that length (mq_msgsize in the mq_attr structure),
then the call to mq_send will fail.

Now let's talk about priority. Unlike pipes, message queues are not strictly FIFOs. Each message has a priority,
from 0 to MQ_PRIO_MAX. MQ_PRIO_MAX, like all other numeric parameters of a POSIX system, is to be
found in <limits.h>, and must be at least 32. Messages are inserted into the message queue in order of their
priority. Higher-priority messages get sent to the front of the queue, and will be pulled off the queue before lower-
priority messages are. This prioritization supports two different requirements:

• The ability to send "emergency" messages down a message queue. These should be delivered before the
normal, everyday messages. In our terminal/server example, normal messages might have a priority of zero, and a
particularly urgent message could be flagged with a high priority. Such a request should get priority service, and
that starts with the message going to the head of the queue.

• The ability to prioritize all system services is essential in a real-time system. Imagine that we are using a
message queue to communicate between a number of hard real-time tasks at differing priorities and some sort of
centralized server. The higher-priority real-time tasks should get their messages handled before the lower-priority
tasks. The cardinal rule of real-time prioritization is that a high priority task should never be unnecessarily delayed
by a low priority task.

Sending prioritized messages down the queue is not a complete solution to this overall prioritization problem, since
the server process itself may be a low-priority process. There are mechanisms that help address this problem (such
as priority inheritance by message passing as implemented in QNX), but they are not widely enough used to be part
of the POSIX.4 standard. A kludge you might consider using in your application is to run your server at maximum
priority while it waits for messages, then have it lower its priority to match that of the message it receives. This
solution gets you closer to the ideal of total system synchronization, but still suffers from timing holes.

At a single priority level, messages are still put on the queue in FIFO order. You have to give your messages a
priority. If you do not care about prioritization, you can just

Page 104

set this parameter to 0. If you specify a number greater than MQ_PRIO_MAX, mq_send will fail.

Finally, let's discuss blocking. If there is room on the message queue for this message, then the message will be
added to the queue without blocking the calling process. No problem. But it is possible that the queue will be full
when you call mq_send. In other words, there may already be mq_maxmsg (the value you set when creating the
queue) messages sent to the queue but not yet received—in transit, as it were. If there is no room for this message,
then the call to mq_send may block. It will block unless you set O_NONBLOCK in the mode argument when you
called mq_open.

Receiving Messages

The other half of the message-passing interface, mq_receive, looks sort of like read, just as mq_send looks sort of
like write:

 #include <mqueue.h>

 size_t mq_receive(mqd_t message_queue, const char *message_buffer,
 size_t buffer_size, unsigned int *priority);

This call removes the message at the head of the message_queue, and places it in message_buffer. buffer_size
advises the system how large message_buffer is. Upon return from this function, the system will fill in priority with
the priority of the message pulled off the queue, and will return the number of bytes that were actually in the
message. Of course, the function also stores the received message in the buffer pointed to by message_buffer.
Notice that the priority parameter is a pointer to an unsigned int, not an unsigned int itself.

Now, the complications. First, the buffer you pass to the system must be at least as large as the maximum message
size for the message queue. That's the number you supplied as mq_attr.mq_msgsize. If you pass in a buffer that is
too small, the system will return an error and not give you any message off the queue.

And again, unless you have set the message queue into non-blocking mode (by using O_NONBLOCK at mq_open
time or by setting O_NONBLOCK in mq_flags in a call to mq_setattr), you will block waiting for a message on an
otherwise-empty message queue. In fact, this was the very behavior desired in our terminal/server example. We
didn't want the terminal to block awaiting a message from the server, we just wanted it to check for one.

Message Queues andfork, exec, and exit

Message queues behave pretty much like files where fork, exec, and exit are concerned. Files are inherited when a
process forks; so are message queues. Likewise, when a process calls exit or _exit, both files and message queues
are closed implicitly. The exec functions behave differently for files and message queues. All message

Page 105

queues are closed when a process calls one of the exec functions. In contrast, files are, by default, left open when
you exec.* In our terminal and server example, then, we need to change things a little bit to move from pipes to
message queues. Rather than the server piping, dup2ing, and the terminal just inheriting the layout, we need to call
mq_open in both the parent and the child process. In this sense, using a message queue is more akin to using a
FIFO, or named pipe.

Additional Message Queue Facilities

Once you can create and open message queues, and send and receive messages, you're pretty much ready to start
using message queues in your applications. There are a couple of other functions in the POSIX.4 interface that you
may find useful.

Determining and changing the status of the message queue

You may want to know how many messages are on the queue at a particular moment. Or you may want to be
reminded of the features of a given message queue: for example, your process may not have created the message
queue, and you need to know mq_maxmsg and mq_msgsize. In our terminal server example, the server probably
creates the queues when it starts, and the terminals come along later. The terminal processes could use mq_getattr
to discover a queue's attributes (for instance, to see whether any messages were present on the queue):

 channel_from_server = mq_open(GLOBAL_MQ_NAME, O_RDWR);
 if (channel_from_server == (mqd_t)-1)
 perror("mq_open");
 else {
 /* Set MQ access into non-blocking mode. */
 mqa.mq_flags = O_NONBLOCK;
 if (mq_setattr(channel_from_server, &mqa, NULL) < 0)
 perror("mq_setattr");
 /* Get current MQ status */
 if (mq_getattr(channel_from_server, &mqa) < 0)
 perror("mq_getattr");
 else {
 printf("MQ: %s has %d msgs (max %d, max size %d, %s mode)\n",
 GLOBAL_MQ_NAME, mqa.mq_curmsgs, mqa.mq_maxmsg,
 mqa.mq_msgsize, (mqa.mq_flags & O_NONBLOCK) ?
 "non-blocking" : blocking");
 }
 }

mq_getattr writes the attributes of the named message queue into the attributes structure you pass in. This is the
same mq_attr structure as was used when the message queue was first created. mq_maxmsg and mq_msgsize and
mq_flags all reflect the underlying attributes of the message queue. In addition, the mq_curmsgs field now

* You can explicitly force a file descriptor to be closed whenever you call exec, by setting the file descriptor flag FD_CLOEXEC
with fcntl. By default, that flag is clear for every file you have open. Since fcntl is applied to file descriptors, and message queues
are not file descriptors, fcntl, as well as the FD_CLOEXEC flag, are irrelevant to message queues.

Page 106

takes on a value which is the number of messages currently on the queue (sent, but not yet received). Of course,
that value is just a snapshot and can change at any moment as processes call mq_send and mq_receive. The value is
guaranteed, though, to reflect the state of the message queue at some instant during the call to mq_getattr.

There is also a mq_setattr function, but this function sets only one attribute of the message queue: the
blocking/non-blocking nature of the queue. Other attributes, like the depth and message size of the queue, are
create-time attributes that are too difficult to change after the queue is created. If you need to change these
attributes, you should create a new queue and remove the old one. In our example, again, the terminal process uses
mq_setattr to make sure their message queue access is queued to be nonblocking. (Okay, they could do this at
mq_open by specifying O_NONBLOCK, but then I wouldn't have an example, now would I?) mq_setattr stores the
old attributes of the message queue in previous_attributes (if it is not NULL), and then changes the attributes of the
message queue in accordance with the new attributes passed in new_attributes. You can only change the mq_flags
attribute. The only defined flag for mqflags is O_NONBLOCK. The effect of setting O_NONBLOCK is the same
as if you had set O_NONBLOCK in oflags when you first opened the message queue: it puts the message queue
into non-blocking mode. You won't wait for message arrival, and you won't block waiting space to free up when
you send messages.

Receiving notification when a message is on the queue

Now, we get to a strange function. Every message queue has the ability to notify one (and only one) process
whenever the queue's state changes from empty (no messages) to nonempty. This ability means that a process
doesn't need to check for messages. Instead, it can arrange to get poked when a message arrives. This is especially
useful when messages must be retrieved quickly after they're sent, as when some critical condition has caused the
sender to send the message, and it needs a fast response from the receiver. In such a case, periodically polling the
message queue may have too high a latency.

For instance, our server might set up a special, separate queue to handle administrative requests (like "shut down
the database"). There are generally no messages on such a queue, but when they come in, they are very important
and must be dealt with promptly. An asynchronous notification of message arrival on such a queue is handy. Here's
how the server could set this up.

 #include <mqueue.h>
 #include <signal.h>
 /* Asynch. notification of an important message arriving! */
 void emergency_handler(int signo, siginfo_t *info, void *ignored)
 {
 mqd_t mq_notifying;
 ssizet nbytes;
 unsigned int prio;

Page 107

 char buf[MAXBYTES];
 struct sigevent se;

 /* We passed along the MQ descriptor as signal data */
 mq_notifying = (mqd_t) info->si_value.sival_ptr;
 nbytes = mq_receive(mq_notifying, buf, MAXBYTES, &prio);
 /* Deal with emergency message stored in 'buf' */

 /* re-attach notification request */
 se.sigev_notify = SIGEV_SIGNAL; /* send me a signal */
 se.sigev_signo = SIG_EMERGENCY; /* send me THIS signal */
 se.sigev_value.sival_ptr = (void *)mq_notifying;
 if (mq_notify(emergency_mq, &se) < 0)
 perror("mq_notify");
 }

 void init_server()
 {
 struct mq_attr mq_attr;
 struct sigaction sa;
 struct sigevent se;

 mqattr.mq_maxmsg = 10;
 mqattr.mq_msgsize = 128;
 mq_attr.mq_flags = 0;
 emergency_mq = mq_open(EMERGENCY_MQ_NAME, O_CREAT|O_RDONLY|O_NONBLOCK,
 S_IRWXU, &mq_attr);
 if (emergency_mq == (mqd_t)-l)
 perror (EMERGENCY_MQ_NAME);
 /* Set up an asynchronous notification request on this message queue */
 sa.sasigaction = emergency_handler;
 sigemptyset(&sa.sa_mask);
 sa.sa_flags = SA_SIGINFO; /* real-time signal */
 if (sigaction(SIG_EMERGENCY, &sa, NULL) < 0)
 perror("sigaction");
 se.sigev_notify = SIGEV_SIGNAL; /* send me a signal */
 se.sigev_signo = SIG_EMERGENCY; /* send me THIS signal */
 se.sigev_value.sival_ptr = (void *)emergency_mq; /* with this data */
 if (mq_notify(emergency_mq, &se) < 0)
 perror("mq_notify");
 }

Calling mq_notify arranges for the process to get asynchronous notification, described by the sigevent structure,
when a message arrives on the given message queue (emergency_mq) and there is not already a process blocked
waiting for the message. Only one signal is sent, and after that, your notification request is de-registered and
another process can attach its own notification request. You must re-attach your notification request if you want
notification whenever there is a message for you on the queue. We do this from the signal handler for the
notification signal (emergency_handler).

The sigevent structure, which was described in the signals section, describes the signal that will be sent to the
process when your message arrives. We set up an extended, queued, data-carrying signal by setting SA_SIGINFO
in the call to sigaction. In this case,

Page 108

se.sigev_value will be passed to your signal handler as the data value for that signal. It's generally useful to set that
value to the mqd_t that describes this particular message queue, or, alternatively, a pointer to a data structure of
your own invention that more fully describes your use of the message queue. The sigev_value, remember, is a union
that can contain either an integer value (to which the mqd_t can be cast), or a pointer to void (to which another
pointer type can be cast). In our example, we pass the message queue descriptor along, so that we can differentiate
mq_notify signals coming from multiple queues.

If any other process then attempts to attach its own notification request to the queue, it will fail. Only one process
can have a notification request attached to a message queue at a time. In fact, you cannot even replace your original
notification request with another one!

What you can do, though, is remove your notification request. Do this by passing in NULL for the
notification_request argument to mq_notify. That frees up the notification request ''spot" for that message queue,
enabling any process (including you) to attach a new notification request.

When are you notified? If a message is sent to a queue, and there are no receivers blocked in mq_receive at the
time, a signal will be sent to notify you that a message is waiting. If there is a process blocked waiting for a
message to arrive, then that process will get the message, and you will not be notified. After all, the purpose is to let
you know when there's a message for you.

When you close the message queue (by calling mq_close, or by calling one of the exit or exec functions), your
notification request, if you attached one to the message queue, is removed and the "slot" is freed up for another
process to attach its own notification request.

Message queues are inherited across a fork. Notification requests are not. Only one process can have a notification
request attached to a message queue at a time. The child of a process that forks should not expect to be notified as
the result of its parent's notification requests.

Using Message Queues

There are certain guidelines that you should always follow when using message queues. These include the
following.

Clean Up Your Queues

As I mentioned above, message queues do not have to exist in the file system namespace. They might, but then
again, they might not. That means it is possible to leave a queue lying around in your system after your application
has terminated. To make things worse, you probably can't see the message queue by typing ls. Eventually, you may
run into resource problems because of "dead" queues left lying around. The

Page 109

operating system can fill up its available space for message queues and you'll start getting error messages when you
try to create more.

Even more insidious, the messages in a queue remain there, even when the queue is not being used by anybody!
That may be what you want—the message queue can be used as temporary storage. This behavior may not be what
you desire. Imagine that you have an application you're trying to debug. It sends some messages, say ten of them. It
receives nine messages, then bombs out. You debug it and try it again. What you may have forgotten is that there's
an extra, leftover message from the last time you ran the application. The first message you receive (at that priority
level, of course) will be a left-over from the previous run—probably not what you expected!

The lesson is that every application must have a shutdown phase where it cleans up and empties its message
queues. It may also be appropriate to remove its message queues from the system. Especially while you are
developing, make sure that your application cleans up its queues when it terminates.

Always Create Your Queues

A corollary of the above rule is that your application must create its message queues when it starts. There are two
reasons for this. The first reason is the stylistic one that I mentioned above: you should be removing your queues
when you're done with your application, and that implies you have to create them when you start the application
again.

The second reason to create your message queues is more important. Message queues are understood to be fleeting
in their existence. Unlike files, they generally do not survive a system crash or reboot, because they live entirely in
the memory of your machine, which gets wiped at system startup. Many applications, particularly embedded ones,
run in environments where the power gets turned off from time to time. Or you may be prototyping on a system that
crashes frequently. Or maybe the machine gets turned off every night to save the phosphor on the screen. Whatever.
When you fire up your application, it's simply good practice to call all your initial mq_opens with O_CREAT set.

Verify That Queue Creations/Opens Did What You Expect

While you're at it, it's probably also useful to set O_EXCL. For any given mq_open, you know what you expect—
that the message queue must be created, or that it's already there. Using O_EXCL gives you confirmation of your
expectations in the return value from the system. If you expected to have to create a queue, and it was already there,
you should check for old messages left in the queue. You may want to call mq_getattr to verify that the message
queue sizing information is correct.

Page 110

Problems with Message Queues

Message queues are measurably better than pipes as a means of interprocess coordination. They give you more
structure and control over that structure, the ability to send messages without knowing the ID of the target, and a
boost in performance. Another very important advantage of message queues is that they can be easily extended
across machine boundaries into a distributed application. (Assuming, of course, that a distributed message passing
facility exists in your target system). In contrast, an application using shared memory is more tightly tied to a
single-machine model, because distributed shared memory is not widely available, nor is it terribly efficient.

Message queues have some limitations. The most basic is that they're queues. Many applications are naturally
structured using queues, especially those applications that fit into the overall mold of "entities talking to one
another." Say, though, that you want to communicate in some way that's not queue-based. You may want
communication based on a stack, or you may want to share some data that multiple processes can operate on
concurrently. You may want a shared pool of bits that a number of processes can get at concurrently. Message
queues are clumsy at best for such applications.

The other limitation is efficiency. POSIX.4 message queues require data to copied from the sender into the
operating system, and then copied from the operating system into the receiver (this is because the mq_receive call
specifies the location of the received data, rather than letting the operating system decide where the received
message is). These two copy operations take time. The larger the message, the greater the time required.

There are variations on the abstract message queue (not the POSIX version) that can use the MMU to map the
message from one process into another, thus avoiding all that copying overhead. This requires, though, that a
message buffer be appropriately aligned, usually to a page boundary. A better alternative is to allow the operating
system to pass a pointer back as the result of an mq_receive, rather than having the application specify where the
received data is to go. Neither alternative is present in POSIX.4.

For total flexibility, as well as the highest possible performance on a uniprocessor, you must use shared memory.

POSIX.4 Shared Memory and File Mapping

When two or more processes share some memory, that memory is in two (or more) places at once. It's mapped into
the address spaces of all processes concerned. If one process writes a value into a particular byte of shared memory,
the other processes see

Page 111

it immediately.* Any data structure you want can be embedded in a shared memory area, and thus be made
accessible to multiple processes. This gives you the flexibility to create any communication structure you desire.

For example, let's imagine that our database example needs the ability to log data collected by other real-time
processes. This is a fairly demanding application, in which a stream of information needs to be processed as it
appears. Say our data-collection process reads its data into memory, then writes it to a pipe or message queue. This
would involve a copy into system space (the system's internal buffers), and then a copy out again into the space of
the database server. Two copies is two too many. Instead, the application and the database server could share
several pages of memory, cooperating on which pages are being actively used for data gathering and which are
being logged into the database by the server.

If you already know the generalities of shared memory (how it works, why you want it, the need for
synchronization when using it), you can safely skip forward to the "Memory Is A File... Sort Of" section, where
there are step-by-step instructions for using the POSIX.4 shared memory mapping facilities. The following section
provides some additional background information on shared memory.

Complications: Synchronization

The free-form, low-level nature of shared memory also gives you the freedom to hang yourself pretty badly. You
have to be careful when you use it, because the operating system is not involved in your use of this memory. That's
one reason for its speed. You don't have to call the operating system to do anything for you; you just operate on
memory.

In particular, when using shared memory there is no implicit synchronization going on between processes. Unless
you explicitly synchronize your process's accesses to shared memory, you can run into problems based on the
process's concurrent access to the same data structure.

For instance, say you've implemented a circular, doubly-linked list in shared memory (one of my own personal
favorites). The list can be a list of anything you want: say it's a list of free pages for our process to use in its real-
time data collection. The collection process removes pages from this free list, fills them, then queues them to the
database server. The server empties the pages and returns the page to the free list. There are

* Well, almost immediately. The instantaneous sharing of memory is subject to the physical characteristics of the underlying
hardware memory coherence system. In particular, it may take several cycles for memory writes on one processor to wend their
way through caches, out onto the memory bus, and back up into the cache of a neighboring processor. POSIX does not address
multiprocessors at all; in fact, the scope of the POSIX.4 working group explicitly ruled out multiprocessor considerations. That's
unfortunate, because multiprocessors are increasingly common.

Page 112

two basic operations for a queue: enqueue and dequeue. Here's the basic doubly-linked list dequeue operation; it
takes an element, assumed to be on a queue, off it:

 dequeue(element *e)
 {
 e->prev->next = e->next;
 e->next->prev = e->prev;
 e->next = e->prev = NULL;
 }

This operation accesses three queue elements: the one being dequeued, the one before that (e->prev), and the one
after it (e->next). Imagine that two processes simultaneously try to dequeue two adjacent elements. In other words,
e1 is the predecessor of e2, and these two processes try to dequeue both elements at the same time. Figure 4-1
shows what will happen if one process is preempted by the other halfway through the operation.

The end result is that the list is totally torn apart, and a traversal of the list, either backwards or forwards, will
certainly lead to a NULL pointer access and a probable core dump. When you use shared memory, you must
explicitly synchronize accesses to shared data structures. In the example above, you'd need to put some sort of lock
on the queue itself so that only one process at a time could get at it. There are many ways to synchronize process
execution. That's the subject of the next section.

Complications: File Mapping

Another complication we face is a result of the way POSIX.4 standardized shared memory. Shared memory is
intertwined with another facility, called file mapping. File mapping, known mostly by the name of its most
important interface, mmap, allows the application to map any file, not just shared memory, into its address space
and then access it as if it were memory. Figure 4-2 illustrates this. Shared memory is a particular case of the more
generic file mapping operation. This is a standardization of a widely available UNIX function (mmap). However, it
does complicate the shared memory interface somewhat, because the options covering file mapping and shared
memory have overlapping requirements.

As a simple, introductory example of the complexity of the shared memory interface, consider how you'd determine
whether your system supports shared memory. As with the rest of POSIX, you'd look in <unistd.h>, where all the
POSIX constants are. However, part of the shared memory facility can be present, even if you do not have full
shared memory.

Page 113

Figure 4-1. Result of simultaneous dequeue by two processes

The reason for this is the presence of file mapping. Operating system vendors may not be interested in real-time:
they don't care about POSIX.4 shared memory, but they are really interested in file mapping. As a result,
_POSIX_SHARED_MEMORY_OBJECTS is defined if all the shared memory functions are present. In addition,
mmap and its related functions can also be defined under _POSIX_MAPPED_FILES, even if
_POSIX_SHARED_MEMORY_OBJECTS is not defined. If _POSIX_SHARED_MEMORY_OBJECTS is
defined, you have shared memory, including the mmap interface necessary to actually use shared memory. If just
_POSIX_MAPPED_FILES is defined, then you have mmap, but not shared memory. For the purpose of real-time
coordination, just look for _POSIX_SHARED_MEMORY_OBJECTS. Other functions in this area are intertwined
with other _POSIX_-constants: _POSIX_MEMORY_PROTECTION describes whether MMU protection bits can
be set to enforce memory protections, and

Page 114

Figure 4-2. mmap is used for mapping differing sorts of objects, including shared memory

_POSIX_SYNCHRONIZED_IO is required for one of the memory functions (msync, which synchronizes a
mapped file with the underlying disk file. msync is the last function described in this section). Table 4.2
summarizes the options affecting shared memory and file mapping.

Table 4-2: How to Get Various Shared Memory and File Mapping Facilities

Function Present According to Which Options?

mmap _POSIX_MAPPED_FILES or _POSIX_SHARED_MEMORY_OBJECTS

munmap _POSIX_MAPPED_FILES or _POSIX_SHARED_MEMORY_OBJECTS

shm_open _POSIX_SHARED_MEMORY_OBJECTS

shm_close _POSIX_SHARED_MEMORY_OBJECTS

shm_unlink _POSIX_SHARED_MEMORY_OBJECTS

ftruncate _POSIX_MAPPED_FILES or _POSIX_SHARED_MEMORY_OBJECTS

mprotect _POSIX_MEMORY_PROTECTION

msync _POSIX_MAPPED_FILES and _POSIX_SYNCHRONIZED_IO

Did the working group go a little crazy here with the options? You be the judge.

Page 115

Memory Is a File... Sort Of

Shared memory and message queues (and, as we'll see in the next section, semaphores as well) are all cousins in the
POSIX.4 specification. Each uses a similar scheme for initializing (opening), de-initializing (closing), and so forth.
In addition, each facility follows similar rules for naming the object, be it a message queue, shared memory object,
or semaphore. Each individual interface is different from the others because each of the interfaces has unique and
special characteristics. Message queues, for instance, are simple: open the queue, send a message. As we'll see
below, shared memory is more complex, because you have the additional flexibility (and responsibility) to
explicitly place shared memory (map it in) at a particular location in your address space. Finally, semaphores are
complicated by the desire to place them, as well, in shared memory segments, for reasons we'll discuss later. So,
message queues are the simplest of the three coordination interfaces in POSIX.4. Shared memory, while similar in
its basics, requires additional steps.

Setting up shared memory is a two-step process because it is a special case of file mapping. As a result, shared
memory is even more like a file than message queues are. The two steps to map shared memory are:

• Open the shared memory object (using shm_open).

• Use the resulting descriptor to map the object into your address space (using mmap).

First, let's discuss the easy part. Opening a shared memory object is very much like opening a message queue: the
same "sort of like a file, but not quite" interface is supported, and the same naming rules must be followed. The
functions for working with shared memory therefore look a lot like the functions for message queues. We'll cover
this part first, and then move on to the truly new ground of mmap.

Opening and creating shared memory objects

Shared memory objects are opened and created using a function that is very similar to open: shm_open.

 #include <sys/mman.h>

 int shm_open(const char *shared_memory_name, int oflag, mode_t mode);

shm_open takes exactly the same arguments as open, and even returns the same sort of object: a file descriptor. In
this, shm_open is different from mq_open: the message queue open routine returns an object of type mqd_t, which
is not necessarily a file descriptor. The descriptor returned from shm_open, on the other hand, is definitely a file
descriptor, and you can even use a couple of the normal file operations on it! Remember, though, that shm_open
operates on a name that may not exist in the file system. Like message queues, shared memory may not show up in
the output of a command like ls. Although the name of a shared memory object looks like a normal

Page 116

filename, it may be different. That's why a separate interface is required. Just for review, here are the rules for
naming a POSIX.4 shared memory object:

• The shared memory object name must be constructed like a normal file pathname.

• To run on all systems, the name should start with a "/".

• To run on all systems, the name should contain no other "/" characters.

The conformance document for your implementation must tell you what happens when you do not start the shared
memory object's name with a "/", and when you use more "/" characters in the name.

Also like message queues, you cannot perform most of the usual file operations with a shared memory descriptor—
even though, in this case, you have a real, live file descriptor as a return value from shm_open! In particular, you
cannot call fstat, read, write, or lseek with the file descriptor you get back from shm_open. There are two normal
file functions that are defined to work correctly with shared memory objects: ftruncate, which sets the objects size,
and close. It's a special descriptor. Just keep repeating that to yourself.

That is the only real difference between shm_open and open. This function opens the named shared memory object,
using the flags given in oflag. As before, oflag contains the read/write mode of access. This flag must have either
O_RDONLY (read-only access to the shared memory is desired) or O_RDWR (both read and write access to the
shared memory is desired) set in it. By contrast, with files and message queues, an additional access mode,
O_WRONLY (write-only access) is allowed. Because of the need for synchronization, and also because some
MMUs don't support write-only memory, O_WRONLY is not allowed in oflag for shm_open. If you need to write
the memory, open it with O_RDWR, and then refrain from reading the memory, if you can. Generally, shared
memory is used in both read and write mode. In the database-server and real-time data acquisition example above,
note that the data acquisition program would only be writing data to the pages of shared memory (and maybe
reading those pages if there were control data structures embedded in them), while the database server would only
be reading the data. Therein is a perfect example of when differing memory protections might be used.

O_CREAT and O_EXCL can be specified in oflag to cause the shared memory object to be created if necessary.
These flags operate as expected. O_CREAT will create the shared memory object, using the given mode to set
access permissions for the shared memory object as for message queues. O_EXCL, used in conjunction with
O_CREAT, causes the interface to complain if the shared memory object already exists. If O_EXCL is not
specified, then O_CREAT will silently fail to re-create a shared memory object that already exists.

Unlike message queues, no additional parameters are needed to describe the shared memory you create. All the
relevant parameters for shared memory are set at the time you map the shared memory object into your address
space, with mmap. There are no

Page 117

particularly relevant attributes of shared memory that are implicit to the shared memory object itself. When you call
shm_open(..O_CREAT..), you get a shared memory object with default attributes—period.

There are attributes to shared memory, of course. Each shared memory region, for instance, has a size. When first
created, that size is zero.*

Setting shared memory size

shm_open and mmap provide access to shared memory, but one important feature is not yet present. Every shared
memory has a certain size. How is that size set? With files, the file size is automatically extended when you write to
the file. Since one does not use write, or any system call at all, for modifying shared memory, there's no
immediately obvious way of setting the size of a shared memory region. POSIX.4 provides the confusingly-named
ftruncate function to set the size of a file or shared memory region.

A shared memory area has zero size when it's first created, or after someone opens it with the O_TRUNC flag set in
oflag. When you truncate an existing shared memory area, any data that was in the truncated area will be lost. This
is something like letting the air out of a balloon. The balloon's still there, but it's not as full.

To inflate the shared memory object after you truncate it (or when it's first created), you use ftruncate:

 #include <unistd.h>

 int ftruncate(int fd, off_t total_size);

ftruncate actually works on all files, but we're interested in it because it operates on shared memory objects, too—
even though shared memory objects are not files. In fact, POSIX defines ftruncate's behavior only if the function
_POSIX_MAPPED_FILES or _POSIX_SHARED_MEMORY_OBJECTS is defined.† ftruncate works both ways.
You can use it to lengthen a shared memory object, oddly enough, but you can also use it to shrink a shared
memory object. Whatever size you pass in to ftruncate becomes the size of the shared memory object. That size, by
the way, is the size for all users of the

* Usually, a shared memory region also has a default mapping where the system will try to place it in your address space. The
desire here is to map the same object at the same address in multiple processes. If the object is at the same address everywhere, it
is easier for cooperating processes to use pointers to access the shared memory. Otherwise, all access to the shared memory
object must be carefully scaled and shifted by the location of the shared memory object in that particular process. This attribute,
and any others that may be associated with the shared memory object, are usually set by mmap. Attributes such as the default
mapping are not explicitly visible to the application. But they are, regardless, attributes of the shared memory object.
† ftruncate is a standard UNIX function used for setting file sizes. POSIX doesn't require ftruncate unless shared memory is being
supported. The reason is that ftruncate for normal files is not really a necessary part of a basic operating system; you can emulate its
behavior with other functions if you need to.

Page 118

shared memory. Only one process needs to do the ftruncate; all processes will see the result.

Close for shared memory objects

Of course, where you have an open routine, you must have a corresponding close. Because shm_open returns a file
descriptor, it does not need a special close operation. Normal POSIX.1 close operates correctly on file descriptors
for shared memory objects, as in the following example:

 #include <sys/mman.h>

 int fd; /* FILE descriptor for shared memory object */
 int i;

 /* Initialize name, oflag, and mode if necessary */
 fd = shm_open ("/shared_memory", O_RDWR);

 ...
 ... map shared memory into your address space using mmap
 ... (discussed below -- don't worry about it just yet)
 ...

 /*
 * Close the shared memory object
 * (does NOT unmap the shared memory!)
 */
 i = close(fd);

I mentioned that shared memory setup is a two-step process. Opening the shared memory object is just the first
stage. The open object must also be mapped into your address space using mmap (I'm getting to it, I promise!). The
important point to remember for close is that it only recycles the file descriptor for the shared memory object: it
only undoes the first of the two steps required to get shared memory. Once you've mapped the memory in, you can
safely close the descriptor. In fact, you should close it for tidiness if no other reason. The shared memory remains
mapped in your address space until you explicitly unmap it (with munmap).

Destroying shared memory objects

Completing our special shared memory functions, there is a function to remove shared memory objects. Since
shared memory objects may not be in the file system, it makes sense that we use shm_unlink instead of unlink.

 int i;

 i = shm_unlink("/shared_memory");

Unlinking shared memory has the same semantics as unlinking a file or a message queue. If any processes are using
the shared memory when it is unlinked, then those instances of the shared memory object remain viable and stable
until each individual process ceases to use the shared memory. In the case of shared memory, of course,

Page 119

that means that each process must close, and also munmap, their shared memory before it truly ceases to exist. exit
and exec implicitly close shared memory instances, just like they close files and message queues.

Mapping in shared memory

Finally. We've discussed how to create, set the size of, and destroy shared memory objects, and how to open and
close them. None of this actually gets us memory to share. To get the memory into the address space of a process,
you need to take the file descriptor returned from shm_open, and map it into your address space using mmap.

 #include <sys/mman.h>

 void * mmap(void *where_i_want_it, size_t length, int memory_protections,
 int mapping_flags, int fd, off_t offset_within_shared_memory);

My first thought on looking at mmap was, ''Holy Smokes! That's a lot of arguments!" You may be thinking the
same thing. mmap is a fairly complex function. Here's a very basic description. mmap maps in the length bytes of
shared memory at offset_within_shared_memory in the shared memory object associated with file descriptor fd.
mmap will try to place the mapped memory at the address you tell it in where_i_want_it, and will give it the
memory protection you specify in memory protections. The address you pass in to mmap may not be available for
mapping memory. The address used by mmap, where it actually put the shared memory, is returned as the return
value of the function. Finally, mapping_flags affects the way the mapping is done. These arguments are illustrated
in Figure 4-3.

Figure 4-3. How mmap's arguments refer to the mapped region

Page 120

Now, here's some more detail on each argument. Keep in mind that mmap works on all sorts of files. I'm going to
talk mostly in terms of shared memory objects that have been opened by shm_open. Where the behavior for other
sorts of files is different, I'll flag it.

fd, offset_within_shared_memory, and length
These define the region of the shared memory object to be mapped into your address space. fd is obviously the file
descriptor you got back from shm_open. The offset_within_shared_memory refers to an offset within that shared
memory object. (If you're mapping regular files, it is the offset in the file where mapping should start.) length is the
number of bytes to be mapped in. Generally, you're going to want to map an entire shared memory region into your
address space, so the offset will be zero and the length will be the entire size of the shared memory region.
However, if you want to map a particular chunk of a shared memory object, you can do so by setting the
offset_within_shared_memory and length parameters appropriately.

where_i_want_it (and where you get it)
The return value from mmap tells you the address at which your shared memory has been mapped in. You can try
and tell the system where to put the shared memory, by passing in an address as a hint. That's where_i_want_it. The
system is supposed to use your hint and try to place the shared memory near that address. A conforming POSIX
system, though, can utterly disregard your hint and place the shared memory wherever it wants, unless you specify
a particular flag, described below, that makes the system place the shared memory at the address you give it if at all
possible. If you pass a hint of zero in, then the system is given free rein to place the mapping wherever it sees fit. I
recommend you give the system free rein whenever possible, as it's tricky to use the hint address correctly.

There is one fairly portable way of using the hint, which will generally succeed on all systems. In your first
mapping of a particular shared memory area, let the system choose an address by specifying a hint of zero. Then, if
and only if your application requires that shared memory be mapped at the same spot in all processes, specify the
address mapped for the first process as the address at which all subsequent processes want their memory to be
mapped. Since the operating system chose the mapping address in the first place, you should be able to use it in
subsequent mappings of the shared memory.

Why wouldn't the system use the address you give it, no matter what it is? There are a couple of reasons. One, you
may have specified an address range that overlaps some memory you're already using, either for your program code
and data or for another shared memory region. mmap will refrain from replacing existing mappings. Two, you may
have specified a region that the particular system just doesn't support. Most systems only allow you to put shared
memory in particular address ranges. For instance, you can't overwrite the mappings for the operating system.
Generally, the operating

Page 121

system will also prevent you from overwriting your process's own executable code and data regions.

Let's assume, though, that you've managed to avoid those addresses where you and the operating system already
exist, and that you are in the area where your operating system supports shared memory mappings. Why else might
the system modify the address you give it? Usually, this will be because of page granularities. A memory
management unit operates in chunks of memory called pages. You cannot map in shared memory at any old
address. You have to start it on a page boundary. Most mainstream architectures use a page size that is 4096 or
8192 bytes—the constant PAGESIZE, from <limits.h>, tells you exactly what it is. For portable use of mmap, you
really want to make sure that any mapping address you specify, as well as any file offset and length, are aligned
modulo PAGESIZE. If they are not, the system either aligns its mapping appropriately without complaining or
returns an error. Some systems (the sane ones, in my view) make sure that the offsets, lengths, and addresses you
pass in are aligned to PAGESIZE multiples. That way no alignment happens without you being explicitly aware of
it.

As an example of silent alignment, though, take the following. Say you ask for your file mapping to begin at offset
5 within the file, for 10 bytes of the file, and PAGESIZE is 4096. If the system does not return an error, you are
going to get back a pointer that is going to be equal to 5, modulo PAGESIZE (e.g., 5001, 8197, etc.). Say the
system returns 5001 to you. That means that the bytes from 5001 to 5011 are your shared memory. Be aware,
though, that the 5 bytes from 4096 to 5001 are also going to be mapped in. The system cannot help but map those
bytes in as well. Furthermore, there is memory mapped in from 5011 up to 8192. Assuming that your shared
memory area is bigger than 15 (5 + 10) bytes, those additional bytes mapped in also reflect the shared memory area.
If you modify them, other processes will be able to see the changes!

So, if all these restrictions and alignments are going on, how can you possibly use the address hint in a meaningful
fashion? Well, there's generally only one reason you need shared memory to be at a particular address. That is,
because your processes are using absolute pointer values to access the shared memory. If this is the case, then you
need your shared memory to be in the same spot in each of the processes sharing memory. But notice! You don't
need the memory to be at any particular spot. All you need is for the memory to be in the same spot in each process.
Now, that's simpler. All you need to do is map the memory into your first process, letting the system choose the
address. Then, each subsequent process can specify the address the system chose to put the first process's mapping
at. That address is quite likely to be available, appropriately aligned, and otherwise generally O.K. for all
cooperating processes to use. To force subsequent mappings (in other processes) to use where_i_want_it, set
MAP_FIXED in mapping_flags.

Page 122

mapping_flags
These flags control how the mapping is done. There are three flag values defined: MAP_SHARED,
MAP_PRIVATE, and MAP_FIXED. MAP_SHARED specifies that you want this mapping to be shared with all
other processes who map in this particular segment of the shared memory object. This is the desired behavior for
shared memory: of course you want to share it! For other objects, like files, which you may be mapping, you may
not want to share your mapping with anyone else. For this reason, MAP_PRIVATE is provided as the second flag
value. MAP_PRIVATE need only be supported if the _POSIX_MAPPED_FILES option is supported, because it's
not very useful if all you have is shared memory.

MAP_SHARED and MAP_PRIVATE really control how memory writes to the mapped object are reflected in
the object itself. In the case of MAP_SHARED, your writes are propagated down to the object, and from there
they find their way up into everyone else's mappings of the same object. Likewise, other processes that have
mapped MAP_SHARED will have their changes propagated through the underlying object (shared memory,
file, or whatever) to become visible to you.

MAP_PRIVATE causes any changes you make to your mappings to be visible only to you. Other processes
sharing the same object never see your changes. MAP_PRIVATE provides you with a shadow copy of the
object, which you can modify without having to worry about any other process seeing the changes. This
functionality is not proper or desirable for shared memory. However, it is perfect for mapping in a shared
library of code and data into your address space. Multiple processes using the same shared library can share the
instructions in that library-those are never changed. But the data area from the shared library remains private to
each process that uses it. This sort of use for mmap is why MAP_PRIVATE exists. Chances are, you'll never
use it.

The third flag is MAP_FIXED. Implementations do not have to support MAP_FIXED. If you find a system that
supports it, it tells the system to use your address hint as the address at which to place the shared memory-
period. No alignment or adjustment is allowed. The system either puts the memory at the address you give it, or
mmap fails. If MAP_FIXED is specified, then your hint, and the offset, must have the same value modulo
PAGESIZE (5, in the example above). Furthermore, the system may require that both the offset and the hint
address you pass in be aligned exactly to a PAGESIZE boundary.

memory_ protections
Finally, you must specify the permissions for the mapping. Now, you already specified the permissions you wanted
when you opened the file (O_RDWR or O_RDONLY). You need to specify permissions again here, to set the
memory protection bits in the MMU. Memory_protections is a bitwise OR of any of the following: PROT_READ,
PROT_WRITE, PROT_EXEC, PROT_NONE. If you only want to read the shared memory, specify PROT_READ.
If you want to read and write, specify PROT_READ IPROT_WRITE. The system will check these permissions
against the

Page 123

permissions you have for the file. Specifically, you must have opened the file (or shared memory object) with
O_RDWR in order for PROT_WRITE to be allowed. And you must have opened the file with O_RDONLY or
O_RDWR in order for PROT_READ to be allowed.

What about the others? PROT_EXEC means that you can execute the memory that you map in. That assumes
that the memory you map contains instructions that make sense on your machine. Some machines also require
you to set PROT_READ before you can execute code. PROT_EXEC is especially useful for implementing
shared libraries, and is not particularly useful for much else. I suppose you could use it to implement a user-
level overlay manager and relive the glory days of the 1970s, if you want. PROT_NONE means you can't read,
or write, or execute the memory you map in. Now that's useful.

Some hardware cannot support the protections you may specify. For this reason, there is a separate option in
POSIX, called the Memory Protection Option (_POSIX_ MEMORY_PROTECTION). If this option is defined
in <unistd.h>, then the protections you set up will be enforced. If you try to change a value in an area that was
not mapped with PROT_WRITE, you'll get a SIGBUS signal. I imagine that
_POSIX_MEMORY_PROTECTION will be supported on all of the workstation-type architectures, although
some embedded variants come without the required MMUs. If _POSIX_MEMORY_PROTECTION is not
defined, then the protection may not be enforced. In this case, your application has to be careful not to write
where you said you were only going to read.

File and shared memory mapping are obviously a little bit tricky. The following example shows everything
required to create a shared memory area in one process and then map it in another.

 #include <sys/mman.h>
 #define SHM_AREA_NAME "/shmarea"
 #define MYSHMSIZE 1048576
 void * shm_area;
 char shm_addr[32];
 int shm_descr;

 shm_descr = shm_open(SHM_AREA_NAME, O_CREAT|O_RDWR, S_IRWXU);
 if (ftruncate(shm_descr, MYSHMSIZE) < 0)
 perror("ftruncate");
 if ((shm_area = mmap(0, MYSHMSIZE, PROT_READ|PROT_WRITE, MAP_SHARED,
 shm_descr, (long)0)) == NULL) {
 perror ("mmap");
 }
 /* Make a printable version of the SHM addr */
 sprintf(shm_addr, "%d", (unsigned long)shm_area);
 close(shm_descr); /* Done with this file descriptor */

 /* Create a new process and pass the SHM address to it */

Page 124

 if (! fork()) {
 execlp(CHILD_PROCESS_PATH, CHILD_PROCESS_PATH, shm_addr, NULL);
 }

The code in the child process would be:

 int main(int argc, char **argv)
 {
 void *shm_area;

 /* Get SHM address used by parent */
 shm_area = (void *)atol(argv[1]);

 shm_descr = shm_open(SHM_AREA_NAME, O_RDWR);
 if (shm_descr == -1)
 perror ("shm_open");
 /* Map in shm at the same address as in the server--we will be using
 * pointers! */
 if (mmap(shm_area, MYSHMSIZE, PROT_READ|PROT_WRITE
 MAP_SHARED|MAP_FIXED, shm_descr, (long)0) != shm_area) {
 perror ("mmap");
 }
 close(shm_descr);
 ...

There are a few things to notice in this example. First, notice how the parent allows the system to choose the
mapping address, then the child performs a MAP_FIXED mapping to that same address. In this way, both
processes have the same memory at the same address, and pointers into that region can be easily passed back and
forth. Second, notice the method in which the shared memory address was passed to the child—as a command line
argument. This is a pretty grungy way of getting that address publicly known, but it works. Finally, notice that both
processes close the shared memory file descriptor as soon as the memory is mapped. Once the mapping is
performed, the file descriptor is irrelevant and can be recycled.

What can I map besides shared memory?

The POSIX.4 specification never comes out and says which files a conforming implementation must allow mmap to
work on. It certainly requires that mmap work for shared memory objects, and it seems to hint that regular files and
other files may be supported. On the other hand, special devices are never mentioned, except to say that an error
can be returned if you try to map something that it makes no sense to map (like a terminal). The meaning of "sense"
is left up to the operating system vendor. Standard UNIX systems today support file mapping of just about any
device on the system. When you're using systems that aren't based on UNIX code, though (real-time operating
systems, for instance), you want to be careful to make sure that the system supports the mapping you require.

Page 125

When you're done: unmapping your shared memory

As I've mentioned above, once you've mmaped in your object (shared memory, frame buffer, disk file, or
whatever), you can close the file descriptor and still retain the mappings you've set up. The mappings are inherited
across a fork, so your child processes will have exactly the same mappings as you. The mappings are removed
when you call exit or exec.

You may want to unmap your shared memory explicitly when you are done with the mappings you've set up.
munmap is the function which unmaps memory you've previously mapped with mmap. It is much simpler than
mmap:

 #include <sys/mman.h>

 /* Unmap memory previously mapped with mmap */
 int munmap(void *begin, size_t length);

munmap removes the mappings you've set up for the pages containing the address range begin through begin +
length. Note that it is pages, multiples of PAGESIZE, for which the mappings are removed. Further references to
these pages will result in an exception, just like accessing a bad pointer: you'll get a SIGSEGV signal, and if you're
not prepared for that, you'll get a nice core dump to pore through. The operating system might require you to give it
an address that's a multiple of PAGESIZE, although any value of length will be accepted. As with mmap, I
recommend that you make sure the arguments to munmap are multiples of PAGESIZE. That way, you know
exactly what memory you are mapping and unmapping, and that the system isn't rounding and truncating addresses
for you.

When you munmap your mappings, it signifies you're done with the object. If your mappings were made with the
MAP_PRIVATE flag set, any changes you made to this memory will be lost forever.

Remember how close and unlink work together? When you unlink a file that processes have open, the processes are
allowed to continue using that file, but no other processes can open the file. When the last process closes the file, it
finally, irrevocably disappears. Something analogous happens with munmap. An unlinked file, or a shm_unlinked
shared memory object, will persist in any processes that currently have established mappings via mmap. When
these processes remove their mappings (via munmap, exit, or exec), the object finally ceases to exist.

Do I need to say it? Don't call munmap for memory that you didn't mmap in the first place. It will probably fail.
Worse yet, it might succeed!

So what happens to your shared memory when you've unmapped it? More importantly, what happens when
everyone has unmapped it? POSIX.4 shared memory is persistent: it remains around in the system until it is
explicitly removed (generally, shared memory also disappears if the system crashes or is rebooted). That means that
you can

Page 126

unmap shared memory buffers full of interesting data and get that data back later. For example, you can do the
following:

 main()
 {
 shm_descr = shm_open(SHM_AREA_NAME, O_CREAT|O_RDWR, S_IRWXU);
 if (ftruncate(shm_descr, MYSHMSIZE) < 0)
 perror ("ftruncate");
 shm_area = mmap(0, MYSHMSIZE, PROT_READ|PROT_WRITE, MAP_SHARED,
 shm_descr, (long)0);
 sprintf((char *)shm_area, "Hello, there!");
 exit (0);
 }

Followed by:

 main()
 {
 shm_descr = shm_open(SHM_AREA_NAME, O_RDONLY);
 shm_area = mmap(0, MYSHMSIZE, PROT_READ, MAP_SHARED,
 shm_descr, (long)0);
 }
 printf("Shared Memory says, \"%s\"\n", (char *)shm_area);
 exit(0);
 }

The second process will successfully print Shared Memory says, "Hello, there!"

This persistence also means you must be careful, when your application first maps in some shared memory, to be
sure the contents of that memory are valid. I recommend unlinking, then re-creating shared memory regions
whenever your application first starts up. Such an activity should not take too long, and application startup is not
generally time-critical anyway. Modifying the example given above, we'd have code like this in the first process,
which is the one that creates the shared memory:

 /* Remove shared memory object if it existed */
 (void) shm_unlink(SHM_AREA_NAME);
 /* Create the object */
 shm_descr = shm_open(SHM_AREA_NAME, O_CREAT|O_RDWR, S_IRWXU);
 if (ftruncate(shm_descr, MYSHMSIZE) < 0)
 perror("ftruncate");
 if ((shm_area = mmap(0, MYSHMSIZE, PROT_READ|PROT_WRITE, MAP_SHARED,
 shm_descr, (long)0)) == NULL) {
 perror("mmap");
 }

More memory protection

When I was explaining the memory_protections used by mmap, I mentioned that the protections were only
enforceable on certain machines. For such machines, a separate option, _POSIX_MEMORY_PROTECTION,
indicates that protection works, and unauthorized accesses to memory will be dealt with by delivery of SIGBUS.

Page 127

_POSIX_MEMORY_PROTECTION means that the permissions you set when pages are mmapped will actually be
enforced. Say, however, that you want to change the permissions of pages you have previously mmapped in. I do
this when I suspect a process is performing an incorrect write to a memory area it shouldn't be touching. I'll turn off
memory write permissions for that page in the section where the damage seems to be occurring, then wait for the
SIGBUS to happen. This is a useful, if forceful, debugging mechanism. POSIX.4 supports it. If
_POSIX_MEMORY_PROTECTION is defined, a function is provided for changing the protections of mappings
you've already made:

 #include <unistd.h>

 #ifdef _POSIX_MEMORY_PROTECTION
 #include <sys/mman.h>

 void *begin;
 size_t length;
 int i, memory_protections;

 /* Change the protections on memory previously mapped with mmap */
 i = mprotect(begin, length, memory_protections);
 #endif _POSIX_MEMORY_PROTECTION

The protection bits you can specify for mprotect are the same as for the original mmap: PROT_NONE, or some
combination of PROT_READ, PROT_WRITE, and PROT_EXEC. Again, you may need to have your address
aligned to PAGESIZE, and I recommend you align both the address and the length appropriately. Finally, the
protections you try to set here are also checked against the permissions with which you opened the file. You cannot
exceed the permissions with which you opened the file (or shm_opened the share memory object).

You don't have to change the protections for an entire mapping; you can set the protections of individual pages
within a mapping you've made. For example, if you mmap in three pages with PROT_READ and PROT_WRITE
protection, you could turn off writability for just the middle page.

 #include <sys/mman.h>

 int fd, i;
 void *addr;
 /* Open and map in three pages of shared memory */
 fd = shm_open("/my_shm", O_RDWR);
 addr = mmap(0, 3*PAGESIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
 /* Set the protection of the middle page to be just PROT_READ. */
 i = mprotect(addr + PAGESIZE, PAGESIZE, PROT_READ);

Page 128

For regular files: backing store

Finally, let's talk about backing store. Backing store is the underlying object which you have mapped into your
address space. Think of your mappings as kind of a shadow image of the underlying object. In the case of shared
memory, the shadow image and the underlying object are one and the same: the physical memory being used to
share information. With a disk file, on the other hand, there is a definite dichotomy. There's this file out on a disk,
rotating at a measly 3600 RPM, with an access time in the milliseconds. And then, there's a memory image of a part
of that file, mapped into your, and maybe some other process's, address spaces. This memory is fast. You can
change it in nanoseconds. Obviously, the system is not going to keep the disk file updated with the contents of the
memory image at all times: that would make your accesses to the shared memory unacceptably slow. When mmap
is used to map a regular file, the contents of memory and the disk contents are synchronized at undefined times. In
fact, the only times that POSIX says the disk and the memory are synchronized are when you remove your
mappings, via munmap, or when you explicitly synchronize the mapping and the disk by using a special function,
msync.

Because msync is useful only for files with slow backing store, like disk files, it's provided under the
_POSIX_MAPPED_FILES option rather than under the option _POSIX_SHARED_MEMORY_OBJECTS. And,
because functions that synchronize the disks are provided under their own separate option (you'll see more of this in
Chapter 6), msync also requires another option be present: _POSIX_SYNCHRONIZED_IO. It works like this:

 #include <unistd.h>

 #ifdef _POSIX_MEMORY_PROTECTION
 #ifdef _POSIX_SYNCHRONIZED_IO
 #include <sys/mman.h>

 void *begin;
 size_t length;
 int i, flags;

 /* Synchronize mapped memory with the underlying file. */
 i = msync(begin, length, flags);
 #endif /* _POSIX_SYNCHRONIZED_IO */
 #endif /* _POSIX_MEMORY_PROTECTION */

One more time: the address and length should, and may have to, be aligned to PAGESIZE. msync ensures that the
mapped memory in the range begin through begin + length is updated on the disk or whatever underlying
permanent media you are using to store your file on. You don't need to call msync for memory other than that you
mapped with mmap, and you shouldn't, because the effects are undefined.

msync is pretty simple, except for the flags parameter. flags can be set with various bits to influence the exact way
in which msync updates the disk. First, you can set either MS_SYNC or MS_ASYNC (not both) to synchronously,
or asynchronously, update

Page 129

the underlying disk. As a rule, you'll want to use MS_SYNC. In this case, the call to msync will block until the data
has gotten out to disk successfully. If MS_ASYNC is set, the system merely queues the I/O operations to be done,
and then returns immediately. The synchronization will be done concurrently with your continued execution, and
will complete at an unknown time in the future. Meanwhile, while the asynchronous I/O is going on, you can do
something else—in particular, you can modify the mapped area that you're synchronizing. However, changes you
make to the mapped object may or may not find their way into the ongoing synchronization. Given that you don't
really know when the synchronization is done, or what exactly was synchronized, the use of MS_ASYNC doesn't
really give me a warm fuzzy feeling about the coherence of the disk and the mappings. I'd stick to MS_SYNC.

One more flag is defined for msync, and you probably should use it. When you set MS_INVALIDATE, this flag
will cause all copies of the mapped object (in other process's address spaces, for instance) to be invalidated, so that
the next time those other processes access the shared memory, they'll get a copy which is guaranteed to reflect the
stuff which you have just updated on the disk with msync. Many systems will keep cached copies of data up to date
with very little latency, so MS_INVALIDATE is not strictly necessary on those systems. The details of how
multiple copies of cached mappings are kept consistent is not something you can count on from one operating
system to the next, or even from one revision of an operating system to the next! I recommend using
MS_INVALIDATE for the portability it gives you. It may be a bit slower, since it forces other processes to get
updated copies of the mapped data. But heck. You've already committed to going out to that slow old 3600-RPM.
disk drive anyway! A little more time taken, in an operation that's already dog slow, is not a big price for improved
portability.

Synchronizing Multiple Processes

When you are using shared memory, or a mapped file between two or more processes, you must take care that each
process does not step on another process's work in the shared memory area. If one process is modifying a data
structure in shared memory, other processes should wait until the first process is done before reading. That way,
they get a consistent picture of what's going on. Obviously, you don't want two or more processes changing the
same data structure at the same time. And finally, if a process is reading a data structure, you want any process that
decides to modify the data structure to wait until the first process finishes reading.

Synchronization, in General

How do you synchronize multiple processes? Dozens of ways are in use today. This introductory section covers a
number of the alternatives you may find or hear discussed. The POSIX solution I'm going to describe is the
counting semaphore. If you are only interested in the specifics of counting semaphores, you can skip to the next

Page 130

section. POSIX.1 supplies another mechanism, file locking, which can be used to mimic the behavior of
semaphores. Since semaphores provide more basic and general functionality than file locking, I will stick to
semaphores.

One method of synchronization is to use programmatic solutions, where you simply know that any process
accessing a particular data structure is alone. This solution relies on your application structure. For instance, maybe
you have an application where only one process is awake at a time and the rest are sleeping. Another example is
most UNIX kernels, where it is an invariant condition that there is at most one process in the kernel at any given
time. This sort of solution requires a careful analysis—and the problem is that your analysis might be wrong.

Alternatively, you must do some sort of explicit synchronization around accesses to the data structure that needs
protection. A lot of synchronization mechanisms are in use today. The most common are:

• Counting semaphores

• Mutexes and condition variables

• Readers/writer locks

POSIX provides interfaces for most of these, believe it or not. Counting semaphores are provided in POSIX.4 and
are one of the most primitive synchronization mechanisms you can have. Mutexes and condition variables are part
of POSIX.4a, the proposed Threads standard. POSIX.1's file locking is a textbook readers/writer lock.

So, what are these synchronization mechanisms? Here are quick, abstract descriptions of each mechanism. Each
mechanism is separate from all the rest, and you cannot mixand-match them. Don't get any bright ideas about using
a counting semaphore with a mutex, or a rendezvous with file locking—it won't work.

Counting Semaphores.

A semaphore can be used to guard accesses to a resource, or, alternatively, just to let processes wait for something
to happen. Processes wait on and post a semaphore. These operations decrement and increment an integer count
associated with the counting semaphore (hence the name). When a process waits on a semaphore whose count is
positive, then the process just continues, having decremented the semaphore count possibly to zero. If the
semaphore count is zero, then the waiting process is blocked, added to the pile of processes waiting on the
semaphore, and not allowed to proceed until another process posts the semaphore. If a process comes along and
posts the semaphore, and there is no process waiting for the semaphore, then the semaphore value is just
incremented. Otherwise, one of the processes waiting for the semaphore is released and allowed to proceed.
Anyone with access to the semaphore can wait on it or post it. Figure 4-4 shows one possible sequence of several
processes, using a semaphore.

Page 131

Figure 4-4. A counting semaphore over time

Notice that I have not talked about the semaphore value becoming negative. Rather, it just goes down to zero, and
then we start stacking up blocked processes. Conversely, until all processes are released, a post operation will not
increment the semaphore value. Some systems maintain a negative count, which then indicates the number of
blocked processes. Depending on how the semaphore is implemented, though, the negative count may not be
possible. So, for an abstract discussion, we don't talk about negative semaphore values.

Page 132

The other thing about counting semaphores is the Dutch Connection. The semaphore was invented by the Dutch (a
fellow named Edsger Dijkstra, in particular), who took the initiative of naming the operations wait and post in
Dutch. The Dutch words are proberen (to test) and verhogen (to increment), P and V for short. Nowadays, we (in
the United States at least) are moving away from P and V towards more descriptive (and English) names for the
semaphore operations. I don't know what the Dutch position is on all this. But now you know what P and V are; in
case anyone mentions them, you can play smart.

Mutexes and Condition Variables

Mutexes and condition variables are not part of POSIX.4, but they are part of POSIX.4a (threads), which should
become a POSIX standard pretty soon now. A mutex, as shown in Figure 4-5, is something which provides mutual
exclusion (processes excluding each other) for access to a particular data structure. Mutexes are closely tied up with
the idea of critical sections of code. A critical section is a part of code that needs to be protected—for instance,
when you're modifying a shared data structure. One talks about being in a critical section. A mutex is used to guard
the critical section. I think of the critical section of code as a room, with the mutex as the door to that room. The
mutex, then, can be locked or unlocked. Only one process can be in the room at a time. The process that locks the
mutex is the one that has to unlock the mutex. This is unlike semaphores, where any process can post the
semaphore. Mutexes have the idea of an owner associated with them, whereas semaphores do not.

Where do condition variables come into all this? A mutex is a very simple facility, and the condition variable is
used in conjunction with it to add a little more functionality. Say you enter the critical section of code, look at your
data structure, and then realize that it is not to your liking yet. Some condition has not been satisfied, and that
means you need to wait for another process to come in and create that condition. By waiting on a condition
variable, you unlock the mutex and wait on the condition atomically, in one uninterruptible action. When the other
process comes along, it satisfies the condition, and then signals the condition variable, waking you up. You then re-
lock the mutex, check that your condition was, indeed, satisfied by this other process, and continue on your way.
The important features of the condition variable are:

• That it is associated with a particular mutex

• That the release of the mutex and waiting on the condition variable are atomic, thus preventing race
conditions

• That you always re-lock the mutex, preserving the invariant that there be only one process in the critical
section at a time

Page 133

Figure 4-5. Mutex and condition variables

Readers/Writer Locks

This is a lock that allows any number of readers (processes looking at the shared data, but not changing it) at once,
but forces a process that wants to change the data (a writer) to wait until there are no readers. Conversely, if there is
a writer changing the data, then all the readers who come along are blocked until the writer finishes his work. There
are two different sorts of locks associated with a readers/writer lock, a read lock and a write lock. A readers/writer
lock is somewhat less primitive than either a mutex/condition variable pair or a semaphore.

Because POSIX.4a is not available yet, I'm not going to go into detail about the mutex/condition variables
provided. And because there are plenty of Ada texts around, and the focus of this book is C, I'm not going to
discuss the rendezvous. File locking can be used for pure synchronization (just ignore the file associated with the
lock, and voila!, there you are). That's a rather clumsy way to do synchronization, and semaphores provide a more
general solution. That leaves us with the counting semaphores of POSIX.4.

Page 134

POSIX Counting Semaphores

There are two uses for most synchronization mechanisms: mutual exclusion and general waiting. The semaphore
can do both, although it cannot do mutual exclusion as well as a mutex.

In mutual exclusion, a process ''locks a door" by waiting on a semaphore. The process then enters a critical section
of code where it modifies a shared resource. During the critical section, the data structure or resource may be in an
inconsistent state. For instance, if the data structure is a doubly-linked list, and the critical section is an enqueue
operation, then there are points where the "prev" pointer has been set up, but the "next" pointer is not yet set up.
When the critical section is completed, the data structure is once again in a consistent state. At this point, the
process posts the semaphore. The same process both posts the semaphore and waits on it. A mutex is arguably
better than a semaphore for mutual exclusion because, with a mutex, you know that the ownership property is going
to hold, whereas with a semaphore that's not always the case. When an implementation knows the owner of a
synchronization object in advance, it can perform some optimizations to facilitate real-time processing. These
optimizations are known as priority inheritance and priority ceiling, and are used to prevent priority inversions.
Priority inheritance and the priority ceiling protocol are discussed in Chapter 5, On Time: Scheduling, Time, and
Memory Locking, in the context of rate-monotonic analysis.

For general waiting, the process that needs to await something simply waits on the semaphore associated with that
condition. Whenever another process comes along and satisfies the condition, it posts the semaphore, allowing the
waiting process to continue. For instance, say two processes are cooperating in an area of shared memory. One
process is transferring data into the shared memory area (from, say, a data collection device), and the other is
transferring the data out again (logging it to a disk). The disk process must wait until the other process has
transferred an entire page to the shared area before it writes anything to disk. This application might use a
semaphore to show the state of the page. The logging process would wait on the semaphore while it was writing the
page, thus forcing the disk process to wait until the logging was done. When logging was finished, the logging
process would post the semaphore, allowing the disk process to proceed.

The POSIX.4 semaphores facility is encapsulated in the _POSIX_SEMAPHORES option. Here's a summary:

 #include <unistd.h>
 #ifdef _POSIX_SEMAPHORES
 #include <semaphore.h>

 /* Memory-based (unnamed) semaphores */
 int sem_init(sem_t *semaphore_location, int pshared,
 unsigned int initial_value);
 int sem_destroy(sem_t *semaphore_location);

Page 135

 /* Named semaphores */
 sem_t *sem_open(const char *semaphore_name, int oflags,
 mode_t creation_mode, unsigned int initial_value);
 int sem_close(sem_t *semaphore);
 int sem_unlink(const char *semaphore_name);

 /* Semaphore operations (both named and unnamed) */
 int sem_wait(sem_t *semaphore);
 int sem_trywait(sem_t *semaphore);
 int sem_post(sem_t *semaphore);

 int sem_getvalue(sem_t *semaphore, int *value);
 #endif /* _POSIX_SEMAPHORES */

sem_open: creating and accessing semaphores

Before using a semaphore, one must create or open it. There are two ways to create semaphores. The first method
creates "named" semaphores that obey all the same naming rules as message queues. The second method creates
memory-based or unnamed semaphores, and will be covered later in this chapter.

To open an already-existing semaphore, use the sem_open function, with the semaphore's name and the normal
flags as arguments:

 #include <unistd.h>
 #ifdef _POSIX_SEMAPHORES
 #include <semaphore.h>
 char *sem_name; /* Name of semaphore to be opened */
 int oflags; /* Open flags--NOT like for open! */
 sem_t *sem_des; /* Descriptor of opened semaphore */

 sem_des = sem_open(sem_name, oflags);
 #endif /* _POSIX_SEMAPHORES */

The POSIX semaphore functions are conditional on _POSIX_SEMAPHORES being defined in <unistd.h>.

The sem_open call accesses and optionally creates a named semaphore, returning a pointer to the semaphore as its
return value. The standard says that if sem_open fails, it returns -1, even though the function is defined to return a
pointer type. NULL might have been a better choice, but that's not what's in the standard.

The restrictions on the semaphore name parallel the restrictions on message queue and shared memory object
names:

• sem_name must be constructed like a normal file pathname.

• To run on all systems, sem_name should start with a "/".

• To run on all systems, sem_name should contain no other "/" characters.

Page 136

The conformance document for your implementation must tell you what happens when you do not start the
semaphore name with a "/", and when you use more "/" characters in the name. Most systems support one of two
alternatives. These are:

• The implementation treats the semaphore name exactly like a path name, with associated directory traversal,
use of current working directory, and permission checks. This alternative corresponds to an operating system
implementing semaphores on top of mapped files.

• The implementation treats the semaphore name like a string of characters, without regard to the file system
namespace, directories, or anything like that. This would be the case when the underlying system is not using the
file system code for naming the shared memory regions. This is often the case on smaller, embedded realtime
kernels.

Note that oflags is not used like it is for the open call. Usually, you'd set O_RDONLY, O_WRONLY, or O_RDWR
in oflags, depending on whether you wanted to read, write, or read and write the object. Since semaphores are
always used in the same way, there's no need to clue the system in as to your intentions. If you're opening a
semaphore, the assumption is that you're going to use it. Also, in the name of simplifying the interface, other flags
that might otherwise be set in oflags (O_NONBLOCK, O_SYNC, whatever) are not supported for sem_open. There
are basically only two flags you can set, both relating to semaphore creation: O_CREAT and O_EXCL. These flags
indicate that sem_open should create a new named semaphore:

 #include <semaphore.h>
 char *sem_name; /* Name of semaphore to be opened/created */
 sem_t *sem_des; /* Descriptor of opened semaphore */
 mode_t mode; /* Mode for the created semaphore */
 unsigned int initial_value; /* Initial semaphore value */

 sem_des = sem_open(sem_name, O_CREAT, mode, initial_value);

Semaphore creation takes two additional arguments to sem_open: the mode, which is the normal UNIX-style file
permission, and an initial value for the semaphore. Notice that the semaphore value can only be zero (a locked
semaphore with no waiting processes) or positive (an unlocked semaphore). A negative initial value for a
semaphore would imply that the semaphore had processes waiting on it. This cannot be the case for a semaphore
you have just created! The semaphore value must also be less than SEM_VALUE_MAX, defined in <limits.h>.
This value is usually no less than the maximum signed integer value. The smallest value SEM_VALUE_MAX is
allowed to have is 32767.

You can also set O_EXCL in oflags to cause the call to fail if the named semaphore already exists. If O_EXCL is
not specified, then O_CREAT will silently fail to re-create a semaphore that already exists.

There is a hole in the standard regarding the mode in which you create the semaphore and the permission checking
that goes on when someone calls sem_open on a created

Page 137

semaphore. The access mode to the semaphore is implicit, remember—you don't specify O_RDONLY,
O_WRONLY, or O_RDWR. So, what permission bits is the system going to check when you sem_open a
semaphore? Read, write? Execute? Maybe all three? The standard missed this specification. Luckily, the work-
around is easy. For a semaphore there is no distinction between "read," "write," and "execute" permissions. There's
just access, or the lack thereof. So set all permissions for whomever you want to be able to access the semaphore
There are handy macros in <sys/stat.h> that serve this purpose: S_IRWXU, S_IRWXG, and S_IRWXO specify
read, write, and execute permissions for user, group, and others, respectively. You should use these macros rather
than the other S-macros in <sys/stat.h>. That way, you know your permissions will work appropriately, no matter
how the underlying system performs its permission checks.

sem_close and sem_unlink: the usual suspects

Just as sem_open is similar to mq_open, the interfaces for closing and destroying a semaphore are similar to the
message queue variants. sem_close removes the process's connection to the semaphore described in sem_des:

 #include <semaphore.h>

 sem_t *sem_des;
 int i;

 /* Obtain access to semaphore */
 sem_des = sem_open(...);

 /* Release access to semaphore */
 i = sem_close(sem_des);

Likewise, sem_unlink destroys a semaphore:

 #include <semaphore.h>

 char *sem_name;
 int i;

 /* Remove semaphore name from the system */
 i = sem_unlink(sem_name);

The normal caveats apply to sem_close and sem_unlink. sem_close renders the semaphore referenced by sem_des
inaccessible, so the process that has called sem_close can no longer use that semaphore. The exit and exec functions
also have the side effects of closing all open semaphores in a process. Finally, a semaphore that has been
sem_unlinked will not be removed until the last process that has it open closes it (by calling either sem_close, or
one of the exit or exec functions).

Page 138

Waiting and posting semaphores

Now that you know how to create and destroy semaphores, we can get on to the real functionality: using
semaphores for synchronization. Whether you create your semaphores using sem_open or the memory-based
interface sem_init (described later in this section), you still use the semaphores identically: with sem_wait,
sem_post, and sem_trywait. sem_wait and sem_post do what you would expect: wait on, and post, a semaphore.
sem_trywait is a variant of sem_wait that tries to wait on a semaphore, but never blocks. If the operation would
require the process to block (i.e., if the semaphore value was zero or negative), sem_trywait fails, rather than
blocking.

 #include <semaphore.h>

 sem_t *sem_des;
 int i;

 /* Open the semaphore first... */

 /* Wait on a semaphore */
 i = sem_wait(sem_des);

 /* Post a semaphore */
 i = sem_post(sem_des);

 /* Try and wait on a semaphore, but do not block */
 i = sem_trywait(sem_des);

There's not much more to say about the actual use of the semaphores. You wait on them, you post them. If the
semaphore is locked when you wait on it, you block until someone else comes along and posts it. There is one
important detail you should know. That's the queueing order of blocked processes on a semaphore. Assume that
you, and a pile of other processes, are all waiting on a particular, locked semaphore. When one process comes
along and posts the semaphore, which process gets awakened? Well, if the waiting processes are all running under
the POSIX real-time schedulers (described in Chapter 5), then those processes are queued highest-priority first. The
POSIX real-time scheduling disciplines apply not just to processor scheduling, but also to the queueing of
processes for just about everything in the system.* Semaphores (and file locks, and mutexes, and condition
variables) are the most obvious spots in an application where priority queueing should take place. Less obvious
locations are: when multiple processes are waiting for I/O on a message queue or pipe; when I/O is queued down to
devices; and when multiple processes are contending for the various locks inside an operating system that protect
its own shared data structures.

* The POSIX committee would have liked to say that everything in a system is done based on scheduling priority, but that was
overstepping the committee's bounds as an operating system interface committee. Since I can say it here, I will: any real-time
system worth its salt should perform priority queueing for every resource in the system, unless there's a good reason not to. If
such a reason exists, you should hear it!

Page 139

If your processes are not running under the real-time scheduling disciplines, then what happens? There are two
levels of answer to this question.

• What if my system supports _POSIX_PRIORITY_SCHEDULING, but I happen to be running under a
scheduler other than SCHED_FIFO or SCHED_RR? In this case, the standard says that the queueing shall be
done in a manner appropriate to the scheduling algorithms involved. What exactly does this mean? Strictly
speaking, it doesn't mean anything. However, the implementor of new scheduling algorithms can certainly be
expected to document how the new algorithm impacts queueing for semaphores. Furthermore, if the process is
running under SCHED_OTHER (the third scheduling algorithm in POSIX.4, kind of an implementation-defined,
trapdoor scheduler), the implementation is expected to provide complete documentation of how this algorithm
works.

• What if _POSIX_PRIORITY_SCHEDULING is not supported at all? You're toast. A system that doesn't
support priority scheduling at all can hardly be expected to document its scheduling algorithms. Of course, if you're
running on such a system, then your application is probably not that dependent on proper scheduling, and in this
case, queueing order may not be important to you. For many so-called "real-time" applications, fast enough is okay,
and actual priority scheduling may not be required. These are the squishiest of all "soft real-time" applications, like
online transaction processing at an ATM or a grocer's checkout counter. You want it fast, but no jet engines are
going to explode if it's delayed a little bit. This is the case in our terminals-and-servers example. As long as the
delay isn't great, it'll be okay.

Debugging semaphores

Until now, we've discussed semaphores pretty much in terms of their abstract, clean, high-level definition. That is
the best way to understand semaphores. However, when we talk about debugging applications that use semaphores,
things get a little bit more complicated, because we need to talk about how semaphores may actually be
implemented. Bear with me. Above, I described a counting semaphore as having a value that is either positive or
zero. The value of the semaphore indicates another attribute of the semaphore: its state. A zero value means a
locked semaphore, and a positive value corresponds to an unlocked semaphore. Each locked semaphore has a queue
of blocked processes (maybe an empty queue) associated with it. And each post operation removes one process
from that queue until the queue is empty. Then the value gets incremented. (If you're wondering about the
semaphore value ever going negative, read on.)

So far, so good. What if your application has a bug in it, though? Imagine that you have made a subtle error in your
code. You have a bunch of processes cooperating in a shared memory area, and when you run the application, it
goes for a while and then "locks up." None of the cooperating processes are running anymore. Through the
insertion of various ingenious debugging hints, you've discovered that the processes

Page 140

are all piling up on a particular semaphore which never gets unlocked. You'd really like to see how many processes
are waiting on this semaphore at any given time. If the number goes over, say, two, then you know something has
gone wrong. In order to support this sort of debugging, the function sem_getvalue is provided to get the value of a
semaphore at any particular time. You could use sem_getvalue to implement a monitor process that checks all your
application's semaphores:

 #include <semaphore.h>

 sem_t *sem_des;
 int val;
 int i;

 /* Open the semaphore first */
 sem_des = sem_open(...);

 /* What is the semaphore's value? */
 i = sem_getvalue(sem_des, &val);

sem_getvalue stores the semaphore's current value in the integer pointed to by the second argument. Seems pretty
simple. But notice that the second argument is a pointer to a plain old integer, not an unsigned integer! That implies
that a negative value can be stored in it. And some systems will store a negative number in the value if they can. In
such systems, a negative value means that the semaphore is locked, and there are blocked processes waiting on the
semaphore. The number of blocked processes will be the absolute value of the semaphore value. This number can
be highly informative for debugging your application, although it is less useful in a running, presumably debugged
system.

So why don't all systems return this negative number, if it's so useful? Some systems can't, that's why. There are
two basic ways to implement a semaphore. One way uses an increment/decrement solution. In such a solution,
sem_wait decrements the semaphore value, and then decides, based on the resulting value (negative or not) whether
to block sem_post increments the value and then decides whether or not anyone needs to be awakened. In such a
system, the semaphore's value can be positive, negative, or zero.

Other systems implement semaphores with a test-and-set instruction. On these systems, sem_wait writes a single
number (say zero) into the semaphore, while testing the semaphore's previous state. The post operation just writes
another number (one, for instance) into the semaphore.* With this implementation, the first process doing a
sem_wait will write a zero into the semaphore, see that the previous value was one,

* The actual values written to memory by the test-and-set are machine dependent. Some architectures can only write certain
values. For instance, the SPARC processor has a test-and-set instruction that tests the memory location, and loads the value -1
into the location. One and zero are the values most people assume for "unlocked" and "locked," but an implementation may use
other numbers to represent these states if it wishes.

Page 141

and proceed. The other waiters will "spin" on the lock, continually executing the test-and-set instruction until
another process executes a sem_post. This sort of solution is more applicable to machines made up of multiple
processors, since the waiting processes each occupy a processor. These systems never generate a negative count of
the number of waiting processes, because the semaphore implementation on such machines is not capable of
providing such a count! Because this solution is common on multiprocessors, it would have been irresponsible to
outlaw it. Unfortunately, that means that on some systems, sem_getvalue can return a negative value, and on others,
it only returns zero for a locked semaphore. The implementation must indicate what it does in its POSIX
conformance statement.

Memory-based semaphores

Earlier, we said that sem_open isn't the only way to create a semaphor. Now, we'll discuss the other interface:
memory-based semaphores. But first, a few words on why you might find sem_open a problem.

Like shm_open and mq_open, sem_open requires a semaphore name, and returns something like a file descriptor (a
pointer to a sem_t). The use of names has its disadvantages. For example, let's think about our database server.
Databases often require very fine granularity for locking: locking individual rows and columns in a database is not
uncommon. For data sets of reasonable size, we may need thousands of semaphores! The operating system may not
be able to allocate that many semaphores for a process. And even if the operating system can create all those
semaphores, someone has to come up with all those names.

sem_open's cousin, sem_init, eliminates these problems. With sem_init, you provide an address, and the operating
system just initializes a semaphore for you at that address. No name is required; the address is enough for the
operating system. These are called memory-based semaphores, as opposed to the name-based scheme I've
explained previously. Memory-based semaphores represent another school of thought about how semaphores
should be created. This school has its advocates and adherents, just as the name-based semaphores have their fans.
You can use whichever scheme suits you. The memory-based semaphores offer more flexibility, allowing you to
embed semaphores in shared memory-based data structures. Memory-based semaphores also parallel the interfaces
for mutexes and condition variables which you will find in the POSIX.4a (threads) standard. The disadvantage of
memory-based semaphores is additional complexity for the developer; you have to place the semaphore somewhere
explicitly, rather than letting the system do it for you. Memory-based semaphores must be placed in shared memory
to be useful between processes, so this interface also requires _POSIX_SHARED_MEMORY_OBJECTS.

 #include <unistd.h>
 #ifdef _POSIX_SEMAPHORES
 #include <semaphore.h>
 int i, inter_process;

Page 142

 unsigned int initial_value;
 sem_t *my_semaphore;

 inter_process = 1; /* Use this semaphore between processes */
 initial_value = 1; /* Unlocked. 0 would mean locked */
 my_semaphore = (sem_t *)...; /* Where you want the semaphore located,
 * presumably in shared memory */

 i = sem_init(my _semaphore, inter_process, initial_value);
 /* Use semaphore with sem_wait, sem_post, sem_trywait, sem_getvalue */
 i = sem_destroy(my_semaphore); /* De-allocate semaphore when done */
 #endif _POSIX_SEMAPHORES

sem_init and its converse, sem_destroy, are parallel to sem_open, sem_close, and sem_unlink. Do not mix and
match these two interfaces on one semaphore! If you use sem_open to create a semaphore, then you have to use
sem_close and sem_unlink to get rid of it. If you use sem_init to initialize a semaphore in memory, then you must
use sem_destroy to remove it. Both interfaces yield semaphores on which you can use sem_wait, sem_trywait, and
sem_post.

You must initialize sem_init's first argument as a pointer to the location where you want the semaphore. The system
then fills this location with whatever initialization is required to create a semaphore in that spot.

The second argument, inter_process, is a flag that tells the system whether this semaphore will be used between
multiple processes. This flag should always be one if you are using multiple processes and wish to synchronize
them. A value of zero indicates that the semaphore is to be used only within this process. That's not very useful,
unless you have multiple threads of execution within a single process. Multiple threads is part of POSIX.4a, the
threads standard, which specifies how the semaphore should behave under these circumstances. In the context of
this book, you'll always set the interprocess argument to one.

The third argument, initial_value, specifies the initial value of the semaphore. This value can be zero for a locked
semaphore, or positive for an unlocked semaphore. Negative values are not permitted, as that would imply a
number of waiting processes.

sem_destroy

When you are done using a particular memory-based semaphore, you should call sem_destroy on that semaphore to
let the system know that the semaphore is no longer being used; the system then frees any resources associated with
the semaphore. The semaphore must be unused when you call sem_destroy. It may be either unlocked or locked,
but if it's locked, there can be no blocked processes waiting on it.

If you do not call sem_destroy for a semaphore, then it is implicitly destroyed when the memory in which the
semaphore resides is deallocated. If you have a semaphore in non-shared memory, then the semaphore is destroyed
implicitly when your process calls exit or exec. If your semaphore is in shared memory, then it is destroyed when

Page 143

the shared memory is destroyed, after the last process has closed and unmapped the shared memory, and the shared
memory object has been removed using shm_unlink.

Setting up a memory-based semaphore for inter-process use

There is more to creating a memory-based semaphore than just calling sem_init. You must make sure that the
memory in which your semaphore resides is memory that is shared between the processes that need to synchronize.
In the usual case, that means placing your semaphore in a shared memory area. What I'd recommend is that you
embed your semaphores in data structures which you place in shared memory. For example, let's go back to the
example of the circular, doubly-linked list in shared memory, which I used earlier in this chapter. There are two
basic operations on this data structure: enqueue and dequeue. Both must be guarded against concurrent access by
another process. I would tend to create a data structure that encapsulates all the relevant parts—the head of the list,
any flags or whatever—associated with the list, and also the semaphores necessary for synchronizing access to the
list. This example maps in a region of shared memory in which to store the list elements, and initializes a
semaphore to guard access to the list.

 #define POSIX_C_SOURCE 199309
 #include <unistd.h>
 #include <stdio.h>
 #include <errno.h>
 #ifdef _POSIX_SHARED_MEMORY_OBJECTS
 #include <sys/mman.h>
 #else /* _POSIX_SHARED_MEMORY_OBJECTS */
 ERROR: _POSIX_SHARED_MEMORY_OBJECTS is not present on this system!
 #endif

 #define SHM_NAME "/dblinks.shm"
 #define NELEMENTS 500

 #define ROUND_UP_TO_A_PAGE(s) ((s & (PAGESIZE-1)) ? \
 (s & ~(PAGESIZE-1)) + PAGESIZE : s)

 struct element {
 struct element *prev;
 struct element *next;
 void *data; /* A pointer to some informative bits */
 };

 struct dblq {
 struct element head; /* List head */
 sem_t guard; /* Semaphore to guard same */
 };

 struct whole_thing {
 void *proper_shm_address;
 struct dblq h;
 struct elements e[NELEMENTS];
 };

Page 144

 #define MYSHMSIZE ROUND_UP_TO_A_PAGE(sizeof(struct whole_thing))

 struct whole_thing *shm_area; /* Shared memory pointer */
 struct whole_thing *my_list; /* List w/in SHM. */

 /* Initialize the data structure */
 void init_structure(void)
 {
 int shm_descr;
 struct element *e;
 int i;

 /* Create a shared memory area */
 shm_descr = shm_open(SHM_NAME, O_CREAT|O_RDWR, S_IRWXU);
 if (ftruncate(shm_descr, MYSHMSIZE) < 0)
 perror (ftruncate");
 /* Map in the shared memory */
 if ((shm_area = (struct whole_thing *)mmap(0, MYSHMSIZE,
 PROT_READ|PROT_WRITE,
 MAP_SHARED, shm_descr, (long)0)) == NULL) {
 perror ("mmap");
 }
 close(shm_descr);

 shm_area->proper_shm_address = (void *)shm_area;

 my_list = &shm_area->h;
 /* Initialize list header and semaphore */
 my_list->head.prev = my_list->head.next = &(my_list->head);
 /* Initialize sem. as Process-shared, init. value 1. */
 if (sem_init(&my_list->guard, 1, 1) < 0)
 perror("sem_init");
 else {
 /* Put all elements on queue */
 e = bits->e;
 for (i=0; i<NELEMENTS; i++) {
 dblink_enqueue(e);
 e++;
 }
 }
 return;
 }

 void shutdown_structure (void)
 {
 /* Destroy the semaphore */
 if (sem_destroy(&my_list->guard) < 0)
 perror("sem_destroy");
 /* SHM file descriptor was closed as soon as we mapped the memory in */
 if (shm_unlink(SHM_NAME) < 0)
 perror ("shm_unlink");
 (void)shm_unmap((void *)shm_area, MYSHMSIZE);
 }

Page 145

 /* Put element at tail of list */
 dblink_enqueue (struct element *e)
 {
 sem_wait(&my_list->guard);
 e->prev = my_list->head.prev;
 e->next = &(my_list->head);
 e->prev->next = e;
 my_list->prev = e;
 sem_post(&my_list->guard);
 }

 /* Remove element from list */
 dblink_dequeue(struct element *e)
 {
 sem_wait(&my_list->guard);
 e->prev->next = e->next;
 e->next->prev = e->prev;
 e->next = e->prev = NULL;
 sem_post(&my_list->guard);
 }

Things to note about this example:

1. The struct whole_thing is present just for sizing the shared memory area conveniently.

2. The shared memory area size is rounded up to a number of pages.

3. The init_structure function shows how the entire data structure is instantiated in the first place. Other processes
need to merely map in this shared memory area, at the exact address because we are using pointers into the shared
memory area.

4. Only one routine should shm_unlink the shared memory and sem_unlink the semaphore. The rest can just unmap
the relevant memory.

5. The technique used earlier to pass a shared memory address to an execed program will not work here, because
we do not know who's execing when. Therefore, I've taken the liberty of storing the proper address of the shared
memory area as the first word in the shared memory area. Processes attaching to the structure then map in the area,
and if it is not at the appropriate address, they unmap it and try again. The attach routine is given below.

 /* Attach to the (already initialized) data structure */
 int attach-structure (void)
 {
 int shm_descr;
 struct whole_thing *shm_area;
 void *exactaddress;

 /* Open a shared memory area */
 shm_descr = shm_open(SHM_NAME, O_RDWR);
 if (shm_descr < 0) return -1;

Page 146

 /* Map in the shared memory */
 if ((shm_area = (struct whole_thing *)mmap(0, MYSHMSIZE,
 PROT_READ|PROT_WRITE,
 MAP_SHARED, shm_descr, (long)0)) == NULL) {
 close(shm_descr);
 return -1;
 }

 if (shm_area->proper_shm_address != (void *)shm_area) {
 /* Not mapped at proper address. Try again. */
 exact_address = shm_area->proper_shm_address;
 shm_unmap((void *)shm_area, MYSHMSIZE);
 if ((shm_area = (struct whole_thing *)mmap(exact_address,
 MYSHMSIZE, PROT_READ|PROT_WRITE,
 MAP_SHARED|MAP_FIXED, shm_descr, (long)0)) == NULL) {
 close(shm_descr);
 return -1;
 }
 }

 close(shm_descr);
 my_list = &shm_area->h;
 return 0;
 }

Conclusion

POSIX supports an entire spectrum of interprocess communication facilities, including standard UNIX mechanisms
like signals and pipes, and building upon these with message queues, shared memory, and semaphores.

There are some shortcomings. An owned synchronization object, like a mutex, is required in order to avoid priority
inversions (mutexes and condition variables are part of the upcoming POSIX.4a standard). The namespace of
message queues, shared memory objects, and semaphores may be tricky.

Even so, these building blocks allow for a wide variety of process coordination to suit just about any need. We can
now create and coordinate multiple processes. The next step is finer control over the timing of processes: processor
and memory scheduling, and access to the time.

Exercises

Several of the exercises below build on the signals work done in Chapter 3, to compare the performance of the
various methods of interprocess communication. In addition, we explore the persistent nature of POSIX.4 shared
memory, message queues and semaphores.

The solutions to problems that require programming can be found in the Appendix, in the section listed in
parentheses after each such problem.

Page 147

Pipes and FIFOs

Each POSIX.4 real-time signal passes one pointer's worth of data (plus six or so bits of information implicit in the
signal number and signal code themselves). Earlier we wrote a program to discover the bandwidth of signals on
your machine. Modify that program so that it sends data, one pointer's worth at a time, between two processes using
a pipe, or a FIFO. What is the bandwidth of pipes passing pointers on your machine? How does it compare to
signals? (fifo.c)

Message Queues

Rather than using pipes, try using message queues to transfer a pointers' worth of data at a time. Set up the message
queues with mq_maxmsg=1. How many bytes per second can you send this way? (msg.c)

So far, we've compared signals, pipes, and message queues for sending ''messages" as big as a pointer's worth of
data. Let's see what happens when we scale up the message size. Modify both the pipe and the message queue
benchmarks so you can specify a message size to be sent down the message queue or pipe. How does the number of
bytes per second change as you scale up the message size? At what point (if any) on your system do pipes
outperform message queues? When do message queues outperform pipes? How large a message can you send using
each mechanism? When you reach your upper size limit, how does each mechanism fail?

What happens to message performance as you increase mq_maxmsg? Under what circumstances would you want to
use a small value for mq_maxmsg? Under what circumstances would you use a large value?

Shared Memory

Write an application that shares a page of memory between two processes. Just for interest, try to make the
processes different executables, not just one process being the child of the other (i.e., do a fork and an exec, and get
the shared memory to still work!). (shm.c)

In our earlier benchmarks, we relied on the fact that one process will block waiting for a "message" (a signal, a
pipe, or a bona-fide message on a queue). With shared memory, any such synchronization is up to us. Without
using semaphores, come up with a few mechanisms for ensuring that one of the processes waits for the other to put
something (a variable amount of data, for easy comparison with the other programs we've been writing) into the
shared memory. Implement some of these mechanisms. How does the bandwidth of shared memory compare to that
of pipes, message queues, and real-time signals under this scenario? Any surprises? (shmmutex_flock.c)

Page 148

Semaphores

Now, alter your shared memory program to use a semaphore for synchronization instead of your ad-hoc methods
from before. Use sem_open to create and open the semaphore. How does the bandwidth of shared memory look
now? How does it scale up for larger "messages"? (shmmutex_sem.c)

Try and run your program twice. Have you correctly closed and unlinked the semaphores when you are done with
them? What if you terminate your program with a signal (by typing CTRL-C, for instance)?

Modify your test program so that it uses sem_init and sem_destroy instead of sem_open, sem_close, and
sem_unlink. Which style of interface do you prefer? (shmmutex_semembed.c)

Persistence

Write a program that creates a named semaphore and then exits without sem_unlinking the semaphore. (mksem.c)

After the program runs, try to use ls to find your semaphore. Does it exist in the file system of your machine? On
some implementations it will. On others, it will not. How would you go about removing a semaphore left over from
a program that did not unlink its semaphores? Implement your cleanup method, if your system does not support
semaphores in the file system. Keep this program around—you may need it! You may also wish to create variants
for shared memory and message queues. (rmsem.c)

Page 149

CHAPTER 5
On Time: Scheduling, Time, and Memory Locking

Trying to Make Things Happen On Time

Real-time applications are concerned with when things happen, not just how they happen. A car company is
advertising nowadays their sophisticated new braking system, "which checks road conditions 300 times a second
and adjusts brake pressure accordingly." Now, there's a real-time system, and a fairly typical one. Say you're
driving that car, and I bet a few of you are, by now. Will you be happy if those computations miss their deadlines? I
hope you're wearing your seatbelts, and that the real-time application that deploys the airbags also runs on time!

Scheduling concerns can be placed into several broad, somewhat overlapping categories. Generally, you will want
to do one or more of the following:

• Make sure something happens at or before a specific time.

• Make sure something happens before something else.

• Make sure your important job is not delayed if that delay is not a part of the application (for instance, you
don't want your important job delayed because someone else has caused your job to be swapped out to disk, or
someone else is using a resource, like a file, that your job needs).

• Provide guarantees as to the schedulability of a given task set. (This objective is more academically-inclined
than most people generally operate, but it is a very important objective, as we'll see later.)

Why is this a problem? Probably the easiest answer I can give here is to ask you the following. Say you had a
computation that had to happen at a certain time. How

Page 150

would you make it happen at the right time? You could use cron, if the timing restriction were very loose (minutes
or hours).* You could also use the sleep command, again if the timing were loose (on the order of seconds). But
now, imagine the timing requirement is on the order of milliseconds. That is the case with most real-time
applications, and some applications are even more stringent, requiring timing on the order of microseconds. This
problem isn't going to get any easier for you! High resolution timing means you cannot use a command like cron or
sleep anymore; the overhead of running one program, then another, is too high. For example, it takes your average
disk drive about 10 milliseconds just to seek to the location of one of the blocks comprising a program. You have to
program your timing into the application, using the sleep system call or interval timers. Even interval timers have a
maximum resolution of 10 or 20 milliseconds. That's generally enough resolution for a real-time application, but
you may need even more precision.

Say you have set things up so your one computation actually does happen on time. Now, what do you do if you
have two things that have timing requirements? What if you have 10 or more? What if some of them are not
dependent on clock times, but rather on sporadically interrupting devices?

The area of getting lots of things to run at the right times is a science unto itself. Some scheduling problems are
unsolvable, and those that are solvable are pretty difficult. The decision as to how to schedule things is not even
decided yet: there is still debate, mostly academic at this point, as to which scheduling algorithm is the best.
Meanwhile the real world, as usual, has settled upon a fairly primitive scheme for scheduling that generally works
for what you need it to do. The official scheduling solution of the real world is preemptive, priority scheduling.
Priority scheduling works by assigning a set priority to each thing that needs to happen, and runs the highest-
priority things first. "Preemptive" means that the system will interrupt a running task to run another task, if that
other task is higher priority and suddenly becomes runnable. The timing aspects—the "when?"—are left to the
application itself, using interval timers or whatever other means is appropriate. Other, future, scheduling algorithms
may incorporate timing into their scheduling decisions, and that may well be a better way to solve the scheduling
problem. In the meantime, though, we have real-world problems to solve, and priority scheduling for solving them.

First, I'll talk about the how, and why of scheduling: how different requirements dictate different scheduling
decisions, and why the separate processes in our example programs need to run with different scheduling
parameters. After that, we'll examine how standard UNIX scheduling operates, and determine whether any of the
standard UNIX scheduling mechanisms (nice, and SVR4 UNIX's priocntl) can help us out. Then we'll cover the
POSIX.4 scheduling facilities. As a second part to this chapter, we'll examine two other facilities that relate to
scheduling and schedulability of your applications.

* cron is described in Essential System Administration, by Æleen Frisch (O'Reilly & Associates, 1991).

Page 151

First, the timer facilities of standard UNIX and POSIX.4 allow the application, with varying degrees of accuracy, to
tell the time, wait for a time interval, or wait until an absolute time (11:11 A.M., November 11, 2011, for instance).
Second, we'll talk about how demand paging and swapping can mess up all your scheduling decisions, and how to
avoid paging and swapping by locking your application's memory down. Finally, when all the pieces are
introduced, we'll spend some time on the details of how priorities should be assigned, and more survival tips for
real-time applications programming.

Rates and Responses

As we saw earlier in the book, many real-time applications are naturally structured as multiple processes. For
instance, imagine, as in Figure 5-1, that we are gathering data for a scientific experiment, or monitoring some piece
of equipment. In this application, we may be taking input from a device that interrupts sporadically, and also from a
device which does not interrupt but which must be sampled 10 times a second. In addition, we must log the data to
disk. We have to provide a real-time graphical display of the ongoing process to a console. And, in response to both
the current device state and to user inputs, we must feedback control information to the device under test.

These processes have different performance requirements, which fall into two broad categories: rate requirements
and response requirements. A rate requirement is when a task must provide service at a particular rate: X times a
second. Response requirements are generally more sporadic in nature, merely requiring that, when event Y occurs,
the task responds to it within a certain amount of time. Here's some more detail on where rate and response
requirements come from.

Hardware Inputs and Outputs
These are tasks getting real-time input data from data sources, or sending control data to output devices. These
tasks are constrained by the performance requirements of the outside world. In particular, if the device is providing
input 33 times a second (33 Hz), the input task had better be able to deal with that data rate, or it's either going to
screw up or drop data. Conversely, we have tasks outputting control data to devices in the real world. Sometimes, a
real-world control task runs at a certain frequency required to keep the real-world device under control. For
instance, on the Space Shuttle, output tasks, controlling the engines during ascent, run at a rate of 100Hz, adjusting
various parameters needed to keep the motors from cutting out, exploding, or otherwise malfunctioning.

In other cases, the output task is invoked only sporadically, as a device needs readjustment or special-case
service. Such a task still needs to respond to its hardware within a certain, critical time frame. For example, the
SCSI controller chip on my workstation issues phase change interrupts which must be serviced within a

Page 152

Figure 5-1. Real-time device monitoring and control

small number of milliseconds, or else the SCSI chip goes out to lunch. Phase change interrupts are sporadic,
since they rely on the rate of requests to the SCSI bus and individual device characteristics. The interrupt, when
it comes in, must be serviced quickly. For analyzing the behavior of sporadic tasks, you'll generally want to
know the worst-case arrival rate of interrupts. This will allow you to determine how fast your task will need to
run in the worst case.

Data Logging
Real-time data logging must run at a particular frequency in order to keep data streaming to or from the underlying
logging device (a disk or tape, presumably). This requires the logging task to run periodically to keep poking the
I/O along.

User I/O
These tasks convey information to the users of the application, and may allow the users to adjust parameters of the
real-time system while it's operating. For instance, the terminal tasks in our terminal-database example, or a user
interface hooked up to our real-time control example. Humans are pretty slow and nondeterministic I/O devices in
the scheme of things; user interface tasks accordingly

Page 153

don't have as stringent performance requirements. Usually, faster is better, but humans can afford to wait—a
little—while the hardware tasks keep the machines from blowing up.

Background Computation Tasks
Finally, we may have background computations that don't explicitly affect either hardware or wetware. An example
comes from the use of artificial intelligence in real-time systems. Many cutting-edge systems incorporate some
artificial intelligence techniques to perform motion planning or some other sort of solution generation. These jobs
are very intense, long computations which take the input data, chew on it, and eventually produce some very
sophisticated sort of output for the real-time system under control. For instance, a robot may take video input to be
massaged by an expert course planning system, which will decide on the highlevel course the robot should take.

While the computation must be done by some point in time, it cannot interfere with the running of the system
while the computation is proceeding. This sort of task, again, has performance requirements that are dictated by
who it's doing the job for. Furthermore, long computations may have partial value for partial results, so their
requirements may vary with time. If time is plenty, you may let the computation continue. However, if time is
short and you have an answer that's "good enough," you may just terminate the computation, or have it start on
a new iteration.

If you have a clear requirement of rate or response, your real-time scheduling needs are usually correspondingly
clear: higher rates, and tighter responses, require higher priorities than other tasks. Of course, it's not always that
simple. You may have requirements which are unclear, as in the case of the ongoing AI computations, or which
vary with time or the job at hand, as with database servers. The job of correctly assigning real-time scheduling
parameters is difficult. We'll talk about how to do it right in the "Assigning Priorities" section in the chapter. Right
now, let's get down to the mechanisms you'll want to use for running different tasks with different scheduling
parameters.

Standard Scheduling Solutions Under UNIX

Standard UNIX, either from AT&T or Berkeley, has never solved the real-time scheduling problem in a
comprehensive way. However, there are a couple of facilities that can be used in standard UNIX to attack the
scheduling problem. One of these facilities is ineffective. The other facility is effective, but is complex and only
works on SVR4 UNIX boxes. The POSIX facilities, on the other hand, do the same thing more simply and will be
available on more platforms where you are likely to need to support real-time applications.

Page 154

Being Nice—or Not

The standard UNIX system until now has run a time-sharing scheduler whose behavior is undefined by any
standard; however, this scheduler does a respectable job in running time-sharing applications. The crucial item for
any time sharing scheduler is to balance the needs of interactive or I/O-bound tasks (quick response for people at
terminals) and the needs of compute-bound tasks (as much CPU time as possible, please). This is done by
constantly adjusting each process's scheduling priority depending on what the process is doing. Processes that do a
lot of waiting get their priority bumped up, so that they're responsive when they finally finish waiting. Processes
that would monopolize the processor are penalized for this antisocial behavior. The ebb and flow of various process
priorities is dictated by a couple of algorithms and computations.* One additional parameter inserted into these
algorithms is the nice value associated with each process. To manipulate the nice value for each process, there's a
nice system call, and a nice command as well.

nice is a number that indicates how "nice" the process wants to be in competing for the CPU. A process has a nice
value of 0 by default. When you have a big kernel build on a loaded machine, you might nice it +20 (make it very
nice to other processes) so as not to unduly affect other users. On the other hand, if you had a deadline and the other
users weren't supposed to be using your machine in the first place (dammit!), you could nice your job -20, to make
it much less nice.

Most people are familiar with nice as a command you can use to make other commands happen slower or faster:

 % nice -20 make vmunix
This would run make vmunix with a nice value of -20. This is generally the level of control desired and achieved by
using nice (either the command form or the system call itself). Statistically, your make would go faster, but you
really could not rely on exactly when the make would be scheduled relative to other processes in the system. Actual
scheduling decisions are still in the hands of the time-sharing scheduler, and remember, that scheduler is not
defined anywhere. The UNIX timesharing scheduler algorithms are just the way some of the current systems work,
and other UNIX implementors will almost certainly be tinkering with those algorithms to make things even better
for time-sharing users.

nice is ineffective for real-time programming, as all it really does is modify how the time-sharing scheduler
operates on your process. nice is meant for other uses; don't expect consistent results if you try to use it for real-
time process scheduling.

* These are described in two books on UNIX: Maurice Bach's The Design of the UNIX Operating System, (Prentice-Hall, 1986),
and Leffler, McKusick, Karels, and Quarterman's book, The Design and Implementation of the 4.3 BSD UNIX Operating System
(Addison-Wesley, 1989).

Page 155

SVR4 priocntl—Pretty Standard Real-Time Scheduling

System V's priocntl, while not part of POSIX, still can be used effectively to address the real-time scheduling issue,
and so deserves some discussion. The good news is, System V Release 4 has done a better job at supporting real-
time scheduling than it did at supporting inter-process communication. The bad news is, the interface is somewhat
complicated.

priocntl* will probably achieve a measure of industry-standardness, at least as long as you're only programming on
a UNIX system. Operating systems specifically targeted at real-time applications support will generally use simpler
mechanisms than priocntl. Even given that, it still makes sense to at least know what priocntl is capable of.

There is a priocntl utility and a system call. The system call looks like this:

 #include <sys/types.h>
 #include <sys/procset. h>
 #include <sys/priocntl.h>
 #include <sys/rtpriocntl.h>
 #include <sys/tspriocntl.h>

 long priocntl(idtype_t idtype, id_t id, int cmd, ...);

First, idtype and id together define whose priority is being modified. If idtype is P_PID, then id is a process ID;†
that process's scheduling parameters are to be modified. If idtype is P_PPID, then this priority modification applies
to all processes whose parent process ID is equal to id. The rest of the possibilities for idtype are rather less likely
to be used, and are described below.

P_PGID ID refers to every process with a process group ID equal to id.

P_SID ID refers to every process with a session ID equal to id.

P_CID ID refers to every process with a class ID equal to id. Scheduling algorithms are identified by
class IDs (one class is "real-time," and another is "timesharing"); this call to priocntl would
apply to every process running under a particular scheduler (for example, the real-time
scheduler).

P_UID ID refers to every process with a user ID equal to id.

P_GID ID refers to every process with a group ID equal to id.

P_ALL ID refers to every process in the system: id is ignored.

As you can see, you can change the scheduling attributes of just about anything you want, using priocntl.
Realistically, a real-time application is probably going to use no more than P_PID, and possibly P_PGID and
P_SID. A system administrator might be more inclined to use P_UID, P_GID, and P_ALL, but in the real-time
applications I know, such an action would just screw up the application's scheduling and make it

* Pronounced "Pry-Oh-Control."
† Process, Process Group, and Session IDs are addressed in POSIX Programmer's Guide.

Page 156

fail. My impression is that priocntl was designed so that it could be run by a system administrator, as opposed to a
real-time applications programmer. Not that priocntl is useless. The stuff a real-time application needs is definitely
in there, along with a lot of extras.

Well, now that we know who we can apply priocntl to, what can we use priocntl for? This is the cmd argument. It
identifies various scheduling actions that can be taken. The values of the cmd argument, and the corresponding
uses, are as follows:

PC_GETPARMS
priocntl retrieves the scheduling "parmeters" for the indicated process, group, class, etc.*

PC_SETPARMS
priocntl sets the scheduling parmeters for the indicated group, class, process, etc.

PC_GETCID
priocntl retrieves the ID of a particular scheduling class. There are two useful scheduling classes defined in SVR4:
realtime (RT) and timesharing (TS).† In order to make any process realtime, you must know the class ID of the
program, so you are going to have to call priocntl with PC_GETCID at least once in your application.

PC_GETCLINFO
priocntl retrieves information about a class, given the class ID. PC_GETCID does this too, and also retrieves the
class ID; you can use this facility to get information if you've forgotten it.

Essentially, we have four functions in one. The fourth, PC_GETCLINFO, is not strictly necessary; we'll dispense
with it for the moment. The important question is "how do I make a process real-time at a particular priority?"
Here's an example which uses priocntl to run itself at a real-time priority of 10.

 #include <sys/types.h> /* Needed for priocntl() */
 #include <sys/procset.h> /* Needed for priocntl() */
 #include <sys/priocntl.h> /* Needed for priocntl() */
 #include <sys/rtpriocntl.h> /* Needed for priocntl() */
 #include <sys/tspriocntl.h> /* Needed for priocntl() */

 /* We'll run at a real-time priority of 10: Real-time priorities range from
 0 to a system-dependent number in System V. */

 #define VIRTUAL_PRIORITY 10

 main()

* I have no idea why this is, but UNIX culture forbids the use of the second "A" in any contraction of the word "parAmeter."
Strange but true.
† A third class, sys, is used for scheduling "system processes." You can't put any process in the sys class, and you can't change the
scheduling parameters of any process in the sys class. It's basically an indicator to keep your grubby hands off special processes
needed to keep UNIX running.

Page 157

 {
 pcinfo_t realtime_class_info;
 rtinfo_t *rtinfo;
 pcparms_t realtime_parameters_for_me;
 rtparms_t *rtparms;

 /*
 * This is an example of how to use priocntl to set your
 * scheduling class to be real-time and your priority to a particular
 * value.
 */

 /* First we must figure out what the real-time scheduling class ID
 * is and what the maximum allowable priority value is. */
 strcpy(realtime_class_info.pc_clname, "RT");
 priocntl(0, 0, PC_GETCID, &realtime_class_info);
 rtinfo = (rtinfo_t *)realtime_class_info.pc_clinfo;
 if (rtinfo->rt_maxpri < VIRTUAL.PRIORITY) {
 /* Trouble, there are not enough real-time priorities to
 * run our example. */
 fprintf(stderr, "Cannot run at RT prio %d: max is %d\n",
 VIRTUAL_PRIORITY, rtinfo->rt_maxpri);
 exit (1);
 }

 /* The last thing we do is actually set the process class
 * and priority. */
 realtime_parameters_for_me.pc_cid = realtime_class_info.pc_cid;
 rtparms = (rtparms_t *)realtime_parameters_for_me.pc_clparms;
 rtparms->rt_pri = VIRTUAL_PRIORITY;
 rtparms->rt_tqnsecs = RT_TQINF; /* run free, run FIFO */
 rtparms->rt_tqsecs = 0; /* This value ignored for RT_TQINF quantum */

 priocnt1(P_PID, getpid(), PC_SETPARMS, &realtime_parameters_for_me);
 }

Two calls are required to use priocntl to set a process's scheduling attributes. First, you must call priocntl
(..PC_GETCID..) to retrieve the class ID for the real-time scheduling class. Then, using the class ID, you'll call
priocntl(..PC_SET_PARMS..) to change the scheduling parameters of your process.

PC_GETCID
When you call priocntl with the cmd argument equal to PC_GETCID, it tells you the class ID for the class you
describe in the fourth argument. This number is not, apparently, a constant (in contrast, the scheduling constants
that POSIX.4 uses are true constants, so only one call is required to change scheduling classes). To find the class
ID, you must partially initialize a structure of type pcinfo_t, with the name of the scheduling class whose ID you
want, and pass this structure's address as the fourth argument to priocntl.

 typedef struct {
 ...
 char pc_clname [PC_CLNMSZ];

Page 158

 ...
 id_t pc_cid;
 ...
 long pc_clinfo[PC_CLINFOSZ];
 ...
 } pcinfo_t;

The two scheduling classes are named ''RT" and "TS." Then, you pass in this structure as the fourth argument to
priocntl. The third argument is PC_GETCID, and the first two arguments are ignored. The system will fill in
the rest of the pcinfo_t structure with the attributes of the real-time scheduling class. There are two attributes.
Most important is the class ID, which is stored in the pc_cid field of the pcinfo_t structure. Next most important
is the pc_clinfo field of pcinfo_t. It contains class-specific information in a class-specific format. For the real-
time scheduler, the data is in the form of a structure of type rtinfo_t. Unfortunately, System V did not see fit to
define pc_clinfo as a union, so you must do your own casting:

 pcinfo_t my_pcinfo;
 rtinfo_t *my_rtinfo;
 my_rtinfo = (rtinfo_t *)my_pcinfo->pc_clinfo;

You cannot define your own structure type to mimic pcinfo_t, because SVR4 hasn't defined the actual layout of
the structure. All that's defined is that the three fields are in the structure, somewhere. If you define your own
structure, you need to worry about rearrangement of the structure at some future date.

The structure rtinfo_t contains one field, rt_maxpri. This is the maximum scheduling priority available for real-
time scheduling. The minimum scheduling priority is always zero, not a variable. If you try to set your priority
higher than rt_maxpri, you'll get an error.

PC_SETPARMS
Once you know the realtime class ID and you've verified that your desired priority is within the allowable range,
you can set your scheduling parameters. Call priocntl with an idtype of P_PID, id equal to your process id (use
getpid for this), a cmd of PC_SETPARMS, and a structure of type pcparms_t in the fourth argument. Pcparms_t
defines all your scheduling parameters.

 typedef struct {
 ...
 id_t pc_cid;
 ...
 long pc_clparms[PC_CLPARMSZ];
 ...
 } pcparms_t;

Set the pc_cid field to the realtime scheduling class ID returned from priocntl(..PC_GETCID..). The
pc_clparms field is like the pc_clinfo field of the pcinfo_t structure: you have to do your own casting.

Page 159

 pcparms_t my_pcparms;
 rtparms_t *my_rtparms;
 my_rtparms = (rtparms_t *)my_pcparms->pc_clparms;

There are three fields in the rtparms_t structure. Most important is the rt_pri field, which you set to your
desired scheduling priority. Next most important are the two fields rt_tqsecs and rt_tqnsecs, which define your
scheduling quantum (in seconds and nanoseconds, respectively). Your quantum is the maximum time interval
you will be allowed to execute before the next process at the same priority level is given the CPU. Don't set
rt_tqnsecs to one billion or greater, or the call will fail. rt_tqnsecs is meant to be less than 1 second. If you want
to run in a true FIFO manner, where you run until you voluntarily give up the CPU, then set rt_tqnsecs to
RT_TQINF. This sets your quantum value to infinity, and rt_tqsecs is ignored. If quanta are unimportant to
you, you can set rt_tqnsecs to RT_TQDEF, and a default quantum for this priority will be assigned. You can
also set rt_tqnsecs to RT_NOCHANGE if you are switching from one priority to another and wish your
quantum to remain unchanged.

Even though you can specify a time quantum down to the nanoseconds, don't count on the system using exactly that
number. In fact, you should count on the system not using that number unless it's an integral multiple of the clock
tick on the machine. This is because, on many systems, scheduling decisions are made when the clock tick goes off.
If you specify a time interval that is not equal to some number of ticks, these systems will round the interval up to
the next number of ticks. The tick granularity is given by the constant HZ, in <sys/param.h>. Usually it's 60 or
100; the minimum value it'll generally take on is 50. Thus, if you use nanosecond values that are multiples of
(1,000,000,000 / 50 = 20,000,000), you should be pretty much O.K. (although 60 Hz works out to a number of
nanoseconds that doesn't quite fit).

Will priocntl work for our example? You bet. The problems with priocntl are twofold. One, the interface is
complicated and error-prone. Second, priocntl is only going to be provided on System V UNIX boxes—not
generally the right boxes for your real-time apps. If you want to run your application on a real live embedded or
hard real-time system, you're probably going to go with an operating system other than SVR4 UNIX. For maximum
portability, you need the POSIX interfaces.

Portable Real-Time Scheduling: the POSIX.4 Scheduling Interfaces

The POSIX real-time scheduling option (_POSIX_PRIORITY_SCHEDULING) is what you need. These interfaces
are simple, sufficient, extensible, and portable. They smell good and they are always neatly groomed. Here's a
synopsis of the interfaces POSIX.4 provides.

Page 160

 #include <unistd.h>
 #ifdef _POSIX_PRIORITY_SCHEDULING
 #include <sched.h>
 int i, policy;
 struct sched_param scheduling_parameters;
 pid_t pid;

 int sched_setscheduler(pid_t pid, int policy,
 struct sched_param *scheduling_parameters);
 int sched_getscheduler(pid_t pid);
 int sched_getparam(pid_t pid, struct sched_param *scheduling_parameters);
 int sched_setparam(pid_t pid, struct sched_param *scheduling_parameters);
 int sched_yield(void);
 int sched_get_priority_min(int);
 int sched_get_priority_max(int);
 #endif _POSIX_PRIORITY_SCHEDULING

What's Your Policy?

In POSIX, processes run with a particular scheduling policy and associated scheduling attributes. Both the policy
and the attributes can be changed independently. POSIX.4 defines three policies:

• SCHED_FIFO: Preemptive, priority-based scheduling.

• SCHED_RR: Preemptive, priority-based scheduling with quanta.

• SCHED_OTHER: An implementation-defined scheduler.

Under the SCHED_FIFO policy, a process has one scheduling attribute, its priority. Processes running under
SCHED_FIFO run until they give up the processor, usually by blocking for I/O, waiting on a semaphore, or
executing some other blocking system call. SCHED_FIFO is the equivalent of priocntl's RT scheduling class with a
time quantum of RT_TQINF. In fact, a System V box with POSIX.4 conformance probably has implemented the
POSIX scheduling stuff as calls to priocntl. SCHED_RR operates just like SCHED_FIFO, except that processes
run with a system-given quantum. This is equivalent to priocntl's RT_TQDEF time quantum. POSIX.4 provides no
means to change a particular process's time quantum. SCHED_OTHER is not defined by POSIX.4; its presence is
merely mandated. It's kind of a back-door scheduler, meant as an exit from "real-time mode" back into "timesharing
mode." Since implementors can do whatever they want with this scheduling algorithm, SCHED_OTHER can turn
out to be more of a trap-door than a back-door.

Scheduling Parameters

The way the POSIX interfaces are defined, you can pass in any number and sort of scheduling parameters,
depending on which policy you are running under. The way this is done is by passing a structure, struct
sched_param, to each function that gets or sets the scheduling parameters. Right now this structure has only one
member, but

Page 161

future scheduling policies—or non-standard schedulers provided as extensions by the operating system vendor—
can add new members.*

The current commercial (as opposed to research and academic) state-of-the-art in process scheduling is pretty
simple: priority scheduling. If there is a quantum associated with the priority scheduling, it's usually just a system
parameter, not changeable by the individual process. The scheduling algorithms defined by POSIX, therefore, don't
need a lot out of struct sched_param. There is only one field defined:

 struct schedparam {
 ...
 int sched_priority;
 ...
 };

and this field is used by both of the scheduling algorithms defined by POSIX.4

An example: scheduling in the future

Future scheduling algorithms will be permitted to extend this structure to accommodate their own requirements. For
example, consider a deadline scheduler. The deadline scheduler is the current (circa 1993) darling of the academic
circuit and will probably eventually find its way into common commercial use. This scheduling algorithm operates
by stating the time by which a process must be done running. To successfully know when to schedule processes
under the deadline scheduler, the operating system would need to know when the deadline is, and also how much
time the process will need in order to complete its job. Thus, a future SCHED_DEADLINE might add two fields to
the structure:

 struct sched_param {
 ...
 int sched-priority;
 ...
 struct timespec sched_deadline;
 struct timespec sched_timerequired;
 ...
 };

Notice that the struct sched_param is a structure, not a union. Thus, the sched_priority element will always be
visible from the programmer's standpoint. However, SCHED_FIFO only cares about sched_priority;
SCHED_DEADLINE would only care about sched_deadline and sched_timerequired.

Also, like all structures in POSIX, the exact contents and layout of the structure is not defined. That means that if
you do any static initialization of struct sched_param, it will be non-portable.

* Each scheduling algorithm uses a certain subset of the members of this structure. So, if you're setting SCHED_FIFO, you only
need to set the members that SCHED_FIFO cares about. The other, uninitialized members will be ignored.

Page 162

Defined Policies in POSIX 4

As mentioned above, there are two (maybe three) scheduling policies defined by POSIX.4. These policies are
SCHED_FIFO and SCHED_RR; the third pseudo-scheduler is called SCHED_OTHER. I'll describe each in turn.

SCHED_FIFO: First In, First Out

SCHED_FIFO is a simple, priority-based, preemptive scheduler. This is the most common scheduling algorithm
found in real-time systems, and is the most generally useful. You'd use this algorithm in most cases, unless you had
an explicit need to timeslice between multiple processes. For instance, our data collectors, data logging, and display
processes would tend to all run under SCHED_FIFO. It's called FIFO because the First process In at a given
priority level will be the First one at that priority level to go Out to run; that process runs until it voluntarily gives
up the processor, or is preempted by a process of higher priority. This is really just simple preemptive priority
scheduling, so calling it SCHED_FIFO may be a little confusing. The FIFO part of the algorithm only applies to
what happens within each priority level, and is probably meant to differentiate this algorithm from SCHED_RR,
which does something else (described in the next section) within each priority level.

To understand how SCHED_FIFO works, imagine an array of queues, one queue per priority level. Priority zero
has a queue, priority five has a queue and so forth. Now, imagine that each process is on the queue for its particular
scheduling priority. The system decides who to run by going to the highest-numbered non-empty queue, and
running the process on the head of that queue. If that process wants to run forever, and no higher priority process
becomes runnable, well, that's what the system does. A process gives up the CPU in one of two ways: either it
becomes blocked (on I/O, a semaphore, or some other activity that requires it to wait), or it explicitly relinquishes
the processor to another process of the same priority (by calling sched_yield, described later in this chapter). When
the process finally gives up the CPU, the system goes back and examines the queues again to determine the highest-
priority runnable process. Lather, rinse, and repeat.

Another handy property of the SCHED_FIFO scheduler is that, on a uniprocessor at least, you know that the
processor is all yours if you are the highest priority runnable process. Sometimes, if you work it right, you can
avoid explicit synchronization with other processes at the same priority level.

SCHED_RR: Round and round we go

SCHED_RR, the round-robin scheduler, is a simple enhancement of SCHED_FIFO which allows processes at the
time priority to timeslice amongst each other. Add the concept of a quantum to the policy, and you have it. That is,
processes running under SCHED_RR run just like those under SCHED_FIFO, except that SCHED_RR processes
only get to run for the time quantum before being shuffled back to the end of the queue for

Page 163

their priority level. This gives another process with the same priority a chance to run. You'd use SCHED_RR if
there's some need to forcibly kick a process off the CPU after an amount of time. For instance, background
computations might run SCHED_RR. The goal of SCHED_RR is not to provide fair scheduling like the SVR4 TS
scheduling class does—this algorithm is far too simple for that. Rather, SCHED_RR is supposed to give a weak
approximation of timesharing for those real-time systems that need it. Unlike SVR4's priocntl, which lets you alter
your quantum values, SCHED_RR uses a system-provided quantum value which you cannot alter. This value is not
necessarily a constant. You can find out what it is, for a particular process, by calling sched_rr_get_interval. This
call takes a process ID as an argument, so the quantum value can actually vary on a per-process basis. More likely,
though, it will vary on a per-priority level basis: different priorities may have different quanta. Alternatively, the
quantum (for a priority level, a particular process, or even for the entire system) may be changed by a system
administrator. I find SCHED_RR useful at the lower priority ranges, where you may want to run several processes
performing computations when nothing more important is running.

SCHED_OTHER: Curtain number three

Finally, a third scheduler, SCHED_OTHER, is defined, if you can call it that, by POSIX. The behavior of processes
running under the SCHED_OTHER scheduler is defined by each implementation. This means that in the
conformance document for POSIX.4 system X, there will be a paragraph stating exactly what SCHED_OTHER
does, and how it interacts with the other scheduling algorithms. Beyond that, there are no real requirements on
SCHED_OTHER. SCHED_OTHER is defined to "allow strictly conforming applications to...indicate that they no
longer need a realtime scheduling policy in a portable way." [POSIX.4 Draft 13, page 149, lines 107-108] What
SCHED_OTHER actually provides is a way of guaranteeing a non-portable scheduling item that will vary from one
implementation to another. Here's an example.

Under a standard UNIX system, SVR4, SCHED_FIFO maps directly to the RT scheduling class with quantum
RT_TQINF. SCHED_RR might map to the RT scheduling class with RT_TQDEF. Now, I am not privy to the plans
for SVR4 POSIX.4 conformance, but it would be perfectly sensible and reasonable to map SCHED_OTHER onto
the TS timesharing scheduler. That way, processes running under SCHED_OTHER get out of the way of the real-
time processes. Great!

On the other hand, consider a dedicated real-time operating system. A hard real-time system doesn't usually have a
time-sharing scheduler at all. Time-sharing is approximated by the use of a round-robin scheduler. Under such an
operating system, SCHED_FIFO and SCHED_RR are directly supported by the operating system, and
SCHED_OTHER maps to ...SCHED_RR! In other words, SCHED_OTHER processes are still real-time processes
that contend with the SCHED_FIFO and SCHED_RR processes.

Now, imagine some poor soul implements a real-time POSIX.4 application on SVR4 using SCHED_OTHER to run
some sort of background, unimportant tasks. On SVR4, this

Page 164

solution works fine. However, when the application is carted over to LynxOS (a representative hard real-time
operating system), it breaks horribly because the SCHED_OTHER processes get in the way of the SCHED_FIFO
processes!

Speaking standardese, the application above is not a "strictly conforming" application, because it relies on an
implementation-defined facility (the behavior of SCHED_OTHER) for its correct operation. However, how many
applications do you know of that require the person porting the application to look at the conformance document
for the new operating system? How many applications have their own conformance statements? And, most
importantly, how likely is someone porting a supposed "POSIX.4 application" to read all the conformance
documents before trying to get the code running? These are all rhetorical questions. Here's what will probably
happen: the application will be compiled and run; it will break, probably in some obscure way related to scheduling
fringe conditions; hair will be torn, Jolt cola will be consumed, management will scream. Eventually someone will
think to look at the conformance documents for SVR4 and the hard real-time system, and will say, ''Oh.... "

Don't use SCHED_OTHER if you want a portable real-time application. Stay within the bounds of the defined real-
time schedulers.

Like Father, Like Son

Where do a process's scheduling algorithm and parameters get set? By default, each process inherits this stuff from
the parent process. Scheduling attributes are inherited across a fork or one of the exec family of calls. Consider the
following pipeline:

 % rt_data_acquire | rt_data_process | \
 tee rt_file | rt_data_output > /dev/output < /dev/input
All processes in the pipeline run with the scheduling attributes of the shell. This is probably what you expect to
happen, but some surprises can occur. For instance, consider the program atprio,* which allows you to run a
process under the FIFO scheduler at a particular priority. Say you wanted to run this whole pipeline at priority 127,
and your shell was running under some other scheduler or at some other priority. You might be tempted to try:

 % atprio 127 rt_data_acquire | rt_data_process | \
 tee rt_file | rt_data_output > /dev/output < /dev/input
This wouldn't work because the other processes in the pipeline are forked by the shell, not by rt_data_acquire.
rt_data_acquire would run FIFO at 127, but the other processes in the pipe would run under the default scheduler
of the shell. A workaround here is to use sh -c:

 % atprio 127 sh -c "rt_data_acquire | rt_data_process | \
 tee rt_file | rt_data_output > /dev/output < /dev/input"

* See the "Exercises" at the end of the chapter for more detail on atprio.

Page 165

Since the shell is run at priority 127, and it, in turn, runs the pipeline, all the elements of the pipeline will be set to
the proper priority.

POSIX.4 introduced some exact definitions of when a child process runs after a fork. In POSIX.1 the execution
time was indeterminate; all you knew was that the child would run sometime. Under POSIX.4, when fork is called,
the child process inherits exactly the same scheduling parameters as the parent. If the parent was running under the
SCHED_FIFO scheduler at priority 100, the child process will also be running under the SCHED_FIFO scheduler
at priority 100. In this case the child process is not going to run until there is a free processor for it to run on. On the
basic uniprocessor machine, the processor is occupied by the parent process until it blocks. It may be a while before
the child runs. The parent process cannot rely on the child running before it returns from fork, or at some
unspecified time "soon" after fork is called. The parent process will have to explicitly let the child process run. This
is important to remember when you want the child process to do some sort of initialization task. You have to let it
run before it can initialize!

A Change of Policy

Scheduling parameters are inherited at fork/exec time. In general, a process that is part of a real-time application
will want to set its scheduler and priority explicitly. To do so, you use one call, sched_setscheduler. For instance, to
set your process priority to 17 under the FIFO scheduling policy, you could do the following:

 #include <sched.h>

 struct sched_param scheduling_parameters;
 int scheduling_policy;
 int i;

 scheduling_parameters.sched_priority = 17;
 i = sched_setscheduler(getpid(), SCHED_FIFO, &scheduling_parameters);

The call to sched_setscheduler does all the work. Its first argument is a process ID. This code calls
sched_setscheduler with its own PID, as discovered by getpid, but in fact you can use sched_setscheduler to change
the scheduling of any process. Of course, you must have the right permissions in order to make a successful call to
sched_setscheduler, and POSIX.4 does not define what permissions are required, only that the implementation has
to tell you. A reasonable set of permissions might be that root can do anything, others can only modify their own
scheduling policy. Or, perhaps, root can do anything, and no one else can use real-time scheduling at all. Don't
expect to be able to change the scheduling of any process you choose.

Here's another hint about the use of the process ID argument. A positive PID identifies a particular process. If the
PID is zero, then the call refers to the calling process. Now, for some functions (e.g., POSIX.1 and UNIX kill), a
negative process ID applies the function to an entire process group. That makes sense for kill, as it allows you to
send

Page 166

a signal to a whole pipeline of processes. On the other hand, it usually doesn't make sense to set the scheduling
parameters for a whole group of processes at once. Therefore, POSIX.4 left the interpretation of negative PIDs
unspecified. Even though there are cases where you might want to set the scheduler for a bunch of processes at
once, don't try to do it with these calls. They won't do that. This applies to sched_setscheduler as well as all the
other scheduling functions in this interface.

Now, back to our example. It will work, but only sometimes. Why? Because 17 may not be a reasonable priority
value for the FIFO scheduler on your particular machine. To explain this, I need to talk a little about how
schedulers are implemented on many systems.

Every operating system has a scheduling data structure very much like the FIFO scheduler's: a set of queues, one
per priority level. What differs is how the priorities are set and how often they are modified. In other words, even
under a time-sharing scheduler, each process has a priority which the system uses to determine when it runs; the
system alters that priority on a regular basis to achieve better time-sharing response.

Each operating system, then, has some underlying range of priorities that are used for scheduling ALL the
processes on the system. Some scheduling algorithms may not be able to use all those underlying priorities. For
instance, many systems relegate timesharing processes to the lower half of the priority scale, and leave the highest
priorities for the real-time processes. Say you had 256 underlying priorities in your system. In that case, the real-
time FIFO scheduler might use priorities 128 to 255. Or, it might use all 256 priorities, from 0 to 255. The round
robin scheduler, as a sort of simulated timesharing, might use the lower half of that range, or it might also have
access to all 256 priority ranges.

In order to determine what the minima and maxima are for the scheduling algorithms are on your system, you use
the sched_get_priority_min and sched_get_priority_max calls, as in this example:

 #include <sched.h>

 int sched_rr_min, sched_rr_max;
 int sched_fifo_min, sched_fifo_max;

 sched_rr_min = sched_get_priority_min(SCHED_RR);
 sched_rr_max = sched_get_priority_max(SCHED_RR);
 sched_fifo_min = sched_get_priority_min(SCHED_FIFO);
 sched_fifo_max = sched_get_priority_max(SCHED_FIFO);

You probably want to do this as part of your application initialization, and adjust all your process priorities
accordingly.

This may seem like a needless complication to you, and I find myself, as an application programmer, in agreement.
However, as an implementor I can see where the decision to allow different, possibly-overlapping priority ranges
came from (even if I think it's silly). Well, you're stuck with it. How do you deal with it? It's actually quite simple.

Page 167

The trick is to use a virtual priority range for all my application processes. All application processes have a priority
from 0 to whatever the maximum for the algorithm is. The maximum, using the code above, would simply be
(sched_fifo_max sched_fifo_min + 1) for SCHED_FIFO. POSIX.4 dictates that this difference has to be at least 32,
and the art of modern process scheduling pretty much dictates that you should have 128 or more priority levels.

Now, just define a function as follows:

 int my_sched_setscheduler(pid_t pid, int sched_policy,
 const struct sched_param *sched_param) {

 struct sched_param tmp;

 tmp = *sched_param;
 switch (sched_policy) {
 case SCHED_FIFO:
 tmp.sched_priority += sched_fifo_min;
 break;
 case SCHED_RR:
 tmp.sched_priority += sched_rr_min;
 break;
 default:
 break; /* Do nothing */
 }
 return (sched_setscheduler(pid, sched_policy, &tmp));
 }

This function maps your virtual priorities into the proper range for your system and allows you to ignore the
differing priority ranges that may occur from one platform to the next.

There is still one problem that has no easy solution. What if you want SCHED_RR and SCHED_FIFO processes to
be scheduled together correctly? In other words, you may have two processes, one SCHED_RR and one
SCHED_FIFO, and you want to run them at the same underlying system priority. How do you make that happen on
a system where the priority ranges may be different for the two algorithms? In this case, using virtual priorities
would be a bad thing. You might mistakenly assume that virtual priority 0 for SCHED_FIFO was the same as
virtual priority 0 for SCHED_RR. One possibility is for your virtual priority subsystem to detect this condition and
report it. Another possibility is for you to determine the underlying priorities when your application is deployed and
adjust your application administratively. This is only a problem, though, if you are running multiple processes
under different schedulers.

This is a tough issue and you probably will need to solve it administratively. If you want to mix scheduling
algorithms and have them play together correctly, you should probably prepare to do some system administration
before deploying your application on the target. I imagine a scheme where the various processes pull their priorities
out of a file, database, or from a network service like Sun's NIS. Then, the priorities are not wired into the code to
be recompiled each time. Of course, in that case you need to

Page 168

do system administration, but don't kid yourself—you're going to have to do that anyway. Just because POSIX
increases portability, does not mean that you can slap down any old application and have it just work right!

Setting Your Scheduler Up

Now that you understand the basic concepts of policy and parameters, and I've told you about the defined policies,
the actual interfaces for setting the policies and parameters are really simple. sched_setscheduler is the major
component of the POSIX.4 scheduling facilities: it sets the scheduling policies and parameters. Of course, there are
more functions required to create a complete facility. First of all, you might want to know which scheduler you are
running under. For that, the sched_getscheduler call is provided.

 #include <sched.h>

 int scheduler;

 scheduler = sched_getscheduler(0);

This simple call returns the identifier of the scheduling algorithm for the given process ID (0 is shorthand for the
calling process's ID). This value is either SCHED_FIFO, SCHED_RR, or SCHED_OTHER. If your system
supports additional schedulers, another value could be returned, for instance the SCHED_DEADLINE which we
postulated above. In such a case, though, the implementation must do two things in order to maintain its claim of
POSIX.4 conformance:

• Document the additional implementation-defined schedulers

• Provide an environment in which you can build your application so that the implementation-defined
scheduler would never come up

Remember that the scheduler SCHED_OTHER has implementation-defined effects.

What was my priority again?

sched_getscheduler is interesting, but really, you're not going to use that function too much. More likely, you will
be interested in seeing and changing your (or another process's) scheduling parameters: in the case of the two
defined schedulers, you want to see and change your priority.

 #include <sched.h>

 int i;
 struct sched_param my_sched_params;

 i = sched_getparam(getpid(), &my_sched_params);

This call will fill in my_sched_params with my current scheduling parameters. Remember that struct sched_param
contains a number of fields, corresponding to the various scheduling algorithms supported on the system. In the
case of SCHED_FIFO and

Page 169

SCHED_RR, you would be interested in the sched_priority field of my_sched_params. At present there are no
other standard schedulers, and so there are no other fields in the structure which you would be (portably) interested
in.

Changing parameters

Finally, I want to be able to change my scheduling parameters. To do so, use sched_setparam:

 #include <sched.h>

 int i;
 struct sched_param my_sched_params;

 /* Be the highest possible priority */
 my_sched_params.sched_priority = sched_get_priority_max(SCHED_FIFO);
 i = sched_setparam(getpid(), &my_sched_params);

sched_setparam has a cousin, like many other functions. sched_getparam is used to retrieve the scheduling
parameters for a particular process:

 #include <sched.h>

 int i;
 struct sched_param his_sched_params;

 /* What scheduling parameters is process 86 running with? */
 i = sched_getparam(86, &his_sched_params);

This code sample would retrieve the scheduling parameters for process 86 (assuming there is a process 86) into
his_sched_params.

Back of the line

Whenever you request a change to your scheduling policy or parameters the system automatically moves you to the
end of the queue for your new scheduling state. For example, say you are running FIFO at priority 13, and there is
another priority 13 process waiting to run. Well, that process cannot run because you're running. But say you set
your scheduling priority to 13 again. This is not even a real change, as your priority was 13 to begin with. However,
the standard requires that you become the waiting process, and the process waiting in line gets to run.

Another scheduling rule is called "immediate preemption." If you set another process's priority such that that
process becomes the highest priority runnable process, then that process must run before you even return from your
call! Here's a fairly evil example:

 #include <sys/types.h>
 #include <signal.h>
 #include <sched.h>

 pid_t pid;
 struct sched_param params;

Page 170

 /* Be FIFO */
 params.sched_priority = sched_get_priority_min(SCHED_FIFO) + 16;
 sched_setscheduler(0, SCHED_FIFO, ¶ms);

 pid = fork(); /* Split -- two processes running under the
 * same scheduler */

 /* Because we are running under the FIFO scheduler on a uniprocessor,
 * the parent process is still running and the child is waiting */
 if (pid) {
 /* parent */
 params.sched_priority++;/* Child, be higher priority */
 sched_setparam(pid, ¶ms); /* THIS CALL NEVER RETURNS */
 kill(pid, SIGINT); /* Immediately kill the child! */
 } else {
 /* child: execute an infinite loop! */
 while (1)
 ;
 }

On any truly POSIX.4-conformant system, this example will not terminate,* because the child must be scheduled to
run before the parent returns from its call to sched_setparam. If this code terminates, then your POSIX.4
implementation is broken.

Yield right-of-way

Setting your scheduling parameters identical to what they were is an interesting way to allow another process to
run; as we said previously, any attempt to modify your scheduling parameters (even if you don't change them)
schedules yourself off the processor. The ability to give up the processor is useful-so POSIX.4 defines a function
for this purpose:

 #include <sched.h>

 void sched_yield(void);

sched_yield is very simple. It moves the calling process to the back of the line for its priority, allowing any other
processes at that priority to run. Note that sched_yield, when called by a priority 10 process, is not going to allow a
priority 9 process to run. Only another priority 10 process would get a chance. If there were no priority 10
processes other than the one calling sched_yield, then that process would immediately resume its execution!

* Not totally true: it won't terminate on a uniprocessor. On a multiprocessor, it may terminate, since you may run the parent and
the child at the same time if you have two or more processors.

Page 171

Yielding while not yielding

sched_yield is a handy little function, but don't fall in love with it. I use sched_yield a lot in little test programs
where I want to make sure that one thing runs before another, like this one:

 pid = fork(); /* Create a child process. Because we are running
 * under the SCHED_FIFO scheduling policy, we
 * "know" (see text below) that the child is not
 * going to run immediately -- the parent is still
 * running, but the child should be ready to go.
 */
 if (pid) {
 /* Parent -- yield to child so it can go */
 sched_yield();
 printf ("Parent\n");
 } else {
 printf("Child\n");
 }

This code seems fairly self-explanatory. The problem with it is that it makes a couple of assumptions, such as:

• That we are running under SCHED_FIFO. The program can verify this, so it isn't a big assumption.

• That, upon return from fork, the child is in fact ready to run. This is true under LynxOS (I know from
personal experience), but there is no guarantee of this under other POSIX systems. In particular, a swapping,
paging system may need to reserve some system resources before a child process can be run, and this activity may
happen after fork returns to the parent.

• That the example is run on a uniprocessor. On a multiprocessor, the system could simply run the parent on
one brain, and the child on another, in parallel.

The point here is that sched_yield does something very simple. It merely moves a process to the end of the queue
for its priority level. It does not guarantee that anything else is actually on that queue. It certainly does not
guarantee what is on the queue. For example, some other process (unrelated to our sample program) might be
waiting to run—in which case, neither the parent nor the child would be scheduled next. Therefore, don't use
sched_yield to enforce a particular scheduling order. It's too simple for that. Use semaphores instead.

Making Things Happen On Time

Now that we know how to make the most important things happen before the least important things, we can move
on. In particular: how do you make something happen at a particular time?

Consider the data collection example. There are two ways in which the input task could operate. In one way, it is
driven sporadically by its input source(s). In this

Page 172

scenario, the task sits in a loop, waiting for the input, whenever it comes. The timing of the whole loop is directly
driven by the hardware. If the hardware interrupts 100 times in a second, then the input task runs 100 times in a
second.

 while (1) {
 read(fd, buf, nbytes); /* Wait for data */
 /* Process data */
 }

This is an acceptable way to structure this part of a real-time application. You'd set the process priority at the right
level so that it ran in a timely-enough fashion whenever data was available for it. If your input device interrupts
sporadically (i.e., unevenly), you might want to adopt this model; it avoids running the input task more often than
necessary.

However, the timing of the loop above relies on the I/O hardware to provide the proper timing base to keep your
task running at the right rate. Maybe your hardware doesn't work that way. Maybe it interrupts sporadically, and
you want your processing to go on at a 100 Hz drumbeat. Very often, for instance, devices you are controlling
require a steady stream of output, even if the corresponding input is sporadic. Maybe, like in the case of a frame
buffer, there is no interrupt you can use to drive your timing at all.

If you want a steady beat, the solution is to drive the timing by an external clock, called an interval timer. Such a
timer does exactly what its name implies: it measures a time interval. When the time interval expires, the task that
set the timer is awakened, usually by signal delivery.

You may also want facilities to set and tell the time. After all, when you're writing an application based on the time,
it's reasonable to know what time it is. Therefore, we make a distinction between clocks (the things that contain the
time) and timers (the alarms that go off and wake you up). Timers are generally based on particular clocks. In other
words, you don't need to deal with a timer if all you care about is telling the time. But you need to know that a
particular clock exists before you can successfully use a timer based on that clock.

Clocks and timers, unlike many features of POSIX.4, have been part of UNIX systems for a while. Standard UNIX
has three clocks. One tells the time, while the others do strange things that don't really concern us. Timers come in
two basic sorts: one-shot and repeating. A one-shot timer is like the buzzer I have on my oven. You set it, it counts
down, it goes off. End of story. A repeating timer is like the alarm clock in my bedroom. It's set to go off at 6 every
morning, and it repeats that behavior every day, day in and day out.*

* It can't help it—it's eight months old and wants to be fed!

Page 173

Basic UNIX Clocks

First, let's talk about the standard UNIX and POSIX.1 facilities. In some cases, these may be sufficient for your
needs. Even if they're not adequate, you may need some of these functions in addition to the POSIX.4 facilities,
which we'll describe in the section after this.

There's only one real clock in a standard UNIX system, and so it doesn't really have a name. It's just the time-of-day
clock. There are two standard ways of telling the time with this clock. The time call is standard in System V and
POSIX.1. It returns a number of seconds, which are the number of seconds that have expired since the world was
created. According to UNIX lore, the world was created in the dim, distant past, when monstrous beasts roamed the
earth: 00:00 A.M., January 1, 1970. This time is called The Epoch, and in that time, there were no microwaves,
compact discs, or ATM machines, and there was very little cable television. You can see why time doesn't go back
any further than that.

time is a very simple function. It's usually called with a NULL argument:

 #include <time.h>

 time_t time(time_t *what_time_it_is);

The value returned is the number of seconds since the epoch. You can pass in a parameter, a pointer to a time_t,
where time will store the number of seconds for you. You can also just pass a NULL pointer if you don't need the
value stored anywhere. time is the POSIX standard facility, so it will be available on your POSIX-conformant
system. Unfortunately, time is pretty crude. You may require greater accuracy in telling what time it is; many real-
time applications do.

Under Berkeley and SVR4 UNIX systems, the gettimeofday call is provided, which allows you to retrieve the time
with a precision that may be measured in microseconds. gettimeofday stores the time in a timeval structure, which
is defined as:

 struct timeval {
 time_t tv_sec; /* Seconds */
 time_t tv_usec; /* and microseconds */
 }

gettimeofday looks a lot like time, but since it uses a structure, it returns zero or -1 (for success or failure), rather
than the time itself:

 /*
 * This facility is only
 * predictably available in Berkeley and SVR4 UNIX.
 * As a standard UNIX facility, there is no compile-time
 * definition to indicate its presence or absence.
 */
 #include <sys/time.h>

 int gettimeofday(struct timeval *what_time_it_is);

Page 174

Notice that I said the time resolution may be measured in microseconds. Although the struct timeval supports such
resolution, most operating systems don't (the overhead of that kind of accuracy is considered too great). Usually,
time is measured in clock ticks, each clock tick being something like 10,000 microseconds (many machines run a
100 Hz clock tick). Do not expect a time granularity to come out finer than that. Even if it did, the overhead of
calling gettimeofday itself might throw you off! gettimeofday is not completely standard. The totally standard, high-
resolution time mechanism is clock_gettime, which I'll describe up ahead in the section, ''The Real Real-Time
Time."

The end of the world as we know it

It's worth remembering one more thing about UNIX time. Historically, the time of day was stored in a variable of
type long; most time_t types today are, in fact, longs. Since most of the POSIX machines in use have a 32-bit long,
that implies a certain limitation in how far into the future we can tell the time. On any machine with a 32-bit time_t
structure, time will fail somewhere in the second half of February, 2038. Hopefully, by that time we'll all be either
using bigger machines or retired. I know that I'm phrasing all my maintenance contracts to end in 2037... Actually,
2038 is 45 years from now (1993). If you look back 45 years, well heck! That was before the beginning of time!
Seriously, in 1948, the computer state-of-the-art was programmed by rewiring and being used to crack the Enigma
Machine. By 2038, I doubt anyone will even recognize a machine of today as a computer.

Time Intervals

So far, we've only discussed how to tell the time. What we really want, though, is to time a process's execution so
that it goes off, for instance, 10 times a second. Standard UNIX and POSIX.1 provide a couple of potential
solutions, but they don't generally provide the resolution we need.

The most well-known example of a one-shot interval timer is the sleep call:

 unsigned int sleep(unsigned int nseconds);

sleep delays the task's execution for at least nsec seconds. It's simple, but not precise at all. You might try using
sleep to provide a process with reasonable periodic timing. This would be a mistake. sleep is like the nice facility
discussed in the "Being Nice—Or Not" section, earlier. It just wasn't meant for real-time applications. For one
thing, the resolution the task can achieve is too low to be of use. A resolution of seconds is just too crude!

Another problem is that sleep might not actually sleep as long as you expect it to. Like other blocking system calls,
sleep is interrupted by the delivery of a signal. In fact, that's how it's usually implemented: sleep sets a timer to go
off, and then waits for the associated signal to be delivered. If a signal other than the timer signal arrives, the

Page 175

sleep call may terminate prematurely. In that case, the return value from sleep will be the number of seconds
remaining to be slept.*

"Drift" is yet a third reason why sleep isn't particularly useful for real-time applications. Imagine that sleep actually
could provide the resolution your application needed (it's possible). Then your application code would look like
this:

 while (1) {
 sleep(nsec);
 /* Do something */
 }

Remember, the goal is to run every nsec seconds. Since it takes some amount of time to "Do something," whatever
it is, this loop is not going to run every nsec seconds. It will run every (nsec + s) seconds, where s is the amount of
time needed to "Do something." The timing will drift by s with every iteration of the loop.

You could try to compensate for drift by sleeping s fewer seconds each time:

 while (1) {
 sleep(nsec - s);
 /* Do something */
 }

This isn't likely to work. First, it requires that s be exactly some number of seconds: no overrun, no underrun.
Chances are, your action takes far less than a second, or a second and 50 milliseconds, or some number other than
an exact number of seconds. The second problem is that your action may take a variable number of seconds! How
do you measure that?

These dilemmas are why interval timers were created. Using an interval timer, the timer regularly interrupts, no
matter how long your loop takes.

Standard UNIX Interval Timers

The original interval timers came from Berkeley UNIX, and are now part of AT&T's System V Release 4. Here's
how they are defined:

 /*
 * This facility is only
 * predictably available in Berkeley and SVR4 UNIX.
 * As a standard UNIX facility, there is no compile-time
 * definition to indicate its presence or absence.
 */
 #include <sys/time.h>

 int setitimer(int which_timer, const struct itimerval *new_itimer_value,
 struct itimerval *old_itimer_value);
 int getitimer(int which_timer, struct itimerval *current_itimer_value);

* The return value of sleep is different in Berkeley-based and AT&T-based UNIX systems. AT&T systems (for instance, SVR4
and Solaris 2.0) return as I described above; Berkeley systems (for instance, BSD4.3 or SunOS 4.1) always return 0.

Page 176

The standard UNIX interval timers support three different timers, which you specify in which_timer:
ITIMER_REAL, ITIMER_VIRTUAL and ITIMER_PROF. Only one of these is useful in most cases:
ITIMER_REAL. When each of these timers expires, it causes a signal to be delivered to the process that set up the
interval timer. The ITIMER_REAL timer causes SIGALRM to be delivered; ITIMER_VIRTUAL sends
SIGVTALRM, and ITIMER_PROF sends SIGPROF. Neither SIGVTALRM nor SIGPROF are defined by POSIX,
although SIGALRM is.

The ITIMER_REAL timer operates in real time. If you set it to expire every second, then it will expire every
second—regardless of how long your loop takes or how long your have to wait for that second to roll around.

Every process has its own set of timers. If one process sets its timers to expire every 10 seconds, and another
process sets its timers to expire 100 times a second, that is fine. The different process's timers do not interact with
each other.

The timer's interval is specified using a two-part structure, struct itimerval. It consists of two timeval structures,
it_value and it_interval:

 struct itimerval {
 struct timeval it_value; /* Initial value, 0 to disable timer */
 struct timeval it_interval; /* Period value, 0 for one-shot timer */
 }

it_value must be set to a non-zero value for the timer to work—setting it_value to zero turns the timer off (this is a
useful capability, of course). it_value, when set, indicates the time to wait before the timer expires the first time.
it_interval, if set, indicates the interval after which the timer should expire the second time, third time, and so on. If
it_interval is zero, but it_value is not zero, then the timer will expire only that first time and will then be turned off.

These members together provide for time resolution down to the microsecond. Some calls require that the number
of microseconds in tv_usec be less than 1,000,000 (the number of microseconds in a second); you should always
take care to make sure this is the case in order for your programs to be fully portable.

Signal deliveries

Since each timer expiration causes a signal to be delivered, you can structure your tasks in a number of different
ways depending on how you best like to wait for signal delivery. Most simply, you can just mask off SIGALRM
during normal operation and wait for it using sigsuspend. This complete example shows how to combine a UNIX
interval timer with sigsuspend to wait synchronously for your periodic timer to expire.

 #include <sys/types.h>
 #include <sys/time.h>
 #include <sys/signal.h>
 #include <sys/param.h>

 #define DEFAULT_SECS 0

Page 177

 /* Assure usecs is modulo HZ */
 #define DEFAULT_USECS (1000000 / HZ) /* (HZ) times a second */

 extern void nullhandler (void);

 main(int argc, char **argv)
 {
 sigset_t block_these, pause_mask;
 struct sigaction s;
 struct itimerval interval;
 long secs, usecs;

 /* Block SIGALRM */
 sigemptyset(&block_these);
 sigaddset(&block_these, SIGALRM);
 sigprocmask(SIG_BLOCK, &block_these, &pause_mask);

 /* Set up handler for SIGALRM */
 sigemptyset(&s.sa_mask);
 sigaddset(&s.sa_mask, SIGINT);
 s.sa_flags = 0;
 s.sa_handler = nullhandler;
 if (sigaction(SIGALRM, &s, NULL) < 0) {
 perror("sigaction SIGALRM");
 exit (1);
 }

 interval.it_value.tv_sec = DEFAULT_SECS;
 interval.it_value.tv_usec = DEFAULT_USECS;
 interval.it_interval.tv_sec = DEFAULT_SECS;
 interval.it_interval.tv_usec = DEFAULT_USECS;

 setitimer(ITIMER_REAL, &interval, NULL);
 while (1) {
 sigsuspend(&pause_mask);
 /* Do something */
 }

 }

 void nullhandler()
 {
 }

Microsecond resolution, huh?

The alert reader will notice that we are making sure the time interval is 0 modulo something called HZ. The timeval
structure has the numeric resolution to support timings down to the microsecond; however, most operating systems,
real-time and otherwise, do not support this resolution. In general, an operating system runs its time-based services
off a periodic timer interrupt that goes off at regular intervals. Under

Page 178

most UNIX systems, this periodic timer goes off 60 or 100 times per second.* That is the best resolution you can
get from the standard clock facilities on these machines. A 100 Hz clock interrupts every 10,000 microseconds
(that's 1,000,000 / 100).

You're drifting off again

This behavior may lead to another sort of clock drift. If you set your interval timer to go off every 9000
microseconds, it will probably go off every 10,000 microseconds instead. Your application should be prepared for
this possibility. Under UNIX, the constant HZ, in <sys/param.h>, defines the number of times per second the
periodic system timer interrupts; dividing 1,000,000 by this number will tell you the maximum clock resolution you
can expect from that system. You should code your interval timer to use numbers of microseconds that are
multiples of (1,000,000 / HZ).

As I mentioned above, there are two other timers, ITIMER_VIRTUAL and ITIMER_PROF. ITIMER_VIRTUAL
runs only when your process is running: it measures the time your application takes to run. Since our particular
need is for a timer to wait for a time interval to pass, this timer will not be useful to us here. Likewise,
ITIMER_PROF runs only when our task is running, or the operating system is running on behalf of your task.
ITIMER_VIRTUAL and ITIMER_PROF are used for implementing profilers and other tools for program
development; they're not generally useful for deployed applications. However, they are useful for determining the
amount of time spent in a particular task, since they count task time only. One caution, though: on almost all
systems, these timers are only incremented on a clock "tick." That is, if your application happens to be running
when the system clock expires, then you get credit for the entire clock tick: all 1,000,000/HZ microseconds.
Conversely, if your task wakes up, runs, and blocks again between two clock ticks, it will be credited with no CPU
time. These measurements are statistical and can only be trusted when the process runs for at least several seconds
at a time.

The discussion above has all been focused on periodically-interrupting timers, but you can also use interval timers
as one-shot timers. If you set it_interval to 0, and it_value to a non-zero value, then the interval timer will expire at
the time indicated by it_value, and then never again. This is useful for setting a timeout on something which may
go over-long (like a read on a pipe or socket or a message queue receive operation, where you're not exactly sure
there's anyone on the other end). For example:

 /* Set alarm to go off in ten seconds */
 interval.it_interval.tv_sec = interval .it_interval.tv_usec = 0;
 interval.it_value.tv_sec = 10;
 interval.it_value.tv_usec = 0;
 setitimer(ITIMER_REAL, &interval, &old_settings);

 /* Read from file descriptor, timing out after ten seconds */

* The clock must run at at least 50 Hz in order to conform to POSIX.4; a real-time operating system just isn't that useful without a
clock of at least that resolution. Older UNIX systems used to run at 50 Hz, but just about everyone runs a bit higher than that
now.

Page 179

 i = read(fd, buf, nbytes);
 if (i != nbytes) {
 /* Something happened */
 if (errno == EINTR) {
 /* Timed out! */
 }
 }
 setitimer(ITIMER_REAL, &old_settings, NULL); /* Turn alarm off */

However, if your one-shot time interval does not require microsecond resolution, you can use a simpler function.
alarm takes an argument that is a number of seconds, and sets ITIMER_REAL to go off at that time. It's a handy
way to make your code more clear, at least:

 /* Set alarm to go off in ten seconds */
 alarm(10);

 /* Read from file descriptor, timing out after ten seconds */
 i = read(fd, buf, nbytes);
 if (i != nbytes) {
 /* Something happened */
 if (errno == EINTR) {
 /* Timed out! */
 }
 }

 /* Turn the alarm clock off */
 alarm(0);

Now, isn't that a lot more clear? alarm is provided by POSIX.1 If you want to turn off an alarm before it goes off,
set the number of seconds to 0, as in the last line of the previous example.

The Real Real-Time Time: POSIX Clocks and Timers

While the Berkeley timer functions are pretty good, they lack a couple of features that are either necessary or
desirable in real-time operating systems.

• Support of additional clocks beyond ITIMER_REAL, ITIMER_VIRTUAL, and ITIMER_PROF

• Allowance for greater time resolution (modern timers are capable of nanosecond resolution; the hardware
should support it)

• Ability to determine timer overruns: that's what happens when the timer goes off several times before you are
able to handle the signal

• Ability to use something other than SIGALRM to indicate timer expiration (in particular, a POSIX.4 real-
time extended signal would be nice)

As a result, POSIX.4 defined a new set of timer functions that, while very similar to Berkeley timers, meet the
additional requirements of many real-time applications. The POSIX.4 timers are a lot like those of standard
Berkeley and AT&T UNIX. However, the

Page 180

POSIX facilities allow for greater time resolution, implementation-defined timers, and more flexibility in signal
delivery. They are also a bit more complex. Here's a summary of the POSIX.4 offering.

 #include <unistd.h>
 #ifdef _POSIX_TIMERS
 #include <signal.h>
 #include <time.h>

 /* Getting and Setting Clocks */
 int clock_settime(clockid_t clock_id,
 const struct timespec *current_time);
 int clock_gettime(clockid_t clock_id, struct timespec *current_time);
 int clock_getres(clockid_t clock_id, struct timespec *resolution);

 /* One-Shot and Repeating Timers */
 int timer_create(clockid_t clock_id,
 const struct sigevent *signal_specification,
 timer_t *timer_id);
 int timer_settime(timer_t timer_id, int flags,
 const struct itimerspec *new_interval,
 struct itimerspec *old_interval);
 int timer_gettime(timer_id, struct itimerspec *cur_interval);
 int timer_getoverrun(timer_t timer_id);
 int timer_delete(timer_t timer_id);

 /* High-Resolution sleep */
 int nanosleep(const struct timespec *requested_time_interval,
 struct timespec *time_remaining);

 #endif /* _POSIX_TIMERS */

It's very important to mention here that the POSIX.4 timers use different time structures than do the Berkeley
interval timers. This is one instance where ANSI C function prototyping is really your friend. The POSIX.4
facilities use struct timespec and struct itimerspec, while Berkeley uses *val.

The basic principles behind the Berkeley and the POSIX.4 timers are the same. I'll present the POSIX.4 functions
immediately below; later in this chapter there's a complete example using the timers.

What time is it? It depends on what clock you look at

POSIX.4 provides a system wherein there may be a number of implementation-defined clocks. Different clocks are
useful for different things: measuring the execution of other processes, measuring the time according to an external
system, and so on. The various clocks in a POSIX.4 system are identified by identifiers that you get from <time.h>.
Different clocks are going to give you different characteristics, useful for different things.

Of course, the most basic thing you can do with a clock is tell what time it is. This is going to vary depending on
what clock you look at. POSIX.4's facility is extensible to

Page 181

new clocks, which are identified by the clockid argument to these functions. Each POSIX.4 system is required to
support at least one clock, whose name is CLOCK_REALTIME. If you want to tell the time, the most portable way
to do it is to look at CLOCK_REALTIME. (CLOCK_REALTIME is the only clock which all POSIX.4 systems
must support, since most computer hardware setups do not include more than one hardware clock. Therefore, a
totally portable application will be able to use only CLOCK_REALTIME.)

To get the time according to any clock, you call clock_gettime.

 #include <time.h>
 struct timespec current_time;

 (void) clock_gettime (CLOCK_REALTIME, ¤t_time);

POSIX.4 provides much higher clock resolution than the traditional UNIX time mechanisms. POSIX.4 time
specifications are based on the timespec structure, which differs from the more familiar timeval. timespec has the
following members:

 struct timespec {
 time_t tv_sec; /* Seconds in interval, like struct timeval */
 long tv_nsec; /* NANOseconds in interval */
 };

By using nanoseconds (10**9 per second), resolution 1000 times finer than the struct timeval is possible. Today, of
course, very few vendors even provide a nanosecond-capable clock in their hardware, and even fewer software
vendors support that sort of resolution in their operating systems. However, such fine granularity is becoming
available,* and the struct timespec will be able to support that resolution.

What you do with the time is up to you, of course. One thing you could do is measure how long an operation took,
by taking before and after snapshots of the clock. Another thing you might do is just print the time out. ANSI C
provides several time functions that convert seconds into a human-readable time string. Since timespec has a
seconds field, you can pass that off to ctime, localtime, or gmtime, and get back a string that tells you what time the
clock says it is.†

Just how accurate is the clock?

Say you call clock_gettime, wait a nanosecond, then call clock_gettime again. Do you think you'll get back a
timestamp that's one nanosecond bigger the second time? Not likely!

Although it is possible to support a clock with true nanosecond resolution, most hardware doesn't go that fine.
Furthermore, most software supports a much coarser time

* The current generation of SPARC boxes, for instance, supports two timers, each of which can resolve time down to a
granularity of 500 nanoseconds. That's pretty fine, but SGI's top-of-the-line offers a sporty 21-nanosecond resolution!
† Any good reference to ANSI C can describe these functions more completely than I intend to here. The POSIX Programmer's
Guide does a reasonable job.

Page 182

granularity than the underlying hardware provides. Otherwise, a system might spend all its time updating the
nanoseconds hand of its clock! Clocks are generally implemented using a periodic clock interrupt that goes off, say,
100 times a second. (CLOCK_REALTIME probably expires every HZ seconds, while additional clocks will do
something else). When the timer expires, the system updates its idea of the "current time." When you call
clock_gettime, it's that software-maintained time that you get, not the time maintained in the hardware.* Clock
resolution is obviously going to be important to you, so there had better be some way of figuring out what the
resolution of any particular clock is. Of course, there is such a way.

POSIX.4 allows you to determine the resolution of the clock you are using, so that your code can compensate for
drift and other quantization effects. Here's how:

 #include <time.h>

 struct timespec realtime_res;
 (void)clock_getres (CLOCK_REALTIME, &realtime_res);

The value returned in realtime_res will be the finest time interval that can be distinguished by using the indicated
clock. How long can this interval be? Arbitrarily long, for any clock except CLOCK_REALTIME. POSIX.4 states
that the resolution of CLOCK_REALTIME must be at least 50 Hz, or 20,000,000 nanoseconds.

clock_getres (and clock_gettime, for that matter) can also be used to check for the existence of a clock. Remember
that, while all systems have to support CLOCK_REALTIME, additional clock support is up to the implementor.
Say you have a clock called CLOCK_HIGHRES on a machine you're writing software for. Your first order of
business should be to make sure the clock is really there. Either clock_gettime or clock_getres will return -1 and set
errno to EINVAL if you pass an invalid clock ID. clock_getres is a better choice for existence checking because it
also tells you some useful information about the clock.

Finally, you can set the time for your clock. Most applications don't need to do this; usually, you only need to read
the current time. The system administrator usually sets the time, and it is maintained by hardware automatically.
Nonetheless, there is a standard way of setting the time for a particular clock:

 #include <time.h>

 struct timespec what_time_it_is;
 what_time_it_is.tv_sec = 994039434; /* Some time */
 what_time_it_is.tv_nsec = 60000000; /* Some time */

* Many systems provide a higher resolution timestamp by mapping the timer hardware into your application's address space.
However, very few clocks actually allow you to schedule a clock interrupt at any given nanosecond (none that I know of). In fact,
some clocks don't even have a readable version of the time: you just set them and they interrupt. You have to compute the time by
counting the interrupts. Early versions of the IBM PC are the primary examples of this sort of system.

Page 183

 if (clock_settime(CLOCK_REALTIME, &what_time_it_is) < 0) {
 perror("clock_settime");
 }

The indicated time is set, rounded down according to the resolution of the clock. There are obviously permissions associated with setting the clock; usually only a few users, privileged to perform system administration tasks, are allowed to set
the clock. The permissions required will be detailed in the POSIX.4 conformance statement for your system.

Obviously, clock_settime isn't too useful as a general date-setting mechanism without some way of turning human-comprehensible times into the numbers of seconds used by clock_settime. Luckily, ANSI C provides the function mktime,
which converts a date into a more understandable format. mktime is described below, in the discussion of absolute times.

Just a little nap

Moving along to the next most basic component of POSIX.4 timers, here's the POSIX.4 enhancement of sleep, nanosleep.

 struct timespec a_little_nap, how_much_time_is_left;
 int i;

 i = nanosleep (&a_little_nap, &how_much_time_is_left);

nanosleep is essentially the same as sleep, except with much finer resolution.* Using nanosleep, an application can delay its execution for very small amounts of time. nanosleep is still subject, though, to the same drift problems as sleep; it still
shouldn't be used for timing drift-sensitive tasks (at least, you shouldn't use it in such tasks when it may cause drift. Feel free to use it for other things.) It is useful when the timing requirements aren't particularly strict. For instance, sometimes
hardware devices require small amounts of quiet time to respond after you poke them; nanosleeping for a small time may be useful in this instance.

That explains the first argument to nanosleep, but what about the second one? Well, a delay in process execution, be it via sleep or nanosleep, may be prematurely interrupted by the arrival of a signal. In this case, nanosleep returns -1, and sets
errno equal to EINTR. As in real life, when your sleep is interrupted prematurely, your first response (okay, maybe in real life it's your third or fourth response) is probably to figure out how long you slept. nanosleep sets its second argument (a
pointer to a timespec) to the time that was remaining in the "sleep" interval when the process was awakened. That way, if the process is prematurely awakened, it knows how long it slept and how much more it would need to delay to make up
the entire desired interval. You can set this second argument to NULL if you don't care to get this information; the call is defined to ignore a NULL pointer.

* sleep doesn't even use a struct timeval; it uses a number of seconds! Yicch!.

Page 184

One important note regarding sleep and nanosleep. sleep may be implemented by using SIGALRM and an interval
timer. Since that is the case, your application should not mix the use of interval timers and sleep, except with the
utmost care. Trying to use one signal in two different ways, at the same time, can lead to confusing results. On the
other hand, nanosleep is defined not to affect the disposition of any signals. This makes it a bit easier and cleaner to
use from an application perspective.*

The POSIX Interval Timers: Fine Times

The POSIX Interval timer facilities are similar to the standard UNIX facilities in some ways, and different in
others. I'd like to start from the familiar and work backwards to the unfamiliar. You use a POSIX.4 timer with the
calls timer_settime and timer_gettime, which are very similar to getitimer and setitimer. However, there are a
couple of differences in these two functions, and there are more differences in how you set up your clocks and
timers using the POSIX.4 functions.

The first, and easiest difference is that the POSIX interval timers use a different structure that allows for
nanosecond time resolution. The struct timespec has already been introduced; a new interval structure, struct
itimerspec, simply incorporates two timespecs to form a high-resolution interval timer structure.

 struct itimerspec {
 struct timespec it_value;
 struct timespec it_interval;
 };

When you set your POSIX.4 interval timers, you use struct itimerspec, not struct itimerval.

The second difference is that POSIX timers are dynamically created. This is different from standard UNIX, which
just provides you with three standard timers, no more and no less. You use the timer_create call to make a POSIX.4
timer, and when you're done with it, you get rid of it with timer_delete. Dynamically creating timers is an extra step
you don't need to take with the standard UNIX timers; however, POSIX.4 compensates for this extra step by
allowing you to use arbitrary system-supported clocks for your timers, rather than just the system clock. In
addition, you can create at least 32 timers in any single process. That's a lot of distinct timers; certainly enough to
completely confuse yourself.

Creating a timer for your application is simple. The function timer_create is used. Here's the simplest and most
portable way to do it:

 #include <signal.h>
 #include <time.h>

* And it makes the function more of a pain to implement, for those of you in the business of writing operating systems. Oy!

Page 185

 int i;
 timer_t created_timer; /* Contains the ID of the created timer */

 i = timer_create(CLOCK_REALTIME, NULL, &created_timer);

This code snippet creates a timer based upon the system clock called CLOCK_REALTIME. CLOCK_REALTIME
exists on all POSIX.4-conformant systems, so you can count on it. A machine may define other clocks for you,
corresponding perhaps to extra, dedicated hardware resources on your particular target machine. All you can count
on for total portability, though, is CLOCK_REALTIME. If your application needs additional clocks, you should
check for them in the conformance document for the system you're considering. Real-time systems often support
extra timer hardware, and so long as you isolate use of extra clocks into separate, well-documented modules, you
should have reasonably portable code (pay special attention to the resolution capabilities of different system
clocks).

The second argument is supposed to define the signal delivery you want to have for this particular timer. The
parameter is a pointer to a struct sigevent, which is used to define a signal, either POSIX.1 or POSIX.4. By setting
this parameter to NULL, we tell the system we want the default delivery, which is defined to be SIGALRM on all
POSIX.4-conformant systems. We could define a particular signal number and signal value by changing the
example:

 #include <signal.h>
 #include <time.h>

 #define A_DESCRIPTIVE_NAME 13
 int i;
 struct sigevent signal_specification;
 timer_t created_timer; /* Contains the ID of the created timer */

 /* What signal should be generated when this timer expires? */
 signal_specification.sigev_signo = SIGRTMIN;
 signal_specification.sigev_value.sival_int = A_DESCRIPTIVE_NAME;
 /* NOTIFY_SIGNALS stuff too */

 i = timer_create(base_clock, &signal_specification, &created_timer);

This code defines a timer that delivers the signal SIGRTMIN, with the associated signal value equal to 13,
whenever it expires. (This example would only work, of course, on a system where
_POSIX_REALTIME_SIGNALS was supported.)

The third parameter is where the system stored the ID of the created timer. That's the POSIX.4 equivalent of
ITIMER_REAL, etc. You'll need this ID in order to use the timer.

As I mentioned above, you can create more POSIX.4 timers than you may be used to having available. Each timer
is a separate object, with its own signal notification setup and its own status in the operating system. You can use
them totally separately from each other. The actual limit to the number of timers you can create is defined by

Page 186

TIMER_MAX in <limits.h>. The least it can be is 32.* Because POSIX.4 timers are dynamically created, they
dynamically use some system resources. In this sense, timers are analogous to open files. Each open file descriptor
requires a little more memory from the operating system. In order to prevent the system from bloating up, you need
to close files when you're finished with them. Similarly, when you're done with a timer, you should release the
resources associated with it. More to the point, you are limited to a certain number of timers (defined by your
implementation), so you do not want unused timers sitting around using resources that you could use elsewhere. To
remove a timer that you are no longer using, call timer_delete:

 #include <time.h>

 i = timer_delete(created_timer);

This call will free up any system resources associated with the timer. If you delete a timer that is currently running
(we discuss that below), it is automatically stopped before it is deleted, so you don't need to worry about the timer
mysteriously expiring one last time after you've already deleted it. There might, however, still be a pending timer
signal (from a previous expiration) that has yet to be delivered to your process if the process has blocked that signal
with sigprocmask.

When your process calls exit or exec, its timers are automatically deleted, just as exit and exec automatically close
your files (most of them, anyway).

Setting the alarm

Once you have a timer ID, you can set that timer, just like you can set ITIMER_REAL, ITIMER_PROF, and
ITIMER_VIRTUAL. You use the POSIX.4 calls, of course, instead of setitimer and getitimer.

 #include <time.h>

 struct itimerspec new_setting, old_setting;

 new_setting.it_value.tv_sec = 1;
 new_setting.it_value.tv_nsec = 0;
 new_setting.it_interval.tv_sec = 0;
 new_setting.it_interval.tv_nsec = 100000;
 i = timer_settime(created_timer, 0, &new_setting, &old_setting);

This example sets the interval timer to expire in 1 second, and every 100,000 nanoseconds thereafter. The old timer
setting is returned in the structure old_setting. Like setitimer, you can set the last parameter, the old setting, to
NULL if you don't care about what the old setting was. The reason you can get the old setting returned to you is
that, when you call timer_settime, you change the setting of the timer, overwriting and replacing the previous
setting. If you want to restore this setting after you've used

* That's another little zinger that provides a lot of gratuitous joy for us OS vendors.

Page 187

the timer (if this code may use the same interval timer as some other section of your application, for instance), then
you need to keep track of the old setting.

The second argument to timer_settime (which, in the example, is rather undemonstratively set to zero) requires
some special attention. This argument is a word of flags that modifies the way in which the interval timer is set. At
present, there is only one flag you can set, but that one is pretty important.

So far, we have only discussed ''relative" timers. These are timers that, when set, expire at a certain time relative to
when they were set (when timer_settime was called). This sort of timer behavior is useful, of course, but there is
often another sort of behavior desired. Many applications want to be able to set a timer to go off at an absolute time
(for example, 6 A.M., Wednesday, March 1, 1995). This behavior is desirable if you want to set a timer to
terminate some sort of computation, and you fear you may be preempted before setting the timer. I'll illustrate with
an example.

Say you want a timer to go off at a particular date d, which you have in a struct timespec. Using a relative timer,
you would have to figure out the current time, subtract it from your desired time, and then set your relative timer:

 /* Time is NOW */
 clock_gettime (CLOCK_REALTIME, &now);
 expiration_time.it_value.tv_sec = d.tv_sec - now.tv_sec;
 expiration_time.it_value.tv_nsec = d.tv_nsec - now.tv_nsec;
 if (d.tv_nsec < now.tv_nsec) {
 expiration_time. it_value. tv_sec--;
 expiration_time.it_value.tv_nsec += 1000000000;
 }
 /* Time is NOW + i */
 timer_settime(created_timer, 0, &expiration_time, NULL);
 /* Time is NOW + i + j */

This approach works, in a kinda-pretty-much-you-can-almost-rely-on-it kind of way. If your calculation of the
relative time value does not take too long, and if you are not preempted, then this approach will be OK. However,
imagine you were preempted after determining the current time (NOW), but before you set the relative timer (NOW
+ i), as shown in Figure 5-2. Then you would set the timer to go off later than you wanted it to!

Furthermore, remember that clocks in most computer systems operate in units of ticks You might get the time right
before the tick is about to increment. While you calculate your relative time, the system tick might go off. This
alone will result in your missing your time by a tick. You really need to perform this entire sequence of events,
while guaranteeing that no one preempts you and no clock interrupt expires. If you were the operating system, you
could do that. But you're not. You're the application.

Luckily, POSIX.4 provides a way to do what you need. The solution is to set an interval timer to expire at an
absolute time, rather than a relative time. By setting the flags parameter to timer_settime to TIMER_ABSTIME,
you tell the system to interpret the

Page 188

Figure 5-2. Race condition when setting an absolute timer by yourself

interval timer setting as an absolute, rather than a relative time.

 /* Time is NOW */
 timer_settime(created_timer, TIMER_ABSTIME, &d, NULL);
 /* Time is NOW + i + j */

Does anybody really know what time it is?

There's one more little problem here. Where did that absolute time value come from? How was it created? We
know how to get the current time, but so far, we haven't seen any way of getting a timespec structure for a future (or
past) time.

Future times are generated in one of two ways. The future time you want may actually be relative to the current
time, but you want to set it absolutely to avoid races. In that case, simply call clock_gettime and add the appropriate
numbers to the timespec you get back.

To get a real, absolute, future time, use the mktime function. mktime is not part of POSIX.4. Its basic definition is
part of ANSI C, and POSIX.1 extends it somewhat. mktime takes a structure, struct tm, which contains the date in a
format like you might expect, and converts it to a time_t (number of seconds). You can use that time_t as the tv_sec
field in a struct timespec. Voilà, instant absolute time! True, mktime only provides a resolution of one second, but if
you really need to sleep until exactly November 17, 1995, at 2:05 PM and 3.178 seconds, you can add in the
appropriate number of nanoseconds yourself. struct tm has the following members:

 int tm_hour; /* Hour of day, valid values 0..23 */
 int tm_min; /* Minute of hour, valid values 0..59 */
 int tm_sec; /* Second of minute, valid values 0..61 */

Page 189

 int tm_mon; /* Month of year, valid values 0..11 */
 int tm_mday; /* Day of month, valid values 1..31 (or less) */

 int tm_year; /* Year, where 1900 is year 0. */
 int tm_isdst; /* Whether Daylight Savings Time applies. */

Many systems rearrange the members from the order I've given them in, and some systems have additional,
implementation-defined members in them (which you can ignore if you're just using the POSIX.4/ANSI functions).
These members correspond to a "user-friendly" representation of the time, like "12:30:07, September 6, 1997."
However, there are a few interesting little points to be careful about.

• Note that the first day of the month is 1, whereas all the other fields start at 0.

• The value of tm_sec will generally be 0 through 59, but it can be 60 to deal with the possibility of leap
seconds (those years when they adjust the atomic clocks).

• The value of tm_isdst sounds like it should be Boolean (true or false), but it's not. 0 means that DST does not
apply, a positive value means DST does apply, and a negative value means you don't know.

The POSIX definition of mktime says that the environment variable TZ affects the interpretation of this structure, if
you have it set. Otherwise, the system assumes a default time zone. Your timezone can be set with almost arbitrary
complexity; generally, though, the value of TZ indicates the time zone in which the process is operating, and is
used by the system to print the time values correctly. For instance, the value PST8PDT specifies the Pacific Time,
in which daylight savings time is observed. (For a complete explanation of POSIX timezones and the TZ
environment variable, go to section, "You're Entering . . The Time Zone," at the end of this chapter.)

To set a timespec with an absolute date, here's what you'd do:

 struct tm absolute;
 struct timespec abs_time;

 absolute.tm_hour = 23; /* 12 (PM) */
 absolute.tm_min = 30; /* :30 */
 absolute.tm_sec = 7; /* :07 */
 absolute.tm_mon = 8; /* September */
 absolute.tm_mday = 6; /* 6 (NOT 7!) */
 absolute.tm_year = 97; /* 1997 */
 absolute.tm_isdst = 0;

 abs_time.tv_sec = mktime(&absolute);
 abs_time.tv_nsec = 0;

There are two other members of the struct tm; tm_wday and tm_yday. These are redundant information: the day of
the week (0..6) and the day of the year (0..365). When you call mktime, it fills in these two fields with the correct
values for the time you've given. For this application of mktime, you probably don't care.

Page 190

The "double" of timer_settime is timer_gettime, which (as you'd expect) reads the time left on the timer:

 #include <time.h>

 struct itimerspec time_remaining;
 i = timer_gettime(created_timer, &time_remaining);

This code sample initializes time_remaining with the time remaining until the timer expires, together with the
interval setting for the timer.

The next function provides an important feature that's not available in standard UNIX. Applications frequently have
to deal with the problem of signal loss. We addressed this problem when we talked about queued real-time signals,
but the signal delivered on timer expiration is different. It's different because that signal can go off an arbitrary
number of times before the process actually gets around to handling the signal. This means that the system may use
more and more resources to queue up successive occurrences of the timer signal, eventually clogging up the
system. Granted, you can solve the problem without using extra resources for additional queued timer signals, but
that complicates the signal facility. Moreover, in the case of a timer, the application doesn't really need to get all
those signals. The application really only needs to know how many of those signals there are.

Therefore, POSIX.4 doesn't queue up timer expiration signals if a timer overruns. Instead, it provides a function
that allows the application to determine how many times the timer has overrun. If you want to use it, you can;
meanwhile, the signal and timer implementation are not needlessly complicated by additional semantics.

 #include <time.h>

 int n_overruns;

 n_overruns = timer_getoverrun(created_timer);

The overrun count is reset each time you actually handle the timer signal. Thus, the count is the correct count as of
the time the signal was delivered to the process. Subsequent overruns may (will) continue to occur as time goes by.
If you take the timer signal on time, every time, without overruns, then the value returned by this function will
always be zero. Obviously, the number of overruns may be very large, perhaps more than can be stored in a single
int. Each implementation defines its own maximum number of overruns, DELAYTIMER_MAX. That is the largest
value that timer_getoverrun will return. If you get more overruns than that, well, tough. Most implementations will
probably set DELAYTIMER_MAX to MAXINT. For a 32-bit integer, for instance, the value is probably 2-331 - 1
(assuming two's-complement integers).

Page 191

POSIX.4 Timers: Notes and Hints

There are a lot of parts to the POSIX.4 clocks and timers facility, and it can be a little daunting. Below, there's a
code example of the simplest, most common way in which you'd tend to use the POSIX.4 timer facilities.

 #define _POSIX_C_SOURCE 199309
 #include <unistd.h>
 #include <signal.h>
 #include <time.h>
 #include <stdio.h>

 #define OUR_CLOCK CLOCK_REALTIME

 char *progname;

 void timer_intr(int sig, siginfo_t *extra, void *cruft)
 {
 int noverflow;
 if (noverflow = timer_getoverrun(*(timer_t *)
 extra->si_value.sival_ptr)) {
 /* Timer has overflowed -- error! */
 }
 return;
 }

 timer_t mytimer;

 main(int argc, char **argv)
 {
 int c;
 struct itimerspec i;
 struct timespec resolution;
 struct sigaction sa;
 sigsett allsigs;
 struct sigevent timer_event;

 progname = argv[0];

 sigemptyset(&sa.sa_mask);
 sa.sa_flags = SA_SIGINFO; /* Real-Time signal */
 sa.sa_sigaction = timer_intr;

 if (sigaction(SIGRTMIN, &sa, NULL) < 0) {
 perror("sigaction");
 exit(2);
 }

 /*
 * First, detemrine whether the desired clock exists (not necessary
 * with CLOCK_REALTIME, but a good idea in general
 */
 if (clock_getres(OUR_CLOCK, &resolution) < 0) {
 perror("clock_getres");

Page 192

 exit (1);
 }
 printf("Clock resolution %d sec %d nsec\n",
 resolution.tv_sec, resolution.tv_nsec);
 /* Create a timer based upon the CLOCK_REALTIME clock */
 i.it_interval.tv_sec = 0;
 /* Set resolution to one-tenth the maximum allowable */
 i.it_interval.tv_nsec = resolution.tv_nsec * 10;
 i.it_value = i.it_interval;

 /*
 * This describes the asynchronous notification to be posted
 * upon this timer's expiration:
 * - use signals (not that there's any other alternative at present)
 * - send SIGRTMIN
 * - send extra data consisting of a pointer back to the timer ID.
 * cannot pass the timer ID itself because we haven't created the
 * timer yet!
 */
 timer_event.sigev_notify = SIGEV_SIGNAL;
 timer_event.sigev_signo = SIGRTMIN;
 timer_event.sigev_value.sival_ptr = (void *)&mytimer;

 if (timer_create(OUR_CLOCK, &timerevent, &mytimer) < 0) {
 perror ("timer_create");
 exit(5);
 }

 /* Relative timer, go off at the end of the interval */
 if (timer_settime(mytimer, 0, &i, NULL) < 0) {
 perror ("setitimer");
 exit(3);
 }

 sigemptyset(&allsigs);
 while (1) {
 sigsuspend(&allsigs);
 }
 exit (4);
 }

Some notes and hints on this example:

• We use a symbolic name for the clock, so that it's easy to switch to another clock when porting.

• We do a clock_getres to determine whether the desired clock exists.

• Not only does clock_getres tell us that the clock exists, it tells us how good the resolution is. We use that
resolution in setting up the interval timer, so as to avoid timer drift.

• When creating the timer, you'd like to pass the ID of the timer to the signal handler. However, you don't have
that ID yet, so you have to settle for passing the address of the ID of the timer.

Page 193

• This example uses a single timer, interrupting on SIGRTMIN. To add multiple timers, you could easily set
them up on multiple signals. Remember that the POSIX.4 signals are defined to be delivered highest-numbered
signal first. So, you could set the higher-priority and higher-frequency timers to the higher signal numbers. You
might want to consider using a more efficient signal pausing function, as well: sigwaitinfo is generally more
efficient that sigsuspend.

Keeping Your Memory Handy: UNIX and POSIX Memory Locking

Everything we discuss in this chapter is targeted towards making your computations happen on time. That goal, in
turn, depends on the operating system not putting some other obstacle in your way. Two such obstacles normally
come up. One obstacle is the performance of your operating system, and your only recourse for a slow OS, if it's
too slow, is to buy another OS (or a faster machine). We'll discuss performance issues in Chapter 7, Performance,
or How to Choose an Operating System. The other obstacle you can program for, and we'll discuss it right now.

This obstacle, in two words, is virtual memory, or rather some of the facilities that go along with it. On the whole,
virtual memory—mapping of virtual addresses to different physical locations—is helpful, both in normal
timesharing and in real-time systems. Virtual memory mapping provides protection between distinct processes, and
protects the operating system from a wayward program's wild memory writes or a malicious program's planned
intervention. In addition, virtual memory eliminates most of the memory fragmentation problems that occur in
physical memory machines.

The problem facilities are demand paging and swapping, which are generally bundled along with virtual memory
mapping. Demand paging and swapping are two distinct varieties of the same thing, which we'll just call paging for
conciseness. The idea is to run applications that require more physical memory than there is available on the
machine. To do this, the operating system moves pages of application memory out to disk when they're not being
used, and re-uses the physical memory for a process that needs the memory. Demand paging usually means stealing
a page at a time from one process for another. Swapping is rather more drastic: the operating system dumps an
entire process out to disk and re-uses all its physical memory. There's a whole literature devoted to paging; for
more information, consult some of the references in the bibliography.

Paging is also a good thing in most situations. A 16-megabyte development box probably doesn't have enough
physical memory to run your operating system, the X Window System, the window manager of your choice, your
editor (especially if it's Emacs, the mother of all editors), make, and a slew of compiler, assembler, and loader
processes. Then throw in profilers, debuggers, your window reading email, and news.

Page 194

There is no way all that stuff is going to fit in the physical memory most machines come with. And say you want to
run an Ada program? Never mind.

When is Virtual Virtual?

Lynx Real-Time Systems, where I used to work, provides an interesting and educational example of the distinction,
and the confusion, between virtual memory and paging. Lynx supported virtual memory mapping, but not paging,
until our 2.0 release. When the paging facility was implemented, it was conditionally compiled into the kernel using
#ifdef VM—even though we already, technically, supported Virtual Memory! The other facet of this little tale is the
reason we came out with paging—it's not really wanted in most real-time systems anyway. It turns out that two
groups of customers were having problems with physical memory limits. One group wanted to use X and Emacs at
the same time. The other group wanted to run Ada programs alone. Neither task set would fit in the 4 or 8
megabytes typically found on a 80386 machine! I understand the Ada runtimes are vastly improved since those
days, and as for X and Emacs...sometimes you just have to page.

The problem is that paging takes time, lots of it, and you don't know when the operating system is going to decide to
page your memory out to disk. That means, when your application demands responsiveness that may be measured in
microseconds, you may find yourself waiting milliseconds or more while the operating system goes out to disk and
fetches your memory. Your response times and scheduling guarantees go out to lunch. For example, let's say you get
some input from a sensor which has to be handled within a millisecond, or else all Hell will break loose on your
factory floor. The scenario goes like this: input comes into your sensor, which interrupts. Your interrupt routine
pokes your Very Important Process in some system-specific way, causing it to be scheduled to run. The scheduler
then tries to run your process, which has been blocked waiting for input; but, because the slob in the control room has
been running Emacs, and hack, and compiling Ada programs on the system, your important process has been paged
out to disk! It takes something like 8 milliseconds to get the data from the disk. Long before the data has arrived, the
disk, and the control room, have been obliterated by a rain of 300-mph steel disks hurled across the room by an out-
of-control robot lathe!

Well, we could have saved the factory if we'd thought to lock the Important Process's memory down so the operating
system couldn't page it. SVR4 UNIX and POSIX both specify the same facilities for memory locking. SVR4 also
provides a lower-level under-the-hood sort of facility that is overkill for most real-time applications. This facility
goes by the name memcntl, just so you know what it is if you happen to stumble

Page 195

across it. Since the facility you really need is memory locking, and the POSIX.4 functions are in System V as well,
there's no need to discuss memcntl any further here.

The more useful interfaces do two things. First, they allow you to lock down your entire process. That is generally
what you want to do: just lock the whole thing down and be done with it. If you have a lot of big processes, though,
you may not be able to lock them all down. In that case, you may want to try and lock down just the time-critical
portions of those processes, if you can figure out what part of your memory contains time-critical code and data.

Locking It All

The facility for locking the entire process down is pretty simple, and defined unter the option
_POSIX_MEMLOCK:

 #include <unistd.h>
 #ifdef _POSIX_MEMLOCK
 #include <sys/mman.h>

 int mlockall(int flags);
 int munlockall (void);
 #endif /* _POSIX_MEMLOCK */

mlockall, obviously enough, tries to lock all your memory down. This includes your program text, data, heap, and
stack; it includes shared libraries you have mapped in and other shared memory areas you may be using. Depending
on the flags you specify in the argument to mlockall, it will either lock all your current mappings
(MCL_CURRENT), or your current mappings and any future mappings you may make (MCL_CURRENT |
MCL_FUTURE). You can also specify just MCL_FUTURE (which would lock your future memory mappings, but
not your present ones), although I can't for the life of me figure out why you would want to!

When you lock your future mappings down, you are assuming that your machine has enough memory to allow this.
If your application grows without bounds, you will obviously run out of memory at some point. Assuring that you
have enough memory is your problem; POSIX.4 does not specify any means by which the system will let you know
if you can't lock any more memory. A nice system might cause a memory allocation attempt to fail if the memory
couldn't be locked: a less nice system might send your process a signal, and a really nasty unusable system might
just perform the allocation but not lock the memory down! All of these possibilities are allowed. What POSIX.4
does say is that the implementation shall define what mechanism it uses when it cannot honor MCL_FUTURE
memory locking requests. That means that the implementation has to say, in its conformance statement, what it will
do if you run out of memory. You should pay attention to that portion of the conformance statement.

munlockall unlocks your locked memory. When memory is unlocked, it does not necessarily mean that it will be
paged; but it might be. munlockall really tells the system that it's okay to page this process's memory if the system
must.

Page 196

Locking Parts

If you cannot lock down your entire process, you may want to try locking down parts of it. The facility for locking
down an address range is somewhat low-level, but it provides all the functionality you need. Notice that it is
defined under a different POSIX.4 option, _POSIX_MEMLOCK_RANGE.

 #include <unistd.h>
 #if defined(_POSIX_MEMLOCK_RANGE)
 #include <sys/mman.h>

 int mlock(void *address, sizet length);
 int munlock(void *address, sizet length);
 #endif /* _POSIX_MEMLOCK_RANGE */

mlock locks down the address range you specify, and munlock unlocks a range. The locking performed by mlock
and the locking performed by mlockall are the same sort of thing. In other words, if you call mlock for a range of
memory, and then call munlockall, the latter unlocks the memory you locked with mlock.

Locks do not stack. If you call mlock 10 times on a given page, how many times do you need to call munlock to
unlock that page? Just one. This means that you cannot lock memory for a small section of code, then unlock it,
expecting everything to go back to "the way it was." For example, look at the following code example:

 /* Main routine of application. */
 main()
 {
 /* Lock down all memory in application */
 mlockall (MCL_CURRENT|MCL_FUTURE);
 /* Do application, whatever it is */
 munlockall(); /* Unlock memory. */
 exit (0);
 }

 /*
 * Routine supplied by third-party vendor to do highly specialized
 * function.
 */
 char big_area[BIGSIZE];
 blah()
 {
 /* Swapping any of the big area will seriously slow me down! */
 mlock(big_area, BIG_SIZE);
 ... /* Compute */
 munlock(big_area, BIG_SIZE); /* Unlock the big area */
 }

When the application is first invoked, it locks itself down in memory. When blah is invoked, though, it does its own
lock of the big_area array. And then—here's the problem—it unlocks the array. The unlock results in a "hole" in
the locked memory space of the application, which may include other data structures than the big_area

Page 197

array, depending on whether BIG_SIZE is a multiple of PAGESIZE or not. (Remember that PAGESIZE is defined
in <limits.h>.)

The conclusion is this: memory locking is a global issue that should not be performed by small, transient sections of
code. Rather, these sections should document their requirements, so that the application writer can determine what
memory in the application needs to be locked down, and when. You should not treat memory locking as something
you do just for a small section of code, and then unlock the memory. You should plan on locking down your
application and leaving it locked down until it is out of ''real-time mode."

The choice of addresses and lengths to lock is bound to be non-portable, because different systems put different
things in different places. For instance, say you want to lock down all your process's text (instructions). On a
standard, statically-linked executable this is usually simple, if nonportable. For many machines, the text segment
starts at a lower address than any other section, and extends up to a symbol, defined by the linker, called etext. You
could reasonably lock down your memory between 0 and etext, and expect your application's text to then, in fact, be
locked down:

 i = mlock((void *) 0, (size_t)&etext);

Here are the things to watch out for. I won't call them problems because we know that this code is going to be non-
portable anyway. First, text doesn't always start at 0. Solaris boxes, for instance, tend to start it at 16K. LynxOS
starts text at 32 (no, not 32K, 32 bytes). Some machines put their text above their data and stack. Still other
machines use completely separate address spaces for text and data. Unfortunately, mlock explodes if you pass it an
address where there isn't any memory (like 0, on a Sun running Solaris). You really need to look at the start address
for the executable in order to know where text starts. Luckily, you can get this information from a test compile of
your application, using nm or any of a number of other object file inspectors (nm is provided under the User
Portability Utilities and Software Development Utilities options of POSIX.2).

Second problem: POSIX is vague on what values the address parameter may take. Memory locking is performed in
units of pages, though, and the system may require you to give it an address that is page aligned. I'd recommend
you always align both the address and the length for increased portability, just as we did for mmap:

 #include <limits.h> /* For PAGESIZE definition */
 #define ROUND_DOWNTO_PAGE(v) ((unsigned long) (v) & ~(PAGESIZE-1))
 #define ROUND_UPTO_PAGE(v) \
 (((unsigned long) (v) + PAGESIZE - 1)
 & ~(PAGESIZE-1))

 i = mlock(ROUND_DOWNTO_PAGE (address), ROUND_UPTO_PAGE (length));

Page 198

The rounding macros are still not completely portable (casting a pointer to a long is an unsafe practice), but at least
we've localized the non-portability into a header somewhere.

The third problem is a real killer. What if you want to use shared libraries? The discussion above was directed at a
statically-linked executable. In contrast, many machines (almost all UNIX machines today) create dynamically-
linked executables by default. These machines use shared libraries in an effort to conserve space. A shared library
is mapped into the address space of a process when it first starts up, with the library text shared between all
processes using the library. This can result in a big memory savings if many processes are using the same library
(like, for example, the C library). However, shared libraries live in a totally different part of memory from static
application text. On System V UNIX machines, they usually exist up above the process stack, in the zone between
the stack and the beginning of the operating system. If you want to lock down a shared library, you need to
determine where it is going to be mapped in and how big it is.

I may have frightened you away from the use of mlock. That's probably a good thing. Use mlockall when you can.
If you must use mlock, localize all its use into a file or two, align the address and the length parameters, and flag the
affected files as nonportable so you look at these files for each new machine you want to run your application on.
Remember, portability is an attribute that can be maximized, not a binary value that's either true or false.

Locking a single function

Generally, you will want to lock down your application as a whole. The other common thing you might want to do,
though, is to just lock down selected parts of your application. For instance, a high-priority interrupt handler*
function may absolutely need to be present in memory, while the majority of the application can be swapped with
no problem whatsoever. How would you lock down just that function?

Say this is our interrupt handler code:

 void intr_handler()
 {
 ...
 }

First of all, you do not do it from within the function itself. The memory needs to be locked down before the
interrupt handler gets called, right? So, you probably have another routine that initializes this whole subsystem of
your application. Use that routine to do your locking:

* Usually, it's a signal handler in your application, because most operating systems don't allow your application code to handle
interrupts directly. (Some systems, notably hard real-time embedded systems like QNX, do allow applications to handle interrupts
directly.)

Page 199

 void intr_handler()
 {
 ...
 }

 void intr_handler_init ()
 {
 ...
 i = mlock(addr, len); /* Addr and len to be determined shortly */
 }

Locking a single function requires you to know something about how your compiler and linker are going to
rearrange your code. In the simplest situation, code is generated in the same order in which you wrote it. If function
A follows function B follows function C in your code, then A will follow B will follow C in your executable. This
is usually the case, and you can use this knowledge to lock down the area from the beginning of your function to
the beginning of the next function:

 void intr_handler()
 {
 ...
 }
 void right_after_intr_handler ()
 {
 }

 void intr_handler_init ()
 {
 ...
 i = mlock(ROUND_DOWNTO_PAGE(intr_handler),
 ROUND_UPTO_PAGE(right_after_intr_handler));
 }

This code will, on many machines, do the right thing: lock those pages containing the address range from
intr_handler to right_after_intr_handler. However, you should still check into your linker's behavior on each
system you port to. Optimizing compilers, like the Watcom C compiler under QNX, will seriously rearrange
functions in a quest for efficient code. If code is not generated in a strict linear layout, your address calculations
will be much more difficult, and definitely non-portable. You can usually do this just by looking at the symbol table
of the generated executable, using something like nm. If intr_handler is immediately followed by
right_after_intr_handler, you're okay. Otherwise, you've got problems!

So say you've figured out how to lock your interrupt-handler code in memory. You're set! except that you also need
to lock down the data and stack memory used by that code...

Page 200

Always lock

On many embedded real-time systems, there are no disks, and therefore no way the system can page or swap. On
such a system, there would seem to be no reason to call mlockall and munlockall.

Wrong! There are two reasons. The most important reason is portability. If you are interested in portability, it
means that you have an interest in seeing your application run on some other machine someday. That machine may
have the ability to page, even if this one doesn't. Therefore, always lock down the memory of your real-time
application, even in an embedded target.

The other reason is that memory locking may, on some systems, also lock MMU context.* However, certain
memory management units (like those on the more archaic versions of the SPARCstation) are too small to keep all
processes in the MMU at one time. On machines with smaller MMUs (and we're talking about embedded, read
smaller, machines), there is some hardware context that is being swapped around for the purposes of running
multiple processes. Managing that hardware context can add enormous overhead to your context switch times, and
some systems will implement mlock and mlockall so as to lock the process into the hardware MMU context as well
as physical memory. The standard does not require this behavior, but it's certainly possible that a vendor of
embedded systems will implement memory locking in such a way that, in fact, your entire path to the memory is
locked down, MMU context and all.

Brass Tacks

This next section discusses how to use the facilities I've just described, and helps you out with some "brass tacks"
issues: how all these things can be appropriately used to help solve your real-world scheduling problems.

Assigning Priorities: Rate-Monotonic Analysis and POSIX Scheduling

Now that you know how to set priorities for different processes, you may be wondering how to decide what
priorities to assign. Which processes should run at which priorities in order to make sure that your application
meets its timing goals? Sometimes this decision is apparent. If there is one time-critical task, just run it at a higher
priority than anything else that might want to run. If you can easily determine the response requirements of each
task, make sure that the ones with the tighter requirements have the higher priorities. However, what if there are
several tasks that are all time-critical?

* Often MMU context need not be locked. The Intel 80x86, the Motorola 68000 family, and the SPARC processors later than the
SPARCstation 2, for instance, all provide enough MMU context that you do not need to lock MMU resources down explicitly.
That's because their MMU tables use plain old physical memory to store MMU context in, instead of dedicated (and limited-size)
memory resources. This seems to be the trend in memory management units, but many other MMUs use limited amounts of
context.

Page 201

How do you figure out which task should get the highest priority, and which should be lowest? Do you just figure
out which task is "most important" and run that one at the highest priority? Do you need to alter priorities
dynamically to meet the timing requirements of your application?

For hard real-time, periodic tasks, the answers are simple. Using rate-monotonic analysis, you can easily figure out
what priorities you should assign to each process, and analyze whether those tasks can meet their timing goals.

Rate-monotonic analysis is a technique pioneered in 1972 by Drs. C.L. Liu and J.W. Layland. It was promptly
buried in a deep, dark academic report* and forgotten until researchers at Carnegie Mellon University dug it up
again in the 1980s.

Rate-monotonic priority assignment is simple. All you need to know is the frequency at which all your processes
need to run. For sporadically-interrupting tasks, you can use the worst-case arrival rate as the frequency for the
purposes of assigning priorities (this number is generally pessimistic—that's why they call it worst case!). The
highest-frequency process gets the highest priority. The lowest frequency gets the lowest priority. And everyone in
between gets a priority that is higher, or lower, depending on its frequency. Don't assign any two processes the
same priority; and make sure that all your priorities are higher than anything else that may be running on the
system. If two or more processes have identical frequencies, you can flip a coin to decide who gets the higher
priority.

For example, say your application consists of five tasks, as shown in Table 5-1. A user-interface task, U, goes off
10 times a second. Two hard-real-time control tasks A and B run at 100 HZ; a data collection task, C, runs at 66 Hz,
and a data logging task, L, runs at 50 Hz. You would run A and B at the highest priorities: say 90 and 100. C is the
next-highest frequency, so run it at the next-highest priority: 80. L comes next: run it at priority 70. Finally, run U
at a relatively low priority, 60. I use numbers that have room in between them so that the addition of new tasks will
not require a total recomputation of the priorities.

* C.L. Liu and J.W. Layland, "Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment," Journal of the
ACM, volume 10, number 1 (January 1973), pages 46 through 61. This is an academic paper. For those of us who are
mathematically challenged (like me), I'd recommend skipping this paper and moving on to one of the easier introductions to
ratemonotonic analysis. There was a particularly good introduction, I thought, in IEEE Computer, volume 23, number 4 (April
1990): "Real-Time Scheduling Theory and Ada," by Lui Sha and John B. Goodenough.

Page 202

Table 5-1: Example rate-monotonic priority
assignments

Task Frequency Rate-Monotonic Priority

A 100 90

B 100 100

C 66 80

L 50 70

U 10 60

Again, remember to avoid the use of actual numbers when using the POSIX real-time scheduling code; instead, use
virtual scheduling numbers that are offsets from the minimum and maximum priorities for SCHED_FIFO.

Now that you've done rate-monotonic priority assignments, is it guaranteed that your application is always going to
make all its deadlines? Of course not. It depends on how much time each task takes, as well as how those tasks
interact, the resources they share, how long each task holds those resources, and so forth. The basic priority
assignment remains the same, though.

Rate-monotonic analysis assumes a world in which tasks execute periodically with fixed frequencies, so it's mainly
seen in the hard real-time and embedded control worlds. There are modifications to rate-monotonic scheduling that
you can use to deal with changing frequencies and tasks that don't run on a static timeline. However, I'm not going
to cover these here. The important rule to remember is that you assign the highest priority to the task with the
tightest timing restriction.

Rate-monotonic analysis allows you to determine whether your task set is going to work by using one simple
formula or ten.*

Determining Computation Times: ITIMER_VIRTUAL and ITIMER_PROF

You can use the other two Berkeley interval time I mentioned earlier in this chapter to determine how long your
computations take. Recall that there are three interval timers provided by those, standard UNIX, timers:
ITIMER_REAL, ITIMER_VIRTUAL, and ITIMER_PROF. While ITIMER_REAL measures actual, wall-clock
time, ITIMER_VIRTUAL only measures time spent by your code, and ITIMER_PROF measures the time spent by
your code or by the operating system on behalf of your code. For instance, say you have code that does nothing but
perform system calls. Since it spends the vast majority of its time in the operating system, the time spent according
to ITIMER_VIRTUAL would not be very great. However, according to ITIMER_PROF, the time spent by your
process would be more substantial, since that time includes both user and system time.

* For the comprehensive deskside reference, I'd recommend A Practitioner's Hand book for Real-Time Analysis: Guide to Rate-
Monotonic Analysis for Real-Time Systems, a book written by various people at the Software Engineering Institute (Klein, Ralya,
Pollak, Obenza, Harbour) and published by Kluwer in 1993.

Page 203

One way in which ITIMER_VIRTUAL and ITIMER_PROF are used is for profilers. These software tools interrupt
your code every so often, and sample where the execution of the program is at that instant. By doing so, you can
obtain a statistical picture of where your process is spending its time. ITIMER_VIRTUAL is especially useful in
this instance, since it disregards system time and therefore tells you only what your application code is doing.

I'm considering another use of ITIMER_VIRTUAL and ITIMER_PROF here, though. If you can execute your code
multiple times, in a loop, you can set up these timers to expire after a fixed amount of time: say, 60 seconds. Then,
by counting iterations, you can determine how long one iteration of your computation will take. I suggest you use
ITIMER_PROF for this purpose, since time spent in the operating system is still time spent by your computation.
For rate-monotonic analysis, you need to know the total time required by each of your computations. For this
purpose, ITIMER_VIRTUAL does not tell you the complete story.

ITIMER_PROF and ITIMER_VIRTUAL, as periodic timers, offer only a statistical measurement of your execution
time. Just like ITIMER_REAL and CLOCK_REALTIME, these timers are probably driven off the system clock
tick. Whenever a tick expires, the system checks which process is running, and where. If it happens to be your
process, then you get the tick credited to your CPU bank account. Note that you get the entire tick, whether or not
your process actually ran for that entire tick! In order to measure your computation time somewhat realistically,
then, you need to make sure that your process, when being measured, occupies the CPU basically full-time.

In addition, running your computation multiple times will yield a different result than running your computation
once. For example, when you run a computation once, it will not be able to take advantage of the cache on your
machine. The second time you run the computation, though, cache lines will be filled up with data your application
can access quickly. The result is that your application runs faster the second and subsequent times around the loop.
When you run thousands of iterations, obviously this faster time is going to come out as the average time for the
computation. There is no easy, portable solution to this problem. You simply need to be aware of cache
characteristics on your machine, and take them into account when measuring your application's time. You may
need to stoop so low as to count the cache lines used by your code, and project the result of an entirely empty cache
on your code. You can do this, if you know certain things: cache line size, cache characteristics, and time to fill
cache lines. However, the job is difficult, and, frankly, beyond the scope of this book!

Priority Inversion and System-Wide Scheduling

Priority inversion is an insidious and sometimes fatal disease that afflicts most real-time applications at one time or
another. The idea behind priority inversion is that a high priority task can be blocked while a lower priority task
runs, if the higher priority task is waiting for a semaphore or some other resource that is owned by a low-priority

Page 204

task. Assume that a high-priority task is at priority ten, and is waiting for a resource that is being used by a priority
one task. A third task, at priority five, can preempt the priority one task, and therefore delay the priority ten task
longer than it should have been delayed.

The problem of priority inversion comes up when a resource (any resource) is used by both a lower-priority task
and a higher-priority task. How can it be avoided? You have two choices, neither of which is terribly attractive.
One, you can analyze your application to determine where possible priority inversions occur, how long they can
occur for, and whether the inversions matter to your application. The problem with this approach is that you don't
always know all the shared resources being used by your application. The operating system has some resources
inside of it which it shares for you without your knowledge. Consider two tasks opening files. Even if the files are
unrelated, both tasks may need to look at the same directory blocks in order to look up their files. Those blocks
must be shared. There's a prime opportunity for priority inversion that you don't know about.

The second way to avoid priority inversion is called "priority inheritance," and can be used in addition to the first.
Unfortunately, it's only something you can be aware of, not something you can do anything about. If your operating
system supports priority inheritance, then you have a solution to the problem of priority inversion.

Priority inheritance avoids priority inversion by temporarily elevating low-priority tasks to the priority of the
highest task that is waiting for the resource. Thus, if priority ten is waiting for a directory block, and priority one
owns it, priority one gets to run at priority ten until it releases the directory block. That way, no one at priority five
can preempt the priority one task before the priority ten task gets its resource.

Priority inheritance is nothing that is really available to you, the programmer, as part of POSIX.4. You can really
only know about it. If the operating system supports it, all the better for you. If the operating system does not
support it, well, you just have to live with that. Or find another operating system.

Life During Real-Time

UNIX guys are not familiar, by and large, with how real-time scheduling policies impact one's day-to-day life. This
section describes what you can expect when running processes under SCHED_FIFO or SCHED_RR: a couple of
the gotchas together with a few other hints.

First, the most common comment I hear about SCHED_FIFO is a rhetorical question: "what if you write an infinite
loop program and run it at the highest priority?" Well, the system goes away, as far as you're concerned. Don't do
that. That is actually quite rare, but it does happen, especially if you're writing test programs to see how something
works and you make a mistake. This is my preferred mode of programming. Some call it "rapid prototyping"; I call
it "dorking around.'' The solution to this problem? Simple.

Page 205

Run your shell under SCHED_FIFO, at the highest priority in the system. Then refrain from using the highest
priority level in your test programs. That way you can usually regain control. Of course, you'll need some method
for changing the priority of your shell. Atprio, introduced earlier in the chapter, will suit your needs nicely.* In the
exercises, we extend atprio into a full-blown utility you can use for complete control over the priorities your
processes run at. To wrestle the system back from the grips of an errant program, you either need to kill it with a
signal, or alter its scheduling priority. If you run into a program that is unkillable via signals, a useful Plan B is to
set the thing's priority as low as it'll go. That gets it out of your hair for a while. A simple addition to atprio allows
it to set the priority of running processes; all you really need is the ability to pass a process ID in to atprio.

Figure 5-3. Layers of software between you and an errant program

kill, atprio and a high-priority shell are often all you need to regain control, but sometimes they are not sufficient.
Layers of processes (see Figure 5-3) can intervene between an out-of-control real-time process and you, madly
typing CTRL-Cs at the keyboard. If you are on a terminal connected directly to the machine, you are probably not
talking to a lot of software in order to kill the process: there's your terminal, its interrupts, the operating system
handling these, and your shell process getting the

* Some systems provide their own utilities that provide the same sort of functionality: QNX has slay, and LynxOS has prio and
setprio, not to mention q.

Page 206

input and executing programs to send the signals and/or change the priority. However, with a window system like
X, the picture is different. If the window server is locked out by an errant program, it doesn't matter that your shell
is at a high priority, because you can't get input to the shell! So, you need to run at least your X server, the window
manager, and the client (xterm, shelltool, etc.) under the real-time scheduling discipline and at a high priority.
Another problem might arise if your operating system is based on a microkernel (like Mach). In a standard, old-
style operating system, when you ask to run a program, the operating system goes out and gets it directly, and runs
it. In some newer systems, in which user-level processes may provide many system services, you must make sure
that any separate processes you will need in order to run kill or atprio are also running at a high enough priority to
do their jobs. In other microkernel operating systems, like QNX, priorities can be inherited by microkernel
modules, avoiding priority inversions. This stuff can get a little complicated; it's easier to just run your possibly-
errant program at a low priority.

What's it like living without a time-sharing scheduler? You'd be surprised at how easy it is. My development
system runs only FIFO and round-robin scheduling, and I can effectively use it just like a standard UNIX
workstation. Processes in day-to-day use generally block themselves rapidly enough that the CPU is available to
you at any time. There are some differences, of course. Many programs have times when they do a lot of
computing. When that happens, you may find your shell frozen for a second or two. For example, the linker I use
for building programs has one compute-bound phase just before writing out the executables it has generated.
During this phase, the disk light stops flashing and everything freezes while the linker thinks. It's actually sort of
reassuring because I know, when everything momentarily freezes, that the linker is almost done. I take my hands
off the keyboard, look at the disk light, and when it flashes again (a few seconds later), I continue with what I'm
doing. Usually, of course, I'm waiting for the linker, so the fact that it monopolizes the CPU is fine by me. In the
era of single-user workstations, a priority-based scheduler seems fine.

On a multi-user system, real-time scheduling can cause problems. For instance, my machine is also an NFS server
for other developers who work with me. That means that my machine has to do some processing to get data to them
from time to time. When I'm running the linker, their NFS requests tend to get choppy response for a couple of
seconds. Taking it a little further, every now and then I'll run a high-priority benchmark that will essentially lock
the system up for several minutes. Imagine the result of running a time computation, like I suggested for measuring
time using ITIMER_PROF, where the application spins, at highest priority, for a minute or more—a good imitation
of a crashed machine! In that case, my machine does what every good real-time system should do with
asynchronous NFS requests. It sticks them in the queue and gets to them in priority order, usually several minutes
later than expected!

A time-sharing system is probably a better choice for your day-to-day operations if you are engaging in mostly
time-sharing activities, like software building. The advantages

Page 207

of building your software on the same machine you use for testing are enormous. However, if you're building
software all the time, a timesharing machine may offer better performance, especially if you have multiple builds
going on at the same time. After all, the time-sharing guys have gone to great lengths to make that sort of activity
faster.

Nice but Not Necessary: How to Make the Time Readable

The time facilities we've discussed provide what's required for real-time applications, but there is a lot more to the
time facilities than this. In particular, I have not discussed time zones or international Daylight Savings Times
conventions, because they're not relevant to most real-time applications. In general, a real-time application, when it
wants to know what time it is, just wants an absolute yardstick to measure against: Greenwich Mean Time (a.k.a.
Coordinated Universal Time) works fine for this purpose. However, local time is desired often enough that we
should probably talk about how to get it.

On your average machine, the hardware time is kept as the time in a particular time zone, usually Greenwich Mean
Time. The system time is derived from this hardware-maintained time, so files transferred around the world have a
consistent time base. Given this number of seconds, the conversion to a local time is done by a library routine,
based on knowledge of what time zone the machine is operating in.

You're Entering... The Time Zone

How does the library know what time zone it is operating in? There is usually a system default that the library can
fall back on, but that's implementation defined. The first place the library looks is in an environment variable called
TZ. TZ contains a text string that describes completely the time zone in which the application is operating.

The format of TZ is a complicated matter, and more the province of the system administrator than the application
writer. However, chances are you'll need to look at TZ once, or more, in your life, so here goes.

A fairly simple, common example of a TZ, or timezone string (for standard time in California, in this case) looks
like this:

 PST8PDT

The first three characters are the Standard Time Zone (pst); the final three characters are the Daylight Savings Time
Zone (pdt). In between is a number, 8 here, which tells how much time to add to the local time to get back to
Greenwich Mean Time. The time zone strings are used to determine which days daylight savings time begins on (it
varies, of course, depending on which municipality you're in).

Page 208

The assumption is that your daylight savings time is one hour ahead of standard time; that's usually the case. If it's
not, you can specify that in the timezone string. For example, if your dst is seven hours and 15 minutes ahead of
GMT (instead of the default seven), you could set TZ to:

 PST8PDT7:15

In fact, you can set arbitrary offsets for your time zones, complete down to the second:

 PST8:15:37PDT7:15:38

The fairly heinous example above uses the Pacific Standard and Pacific Daylight Savings Time Zones, but standard
time is eight hours, 15 minutes and 37 seconds behind GMT; daylight savings time is seven hours, 15 minutes, and
38 seconds behind GMT. Implicit in this example is the fact that we're in a locale (California) that is west of the
Prime Meridian. If we were east of it, we could indicate that fact by prepending a negative sign to our offsets.

The three-character time zone names are predefined for you and follow the rules defined for daylight savings
scenarios around the world. If you are in a place where Daylight Savings Time is not practiced, you don't need to
specify any dst:

 PST8

This example would be for a locale where Pacific Standard Time applied, but there was no use of Daylight Savings
Time (either PDT or otherwise).

Now, what if your system is in an area where the predefined zones do not apply? My first suggestion is a stiff drink.
Okay, now that you've taken care of that, you can add more verbiage to TZ to set your own rules. The additional
text is not too hard, actually. It looks like this: date/time,date/time. These two times tell when to switch from
Standard to Daylight Savings time, and when to switch back. The times are specified just like the offsets above:
hh:mm:ss. In fact, you don't even have to specify a time; the system will assume a default time of 2 A.M., when
most people who are not system programmers are going to be asleep anyway.

The dates, on the other hand, come in a variety of shapes. First, you can specify a date based on day of the week of
the month:

 D4.3.1

This date means, reading backwards, day one (Monday; Sunday is zero) of week three of month four (April). If you
want to specify the last Sunday in June, you'd say:

 D6.5.0

The fifth week is kind of a flag value meaning "the last one, whenever it occurs."

Page 209

Alternatively, you can specify a Julian date: a day between 1 and 365. In this scheme, April 1 is day 90 (31 + 28 +
31). So April 1 would be:

 J90

Under this scheme, you cannot refer to February 29. If you really need to, leave off the "J" and count from 0 to 365:

 92

April 1 is day 92 under this scheme (leap day is always counted).

We'll close with an example. The newly formed republic of Slobovia operates in SST and SDT (Slobovian Standard
Time and Slobovian Daylight Time), where SST is four hours east of GMT, and SDT is five and a half hours east.
SDT begins on the second Tuesday in May and ends November seventh at noon. The timezone string (since no one
has been able to code up the proper standard tables for them yet) is:

 SST-4SDT-5:30,M5.2.3,J280/12:00:00

My advice to budding Balkans is, consider the effects your actions will take on system administrators in your towns
and cities! If you must secede, at least stick with California time. Or good Slobovian vodka.

Conclusion

Scheduling, timers, and memory access are all key to getting jobs done on time. The task of getting priorities right,
timers set up correctly, and all necessary memory locked down is difficult, requiring you to go beyond the basics
provided by POSIX.4, especially if your code is to perform portably across systems with differing priority ranges,
clocks, and memory layouts.

We now have facilities for running multiple, cooperating processes in a high-performance, time-driven way. The
next step is to interact with the outide world: perform I/O.

Exercises

Here are some exercises that will get you going on scheduling, timers, and memory locking. The solutions to
problems that require programming can be found in the Appendix, in the section listed in parentheses after each
such problem.

nice

Find, or write, a program which is compute-bound and will run for a long time, say 30 seconds. An infinite loop
combined with a call to alarm will do nicely. (cpubound.c)

Page 210

Now, write a program which continuously performs I/O. (iobound.c)

Time the execution of each program separately, and together.

Run the computation program by itself at various nice levels: 20, 10, -10, -20. Does the running time of the
program change? Explain.

Running the computation program at various nice levels, also run the I/O program at the same time. How does the
running time of each program compare to when the nice levels were not used?

Reverse the experiment: run the I/O program at various nice levels. What is the effect? How does it differ from the
computation program?

priocntl

Write a program which will allow you to run other programs in realtime class at priorities given on the command
line. In other words, write a primitive version of the priocntl utility.

POSIX.4 Scheduling

Modify the program you wrote for priocntl to do the same thing, only using the POSIX.4 functions. Which program
is easier to understand? (vsched.c, atprio.1.c)

I mentioned that you generally want to run your shell at a higher priority than any program you might be
prototyping, just in case that program goes nuts and tries to lock the machine up. Think of two modifications for the
program above which would easily allow you to run programs at priorities lower than the priority of your shell.
Implement the scheme that seems the most elegant to you. (atprio.2.c)

Implement a final modification that changes the priority of the process which invoked the program. Verify that it
actually works to change the priority of your shell. Keep this program around—you may find it useful! (atprio.3.c)

UNIX Timers

Write a program that simply takes timer interrupts forever, using setitimer and a variable time interval (perhaps a
command line argument). Run it at a high real-time priority. How is the responsiveness of your system affected as
you vary the time interval? At what point do you begin to notice that your system is a bit more sluggish? Does your
system ever become sluggish? Explain. (periodic_timer.c)

Quantify the "sluggishness" effect: find a throughput benchmark, like Dhrystone or Whetstone. Alternatively, write
a simple program that you can use to measure how "fast" your CPU is running a computation. Run it without the
periodic timer program, and with the periodic timer program running in the background. How are the numbers
affected? How much of the machine is occupied by a timer running at 100 Hz? 1000

Page 211

Hz? 5000 Hz? Explain your findings. (cpubench.c)

POSIX.4 Timers

Modify the program above so that it uses POSIX.4 interval timers. Note the differences in implementation.
(periodic_timer.p4.c)

Timer overrun is when a timer expires several times before you get around to handling the signal generated by the
timer expiration. POSIX.4 provides a special function, timer_getoverrun, to determine how many times a timer has
expired since the last time you handled the signal. Since POSIX.4 signals are queued and not dropped, it would
seem that this function is unnecessary. Explain why it is, in fact, necessary.

Devise a program which will hold off a timer expiration for several expirations, and will then allow the timer signal
to come in. Use timer_getoverrun to determine the number of times the timer expired while you were busy doing
something else. This is an interesting program in that you'll need two sources of time: one to expire periodically,
and one other timer to delay a few expirations of the first timer. Maybe you can write this program without using
two POSIX.4 timers, but try it using just the POSIX.4 real-time timers.

(Related to the exercise above) You could just set a timer, then spin in a loop for long enough that you knew the
timer had expired several times-but that's gross. It's also nonportable, even though it will certainly compile on all
POSIX.4 systems. Give an example of a system where this solution, initially written on your current machine and
then ported to the new box, would fail.

Jitter is a measure of how steady your real-time system is. It is the amount your process drifts from the steady
drumbeat of a periodic timer interrupt. Modify the POSIX.4 interval timer program to measure jitter. Run it for 24
hours. Do you have a steady or a jittery system? Try it with heavy disk, network, and/or computation traffic.
(jitter.p4.c) (NFS service will fill the bill nicely if you want to load your system down.)

POSIX.4 Memory Locking

If your system seems jittery, based on the exercise above, two possible reasons are, you are not running the
program at the highest priority in the system, or you have not locked down the process's memory and it is being
paged. Modify your jitter program to lock itself down in memory. Does the jitteriness of the system improve at all?
(jitterp4.c performs memory locking)

Page 213

CHAPTER 6
I/O for the Real World

I/O Is Everything

Previous chapters have covered essential mechanisms for setting up hierarchies of communicating, prioritized
tasks; this chapter covers the key linkage between those tasks and the outside world.

Input and Output are the terms used to encompass all communication between a process and the outside world.
Computer science theoreticians are fond of programs that don't perform I/O (except maybe at the end to print The
Answer) because I/O is inherently messy. If a program doesn't have to deal with the outside world, it is generally
easier to understand and less liable to break. Unfortunately, it is also much less likely to be useful.

When one is talking about real-time applications, I/O is everything. The program is tracking or controlling the real
world in some way. Without the real world, there is no real-time.

I/O in Real-Time Systems

Examples of I/O in real-time include:

• Data gathering from devices. Here, a device means some weird piece of hardware associated with the real-
world. Technically, disks, mice, and graphics tubes are devices, but that's not what I mean here.

• Data output to devices.

• Data logging (usually to disk, perhaps over the network).

• Multimedia playback and recording (to/from disk or network).

Page 214
• Database operations (especially in the case of database systems!)

• User I/O (keyboards, mice, bitmapped displays).

Many times, I/O in the real world is just like normal UNIX I/O: standard read and write suffice. But sometimes
when real-world applications perform I/O, they make a few extra demands of the I/O system. First, I/O should not
block the task unnecessarily (the task probably has better things to do with its time then hang out). For instance,
data collection and output should, when possible, be handled offline until the application absolutely needs to get
involved, and both multimedia traffic and data logging benefit from a double-buffering approach that asynchronous
I/O makes easy. Often, an application will want to know that data it's written is definitely safe on disk. This is a
special concern in database systems. And finally, just about every real-time application wants fast, predictable
performance out of its I/O subsystem.

UNIX Has a Problem with Real-Time I/O

I/O is a stumbling block for real-time UNIX systems. Why? Because the UNIX I/O model doesn't cater to the
messiness of the real world. The UNIX I/O model is one of its most powerful features. It is simple, and yet it
applies to everything. This makes UNIX programs much easier to write than programs for other operating systems:
after learning five system calls, you can access the entire range of devices. Unfortunately, this abstraction comes at
a price: lack of fine control. When you do an I/O call in UNIX, you don't really know what the operating system
has done; you just know that what you've asked for was done, somehow.

For example, when you call write you have little or no control over whether your data actually goes out to the
underlying hardware, or sits around in a buffer waiting for an opportune moment to be completed. You have no
control over how long you are blocked in the operating system while the I/O request proceeds. You have no control
over the "shape" of your file on the underlying media; you can't specify where the blocks comprising the file should
be laid out on the disk.

We can list the deficiencies of the UNIX I/O model from a real-time standpoint:

1. UNIX I/O is not synchronized. Don't confuse synchronOUS with synchronIZED: the two words have different
meanings. When I/O is synchronized with the underlying device, it is considered complete only when the
underlying device is appropriately updated. As an example, a synchronized version of write would not return to the
user until the I/O had actually gone down to the disk (or tape, or whatever). In contrast, most standard UNIX
systems use a buffer cache to hold I/O for later flushing to disk. The flush operation is called syncing, after the sync
system call. Buffering increases throughput for many applications (including many real-time applications) because
data that is read or written is statistically likely to be read, or written, again. If that data hangs around in a buffer in
memory, it will be much

Page 215

faster to get than if the data must be fetched from the slow device each time. But applications that live in hostile
environments (e.g., factory floors, tanks) and applications with reliability constraints (e.g., transaction-
processing and database systems) often require the knowledge that I/O is ''safe" on disk, in case the machine
crashes at an inopportune time. This is a service that standard UNIX does not provide.

2. UNIX I/O is synchronous. Synchronous means that the I/O takes place while you wait. The operative phrase
here is "you wait." The read call blocks the calling process until the operating system has filled up the user buffer
with the requested data, or an error occurs. When you call write, you do not return from that call until the operating
system queues the data for writing. Many real-time applications (and other applications with high-performance I/O
requirements) are written to perform I/O asynchronously: the system goes off and performs the requested I/O in
parallel with the application, which is free to go about its business while the data is read in or written.

Using asynchronous I/O to good advantage is difficult, and relies heavily on the computer you are using and its
support for parallel operation. However, it is a requirement of many existing applications, and therefore is
something we need to consider.

3. File geometry is hard or impossible to control. Under UNIX, a file has no shape, only contents: a file is an
unstructured stream of bytes. The file is laid out in some way on the underlying disk, but you don't (and can't) care
how it is laid out. Typically, UNIX file system implementations attempt to provide performance that is uniformly
"good enough." For example, the Berkeley Fast File System tries to lay out all blocks of a file close to each other
on the disk, to minimize lengthy delays while the disk heads seek from one track to another; Sun recently published
some results that improve this performance. However, there are no guarantees about disk file layout on disk, and
certainly no way portable way to ensure that the file that is plenty fast on a SunOS machine will be plenty fast on
an OSF/1 machine—or even that the file will be fast from one day to the next!

Real-time applications often desire two sorts of control over file geometry. First, the ability to allocate
contiguous disk blocks is required, as shown in Figure 6-1. Allocating disk blocks that are next to each other
eliminates seek times, allowing data to be read or written to the device at maximum speed. Second, a real-time
application would like to preallocate a file of a certain size. This is because the software overhead of allocating
blocks dynamically (as UNIX does) is unpredictable. When a real-time application needs to extend a file's size
dynamically, it would like to allocate a large, preferably contiguous set of blocks, so the overhead doesn't occur
often.

Aside from these common requirements, desires for control of disk file geometry are widely varied. What is
common is the desire to have some say in how a disk file is laid out.

Page 216

Figure 6-1. Normal UNIX disk layout and optimal layout for sequential access

Reads and writes are not the whole story. An application often wants to do something to a device that does not fall
into either category (reading or writing data). UNIX provides a routine, ioctl, that is used to do assorted "other
things" to files. There are various sets of ioctls (one per UNIX variant, it seems) that can be applied to files in a file
system and certain standard devices, like terminals. When the file refers to a strange device (e.g., /dev/robot-arm),
ioctl provides a magic interface to the device driver to do anything the driver happens to support.

There are three problems with ioctl:

• It's not standard. Each vendor's ioctl support is different. This makes portable programming difficult.
However, each vendor supporting a weird piece of hardware is going to support the things most people need to do
with that hardware. This means that all the necessary ioctls should be there, somewhere; you can write your
software at a slightly higher level using #defines for the ioctls, and map your abstract ioctls to each vendor's
specific calls.

• ioctl only allows the application to do what the driver supports. If the driver allows three different sorts of
ioctl, and you want to do something else, you have no choice but to hack driver code. Yum!

• ioctl is a kernel call, and as such, there is a great deal of overhead associated with it. For many devices,
entering the kernel each time you want to do something is unacceptably slow. In many cases, a better solution is
mapping the device's hardware registers into the application's memory, and allowing the application to drive the
device directly. This ability is already supported in most modern UNIX systems, via mmap. Using mmap for direct
device control is a dangerous game, and most applications will not have need to do this.*

* Direct hardware access usually requires a lot more than just mmaping in the device registers. The application may need special
permission to fully access the hardware (e.g., on 80386 systems, special processor permission bits must be set to perform the IN
and OUT instructions that are used for a lot of CPU-supported I/O). If the device causes interrupts, then your application also
needs some way of intercepting and handling the interrupt. At the moment, I know of no portable way for an application to
achieve supervisor permission or directly handle interrupts. That's why we're not going to talk any more about this—there's no
total solution. I could get you into trouble, but not back out!

Page 217

Real-time applications use I/O heavily, making performance demands that far exceed the capabilities of the UNIX
I/O model. Features in POSIX.1 and standard UNIX systems address a few of the problems that real-time
applications face. First I'll go over those, since it's generally best to use the simplest, most standard facilities that
you can find, and POSIX.1 is bound to be more standard than POSIX.4. For those cases where POSIX.1 doesn't cut
it, the POSIX.4 facilities are necessary. These include synchronized I/O, asynchronous I/O, and direct device
mapping.

Earlier versions of the POSIX.4 standard defined a facility for real-time file control, which would have allowed you
to create and use contiguous and pre-allocated disk files. However, this chapter of the standard has fallen by the
wayside. Later in this chapter, we'll spend a little bit of time bemoaning this fact and then seeing what you can do
to live with it.

Standard UNIX Facilities for Real-World I/O

Many UNIX systems have some facilities that help solve some of the problems that realtime applications face.
While these facilities are incomplete, they're more useful than UNIX's pre-POSIX offerings in the area of, say,
interprocess communication. Let's briefly look at some of the more standard offerings.

Solutions for Synchronous I/O: select and poll

The select (BSD) and poll (System V) calls can be used to avoid unnecessary blocking for some reads and writes,
especially when the file is a pipe, network socket, or special device (like a terminal). I/O to or from such devices
depends on when someone puts data into the other end of the file.

For instance, harken back to our terminal and server example. In that example, when the terminals and server
communicated via pipes, remember that the terminals took special pains not to block awaiting I/O on their pipe,
because they might wait arbitrarily long for the server to get back to them. As another example, a networked
multimedia recorder might have data streaming in on several network connections. It certainly cannot block waiting
for data on one connection while dropping data on another! select and poll are useful for determining when data is
available on pipes and network connections.

select and poll simply tell you whether there is data to be read or room to write. A timeout argument to either
function limits how long the call will wait. Reading and writing data is still done via read and write, and is still
potentially a blocking operation. Tellingly, select and poll always return "ready-to-go" for a disk file, even though
you'll probably have to block waiting for your reads or writes to complete. It's only really long, unbounded
blocking that these functions help you avoid. select and poll really just say, "yes, there's data there." For truly non-
blocking I/O to all devices, we must look further.

Page 218

Solutions for Synchronous I/O: O_NONBLOCK

An alternative solution is provided by the use of the O_NONBLOCK flag (provided in POSIX.1), which can be set
on a per-file basis by open and fcntl. O_NONBLOCK causes reads, writes, and open itself to fail if the operation
would have to block while waiting for data to become available. Again, though, the only blocking that
O_NONBLOCK will avoid is the unbounded variety of blocking. A disk file read or write would never fail due to
the need to block, even though reads and writes do generally block while the I/O proceeds.

select, poll, and O_NONBLOCK may be useful to people accessing data collection devices, although their utility is
limited because the application has to go out and check the device repeatedly to tell whether it is ready. It would be
much nicer if the read or write were able to proceed as soon as the device is ready, without having to wait for the
application to poll. This was, in fact, the solution I adopted in the terminal/server example. By setting
O_NONBLOCK on the pipe file descriptor, a read on the pipe would just return immediately if there were not data
already in the pipe.

Solutions for Synchronized I/O: sync, fsync, O_SYNC

Standard UNIX systems provide decent solutions for synchronizing I/O with the underlying media. While there is
no general way to assure that each I/O operation is individually synchronized, there are functions, called sync and
fsync, that provide the equivalent of checkpoints, sync causes all the data in the operating system's internal buffers
to be updated on disk, insofar as you can guarantee this at all with modern disks. Most disks today have caches on
the disk itself, so transferring data to the disk means it's in the cache, but not necessarily on the platters of the disk
yet. In general, you'll need to read the fine print on the disk drive itself to determine the behavior of the disk and its
cache. fsync performs the same operation as sync, but for a single file, and so is more amenable to application use.
In addition, some UNIX systems also provide a per-file flag, O_SYNC, that guarantees that each I/O operation is,
in fact, synchronized with the underlying medium. POSIX.4 has standardized O_SYNC and fsync, described in
more detail below; but sync is not part of POSIX as yet.

Solutions for Control over File Geometry: Ad Hoc

There are no real solutions provided in standard UNIX systems that allow for control over file shape (although
several UNIX filesystems, like VxFS from Veritas Software, allow preallocated, extent-based files). I have heard it
suggested quite seriously that a good way to make sure contiguous blocks are available is to back up a file system,
wipe the disk clean, and then restore the file system using utilities that lay out the files as optimally as possible.
Another common practice is to access the raw disk directly and implement a file system meeting the requirements
at user level. Database systems often adopt this solution.

Page 219

Achieving Greater Control over File Operations

As mentioned in the POSIX Programmer's Guide, one uses the lower-level I/O routines, like read, write, and the
real-time extensions described here, to achieve greater control over I/O. I/O using read and write is much more
predictable (if less convenient) than I/O using fread and printf However, many applications need even more
predictability.

How UNIX I/O Usually Happens

First, let's look at the typical model for I/O in a UNIX operating system. The system is designed to avoid touching
the actual I/O device (disk, terminal, or what have you) whenever possible. If you use the stream I/O provided by
printf and fread, you have a layer of buffering at the user level before you ever even make a call to the operating
system. The operating system is called relatively infrequently: whenever a newline is encountered or the user buffer
is overflowed, for instance.

Once the operating system is entered, there may be another layer of buffering to deal with. Some devices may have
no buffering associated with them (like terminals, printers, and other devices with "character" interfaces). Other
devices, in particular disks and other block devices that have file systems on them, are isolated from the read and
write calls by a buffer cache that contains the most-recently read or written blocks of data. These data blocks are
kept in memory, and are only flushed out to the disk occasionally. There are good reasons for this strategy. One, it
is generally the case that data you looked at recently is data you will look at again. That's the principle of locality,
which is what makes CPU caches, as well as I/O buffer caches, work. Second, going to disk is very slow. Disks are
governed by gross mechanical realities like how fast you can move a head and how fast you can rotate the disk. So
are processors, but electrons are much faster than disk arms. Going out to a processor's memory is like taking a
short coffee break while your assistant runs down the hall for a printout. Going out to disk is like taking a short
coffee break while your assistant takes a vacation in Bermuda! If you have work to do, you want to avoid the latter
sort of delay.

So file I/O is done to buffer caches. These caches must eventually be flushed to the underlying disk so that the
disk's version of reality matches the processor's. This generally happens at one of two times. First, when the buffer
cache is full, blocks are flushed to disk to make room for new ones. Second, most UNIX systems support a method
to flush the buffer cache entirely (the sync system call). Calling sync at regular intervals gives a statistical,
probabilistic sort of assurance that your disk is pretty much in synch (hence the name of the call) with the rest of
your system.

sync is not a part of the POSIX.1 standard, presumably because it is a system feature that just isn't required in many
applications (this is another example, along with the lack of select, where useful UNIX functions are not present in
POSIX). If you do a ps on your UNIX system, though, you may see a process called update or syncer. That is the

Page 220

process that sees to it that the buffer cache gets flushed on a regular basis. This process has the job of calling sync
every ten seconds or so.

What's wrong with this picture? The typical UNIX I/O subsystem works pretty well for its intended applications.
Avoiding the trip to disk improves the system's overall throughput. However, for most UNIX systems the intended
applications are not realtime or database applications. These applications often require greater control: they want to
know deterministically what is in the buffer cache and what is safely on disk. This is for reasons of fault tolerance
and recovery. To support these applications, POSIX.4 provides two levels of file synchronization.

Data Synchronization
A file in the operating system is composed of two parts: the data in the file, and control information, or metadata,
that allows you to get at the data and tells you more about it (modification times, owner ID, and so on). You may
really want the file's data to be safe on disk, but you may not care so much about the metadata, which may rarely
change. So POSIX.4 provides ways to synchronize just the data associated with a file. In the language of POSIX.4,
this is called "data integrity."

Full File State Synchronization
In contrast, you might want to be sure that the whole file, control information and all, is safely out on disk at all
times. POSIX.4 also supports this capability. This is called "file integrity." File integrity is what most people mean
when they think about synchronized I/O: the entire file is safe out on disk. Data integrity might be slightly less
expensive because a block of control information might not need to be written to disk.

You Do the Checkpointing. . .

POSIX.4 has two functions (defined in the _POSIX_SYNCHRONIZED_IO option of the standard) that allow you
to flush the buffer cache for particular files. One function, fsync, provides file integrity by flushing the data and the
control information as well. The other operation, fdatasync, just flushes the data out, possibly leaving the control
information for the file in a slightly inconsistent (but presumably either recoverable or irrelevant, and definitely
good enough to let you access all your data) state. You can use fsync or fdatasync to verify that your data is safe at
regular intervals, or at some time of your choosing, when the system is otherwise quiescent. Here's a summary:

 #include <unistd.h>

 #ifdef _POSIX_SYNCHRONIZED_IO
 int fsync(int fd);
 int fdatasync(int fd);
 #endif _POSIX_SYNCHRONIZED_IO

These functions are simple to use: you call them, they synch the relevant file parts out, and you proceed. For
instance, in a data logging application, you may be firing data

Page 221

off to disk via a storm of writes. At a relatively quiescent period in your application, you could choose to get this
data out to disk, as follows:

 int fd = open("file", O_RDWR);
 ...
 /* Things are busy */
 write(fd, buf, nbytes);
 write(fd, another_buf, more_nbytes);
 ...
 /* There's a lull in the action, so... */
 fsync(fd);

The use of the checkpointing function might be even more incumbent upon you if you are using low-priority
asynchronous I/O (described further on). You could fire off a bunch of asynchronous operations at a low priority,
and then wait for them at a time of your choosing. (This example relies on _POSIX_ASYNCHRONOUS_IO,
POSIX SYNCHRONIZED_IO, _POSIX_PRIORITIZED_IO, and _POSIX_PRIORITY_SCHEDULING):

 int fd = open("file", O_RDWR);
 struct aiocb a1, a2, a3;
 struct sched_param s;

 /* Set AIO control blocks for low-priority execution */
 sched_getparams (0, (&s);
 a1.aio_reqprio = s.sched_priority;
 a2.aio_reqprio = s.sched_priority;
 a3.aio_reqprio = s.sched_priority;
 ...
 a1.aio_fildes = a2.aio_fildes = a3.aio_fildes = fd;
 ...
 aio_write (&a1);
 aio_write(&a2);
 aio_write(&a3);
 ...
 fsync(fd);

... Or Leave It to the Operating System

fsync and fdatasync are well and good, but suppose you have an application where you always want your data to go
out to disk immediately. You could do an fsync or fdatasync after every read and write operation. This is clumsy,
however, and still leaves a small timing window where your file data is not necessarily out on disk, even if just for
a small moment between calling write and calling fsync.

POSIX.4 lets you set three flags on a file descriptor that tell the operating system to bypass or write through the
buffer cache for any file I/O. These flags offer successively more stringent control over I/O synchronization. In
order, they are:

• O_DSYNC: This flag tells the operating system that when you write data to a file, that data should go directly
to disk. File state information necessary for accessing that data must also be flushed immediately. For instance, if
you extend a file with

Page 222

a write, the newly-expanded file size had better be permanently stored, along with the new bits! It is not
necessary, however, to keep all the on-disk file control information (the inode) up to date. If your system
crashes, the contents of your file will definitely be there, but the modification date of the file, for example, may
be incorrect.

• O_SYNC: By setting O_SYNC, you tell the operating system to keep all the file's data and control
information up to date when you perform writes. This is the same as the O_DSYNC flag, with the additional
requirement to keep the inode up to date.

• O_RSYNC: O_DSYNC and O_SYNC apply only to calls that write data to the disk. When reading data,
these flags make no additional requirement of the system. In particular, a read updates the access time for the file,
but neither O_DSYNC nor O_SYNC require that the inode be updated when you read data. Is this important to
you? I doubt it. However, if it is, you can set O_RSYNC. It means "whatever synchronization I've specified for my
writes, apply that same synchronization to my reads." So, if you specify O_RSYNC | O_SYNC, you will cause the
system to keep your inode information up to date on the disk whenever you do a write or a read (combining
O_RSYNC and O_DSYNC has no additional effect).

You set these three flags using fcntl, in any of the following ways. Notice how you use fcntl to first get the current
flags (F_GETFL), and then or in the new flags with F_SETFL.

 #include <sys/types.h>
 #include <unistd.h>
 #include <fcntl.h>

 #ifdef _POSIX_SYNCHRCNIZED_IO

 int fd, return_val, previous_bits;

 /* Get the old bits */
 previous_bits = fcntl(fd, F_GETFL);

 /* Synchronize the data written to the file */
 return_val = fcntl(fd, F_SETFL, previous_bits | O_DSYNC);

 /* Synchronize the data and file control information written to the file */
 return_val = fcntl(fd, F_SETFL, previous_bits | O_SYNC);

 /* Synchronize the data and file control information written or read */
 return_val = fcntl(fd, F_SETFL, previous_bits | O_SYNC | O_RSYNC);

 #endif _POSIX_SYNCHRONIZED_IO

Can You Really Do This?

The synchronized I/O facilities are available if, in <unistd.h>, _POSIX_SYNCHRONIZED_IO is defined.
However, the meaning of the word "available" might not be what you expect. Synchronized I/O may only be
supported for certain file systems in a given

Page 223

implementation. For instance, there may be no reason to support synchronized I/O in a temporary or ramdisk-based
filesystem. What you need to know is to look in <unistd.h> for _POSIX_SYNCHRONIZED_IO. If it is defined as
-1, then synchronized I/O is not supported on your system. If it's defined as anything else, then all files in your
system support synchronized I/O. And, finally, if _POSIX_SYNCHRONIZED_IO is not defined at all, then you
need to go check, using pathconf or fpathconf, for whether the capability is there for a particular file. Call pathconf
with the name of the file and the constant _PC_SYNC_IO (defined, again, in <unistd.h>), and it will tell you if
synchronized I/O is supported for the given file name. The way it tells you may be somewhat strange: if
_PC_SYNC_IO is supported, pathconf will return -1 and not set errno to any error value. That is what pathconf
does, remember, when a particular variable (like _PC_SYNC_IO) has no limit for the given file. The ability to
perform I/O is a Boolean quantity—you can either do it, or you can't—and there's no particular limit to it. My
recommended way to use pathconf then, would be like this:

 #include <unistd.h>
 #include <errno.h>

 #ifdef _POSIX_SYNCHRONIZED_IO
 #if _POSIX_SYNCHRONIZED_IO == -1
 /* No synchronized I/O at all */
 #else
 /* Synchronized I/O available on all files */
 #endif
 #else
 /* Must dynamically check for synchronized I/O on my file */
 int i;

 errno = 0;
 i = pathconf("/file/i/want/to/do/sync/io/on", _PC_SYNC_IO);
 if (! errno) {
 /* Synchronized I/O is supported for my file */
 } else {
 /* Cannot do synchronized I/O here */

 #endif

You can also use fpathconf, which takes a file descriptor instead of a pathname.

Do You Really Need Synchronization?

You should think very carefully about whether your application really needs synchronized I/O before building it
into your application. Buffer caches are generally a good thing: they improve the overall I/O performance.
Bypassing the buffer cache will probably result in a big performance hit. If you need the determinism, then you
need it. But if you can get by with periodic calls to fsync or fdatasync, that may achieve your application's goals
with less overhead. After we discuss asynchronous I/O, I'll introduce a method that may, under some
circumstances, be even lower-overhead than fsync and fdatasync—a way to call fsync or fdatasync without blocking
the calling

Page 224

process.

Synchronized I/O is really a simple addition to normal POSIX.1 I/O. The fact that I/O is being performed through
(or without) the buffer cache doesn't have a visible effect (except for performance) on any other system calls. You
probably want to look over the use of fcntl and open, for setting the O_DSYNC and O_SYNC flags.

Asynchronous I/O: I/O While You Don't Wait

As I just mentioned, UNIX I/O is generally not synchronized with the disk. However, UNIX I/O is still
synchronous. When you do a read or a write call, you block, waiting for the I/O to complete. In contrast, many non-
UNIX and real-time operating systems support the ability to perform asynchronous I/O. In such a system, you just
queue up a read or write request with the system, and then go about your other business while the system does the
I/O. When the I/O completes, your application receives some kind of notification—for example, a signal. For
instance, in a data logging application, the logging process might just periodically fire off asynchronous writes of
log data, to be dribbled out to disk as the system sees fit. Meanwhile, it could continue to fill data up in a new log
buffer. As another example, a multimedia player generally performs double-buffering to achieve smooth playback.
That means that while one buffer is being used (displayed on the screen and played on the speakers), a second
buffer is being filled up with the next chunk of data. When the player needs that next chunk, it is hopefully all ready
to go; the system fires off the next asynchronous operation and proceeds.

POSIX 1003.4 asynchronous I/O (option _POSIX_ASYNCHRONOUS_IO) provides the ability to perform I/O in
parallel with the other operations of an application. In essence, when you make an asynchronous read or write call,
the operating system queues up the I/O and immediately returns control to you. The system performs the I/O while
your application continues. When the I/O is complete, you can be informed (if you wish) by the delivery of a
signal. The signal can be either a standard, plain old POSIX.1 signal, or it can be a POSIX.4 extended signal.

Although the functions look rather different from their synchronous brethren, the asynchronous calls are quite
similar in their effects. Here's a summary of the POSIX.4 asynchronous I/O functions and data structures.

 #include <unistd.h>
 #ifdef _POSIX_ASYNCHRONOUS_IO
 #include <aio.h>

 int aio_read(struct aiocb *racbp);
 int aio_write(struct aiocb *wacbp);
 int lio_listio(int wait_or_not, struct aiocb * const lacb[],
 int num._acbs, struct sigevent *notification);
 int aio_cancel(int fd, struct aiocb *acbp);
 int aio_suspend(const struct aiocb *lacb[], int num_acbs,

Page 225

 const struct timespec *timeout);
 int aio_fsync(int mode, struct aiocb *acbp);

 ssize_t aio_return(const struct aiocb *acbp);
 int aio_error(const struct aiocb *acbp);
 #endif _POSIX_ASYNCHRONOUS_ IO

File Descriptors forAsynchronous I/O

Asynchronous I/O is very similar to standard I/O. The standard open and close functions are used; all the
capabilities you can set with open and fcntl (setting parameters like the O_RSYNC, O_DSYNC, and O_SYNC
flags for synchronized I/O) apply to asynchronous I/O.

The AIO control block

Asynchronous I/O operations are submitted using a structure called the AIO control block, or aiocb.* The aiocb
groups all the parameters for a given AIO operation. It contains the normal parameters for a read or write: a buffer
pointer, a number of bytes, and a file descriptor. As usual, one is reading or writing from or to the file descriptor,
from or to the buffer, for the indicated number of bytes. Here's how the aiocb is defined:

 struct aiocb {
 int aio_fildes; /* FD being used for the I/O */
 off_t aio_offset; /* Offset of the implied lseek */
 volatile void *aio_buf; /* Buffer to read to/write from */
 size_t aio_nbytes; /* Number of bytes to read/write */
 struct sigevent aio_sigevent; /* Signal to deliver on completion. */
 int aio_lio_opcode; /* Operation to be performed (lio_listio only) */
 int aio_reqprio; /* AIO priority (discussed later) */
 };

The function aio_read is used to submit an asynchronous read; it's called like this:

 aio_read(&a);

where a is an aiocb. This has roughly the same effect as the following code:

 lseek(a.aio_fildes, a.aio_offset, SEEK_SET); /* Seek to position */
 read(a.aio_fildes, a.aio_buf, a.aio_nbytes); /* Read data */
 sigqueue(0, a.aio_sigevent.sigev_signo, a.aio_sigevent.sigev_value);

But that sequence of activities happens in parallel, while aio_read leaves your application free to go about its
business, as shown in Figure 6-2.

* Pronounced ''Ay-Eye-Oh-See-Bee," for those of you who wonder about such things.

Page 226

Figure 6-2. How AIO proceeds

A seek always occurs

The file offset element, aio_offset, indicates the offset in the file at which the I/O should occur. This implied seek
ALWAYS occurs, unless the file descriptor has been explicitly set not to do the seek (via use of the O_APPEND
flag, which appends all writes to the end of a file). Furthermore, any asynchronous I/O operation leaves the seek
pointer in an undefined state, so that, to even perform a normal read or write to the file, you must first perform an
lseek to reset the file pointer to a defined value! This is very important: if you are doing asynchronous I/O on a file,
you must assume that the seek pointer is generally meaningless, and you must manage the seek pointer yourself!

Signal delivery

The AIO control block also contains structure elements (grouped together in aio_sigevent) that define a signal to be
delivered when the asynchronous I/O is complete. The signal value can be any of the available signal values—
either the POSIX.1 signals, or the POSIX.4 extended signals. If a POSIX.4 extended signal is used, a data value can
also be passed to the signal handler. In most cases, you will want this data value to be the address of the AIO
control block itself, so that your signal handler can identify which AIO operation caused the particular signal it is
handling.

As an example, one might set up an asynchronous I/O signal delivery as follows:

 a.aio_sigevent.sigev_notify = SIGEV_SIGNAL;
 a.aio_sigevent.sigev_signo = SIGRTMIN;
 a.aio_sigevent.sigev_value.sival_ptr = (void *)&a;

We used the address of the aiocb as the signal's data value because your signal handler will need to figure out
which I/O requests caused the signal. Since different asynchronous I/O requests will have different aiocbs, looking
at the control block is the easiest way to determine which request is responsible for the signal.

Page 227

When the signal is delivered, the signal handler would be invoked as if you had called your function handler like
this:

 signo = SIGRTMIN;
 info->si_signo = SIGRTMIN;
 info->si_value.sival_ptr = (void *)&a;

 signal_handler(signo, info, context);

This is not code you need to put in your application; the operating system dispatches out to your signal handler
automatically. Note that your signal handler is passed the address of the aiocb, which allows it to figure out why
the signal occurred.

AIO priority

There is one other element of the aiocb that I haven't talked about yet: aio_reqprio. This element allows you to
indicate the priority of a particular AIO request relative to other AIO requests. aio_reqprio is an optional feature of
POSIX.4 systems, and is a little bit complicated, so I'm going to discuss it after I've introduced the other, more
familiar elements of asynchronous I/O. For now, all you really need to know is that setting aio_reqprio to 0 will
have an innocuous effect on your asynchronous I/O.

For Example ...

An example ties together the things I've discussed above. Here's a code module that would perform data logging for
an application. It uses double-buffering, copying log data into an in-memory buffer while a second, filled buffer is
being flushed to disk by use of asynchronous I/O.

 #define _POSIX_C_SOURCE 199309L
 #include <unistd.h>
 #include <fcntl.h>
 #include <sys/types.h>
 #include <sys/stat.h>
 #include <signal.h>
 #include <string.h>
 #include <errno.h>
 #include <stdio.h>

 #ifdef _POSIX_ASYNCHRONOUS_IO
 #include <aio.h>
 #else
 ERROR: no asynchronous I/O!
 #endif

 #ifndef _POSIX_REALTIME_SIGNALS
 ERROR: need queued signals!
 #endif

 #define SIG_AIO_BUFFER_WRITE (SIGRTMAX-10)

 #define MIN(a,b) (((a) < (b)) ? (a) : (b))

Page 228

 #define BUFFER_FREE 1
 #define BUFFER_FILLING 2
 #define BUFFER_WRITING 3

 #define BUFFERSIZE 4096
 typedef struct {
 int state; /* Free or not */
 int fillpt; /* End of buffer */
 struct aiocb acb; /* For flushing */
 char buffer[BUFFERSIZE]; /* Data buffer */
 } buffer_t;

 /* Double-buffer log output. */
 #define NBUFFERS 2
 static buffer_t buflist[NBUFFERS];

 static buffer_t *curbuf;
 static int log_fd;
 static off_t seek_ptr;
 static sigset_t aio_completion_signals;

 buffer_t * find_free_buf(void);
 void flush_filled_buf (buffer_t *);
 void aio_done(int, siginfo_t *, void *);
 void log_data(char *, int);
 void initlog(const char *);

 buffer_t *find_free_buf(void)
 {
 int i;
 sigset_t prevmask;

 sigprocmask(SIG_BLOCK, &aio_completion_signals, &prevmask);
 while (1) {
 for (i=0; i<NBUFFERS; i++) {
 if (buflist[i].state == BUFFER_FREE)
 break;
 }
 if (i == NBUFFERS) {
 /* found no buffer -- wait for something to complete */
 sigsuspend(&prevmask);
 /* And try again! */
 } else
 break;
 }
 buflist[i].state = BUFFER_FILLING;
 buflist[i].fillpt = 0;
 sigprocmask(SIG_SETMASK, &prevmask, NULL);
 return &buflist[i];
 }

 void flush_filled_buf(buffer_t *full_guy)
 {
 /* Set up AIOCB */
 full_guy->acb.aio_fildes = log_fd;

Page 229

 full_guy->acb.aio_offset = seek_ptr;
 seek_ptr += BUFFERSIZE;
 full_guy->acb.aio_buf = full_guy->buffer;
 full_guy->acb.aio_nbytes = BUFFERSIZE;
 full_guy->acb.aio_reqprio = 0;
 full_guy->acb.aio_sigevent.sigev_notify = SIGEV_SIGNAL;
 full_guy->acb.aio_sigevent.sigev_signo = SIG_AIO_BUFFER_WRITE;
 full_guy->acb.aio_sigevent.sigev_value.sival_ptr =
 (void *)full_guy;

 /* Mark buffer as being written out */
 full_guy->state = BUFFER_WRITING;

 /* Fire off the asynchronous I/O! */
 if (aio_write(&full_guy->acb) < 0)
 perror("aio_write");

 return;
}

/* "AIO complete" signal handler */
void aio_done(int signo, siginfo_t *info, void *ignored)
{
 buffer_t *completed_buf;
 ssize_t rval;

 /* Sanity checking paranoia */
 if ((signo != SIG_AIO_BUFFER_WRITE) ||
 (info->si_code != SI_ASYNCIO)) {
 /* Not an AIO completion signal, handle error */
 return;
 }

 /*
 * Mark the buffer on which we performed I/O as being
 * available again
 */
 completed_buf = (buffer_t *)info->si_value.sival_ptr;
 if (aio_error(&completed_buf->acb) != EINPROGRESS) {
 if ((rval=aio_return(&completed_buf->acb)) != BUFFERSIZE) {
 /* Error, write failed for some reason! */
 }
 }
 completed_buf->state = BUFFER_FREE;

 return;
}

/* log some data */
void log_data(char *logdata, int nbytes)
{
 int nlogged = 0;
 int num_to_copy;

 while (nlogged < nbytes) {

Page 230

 num_to_copy = MIN(BUFFERSIZE-curbuf->fillpt, nbytes-nlogged);
 memcpy (&curbuf->buffer [curbuf->fillpt],
 logdata + nlogged, num_to_copy);
 curbuf->fillpt += num_to_copy;
 if (curbuf->fillpt == BUFFERSIZE) {
 /* Buffer full, flush and get a new one */
 flush_filled_buf(curbuf);
 curbuf = find_free_buf();
 }
 }
 return;
 }

 void initlog(const char *log_file)
 {
 int i;
 struct sigaction sa;

 for (i=0; i<NBUFFERS; i++)
 buflist[i].state = BUFFER_FREE;

 curbuf = find_free_buf();

 log_fd = open(log_file, _WRONLY|O_CREAT|O_TRUNC,
 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH);
 if (log_fd < 0)
 perror(log_file);
 seek_ptr = 0;

 sigemptyset(&aio_completion_signals);
 sigaddset (&aio_completion_signals, SIG_AIO_BUFFER_WRITE);
 sa.sa_flags = SA_SIGACTION;
 sigemptyset(&sa.sa_mask);
 sa.sa_sigaction = aio_done;
 sigaction (SIG_AIO_BUFFER_WRITE, &sa, NULL);

 return;
 }

The function log_data is the major external interface to the logging facility; in addition, one calls initlog to set up
the buffers, the signal mask and signal handlers. Note the following features:

• The struct aiocb controlling each asynchronous operation is embedded within the buffer_t structure; we pass
the address of the buffer_t itself to the AIO completion signal handler, which knows that the aiocb for the
asynchronous operation is embedded in that structure.

• A seek offset is maintained in the software, since we need to explicitly provide an offset each time we submit
an asynchronous I/O. The seek value is updated as soon as the AIO is submitted, so the next AIO operation will be
submitted at the next appropriate offset.

Page 231

• As usual, I've made up my own name for the signal I'm using, to centralize its definition in case I need to
change it.

• Note that the AIO completion signal is masked while we look for a free buffer. This is to prevent the AIO
completion signal handler from updating the data structures while we are examining them. If there is no free buffer,
we await AIO completion by using sigsuspend.

• aio_reqprio is set to zero, so AIO is submitted at the priority of the calling process.

Error detection for asynchronous operations

You'll also notice that, in the signal handler for AIO completion, we checked for the AIO status using aio_error
first, and then aio_return. For a synchronous (i.e., "normal") read or write, error detection is easy: you wait until
the operation is done, and if it returned something unexpected, you look at errno. There are two values you are
looking at: return value and error value. Error handling for synchronous I/O is simple and easy; unfortunately, it
doesn't work for asynchronous I/O. What happens if you have a number (say, 10) of asynchronous I/Os going on all
at once? How do you get a return value from an asynchronous read, since the call to aio_read returns before the
operation has been completed? And how can you safely use errno if any one of the 10 outstanding asynchronous
operations might update the value of errno at any moment?

The answer is that the system maintains a return value, and an errno value, for each asynchronous operation
separately. This situation is described in Figure 6-3. You have to ask for these two values from the system when
you want them, using the functions aio_return and aio_error.

Figure 6-3. Asynchronous I/O error and return status

aio_return and aio_error both take the address of an aiocb structure that was used for submitting asynchronous
I/O. Each function gives back the return value, or errno value, associated with the asynchronous operation at that
moment.

Page 232

The errno value for any asynchronous operation that is currently going on is EINPROGRESS. This is a new value
for errno, meaning "not done yet! come back later!" After the asynchronous operation completes, the errno value
will take on a more normal value—one of those you would expect for a normal, synchronous read or write. For
instance, after submitting an asynchronous operation you could await its completion as follows:

 aio_read(&acb);
 while ((local_errno_value = aio_error(&acb)) == EINPROGRESS)

 return_value = aio_return(&acb);

This code just loops, burning CPU cycles, until the I/O operation completes. It would be most useful in cases where
you know the I/O operation has completed. If the I/O isn't completed, it just wastes time. On a real-time system,
running under a priority scheduler, a possibly-infinite loop like the one given above is a no-no. You can
conceivably hang your system by occupying the CPU forever!

In the example directly above and the data logger example, notice that we call aio_error first, to determine that the
AIO is in fact completed, before we call aio_return. This is on purpose, and crucial.

The return value for an asynchronous operation is undefined until the operation is done. If you're not absolutely
sure that an asynchronous operation has completed, call aio_error to find out. Furthermore, you can only call
aio_return once. The return value and errno value for asynchronous operations may be maintained inside your
operating system in an area of limited size. In order to avoid overflowing this area, the system has to remove error
and return values from it. The system is supposed to take its cue from the aio_return function; when that function is
called, the system can then free up the storage previously used for the return and error value, and use it for some
other asynchronous operation. Lest you think this strange, the wait function does exactly the same thing with
processes: you can only call it once for a given process ID that has terminated, and then the process "slot" is
recycled for a new process. The moral of the story is: always call aio_error to verify that the errno value is not
EINPROGRESS before you call aio_return.

There's one situation where you can avoid calling aio_error: in your signal handler for AIO completion, you don't
have to check aio_error first, because you know that the operation is done. You still must call aio_return, of
course, to find out what the return value of the asynchronous operation was. I just call aio_error and the aio_return
in sequence always, out of paranoia, because it's easy to remember, and because it's probably a small overhead.

One final note on aio_error and aio_return. You may have been wondering why there are functions for aio_error
and aio_return, when it would certainly be possible to have extra fields in the aiocb structure for the errno and the
return value. There are functions because some operating systems have a hard time copying data from kernel

Page 233

space to user space, and would rather just maintain the information inside the operating system until the user calls
for it. On other systems, copying data from kernel to user space is no problem. On those systems, it is perfectly
acceptable for the operating system to have extra, added fields in the aiocb and update them asynchronously with
errno and return value. On such systems, the aio_return and aio_error functions could be implemented as:

 #define aio_error(a) ((a)->hidden_special_errno)
 #define aio_return(a) ((a)->hidden_special_return_value)

POSIX doesn't say where these functions have to be implemented, after all—just that they have to be there when
you compile your program. Just because a function is present, don't assume it's an expensive, slow system call.

Multiple I/O Operations at Once: lio_listio

Asynchronous I/O allows you to combine several read and write operations in a single system call, lio_listio. This
function is useful for firing off large amounts of I/O all at once. For instance, if we wanted to fire off several log
buffers at once, we might use lio_listio as follows:

 #define SIG_LISTIO_DONE (SIGRTMAX-9)
 struct aiocb *acb_list[AIO_LISTIO_MAX];
 int num_in_listio;

 void flush_several_bufs(buffer_t *bufs_to_flush, int nbufs)
 {
 struct sigevent when_all_done;

 /* Set up AIOCBs */
 for (num_in_listio=0; num_in_listio<nbufs; nun_in_listio++) {
 acb_list[num_in_listio] = &bufs_to_flush[num_in_listio].acb;
 acb_list[num_in_listio]->aio_lio_opcode = LIO_WRITE;
 /* Do remaining aiocb initialization exactly
 * as in flush_filled_buf above */
 }

 /* Set up signal to be delivered when ALL AIOs done */
 when_all_done.sigev_notify = SIGEV_SIGNAL;
 when_all_done.sigev_signo = SIG_LISTIO_DONE;
 when_all_done.sigev_value.sival_ptr = (void *)acb_list;

 /* Fire off the asynchronous I/Os! */
 if (lio_listio(LIO_NOWAIT, acb_list, num_in_listio,
 &when_all_done) < 0)
 perror("listio");

 return;
 }

lio_listio takes an array of pointers to aiocbs (not an array of aiocbs!) as its second argument. The third argument
tells the function how many elements are in the

Page 234

array—up to AIO_LISTIO_MAX. AIO_LISTIO_MAX is one of those limits that may be defined in <limits.h>. If
it is defined, you can only count on being able to submit that many. If AIO_LISTIO_MAX is not defined, then the
limit is generally either limited by your available memory, or it's a kernel-configurable option. To determine if it's a
kernel configuration issue, call sysconf(_SC_AIO_LISTIO_MAX) to get dynamic system configuration information.
Otherwise, the limit is indeterminate, and you can only tell how many lio_listios you can do at once by trying it, or
by asking the vendor.* Be aware that AIO_LISTIO_MAX can legally have a value as small as 2, so you can only
submit 2-element lio_listio operations if you want to be portable to all possible implementations supporting
asynchronous I/O!

Within the array, there are additional guidelines. First, a NULL pointer is allowed in the array; it's just skipped.
NULL pointers let you add or remove aiocbs from your list from one operation to the next. Second, each aiocb
indicates an asynchronous read, an asynchronous write, or a no-op. The aio_lio_opcode field of the aiocb
determines the operation type; this field was ignored by aio_read and aio_write, because those operations already
know what they're supposed to be doing! The aio_lio_opcode field can be initialized to either LIO_READ (do a
read), LIO_WRITE (do a write), or LIO_NOP. The list entry is ignored if the opcode is LIO_NOP.

The operations in the array are not processed in any particular order. One system may go from 0 to the number of
elements; another system may go backwards. A multiprocessor may process all the elements in parallel. Whatever.
Do not count on any particular ordering of I/O in lio_listio.

The first parameter determines whether lio_listio operates asynchronously or synchronously. If the parameter is
equal to LIO_NOWAIT, then all of the operations in the list are done asynchronously, like a bunch of aio_reads
and aio_writes. In this case, the sigevent argument specifies a signal that will be sent to the process when all of the
I/O operations on the list are completed. This means that you could conceivably receive N+1 signals for a lio_listio
of N elements: one for each I/O, and one when they are all done.

If, on the other hand, the first parameter is LIO_WAIT, then all the operations on the list are done while the
lio_listio function waits, just like a bunch of reads and writes. In this case, the final sigevent argument is ignored—
no signal is delivered when all the operations are complete. However, you might still get signals from the
individual asynchronous operations, each of which defines its own particular completion signal in the aiocb.

The synchronous mode is another present from the supercomputing community: they like to do a lot of different
jobs at the same time. Synchronous use of lio_listio is not something you are likely to use every day. However,
there is one really nice feature of

* Usually, an indeterminate limit means that the option is limited by the memory you have available to you. or that the option is
somehow configurable in your kernel.

Page 235

synchronous lio_listio that you should be aware of: the seek implied by the aiocb, and the read or write operation
encoded in it, still happen atomically, just as if the I/O were being done asynchronously. In contrast, if you were to
do a normal lseek and then a read, you have no way of ensuring that the file pointer for the file would be where you
lseeked: an asynchronous operation could jump in and muck up the seek pointer between the time of the call to
lseek and the time of the call to read.

Figure 6-4. Race condition between seek and read/write

Thus, lio_listio, when called with LIO_WAIT and just a single aiocb on the list, provides a nice, atomic ''seek-n-
read" or "seek-n-write" facility that you can safely use for synchronous I/O even when asynchronous I/O is
outstanding on the file descriptor.

Waiting for Asynchronous I/O: aio_suspend

Asynchronous I/O is usually used to allow I/O and processing to overlap. When all the processing has been done,
the I/O itself may not be completed yet. If that I/O is a read, then data you are waiting for is not yet present; you
have no choice but to wait for it. Or, in the case of asynchronous writes, if your application is in the form of an
infinitely-repeating loop (and many real-time applications take this form), you will need some way to ensure that
you do not soak the system with I/O requests by submitting them faster than they can be processed. In the data
logger example, we used sigsuspend to wait for AIO to complete. However, sigsuspend tends to be a bit inefficient
and imprecise. It's inefficient because it requires a signal to be delivered, the handler to be invoked, and for the
handler to return before sigsuspend returns. It's imprecise because you cannot wait for a particular operation to
complete: you are waiting for any occurrence of the signal.

Page 236

This is why there is an operation called aio_suspend. This function allows you to wait for particular asynchronous
I/O operations to complete. Here's how it's used:

 int returnval, i;
 struct aiocb *acb_list[XXX];
 struct timespec timeout;
 int nent;

 /* Wait for one of a number of asynchronous operations to finish */
 /* nent must be < XXX (see above)! */
 return_val = aio_suspend(acb_list, nent, &timeout);

For instance, in the data logging example, we could wait for one of the buffers to complete by the following:

 /* Wait for buflist[i] AIO to complete using aio_suspend */
 struct aiocb *p[1];
 p[O] = &buflist[i].acb;
 return_val = aio_suspend(p, 1, NULL); /* Wait forever if necessary */

aio_suspend takes a list of pointers to aiocb structures, like lio_listio. The second argument gives the number of
elements in the list. aio_suspend blocks until one (or more) of the asynchronous I/Os on the list has completed.
Obviously, the aiocbs on the list must have been used for submitting asynchronous I/O operations, either via
aio_read, aio_write, or lio_listio. Elements in the array can be NULL; these elements are just skipped. Finally, a
timeout argument is provided so that the operation will not wait indefinitely for I/O that may never finish.

aio_suspend does not tell you which I/O completed; it just returns 0 when it has determined that one of the
asynchronous operations has finished. You must then go down the list with aio_error and aio_return to determine
which request completed and whether it succeeded. In the data logger example, of course, that would be pretty
easy.

If we call sigsuspend and there are no signals to be delivered, we're just going to hang. With aio_suspend, on the
other hand, the system determines whether the particular AIO operations are still in progress. For instance, if buflist
[i] had already been successfully written and the signal delivered, the aio_suspend would immediately return. The
sigsuspend-based code, on the other hand, would have hung.

The final argument to aio_suspend is a pointer to a struct timespec. This argument, if you specify it, dictates a
maximum time limit on how long the function should block awaiting I/O completion. If you suspect you may have
a file that will not respond (one end of a pipe, or a network connection, for instance), it may be wise to set a timeout
to catch errors. For disk writes, this is not generally necessary, so you can just pass a NULL.

There is an interesting facet of aio_suspend which you should be aware of. Like many blocking POSIX functions,
aio_suspend can be interrupted by a signal. In that case, the aio_suspend function would return -1 and have errno
set to EINTR. Remember,

Page 237

though, that each asynchronous operation may deliver a signal when it completes. Thus, the signal that interrupts
aio_suspend may come from one of the awaited asynchronous I/Os completing!

Trying to Cancel Asynchronous I/O

aio_cancel is supposed to cancel asynchronous operations—that is, prevent the operation from taking place, if it
isn't already too late. Let's be right up front about cancelling I/O. You should not use aio_cancel if you can avoid it,
because it doesn't necessarily cancel I/O, even if it says it did! If you need to use it, here's how:

 #include <aio.h>
 int rv;
 struct aiocb acb;

 /* Initialize aiocb */

 /* Submit AIO */
 rv = aio_read(&acb); /* Or aio_write */
 /* Change your mind--cancel the I/O if you can! */
 rv = aio_cancel(acb.aio_fildes, &acb);

There may come a time when you decide that you should not have a certain asynchronous I/O going on, or that
some I/O is no longer necessary. You may want to close a file and cancel all the outstanding requests pending
against that file. Or you may start an asynchronous read on a network socket or a terminal where there is no one on
the other end to reply. The aio_cancel function attempts to cancel such I/O. By specifying the number of an open
file descriptor in fd, and leaving the aiocb pointer NULL, you can tell aio_cancel to try to cancel all outstanding
I/O against that particular file descriptor. If the aiocb address is not NULL, then aio_cancel tries to cancel just that
asynchronous operation. In that case, the fd argument to aio_cancel has to be the same as the file descriptor in the
aiocb you've pointed to. Otherwise, unspecified things may happen: maybe an error, maybe it's okay, maybe the
system crashes.

Successfully cancelled asynchronous I/O will have its error status set to ECANCELED. If aio_cancel successfully
cancels all of the requested asynchronous operations, it returns AIO_CANCELED. Otherwise, it returns
AIO_NOTCANCELED if it could not cancel one or more of the operations, and AIO_ALLDONE if all the
operations specified were already done when aio_cancel got to them.

Why do I think aio_cancel is such an evil function? Two reasons. First, it is up to the vendor to decide which I/O is
cancellable and which is not. It is a perfectly-valid implementation to never cancel any asynchronous I/O (i.e., only
return AIO_ALLDONE or AIO_NOTCANCELED). Second, the meaning of "cancellation" may not be what you
expect. Your first thought might be that a cancelled I/O operation does not do any I/O. But consider an I/O to or
from a terminal or a pipe, an I/O that had half the data it wanted before being cancelled. What's it going to do with
the data, put it back? Unlikely. In most cases, it'll probably just quit with the data it has already read or

Page 238

written. And it gets worse, because "cancelled" I/O has to have an error status of ECANCELED and a return value
of -1, you cannot determine whether I/O you cancelled had any partial effects or not. All you really know about a
cancelled I/O is that it's going to terminate. You don't know when, really, or how, or what the result of that
termination will be. Given these possibilities (coupled with the fact that aio_cancel is really a vicious and bug-
prone function to implement), it seems that there is little way to use aio_cancel in a portable fashion.

There are other places where AIO cancellation may occur, but these occasions are less noxious. If your process
exits, or calls one of the exec functions, then any outstanding asynchronous I/O that is cancellable will be cancelled.
Again, the vendor gets to say which asynchronous I/O is cancellable. However, it is less likely that your application
will need to rely on this behavior.

More About Seeking

Why must you manage the seek pointer yourself? Why didn't the POSIX.4 group specify that the system must
maintain the sanity of the seek pointer for you? An example will help make it more clear.

Pretend that AIO does nothing with the seek pointer. It merely uses the value that happens to be there with the file,
and then it updates it, just like a normal I/O operation would.

Say you have an application, a database sort of application, where a single database file is written and read in fixed-
size records at fixed places. Because your application is serving many users at the same time, you want to use
asynchronous reads and writes to operate on the file. Because the AIO in this example does not do anything with
the seek pointer, the application must first do a seek to the appropriate record, then perform the asynchronous
operation, requiring two separate system calls. Now imagine two users, Pete and Dick. Pete wants to read record
17. Dick wants to write record 247. They both want to do it at the same time, so there are two asynchronous I/O
operations in the system, one to read at offset 17, one to write at offset 247. As far as the application knows, both
I/Os are proceeding at the same time. So where is the seek pointer? It really is rather indeterminate, depending on
who got there first, Dick or Pete. After both operations, the file pointer will be at record 18 or at record 248, but the
application has no idea which record it is at! Worse yet, the application could easily write incorrect data if one of
the operations is interrupted midstream by the other. This possibility is illustrated by Figure 6-4, earlier.

In this scenario, Pete's file pointer value gets tromped on because the system context switched to Dick at an
inopportune moment. To get around this possibility, we would have to perform file locking and unlocking. So, each
operation our application made would look like Figure 6-5.

Page 239

Figure 6-5. Preventing bad things from happening

This requires four system calls—an untoward number since all we really want to do is protect the atomicity of a
seek and an I/O. And if all our I/O operations look like the example above, we are maintaining the seek pointer
ourselves anyway! By passing in the file pointer at the time of the AIO submission, we can let the system perform
the atomic seek-n-I/O much more quickly than we, as users, could hope to do it.

Gotchas

Asynchronous I/O is a different sort of creature in a UNIX system: it causes something to go off in parallel and do
something. This "something," whatever it is, affects the state of the process while the process is otherwise engaged,
and that is important to remember. Because of this parallelism, there are some gotchas you should be aware of
when you use asynchronous I/O.

Mixing asynchronous and synchronous I/O

Using the "normal" read and write functions on a file descriptor is dangerous when you are also doing
asynchronous I/O on that same file descriptor. If any asynchronous I/O is outstanding when you perform a normal
read or write, you do not know where the seek pointer is going to be. If you absolutely have to mix asynchronous
and synchronous I/O on the same descriptor, you must wait until all asynchronous I/O has completed before you
submit a synchronous operation—and you must perform a seek to set the file pointer to a defined value before you
do the read! Moreover, you must use SEEK_SET or SEEK_END to set the pointer. Doing a relative seek is
meaningless because you do not know where the seek pointer already is; after moving it forward or ahead, you still
won't know where it is. One safe way to combine synchronous and asynchronous I/O is to separate them clearly
into different phases of an application:

 /* Phase 1: doing AIO */
 /* AIO operations submitted */
 aio_read(&a1);

Page 240

 aio_read(&a2);
 aio_write(&a3);
 aio_write(&a4);
 /* Wait for all AIO operations to complete */
 list_of_aios[0] = &a1;
 list_of_aios[l] = &a2;
 list_of_aios[2] = &a3;
 list_of_aios[3] = &a4;
 errno = 0; /* Yicch */
 while ((aio_suspend(list_of_aios, 4) >= 0) &&
 (! errno))
 ;

 /* Phase 2: doing Regular I/O */
 /* Set the seek pointer to a sane value */
 lseek(fd, OFFSET, SEEKSET);
 /* Read synchronously */
 read(fd, buf, nbytes);

Of course, doing things this way eliminates one possible advantage of asynchronous I/O. The asynchronous and
synchronous I/O cannot be overlapped! If you really want to mix synchronous and asynchronous I/O to the same
file, I suggest you use one file descriptor for asynchronous I/O, and an entirely separate descriptor (created using
dup or dup2) for the normal reads and writes. This solution can be implemented like this:

 fd_for_asynch_io = open(filename, flags, mode);
 fd_for_synch_io = dup(fd_for_asynch_io);
 /*
 * Both file descriptors access the same file, but
 * maintain different seek pointers.
 */

Each file descriptor is little more than a cache for a separate file descriptor. So long as you have enough file
descriptors (and most systems today give you plenty), this is a fine solution to the problem of mixing synchronous
and asynchronous I/O to the same file.

Re-use of the AIO control block

There is a simple line in the POSIX standards that you should be aware of: "Simultaneous asynchronous operations
using the same aiocb produce undefined results". That translates to, "don't, don't, don't. don't even think about re-
using an aiocb before the I/O it was last used for has completed." For instance, notice that our data logging example
has a dedicated aiocb for each buffer that may be written, so there is no way we can use an aiocb twice.* This
particular error can have devastating results because there are two quite divergent ways the operating system might
use the aiocb. On one machine, the aiocb may be used only when asynchronous I/O is submitted. On that machine,
aiocb reuse may be just fine. On other machines, though, the system may

* I know...never say never! The error would have to be really stupid, though.

Page 241

use the aiocb for various reasons while the I/O progresses. For instance, we mentioned above that some systems
will store the errno value and return value for asynchronous I/O inside the aiocb. If you reuse an aiocb on such a
machine, what happens? Well, for one, your return and error values for both operations probably get messed up,
along with your program logic that relied on them. Worse, if the pointers in the aiocb are re-initialized, your
application might get killed; this is a common cause of bugs in applications on LynxOS, for instance. Remember.
Don't don't don't don't don't even think about it.

AIO without the POSIX.4 extended signals

Asynchronous I/O is supported independently of the POSIX.4 extended signals. That means you can send yourself
one of the normal POSIX signals if your system does not support the real-time signals. In that case, of course, you
will not get the benefits of the signal being queued to you, and you will not get the additional data parameter that
extended signals pass to the signal-handling function. In such a case, your signal handler will need some way to
determine which asynchronous I/O, if any, completed. aio_suspend can be used for this purpose.

AIO without signals at all

You don't need to send a signal when your asynchronous I/O is complete. If your application doesn't need to be
informed immediately when asynchronous I/O is done, you can simply set the aio_sigevent.sigev_notify field to
SIGEV_NONE and no signal will be delivered when your asynchronous I/O operation is complete. You can always
use aio_suspend to wait for such asynchronous operations. In fact, that might be a more efficient solution for our
data logger above. It could perform aio_suspend for completed AIOs, and do the necessary cleanup in mainline
code, without the hassle of calling a signal handler.

What do you really get out of it?

Finally, many people may perceive the use of asynchronous I/O as a definite performance win. After all, the I/O is
going on in parallel, right? Not necessarily. You have to remember that on a uniprocessor machine there is only one
CPU, and it is being timesliced. The kernel mechanism, whatever it is, that processes your asynchronous I/O will
have to take CPU time to do it. Even where there is another processor available to take care of the I/O (either a
multiprocessor machine, or a DMA engine that can be left to do its thing), you will have to contend with the effects
of cycle stealing as the I/O accesses the application's memory. In many cases there may be no advantage to
asynchronous I/O at all. If you are running on a machine with a buffer cache, your I/O may just be copied into this
cache and queued up for later flushing to the device (see the synchronized I/O facilities for more on this). In that
case, all you are doing asynchronously is copying data from user space to kernel space. And that is going to occupy
as much real time, on a uniprocessor, as it would to just do it synchronously with read or write.

Page 242

The same sort of thought sometimes leads people to consider the use of threads to achieve more throughput in their
applications. It only works out if one of the threads of computation spends most of its time blocked, so the other
can go at full speed.

AIO's Effect on Other POSIX Operations

The possibility of asynchronous I/O complicates the semantics of other POSIX.1 functions, most notably fork, the
exit functions, and the exec family. Most of the complication has to do with what happens to outstanding
asynchronous I/O when the process wants to terminate or transform itself. You should be aware that the I/O may be
cancelled if you call _exit or an exec before the I/O is completed. Your vendor's conformance document should tell
you which, if any, I/O may be cancelled on exit or exec. You should expect to wait for any I/O that is not cancelled.
This can cause an unexpected delay in your exits or execs, especially if you are exiting because there's something
wrong with the file. Say, for example, you're doing an asynchronous read from a terminal. That requires someone to
type something, right? The asynchronous I/O will not complete until someone types something. What if your
application tries to exit, and then the user goes into cardiac arrest? Well, it's tough for the user, all right, but what
about the real question: how is your application ever going to exit with this asynchronous I/O outstanding? If this is
the situation you find yourself in, you'd better hope your system cancels asynchronous I/O to terminals.
Alternatively, you can hope that the paramedics have the presence of mind to hit the return key so you can get on
with your processing.

In the case of a fork, asynchronous I/O just proceeds in the parent. The child process should not expect any
outstanding asynchronous I/O to cause signals or fill up its buffers.

How Asynchronous I/O Is Queued

When you submit an asynchronous operation, it is queued up in line with all the other I/O going out to the disk, or
whatever I/O device is underlying the file you're using. Where do your asynchronous requests end up in line? Do
they go to the head of the line or the end? The typical UNIX method of queueing would dictate that the system
would stick the requests at the end of the line. But what if your request is the most important thing in the system,
and this particular write request is, say, going to keep a nuclear reactor from blowing up? You don't want that
process to have to wait for umpteen other requests to be processed. So it would make sense to put the asynchronous
request at the head of the queue. Or it might make sense to put the request somewhere in the middle.

To provide this flexibility, many real-time operating systems can prioritize I/O requests relative to one another.
Prioritization is a global and all-pervading concern. Many realtime application and operating system writers
maintain that every queue in a real-time system should be a priority queue.

Page 243

There was no clean and politically acceptable way to provide I/O prioritization in POSIX.4 for all I/O. However,
since the asynchronous I/O interface was brand new and perceived as a "tack-on" interface to existing non-real-time
UNIX, we were able to provide the ability to prioritize asynchronous I/O. As a result, you can prioritize your
asynchronous I/O, but not I/O you do through the normal read/write interface. One hopes, though, that the queue in
the operating system is a priority queue and your I/O will be done before some unimportant process's. If you are
really serious about prioritized I/O, you need to ask your system vendor how the I/O queues work within the
operating system.

When prioritized I/O is being used, I/O requests of a higher priority are serviced before requests of lower priority.
However, prioritized I/O doesn't mean that I/O is always completed in strict priority order. Because of buffer caches
and other indeterminacies of device access, a lower priority request might still get finished before a high-priority
request. And if you make a low priority request on a fast disk, it will probably finish before a high-priority request
on a slow device. These intricacies (the timing interactions of every queue and every possible device that may be
attached to your system) are not documented in the POSIX conformance statement.

As a small security measure, a process is not able to submit I/O requests at a priority higher than its scheduling
priority at the time of the call to submit the I/O.* Processes that are not using one of the defined real-time
schedulers cannot do prioritized I/O at all. This restriction is enforced by the interpretation of the aio_reqprio field
in the AIO control block. aio_reqprio does not indicate the requested I/O priority directly. Instead, it indicates how
much less than your scheduling priority the I/O request is. For example, if your scheduling priority is 10 when you
call aio_write, and you submit an asynchronous I/O at aio_reqprio 0, then the asynchronous I/O's priority is 10. If
you submit another asynchronous I/O with an aio_reqprio of 3, then that asynchronous I/O's priority will be 7.
(You are not allowed to set your I/O's priority higher than yours by passing in a negative aio_reqprio.) aio_reqprio
is similar to the nice value found in standard UNIX systems: it works backwards. Perhaps it should have been
called aio_nice.

It is unfortunate that aio_reqprio works backwards. However, the good news is that you usually want "your I/O" to
be at the same priority as "you." So, one generally just sets aio_reqprio to 0 and that's it.

Asynchronous, Synchronized I/O: aio fsync

The concepts of POSIX synchronized I/O and asynchronous I/O are orthogonal and can easily be combined,
assuming that both _POSIX_SYNCHRONIZED_IO and _POSIX_ASYNCHRONOUS_IO options are present on
your system and supported for the files you're interested in. By setting the O_DSYNC, O_SYNC, and O_RSYNC
flags on a

* POSIX.4 doesn't explicitly say it, but I/O priority probably doesn't track process priority. If you submit prioritized I/O and then
up your process priority, don't expect the I/O priority to follow.

Page 244

file, you can cause any asynchronous, as well as synchronous, reads and writes to go directly through to disk. If you
set one of these flags, the asynchronous I/O isn't considered complete until it finds its way out safely to disk. Once
the data has been synchronized on disk, then the error status of the asynchronous operation will be set to a value
other than EINPROGRESS, the return value will be set appropriately, and the signal, if any, will be generated.

There is even a special function to asynchronously synchronize a file's data, aio_fsync:

 #include <aio.h>
 int return_val;
 struct aiocb fsacb;

 fsacb.aio_fildes = /* FD of interest */;
 /* initialize aio_sigevent structure as desired--other fields are ignored */

 return_val = aio_fsync(O_SYNC, &fsacb);

The aio_fsync call performs either an asynchronous fsync, or an asynchronous fdatasync. If the first argument is
O_DSYNC, an fdatasync is performed; if it is O_SYNC, then a full fsync is performed (O_RSYNC is not
supported by aio_fsync, which may have been an oversight). For this function, only the aio_fildes and aio_sigevent
fields of the AIO control block are used; the rest are ignored since no seeking, (specific) writing, or reading takes
place in this operation. This asynchronous operation is pretty much like any other: you can use aio_return and
aio_error to see how the operation did, aio_suspend to wait for it, and aio_cancel to try and cancel it.

One unexpected aspect of aio_fsync is that it is only required to synchronize I/O operations that were present when
it was called. Subsequent I/Os made to the same file may not be synchronized.

An example will help here. Say you have 10 asynchronous writes to a particular file, and the results of those writes
are now lying around in the buffer cache waiting to go out to disk. You call aio_fsync(O_SYNC,...) to flush these
operations out. What probably happens in the operating system is that a separate thread of control takes these 10
operations off the buffer queue, and then flushes each of them out to disk in turn. In the meantime, you may have
submitted another asynchronous write to the same file. That I/O will go to the buffer cache and be flushed
eventually. But the aio_fsync thread has already inspected the buffer cache and decided which I/O is to go
immediately out to disk. It's not going to check again. And even if it did, you can have the same problem by just
submitting a twelfth asynchronous write, right after the aio_fsync checks the buffer cache the second time. You see
the problem?

Page 245

Deterministic I/O

So far in this chapter we've covered two enhancements to standard UNIX I/O. Synchronized I/O lets you be sure
that data is actually stored somewhere safe, a useful property for systems that live in dangerous environments
where they may go down at any moment. Asynchronous I/O allows you, conceptually at least, to overlap I/O
operations and application processing. Another important enhancement would be control over how long I/O is
going to take. In many instances, the application wants the I/O to proceed as fast as possible (who doesn't?). In
most instances, though, the application needs to know how long I/O is going to take. In other words, real-time
applications often want I/O times to be deterministic.

Usually, the applications that want deterministic I/O times are multimedia and data-acquisition applications. In
these, you presumably have a prodigious amount of data arriving or departing at all times. This data has to be
shunted out the other end of the application to disk, tape, speakers, MPEG decompressor, or whatever, on a tight
time schedule because there's tons more data right behind it. Now, your basic SCSI disk is theoretically capable of
transferring at least a megabyte or two per second out to disk. However, when you try to write your data to a file
and keep up with, say, half a megabyte per second of incoming data, you may find you can't do it. Why not?

File Systems Don't Come for Free

One answer may lie in the file system you're using. Most file systems today are laid out as series of blocks. Files'
data are stored in these blocks. One of the most important characteristics of a file system is how these blocks are
allocated. Most file systems support dynamic file growth (in fact, they must support dynamic file growth in order to
be POSIX-conformant). That means you can't just lay out a files' blocks all next to each other. You need the ability
to allocate a new block, somewhere off at the other end of the disk perhaps, to support this dynamic growth. So, it's
possible, even probable, that a normal file on your system may consist of blocks that are scattered all over a disk.
This scattering causes tremendous slowdown in accessing a file's data, because the seek times on disks are several
orders of magnitude slower than the data transfer rates. In short: you seek, you lose. Another problem lies in the
dynamic block allocation that comes along with dynamic file extension. Whenever you increase a file's size, you
may need to allocate a whole new block from the file system. That's a pause the operating system has to take while
you're trying to write your data out. All things being equal, you'd probably rather that the operating system have
allocated all the blocks of your file ahead of time, and not have to go through the extra work of dynamic block
allocation in the middle of real-time.

In summary, real-time data logging requires a guarantee of sustained data throughput from the underlying system.
There are two basic ways to achieve this sort of

Page 246

guarantee: the low-level way, and the high-level way. Both ways have their pluses and minuses.

Low Level: Abusing the File System

In the abstract, a file system can be defined as a set of rules for how files should be laid out and accessed so as to
maximally satisfy certain criteria: fairness, dynamic allocation, speed, lack of fragmentation, and so forth are all
balanced in a particular file system. Some systems let you blow off these rules and tell the file system where you
want your file, and how you want it laid out. In particular, most real-time operating systems provide the capability
to create contiguous files in your file systems. These files are specially created so that all blocks of the file are laid
one next to another. Implicit in this allocation scheme is that the file's blocks are pre-allocated when the file is
created. When accessing such a file, you can then transfer data to or from the disk at the speed of the raw disk itself,
at least theoretically. No seeking, no dynamic block allocation.

Advantages

Contiguous preallocation has a powerful advantage: it's simple. You know how much space you need, you allocate
it.

Disadvantages

There are several disadvantages to this approach. First, it implies that your application will be the only one
accessing this disk. If another process comes in and causes the data head to seek away from the blocks comprising
your file, then you are still hit with a seek overhead.

Furthermore, contiguous layout may not be quite what you want. Contiguous layout is optimal if you are
transferring data one file at a time, writing the whole file as fast as you possibly can. What if your application is
only writing to the disk at half the speed of the underlying disk? In that case, you might want a file whose logical
blocks were laid out every other physical disk block. Maybe what you want is the blocks of your file laid out every
third block, or something like that. At the very best, you will need to tune your application to the underlying
hardware. And remember that not all disks are created equal. If you replace the disk you've tuned your application
to, your application may well fail because the new disk is either too fast or too slow!

Early drafts of the POSIX.4 standard contained a set of functions to create contiguous files. Because of the
problems with using contiguous files, as well as disagreement on the characteristics of the interfaces themselves,
these functions (the real-time files chapter of early drafts of POSIX.4) were removed, in favor of continuing work
on another tack: using the file system rather than abusing it.

Page 247

Using the File System

Another solution to this dilemma is to use the file system to your advantage. Most file systems come with tunable
parameters you can either dynamically change or statically set when you create the file system. By varying these
parameters, you may be able to achieve the sustained data rates you require.

Advantages

The file system is there for a reason: it's an abstraction mechanism that removes you a level from the hardware. In
most cases, this is a good thing. You really do not want your application tied to the fact that you're operating on a
particular sort of disk. Portability, remember? A more portable application will take advantage of the capabilities of
the underlying systems it runs on to achieve its performance.

Disadvantages

Portability is a problem with this approach as well; there is no standard for file system parameters and file system
tuning. Whether you use a file system or a raw disk, you still need to go through a non-portable configuration and
tuning phase when getting your application up and running on a new system.

Even after tuning, you almost certainly cannot achieve a sustained data throughput close to the raw machine rates if
you are using a file system, even a nice file system that really wants to be helpful to you. It's hard to ignore the fact
that the underlying medium, the disk, has certain characteristics that affect how data transfer takes place. Usually a
file system can provide only statistical guarantees of throughput. Such guarantees may or may not be sufficient for
your application.

Abandoning the File System

A third approach is to abandon the file system altogether. Use a raw disk device and write your own, custom-
tailored file handler for your application. Aim it at a disk that no one else is using, and file systems be damned!
You're data-gatherin'.

Advantages

It's direct, I'll give it that! In fact, if you own up to the disadvantages in advance, this approach is a fairly good one.
Think about it: no other users, no pesky operating system in the way, you tailor the I/O exactly as you want it.
While you're at it, you can probably hack some device driver code to further optimize your data transfers if raw
reads and writes are not sufficient to your purposes. Aside from driver hacking, your roll-your-own file system will
be pretty portable, assuming that the underlying system gives you access to a raw device. Most systems do. This is
the ''Wild West" theory of application I/O handling, and it has its place.

Page 248

Disadvantages

Complexity. File systems are hard. Before you try this approach, I'd exhaust the other two. Remember that this roll-
your-own file system is another component of your application that will need to be debugged, documented, and
maintained, not just designed and coded up.

Deterministic Drives?

Even with special application-specific file layouts, raw device access or sophisticated file systems, you may run
into problems with the actual disks you're using. For instance, disk drives generally deal with bad sectors by
pointing to a designated alternate sector. A read of block 10 may actually involve going to block 347, if physical
block 10 happens to be bad on the disk! All drives have a small number of bad sectors which must be dealt with.
Another problem that occurs regularly (every half hour or so in some drives) is that of thermal recalibration, which
locks up the drive for several milliseconds while the drive adjusts itself to deal with the effects of thermal
expansion. Some newer "multimedia" drives smooth out the thermal recalibration time by performing it on an on-
going basis; however, multimedia drives are more expensive than standard hard drives. Finally, drives are often
subject to "soft" errors which go away when the command is retried. This retry is automatic, but it takes more time
than a normal operation that succeeds the first time through. Soft errors are known to be caused by neutrino
bombardment and gremlins, neither of which you can do much about. No, but seriously: my own anecdotal
experience suggests that a major cause of drive flakiness and poor performance is cable problems. Always check
your drive cables, use high-quality cables, and don't use cables that are too long. Cables matter. Treat them as such.

Conclusion

Well! We now have the capabilities to write real-world applications performing I/O, time-based computations,
coordinated with each other and nicely scheduled together. Is your operating system going to cut it, performance-
wise? That's the subject of the final chapter.

Exercises

Here are some exercises to get you thinking about the various POSIX.4 real-time I/O facilities. The solutions to
problems that require programming can be found in the Appendix, in the section listed in parentheses after each
such problem.

Page 249

Synchronized I/O

How much slower is a synchronized write than a non-synchronized write? Write a program that tells you. Use the
POSIX real-time timer facilities (see Chapter 5. On Time: Scheduling, Time, and Memory Locking) to determine
start and stop times. Alternatively, you could measure bytes written per second by using an interval timer (again,
see Chapter 5). Check the time for data integrity completion (O_DSYNC), and for file integrity completion
(O_SYNC). How different are they?

How much more predictable is synchronized write than non-synchronized write? You can determine this by
running your program from up above numerous times. Or can you? Try it. Are the non-synchronized numbers
varying? If not, why not? What can you do to make them vary?

It's pretty obvious what a synchronized write is: the data you write goes right out to disk, instead of sitting in the
operating system's buffer cache. But what's involved in a synchronized read? Obviously, the data has to be there
before the read call returns. Modify your benchmark program to do synchronized and non-synchronized reads for
O_DSYNC|O_RSYNC and then for O_SYNC|O_RSYNC. What are the time differences?

Asynchronous I/O

Write two programs: one that uses read and write to copy its standard input to standard output, and one that copies
its standard input to its standard output using asynchronous read and asynchronous write. By pointing these
programs at various places on your machine, determine where asynchronous I/O offers a performance advantage.
For each result, try to explain why there is, or is not, a performance advantage.

Modify your two programs to do synchronized I/O. How do your results change? Explain the change to your
satisfaction. (iopipe.c, aiopipe.c)

What would you need to do to perform prioritized asynchronous I/O? Modify your asynchronous I/O program to
accept "nice" values that you plug into aio_reqprio, so you can do asynchronous I/O at priorities other than your
scheduling priority. By the way, what is your scheduling priority? What do you need to do to it to perform
prioritized I/O? Run your modified program on devices that have a lot of I/O going on to them, by processes of
priority equal to or less than your process. What is the difference in performance?

Disk Geometry

Say you wanted to lay out a file so you were absolutely sure it was contiguous, one block after another, on your
disk. Come up with a few schemes for doing so. How do these schemes impact other users of your partition, disk,
controller, data bus, or entire machine? Remember, the goal is to guarantee a certain level of I/O service at all
times.

Page 250

Say you wanted to pre-allocate a file so that there was no overhead for dynamic disk block allocation. How would
you do so?

Page 251

CHAPTER 7
Performance, or How to Choose an Operating System

What I've covered in the last several chapters is only the functionality that is required for real-time applications.
The other requirement is that all-consuming concern of realtime: performance.

Your application is going to require certain performance from the underlying system. Maybe you need a
particularly fast piece of hardware: a big array processor or the latest RISC chip. Maybe, on the other hand, your
hardware is already sufficient for your application, and all you need is software performance.

Those are your requirements. Now look at what your OS vendor has supplied. Maybe it performs, and maybe it
doesn't. On the one hand, some companies have enough trouble getting software out the door that works at all.
There's often no time or engineer bandwidth to pay attention to software performance. On the other hand, there are
some companies that are able to spend the time tuning their software so it will give the performance you need.
Given the differences between various software development efforts, you need to evaluate the performance of
different software systems you may want to use for your application.

There are known, accepted metrics for hardware performance. There are few for software, and none, really, for
real-time software.* The 1003.4 working group began work on a set of metrics that might have provided a standard
measure of a system's realtime performance. These metrics were available in early drafts of POSIX.4, and can still
be found in the Appendix of later drafts. Unfortunately, this effort was ruled to be out of bounds, beyond the charter
of the 1003.4 working group. As a result, there are no standard performance metrics. I hope to make up for that lack
in this chapter.

* One exception is the "Rhealstone" benchmark, which measures performance of certain common real-time facilities, like
semaphores. However, Rhealstone is not a complete performance indicator, and seems to have fallen out of favor recently.

Page 252

Unfortunately, this chapter points out that there is no standard way of measuring performance. You'll have to rely
on your own wits to compare the performance of different operating systems. I hope that I've pointed out what the
important measurements are; you'll have to make those measurements on your own. Performance measurement is a
science unto itself, and many books have been written on the topic. I like Raj Jain's The Art of Computer Systems
Performance Analysis (John Wiley and Sons, 1991).

Performance in Real-Time Systems

There are a couple of varieties of performance. The first, most commonly-used variety is throughput: how fast can I
do operation X (alternatively, how many X's a second can I do)? This is the sort of performance that is most
important for non-real-time systems. It is also important in real-time. However, there is a second variety of
performance that is at least as important to real-time systems: the responsiveness of the system (how quickly the
system responds to some input). Third, the determinism of the system is important. Determinism tells you how
reliable your performance is; i.e., whether performance varies under heavy load. Finally, the space consumed by
your system may be important to you. Bytes used by the operating system are not available to the application, and
you may have a limited memory budget to contend with.

Throughput

Throughput is usually measured in number of operations per second: MIPS (Millions of Instructions Per Second),
bytes per second, number of signals you can send in a second. Alternatively, you could talk in terms of the time
taken for a single operation: 10 microseconds for a call to getpid. There's a subtle difference between the time taken
for one operation and the time taken for many, though. If an operation requires several resources, then it may be
possible to pipeline the operations together to obtain higher throughput. For instance, if an operation requires a
computation followed by a disk write, then you can probably batch many disk operations together and perform
them while yet more operations are busy computing. Furthermore, when you talk in terms of the number of
operations per second, larger numbers imply better performance.

Responsiveness

Responsiveness means the speed with which the system responds to an event. An example from the timesharing
world is the responsiveness of the system to your keystrokes. In real-time systems, we normally talk about response
to interrupts, since all asynchronous events (disk I/O, device readiness, clock-based rescheduling, even keystrokes)
in the system are implemented using interrupts.

The essence of performance measurement is deciding what you are going to measure. When it comes to
responsiveness, different folks measure different things, usually

Page 253

according to which measurement presents their product in the best light. The most common measurements include:

• Interrupt Latency: The amount of time it takes your system to get to the first instruction of an interrupt
routine in response to a particular interrupt.

• Dispatch Latency: The interval of time from the last instruction of your interrupt handler until the first
instruction is executed in the process which this interrupt caused to become runnable.

• Context Switch Time: The time it takes the operating system to switch from one process to another.

There are a multitude of other measurements, and different people mean different things when they use a particular
term—trying to compare different vendors' claims is a mess. A picture of what goes on during a response will help
you understand what the various components of responsiveness are. Figure 7-1 outlines what happens when an
interrupt occurs in a real-time system:

Figure 7-1. The computer responds

1. The Interrupt Occurs. At time to an interrupt occurs. This causes the system to stop what it's doing and start
running the operating system's interrupt-processing prelude code. This sequence eventually results in a call to the
interrupt handler itself.

2. Possible Delay for "Interrupts Disabled" Time. Although interrupt processing usually begins immediately,
the operating system sometimes blocks interrupts for (hopefully) short periods of time (tdisable). Interrupts are
blocked when the operating system is modifying data structures that may be touched by interrupt routines

Page 254

themselves. This interrupts disabled time will delay the handling of any interrupt that occurs during that time.

3. Possible Delay for Other Interrupts. A computer system normally fields several different sorts of interrupts.
These are not allowed to arrive willy-nilly on top of one another; rather, the hardware will block out the delivery of
other interrupts while one interrupt is being handled. Some systems block all further interrupts while handling any
interrupt; others only block interrupts of equal or lower priority.* As a result, other interrupts can delay the
servicing of your interrupt. Usually, any interrupt at a higher priority than yours will be able to delay your interrupt
servicing. This time interval is denoted by tother intrs.

4. Operating System Interrupt Prelude. Before an interrupt handler can run, the system must generally do some
bookkeeping—among other things, saving the state of the processor at the time the interrupt arrived. This is
identified by tpre.

5. The Interrupt Routine Is Called. Finally, at time tour intr the operating system calls the interrupt handler itself.

6. Your Interrupt Handler Runs. This is the amount of time it takes your interrupt handler to run. Remember, if
you're writing driver code as part of your application, your interrupts may delay the processing of other, lower-
priority interrupts; for overall system performance, it's important for your handler to do what needs to be done and
get out of the way as quickly as possible.

For the purpose of this timeline, imagine that this interrupt not only causes your interrupt handler to run, but also
results in your process becoming runnable. This assumption enables the rest of the timeline, below.

7. The Operating System Decides to Reschedule. After your interrupt has been successfully handled, the
operating system takes some time to decide that it needs to reschedule your process. We are assuming that your
process is the highest-priority runnable process; the time taken in this region is simply the amount of time for the
operating system to perform the inevitable rescheduling. On a true real-time kernel, rescheduling will be nearly
instantaneous; non-real-time systems may take milliseconds in here. This time is denoted by tresolve.

8. The Operating System Switches Contexts. Once the OS has decided to reschedule, it goes through a small
section of code where it switches context to the new process. This code merely sets up memory and registers for the
new process.

9. The New Process Returns from the Operating System. Presumably, the process we've just switched to was
blocked in a system call waiting for an interrupt to arrive. Now that the interrupt has arrived, the process must
return out of the operating system to get back to user code.

* Interrupt Priority is a property of the hardware platform, and is not usually related to your application scheduling priorities.
Hardware supports interrupts at different levels to provide timely response to the most urgent interrupts. Even if your hardware
prioritizes interrupts, your operating system software may block all interrupts, just to make things simpler for itself.

Page 255

10. Back in User Mode. Finally, our process is back in user application code!

As you can see, a great deal of processing goes on "under the hood" of a real-time operating system when interrupts
come in. It's not surprising that few operating systems are really able to combine full POSIX conformance with
real-time responsiveness.

When a vendor talks about interrupt latency, they are talking about the amount of time from to to tour intr. However,
the vendor may be excluding the possibility of other interrupts, tother intrs. Vendors often discuss their performance
figures "in the absence of other devices," or some such nonsense—as if an application doing I/O will be able to
dispense with interrupts! It is important that your performance evaluation include the specific machine
configuration—both hardware and software—you'll be using. The particular device configuration makes a great
difference in performance. Not all SCSI disks are created equally; nor are all motherboards or RAM chips. And
interrupt handler times, of course, are dependent on the actual device driver you're using.

It is also possible that a vendor will not mention the interrupt disable time, tdisable. For instance, a vendor quoting
average interrupt latency is implicitly discounting the interrupt disable time, which rarely gets in the way.

Similarly, vendors may discuss the average dispatch latency, which discounts the possibility of the operating
system taking a long time to decide to reschedule. Depending on what the operating system was doing when your
interrupt comes in, it may take longer to reschedule.

Take care with statements about context switch time. The biggest problem here is that you can find yourself
comparing apples and oranges. Some vendors refer to the context switch time as the time interval I described
above. However, an equal number call the entire interval, from one process stopping to handle an interrupt until the
next process runs, as "context switch time." Obviously you cannot just compare the claims of vendors from both
camps—you'll be comparing totally different measurements!

Context switch time numbers can give you a feel for the "heaviness" of the operating system. A long context switch
time indicates a really heavy, slow operating system that may spend too much time in the mechanics of getting
from one process to the next. This might be a problem if your application is composed of many processes that
switch amongst each other a lot.

On the other hand, for my definition of context switch time, it is a small, almost meaningless component of
responsiveness in all but the most trivial systems. So much software surrounds the context switch that its
contribution to response is minimal.

Nevertheless, you'll hear figures for both sorts of context switching quoted all the time. That's because context
switch time is easy to measure, and is usually a nice-sounding small number. I find that real measures of
responsiveness are usually much more terrifying!

Page 256

Lazy context switching

One fact about context switching needs to be mentioned. Today's processors feature more and more hardware
context to be switched: huge numbers of registers, monstrous floating point and graphics pipelines, and so forth.
Switching all that context generally takes much more time than a vendor is comfortable spending in context switch
code. And honestly, many times you don't need to switch your floating point or graphics context, because only one
process on your machine is using that particular, specialized part of the machine.

Modern software and hardware support so-called "lazy context switching." In a lazy context switch, the operating
system simply marks a particular piece of context as "off limits," unavailable for use, when switching from the old
to the new process. If the new process attempts to use the marked-off context, the system generally takes a trap, at
which point that piece of context can be switched. The advantage, of course, is that you often never get that trap
and never have to switch your extra context. Almost all processors support this sort of behavior, including the
80x86, SPARC, and MIPS chips.

From a software performance perspective, the problem with lazy context switching is that you normally don't see
that part of the context switch in your performance numbers. For example, vendors can easily rig the benchmarks
so that the floating point unit is not used. Watch out! Make sure your context switch time includes switching all the
context you care about!

Caches

Lazy context switching is explicit: you're either switching the graphics pipeline context, or you're not. There is a
more insidious detail of context switching that is very hard to identify and measure. Processor memory caches and
MMU caches (Translation Lookaside Buffers, or TLBs) are supported directly by hardware, in most cases, and are
lazily switched, their contents swapped around as memory accesses dictate.

The purpose of these hardware caches is to speed throughput of your computations, by caching frequently-used
data. However, it takes time to fill the caches (cache miss time). When switching contexts, the new process
generally needs to fault in several chunks of cache data, and that takes time. Code that just happens to access
memory the wrong way can experience slowdowns of as much as three times.* So what can you do about this sort
of performance degradation? Probably nothing, except pray and program your application to deal with the worst
case. Some processors allow you to lock certain cache lines down, which can be useful if you can lay out your code
so that the right code hits the locked cache lines, and if your operating system supports the cache-locking
functionality. This is a very dicey proposition, though, and you're more than likely to mess it up. Remember, caches
are there for a reason, and the vast

* I got the number "three" from a presentation by Phil Koopman at the October, 1993 Embedded Systems Conference, entitled
"Hidden Horrors of Cached CPUs." He got his results on an Intel 80486. Mitch Bunnell at Lynx Real-Time Systems has found
performance to suffer by as much as 10 times on machines with software-loaded TLBs, such as the MIPS R4000.

Page 257

majority of the time they are going to make your code go faster. If you start telling the cache how to do its job, it
may just quit on you!

Determinism

We've touched on determinism earlier, but it deserves its own discussion because it is so critical a topic.
Determinism means how much you can count on your system to be responsive. In the discussion above, it's implicit
that your process is the highest priority runnable process in the system, that its memory is locked down, and that in
general, all it needs to run is that interrupt. However, that's not the real world: there are other processes, other
demands on memory and I/O, etc. In a real real-time system, you should be able to count on a certain worst-case
responsiveness for that process, no matter what else is going on in the system! That means that your application
responds to changing conditions within a certain time, no matter how many other processes are running, what
kernel code they're exercising, or how badly they're paging to and from disk.

It means that you get a certain level of responsiveness even when there are multiple, unrelated interrupting devices.
You should be able to bang on a SCSI disk, on an Ethernet, and on a keyboard and still your highest-priority
process should just keep on ticking without violating this worst case. In a true real-time system, all those other
activities are done later, after the high-priority real-time job is finished.

Determinism is a hard quantity to measure, but there are mechanisms you can use to get a better feel for how
deterministic your system is. You can set up a system where interrupts are periodically generated, and you have a
process rigged to respond to that interrupt. By measuring the interval of time between interrupt occurrence and
process response, you get an idea of the response time of the system. When you run the same experiment
continuously, while bashing the system with other workloads, you will soon see whether the interrupt always
provokes the same timely response. We'll talk some more about this sort of experiment below. It should be
mentioned here, though, that such experiments are not foolproof. You're basically trying to hit the system with
everything you've got to make it not respond well. Say the system never misses a beat, never responds late, seems
fine. All you know is that the particular workload you've used does not slow the responsiveness down. Maybe some
other workload does. What's really needed is a detailed analysis of the entire operating system to find the worst
combinations of code sections, but you're not likely to get such an analysis. Pragmatically, an operating system is
too complex to be analyzed in this sort of detail. On the other hand, you are going to run the system under
particular workloads, which you can test.

Page 258

Time versus Space

Throughput, responsiveness and determinism all refer to the time-performance of your system. Another axis of the
performance graph is space-performance: how much memory your system occupies.

It's been said that you can decrease the time performance of any system by increasing its memory consumption, and
vice versa. That's probably true, but only if you have the option of rewriting all the software, including the
operating system. When it comes to space performance, your options really revolve around how easily you can
tailor your operating system to your needs. If there's code you're not using, can you configure it out? If data
structures are bigger than you need them, can you decrease their size?

Space-performance is not really something that the POSIX standards address at all. You want to look for
configurability: the ability to remove unnecessary parts of your operating system. Some systems allow you to
remove just about everything; others are much less flexible. A microkernel architecture generally allows for major
parts of an operating system to be taken out if not necessary. So does a careful operating system code organization,
even of a monolithic kernel. What's really required is that the operating system vendor have done the necessary
work to allow major portions of the system to be removed. You might want to experiment with the smallest and
largest operating system you can build for a given system, just to get a rough idea of how configurable the system
is. System configuration and configurability is a topic unto itself, which I'm not going to discuss here.

Measuring the Right Thing

The most important aspect of determining the performance of a system is setting your own goals for performance.
No single metric applies to all applications; the system that is speediest for one particular application (throughput-
oriented supercomputer-level number crunching, say) may be utterly incompetent on some other application (hard
real-time process control, for example). More importantly, you will evaluate the system differently depending on
what you need the system to do. For the first, compute-bound application, you might look at Dhrystones and
SPECmarks. Such metrics would be inappropriate for the second, real-time application because they don't measure
the real-time aspects of performance that you care about! You might want to use them, on the other hand, to get a
feel for the computation component of your real-time application.

Above, I've grouped performance considerations into four areas: throughput (or bandwidth), responsiveness
(transaction rate), determinism (worst-case transaction rate), and space. In each area, you want to set out your
requirements for the system. Once you have these goals written down, you'll probably find it easier to evaluate the
performance of candidate real-time operating systems. Some sample applications you can run, and their
performance requirements, will help you to evaluate systems.

Page 259

The Important Factors for Hard Real-Time: Determinism and Responsiveness

In many systems, especially hard real-time systems, a process that is late may as well have never run at all.
Determinism and responsiveness are the critical goals. This is not to say throughput is unimportant; it's very
important, but the performance question is often binary. If the system is fast enough to meet all its deadlines all the
time, then additional speed is irrelevant. But you'd better know how fast is ''fast enough" because if the system
misses a deadline, something very bad will happen. This requires knowledge of your task set, deadlines and periods
for those tasks, amount of compute time allotted to each task, and so on. You need to perform detailed task analysis
before you know what speed you need. Do the analysis before you evaluate the systems that may support your
application.

Important Factors for Soft Real-Time: Throughput

In non-real-time and soft real-time applications, by contrast, throughput gains more visibility than in hard real-time.
That's because better throughput means a better soft-or non-real-time application. The faster the application runs,
the better.

When measuring throughput, keep in mind that some measurements are important, while others are not. The
important operations are the ones that have to go fast. These are, in general, the operations that your application
uses when it's running. If interprocess communication and data logging occur while your application is running,
their speed will contribute directly to the overall throughput of your application; you'd like these operations to be as
fast as possible. In contrast, start-up activities, like initializing all your processes and IPC, opening files, etc., are
not time-critical, since they only happen once. Therefore, you'd test message passing speed very carefully, but you
might not care about the time taken to set up a message queue.

Another Important Factor: Space

In either sort of application, there are probably space considerations. In standard paging, swapping UNIX
environments, one tends to forget that physical memory is required for running processes. One tends to accept
executables and operating systems that require multiple megabytes. Even if you're working with a real-time OS that
supports paging and swapping, its performance will be crippled by these features, so you want to be sure the
necessary parts of the OS and the application will fit into physical memory. If you're working on an embedded
system, the requirements are even stricter: there probably isn't any virtual memory, so the entire OS and your
application must all fit into a limited amount of real memory. This sort of metric is pretty easy once you know what
your space budget is. You need to identify what functionality you need in the OS, how small an OS can supply that
functionality, and then the decision is simple. A given OS is either small enough, or not.

Page 260

Metrics for POSIX Systems

Below are a set of metrics you might ask for in order to get a picture of the performance characteristics of your
operating system. Most of these measurements are throughput-oriented; however, the important metrics of interrupt
and dispatch latency are also mentioned in the subsection on process scheduling. Responsiveness and determinism
can't be measured in a portable way. You need to get down to the level of the hardware, because you're talking
about interrupts and responses to them. We'll talk a little bit about measuring responsiveness and determinism at the
end of this section.

Process Primitives

The basic POSIX process operations, fork, exec, exit, and wait, are called "process primitives." The speed with
which you can create and terminate processes is not usually time-critical, since it's not something you generally do
in the middle of real-time operations. The process primitives are usually used at the beginning or end of a realtime
application, at start-up or tear-down of the application. As such, you're not usually concerned with the time taken to
fork, exec, exit, or wait. You are concerned with context switch times, and the speed with which your multiple
processes can communicate and coordinate. These facilities will need to be measured.

Signals

The performance of signals is very important—if your application uses signals (some applications don't).
Obviously, the speed with which a signal can be delivered and handled is key; it is also important to be able to
manipulate your signal masks quickly, since very often you'll find yourself disabling signals for small sections of
code that are better left uninterrupted. Here are some critical parameters to look for:

sigprocmask(SIG_BLOCK)

The amount of time required to block signal delivery using sigaction.

sigprocmask(SIG_UNBLOCK)—no pending signal

The amount of time required to unblock signal delivery using sigaction, assuming that when you unblock the
signal, there is no signal pending.

sigprocmask(SIG_UNBLOCK)—pending signal

This metric tells you the amount of time it takes you to get into your signal handler, assuming that a signal is
pending when you unblock the signal. In this case, you should find yourself instantaneously in the signal handler.

Page 261

sigaction

This is the amount of time it takes to modify a signal handler using sigaction. Usually, setting up handlers is an
application start-up activity, and is therefore not time-critical. That's not always the case, however.

Signal delivery time

Here is the central metric for signals: how long does it take to get a signal sent from one process to another? You
can use several subsidiary measurements to get a clearer picture of this time:

• Signal Sent to Yourself. Send yourself a signal and determine how long that takes. You can try two variants:
First, send yourself the signal, but have it blocked. This gives you the time component without actually dispatching
to handle the signal. Then, send yourself the signal without having it blocked, so you handle the signal each time it
comes in. The difference between the former and latter measurement will give you a picture of how long it takes
your system to set up a signal handler dispatch for your system. (You can find code for these two suggestions in the
Appendix, Exercise Code, in sending_sigs_self.c and sending_recving_sigs_self.c.)

• Signal Sent to Other Process. Send a signal to another process and determine how long that takes. The
difference between the first measurement and this one will he the extra overhead required to cross the boundary
between one process and another. Be sure that the signal sender is lower-priority than the signal receiver, so the
receiver runs immediately upon getting the signal. This time includes the time for the sender to send the signal, as
well as for the receiver to receive it. Again, you can measure this time in two separate measurements, by sending
the signal to a process that has the signal blocked, and then sending the signal to a process that is ready, willing,
and high-enough priority to handle it immediately. (Code for this can be found in sigs_sent_swtch.c.)

• kill/sigqueue, no delivery involved. Send a signal to a process that is lower-priority, or that has signals
blocked. This exercise measures how long it takes to send a signal. Because the receiving process is blocked or
low-priority, the signal is never delivered. Having isolated the time required to send a signal, you can separate the
previous measurements into the sending and receiving portions of time. (Code for this can be found in
sending_sigs.c.)

sigwaitinfo, signal pending

If a process waits for a signal with sigwaitinfo, and there's already a signal there, how long will the call take?

Page 262

sigsuspend, signal pending

If a process waits for a signal with sigsuspend, and there's already a signal there, how long will the call take?
Remember that this time includes the invocation of a signal handler and return from that handler.

Real- and non-real-time signals

Run the tests above for both SIGUSR1 and real-time (queued) signals like SIGRTMIN. The queued signals
probably take a bit longer to send. On the other hand, they carry more data and are more reliable.

I/O

Measuring I/O performance is difficult because it depends on the underlying disk media and the layout of the
particular files you're using, as well as the operating system implementation. Figure 7-2 shows a typical set of
layers.

Figure 7-2. Layers of an I/O implementation

Depending on the test you run, you should be able to measure various components of the path data takes through
the the operating system. When comparing I/O numbers, you must be sure to measure identical (or at least
comparable) scenarios. This entails additional work beyond writing some portable POSIX code.

Before starting, you must know the characteristics of the disk media being used on each system. Determine the seek
time, the transfer rate, the number of heads, cylinders, and sectors per track for each disk. You'll need to know
whether the disk has a cache on it. If you're comparing systems that support SCSI disks, you should buy a reference
disk that you can plug into the system you are measuring. That way, you know you're running your tests on the
same disk.

Secondly, try to measure I/O performance without the file system, and with and without the buffer cache. For these
tests, you'll need to access the disk directly (through the device files, if you're using a UNIX-like operating system).

Page 263

Finally, to compare I/O through the file system (to normal disk files), you must be sure that the file systems start
out in the same state of fragmentation. One way to ensure this is to run your tests on newly-created file systems.
This isn't quite realistic, since fragmentation happens unavoidably over time; you'd be very puzzled if you built a
real-time system that worked for a few months, but then started missing critical deadlines as disk performance
degraded. If you're interested in the performance of the file system after time, you could take a new file system,
abuse it in some reproducible way (by running a program that was known to create fragmentation, for instance),
and then run your tests. Under no circumstances, though, can you point a file system benchmark at an existing, in-
use file system and get meaningful results. You just don't know what the condition of that file system was before
running your test.

Buffered and non-buffered I/0, no file system involvement

Using a block special file (these generally use the buffer cache of the system), test the performance of reads and
writes for files for all values of the synchronized I/O flags: no flags, O_DSYNC, O_SYNC. Run the same test
against the raw version of the same device.

File creation

On a clean file system, benchmark the performance of directory creation and file creation for files of various sizes.
Test file creation with all the synchronized I/O flags: no flags, O_DSYNC, O_SYNC.

File read in synchronous, non-synchronous modes

After you have created all these files, sync the disks (most systems have a utility called sync which will do this, or
you can use fsync on the files themselves) and then read the files with the synchronized I/O flags
O_SYNC|O_RSYNC, and with no flags. This should give you a picture of the amount of time taken to update a
disk node, since the O_RSYNC flag will cause the node to be updated. Non-synchronized reads will not be subject
to this requirement.

File operations on contiguous files

If there is a way to do it, you might consider laying out a contiguous disk file and measuring the performance of
reads and writes to that file. Compare these results to the performance of a normal, fragmented file. Be sure that the
normal file is laid out similarly on all systems that you're comparing; you'll probably need to start with a clean file
system and run a program that creates fragmentation in some reproducible way.

Page 264

Asynchronous I/O

The synchronous or asynchronous nature of I/O has no bearing on the I/O performance itself. After all, you're using
the same file system, buffer cache and device driver. Accordingly, the performance tests for asynchronous I/O
stress the features of asynchronous I/O that are outside of the file system, buffer cache, and device code.

aio_suspend for completed operation

First, we want to determine what sort of overhead is involved in the aio_suspend call. To do this, you'll want to fire
off some asynchronous I/O with the relevant signals blocked. Wait for the I/O to complete (by sleeping, or some
other heuristic method), and then measure the time taken to call aio_suspend for the completed operation. This
benchmark may be difficult because you can't fire off millions of asynchronous operations—the system generally
imposes some sort of limitation.

aio_error and aio_return

You'll want to know how long these calls take as well. You can test aio_error by repeatedly calling it for a single
aiocb. It's a little harder to test aio_return because it can only be called once for a given asynchronous operation.
To test aio_error, you can simply perform an asynchronous read, aio_suspend until it completes, and then
repeatedly do aio_error calls. For aio_return, you can get a feel for the amount of time taken by performing two
experiments. In the first experiment, time an aio_read from some device that doesn't actually do I/O (/dev/null, for
example), and aio_suspend for that I/O, and an aio_return. In the second experiment, time the same sequence,
minus the aio_return. This may not work on those systems which actually require you to call aio_return. But at
least you can try.

Memory Locking

There is very little to measure when it comes to locked memory. The implicit assumption is that locked memory is
just like any other memory, except that it's immune from paging. If you're truly paranoid, you can measure access
to locked memory versus access to non-locked memory. Another test you can do would be to determine whether
locking really locks:

1. Lock the memory of an application down.

2. Measure the access time to that memory.

3. Leave the application up while you perform the following step.

4. Hammer the machine's physical memory and MMU. Run a large number of big processes, so that the machine's
physical memory and MMU context are definitely overrun. (Overrunning physical memory is easy; just load in
larger images than the machine has physical memory, and do memory reads or writes to every page. Overrunning
MMU context takes a little more knowledge. You have to know how

Page 265

many processes can store MMU context in the MMU at any given time. Then, run more processes than that, all
at the same time. This will force MMU and memory contention, which should, in a good real-time system, not
affect your memory-locked application at all.)

5. Now, measure the access time to your locked memory again. There should be no significant difference in access
times.

Shared Memory

While shared memory is generally perceived as the fastest method of interprocess communication, there may still
be a performance surprise waiting for you. You'd expect shared memory to be as speedy as non-shared memory.
This may not be the case because of cache considerations; keeping the processor cache coherent when two different
processes have access to the same memory can be a problem on some machines. It takes careful coding to work
around the cache-coherency problem; alternatively, an OS developer can take the brute force approach and disable
caching for shared memory. Performance suffers in this case. Some systems may support caching when the memory
is mapped into certain areas, but not when it's mapped into other areas. Therefore, you'll want to determine how
long memory accesses take to shared memory, and compared that to the time required for accessing non-shared
memory.*

Semaphores

Semaphore performance is critical to the speed of cooperating processes. There are a few distinct ways in which
semaphores are used. Each method has different performance characteristics. The following are some things to
check for.

Semaphores as mutex: the no-contention case

Semaphores are often used as mutual exclusion devices: a process acquires a semaphore lock to protect its access to
a shared object. When the process is done, it releases the lock. Unless the shared object is truly in demand,
processes will very rarely block while acquiring the the semaphore. Each process is just going to do a quick
sem_wait, do its thing, and release the lock with sem_post. The semaphore is just there for the rare case when two
processes want to do their thing at the same time. The important performance measurement in this case is the speed
with which a process can acquire and release a semaphore when no other processes are involved. This is the so-
called no-contention case, as shown in Figure 7-3.

* Another surprise may be that shared memory isn't faster than message-passing at all! In QNX, for instance, the system is based
on a message passing subsystem that's been tuned for the best possible performance. In this system, you may be better off doing
message passing than trying to "roll your own" with shared memory and semaphores.

Page 266

Figure 7-3. Non-contested use of semaphores

Semaphores for blocking

In the other mode of operation, a semaphore is to signal another process. In this case, a process will try to acquire a
semaphore and block, waiting for a signal that tells the blocked process to proceed with whatever it's doing. The
important performance measurement here is the speed with which a process can wake up other processes that are
waiting on the semaphore. One way of measuring this time is to use two processes and two semaphores. Each
process repeatedly signals one semaphore and then waits on the other. Figure 7-4 illustrates this.

Figure 7-4. Two processes (P) signalling each other with semaphores (S)

Scheduling

Usually, scheduling is set up when an application starts, and doesn't change. However, there are a couple of cases in
which a process may need to work with the scheduler while an application is running. Here are a few things to
measure:

Page 267

Setting scheduling parameters without rescheduling

First, you can determine how long it takes to set a process's scheduling parameters. For this, you'll want to change
the scheduling parameters on a process so that the operation itself does not result in any rescheduling. For example,
you might run your measurement program using the FIFO scheduler at a high priority, and then set some other
process's scheduling parameters to FIFO scheduling at the lowest possible priority.

Sched_yield

The sched_yield call is used while an application is running; it gives the processor to another process of equal
priority. This call can be used to benchmark the speed of a voluntary context switch (it's voluntary because the
process is cooperating with its own preemption). Voluntary context switches are faster than involuntary ones,
because there's no interrupt involved.

However, using sched_yield you can get a clear picture of the time taken in preemptive context switches (the
context switch time from our earlier discussion). To measure this time, you'll first need to measure the time taken
by the sched_yield call itself. Do this by yielding repeatedly when there are no other processes at the same priority.
Since there will be no context switch, what you'll measure will be pure overhead. Then run the benchmark with two
processes at the same priority, and determine how long each yield call takes when context switches are involved.
The difference will be your in-operating-system context switch time. (Code for this experiment can be found in
noswitch.c and switch.c in the Appendix.)

It can be interesting to run this test with many processes, all yielding to each other in a circular fashion. You would
expect the context switch time to be unaffected by the number of active processes. However, this is often not the
case.*

Finally, I should mention again that some people prefer to define context switch time as the time from the last
instruction of one user-level process (the switched-from process) to the first instruction of the next (i.e., switched-
to) user-level process. Take care that the numbers the vendor is giving you are measuring the time interval you
think they're measuring!

Dispatch latency, average, worst

Finally, you want to measure the real meat of the scheduling question: how long does it take to get to your high-
priority process when an interrupt wakes it up? This is the dispatch latency for the system. This is a complicated
and non-portable measurement, which is described in more detail in the "Responsiveness and Determinism"
section, later in this chapter.

* On machines with limited-size MMUs, in particular. An early generation of SPARCstations featured an MMU with a limit of
16 processes allowed in the MMU at once. These machines showed a very distinct performance difference between ten running
processes and twenty—from microseconds to milliseconds!

Page 268

Clocks and Timers

Access to the system time is critical. The resolution of the clock is not exactly a performance issue, but it is
important for you to know. After that, the basic performance issue is the behavior of interval timers—how they're
set, and how accurate they are.

Clock resolution

Calling clock_getres tells you the resolution supported by CLOCK_REALTIME on your system. This value will
either be sufficient for your application, or not.

Getting the time

How long does it take to find out what time it is? This measurement impacts all your other performance
measurements. The usual way of measuring performance is shown in Figure 7-5.

Figure 7- 5. A generic performance measurement

Now, if your experiment takes long enough, the time taken in getting your two timestamps is inconsequential.
However, if your experiment is very short, the time required to get the timestamp is more important. In any event,
you should know this time and add it into your calculations for correctness.

Timer set and clear

In most cases, you will need to set a timer and then handle the signals generated by that timer, without resetting. It's
possible, though, you may need to reset your timers during your application. As a result, the time taken to set and
clear an interval timer may be important.

Drift

Drift is the propensity of a timer to move away from a steady clock tick over time. If you set a timer to go off every
second, and run it 1 million times, then the final time it goes off should be a million seconds after the first time it
went off, right? A timer that drifts will take a million-and-ten seconds, or something like that. You can measure
drift by writing a program to perform the test I just described.

Page 269

Jitter

We've mentioned jitter before. Jitter is a measure of how on-time your timer deliveries are. A very steady clock will
deliver timer expirations every interval, on the interval—not a tick earlier, not a tick later. A jittery clock, in
contrast, tends to deliver timer expiration signals around the time it's supposed to. Programs outlined in the
exercises for timers allow you to measure your system's jitter.

Message Passing

Message passing speed is of prime importance for a running application. Throughput depends strongly on message
size. For large messages, message passing time should grow linearly with the size of the message, since most of the
time will be taken by copying the message in and out of system buffers. By measuring message passing
performance at different message sizes, you can get a good feel for message passing overhead, and whether the
performance scales appropriately with message size.

Pass zero bytes

This measurement tells you how efficient message queues can be as a means of synchronization. Zero bytes can be
noticeably faster than one-byte message passing, given a few optimizations. Compare this number to the results you
measure for semaphore-based synchronization—you may be surprised!

Pass one byte

Measure the performance of passing one-byte messages between two processes.

Pass the number of bytes you'll be using

Measure the performance of passing the messages you care about between two processes.

Responsiveness and Determinism

Responsiveness and determinism are tough to measure. You'll want to at least start with what your OS vendor tells
you the relevant numbers are. However, you need to know the right questions to ask. Just as an executive summary,
you want the average, worst-case, and best-case numbers for the following:

• What is the time from occurrence of an interrupt to the execution of the relevant interrupt handler?

• If I have a task waiting for that interrupt (via an ioctl, read, or whatever), and that task is the highest-priority
process in the system, how long will it take for that task to run?

• What workload did you use to determine the average and worst-case numbers?

• How does my expected workload relate to the workload you used in determining these numbers?

Page 270

• What hardware configuration did you measure these numbers on? (You need an absurd level of detail here:
processor, architecture, manufacturer, amount and speed of memory, all attached peripherals and their
configuration, OS version the vendor used, and so forth.)

• How can I apply numbers measured on that hardware to numbers I might expect to achieve on my hardware?

It's important to get at least two times for each measurement: average and worst case. The worst case measurement
is the most important one, because you must program your application with this worst case time in mind. Average
case is also important, because it tells you what you can in fact expect in day-to-day operation. The best case
number is interesting, too, but worst and average case are critical.

The machine configuration used by the vendor is important, because machines vary considerably in their
performance. My own experience is in the area of Intel 80x86-based PC machines, where every streetcorner seems
to sport a new motherboard vendor. In such an environment, you can find supposedly ''compatible" hardware that
just doesn't cut the performance mustard! In the embedded area, as well, you'll generally be configuring your
machine in a totally different manner than the setup in which performance numbers were measured. If your vendor
provides you with the measurement tools they used to determine performance, then you can perform these
experiments yourself on your target hardware of choice. The first issue, though, is to understand the numbers and
what they mean.

So that you know what these questions mean, we'll talk a bit about them. The first two measurements are your
interrupt and task response times. Imagine you're measuring them yourself. To measure the responsiveness and
determinism of your system, you need to get machine-specific. You'll have to be able to trigger an interrupt at a
particular time, determine when the interrupt handler runs in response to that interrupt, and then determine when a
task awaiting that interrupt runs. The application structure you'll need is pretty simple, and is shown in Figure 7-6.

Obviously, the driver and machine-specific components of this application need to be redone for every target
system. Likewise, the portion of the user-level application that deals with the hardware will need to be ported.
However, the user-level application can probably be fairly portable, at least in its overall structure:

 main()
 {
 struct sched_params s;
 int nsamples = 0;

 /* lock all memory down */
 mlockall();
 /* run at the highest possible priority */
 s.sched_priority = sched_get_priority_max(SCHED_FIFO);
 sched_setscheduler(0, SCHED_FIFO, &s);

Page 271

Figure 7-6. Responsiveness measurement application

 /* Initialize device for performance measurement */
 fd = open("/dev/rtperf_measurement", O_RDWR); /* for example *
 /

 /* repeatedly measure performance */
 while (1) {
 /*
 * wait to be awakened. read or ioct1 would work here.
 *
 * determine interrupt time, time interrupt service routine
 * ran, current time.
 *
 * log sample.
 */
 nsamples++;
 }
 }

There, I've made it simple. All you need to do is fill in the blanks! Seriously, this application can be made to work
in two ways. Probably the most common is to have some sort of a timer card for your system, which generates a
periodic interrupt. Your driver supports the ability to wait for that interrupt, determine the time at which the
interrupt occurred, the time at which the interrupt routine itself runs, and the time at which the user task runs. Using
these three time numbers, you can determine how long interrupt and task response take.

Alternatively, you could measure the time externally using a logic analyzer or some other large, scary piece of
hardware. This solution requires a simpler driver that waits for a particular interrupt, and then toggles one or two
special things that the logic analyzer is watching. The interrupt is generated externally; when they are called, the
interrupt handler and the task toggle the bits the analyzer is watching for. The analyzer itself measures the time
taken in interrupt and task response. Figure 7-7 shows the timeline.

Page 272

Figure 7- 7. External measurement of interrupt and task response

Now you have a good idea how to measure the response of your system to an interrupt. Be careful, though. You
only know how to measure one interrupt, probably under good conditions (not a lot else on the machine, etc.). That
is probably the best response you will ever see from your system. Now, you need to determine how well the system
is going to respond under the actual conditions you plan for your application. The determinism of your system is
how well the system responds to your interrupt under arbitrarily heavy loads of processing. For instance, what if
someone else is doing disk I/O? What if someone else is signalling another process? What if the network is busily
interrupting?

Again, you need to determine what is important. OS vendors generally draw a line in the sand and talk about their
performance under that particular workload. For instance, an OS may measure its responsiveness while there is
heavy network, disk, and computational traffic. Another OS may measure its responsiveness only if there are no
other interrupting devices (seriously)! You need to know what workload the vendor used in determining its
numbers.

Finally, you need to determine what your own workload is going to be. If your application is going to use a lot of
networking and disk I/O, then you should count on a heavy load of interrupt and driver processing going on. If your
application has a strong computational component, that is part of your workload as well. You can probably simulate
your own workload pretty easily, by banging on your disks and networks and processors with the appropriate
numbers of tasks and I/O operations.

Conclusion

Performance measurement of real-time operating systems is not a cut-and-dried issue. POSIX has probably made
two aspects of performance measurement easier: throughput and space measurement, because now there are
standard facilities, of which you can measure the throughput and space consumption. You can compare apples and
apples. In the area of responsiveness and determinism, POSIX hasn't helped much at all. You have to do the tests
yourself, or trust the vendors to tell you the correct information. In

Page 273

either case, you need to know what numbers are important, and under what workloads those numbers were
obtained.

The most important component of performance measurement, though, is to know what you're measuring ahead of
time. Identify the areas that are important to you, and how important they are. Throughput, responsiveness,
determinism, space: what performance do you need in each area? Measure the features that are important to you,
and don't be distracted by numbers that are irrelevant.

Exercises

To a certain extent, most of this chapter is a big set of exercises; furthermore, much of it is so system-dependent
that code samples would be useless or actually harmful. Code samples for several of the performance measurements
are flagged throughout this chapter.

Page 275

PART II
Manpages

This section contains manual pages for the functionality of POSIX.4, with the goal of giving you a good, concise,
function-by-function, header-by-header description of functions you may be using on a day-to-day basis.

I've contravened typical UNIX practice and tried to put more useful substance in the manpages. I've also added
sections, willy-nilly, that describe POSIX-specific impacts (which header files may be included by other header
files, for instance) and gotchas (such as reuse of the AIOCB). The manpages for your particular system should
cover implementation specifics and details, but in general those systems won't be written from the standpoint of a
pure POSIX system. These manpages are.

Being manpages, they're still terse and may be a bit opaque to the reader uninitiated in the wonders of POSIX.4.
For additional information, you can always refer back to the body of the book.

Page 277

<aio.h>

Name

<aio.h> - Header file for POSIX 1003.4 asynchronous I/O.

Origin

<aio.h> is a header file that was created by and for POSIX.4. This header file contains nothing defined by standard
UNIX or POSIX.1. Its POSIX.4 contents are structures and constants related to asynchronous I/O:

Conditionality

<aio.h> is only guaranteed to be present if _POSIX_ASYNCHRONOUS_IO is defined in <unistd.h>. Other than
that, everything defined herein is unconditional. Prioritized I/O is conditional on _POSIX_PRIORITIZED_IO but
the facility for it (aiocb.aio_reqprio field) is unconditional.

Namespace Reservation

The support of _POSIX_ASYNCHRONOUS_IO reserves the following symbol namespaces: names beginning
with aio_, AIO_, lio_, and LIO_.

Contents: Constants

 #define AIO_CANCELED xx
 #define AIO_NOTCANCELED xx
 #define AIO_ALLDONE xx

These are all values that may be returned by aio_cancel. AIO_CANCELED indicates that all the requested
operations have been cancelled. AIO_NOTCANCELED indicates that at least one of the requested operations
could not be cancelled (because it was in progress). In contrast, a return value of AIO_ALLDONE means that none
of the requested asynchronous I/O could be cancelled because they are all already done. Remember that it is up to
each vendor to decide which I/O is cancellable and which is not. Do not code your application to depend on AIO
cancellation succeeding or failing.

 #define LIO_WAIT xx
 #define LIO_NOWAIT xx

These are values for the first parameter to lio_listio. These two constants indicate whether to wait synchronously
for all the I/O to be done (if the parameter is

Page 278

LIO_WAIT), or to return immediately and let all the I/O on the list proceed asynchronously (if the parameter is
LIO_NOWAIT). Remember that if LIO_WAIT is specified, the sig argument to lio_listio is ignored.

 #define LIO_READ xx
 #define LIO_WRITE xx
 #define LIO_NOP xx

These are opcodes for the aio_lio_opcode field of the aiocb. They are only consulted by the lio_listio call.

Contents: Data Structures

All data structures are minimal contents, and members may not be in the order given. Vendors may add their own
extensions.

 struct aiocb {
 ...
 int aio_fildes; /* FD for asynchronous op */
 off_t aio_offset; /* Absolute offset to seek to */
 volatile void *aio_buf; /* Buffer to read from/write to */
 size_t aio_nbytes; /* Number of bytes to read/write */
 struct sigevent aio_sigevent; /* Signal to deliver */
 int aio_lio_opcode; /* lio_listio only: opcode */
 int aio_reqprio; /* AIO pr., IFF {_POSIX_PRIORITIZED_IO} */
 ...
 };

This is the minimal structure of an asynchronous I/O control block. An implementation may define more members
than are specified here. In particular, an implementation might choose to store the error number and return value of
the asynchronous operation in this structure. Earlier versions of POSIX.4 asynchronous I/O actually had defined
fields for this, called aio_errno and aio_return. Keep in mind that those fields, if they happen to be in your
implementation, are not standard parts of POSIX.4—they will not be present on all POSIX.4 implementations!

aio_fildes, aio_buf, and aio_nbytes:
These three fields describe an asynchronous read or write. The aio_fildes field is the file descriptor from which to
read or to which to write; the aio_buf is the buffer, and aio_nbytes is the number of bytes to read or write. The only
additional information required is the aio_offset, described below.

aio_offset:
The aio_offset indicates an absolute offset within the file, at which the requested asynchronous read or write will
take place. This offset is essentially used as the offset in a call to lseek (aio_fildes, SEEK_SET, aio_offset). If the
file descriptor is set for append-only mode (if

Page 279

O_APPEND has been set for the file), then setting the offset will be meaningless.

aio_sigevent:
The aio_sigevent field is consulted for aio_read, aio_write, and lio_listio. This element describes a signal to be
delivered on completion of an asynchronous I/O request. The aio_sigevent structure has three fields, a notification
flag (sigev_notify), a signal number (sigev_signo) and a value (sigev_value). sigev_notify dictates whether the
signal is delivered or not, or whether some other asynchronous notification mechanism is invoked upon AIO
completion (no other such mechanisms are defined at the moment). Set sigev_notify to SIGEV_NONE if you want
no notification at all; set it to SIGEV_SIGNAL and a signal, described by the rest of the struct sigevent, will be
delivered. If the signal number (sigev_signo) is one of the real-time extended signals (and if
_POSIX_REALTIME_SIGNALS is supported), then sigev_value indicates the value to be passed as the third
argument to the signal handler. Otherwise the value field is ignored.

aio_lio_opcode:
Only consulted when the aiocb is part of the list passed to lio_listio. This field takes on one of the values
LIO_WRITE, LIO_READ, or LIO_NOP, and allows the lio_listio call to know whether to treat this aiocb as an
argument to aio_write, to aio_read, or whether to ignore the aiocb altogether.

aio_reqprio:
Only consulted if _POSIX_PRIORITIZED_IO is supported. If so, indicates the priority of the I/O request relative
to other asynchronous I/O requests on the same device.

This structure member is misnamed. Asynchronous I/O priority is calculated by taking the calling process's
scheduling priority, and subtracting the aio_reqprio. Thus, aio_reqprio is actually something like a "nice"
value. This allows you to lower your priority, but not to arbitrarily raise it and clog up the system.

Priority relative to synchronous writes (e.g., via normal read and write) is not defined and you shouldn't rely
on it. However, priority applied to synchronous lio_listio requests will be enforced relative to prioritized
asynchronous I/O, allowing you to fully prioritize device

Page 280

I/O (assuming you have total control over what I/O goes to a particular device).

If you don't care about prioritized I/O, be sure to set this field to 0, because it is always consulted if
_POSIX_PRIORITIZED_IO is supported; you don't want your asynchronous I/O requests to be rejected
because of an uninitialized field that you don't care about!

POSIX.4 Contents: Declarations

 #ifdef _POSIX_ASYNCHRONOUS_IO
 int aio_read(struct aiocb *);
 int aio_writes(struct aiocb *);
 int lio_listio(int, struct aiocb **, int, struct sigevent *);
 int aio_error(const struct aiocb *);
 ssize_t aio_return(const struct aiocb *);
 int aio_suspend(struct aiocb **, int, const struct timespec *);
 int aio_cancel(int, struct aiocb *);
 #ifdef _POSIX_SYNCHRONIZED_IO
 int aio_fsync(int, struct aiocb *);
 #endif /* _POSIX_SYNCHRONIZED_IO */
 #endif /* _POSIX_ASYNCHRONOUS_IO */

Visibility

Inclusion of <aio.h> may make the following other header files visible:

<sys/types.h>
because off_t and size_t must be defined.

<signal.h>
because struct aio_sigevent must be defined.

<time.h>
because the struct timespec structure used in aio_suspend must be defined.

<fcntl.h>
For the definitions of O_SYNC, O_DSYNC, and O_RSYNC (for asynchronous synchronized I/O with aio_fsync).

Page 281

<fcntl.h>

Name

<fcntl.h> — Header file for file control (and POSIX 1003.4 synchronized I/O).

Origin

<fcntl.h> is a standard UNIX header file. Standard UNIX defines the O_SYNC flag, and POSIX.4 uses a
compatible definition of this symbol. <fcntl.h> has been extended by POSIX.1 to contain definitions and structures
related to the fcntl function of POSIX.1. POSIX.4 has added two new flags, relating to synchronized I/O, that can
be set by the fcntl function of POSIX. 1.

Conditionality

These additions to <fcntl.h> are unconditional. Now-current implementations of POSIX. (ISO 9945-1 (1990))
probably do not have these contents; however, they will be in POSIX conformant systems with a
_POSIX_VERSION greater than or equal to 199309.

Namespace Reservation

The inclusion of <fcntl.h> reserves the following symbol namespaces: names beginning with l_, F_, O_, and S_.

Contents: Constants

 #define O_SYNC xx
 #define O_DSYNC xx
 #define O_RSYNC xx

O_SYNC, O_DSYNC, and O_RSYNC are file flags, like O_APPEND and O_NONBLOCK, which control how
operations against this particular file are treated. O_DSYNC causes all writes to the file to be flushed right through
the system's buffer cache and on out to the underlying medium (presumably a disk). O_SYNC requires even
more—all data written to the file must be kept up-to-date on disk, and, in addition, other control information
associated with the file (access times, permissions, and so forth), must also be kept up-to-date on each write. Both
O_SYNC and O_DSYNC affect only writes to the file, not reads. If O_RSYNC is set on a file, then the
synchronization behavior for the file is also required on read operations.

For instance, if O_SYNC and O_RSYNC are set for a file, then on each read, the access times for the file must be
updated on the disk.

Page 282

As another example, if O_DSYNC and O_RSYNC are both set for a file, then on any read, any pending writes to
the file must be flushed to the underlying media for the file.

Synchronized I/O slows down file access. O_SYNC and O_DSYNC only slow down disk writes; however, if
O_RSYNC is also set, then reads may be quite slow as well.

All three flags can be set on open() by oring the values into the flags parameter to open. Alternatively, one can call
fcntl(fd, F_SETFL, flags) with O_SYNC, O_DSYNC, or O_RSYNC ored into the flags field to set synchronized
mode behavior on a file that is already open.

Visibility

<fcntl.h> does not make anything else visible.

Page 283

<limits.h>

Name

<limits.h> — Header file for POSIX numerical limits.

Origin

<limits.h> is part of POSIX.1.

Conditionality

Unconditional.

Namespace Reservation

Inclusion of <limits.h> reserves symbol namespaces ending with _MAX.

Determining Your System's Limits

<limits.h> defines the numeric parameters that go into a POSIX system. It is a counterpart to the standard header
<unistd.h>, which defines what is present on a POSIX system; <limits.h> defines the size and shape of what is
present.

The contents of <limits.h> fall into two categories: minimum values and actual values.

It would be simple if <limits.h> just had constants that gave you all the numeric limits for your system, but the real
world is more complicated than that. For any given system, some limits will be constant and will never change with
different machine configurations. Other limits will vary with different machine configurations, but for any given
configuration, there will be a particular limit. Still other limits are totally indeterminate, depending on run-time
characteristics of the system, such as the amount of free memory and the number of other processes running on the
machine.

A constant, invariant limit is given in this file by the actual limit constants named below. If the constant is present
in <limits.h>, then that is the actual limit, and it will not change no matter how you configure your system or how
running conditions change on that system.

If, however, one of the actual limits is not defined in <limits.h>, it's because the actual limit is not constant. It is
either a constant that depends on machine configuration, or it is not a constant at all.

For constants that vary with machine configuration, you need to determine the value of the limit at run time on the
particular machine you are concerned with. You'll use sysconf and pathconf to query these values at runtime.

Table continued on next page

Page 284

For limits which are indeterminate, sysconf and pathconf will return to you a value of -1, without setting errno. If
this happens, then you know that the limit in question is indeterminate. You are guaranteed, however, that the limit
will be no less than the ''minimal maxima," the _POSIX_ values, listed below.

Contents: Minimum Values

Minimum values are distinguished by the prefix _POSIX_. These values all correspond to another, actual limit.
These numbers refer to the smallest the limit will ever be on the system in question. Notice that all the values below
are maxima. This table is the smallest value any system may impose on that particular maximum.

Constant Min. Value Description Related
Function

Required in All Implementations

_POSIX_ARG_MAX 4096 The total length of the string arguments you pass to one of
the exec functions.

exec

_POSIX_CHILD_MAX 6 The number of (child) processes one user ID can have
active simultaneously.

fork

_POSIX_LINK_MAX 8 The number of links a single file can have.

_POSIX_MAX_CANON 255 The number of bytes in the "canonical input queue" of a
terminal.

_POSIX_MAX_INPUT 255 The number of bytes which will fit into a terminal's
"canonical input queue."

_POSIX_NAME_MAX 14 The number of bytes in a file name or a pathname
component.

open, mkfifo

_POSIX_NGROUPS_MAX 0 The number of supplementary group IDs a process can
have at once.

_POSIX_OPEN_MAX 16 The number of files a process can have open at once. open

_POSIX_PATH_MAX 255 The number of bytes in a pathname. open

Page 285

Table continued from previous page

_POSIX_PIPE_BUF 512 The number of bytes you're guaranteed to be able to write
atomically(as a unit) to a pipe.

pipe

_POSIX_SSIZE_MAX 32767 The largest value you can reliably write to or read from a
file at once. Also the largest value you can store in an
ssize_t.

write, read

_POSIX_STREAM_MAX 8 The number of standard I/O "streams" a process can have
open at once.

_POSIX_TZNAME_MAX 3 The maximum number of bytes for a timezone name.

The values that follow apply to the optional pieces of POSIX.4. As such, they'll only appear in <limits.h> if the
corresponding functionality is supported by the system. You can determine this by looking at <unistd.h>.

Constant Min. Value Description Related
Function

Required for _POSIX_REALTIME_SIGNALS

_POSIX_RTSIG_MAX 8 The difference between SIGRTMIN and SIGRT-MAX. sigqueue

_POSIX_SIGQUEUE_MAX 32 The maximum number of signals a process can queue to
another process at one time (total number a process can
have queued, but not yet handled, for its victim
processes).

sigqueue

Page 286

Required for _POSIX_TIMERS

_POSIX_DELAYTIMER_MAX 32 The maximum number of timer overruns (after this
number is exceeded for a particular timer,
timer_getoverrun will just return DELAYTIMER_MAX)

timer_getoverrun

_POSIX_TIMER_MAX 32 The maximum number of timers a single process is
allowed to have.

timer_create

_POSIX_CLOCKRES_MIN 20,000,000 The minimum clock resolution, in nanoseconds. clock_getres

Note: _POSIX_CLOCKRES_MIN is interpreted in a sense opposite to the other limits above.
_POSIX_CLOCKRES_MIN is the largest (i.e., grossest) clock resolution allowed. If you take the inverse of
_POSIX_CLOCKRES_MIN, and get a Hz value, you will see that larger values of _POSIX_CLOCKRES_MIN
provide smaller values for Hz, and therefore worse and worse clock resolution. 20000000 nanoseconds corresponds
to 50 Hz.

Actual clock resolutions are retrieved for a particular clock by calling clock_getres.

Constant Min.
Value

Description Related
Function

Required for _POSIX_ASYNCHRONOUS_IO

_POSIX_AIO_LISTIO_MAX 2 The maximum number of AIOs you can specify in a
single listio call (the maximum length of the vector, NOPs
not included).

lio_listio

_POSIX_AIO_MAX 1 The maximum number of outstanding simultaneous
asynchronous I/O operations.

lio_listio,
aio_read

Table continued on next page

Page 287

Required for _POSIX_MESSAGE_PASSING

_POSIX_MQ_OPEN_MAX 8 The maximum number of message queues a particular
process can have open.

mq_open

_POSIX_MQ_PRIO_MAX 32 The maximum message priority supported (maximum
value for msg_prio in a call to mq_send).

mq_send

Required for _POSIX_SEMAPHORES

_POSIX_SEM_NSEMS_MAX 256 The maximum number of semaphores a particular process
can have - open.

sem_open,
sem_init

_POSIX_SEM_VALUE_MAX 32,767 The maximum value a semaphore may have. sem_signal,
sem_getvalue

Contents: Actual Limits

The following actual limits refer to the actual values for the system being targeted. These values may, in fact, be
increased at runtime or be indeterminate (subject to the amount of free memory, for instance). In this case, you
would want to use sysconf or pathconf to determine the value of the limit at runtime.

Constant Minimum Value sysconf/pathconf Variable

Required in All Implementations

NGROUPS_MAX _POSIX_NGROUPS_MAX _SC_NGROUPS_MAX

ARG_MAX _POSIX_ARG_MAX _SC_ARG_MAX

CHILD_MAX _POSIX_CHILD_MAX _SC_CHILD_MAX

OPEN_MAX _POSIX_OPEN_MAX _SC_OPEN_MAX

STREAM_MAX _POSIX_STREAM_MAX _SC_STREAM_MAX

TZNAME_MAX _POSIX_TZNAME_MAX _SC_TZNAME_MAX

LINK_MAX _POSIX_LINK_MAX _PC_LINK_MAX

MAX_CANON _POSIX_MAX_CANON _PC_MAX_CANON

MAX_INPUT _POSIX_MAX_INPUT _PC_MAX_INPUT

Page 288

Table continued from previous page

NAME_MAX _POSIX_NAME_MAX _PC_NAME_MAX

PATH_MAX _POSIX_PATH_MAX _PC_PATH_MAX

PIPE_BUF _POSIX_PIPE_BUF _PC_PIPE_BUF

SSIZE_MAX _POSIX_SSIZE_MAX (n/a)

There is no sysconf access to SSIZE_MAX because that value is not allowed to change with machine configuration.

The following actual limits are for parts of POSIX.4 and are present in <limits.h> only as required by <unistd.h>.

Constant Minimum Value sysconf/pathconf Variable

Required in Various POSIX.4 Options

RTSIG_MAX _POSIX_RTSIG_MAX _SC_RTSIG_MAX

SIGQUEUE_MAX _POSIX_SIGQUEUE_MAX _SC_SIGQUEUE_MAX

DELAYTIMER_MAX _POSIX_DELAYTIMER_MAX _SC_DELAYTIMER_MAX

TIMER_MAX _POSIX_TIMER_MAX _SC_TIMER_MAX

AIO_LISTIO_MAX _POSIX_AIO_LISTIO_MAX _SC_AIO_LISTIO_MAX

AIO_MAX _POSIX_AIO_MAX _SC_AIO_MAX

MQ_OPEN_MAX _POSIX_MQ_OPEN_MAX _SC_MQ_OPEN_MAX

MQ_PRIO_MAX _POSIX_MQ_PRIO_MAX _SC_MQ_PRIO_MAX

SEM_NSEMS_MAX _POSIX_SEM_NSEMS_MAX _SC_SEM_NSEMS_MAX

SEM_VALUE_MAX _POSIX_SEM_VALUE_MAX _SC_SEM_VALUE_MAX

Visibility

Inclusion of <limits.h> doesn't make any other header files visible.

See Also

<unistd.h>

<aio.h>

<mqueue.h>

<semaphore.h>

<signal.h>

<time.h> (other headers related to this one)

open

fork

Page 289

exec

kill

sigqueue

sem_open

sem_signal

lio_listio

aio_read

mq_open

mq_sendwrite

clock_getres

timer_create

timer_getoverrun

Page 290

<mqueue.h>

Name

<mqueue.h>—Header file for POSIX 1003.4 message queues.

Origin

<mqueue.h> is a header file that was created by and for POSIX.4. This header file contains nothing defined by
standard UNIX or POSIX.1. Its POSIX.4 contents are structures and constants related to POSIX.4 message queues.

Conditionality

<mqueue.h> is only guaranteed to be present if _POSIX_MESSAGE_PASSING is defined in <unistd.h>.

Namespace Reservation

The support of _POSIX_MESSAGE_PASSING reserves symbol namespaces beginning with mq_ and MQ_.

Contents: Constants

 #define MQ_NONBLOCK

This constant is a flag that, if set in the mq_flags field of an mq_attr structure, indicates that the process has the
associated message queue open in non-blocking mode. This flag is only used by the mq_getattr and mq_setattr
functions; although the flag can be passed to mq_open when a message queue is created, it is ignored in favor of the
standard open flag, O_NONBLOCK.

Contents: Data Structures

All data structures are minimal contents, and members may not be in the order given. Vendors may add their own
extensions.

 typedef xx mqd_t;

The mqd_t type is a message queue descriptor. This is the return type from mq_open.

 struct mq_attr {
 ...
 long mq_maxmsg; /* Max # messages in the queue at once */
 long mq_msgsize; /* Max size of a single message on queue */

Page 291

 long mq_flags; /* Flags for message queue */
 long mq_curmsgs; /* # messages currently in the queue */
 ...
 };

This structure is used when creating a message queue (with mq_open), and when querying and setting the attributes
of a message queue (with mq_getattr and mq_setattr).

mq_maxmsg and mq_msgsize
These two fields describe the geometry of the message queue; how many messages can be in the queue at once, and
how big a single message in the queue can be. These fields are used when the message queue is created, and are not
consulted in a call to mq_setattr. You cannot dynamically change the geometry of a message queue.

mq_flags
This field contains flags that describe the behavior of the message queue. Only one flag, MQ_NONBLOCK, is
defined. If it is set, then the message queue is open by this process in non-blocking mode. That is, an mq_receive
will not block waiting for a message to arrive on an empty queue, and an mq_send will not block waiting for space
to send a message to a full message queue. Instead, an error will be returned by these functions. mq_flags can be set
by mq_setattr; but is ignored when you create the message queue. Instead of using MQ_NONBLOCK when
creating the message queue, use the standard open flag O_NONBLOCK.

mq_curmsgs
This field is returned by the mq_getattr call and indicates how many messages are currently in the message queue
(sent, but not yet received). You cannot set this read-only parameter either via mq_open or mq_setattr.

POSIX.4 Contents: Declarations

 #ifdef _POSIX_MESSAGE_PASSING
 int mq_open(const char *, int, ...);
 int mq_close(mqd_t);
 int mq_send(mqd_t, const char *, size_t, unsigned int);
 int mq_receive(mqd_t, char *, size_t, unsigned int *);
 int mq_notify(mqd_t, const struct sigevent *);
 int mq_setattr(mqd_t, const struct mq_attr *, struct mq_attr *);
 int mq_getattr(mqd_t, struct mq_attr *);
 #endif /* _POSIX_MESSAGE_PASSING */

Page 292

Visibility

Inclusion of <mqueue.h> may make the following other header files visible:

<sys/types.h>
For sundry type definitions

<fcntl.h>
For definitions of oflags values

<time.h>
For timer definitions

<signal.h>
For definition of the struct sigevent

See Also

mq_open

mq_close

mq_send

mq_receive

mq_notify

mq_getattr

mq_setattr (message-passing interfaces)

signal.h (definition of the sigevent structure)

Page 293

<sched. h>

Name

<sched.h> — Header file for the POSIX 1003.4 scheduling interface.

Origin

<sched.h> is a header file that was created by and for POSIX.4. This header file contains nothing defined by
standard UNIX or POSIX.1. Its POSIX.4 contents are structures and constants related to process scheduling.

Conditionality

<sched.h> is only guaranteed to be present if _POSIX_PRIORITY_SCHEDULING is defined in <unistd.h>.
Other than that, everything defined herein is unconditional.

Namespace Reservation

The inclusion of <sched.h> reserves symbol namespaces beginning with sched_ or SCHED_.

POSIX.4 Contents: Constants

 #define SCHED_FIFO xx /* Preemptive, priority scheduling */
 #define SCHED_RR xx /* Preemptive priority with quantum */
 #define SCHED_OTHER xx /* Implementation-defined scheduler */

These constants name scheduling algorithms. Scheduling algorithms can be specified for each process
independently of other processes. Each scheduling algorithm is identified by a symbolic constant, as defined above.

Implementations may define additional schedulers, but must provide a mechanism by which an application can be
compiled with no extensions.

POSIX.4 Contents: Data Structures

All data structures are minimal contents, and members may not be in the order given. Vendors may add their own
extensions.

 struct sched_param {
 ...
 int sched_priority; /* Used for SCHED_FIFO and SCHED_RR */
 ...
 };

Page 294

A single data structure definition contains all scheduling parameters that may be needed to describe a process's
schedulability. Currently this structure only has a priority member defined, since POSIX.4 only defines strictly
priority-driven schedulers.

POSIX.4 Contents: Declarations

 #ifdef _POSIX_PRIORITY_SCHEDULING
 int sched_setparam(pid_t, const struct sched_param *);
 int sched_getparam(pid_t, struct sched_param *);
 int sched_setscheduler(pid_t, int, const struct sched_param *);
 int sched_getscheduler(pid_t);
 int sched_yield(void);
 int sched_get_priority_max(int);
 int sched_get_priority_min(int);
 int sched_rr_get_interval(pid_t, struct timespec *);
 #endif /* _POSIX_PRIORITY_SCHEDULING */
 int

Visibility

Inclusion of <sched.h> will make the following other header file visible:

<time.h>
Because struct timespec must be defined.

See Also

sched_get_priority_max

sched_get_priority_min

sched_getparam

sched_getscheduler

sched_rr_get_interval

sched_setparam

sched_setscheduler

sched_yield

Page 295

<semaphore.h>

Name

<semaphore.h>—Header file for POSIX 1003.4 semaphores.

Origin

<semaphore.h> is a header file that was created by and for POSIX.4. This header file contains nothing defined by
standard UNIX or POSIX.1. Its POSIX.4 contents are structures and constants related to POSIX.4 semaphores.

Conditionality

<semaphore.h> is only guaranteed to be present if _POSIX_SEMAPHORES is defined in <unistd.h>.

Namespace Reservation

The support of _POSIX_SEMAPHORES reserves symbol namespaces beginning with sem_ and SEM_.

POSIX.4 Contents: Constants

There are no constants defined by POSIX.4 in <semaphore.h>.

POSIX.4 Contents: Types

 typedef xx sem_t;

The sem_t is a semaphore. This structure is initialized in place by sem_init, or allocated and returned by a call to
sem_open.

POSIX.4 Contents: Declarations

 #ifdef _POSIX_SEMAPHORES
 int sem_init(sem_t *, int, unsigned int);
 int sem_destroy(sem_t *);
 sem_t *sem_open(const char *, int, ...);
 int sem_close(sem_t *);
 int sem_unlink(const char *);
 int sem_wait(sem_t *);
 int sem_trywait(sem_t *);
 int sem_post(sem_t *);
 int sem_getvalue(sem_t *, int *);
 #endif /* _POSIX_SEMAPHORES */

Page 296

Visibility

Inclusion of <semaphore.h> may make the following headers available:

<sys/types.h>
For sundry type definitions

<fcntl.h>
For definitions of the oflags values

See Also

sem_init

sem_destroy

sem_open

sem_close

sem_unlink

sem_wait

sem_post

sem_getvalue

Page 297

<signal.h>

Name

<signal.h>—Header file relating to POSIX signals.

Origin

<signal.h> exists in standard UNIX.

Conditionality

Mostly unconditional. The job control signals are conditional on POSIX_JOB_CONTROL being defined in
<unistd.h>, and the real-time signals extensions are conditional on _POSIX_REALTIME_SIGNALS.

Namespace Reservation

The inclusion of <signal.h> reserves symbol namespaces beginning with si_, SI_, sigev_, or sival_.

Contents: Constants

POSIX Unconditional Signals (Supported on All Systems)

Signal Name Used For

SIGABRT Abnormal termination, abort

SIGALRM Alarm clock expired (real-time clocks)

SIGFPE Floating point exception

SIGHUP Controlling terminal hung up (probably a modem or network connection)

SIGILL Illegal instruction exception

SIGINT Interactive termination (usually CTRL-C at the keyboard)

SIGKILL Unstoppable termination (signal 9 on most UNIX systems)

SIGPIPE Writing to a pipe with no readers

SIGQUIT Abnormal termination signal (interactive processes)

SIGSEGV Memory access exception

SIGTERM Terminate process

SIGUSR1 Application-defined uses

SIGUSR2 Application-defined uses

Page 298

The signals above are supported in all POSIX systems, regardless of POSIX.4 support level. You can count on
these signals to be supported on all systems claiming conformance to any POSIX version.

POSIX Optional Signals

Signal Name Default Action Used For

Option: _POSIX_JOB_CONTROL

SIGCHLD Signal ignored Child died or stopped

SIGSTOP Stop the process Stops process (uncatchable)

SIGTSTP Stop the process Stops process (from terminal)

SIGCONT Continue process Continues stopped process

SIGTTOU Stop the process that tries to write to the
terminal

Stop a background process

SIGTTIN Stop the process that tries to read from the
terminal

Stop a background process

Option: _POSIX_REALTIME_SIGNALS

SIGRTMIN-SIGRTMAX Termination Application-defined uses

All the signal numbers given above must be defined by all conforming POSIX implementations (conforming to the
1993 standard, that is). However, the job control and realtime signals may not be supported by the system beyond
that definition. You need to check for _POSIX_JOB_CONTROL and _POSIX_REALTIME_SIGNALS to be sure.
The real-time signals, SIGRTMIN through SIGRTMAX, are defined for the real-time signals extension. These are
the signals you can make queueable by setting SA_SIGINFO in a call to sigaction.

SIGBUS is unconditional, however, it only occurs in one instance in a POSIX system: when you try to access an
unmapped region of memory. That would be either one you never mapped, or one you have unmapped (with
munmap).

 /* System-supplied signal actions (for sigaction) */
 SIG_DFL /* Do the default signal handling for this signal */
 SIG_IGN /* Ignore this signal */

 /* Flags that can be set in sa_flags in a call to sigaction */
 SA_NOCLDSTOP /* sigaction(SIGCHLD) only: do not generate this
 * signal for children that stop-only for those that die */
 SA_SIGINFO /* _POSIX_REALTIME_SIGNALS: queue this signal and call
 * the handler as an extended handler
 * (sa_sigaction, not sa_handler) */

Page 299

SIG_DFL and SIG_IGN can be passed as sa_handler in a call to sigaction. They cause the relevant signal to be
handled in the default manner or ignored, respectively. SA_NOCLDSTOP is set in saflags in a call to sigaction for
the SIGCHLD signal; it tells the system not to generate the signal for stopped child processes, but only for those
children that exit. SA_SIGINFO is used to specify real-time signal queueing behavior for the signal, and is
supported under _POSIX_REALTIME_SIGNALS.

 /* Actions for sigprocmask */
 SIG_BLOCK /* Block the given signals */
 SIG_UNBLOCK /* Unblock the given signals */
 SIG_SETMASK /* Set your signal mask to the current set
 * (they'll be blocked) */

SIG_BLOCK, SIG_UNBLOCK, and SIGSETMASK are passed as the first argument to sigprocmask, and control
whether the signals contained in the passed sigset are blocked, unblocked, or whether the passed set becomes the
signal set, respectively.

 /* Queued signals pass to their handlers an additional parameter that
 * defines the genesis of the particular signal. These codes are: */
 SI_USER /* signal was sent via kill, raise, or abort */
 SI_QUEUE /* signal was sent via sigqueue */
 SI_TIMER /* signal is the result of timer expiration */
 SI_ASYNCIO /* signal is the result of asynchronous I/O completion */
 SI_MESGQ /* signal is the result of mq_notify */

These codes are passed as the si_code field of the siginfo_t passed to a real-time signal handler. Each code indicates
the general origin of the signal.

 SIGEV_NONE /* no notification desired */
 SIGEV_SIGNAL /* notify via signal */

SIGEV_SIGNAL and SIGEV_NONE are the only two values defined for the sigevent structure's sigev_notify field.
This field dictates the sort of asynchronous notification that the struct sigevent defines: either a signal, or nothing at
all. No other value for sigev_notify is currently defined.

Contents: Data Structures

All data structures are minimal contents, and members may not be in the order given. Vendors may add their own
extensions.

Page 300

 /*
 * This opaque data structure contains a set of signal numbers. It is
 * usually implemented as an array of bits, one per each possible
 * signal number.
 */
 typedef xx sigset_t;

The sigset_t defines a signal set, or mask, which is used for setting the signal mask of the process either through a
call to sigprocmask, signal handling via sigaction, or one of the signal wait calls (sigsuspend, sigwaitinfo, or
sigtimedwait).

 /* Definition of a value that can be queued when using SA_SIGINFO */
 union sigval {
 ...
 int sival_int; /* Integer interpretation */
 void * sival_ptr; /* Pointer interpretation */
 ...
 };
 /* This structure groups together the elements that define a
 * queued signal
 */
 struct sigevent {
 ...
 int sigev_notify; /* Notification: SIGNAL or NONE */
 int sigev_signo; /* Generate this signal */
 union sigval sigev_value; /* Queue this value */
 ...
 };

The struct sigevent is used in asynchronous I/O control blocks, POSIX.4 timer setup, and POSIX.4 message queue
notification attachment to encapsulate the details of signal delivery to occur on each of these asynchronous events.
The sigev_notify field takes on one of two currently-defined values: SIGEV_NONE indicates that no notification at
all should occur, and SIGEV_SIGNAL says that a signal should be delivered. If a signal is to be delivered, then
sigev_signo is the number of that signal. If the signal is one of the real-time variety (SIGRTMIN through
SIGRTMAX), then the additional data value is given by sigev_value. This value can be either an integer or a
pointer; the goal of the union sigval is to support ''a pointer's worth of data."

 /*
 * This structure defines the additional info passed to a SA_SIGINFO
 * handler (a sa_sigaction function, as defined below for struct
 * sigaction).
 */
 typedef struct {
 ...
 int si_signo; /* Signal number (redundant) */
 int si_code; /* Cause of signal */
 union sigval si_value; /* Queued data value */
 ...
 } siginfo_t;

Page 301

The siginfo_t is passed as the second argument to a real-time signal handler (set up by sigaction when
SA_SIGINFO is set in sa_flags). This structure passes additional information to the handler as to the cause of the
signal. si_signo is the number of the signal being delivered, and will be identical to the first argument to the signal
handler. si_code further classifies the signal's cause. Finally, si_value contains an application-specific value that is
passed as part of AIO submission (aio_read, e.g.), timer setup (timer_create), message queue notification
(mq_notify) or sigqueue.

 /*
 * sigaction contains the elements that define a process's response to a
 * particular signal.
 */
 struct sigaction {
 ...
 void (*)() sa_handler(int);
 void (*)() sa_sigaction(int, siginfo_t *, void *);
 sigset_t sa_mask;
 int sa_flags;
 ...
 };

The sigaction structure is passed to the sigaction call, and defines how a particular signal should be handled upon
delivery to the process.

The sa_handler field points to a function which is to be called upon receipt of the signal. Alternatively, if
SA_SIGACTION is set in sa_flags, sa_sigaction is used to point to an extended real-time signal handler. This
functionality is conditional on _POSIX_REALTIME_SIGNALS.

sa_mask specifies a set of signals to be blocked for the duration of the signal handler call. The signal mask of the
process during this time is formed by taking the existing signal mask for the process, adding in the signals in
sa_mask, and finally adding in the signal which is being handled (to prevent the signal coming in again on top of
itself).

sa_flags contains flags that indicate miscellaneous behavior. Only two flags are defined by POSIX:
SA_NOCLDSTOP and SA_SIGINFO. Both have been described above. SA_SIGINFO enables the real-time
queueing signal behavior specified for _POSIX_ REALTIME_SIGNALS.

Contents: Declarations

 extern int kill(pid_t, int);
 extern int sigemptyset(sigset_t *);
 extern int sigfillset(sigset_t *);
 extern int sigaddset(sigset_t *, int);
 extern int sigdelset(sigset_t *, int);
 extern int sigismember(const sigset_t *, int);
 extern int sigaction(int, struct sigaction *, struct sigaction *);

Page 302

 extern int sigprocmask(int, const sigset_t *, sigset_t *);
 extern int sigpending(const sigset_t *);
 extern int sigsuspend(const sigset_t *);
 #ifdef _POSIX_REALTIME_SIGNALS
 extern int sigqueue(pid_t, int, const union sigval);
 extern int sigwaitinfo(const sigset_t *, siginfo_t *);
 extern int sigtimedwait(const sigset_t *, siginfo_t *, const struct timespec *);
 #endif /* _POSIX_REALTIME_SIGNALS */

Visibility

Including <signal.h> does not make any other POSIX headers visible.

See Also

kill

sigqueue

sigaction (for definition of pid_t)

Page 303

<sys/mman.h>

Name

<sys/mman.h>—Header file relating to memory management.

Origin

<sys/mman.h> exists in standard UNIX and contains various facilities related to memory management. No contents
of <sys/mman.h> are defined by POSIX.1. POSIX.4 requires that <sys/mman.h> contain structures and constants
related to memory locking and file mapping

Conditionality

Support for POSIX.4 memory locking operations is predicated on support for _POSIX_ MEMLOCK in
<unistd.h>. Memory mapping is conditional on _POSIX_MAPPED_FILES. Shared memory is conditional on
_POSIX_SHARED_MEMORY_OBJECTS. Memory protection relies on _POSIX_MEMORY_PROTECTION.
Flags for the msync operation are defined only if both _POSIX_MAPPED_FILES and
POSIX_SYNCHRONIZED_IO are supported.

Namespace Reservation

The inclusion of <sys/mman.h> reserves symbol namespaces beginning with shm_, MAP_, MCL_, MS_, or
PROT_.

Contents: Constants

 #ifdef _POSIX_MEMLOCK
 #define MCL_CURRENT xx
 #define MCL_FUTURE xx
 #endif _POSIX_MEMLOCK

These are two flag values that are specified by the application in a call to mlockall. MCL_CURRENT tells mlockall
to lock down all the process's currently-present pages of memory; however, pages allocated in the future might not
be locked. MCL_FUTURE tells the system that pages allocated in the future should be automatically locked down.
You or these two flags together and pass the combined flag to mlockall. Thus, you can specify just current
mappings, just future mappings (which would be pretty strange), or both present and future mappings.

 #if defined(_POSIX_MAPPED_FILES) \
 || defined(_POSIX_SHARED_MEMORY_OBJECTS)
 #define PROT_NONE xx
 #define PROT_READ xx
 #define PROT_WRITE xx
 #define PROT_EXEC xx

Page 304

 #define MAPSHARED xx
 #define MAPPRIVATE xx
 #define MAP_FIXED xx
 #endif

These flags are used by the mmap function to specify memory protection possibilities and mapping options. The
PROT flags are also used by mprotect.

 #if defined(_POSIX_MAPPED_FILES) && defined(_POSIX_SYNCHRONIZED_IO)
 #define MSSYNC xx
 #define MS_ASYNC xx
 #define MSINVALIDATE
 #endif

These flags are used by the msync function to affect the way in which mappings are synchronized with the
underlying object.

Contents: Declarations

 #ifdef _POSIX_MEMLOCK
 int mlockall(int);
 int munlockall(void);
 #endif /* _POSIX_MEMLOCK */
 #ifdef _POSIX_MEMLOCK_RANGE
 int mlock(const void *, size_t);
 int munlock(const void *, size_t);
 #endif /* _POSIX_MEMLOCK_RANGE */
 #if defined(_POSIX_MAPPED_FILES) \
 || defined(_POSIX_SHARED_MEMORY_OBJECTS)
 void *mmap(void *, size_t, int, int, int, off_t);
 int munmap(void *, size_t);
 #endif /* _POSIX_MAPPED_FILES or _POSIX_SHARED_MEMORY_OBJECTS */
 #ifdef _POSIX_SHARED_MEMORY_OBJECTS
 int shm_open(const char *, int, mode_t);
 int shm_unlink(const char *);
 #ifdef _POSIX_MEMORY_PROTECTION
 int mprotect(const void *, size_t, int);
 #endif /* _POSIX_MEMORY_PROTECTION
 #if defined(_POSIX_MAPPED_FILES) && defined(_POSIX_SYNCHRONIZED_IO)
 int msync(void *, size_t, len);
 #endif /* _POSIX_MAPPED_FILES and _POSIX_SYNCHRONIZED_IO */

Visibility

Inclusion of <sys/mman.h> does not make any other header files visible.

Page 305

See Also

mlock

mlockall

munlock

munlockall

Page 306

<sys/wait.h>

Name

<sys/wait.h>—Header file relating to the wait functions.

Origin

<sys/wait.h> exists in standard UNIX and contains various facilities related to the wait and waitpid facilities.
<sys/wait.h> has contents defined by POSIX.1.

Conditionality

Unconditional.

Namespace Reservation

The inclusion of <sys/wait.h> doesn't reserve any namespaces. However, the macros it defines all start with W, so
you might want to avoid those names for your own stuff.

Contents: Macros

 #define WIFEXITED(s) xx
 #define WEXITSTATUS(s) xx
 #define WIFSIGNALED(s) xx
 #define WTERMSIG(s) xx
 #define WIFSTOPPED(s) xx
 #define WSTOPSIG(s) xx

These macros interrogate the process status returned by wait and waitpid.

Contents: Declarations

 extern pid_t wait(int *status_location);
 extern pid_t waitpid(pid_t who, int *status_location, int options);

Visibility

Inclusion of <sys/wait.h> makes no other headers visible.

See Also

wait

waitpid

<sys/types.h> (for definition of pid_t)

Page 307

<time.h>

Name

<time.h> — Header file relating to time management.

Origin

<time.h> exists in standard UNIX and defines facilities used for time-based computing under standard UNIX. This
is where struct timeval is defined. struct itimerval, on the other hand, is defined elsewhere, in <itimer.h>.

In POSIX.1, most of the stuff that is commonly found in <time.h> is standardized. The most useful and common of
these definitions are:

time_t
A type used to hold a time value. (ANSI C says time_t is defined here; it may also be in <sys/types.h>)

CLK_TCK
The clock tick of the system (== sysconf(SC_CLK_TCK) (obsolescent))

struct tm
Used by mktime, among others, to contain a human-comprehensible time value.

extern char *tzname[]
Contains time-zone name strings.

POSIX.4 adds the definitions of structures and constants related to timers and clocks.

Conditionality

<time.h> is guaranteed to be present in a POSIX system. However, the POSIX.4 extensions, described below, are
only guaranteed to be present if _POSIX_TIMERS is defined in <unistd.h>.

Namespace Reservation

The support of _POSIX_TIMERS reserves symbol namespaces beginning with clock_, timer_, it_, tv_, CLOCK_,
and TIMER_.

Page 308

POSIX.4 Contents: Constants

All POSIX.4 contents depend on _POSIX_TIMERS.

 #define CLOCK_REALTIME xx /* the clock required by POSIX.4 */

A machine running under POSIX.4 is presumed to have one or more system clocks which may be used as the basis
for interval timers. These clocks are identified by clock IDs of type clockid_t. One clock ID is required on all
systems: CLOCK_REALTIME. An operating system may define additional clocks if it wishes.

 #define TIMER_ABSTIME xx /* Absolute time flag for timer_settime */

This is a flag value used to indicate that an interval timer value is an absolute time value, not a value relative to the
current time. This flag value has meaning when specified in a call to timer_settime.

POSIX.4 Contents: Data Structures

All data structures are minimal contents, and members may not be in the order given. Vendors may add their own
extensions. All POSIX.4 contents depend on POSIX_TIMERS.

 struct timespec {
 ...
 time_t tv_sec; /* Number of seconds */
 long tv_nsec; /* Number of nanoseconds (< 1,000,000,000) */
 ...
 };

This structure contains a high-resolution indication of time. Accuracy down to the nanosecond is supported by the
use of a number of nanoseconds in the structure, even though most operating systems do not support such accuracy
today.

The number of nanoseconds is meant to indicate a fraction of a second. You should be careful to specify less than
1,000,000,000 nanoseconds in the tv_nsec field of this structure. Negative numbers of nanoseconds are not allowed.

 struct itimerspec {
 ...
 struct timespec it_value; /* First time */
 struct timespec it_interval; /* and thereafter */
 ...
 };

The struct itimerspec is used to define the settings for an interval timer. It consists of two timespecs. The it_value
indicates the amount of time until the interval timer

Page 309

expires the first time; the it_interval indicates the interval at which the timer will interrupt thereafter.

POSIX.4 Contents: Data Types

All POSIX.4 contents depend on _POSIX_TIMERS.

 typedef xx clockid_t;
 typedef xx timer_t;

The type clockid_t is used in identifying different clocks used as timing bases under POSIX.4. timer_t identifies a
particular timer, based on a clock. An application creates a timer by calling timer_create, Values of type clockid_t,
on the other hand, are supplied by the operating system to identify the various clocks which are available to the
application. The clock defined by POSIX.4 is called CLOCK_REALTIME (see above).

POSIX.4 Contents: Declarations

 #ifdef _POSIX_TIMERS
 int clock_gettime(clockid_t, struct timespec *);
 int clock_settime(clockid_t, const struct timespec *);
 int clock_getres(clockid_t, struct timespec *);
 int timer_create(clockid_t, struct sigevent *, timer_t *);
 int timer_delete(timer_t);
 int timer_settime(timer_t, int,
 const struct itimerspec *, struct itimerspec *);
 int timer_gettime(timer_t, struct itimerspec *);
 int timer_getoverrun(timer_t);
 #endif /* _POSIX_TIMERS */

Visibility

Inclusion of <time.h> does not make any other header files visible.

Notes

The current revision of the standard does not state that <time.h> may make <signal.h> visible, even though the
struct sigevent, described in <signal.h>, is required for the timer_create call. That means that your application has
to make sure itself that <signal.h> is included.

See Also

clock_getres

clock_gettime

clock_settime

Page 310

nanosleep

timer_create

timer_delete

timer_getoverrun

timer_gettime

timer_settime

Page 311

<unistd.h>

Name

<unistd.h> — Header file for POSIX conformance.

Origin

<unistd.h> is part of POSIX.1.

Conditionality

Unconditional.

Namespace Reservation

Inclusion of <unistd.h> reserves no namespaces. However, the inclusion of any POSIX header reserves the space
of all names beginning with ''_" (underscore),

Function Declarations

<unistd.h> is defined to contain function declarations for any POSIX functions which are not explicitly declared
elsewhere. You should include <unistd.h> in any source module that uses POSIX functions, as a safety net of
declarations and definitions.

Miscellany

NULL is defined in <unistd.h>, as is the symbol cuserid and the constants used by the access function:

F_OK File existence

R_OK Read permission

W_OK Write permission

X_OK Execute permission

The constants used for lseek are declared in unistd.h:

SEEK_SET Set the seek pointer to the given offset

SEEK_CUR Set the seek pointer to the current plus the given offset

SEEK_END Set the seek pointer to EOF plus the given offset

Page 312

Feature Test Macros

<unistd.h> defines the optional components that comprise a POSIX system. By examining constants found in
<unistd.h>, you can determine which options are or are not available on your particular system. The following
symbols are constant, and you should therefore be able to test for them using #ifdefs, with some confidence that the
associated functionality will be present at run-time as well.

Constant Description

POSIX_VERSION Contains a constant indicating the year and month of POSIX supported by
this system. A system supporting just the basic POSIX.1 functionality will
set this constant to 199009. A system supporting POSIX.4 will set the
constant to 199309.

Symbols defined by POSIX.1 (_POSIX_VERSION == 199009)

_POSIX_SAVED_IDS Support for saved set-user and set-group IDs.

_POSIX_JOB_CONTROL Support for job control groups.

Symbols defined by POSIX.4 (_POSIX_VERSION >= 199309)

_POSIX_REALTIME_SIGNALS Real-time (queued) signals

_POSIX_MESSAGE_PASSING Message queues (mq_open, et. al.)

_POSIX_MAPPED_FILES Memory mapped files (mmap)

_POSIX_SHARED_MEMORY_OBJECTS Shared memory (shm_open, et. al.)

_POSIX_SEMAPHORES Semaphores (sem_open, et. al.)

_POSIX_PRIORITY_SCHEDULING Real-time process scheduling (sched_*)

_POSIX_TIMERS POSIX.4 clocks and timers (clock_*, timer*)

_POSIX_MEMLOCK Process memory locking (mlockall)

_POSIX_MEMLOCK_RANGE Memory Range locking (mlock)

_POSIX_MEMORY_PROTECTION mprotect

_POSIX_FSYNC fsync

_POSIX_SYNCHRONIZED_IO POSIX.4 synchronized I/O (O_SYNC, et. al.)

_POSIX_ASYNCHRONOUS_IO POSIX.4 asynchronous I/O (aio_*)

_POSIX_PRIORITIZED_IO POSIX.4 prioritized I/O (aio_reqprio)

All the constants above may also be queried at runtime using sysconf in case you wish to be sure that the
functionality is present at runtime.

Page 313

The following symbols may not necessarily be constant, most likely because the functionality they reflect varies
with the file against which the functionality is directed. Therefore, you should be prepared to test for the following
functionality at runtime, rather than compile-time. In fact, since these values may all have a per-file value, you
should probably use pathconf and the associated _PC_-constant to determine the runtime behavior.

Constant Description

POSIX.1 Execution-Time Constants

_POSIX_CHOWN_RESTRICTED Restrictions on chown: you cannot "give away" file permissions to another
user or group.

_POSIX_NO_TRUNC File names longer than NAME_MAX will not be silently truncated; rather,
an error will be returned.

_POSIX_VDISABLE Disabling of terminal special characters is supported using this character
value.

POSIX.4 Execution-Time Constants

_POSIX_SYNC_IO Synchronized I/O may be performed.

_POSIX_ASYNC_IO Asynchronous I/O may be performed.

_POSIX_PRIO_IO Prioritized Asynchronous I/O may be performed.

Feature Test Macro Values

The constants named above are either defined or not, depending on whether the associated behavior is supported or
not. That's simple.

Things are more complex for the execution-time constants. If the symbol is defined as -1, then the behavior is not
supported anywhere on the system. If the symbol is defined with a value other than -1, then the associated behavior
is supported for all files on the system. Finally, if the symbol is not defined in <unistd.h> at all, then the behavior
is variable on a per-file basis; use fpathconf to determine the behavior at runtime.

All the optional POSIX functions return -1, with errno set to ENOSYS, if you call such a function and it is not
supported on the operating system under which you are currently running. I've not duplicated this fact in every
manual page, in the interest of preserving our precious natural heritage of printer's ink.

Page 314

Visibility

Inclusion of <unistd.h> doesn't make any other header files visible.

See Also

<limits.h>

<aio.h>

<mqueue.h>

<semaphore.h>

<signal.h>

<time.h> (other headers related to this one)

fpathconf

pathconf

sysconf

Page 315

aio_cancel

Name

aio_cancel — Try to cancel an asynchronous operation.

Synopsis

#include <aio.h>
int aio_cancel(int fildes, struct aiocb *aiocbp);

Conditionality

#ifdef _POSIX_ASYNCHRONOUS_IO

Description

aio_cancel can be used to try to cancel one or more asynchronous I/O operations that are pending in the given file
descriptor. If aiocbp is not NULL, then it is assumed to refer to an asynchronous operation on the file descriptor
(aiocbp->aio_fildes must match fildes), and aio_cancel will only try to cancel that single operation. If aiocbp is
NULL, then aio_cancel attempts to cancel all asynchronous I/O that is pending on the file descriptor.

For every asynchronous operation that aio_cancel successfully cancels, the I/O operation shall terminate in the
normal way, sending its signal as it was supposed to based on the aiocb. However, the error status for a cancelled
operation is ECANCELED, and the return status is -1. If aio_cancel cannot cancel a particular asynchronous
operation, that operation is not affected in any visible way.

Return Values

aio_cancel returns AIO_CANCELED if all of the requested operations were successfully cancelled. If all of the
operations were finished before aio_cancel got to them, then AIO_ALLDONE is returned. If one or more of the
requested operations could not be cancelled, then AIO_NOTCANCELED is returned. In this case, some of the
operations may have been cancelled and others not cancelled. It is up to you to determine which are which.

Under erroneous conditions, aio_cancel returns -1.

Page 316

Errors

If aio_cancel fails, it returns -1 and sets errno to the following value:

EBADF
fildes is not a file descriptor.

Notes

Each operating system must document which asynchronous operations are cancellable. However, a valid
implementation might simply state that no asynchronous I/O is cancellable. You should be aware of the possibility
that the I/O you can cancel on system X will not be cancellable on system Y.

Current UNIX Practice

SVR4:
No asynchronous I/O operations are specified in SVR4.

BSD:
No asynchronous I/O operations are specified in BSD UNIX (as of 4.3).

SunOS:
SunOS has an asynchronous I/O facility similar to the POSIX facility, but it is not identical.

See Also

aio_read, aio_write (these functions submit asynchronous I/Os)

lio_listio (this function allows many AIOs to be done at once)

aio_error (this function retrieves the error status of an AIO)

aio _return (this function retrieves the return status of an AIO)

close (may perform an implicit aio_cancel)

_exit (may perform an implicit aio_cancel on all file descriptors)

exec (may perform an implicit aio_cancel on all file descriptors)

Page 317

aio_error

Name

aio_error — Retrieve the error status for an asynchronous operation.

Synopsis

#include <aio.h>
int aio_error(struct aiocb *aiocbp);

Conditionality

#ifdef _POSIX_ASYNCHRONOUS_IO

Description

The errno value from aio_read, aio_write, and lio_listio generally only indicates the success or failure to queue up
an asynchronous operation. The error status of the actual I/O is what is returned by the aio_error call.

The error status of an asynchronous operation is, in general, the same as the error status (errno value) would be if
the operation were synchronous (the error status for an aio_read is generally the same as the errno value for the
equivalent read, for example). However, there are some additional possible error values related to the asynchronous
nature of the operation and to the implied lseek that occurs before an asynchronous read or write. These values are
described in the manual pages for aioread and aio_write.

If an asynchronous operation has not yet completed when aio_error is called, it will return EINPROGRESS.

Returns

aio_error retrieves the error status of the asynchronous operation that was submitted using aiocbp. That error status
is passed back as the return value of the call. Notice that the return value is not the 1 return you might expect from a
system call—it is an errno value such as 0, EINPROGRESS, EINVAL, or EAGAIN. aio_error may return -1, as
well, if it is called erroneously (with a bad aiocbp, for example). I am not aware of any systems that use -1 as a
value for errno, so you should be able to determine when aio_error itself has failed, as opposed to the
asynchronous operation failing.

aio_error has undefined results when called for an asynchronous operation that has already been "completed" by a
call to aio_return. Do not use aio_error once aio_return has been called for a given asynchronous operation.

Page 318

Errors

aio_error returns -1 in only one possible case, and, in this case, it only returns the error if the system detects the
error.

EINVAL
The aiocb address passed to aio_error does not represent a valid asynchronous operation whose return status has
not yet been retrieved. Either you have passed in a bogus aiocb, or that aiocb has not yet been used for submitting
asynchronous I/O, or you have already called aio_return with this aiocb address.

Notes

aio_error may be called as many times as you wish for a given asynchronous operation, but may not be called after
aio_return has been called for the operation.

See Also

read (the return values for aio_read are based on those of read)

write (the return values for aio_write are based on those of write)

lseek (possible errors related to the implied seek are explained here)

aio_read, aio_write, lio_listio (used to submit asynchronous I/O)

aio_return (this function retrieves the return status of an AIO)

Page 319

aio_read

Name

aio_read — Asynchronously read from a file.

Synopsis

#include <aio.h>
int aio_read(struct aiocb *aiocbp);

Conditionality

#ifdef _POSIX_ASYNCHRONOUS_IO
 /* Asynchronous I/O is supported */
#ifdef _POSIX_PRIORITIZED_IO
 /* Asynchronous I/O is prioritized relative to other AIO. */
#endif
#endif

Description

aio_read submits a single asynchronous read operation to the system. The call returns immediately after submitting
the operation, leaving the system to perform the read concurrently with the execution of other processes. The read
operation behaves roughly as if it were the following code snippet:

 1seek(aiocbp->aio_fildes, aiocbp->aio_offset, SEEK_SET);
 rv = read(aiocbp->aio_fildes, aiocbp->aio_buf, aiocbp->aio_nbytes);
 /* If a signal is desired, then deliver it */
 if (aiocbp->sigevent.sigev_notify == SIGEV_SIGNAL) {
 sigqueue(pid, aiocbp->aio_sigevent.sigev_signo,
 aiocbp->aio_sigevent.sigev_value);
 /* When the signal handler is invoked, its
 * info->si_code field will be set to SI_ASYNCIO
 * to indicate that the signal was the result of
 * asynchronous I/O completion. */
 }

The seek and the read are performed atomically with respect to other outstanding I/O in the system. In other words,
you definitely will read data from the offset you specified. On devices that are not capable of seeking, and on files
which are set to append-only mode (via the O_APPEND flag), the seek offset is ignored.

The concurrent read operation behaves just like the synchronous read operation, and all the flags and behaviors
defined for read can be expected to apply to the concurrent read operation as well.

If _POSIX_PRIORITIZED_IO and _POSIX_PRIORITY_SCHEDULING are both supported, and the process is
running under either SCHED_FIFO or SCHED_RR, then the asynchronous

Page 320

operation is submitted at a priority equal to the process's scheduling priority, aio_reqprio. Requests of higher
priority to a given file are processed by the system before requests of lower priority.

Return Values

aio_read returns successfully if the asynchronous read operation was successfully queued into the system. In this
case, 0 is returned. The actual success or failure of the read operation itself cannot be readily determined at this
point; aio_read generally only returns an indication of the success of the submission of the operation. You use
aio_error and aio_return to determine the status and return value of a particular asynchronous I/O operation. The
return and error status of an asynchronous read operation are the same as for the corresponding synchronous read
operation, with a few additional errors possible, as described below.

aio_read returns -1 on error.

Errors

If aio_read returns -1, it sets errno to one of the following values:

EAGAIN
aio_read could not queue up the asynchronous request due to system resource limitations (out of queueing
elements in the operating system, for instance).

The system may check for these error conditions when the I/O request is submitted. In that case, aio_read might
also return these values:

EBADF
The file descriptor passed in aiocbp->aio_fildes is not a valid file descriptor open for reading.

EINVAL
Some other element in the aiocb is invalid: aio_nbytes is not a valid value, the offset aio_offset is bad for the given
file, or aio_reqprio is not a valid value.

If aio_read returns 0, then the I/O operation is successfully queued up and will proceed. In that case, the return and
error values are as for the equivalent call to read. In addition, one of the following error conditions may occur:

ECANCELED
The AIO operation was cancelled by aio_cancel.

EINVAL
The offset implied by aio_offset is bad for the file.

Page 321

Notes

aio_return must be called once and only once for every asynchronous operation, or your system may run out of
resources for asynchronous I/O. The aiocb used for an aio_read (or aio_write or lio_listio or aio_fsync, for that
matter) should be considered to be owned by the operating system for the duration of the asynchronous I/O
operation. That means you should not modify any of the contents of the aiocb. You should not use the aiocb in
submitting another asynchronous operation. You should not declare your aiocb as a local variable unless there is no
way the local variable can disappear (through function return) before the end of the asynchronous operation. Lastly,
you should not deallocate the memory containing the aiocb (either via free or via automatic stack shrinkage) until
the asynchronous operation has finished.

With a normal read, there is no way to deallocate the buffer while the read is progressing because the process is
blocked awaiting completion of the read. With asynchronous I/O, it is possible to deallocate the buffer being used
for a concurrent read or write.

On systems that support prioritized I/O, the aio_reqprio field is always used. If you do not desire prioritized I/O,
then you should be sure to set this field to 0.

Current UNIX Practice

SVR4:
No asynchronous I/O operations are specified in SVR4.

BSD:
No asynchronous I/O operations are specified in BSD UNIX (as of 4.3).

SunOS:
SunOS has an asynchronous I/O facility similar to the POSIX facility, but it is not identical.

See Also

read (the asynchronous operation of aio_read is based on read)

lseek (the behavior of the implied seek is explained here)

sigqueue (the behavior of signal delivery is explained here)

aio_write (this is the write analogue to this read call)

lio_listio (this function allows many AIOs to be done at once as well as allowing for a synchronous seek-n-read)

aio_error (this function retrieves the error status of an AIO)

aio_return (this function retrieves the return status of an AIO)

aio_suspend (this function is used to wait for an AIO to complete)

aio_cancel (this function tries to cancel an AIO that has not completed yet)

Page 322

aio_return

Name

aio_return— Retrieve the return status for an asynchronous operation.

Synopsis

#include <aio.h>
ssize_t aio_return(struct aiocb *aiocbp);

Conditionality

#ifdef _POSIX_ASYNCHRONOUS_IO

Description

aio_return is used to determine the return status of an asynchronous operation. The return status of an
asynchronous operation is the same as it would be if the operation were synchronous (the return status for an
aio_read is generally the same as the return value for the equivalent lseek and read, for example).

In addition, the aio_return has the side effect of retiring this asynchronous I/O control block from the system.

Returns

aio_return retrieves the return status of the asynchronous operation that was submitted using aiocbp. That status is
passed back as the return value of the call. aio_return may return -1, as well, if it is called erroneously (with a bad
aiocbp, for example). In this case, aio_return will also set errno.

Errors

aio_return returns -1 in only one possible case, and in this case, it only returns the error if the system detects the
error.

EINVAL
The aiocb address passed to aio_return does not represent a valid asynchronous operation whose return status has
not yet been retrieved (either you have passed in a bogus aiocb, or that aiocb has not yet been used for submitting
asynchronous I/O, or you have already called aio_return with this aiocb address).

Page 323

Notes

aio_return must be called once and only once for every asynchronous operation, or your system may run out of
resources for asynchronous I/O.

aio_return must only be called once an asynchronous operation is complete. In order to determine whether an
asynchronous operation is complete, you can call aio_error and verify that the error status for the asynchronous
operation is something other than EINPROGRESS.

The operating system may maintain error and return status for an asynchronous operation within the operating
system. For this reason, the operating system needs an indication of when an application is ''done" with a particular
asynchronous operation, so that any resources can be freed. A call to aio_return serves this purpose. Therefore,
once aio_return has been called for a particular asynchronous operation, neither aio_return nor aio_error may be
called again for that asynchronous operation.

See Also

read (the return values for aio_read are based on those of read)

write (the return values for aio_write are based on those of write)

lseek (possible errors related to the implied seek are explained here)

aio_read, aio_write, lio_listio (used to submit asynchronous I/O)

aio_error (this function retrieves the error status of an AIO)

Page 324

aio_suspend

Name

aio_suspend—Wait for asynchronous operations to complete.

Synopsis

#include <aio.h>
int aio_suspend(struct aiocb *1acb[],
 int nent,
 const struct timespec *timeout);

Conditionality

#ifdef _POSIX_ASYNCHRONOUS_IO

Description

aio_suspend allows you to wait for any of a set of asynchronous I/O operations to complete. The set is indicated by
the list lacb of pointers to asynchronous I/O control blocks that have been used for submitting asynchronous I/O.
The list is of size nent elements, and NULL elements are allowed on the list (these are ignored, but count as one of
the nent elements). A timeout argument, if not NULL, specifies a maximum time to wait for I/O to complete. If the
time specified elapses, then aio_suspend will return -1 with errno set to EAGAIN.

Return Values

aio_suspend returns 0 if one or more of the awaited asynchronous operations completes; otherwise it returns -1.
aio_suspend does not tell you which asynchronous operation completed; you can scan the array using aio_error
and aio_return to determine which of the I/Os has finished when you return from aio_suspend.

Errors

aio_suspend returns -1 and sets errno to the following values under the following conditions:

EAGAIN
The time specified by the timeout argument has elapsed with none of the asynchronous I/O on the list completing.

EINTR
A signal interrupted this function.

Page 325

Notes

There is no maximum number of elements specified for the array that is passed to aio_suspend.

aio_suspend may be interrupted by a signal, returning -1 with errno == EINTR. The signal may be one of those
signals that was supposed to be delivered upon completion of an asynchronous I/O operation. If your asynchronous
I/Os do send signals, then you should be aware of the possibility of aio_suspend returning -1 and EINTR even
though an I/O has completed.

Current UNIX Practice

SVR4:
No asynchronous I/O operations are specified in SVR4

BSD:
No asynchronous I/O operations are specified in BSD UNIX (as of 4.3)

SunOS:
SunOS has an asynchronous I/O facility similar to the POSIX facility, but it is not identical

See Also

aio_read, aio_write (these functions submit asynchronous I/Os)

lio_listio (this function allows many AIOs to be done at once)

aio_error (this function retrieves the error status of an AIO)

aio_return (this function retrieves the return status of an AIO)

Page 326

aio write

Name

aio_write—Asynchronously write to a file.

Synopsis

#include <aio.h>
int aio_write(struct aiocb *aiocbp);

Conditionality

#ifdef _POSIX_ASYNCHRONOUS_IO
 /* Asynchronous I/O is supported */
#ifdef _POSIX_PRIORITIZED_IO
 /* Asynchronous I/O is prioritized relative to other AIO. */
#endif
#endif

Description

aio_write submits a single asynchronous write operation to the system. The call returns immediately after
submitting the operation, leaving the system to perform the write concurrently with the execution of other
processes. The write operation behaves roughly as if it were the following code snippet:

 1seek(aiocbp->aio_fildes, aiocbp->aio_offset, SEEK_SET);
 rv = write(aiocbp->aio_fildes, aiocbp->aio_buf, aiocbp->aio_nbytes);
 /* If a signal is desired, then deliver it */
 if (aiocbp->aio_sigevent.sigev_notify == SIGEV_SIGNAL) {
 sigqueue(pid, aiocbp->aio_sigevent.sigev_signo,
 aiocbp->aio_sigevent. sigev_value);
 /* When the signal handler is invoked, its
 * info->si_code field will be set to SI_ASYNCIO
 * to indicate that the signal was the result of
 * asynchronous I/O completion. */
 }

The seek and the write are performed atomically with respect to other outstanding I/O in the system. In other
words, you definitely will write data to the file offset you specified. On devices that are not capable of seeking, and
on files which are set to append-only mode (via the O_APPEND flag), the seek offset is ignored.

The concurrent write operation behaves just like the synchronous write operation, and all the flags and behaviors
defined for write can be expected to apply to the concurrent write operation as well.

If _POSIX_PRIORITIZED_IO and _POSIX_PRIORITY_SCHEDULING are both supported, and the process is
running under either SCHED_FIFO or SCHED_RR, then the asynchronous

Page 327

operation is submitted at a priority equal to the process's scheduling priority, aio_reqprio. Requests of higher
priority to a given file are processed by the system before requests of lower priority.

Return Values

aio_write returns successfully if the asynchronous write operation was successfully queued into the system. In this
case, 0 is returned. The actual success or failure of the write operation itself cannot be readily determined at this
point; aio_write generally only returns an indication of the success of the submission of the operation. You use
aio_error and aio_return to determine the status and return value of a particular asynchronous I/O operation. The
return and error status of an asynchronous write operation are the same as for the corresponding synchronous write
operation, with a few additional errors possible, as described below.

aio_write returns -1 on error.

Errors

If aio_write returns -1, it sets errno to one of the following values:

EAGAIN
aio_write could not queue up the asynchronous request due to system resource limitations (out of queueing
elements in the operating system. for instance).

The system may check for these error conditions when the I/O request is submitted. In that case, aio_write might
also return these values:

EBADF
The file descriptor passed in aiocbp->aio_fildes is not a valid file descriptor open for writing.

EINVAL
Some other element in the aiocb is invalid: aio_nbytes is not a valid value, the offset aio_offset is bad for the given
file, or aio_reqprio is not a valid value.

If aio_write returns 0, then the I/O operation is successfully queued up and will proceed. In that case, the return and
error values are as for the equivalent call to write. In addition, one of the following error conditions may occur:

ECANCELED
The AIO operation was cancelled by aio_cancel.

EINVAL
The offset implied by aio_offset is bad for the file.

Page 328

Notes

aio_return must be called once and only once for every asynchronous operation, or your system may run out of
resources for asynchronous I/O.

The aiocb used for an aio_write (or aio_read, lio_listio, or aio_fsync, for that matter) should be considered to be
owned by the operating system for the duration of the asynchronous I/O operation. That means you should not
modify any of the contents of the aiocb. You should not use the aiocb in submitting another asynchronous
operation. You should not declare your aiocb as a local variable unless there is no way the local variable can
disappear (through function return) before the end of the asynchronous operation. Lastly, you should not deallocate
the memory containing the aiocb (either via free or via automatic stack shrinkage) until the asynchronous operation
has finished.

By setting the O_APPEND flag on the file descriptor (using either open or fcntl), you can cause asynchronous
writes to always append to the file, for an asynchronous logging facility. In this case, the seek offset is ignored.

On systems that support prioritized I/O, the aio_reqprio field is always used. If you do not desire prioritized I/O,
then you should be sure to set this field to 0.

Current UNIX Practice

SVR4:
No asynchronous I/O operations are specified in SVR4.

BSD:
No asynchronous I/O operations are specified in BSD UNIX (as of 4.3).

SunOS:
SunOS has an asynchronous I/O facility similar to the POSIX facility, but it is not identical.

See Also

write (the asynchronous operation of aio_write is based on write)

lseek (the behavior of the implied seek is explained here)

sigqueue (the behavior of signal delivery is explained here)

aio_read (this is the read analogue to this write call)

lio_listio (this function allows many AIOs to be done at once as well as allowing for a synchronous seek-n-write)

aio_error (this function retrieves the error status of an AIO)

aio_return (this function retrieves the return status of an AIO)

aio_suspend (this function is used to wait for an AIO to complete)

aio_cancel (this function tries to cancel an AIO that has not completed yet)

Page 329

clock_getres

Name

clock_getres — Get resolution of a POSIX.4 clock.

Synopsis

#include <time.h>
int clock_getres(clockid_t which_system_clock,
 struct timespec *resolution);

Conditionality

#ifdef _POSIX_TIMERS

Description

clock_getres returns the resolution of the clock identified by which_system_clock. Every POSIX.4 conformant
system must support at least one clock, identified as CLOCK_REALTIME. Other clocks provided by your machine
are described in the POSIX.4 conformance statement.

Every clock has a particular resolution which is probably coarser than a nanosecond. CLOCK_REALTIME must
support a resolution at least as fine as 50 Hz, or 20,000,000 nanoseconds. The clock resolution affects the accuracy
of the time you set using clock_settime. This setting is rounded down to the clock resolution. The resolution also
affects your interval timer settings: they are rounded up to the clock resolution. The same goes for nanosleep.

To set a clock's time, or tell what time it is, use clock_settime and clock_gettime, respectively. Interval timers may
be created based on particular clocks, using timer_create.

Return Values

When clock_getres is successful, it returns 0 and sets resolution with the resolution of the indicated system clock.
clock_getres returns -1 on error.

Errors

If clock_getres fails, it returns -1 and sets errno to the following:

EINVAL
The clock ID specified is not one that exists on this system.

Page 330

Notes

Clock resolution is generally a hard-wired feature of the system clock. You cannot change it.

Current UNIX Practice

On standard UNIX systems (BSD and System V), which support only one standard clock, one looks at the constant
HZ in <sys/param.h>.

See Also

clock_settime, clock_gettime (to set and get the time)

timer_create. timer_settime, timer_gettime (to create and use interval timers)

Page 331

clock_gettime

Name

clock_gettime—Get the time according to a particular POSIX.4 clock.

Synopsis

#include <time.h>
int clock_gettime(clockid_t which_system_clock,
 struct timespec *current_time);

Conditionality

#ifdef _POSIX_TIMERS

Description

clock_gettime retrieves the time, as indicated by the clock identified by which_system_clock. Every POSIX.4
conformant system must support at least one clock, identified as CLOCK_REALTIME. Other clocks provided by
your machine are described in the POSIX.4 conformance statement.

The time value you get for the clock is only correct to a certain resolution, and represents a snapshot of the time
when the system looked at it. Remember that it takes some (hopefully small) amount of time to get back to the
process.

To determine the resolution of a clock, use clock_getres.

POSIX.4 clock values have nothing to do with time zones, and POSIX.4 does not define anything in particular to
deal with time zones. You must manage time zones yourself if you care about them. The ANSI standard functions
(ctime, localtime, gmtime, mktime), which take time as a number of seconds since the Epoch, will function with the
tv_sec field of a struct timespec.

Return Values

When clock_gettime is successful, it returns 0 and sets current_time with the time according to the indicated system
clock. clock_gettime returns -1 on error.

Errors

If clock_gettime fails, it returns -1 and sets errno to the following:

EINVAL
The clock ID specified is not one that exists on this system.

Page 332

Current UNIX Practice

BSD systems use the gettimeofday system call to get the time according to the one defined clock on those systems.

See Also

clock_settime (to set the time)

clock_getres (to determine the resolution of a clock)

timer_create, timer_settime, timer_gettime (to create and use interval timers)

Page 333

clock_settime

Name

clock_settime—Set the time on a particular POSIX.4 clock.

Synopsis

#include <time.h>
int clock_settime(clockid_t which_system_clock,
 const struct timespec *setting);

Conditionality

#ifdef _POSIX_TIMERS

Description

clock_settime sets the clock identified by which_system_clock. The clock is set to the absolute time indicated by
setting. Every POSIX.4 conformant system must support at least one clock, identified as CLOCK_REALTIME.
Other clocks provided by your machine are described in the POSIX.4 conformance statement.

Every clock has a particular resolution which is probably coarser than a nanosecond. Therefore, the setting you pass
in for the clock may need to be rounded. The system rounds this value down to the resolution of the clock.

To determine the resolution of a clock, use clock_getres.

The settings of POSIX.4 clocks has nothing to do with time zones, and POSIX.4 does not define anything in
particular to deal with time zones. You must manage time zones yourself if you care about them. The ANSI
standard functions (ctime, localtime, gmtime, mktime), which take time as a number of seconds since the Epoch,
will function with the tv_sec field of a struct timespec.

Return Values

When clock_settime is successful, it returns 0 and sets the indicated clock to the requested time, possibly with
rounding. If clock_settime fails, it returns -1 and does not disturb the setting of the clock.

Page 334

Errors

If clock_settime fails, it returns -1 and sets errno to one of the following:

EINVAL
The clock ID specified is not one that exists on this system. Alternatively, the time setting you specified contains a
number of nanoseconds that is less than zero, or greater than or equal to 1,000,000,000. Nanoseconds are meant to
be a fraction of a second.

EPERM
The calling process does not have the right to set the indicated clock. Appropriate privilege for setting a clock
varies from system to system, and is described in the POSIX.4 conformance statement for the system.

Current UNIX Practice

Typically, a clock is set as part of the system administration activities for a system, and applications use the
existing clock setting.

BSD systems use the settimeofday system call to set the one defined clock on those systems.

See Also

clock_gettime (to tell the time)

clock_getres (to determine the resolution of a clock)

timer_create, timer_settime, timer_gettime (to create and use interval timers)

Page 335

close

Name

close—Close a file or a shared memory object.

Synopsis

int close(int fd);

Conditionality

Unconditional.

Description

The close function severs the connection between the file descriptor fd and the underlying object which was opened
with open. Normally, these objects are disk files.

close also closes shared memory objects which were opened with shm_open.

After a file descriptor has been closed, you cannot use it for anything. The file descriptor number is recycled and
may come up again on a subsequent open (or shm_open) by this process.

Return Values

close returns 0 if it successfully closes the file descriptor. It will in general be able to do this unless you pass in a
bad file descriptor number. close returns -1 if it fails.

Errors

If close returns -1, it sets errno to one of the following:

EBADF
fd is not a valid open file descriptor for this process.

EINTR
The operation was interrupted by a signal. This is not generally likely, although it can happen, for instance, if the
process has to wait for asynchronous I/O to complete on the file descriptor. Usually a close operation is
nonblocking, and therefore cannot be interrupted by a signal.

Current UNIX Practice

close is standard in all UNIX systems.

Page 336

See Also

open (to open a file)

shm_open (to open a shared memory object)

exit, exec (effects on open file descriptors)

Page 337

exec

Name

exec family of functions—Transform the calling process into another image.

Synopsis

int execl(const char *path, const char *arg, ...);
int execle(const char *path, const char *arg, ..., NULL,
 const char *envp[]);
int execlp(const char *path, const char *arg, ...);

int execv(const char *path, const char *argv[]);
int execve(const char *path, const char *argv[],
 const char *envp[]);
int execvp(const char *path, const char *argv[]);

Conditionality

Unconditional.

Description

The exec family of calls each transform the calling process into a new process. It's actually still the same process:
the process ID and probably most of the operating system state are the same before and after the call to exec.
However, after exec the process begins executing a new program, named by the argument path.

The different flavors of exec are merely different ways of passing arguments to the new program. The versions of
exec with an argument arg pass arguments as separate parameters to the call: execl(''/bin/ls", '"ls", "/tmp", NULL).
The other versions, with an array of strings, pass the arguments in that array, with the last argument a NULL
pointer.

execve takes a third argument which becomes the environment for the new program. execle, likewise, takes an array
of strings for its environment for the new program; however, this argument follows all the other arguments to the
program.

All other versions of the exec call inherit the environment from the calling process.

execlp and execvp use the environment variable PATH to locate the executable file to run. If /bin were in your
PATH, for instance, you could run /bin/ls by calling execlp("ls", . . .). All other versions of the exec call require you
to give the full pathname of the executable file, e.g., execl("/bin/ls", . . .).

Page 338

POSIX.1 Semantics

Calls to exec do not return per se; instead, execution begins in the new program. Thus, exec is sort of a yin to fork's
yang; where fork creates a process that is mostly the same, exec creates one that is almost entirely different from the
caller. However, certain OS state is retained across an exec, as described in the following table:

Object Effect in Exec-ed Process

Process ID Inherited

Parent process Inherited

Process group ID Inherited

Session membership Inherited

Real user and group IDs Inherited

Supplementary group IDs Inherited

Current working directory Inherited

Root directory Inherited

Accounting time Inherited

Umask Inherited

Signal mask Inherited

Signal handlers SIG_DFL and SIG_IGN inherited, others set to SIG_DFL

Pending signals Cleared

Alarms Left pending

Files Inherited, unless FD_CLOEXEC set for file (then closed)

Much of the operating system state for the execed process remains the same, although the process memory image is
almost completely altered.

POSIX.4 Semantics

As POSIX.4 adds more context to each process, the effect of exec on this context is explained in the following
table:

Object Effect in New process image

Semaphores Closed

Message queues Closed

Shared memory Unmapped

File mappings Unmapped

Pending real-time signals Retained in new process image

Table continued on next page

Page 339

Table continued from previous page

Asynch I/O May be cancelled; if not, process may block awaiting
completion (new process memory is not affected by pre-exec
AIO)

Memory locks Released

Scheduling attributes SCHED_FIFO and SCHED_RR attributes inherited

Timers Deleted

Pending real-time signals are retained, as are other signals. Real-time signal handlers are modified as described for
POSIX.1 signals above.

Scheduling attributes for the defined schedulers are inherited. If your operating system provides other scheduling
disciplines, it must document whether those attributes are inherited.

Asynchronous I/O presents an odd conundrum if you call exec while AIO is going on for your process. The basic
fact is that AIO in the process before exec is not allowed to affect the post-exec process image. The I/O may be
cancelled, if your system supports that; otherwise, the I/O must proceed as if the process had waited for it to
complete. That means that the systems need to keep around whatever memory in your process is necessary for the
I/O until that I/O no longer needs it. If you are going to call exec. do yourself a favor and cancel or wait for all your
outstanding asynchronous I/O first.

All other POSIX.4 process state is reset, cleared, and freed when exec is called.

Return Values

exec doesn't return if it is successful. Instead, it begins execution of the new process. If exec fails, then the process
image is retained as it was before the call. and -1 is returned.

Errors

If exec returns -1, it sets errno to one of the following values:

E2BIG
You passed too many arguments/environment variables, overrunning the system limit ARG_MAX.

EACCES
Either permission was denied to execute the named file, or the named file was not executable.

ENAMETOOLONG
The name of the file to execute violated POSIX naming constraints by being too long, either in a path component
or in total.

Page 340

ENOENT
The pathname to the executable contains elements that do not exist (/bun/ls instead of /bin/ls, e.g.).

ENOTDIR
The pathname contained elements that are not directories.

Current UNIX Practice

exec is standard in all UNIX systems; POSIX.4 semantics are new to POSIX.4.

See Also

fork (often performed before exec)

aio_suspend, aio_cancel (how to wait for or cancel asynchronous I/O)

Page 341

exit

Name

exit, _exit—Terminate the calling process.

Synopsis

void _exit(int status);
void exit(int status);

Conditionality

Unconditional.

Description

The _exit function, mandated by POSIX, and its cousin exit, perform basically the same action: they terminate the
calling process. exit is a requirement of ANSI C, and cleans up more ANSI C constructs than _exit does. It is
assumed that exit is a library call which calls _exit to actually terminate the process. You should generally use exit
in your programs, assuming that your system supports ANSI C. Further references to exit should be read as, "exit or
_exit."

When exit is called, all process state is cleared out, except for a data structure related to the recently-departed
process. This data structure contains one interesting field, the exit status of the process, as passed in the call to exit.
This status may be retrieved by the parent process of the caller, by using wait or waitpid. The wait calls have the
side effect of cleaning up the corpse, and therefore can only be called once for a given process.

POSIX.1 Semantics

Calls to exit do not return, but rather tear down all process state as shown in the following table:

Object Effect of Exit

All IDs Retired

Accounting time Stopped

Pending signals Cleared

Alarms Cleared

Files Closed

This table can be summed up in the following sentence: Everything goes away.

Page 342

POSIX.4 Semantics

The same basic semantic applies to POSIX.4 objects:

Object Effect in New Process Image

Semaphores Closed

Message queues Closed

Shared memory Unmapped

File mappings Unmapped

Pending real-time
signals

Cleared

Asynch I/O May be cancelled; if not, process may block awaiting completion (new process
memory is not affected by preexec AIO)

Memory locks Released

Timers Deleted

Asynchronous I/O can be strange if you call exit while AIO is going on for your process. Such I/O may be
cancelled, if your system supports that; otherwise, the I/O must proceed as if the process had waited for it to
complete. That means that whatever memory in your process is necessary for the I/O, the system needs to keep it
around until that I/O no longer needs it. If you are going to call exit, do yourself a favor and cancel/wait for all your
outstanding asynchronous I/O first.

All other POSIX.4 process state is reset, cleared, and freed when exit is called.

Return Values

exit never returns, either successfully or not.

Errors

exit is infallible.

Current UNIX Practice

exit is standard in all UNIX systems; POSIX.4 semantics are new to POSIX.4.

See Also

fork, exec (fellow POSIX.1 process primitives)

aio_suspend, aio_cancel (how to wait for or cancel asynchronous I/O)

Page 343

fdatasync

Name

fdatasync—Synchronize at least the data part of a file with the underlying media.

Synopsis

#include <unistd.h>
int fdatasync(int fildes);

Conditionality

#ifdef _POSIX_SYNCHRONIZED_IO

Description

fdatasync causes the system to flush out all the buffered contents associated with fildes to the underlying media.
The call doesn't return until all data has been successfully transferred to the disk (or whatever other hardware
device the file may reside on).

fdatasync, in contrast to fsync, causes the system to flush out the actual bytes comprising the file's data, but not
necessarily to control information about the file, like access and modification times, or permission bits. When fsync
is called, for comparison, all data relevant to the file is flushed from the system's internal buffers.

fdatasync may be slightly faster than fsync. Of course, fdatasync only updates part of your file, so you should be
aware of what you're doing when you use it.

fdatasync may also be implemented as a call to fsync, in which case fdatasync will be no faster than fsync.

POSIX.4 declines to state exactly what it means for something to be "successfully transferred." Instead, it just says
that each vendor has to provide enough documentation for you, the application writer, to determine what the vendor
does for an fdatasync call. Usually, one assumes that after you've called fdatasync, you can crash the machine and
be pretty much assured of getting your data back. Of course, if some other file is sufficiently screwed up, your disk
may just be hosed entirely. In any event, this is something to check in the vendor's conformance document.

Return Values

fdatasync returns 0 if it successfully flushed all buffered data to disk. Otherwise, it returns -1 and sets errno
accordingly.

Page 344

Errors

If fdatasync returns -1, it sets errno to one of the following values:

EBADF
fildes is not a valid file descriptor.

EINVAL
The file descriptor is valid, but the system doesn't support fdatasync on this particular file.

Notes

fdatasync is provided under the _POSIX_SYNCHRONIZED_IO option. fsync, in contrast, is provided loosely
under _POSIX_FSYNC, with some additional rigor applied if _POSIX_SYNCHRONIZED_IO is also defined.
That's because fsync is a more useful function, and non-real-time people also want to support it. This means that a
system may support fsync, but not fdatasync. You can easily check this using a system configuration check program
that looks for the proper options.

Current UNIX Practice

SVR4:
fdatasync is not part of SVR4

BSD:
fdatasync is not part of BSD

SunOS:
fdatasync is not part of SunOS

See Also

write (that which is written is pretty much what you're going to be interested in flushing via fdatasync)

read (read modifies the access bits for a file, which may or may not be flushed by fdatasync)

fsync (the more rigorous, slower cousin of fdatasync)

aio_fsync (a way to asynchronously synchronize your files)

Page 345

fork

Name

fork — Duplicate the calling process.

Synopsis

int fork();

Conditionality

Unconditional.

Description

fork is the call used to duplicate a process under POSIX. This function is mandated by the base POSIX standard
and is present on all POSIX systems.

POSIX.1 Semantics

When a process calls fork, it returns as two processes. The original process gets returned the process ID of the
newly-created, or child process. The child process is returned a 0. Other than that difference, the two processes are
very close copies of one another. The processes have the same memory context and mostly the same operating
system context. Exceptions to this operating system context are noted below.

Object Effect in Child

Open files Inherited

File locks Cleared in child

Pending alarms Cleared in child

Signal handlers Inherited

Signal mask Inherited

Pending signals None in child

Files that are open in the parent process will be open in the child as well. File locks which the parent had are not
duplicated for the child process.

If the parent had called alarm to cause an alarm signal to be delivered at some time in the future, that alarm is
cancelled in the child.

Signal handlers and signal mask are inherited by the child process; however, the child process will have no signals
pending even if several were pending in the parent.

Page 346

POSIX.4 Semantics

As POSIX.4 adds more context to each process, the effect of fork on this context is explained in the following table:

Object Effect in Child

Semaphores Inherited

Message queues Inherited

Shared memory Inherited

File mappings Inherited

Pending real-time
signals

None in child

Asynch I/O Buffers, seek pointers in indeterminate state; no notification
received

Memory locks Released in child

Scheduling attributes SCHED_FIFO and SCHED_RR attributes inherited

Timers Not inherited

POSIX.4 semaphores that are created or accessible in the parent, either named semaphores or unnamed
semaphores, will be inherited and available for use in the child process.

POSIX.4 message queues that are accessible in the parent process will be accessible in the child process.

POSIX.4 mappings, either for shared memory or for files, will be maintained in the child. Mappings which are
mapped with the flag MAP_PRIVATE will retain that semantic as follows: changes that the parent made before
calling fork will be visible to the child, but changes made after fork will remain private.

Real-time extended signals that are pending in the parent process will be cleared from the child process. The child
returns from fork with no pending signals.

There are no clear statements about the effect of fork on asynchronous I/O in a child process. The implication is
that any buffer being used in the parent may be in a corrupt state in the child, depending on how far the I/O
proceeded before the call to fork. Likewise, the seek pointer for a file being used for asynchronous I/O is left in an
indeterminate state, for both the parent and the child (this fact is independent of fork).

A child process has no locked memory, even if the parent explicitly locked memory by calling mlock or mlockall.

POSIX.4 timers created in the parent are not inherited in the child. The child begins life with no timers.

Page 347

Scheduling attributes for the defined schedulers are inherited. If your operating system provides other scheduling
disciplines, it must document whether those attributes are inherited.

Return Values

fork returns 0 in the child, and the process ID of the child to the parent. If fork fails, then no child process is
created, and fork returns -1 to the parent.

Errors

If fork returns -1, it sets errno to one of the following values:

EAGAIN
The system ran out of some resource necessary for duplicating the process. This may be memory, process slots,
files, semaphores, signal vector state, message queues, space for mappings, or whatever.

ENOMEM
The system ran out of memory. This error may or may not be returned.

Current UNIX Practice

fork is standard in all UNIX systems; POSIX.4 semantics are new to POSIX.4.

See Also

exec (often performed after fork)

Page 348

fsync

Name

fsync — Synchronize a file with the underlying media.

Synopsis

#include <unistd.h>
int fsync(int fildes);

Conditionality

#ifdef _POSIX_FSYNC
 /* Function is present and synchronizes data to an
 implementation-defined stage (documented in the conformance
 document) */
#ifdef _POSIX_SYNCHRONIZED_IO
 /* Function forces all I/O to the stage of synchronized
 I/O file integrity completion. */
#endif
#endif

Description

fsync causes the system to flush out all the data associated with fildes to the underlying media. The call doesn't
return until all data has been successfully transferred to the disk (or whatever other hardware device the file may
reside on).

fsync causes all data relevant to the file to be flushed from the system's internal buffers. In contrast, there is also a
function, called fdatasync, which is only guaranteed to flush out the actual bytes comprising the file's data (but not
necessarily control information about the file, like access and modification times, or permission bits). fdatasync
may be slightly faster than fsync. Of course, fdatasync only updates part of your file, so you should be aware of
what you're doing when you use it.

POSIX.4 declines to state exactly what it means for something to be ''successfully transferred." Instead, it just says
that each vendor has to provide enough documentation for you, the application writer, to determine what the vendor
does for an fsync call. Usually, one assumes that after you've called fsync you can crash the machine and be pretty
much assured of getting your data back. Of course, if some other file is sufficiently screwed up, your disk may just
be hosed entirely. In any event, this is something to check in the vendor's conformance document.

Page 349

Return Values

fsync returns 0 if it successfully flushed all buffered data to disk. Otherwise, it returns -1 and sets errno
accordingly.

Errors

If fsync returns -1, it sets errno to one of the following values:

EBADF
fildes is not a valid file descriptor.

EINVAL
The file descriptor is valid, but the system doesn't support fsync on this particular file.

Notes

fsync is provided under the _POSIX_FSYNC option, so that systems that don't really want to do real time can still
support fsync in a somewhat well-defined manner. However, if the underlying implementation does not support
POSIX.4 synchronized I/O as well (i.e., _POSIX_SYNCHRONIZED_IO is not supported), then it is rather unclear
exactly what you are doing when you call fsync. POSIX.4 supplies at least some rudimentary definitions of what is
required from fsync. You should look for both _POSIX_FSYNC and _POSIX_SYNCHRONIZED_IO to determine
how well-supported fsync is on your target system.

If fsync ever returns an error of EINVAL, it's because the underlying file doesn't support the semantics required for
POSIX.4 synchronized I/O. The fsync call may still have done something, but it is not able to satisfy the
requirements of POSIX.4 file integrity I/O completion.

Current UNIX Practice

SVR4:
fsync is part of SVR4

BSD:
fsync is part of BSD

SunOS:
fsync is part of SunOS

Page 350

See Also

write (that which is written is pretty much what you're going to be interested in flushing via fsync)

fdatasync (the less-rigorous, maybe faster cousin of fsync)

aio_fsync (a way to asynchronously synchronize your files)

Page 351

kill

Name

kill, sigqueue—Send signals to a process.

Synopsis

#include <unistd.h>
#include <signal.h>

int kill(pid_t pid, int sig);
#ifdef _POSIX_REALTIME_SIGNALS
int sigqueue(pid_t pid, int sig, const union sigval val);
#endif _POSIX_REALTIME_SIGNALS

Conditionality

The kill function is present in all POSIX systems; sigqueue is conditional on _POSIX_REALTIME_SIGNALS.

Description

The kill and sigqueue functions send the signal whose number is sig to the process whose ID is pid. Either function
can send any of the defined signals, including the real-time extended signals SIGRTMIN through SIGRTMAX.
However, kill has no provision to include the extra data value that these signals carry along with them. In order to
pass the extra data, you must use sigqueue and its third parameter, val.

For either function, the process must have appropriate privileges to send the signal to the named process, and the
process must, of course, exist. If you specify a signal number of 0, then these checks for permission and process ID
validity will be performed, but no signal sill be sent. This can be handy for verifying process existence.

Normal Signal Delivery

The signals other than SIGRTMIN through SIGRTMAX are delivered via a simple handler function which takes a
single argument, the signal number.

 void signal_handler(int signo)
 {
 }

This handler function is installed in the target process by sigaction, by specifying the handler address in the
sa_handler field of the struct sigaction.

Page 352

Real-Time Extended Signal Delivery

The real-time signals SIGRTMIN through SIGRTMAX can be delivered either as normal signals above, or as
extended, queued signals. To specify the extended, queueing behavior for these signals, you set SA_SIGINFO in
sa_flags of the struct sigaction when you call sigaction; you set the handler function address in sa_sigaction. Note
that this is a different field from sa_handler. A queued signal handler is invoked as follows:

 void signal_handler(int signo, siginfo_t *info, void *extra)
 {
 }

The parameter info points to a siginfo_t. This structure contains several fields:

 typedef struct {
 int si_signo;
 int si_code;
 union sigval si_value;
 } siginfo_t;

si_signo will be set to the number of the signal delivered (the same as the signo parameter). si_code, which
indicates the cause of the signal, is set to the constant SI_USER in the case of a real-time signal sent by kill, and is
set to SI_QUEUE if the signal was sent by sigqueue. The field si_value will contain the value that was sent as the
val parameter to sigqueue. If this signal was sent by kill rather than sigqueue, then the contents of this field are
undefined.

The third parameter (*extra) is not defined by POSIX; however, other UNIX systems sometimes pass a third
parameter to their signal handlers.

Return Values

These functions return successfully when they deliver a signal to the indicated process. That process, in turn, may
handle the signal immediately, or it may be blocking the signal or ignoring it. A successful return from kill or
sigqueue merely means that the signal has been delivered to the target process. What that process does with the
signal is another matter. These functions return 0 when they succeed. In the case of error, -1 will be returned.

Page 353

Errors

If these functions return -1, they set errno to one of the following values:

EINVAL
The signal number is invalid, not one the system supports.

EPERM
You do not have the right to send this signal to the specified target process.

ESRCH
No such process exists.

EAGAIN
The system ran out of resources to queue the signal and its associated data value (sigqueue only).

Current UNIX Practice

kill is standard UNIX functionality, but sigqueue is new for POSIX.4.

See Also

sigaction (information on handling signals)

sigprocmask (information on blocking signals)

Page 354

lio_listio

Name

lio_listio — Perform a list of I/O operations, synchronously or asynchronously.

Synopsis

#include <aio.h>
int lio_listio(int mode, struct aiocb *acb_list[],
 int nent, struct sigevent *sig);

Conditionality

#ifdef _POSIX_ASYNCHRONOUS_IO
 /* Function is present */
#ifdef _POSIX_PRIORITIZED_IO
 /* Prioritized I/O is performed. */
#endif
#endif

Description

lio_listio submits a list of read and write operations to the system. The call can run in synchronous or asynchronous
mode.

If the mode parameter is equal to LIO_NOWAIT, then lio_listio operates in asynchronous mode. In this case, all
the operations on the acb_list are submitted as if by corresponding calls to aio_read and aio_write, and then the
lio_listio call returns immediately. In this case, the normal asynchronous operation takes place, and, in addition,
when all the asynchronous operations are complete, a signal, specified by the sig argument, is sent (if the
sigev_notify field is equal to SIGEV_SIGNAL).

If the mode parameter is equal to LIO_WAIT, then lio_listio operates in synchronous mode, submitting all the read
and write operations and then waiting for them all to complete before returning. In synchronous mode, the last
parameter, sig, is ignored.

The acb_list argument contains a list of AIO control blocks that specify operations to be done (either
synchronously or asynchronously). The length of the list is nent elements; the maximum list size is
AIO_LISTIO_MAX. NULL elements on the list are ignored. In the AIO control block, there is an opcode field,
aio_lio_opcode, which is used only by lio_listio. If an AIO control block's aio_lio_opcode field is LIO_READ,
then the operation is an asynchronous read. If the opcode is LIO_WRITE, then the operation is an asynchronous
write. If the opcode is LIO_NOP, then the AIO control block is skipped.

Page 355

The asynchronous operations are submitted in an unspecified order. You should not count on the operations being
submitted in any particular order.

For more detail on the semantics of the individual asynchronous read and write operations, take a look at the man
pages for aio_read and aio_write.

Return Values

In asynchronous mode, lio_listio returns 0 if all the functions were successfully queued up to be done; otherwise it
returns -1 and sets errno to indicate the error.

In synchronous mode, lio_listio waits for all the asynchronous operations to complete, and then returns 0.
Otherwise, lio_listio returns -1. In either case, you should use aio_error and aio_return to determine the success or
failure of individual operations. The return and error status of asynchronous operations are the same as for the
corresponding synchronous operation, with a few additional errors possible, as described for aio_read and
aio_write. These additional errors relate to the possibility of the asynchronous I/O being cancelled or the seek
offset being invalid on the file.

Errors

If lio_listio returns -1, it sets errno to one of the following values:

EAGAIN
lio_listio could not queue up the asynchronous request due to system resource limitations (out of queueing
elements in the operating system, for instance, or because there would be too many outstanding asynchronous
operations in the system). This error can occur in either synchronous or asynchronous mode, even though, in
synchronous mode, the system waits for all the asynchronous operations.

EINVAL
mode was not LIO_WAIT or LIO_NOWAIT, or nent was greater than AIO_LISTIO_MAX.

EIO
One or more of the asynchronous operations failed for some reason. This error is possible in both the synchronous
and asynchronous cases.

EINTR
(Synchronous mode only.) A signal delivery interrupted the lio_listio call while it was waiting for all the I/O
operations to complete. Note that, since each individual asynchronous I/O operation may cause a signal to be
delivered, the signal that causes EINTR to be returned may be because of one of the asynchronous operations
completing. In that case, you should probably use aio_suspend to wait for the other operations.

Page 356

The individual asynchronous operations will each have their own error and return status, which can be retrieved
using aio_error and aio_return. These values are the same as for the corresponding synchronous read or write
operation, with a few additional possibilities:

EINVAL
The value specified by aio_offset is invalid for the file.

ECANCELED
The operation was cancelled (by aio_cancel, presumably).

EAGAIN
The asynchronous operation could not be queued for reasons similar to those given above. This error can be
delivered either synchronously at the time of the call to lio_listio, or asynchronously, when the system actually gets
around to trying to queue up the operation. It really depends on how asynchronous the lio_listio call is on a
particular operating system. Different implementations will behave differently; you should be prepared for either
possibility.

EINPROGRESS
The error status for any operation that has not completed is EINPROGRESS.

Notes

aio_return must be called once and only once for every asynchronous operation, or your system may run out of
resources for asynchronous I/O.

If lio_listio fails due to resource limitations (EAGAIN), interruption in synchronous mode (EINTR), or failure of a
particular I/O operation (EIO), then you should be aware that other operations on the list may actually have been
successfully submitted and may well be in progress. In that case, you should use aio_error to determine which
operations are in progress and deal with them appropriately.

The aiocbs used for asynchronous operations should be considered to be owned by the operating system for the
duration of the asynchronous I/O operation. That means you should not modify any of the contents of the aiocbs.
You should not use the aiocbs in submitting other asynchronous operations. You should not declare your aiocbs as
local variables unless there is no way the local variables can disappear (through function return) before the end of
the asynchronous operations. Lastly, you should not deallocate the memory containing the aiocbs (either via free or
via automatic stack shrinkage) until the asynchronous operations have finished.

On systems that support prioritized I/O, the aio_reqprio field is always used. If you do not desire prioritized I/O,
then you should be sure to set this field to 0.

Page 357

Current UNIX Practice

SVR4:
No list-directed I/O operations are specified in SVR4.

BSD:
No list-directed I/O operations are specified in BSD UNIX (as of 4.3).

SunOS:
SunOS has an asynchronous I/O facility similar to the POSIX facility, but it is not identical. In particular, no list-
directed I/O operations are specified in SunOS.

The listio facility is modeled on the current practice of Cray computer and other vendors in the supercomputing
field.

See Also

aio_write

aio_read

sigqueue

aio_error (this function retrieves the error status of an AIO)

aio_return (this function retrieves the return status of an AIO)

aio_suspend (this function is used to wait for an AIO to complete)

aio_cancel (this function tries to cancel an AIO that has not completed yet)

Page 358

mkfifo

Name

mkfifo — Create a named pipe for interprocess communication.

Synopsis

#include <sys/types.h>
#include <sys/stat.h>
int mkfifo(char *fifo_name, mode_t mode);

Conditionality

Unconditional.

Description

mkfifo creates a special file, called fifo_name, and with permissions given by mode. This special file is, once you
open it, a pipe, as described by the pipe manual page.

Pipes created by pipe are unnamed, and therefore only visible to the process calling pipe and child processes of that
process. mkfifo, in contrast, puts the pipe in the file system, where any process can access it.

To access the read end of a named pipe, open the pipe for reading. To access the write end, open the pipe for
writing.

Notes

This creation call is modeled on open(path, O_CREAT, mode). However, unlike open, mkfifo does not return a file
descriptor for the newly-opened file. In fact, it does not open the pipe at all—it just creates it. You'll have to call
open yourself after creating the pipe.

Return Values

mkfifo returns 0 if it successfully created the pipe. If mkfifo fails, then no pipe is created. and mkfifo returns -1.

Errors

If mkfifo returns -1, it sets errno to one of the following values:

EACCES
Permission is denied on some component of the fifo_name.

Page 359

EEXIST
A file named fifo_name already exists.

ENAMETOOLONG
Either fifo_name is too long (longer than PATH_MAX), or a component of fifo_name is too long (longer than
NAME_MAX) and _POSIX_NO_TRUNC is in effect.

ENOENT
Either fifo_name is an empty string, or some component of fifo_name (an intervening directory) does not exist.

ENOTDIR
Some component of fifo_name (some part you thought was a directory) is not a directory.

ENOSPC
No space is available on the file system to create the pipe.

EROFS
The file system is a read-only file system.

Current UNIX Practice

mkfifo is defined by POSIX.1.

See Also

pipe (for the full discussion of pipes)

read, write (to use the pipe)

Page 360

mlock

Name

mlock—Lock a range of memory.

Synopsis

#include <sys/mman.h>
int mlock(const void *addr, sizet len);

Conditionality

#ifdef _POSIX_MEMLOCK_RANGE

Description

mlock locks down the memory range between the addresses addr and addr+len. Because locking is performed on a
page basis, entire pages containing the specified range will be locked down. Furthermore, some operating systems
may require that the address be a multiple of the page size. mlock locks a process address space into physical
memory, rendering the memory immune from being paged or swapped to disk. Processes that require fast,
deterministic response to events must lock their memory, or there is a possibility that memory needed for a
response will be paged to disk.

Because some implementations may require that the address to be locked be aligned on a page boundary, you
should probably assure that your calls to mlock pass page-aligned parameters, both address and size. That means
one less portability consideration for you, and it's especially innocuous since memory is locked by the page even if
you don't specify a page-aligned address. PAGESIZE is defined in <limits.h>.

The determination of which memory ranges should be locked for optimum performance is going to vary from
system to system. Any use of mlock is, therefore, a flag of non-portability in your application. Be careful.

munlock removes locks that were placed with mlock. munlock unlocks a memory range, just as mlock locks a range.
In addition, munlockall will remove locks placed with mlock. munlockall unlocks a process's entire memory range.
Memory locks do not stack: if mlock is called three times for a particular range, a single call to munlock or
munlockall will still unlock the memory.

Page 361

Return Values

mlock returns successfully if it was able to lock the requested memory for the process. If mlock fails, it fails cleanly.
It will not fail and leave some memory locked and other memory unlocked.

If mlock is successful, it returns 0. Otherwise, it returns -1 and sets errno accordingly.

Errors

If mlock returns -1, it sets errno to one of the following values:

EAGAIN
Some of the memory requested to be locked could not be locked. Usually, this means that the system has, at least
temporarily, run out of lockable physical memory.

EINVAL
The address to be locked is not aligned to a page boundary.

ENOMEM
The address range specified by the call is not all valid memory.

ENOMEM
Locking all the requested memory would exceed an implementation-defined limit on the amount of memory the
process can lock. Note that this is more a permission/quota-related error than EAGAIN up above. Not all systems
must implement ENOMEM; it is there for systems that enforce a quota on locked memory. The POSIX.4
conformance statement must tell you what this limit is, if there is any.

EPERM
The process does not have the appropriate privilege to lock its memory. The POSIX.4 conformance statement will
define what sort of privileges are required for locking memory.

Notes

mlock and munlock are separate from mlockall and munlockall. mlock is provided if
_POSIX_MEMLOCK_RANGE is defined; mlockall is conditional on _POSIX_MEMLOCK.

Specification of addresses and lengths to be locked is a risky and non-portable business: you should use mlockall
whenever possible instead.

Your individual platform may not perform paging or swapping, but for portability reasons, your real-time processes
should always lock themselves down. Otherwise, they may fail when ported to platforms that perform swapping or
paging.

Memory locks are released in a child process created by fork, and abandoned when exit or one of the exec functions
are called.

Page 362

Current UNIX Practice

SVR4:
mlock is provided in SVR4.

BSD:
No memory locking operations are specified in BSD UNIX (as of 4.3).

See Also

munlock (to release your locked memory)

mlockall, munlockall (to try and lock your entire address space)

fork (for the definition of memory locks across a fork)

exec (for the definition of memory locks across an exec)

exit (for the definition of memory locks upon an exit)

<limits.h> (PAGESIZE is defined in this header)

Page 363

mlockall

Name

mlockall—Lock your entire memory space down.

Synopsis

#include <sys/mman.h>
int mlockall(int how);

Conditionality

#ifdef _POSIX_MEMLOCK

Description

mlockall locks a process address space into physical memory, rendering the memory immune from being paged or
swapped to disk. Processes that require fast, deterministic response to events must lock their memory, or there is a
possibility that memory needed for a response will be paged to disk.

The entire process memory image is locked down according to the flag word how. how contains two flags,
MCL_CURRENT and MCL_FUTURE. If MCL_CURRENT is set, then all currently-mapped memory is locked
down. If MCL_FUTURE is set, then all future mappings (stack growth, additional memory allocation, use of
additional shared memory areas) will also be locked down when they are made. It is possible to specify either flag
independently of the other.

munlockall is called to remove the locks placed by mlockall. Locks do not stack: if mlockall is called ten times, a
single call to munlockall will still unlock the memory.

Return Values

mlockall returns successfully if it was able to lock the requested memory for the process. In the case of
MCL_FUTURE being specified, it is possible that future memory allocation will cause the system to run out of
lockable physical memory. In that case, the operating system will inform the process in an implementation-defined
way. This notification method must be specified in the system's POSIX.4 conformance statement.

The operating system may require that the process calling mlockall be privileged. The definition of appropriate
privilege to successfully call mlockall is defined in the system's POSIX.4 conformance statement.

If mlockall is successful, it returns 0. Otherwise, it returns -1 and sets errno accordingly.

Page 364

Errors

If mlockall returns -1, it sets errno to one of the following values:

EAGAIN
Some of the memory requested to be locked could not be locked. Usually, this means that the system has, at least
temporarily, run out of lockable physical memory.

EINVAL
The value of the flag word how was bogus. Either the value was 0, or some extra flag value was set.

ENOMEM
Locking all the requested memory would exceed an implementation-defined limit on the amount of memory the
process may lock. Note that this is more a permission/quota-related error than EAGAIN is. Systems are not
required to implement ENOMEM; it is there for systems that enforce a quota on locked memory. The POSIX.4
conformance statement must tell you what this limit is, if there is any.

EPERM
The process does not have the appropriate privilege to lock its memory. The POSIX.4 conformance statement will
define what sort of privileges are required for locking memory.

Notes

Your individual platform may not perform paging or swapping, but for portability reasons, your real-time processes
should always lock themselves down. Otherwise, they may fail when ported to platforms that perform swapping or
paging.

Memory locks are not inherited in a child created by fork, and are also abandoned when exit or one of the exec
functions are called.

Current UNIX Practice

SVR4:
mlockall is provided in SVR4.

BSD:
No memory locking operations are specified in BSD UNIX (as of 4.3).

See Also

munlockall (to release your locked memory)

mlock, munlock (to try and lock less than your entire address space)

fork (for the definition of memory locks across a fork)

exec (for the definition of memory locks across an exec)

exit (for the definition of memory locks upon an exit)

Page 365

mmap

Name

mmap—Map a shared memory object (or possibly another file) into process's address space.

Synopsis

#include <sys/mman.h>
void *mmaps(void *desired_addr, size_t length,
 int memory_protections, int mapping_flags,
 int fd, off_t offset_within_file);

Conditionality

#if defined(_POSIX_SHARED_MEMORY_OBJECTS) \
 || defined(_POSIX_MAPPED_FILES)
The MAP_PRIVATE mapping flag is only supported if _POSIX_MAPPED_FILES is
defined. MAP_FIXED is entirely optional. Memory protections are only
guaranteed to be enforced if _POSIX_MEMORY_PROTECTION is also defined;
even if this option is defined, memory protection is not supported in
all its possibilities.

Description

The mmap function creates a virtual memory mapping for a region of the file fd. This mapping allows you to refer
to the contents of the file as if it were memory.

The area of the file from offset offset_within_file, and with length length, will be mapped into the virtual address
space of the process. The address at which the mapping is performed is the return value from mmap.

Sorts of Files You Can Map

POSIX does not state which sorts of files you can and cannot map. Since most operating system objects in UNIX
are accessed as files, the question becomes pertinent.

Most obviously, you can use mmap with a shared memory object opened via shm_open. You can also probably map
a regular disk file opened with open. As far as other sorts of files, you are probably into the realm of
implementation details. Can you map a pipe? Probably not. A terminal? Doubtful. Some random device, for
instance a frame buffer, special-purpose array processor or address space on a particular bus? Quite possibly. The
mmap function returns an error and sets errno to ENODEV for an attempt to map a device ''for which mmap is
meaningless." In the case of special devices, this probably means that the device driver code has no entry point to
service

Page 366

an mmap request. This is more an issue of device support than operating system POSIX conformance.

Mapping Flags

The mapping_flags parameter influences the manner in which your mapping is performed. Three bits are defined
for mapping_flags:

Constant Meaning

MAP_SHARED Create a mapping shared by all shared mappers

MAP_PRIVATE Create a private (copy-on-write) mapping

MAP_FIXED Map at desired_addr, or else fail

MAP_SHARED and MAP_PRIVATE are mutually exclusive. You must set one or the other, but you cannot set
both.

The MAP_FIXED flag indicates that the system should use desired_addr as the address at which to perform the
mapping, and if it cannot map at exactly that address, to fail. MAP_FIXED is optional in implementations, so you
should not use it in portable programs.

Memory Protections

Memory generally has some protections associated with it. For instance, you can read and write your process's data
space and stack, but if you try to write in the text (instructions) of your program, you will cause a machine
exception and probably get a signal. Most memory protections are implicit in the intended use of the area.
However, with mapped regions, there is no implicit memory protection. You might be using the area only to read
from, or only to write to. You might, in fact, be executing code in the mapped area (most shared library facilities
today are implemented using mmap to map in the shared library text and data).

When you map in a file, you set the desired protections in the memory_protections parameter. There are three bits
you can set, and an alternative value you can set instead of any of the three bits:

Page 367

Constant Meaning

PROT_READ Read permission for the memory area

PROT_WRITE Write permission for the memory area

PROT_EXEC Execute permission for the memory area

PROT_NONE No permissions for the memory area

I'm not sure why you would ever establish a mapping with PROT_NONE, since in that case you cannot use the
memory at all. The other three bits, though, indicate the permission to read, write, and execute code in the shared
memory area, respectively. (Obviously, if you want to execute code in the shared memory area, it had better be full
of compiled, executable code!)

You cannot request more permissions in the mapping than you requested in the original open or shm_open of the
file. For instance, if you want to map the file with PROT_WRITE, you must have opened the file with
O_WRONLY or O_RDWR permissions.

Desired Address

The desired_addr parameter tells the system where you want the mapped object to reside in your shared memory
area. If this parameter is NULL, you give the system free license to map the region wherever it sees fit. Otherwise,
the system will use your desired address as a hint as to where to place the mapped area.

Notes

Page Alignment: Implementations may require you to pass an offset that is a multiple of the system memory page
size, PAGESIZE. Implementations will also, in general, map a region that is an integral multiple of PAGESIZE in
length, regardless of what you specify as the desired length. For maximal portability, use lengths, offsets, and
addresses that are integral multiples of PAGESIZE. You can find PAGESIZE in <limits.h> or by using sysconf
(SC_PAGESIZE).

Pointers into Shared Memory: If you have multiple processes with a shared memory area, it is possible that they
will each have the area mapped at a different address. Thus, they cannot share pointers into the shared memory area
without adjusting those pointers to take into account the mapping each process has. I recommend that you use
offsets into the shared memory area, rather than plain old pointers, to access memory in a shared region.
Alternatively, your process can simply modify the pointers it uses to take shared memory mapping address into
account.

Page 368

Zero-Fill at the End of the File: Say you have a file (or shared memory region) that is 10 bytes long, and you map
it into your space. Since mappings are done in units of PAGESIZE, your mapping will consist of PAGESIZE bytes,
where PAGESIZE is certainly greater than 10 (4096 is a common value). The bytes beyond the 10 that comprise
the file are initialized by the system to 0. Furthermore, those bytes are not part of the file, even though they are part
of the mapping. You should not use those bytes. If you have some need for them, then you should probably expand
the file you're mapping, eh?

mmap and Shared Memory: Shared memory objects are opened/created using shm_open, rather than open, and
are sized using ftruncate. While shm_open returns a file descriptor, the shared memory object is most emphatically
not a file in the normal sense. You cannot read or write it. In fact, all you can really do is mmap it and close it.

Shared memory is persistent so long as the system remains up. That means you can create and map in a shared
memory region, store data in the memory, close and unmap it, go away for a few days, then come back and find the
same data you stored.

The memory mapping of the underlying object may not always reflect the underlying object exactly. For instance,
if you map a disk file, you are probably not writing to disk each time you modify the mapped memory. The
performance penalty of such disk writes would be enormous. The system generally keeps the mappings and the
underlying object pretty much consistent. However, if the system were to crash, the underlying object might not
reflect all your modifications to the mapping. To synch up the underlying object with the mappings, you use the
msync function.

Return Values

mmap returns the address at which the mapping was performed, or MAP_FAILED if the call failed. Each operating
system chooses the value of MAP_FAILED so that is a value that cannot possibly be a valid address for mapping.

Errors

If mmap returns MAP_FAILED, it sets errno to one of the following values:

EACCES
The permissions on the file do not allow the mapping permissions you requested. A file mapped for writing must be
opened for writing; and all files must be opened for reading before being mapped.

EBADF
The file descriptor fd is bogus.

EINVAL
The flags you specified in mapping_flags are bogus. For instance, you specified neither MAP_PRIVATE nor
MAP_SHARED.

Page 369

ENODEV
The file you are trying to map cannot be mapped; such a mapping would be meaningless (for instance, mapping a
pipe or a terminal).

ENOTSUP
You asked for MAP_FIXED or MAP_PRIVATE in mapping_flags, and this system does not support those
operations. Alternatively, you requested permissions in memory_protections which the system does not support.

ENXIO
The area you specified (from offset for length bytes) is invalid in the file. Perhaps you specified a region off the end
of the file. This is also the error returned if MAP_FIXED is supported, you asked for MAP_FIXED, and your
desired_addr, offset, and length do not work together. Check to make sure that all the aforementioned quantities are
page-aligned.

EAGAIN
If you have locked down your future mapping with mlockall(MCL_FUTURE), you will get back this error if you
are not able to lock this mapping into memory due to a lack of system resources (other than physical memory; see
below).

ENOMEM
You can also get this error back for trying to map when you have locked your mappings down. This error is
returned for only one sort of resource shortage: not enough physical memory to lock down the mapping. You can
also get this error if you specified a MAP_FIXED mapping and desired_addr is outside the allowed address space
for your process. Finally, you can get this error even if you have not locked your memory or asked for a
MAP_FIXED mapping, if your address space is simply too full for another mapping.

Current UNIX Practice

mmap is part of System V release 4.

See Also

munmap (to release a mapping established by mmap)

msync (to make mapped regions consistent with the underlying object)

shm_open (to open a shared memory object)

close (to finish using a file or shared memory object descriptor)

ftruncate (to set the size of a shared memory object)

Page 370

mprotect

Name

mprotect—Change memory protections on a mapped area..

Synopsis

#include <sys/mman.h>
int mprotect(const void *addr, size_t length, int prot);

Conditionality

#if defined(_POSIX_MEMORY_PROTECTION)
Even if _POSIX_MEMORY_PROTECTION is defined, memory protection is not
supported in all its possibilities.

Description

The mprotect function allows you to change the memory protections of the mapped region starting at addr and
proceeding for the given length. This region must have been mapped using mmap, or the effects of this function are
undefined. The protection modification is done in units of PAGESIZE, to include the area specified. Some systems
may require you to pass in an addr that is an integral multiple of PAGESIZE.

The protections applied by this function mimic those applied by mmap and its mapping_protections parameter.
There are three bits you can set, and an alternative value you can set instead of any of the three bits:

Constant Meaning

PROT_READ Read permission for the memory area

PROT_WRITE Write permission for the memory area

PROT_EXEC Execute permission for the memory area

PROT_NONE No permissions for the memory area

I'm not sure why you would ever establish a PROT_NONE protection, since in that case you cannot use the
memory at all. The other three bits, though, indicate the permission to read. write, and execute code in the shared
memory area, respectively. (Obviously, if you want to execute code in the shared memory area, it had better be full
of compiled, executable code!)

Even when _POSIX_MEMORY_PROTECTION is specified, these protection facilities are not airtight in the
POSIX specification. The permissions, for instance, may not be interpreted exactly: all that's required is that a write
to read-only memory not succeed. Reads from write-only memory may be allowed! As another example,
PROT_EXEC need

Page 371

not be supported on your machine. In fact, the only protection combinations that an implementation has to support
are PROT_NONE, PROT_READ, PROT_WRITE, and PROT_READ|PROT_WRITE. If your application has a
strong need for some other protection combination, though, you've got a very unique application!

Finally, you cannot request more permissions in a MAP_SHARED mapping than you requested in the original
open or shm_open of the file. For instance, if you want to map the file with PROT_WRITE, you must have opened
the file with O_WRONLY or O_RDWR permissions. (The MAP_SHARED flag is set when you call mmap). If this
mapping is a private mapping (established with the MAP_PRIVATE flag set in the call to mmap), then you can
basically set any permissions you want because you're just modifying your own private copy anyway.

Return Values

mprotect returns 0 if it successfully changed permissions on the mapped region. It returns -1 if it fails. If it fails and
errno is set to a value other than EINVAL, then this function may have changed some of the protections in the
mapped area.

Errors

If mprotect returns -1, it sets errno to one of the following values:

EINVAL
The address addr is not a multiple of PAGESIZE.

EACCES
You asked for more permissions than were granted for the underlying file. For instance, you opened the shared
memory area with O_RDONLY, and are now trying to add PROT_WRITE permission to the mapping you
established. This error only occurs for shared (MAP_SHARED) mappings.

ENOTSUP
You requested permissions which the system does not support.

EAGAIN
If you have locked down your future mapping with mlockall(MCL_FUTURE), you will get back this error on a
MAP_PRIVATE mapping when you attempt to change permissions to permit writing (in this case, the system
needs to make new copies of your memory area and lock the new copies down; there may not be enough of some
system resources for this operation).

Page 372

ENOEM
You can also get this error back for trying to make a locked, MAP_PRIVATE mapping writable. This error is
returned only if there is not enough physical memory to lock down the mapping. You can also get this error if the
range of addresses you specified are not in your address space or if the range includes some unmapped pages.

Current UNIX Practice

mprotect is part of System V release 4.

See Also

mmap (to establish a mapping)

munmap (to release a mapping established by mmap)

shm_open (to open a shared memory object)

close (to finish using a file or shared memory object descriptor)

ftruncate (to set the size of a shared memory object)

Page 373

mq_close

Name

mq_close — Terminate access to a POSIX.4 message queue.

Synopsis

#include <mqueue.h>
int mq_close(mqd_t mq);

Conditionality

#ifdef _POSIX_MESSAGE_PASSING

Description

Use mq_close to sever the connection to a message queue which you made with mq_open.

Message queues are persistent, that is, the messages sent to a message queue remain in the queue even if no one has
the queue open.

A message queue only ceases to exist when either the system goes down (and all bets are off in that case), or when
the queue is removed with mq_unlink. Once a message queue has been removed with mq_unlink, and all processes
that have the queue open close it, then all traces of the message queue disappear. Until that time, though, processes
that have the queue open may continue to use it—even though other processes can no longer access the "removed"
queue.

Notes

Message queues do not reside in the file system namespace. The name must obey construction rules as for a normal
file pathname, but the message queue may or may not actually appear in the file system namespace. That is, when
you do an ls, message queues may or may not appear. Therefore, your application must be careful to clean up its
message queues, since there is no (POSIX-standard) equivalent of the rm command for message queues.

Return Values

mq_close returns 0 if the named message queue is successfully closed. After such time, the process will no longer
be able to access the message queue through that descriptor. If mq_close fails, then it returns -1.

Page 374

Errors

If mq_close returns -1, it sets errno to the following value:

EINVAL
The descriptor passed does not describe an open message queue.

Current UNIX Practice

POSIX message queues are brand new to POSIX.4.

See Also

mq_open (to begin using a message queue)

close (similarities to this call)

mq_unlink (to remove a message queue from the system entirely)

mq_receive (to receive messages on a queue you've accessed)

mq_send (to send messages to a queue you've accessed)

Page 375

mq_getattr

Name

mq_getattr—Get POSIX.4 message queue attributes.

Synopsis

#include <mqueue.h>
int mq_getattr(mqd_t mq, struct mq_attr *attrbuf);

Conditionality

#ifdef _POSIX_MESSAGE_PASSING

Description

mq_getattr is used to retrieve the message queue attributes for the message queue named by mq. The attributes are
stored in the location referenced by attrbuf With one exception, all these attributes are set when the message queue
is created (with mq_open with the O_CREAT flag set). The exception is mq_flags, which can be dynamically set
using mq_setattr to change the blocking/nonblocking behavior of the message queue.

The mq_attr structure contains two fields in particular which dictate the sizing of the queue. mq_msgsize dictates
the maximum size of a single message on the queue. Messages larger than this sent to the queue will generate an
error. mq_maxmsg dictates the largest number of messages which may be in the queue at one time.

mq_attr.mq_flags includes flags affecting the message queue's behavior. Only one such flag is defined,
MQ_NONBLOCK. If this flag is set, then the message queue is nonblocking, and requests to send or receive
messages will never block awaiting resources. Otherwise, message sending and message receipt may involve
waiting for empty queue space or a message to arrive on the queue, respectively.

mq_attr.mq_curmsgs indicates how many messages are in the queue (sent, but not yet received) at the time
mq_getattr is called.

Return Values

mq_getattr returns 0 if it successfully retrieves the message queue's attributes. If

mq_getattr fails, then it returns -1.

Page 376

Errors

If mq_getattr returns -1, it sets errno to the following value:

EBADF
The message queue descriptor mq does not refer to a valid, open message queue.

Current UNIX Practice

POSIX message queues are brand new to POSIX.4.

See Also

mq_open (which sets message queue attributes)

mq_setattr (which can set the mq_flags attributes)

mq_receive (to receive messages on a queue you've accessed)

mq_send (to send messages to a queue you've accessed)

Page 377

mq_notify

Name

mq_notify — Register a request to be notified when a message arrives on an empty message queue.

Synopsis

#include <mqueue.h>
int mq_notify(mqd_t mq, const struct sigevent *notification);

Conditionality

#ifdef _POSIX_MESSAGE_PASSING

Description

mq_notify tells the system to notify the process if a message arrives on the otherwise-empty message queue mq.
This functionality can be useful for asynchronous notification of message arrival on a message queue, to avoid
polling or blocking with mq_receive.

A message queue can register only one such request from all processes. Once one process has successfully attached
a notification request, subsequent attempts by that or any other process to attach a notification request will fail. One
exception to this rule is that the process which originally attached the notification request can remove it by passing
a NULL pointer for the notification parameter.

Notification works as follows. If the message queue is empty, and there are no processes blocked in mq_receive
waiting for a message on the queue, and a message arrives, then the signal indicated by notification will be sent to
the process which originally attached the notification request. The struct sigevent is defined in <signal.h>.
Notification will not be performed if the queue was not empty before the message arrived, nor will it be performed
if there are any processes waiting for a message with mq_receive. The idea is to let the notified process know that it
can grab a message off the queue, where before it could not.

Notes

It is possible that, after notification is delivered, another process will jump in with a mq_receive and pull the
message off the queue before the notified process has a chance to. Notified processes should be prepared for this
possibility.

Page 378

Return Values

mq_notify returns 0 if the notification was successfully attached (or, if notification was NULL, successfully
removed). If mq_notify fails, then it returns -1, and the message queue's notification request is not modified.

Errors

If mq_notify returns -1, it sets errno to one of the following values:

EBADF
The descriptor mq does not refer to a valid message queue.

EBUSY
A notification request is already attached to this queue (notification, in this case, was not NULL).

Current UNIX Practice

POSIX message queues are brand new to POSIX.4.

See Also

mq_open (to begin using a message queue)

mq_send (to send messages on a queue you've accessed)

mq_receive (to send messages on a queue you've accessed)

sigaction (to establish a signal handler for the notification signal)

Page 379

mq_open

Name

mq_open — Create/access a POSIX.4 message queue.

Synopsis

#include <mqueue.h>
mqd_t mq_open(char *mq_name, int oflags,
 mode_t mode, struct mq_attr *mq_attr);

Conditionality

#ifdef _POSIX_MESSAGE_PASSING

Description

mq_open is used to create or open a message queue. The function call is modeled on open, and the interpretation of
oflags and mode are especially reminiscent of open. Significant differences emerge in the sort of object returned—
it's a message queue, not a file—and in the interpretation of the first and final arguments.

Name Resolution

First, the message queue name. The name must obey construction rules as for a normal file pathname, but the
message queue may or may not actually appear in the file system namespace. That is, when you do an ls, message
queues may or may not appear. Therefore, your application must be careful to clean up its message queues, since
there is no (POSIX-standard) equivalent of the rm command for message queues.

To ensure portability, you must obey two more rules. First, the message queue name must begin with a ''/"; relative
message queue names are interpreted differently by different systems. A portable application must use a fully-
rooted name, therefore, to achieve utmost portability of message queue names. Second, the name may not contain
additional "/" characters. Again, different systems will interpret the name in different ways, some treating it as a
pathname and applying all the standard pathname semantics, and others treating the name as a simple string.

Other Parameters

The oflags argument controls the way in which the message queue is opened. You must specify one of
O_RDONLY, O_WRONLY, or O_RDWR, depending on whether you wish to only receive, only send, or send and
receive messages on the message queue.

Page 380

Message queues can have multiple senders and receivers. In addition, you can specify the following flags in oflags:

O_NONBLOCK
If you set this flag, you tell the system that you should not block waiting to send or receive a message on a full or
an empty message queue, respectively. By default, message send and receipt are blocking operations, which wait
until the resources necessary for their successful operation are available.

O_CREAT
This flag is set to indicate that this call to mq_open is to create the message queue, not just access a queue that
already exists. It is only in this case that the third and fourth arguments to mq_open are used. The message queue is
created with a mode as specified in mode, just as for file creation. All three triplets of permissions are set for the
message queue: read and write (receive and send) permission creator, group, and others. There is no meaning for
execute permission on a message queue. Portable symbols for constructing a mode are found in <sys/stat.h>:
S_IWUSR, S_IROTH and so forth. The uid and gid of the message queue are set to the effective IDs of the calling
process.

The geometry of the created queue is dictated by the mq_attr argument. This structure contains two fields
which dictate the sizing of the queue. mq_msgsize dictates the maximum size of a single message on the
queue. Messages larger than this sent to the queue will generate an error. mq_maxmsg dictates the largest
number of messages which may be in the queue at one time. If the mq_attr argument is NULL, then the
system creates a message queue with implementation-defined default attributes. You should definitely
provide some values for mq_attr.

The mq_flags field is not consulted on mq_open. The O_NONBLOCK flag, described above, is used
instead. mq_flags is only used to determine and change the blocking behavior of the message queue (using
mq_getattr and mq_setattr).

O_EXCL
This flag modifies the behavior of O_CREAT and is consulted only if O_CREAT is also set. If O_CREAT is set
and O_EXCL is not set, then mq_open will silently fail to create the message queue, and instead just attach to the
existing queue. If both flags are set, though, and a

Page 381

message queue already exists, then mq_open will return an error. It is meaningless and undefined to set
O_EXCL without O_CREAT.

Notes

The mq_flags field of the mq_attr structure is not consulted when creating the message queue. The
O_NONBLOCK flag to mq_open is used instead. The field is used only for mq_getattr and mq_setattr.

Message queues are persistent so long as the system remains up. That means you can create a message queue, send
a couple of messages into it, close it, go away for a few days, then come back and receive the messages you sent.

It is possible that vendors will implement message queues atop files. In this case, a set of file-like error returns,
documented below, are possible.

Return Values

mq_open returns the descriptor for the created or accessed message queue as its return value. This value is an
integral type, but is definitely not a file descriptor. Do not attempt file operations on a message queue descriptor.
The effects are unknown. If mq_open fails, then it returns (mqd_t)-1.
Errors

If mq_open returns -1, it sets errno to one of the following values:

EACCES
Either the message queue exists and the permissions you request in oflags are denied, or you're trying to create a
non-existing message queue and permission to do so is denied.

EEXIST
You specified O_CREAT and O_EXCL in oflags, and the message queue already exists.

EINVAL
You passed in an inappropriate name, one which broke one or more of the rules given above. Each implementation
must describe the set of names it will accept for message queues; you can use this documentation to determine
exactly what the problem was. Alternatively, you can stick to the rules quoted above.

You can also get EINVAL if you are creating the message queue, and the values you specified for
mq_maxmsg or mq_msgsize are less than or equal to 0.

Page 382

ENOENT
The message queue does not exist, and you did not specify O_CREAT.

EINTR
The call was interrupted by a signal. This is not likely to happen unless the call blocks waiting for some resource
which is in short supply.

EMFILE
The process is using too many file or message queue descriptors. Note that in an implementation that supports
message queues atop files, the limit applies to the total of open files and open message queues.

ENFILE
The system has run out of system resources to support more open message queues. Note that this error is a system
error, while EMFILE is more of a process-limit error.

ENAMETOOLONG
mq_name is too long, greater than PATH_MAX, or, if you used multiple "/" characters and the system supports
that, a component of the pathname exceeded NAME_MAX while _POSIX_NO_TRUNC is in effect.

Current UNIX Practice

POSIX message queues are brand new to POSIX.4.

See Also

open (similarities to this call)

pipe (another means to create a channel between processes)

mq_close (to finish using a message queue)

mq_unlink (to remove a message queue from the system entirely)

mq_receive (to receive messages on a queue you've accessed)

mq_send (to send messages to a queue you've accessed)

Page 383

mq_receive

Name

mq_receive—Receive a message from a POSIX.4 message queue.

Synopsis

#include <mqueue.h>
int mq_receive(mqd_t mq, char *msg_buffer,
 size_t buflen, unsigned int *msgprio);

Conditionality

#ifdef _POSIX_MESSAGE_PASSING

Description

mq_receive receives a message from the queue mq.

The received message is removed from the message queue and stored in the area pointed to by msg_buffer, whose
length is buflen. The buflen must be less than or equal to the mq_msgsize attribute with which the message queue
was created, otherwise the call will fail.

Messages are retrieved from the queue in FIFO order within priorities. Greater values of msgprio indicate higher
priority, and are received before messages of lower priority. The received message's priority is stored in the
location referenced by msgprio. If msgprio is a NULL pointer, then the message priority will be discarded by the
system.

Empty Message Queues

If there is a message waiting on the queue for you, you will immediately receive it. If, however, the message queue
is empty, your process will behave in one of two ways. If you mq_open the queue with the O_NONBLOCK flag
set, then you will be immediately returned an error, with errno set to EAGAIN. If you do not set O_NONBLOCK,
then you will block until either a message is sent to the queue, or you are interrupted by a signal.

Notes

Message queues are persistent so long as the system remains up. That means you can create a message queue, send
a couple of messages into it, close it, go away for a few days, then come back and receive the messages you sent.
You may be able to use this persistence to your advantage, if you are careful. However, watch out for persistence in
the case where the system may go down. A careful application should always

Page 384

include a startup phase where the status and general sanity of all required objects, including message queues, is
assured.

Return Values

mq_receive returns 0 if a message was successfully received. The message is stored in the buffer at msg_buffer, and
its priority is stored in msgprio. If mq_receive fails, then it returns (mqd_t) -1, and no message is removed from the
queue.

Errors

If mq_receive returns -1, it sets errno to one of the following values:

EBADF
The descriptor mq does not refer to a valid message queue, or the queue is valid but you did not mq_open it for
reading (O_RDONLY or O_RDWR in oflags).

EMSGSIZE
The buflen was less than the mq_msgsize attribute of the message queue.

EAGAIN
The message queue is non-blocking, and the queue is empty.

EINTR
The message queue is a blocking queue, you were waiting for a message to arrive, and a signal arrived, interrupting
your wait.

Current UNIX Practice

POSIX message queues are brand new to POSIX.4.

See Also

pipe (another means to create a channel between processes)

mq_open (to begin using a message queue)

mq_send (to send messages on a queue you've accessed)

Page 385

mqsend

Name

mq_send—Send a message on a POSIX.4 message queue.

Synopsis

#include <mqueue.h>
int mq_send(mqd_t mq, const char *msg,
 size_t msglen, unsigned int msgprio);

Conditionality

#ifdef _POSIX_MESSAGE_PASSING

Description

mq_send sends the indicated message on the message queue referenced by mq.

The message is stored in the area pointed to by msg, and is of length msglen. The msglen must be less than or equal
to the mq_msgsize attribute with which the message queue was created, otherwise the call will fail.

Messages are stored on the queue in FIFO order within priorities. The message's priority is given by msgprio.
Greater values of msgprio indicate higher priority. The value of msgprio must be less than or equal to
MQ_PRIO_MAX (see <limits.h>), or the call will fail.

Full Message Queues

A limited number of messages may be stored in the message queue before being received by processes. This
number is the mq_maxmsg attribute with which the message queue was created. If this many messages have been
sent to the queue and not yet received, then the message queue is said to be full.

If you try to send a message to a full message queue, your process will behave in one of two ways. If you mq_open
the queue with the O_NONBLOCK flag set, then you will be immediately returned an error, with errno set to
EAGAIN. If you do not set O_NONBLOCK, then you will block until either a space opens up for your message, or
you are interrupted by a signal.

Notes

Message queues are persistent so long as the system remains up. That means you can create a message queue, send
a couple of messages into it, close it, go away for a few days, then come back and receive the messages you sent.
You may be able to use this

Page 386

persistence to your advantage, if you are careful. However, watch out for persistence in the case where the system
may go down. A careful application should always include a startup phase where the status and general sanity of all
required objects, including message queues, is assured.

Return Values

mq_send returns 0 if the message was successfully enqueued. If mq_send fails, then it returns (mqd_t)-1., and
no message is inserted on the queue.

Errors

If mq_send returns -1, it sets errno to one of the following values:

EBADF
The descriptor mq does not refer to a valid message queue, or the queue is valid but you did not mq_open it for
writing (O_WRONLY or O_RDWR in oflags).

EINVAL
The value of msgprio was greater than MQ_PRIO_MAX.

EMSGSIZE
The msglen exceeded the mq_msgsize attribute of the message queue.

EAGAIN
The message queue is non-blocking, and there is no room on the queue for the message.

EINTR
The message queue is a blocking queue, you were waiting for space to free up on the queue, and a signal arrived,
interrupting your wait.

Current UNIX Practice

POSIX message queues are brand new to POSIX.4.

See Also

pipe (another means to create a channel between processes)

mq_open (to begin using a message queue)

mq_receive (to receive messages on a queue you've accessed)

Page 387

mq_setattr

Name

mq_setattr—Set a subset of POSIX.4 message queue attributes.

Synopsis

#include <mqueue.h>
int mq_setattr(mqd_t mq, const struct mq_attr *new_attrs,
 struct mq_attr *old_attrs);

Conditionality

#ifdef _POSIX_MESSAGE_PASSING

Description

mq_setattr is used to set some of the attributes associated with the message queue named by mq. New attributes are
set from the values given in the structure referenced by new_attrs. The previous attributes are stored in the location
referenced by old_attrs, if that pointer is not NULL. A NULL pointer is ignored.

Only one of the attributes of a message queue can be set with this call: mq_attr.mq_flags. This field includes flags
affecting the message queue's behavior. Only one such flag is defined, MQ_NONBLOCK. If this flag is set, then
the message queue is non-blocking, and requests to send or receive messages will never block awaiting resources.
Otherwise, message send and message receipt may involve waiting for empty queue space or a message to arrive on
the queue, respectively.

All other fields in new_attrs are ignored by the call. Set them to whatever you want.

When a message queue is created, a mq_attr structure is passed to define the geometry of the message queue.
However, the mq_flags field of this structure is not consulted in message queue creation. Instead, the
O_NONBLOCK flag to mq_open is used.

Return Values

mq_setattr returns 0 if it successfully sets the message queue's attributes. If mq_setattr fails, then it returns -1.

Page 388

Errors

If mq_setattr returns -1, it sets errno to one of the following values:

EBADF
The message queue descriptor mq does not refer to a valid, open message queue.

EINVAL
The value in new_attrs->mq_flags is invalid.

Current UNIX Practice

POSIX message queues are brand new to POSIX.4.

See Also

mq_open (which sets message queue attributes)

mq_getattr (retrieve the attributes)

mq_receive (to receive messages on a queue you've accessed)

mq_send (to send messages to a queue you've accessed)

Page 389

msync

Name

msync — Make a mapping consistent with the underlying object..

Synopsis

#include <sys/mman.h>
int msync(const void *addr, size_t length, int flags);

Conditionality

#if defined(_POSIX_MAPPED_FILES) && defined(_POSIX_SYNCHRONIZED_IO)

Description

When you map a file into an address space, the resulting memory mapping may not always reflect the underlying
object exactly. For instance, if you map a disk file, you are probably not writing to disk each time you modify the
mapped memory. The performance penalty of such disk writes would be enormous. The system generally keeps the
mappings and the underlying object pretty much consistent. However, if the system were to crash, the underlying
object might not reflect all your modifications to the mapping. To synch up the underlying object with the
mappings, you use the msync function.

The msync function synchs the mapped region starting at addr and proceeding for the given length out to the
underlying object (presumably a disk file) which you originally mapped. This region must have been mapped using
mmap, or the effects of this function are undefined. The synch operation is done in units of PAGESIZE, to include
the area specified. Some systems may require you to pass in an addr that is an integral multiple of PAGESIZE.

The synchronization operation is performed in a number of ways, depending on the value set in flags.

Constant Meaning

MS_SYNC Synch the data out now and don't return until it's done.

MS_ASYNC Start the synch operation and immediately return.

MS_INVALIDATE Invalidate cached copies of the data that are inconsis tent with
the synched data.

Page 390

You must specify either MS_SYNC or MS_ASYNC, but you cannot specify both. If you set MS_SYNC, then the
data is stored out to the underlying object before the msync call returns. In this case, you know that the data is safe.

If you set MS_ASYNC, then the system will queue the data to be flushed out to the underlying object, and
immediately return to you. In this case, you know that you have started the synch operation and it should finish at
some point in the future.

The MS_INVALIDATE flag can be set to invalidate other mappings to the underlying object if those mappings do
not match the data you have just updated the object with, for instance, if you had several processes with mappings
to a single file, and your process modified its mapping. Then, by calling msync with MS_INVALIDATE, you
would cause all the other processes to update their mappings to reflect the new data just updated on disk.
MS_INVALIDATE is useful for maintaining the consistency of multiple mappings to the same object. The other
processes would not see any effect of this action, other than the fact that their mappings were updated with the new
contents of the mapped memory.

This function may not do anything if the underlying object has no underlying storage. For instance, if you msync a
shared memory object, there's nothing to synch to, so the operation will just return. Likewise, MAP_PRIVATE
mappings probably have no underlying physical storage, and calls to msync will do nothing in this case either.

Return Values

msync returns 0 if it successfully performed the desired synchronization with the underlying object. It returns -1 if it
fails.

Errors

If msync returns -1, it sets errno to one of the following values:

EINVAL
The address addr is not a multiple of PAGESIZE. Alternatively, the value in flags is bogus.

ENOMEM
The range of addresses you specified is not in your address space, or includes some unmapped pages.

EBUSY
You specified MS_INVALIDATE and some of the mappings to be invalidated have been locked down. You cannot
invalidate such mappings if it would require a page fault to retrieve the new data, because that would violate the
requirements of memory locking.

Page 391

Current UNIX Practice

msync is part of System V release 4.

See Also

mmap (to establish a mapping)

munmap (to release a mapping established by mmap)

shm_open (to open a shared memory object)

close (to finish using a file or shared memory object descriptor)

ftruncate (to set the size of a shared memory object)

Page 392

munlock

Name

munlock—Unlock a range of memory.

Synopsis

#include <sys/mman.h>
int munlock(const void *address, size_t length);

Conditionality

#ifdef _POSIX_MEMLOCK_RANGE

Description

munlock removes memory locks made by either mlockall or mlock. It unlocks all memory in the range specified by
address and length. After a call to munlock, that range of a process's memory may be paged or swapped. This does
not mean that the memory must be paged or swapped; the operating system is allowed to keep the memory locked
down if it wishes.

Address and length may need to be page-aligned. It's recommended practice to round both parameters to the
appropriate page boundary before calling either munlock or mlock. PAGESIZE is defined in <limits.h>.

Return Values

munlock generally succeeds unless you mess up the parameters. Even if you have not locked the memory you are
trying to unlock, munlock will still return successfully. After all, the memory is unlocked.

munlock returns 0 on success and -1 when it fails.

Errors

If munlock returns -1, it sets errno to one of the following values:

EINVAL
The addresses to be unlocked are not aligned to a page boundary.

ENOMEM
The address range specified by address and length is not all valid memory.

Page 393

Notes

mlock and munlock are separate from mlockall and munlockall. mlock is provided if
_POSIX_MEMLOCK_RANGE is defined; mlockall is conditional on _POSIX_MEMLOCK.

Specification of addresses and lengths to be locked is a risky and non-portable business; you should use mlockall
whenever possible instead.

Memory locks are not inherited in children created by fork, and are also abandoned when exit or one of the exec
functions are called.

Memory locks do not stack: if mlock is called seven times, a single call to munlock will still unlock the memory.

Current UNIX Practice

SVR4:
munlock is provided in SVR4.

BSD:
No memory locking operations are specified in BSD UNIX (as of 4.3).

See Also

mlock (to lock a range of memory down)

mlockall, munlockall (to try and lock less than your entire address space)

fork (for the definition of memory locks across a fork)

exec (for the definition of memory locks across an exec)

exit (for the definition of memory locks upon an exit)

<limits.h> (PAGESIZE definition)

Page 394

munlockall

Name

munlockall—Unlock your entire address space.

Synopsis

#include <sys/mman.h>
int munlockall ();

Conditionality

#ifdef _POSIX_MEMLOCK

Description

munlockall unlocks all currently mapped memory for the calling process, and causes any future mappings to not be
locked into physical memory. After a call to munlockall, a process's memory may be paged or swapped. This does
not mean that the memory must be paged or swapped; the operating system is allowed to keep the memory locked
down if it wishes.

Memory locks do not stack: if mlockall or mlock are called ten times, a single call to munlockall will still unlock
the memory.

munlockall removes locks made by either mlockall or mlock.

Return Values

munlockall always succeeds, unless the operating system does not support _POSIX_MEMLOCK.

Errors

There are no error returns for munlockall, other than the possible ENOSYS if _POSIX_MEMLOCK is not
specified.

Notes

Memory locks are not inherited by children created by fork, and are also abandoned when exit or one of the exec
functions are called.

Page 395

Current UNIX Practice

SVR4:
munlockall is provided in SVR4.

BSD:
No memory locking operations are specified in BSD UNIX (as of 4.3).

See Also

mlockall (to lock your memory down)

mlock, munlock (to try and lock less than your entire address space)

fork (for the definition of memory locks across a fork)

exec (for the definition of memory locks across an exec)

exit (for the definition of memory locks upon an exit)

Page 396

munmap

Name

munmap — Undo a mapping established by mmap.

Synopsis

#include <sys/mman.h>
int munmap(void *addr, size_t length);

Conditionality

#if defined(_POSIX_SHARED_MEMORY_OBJECTS) \
 || defined(_POSIX_MAPPED_FILES)

Description

This function removes a mapping established by mmap. The region starting at addr, for length bytes, is unmapped.
The unmapping is done in units of PAGESIZE, to include the area specified. Some systems may require you to pass
in an addr that is an integral multiple of PAGESIZE.

If the mapping was of the MAP_PRIVATE sort, it disappears entirely. MAP_SHARED mappings, on the other
hand, are reflected in the underlying object.

If the memory region was locked (by mlock or mlockall), such locks are removed. You'd expect this, since there's
no longer anything to be locked.

You can only munmap an area you mapped using mmap.

Notes

Shared memory is persistent so long as the system remains up. You can create and map a shared memory region,
store data, close and unmap the region, go away, then come back and find the same data you stored. Persistence is
more likely to be a problem than a feature; be careful.

For maximal portability, use addresses and offsets that are integral multiples of PAGESIZE. You can find
PAGESIZE in <limits.h> or by using sysconf(_SC_PAGESIZE).

The standard dictates that further references to an unmapped area result in SIGSEGV being delivered to the
offending process. This specification is fine on a machine with an MMU, but cannot be implemented on MMU-less
(read ''embedded") machines. I would not rely on this particular semantic, since embedded systems are going to
support POSIX even if the underlying hardware can't quite meet the dictates of the standard in all respects.

Page 397

Return Values

munmap returns 0 if it successfully performed the unmapping, and -1 if it could not. If a mapping is successfully
unmapped, then subsequent references to the unmapped area will result in the SIGSEGV signal being delivered to
the process (but see caveat above).

Errors

If munmap returns -1, it sets errno to the following value:

EINVAL
The specified address range was wrong, somehow. Either addr was not a multiple of PAGESIZE, or the specified
region was outside the address space of the process.

Note that there is no error defined for the case where you attempt to munmap a region that was not mapped using
mmap. The effects of such an action are not defined by POSIX.

Current UNIX Practice

munmap is part of System V release 4.

See Also

mmap (to establish a mapping)

shm_open (to open a shared memory object)

close (to finish using a file or shared memory object descriptor)

ftruncate (to set the size of a shared memory object)

Page 398

nanosleep

Name

nanosleep—Pause execution for a number of nanoseconds.

Synopsis

#include <time.h>
int nanosleep(const struct timespec *requested_time,
 struct timespec *remaining);

Conditionality

#ifdef _POSIX_TIMERS

Description

nanosleep is a higher-resolution version of the sleep call that is available in standard UNIX and POSIX.1 systems.
nanosleep causes the calling process to block for the amount of time indicated by requested_time. Since the struct
timespec measures time down to the nanosecond, much finer intervals may be passed to nanosleep than to sleep
(which takes a number of seconds).

Since few if any systems actually support nanosecond timings, the value passed to requested_time may be rounded
up to the resolution of the system clock. A usual clock resolution on many systems is 100 Hz, or 10,000,000
nanoseconds. Because of this rounding, nanosleep may cause a process to sleep a bit longer than requested. The
operating system is not allowed to round the nanosleep interval down, so the calling process will always sleep for at
least the requested amount of time, assuming no signals arrive (see below).

nanosleep, like sleep, is interruptible by the delivery of signals to the process. If a signal arrives at the process, and
it is not blocked or ignored, then the process will handle the signal, and then return from nanosleep prematurely. In
this case, nanosleep will return -1. with errno set to EINTR, and the time remaining to be slept will be stored in the
result parameter remaining.

Return Values

nanosleep returns 0 when the process sleeps the entire interval without being interrupted by a signal. If nanosleep
fails, the call returns -1 and sets errno to indicate the error.

Page 399

Errors

If nanosleep fails, it returns -1 and sets errno to one of the following:

EINVAL
A nanosecond value greater than or equal to 1,000,000,000, or less than 0. Nanoseconds are supposed to indicate a
fraction of a second.

EINTR
A signal interrupted the sleeping process.

Notes

Sleep is often implemented using interval timers and SIGALRM; thus, if you mix interval timers and sleep, you are
taking a chance that something will break. Not so nanosleep. nanosleep is defined to not alter the status or action of
any signal.

Be careful when coding nanosleep calls: it takes struct timespec, not struct timeval.

Current UNIX Practice

Standard UNIX supports sleep, but not nanosleep.

See Also

sleep (POSIX.1/UNIX coarsely-timed pause)

sigaction (how to handle a signal)

Page 400

pathconf, fpathconf

Name

pathconf, fpathconf—Query filename-variable system options at run-time.

Synopsis

#include <unistd.h>

long pathconf(char *pathname, int option);
long fpathconf(int fd, int option);

Conditionality

Unconditional.

Description

The pathconf and fpathconf functions allow your application to determine information about the run-time system
under which the application is running. Unlike sysconf, these functions query system options that may vary on a
per-file or per-pathname basis. Hence, these functions take a pathname (pathconf) or an already-opened file
descriptor fd (fpathconf), and return to you the value of the named option for that file. This is to support the ability
to reconfigure operating systems with or without various POSIX options, and with differently-sized data structures.

The option argument to pathconf and fpathconf indicates a POSIX option or limit you wish to query. The following
table shows available options from POSIX.1 and POSIX.4:

pathconf Option Name System Value Returned Standard

_PC_CHOWN_RESTRICTED _POSIX_CHOWN_RESTRICTED (binary) POSIX.1

_PC_NO_TRUNC _POSIX_NO_TRUNC (binary) POSIX.1

_PC_VDISABLE _POSIX_VDISABLE POSIX.1

_PC_LINK_MAX LINK_MAX POSIX.1

_PC_MAX_CANON MAX_CANON POSIX.1

_PC_MAX_INPUT MAX_INPUT POSIX.1

_PC_NAME_MAX NAME_MAX POSIX.1

_PC_PATH_MAX PATH_MAX POSIX.1

_PC_PIPE_BUF PIPE_BUF POSIX.1

_PC_ASYNC_IO _POSIX_ASYNC_IO (binary) POSIX.4

_PC_PRIO_IO _POSIX_PRIO_IO (binary) POSIX.4

_PC_SYNC_IO _POSIX_SYNC_IO (binary) POSIX.4

Page 401

Return Values

pathconf and fpathconf return the value of the given option or limit for the named file on the currently running
system. Some systems do not support particular limits for these facilities. In this case, these functions will return -1
without setting errno. Therefore, you should initialize errno before calling pathconf or fpathconf if it is possible
that an option may have an indeterminate limit.

Note

The pathconf and fpathconf functions return -1 without setting errno for a different reason than sysconf If an option
is not supported for a given file, these functions will set errno to EINVAL. If the option is not supported anywhere
on the system, you can probably determine that information by an appropriate call to ssysconf. Be careful when
programming using these three functions!

Errors

pathconf and fpathconf return -1 when an option is supported with no explicit limit. In this case they will not set
errno. If they fail for another reason, they will return -1 and set errno as follows:

EINVAL
The option number you passed was not a reasonable option number, or the named option is not supported for the
given file or pathname.

EACCES
Permission denied in looking up the given pathname (pathconf only).

ENAMETOOLONG
Either the overall pathname length exceeded PATH_MAX, or a component of the pathname exceeded
NAME_MAX and the _POSIX_NO_TRUNC option is in effect (pathconf only).

ENOENT
Either the named pathname is a non-existent file, or you passed in an empty string (pathconf only).

ENOTDIR
A component of pathname (other than the final component) was not a directory (pathconf only).

EBADF
The fd you passed was not a valid file descriptor (fpathconf only).

Page 402

Current UNIX Practice

These functions are new for POSIX.

See Also

sysconf (overall run-time system configuration)

<unistd.h>

<limits.h> (limit and option definitions)

Page 403

pipe

Name

pipe — Create a pipe for interprocess communication.

Synopsis

int pipe(int pipe_ends [2]);

Conditionality

Unconditional.

Description

pipe creates a special sort of file known as a pipe. A pipe is used to communicate between processes. It has two
ends: a read end and a write end. Data you write into the write end can be read from the read end. Data flows
through a pipe in FIFO order—first data written in is the first data to be read out.

The pipe is accessed as a file, using write and read. The pipe call returns two file descriptors in the parameter
pipe_ends. pipe_ends[0] is the file descriptor from which you read. pipe_ends[l] is the file descriptor to which you
write.

The call to pipe creates a new pipe. This pipe is not visible to calls like open and unlink; the pipe file descriptors
are only available to processes which are created by this process as it forks and execs. (You can also create pipes
that are visible in the file system namespace by using the mkfifo function.)

Notes

Pipes are created with neither O_NONBLOCK nor FD_CLOEXEC set for the file descriptors. Thus, the default
pipe performs blocking reads and writes, and will not be closed if the process calls one of the exec functions. You
can change this behavior using fcntl.

Multiple writers to a pipe generally write in atomic chunks, without having to worry about their data being
interleaved with one another. However, if a process writes a particularly large amount of data to a pipe, this
guarantee may break down. The constant PIPE_BUF, defined in <limits.h>, is the largest amount of data you can
write to a pipe without having to worry about your writes being interleaved with other writes to the pipe.
PIPE_BUF is at least 512 on all POSIX systems.

Page 404

If PIPE_BUF is not present in <limits.h>, it's because the system limit varies depending on the file you apply it to.
In that case, you can use pathconf(fd,_PC_PIPE_BUF) to determine the limit for that particular pipe.

Return Values

pipe returns 0, initializing pipe_ends with the two file descriptors for the read and write ends of the pipe. If pipe
fails, then no pipe is created, and pipe returns -1.

Errors

If pipe returns -1, it sets errno to one of the following values:

EMFILE
The calling process is already using more than OPEN_MAX - 2 file descriptors.

ENFILE
The system has run out of system resources to support more open files. Note that this error is a system error, while
EMFILE is more of a process-limit error.

Current UNIX Practice

pipe is standard in all UNIX systems.

See Also

fork (creates other processes that can access the pipe)

exec (often performed after fork)

<limits.h> (for definitions of PIPE_BUF and OPEN_MAX)

pathconf(in case PIPE_BUF is not defined)

read, write (to use the pipe)

mkfifo (to make a named pipe)

Page 405

sched_get_priority_max

Name

sched_get_priority_max—Get maximum priority value for a scheduler.

Synopsis

#include <sched.h>
int sched_get_priority_max(int alg);

Conditionality

#ifdef _POSIX_PRIORITY_SCHEDULING

Description

sched_get_priority_max returns the maximum priority value of the scheduling algorithm identified by alg. alg
should be one of the SCHED_ constants defined in <sched.h>.

Processes with numerically higher priority values are scheduled before processes with lower priority. Thus, the
maximum value returned by this function will be greater than the maximum value returned by
sched_get_priority_min. For SCHED_FIFO and SCHED_RR, there is required to be a spread of at least 32 between
minimum and maximum priority.

Scheduling priority ranges for the various algorithms are not alterable by an application. Generally, they are not
alterable at all.

Return Values

sched_get_priority_max returns the maximum priority value for the named scheduler. If it encounters an error, it
returns -1.

Errors

If sched_get_priority_max returns -1, it sets errno to the following value:

EINVAL
alg does not name a defined scheduling algorithm.

Notes

Since the range of scheduling priorities varies from system to system, applications should refrain from calling the
POSIX.4 scheduling algorithms with straight priority numbers. Rather, a virtual priority range should be used; then
it should be shifted

Page 406

appropriately based on the values returned from sched_get_priority_min and sched_get_priority_max.

Current UNIX Practice

SVR4:
None. SVR4 uses priocntl, a different mechanism for controlling scheduling parameters which has roughly the
same functionality as the POSIX.4 mechanisms.

BSD:
No priority scheduling operations are specified in BSD UNIX (as of 4.3).

See Also

sched_get_priority_min (sibling function)

sched_setscheduler

sched_getscheduler

sched_setparam

sched_getparam

fork (for the definition of scheduling across a fork)

exec (for the definition of scheduling across an exec)

Page 407

sched_get_priority_min

Name

sched_get_priority_min — Get minimum priority value for a scheduler.

Synopsis

#include <sched.h>
int sched_get_priority_min(int alg);

Conditionality

#ifdef _POSIX_PRIORITY_SCHEDULING

Description

sched_get_priority_min returns the minimum priority value of the scheduling algorithm identified by alg. alg
should be one of the SCHED_ constants defined in <sched.h>.

Processes with numerically higher priority values are scheduled before processes with lower priority. Thus, the
minimum value returned by this function will be less than the maximum value returned by sched_get_priority_max.
For SCHED_FIFO and SCHED_RR, there is required to be a spread of at least 32 between minimum and
maximum priority.

Scheduling priority ranges for the various algorithms are not alterable by an application. Generally, they are not
alterable at all.

Return Values

sched_get_priority_min returns the minimum priority value for the named scheduler. If it encounters an error, it
returns -1.

Errors

If sched_get_priority_min returns -1, it sets errno to the following value:

EINVAL
alg does not name a defined scheduling algorithm.

Notes

Since the range of scheduling priorities varies from system to system, applications should refrain from calling the
POSIX.4 scheduling algorithms with straight priority numbers. Rather, a virtual priority range should be used; then
it should be shifted

Page 408

appropriately based on the values returned from sched_get_priority_min and sched_get_priority_max.

Current UNIX Practice

SVR4:
None. SVR4 uses priocntl, a different mechanism for controlling scheduling parameters which has roughly the
same functionality as the POSIX.4 mechanisms.

BSD:
No priority scheduling operations are specified in BSD UNIX (as of 4.3).

See Also

sched_get_priority_max (sibling function)

sched_setscheduler

sched_getscheduler

sched_setparam

sched_getparam

fork (for the definition of scheduling across a fork)

exec (for the definition of scheduling across an exec)

Page 409

sched_getparam

Name

sched_getparam—Retrieve scheduling parameters for a particular process.

Synopsis

#include <sched.h>
int sched_getparam(pid_t pid, struct sched_param *p);

Conditionality

#ifdef _POSIX_PRIORITY_SCHEDULING

Description

sched_getparam retrieves the scheduling parameters for the process, identified by pid, into the structure referenced
by p. Depending on the scheduling policy under which the process is running, different members of p will be set.
Currently-defined scheduling policies use the following members:

SCHED_FIFO
sched_priority

SCHED_RR
sched_priority

SCHED_OTHER
<implementation-defined>

If the process ID given is 0, then the call to sched_getparam is applied to the calling process.

An implementation may require that a process have special privileges to get the scheduling parameters of various
processes. The implementation must define the privileges required in its POSIX.4 conformance document.

Return Values

sched_getparam returns successfully if it was able to retrieve the scheduling parameters of the named process into
p. Upon success, sched_getparam returns 0. Otherwise, it returns -1 and sets errno accordingly.

Errors

If sched_getparam returns -1, it sets errno to one of the following values:

ESRCH
The process whose ID is pid could not be found.

Page 410

EPERM
The caller does not have the appropriate privilege to set the process's scheduling parameters to those specified by p.

Current UNIX Practice

SVR4:
None. SVR4 uses priocntl, a different mechanism for controlling scheduling parameters which has roughly the
same functionality as the POSIX.4 mechanisms.

BSD:
No priority scheduling operations are specified in BSD UNIX (as of 4.3).

See Also

sched_setscheduler, sched_getscheduler, sched_setparam (sibling functions)

fork (for the definition of scheduling across a fork)

exec (for the definition of scheduling across an exec)

Page 411

sched_getscheduler

Name

sched_getscheduler—Retrieve scheduling algorithm for a particular purpose.

Synopsis

#include <sched.h>
int sched_getscheduler(pid_t pid);

Conditionality

#ifdef _POSIX_PRIORITY_SCHEDULING

Description

sched_getscheduler retrieves the identifier for the scheduling policy under which the process pid is running. If pid
is zero, then the scheduler of the calling process is returned. Negative values of pid should not be used, as their
effect is not specified by POSIX.4.

The defined schedulers which may be returned under POSIX.4 are SCHED_FIFO, SCHED_RR, and
SCHED_OTHER. Each of these constants must have a unique value. A particular system may provide additional
schedulers, but if it does, it has to identify in its conformance statement what the effects of the additional
algorithms are, and how you can compile an application without getting these extensions.

Return Values

sched_getscheduler returns successfully if it was able to find out the scheduling policy of the named process. In
that case, it returns the identifier for that scheduling algorithm. Otherwise, sched_getscheduler will return -1.

Errors

If sched_getscheduler returns -1, it sets errno to one of the following values:

ESRCH
The process whose ID is pid could not be found.

EPERM
The caller does not have the appropriate privilege to set the process's scheduling policy and parameters to those
specified by p.

Page 412

Notes

An implementation may require that a process have special privileges to inquire as to the scheduling policies of
various processes. The implementation must define the privileges required in its POSIX.4 conformance document.

Current UNIX Practice

SVR4:
None. SVR4 uses priocntl, a different mechanism for controlling scheduling parameters which has roughly the
same functionality as the POSIX.4 mechanisms.

BSD:
No priority scheduling operations are specified in BSD UNIX (as of 4.3).

See Also

sched_setscheduler. sched_setparam, sched_getparam (sibling functions)

sched_get_priority_min

sched_get_priority_max (to determine the maxima and minima for a given scheduling algorithm)

sched_rr_get_interval (to determine the quantum under which processes run, when using the SCHED_RR policy)

fork (for the definition of scheduling across a fork)

exec (for the definition of scheduling across an exec)

Page 413

sched_rr_get_interval

Name

sched_rr_get_interval—Get the SCHED_RR interval for the named process.

Synopsis

#include <sched.h>
int sched_rr_get_interval(pid_t pid, struct timespec *t);

Conditionality

#ifdef _POSIX_PRIORITY_SCHEDULING

Description

sched_rr_get_interval fills in the structure referenced by t with the time quantum for the process identified by pid.
If pid is 0, the time quantum for the calling process is set in t. The process should be running under the SCHED_RR
scheduler.

The time quantum value is not alterable under POSIX.4. This function returns information about the
implementation under which the process is running. sched_rr_get_interval fills in t with the quantum for the named
process and returns 0 upon success. If it encounters an error, it returns -1.

Errors

If sched_rr_get_interval returns -1, it sets errno to the following value:

ESRCH
The process identified by pid could not be found.

Notes

It is not currently stated whether the process identified by pid must be currently running under the SCHED_RR
scheduler. Just to be sure, you had best assure that the process identified by pid is, in fact, running under
SCHED_RR.

Current UNIX Practice

SVR4:
None. SVR4 uses priocntl, a different mechanism for controlling scheduling parameters which has roughly the
same functionality as the POSIX.4 mechanisms.

BSD:
No priority scheduling operations are specified in BSD UNIX (as of 4.3).

Page 414

See Also

sched_get_priority_min, sched_get_priority_max (sibling functions)

sched_setscheduler

sched_getscheduler

sched_setparam

sched_getparam

Page 415

sched_setparam

Name

sched_setparam — Set scheduling parameters for a process.

Synopsis

#include <sched.h>
int sched_setparam(pid_t pid, const struct sched_param *p);

Conditionality

#ifdef _POSIX_PRIORITY_SCHEDULING

Description

sched_setparam sets the scheduling parameters for the process, identified by pid, to those parameters specified in p.
Depending on the scheduling policy under which the process is running, different members of p may be used.
Currently-defined scheduling policies use the members as defined below.

SCHED_FIFO
sched_priority

SCHED_RR
sched_priority

SCHED_OTHER
<implementation-defined>

If the process ID given is 0, then the call to sched_setparam is applied to the calling process.

An implementation may require that a process have special privileges to set the scheduling parameters of various
processes in different ways. The implementation must define the privileges required in its POSIX.4 conformance
document.

Depending on the scheduling policy under which the process is running, the members of p will also be checked for
validity vis-a-vis that particular scheduling policy. Under both SCHED_FIFO and SCHED_RR, the scheduling
priority must lie within the range of values given by sched_get_priority_min and sched_get_priority_max for that
scheduling algorithm. Processes with numerically higher scheduling priorities are scheduled before processes with
lower priority.

Return Values

sched_setparam returns successfully if it was able to set the scheduling parameters of the named process to the
values indicated in p. Upon success, sched_setparam returns 0. Otherwise, it returns -1 and sets errno accordingly.

Page 416

Errors

If sched_setparam returns -1, it sets errno to one of the following values:

EINVAL
The scheduling parameters specified in p do not make sense for the scheduling policy under which the process is
running.

ESRCH
The process whose ID is pid could not be found.

EPERM
The caller does not have the appropriate privilege to set the process's scheduling parameters to those specified by p.

Notes

The POSIX.4-defined schedulers, SCHED_FIFO and SCHED_RR, both specify that a call to either
sched_setscheduler or sched_setparam will result in the specified process being moved to the end of the queue for
its priority level, even if there is no actual change in scheduling parameters.

Current UNIX Practice

SVR4:
None. SVR4 uses priocntl, a different mechanism for controlling scheduling parameters which has roughly the
same functionality as the POSIX.4 mechanisms.

BSD:
No priority scheduling operations are specified in BSD UNIX (as of 4.3).

See Also

sched_setscheduler, sched_getscheduler, sched_getparam (sibling functions)

sched_get_priority_min, sched_get_priority_max (to determine the maxima and minima for a given scheduling
algorithm)

fork (for the definition of scheduling across a fork)

exec (for the definition of scheduling across an exec)

Page 417

sched_setscheduler

Name

sched_setscheduler—Set scheduling algorithm/parameters for a process.

Synopsis

#include <sched.h>
int sched_setscheduler(pid_t pid, int policy,
 const struct sched_param *p);

Conditionality

#ifdef _POSIX_PRIORITY_SCHEDULING

Description

sched_setscheduler sets both the scheduling policy and the associated parameters for the process identified by pid.
Depending on the scheduling policy (policy) which is set for the process, different members of p are used.
Currently-defined scheduling policies use the members as defined in the table below.

SCHED_FIFO sched_priority

SCHED_RR sched_priority

SCHED_OTHER <implementation-defined>

If the process ID given is 0, then the call to sched_setscheduler is applied to the calling process.

An implementation may require that a process have special privileges to set the scheduling policy and parameters
of various processes in different ways. The implementation must define the privileges required in its POSIX.4
conformance document.

Depending on the scheduling policy specified in the call to sched_setscheduler, the members of p will also be
checked for validity vis-a-vis that particular scheduling policy. Under both SCHED_FIFO and SCHED_RR, the
scheduling priority must lie within the range of values given by sched_get_priority_min and
sched_get_priority_max for that scheduling algorithm. Processes with numerically higher scheduling priorities are
scheduled before processes with lower priority.

Return Values

sched_setscheduler returns successfully if it was able to set the scheduling policy of the named process to policy,
and to set the scheduling parameters of the named process

Page 418

to the values indicated in p. Upon success, sched_setscheduler returns 0. Otherwise, it returns -1 and sets errno
accordingly.

Errors

If sched_setscheduler returns -1, it sets errno to one of the following values:

EINVAL
The scheduling policy, policy, is not one of the recognized scheduling policies of POSIX.4, or the parameters
specified in p do not make sense for that scheduling policy.

ESRCH
The process whose ID is pid could not be found.

EPERM
The caller does not have the appropriate privilege to set the process's scheduling policy and parameters to those
specified by p.

Notes

The currently-specified scheduling policies, SCHED_FIFO and SCHED_RR, are both preemptive. This means that
if a process changes the policy/priority of another process to be higher than its own priority, the calling process had
better be prepared to be immediately preempted before even returning from the call to sched_setscheduler.

SCHED_FIFO and SCHED_RR both specify that a call to either sched_setscheduler or sched_setparam will result
in the specified process being moved to the end of the queue for its priority level, even if there is no actual change
in scheduling parameters.

Current UNIX Practice

SVR4:
None. SVR4 uses priocntl, a different mechanism for controlling scheduling parameters which has roughly the
same functionality as the POSIX.4 mechanisms.

BSD:
No priority scheduling operations are specified in BSD UNIX (as of 4.3).

See Also

sched_getscheduler, sched_setparam, sched_getparam (siblings)

sched_get_priority_min, sched_get_priority_max (to determine the maxima and minima for a given scheduling
algorithm)

sched_rr_get_interval (to determine the quantum under which processes run, when using the SCHED_RR policy)

Page 419

fork (for the definition of scheduling across a fork)

exec (for the definition of scheduling across an exec)

Page 420

sched_yield

Name

sched_yield — Yield the processor.

Synopsis

#include <sched.h>
int sched_yield();

Conditionality

#ifdef _POSIX_PRIORITY_SCHEDULING

Description

sched_yield, when called, causes the calling process to give up its processor, and move to the back of the queue for
its priority. A scheduling decision is then made and a new process gets to run. Note that if the calling process is the
single, highest priority runnable process in the system at that time, then that process will get to keep on running.

The effect of sched_yield is simple for the defined schedulers of POSIX.4, SCHED_FIFO and SCHED_RR. In the
case of SCHED_OTHER and additional, implementation-defined schedulers, the operating system's conformance
statement must say what effect sched_yield has.

Return Values

sched_yield can only fail if it's not supported: i.e., if _POSIX_PRIORITY_SCHEDULING is not defined. On
successful return, sched_yield returns 0; when it fails it returns -1 and sets errno. In the case of SCHED_OTHER or
new, implementation-defined schedulers, it is theoretically possible that sched_yield may fail for some reason or
another. Again, the conformance document will describe under what conditions sched_yield may fail.

Current UNIX Practice

SVR4:
None. SVR4 uses priocntl, a different mechanism for controlling scheduling parameters which has roughly the
same functionality as the POSIX.4 mechanisms. By setting a process's RT-class scheduling parameters to be the
same as they were before the call (no change), a scheduling decision can be forced, to imitate the effect of
sched_yield.

Page 421

BSD:
No priority scheduling operations are specified in BSD UNIX (as of 4.3).

See Also

sched_getscheduler, sched_setscheduler, sched_getparam, sched_setparam (sibling functions)

Page 422

sem_close

Name

sem_close—Terminate access to a POSIX.4 named semaphore.

Synopsis

#include <mqueue.h>
int sem_close(sem_t *sem);

Conditionality

#ifdef _POSIX_SEMAPHORES

Description

Use sem_close to sever the connection to a named semaphore which you made with sem_open. Only named
semaphores should be closed with sem_close. Unnamed semaphores are destroyed using sem_destroy.

Named semaphores are persistent; that is, the state of a semaphore persists even if no one has the semaphore open.

A semaphore only ceases to exist when either the system goes down (and all bets are off in that case), or until the
semaphore is removed with sem_unlink. Once a semaphore has been removed with sem_unlink, and all processes
that have the semaphore open close it, then all traces of the semaphore disappear. Until that time, though, processes
that have the semaphore open may continue to use it—even though other processes can no longer access the
''removed" semaphore.

Notes

Named semaphores do not reside in the file system namespace. The name must obey construction rules as for a
normal file pathname, but the named semaphore may or may not actually appear in the file system namespace. That
is, when you do an ls, named semaphores may or may not appear. Therefore, your application must be careful to
clean up its semaphores, since there is no (POSIX-standard) equivalent of the rm command for semaphores.

Return Values

sem_close returns 0 if the named semaphore is successfully closed. After such time, the process will no longer be
able to access the semaphore through that descriptor. If sem_close fails, then it returns -1.

Page 423

Errors

If sem_close returns -1, it sets errno to the following value:

EINVAL
The descriptor passed does not describe an open semaphore.

Current UNIX Practice

POSIX semaphores are brand new to POSIX.4.

See Also

sem_open (to begin using a message queue)

close (similarities to this call)

sem_wait, sem_trywait (wait and nonblocking wait on a semaphore)

sem_post (signal a semaphore)

Page 424

sem_destroy

Name

sem_destroy — Deinitialize a POSIX.4 unnamed semaphore.

Synopsis

#include <semaphore.h>
int sem_destroy(sem_t *sem_location);

Conditionality

#ifdef _POSIX_SEMAPHORES

Description

sem_destroy deinitializes an unnamed semaphore in the location pointed to by sem_location. The semaphore, it is
assumed, was previously initialized by sem_init. Unnamed semaphores are usable until they are sem_destroyed, or
until the memory in which the semaphore resides is deallocated by the system.

Notes

Unnamed semaphores are a parallel to named semaphores. Both types of semaphores are used with the sem_wait,
sem_trywait, and sem_post calls. However, they are created and destroyed in totally separate ways. Named
semaphores are accessed by their name, through the sem_open call, and closed with sem_close. Names are removed
using sem_unlink. Unnamed semaphores, in contrast, are simply initialized (with this function), and destroyed by
sem_destroy (or implicitly when the memory containing the semaphore is deallocated). Do not try and mix use of
the interfaces on a single semaphore. In particular, don't sem_close an unnamed semaphore, and don't sem_destroy
a named semaphore.

A semaphore need only be deinitialized once. Only one of your cooperating processes needs to call this routine;
alternatively, you can simply unmap, close, and unlink the shared memory area in which the semaphore is
presumed to reside (unnamed semaphores in non-shared memory are not very useful between multiple processes,
although they are useful if you have multiple threads).

Shared memory, and therefore unnamed semaphores, are persistent so long as the system remains up. That means
you can create a shared memory area, put an unnamed semaphore in it, signal it a few times, close and unmap the
shared memory area, go away for a few days, then come back and the semaphore would have the same value as
when you left it. You may be able to use this persistence to your advantage, if you are careful. However, watch out
for persistence in the case where the system may go

Page 425

down. A careful application should always include a startup phase where the status and general sanity of all
required objects, including shared memory and unnamed semaphores, is assured.

The EBUSY error value may not be detected on all systems. You shold not count on it being returned. A better
approach is to be sure that your processes are done with the semaphore by some other means before you destroy the
semaphore.

Return Values

sem_destroy returns 0 and destroys the semaphore. If sem_destroy fails, then it returns -1 and the semaphore is not
destroyed.

Errors

If sem_destroy returns -1, it sets errno to one of the following values:

EINVAL
The location passed does not correspond to a valid unnamed semaphore.

EBUSY
The system has detected that there are processes currently using the semaphore. This error may or may not be
detected by the system. Don't count on it.

Current UNIX Practice

POSIX semaphores are brand new to POSIX.4.

See Also

sem_init (to initialize an unnamed semaphore)

sem_open, sem_close, sem_unlink (parallel interface to named semaphores)

sem_wait (to wait on a semaphore)

sem_trywait (to not wait on a semaphore)

sem_post (to signal a semaphore)

shm_open, mmap (to open and map a shared memory area)

Page 426

sem_getvalue

Name

sem_getvalue—Get the value of a POSIX.4 semaphore (named or unnamed).

Synopsis

#include <semaphore.h>
int sem_getvalue(sem_t *sem, int *value);

Conditionality

#ifdef _POSIX_SEMAPHORES

Description

sem_getvalue takes a snapshot of the value of the semaphore referenced by sem, and stores it in the location
referenced by value. Obviously, this value is subject to change, and represents a value the semaphore had at one
point during the call to sem_getvalue. This function is provided for use in debugging semaphore code.

Notes

Positive semaphore values indicate an unlocked semaphore, and zero indicates a locked semaphore. Some, not all,
implementations will also return a negative value. In these implementations, the absolute value of a negative
semaphore value indicates the number of blocked processes. In other implementations, the semaphore value may
simply go to zero and then stay there until all blocked processes are unblocked. Both implementations have their
merits.

Return Values

sem_getvalue returns 0 and stores the semaphore value in value. If it fails, it returns -1.

Errors

If this function returns -1, it sets errno to the following value:

EINVAL
The location passed does not correspond to a valid semaphore.

Current UNIX Practice

POSIX semaphores are brand new to POSIX.4.

Page 427

See Also

sem_init, sem_destroy (interface to unnamed semaphores)

sem_open, sem_close, sem_unlink (parallel interface to named semaphores)

sem_wait (to wait on a semaphore)

sem_trywait (to not wait on a semaphore)

sem_post (to signal a semaphore)

Page 428

sem_init

Name

sem_init — Initialize a POSIX.4 unnamed semaphore.

Synopsis

#include <semaphore.h>
int sem_init(sem_t *sem_location, int pshared,
 unsigned int value);

Conditionality

#ifdef _POSIX_SEMAPHORES

Description

sem_init initializes an unnamed semaphore in the location pointed to by sem_location. Any process that can access
that location will be able to use the resulting semaphore in calls to sem_wait, sem_trywait, and sem_post by passing
the appropriate pointer. The assumption is that such a semaphore will be placed in an area of shared memory in
order to be used. The semaphore will be usable until either it is destroyed with sem_destroy, or the memory in
which the semaphore resides is deallocated by the system.

The pshared argument describes whether the semaphore is to be usable between multiple processes, or merely
within the calling process. Unless you have a system with threads, you will always set this parameter to 1. If you
set pshared to 0, then multiple processes may not be able to use the resulting semaphore, even if it is located in a
shared memory area. (The pshared attribute is there because it will be used when POSIX threads (pthreads) are
finalized.)

The semaphore is initialized with an initial value given by value. The initial value cannot be negative. Negative
values indicate a locked semaphore with processes blocked on the semaphore. This is not possible for a newly-
created semaphore.

Notes

Unnamed semaphores are a parallel to named semaphores. Both types of semaphores are used with the sem_wait,
sem_trywait, and sem_post calls. However, they are created and destroyed in totally separate ways. Named
semaphores are accessed by their name, through the sem_open call, and closed with sem_close. Names are removed
using sem_unlink. Unnamed semaphores, in contrast, are simply initialized (with this function), and destroyed by
sem_destroy (or implicitly when the memory containing the semaphore is deallocated). Do not try and mix use of
the interfaces on a single

Page 429

semaphore. In particular, don't sem_close an unnamed semaphore, and don't sem_destroy a named semaphore.

A semaphore need only be initialized once. Be careful that only one of your cooperating processes initializes the
semaphore, and be especially careful that the semaphore is not initialized while it is in use.

The unnamed semaphore is linked to its memory location in an operating system dependent (read, "magical and
mysterious") way. You cannot take a copy of the created semaphore and use it as a semaphore.

Shared memory, and therefore unnamed semaphores, are persistent so long as the system remains up. That means
you can create a shared memory area, put an unnamed semaphore in it, signal it a few times, close and unmap the
shared memory area, go away for a few days, then come back and the semaphore would have the same value as
when you left it. Persistence is more likely to be a problem than a feature; be careful.

Return Values

sem_init returns 0 and initializes the semaphore in the location passed in sem_location. If sem_init fails, then it
returns -1 and the semaphore is not initialized.

Errors

If sem_init returns -1, it sets errno to one of the following values:

EPERM
The process does not have permission to initialize the semaphore. Maybe the shared memory in which the
semaphore resides was mapped in read-only mode.

EINVAL
The initial value you specified is greater than SEM_VALUE_MAX.

ENOSPC
The system has run out of system resources to support more semaphores. Alternatively, the process has reached the
limit on the number of semaphores it may have open (SEM_NSEMS_MAX). Note that this error is both a system
error and a process-limit error.

Current UNIX Practice

POSIX semaphores are brand new to POSIX.4.

Page 430

See Also

sem_destroy (to deinitialize an unnamed semaphore)

sem_open, sem_close, sem_unlink (parallel interface to named semaphores)

sem_wait (to wait on a semaphore)

sem_trywait (to not wait on a semaphore)

sem_post (to signal a semaphore)

shm_open, mmap (to open and map a shared memory area)

Page 431

sem_open

Name

sem_open — Create/access a POSIX.4 named semaphore.

Synopsis

#include <semaphore.h>
sem_t * sem_open(char *sem_name, int oflags,
 mode_t mode, unsigned int value);

Conditionality

#ifdef _POSIX_SEMAPHORES

Description

sem_open is used to create or open a named semaphore. The function call is modeled on open, and the
interpretation of oflags and mode are especially reminiscent of open. Significant differences emerge in the sort of
object returned—it's a pointer to a semaphore, not a file—and in the interpretation of the arguments.

Name Resolution

First, the semaphore name. The name must obey construction rules as for a normal file pathname, but the
semaphore may or may not actually appear in the file system namespace. That is, when you do an Is, semaphores
may or may not appear. Therefore, your application must be careful to clean up its semaphores, since there is no
(POSIX-standard) equivalent of the rm command for them.

For maximum portability you must follow two more rules. First, the semaphore name must begin with a "/".
Relative names are interpreted differently by different systems. A portable application must use a fully-rooted
name, therefore, to achieve utmost portability of semaphore names.

Second, the name may not contain additional "/" characters. Again, different systems will interpret the name in
different ways, some treating it as a pathname and applying all the standard pathname semantics, and others
treating the name as a simple string.

Other Parameters

Unlike open, the oflags parameter to sem_open only relates to semaphore creation. It is not used in opening a
semaphore that already exists; you do not have to set O_RDONLY, O_RDWR, or O_WRONLY. In fact, the effect
of setting those flags is undefined, meaning you shouldn't do it. The reason for this is that semaphores are always

Page 432

used in the same way—you wait on them, you signal them—so there is no reason to signal your intentions through
the oflags parameter.

The oflags argument is used, however, if you want to create a named semaphore. The following two flags can be
set in oflags:

O_CREAT
This flag is set to indicate that this call to sem_open is to create the named semaphore, not just access a semaphore
that already exists. It is only in this case that the third and fourth arguments to sem_open are used. The semaphore
is created with a mode as specified in mode, just as for file creation. All three triplets of permissions are set for the
semaphore: read and write (wait/signal?) permission for creator, group, and others (but see following note).
Portable symbols for constructing a mode are found in <sys/stat.h>: S_IWUSR, S_IROTH and so forth. The uid
and gid of the semaphore are set to the effective IDs of the calling process.

Note that a hole in the standard exists. Since one does not specify O_RDONLY, O_WRONLY, or
O_RDWR on sem_open calls, it's not quite clear which permissions are checked when you try to sem_open
a semaphore. Is it read permission? Write permission? Execute permission? The standard does not say. This
is an annoyance, but you can easily deal with it by specifying all permissions for user, or group, or others,
depending on who you want to be able to access the semaphore. You can specify S_IRWXG for group
access, S_IRWXO for other's access, and S_IRWXU for your own access.

The initial value of the created semaphore is set from the value argument. Since the value is an unsigned
quantity, you cannot specify a negative value. Positive values indicate an unlocked semaphore, and zero
indicates a locked semaphore with no waiters.

O_EXCL
This flag modifies the behavior of O_CREAT and is consulted only if O_CREAT is also set. If O_CREAT is set
and O_EXCL is not set, then sem_open will silently fail to create the semaphore, and instead just attach to the
existing semaphore. If both flags are set, though, and a semaphore already exists, then sem_open will return an
error. It is meaningless and undefined to set O_EXCL without O_CREAT. Don't do it.

Page 433

Notes

Do not mix named semaphore operations (sem_open, sem_close, sem_unlink) with unnamed semaphore operations
(sem_init, sem_destroy) on the same semaphore. Named and unnamed semaphores are two parallel methods for
creating and accessing semaphores. In particular, do not sem_destroy a named semaphore, and do not sem_close an
unnamed semaphore. Undefined (but probably bad) results will occur.

Semaphores are persistent so long as the system remains up. That means you can create a semaphore, signal it a few
times, close it, go away for a few days, then come back and the semaphore would have the same value as when you
left it. You may be able to use this persistence to your advantage, if you are careful. However, watch out for
persistence in the case where the system may go down. A careful application should always include a startup phase
where the status and general sanity of all required objects, including semaphores, is assured.

It is possible that vendors will implement named semaphores atop files. In this case, a set of file-like error returns,
documented below, are possible.

Return Values

sem_open returns a pointer to the created or accessed semaphore as its return value. This value is not a file
descriptor. Do not attempt file operations on a semaphore pointer. The effects will probably be disastrous. If
sem_open fails, then it returns (sem_t *)-1.
Errors

If sem_open returns (sem_t *) -1, it sets errno to one of the following values:

EACCES
Either the named semaphore exists and you do not have permission to access it, or you're trying to create a non-
existing semaphore and permission to do so is denied.

EEXIST
You specified O_CREAT and O_EXCL in oflags, and the semaphore already exists.

EINVAL
You passed in an inappropriate name, one which broke one or more of the rules given above. Each implementation
must describe the set of names it will accept for semaphores; you can use this documentation to determine exactly
what the problem was. Alternatively, you can stick to the rules quoted above.

You can also get EINVAL if you are creating the semaphore, and the

Page 434

initial value you specified is greater than SEM_VALUE_MAX.

ENOENT
The semaphore does not exist, and you did not specify O_CREAT.

EINTR
The call was interrupted by a signal. This is not likely to happen unless the call blocks waiting for some resource
which is in short supply.

EMFILE
The process is using too many files or semaphores. Note that in an implementation that supports semaphores atop
files, the limit applies to the total of open files and open semaphores.

ENFILE
The system has run out of system resources to support more open semaphores. Note that this error is a system error,
while EMFILE is more of a process-limit error.

ENAMETOOLONG
sem_name is too long, greater than PATH_MAX, or, if you used multiple /'' characters and the system supports
that, a component of the pathname exceeded NAME_MAX while _POSIX_NO_TRUNC is in effect.

Current UNIX Practice

POSIX semaphores are brand new to POSIX.4.

See Also

open (similarities to this call)

sem_close (to finish using a named semaphore)

sem_unlink (to remove a named semaphore from the system entirely)

sem_wait (to wait on a semaphore)

sem_trywait (to not wait on a semaphore)

sem_post (to signal a semaphore)

sem_init

sem_destroy (alternate unnamed interface to semaphores)

Page 435

sem_post

Name

sem_post—Post (signal) a POSIX.4 semaphore (named or unnamed).

Synopsis

#include <semaphore.h>
int sem_post(sem_t *sem);

Conditionality

#ifdef _POSIX_SEMAPHORES

Description

sem_post performs the semaphore unlock operation on the given semaphore. This is also called posting, or
signalling, the semaphore. If the semaphore value is positive, it is simply incremented. If the semaphore value is not
positive, then the semaphore is said to be locked and there may be processes blocked on the semaphore. If there are
such processes, then one is chosen and unblocked. If there are no such processes, then the semaphore value is just
incremented (to 1).

If there are blocked processes, they are blocked in an order dictated by their scheduling algorithms. In particular,
processes running under SCHED_FIFO or SCHED_RR are blocked in priority order, highest priority at the head of
the queue. Within a single priority, processes are queued First-In-First-Out.

Notes

There are no fancy errors defined for fringe conditions like deallocation of a semaphore while there are waiters, and
so forth. That's because such error detection might slow down the operation of semaphores. Semaphores must have
a fast implementation for optimum usability. The result is, this interface is a loaded weapon. Don't point it at
yourself.

Return Values

sem_post returns 0 if it successfully signals the semaphore. If it fails, then it returns -1 and the operation is not
performed. The unlock operation, when performed, is performed as a single, uninterruptible unit. You don't need to
worry about races between processes.

Page 436

Errors

If this function returns -1, it sets errno to the following value:

EINVAL
The location passed does not correspond to a valid semaphore.

Current UNIX Practice

POSIX semaphores are brand new to POSIX.4.

See Also

sem_init

sem_destroy (interface to unnamed semaphores)

sem_open

sem_close

sem_unlink (parallel interface to named semaphores)

sem_wait

sem_trywait (to lock a semaphore)

Page 437

sem_unlink

Name

sem_unlink—Destroy a POSIX.4 named semaphore.

Synopsis

#include <semaphore.h>
int sem_unlink(char *semname);

Conditionality

#ifdef _POSIX_SEMAPHORES

Description

sem_unlink destroys the named semaphore sem_name. The function call is modeled on unlink, and the way we
handle deletion of semaphores in use is similar to the way open files are unlinked. That is, those processes which
have the semaphore open will still be able to use it, but as soon as the last such process closes the semaphore (via
sem_close), all vestiges of the named semaphore will be removed from the system. Moreover, when the semaphore
is unlinked, processes will no longer be able to sem_open it.

Notes

Unnamed semaphores (those initialized with sem_init) are not unlinked, because there is no name to be removed
from a system. Unnamed semaphores are destroyed either by sem_destroy, or implicitly when the memory
containing the semaphores is deallocated.

Semaphores are persistent so long as the system remains up. That means you can create a semaphore, signal it a few
times, close it, go away for a few days, then come back and the semaphore will have the same value you left it with.

Return Values

sem_unlink returns 0 when it successfully deletes the named semaphore. If

sem_unlink fails, then it returns -1.

Page 438

Errors

If sem_unlink returns -1, it sets errno to one of the following values:

EACCES
Permission to unlink the named semaphore is denied.

ENOENT
No semaphore by that name exists.

ENAMETOOLONG
sem_name is too long, greater than PATH_MAX, or, if you used multiple "/" characters and the system supports
that, a component of the pathname exceeded NAME_MAX while _POSIX_NO_TRUNC is in effect.

Current UNIX Practice

POSIX named semaphores are brand new to POSIX.4.

See Also

unlink (similarities to this call)

sem_open (to open/create a message queue)

sem_close (to finish using a message queue)

sem_wait (wait on a semaphore)

sem_trywait (don't wait on a semaphore)

sem_post (signal a semaphore)

Page 439

sem_wait, sem_trywait

Name

sem_wait, sem_trywait—Wait on a POSIX.4 semaphore (named or unnamed).

Synopsis

#include <semaphore.h>
int sem_wait(sem_t *sem);
int sem_trywait(sem_t *sem);

Conditionality

#ifdef _POSIX_SEMAPHORES

Description

sem_wait and sem_trywait perform the semaphore lock operation on the given semaphore. If the semaphore value is
positive, it is simply decremented and the process continues without any blocking whatsoever. If the semaphore
value is not positive, then the semaphore is said to be locked and the process is blocked until another process comes
along and signals the semaphore (with sem_post).

The sem_trywait function never blocks; that is, it only does the semaphore lock operation if it can do so without
blocking (if the semaphore value is positive).

Notes

When I say blocking above, all I'm really saying is that the process does not return from the call to sem_wait until it
is signalled by another process. The blocking itself may be implemented by actual blocking (removal of the process
from the running state by the operating system), or by another mechanism, such as spinning. Spinning uses a
processor, and is also known as busy-waiting. Such an implementation is sometimes used on multiprocessors. This
is a decision that the implementor is free to make. Generally, you're not going to care about this detail.

There are no fancy errors defined for fringe conditions like deallocation of a semaphore while there are waiters, and
so forth. That's because such error detection might slow down the operation of semaphores. Semaphores must have
a fast implementation for optimum usability. The result is, this interface is a loaded weapon. Don't point it at
yourself.

Page 440

Return Values

sem_wait and sem_trywait return 0 if they successfully perform the lock operation on the semaphore. If they fail,
then they return -1 and the lock operation is not performed. The lock operation, when performed, is performed as a
single, uninterruptible unit. You don't need to worry about races between processes.

Errors

If these functions return -1, they set errno to one of the following values:

EINVAL
The location passed does not correspond to a valid semaphore.

EINTR
The process was blocked on the semaphore, and it received a signal. (This error can only occur for sem_wait).

EAGAIN
The semaphore could not be locked without blocking (This error is only returned by sem_trywait, because
sem_wait will just go ahead and block).

EDEADLK
The system detected a situation in which a deadlock is going to occur. Most systems will not perform deadlock
detection, because it is costly; therefore this error will not be returned on most systems. Don't count on it.

Current UNIX Practice

POSIX semaphores are brand new to POSIX.4.

See Also

sem_init

sem_destroy (interface to unnamed semaphores)

sem_open

sem_close

sem_unlink (parallel interface to named semaphores)

sem_post (to signal a semaphore)

Page 441

shm_open

Name

shm_open—Create/access a POSIX.4 shared memory object.

Synopsis

#include <sys/mman.h>
int shm_open(char *shm_name, int oflags, mode_t mode);

Conditionality

#ifdef _POSIX_SHARED_MEMORY_OBJECTS

Description

shm_open is used to create or open a POSIX.4 shared memory object. This object is then mapped into the process's
address space with mmap, and unmapped with munmap. The object itself is of little use other than for establishing
the memory mapping; at that time, the object can be closed using close.

The function call is modeled on open, and the interpretation of oflags and mode are very similar to open. In
addition, unlike sem_open and mq_open, shm_open returns a file descriptor, which may be used in calls to mmap,
ftruncate and close. (All the other "file" calls have undefined results when applied to this particular descriptor. You
wouldn't want to read or lseek in this file anyway. It's memory.) Shared memory naming, however, is interpreted as
for semaphore names and message queue names.

Name Resolution

The name must obey construction rules as for a normal file pathname, but the shared memory object may or may
not actually appear in the file system namespace. That is, when you do an ls, shared memory objects may or may
not appear. Therefore, your application must be careful to clean up its shared memory objects, since there is no
(POSIX-standard) equivalent of the rm command for shared memory objects.

For completely portable memory, you must follow two more rules. First, the name must begin with a "/". Relative
shared memory object names are interpreted differently by different systems. A portable application must use a
fully-rooted name to achieve portability (the same rule applies to semaphore and message queue names).

Second, the name may not contain additional "/" characters. Again, different systems will interpret the name in
different ways.

Page 442

Other Parameters

The oflags argument controls the way in which the shared memory object is opened. You must specify one of
O_RDONLY or O_RDWR, depending on whether you wish to only read, or read and write in the shared memory.
Unlike files and message queues, you do not have the option of opening a shared memory object in "write-only"
mode (O_WRONLY); the effect of that flag is not defined for shared memory objects. In addition, you can specify
the following flags in oflags:

O_CREAT
This flag is set to indicate that this call to shm_open is to create the shared memory object, not just access an object
that already exists. It is only in this case that the mode argument to shm_open is used. The shared memory object is
created with a mode as specified in mode, just as for file creation. All three triplets of permissions are set for the
object: read and write permission for the creator, its group, and others. There is no meaning for execute permission
on shared memory. Portable symbols for constructing a mode are found in <sys/stat.h>: S_IWUSR, S_IROTH and
so forth. The uid and gid of the shared memory object are set to the effective IDs of the calling process.

O_EXCL
This flag modifies the behavior of O_CREAT and is consulted only if O_CREAT is also set. If O_CREAT is set
and O_EXCL is not set, then shm_open will silently fail to create the shared memory object, and instead just return
a descriptor for the existing object. If both flags are set, though, and a shared memory object by that name already
exists, then shm_open will return an error. It is meaningless and undefined to set O_EXCL without O_CREAT.

O_TRUNC
If you set O_TRUNC, then the shared memory object's size is truncated down to zero. This flag can only be used if
you are opening the shared memory object for writing (O_RDWR); this flag is superfluous if you create the shared
memory object with this call (shared memory creation always creates a zero-size object).

Notes

Shared memory objects are created with a size of zero. They are sized using ftruncate and mapped in using mmap.
The descriptor returned by this call is only useful for those functions (and, obviously, close).

Shared memory is persistent so long as the system remains up. You can create and map a shared memory region,
store data, close and unmap the region, go away, then

Page 443

come back and find the same data you stored. Persistence is more likely to be a problem than a feature; be careful.

Return Values

shm_open returns the descriptor for the created or accessed shared memory object as its return value. This value is
a restricted-use file descriptor. Do not attempt file operations, other than ftruncate, mmap, and close, on a shared
memory object descriptor. The effects are unknown. If shm_open fails, then it returns -1.

Errors

If shm_open returns -1, it sets errno to one of the following values:

EACCES
Either the shared memory object exists and the permissions you request in oflags are denied, or you're trying to
create a non-existing shared memory object and permission to do so is denied.

EEXIST
You specified O_CREAT and O_EXCL in oflags, and the shared memory object already exists.

EINVAL
You passed in an inappropriate name, one which broke one or more of the rules given above. Each implementation
must describe the set of names it will accept for shared memory objects; you can use this documentation to
determine exactly what the problem was. Alternatively, you can stick to the rules quoted above.

ENOENT
The shared memory object does not exist, and you did not specify O_CREAT.

EINTR
The call was interrupted by a signal. This is not likely to happen unless the call blocks waiting for some resource
which is in short supply.

EMFILE
The process is using too many file descriptors. Note that the limit applies to the total of open files and open shared
memory objects.

ENFILE
The system has run out of system resources to support more open shared memory objects. Note that this error is a
system error, while EMFILE is more of a process-limit error.

ENOSPC
There is not enough space to create this shared memory object.

Page 444

ENAMETOOLONG
shm_name is too long, greater than PATH_MAX, or, if you used multiple ''/" characters and the system supports
that, a component of the pathname exceeded NAME_MAX while _POSIX_NO_TRUNC is in effect.

Current UNIX Practice

POSIX shared memory objects are brand new to POSIX.4. The mmap function itself is present in many UNIX
systems, including System V Release 4 and SunOS. System V supports a completely different mechanism.

See Also

open (similarities to this call)

close (to finish using a shared memory object descriptor)

mmap (to establish a memory mapping for this object and your memory space)

ftruncate (to set the size of a shared memory object)

Page 445

shm_unlink

Name

shm_unlink—Destroy a POSIX.4 shared memory object.

Synopsis

#include <sys/mman.h>
int shm_unlink(char *shm_name);

Conditionality

#ifdef _POSIX_SHARED_MEMORY

Description

shm_unlink destroys the shared memory object named shm_name. The function call is modeled on unlink, and the
way we handle deletion of mapped or opened shared memory objects is similar to the way open files are unlinked.
That is, those processes which have shm_opened or mmaped the object will still be able to use it, until all such
processes close the shared memory object and munmap it as well (since shm_open returns a file descriptor, standard
close is used to close it). When all open descriptors are closed, and all extant mappings are unmapped, then all
vestiges of the shared memory object will be removed from the system. Moreover, when the shared memory is
unlinked, processes will no longer be able to shm_open it.

Notes

Shared memory is persistent so long as the system remains up. That means you can create and map a shared
memory region, store some data into it, close and unmap it, go away for a few days, then come back and still see
the data you stored, assuming no one unlinks the shared memory object in the meantime. You may be able to use
this persistence to your advantage, if you are careful. However, watch out for persistence in the case where the
system may go down. A careful application should always include a startup phase where the status and general
sanity of all required objects, including shared memory, is assured. Such a phase might consist of just
shm_unlinking all needed shared memory objects before anyone opens them up—just to be sure that the memory,
when created and mapped, is empty.

Return Values

shm_unlink returns 0 when it successfully deletes the named shared memory object. If shm_unlink fails, then it
returns -1.

Page 446

Errors

If shm_unlink returns -1, it sets errno to one of the following values:

EACCES
Permission to unlink the named shared memory object is denied.

ENOENT
No shared memory object by that name exists.

ENAMETOOLONG
shm_name is too long, greater than PATH_MAX, or, if you used multiple "/" characters and the system supports
that, a component of the pathname exceeded NAME_MAX while _POSIX_NO_TRUNC is in effect.

Current UNIX Practice

POSIX shared memory is brand new to POSIX.4.

See Also

unlink (similarities to this call)

shm_open (to open/create a shared memory object)

shm_close (to finish using a shared memory object)

mmap (to map an opened shared memory object)

munmap (to dis-establish a mapping made by mmap)

Page 447

sigaction

Name

sigaction— Establish a process's reaction to a signal.

Synopsis

#include <signal.h>

int sigaction(int sig, const struct sigaction *reaction,
 struct sigaction *old_reaction);

Conditionality

sigaction itself is an unconditional part of POSIX. The functionality of the SA_SIGINFO flag is conditional on
_POSIX_REALTIME_SIGNALS.

Description

The sigaction function establishes a process's reaction to a signal.

When a process receives a signal, a number of things can happen. If the process has not indicated any special
handling for the signal, it can be handled in the normal, system-wide default way. Usually this means the process
will be terminated. The process can choose to ignore the signal, in which case the signal will disappear. Finally, the
process may choose to handle the signal by invoking a signal-handler function. Each of these options are dealt with
by sigaction.

The first argument to sigaction, sig, indicates which signal we are establishing the handler for. The second
argument dictates the desired signal handling action. The third argument is a result parameter, into which the
system will store the previous signal handler. This parameter can be used to store a signal's previous handler state,
to be restored at a later time. Either reaction or old_reaction may be NULL, in which case the portion of sigaction's
functionality related to these parameters will be skipped. If both are NULL, sigaction becomes a rather boring
function.

The handler itself is completely encapsulated in the struct sigaction, which has the following required members:

 struct sigaction {
 void (*)() sa_handler;
 void (*)(int, siginfo_t *, void *) sa_sigaction;
 sigset_t sa_mask;
 int sa_flags;
 };

Page 448

sa_handler is a pointer to a function, and is used to indicate the handler function for all signals except the queued
real-time signals SIGRTMIN through SIGRTMAX (when SA_SIGINFO is set in sa_flags). If, on the other hand,
you are setting up a handler for a queued real-time signal, you will use sa_sigaction rather than sa_handler. In no
case will you ever need to set both sa_handler and sa_sigaction. In fact, most vendors will probably use the same
storage space for both fields, by using some sort of a union.

The sa_mask field tells the system which signals should be blocked from delivery when you handle this signal. The
system will automatically block sig while it is being handled; this field tells the system which additional signals
you want blocked. In most cases, you'll just empty out this set using sigemptyset.

Finally, sa_flags provides some miscellaneous control over signal handling. There are two bits which can be set in
sa_flags. SA_NOCLDSTOP, the first bit, is used only when the signal is SIGCHLD. This bit tells the system not to
deliver a SIGCHLD signal for children who stop, but only for children who terminate. This bit is probably not
going to come into play unless _POSIX_JOB_CONTROL is supported.

The other bit is SA_SIGINFO. If sig is between SIGRTMIN and SIGRTMAX, inclusive, then SA_SIGINFO tells
the system that this signal is to be queued to the process rather than just registered. In addition, the signal handler
for this signal is to take three arguments instead of the normal one. This allows extra data parameters to be passed
to these signal handlers. When you set SA_SIGINFO, you indicate your choice of a handler function in
sa_sigaction, not sa_handler.

You can ignore a signal by setting sa_handler to the constant SIG_IGN. You can set the handling of a signal to its
system default by making sa_handler the constant SIG_DFL.

Real-Time Signals are Queued Rather Than Registered

Normally, signals are delivered to a process by setting a bit that corresponds to that signal for the process. This
leads to the possibility of signal loss. If more than one signal is delivered before you handle that signal, then those
subsequent deliveries are lost, because the bit used to register signal delivery only contains the information "this
signal occurred." By queueing signals rather than registering them, signals are not lost. Of course, extra storage is
required to support signal queueing, so this option is more expensive in storage.

Page 449

Handler Differences

A non-real-time signal is handled via a handler function which takes a single argument, the number of the signal
received:

 int signal_handler(int sig_num)
 {
 }

In contrast, a real-time queued signal (one between SIGRTMIN and SIGRTMAX, for which SA_SIGINFO has
been set in sa_flags) is handled with a function that takes three arguments:

 int rt_signal_handler(int sig_num, siginfo_t *extra, void *v)
 {
 }

The first parameter is the same in either case. The second parameter, a pointer to a siginfo_t, contains additional
information about the signal received. This structure contains several fields:

 typedef struct {
 int si_signo;
 int si_code;
 union sigval si_value;
 } siginfo_t;

si_signo will be set to the number of the signal delivered (the same as the sig_num parameter). si_code, which
indicates the cause of the signal, is set to the constant SI_USER in the case of a real-time signal sent by kill, and is
set to SI_QUEUE if the signal was sent by sigqueue. If the signal is delivered as a result of asynchronous I/O
completion, si_code will be set to SI_ASYNCIO, it will be set to SI_MESGQ if the signal is the result of an
mq_notify call, and it will be set to SI_TIMER if the signal is delivered as a result of a POSIX.4 timer expiration.
The field si_value will contain the value that was sent as the val parameter to sigqueue, or as the sigev_value
component of a struct sigevent used for timers, asynchronous I/O or message queues. If this signal was sent by kill,
then the contents of this field are undefined.

The third argument to a real-time signal handler has no standard meaning; it is there because several existing UNIX
implementations pass three arguments to their signal handlers already. On these systems, argument three usually
contains the process's machine context at the time it was interrupted by the signal. This sort of information can be
very useful when the signal is delivered as a result of a machine exception (an illegal instruction generating a
SIGILL or an invalid memory access generating a SIGBUS, for instance). In the case of an asynchronous interrupt,
like timer expiration, such information is rather less useful because it has very little to do with the signal.

Page 450

Return Values

The sigaction returns successfully if it establishes the signal action as desired, and returns the previous signal
handler as desired. In that case, 0 is returned. In the case of error, -1 will be returned.

Errors

If sigaction returns -1, it sets errno to one of the following values:

EINVAL
The signal number is invalid, not one the system supports.

EINVAL
You attempted to set a handler (either SIG_IGN or your own function) for a signal that cannot be caught or
handled. These signals are SIGKILL and SIGSTOP. Not all systems will return an error in this case. Some will
simply ignore your attempt to change the handler.

Current UNIX Practice

sigaction is standard UNIX functionality; SA_SIGINFO is new for POSIX.4. Some versions of UNIX require you
to reset a handler function after each individual signal is received. POSIX does not suffer from this deficiency.

See Also

kill

sigqueue (sending signals)

sigprocmask (information on blocking signals)

mq_notify (signal delivery on message arrival)

aio_read

aio_write

lio_listio (signal delivery for asynchronous I/O)

timer_create (signal delivery on timer expiration)

Page 451

sigprocmask

Name

sigprocmask — Block/unblock signal deliveries.

Synopsis

#include <signal.h>
int sigprocmask(int op, const sigset_t *set, sigset_t *oset);

Conditionality

Unconditional.

Description

Each process maintains a signal mask which controls which signals are immediately delivered to the process and
which have their delivery deferred. If a signal is in this set, then it is said to be blocked from immediate delivery.
The sigprocmask function manipulates and interrogates this signal mask.

The first argument, op, controls how the next argument, set, is applied to the process's signal mask. If op is
SIG_BLOCK, then the set will be added in to the process's current signal mask. If op is SIG_UNBLOCK, then the
set will be subtracted out of the process's mask. Finally, if op is SIG_SETMASK, the given set becomes the
process's signal mask.

set is a set of signal numbers, set up by the sigset functions.

oset, if specified, is a pointer to a sigset_t. The system will store the process's previous signal mask into this set.
This supports the ability to restore a signal state at a later time.

Either set or oset can be NULL. In such a case, the functionality related to each parameter is just skipped.

A process's signal mask is initially empty; any signal can be delivered. Some signals cannot be blocked: SIGKILL
and SIGSTOP. However, if you try to block these signals you will not get an error back from sigprocmask, it will
merely ignore your request to block those particular signals, and do all the rest you requested.

Notes

Blocking a signal is merely a temporary deferral of signal delivery. It should not be confused with ignoring a
signal, as done by calling sigaction with a sa_handler field of

Page 452

SIG_IGN. In that case, you are telling the system to discard deliveries of a particular signal.

Return Values

The sigprocmask function returns successfully if it establishes the signal mask as desired. In that case, 0 is returned.
In the case of error, -1 will be returned.

Errors

If sigprocmask returns -1, it sets errno to the following value:

EINVAL
The op-code op was not one of the three possible values.

Current UNIX Practice

sigrocmask is standard UNIX functionality.

See Also

kill

sigqueue (sending signals)

sigaction (handling/ignoring signals)

sigemptyset

sigfillset

sigaddset

sigdelset

sigismember (manipulation of signal sets)

Page 453

sigset

Name

sigemptyset, sigfillset, sigaddset, sigdelset, sigismember—Manipulation of signal sets.

Synopsis

#include <signal.h>

int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset(sigset_t *set, ing sig_num);
int sigdelset(sigset_t *set, ing sig_num);
int sigismember(sigset_t *set, ing sig_num);

Conditionality

Unconditional.

Description

These functions allow you to initialize an empty signal set, a full signal set, add a signal to a set, remove a signal
from a set, and determine if a signal is a member of a set, respectively.

Signal sets are used to manipulate a process's signal mask (sigaction and sigprocmask), and to await signal arrival
(sigsuspend and sigwaitinfo). A signal set is merely a collection of signal numbers. Signal sets are usually
implemented as bit vectors, and these operations resolve to little functions that set, clear, and test bits in said
vectors.

A signal set must first be initialized to a starting state with either sigemptyset or sigfillset before it can be
meaningfully operated on by one of the other functions, or passed to any other signal-using function.

Return Values

These functions return 0 on success and -1 on failure.

Errors

sigemptyset and sigfillset have no defined failure modes; the three functions which take a signal number may fail if
the signal number is bad and if the system happens to notice. In that case, errno will be set to the following:

EINVAL
The signal number was not one of the known signals.

Page 454

Current UNIX Practice

All these functions are from standard UNIX.

See Also

sigprocmask (blocking signals)

sigaction (handling/ignoring signals)

sigwaitinfo

sigsuspend (awaiting signals)

Page 455

sigsuspend

Name

sigsuspend — Await signal arrival; handlers called.

Synopsis

#include <signal.h>
int sigsuspend(const sigsett *new_mask);

Conditionality

Unconditional.

Description

The sigsuspend function provides the ability to synchronously await a signal's arrival. sigsuspend installs the signal
mask given, and then blocks the calling process until an unblocked, un-ignored signal arrives. That signal is
handled in the normal way, by calling the signal handler for the function. Then, the original signal mask is restored,
and sigsuspend returns -1 with errno set to EINTR.

This function and sigwaitinfo are duals. This function pauses execution until a signal arrives, but goes through the
normal signal delivery mechanism of calling the handler function. sigwaitinfo, on the other hand, also pauses
execution, but bypasses normal handler invocation, instead returning the number of the signal received.

Another difference is in the interpretation of the signal mask passed to the two functions. The mask passed to
sigsuspend is installed as the process's signal mask. Signals which are in this set are signals that will be blocked
from delivery. In contrast, you pass sigwaitinfo a set containing the signals you wish to wait for; these signals
should be already blocked from normal (handler-style) delivery.

Some signals (SIGSTOP and SIGKILL) cannot be blocked. If you set the signals in new_mask, they will be ignored
by the system; it will block those signals it can, and then pause awaiting a signal arrival as described above.

Return Values

This function never returns unless a signal arrives. In the manner of all blocking POSIX functions which are
interrupted by signals, sigsuspend returns -1, with errno set to EINTR, when it is interrupted by a signal.

Page 456

Errors

When sigsuspend returns, it returns -1 and sets errno to the following:

EINTR
An unblocked signal interrupted your wait.

Current UNIX Practice

sigsuspend is modeled on the standard UNIX sigpause.

See Also

sigprocmask (to block signals)

sigemptyset

sigfillset

sigaddset

sigdelset

sigismember (manipulation of signal sets)

sigqueue

sigaction (information on siginfo_t)

sigwaitinfo (dual of sigsuspend)

Page 457

sigwaitinfo

Name

sigwaitinfo, sigtimedwait — Synchronously await signal arrival; avoid calling handler. sigtimedwait is a version of
sigwaitinfo with a timeout value.

Synopsis

#include <unistd.h>
#ifdef _POSIX_REALTIME_SIGNALS
#include <signal.h>
int sigwaitinfo(const sigset_t *these_sigs, siginfo_t *infop);
int sigtimedwait(const sigset_t *these_sigs, siginfo_t *infop,
 const struct timespec *timeout);

Conditionality

#ifdef _POSIX_REALTIME_SIGNALS

Description

The sigwaitinfo and sigtimedwait functions provide the ability to synchronously await a signal's arrival. Unlike
sigsuspend, which also awaits a signal's arrival, these functions eliminate the call to the signal handler function
when the signal does arrive. Instead, the number of the signal is returned. Due to the lack of the handler call,
sigwaitinfo and sigtimedwait can be more efficient than sigsuspend.

For both functions, the set of signals to await is passed in these_sigs. If the function delivered is a signal for which
SA_SIGINFO has been set, then that signal is queued and carries extra information with it; such information will
be returned in the area pointed to by infop. If infop is NULL, then any extra information associated with a queued
signal will be discarded, but the signal number will still be returned.

The signals in these_sigs should be blocked from normal delivery so that they are not asynchronously delivered
before a call to sigwaitinfo. You can use sigprocmask for blocking these signals from normal asynchronous
delivery.

While sigwaitinfo will wait indefinitely for a signal to arrive, sigtimedwait takes (and requires) a timeout parameter
which specifies a maximum time interval to wait for signal arrival. If no signal arrives in that time, then sigwaitinfo
will return with errno set to EAGAIN. The timeout argument must be passed to sigtimedwait; the effect of a NULL
parameter is undefined.

The struct timespec is usually defined in <time.h>, and consists of a number of seconds (tv_sec) and nanoseconds
(tv_nsec). The number of nanoseconds may not equal or exceed 1,000,000,000, or an error may be generated on
particularly anal-retentive

Page 458

systems. By specifying tv_sec = tv_nsec = 0, you can effect a poll for pending signals, without any blocking at all.

Signal Delivery Order

The real-time extended signals SIGRTMIN through SIGRTMAX are delivered in order, lowest-numbered signal to
highest. The other signals are delivered in an unspecified order, and it is not specified whether the other signals are
delivered before, after, or interleaved with the real-time extended signals.

Return Values

These functions are successful when they receive a signal they were waiting for. In that case, they return the
number of the signal which arrived. In the case of error, -1 will be returned.

Errors

If these functions return -1, they set errno to one of the following values:

EINTR
Some signal which you were not waiting for arrived and was handled.

EAGAIN
No signal arrived in the specified time interval. (sigtimedwait only)

EINVAL
The value in timeout contained a number of seconds less than zero, or a number of nanoseconds greater than
1,000,000,000. (sigtimedwait only, and only on some systems)

Notes

For detail on the contents of the siginfo_t structure, see the documentation for sigqueue and sigaction.

Current UNIX Practice

Standard UNIX systems do not provide functions of this nature. They are new for POSIX.4.

See Also

sigqueue

sigaction (information on siginfo_t)

Page 459

<time.h> (information on the struct timespec)

sigprocmask (to block signals you will be waiting for)

Page 460

sysconf

Name

sysconf — Query system options at run-time.

Synopsis

#include <unistd.h>

long sysconf(int option);

Conditionality

Unconditional.

Description

The sysconf function allows your application to determine information about the runtime system under which the
application is running. This is to support the ability to reconfigure operating systems with or without various
POSIX options, and with differently-sized data structures.

You can also determine these numbers statically, at compile time, by querying values in <unistd.h> and
<limits.h>. However, you should be sure in that case that your runtime configuration is not going to change.

The option argument to sysconf indicates a particular POSIX option or limit you wish to query. Available options
from POSIX.1 and POSIX.4 are:

Sysconf option name System Value Returned Standard

_SC_JOB_CONTROL _POSIX_JOB_CONTROL (binary) POSIX.1

_SC_SAVED_IDS _POSIX_SAVED_IDS (binary) POSIX.1

_SC_VERSION _POSIX_VERSION (binary) POSIX.1

_SC_ARG_MAX ARG_MAX POSIX.1

_SC_CHILD_MAX CHILD_MAX POSIX.1

_SC_CLK_TCK clock ticks per second (a.k.a. HZ) POSIX.1

_SC_NGROUPS_MAX NGROUPS_MAX POSIX.1

_SC_OPEN_MAX OPEN_MAX POSIX.1

_SC_STREAM_MAX STREAM_MAX POSIX.1

_SC_TZNAME_MAX TZNAME_MAX POSIX.1

_SC_ASYNCHRONOUS_IO _POSIX_ASYNCHRONOUS_IO (binary) POSIX.4

_SC_MAPPED_FILES _POSIX_MAPPED_FILES (binary) POSIX.4

_SC_MEMLOCK _POSIX_MEMLOCK (binary) POSIX.4

Table continued on next page

Page 461

Table continued from previous page

_SC_MEMLOCK_RANGE _POSIX_MEMLOCK_RANGE (binary) POSIX.4

_SC_MEMORY_PROTECTION _POSIX_MEMORY_PROTECTION (binary) POSIX.4

_SC_MESSAGE_PASSING _POSIX_MESSAGE_PASSING (binary) POSIX.4

_SC_PRIORITIZED_IO _POSIX_PRIORITIZED_IO (binary) POSIX.4

_SC_PRIORITY_SCHEDULING _POSIX_PRIORITY_SCHEDULING (binary) POSIX.4

_SC_REALTIME_SIGNALS _POSIX_REALTIME_SIGNALS (binary) POSIX.4

_SC_SEMAPHORES _POSIX_SEMAPHORES (binary) POSIX.4

_SC_FSYNC _POSIX_FSYNC (binary) POSIX.4

_SC_SHARED_MEMORY_OBJECTS _POSIX_SHARED_MEMORY_OBJECTS (binary) POSIX.4

_SC_SYNCHRONIZED_IO _POSIX_SYNCHRONIZED_IO (binary) POSIX.4

_SC_TIMERS _POSIX_TIMERS (binary) POSIX.4

_SC_AIO_LISTIO_MAX AIO_LISTIO_MAX POSIX.4

_SC_AIO_MAX AIO_MAX POSIX.4

_SC_AIO_PRIO_DELTA_MAX AIO_PRIO_DELTA_MAX POSIX.4

_SC_DELAYTIMER_MAX DELAYTIMER_MAX POSIX.4

_SC_MQ_OPEN_MAX MQ_OPEN_MAX POSIX.4

_SC_MQ_PRIO_MAX MQ_PRIO_MAX POSIX.4

_SC_PAGESIZE PAGESIZE POSIX.4

_SC_RTSIG_MAX RTSIG_MAX POSIX.4

_SC_SEM_NSEMS_MAX SEM_NSEMS_MAX POSIX.4

_SC_SEM_VALUE_MAX SEM_VALUE_MAX POSIX.4

_SC_SIGQUEUE_MAX SIGQUEUE_MAX POSIX.4

_SC_TIMER_MAX TIMER_MAX POSIX.4

Note

The sysconf function returns -1 without setting errno for a different reason than pathconf and fpathconfdo. Be
careful when programming using these three functions!

Return Values

sysconf returns the value of the given option for the currently running system. If an option is not supported on the
currently running system, sysconf will return -1 without setting errno. Therefore, you should initialize errno before
calling sysconf if it is possible that an option may not be present.

Page 462

Errors

sysconf returns -1 when an option is not supported, but in this case it will not set errno. If sysconf fails for another
reason (and there's only one other reason), it will return -1 and set errno as follows:

EINVAL
The option number you passed was not a reasonable option number.

Current UNIX Practice

This function is new for POSIX.

See Also

pathconf, fpathconf (file/pathname-variable run-time configuration)

<unistd.h>

<limits.h>

Page 463

timer_create

Name

timer_create—Create a POSIX.4 timer based on a particular clock.

Synopsis

#include <signal.h>
#include <time.h>
int timer_create(clockid_t which_system_clock,
 struct sigevent *timer_event_spec,
 timer_t *created_timer_id);

Conditionality

#ifdef _POSIX_TIMERS

Description

timer_create is used to create an interval timer for the calling process. The created timer may then be set, using
timer_settime, to provide periodic or one-shot timer interrupts to the process.

Standard UNIX timers, via the setitimer facility, do not require the step of creating the timer, because standard
UNIX supports only a static, constant number of timers. Standard UNIX setitimer corresponds to the timer_settime
function; timer_create has no analogue in standard UNIX practice.

Each timer used by an application is based on a particular system clock, chosen by the application when the timer is
created. An operating system may support many different clocks, corresponding to dedicated hardware facilities or
other sources of time information. The POSIX.4 conformance statement should indicate what clocks are available
on a particular system. All systems must support at least the single real-time clock, CLOCK_REALTIME. When
timer_create is called, specify the ID of the system clock to be used in which_system_clock.

Timer expirations result in signals being delivered to the process. When the timer is first created, you can specify
what signal delivery should be performed, by passing in an appropriately-initialized sigevent structure as
timer_event_spec. You can set timer_event_spec to NULL, in which case, for the clock CLOCK_REALTIME,
SIGALRM will be delivered to the process on timer expiration.

If you want to specify a particular signal to be delivered on timer expirations, use the struct sigevent, as defined in
<signal.h>:

 struct sigevent {
 int sigev_notify; /* notification mechanism */

Page 464

 int sigev_signo; /* signal number */
 union sigval sigev_value; /* signal data value */
 };

This structure contains three members. sigev_notify is a flag value that specifies what sort of notification should be
used upon timer expiration—signals, nothing, or something else. Currently, only two values are defined for
sigev_notify: SIGEV_SIGNAL means to send the signal described by the remainder of the struct sigevent, and
SIGEV_NONE means to send no notification at all upon timer expiration. sigev_signo, an int, specifies which
signal number should be delivered on timer expiration. This number may be any of the defined POSIX signals. The
signal may be subject to the realtime signals extension, depending on your application. If you have set
SA_SIGINFO for the signal you wish to be delivered, then the real-time signal queueing extension applies to this
signal. In this case, an extra data value is passed to the signal handler as a third argument when the timer expires.
That value is specified statically in the sigev_value field of the struct sigevent. sigev_value is a union which has
either an int value (sival_int) or a pointer value (void *sival_ptr).

If you set timer_event_spec to NULL, then a default signal is delivered on timer expiration. For
CLOCK_REALTIME, the default signal is SIGALRM. If you have set SA_SIGINFO for the default signal, then
that signal is delivered according to the real-time signals extension, with an additional data value. The data value in
this case will be the ID of the timer created by this call.

If you do not set SA_SIGINFO for the signal, then the signal may or may not be queued.

Because one timer initialization can result in an indeterminate number of signals, it is difficult at best for an
operating system to reliably queue them all to a process and still maintain real-time responsiveness. Therefore,
signals delivered as a result of a timer expiration do not queue up. Instead, the timer_getoverrun call can be used to
determine the number of times a timer has expired. Since all the signals for a particular timer are identical, this is a
much lower-overhead means of dealing with timer overruns than trying to queue signals in the operating system.

Since timers are created dynamically, they should always be deleted when the application is done with them.
timer_delete is used for this purpose.

Return Values

timer_create returns the ID of the timer it created in the created_timer_id parameter. When timer_create is
successful, it returns 0. In this case, the timer ID can be used to set the interval timer and receive periodic
interrupts. If timer_create fails, it returns -1.

Page 465

Errors

If timer_create returns -1, it sets errno to one of the following:

EINVAL
The clock ID specified is not one that exists on this system. It's not specified in POSIX.4, but you will probably
also get an EINVAL return if you try to specify a signal number that does not exist.

EAGAIN
The implementation cannot create any more timers for this process. Alternatively, the system does not have the
signal queueing resources to set up this additional queued signal.

Notes

The interaction of the timer facility and the real-time signals facility is complex because there are two options
involved: _POSIX_TIMERS and _POSIX_REALTIME_SIGNALS. The key to understanding this interaction is
common sense. If real-time signals are supported, then signals can be set to pass an additional data parameter. If
real-time signals are not supported, then signals can still be delivered on timer expiration, but the additional data
value will not be passed along to the signal handler.

timer_create is allowed to return EAGAIN when ''the calling process has already created all of the timers it is
allowed by this implementation." However, the standard doesn't specify any minimum number of timers. When you
examine the conformance of a system, it makes sense to determine exactly how many timers a process can create-
how many per the various clocks, how many per process, and so forth.

Current UNIX Practice

Standard UNIX uses setitimer and getitimer, facilities which are similar in scope to timer_settime and
timer_gettime. However, POSIX.4 timers allow higher resolution in the struct timespec, and support multiplexing
of a single clock into multiple timers. Additional timers are also specified in a defined way (new clock IDs).

Both BSD and SVR4 support setitimer/getitimer.

See Also

timer_settime, timer_gettime (to set interval timers to expire and determine their settings)

timer_getoverrun (to determine the number of times a "queued" timer signal has expired,

since the signal is not really queued)

sigaction (to set up signal actions, including SA_SIGINFO)

Page 466

timer_delete

Name

timer_delete — Delete a POSIX.4 timer.

Synopsis

#include <time.h>
int timer_delete(timer_t timer_id);

Conditionality

#ifdef _POSIX_TIMERS

Description

timer_delete is used to free up the timers created by timer_create. Since POSIX timers are dynamically created,
they must also be deleted in order to free up system resources that are occupied by each currently-existing timer.
Deleting a timer is like closing a file when you are done with it.

If the timer you are deleting is currently set to expire, the timer_delete call will automatically turn it off so that you
do not get any more timer expiration signals.

Return Values

timer_delete returns 0 if it successfully deletes the timer. Otherwise, it returns -1 and sets errno to indicate the
error.

Errors

If timer_delete fails, it returns -1 and sets errno to the following:

EINVAL
The timer ID specified is not valid for this process. Either it's already been deleted, or it was never created.

Current UNIX Practice

Standard UNIX uses setitimer and getitimer, which do not require the timer to be created and deleted like in
POSIX.4.

Both BSD and SVR4 support setitimer/getitimer.

Page 467

See Also

timer_create

Page 468

timer_getoverrun

Name

timer_getoverrun—Get overrun count for a POSIX.4 timer.

Synopsis

#include <time.h>
int timer_getoverrun(timer_t timer_id);

Conditionality

#ifdef _POSIX_TIMERS
#ifdef _POSIX_REALTIME_SIGNALS

Description

timer_getoverrun returns the current overrun count associated with the timer identified by timer_id. This is the
number of timer expirations that have occurred between the time the timer expiration signal was queued to the
process, and the time at which the signal was delivered to the process.

When a timer is set, an indeterminate and potentially large number of signals may be delivered to the process. The
normal queueing semantics of POSIX.4 real-time extended signals are difficult to support under these conditions
without causing undue resource consumption by the operating system. For this reason, timer expiration signals are
not queued to the process. Rather, the system maintains a count of the number of times the timer has expired
between the time when the expiration signal was queued to the process, and the time when the process dealt with
the signal. The timer overrun count, as it is called, can be obtained by calling timer_getoverrun. If you wait long
enough, the overrun count will overflow whatever container the operating system has set up for it. This overflow
occurs when the overrun count reaches DELAYTIMER_MAX. When this happens, the operating system will
return DELAYTIMER_MAX.

Note especially that the timer overrun count is defined as occurring in an interval of time whose endpoint is when
the queued signal is delivered to the process. If the signal is never delivered to the process, then the value of the
overrun count is undefined. In other words, always handle the signal, one way or another, before you retrieve the
overrun count.

Note, also, that the overrun count is only defined by POSIX.4 when the real-time signals extension is supported. If
_POSIX_REALTIME_SIGNALS are supported, though, the overrun count is available for any signal being used
for timer expiration—even if it has not been set up for queueing!

Page 469

Return Values

timer_getoverrun returns the overrun count for the named timer. If it fails, the call returns -1 and sets errno to
indicate the error.

Errors

If timer_settime fails, it returns -1 and sets errno to the following:

EINVAL
The timer ID specified is not valid for this process. Either it's been deleted, or it was never created. Alternatively,
you specified a nanosecond value greater than or equal to 1,000,000,000, or less than 0.

Notes

There does not seem to be an airtight definition of what it means for a signal to be delivered to a process.
Obviously, when a process handles a signal via a signal handler, the signal has been handled. It would seem to me
that whenever a signal that was queued to the process is dequeued, that signal is delivered. Thus, if a process
retrieves a signal by calling sigwaitinfo or sigtimedwait, that should be considered signal delivery as well. You can
check this out when you determine the degree of POSIX.4 conformance in your operating system.

The minimum value allowed for DELAYTIMER_MAX is 32, which is so small as to be practically useless. An
operating system should support a large value of DELAYTIMER_MAX. For instance, if the overflow count is
maintained in a signed 32-bit integer, a DELAYTIMER_MAX of 232 -1 would be reasonable.

Timers created in a process are not valid in any children created by that process calling fork.

Current UNIX Practice

Standard UNIX does not support queued signals. This function has no analog in standard UNIX.

See Also

timer_create

timer_settime

sigwaitinfo

Page 470

timer_gettime

Name

timer_gettime—Time remaining on a POSIX.4 timer before expiration.

Synopsis

#include <time.h>
int timer_gettime(timer_t timer_id,
 struct itimerspec *current);

Conditionality

#ifdef _POSIX_TIMERS

Description

timer_gettime fills in current with the current setting of the interval timer indicated by timer_id. The timer is set by
timer_settime. The setting returned will contain the amount of time remaining until the timer expires next, and the
interval between successive timer expirations.

If the it_value field of current is zero, then the timer is disabled. If the interval, it_interval, is zero, then the timer is
set to go off only once.

timer_gettime returns a time interval relative to the current time, even if you set the interval timer to go off at an
absolute time.

Return Values

timer_gettime returns 0 if it successfully retrieves the setting for the indicated timer. Otherwise, it returns -1 and
sets errno to indicate the error.

Errors

If timer_gettime fails, it returns -1 and sets errno to the following:

EINVAL
The timer ID specified is not valid for this process. Either it's been deleted, or it was never created.

Notes

When you set a timer, the system rounds up your intervals to the resolution of the clock. The value the system
maintains for your interval timer will be this rounded value. Therefore, if you set a timer and then immediately
retrieve the setting of it, the set value may be greater than the value you passed in.

Page 471

For the CLOCK_REALTIME clock, the operating system must support a resolution no greater than 20,000,000
nanoseconds, or 50 times a second (50 Hz). Finer resolutions are generally expected.

Timers created in a process are not valid in any children created by that process calling fork.

Current UNIX Practice

Standard UNIX uses setitimer and getitimer, which are quite similar to timer_settime and timer_gettime. However,
getitimer only supports microsecond resolution.

Both BSD and SVR4 support setitimer/getitimer.

See Also

timer_create

timer_settime

Page 472

timer_settime

Name

timer_settime—Set expiration time/interval for a POSIX.4 timer.

Synopsis

#include <time.h>
int timer_settime(timer_t timer_id,
 int flags,
 const struct itimerspec *new_setting,
 struct itimerspec *old_setting);

Conditionality

#ifdef _POSIX_TIMERS

Description

timer_settime is used to set up a POSIX.4 interval timer to expire either periodically or once only. timer_settime is
also used to turn off a timer that is currently set. The timer, identified by timer_id, must have been previously
created by timer_create. Note especially that timer IDs are not inherited when a process calls fork!

To set a timer, set new_setting->it value with the time interval after which the timer should expire the first time. Set
new_setting->it_interval with the interval at which subsequent timer expirations should occur. When the timer
expires, a signal is delivered. The signal delivery is defined by the call to timer_create that initialized timer_id.
When you call timer_settime for a particular timer, you replace the previous setting for that timer with the new
setting. The previous setting for the timer is returned in old_setting, so it can be restored when you are done using
the interval timer.

If you set new_setting->it_interval to 0 seconds and 0 nanoseconds, then the timer will expire only once, at the
time indicated by new_setting->it_value. If new_setting->it_value is 0, then the timer is disarmed, and will not
expire at all. The nanoseconds part of a time value must be less than 1,000,000,000 and non-negative; the
nanoseconds are meant to be a fraction of a second.

If the flags parameter is 0, then the new_setting->it_value field is taken to be a time relative to the current time.
Thus, if you want to sleep for a second, set new_setting->it value to 1 and flags to 0. If, on the other hand, flags has
TIMER_ABSTIME set, then new_setting->it_value is interpreted as an absolute time. So, if you wanted to sleep
until 9:01 and 3 seconds, September 5, 1997, you would set new setting->it_value to that number of seconds (using
mktime), and set flags to TIMER_ABSTIME.

Page 473

old_setting, if it is not NULL, will be filled in with the previous setting of the timer. old_setting->it_value will
contain the relative time until the timer would have expired; it_interval contains the previous interval setting. The
value in old_setting is the same thing that would have been returned if you'd called timer_gettime instead of
timer_settime.

If old_setting is NULL, then the old interval timer setting is simply discarded.

Timer expiration signals are not queued to the process. Rather, the system maintains a count of the number of times
the timer has expired since the last time the expiration signal was delivered. The timer overrun count can be
obtained by calling timer_getoverrun.

Return Values

timer_settime returns 0 if it successfully sets the timer. Otherwise, it returns -1 and sets errno to indicate the error.

Errors

If timer_settime fails, it returns -1 and sets errno to the following:

EINVAL
The timer ID specified is not valid for this process. Either it's been deleted, or it was never created. Alternatively,
you specified a nanosecond value greater than or equal to 1,000,000,000, or less than 0.

Notes

Few, if any, systems actually support nanosecond resolutions for their interval timers. Therefore, values you specify
for nanoseconds may need to be rounded to a number of nanoseconds that the operating system supports. The
operating system will do this for you, and will round the numbers up in all cases, so you do not have to worry about
premature timer expiration. The values returned in old_setting will probably be rounded appropriately already.

For the CLOCK_REALTIME clock, the operating system must support a resolution no greater than 20,000,000
nanoseconds, or 50 times a second (50 Hz). Finer resolutions are generally expected.

If you are writing a piece of code that uses a pre-existing interval timer, and which may be used in various pieces of
software, you should make use of the old_setting parameter to save the previous setting of the timer and restore it
when you are done.

Page 474

Timers created in a process are not valid in any children created by that process calling fork.

Current UNIX Practice

Standard UNIX uses setitimer and getitimer, which are quite similar to timer_settime and timer_gettime. However,
setitimer does not support absolute timers, and it only supports microsecond resolution.

Both BSD and SVR4 support setitimer/getitimer.

See Also

timer_create

timer_gettime

timer_getoverrun

Page 475

wait, waitpid

Name

wait, waitpid — Retrieve status of terminated process and clean up corpse.

Synopsis

#include <sys/types.h>
#include <sys/wait.h>
pid_t wait(int *status);
pid_t waitpid(pid_t who, int *status, int options);

WIFEXITED(int status)
WEXITSTATUS(int status)
WIFSIGNALED(int status)
WTERMSIG(int status)
WIFSTOPPED(int status)
WSTOPSIG(int status)

Conditionality

Unconditional. However, WIFSTOPPED and WSTOPSIG are only useful if _POSIX_JOB_CONTROL is
supported.

Description

The wait functions wait for a child process to terminate or, in some cases, become stopped. The wait function will
wait for any child process to terminate; waitpid can be made to wait only for particular processes, and its behavior
can be modified by several values for options.

The waitpid function can be used to wait for processes that become stopped, if POSIX Job Control
(_POSIX_JOB_CONTROL) is supported. This use of waitpid is discussed in a separate section below.

When either wait or waitpid find a deceased process, they return the exit status for that process in the location
referenced by status. The interpretation of this status information is described below.

wait simply blocks until one child process terminates. It then returns the process ID of the terminated process and
sets its exit status in status.

waitpid is more complex. First, its blocking behavior can be modified by setting WNOHANG in options. If
WNOHANG is set, then a call to waitpid will not wait; it will only return status for a child that is already
terminated when waitpid is called, or it will return 0 instead of a process ID.

The who argument to waitpid further complicates it. The who argument specifies what process to wait for, as shown
in the following table.

Page 476

who Value Effect

-1 Wait for any child process, like wait

> 0 Wait only for the child process whose ID is who

== 0 Wait for any child process with a process group ID

Equal to the parent's (caller's) process ID

< -1 Wait for any child process whose group ID equals the absolute
value of who

Cleanup of Deceased Processes

The wait functions serve another purpose in addition to retrieving the status of dead child processes. The wait
functions also clean up the remaining data structure left by those children. There are two impacts of this. First, you
can only call wait once for any particular process. Second, the remaining data structures are left around until wait or
waitpid happens to come across them. Given large numbers of child processes and no calls to wait, it is possible for
a system to ''clog up" due to an abundance of corpses left lying about. I suggest you call wait or waitpid fairly
promptly for your exited child processes.

Status Information

The status returned by wait and waitpid is crammed into an integer. This value will be zero if the child process
exited with 0 status, either by calling exit(0), _exit(0), or by returning 0 from the main function of a compiled ANSI
C executable. Note that many programs exit implicitly by "falling off the end of main." In this case, the exit status
of the process is likely to be random, possibly zero but more likely a large, nasty number with bits set in high-order
locations.

A set of macros are defined in <sys/wait.h> for evaluating the process status. For more information see the manual
page for <sys/wait.h>.

Return Values

wait and waitpid return the ID of the process for whom status was retrieved, and return the status of the named
process in the location referenced by status. If you call waitpid with WNOHANG in options and there is no
immediately-available child process, then waitpid will return 0. Otherwise, these functions return -1 on error.

Page 477

Errors

wait and waitpid both return -1 and set errno to one of the following values:

ECHILD
There are no more children to wait for for this process. For waitpid, this also is returned if the process ID or group
specified does not exist or has no relevant processes in it.

EINTR
The call was interrupted by a signal's delivery to the calling process. The area pointed to by status may or may not
have been modified.

In addition, waitpid sets errno to the following:

EINVAL
The bits specified in options are not valid.

Current UNIX Practice

wait is standard in all UNIX systems; POSIX.1 introduced waitpid. Other UNIX systems also provide a wait3
function, which serves basically the same purpose as waitpid but which is far more interestingly named. There is no
wait2 that I am aware of.

See Also

fork

exec

exit

Page 479

PART III
Solutions to Problems

Page 481

APPENDIX
Exercise Code

Here, you'll find code for the exercises in this book, organized by chapter. Several of the exercises build on each
other; in these, I've just presented the final code, rather than duplicating programs. You can find the code for a
particular exercise, or the exercise for a particular piece of code ("what is this code supposed to be doing?"), by
looking under "exercises" in the index.

One further note: in many of these exercises, especially those that use signals to measure times, you'll see printf
statements. Technically, this is a no-no. printf is not what's known as an async-safe function—you cannot always
call it safely from within a signal handler. This is because it uses global data structures, and if you were in the
middle of a printf when a signal came in, and you then tried to printf from the signal handler—well, bad things
might happen. This is the reasoning behind async safety or the lack thereof. In practice, you can call printf pretty
safely, especially if your mainline code is not calling printf. And if you hit a machine where it doesn't work, just
take the printfs out (although they really should work).

And a final disclaimer: I've gotten these examples to work under LynxOS. Portability being what it is, real-time
being what it is, and system software vendors being what they are, you may need to do some tweaking to get these
examples to work under other systems. (Of course, they don't even have a chance on systems that don't claim
POSIX.4 conformance!)

Page 482

Chapter 3: The Basics of Real-Time: Multiple Tasks

sigs_sent_noswtch.c

 #include <stdio.h>
 #include <unistd.h>
 #include <sys/types.h>
 #include <signal.h>

 int nsigs = 0;
 pid_t chpid;

 main()
 {
 struct sigaction sa;
 extern void null_handler(), alarm_handler(), child_terminate();

 sigemptyset(&sa.sa_mask);
 sa.sa_flags = 0;
 sa.sahandler = alarm_handler; /* Terminates experiment */

 if (sigaction(SIGALRM, &sa, NULL) < 0) {
 perror("sigaction SIGALRM");
 exit(1);
 }

 sa.sa_handler = null_handler; /* Counts signals */
 if (sigaction(SIGUSR1, &sa, NULL) < 0) {
 perror ("sigaction SIGALRM");
 exit(1);
 }

 sa.sa_handler = child_terminate; /* Terminates child */
 sigfillset(&sa.sa_mask);/* Take no signals after experiment done */
 if (sigaction(SIGUSR2, &sa, NULL) < 0) {
 perror ("sigaction SIGALRM");
 exit(1);
 }

 switch (chpid = fork()) {
 case -1: /* error */
 perror (fork");
 exit(2);
 break;
 case 0: /* child */
 be_a_child();
 exit(0);
 break;
 default: /* parent */
 be_the_parent ();
 exit(0);
 break;
 }

Page 483

 fprintf(stderr, "Unexpected exit from test program!\n");
 exit(3);
 }

 be_a_child()
 {
 sigset_t sigset;
 sigemptyset (&sigset);
 while (1) {
 sigsuspend(&sigset);
 }
 }

 be_the_parent()
 {
 alarm(60);
 while(1) {
 if (kill(chpid, SIGUSR1) < 0) {
 perror("kill");
 return;
 }
 nsigs++;
 }
 }

 void
 null_handler()
 {
 nsigs++;
 }

 void
 child_terminate()
 {
 printf("%d signals received by child (%d/sec)\n", nsigs, nsigs/60);
 exit(0);
 }

 void
 alarm_handler()
 {
 printf("%d signals sent by parent (%d/sec)\n", nsigs, nsigs/60);
 kill(chpid, SIGUSR2);
 exit(0);
 }

sigs_sent_swtch.c

 #include <unistd.h>
 #include <stdio.h>
 #include <sys/types.h>
 #include <signal.h>

 int nsigs_sent = 0, nsigs_recv = 0;
 pid_t chpid, parentpid;

Page 484

 main()
 {
 struct sigaction sa;
 extern void null_handler(), alarm_handler(), child_terminate();
 sigset_t blockem;

 parentpid = getpid();
 sigemptyset(&blockem);
 sigaddset(&blockem, SIGUSR1);
 sigprocmask(SIG_BLOCK, &blockem, NULL);

 sigfillset(&sa.sa_mask);
 sa.sa_flags = 0;
 sa.sa_handler = alarm_handler; /* Terminates experiment */

 if (sigaction(SIGALRM, &sa, NULL) < 0) {
 perror("sigaction SIGALRM");
 exit(1);
 }

 sa.sa_handler = null_handler; /* Counts signals */
 if (sigaction(SIGUSR1, &sa, NULL) < 0) {
 perror("sigaction SIGUSR1");
 exit(1);
 }

 sa.sa_handler = child_terminate; /* Terminates child */
 sigfillset(&sa.sa_mask);/* Take no signals after experiment done */
 if (sigaction(SIGUSR2, &sa, NULL) < 0) {
 perror("sigaction SIGUSR2");
 exit(1);
 }

 switch (chpid = fork() {
 case -1: /* error */
 perror("fork");
 exit(2);
 break;
 case 0: /* child */
 be_a_child();
 exit(0);
 break;
 default: /* parent */
 be_the_parent();
 exit(0);
 break;
 }

 fprintf(stderr, "Unexpected exit from test program!\n");
 exit(3);
 }

 be_a_child()
 {

Page 485

 sigset_t sigset;
 sigemptyset(&sigset);
 while (1) {
 sigsuspend(&sigset);
 if (kill(parentpid, SIGUSR1) < 0) {
 perror("kill");
 return;
 }
 nsigs_sent++;
 }
}

be_the_parent()
{
 sigset_t sigset;

 sigemptyset(&sigset);
 alarm(60);
 while(1) {
 if (kill(chpid, SIGUSR1) < 0) {
 perror("kill");
 return;
 }
 nsigs_sent++;
 sigsuspend(&sigset);
 }
}

void
null_handler()
{
 nsigs_recv++;
}

void
child_terminate()
{
 printf("%d/%d signals sent/received by child (%d sent/sec)\n",
 nsigs_sent, nsigs_recv, nsigs_sent / 60);
 exit(0);
}

void
alarm_handler()
{
 printf("%d/%d signals sent/received by parent (%d sent/sec)\n",
 nsigs_sent, nsigs_recv, nsigs_sent / 60);
 kill(chpid, SIGUSR2);
 exit(0);
}

Page 486

sigs_sent_swtch.p4.c

 #define _POSIX_C_SOURCE 199309

 #include <unistd.h>
 #include <stdio.h>
 #include <unistd.h>
 #include <sys/types.h>
 #include <signal.h>

 int nsigs_sent = 0, nsigs_recv = 0;
 pid_t chpid, parentpid;

 /* Send signals between processes using POSIX.4 real-time queued signals */

 main()
 {
 struct sigaction sa;
 extern void alarm_handler(), child_terminate();
 extern void handler(int, siginfo_t *, void *);
 sigset_t blockem;

 parentpid = getpid();
 sigemptyset(&blockem);
 sigaddset(&blockem, SIGRTMIN);
 sigprocmask(SIG_BLOCK, &blockem, NULL);

 sigfillset(&sa.sa_mask);
 sa.sa_flags = 0;
 sa.sa_handler = alarm_handler; /* Terminates experiment */

 if (sigaction(SIGALRM, &sa, NULL) < 0) {
 perror ("sigaction SIGALRM");
 exit(1);
 }

 sa.sa_handler = child_terminate; /* Terminates child */
 if (sigaction(SIGUSR2, &sa, NULL) < 0) {
 perror ("sigaction SIGUSR2");
 exit(1);
 }

 sigemptyset(&sa.sa_mask); /* No particular signal blockage */
 sa.saflags = SA_SIGINFO;
 sa.sa_sigaction = handler; /* Counts signals */
 if (sigaction(SIGRTMIN, &sa, NULL) < 0) {
 perror ("sigaction SIGRTMIN");
 exit(1);
 }

 switch (chpid = fork()) {
 case -1: /* error */
 perror("fork");
 exit(2);

Page 487

 break;
 case 0: /* child */
 be_a_child();
 exit(0);
 break;
 default: /* parent */
 be_the_parent();
 exit(0);
 break;
 }

 fprintf(stderr, "Unexpected exit from test program!\n");
 exit(3);
}

be_a_child()
{
 sigset_t sigset;
 union sigval val;

 sigemptyset(&sigset);
 val.sival_int = 0;
 while (1) {
 sigsuspend (&sigset);
 if (sigqueue(parentpid, SIGRTMIN, val) < 0) {
 perror("sigqueue");
 return;
 }
 nsigs_sent++;
 val.sival_int++; /* Send different extra information */
 }
}

be_the_parent()
{
 sigset_t sigset;
 union sigval val;

 sigemptyset(&sigset);
 alarm(60);
 val.sival_int = 0;
 while(1) {
 if (sigqueue(chpid, SIGRTMIN, val) < 0) {
 perror("sigqueue");
 return;
 }
 nsigs_sent++;
 sigsuspend(&sigset);
 val.sival_int++; /* Send different information */
 }
}

/*
* The handler here does the same as does the handler for a plain old signal.
* Remember, though, that the handler is _receiving_ extra information in

Page 488

 * the info parameter. In this test, that information is discarded.
 * However, in most applications the data will probably be used.
 */
 void
 handler(int signo, siginfo_t *info, void *extra)
 {
 nsigs_recv++;
 }

 void
 child_terminate(int signo)
 (
 printf("%d/%d signals sent/received by child (%d sent/sec)\n",
 nsigs_sent, nsigs_recv, nsigs_sent / 60);
 exit(0);
 }

 void
 alarm_handler(int signo)
 {
 printf("%d/%d signals sent/received by parent (%d sent/sec)\n",
 nsigs_sent, nsigs_recv, nsigs_sent / 60);
 kill(chpid, SIGUSR2);
 exit(0);
 }

Chapter 4: Better Coordination: Messages, Shared Memory, and Synchronization

fifo.c

 #define _POSIX_C_SOURCE 199309
 #include <unistd.h>
 #include <stdio.h>
 #include <sys/types.h>
 #include <signal.h>

 int nreads = 0, nwrites = 0;
 pid_t chpid, parentpid;

 char *progname;
 char *whoami;

 #define DEFAULT_NBYTES 4
 int nbytes = DEFAULT_NBYTES;

 char *buf;

 void
 usage()
 {
 printf("Usage: %s {nbytes} (default nbytes is %d)\n",
 progname, DEFAULT_NBYTES);

Page 489

 exit(1);
}

/* Descriptive array indices for pipes */
#define WRITE_END 1
#define READ_END 0

main(int argc, char **argv)
{
 struct sigaction sa;
 extern void alarm_handler(int);
 int pe1[2], pe2[2]; /* Pipeage */

 progname = argv[0];

 if (argc == 2) {
 nbytes = atoi(argv[1]);
 } else if (argc > 2) {
 usage();
 }

 printf("Testing IPC through pipes using %d-byte reads/writes\n",
 nbytes);

 if ((buf = (char *)malloc(nbytes)) == NULL) {
 perror("malloc");
 exit(1);
 }

 /* Set up signals used for terminating the experiment */
 sigfillset(&sa.sa_mask);
 sa.sa_flags = 0;
 sa.sa_handler = alarm_handler; /* Terminates experiment */
 if (sigaction(SIGALRM, &sa, NULL) < 0) {
 perror("sigaction SIGALRM");
 exit(1);
 }

 /* Create some pipes */
 if (pipe(pe1) < 0) {
 perror("pipe");
 exit(1);
 }
 if (pipe(pe2) < 0) {
 perror("pipe");
 exit (1);
 }

 /* Duplicate the process */
 switch (chpid = fork()) {
 case -1: /* error */
 perror("fork");
 exit(2);
 break;
 case 0: /* child */

Page 490

 whoami = "child";
 bea_child(pe1[WRITE_END], pe2[READ_END]);
 exit(0);
 break;
 default: /* parent */
 whoami = "parent";
 be_the_parent(pe2[WRITE_END], pe1[READ_END]);
 exit(0);
 break;
 }

 fprintf(stderr, "Unexpected exit from test program!\n");
 exit(3);
 }

 be_a_child(int write_this, int read_this)
 {
 int ret;

 while (1) {
 if ((ret=read(read_this, buf, nbytes)) != nbytes) {
 printf ("Returned %d bytes trying to read %d\n", ret, nbytes);
 perror("child read from pipe");
 exit(1);
 }
 nreads++;
 if (write(write_this, buf, nbytes) != nbytes) {
 perror("child write to pipe");
 exit(1);
 }
 nwrites++;
 }
 }

 be_the_parent(int write_this, int read_this)
 {
 alarm(60);
 while (1) {
 if (write(write_this, buf, nbytes) != nbytes) {
 perror("parent write to pipe");
 exit(1);
 }
 nwrites++;
 if (read(read_this, buf, nbytes) != nbytes) {
 perror("parent read from pipe");
 exit(1);
 }
 nreads++;
 }
 }

 void alarm_handler(int signo)
 {
 printf("%d/%d reads/writes (%d bytes each) by %s (%d bytes sent/sec)\n",
 nreads, nwrites, nbytes, whoami, (nwrites * nbytes) / 60);

Page 491

 if (getpid() != chpid) /* Parent--kill child too */
 kill(chpid, SIGALRM);
 exit(0);

 }

msg.c

 #define _POSIX_C_SOURCE 199309
 #include <unistd.h>
 #include <stdio.h>
 #include <sys/types.h>
 #include <signal.h>
 #include <mqueue.h>

 int nreads = 0, nwrites = 0;
 pid_t chpid, parentpid;

 char *progname;
 char *whoami;

 #define DEFAULT_NBYTES 4
 int nbytes = DEFAULT_NBYTES;

 #define MQ_ONE "/mq_one"
 #define MQ_TWO "/mq_two"

 char *buf;

 void
 usage()
 {
 printf("Usage: %s {nbytes} (default nbytes is %d)\n",
 progname, DEFAULT_NBYTES);
 exit(1);
 }

 main(int argc, char **argv)
 {
 struct sigaction sa;
 extern void alarm_handler(int);
 mqd_t m1, m2;
 struct mq_attr ma;

 progname = argv[0];

 if (argc == 2) {
 nbytes = atoi(argv[l]);
 } else if (argc > 2) {
 usage();
 }

 printf("Testing IPC through POSIX.4 mqs using %d-byte sends/recvs\n",
 nbytes);

Page 492

 if ((buf = (char *)malloc(nbytes)) == NULL) {
 perror("malloc");
 exit(1);
 }

 /* Set up signals used for terminating the experiment */
 sigfillset(&sa.sa_mask);
 sa.sa_flags = 0;
 sa.sa_handler = alarm_handler; /* Terminates experiment */
 if (sigaction(SIGALRM, &sa, NULL) < 0) {
 perror("sigaction SIGALRM");
 exit(1);
 }

 /* Create some message queues */
 ma.mq_flags = 0; /* No special behavior */
 ma.mq_maxmsg = 1;
 ma.mq_msgsize = nbytes;
 i = mq_unlink(MQ_ONE); /* Deal with possible leftovers */
 if ((i < 0) && (errno != ENOENT)) {
 perror("mq_unlink");
 exit(1);
 }
 i = mq_unlink(MQ_TWO); /* Deal with possible leftovers */
 if ((i < 0) && (errno != ENOENT)) {
 perror("mq_unlink");
 exit(1);
 }
 if ((ml = mq_open(MQ_ONE, O_CREAT|O_EXCL, MODE, &ma)) < 0) {
 perror("mq_open");
 exit(1);
 }
 if (pipe(pe2) < 0) {
 perror("pipe");
 exit(1);
 }

 /* Duplicate the process */
 switch (chpid = fork()) {
 case -1: /* error */
 perror("fork");
 exit(2);
 break;
 case 0: /* child */
 whoami = "child";
 be_a_child(pe1[WRITE_END], pe2[READ_END]);
 exit(0);
 break;
 default: /* parent */
 whoami = "parent";
 be_the_parent(pe2[WRITE_END], pe1[READ_END]);
 exit(0);
 break;
 }

Page 493

 fprintf(stderr, "Unexpected exit from test program!\n");
 exit(3);
}

be_a_child(int write_this, int read_this)
{
 int ret;

 while (1) {
 if ((ret=read(read_this, buf, nbytes)) != nbytes) {
 printf("Returned %d bytes trying to read %d\n", ret, nbytes);
 perror("child read from pipe");
 exit(1);
 }
 nreads++;
 if (write(write_this, buf, nbytes) != nbytes) {
 perror("child write to pipe");
 exit(1);
 }
 nwrites++;
 }
}

be_the_parent(int write_this, int read_this)
{
 alarm(60);
 while (1) {
 if (write(write_this, buf, nbytes) != nbytes) {
 perror ("parent write to pipe");
 exit(1);
 }
 nwrites++;
 if (read(read_this, buf, nbytes) != nbytes) {
 perror("parent read from pipe");
 exit(1);
 }
 nreads++;
 }
}

void alarm_handler(int signo)
{
 printf("%d/%d reads/writes (%d bytes each) by %s (%d bytes sent/sec)\n",
 nreads, nwrites, nbytes, whoami, (nwrites * nbytes) / 60);
 if (getpid() != chpid) /* Parent--kill child too */
 kill(chpid, SIGALRM);
 exit(0);

}

Page 494

shm.c

 /* This program, called as "shm_1", creates a shared memory area which
 is shared with a process created via fork. The second
 process also does an exec. */

 /*
 * Compile with SHM_1 defined to get shm_1 executable.
 * Compile with SHM_2 defined to get shm_2 executable.
 */

 #define POSIX_C_SOURCE 199309L

 #include <unistd.h> /* POSIX et al */
 #include <limits.h> /* PAGESIZE */
 #include <sys/mman.h> /* shm_open, mmap */
 #include <sys/types.h> /* waitpid */
 #include <sys/wait.h> /* waitpid */
 #include <signal.h> /* sigaction */

 #define PARENT_SHM_DATA "Parent Wrote This"
 #define CHILD_PRE_EXEC_DATA "Child Wrote This Before Exec-ing"
 #define CHILD_POST_EXEC_DATA "Child Wrote This AFTER Exec-ing"

 #ifdef SHM_1
 #define SHMNAME "/my_shm"
 #define NEW_IMAGE "shm_2"

 void cleanup(int called_via_signal)
 {
 (void) shm_unlink(SHMNAME);
 if (called_via_signal)
 exit(3);
 }

 main()
 {
 int d;
 char *addr;
 int chpid;
 int w;
 struct sigaction sa;

 /*
 * In case of premature termination, we want to make sure to
 * clean up the shared memory region. Hence, the signal handlers.
 */
 sa.sa_handler = cleanup;
 sa.sa_flags = 0;
 sigemptyset(&sa.sa_mask);
 (void)sigaction(SIGINT, &sa, NULL);
 (void)sigaction(SIGBUS, &sa, NULL);
 (void)sigaction(SIGSEGV, &sa, NULL);

 /* Create shared memory region */

Page 495

 d = shm_open(SHMNAME, O_RDWR|O_CREAT|O_TRUNC, S_IRWXU);
 ftruncate(d, (off_t)PAGESIZE); /* Make region PAGESIZE big */
 addr = (char *)mmap(NULL, (size_t)PAGESIZE, PORT_READ|PROT_WRITE,
 MAP_SHARED, d, 0);

 /* Put data in the shared memory region */
 printf("Parent stores in SHM: \"%s\"\n", PARENT_SHM_DATA);
 sprintf(addr, PARENT_SHM_DATA);

 /* Create a child process */
 switch (chpid = fork()) {
 case -1: perror("fork");
 cleanup(0);
 exit (1);
 case 0: /* child */
 break;
 default: /* parent; await child */
 chpid = wait(&w, 0);
 /* Child is done: see what's in SHM */
 printf("Parent sees in SHM: \"%s\"\n",
 (char *)addr);
 cleanup(0);
 exit(0);
 }

 /* Code executed by child */
 printf("Child, pre-exec, sees in SHM: \"%s\"\n", addr);
 printf("Child, pre-exec, stores in SHM: \"%s\"\n", CHILD_PRE_EXEC_DATA);
 sprintf(addr, CHILD_PRE_EXEC_DATA);

 /* Exec a new process image */
 execlp(NEW_IMAGE, NEW_IMAGE, SHM_NAME, NULL);
 perror("returned from execlp");
 exit(2);
}
#endif /* SHM_1 */
#ifdef SHM_2
main(int argc, char **argv)
{
 int d;
 char *addr;

 /* Single argument is the name of the shared memory region to map in */
 d = shm_open(SHMNAME, O_RDWR);
 addr = (char *)mmap(NULL, (size_t)PAGESIZE, PORT_READ|PROT_WRITE,
 MAP_SHARED, d, 0);

 printf("Child, after exec, sees: \"%s\"\n", addr);
 printf("Child, post-exec, stores in SHM: \"%s\"\n",
 CHILD_POST_EXEC_DATA);
 sprintf(addr, CHILD_POST_EXEC_DATA);

 exit(0);
}
#endif /* SHM_2 */

Page 496

shmmutex_flock. c

 /*
 * This program benchmarks the bandwidth of shared memory when we use
 * standard POSIX file locks as a means of mutual exclusion.
 * Notice that this test doesn't do any actual synchronization; there's
 * only one process. We're benchmarking the case of mutual exclusion.
 * In this case, the majority of accesses are uncontested.
 *
 * Alternatively, you could fork a child and run two processes at once,
 * benchmarking total throughput. This would not work well under a real-
 * time scheduler on a uniprocessor, though.
 *
 * Compare this code to code using semaphores.
 */

 #define POSIX_C_SOURCE 199309L

 #include <unistd.h> /* POSIX et al */
 #include <limits.h> /* PAGESIZE */
 #include <sys/types.h> /* fcntl */
 #include <sys/mman.h> /* shm_open, mmap */
 #include <signal.h> /* sigaction */

 #define SHMNAME "/my_shm"
 #define TIME_PERIOD 60 /* Run test for a minute */

 int iterations = 0;
 int nbytes; /* Test, passing 4 bytes of information */

 void timer_expired(int called_via_signal)
 {
 printf("%d iterations for region of %d bytes\n", iterations, nbytes);
 exit(0);
 }

 main(int argc, char **argv)
 {
 int d;
 char *addr;
 struct sigaction sa;
 struct flock fl;

 if (argc == 2)
 nbytes = atoi(argv[1]); /* Use #bytes passed */
 else
 nbytes = 4; /* Default of 4 bytes (a word on real machines :) */

 sa.sa_handler = timer_expired;
 sa.sa_flags = 0;
 sigemptyset(&sa.sa_sigmask);
 (void)sigaction(SIGALRM, &sa, NULL);

 /* Create shared memory region */
 d = shm_open(SHMNAME, O_RDWR|O_CREAT|O_TRUNC, S_IRWXU);

Page 497

 ftruncate(d, (off_t)PAGESIZE); /* Make region PAGESIZE big */
 addr = (char *)mmap(NULL, (size_t)PAGESIZE, PORT_READ|PROT_WRITE,
 MAP_SHARED, d, 0);
 shm_unlink(SHMNAME); /* So it goes away on exit */

 lockfile = open("lockfile", O_RDWR|O_CREAT|O_TRUNC, S_IRWXU);
 write(lockfile, "A Couple Of Bytes", strlen("A Couple Of Bytes"));
 unlink("lockfile"); /* So it goes away on exit */

 /*
 * Begin test. Repeatedly acquire mutual exclusion, write to area,
 * and release mutual exclusion.
 */
 lockit.l_type = F_WRLCK;
 lockit.l_whence = SEEK_SET;
 lockit.l_start = 0;
 lockit.l_len = 1;

 unlockit = lockit;
 unlockit.l_type = F_UNLCK;

 alarm(TIME_PERIOD);
 while (1) {
 /* acquire parent's lock */
 if (fcntl(lockfile, F_SETLKW, &lockit) < 0) {
 perror ("fcntl (F_SETLKW wrlock)");
 exit(1);
 }
 /* store data in shared memory area */
 for (i=0; i<nbytes; i++)
 addr[i] = 'A';
 /* release parent's lock */
 if (fcntl(lockfile, F_SETLKW, &unlockit) < 0) {
 perror ("fcntl(F_SETLKW unlock)");
 exit(1);
 }
 iterations++;
 }
 }

shmmutex_sem.c

 /*
 * This program benchmarks the bandwidth of shared memory when we use
 * POSIX.4 semaphores as the mutual exclusion mechanism.
 * In this example, I'm using a named semaphore.
 *
 * Like before, this test doesn't do any actual synchronization; there's
 * only one process. We're benchmarking the case of mutual exclusion.
 * In this case, the majority of accesses are uncontested.
 *
 * Alternatively, you could fork a child and run two processes at once,
 * benchmarking total throughput. This would not work well under a real-
 * time scheduler on a uniprocessor, though.

Page 498

 *
 * Compare this code to code using file locking.
 */

 #define POSIX_C_SOURCE 199309L

 #include <unistd.h> /* POSIX et al */
 #include <limits.h> /* PAGESIZE */
 #include <semaphore.h> /* sem_* */
 #include <sys/mman.h> /* shm_open, mmap */
 #include <signal.h> /* sigaction */

 #define SHMNAME "/my_shm"
 #define SEMNAME "/my_sem"
 #define TIME_PERIOD 60 /* Run test for a minute */

 int iterations = 0;
 int nbytes = 4; /* Test, passing 4 bytes of information */

 void timer_expired(int called_via_signal)
 {
 printf("%d iterations for region of %d bytes\n", iterations, nbytes);
 exit(0);
 }

 main(int argc, char **argv)
 {
 int d;
 char *addr;
 struct sigaction sa;
 sem_t *s;

 if (argc == 2)
 nbytes = atoi(argv[1]); /* Use #bytes passed */

 sa.sa_handler = timer_expired;
 sa.sa_flags = 0;
 sigemptyset(&sa.sa_sigmask);
 (void)sigaction(SIGALRM, &sa, NULL);

 /* Create shared memory region */
 d = shm_open(SHMNAME, O_RDWR|O_CREAT|O_TRUNC, S_IRWXU);
 ftruncate(d, (off_t)PAGESIZE); /* Make region PAGESIZE big */
 addr = (char *)mmap(NULL, (size_t)PAGESIZE, PORT_READ|PROT_WRITE,
 MAP_SHARED, d, 0);
 shm_unlink(SHMNAME); /* So it goes away on exit */

 /* create semaphore */
 s = sem_open(SEMNAME, O_CREAT, S_IRWXU, 1); /* value 1==>unlocked */
 sem_unlink(SEMNAME); /* So it goes away on exit */

 /*
 * Begin test. Repeatedly acquire mutual exclusion, write to area,
 * and release mutual exclusion.
 */

Page 499

 alarm(TIME_PERIOD);
 while (1) {
 /* acquire parent's lock */
 sem_wait (s);
 /* store data in shared memory area */
 for (i=0; i<nbytes; i++)
 addr[i] = 'A';
 /* release parent's lock */
 sem_post(s);
 iterations++;
 }
 /* Semaphore is automatically closed on exit, as is shm */
 }

shmmutex_semembed.c

 /*
 * This program benchmarks the bandwidth of shared memory when we use
 * POSIX.4 semaphores as the mutual exclusion mechanism.
 * In this example, I'm using an unnamed semaphore embedded
 * in the shared memory area.
 *
 * Like before, this test doesn't do any actual synchronization; there's
 * only one process. We're benchmarking the case of mutual exclusion.
 * In this case, the majority of accesses are uncontested.
 *
 * Alternatively, you could fork a child and run two processes at once,
 * benchmarking total throughput. This would not work well under a real-
 * time scheduler on a uniprocessor, though.
 *
 * Compare this code to code using file locking.
 */

 #define POSIX_C_SOURCE 199309L

 #include <unistd.h> /* POSIX et al */
 #include <limits.h> /* PAGESIZE */
 #include <semaphore.h> /* sem_* */
 #include <sys/mman.h> /* shm_open, mmap */
 #include <signal.h> /* sigaction */

 #define SHMNAME "/my_shm"
 #define SEMNAME "/my_sem"
 #define TIME_PERIOD 60 /* Run test for a minute */

 int iterations = 0;
 int nbytes = 4; /* Test, passing 4 bytes of information */

 void timer_expired(int called_via_signal)
 {
 printf("%d iterations for region of %d bytes\n", iterations, nbytes);
 exit(0);
 }

 main(int argc, char **argv)

Page 500

 {
 int d;
 char *addr;
 /* This structure is overlaid on the shared memory */
 struct fu {
 sem_t s;
 char beginning_of_data[1];
 } *P;
 struct sigaction sa;

 if (argc == 2)
 nbytes = atoi(argv[1]); /* Use #bytes passed */

 sa.sa_handler = timer_expired;
 sa.sa_flags = 0;
 sigemptyset(&sa.sa_sigmask);
 (void)sigaction(SIGALRM, &sa, NULL);

 /* Create shared memory region */
 d = shm_open(SHMNAME, O_RDWR|O_CREAT|O_TRUNC, S_IRWXU);
 ftruncate(d, (off_t)PAGESIZE); /* Make region PAGESIZE big */
 addr = (char *)mmap(NULL, (size_t)PAGESIZE, PORT_READ|PROT_WRITE,
 MAP_SHARED, d, 0);
 shm_unlink(SHMNAME); /* So it goes away on exit */
 p = (struct fu *)addr;

 /* create semaphore */
 sem_init(&p->s, 1, 1); /* pshared == 1, value 1==>unlocked */

 /*
 * Begin test. Repeatedly acquire mutual exclusion, write to area,
 * and release mutual exclusion.
 */
 alarm(TIME_PERIOD);
 addr = p->beginning_of_data;
 while (1) {
 /* acquire parent's lock */
 sem_wait(&p->s);
 /* store data in shared memory area */
 for (i=0; i<nbytes; i++)
 addr[i] = 'A';
 /* release parent's lock */
 sem_post(&p->s);
 iterations++;
 }

 /* Semaphore is automatically destroyed when shm is closed on exit */
 }

Page 501

mksem.c

 /*
 * This program makes a named semaphore, and leaves it lying around
 * when it exits.
 */
 #define POSIX_C_SOURCE 199309L

 #include <unistd.h> /* POSIX et al */
 #include <semaphore.h> /* sem_* */

 main(int argc, char **argv)
 {
 sem_t *s;

 if (argc != 2) {
 fprintf(stderr, "Usage: %s semaphore-name\n", argv[0]);
 exit(1);
 }

 /* create semaphore */
 s = sem_open(argv[1], O_CREAT, S_IRWXU, 1); /* value 1==>unlocked */
 if (s == (sem_t *)-1) {
 perror(argv[1]);
 exit(2);
 }

 exit(0);
 }

rmsem.c

 /*
 * This program removes a named semaphore.
 */
 #define POSIX_C_SOURCE 199309L

 #include <unistd.h> /* POSIX et al */
 #include <semaphore.h> /* sem_* */

 main(int argc, char **argv)
 {
 if (argc != 2) {
 fprintf(stderr, "Usage: %s semaphore-name\n", argv[0]);
 exit(1);
 }

 /* remove semaphore */
 if (sem_unlink(argv[1]) < 0) {
 perror(argv[1]);
 exit(2);
 }

 exit(0);
 }

Page 502

Chapter 5: On Time: Scheduling, Time, and Memory Locking

cpubound.c

 /* This program is compute-bound. Durr! */

 main()
 {
 alarm(30);
 while (1)
 ;

 }

iobound. c

 #define _POSIX_C_SOURCE 199309 /* POSIX 9/1993: .1, .4 */
 #include <unistd.h>

 #include <sys/types.h>
 #include <sys/stat.h>
 #include <fcntl.h>
 #include <stdio.h>
 /*
 * This program continuously performs I/O to the device named DEV_FILE.
 * You should make this a serial line or some such; avoid using disks
 * which may have useful data on them...
 */
 #define DEV_FILE "/dev/com1" /* First serial port on my machine */

 main()
 {
 int fd, ret;
 char byte;

 fd = open(DEV_FILE, O_WRONLY);
 if (fd < 0) {
 perror(DEV_FILE);
 exit(1);
 }
 alarm(30);
 while (1) {
 ret = write(fd, &byte, sizeof(byte));
 switch (ret) {
 case sizeof(byte):
 break;
 case -1:
 perror("write");
 exit(2);
 break;
 default:
 fprintf(stderr, "Write, ret %d?!?\n", ret);

Page 503

 exit(3);
 break;
 }
 }
 }

vsched. c

 #include <sched.h>

 /*
 * This is one implementation of the virtual scheduling interface I mentioned
 * in the scheduling chapter. It allows you to use a range of priorities
 * based at 0, regardless of the underlying implementation's priority numbers.
 * This code is used in all three of the versions of "atprio".
 *
 * Note: this might get you in trouble if your system supports different
 * schedulers in different priority ranges. Your virtual priority 0 for
 * SCHED_FIFO would not compete equally with your virtual priority 0 for
 * SCHED_RR, e.g., if the lowest underlying priorities were not the same.
 */
 static int sched_rr_min, sched_rr_max;
 static int sched_fifo_min, sched_fifo_max;

 static int vsched_initialized = 0;

 static void
 vsched_init()
 {
 sched_rr_min = sched_get_priority_min(SCHED_RR);
 sched_rr_max = sched_get_priority_max(SCHED_RR);
 sched_fifo_min = sched_get_priority_min(SCHED_FIFO);
 sched_fifo_max = sched_get_priority_max(SCHED_FIFO);
 }

 int
 vsched_setscheduler(
 pid_t pid, /* Process to affect */
 int vsched_policy, /* Policy to set */
 const struct sched_param *vsched_param) /* Parameters to set */
 {
 struct sched_param tmp;

 if (! vsched_initialized)
 vsched_init();

 tmp = *vsched_param;
 switch (vsched_policy) {
 case SCHED_FIFO:
 tmp.sched_priority += sched_fifo_min;
 break;
 case SCHED_RR:
 tmp.sched_priority += sched_rr_min;
 break;

Page 504

 default:
 break; /* Do nothing */
 }
 return (sched_setscheduler(pid, vsched_policy, &tmp));
 }

 int
 vsched_setprio(
 pid_t pid, /* Process to affect */
 int vsched_prio) /* Priority to set */
 {
 struct sched_param tmp;
 int sched_policy = sched_getscheduler(pid);

 if (! vsched_initialized)
 vsched_init ();

 tmp.sched_priority = vsched_prio;
 switch (sched_policy) {
 case SCHED_FIFO:
 tmp.sched_priority += sched_fifo_min;
 break;
 case SCHED_RR:
 tmp.sched_priority += sched_rr_min;
 break;
 default:
 break; /* Do nothing; function below will return error */
 }
 return (sched_setscheduler(pid, sched_policy, &tmp));
 }

 int
 vsched_getprio(
 pid_t pid) /* Process whose priority is desired */
 {
 struct sched_param tmp;
 int sched_policy;

 if (! vsched_initialized)
 vsched_init();

 if ((sched_policy=sched_getscheduler(pid)) < 0) {
 return -1;
 }
 if (sched_getparam(pid, &tmp) < 0) {
 return -1;
 }
 switch (sched_policy) {
 case SCHED_FIFO:
 return tmp.sched_priority - sched_fifo_min;
 case SCHED_RR:
 return tmp.sched_priority - sched_rr_min;
 default:

Page 505

 return -1; /* Invalid virtual priority */
 }
 }

atprio.1.c

 #include <stdio.h>
 #include <sched.h>

 /*
 * atprio, version 1: implemented using POSIX.4 standard facilities
 * and virtual scheduling (based at 0, regardless of minima/maxima of
 * implementation).
 *
 * Simply sets priority to a given number, based at 0.
 */

 char *progname;

 usage() { fprintf(stderr, "Usage: %s <priority> <command>\n",progname); }

 main(int argc, char **argv)
 {
 struct sched_param cmd_sched_params;

 progname = argv[0];

 if (argc < 3) {
 usage();
 exit(1);
 } else {
 /* Set de (virtual) priority */
 cmd_sched_params.sched_priority = atoi(argv[1]);
 if (vsched_setscheduler(0, SCHED_FIFO, &cmd_sched_params) < 0) {
 perror("vsched_setscheduler");
 exit(2);
 }
 /* Run de command */
 if (execvp(argv[2], &argv[2]) < 0) {
 perror("execvp");
 exit(3);
 }
 }

 }

atprio.2.c

 #include <stdio.h>
 #include <sched.h>

 /*
 * atprio, version 2: implemented using POSIX.4 standard facilities
 * and virtual scheduling (based at 0, regardless of minima/maxima of
 * implementation).

Page 506

 *
 * Priority deltas, +-delta, are now supported.
 */

 char *progname;

 usage() { fprintf(stderr, "Usage: %s {<priority>|[+-]<prio delta>}
<command>\n",progname); }

 main(int argc, char **argv)
 {
 struct sched_param cmd_sched_params;
 int delta, policy;

 progname = argv[0];

 if (argc < 3) {
 usage();
 exit(1);
 } else {
 policy = sched_getscheduler(0);
 if ((policy != SCHED_FIFO) && (policy != SCHED_RR)) {
 fprintf(stderr, "Cannot adjust priority under scheduler %d\n", policy);
 exit(2);
 }
 if ((*argv[l] >= '0') && (*argv[1] <= '9')) {
 /* Explicit priority assignment */
 cmd_sched_params.sched_priority = atoi(argv[1]);
 } else {
 /*
 * Priority delta from current priority.
 * Only works if this process is running
 * SCHED_FIFO or SCHED_RR
 */
 if (*argv[l] == '+') delta = atoi(&argv[1][1]);
 else if (*argv[l] == '-') delta = -atoi(&argv[1][1]);
 else {
 usage();
 exit (1);
 }
 cmd_sched_params.sched_priority =
 vsched_getprio(0) + delta;
 }
 if (vsched_setscheduler(0, policy, &cmd_sched_params) < 0) {
 perror("vsched_setscheduler");
 exit(2);
 }
 /* Run de command */
 if (execvp(argv[2], &argv[2]) < 0) {
 perror("execvp");
 exit(3);
 }
 }

 }

Page 507

atprio.3.c

 #include <stdio.h>
 #include <sched.h>

 /*
 * atprio, version 3: implemented using POSIX.4 standard facilities
 * and virtual scheduling (based at 0), supporting priority adjustment
 * and the ability to set/adjust the scheduling priority of the calling
 * process.
 */

 char *progname;

 usage() { fprintf(stderr, "Usage: %s {<priority>|[+-]<prio delta>}
<command>\n",progname); }

 main(int argc, char **argv)
 {
 struct sched_param cmd_sched_params;
 int delta, policy;
 int pid_to_affect = 0; /* self */
 char **exec_this;

 progname = argv[0];

 /* Figure out who to affect--us or our parent--and what to execute. */
 if (argc == 2) {
 /* atprio 3 or atprio +-7: affect caller's priority */
 pid_to_affect = getppid(); /* Parent PID */
 exec_this = NULL;
 } else if (argc >= 3) {
 /* atprio 16 ls -lR: run command at a priority */
 exec_this = &argv[2];
 }

 policy = sched_getscheduler(pid_to_affect);
 if ((policy != SCHED_FIFO) && (policy != SCHED_RR)) {
 fprintf(stderr, "Cannot adjust priority under scheduler %d\n", policy);
 exit(2);
 }
 if ((*argv[1] >= '0') && (*argv[1] <= '9')) {
 /* Explicit priority assignment */
 cmd_sched_params.sched_priority = atoi(argv[1]);
 } else {
 /*
 * Priority delta from current priority.
 * Only works if this process is running
 * SCHED_FIFO or SCHED_RR
 */
 if (*argv[1] == '+') delta = atoi(&argv[1][1]);
 else if (*argv[1] == '-') delta = -atoi(&argv[1][1]);
 else {
 usage();
 exit(1);
 }

Page 508

 cmd_sched_params.sched_priority =
 vsched_getprio(pid_to_affect) + delta;
 }
 if (vsched_setscheduler(pid_to_affect, policy, &cmd_sched_params) < 0) {
 perror ("vsched_setscheduler");
 exit(2);
 }
 /* Run de command, if dere is one */
 if (exec_this != NULL) {
 if (execvp(*exec_this, exec_this) < 0) {
 perror("execvp");
 exit(3);
 }
 }
 exit(0);
 }

periodic_timer.c

 /*
 * This program takes timer interrupts forever.
 * It uses Berkeley-style interval timers,
 * rather than POSIX.4 interval timers.
 * Therefore it doesn't need unistd.h, _POSIX_C_SOURCE, etc.
 */
 #include <signal.h>
 #include <sys/time.h>
 #include <stdio.h>

 char *getopt_flags = "t:v"; /* '-t': specify time interval in usec */
 extern char *optarg;

 #define DEFAULT_USECS 100000 /* 10 Hz */
 int verbose = 0;

 char *progname;

 void
 usage()
 {
 fprintf(stderr, "Usage: %s {-t usecs}\n", progname);
 return;
 }

 void timer_intr(int sig)
 {
 if (verbose) puts("ouch!");
 return;
 }

 main(int argc, char **argv)
 {
 int c;
 struct itimerval i;
 struct sigaction sa;

Page 509

 sigset_t allsigs;

 progname = argv[0];

 i.it_interval.tv_sec = 0;
 i.it_interval.tv_usec = DEFAULT_USECS;

 while ((c=getopt(argc, argv, getopt_flags)) != -1) switch (c) {
 case 't':
 i.it_interval.tv_usec = atoi(optarg);
 i.it_interval.tv_sec = 0;
 while (i.itinterval.tv_usec > 1000000) {
 i.it_interval.tv_usec -= 1000000;
 i.it_interval.tv_sec++;
 }
 printf("Time interval: %d sec %d usec\n",
 i.it_interval.tv_sec,
 i.it_interval.tv_usec);
 break;
 case 'v':
 verbose++;
 break;
 default:
 usage();
 exit(1);
 }
 i.it_value = i.it_interval;

 sigemptyset(&sa.sa_mask);
 sa.sa_flags = 0;
 sa.sa_handler = timer_intr;

 if (sigaction(SIGALRM, &sa, NULL) < 0) {
 perror ("sigaction");
 exit(2);
 }

 if (setitimer(ITIMER_REAL, &i, NULL) < 0) {
 perror("setitimer");
 exit(3);
 }

 sigemptyset(&allsigs);
 while (1) {
 sigsuspend(&allsigs);
 }
 exit(4);
 }

Page 510

periodic_timer.p4.c

 /*
 * This program takes timer interrupts forever.
 * It uses POSIX.4 interval timers.
 */
 #define _POSIX_C_SOURCE 199309
 #include <unistd.h>
 #include <signal.h>
 #include <time.h>
 #include <stdio.h>

 char *getopt_flags = "t:v"; /* '-t': specify time interval in usec */
 extern char *optarg;

 #define DEFAULT_NSECS 100000000 /* 10 Hz */

 int verbose = 0;

 char *progname;

 void
 usage()
 {
 fprintf(stderr, "Usage: %s {-t nsecs} {-v}\n", progname);
 return;
 }

 void timer_intr(int sig, siginfo_t *extra, void *cruft)
 {
 if (verbose) {
 if (extra != NULL) {
 printf("sig %d code %d val (ptr) %x overrun %d\n",
 extra->si_signo,
 extra->si_code,
 extra->si_value.sival_ptr,
 timer_getoverrun(* (timer_t *)
 extra->si_value.sival_ptr));
 } else {
 printf("No extra data\n");
 }
 }
 return;
 }

 timer_t mytimer;

 main(int argc, char **argv)
 {
 int c;
 struct itimerspec i;
 struct sigaction sa;
 sigset_t allsigs;
 struct sigevent timer_event;

Page 511

progname = argv[0];

i.it_interval.tv_sec = 0;
i.it_interval.tv_nsec = DEFAULT_NSECS;

while ((c=getopt(argc, argv, getopt_flags)) != -1) switch (c) {
 case 't':
 i.it_interval.tv_nsec = atoi(optarg);
 i.it_interval.tv_sec = 0;
 while (i.it_interval.tv_nsec > 1000000000) {
 i.it_interval.tv_nsec -= 1000000000;
 i.it_interval.tv_sec++;
 }
 printf("Time interval: %d sec %d nsec\n",
 i.it_interval.tv_sec,
 i.it_interval.tv_nsec);
 break;
 case 'v':
 verbose++;
 break;
 default:
 usage();
 exit(1);
}
i.it_value = i.it_interval;

sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_SIGINFO; /* Real-Time signal */
sa.sa_sigaction = timer_intr;

if (sigaction(SIGRTMIN, &sa, NULL) < 0) {
 perror("sigaction");
 exit(2);
}

/* Create a timer based upon the CLOCK_REALTIME clock */

/*
* This describes the asynchronous notification to be posted
* upon this timer's expiration:
* - use signals (not that there's any other alternative at present)
* - send SIGRTMIN
* - send extra data consisting of a pointer back to the timer ID.
*/
timer_event.sigev_notify = SIGEV_SIGNAL;
timer_event.sigev_signo = SIGRTMIN;
timer_event.sigev_value.sival_ptr = (void *)&mytimer;

if (timer_create(CLOCK_REALTIME, &timer_event, &mytimer) < 0) {
 perror("timer_create");
 exit(5);
}
if (verbose) printf("Timer id at location %x\n", &mytimer);
if (timer_settime(mytimer, 0, &i, NULL) < 0) {
 perror("setitimer");

Page 512

 exit(3);
 }

 sigemptyset(&allsigs);
 while (1) {
 sigsuspend(&allsigs);
 }
 exit(4);
}

cpubench.c

 #define _POSIX_C_SOURCE 199309 /* POSIX 9/1993: .1, .4 */
 #include <unistd.h>

 #include <stdio.h>
 #include <sys/types.h>
 #include <signal.h>

 /*
 * Simple CPU usage benchmark.
 *
 * You are not likely to see any difference at all when running this
 * concurrently with a timer that goes off at 100, 1000, or even 5000 Hz.
 * The reason is that the majority of systems don't support such high
 * resolutions, and will quietly trim back your timer interval to the
 * maximum supported by the system, usually on the order of 100 Hz.
 * So, setting an interval timer higher than this maximum resolution
 * does not produce any further degradation of background conputation--
 * because the timer just don't go no faster!
 */

 #define INTERVAL_SECS 10

 int niter;

 main()
 {
 struct sigaction sa;
 extern void alarm_handler();

 sigemptyset (&sa.sa_mask);
 sa.sa_flags = 0;
 sa.sa_handler = alarm_handler; /* Terminates experiment */

 if (sigaction(SIGALRM, &sa, NULL) < 0) {
 perror("sigaction SIGALRM");
 exit(1);
 }

 alarm (INERVAL_SECS);

 while (1)
 niter++;

 }

Page 513

 void
 alarm_handler()
 {
 printf("%d iterations in %d sec = %d iter/sec\n",
 niter, INTERVAL_SECS, niter / INTERVAL_SECS);
 exit(0);
 }

jitter.p4.c

 #define _POSIX_C_SOURCE 199309

 #include <unistd.h>
 #include <sys/types.h>
 #include <time.h>
 #include <sys/signal.h>
 #ifdef Lynx
 #include <conf.h> /* HZ */
 #else
 /* Most UNIX systems define HZ in param.h. */
 #include <sys/param.h> /* HZ */
 #endif

 /*
 * This program measures the jitter using a 100-Hz
 * POSIX.4 interval timer. SIGRTMIN is the timer signal used.
 *
 * A reasonable real-time system is hardly likely to
 * display any jitter at all at 100 Hz, especially if timestamps
 * are taken only with an accuracy of 100 Hz. The pedal is more likely
 * to hit the metal at higher rates.
 *
 * The Berkeley-style timer-based jitter program only used the signal as
 * a means to terminate a call to sigsuspend; nothing actually happened in
 * that signal handler. In contrast, this program performs the jitter
 * calculation in the signal handler (just to add a little variety).
 */

 #define DEFAULT_SECS 0
 #define DEFAULT_NSECS (1000000000 / HZ) /* 100 times a second */

 #define TIMEBUF_MAX 200
 struct timespec start_time, end_time, ta[TIMEBUF_MAX];
 int this, prev;
 long secs, nsecs;

 #define JITTERBUF_MAX 100
 struct {
 int next;
 struct timespec j[JITTERBUF_MAX];
 } jbuf;
 int nsig;

 extern void ctrlc(int);

Page 514

 extern void timer_expiration(int, siginfo_t *, void *);

 main(int argc, char **argv)
 {
 sigset_t block_these, pause_mask;
 struct sigaction s;
 struct itimerspec interval;
 timer_t tid;
 struct sigevent notification;

 /*
 * I assume this program is externally run at the highest priority
 * in the system. A program like "atprio" can be used for this
 * purpose.
 */

 /* Lock all process memory down */
 if (mlockall(MCL_CURRENT|MCL_FUTURE) < 0) {
 perror("mlockall");
 exit(1);
 }
 sigemptyset(&block_these);
 sigaddset(&block_these, SIGRTMIN);
 sigprocmask(SIG_BLOCK, &block_these, &pause_mask);
 if (sigismember(&pause_mask, SIGRTMIN)) {
 printf("ALRM was part of previous mask\n");
 sigdelset(&pause_mask, SIGRTMIN);
 }
 /* Handler for SIGINT */
 sigemptyset(&s.sa_mask);
 sigaddset (&s.sa_mask, SIGRTMIN);
 s.sa_flags = OL;
 s.sa_handler = ctrlc;
 if (sigaction(SIGINT, &s, NULL) < 0) {
 perror("sigaction SIGINT");
 exit (1);
 }
 /* Handler for RT signal SIGRTMIN */
 sigemptyset(&s.sa_mask);
 sigaddset(&s.sa_mask, SIGINT);
 s.sa_flags = SA_SIGINFO;
 s.sa_sigaction = timer_expiration;
 if (sigaction(SIGRTMIN, &s, NULL) < 0) {
 perror("sigaction SIGRTMIN");
 exit(1);
 }

 secs = DEFAULT_SECS;
 nsecs = DEFAULT_NSECS;
 /* Assure nsecs is modulo HZ (paranoia) */
 nsecs -= nsecs % HZ;

 interval.it_value.tv_sec = secs;
 interval.it_value.tv_nsec = nsecs;
 interval.it_interval.tv_sec = secs;

Page 515

 interval.it_interval.tv_nsec = nsecs;

 jbuf.next = 0;
 nsig = 0;
 prev = -1;
 this = 0;

 clock_gettime (CLOCK_REALTIME, &start_time);
 notification.sigev_notify = SIGEV_SIGNAL;
 notification.sigev_signo = SIGRTMIN;
 notification.sigev_value.sival_ptr = (void *)&tid;
 if (timer_create(CLOCK_REALTIME, ¬ification, &tid) < 0) {
 perror("timer_create");
 exit(1);
 }
 timer_settime(tid, 0, &interval, NULL);
 while (1) {
 sigsuspend(&pause_mask);
 }

}

void ctrlc(int sig)
{
 int i;
 int total_sec, total_nsec;
 float totaltime;
 struct timespec jmax;
 int start_sec;

 gettimeofday(&end_time, NULL);
 total_sec = end_time.tv_sec - start_time.tv_sec;
 total_nsec = end_time.tv_nsec - start_time.tv_nsec;
 totaltime = (float)total_sec * 1000000000. + (float)total_nsec;
 if (total_nsec < 0) {
 total_sec++;
 total_nsec += 1000000000;
 }
 printf("Control-C\n");
 printf("%d signals in %d sec %d nsec = 1 signal every %f nsec\n",
 nsig, total_sec, total_nsec,
 totaltime / (float)nsig);
 jmax.tv_sec = jmax.tv_nsec = 0;
 totaltime = 0.;
 for (i=0; i<jbuf.next; i++) {
 if ((abs(jbuf.j[i].tv_sec) > jmax.tv_sec) ||
 (abs(jbuf.j [i].tv_nsec) > jmax.tv_nsec)) {
 jmax.tv_sec = abs(jbuf.j[i].tv_sec);
 jmax.tv_nsec = abs(jbuf.j[i].tv_nsec);
 }
 totaltime +=
 (((float)abs(jbuf.j[i].tv_sec)) * 1000000000.) +
 ((float)abs(jbuf.j[i].tv_nsec));
 }
 printf("Max jitter: %d nsec\n", jmax.tv_sec * 1000000000 + jmax.tv_nsec);

Page 516

 /* Jitter wasn't measured on the first signal */
 printf("Average jitter: %f nsec\n", totaltime / (float)(nsig-1));
 if (jbuf.next) {
 /* There was jitter */
 start_sec = ta[0].tv_sec;
 for (i=0; i<prev; i++)
 printf("%-5d %-7d\n",
 ta[i].tv_sec - start_sec,
 ta[i].tv_nsec);
 }

 exit(0);
 }

 void timer_expiration(int sig, siginfo_t *info, void *extra)
 {
 nsig++;
 /* Calculate jitter: difference between the actual
 * time and the expected time */
 clock_gettime(CLOCK_REALTIME, &ta[this]);
 if (prev >= 0) {
 if ((ta[this].tv_sec !=
 ta[prev].tv_sec + secs) ||
 (ta[this].tv_nsec !=
 ta[prev].tv_nsec + nsecs)) {

 /* There seems to have been jitter. Verify. */

 if ((ta[this].tv_sec==ta[prev].tv_sec + 1) &&
 (ta[this].tv_nsec == 0))
 /* No jitter; the seconds just clicked over. */
 goto skip;

 /* Calculate the amount of jitter. */
 jbuf.j[jbuf.next].tv_sec =
 ta[this].tv_sec - ta[prev].tv_sec;
 jbuf.j[jbuf.next].tv_nsec =
 ta[this].tv_nsec - ta[prev].tv_nsec;
 jbuf.next++;
 if (jbuf.next == JITTERBUF_MAX) {
 ctrlc(0); /* Terminate */
 }
 }
 skip:
 prev = this;
 this++;
 if (this == TIMEBUF_MAX)
 this = 0;
 }
 }

Page 517

Chapter 6: I/O for the Real World

iopipe.c

 #define _POSIX_C_SOURCE 199309L

 #include <unistd.h>
 #include <stdio.h>
 #include <sys/types.h>
 #include <fcntl.h>

 /*
 * This program copies its standard input to standard output
 * using read and write BUFSIZE bytes at a time.
 */

 #define BUFSIZE (64*1024)

 char buf[BUFSIZE];

 int
 main(int argc, char **argv)
 {
 ssizet nbytes;

 fcntl(fileno(stdout), F_GETFL, &flags);
 flags |= O_DSYNC; /* Just get the data down */
 fcntl(fileno(stdout), F_SETFL, flags);

 while (1) {
 nbytes = read(fileno(stdin), buf, BUFSIZE);
 if (nbytes <= 0)
 break;
 if (write(fileno(stdout), buf, nbytes) != nbytes) {
 perror("write to stdout");
 break;
 }
 }
 exit(0);
 }

aiopipe.c

 #define _POSIX_C_SOURCE 199309
 #include <unistd.h>
 #include <stdio.h>
 #include <sys/types.h>
 #include <signal.h>
 #include <fcntl.h>

 #ifdef _POSIX_ASYNCHRONOUS_IO
 #include <aio.h>
 #else
 Error: Need asynchronous I/O!

Page 518

 #endif

 #define SIG_AIO_READ_DONE (SIGRTMIN)
 #define SIG_AIO_WRITE_DONE (SIGRTMIN+1)

 struct aiocb_plus {
 struct aiocb a;
 off_t curr_offset;
 char *buffer;
 } a1, a2;

 #define BUFSIZE 4096
 char bufl[BUFSIZE], buf2[BUFSIZE];

 int aio_togo; /* Global flag */

 /* Called when this read is complete. */
 void aioread_done(int signo, siginfo_t *info, void *ignored)
 {
 struct aiocb_plus *ap;
 ssize_t nbytes_read;

 ap = (struct aiocb_plus *)(info->si_value.sival_ptr);
 /* No need to call aio_error here -- know AIO's done */
 nbytes_read = aio_return(&ap->a);
 if (nbytes_read > 0) {
 /* Read some data, so turn around and write it out. */
 ap->a.aio_fildes = fileno(stdout);
 ap->a.aio_buf = bufl;
 ap->a.aio_nbytes = nbytes_read;
 ap->a.aio_offset = ap->curr_offset;
 ap->a.aio_reqprio = 0;
 ap->a.aio_sigevent.sigev_notify = SIGEV_SIGNAL;
 ap->a.aio_sigevent.sigev_signo = SIG_AIO_WRITE_DONE;
 ap->a.aio_sigevent.sigev_value.sival_ptr = (void *)ap;
 aio_write(&ap->a);
 } else {
 aio_to_go--;
 }
 }

 /* Called when this write is complete. */
 void aiowrite_done(int signo, siginfo_t *info, void *ignored)
 {
 struct aiocb_plus *ap;
 ssize_t nbytes_written;

 ap = (struct aiocb_plus *)(info->si_value.sival_ptr);
 /* No need to call aio_error here -- know AIO's done */
 nbytes_written = aio_return(&ap->a);
 /* Fire up another aio_read, skipping the data being read by our peer. */
 ap->a.aio_fildes = fileno(stdout);
 ap->a.aio_buf = bufl;
 ap->a.aio_nbytes = BUFSIZE;

Page 519

 ap->curr_offset += 2*BUFSIZE;
 ap->a.aio_offset = ap->curr_offset;
 ap->a.aio_reqprio = 0;
 ap->a.aio_sigevent.sigev_notify = SIGEV_SIGNAL;
 ap->a.aio_sigevent.sigev_signo = SIG_AIO_READ_DONE;
 ap->a.aio_sigevent.sigev_value.sival_ptr = (void *)ap;
 aio_read(&ap->a);
}

main(int argc, char **argv)
{
 sigset_t allsigs;
 struct sigaction sa;

 /* Handler for read completions. */
 sa.sa_sigaction = aioread_done;
 sa.sa_flags = SA_SIGACTICN;
 /* Prevent the WRITE signal from coming in while we're handling
 * a READ completion. Just to keep things more clean. */
 sigemptyset(&sa.sa_mask);
 sigaddset (&sa.sa_mask, SIG_AIO_WRITE_DONE);
 if (sigaction(SIG_AIO_READ_DONE, &sa, NULL) < 0) {
 perror("sigaction");
 exit(1);
 }
 /* Handler for write completions. */
 sa.sa_sigaction = aiowrite_done;
 sa.sa_flags = SA_SIGACTION;
 /* Prevent the READ signal from coming in while we're handling
 * a WRITE completion. Just to keep things more clean. */
 sigemptyset(&sa.sa_mask);
 sigaddset(&sa.sa_mask, SIG_AIO_READ_DONE);
 if (sigaction(SIG_AIO_WRITE_DONE, &sa, NULL) < 0) {
 perror("sigaction");
 exit(1);
 }

 /* Block these signals from the mainline code so we can safely
 * examine the global variable aio_to_go */
 sigemptyset(&allsigs);
 sigaddset(&allsigs, SIG_AIO_READ_DONE);
 sigaddset(&allsigs, SIG_AIO_WRITE_DONE);
 sigprocmask(SIG_BLOCK, &allsigs, NULL);

 aio_to_go = 2; /* Global flag */

 fcntl(fileno(stdout), F_GETFL, &flags);
 flags |= O_DSYNC; /* Just get the data down */
 fcntl(fileno(stdout), F_SETFL, flags);

 /* Set up asynchronous I/O. */
 a1.a.aio_fildes = fileno(stdin);
 a1.a.aio_buf = a1.buffer = buf1;
 a1.a.aio_nbytes = BUFSIZE;
 a1.a.aio_offset = a1.curr_offset = (off_t)0;

Page 520

 a1.a.aio_reqprio = 0;
 a1.a.aio_sigevent.sigev_notify = SIGEV_SIGNAL;
 a1.a.aio_sigevent.sigev_signo = SIG_AIO_READ_DONE;
 a1.a.aio_sigevent.sigev_value.sival_ptr = (void *)&a1;
 aio_read(&a1.a);

 a2.a.aio_fildes = fileno(stdin);
 a2.a.aio_buf = a2.buffer = buf2;
 a2.a.aio_nbytes = BUFSIZE;
 a2.a.aio_offset = a2.curr_offset = (off_t)BUFSIZE;
 a2.a.aio_reqprio = 0;
 a2.a.aio_sigevent.sigev_notify = SIGEV_SIGNAL;
 a2.a.aio_sigevent. sigev_signo = SIG_AIO_READ_DONE;
 a2.a.aio_sigevent.sigev_value.sival_ptr = (void *)&a2;
 aio_read(&a2.a);

 /* Let the signals take it from here! */

 sigemptyset(&allsigs); /* Mask no signals when we suspend */
 while (aio_to_go) {
 sigsuspend(&allsigs);
 }

 exit(0);
 }

Chapter 7: Performance, or How To Choose an Operating System

noswitch.c

 #define _POSIX_C_SOURCE 199309 /* POSIX 9/1993: .1, .4 */
 #include <unistd.h>

 #include <stdio.h>
 #include <sys/types.h>
 #include <signal.h>
 #include <sched.h>

 /*
 * Measure overhead of using the sched_yield call.
 */
 int nyield = 0;

 main()
 {
 struct sigaction sa;
 extern void alarm_handler();

 sigemptyset(&sa.sa_mask);
 sa.sa_flags = 0;
 sa.sa_handler = alarm_handler; /* Terminates experiment */

Page 521

 if (sigaction(SIGALRM, &sa, NULL) < 0) {
 perror("sigaction SIGALRM");
 exit(1);
 }

 switcher(); /* with self ==> no ctxtsw */

 fprintf(stderr, "Unexpected exit from test program!\n");
 exit(4);
 }

 /* Should never wake up from the sigsuspend--SIGUSR1 is blocked */
 switcher()
 {
 alarm(60);
 while (1) {
 sched_yield();
 nyield++;
 }
 }

 void
 alarm_handler()
 {
 printf("%d yield calls in 60 seconds = %d yield calls/sec\n", nyield,
 nyield / 60);
 exit(0);
 }

switch. c

 #define _POSIXC_SOURCE 199309 /* POSIX 9/1993: .1, .4 */
 #include <unistd.h>

 #include <stdio.h>
 #include <sys/types.h>
 #include <signal.h>

 /*
 * Measure context switch time using the sched_yield call.
 */
 int nswitch = 0;
 pid_t chpid;

 main()
 {
 struct sigaction sa;
 extern void alarm_handler(), child_terminate();

 sigemptyset (&sa.sa_mask);
 sa.sa_flags = 0;
 sa.sa_handler = alarm_handler; /* Terminates experiment */

 if (sigaction(SIGALRM, &sa, NULL) < 0) {
 perror("sigaction SIGALRM");

Page 522

 exit(1);
 }

 sa.sa_handler = child_terminate; /* Terminates child */
 sigfillset(&sa.sa_mask);/* Take no signals after experiment done */
 if (sigaction(SIGUSR2, &sa, NULL) < 0) {
 perror("sigaction SIGUSR2");
 exit(1);
 }

 /* Should set scheduler here, or use atprio */
 switch (chpid = fork()) {
 case -1: /* error */
 perror("fork");
 exit(3);
 break;
 default: /* parent, set alarm and fall through
 * to common case */
 alarm(60);
 case 0: /* everybody */
 switcher();
 exit(0);
 break;
 }

 fprintf(stderr, "Unexpected exit from test program!\n");
 exit(4);
 }

 /* Should never wake up from the sigsuspend--SIGUSR1 is blocked */
 switcher()
 {
 while (1) {
 sched_yield();
 nswitch++;
 }
 }

 child_terminate()
 {
 printf("%d switches in 60 seconds = %d switch/sec\n", nswitch,
 nswitch / 60);
 exit(0);
 }

 void
 alarm_handler()
 {
 printf("%d switches in 60 seconds = %d switch/sec\n", nswitch,
 nswitch / 60);
 kill(chpid, SIGUSR2);
 exit(0);
 }

Page 523

sending_sigs_self.c

 #include <stdio.h>
 #include <unistd.h>
 #include <sys/types.h>
 #include <signal.h>

 /*
 * Measure time sent just for one process to send signals to itself.
 * Avoid all signal-handling overhead by having the signal blocked.
 */
 int nsigs = 0;

 main()
 {
 struct sigaction sa;
 sigset_t blockem;
 extern void panic_handler(), alarm_handler(), child_terminate();

 sigemptyset(&sa.sa_mask);
 sa.sa_flags = 0;
 sa.sa_handler = alarm_handler; /* Terminates experiment */

 if (sigaction(SIGALRM, &sa, NULL) < 0) {
 perror ("sigaction SIGALRM");
 exit(1);
 }

 /* Should never _receive_ SIGUSR1--it's blocked.
 * Setting up this handler is just paranoia. */
 sa.sa_handler = panic_handler;
 if (sigaction(SIGUSR1, &sa, NULL) < 0) {
 perror("sigaction SIGUSR1");
 exit(1);
 }

 sigemptyset(&blockem);
 sigaddset(&blockem, SIGUSR1);
 if (sigprocmask(SIG_BLOCK, &blockem) < 0) {
 perror ("sigprocmask");
 exit(2);
 }

 send_sigs_self();

 fprintf(stderr, "Unexpected exit from test program!\n");
 exit(4);
 }

 send_sigs_self()
 {
 pid_t self = getpid();

 alarm(60);
 while(1) {

Page 524

 if (kill(self, SIGUSR1) < 0) {
 perror("kill");
 return;
 }
 nsigs++;
 }
 }

 void
 panic_handler(int sig)
 {
 char *signame;
 switch (sig) {
 case SIGUSR1: signame = "SIGUSR1; break;
 case SIGUSR2: signame = "SIGUSR2"; break;
 case SIGALRM: signame = "SIGALRM"; break;
 default: signame = "<unknown signal name>"; break;
 }
 printf("ERROR: received signal %d (%s)\n",
 sig, signame);
 exit(5);
 }

 void
 alarm_handler()
 {
 printf("%d signals sent (%d/sec)\n", nsigs, nsigs/60);
 exit(0);
 }

sending_recving_sigs_self.c

 #include <stdio.h>
 #include <unistd.h>
 #include <sys/types.h>
 #include <signal.h>

 /*
 * Measure time sent just for one process to send signals to itself
 * AND handle those signals.
 */
 int nsigs_sent = 0;
 int nsigs_recv = 0;

 main()
 {
 struct sigaction sa;
 sigset_t blockem;
 extern void null_handler(), alarm_handler();

 sigemptyset(&sa.sa_mask);
 sa.sa_flags = 0;
 sa.sa_handler = alarm_handler; /* Terminates experiment */

 if (sigaction(SIGALRM, &sa, NULL) < 0) {

Page 525

 perror("sigaction SIGALRM");
 exit(1);
 }

 /* Should never _receive_ SIGUSR1--it's blocked.
 * Setting up this handler is just paranoia. */
 sa.sa_handler = null_handler;
 if (sigaction(SIGUSR1, &sa, NULL) < 0) {
 perror("sigaction SIGUSR1");
 exit(1);
 }

 send_sigs_self();

 fprintf(stderr, "Unexpected exit from test program!\n");
 exit(4);
 }

 send_sigs_self()
 {
 pid_t self = getpid();

 alarm(60);
 while(1) {
 if (kill(self, SIGUSR1) < 0) {
 perror("kill");
 return;
 }
 nsigs_sent++;
 }
 }

 void
 null_handler()
 {
 nsigs_recv++;
 }

 void
 alarm_handler()
 {
 printf("%d signals sent (%d/sec)\n", nsigs_sent, nsigs_sent/60);
 printf("%d signals received (%d/sec)\n", nsigs_recv, nsigs_recv/60);
 exit(0);
 }

sending_sigs.c

 #include <stdio.h>
 #include <unistd.h>
 #include <sys/types.h>
 #include <signal.h>

 /*
 * Measure time sent just for one process to send signals to another process.

Page 526

 * Avoid all overhead on the child side by having the signal blocked.
 */
 int nsigs = 0;
 pid_t chpid;

 main()
 {
 struct sigaction sa;
 sigset_t blocken;
 extern void panic_handler(), alarm_handler(), child_terminate();

 sigemptyset(&sa.sa_mask);
 sa.sa_flags = 0;
 sa.sa_handler = alarm_handler; /* Terminates experiment */

 if (sigaction(SIGALRM, &sa, NULL) < 0) {
 perror("sigaction SIGALRM");
 exit(1);
 }

 /* No one should ever _receive_ SIGUSR1--it's blocked.
 * Setting up this handler is just paranoia. */
 sa.sa_handler = panic_handler;
 if (sigaction(SIGUSR1, &sa, NULL) < 0) {
 perror ("sigaction SIGUSR1");
 exit(1);
 }

 sa.sa_handler = child_terminate; /* Terminates child */
 sigfillset(&sa.sa_mask);/* Take no signals after experiment done */
 if (sigaction(SIGUSR2, &sa, NULL) < 0) {
 perror("sigaction SIGUSR2");
 exit(1);
 }

 sigemptyset(&blockem);
 sigaddset(&blockem, SIGUSR1);
 if (sigprocmask(SIG_BLOCK, &blockem) < 0) {
 perror ("sigprocmask");
 exit(2);
 }

 switch (chpid = fork()) {
 case -1: /* error */
 perror("fork");
 exit(3);
 break;
 case 0: /* child */
 be_a_child();
 exit(0);
 break;
 default: /* parent */
 be_the_parent();
 exit(0);
 break;

Page 527

 }
 fprintf(stderr, "Unexpected exit from test program!\n");
 exit(4);
}

/* Should never wake up from the sigsuspend--SIGUSR1 is blocked */
be_a_child()
{
 sigset_t sigset;
 sigfillset(&sigset);
 sigdelset(&sigset, SIGUSR2); /* Wait for only SIGUSR2 */
 while (1) {
 sigsuspend(&sigset);
 }
}

be_the_parent()
{
 alarm(60);
 while(1) {
 if (kill(chpid, SIGUSR1) < 0) {
 perror("kill");
 return;
 }
 nsigs++;
 }
}

void
panic_handler(int sig)
{
 char *signame;
 switch (sig) {
 case SIGUSR1: signame = "SIGUSR1"; break;
 case SIGUSR2: signame = "SIGUSR2"; break;
 case SIGALRM: signame = "SIGALRM"; break;
 default: signame = "<unknown signal name>"; break;
 }
 printf("ERROR: Child received signal %d (%s)\n",
 sig, signame);
 kill(getppid(), SIGALRM); /* Terminate experiment */
 exit(1);
}

void
child_terminate()
{
 exit(0);
}

void
alarm_handler()
{
 printf("%d signals sent by parent (%d/sec)\n", nsigs, nsigs/60);

Page 528

 kill(chpid, SIGUSR2);
 exit(0);
 }

sigs_sent_noswtch.c, sigs_sent_swtch.c

The code for these exercises can be found in the section for Chapter 3, earlier in this appendix.

Page 529

Bibliography

Throughout the book, I've referred to several books for additional information or just plain fun bedside reading.
Here are the complete references.

Bach, Maurice J.. The Design of the UNIX Operating System. Prentice-Hall. 0-13-201799-7.

This is one of the canonical references to how UNIX is put together.

Frisch, Æleen. Essential System Administration. O'Reilly & Associates. 0-937175-80-3.

Institute of Electrical and Electronics Engineers. Portable Operating System Interface (POSIX)—Part 1: System
Application Program Interface (API) [C Language]. Institute of Electrical and Electronics Engineers. 1-55937-
061-0.

This is POSIX.1, also known as ISO 9945-1 (1990).

Institute of Electrical and Electronics Engineers. Portable Operating System Interface (POSIX)—Part 2: Shell and
Utilities (volumes 1 and 2). Institute of Electrical and Electronics Engineers. 1-55937-255-9.

This is POSIX.2. It's not an ISO standard yet.

Institute of Electrical and Electronics Engineers. Portable Operating System Interface (POSIX)—Part 1:
Application Program Interface (API) [C Language]—Amendment: Realtime Extensions. Institute of Electrical and
Electronics Engineers. 1-55937-375-X.

This is POSIX.4.

Jain, Raj. The Art of Computer Systems Performance Analysis. John Wiley and Sons, Inc.. 0-471-50336-3.

If you're really serious about performance measurement, you should read this book.

Klein, Mark H., Ralya, Thomas, Pollak, Bill, Obenza, Ray, Harbour, Michael González. A Practitioner's Handbook
for Real-Time Analysis: Guide to Rate Monotonic Analysis for

Page 530

Real-Time Systems. Kluwer Academic. 0-7293-9361-9.

This book tells you everything you might want to know about Rate Monotonic Analysis.

Leffler, Samuel J., McKusick, Kirk, Karels, Mike, Quarterman, John. The Design and Implementation of the
4.3BSD UNIX Operating System. Addison-Wesley. 0-201-06196-1.

This is the other canonical reference to how UNIX is put together.

Lewine, Don. POSIX Programmer's Guide. O'Reilly & Associates. 0-937175-73-0.

Zlotnick, Fred. The POSIX.1 Standard: A Programmer's Guide. Benjamin Cummings. 0-8053-9605-5.

	Cover
	Title Page
	Dedication
	Table of Contents
	Preface
	Part I: Programming for the Real World
	Chapter 1 - Introduction
	Chapter 2 - The POSIX Way
	Chapter 3 - The Basics of Real-Time: Multiple Tasks
	Chapter 4 - Better Coordination: Messages, Shared Memory, and Sychronization
	Chapter 5 - On Time: Scheduling, Time, and Memory Locking
	Chapter 6 - I/O for the Real World
	Chapter 7 - Peformance, or How to Choose an Operating System

	Part II: Manpages
	<aio.h>
	<fcntl.h>
	<limits.h>
	<mqueue.h>
	<sched.h>
	<semaphore.h>
	<signal.h>
	<sys/mman.h>
	<sys/wait.h>
	<time.h>
	<unistd.h>
	aio_cancel
	aio_error
	aio_read
	aio_return
	aio_suspend
	aio_write
	clock_getres
	clock_gettime
	clock_settime
	close
	exec
	exit
	fdatasync
	fork
	fsync
	kill
	lio_listio
	mkfifo
	mlock
	mlockall
	mmap
	mprotect
	mq_close
	mq_getattr
	mq_notify
	mq_open
	mq_receive
	mqsend
	mq_setattr
	msync
	munlock
	munlockall
	munmap
	nanosleep
	pathconf, fpathconf
	pipe
	sched_get_priority_max
	sched_get_priority_min
	sched_getparam
	sched_getscheduler
	sched_rr_get_interval
	sched_setparam
	sched_setscheduler
	sched_yield
	sem_close
	sem_destroy
	sem_getvalue
	sem_init
	sem_open
	sem_post
	sem_unlink
	sem_wait, sem_trywait
	shm_open
	shm_unlink
	sigaction
	sigprocmask
	sigset
	sigsuspend
	sigwaitinfo
	sysconf
	timer_create
	timer_delete
	timer_getoverrun
	timer_gettime
	timer_settime
	wait, waitpid

	Part III: Solutions to Problems
	Appendix - Exercise Code
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Bibliography

