
Application Note 108
Cyrix Extended MMX Instruction Set

 



Cyrix Application Note 108 - Cyrix Extended MMX Instruction Set                                                        

APPLICATION NOTE 108

Cyrix Extended MMX Instruction Set

Introduction

Cyrix has added instructions to its implementation of the Intel MMX Architecture 
in order to facilitate writing of multimedia applications.  In general, these instruc-
tions allow more efficient implementation of multimedia algorithms, or more preci-
sion in computation than can be achieved using the basic set of MMX instructions.  
All of the added instructions follow the SIMD (single instruction, multiple data) 
format.  Many of the instructions add flexibility to the MMX architecture by allow-
ing both source operands of an instruction to be preserved, while the result goes to a 
separate register that is derived from the input.

Enabling Extended MMX Instructions

The Cyrix Extended MMX instructions are enabled by setting EMMX 
(CCR7 bit 0).  This bit is set to 0 by default. The CCR7 register is accessed through 
index “EBh”.  To access CCR7 requires privilege level 0 access.



Cyrix Application Note 108 - Cyrix Extended MMX Instruction Set 3

Implied Registers

Implied Registers

In the IDCT (Inverse Discrete Cosine Transform) algorithm, which is necessary for 
an MPEG video application, there are several places where two vector inputs are 
used in two separate calculations.  In one calculation, the two vectors may be 
added, and in the second one of the vectors is subtracted from the other.  In order to 
accomplish this algorithm using the basic MMX instructions from Intel, one of the 
vectors must be copied in order to preserve its original value before the first compu-
tation.  This is because the MMX instructions all destroy the contents of one of the 
source registers by using the same register as the destination.  Several of the Cyrix-
added instructions get around this problem by having an implied destination regis-
ter, which is derived from the first source register.  This way, the contents of both 
source vectors is preserved without having to make a copy of either one.  A few of 
the instructions use an implied register as another source, so that the first register in 
the instruction is still the destination.

The implied register is calculated from the first source, according to the following 
table: 

From the table, it should be apparent that the source and destination registers are in 
pairs, where the pairs are determined by changing the least significant bit of the 
binary representation of the register number.  

IMPLIED REGISTER PAIRS

First Source 
Register

Implied 
Register

       mm0        mm1

       mm1        mm0

       mm2        mm3

       mm3        mm2

       mm4        mm5

       mm5        mm4

       mm6        mm7

       mm7        mm6



4                      Cyrix Application Note 108 - Cyrix Extended MMX Instruction Set

Implied Registers

Example

The PADDSIW instruction performs the same function as the MMX PADDSW 
instruction, except that it preserves the contents of both input vectors.  If one of the 
vectors of interest is in register mm1 and the other is in register mm2, the instruc-
tion would look like this:

PADDSIW mm1, mm2

and the result would end up in register mm0.  The instruction could also be written 
as

PADDSIW mm2, mm1

and the result would end up in register mm3.  In this particular instruction, the sec-
ond input can also be a memory operand, but the implied register stays the same, so

PADDSIW mm1, [si]

puts its result in register mm0.  

Caution is required for programming with these instructions in order for them to 
have the desired effect.  For example,

PADDSIW mm1, mm0

will put its result in register mm0, thus losing the original input value.  The instruc-
tion written this way is exactly equivalent to

PADDSW mm0, mm1.

A few of the instructions that use an implied register still use the first register in the 
instruction as the destination.  These instructions are the packed conditional move 
commands PMVZB, PMVZNB, PMVLZB, and PMVGEZB.  Note that the mne-
monics for these instructions do not have the “I” for “implied destination” in them, 
so there should be no ambiguity about where the result goes.  In the case of the 
packed conditional move instructions, the packed values from the source are moved 
as packed values to the destination register, depending upon the packed values in 
the implied register.  They are three-input instructions.



Cyrix Application Note 108 - Cyrix Extended MMX Instruction Set 5

PADDSIW -- Packed Add with Saturation, using Implied Destination

PADDSIW -- Packed Add with Saturation, using Implied Destination

Operation

mmi(15..0) <- SaturateToSignedWord(mm(15..0) + m64(15..0));

mmi(31..16) <- SaturateToSignedWord(mm(31..16) + m64(31..16));

mmi(47..32) <- SaturateToSignedWord(mm(47..32) + m64(47..32));

mmi(63..48) <- SaturateToSignedWord(mm(63..48) + m64(63..48));

Description

The PADDSIW instruction adds the signed words of the source operand to the signed words of the destination 
operand and writes the results to the implied MMX register.  The purpose of this instruction is the same as the 
PADDSW instruction, except that it preserves both source operands.

The first source must be an MMX register.  The second source can be either an MMX register or a 64-bit memory 
operand.  The destination is an MMX register which depends on the first source.  

Flags & Exceptions

No flags are affected.  Exceptions are the same as other MMX arithmetic instructions.

Opcode Instruction Description

0F 51 /r PADDSIW mm,mm/m64 Add signed packed byte in MMX register/memory to signed 
packed byte in MMX register, saturate, and write result to 
implied register.



6                      Cyrix Application Note 108 - Cyrix Extended MMX Instruction Set

PAVEB -- Packed Average

PAVEB -- Packed Average

Operation

mm(7..0) <- (mm(7..0) + mm/m64(7..0)) >> 1;

mm(15..8) <- (mm(15..8) + mm/m64(15..8)) >> 1;

mm(23..16) <- (mm(23..16) + mm/m64(23..16)) >> 1;

mm(31..24) <- (mm(31..24) + mm/m64(31..24)) >> 1;

mm(39..32) <- (mm(39..32) + mm/m64(39..32)) >> 1;

mm(47..40) <- (mm(47..40) + mm/m64(47..40)) >> 1;

mm(55..48) <- (mm(55..48) + mm/m64(55..48)) >> 1;

mm(63..56) <- (mm(63..56) + mm/m64(63..56)) >> 1;

Description

The PAVEB instruction calculates the average of the unsigned bytes of the source operand and the unsigned bytes 
of the destination operand and writes the result to the MMX register.  The PAVEB instruction cannot overflow.

Flags & Exceptions

No flags are affected.  Exceptions are the same as other MMX arithmetic instructions.

Caveat

M2 hardware versions before v1.3 interpret values as signed bytes on this instruction.

Opcode Instruction Description

0F 50 /r PAVEB mm,mm/m64 Average packed byte from MMX register/memory with 
packed byte in MMX register.



Cyrix Application Note 108 - Cyrix Extended MMX Instruction Set 7

PDISTIB -- Packed Distance and Accumulate with Implied Register

PDISTIB -- Packed Distance and Accumulate with Implied Register

Operation

mmi(7..0) <- SaturateToUnsignedByte(mmi(7..0) + abs(mm(7..0) - m64(7..0)));

mmi(15..8) <- SaturateToUnsignedByte(mmi(15..8) + abs(mm(15..8) - m64(15..8)));

mmi(23..16) <- SaturateToUnsignedByte(mmi(23..16) + abs(mm(23..16) - m64(23..16)));

mmi(31..24) <- SaturateToUnsignedByte(mmi(31..24) + abs(mm(31..24) - m64(31..24)));

mmi(39..32) <- SaturateToUnsignedByte(mmi(39..32) + abs(mm(39..32) - m64(39..32)));

mmi(47..40) <- SaturateToUnsignedByte(mmi(47..40) + abs(mm(47..40) - m64(47..40)));

mmi(55..48) <- SaturateToUnsignedByte(mmi(55..48) + abs(mm(55..48) - m64(55..48)));

mmi(63..56) <- SaturateToUnsignedByte(mmi(63..56) + abs(mm(63..56) - m64(63..56)));

Description

The PDISTIB  instruction calculates the distance between the unsigned bytes of the two source operands, adds 
the result to the unsigned byte in the implied destination operand, and saturates the result.  The result is written to 
the implied MMX register, which is calculated using the method discussed earlier.  

The first source must be an MMX register.  The second source must be a 64-bit memory operand.  The accumu-
lator and destination is an MMX register which depends on the first source.  

Flags & Exceptions

No flags are affected.  Exceptions are the same as other MMX arithmetic instructions.

Opcode Instruction Description

0F 54 /r PDISTIB mm,m64 Find absolute value of difference between packed byte in 
memory and packed byte in MMX register and accumulate 
with value in implied destination register, using unsigned sat-
uration.



8                      Cyrix Application Note 108 - Cyrix Extended MMX Instruction Set

PMACHRIW -- Packed Multiply and Accumulate with Rounding

PMACHRIW -- Packed Multiply and Accumulate with Rounding

Operation

mmi(15..0) <- mmi(15..0) + (mm(15..0) * mm/m64(15..0) + 0x00004000)(30..15) ;

mmi(31..16) <- mmi(31..16) + (mm(31..16) * mm/m64(31..16) + 0x00004000)(30..15) ;

mmi(47..32) <- mmi(47..32) + (mm(47..32) * mm/m64(47..32) + 0x00004000)(30..15) ;

mmi(63..48) <- mmi(63..48) + (mm(63..48) * mm/m64(63..48) + 0x00004000)(30..15) ;

Description

The PMACHRIW multiplies the two source operands using the method described for PMULHRW, and then 
accumulates the result with the value in the implied destination register using wrap-around arithmetic.  The 
final result is placed in the implied destination register.

 The first source is an MMX register.  The second source must be a 64-bit memory operand.  The destination 
operand is an implied MMX register that depends on the first source, as discussed earlier.  

Flags & Exceptions

No flags are affected.  Exceptions are the same as other MMX arithmetic instructions.

Opcode Instruction Description

0F 5E /r PMACHRIW mm,m64 Perform the PMULHRW function on the two source oper-
ands, and accumulate the result with the packed signed word 
in the implied destination register.



Cyrix Application Note 108 - Cyrix Extended MMX Instruction Set 9

PMAGW -- Packed Magnitude

PMAGW -- Packed Magnitude

Operation

IF abs(mm/m64(15..0)) > abs(mm(15..0)) THEN  mm(15..0) <- mm/m64(15..0);

IF abs(mm/m64(31..16)) > abs(mm(31..16)) THEN  mm(31..16) <- mm/m64(31..16);

IF abs(mm/m64(47..32)) > abs(mm(47..32)) THEN  mm(47..32) <- mm/m64(47..32);

IF abs(mm/m64(63..56)) > abs(mm(63..56)) THEN  mm(63..56) <- mm/m64(63..56);

Description

The PMAGW instruction compares the absolute value of the packed words in the source operand to the absolute 
value of the packed words in the destination operand and sets the destination words to the value that has the 
larger magnitude.  The PMAGW instruction does not change the sign of the value with the larger magnitude and 
it does not saturate.

 The source can be either an MMX register or a 64-bit memory operand.  The destination operand is an MMX 
register.  

Flags & Exceptions

No flags are affected.  Exceptions are the same as other MMX arithmetic instructions.

Opcode Instruction Description

0F 52 /r PMAGW mm,mm/m64 Set the destination equal to the packed word with the largest 
magnitude, between the packed word in MMX register/mem-
ory and MMX register.



10                      Cyrix Application Note 108 - Cyrix Extended MMX Instruction Set

PMULHRW/PMULHRIW -- Packed Multiply High with Rounding

PMULHRW/PMULHRIW -- Packed Multiply High with Rounding

Operation

IF instruction is PMULHRW

THEN {

mm(15..0) <- (mm(15..0) * mm/m64(15..0) + 0x00004000)(30..15) ;

mm(31..16) <- (mm(31..16) * mm/m64(31..16) + 0x00004000)(30..15) ;

mm(47..32) <- (mm(47..32) * mm/m64(47..32) + 0x00004000)(30..15) ;

mm(63..48) <- (mm(63..48) * mm/m64(63..48) + 0x00004000)(30..15) ;

}

ELSE { (* instruction is PMULHRIW *)

mmi(15..0) <- (mm(15..0) * mm/m64(15..0) + 0x00004000)(30..15) ;

mmi(31..16) <- (mm(31..16) * mm/m64(31..16) + 0x00004000)(30..15) ;

mmi(47..32) <- (mm(47..32) * mm/m64(47..32) + 0x00004000)(30..15) ;

mmi(63..48) <- (mm(63..48) * mm/m64(63..48) + 0x00004000)(30..15) ;

}

Opcode Instruction Description

0F 59 /r PMULHRW mm,mm/m64 Multiply the signed packed word in the MMX register/mem-
ory with the signed packed word in MMX register, round with 
1/2 bit 15, and store bits 30..15 of the result in MMX register.

0F 5D /r PMULHRIW mm,mm/m64 Multiply the signed packed word in the MMX register/mem-
ory with the signed packed word in MMX register, round with 
1/2 bit 15, and store bits 30..15 of the result in implied MMX 
register.



Cyrix Application Note 108 - Cyrix Extended MMX Instruction Set 11

PMULHRW/PMULHRIW -- Packed Multiply High with Rounding

Description

The PMULHRW instructions are intended to give a result of the form  s.15 from a 16 x 16 bit multiply with the 
LSB rounded before truncating to 16 bits.  This is in contrast to the PMULHW instruction which gives a result of 
the form ss.14 with no rounding.

 The source can be either an MMX register or a 64-bit memory operand.  The destination operand is an MMX 
register -- in the case of the PMULHRIW instruction, the destination register depends on the first source register, 
as described earlier.  The intent of the PMULHRIW instruction is the same as the PMULHRW instruction except 
that both sources are preserved.  

Flags & Exceptions

No flags are affected.  Exceptions are the same as other MMX arithmetic instructions.



12                      Cyrix Application Note 108 - Cyrix Extended MMX Instruction Set

PMVZB/PMVNZB/PMVLZB/PMVGEZB -- Packed Conditional Move

PMVZB/PMVNZB/PMVLZB/PMVGEZB -- Packed Conditional Move 

Operation

IF instruction is PMVZB

THEN {

IF mmi(7..0) == 0 THEN mm(7..0) <- m64(7..0);

IF mmi(15..8) == 0 THEN mm(15..8) <- m64(15..8);

...

IF mmi(63..56) == 0 THEN mm(63..56) <- m64(63..56);

}

ELSE IF instruction is PMVNZB

THEN {

IF mmi(7..0) != 0 THEN mm(7..0) <- m64(7..0);

IF mmi(15..8) != 0 THEN mm(15..8) <- m64(15..8);

...

Opcode Instruction Description

0F 58 /r PMVZB mm,m64 Conditionally move packed byte from memory to packed byte 
in MMX register if packed byte in implied MMX register is 
zero.

0F 5A /r PMVNZB mm,m64 Conditionally move packed byte from memory to packed byte 
in MMX register if packed byte in implied MMX register is 
not zero.

0F 5B /r PMVLZB mm,m64 Conditionally move packed byte from memory to packed byte 
in MMX register if packed byte in implied MMX register is 
less than zero.

0F 5C /r PMVGEZB mm,m64 Conditionally move packed byte from memory to packed byte 
in MMX register if packed byte in implied MMX register is 
greater than or equal to zero.



Cyrix Application Note 108 - Cyrix Extended MMX Instruction Set 13

PMVZB/PMVNZB/PMVLZB/PMVGEZB -- Packed Conditional Move

IF mmi(63..56) != 0 THEN mm(63..56) <- m64(63..56);

}

ELSE IF instruction is PMVLZB

THEN {

IF mmi(7..0) < 0 THEN mm(7..0) <- m64(7..0);

IF mmi(15..8) < 0 THEN mm(15..8) <- m64(15..8);

...

IF mmi(63..56) < 0 THEN mm(63..56) <- m64(63..56);

} 

ELSE (* instruction is PMVGEZB *)

{

IF mmi(7..0) >= 0 THEN mm(7..0) <- m64(7..0);

IF mmi(15..8) >= 0 THEN mm(15..8) <- m64(15..8);

...

IF mmi(63..56) >= 0 THEN mm(63..56) <- m64(63..56);

}



14                      Cyrix Application Note 108 - Cyrix Extended MMX Instruction Set

PMVZB/PMVNZB/PMVLZB/PMVGEZB -- Packed Conditional Move

Description

The PMV  instructions conditionally move packed bytes from the source operand to packed bytes of the desti-
nation operand, depending on the value of packed bytes in the implied register.

The PMVZB instruction moves bytes from the source to the destination if the corresponding byte in the 
implied register is equal to zero.

The PMVNZB instruction moves bytes from the source to the destination if the corresponding byte in the 
implied register is not equal to zero.

The PMVLZB instruction moves bytes from the source to the destination if the corresponding byte in the 
implied register is less than zero.

The PMVGEZB instruction moves bytes from the source to the destination if the corresponding byte in the 
implied register is greater than or equal to zero.

The source must be a 64-bit memory operand.  The condition comes from an implied MMX register which 
depends on the destination.  The destination operand is an MMX register.

Flags & Exceptions

No flags are affected.  Exceptions are the same as other MMX arithmetic instructions.



Cyrix Application Note 108 - Cyrix Extended MMX Instruction Set 15

PSUBSIW -- Packed Subtract with Saturation, using Implied Destination

PSUBSIW -- Packed Subtract with Saturation, using Implied 
Destination

Operation

mmi(15..0) <- SaturateToSignedWord(mm(15..0) - mm/m64(15..0));

mmi(31..16) <- SaturateToSignedWord(mm(31..16) - mm/m64(31..16));

mmi(47..32) <- SaturateToSignedWord(mm(47..32) - mm/m64(47..32));

mmi(63..48) <- SaturateToSignedWord(mm(63..48) - mm/m64(63..48));

Description

The PSUBSIW instruction subtracts the signed words of the source operand from the signed words of the des-
tination operand and writes the results to the implied MMX register.  The purpose of this instruction is the 
same as the PSUBSW instruction, except that it preserves both source operands.

The first source must be an MMX register.  The second source can be either an MMX register or a 64-bit mem-
ory operand.  The destination is an MMX register which depends on the first source.  

Flags & Exceptions

No flags are affected.  Exceptions are the same as other MMX arithmetic instructions.

Opcode Instruction Description

0F 55 /r PSUBSIW mm,mm/m64 Subtract  signed packed byte in MMX register/memory from 
signed packed byte in MMX register, saturate, and write 
result to implied register.



16                      Cyrix Application Note 108 - Cyrix Extended MMX Instruction Set

PSUBSIW -- Packed Subtract with Saturation, using Implied Destination



17                                              Cyrix Application Note 108 - Cyrix Extended MMX Instruction Set   

©1997 Copyright Cyrix Corporation. All rights reserved.

Printed in the United States of America

Trademark Acknowledgments:

Cyrix is a registered trademark of Cyrix Corporation.

M2 is a trademark of Cyrix Corporation.

Product names used in this publication are for identification purposes only and may be trademarks of 
their respective companies.

Order Number: 94xxx-xx

Cyrix Corporation

2703 North Central Expressway

Richardson, Texas 75080-2010

United States of America

Cyrix Corporation (Cyrix) reserves the right to make changes in the devices or specifications described 
herein without notice. Before design-in or order placement, customers are advised to verify that the 
information is current on which orders or design activities are based. Cyrix warrants its products to con-
form to current specifications in accordance with Cyrix’ standard warranty. Testing is performed to the 
extent necessary as determined by Cyrix to support this warranty. Unless explicitly specified by cus-
tomer order requirements, and agreed to in writing by Cyrix, not all device characteristics are necessarily 
tested. Cyrix assumes no liability, unless specifically agreed to in writing, for customers’ product design 
or infringement of patents or copyrights of third parties arising from use of Cyrix devices. No license, 
either express or implied, to Cyrix patents, copyrights, or other intellectual property rights pertaining to 
any machine or combination of Cyrix devices is hereby granted. Cyrix products are not intended for use 
in any medical, life saving, or life sustaining system. Information in this document is subject to change 
without notice.

October 7, 1997 12:52 pm
C:\DATAOEM.CUR\!M2MXAP\108ap.fm5

Rev 0.90 Draft


