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Introduction

[This introduction is not a part of DRAFT Standard for Floating-Point Arithmetic P754.]

This  standard  is  a  product  of  the  Floating-Point  Working  Group  of  the  Microprocessor  Standards 
Subcommittee of the Standards Committee of the IEEE Computer Society. This work was sponsored by the 
Technical Committee on Microprocessors and Minicomputers.

PURPOSE: This standard provides a discipline for performing floating-point computation that yields results 
independent of whether the processing is  done in hardware, software, or a combination of the two. For 
operations specified in the normative part of this standard, numerical results and exceptions are uniquely 
determined by the values of the input data, sequence of operations, and destination formats, all under user 
control.

This standard defines a family of commercially feasible ways for systems to perform binary and decimal 
floating-point arithmetic. Among the desiderata that guided the formulation of this standard were

a) Facilitate  movement of  existing programs from diverse  computers  to  those  that  adhere to  this 
standard.

b) Enhance the capabilities and safety available to users and programmers who, though not expert in 
numerical  methods,  may  well  be  attempting  to  produce  numerically  sophisticated  programs. 
However, we recognize that utility and safety are sometimes antagonists.

c) Encourage  experts  to  develop  and  distribute  robust  and  efficient  numerical  programs  that  are 
portable,  by way of  minor editing and recompilation,  onto any computer that  conforms to  this 
standard and possesses adequate capacity. When restricted to a declared subset of the standard, these 
programs should produce identical results on all conforming systems.

d) Provide direct support for

1) Execution-time diagnosis of anomalies

2) Smoother handling of exceptions

3) Interval arithmetic at a reasonable cost

e) Provide for development of

1) Standard elementary functions such as exp and cos

2) Very high precision (multiword) arithmetic

3) Coupling of numerical and symbolic algebraic computation

f) Enable rather than preclude further refinements and extensions.
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DRAFT Standard for
Floating-Point Arithmetic P754

1. Overview 1.0

1.1 Scope1.1.0

This standard specifies interchange and non-interchange formats and methods for binary and decimal floating-
point arithmetic in computer programming environments. Exception conditions are defined and default 
handling of these conditions is specified.

It is intended that an implementation of a floating-point system conforming to this standard can be realized 
entirely  in  software,  entirely  in  hardware,  or  in  any  combination  of  software  and  hardware.  It  is  the 
environment the  user  of  the  system sees  that  conforms or  fails  to  conform to  this  standard.  Hardware 
components that require software support to conform shall not be said to conform apart from such software.

1.2 Inclusions1.2.0

This standard specifies:

― Formats for binary and decimal floating-point data for computation and data interchange.

― Addition, subtraction, multiplication, division, fusedMultiplyAdd, squareRoot, compare, and other 
operations.

― Conversions between integer and floating-point formats.

― Conversions between different floating-point formats.

― Conversions between floating-point numbers data in internal formats and external representations as 
character sequences.

― Floating-point exceptions and their handling, including nonnumbers (NaNs).

1.3 Exclusions1.3.0

This standard does not specify:

― Formats of integers and external representations of numbers as character sequences.

― Interpretation of the sign and significand fields of NaNs.

1.4 Purpose1.4.0

This standard provides a discipline for performing floating-point computation that yields results independent 
of whether the processing is done in hardware, software, or a combination of the two. For operations specified 
in the normative part of this standard, numerical results and exceptions are uniquely determined by the values 
of the input data, sequence of operations, and destination formats, all under user control.

1.5 Language-defined/implementation-defined 1.5.0

This standard does not define all aspects of a conforming programming environment.  Such behavior should 
be defined by a programming language definition supporting this standard, if available, and otherwise by a 
particular  implementation.  Some  programming  languages  may  choose  to  leave  some  behaviors  to 
implementations to define.

Copyright © 2006 IEEE. All rights reserved. Page 9
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Language-defined behavior should be defined by a programming language standard supporting this standard. 
Then all implementations conforming both to this floating-point standard and to that language standard will 
behave  identically  with  respect  to  such  language-defined  behaviors.  Languages  that  aspire  toward 
reproducible results on all platforms are expected to specify more behaviors than languages that aspire toward 
maximum performance on all platforms.

Because this standard requires facilities that are not currently available in common programming languages, 
such languages might not be able to fully support this standard if they are no longer evolving themselves as 
standards. If the language can be extended by a function library or class or package to provide a conforming 
environment, then that extension should define all the language-defined behaviors that would normally be 
defined by a language standard.

Implementation-defined behavior  is  defined  by  a  specific  implementation  of  a  specific  programming 
environment conforming to this standard. Implementations define behaviors not specified by this standard nor 
by any relevant programming language standard or programming language extension.

Conformance  to  this  standard  is  a  property  of  a  specific  implementation  of  a  specific  programming 
environment, rather than of a language specification.

However a language specification could also be said to conform to this standard if it were constructed so that 
every conforming implementation of that language also conformed automatically to this standard.

1.6 Annexes 1.6.0

The normative part of this standard is accompanied by several non-normative annexes:

― Annex B and Annex C contain recommendations for programming languages.

― Annex D, Annex E, and Annex G incorporate the working group's consensus on directions that future 
standard revisions should address. By providing these in preliminary form, the working group hopes 
that  language  designers,  standards  bodies,  and  implementers  will  develop  and  implement 
specifications that application programmers can exploit.
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2. References 2.0

The following referenced documents are indispensable for the application of this standard:

ANSI/IEEE Std 754–1985, IEEE Standard for Binary Floating-Point Arithmetic.1

ISO/IEC 9899, Second edition 1999-12-01, Programing Programming languages―C2

1IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 
1331, Piscataway, NJ 08855-1331, USA.
2ISO publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, 
Genève 20, Switzerland/Suisse. ISO publications are also available in the United States from the Sales Department, 
American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036, USA.
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3. Terms and definitions 3.0

3.1 Conformance levels 3.1.0

Several  keywords  are  used  to  differentiate  between different  levels  of  requirements  and  optionality,  as 
follows:

3.1.1 expected: Describes the behavior of the hardware or software in the design models assumed by this 
specification. Other hardware and software design models may also be implemented.

3.1.2 may: Indicates  a  course  of  action  permissible  within  the  limits  of  the  standard  with  no  implied 
preference (“may” means “is permitted to”).

3.1.3 shall: Indicates mandatory requirements strictly to be followed in order to conform to the standard and 
from which no deviation is permitted (“shall” means “is required to”).

3.1.4 should: Indicates that among several possibilities, one is recommended as particularly suitable, without 
mentioning or excluding others; or that a certain course of action is preferred but not necessarily required; or 
that (in the negative form) a certain course of action is deprecated but not prohibited (“should” means “is 
recommended to”).

3.2 Glossary of terms 3.2.0

3.2.1     basic format:     One of the five sets  of floating-point    representations,  three binary and two decimal,   
whose encodings are   specified by this standard.  

3.2.2 biased exponent: The sum of the exponent e and a constant (bias) chosen to make the biased exponent's 
range nonnegative.

3.2.3 binary floating-point number: A floating-point number with radix two.

3.2.4 canonical encoding: The preferred encoding of a  floating-point representation  in a format admitting 
more than one encoding for that representable value floating-point datum. Applied to declets, significands of 
finite numbers, infinities, and NaNs, especially in decimal formats.

3.2.5 cohort: In a given format, the set of  floating-point representations of floating-point numbers with the 
same numerical value. +0 and −0 are in separate cohorts.

3.2.6 computational operation: An operation producing a floating-point result  or  capable of signaling a 
floating-point exception. Comparisons are computational operations.

3.2.7 correct rounding: This standard's method of converting an infinitely precise result to a  format value 
floating-point number, as determined by the  operative prevailing rounding direction mode. A format value 
floating-point number so obtained is said to be correctly rounded.

3.2.8 decimal floating-point number: A floating-point number with radix ten.

3.2.9 declet:  An encoding of three decimal digits into ten bits using the densely-packed decimal encoding 
scheme. Of the 1024 possible declets, 1000 canonical declets are produced by computational operations, 
while 24 non-canonical declets are not produced by computational operations, but are accepted in operands. 

3.2.10 denormalized number: See subnormal number.

3.2.11 destination: The location for the result of an operation upon one or more operands. A destination may 
be either explicitly designated by the user or implicitly supplied by the system (for example, intermediate 
results  in subexpressions or arguments for procedures).  Some languages place the results  of intermediate 
calculations in destinations beyond the user's  control.  Nonetheless,  this  standard defines the result  of an 
operation in terms of that destination's format and the operands' values.

3.2.12 exception: An event that occurs when an operation has no outcome suitable for every reasonable 
application. That operation might signal one or more exceptions  by invoking the default or, if explicitly 
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requested by the programmer, a language-defined alternate handling.  Note that  “event,” “exception,” and 
“signal” are defined in diverse ways in different programming environments.

3.2.13 exponent: The component of a  finite floating-point  representation number that  signifies the integer 
power to which the radix is raised in determining the value of that floating-point representation number. The 
exponent e is used when the significand is regarded as an integer digit and fraction field, and the exponent q is 
used when the significand is regarded as an integer; e = q + p – 1 where p is the significand length in digits.

3.2.14 extended format: A non-interchange format with wider precision and range that extends a supported 
basic format.

3.2.15 external character sequence: A representation of a  number or NaN floating-point datum number as a 
sequence  of  characters,  intended  to  be  interpreted  more  readily  by  people  humans  than  by  computers, 
including the character sequences in floating-point literals in program text.

3.2.16     floating-point  datum:   A floating-point  number  or  nonnumber  (NaN)    that  is  representable   in  a   
floating-point  format.   In  this  standard,  a  floating-point  datum  is  not  always  distinguished  from  its 
representation or encoding.

3.2.17     floating-point number:     A finite or infinite number that is representable   in a floating-point format.  A   
floating-point datum that is not a NaN.  All floating-point numbers, including zeros and infinities, are signed.

3.2.18     floating-point representation:   An unencoded member of a floating-point format, representing a finite   
number,  a  signed  infinity,  or  a  quiet  or  signaling  NaN.   A representation  of  a  finite  number  has  three 
components: a sign, an exponent, and a significand; it's numerical value is the signed product of its significand 
and its radix raised to the power of its exponent.

3.2.19 format: A set  of  representations  of numerical  values  and  symbols,  perhaps  accompanied  by  an 
encoding. implemented in conformance with this standard.

3.2.20 fusedMultiplyAdd: The operation fusedMultiplyAdd(x,y,z) computes (x × y ) + z as if with unbounded 
range and precision, rounding only once to the destination format.

3.2.21 generic operation: An operation that can take operands of various formats, for which the formats of 
the results may depend on the formats of the operands.

3.2.22 homogeneous operation: An operation of this standard that takes operands and returns results all in 
the same format.

3.2.23 mode:  An implicit parameter to operations of this standard, which the user may set, test, save, and 
restore. The term mode may refer to the mode parameter (as in "rounding direction mode") or its value (as in 
"roundTowardZero mode").

3.2.24 NaN: Not a Number,  a symbolic floating-point datum symbolic entity symbol encoded in floating-
point format. There are two types of NaN representations: quiet and signaling.  Most operations propagate 
quiet NaN  s  without signaling exceptions,  and signal  the invalid exception when given a    signaling NaN   
operand. Quiet  NaNs  propagate  through  most  operations  without  signaling  exceptions,  while  in  most 
operations signaling NaNs signal the invalid operation exception when they appear as operands.

3.2.25 narrower/wider format: If the set of numerical representable entities floating-point numbers of one 
format is a proper subset of another format, the first is called narrower and the second wider. The wider 
format might have greater precision, range, or (usually) both.

3.2.26 non-computational operation: An operation producing no floating-point result and never signaling 
any floating-point exception. 

3.2.27 normal number: For a particular format, a representable finite non-zero floating-point number with 
magnitude greater than or equal to a minimum bemin value. Normal numbers can use the full precision available 
in a format. This standard treats zero as neither normal nor subnormal.

3.2.28 payload: The diagnostic information contained in a NaN, encoded in part of its trailing significand 
field.

3.2.29 prevailing mode: The value of a mode governing a particular instance of execution of a computational 
operation of this standard.    Languages specify how the prevailing mode is determined.
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3.2.30 quantum: The  quantum  of  the  representation  of  a  floating-point  number a  finite  floating-point 
representation is the value of a unit in the last position of its significand.

3.2.31 quiet operation: An operation that never signals any floating-point exception.

3.2.32 radix: The base for the representation of binary or decimal floating-point numbers, two or ten.

3.2.33 result: The bit string (usually representing a floating-point datum) The floating-point representation or 
encoding that is delivered to the destination.

3.2.34 signal:  When an operation has no outcome suitable for every reasonable application, that operation 
might  signal  one or  more exceptions by invoking the default  handling or,  if  explicitly requested by the 
programmer, a language-defined alternate handling.

3.2.35 significand: A component of a finite an unencoded binary or decimal floating-point number containing 
its significant digits. The significand can be thought of as an integer, a fraction, or some other fixed-point 
form, by choosing an appropriate exponent offset.

3.2.36 status flag: A variable that may take two states, raised or lowered. When raised, a status flag may 
convey additional system-dependent information, possibly inaccessible to some users. The operations of this 
standard, when exceptional, can as a side effect raise some of the following status flags: inexact, underflow, 
overflow, divide-by-zero and invalid.

3.2.37 subnormal number: In a particular format, a non-zero floating-point number with magnitude less than 
the magnitude of that format's smallest normal number. A subnormal number cannot use the full precision 
available to normal numbers of the same format. Supersedes IEEE Std 754–1985's  denormalized number.

3.2.38 supported  format: A  format  provided  in  the  programming  environment  and  implemented  in 
conformance with the requirements of this standard. Thus, a programming environment may provide more 
formats than it supports, as only those implemented in accordance with the standard are said to be supported.

3.2.39 trailing significand: A component of an encoded binary or decimal floating-point number containing 
all the significand digits except the leading digit. In these formats, the biased exponent or combination field 
encodes the leading significand digit.

3.2.40 user:  Any person, hardware, or program not itself specified by this standard, having access to and 
controlling those operations of the programming environment specified in this standard.

3.2.41 width of an operation: The format of the destination of an operation specified by this standard; it will 
be one of the supported formats provided by an implementation in conformance to this standard.
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4. Abbreviations and acronyms

This document contains the following abbreviations and acronyms:

NOTE DVJ:  Consider listing here NaN, qNaN, sNaN, … .
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5. Formats 5.0

5.1 Overview: formats and conformance 5.1.0

This clause defines several kinds of standard floating-point formats, in two radices, 2 and 10.  All the formats 
specified by this standard are fixed-width. The precision and range of a fixed-width format are determinable 
from the program text, and the corresponding encoding is usually defined so that all members have the same 
size in storage.

Formats defined by this standard are interchange or non-interchange:

― interchange formats are formats with encodings defined in this standard. They are widely available 
for storage and for data interchange among platforms. The format names used in this standard are not 
usually those used in programming environments.   Interchange formats defined by this standard are 
basic or storage:

― basic formats are interchange formats, available for arithmetic.  This standard defines three 
basic binary floating-point formats in lengths of 32, 64, and 128 bits, and two basic decimal 
floating-point formats in lengths of 64 and 128 bits. A programming environment conforms to 
this standard, in a particular radix, by implementing one or more of the basic formats of that 
radix.  The choice of standard formats is language-defined or, if the relevant language standard 
is  silent  or  defers  to  the  implementation,  implementation-defined.   A  conforming 
implementation of a basic format shall:

― provide means to initialize and store that format,

― provide all the operations of this standard for that format,

― provide conversions between that basic format and all other implemented standard formats.

― storage formats are  narrow interchange formats.  This  standard defines one binary storage 
floating-point format of 16 bits length, and one decimal storage floating-point format of 32 bits 
length. To support a storage format, this standard only requires that conversions be provided 
between that  storage format and all  other supported formats of the same radix.  Languages 
permitting  computation  upon  storage  formats  should  perform such  computations  in  wider 
formats.

― non-interchange formats are formats with no encodings defined in this standard. None are required 
by this standard. If implemented they are available for arithmetic, but they might not be suitable for 
interchanging data among platforms.
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5.2 Specification levels 5.2.0

Floating-point arithmetic is a systematic approximation of real arithmetic, as illustrated in Table 1. Floating-
point arithmetic can only represent a finite subset of the continuum of real numbers. Consequently certain 
properties  of  real  arithmetic,  such  as  associativity  of  addition,  do  not  always  hold  for  floating-point 
arithmetic.

Table 1—Relationships between different specification levels for a particular format5.2.0

Level 1 {–∞ … ― 0 ― … +∞} Extended real numbers.

many-to-one ↓ rounding  one-to-many↑

Level 2 {–∞ … –0} ∪ {+0 … + }  Na∞ ∪ N Floating-point data—
an algebraically completedclosed 
system.

one-to-many ↓ representation specification ↑  many-to-one

Level 3 (sign, exponent, significand) ∪ {–∞, +∞} ∪ qNaN ∪ sNaN Representations of floating-point 
data.

one-to-many ↓ encoding for representations of floating-point data ↑  many-to-one

Level 4 0111000… Bit strings.

The mathematical structure underpinning the arithmetic in this standard is the extended reals, that is, the set of 
real numbers together with positive and negative infinity. For a given format, the process of rounding (see 
Clause 6)  maps an extended real  number to a  representation of  a  floating-point  datum included in that 
format. A  representable entity floating-point datum, which can be a signed zero, finite  non-zero number, 
signed infinity, or not-a-number, can be mapped to one or more floating-point representations  of floating-
point data in a format.

The representations of floating-point data in a format consist of:

― triples (sign, exponent, significand); in radix b, the floating-point number represented by a triple is

(–1)sign × bexponent × significand

― +∞, –∞

― qNaN (quiet), sNaN (signaling)

An encoding maps a representation of a floating-point datum to a bit string. An encoding might map some 
representations of floating-point representations data to more than one bit string. Multiple NaN bit strings may 
be used to store retrospective diagnostic information (see 8.2).

5.3 Sets of floating-point data 5.3.0

This subclause specifies the sets of entities floating-point data representable within floating-point formats; the 
encodings for those representations of floating-point data in interchange formats are discussed in 5.4 and 5.5. 
The  set  of  finite  floating-point numbers  representable  within  a  particular  format  is  determined  by  the 
following integer parameters:

― b = the radix, 2 or 10

― p = the number of significant digits (precision)

― emax = the maximum exponent

― emin = the minimum exponent

Shall be either 1 – emax or –emax.
Should be 1 – emax.
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The values  of  these  parameters  for  each  interchange format  are  given in  Table 2;  constraints  on these 
parameters for extended formats are given in Table 7.  Table 2 refers to interchange formats by the number of 
bits in their encoding. Within each format, the following entities floating-point data shall be provided:

― Signed zero and non-zero floating-point numbers of the form (–1)s ×be ×m, where:

― s is 0 or 1

― e is any integer emin ≤ e ≤ emax

― m is a number represented by a digit string of the form

d0.d1d2…dp-1 where di is an integer digit 0 ≤ di < b (therefore 0 ≤ m < b)

― Two infinities, +∞ and –∞

― Quiet and signaling NaNs

These  are  the  only  entities floating-point  data provided.  Binary  interchange  formats  have  just  one 
representation each for +0 and −0, but decimal formats have many.

In the foregoing description, the significand m is viewed in a scientific form, with the radix point immediately 
following the first digit. It is also convenient for some purposes to view the significand as an integer: then the 
finite floating-point numbers are described thus:

― Signed zero and non-zero floating-point numbers of the form (–1)s ×bq ×c, where

― s is 0 or 1

― q is any integer emin ≤ q+p – 1 ≤ emax

― c is a number represented by a digit string of the form

d0d1d2…dp-1 where di is an integer digit 0 ≤ di < b (c is therefore an integer with 0 ≤ c < bp).

This view of the significand as an integer, c, with its corresponding exponent q, describes exactly the same set 
of zero and  non-zero values non-zero floating-point numbers as the view in scientific form. (For non-zero 
floating-point numbers, e = q + p – 1 and m = c×b1-p.)

The smallest positive  normal floating-point number is  bemin and the largest is  bemax×(b – b1-p). The non-zero 
representable entities floating-point numbers for a format with magnitude less than bemin are called subnormal 
because their  magnitudes lie  between zero and the  smallest  normal  magnitude.  Subnormal  numbers are 
distinguished from normal numbers because of reduced precision and, in binary, because of different encoding 
methods. Every finite representable floating-point  number is an integral multiple of the smallest subnormal 
magnitude bemin×b1-p.

For any variable that has the value zero, the sign bit  s provides an extra bit of information. Although all 
formats have distinct representations for +0 and –0, the sign of a zero is significant in some circumstances, 
such as division by zero, but not in others (see 8.3). In this standard, 0 and ∞ are written without a sign when 
the sign is not important.

Table 2—Interchange format parameters defining floating-point numbers0

Binary format (b=2) Decimal format (b=10)

parameter binary16
storage

binary32
basic

binary64
basic

binary128
basic

decimal32
storage

decimal64
basic

decimal128
basic

p digits 11 24 53 113 7 16 34

emax +15 +127 +1023 +16383 +96 +384 +6144

emin -14 -126 -1022 -16382 -95 -383 -6143
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5.4 Binary interchange format encodings 5.4.0

Each  floating-point number has just one encoding in a binary interchange format. To make the encoding 
unique, in terms of the parameters in 5.1, the value of the significand m is maximized by decreasing e until 
either  e = emin or  m ≥ 1. After this normalization process is done, if  e = emin and  m < 1, the  floating-point 
number is subnormal. Subnormal numbers (and zero) are encoded with a reserved biased exponent value.

Numbers Floating-point data in the binary interchange formats are encoded in the following three fields 
ordered as shown in Figure 5.1:

a) 1-bit sign S

b) w-bit biased exponent E = e + bias

c) (t = p – 1)-bit trailing significand digit string T = d1 d2…dp–1; the leading bit of the logical significand, 
d0, is implicitly encoded in the biased exponent E.

Figure 5.1—Binary interchange floating-point format

MSB is  most  significant  bit;  LSB is  least  significant  bit.   The values of  w,  bias,  and  t  for the binary 
interchange formats are listed in Table 3.  

The range of the encoding's biased exponent E shall include:

― Every integer between 1 and 2w – 2, inclusive, to encode normal numbers

― The reserved value 0 to encode ±0 and subnormal numbers

― The reserved value 2w – 1 to encode ±∞ and NaNs.

The floating point representation of the floating-point datum, r and representable entity value of the floating-
point datum represented, v are inferred from the constituent fields thus: 

a) If E = 2w – 1 and T ≠ 0, then r is qNaN or sNaN and v is NaN regardless of S.

b) If E = 2w – 1 and T = 0 , then r and v = (–1)S×∞.

c) If 1 ≤ E ≤ 2w– 2, then r is (S, (E–bias), (1 + 21–p×T)) ;
the corresponding representable entity value of the corresponding floating-point number is v = (–1)S 

×2E–bias  ×(1 + 21–p×T) ;
thus normal numbers have an implicit leading significand bit of 1.

d) If E = 0 and T ≠ 0, then r is (S, emin, (0 + 21–p ×T)) ;
the corresponding representable entity value of the corresponding floating-point number is v = (–1)S 

×2emin ×(0 + 21–p ×T) ;
thus subnormal numbers have an implicit leading significand bit of 0.

e) If E = 0 and T = 0 , then r is (S, emin, 0) and v = (–1)S ×0 (signed zero, see 8.3).

Table 3—Binary interchange format encoding parameters0

Format name parameter binary16 binary32 binary64 binary128

Storage width ― 16 32 64 128

Trailing significant width t 10 23 52 112

Biased exponent field width w 5 8 11 15

Bias E - e 15 127 1023 16383
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5.5 Decimal interchange format encodings 5.5.0

Unlike  in  a  binary  floating-point  interchange  format,  in  a  decimal  floating-point  interchange  format  a 
representable floating-point number  may  have  multiple  representations.  The  set  of  floating-point 
representations a floating-point number maps to is called the floating-point number’s cohort; the members of 
a cohort are distinct representations of the same floating-point number. For example, if c is a multiple of 10 
and q is less than the maximum exponent value, then (s, q, c) and (s, q + 1, c ÷ 10) are two representations for 
the same floating-point number and are members of the same cohort.

While  numerically  equal,  different  members  of  a  cohort  can  be  distinguished  by  the  decimal-specific 
operations (see  7.10).  The cohorts  of different floating-point  representations numbers may have different 
numbers  of  members.  If  a  finite  non-zero  number's representation  has  n decimal  digits  from  its  most 
significant non-zero digit to its least significant non-zero digit, the representation’s cohort will have at most p-
n+1 members where p is the number of digits of precision in the format.

For example, a one-digit  floating-point number might have up to p different representations while a p-digit 
floating-point number with no trailing zeros only has one representation. (An n-digit  floating-point number 
may have fewer than p – n+1 members in its cohort if the floating-point number it is near the extremes of the 
format’s exponent range.)  A zero has a much larger cohort: the cohort of +0 contains a representation for 
each exponent, as does the cohort of  −0. 

For decimal arithmetic, besides specifying a numerical result, the arithmetic operands also select a member of 
the result’s cohort according to the specification in  7.11. Traditional decimal applications make use of the 
additional information cohorts convey.

Numbers Representations  of  floating-point  data in  the  decimal  interchange formats  are  encoded  in  the 
following three fields, whose detailed layouts are described later.

a) 1-bit sign S.

b) A w + 5 bit combination field G encoding classification and, if the encoded datum is a finite number, 
the exponent  of the floating-point number and four significand bits (1 or 3 of which are implied). 
The biased exponent  E is a  w + 2 bit quantity  q + bias, where the value of the first two bits of the 
biased exponent taken together is either 0, 1, or 2.

c) A t-bit trailing significand field T which contains J × 10 bits and contains the bulk of the significand. 
When this field is combined with the leading significand bits from the combination field, the format 
encodes a total of p = 3 × J + 1 decimal digits.

Figure 5.2—Decimal interchange floating-point formats

MSB is most significant bit; LSB is least significant bit.  
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The values of w, bias, and t for the decimal interchange formats are listed in Table 4:

Table 4—Decimal interchange format encoding parameters0

Format name parameter decimal32 decimal64 decimal128

Storage width ― 32 64 128

Trailing significant width t 20 50 110

Combination field width w+5 11 13 17

Bias E-q 101 398 6176

The floating point representation of the floating-point datum, r, and representable entity value of the floating-
point datum represented, v, are inferred from the constituent fields, thus:

a) If G0 through G4 are 11111, then v is NaN regardless of S. Furthermore, if G5 is 1, then r is sNaN; 
otherwise  r is qNaN.  The remaining bits of  G are ignored, and T constitutes the NaN's payload, 
which can be used to distinguish various NaNs.

The NaN payload is encoded similarly to finite numbers described below, with G treated as though 
all bits were zero.  The payload corresponds to the significand of finite numbers, interpreted as an 
integer with a maximum value of 10(3×J) − 1, and the exponent is ignored (it is treated as if it were 
zero).  A NaN is in its preferred (canonical) representation if the bits  G6 through Gw+4 are zero and 
the encoding of the payload is canonical.

b) If G0 through G4 are 11110 then r and v = (−1)S × ∞. The values of the remaining bits in G, and T, are 
ignored. The two canonical infinity representations of infinity have bits G5 through Gw+4 = 0, and T = 
0.

c) For finite numbers, r is (S, E−bias, C) and v = (−1)S × 10(E−bias) × C, where C is the concatenation of 
the leading significand digit from the combination field G and the trailing significand field T and the 
biased exponent E is encoded in the combination field. The encoding within these fields depends on 
whether the significand uses the decimal or the binary encoding.

1) If the significand uses the decimal encoding, then the least significant w bits of the exponent are 
G5 through  Gw+4. The most significant two bits of the biased exponent and the decimal digit 
string d0 d1…dp−1 of the significand are formed from bits G0 through G4 and T as follows:

i) When the first five bits of G are 110xx or 1110x, the leading significand digit d0 is 8 + G4, a 
value 8 or 9, and the leading biased exponent bits are 2G2+G3 , a value 0, 1, or 2.

ii) When the  first  five  bits  of  G are  0xxxx  or  10xxx,  the  leading significand digit  d0 is 
4G2+2G3+G4, a value in the range 0…7, and the leading biased exponent bits are 2G0+G1, a 
value 0, 1, or 2. Consequently if  T is 0 and the first five bits of  G are 00000, 01000, or 
10000, then v = (–1)S × 0.

The p−1 = 3 × J decimal digits  d1…dp−1 are encoded by T which contains  J declets encoded in 
densely-packed decimal. 

A  canonical  significand  has  only  canonical  declets,  as  shown  in  Tables  5.5 and  5.6. 
Computational operations produce only the 1000 canonical declets, but also accept the 24 non-
canonical declets in operands.

2) Alternatively, if the significand uses the binary encoding, then

i) If G0 and G1 together are one of 00, 01, or 10, then the biased exponent E is formed from G0 

through Gw+1 and the significand is formed from bits Gw+2 through the end of the encoding 
(including T).

ii) If G0 and G1 together are 11 and G2 and G3 together are one of 00, 01, or 10, then the biased 
exponent E is formed from G2 through Gw+3 and the significand is formed by prefixing the 4 
bits (8 + Gw+4) to T.

In both cases i) and ii), the maximum value of the binary-encoded significand is the same as that 
of the equivalent decimal-encoded significand; that is, 10(3×J+1) −1 (or 10(3×J) −1 when T is used as 
the payload of a NaN). If the value exceeds the maximum, the significand c is non-canonical 
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and the value used for c is zero. Computational operations produce only canonical significands, 
but also accept non-canonical significands in operations.

Decoding densely-packed decimal: Table 5 decodes a declet, with 10 bits b(0) to b(9),  into 3 decimal digits 
d(1), d(2), d(3). The first column is in binary and an “x” denotes “don’t care”. Thus all 1024 possible 10-bit 
patterns shall be accepted and mapped into 1000 possible 3-digit combinations with some redundancy.

Table 5—Decoding 10-bit densely-packed decimal to 3 decimal digits0

b(6), b(7), b(8), b(3), b(4) d(1) d(2) d(3)

0 x x x x 4b(0) + 2b(1) + b(2) 4b(3) + 2b(4) + b(5) 4b(7) + 2b(8) + b(9)

1 0 0 x x 4b(0) + 2b(1) + b(2) 4b(3) + 2b(4) + b(5) 8 + b(9)

1 0 1 x x 4b(0) + 2b(1) + b(2) 8 + b(5) 4b(7) + 2b(8) + b(9)

1 1 0 x x 8 + b(2) 4b(3) + 2b(4) + b(5) 4b(7) + 2b(8) + b(9)

1 1 1 0 0 8 + b(2) 8 + b(5) 4b(7) + 2b(8) + b(9)

1 1 1 0 1 8 + b(2) 4b(3) + 2b(4) + b(5) 8 + b(9)

1 1 1 1 0 4b(0) + 2b(1) + b(2) 8 + b(5) 8 + b(9)

1 1 1 1 1 8 + b(2) 8 + b(5) 8 + b(9)

Encoding densely-packed decimal: Table 6 encodes 3 decimal digits  d(1),  d(2), and d(3),  each having 4 bits 
which can be expressed by a second subscript d(1,0:3), d(2,0:3), and d(3,0:3), where bit 0 is the most significant and 
bit 3 the least significant, into a declet, with 10 bits  b(0) to b(9). Computational operations generate only the 
1000 canonical 10-bit patterns defined by Table 6.

Table 6—Encoding 3 decimal digits to 10-bit densely-packed decimal0

d(1,0), d(2,0), d(3,0) b(0), b(1), b(2) b(3), b(4), b(5) b(6) b(7), b(8), b(9) 

0 0 0 d(1,1:3) d(2,1:3) 0 d(3,1:3)

0 0 1 d(1,1:3) d(2,1:3) 1 0, 0, d(3,3)

0 1 0 d(1,1:3) d(3,1:2), d(2,3) 1 0, 1, d(3,3)

0 1 1 d(1,1:3) 1, 0, d(2,3) 1 1, 1, d(3,3)

1 0 0 d(3,1:2), d(1,3) d(2,1:3) 1 1, 0, d(3,3)

1 0 1 d(2,1:2), d(1,3) 0, 1, d(2,3) 1 1, 1, d(3,3)

1 1 0 d(3,1:2), d(1,3) 0, 0, d(2,3) 1 1, 1, d(3,3)

1 1 1 0, 0, d(1,3) 1, 1, d(2,3) 1 1, 1, d(3,3)

The 24 non-canonical patterns of the form 01x11x111x, 10x11x111x, or 11x11x111x (where an “x” denotes 
“don’t care”) are not generated in the result of a computational operation. However, as listed in Table 5, these 
24 bit patterns do map to values in the range 0-999 representations of valid decimal numbers. The bit pattern 
in a NaN significand can affect how the NaN is propagated (see 8.2).
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5.6 Non-interchange formats 5.6.0

Like interchange formats, non-interchange formats are characterized by the parameters b, p, emax, and emin, 
and define representations for all encompass all representations of  floating-point data (see  5.1). But unlike 
interchange formats, bit string encodings of noninterchange formats are not specified by this standard. Their 
encodings should be defined so that all members use the same amount of storage.

This  standard  does not  require  an  implementation  to  provide  any  noninterchange  format,  but  an 
implementation that does not support the widest  basic format should support an  extended  non-interchange 
format that extends the widest basic format that is supported.

Table 7 specifies the minimum precision and exponent range of such extended formats:

Table 7—Extended format parameters for floating-point numbers0

Extended formats associated with:

Parameter binary32 binary64 decimal64

p digits  ≥ 32 64 20

emax ≥ 1023 16383 6144

emin ≤ −1022 –16382 −6143

Note—the minimum exponent range is that of the next wider basic format, while the minimum precision is 
intermediate between the widest supported basic format and the next wider basic format.
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6. Modes and rounding 6.0

6.1 Mode specification 6.1.0

A mode is  an  implicit  parameter  to  operations  of  this  standard.  All  implementations  shall  provide  the 
rounding direction modes (see 6.2) and should provide alternate exception handling modes (see Clause 9). 
With constant-mode specification, a user may specify a constant value for a mode parameter. With dynamic-
mode specification,  a user may specify that  the mode parameter assumes the value of  a dynamic mode 
variable.  Modes  in  this  standard  may be  supported  with  constant-mode  specification  or  dynamic-mode 
specification,  or  both,  as  defined  by  the  language.  Mode  specification  is  intended  to  be  by  means  of 
translation directives, such as pragmas.

For constant-mode specification, the implementation provides language-defined means to specify a constant 
value for the mode parameter for all standard operations in a language-defined syntactic unit of the program. 
Whether and how external function calls are affected by a constant-mode specification for their immediately 
containing static scope is language defined.

For dynamic mode specification, the implementation provides language-defined means to specify that the 
mode parameter assumes the value of a dynamic mode variable for all standard operations in a language-
defined syntactic unit of the program. The implementation initializes a dynamic mode variable to the default 
value for the mode. Within its language-defined (dynamic) scope, changes to the value of a dynamic mode 
variable are under the control of the user via the operations in 7.7.6 and 7.7.7.

In the absence of any explicit specification in the program, it is language-defined whether the mode parameter 
assumes the default mode value or the value of a dynamic mode variable.

The following aspects of dynamic mode variables are language (or implementation) defined:

― the effect of changing the value of the mode variable in an asynchronous event, such as in another 
thread or signal handler,

― whether the value of the mode variable can be determined by non-programmatic means, such as a 
debugger.

6.2 Rounding direction modes 6.2.0

Rounding takes a number regarded as infinitely precise and, if necessary, modifies it to fit in the destination's 
format while perhaps signaling the inexact exception (see 9.6), underflow, or overflow. Every operation shall 
be performed as if it first produced an intermediate result correct to infinite precision and with unbounded 
range, and then rounded that result according to one of the modes in this clause.

The rounding direction mode affects all computational operations that might be inexact. Non-zero floating-
point results always have the same sign as the unrounded result.

The rounding direction mode may affect the signs of zero sums (see  8.3), and does affect the thresholds 
beyond which overflow (see 9.4) and underflow (see 9.5) are signaled.

Implementations supporting both decimal and binary formats shall provide separate rounding direction modes 
for binary and decimal.    Operations returning results  in internal floating-point  format use the rounding 
direction mode associated with the radix of the results.    Operations converting from an operand in internal 
floating-point format to a result in integer format or external character sequence format use the rounding 
direction mode associated with the radix of the operand.
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6.2.1 Rounding direction modes to nearest 6.2.1.0

In these modes an infinitely precise result with magnitude at least  bemax  (b – ½ b 1−p) shall round to ∞ with no 
change in sign; here emax and p are determined by the destination format (see Clause 5.0). With:

― roundTiesToEven,  the  representable floating-point number nearest to the infinitely precise result 
shall  be  delivered;  if  the  two  nearest  representable floating-point numbers  bracketing  an 
unrepresentable infinitely precise result are equally near, the one with an even least significant 
digit shall be delivered.

An implementation of this standard shall provide roundTiesToEven. It shall be the default rounding 
direction mode for results in binary formats. The default rounding direction mode for results in 
decimal formats is language-defined, but should be roundTiesToEven.

― roundTiesToAway, the  representable floating-point number nearest to the infinitely precise result 
shall  be  delivered;  if  the  two  nearest  representable floating-point numbers  bracketing  an 
unrepresentable infinitely precise result are equally near, the one with larger magnitude shall be 
delivered.

A decimal implementation of this standard shall provide roundTiesToAway as a user-selectable 
rounding direction mode. 

6.2.2 Directed rounding modes 6.2.2.0

An implementation shall  also  provide three other user-selectable  rounding direction modes,  the directed 
rounding modes roundTowardPositive, roundTowardNegative, and roundTowardZero. With:

― roundTowardPositive,  the result shall be the format's  representable floating-point number (possibly 
+∞) closest to and no less than the infinitely precise result.

― roundTowardNegative, the result shall be the format's representable floating-point number (possibly –
∞) closest to and no greater than the infinitely precise result.

― roundTowardZero, the result shall be the format's representable floating-point number closest to and 
no greater in magnitude than the infinitely precise result.
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7. Operations 7.0

7.1 Overview 7.1.0

All conforming implementations of this standard shall provide the operations listed in this chapter. Each of 
the  computational  operations  specified  by  this standard  shall  be  performed  as  if  it  first  produced  an 
intermediate result correct to infinite precision and with unbounded range, and then coerced this intermediate 
result  to  fit  in  the  destination's  format  (see  Clause 6 and  Clause 9).  Clause 8 augments  the  following 
specifications to cover ±0, ±∞, and NaN; Clause 9 enumerates exceptions caused by exceptional operands and 
exceptional results.

In  this  standard,  some operations  are  written  as  named  generic functions;  in  a  specific  programming 
environment they might be represented by operators, or by families of format-specific functions, or by generic 
functions whose names may differ from those in this standard.

Operations are broadly classified in four groups according to the types of results and exceptions they produce:

― general-computational  operations  produce  floating-point  results,  round  all  results  according  to 
Clause 6, and might signal the floating-point exceptions of Clause 9,

― quiet-computational  operations  produce  floating-point  results  and  do  not  signal  floating-point 
exceptions, 

― signaling-computational operations produce no floating-point results and might signal floating-point 
exceptions;  comparisons are signaling-computational operations

― non-computational operations do not produce floating-point results and do not signal floating-point 
exceptions.

Operations in the first three groups are referred to collectively as “computational operations.”

Operations are also  classified two ways according to  the relationship between the result  format and the 
operand formats:

― homogeneous operations, in which the floating-point operands and floating-point result are all of the 
same format,

― formatOf operations,  which indicate  the format  of  the result,  independent  of  the format  of  the 
operands.

Languages might permit other kinds of operations and combinations of operations into expressions. By their 
expression evaluation rules, languages specify when and how such operations and expressions are mapped 
into the operations of this standard.

In the operation descriptions that follow, operand formats are indicated by

― source to represent homogeneous floating-point operand formats.

― source1, source2, source3 to represent non-homogeneous floating-point operand formats.

― int to represent integer operand formats.

formatOf indicates that the name of the operation specifies the floating-point destination format, which might 
be different from the floating-point operands' format. There are  formatOf versions of these operations for 
every supported non-storage floating-point format.

intFormatOf indicates that the name of the operation specifies the integer destination format.

In the operation descriptions that follow, languages define which of their types correspond to operands and 
results called int, intFormatOf, characterSequence, or conversionSpecification. Languages with both signed 
and unsigned integer types should support  both  signed and unsigned  int and  intFormatOf  operands and 
results.
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7.2 Decimal exponent calculation 7.2.0

As  discussed  in  5.3,  a  floating-point  number  may  have  multiple  representations  in  a  decimal  format. 
Therefore, decimal arithmetic involves not only computing the proper numerical result but also selecting the 
proper member of that floating-point number’s cohort.

Except for the quantize operation, the representable entity value v of a floating-point result (and hence its 
cohort) is determined only by the operation and the operands' representable entities floating-point   values;   it 
is never dependent on the representation of floating-point data or the encoding of an operand.

The  selection  of  a  particular  representation  for  a  floating-point  result  is  dependent  on  the  operands' 
representations, as described below, but is not affected by their encoding.

For certain computational operations, if the result is inexact, the cohort member of least possible exponent is 
used to get the longest possible significand; if the result is exact, the cohort member is selected based on the 
preferred exponent for a result of that operation, a function of the exponents of the inputs.

For other computational operations, whether or not the result is exact, the cohort member is selected based on 
the preferred exponent for a result of that operation.

If the result’s cohort does not include a member with the preferred exponent, the member with the exponent 
closest to the preferred exponent is used. Thus for finite x, depending on the representation of zero, 0 + x might 
result in a different member of x’s cohort.

In the descriptions that follow, Q(x) represents the exponent q, of the representation of the finite floating-point 
number x, or +∞, if x is infinite.

7.3 Homogeneous general-computational operations 7.3.0

7.3.1 General operations 7.3.1.0

Implementations shall provide the following homogeneous general-computational operations for all supported 
non-storage floating-point formats; they never propagate non-canonical results.  Their destination format is 
indicated as sourceFormat:

― sourceFormat roundToIntegralTiesToEven(source)
sourceFormat roundToIntegralTiesToAway(source)
sourceFormat roundToIntegralTowardZero(source)
sourceFormat roundToIntegralTowardPositive(source)
sourceFormat roundToIntegralTowardNegative(source)
See 7.9. The preferred exponent is max(Q(x), 0).

― sourceFormat roundToIntegralExact(source)
See 7.9. The preferred exponent is max(Q(x), 0).

― sourceFormat nextUp(source) 
sourceFormat nextDown(source) 

nextUp(x) is the least representable floating-point number in the format of x that compares greater 
than x. If x is the negative number of least magnitude in x's format, nextUp(x) is –0. nextUp(±0) is 
the positive number of least magnitude in  x's format.  nextUp(+∞) is  +∞, and  nextUp(–∞) is the 
finite negative number largest in magnitude. When x is NaN, then the result is according to 8.2.

The preferred exponent is the least possible.

nextDown(x) is –nextUp(–x).
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― sourceFormat nextAfter(source, source)

nextAfter(x, y) is the next representable neighbor of floating-point number that neighbors x in the 
direction toward y, in the format of x:

― If either x or y is NaN, then the result is according to 8.2.

― If x = y, then nextAfter(x,y) is copySign(x,y).

― If x < y,  then  nextAfter(x,y)  is  nextUp(x); if  x > y,  then  nextAfter(x,y) is  nextDown(x).  
Overflow is signaled when x is finite but nextAfter(x, y) is infinite; underflow is signaled when 
nextAfter(x, y) lies strictly between ±bemin; in both cases, inexact is signaled.

The preferred exponent is Q(x).

― sourceFormat remainder(source, source)

When y≠0 , the remainder r = remainder(x, y) is defined regardless of the rounding direction mode 
by the mathematical  relation  r = x – y × n ,  where  n is  the integer nearest  the exact  number  x/y ; 
whenever | n – x/y | = ½ , then n is even. Thus, the remainder is always exact. If r = 0 , its sign shall be 
that of x.

The preferred exponent is min(Q(x), Q(y)).

― sourceFormat minNum(source, source)
sourceFormat maxNum(source, source)
sourceFormat minNumMag(source, source)
sourceFormat maxNumMag(source, source)

minNum(x,y) is  x if  x < y,  y if  y < x, the  floating-point number if one operand is a  floating-point 
number and the other a NaN. Otherwise it is either x or y.

maxNum(x,y) is  y if  x < y,  x if  y < x, the  floating-point number if one operand is a  floating-point 
number and the other a NaN. Otherwise it is either x or y.

minNumMag(x,y) is x if |x| < |y|, y if |y| < |x|, otherwise minNum(x,y).

maxNumMag(x,y) is x if |x| > |y|, y if |y| > |x|, otherwise maxNum(x,y).

The preferred exponent is Q(x) if x is returned the result, Q(y) if y is returned the result.

7.3.2 Decimal operation 7.3.2.0

Implementations supporting decimal formats shall provide the following homogeneous general-computational 
operation for all  supported non-storage decimal floating-point formats.  It  never propagates non-canonical 
results. The destination format is indicated as sourceFormat:

― sourceFormat quantize(source, source) 

For finite decimal operands x and y of the same format, quantize(x, y) is a floating-point number in 
the same format which has the same numerical value as x and the same quantum as y. If the exponent 
is being increased, rounding according to the prevailing rounding direction mode might occur: the 
result is a different floating-point representation number and inexact is signaled if the result does not 
have the same numerical value as x. If the exponent is being decreased and the significand of the 
result would have more than p digits, invalid is signaled and the result is NaN. If one or both 
operands are NaN the rules in 8.2 are followed. Otherwise if only one operand is infinite then invalid 
is signaled and the result is NaN. If both operands are infinite then the result is canonical ∞ with the 
sign of x. quantize does not signal underflow or overflow.

The preferred exponent is Q(y).
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7.3.3 logBFormat operations 7.3.3.0

Implementations shall provide the following general-computational operations for all supported non-storage 
floating-point formats. For each supported non-storage floating-point format, languages define an associated 
logBFormat to contain the integral values of logB(x). The logBFormat might be a floating-point format or an 
integer format. The logBFormat shall include all integers between ±2×(emax + p) inclusive, which includes 
the scale factors for scaling between the finite numbers of largest and smallest magnitude, as well as scale 
factors produced by scaled-product operations (E.4).

If logBFormat is a floating-point format, then the following operations are homogeneous. If logBFormat is an 
integer format, then the first operand and the floating-point result of scaleB are of the same format.

― logBFormat logB(source)

logB(x) is the exponent e of x, a signed integral value, determined as though x were represented with 
infinite range and minimum exponent. Thus when x is positive and finite,

1 ≤ scaleB(x, –logB(x)) < b.

When logBFormat is a floating-point format, logB(NaN) is a NaN, logB(∞) is +∞, and logB(0) is –
∞ and signals the division by zero exception. When logBFormat is an integer format, then 
logB(NaN), logB(∞), and logB(0) are language-defined values outside the range
±2×(emax+p–1), and signal the invalid exception.

The preferred exponent is 0.

― sourceFormat scaleB(source, logBFormat)

scaleB(x, N) is x × bN for integral values N. The result of scaleB is computed as if the exact product 
were formed and then rounded to the destination format, subject to the prevailing rounding direction 
mode.

The preferred exponent is Q(x)+N.

7.4 formatOf general-computational operations 7.4.0

7.4.1 Arithmetic operations 7.4.1.0

Implementations shall provide the following formatOf general-computational operations, for destinations of 
all  supported  non-storage  floating-point  formats,  and,  for  each  destination  format,  for  operands  of  all 
supported non-storage floating-point formats with the same radix as the destination format.  These operations 
never propagate non-canonical results.

― formatOf-addition(source1, source2)
formatOf-subtraction(source1, source2)
formatOf-multiplication(source1, source2)
formatOf-division(source1, source2)

For inexact decimal results, the preferred exponent is the least possible. For exact decimal results, 
the preferred exponent is min(Q(x), Q(y)) for addition and subtraction, Q(x) + Q(y) for 
multiplication, and Q(x) – Q(y) for the division x/y.

― formatOf-squareRoot(source)

The squareRoot operation is defined and has a positive sign for all operands ≥ 0, except that
squareRoot(–0) shall be –0.

For inexact decimal format results, the preferred exponent is the least possible. For exact decimal 
format results, the preferred exponent is floor(Q(x) / 2).

― formatOf-fusedMultiplyAdd(source1, source2, source3)

The operation fusedMultiplyAdd(x,y,z) computes (x×y)+z as if with unbounded range and precision, 
rounding only once to the destination format. No underflow, overflow, or inexact exception (Clause 
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7) can arise due to the multiplication, but only due to the addition; and so fusedMultiplyAdd differs 
from a multiplication operation followed by an addition operation.

For inexact decimal results, the preferred exponent is the least possible. For exact decimal results, 
the preferred exponent is min(Q(x) + Q(y), Q(z)).

― formatOf-convert(int)

It  shall  be  possible  to  convert  from  all  supported  signed  and  unsigned integer  formats  to  all 
supported non-storage floating-point  formats.  Integral  values are converted exactly from integer 
formats  to  floating-point  formats  whenever  the  value  is  representable  in  both  formats.  If  the 
converted value is not exactly representable in the destination format, the default result is determined 
according to  the  prevailing  rounding direction mode, and an inexact  or  floating-point  overflow 
exception arises as specified in Clause 9, just as with arithmetic operations.

The preferred exponent is 0.

Implementations shall provide the following intFormatOf general-computational operations for destinations 
of all of a language-defined set of integer formats and for operands of all supported non-storage floating-point 
formats.

― intFormatOf-convertToIntegerTiesToEven(source)
intFormatOf-convertToIntegerTowardZero(source)
intFormatOf-convertToIntegerTowardPositive(source)
intFormatOf-convertToIntegerTowardNegative(source)
intFormatOf-convertToIntegerTiesToAway(source)
See 7.8 for details.

― intFormatOf-convertToIntegerExactTiesToEven(source)
intFormatOf-convertToIntegerExactTowardZero(source)
intFormatOf-convertToIntegerExactTowardPositive(source)
intFormatOf-convertToIntegerExactTowardNegative(source)
intFormatOf-convertToIntegerExactTiesToAway(source)
See 7.8 for details.

7.4.2 Conversion operations for all formats 7.4.2.0

Implementations shall  provide the following formatOf  conversion operations from all  supported floating-
point formats to all  supported floating-point formats, including storage formats.  Some format conversion 
operations produce results in a different radix than the operands.

― formatOf-convert(source)

If the conversion is to a format in a different radix or to a narrower precision in the same radix, the 
result shall be rounded as specified in Clause 6. Conversion to a format with the same radix but 
wider precision and range is always exact.

For inexact conversions from binary to decimal formats, the preferred exponent is the least possible. 
For exact conversions from binary to decimal format results, the preferred exponent is the maximum 
possible.

For conversions between internal decimal formats, the preferred exponent is Q(source).

― formatOf-convertFromDecimalCharacter(decimalCharacterSequence)
See 7.12.3.    The preferred exponent is Q(decimalCharacterSequence).

― decimalCharacterSequence convertToDecimalCharacter(source, conversionSpecification)
See 7.12.3.  The  conversionSpecification specifies  the  precision  and  formatting  of  the 
decimalCharacterSequence result.

7.4.3  Conversion operations for binary formats 7.4.3.0

Implementations shall provide the following formatOf conversion operations to and from all supported binary 
floating-point formats, including storage formats. 
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― formatOf-convertFromHexCharacter(hexCharacterSequence)
See 7.12.2.

― hexCharacterSequence convertToHexCharacter(source, conversionSpecification)
See 7.12.2.  The  conversionSpecification specifies  the  precision  and  formatting  of  the 
hexCharacterSequence result.

7.5 Homogeneous quiet-computational operations7.5.0

7.5.1 Sign operations 7.5.1.0

Implementations  shall  provide  the  following  homogeneous  quiet-computational  sign  operations  for  all 
supported  non-storage  floating-point  formats.  They  might  propagate  non-canonical  encodings.  They are 
performed as if  on strings of bits,  treating  floating-point numbers and NaNs alike, and hence signal no 
exception.

The preferred exponent is Q(x).

― sourceFormat copy(source)
sourceFormat negate(source)
sourceFormat abs(source)

copy(x)  copies a floating-point operand x to a destination in the same format, with no change.   

negate(x)  copies a floating-point operand x to a destination in the same format, reversing the sign. 
0 – x is not the same as –x or negate(x).

abs(x) copies a floating-point operand x to a destination in the same format, changing the sign to 
positive.

The preferred exponent is Q(  x  ).  

― sourceFormat copySign(source, source)

copySign(x, y) copies a floating-point operand x to a destination in the same format as x, but with the 
sign of y.

The preferred exponent is Q(  x  ).  

7.5.2 Decimal re-encoding operations

For each supported decimal format (if any), the implementation shall provide the following operations to 
convert between the internal decimal format and the two standard encodings for that format. These operations 
enable portable programs that are independent of the implementation's encoding for decimal types to access 
data represented with either standard encoding.

― decimalEncodingType encodeDecimal(decimalType): 
encodes the value of the operand using decimal encoding

― decimalType decodeDecimal(decimalEncodingType): 
decodes the decimal-encoded operand

― binaryEncodingType encodeBinary(decimalType): 
encodes the value of the operand using the binary encoding

― decimalType decodeBinary(binaryEncodingType): 
decodes the binary-encoded operand

where  decimalEncodingType is a language-defined type for storing decimal-encoded decimal floating-point 
data numbers,  binaryEncodingType is a language-defined type for storing binary-encoded decimal floating-
point data numbers, and decimalType is the  type of the given decimal floating-point format.
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7.6 Signaling-computational operations 7.6.0

7.6.1 Comparisons 7.6.1.0

Implementations shall provide the following comparison operations, for all supported non-storage floating-
point operands of the same radix:

― boolean compareEqual(source1,source2)
boolean compareNotEqual(source1,source2)
boolean compareGreater(source1,source2)
boolean compareGreaterEqual(source1,source2)
boolean compareLess(source1,source2)
boolean compareLessEqual(source1,source2)
boolean compareSignalingNotGreater(source1,source2)
boolean compareSignalingLessUnordered(source1,source2)
boolean compareSignalingNotLess(source1,source2)
boolean compareSignalingGreaterUnordered(source1,source2)
boolean compareQuietGreater(source1,source2)
boolean compareQuietGreaterEqual(source1,source2)
boolean compareQuietLess(source1,source2)
boolean compareQuietLessEqual(source1,source2)
boolean compareUnordered(source1,source2)
boolean compareQuietNotGreater(source1,source2)
boolean compareQuietLessUnordered(source1,source2)
boolean compareQuietNotLess(source1,source2)
boolean compareQuietGreaterUnordered(source1,source2)
boolean compareOrdered(source1,source2)

See 7.11 for details.
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7.6.2 Exception signaling-computational operations 7.6.2.0

This  operation  signals  the  exceptions  specified  by  its  operand,  invoking either  default  or,  if  explicitly 
requested by the programmer, a language-defined alternate handling:

― void signalException(exceptionGroupType): 
signals the exceptions specified in the exceptionGroupType operand, which can represent any subset 
of the exceptions.

Whether  signalException  additionally  signals  the  inexact  exception  whenever  it  signals  overflow  or 
underflow is language defined. If signalException signals overflow and inexact or underflow and inexact, then 
it signals overflow or underflow before inexact. Otherwise, the order in which the exceptions are signaled is 
unspecified.

7.7 Non-computational operations 7.7.0

7.7.1 Conformance predicates

Implementations shall provide the following non-computational operations, true if and only if the indicated 
conditions are true:

― boolean is754(void)

is754  ()     is   true if and only if this programming environment conforms to ANSI-IEEE Std 754-1985.

― boolean is754R(void)

is754R  () is   true if and only if this programming environment conforms to this standard.

7.7.2 General operations 7.7.2.0

Implementations  shall  provide  the  following non-computational  operations  for  all  supported non-storage 
floating-point formats.   They are never exceptional, even for signaling NaNs.:

― boolean isSigned(source)

isSigned  (  x  ) is   true if and only if x has negative sign.   isSigned applies to zeros and NaNs as well.

― boolean isNormal(source)

isNormal  (  x  ) is   true if and only if x is normal (not zero, subnormal, infinity, or NaN).

― boolean isFinite(source)

isFinite  (  x  ) is   true if and only if x is zero, subnormal or normal (not infinity or NaN).

― boolean isZero(source)

isZero  (  x  ) is   true if and only if x = ±0.

― boolean isSubnormal(source)

isSubnormal  (  x  ) is   true if and only if x is subnormal.

― boolean isInfinity(source)

isInfinity  (  x  ) is   true if and only if x is infinity infinite.

― boolean isNaN(source)

isNaN  (  x  ) is   true if and only if x is a NaN.

― boolean isSignaling(source)

isSignaling  (  x  ) is   true if and only if x is a signaling NaN.

― boolean isCanonical(source)

isCanonical  (  x  ) is   true if and only if x is a canonical finite number, infinity, or NaN that is canonical. 
Implementations should extend  isCanonical(x) to non-interchange formats in ways appropriate to 
those formats, which might, or might not, have  non-canonical finite numbers, infinities, or NaNs 
which   that are non-canonical  .
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― int radix(source)
radix(x) is the radix b of the format of x, 2 or 10.

― enum class(source)

class(x) tells which of the following ten classes x falls into:
signalingNaN
quietNaN
negativeInfinity
negativeNormal
negativeSubnormal
negativeZero
positiveZero
positiveSubnormal
positiveNormal
positiveInfinity

― boolean totalOrder(source, source)

totalOrder(x, y) is defined in 7.10.

― boolean totalOrderMag(source, source)

totalOrderMag(x, y) is totalOrder(abs(x),abs(y)).

7.7.3 Decimal operation 7.7.3.0

Implementations supporting decimal formats shall provide the following non-computational operation for all 
supported non-storage decimal floating-point formats:

― boolean sameQuantum(source,source)

For numerical  decimal operands  x and  y  of the same format,  sameQuantum(x,  y)  is  true if  the 
exponents of x and y are the same, i.e. Q(x) = Q(y),  and false otherwise. sameQuantum(NaN, NaN) 
and sameQuantum(∞, ∞) are true; if exactly one operand is infinite or exactly one operand is NaN, 
sameQuantum is false. sameQuantum signals no exception.

7.7.4 Operations on subsets of flags 7.7.4.0

Implementations shall provide the following non-computational operations that act upon multiple status flags 
collectively:

― void lowerFlag(exceptionGroupType): 

lowers (clears) the flags corresponding to the exceptions specified in the exceptionGroupType 
operand, which can represent any subset of the exceptions.

― boolean testFlag(exceptionGroupType): 

queries whether any of the flags corresponding to the exceptions specified in the 
exceptionGroupType operand, which can represent any subset of the exceptions, are raised.

― void restoreFlag(flagsType, exceptionGroupType): 

restores the flags corresponding to the exceptions specified in the exceptionGroupType operand, 
which can represent any subset of the exceptions, to their state represented in the flagsType 
operand (see saveFlags in 7.7.5).
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7.7.5 Operations on all flags 7.7.5.0

Implementations  shall  provide  the following non-computational  operations that  act  upon all  status flags 
collectively:

― flagsType saveFlags(void)

returns a representation of the state of all the flags. The return values of the saveFlags operation are 
for use as the first operand to the restoreFlag operation in the same program; this standard does not 
require support for any other use.

7.7.6 Operations on individual modes 7.7.6.0

Implementations shall provide the following non-computational operations for each supported MODE (see 
clause  6):

― MODEtype getMODE(void) 
get prevailing value of MODE.  Under constant specification for MODE,  getMODE returns the 
constant value. Under dynamic specification for MODE, getMODE returns the current value of the 
dynamic MODE variable. Elsewhere, the return value is language defined (and may be unspecified). 

For the rounding direction modes, the getMODE operations are:

― binaryRoundingDirectionType getBinaryRoundingDirection(void) 

― decimalRoundingDirectionType getDecimalRoundingDirection(void) 

With  constant  MODE specification,  the  value  of  the  mode  is  set  by  the  specification  directive  itself. 
Implementations supporting constant specification for MODE (as defined by the language) shall provide for 
constant specification of the default and each specific value of the mode.

Implementations supporting dynamic specification for MODE shall provide the following non-computational 
operation:

― void setMODE(MODEtype)
set the value of the dynamic mode variable.   The operand may be any of the language-defined 
representations for the default and each specific value of MODE.  The effect of this operation if used 
outside the static scope of a dynamic specification for MODE is language defined (and may be 
unspecified).

For the rounding direction modes, the setMODE operations are:

― void setBinaryRoundingDirection(binaryRoundingDirectionType)

― void setDecimalRoundingDirection(decimalRoundingDirectionType)
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7.7.7 Operations on all modes with dynamic specification 7.7.7.0

Implementations supporting dynamic specification for modes shall provide the following non-computational 
operations for all dynamic-specifiable modes collectively:

― modeGroupType saveModes(void)
save values of all dynamic-specifiable modes as a group

― void restoreModes(modeGroupType)
restore values of all dynamic-specifiable modes as a group

― void defaultModes(void) 
set all dynamic-specifiable modes to default values

The return values of the saveModes operation are for use as operands of the restoreModes operation in the 
same program; this standard does not require support for any other use.

The effect of these operations if used outside the scope of a dynamic specification for a dynamic-specifiable 
mode is language defined (and may be unspecified).

7.8 Details of conversions from floating-point to integer formats 7.8.0

Implementations shall provide conversion operations from all supported non-storage floating-point formats to 
all  supported  [where is supported-provided-implemented explained?]  signed and  unsigned integer formats 
(Jim, I can't figure out how to say what you want said here without making this sentance both vacuous & 
tautalogical).  Integral values are converted exactly from floating-point formats to integer formats whenever 
the value is representable in both formats.

Conversion to integer shall be effected by rounding as specified in Clause 6, but the rounding direction is 
indicated by the operation name.

When the rounded-to-integral floating-point value of the conversion operation's operand is not representable 
in  the  destination format  because of  overflow,  and overflow cannot  otherwise  be indicated,  the  invalid 
exception shall be signaled. 

When the rounded-to-integral  floating-point  value of  the conversion operation's  operand differs from its 
operand value, yet is  representable in the destination format, the inexact  exception might be signaled in 
certain circumstances:

The inexact exception should be signaled if an inexact conversion was implicitly invoked by a language's 
rules for conversions (including conversions during a copy) for assignments or expressions involving mixed 
types.

The operations for conversion from floating-point to a specific signed or unsigned integer  format without 
signaling inexact are:

― intFormatOf-convertToIntegerTiesToEven(x) rounds x to the nearest integral value, with halfway 
cases rounded to even.

― intFormatOf-convertToIntegerTowardZero(x) rounds x to an integral value toward zero.

― intFormatOf-convertToIntegerTowardPositive(x)  rounds  x to an integral value toward positive 
infinity.

― intFormatOf-convertToIntegerTowardNegative(x) rounds  x to an integral value toward negative 
infinity.

― intFormatOf-convertToIntegerTiesToAway(x) rounds x to the nearest integral value, with halfway 
cases rounded away from zero.

The operations for conversion from floating-point to a specific signed or unsigned integer format, signaling if 
inexact, are:

― intFormatOf-convertToIntegerExactTiesToEven(x)
rounds x to the nearest integral value, with halfway cases rounded to even.

― intFormatOf-convertToIntegerExactTowardZero(x)
rounds x to an integral value toward zero.
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― intFormatOf-convertToIntegerExactTowardPositive(x)
rounds x to an integral value toward positive infinity.

― intFormatOf-convertToIntegerExactTowardNegative(x)
rounds x to an integral value toward negative infinity,

― intFormatOf-convertToIntegerExactTiesToAway(x)
rounds x to the nearest integral value, with halfway cases rounded away from zero.

7.9 Details of operations to round a floating-point datum to integral value 7.9.0

Several operations round a floating-point number to an integral valued floating-point  number in the same 
format.

The rounding is analogous to that specified in Clause 6, but the rounding chooses only from among those 
floating-point numbers of integral values in the format. These operations convert zero operands to zero results 
of the same sign, and infinite operands to infinite results of the same sign.

For the following operations, the rounding direction is implied by the operation name and does not depend on 
a rounding direction mode. These operations do not signal any exception except for signaling NaN input.

― sourceFormat roundToIntegralTiesToEven(x)
rounds x to the nearest integral value, with halfway cases rounding to even.

― sourceFormat roundToIntegralTiesToAway(x)
rounds x to the nearest integral value, with halfway cases rounding away from zero.

― sourceFormat roundToIntegralTowardZero(x)
rounds x to an integral value toward zero.

― sourceFormat roundToIntegralTowardPositive(x)
rounds x to an integral value toward positive infinity.

― sourceFormat roundToIntegralTowardNegative(x)
rounds x to an integral value toward negative infinity.

For the following operation, the rounding direction is the prevailing rounding direction mode. This operation 
signals invalid for signaling NaN, and for a numerical operand, signals inexact if the result is not identical to 
the operand.

― sourceFormat  roundToIntegralExact(x) rounds x to an integral value according to the prevailing 
rounding direction mode.
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7.10 Details of totalOrder predicate7.10.0

For each supported non-storage floating-point format, an implementation shall provide certain predicates that 
define orderings among all operands in a particular format.

totalOrder(x,y) imposes a total ordering on canonical members of the format of x and y; 

a) if x < y, totalOrder(  x,y  )   is true

b) if x > y, totalOrder(  x,y  )   is false

c) if x = y:

1) totalOrder(−0,+0) is true

2) totalOrder(+0,−0) is false

3) if x and y represent the same entities floating-point datum:

i) if x and y have negative sign, 
totalOrder(x, y) if and only if the exponent of x ≥ the exponent of y

ii) otherwise
totalOrder(x, y) if and only if the exponent of x ≤ the exponent of y

Note that totalOrder does not impose a total ordering on all encodings in a format. In particular 
it does not distinguish among different encodings of the same representation floating-point 
datum, as when one or both encodings are non-canonical.

d) if x and y are unordered numerically because x or y is NaN:

1) totalOrder(−NaN, floating-point number) is true where −NaN represents a NaN with negative 
sign bit

2) totalOrder(floating-point number, +NaN) is true where +NaN represents a NaN with positive 
sign bit

3) if x and y are both NaNs, then totalOrder reflects a total ordering based on 

i) negative sign bit < positive sign bit

ii) signaling < quiet for +NaN, reverse for −NaN 

iii) lesser payload < greater payload for +NaN, reverse for −NaN

Neither signaling nor quiet NaNs signal an exception.

For canonical x and y, totalOrder(x,y) and totalOrder(y,x) are both true only if x and y are bitwise identical.

7.11 Details of comparison predicates 7.11.0

For every supported non-storage floating-point format, it  shall  be possible  to compare  two numbers one 
floating-point  datum to  another in  that  format.  Additionally,  floating-point  numbers data represented in 
different formats shall be comparable as long as the operands' formats have the same radix.

Comparisons are exact and never overflow or underflow. Four mutually exclusive relations are possible: less 
than, equal, greater than, and unordered. The last case arises when at least one operand is NaN. Every NaN 
shall compare unordered with everything, including itself. Comparisons shall ignore the sign of zero 
(so +0 = −0).  Infinite operands of the same sign shall compare   equal  .  

Languages define how the result of a comparison shall be delivered, in one of two ways: either as a condition 
code identifying one of the four relations listed above, or as a true-false response to a predicate that names the 
specific comparison desired.

Table  8, Table  9, and Table  10 exhibit  twenty functionally distinct  useful predicates and negations with 
various ad-hoc and traditional names and symbols. Each predicate is true if any of the its indicated condition 
codes is true. The condition code “?” indicates an unordered relation.  Table 9 lists four unordered-signaling 
predicates and their negations that cause an invalid operation exception when the relation is unordered. That 
invalid  exception defends against  unexpected  quiet  NaNs arising in programs written using the standard 
predicates  {<,  ≤, ≥, >}  and their  negations, without considering the possibility of  a quiet  NaN operand. 
Programs that explicitly take account of the possibility of quiet NaN operands may use the unordered-quiet 
predicates in Table 10  which do not signal such an invalid exception.
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Note that predicates come in pairs, each a logical negation of the other; applying a prefix such as NOT to 
negate a predicate in Table 8, Table 9, and Table 10 reverses the true/false sense of its associated entries, but 
does not change whether unordered relations cause an invalid operation exception.

The unordered-quiet predicates in Table 8, intended for use by all programs,  do not signal an exception on 
quiet NaN operands: 

Table 8—Required unordered-quiet predicate and negation

Unordered-quiet predicate Unordered-quiet negation

True relations Names True relations Names

EQ compareEqual
=

LT GT UN compareNotEqual
?<>

NOT(=)
≠

The unordered-signaling predicates in  Table 9,  intended for use by all  programs  not written to take into 
account the possibility of NaN operands, signal an invalid exception on quiet NaN operands:

Table 9—Required unordered-signaling predicates and negations0

Unordered-signaling predicate Unordered-signaling negation

True relations Names True relations Names

GT compareGreater
>

EQ LT UN compareSignalingNotGreater
NOT(>)

GT EQ compareGreaterEqual
> =
≥

LT UN compareSignalingLessUnordered
NOT(>=)

LT compareLess
<

EQ GT UN compareSignalingNotLless
NOT(<)

LT EQ compareLessEqual
< =
≤

GT UN compareSignalingGreaterUnordered
NOT(<=)

Copyright © 2006 IEEE. All rights reserved. Page 39
This is an unapproved draft, subject to change.



Draft 1.2.1.1 DRAFT Standard for Floating-Point Arithmetic P754
September 17, 2006

The unordered-quiet predicates in Table 10, intended for use by all programs written to take into account the 
possibility of NaN operands, do not signal an exception on quiet NaN operands: 

Table 10—Required unordered-quiet predicates and negations 0

Unordered-quiet predicate Unordered-quiet negation

True relations Names True relations Names

GT compareQuietGreater
!<=

isGreater

EQ LT UN compareQuietNotGreater
?<=

NOT(!<=)

GT EQ compareQuietGreaterEqual
!<

isGreaterEqual

LT UN compareQuietLessUnordered
?<

NOT(!<)

LT compareQuietLess
!>=

isLess 

EQ GT UN compareQuietNotLess
?>=

NOT(!>=)

LT EQ compareQuietLessEqual
!>

isLessEqual

GT UN compareQuietGreaterUnordered
?>

NOT(!>)

UN compareUnordered
?

isUnordered

LT EQ GT compareOrdered
<=>

NOT(?)

There are two ways to write the logical negation of a predicate, one using NOT explicitly and the other 
reversing the relational operator.  Thus in programs written  without considering the possibility of a NaN 
operand,  the logical negation of the unordered-signaling predicate (X < Y) is just the unordered-signaling 
predicate NOT(X < Y); the unordered-quiet reversed predicate (X ?>= Y) is different in that it does not signal 
an invalid operation exception when X and Y are unordered. In contrast, the logical negation of (X = Y) may 
be written either NOT(X = Y) or (X ?<> Y); in this case both expressions are functionally equivalent to (X != 
Y).

7.12 Details of conversion between internal floating-point and external character 
sequences 7.12.0  

This  Clause  specifies  conversions  between  internal  formats  and  external  character  sequence  formats. 
Conversions between internal formats of different radices are correctly rounded and set exceptions correctly 
as described in 7.4.2. 

Implementations  shall  provide  conversions  from each  supported  internal  format  to  an  external  decimal 
character sequence, exact for decimal and using roundTiesToEven for binary, with sufficient information that 
the  external  character  sequence  can  be  converted  back  to  the  same  internal  format  and  recover  the 
representation of the original floating-point number unchanged.

Implementations shall support conversions between all supported binary internal formats and one or more 
external character sequence formats representing numbers with hexadecimal digits. Implementations shall 
support at least one conversion specification that converts all floating-point numbers in all supported binary 
internal formats to external hexadecimal character sequences,  with sufficient information that the external 
character sequence can be converted back to the same internal format and recover the representation of the 
original  floating-point  number unchanged.  sufficiently  precisely  to  represent  the  binary internal  binary 
floating-point number exactly.

This clause primarily discusses conversions during program execution; there is  one special consideration 
applicable to program translation separate from program execution: translation-time conversion of constants 
in program text from external character sequences to internal formats, in the absence of other specification in 
the program text, shall use this standard's default rounding direction and language-defined exception handling. 
An implementation might provide means, to permit constants to be translated at execution time with the 
modes in effect at execution time and exceptions generated at execution time.
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7.12.1 External character sequences representing zeros, infinities, and NaNs 7.12.1.0

Any external character sequence created on output to represent a zero, infinity, or NaN, shall represent a zero, 
infinity,  or  NaN on input  as well.  Some character  sequence formatting specifications reproduce internal 
format floating-point numbers exactly, in  roundTiesToEven mode, when those numbers are converted to 
character sequences and then those sequences are converted back to internal format floating-point numbers. 
For those specifications,  zeros,  infinities,  and NaNs are reproduced exactly as well.  Signs of  zeros and 
infinities are preserved.

Issues of character codes (ASCII, Unicode, etc.) are language-defined. The representation of infinities, NaNs, 
and zeros by external character sequences is, in part, language defined. Representations of infinities and NaNs 
should be the same for hexadecimal and decimal character sequences.

Conversion of an infinity in internal format to an external character sequence shall  produce a language-
defined one of “inf” or “infinity” or a sequence that is equivalent except for case (e.g., “Infinity” or “INF”), 
with a preceding minus sign if the input is negative. Whether the conversion produces a preceding plus sign if 
the input is positive is language defined.

Conversion of external character sequences “inf” and “infinity”, regardless of case, with an optional preceding 
sign, to an internal floating-point format shall produce an infinity (with the same sign as the input).

Conversion of a quiet NaN in internal format to an external character sequence shall produce a language-
defined one of “nan” or a sequence that is equivalent except for case (e.g., “NaN”), with an optional preceding 
sign. 

Conversion  of  a  signaling NaN in  internal  format  to  an external  character  sequence  should  produce  a 
language-defined one of "snan" or "nan" or a sequence that is equivalent except for case, with an optional 
preceding sign. If the conversion of a signaling NaN produces "nan" or a sequence that is equivalent except 
for case, with an optional preceding sign, then the invalid exception should be signaled. 

Conversion of external character sequences “nan”, regardless of case, with an optional preceding sign, to an 
internal floating-point format shall produce a quiet NaN. 

Conversion of an external character sequence "snan", regardless of case, with an optional preceding sign, to an 
internal format should either produce a signaling NaN or else produce a quiet NaN and signal the invalid 
exception. 

Languages should provide an optional conversion of NaNs in internal format to external character sequences 
that appends to the basic NaN character sequences a suffix that can represent the NaN payload (see 8.2). The 
form and interpretation of the payload suffix is language defined. The language should require that any such 
optional output sequences be recognized as input in conversion of external character sequences to internal 
formats.

7.12.2 External hexadecimal character sequences representing finite numbers 7.12.2.0

Implementations  supporting binary formats  shall  provide  conversions  between all  interchange and  non-
interchange binary formats and  an external  hexadecimal character  sequence format sequences.   External 
hexadecimal character sequences for finite numbers are of the form specified by C99 subclauses:

6.4.4.2 floating constants, 
20.1.3 strtod, 
7.19.6.2 fscanf (a, e, f, g), and 
7.19.6.1 fprintf (a, A).

The  “0x”  may  be  omitted  in  contexts  where  the  only  character  sequence  data  is  hexadecimal.  When 
converting to hexadecimal character sequences in the absence of an explicit precision specification, enough 
hexadecimal characters shall be used to represent the binary floating-point number exactly. Conversions to 
hexadecimal character sequences with an explicit precision specification, and conversions from hexadecimal 
character  sequences to  internal  binary formats,  are correctly rounded according to  the  prevailing binary 
rounding direction mode.
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7.12.3 External decimal character sequences representing finite numbers 7.12.3.0

Conversion parameters m and n are specified below according to the widest internal format supported in a 
radix. For each supported radix, an implementation shall define integer μ ≥ (m + 3) and integer η ≥ n, and shall 
provide conversions between all interchange and non-interchange formats and at least one external character 
sequence format that represents all decimal floating-point numbers of the form M × 10 N where integers M and 
N satisfy | M | ≤ 10μ – 1  and  | N + μ – m – 3 | ≤ η.

The conversion parameter   m   is specified below according to the widest internal format supported in a radix.   
For each supported radix, and implementation shall define an integer    µ   ≥ (  m  +3) and an integer    η    (further   
specified below)    and shall provide conversion between all interchange and non-interchange formats in the   
radix and at least one external character sequence format that represents all decimal numbers with up to    µ   
significant digits and with exponents (of 10) in the range [–  η, η  ].  

In  internal  to  decimal-string conversions,  if  more  than  μ result  digits  are  requested,  the  input  shall  be 
converted with correct rounding to μ digits, and extra digits shall be generated as zeros.

If more than μ digits are given for decimal-string to internal conversions, the result of the conversion shall be 
as if it were carried out in two steps: First round the given  decimal number to  μ decimal digits, and then 
convert the resulting  μ-digit  number to the target  floating-point format, in both cases rounding correctly 
according to the prevailing rounding mode.

Table 11—Decimal conversion parameters when widest supported format is basic0

Widest basic format m for binary formats m for decimal formats n for either radix

32-bit 9 ― 99

64-bit 17 16 999

128-bit 36 34 999

 Table 11 specifies the parameters when the widest supported format in a particular radix is basic. When the 
widest implemented format is not basic:

― If the widest implemented binary format can encompass p significant bits, then
m is 1+ceiling(p×log10 (2)) and
n is 10 ceiling(log10(log10(2)×emax)) –1. [Hack: formula wrong?]

― If the widest implemented decimal format can encompass p significant digits, then
m is p and
m is 10 ceiling(log10(emax)) –1. [Hack: formula wrong?]

η   shall be sufficiently large to represent the result of converting any number in internal format to the external   
decimal character sequence format with up to   µ   significant digits.  

Implementations should provide other decimal character sequence formats as well. All conversions to and 
from decimal character sequence formats, within the conversion parameter limits above, are correctly rounded 
according to the prevailing rounding direction mode. For conversions between binary formats and decimal 
character sequences, the inexact exception shall be signaled correctly for conversions of no more than  μ 
digits.

For internal to decimal-string conversions, the inexact bit shall be set correctly.

For decimal-string to internal conversions, if more than μ digits were given, and any of those extra digits were 
non-zero, the inexact bit shall be set.

The table entries for m are the number of significant digits to be produced when converting internal binary to 
decimal character sequences, when no precision is specified by the program or the language.

As a consequence of  the foregoing, conversions shall  be monotonic:  increasing the value of an internal 
floating-point number shall not decrease its value after conversion to an external character sequence, and 
increasing the value of a external character sequence shall  not decrease its  value after conversion to an 
internal floating-point number.
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When the destination is an external representation character sequence, language specifications locate its least 
significant digit for purposes of rounding. The result format's values are the decimal numbers representable 
within that language specification. The number of significant digits is determined by that specification, and in 
the case of fixed-point conversion by the source value as well.

If external to internal conversion over/underflows, the response is as specified in Clause 9. Over/underflow 
encountered during internal to external conversion should be indicated to the user by appropriate character 
sequences.
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8. Infinity, NaNs, and sign bit 8.0

8.1 Infinity arithmetic

Infinity arithmetic shall be construed as the limiting case of real arithmetic with operands of arbitrarily large 
magnitude, when such a limit exists. Infinities shall be interpreted in the affine sense, that is, –∞ < (every 
finite number) < +∞.

Operations with infinite operands or results are usually exact and signal no exceptions, except when 

― ∞ is an invalid operand (see 9.2),

― ∞ is created from finite operands by overflow (see 9.4) or division by zero (see 9.3),

― remainder(subnormal, ∞) signals underflow,

― nextAfter(x, ∞) signals underflow and inexact if  the result would be subnormal, 

― nextAfter(max normal, ∞) signals overflow and inexact if  the result would be infinite.

8.2 Operations with NaNs 8.2.0

Two different kinds of NaN, signaling and quiet, shall be supported in all operations. Signaling NaNs afford 
representations for uninitialized variables and arithmetic-like enhancements (such as complex-affine infinities 
or extremely wide range) that are not the subject of the standard.  Quiet NaNs should, by means left to the 
implementer's discretion, afford retrospective diagnostic information inherited from invalid or unavailable 
data and results.  To facilitate propagation of diagnostic information contained in NaNs, as much of that 
information as possible should be preserved in NaN results of computational operations.

Signaling NaNs shall be reserved operands that signal the invalid operation exception (see  9.1) for every 
general-computational and signaling-computational operation.

Under default exception handling, any operation signaling an invalid exception for which a floating-point 
result is to be delivered, shall deliver a quiet NaN.

Every general-computational and quiet-computational operation involving one or more input NaNs, none of 
them signaling, shall signal no exception, except  fusedMultiplyAdd (see  9.2) . For an operation with quiet 
NaN inputs other than max and min operations, if a floating-point result is to be delivered, the result shall be a 
quiet NaN, which should be one of the input NaNs. If the trailing significand field of a decimal input NaN is 
canonical then the bit pattern of that field shall be preserved if that NaN is chosen as the result NaN. Note that 
format conversions, including conversions between internal formats and external representations as character 
sequences, might be unable to deliver the same NaN. Quiet NaNs signal exceptions on some operations that 
do not deliver a floating-point result; these operations, namely comparison and conversion to a format that has 
no NaNs, are discussed in 7.4, 7.6, and 9.1.

8.2.1 Binary encodings of NaN encodings in binary formats 8.2.1.0

This clause further specifies the encodings of NaNs as bit strings when they are the results of operations. 
When encoded, all NaNs have a sign bit and a pattern of bits necessary to identify the encoding as a NaN and 
which determines its kind (sNaN vs. qNaN). The remaining bits, which are in the trailing field, encode the 
payload, which might be diagnostic information (see 8.2).

All binary NaN bitstrings have all the bits of the biased exponent field E set to 1 (see  5.4). A  quiet NaN 
bitstring should be encoded with the first bit (d1) of the trailing significand field T being 1. A signaling NaN 
bitstring should be encoded with the first bit of the trailing significand field being 0. Some other bit of the 
trailing significand field must not be zero be non-zero to distinguish the NaN from infinity.

In the preferred encoding, a signaling NaN should be quieted by setting d1 to 1, leaving the remaining bits of T 
unchanged.

For binary formats, the payload is the p−2 least significant bits of the trailing significand field. 
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8.2.2 NaN encodings in decimal formats 8.2.2.0

A decimal signaling NaN shall be quieted by clearing G5 and leaving the values of the digits d1 through dp – 1 

of the trailing significand unchanged (see 5.5).

Any computational operation which produces, propagates, or quiets a decimal format NaN shall set the bits 
G6 through Gw+4 of G to 0, and shall generate only a canonical trailing significand field.

For decimal formats, the payload is the trailing significand field.

8.2.3 NaN propagation 8.2.3.0

An operation which propagates NaNs and has a single NaN as an input should produce a NaN with the 
payload of the input NaN.

If two or more inputs are NaN, then the payload of the resulting NaN should be identical to the payload of one 
of the input NaNs. This standard does not specify which of the input NaNs will provide the payload.

Invalid operations, and conversions of a quiet NaN to a floating-point format of the same or a different radix, 
should return a quiet NaN which should provide some language-defined diagnostic information.

Furthermore, a conversion of a canonical quiet NaN, from a narrower format to a wider format in the same 
radix, and then back to the same narrower format, should not change the quiet NaN payload encoding in any 
way.

There should be means to read and write NaN payloads from and to external character sequences (see 7.12.1).

8.3 The sign bit 8.3.0

When either an input or result is NaN, this standard does not interpret the sign of a NaN. Note however that 
operations on bitstrings – copy, negate, abs, copySign – specify the sign bit of a NaN result, sometimes based 
upon the sign bit of a NaN operand. The logical predicate totalOrder is also affected by the sign bit of a NaN 
operand. For all other operations, this standard does not specify the sign bit of a NaN result, even when there 
is only one input NaN, or when the NaN is produced from an invalid operation.

When neither the inputs nor result are NaN, the sign of a product or quotient is the exclusive  OR of the 
operands' signs; the sign of a sum, or of a difference x–y regarded as a sum x+ (–y), differs from at most one of 
the addends' signs; and the sign of the result of roundToIntegral and roundToIntegralExact (see 7.3.1) is the 
sign of the operand. These rules shall apply even when operands or results are zero or infinite.

When the sum of two operands with opposite signs (or the difference of two operands with like signs) is 
exactly  zero,  the  sign  of  that  sum (or  difference)  shall  be  +  in  all  rounding  direction  modes  except 
roundTowardNegative; in that mode, the sign of an exact zero sum (or difference) shall be –. However, x+x = 
x–(–x) retains the same sign as x even when x is zero.

When (a×b)+c would vanish in exact arithmetic, the sign of fusedMultiplyAdd(a,b,c) shall be determined by 
the rules above for a sum of operands.

Except that squareRoot(–0) shall be –0, every valid squareRoot shall have a positive sign.
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9. Default exception handling 9.0

9.1 Overview: exceptions and flags 9.1.0

There are five types of exceptions that shall be signaled. This clause specifies default nonstop exception 
handling, which usually entails raising a status flag, delivering a default result, and continuing execution. A 
language might define modes for alternate exception handling and means for programmers to invoke them.

For each type of exception the implementation shall  provide a status flag that  shall  be raised  when  the 
corresponding exception is signaled. It shall be lowered only at the user's request. The user shall be able to 
test and to alter the status flags individually, and should further be able to save and restore all five at one time. 
(See   7.7.4   and   7.7.5  )  

A program that  does not inherit  status flags from another source, begins execution with all  status flags 
lowered.

Languages should specify defaults in the absence of any explicit program specification, governing 

― whether any particular flag exists (in the sense of being testable by non-programmatic means such as 
debuggers) outside of scopes in which a program explicitly sets or tests that flag,

― when flags have scope greater than within an invoked function, whether and when an asynchronous 
event, such as a raising or lowering it in another thread or signal handler, affects the flag tested 
within that invoked function 

― whether a flag's state can be determined by non-programmatic means (such as a debugger) within 
that invoked function

― whether flags raised in invoked subfunctions set flags in invoking functions,

― whether flags raised in invoking functions set flags in invoked subfunctions.

― whether to allow, and if so the means, to declare flags to be persistent in the absence of any explicit 
program statement otherwise: 

― the flags standing at the beginning of execution of a particular function are inherited from an 
outer environment, typically an invoking function

― the flags standing at the beginning of execution of an invoked subfunction are the flags that were 
standing in the invoking function at the time the subfunction was invoked

― on return from  or termination of an invoked subfunction, the flags standing in an invoking 
function are the flags that were standing in the subfunction at the time of return or termination

― when a function terminates other than by returning to its immediate invoking function, the flags 
standing will be those standing at the time of the function termination

An invocation of the signal-exception operation of 7.6.2, may signal any combination of exceptions.    For an 
invocation of any other operation specified required by this standard, at most only two exceptions might be 
signaled, in just these combinations: overflow followed by inexact, and underflow followed by inexact.

The inexact exception is signaled if the overflow exception receives default handling, and might be signaled if 
the underflow exception receives default handling (see 9.5).

In general, when an operation signals more than one exception, none of which have alternate exception 
handling enabled, each signaled exception will receive its default handling.

When an operation signals more than one exception, some or all of which have alternate exception handling 
enabled, alternate exception handling will be invoked for the most important exception, and languages define 
whether other signaled exceptions receive default handling, alternate handling, or are ignored.    Exceptions 
are listed in this clause in order of decreasing importance (invalid most important, inexact least important).

For the computational operations defined in this standard, exceptions are defined below to be signaled if and 
only  if  certain  conditions  arise.  That  is  not  meant  to  imply  whether  those  exceptions  are  signaled  by 
operations not specified by this standard such as complex arithmetic or elementary transcendental functions. 
Those and other operations, not specified by this standard, should signal those exceptions according to the 
definitions below for standard operations, but that may not always be economical.  Standard exceptions for 
nonstandard functions are language-defined.
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9.2 Invalid operation 9.2.0

The invalid operation exception is signaled if and only if there is no usefully definable result. In these cases 
the operands are invalid for the operation to be performed. 

For operations producing results in floating-point format, the default result of an invalid exception operation 
shall be a quiet NaN (see 8.2).  The invalid exception operations in this standard are:

a) any general-computational or signaling-computational operation on a signaling NaN (see 8.2);

b) multiplication: 0 × ∞ or ∞ × 0; multiplication(0,∞) or multiplication(∞,0);

c) fusedMultiplyAdd: fusedMultiplyAdd(0, ∞, c) or fusedMultiplyAdd(∞, 0, c) unless c is a quiet NaN; 
if  c is a quiet NaN then it  is implementation defined whether the invalid operation exception is 
signaled;

d) addition  or  subtraction  or  fusedMultiplyAdd:  magnitude  subtraction  of  infinities,  such  as: 
addition(+∞, –∞); (+∞) + (–∞);

e) division: division(0,0) or division(∞,∞); 0/0 or ∞/∞; 

f) remainder: remainder(  x,y  ),   x REM y, where y is zero or x is infinite and neither is NaN;

g) squareRoot if the operand is less than zero;

h) quantize when the result does not fit in the destination format or when one operand is finite and the 
other is infinite.

For operations producing no result in floating-point format, the invalid exception operations are:

i)    conversion of an internal floating-point number to an integer (see 7.8) or external representation as a 
character  sequence (see  7.12.1)  when overflow, infinity,  or  NaN precludes  a  correctly-rounded 
representation in the destination and this cannot otherwise be indicated;

j)  conversion of an internal floating-point number to an unsigned integer format,  when the source is 
NaN, infinity, or a value which would convert to an integer less than zero outside the range of the 
result format under the prevailing rounding mode.  to an unsigned integer format and this cannot 
otherwise be indicated;

k) comparison by way of  unordered-signaling predicates  listed in  Table 9,  when the  operands  are 
unordered;

l) when logBFormat is an integer format, then logB(NaN), logB(∞), and logB(0)  (see 7.3.3) .

9.3 Division by zero 9.3.0

The divideByZero exception shall be signaled if and only if an exact infinite result is defined for an operation 
on finite operands. In particular, the division by zero exception shall be signaled if the divisor is zero and the 
dividend is a finite non-zero number.  The default result shall be a correctly signed ∞ (see 8.3).

When logBFormat is a floating-point format, logB(0) is –∞ and signals the division by zero exception.

9.4 Overflow 9.4.0

The overflow exception shall  be signaled if  and only if  the destination format's largest finite number is 
exceeded in  magnitude by what  would have been the  rounded floating-point  result  (Clause 6)  were the 
exponent range unbounded. The default result shall be determined by the rounding direction mode and the 
sign of the intermediate result as follows:

a) roundTiesToEven and roundTiesToAway carries
all overflows to ∞ with the sign of the intermediate result

b) roundTowardZero carries
all overflows to the format's largest finite number with the sign of the intermediate result

c) roundTowardNegative carries
positive overflows to the format's largest finite number, and carries negative overflows to –∞
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d) roundTowardPositive carries
negative overflows to the format's most negative finite number, and carries
positive overflows to +∞

However nextAfter(x,y) signals overflow and inexact if and only if nextAfter is infinite and differs from the 
finite number x.

9.5 Underflow 9.5.0

The underflow exception is signaled when a tiny non-zero result would be  created strictly between ±bemin 

which, because it  is so tiny, may cause some other exception later such as overflow upon division. The 
implementer may choose how tininess is detected, but shall detect tininess in the same way for all operations 
of a given radix (in the case of a conversion operation, the radix from which the rounding mode is taken). 
Tininess may be detected either

a) After rounding - when a non-zero result computed as though the exponent range were unbounded 
would lie strictly between ± bemin

b) Before rounding - when a non-zero result computed as though both the exponent range and the 
precision were unbounded would lie strictly between ± bemin.

The method for detecting tininess does not affect the default rounded result delivered which might be zero, 
subnormal, or ± bemin.

Loss of accuracy shall be detected as an inexact result - when the delivered result differs from what would 
have been computed were both exponent range and precision unbounded. (This is the condition called inexact 
in 9.6).

The default exception handling for underflow is to deliver a rounded result, raise the underflow flag, and 
signal the inexact exception, if and only if both tininess and loss of accuracy have been detected; if no loss of 
accuracy occurs, no flag is raised.

However nextAfter(x,y) signals underflow and inexact if and only if  nextAfter the result is strictly between 
±bemin and differs from x.

9.6 Inexact 9.6.0

If the rounded result of an operation is not exact or if it overflows with default handling then the inexact 
exception shall be signaled. The rounded or overflowed result shall be delivered to the destination.

nextAfter(x,y) signals inexact if and only if nextAfter also signals overflow or underflow.
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(informative)
Annex B (informative) Expression evaluation 

00 B.1 Overview

The operations specified previously in Clause 7 are rounded to a destination format of Clause 5, according to 
a rounding direction method of Clause 6, and raise exceptions according to Clause 9. This Annex pertains to 
languages for which every variable and constant is typed and therefore every floating-point variable has one 
of the formats of this standard.

Every operation has an implicit or explicit destination.  When a variable is a final destination, as in conversion 
to a variable, the format of that variable governs its rounding.  The format of an anonymous destination is 
defined by language expression evaluation rules.

Some languages implicitly  convert  operands  of  standard floating-point  operations to  a  common format. 
Typically, operands are promoted to the widest format of the operands or a Widento format (see Annex C). 
However, if the common format is not a superset of the operand formats, then the conversion might not 
preserve the values of the operands. Examples include:

― converting a fixed-point or integer operand to a floating-point format with less precision 

― converting a floating-point operand from one radix to another

― converting a floating-point operand to a format with the same radix but with less range or precision 

Languages should disallow, or  provide warnings for,  mixed-format operations that  would cause implicit 
conversion that might change operand values.

Widento methods

Annex C prescribes Widento methods for widening operations in expressions. Widening, which should be 
available in every implementation supporting more than one floating-point format in a radix, is performed as 
specified by the user, and thus is not an optimization in the usual sense. Widening occurs before optimization 
is considered.

Reproducible results

Languages should provide means for programmers to specify reproducible results―identical results that are 
identical on all platforms supporting that language and this standard, for operations completely specified by 
this standard.

00 B.2 Optimization

As part of support for this standard, a language should require that execution behavior preserve the literal 
meaning of  the source code and not  change the numerical  results  or  exceptions signaled.  However,  the 
language should define, and require implementations to provide, means to allow or disallow the following 
optimizations, separately and collectively, for a language-defined syntactic unit of the program:

― synthesis of a fusedMultiplyAdd operation from a multiplication and an addition

― synthesis of a formatOf operation from an operation and a conversion of the result of the operation

― use of reassociation and wider intermediates to evaluate a sum reduction

― use of reassociation and wider intermediates to evaluate a product reduction
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00 B.3 Assignments

Assignment of an expression to a variable should be implemented by further rounding the result value of the 
assigned expression to the width of the assigned-to variable. Implementations should never use an assigned-to 
variable's wider precursor in place of the assigned-to variable's stored value when evaluating subsequent 
expressions.

Actual parameters to non-generic function calls are like assignments, and are rounded to the type of the formal 
parameter if a declaration is in scope, and are rounded to a language-defined type otherwise. Languages define 
rules for actual parameters to generic functions.

Values to be returned by functions of declared types are like assignments and should be rounded to the 
declared type of the function. Languages define rules for types of generic function return values according to 
the function parameters.
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(informative)
Annex C (informative) Widento methods for expression evaluation

In this standard, a computational operation first produces an unrounded result as an exact number of infinite 
precision.  That  unrounded result  is  then rounded to  a  destination format.  For  certain language-specified 
generic operations, that destination format is implied by the widths of the operands and by the  Widento 
method currently in effect.

An implementation should provide a Widento method for each supported non-storage format.

The following Widento methods disable and enable widening of operations in expressions that might be as 
simple as  z = x + y  or that might involve several operations on operands of different formats.

― noWidento method: A language should define, and require implementations to provide, means for 
users  to  specify  a  noWidento  method,  for  a  language  defined  syntactic  unit  of  the  program. 
Destination width is the maximum of the operand widths: generic operations with floating-point 
operands and results (of the same radix) round results to the widest format among the operands, 
unless that format is a storage format; then the result should be rounded to the narrowest supported 
basic format.

― widentoFormat methods: A language that provides addition, subtraction, multiplication, division, 
and comparison as generic operators should define, and require implementations to provide, means 
for users to specify a WidentoFormat method for each supported format, except storage formats, for 
a  language  defined  syntactic  unit  of  the  program.    widentoFormat  methods  affect  the 
aforementioned operators. Whether and which other generic operators or functions they affect is 
language defined. Table C.1 lists operators that are suitable for being affected by Widento methods. 
Destination width is the maximum of the width of the widentoFormat and operand widths: affected 
operations with floating-point operands and results (of the same radix) round results to the widest 
format among the operands and the widentoFormat. Affected operations (including comparisons) do 
not  narrow  their  operands,  which  may  be  widened  expressions.  widentoFormat  affects  only 
expressions in the radix of format.

Widento methods do not affect the width of the final rounding to an explicit destination, which is always 
rounded to the declared format of that destination.

Widento methods do not affect explicit format conversions within expressions; they are always rounded to the 
format specified by the conversion.
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Table C.1—Widento operations

Operation

destination addition(source1, source2)
destination subtraction(source1, source2)
destination multiplication(source1, source2)
destination division(source1, source2)

destination squareRoot (source1)

destination fusedMultiplyAdd (source1, source2, source3)

destination minNum(source1, source2)
destination maxNum(source1, source2)
destination minNumMag(source1, source2)
destination maxNumMag(source1, source2)

boolean compareEqual(source1,source2) 
boolean compareNotEqual(source1,source2)
boolean compareGreater(source1,source2)
boolean compareGreaterEqual(source1,source2)
boolean compareLess(source1,source2)
boolean compareLessEqual(source1,source2)
boolean compareSignalingNotGreater(source1,source2)
boolean compareSignalingLessUnordered(source1,source2)
boolean compareSignalingNotLess(source1,source2)
boolean compareSignalingGreaterUnordered(source1,source2)
boolean compareQuietGreater(source1,source2)
boolean compareQuietGreaterEqual(source1,source2)
boolean compareQuietLess(source1,source2)
boolean compareQuietLessEqual(source1,source2)
boolean compareUnordered(source1,source2)
boolean compareQuietNotGreater(source1,source2)
boolean compareQuietLessUnordered(source1,source2)
boolean compareQuietNotLess(source1,source2)
boolean compareQuietGreaterUnordered(source1,source2)
boolean compareOrdered(source1,source2)

destination f(source) for all the functions f in Table D.1

Many languages define generic floating-point operations with operator symbols or functional form. These 
symbols and functions do not specify the destination format of the floating-point result; rather the prevailing 
Widento method and the formats of the operands imply the destination format to which the infinite-precision 
floating-point result is to be rounded. Thus source1,  source2, and source3 might be different floating-point 
formats. Non-canonical encodings are never propagated.

The Widento methods define the width  of  a  generic  operation to be the maximum of the widths of  its 
operands and the width of the widentoFormat, if any is in effect. That “maximum” implies an ordering among 
the formats of the operands―one must be a subset of the other (see B.1).
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(informative)
Annex D (informative) Elementary transcendental functions

Means are known by which certain elementary transcendental functions may be computed correctly rounded, 
in all rounding direction modes ― but in some cases over limited domains. Implementations should provide 
correctly-rounded versions of the functions listed in Table D.1, for binary32 format if supported and binary64 
format if supported.

Implementations should also provide faithfully-rounded versions when these are significantly more efficient 
than correctly-rounded. For all other basic formats, these functions should be faithfully-rounded.

Faithful rounding is defined thus:  let x denote an infinitely precise number to be rounded according to the 
prevailing rounding direction mode:

― In a rounding direction mode to  nearest,  if  x is  representable a  floating-point  number,  x is  the 
faithfully rounded result.

― In a rounding direction mode to nearest, if x is not representable a floating-point number, either of 
the two nearest representable floating-point numbers bracketing x is the faithfully rounded result.

― In a directed rounding mode, if  x is  representable a floating-point  number,  either  x or the next 
representable floating-point number in the specified direction is the faithfully-rounded result.

― In a directed rounding mode, if  x is not  representable a floating-point number, either of the two 
representable floating-point numbers nearest  x in the specified direction is the faithfully rounded 
result.

Furthermore, faithfully-rounded results should preserve important properties of the unrounded and correctly-
rounded functions: 

― exactly representable results,

― monotonicity,

― symmetry in rounding direction modes to nearest.

Because these functions are transcendental, they are almost always inexact; when results are inexact but no 
other exception is  signaled,  languages define whether the inexact  exception is  signaled, not signaled, or 
indeterminate, but the inexact exception should not be signaled for exact results.

For all functions, signaling NaN operands signal the invalid exception.

For expm1, log1p, sinPi, atanPi, sin, and atan, f(+0) is +0 and f(-0) is -0.

Languages should define which other mathematical functions should or should be provided in corrrectly-
rounded and faithfully-rounded versions.

When a language specifies elementary transcendental functions, each implementation should document the 
worst-case accuracies achieved and indicate whether the accuracies are proven or measured for a subset of 
inputs.
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Table D.1—Standardized transcendental functions

Operation Function
Correctly-rounded

domain
Exceptions

exp ex [–∞, +∞] overflow; underflow

expm1 ex-1 [–∞, +∞] overflow; underflow

sinh sinh(x) [–∞, +∞] overflow

cosh cosh(x) [–∞, +∞] overflow

log
log2
log10

loge(x)
log2(x)
log10(x)

(0, +∞] x = 0: division by zero;
x < 0: invalid

log1p loge(1+x) (–1, +∞] x = -1: division by zero;
x < -1: invalid

sinPi sin(π × x) empty |x|=∞: invalid; 

underflow 

cosPi cos(π × x) empty |x|=∞: invalid

atanPi atan(x)/π empty underflow

sin sin(x) [–π, +π] |x|=∞: invalid;

underflow 

cos cos(x) [–π, +π] |x|=∞: invalid

tan tan(x) [–π, +π] |x|=∞: invalid;

underflow, overflow

asin asin(x) [–1, +1] |x| > 1: invalid

acos acos(x) [–1, +1] |x| > 1: invalid

atan atan(x) [–tan(P2), +tan(P2)]
for |x| > tan(P2),  see text below

underflow

Some functions, such as cosPi and log, can underflow and/or overflow in an abnormal format with a huge 
precision and a small exponent field.  These are not noted in Table D.1 and are not anticipated to occur in 
common practice.

All functions are faithfully rounded outside the correctly-rounded domain, except:

For atan, P2 is π / 2 rounded toward zero in the format of x.

When |x| > tan(P2) in rounding direction modes to nearest, atan(x) is copySign(P2, x) and might not be 
correctly rounded.

When |x| > tan(P2) in directed rounding direction modes, atan(x) is correctly rounded to ± P2 or to 
± nextUp(P2), in order to support interval arithmetic inclusion.
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(informative)
Annex E (informative) Alternate exception handling modes

00 E.1 Overview

Languages should define, and require implementations to provide, means for the user to attach alternate 
exception handling modes to blocks, language-defined syntactic units (see 6.2).  Alternate exception handlers 
specify lists of exceptions and actions to be taken for each listed exception if it is signaled. Exception lists 
may contain:

― Any operation-specific exceptions (e.g. 0/0, ∞ - ∞).  The names are language-defined.

― One of the five exception classes: invalid, divideByZero, overflow, underflow, inexact.

― allExceptions: all of the aforementioned five exception classes

All implementations should provide alternate exception handling for the superclass  allExceptions, the five 
exception classes, and operation-specific exceptions as well.

Languages should provide  the  non-resumable alternate  exception handling modes  listed  in E.2,  and the 
resumable alternate exception handling modes listed in E.3. The syntax and scope for such mode declarations 
are language-defined.

00 E.2 Non-resumable alternate exception handling modes

Non-resumable-mode alternate exception handling attached to a block means: handle the implied exceptions 
according to the non-resumable mode specified, then abandon execution of the block attached to and resume 
execution elsewhere as indicated. Languages should define, and require implementations to provide, these 
non-resumable modes:

― {block} attached to a block:  abandon execution of the attached block and execute the alternate 
block.  The extent to which the original block is  evaluated is  language-defined, so the alternate 
handling block should make no assumptions about values of variables that might have been changed.

― transfer attached to a block:  transfers control; no return possible.  transfer is a language-specific 
idiom  for  non-resumable  control  transfer;  conventional  languages  should  offer  several  transfer 
idioms such as 

― goto label: label might be local or global according to the semantics of the language.

― break: abandon the block controlled by this exception handling and go to the next block.

― throw exceptionName: causes an exceptionName not to be handled locally, but rather signaled 
to  the  next  handling  in  scope,  perhaps  the  function  that  invoked  the  current  subprogram, 
according to  the semantics  of  that  language.  The invoker  might  handle  exceptionName by 
default or by alternate handling such as signaling exceptionName to the next higher invoking 
subprogram.

When a  block  is  interrupted for  non-resumable  alternate  exception handling,  none,  some,  or  all  of  the 
variables assigned in that block may be in an undefined state. Some programming environments might choose 
to checkpoint all variables prior to executing the protected block, and then restore them prior to executing the 
alternate  block;  others  leave  the  responsibility  to  the  programmer to  decide  which  variables  should  be 
checkpointed prior to entry and then to explicitly restore them in the alternate block as needed.
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00 E.3 Resumable alternate exception handling modes

Resumable-mode alternate exception handling attached to a block means: handle the implied exceptions 
according to the resumable mode declared, and continue execution of the block attached to. Implementations 
should support the restoreDefaults mode and should support these other resumable modes:

― restoreDefaults attached to a block:
Restores the (static) default exception handling despite alternate exception handling that might be in 
effect in outer contexts.

― substitute(x) (applicable to any exception):
Replace the default result of such an exceptional operation with a variable or expression  x.  The 
timing and scope in which x is evaluated is language-defined.

― substituteExor(x) (applicable to any exception arising from multiplication or division):
Like substitute(x), but replace the default result of such an exceptional operation, if not a NaN, with |
x| and attach the EXOR of the signs of the operands.

― abruptUnderflow:
Replace  tiny  results  with  zero  (or  minimum  normal  in  directed  rounding  modes)  results  of 
appropriate signs, raise the underflow flag, and signal inexact.
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0Annex F
(informative)
Scaled-product operations

Implementations should provide the following reduction homogeneous computational operations for all 
supported non-storage floating-point formats. Unlike the rest of the operations in this standard, these operate 
on arrays of length n, and may evaluate products in any order and in any wider format, so results (including 
flags) might not be identical on different implementations.  These operations may signal both inexact and 
invalid.  These operations avoid overflow and underflow to compute a scaled product pr and a scale factor sf; 
the proper unscaled product could be recovered with scaleB(pr,sf) in the absence of over/underflow.  The 
preferred exponent is 0.

― (sourceFormat, logBformat) scaledProd ( source array, int )
{pr,sf} = scaledProd( p, n ) where p is an array of length n; scaleB( pr, sf ) computes 
∏(i = 1,n) pi

― (sourceFormat, logBformat) scaledProdSum ( source array, source array, int )  
{pr,sf} = scaledProdSum( p, q, n ) where p and q are arrays of length n; scaleB( pr, sf ) computes 
∏(i = 1,n) (pi + qi)

― (sourceFormat, logBformat) scaledProdDiff ( source array, source array, int ) 
{pr,sf} = scaledProdDiff( p, q, n ) where p and q are arrays of length n; scaleB( pr, sf ) computes 
∏(i = 1,n) (pi − qi)
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Annex G (informative) Program debugging support

00 G.1 Overview

Implementations of this standard vary in the relative priority they assign to characteristics like performance 
and debuggability  (the ability to debug).  Therefore this standard does not require all  implementations to 
provide  all  the  debugging  support  that  would  be  desirable  if  debuggability  were  the  most  important 
desideratum. This  annex describes  some programming environment features that  should be provided by 
implementations that intend to support maximum debuggability. On some implementations, enabling some of 
these abilities may be very expensive in performance compared to fully optimized code.

High-level debugging includes tasks like

― finding where,

― finding why,

― testing program fixes.

in order to investigate

― numerical sensitivity,

― numerical exceptions,

― programming errors such as accessing uninitialized storage that are only manifested  as incorrect 
numerical results.

00 G.2 Numerical sensitivity

Debuggers should be able to alter the modes governing handling of exceptions inside subprograms, even if the 
source code for those subprograms is not available. For instance, changing the rounding direction or precision 
during execution may help identify subprograms that are unusually sensitive to roundoff, whether due to ill-
condition of the problem being solved, instability in the algorithm chosen, or an algorithm designed to work 
in only one rounding direction mode.  The higher-level  goal is  to  determine responsibility for numerical 
misbehavior, especially in separately-compiled subprograms. The means to achieve that goal is to facilitate 
the production of small reproducible test cases that elicit unexpected behavior.

00 G.3 Numerical exceptions

Debuggers should be able to detect and pause to the debugger when a prespecified exception is signaled 
within a particular subprogram, or within specified undebugged subprograms that it calls. To avoid confusion, 
the pause should happen soon after the event which precipitated the pause. After such a pause, the debugger 
should be able to continue execution as if the exception had been handled by an alternate handler if specified, 
or otherwise by the default handler. The pause is associated with an exception and might not be associated 
with a well-defined source-code statement boundary; insisting on pauses that are precise with respect to the 
source code may well inhibit optimization.

Debuggers should be able to raise and lower status flags.

Debuggers should be able to examine all the unrequited exceptions left standing at the end of a subprogram's 
or whole program's execution. These capabilities should be enhanced by implementing each status flag as a 
pointer to a detailed record of its origin and history. By default, even a debugged subprogram presumed to be 
debugged should at least insert a pointer reference to its name, in an exception flag and in the payload of any 
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new quiet NaN produced as a floating-point result of an invalid operation. These pointers references indicate 
the origin of the exception or NaN.

Debuggers should be able to maintain tables of histories of quiet NaNs, using the NaN payload to index the 
tables.

Debuggers should be able to pause at every floating-point operation, without disrupting a program's logic for 
dealing with exceptions. Debuggers should display source code lines corresponding to machine instructions 
whenever possible.

For various purposes a signaling NaN could be used as a symbolic link to a record containing a numerical 
value extended by an exception history, extra exponent, or extra significand. Consequently bitwise operations 
like negate, abs, and copySign, which are normally silent, should detect signaling NaNs. Furthermore the 
signaling attribute of signaling NaNs should be able to be enabled or disabled globally or within a particular 
context, without disrupting or being affected by a program's logic for default or alternate  invalid exception 
handling of other invalid exceptions.

00 G.4 Programming errors

Debuggers should be able to define some or all NaNs as signaling NaNs that signal an exception every time 
they are used. In formats with superfluous bit patterns not generated by arithmetic, such as non-canonical 
significand fields in decimal formats, debuggers should be able to enable signaling-NaN behavior for data 
containing such bit patterns. Debbugers should be able to cause non-canonical significand fields to signal an 
exception. Whether non-canonical significand fields signal an exception is language-defined.

Debuggers should be able to set uninitialized storage and variables, such as heap and common  space to 
specific bit patterns such as all-zeros or all-ones which are helpful for finding inadvertent usages of such 
variables; those usages may prove refractory to static analysis if they involve multiple aliases to the same 
physical  storage.  If  all-ones bit  patterns were  defined to  be signaling NaNs, then such usages might be 
isolated earlier.

More  helpful,  and  requiring  correspondingly  more  software  coordination  to  implement,  are  debugging 
environments in which all floating-point variables, including automatic variables each time they are allocated 
on a stack, are initialized to signaling NaNs that point to symbol table entries describing their origin in terms 
of the source program.
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