
IA-32 Intel® Architecture
Software Developer’s Manual

Volume 2A:
Instruction Set Reference, A-M

NOTE: The IA-32 Intel Architecture Software Developer's Manual
consists of five volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-M, Order Number 253666; Instruction Set
Reference N-Z, Order Number 253667; System Programming Guide,
Part 1, Order Number 253668; System Programming Guide, Part 2,
Order Number 253669. Refer to all five volumes when evaluating your
design needs.

Order Number: 253666-018
January 2006

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EX-
PRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RE-
LATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FIT-
NESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE
SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Developers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.”
Improper use of reserved or undefined features or instructions may cause unpredictable behavior or failure in developer's
software code when running on an Intel processor. Intel reserves these features or instructions for future definition and shall
have no responsibility whatsoever for conflicts or incompatibilities arising from their unauthorized use.

The Intel® IA-32 architecture processors (e.g., Pentium® 4 and Pentium III processors) may contain design defects or errors
known as errata. Current characterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting Hyper-Threading
Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will vary depending on the
specific hardware and software you use. See http://www.intel.com/techtrends/technologies/hyperthreading.htm for more in-
formation including details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor
(VMM) and for some uses, certain platform software enabled for it. Functionality, performance or other benefits will vary de-
pending on hardware and software configurations. Intel® Virtualization Technology-enabled BIOS and VMM applications are
currently in development.

Intel® Extended Memory 64 Technology (Intel® EM64T) requires a computer system with a processor, chipset, BIOS, OS,
device drivers and applications enabled for Intel EM64T. Processor will not operate (including 32-bit operation) with-
out an Intel EM64T-enabled BIOS. Performance will vary depending on your hardware and software configurations. Intel
EM64T-enabled OS, BIOS, device drivers and applications may not be available. Check with your vendor for more
information.

Intel, Intel386, Intel486, Pentium, Intel Xeon, Intel NetBurst, Intel SpeedStep, OverDrive, MMX, Celeron, and Itanium are
trademarks or registered trademarks of Intel Corporation and its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-548-4725
or visit Intel’s website at http://www.intel.com

Copyright © 1997-2006 Intel Corporation

http://www.intel.com/techtrends/technologies/hyperthreading.htm
http://www.intel.com

CONTENTS FOR VOLUME 2A AND 2B
PAGE
CHAPTER 1
ABOUT THIS MANUAL
1.1 IA-32 PROCESSORS COVERED IN THIS MANUAL . 1-1
1.2 OVERVIEW OF VOLUME 2A AND 2B: INSTRUCTION SET REFERENCE. 1-2
1.3 NOTATIONAL CONVENTIONS. 1-2
1.3.1 Bit and Byte Order .1-2
1.3.2 Reserved Bits and Software Compatibility .1-3
1.3.3 Instruction Operands .1-4
1.3.4 Hexadecimal and Binary Numbers .1-4
1.3.5 Segmented Addressing .1-4
1.3.6 Exceptions. .1-5
1.3.7 A New Syntax for CPUID, CR, and MSR Values .1-5
1.4 RELATED LITERATURE . 1-7

CHAPTER 2
INSTRUCTION FORMAT
2.1 INSTRUCTION FORMAT FOR PROTECTED MODE, REAL-ADDRESS

MODE, AND VIRTUAL-8086 MODE . 2-1
2.1.1 Instruction Prefixes .2-2
2.1.2 Opcodes .2-3
2.1.3 ModR/M and SIB Bytes .2-4
2.1.4 Displacement and Immediate Bytes .2-4
2.1.5 Addressing-Mode Encoding of ModR/M and SIB Bytes .2-5
2.2 IA-32E MODE. 2-9
2.2.1 REX Prefixes .2-9
2.2.1.1 Encoding. .2-10
2.2.1.2 More on REX Prefix Fields .2-10
2.2.1.3 Displacement .2-13
2.2.1.4 Direct Memory-Offset MOVs. .2-14
2.2.1.5 Immediates .2-14
2.2.1.6 RIP-Relative Addressing. .2-14
2.2.1.7 Default 64-Bit Operand Size .2-15
2.2.2 Additional Encodings for Control and Debug Registers 2-15

CHAPTER 3
INSTRUCTION SET REFERENCE, A-M
3.1 INTERPRETING THE INSTRUCTION REFERENCE PAGES 3-1
3.1.1 Instruction Format .3-1
3.1.1.1 Opcode Column in the Instruction Summary Table .3-1
3.1.1.2 Instruction Column in the Opcode Summary Table .3-3
3.1.1.3 64-bit Mode Column in the Instruction Summary Table3-6
3.1.1.4 Compatibility/Legacy Mode Column in the Instruction Summary Table3-7
3.1.1.5 Description Column in the Instruction Summary Table.3-7
3.1.1.6 Description Section. .3-7
3.1.1.7 Operation Section. .3-7
3.1.1.8 Intel® C/C++ Compiler Intrinsics Equivalents Section 3-11
3.1.1.9 Flags Affected Section .3-14
3.1.1.10 FPU Flags Affected Section .3-14
Vol. 2A iii

CONTENTS

PAGE
3.1.1.11 Protected Mode Exceptions Section. .3-14
3.1.1.12 Real-Address Mode Exceptions Section .3-15
3.1.1.13 Virtual-8086 Mode Exceptions Section. .3-15
3.1.1.14 Floating-Point Exceptions Section .3-15
3.1.1.15 SIMD Floating-Point Exceptions Section .3-16
3.1.1.16 Compatibility Mode Exceptions Section .3-16
3.1.1.17 64-Bit Mode Exceptions Section. .3-16
3.2 INSTRUCTIONS (A-M) . 3-17

AAA—ASCII Adjust After Addition. .3-18
AAD—ASCII Adjust AX Before Division .3-20
AAM—ASCII Adjust AX After Multiply .3-22
AAS—ASCII Adjust AL After Subtraction .3-24
ADC—Add with Carry .3-26
ADD—Add. .3-29
ADDPD—Add Packed Double-Precision Floating-Point Values3-32
ADDPS—Add Packed Single-Precision Floating-Point Values3-35
ADDSD—Add Scalar Double-Precision Floating-Point Values3-38
ADDSS—Add Scalar Single-Precision Floating-Point Values.3-41
ADDSUBPD—Packed Double-FP Add/Subtract .3-44
ADDSUBPS—Packed Single-FP Add/Subtract. .3-48
AND—Logical AND .3-52
ANDPD—Bitwise Logical AND of Packed Double-Precision

Floating-Point Values. .3-55
ANDPS—Bitwise Logical AND of Packed Single-Precision

Floating-Point Values. .3-57
ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision

Floating-Point Values. .3-59
ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision

Floating-Point Values. .3-61
ARPL—Adjust RPL Field of Segment Selector .3-63
BOUND—Check Array Index Against Bounds .3-65
BSF—Bit Scan Forward .3-67
BSR—Bit Scan Reverse .3-69
BSWAP—Byte Swap. .3-71
BT—Bit Test .3-73
BTC—Bit Test and Complement .3-76
BTR—Bit Test and Reset .3-79
BTS—Bit Test and Set .3-82
CALL—Call Procedure .3-85
CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to

Doubleword/Convert Doubleword to Quadword 3-102
CLC—Clear Carry Flag .3-103
CLD—Clear Direction Flag .3-104
CLFLUSH—Flush Cache Line. .3-105
CLI — Clear Interrupt Flag .3-107
CLTS—Clear Task-Switched Flag in CR0. .3-110
CMC—Complement Carry Flag. .3-112
CMOVcc—Conditional Move. .3-113
iv Vol. 2A

CONTENTS

PAGE
CMP—Compare Two Operands . 3-119
CMPPD—Compare Packed Double-Precision Floating-Point Values 3-122
CMPPS—Compare Packed Single-Precision Floating-Point Values. 3-127
CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands 3-132
CMPSD—Compare Scalar Double-Precision Floating-Point Values. 3-137
CMPSS—Compare Scalar Single-Precision Floating-Point Values 3-141
CMPXCHG—Compare and Exchange . 3-145
CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes 3-148
COMISD—Compare Scalar Ordered Double-Precision Floating-Point

Values and Set EFLAGS . 3-151
COMISS—Compare Scalar Ordered Single-Precision Floating-Point

Values and Set EFLAGS . 3-154
CPUID—CPU Identification . 3-157
CVTDQ2PD—Convert Packed Doubleword Integers to Packed

Double-Precision Floating-Point Values. 3-180
CVTDQ2PS—Convert Packed Doubleword Integers to Packed

Single-Precision Floating-Point Values . 3-182
CVTPD2DQ—Convert Packed Double-Precision Floating-Point

Values to Packed Doubleword Integers . 3-185
CVTPD2PI—Convert Packed Double-Precision Floating-Point

Values to Packed Doubleword Integers . 3-188
CVTPD2PS—Convert Packed Double-Precision Floating-Point

Values to Packed Single-Precision Floating-Point Values 3-191
CVTPI2PD—Convert Packed Doubleword Integers to Packed

Double-Precision Floating-Point Values. 3-194
CVTPI2PS—Convert Packed Doubleword Integers to Packed

Single-Precision Floating-Point Values . 3-197
CVTPS2DQ—Convert Packed Single-Precision Floating-Point Values

to Packed Doubleword Integers . 3-200
CVTPS2PD—Convert Packed Single-Precision Floating-Point Values

to Packed Double-Precision Floating-Point Values 3-203
CVTPS2PI—Convert Packed Single-Precision Floating-Point Values

to Packed Doubleword Integers . 3-206
CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value to

Doubleword Integer . 3-209
CVTSD2SS—Convert Scalar Double-Precision Floating-Point Value to

Scalar Single-Precision Floating-Point Value. 3-212
CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision

Floating-Point Value. 3-215
CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision

Floating-Point Value. 3-218
CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value

to Scalar Double-Precision Floating-Point Value 3-221
CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value to

Doubleword Integer . 3-224
CVTTPD2PI—Convert with Truncation Packed Double-Precision

Floating-Point Values to Packed Doubleword Integers 3-227
Vol. 2A v

CONTENTS

PAGE
CVTTPD2DQ—Convert with Truncation Packed Double-Precision
Floating-Point Values to Packed Doubleword Integers3-230

CVTTPS2DQ—Convert with Truncation Packed Single-Precision
Floating-Point Values to Packed Doubleword Integers3-233

CVTTPS2PI—Convert with Truncation Packed Single-Precision
Floating-Point Values to Packed Doubleword Integers3-236

CVTTSD2SI—Convert with Truncation Scalar Double-Precision
Floating-Point Value to Signed Doubleword Integer 3-239

CVTTSS2SI—Convert with Truncation Scalar Single-Precision
Floating-Point Value to Doubleword Integer .3-242

CWD/CDQ/CQO—Convert Word to Doubleword/Convert Doubleword
to Quadword .3-245

DAA—Decimal Adjust AL after Addition .3-247
DAS—Decimal Adjust AL after Subtraction. .3-249
DEC—Decrement by 1 .3-251
DIV—Unsigned Divide. .3-253
DIVPD—Divide Packed Double-Precision Floating-Point Values3-257
DIVPS—Divide Packed Single-Precision Floating-Point Values3-260
DIVSD—Divide Scalar Double-Precision Floating-Point Values3-263
DIVSS—Divide Scalar Single-Precision Floating-Point Values.3-266
EMMS—Empty MMX Technology State .3-269
ENTER—Make Stack Frame for Procedure Parameters 3-271
F2XM1—Compute 2x–1 .3-274
FABS—Absolute Value .3-276
FADD/FADDP/FIADD—Add .3-278
FBLD—Load Binary Coded Decimal .3-282
FBSTP—Store BCD Integer and Pop .3-284
FCHS—Change Sign .3-287
FCLEX/FNCLEX—Clear Exceptions .3-289
FCMOVcc—Floating-Point Conditional Move .3-291
FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values

and Set EFLAGS .3-297
FCOS—Cosine .3-300
FDECSTP—Decrement Stack-Top Pointer. .3-302
FDIV/FDIVP/FIDIV—Divide .3-304
FDIVR/FDIVRP/FIDIVR—Reverse Divide. .3-308
FFREE—Free Floating-Point Register .3-312
FICOM/FICOMP—Compare Integer .3-313
FILD—Load Integer .3-316
FINCSTP—Increment Stack-Top Pointer .3-318
FINIT/FNINIT—Initialize Floating-Point Unit .3-320
FIST/FISTP—Store Integer .3-322
FISTTP—Store Integer with Truncation .3-326
FLD—Load Floating Point Value .3-329
FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant 3-332
FLDCW—Load x87 FPU Control Word .3-334
FLDENV—Load x87 FPU Environment. .3-336
vi Vol. 2A

CONTENTS

PAGE
FMUL/FMULP/FIMUL—Multiply . 3-339
FNOP—No Operation . 3-343
FPATAN—Partial Arctangent. 3-344
FPREM—Partial Remainder . 3-347
FPREM1—Partial Remainder . 3-350
FPTAN—Partial Tangent . 3-353
FRNDINT—Round to Integer. 3-356
FRSTOR—Restore x87 FPU State . 3-358
FSAVE/FNSAVE—Store x87 FPU State . 3-361
FSCALE—Scale . 3-365
FSIN—Sine . 3-368
FSINCOS—Sine and Cosine . 3-370
FSQRT—Square Root . 3-373
FST/FSTP—Store Floating Point Value. 3-375
FSTCW/FNSTCW—Store x87 FPU Control Word . 3-378
FSTENV/FNSTENV—Store x87 FPU Environment. 3-381
FSTSW/FNSTSW—Store x87 FPU Status Word . 3-384
FSUB/FSUBP/FISUB—Subtract . 3-387
FSUBR/FSUBRP/FISUBR—Reverse Subtract . 3-391
FTST—TEST . 3-395
FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating

Point Values . 3-397
FXAM—ExamineModR/M . 3-400
FXCH—Exchange Register Contents . 3-402
FXRSTOR—Restore x87 FPU, MMX Technology, SSE, SSE2, and

SSE3 State. 3-404
FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State 3-407
FXTRACT—Extract Exponent and Significand . 3-416
FYL2X—Compute y * log2x . 3-418
FYL2XP1—Compute y * log2(x +1) . 3-420
HADDPD—Packed Double-FP Horizontal Add . 3-423
HADDPS—Packed Single-FP Horizontal Add . 3-427
HLT—Halt . 3-431
HSUBPD—Packed Double-FP Horizontal Subtract. 3-433
HSUBPS—Packed Single-FP Horizontal Subtract . 3-437
IDIV—Signed Divide . 3-441
IMUL—Signed Multiply . 3-445
IN—Input from Port . 3-450
INC—Increment by 1 . 3-452
INS/INSB/INSW/INSD—Input from Port to String . 3-454
INT n/INTO/INT 3—Call to Interrupt Procedure . 3-458
INVD—Invalidate Internal Caches . 3-472
INVLPG—Invalidate TLB Entry . 3-474
IRET/IRETD—Interrupt Return . 3-476
Jcc—Jump if Condition Is Met . 3-487
JMP—Jump . 3-493
LAHF—Load Status Flags into AH Register . 3-503
Vol. 2A vii

CONTENTS

PAGE
LAR—Load Access Rights Byte .3-505
LDDQU—Load Unaligned Integer 128 Bits .3-509
LDMXCSR—Load MXCSR Register .3-512
LDS/LES/LFS/LGS/LSS—Load Far Pointer .3-515
LEA—Load Effective Address .3-521
LEAVE—High Level Procedure Exit .3-524
LFENCE—Load Fence .3-526
LGDT/LIDT—Load Global/Interrupt Descriptor Table Register3-527
LLDT—Load Local Descriptor Table Register. .3-530
LMSW—Load Machine Status Word. .3-532
LOCK—Assert LOCK# Signal Prefix .3-534
LODS/LODSB/LODSW/LODSD/LODSQ—Load String 3-536
LOOP/LOOPcc—Loop According to ECX Counter .3-539
LSL—Load Segment Limit. .3-542
LTR—Load Task Register .3-546
MASKMOVDQU—Store Selected Bytes of Double Quadword3-549
MASKMOVQ—Store Selected Bytes of Quadword. .3-552
MAXPD—Return Maximum Packed Double-Precision

Floating-Point Values. .3-555
MAXPS—Return Maximum Packed Single-Precision Floating-Point

Values .3-558
MAXSD—Return Maximum Scalar Double-Precision Floating-Point

Value .3-561
MAXSS—Return Maximum Scalar Single-Precision Floating-Point

Value .3-564
MFENCE—Memory Fence .3-567
MINPD—Return Minimum Packed Double-Precision Floating-Point Values . .3-568
MINPS—Return Minimum Packed Single-Precision Floating-Point Values . . .3-571
MINSD—Return Minimum Scalar Double-Precision Floating-Point Value 3-574
MINSS—Return Minimum Scalar Single-Precision Floating-Point Value3-577
MONITOR—Set Up Monitor Address .3-580
MOV—Move .3-583
MOV—Move to/from Control Registers .3-589
MOV—Move to/from Debug Registers .3-592
MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values . . .3-594
MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values. . . .3-597
MOVD/MOVQ—Move Doubleword/Move Quadword .3-600
MOVDDUP—Move One Double-FP and Duplicate. .3-604
MOVDQA—Move Aligned Double Quadword .3-607
MOVDQU—Move Unaligned Double Quadword. .3-609
MOVDQ2Q—Move Quadword from XMM to MMX Technology Register3-611
MOVHLPS— Move Packed Single-Precision Floating-Point Values

High to Low .3-613
MOVHPD—Move High Packed Double-Precision Floating-Point Value3-615
MOVHPS—Move High Packed Single-Precision Floating-Point Values3-618
MOVLHPS—Move Packed Single-Precision Floating-Point Values

Low to High .3-621
viii Vol. 2A

CONTENTS

PAGE
MOVLPD—Move Low Packed Double-Precision Floating-Point Value 3-623
MOVLPS—Move Low Packed Single-Precision Floating-Point Values. 3-626
MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask. . 3-629
MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask . . 3-631
MOVNTDQ—Store Double Quadword Using Non-Temporal Hint. 3-633
MOVNTI—Store Doubleword Using Non-Temporal Hint 3-636
MOVNTPD—Store Packed Double-Precision Floating-Point Values

Using Non-Temporal Hint. 3-638
MOVNTPS—Store Packed Single-Precision Floating-Point Values

Using Non-Temporal Hint. 3-641
MOVNTQ—Store of Quadword Using Non-Temporal Hint 3-644
MOVSHDUP—Move Packed Single-FP High and Duplicate. 3-647
MOVSLDUP—Move Packed Single-FP Low and Duplicate 3-650
MOVQ—Move Quadword . 3-653
MOVQ2DQ—Move Quadword from MMX Technology to XMM Register 3-656
MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String

to String . 3-658
MOVSD—Move Scalar Double-Precision Floating-Point Value 3-662
MOVSS—Move Scalar Single-Precision Floating-Point Values 3-665
MOVSX/MOVSXD—Move with Sign-Extension . 3-668
MOVUPD—Move Unaligned Packed Double-Precision Floating-Point

Values . 3-670
MOVUPS—Move Unaligned Packed Single-Precision Floating-Point

Values . 3-673
MOVZX—Move with Zero-Extend . 3-676
MUL—Unsigned Multiply . 3-678
MULPD—Multiply Packed Double-Precision Floating-Point Values 3-681
MULPS—Multiply Packed Single-Precision Floating-Point Values 3-684
MULSD—Multiply Scalar Double-Precision Floating-Point Values 3-687
MULSS—Multiply Scalar Single-Precision Floating-Point Values 3-690
MWAIT—Monitor Wait . 3-693

CHAPTER 4
INSTRUCTION SET REFERENCE, N-Z
4.1 INSTRUCTIONS (N-Z) . 4-1

NEG—Two's Complement Negation . 4-2
NOP—No Operation . 4-4
NOT—One's Complement Negation . 4-5
OR—Logical Inclusive OR . 4-7
ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values 4-10
ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values. 4-12
OUT—Output to Port . 4-14
OUTS/OUTSB/OUTSW/OUTSD—Output String to Port 4-16
PACKSSWB/PACKSSDW—Pack with Signed Saturation 4-21
PACKUSWB—Pack with Unsigned Saturation . 4-25
PADDB/PADDW/PADDD—Add Packed Integers . 4-29
PADDQ—Add Packed Quadword Integers . 4-33
PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation . . . 4-36
Vol. 2A ix

CONTENTS

PAGE
PADDUSB/PADDUSW—Add Packed Unsigned Integers with
Unsigned Saturation .4-40

PAND—Logical AND. .4-44
PANDN—Logical AND NOT .4-47
PAUSE—Spin Loop Hint .4-50
PAVGB/PAVGW—Average Packed Integers .4-51
PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal4-54
PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers

for Greater Than .4-58
PEXTRW—Extract Word. .4-63
PINSRW—Insert Word .4-66
PMADDWD—Multiply and Add Packed Integers .4-69
PMAXSW—Maximum of Packed Signed Word Integers 4-73
PMAXUB—Maximum of Packed Unsigned Byte Integers.4-76
PMINSW—Minimum of Packed Signed Word Integers.4-79
PMINUB—Minimum of Packed Unsigned Byte Integers4-82
PMOVMSKB—Move Byte Mask .4-85
PMULHUW—Multiply Packed Unsigned Integers and Store High Result4-87
PMULHW—Multiply Packed Signed Integers and Store High Result4-91
PMULLW—Multiply Packed Signed Integers and Store Low Result.4-95
PMULUDQ—Multiply Packed Unsigned Doubleword Integers4-99
POP—Pop a Value from the Stack .4-102
POPA/POPAD—Pop All General-Purpose Registers .4-108
POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register4-110
POR—Bitwise Logical OR .4-114
PREFETCHh—Prefetch Data Into Caches .4-117
PSADBW—Compute Sum of Absolute Differences .4-119
PSHUFD—Shuffle Packed Doublewords .4-123
PSHUFHW—Shuffle Packed High Words. .4-126
PSHUFLW—Shuffle Packed Low Words .4-129
PSHUFW—Shuffle Packed Words .4-132
PSLLDQ—Shift Double Quadword Left Logical .4-135
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical4-137
PSRAW/PSRAD—Shift Packed Data Right Arithmetic4-142
PSRLDQ—Shift Double Quadword Right Logical .4-146
PSUBB/PSUBW/PSUBD—Subtract Packed Integers.4-153
PSUBQ—Subtract Packed Quadword Integers .4-157
PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed

Saturation. .4-160
PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with

Unsigned Saturation .4-164
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ—

Unpack High Data .4-168
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—

Unpack Low Data. .4-173
PUSH—Push Word or Doubleword Onto the Stack .4-178
PUSHA/PUSHAD—Push All General-Purpose Registers.4-182
x Vol. 2A

CONTENTS

PAGE
PUSHF/PUSHFD—Push EFLAGS Register onto the Stack 4-184
PXOR—Logical Exclusive OR . 4-187
RCL/RCR/ROL/ROR-—Rotate . 4-190
RCPPS—Compute Reciprocals of Packed Single-Precision

Floating-Point Values . 4-196
RCPSS—Compute Reciprocal of Scalar Single-Precision

Floating-Point Values . 4-199
RDMSR—Read from Model Specific Register. 4-202
RDPMC—Read Performance-Monitoring Counters . 4-204
RDTSC—Read Time-Stamp Counter . 4-207
REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix 4-209
RET—Return from Procedure . 4-214
RSM—Resume from System Management Mode. 4-225
RSQRTPS—Compute Reciprocals of Square Roots of Packed

Single-Precision Floating-Point Values . 4-227
RSQRTSS—Compute Reciprocal of Square Root of Scalar

Single-Precision Floating-Point Value . 4-230
SAHF—Store AH into Flags. 4-233
SAL/SAR/SHL/SHR—Shift . 4-235
SBB—Integer Subtraction with Borrow . 4-241
SCAS/SCASB/SCASW/SCASD—Scan String . 4-244
SETcc—Set Byte on Condition . 4-249
SFENCE—Store Fence . 4-253
SGDT—Store Global Descriptor Table Register . 4-254
SHLD—Double Precision Shift Left . 4-257
SHRD—Double Precision Shift Right . 4-260
SHUFPD—Shuffle Packed Double-Precision Floating-Point Values. 4-263
SHUFPS—Shuffle Packed Single-Precision Floating-Point Values 4-266
SIDT—Store Interrupt Descriptor Table Register . 4-269
SLDT—Store Local Descriptor Table Register . 4-272
SMSW—Store Machine Status Word . 4-274
SQRTPS—Compute Square Roots of Packed Single-Precision

Floating-Point Values . 4-279
SQRTSD—Compute Square Root of Scalar Double-Precision

Floating-Point Value. 4-282
SQRTSS—Compute Square Root of Scalar Single-Precision

Floating-Point Value. 4-285
STC—Set Carry Flag. 4-288
STD—Set Direction Flag . 4-289
STI—Set Interrupt Flag . 4-290
STMXCSR—Store MXCSR Register State . 4-293
STOS/STOSB/STOSW/STOSD/STOSQ—Store String 4-295
STR—Store Task Register . 4-299
SUB—Subtract. 4-301
SUBPD—Subtract Packed Double-Precision Floating-Point Values 4-304
SUBPS—Subtract Packed Single-Precision Floating-Point Values. 4-307
SUBSD—Subtract Scalar Double-Precision Floating-Point Values. 4-310
Vol. 2A xi

CONTENTS

PAGE
SUBSS—Subtract Scalar Single-Precision Floating-Point Values 4-313
SWAPGS—Swap GS Base Register .4-316
SYSCALL—Fast System Call .4-318
SYSENTER—Fast System Call .4-320
SYSEXIT—Fast Return from Fast System Call. .4-324
SYSRET—Return From Fast System Call .4-328
TEST—Logical Compare. .4-330
UCOMISD—Unordered Compare Scalar Double-Precision

Floating-Point Values and Set EFLAGS .4-333
UCOMISS—Unordered Compare Scalar Single-Precision

Floating-Point Values and Set EFLAGS .4-336
UD2—Undefined Instruction .4-339
UNPCKHPD—Unpack and Interleave High Packed Double-Precision

Floating-Point Values. .4-340
UNPCKHPS—Unpack and Interleave High Packed Single-Precision

Floating-Point Values. .4-343
UNPCKLPD—Unpack and Interleave Low Packed Double-Precision

Floating-Point Values. .4-346
UNPCKLPS—Unpack and Interleave Low Packed Single-Precision

Floating-Point Values .4-349
VERR/VERW—Verify a Segment for Reading or Writing4-352
WAIT/FWAIT—Wait. .4-355
WBINVD—Write Back and Invalidate Cache .4-357
WRMSR—Write to Model Specific Register .4-359
XADD—Exchange and Add. .4-361
XCHG—Exchange Register/Memory with Register .4-363
XLAT/XLATB—Table Look-up Translation .4-366
XOR—Logical Exclusive OR .4-368
XORPD—Bitwise Logical XOR for Double-Precision Floating-Point

Values .4-371
XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values . . .4-373

CHAPTER 5
VMX INSTRUCTION REFERENCE
5.1 OVERVIEW . 5-1
5.2 CONVENTIONS. 5-2
5.3 VMX INSTRUCTIONS . 5-3

VMCALL—Call to VM Monitor .5-4
VMCLEAR—Clear Virtual-Machine Control Structure. .5-7
VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine5-10
VMPTRLD—Load Pointer to Virtual-Machine Control Structure5-13
VMPTRST—Store Pointer to Virtual-Machine Control Structure.5-16
VMREAD—Read Field from Virtual-Machine Control Structure5-18
VMRESUME—Resume Virtual Machine .5-21
VMWRITE—Write Field to Virtual-Machine Control Structure.5-22
VMXOFF—Leave VMX Operation. .5-25
VMXON—Enter VMX Operation .5-27
xii Vol. 2A

CONTENTS

PAGE
APPENDIX A
OPCODE MAP
A.1 USING OPCODE TABLES. A-1
A.2 KEY TO ABBREVIATIONS . A-2
A.2.1 Codes for Addressing Method . A-2
A.2.2 Codes for Operand Type . A-3
A.2.3 Register Codes . A-4
A.2.4 Opcode Look-up Examples for One-Byte and Two-Byte Opcodes A-4
A.2.4.1 One-Byte Opcode Instructions . A-4
A.2.4.2 Two-Byte Opcode Instructions . A-5
A.2.5 Superscripts Utilized in Opcode Tables. A-6
A.3 ONE-BYTE AND TWO-BYTE OPCODE MAPS. A-7
A.4 OPCODE EXTENSIONS FOR ONE-BYTE AND TWO-BYTE OPCODES A-14
A.4.1 Opcode Look-up Examples Using Opcode Extensions A-14
A.4.2 Opcode Extension Tables . A-15
A.5 ESCAPE OPCODE INSTRUCTIONS. A-17
A.5.1 Opcode Look-up Examples for Escape Instruction Opcodes A-17
A.5.2 Escape Opcode Instruction Tables . A-17
A.5.2.1 Escape Opcodes with D8 as First Byte. A-18
A.5.2.2 Escape Opcodes with D9 as First Byte. A-19
A.5.2.3 Escape Opcodes with DA as First Byte . A-20
A.5.2.4 Escape Opcodes with DB as First Byte . A-21
A.5.2.5 Escape Opcodes with DC as First Byte . A-22
A.5.2.6 Escape Opcodes with DD as First Byte . A-23
A.5.2.7 Escape Opcodes with DE as First Byte . A-24
A.5.2.8 Escape Opcodes with DF As First Byte . A-25

APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS
B.1 MACHINE INSTRUCTION FORMAT . B-1
B.1.1 Legacy Prefixes . B-2
B.1.2 REX Prefixes . B-2
B.1.3 Opcode Fields . B-2
B.1.4 Special Fields . B-2
B.1.4.1 Reg Field (reg) for Non-64-Bit Modes. B-3
B.1.4.2 Reg Field (reg) for 64-Bit Mode . B-4
B.1.4.3 Encoding of Operand Size (w) Bit . B-5
B.1.4.4 Sign-Extend (s) Bit . B-5
B.1.4.5 Segment Register (sreg) Field . B-6
B.1.4.6 Special-Purpose Register (eee) Field . B-7
B.1.4.7 Condition Test (tttn) Field . B-7
B.1.4.8 Direction (d) Bit . B-8
B.1.5 Other Notes . B-9
B.2 GENERAL-PURPOSE INSTRUCTION FORMATS AND ENCODINGS

FOR NON-64-BIT MODES B-10
B.2.1 General Purpose Instruction Formats and Encodings for 64-Bit Mode B-23
B.3 PENTIUM® PROCESSOR FAMILY INSTRUCTION FORMATS AND

ENCODINGS . B-47
B.4 64-BIT MODE INSTRUCTION ENCODINGS FOR SIMD INSTRUCTION

EXTENSIONS . B-48
B.5 MMX INSTRUCTION FORMATS AND ENCODINGS . B-48
B.5.1 Granularity Field (gg) . B-48
Vol. 2A xiii

CONTENTS

PAGE
B.5.2 MMX Technology and General-Purpose Register Fields
(mmxreg and reg) . B-49

B.5.3 MMX Instruction Formats and Encodings Table . B-49
B.6 P6 FAMILY INSTRUCTION FORMATS AND ENCODINGS B-52
B.7 SSE INSTRUCTION FORMATS AND ENCODINGS. B-53
B.8 SSE2 INSTRUCTION FORMATS AND ENCODINGS. B-61
B.8.1 Granularity Field (gg). B-61
B.9 SSE3 FORMATS AND ENCODINGS TABLE . B-75
B.10 SPECIAL ENCODINGS FOR 64-BIT MODE . B-77
B.11 FLOATING-POINT INSTRUCTION FORMATS AND ENCODINGS B-80
B.12 VMX INSTRUCTIONS . B-86

APPENDIX C
INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
C.1 SIMPLE INTRINSICS. C-3
C.2 COMPOSITE INTRINSICS . C-32

FIGURES

Figure 1-1. Bit and Byte Order .1-3
Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation .1-6
Figure 2-1. IA-32 Instruction Format .2-1
Figure 2-1. Table Interpretation of ModR/M Byte (C8H) .2-5
Figure 2-2. Prefix Ordering in 64-bit Mode .2-9
Figure 2-3. Memory Addressing Without an SIB Byte; REX.X Not Used2-11
Figure 2-4. Register-Register Addressing (No Memory Operand); REX.X Not Used2-11
Figure 2-5. Memory Addressing With a SIB Byte .2-12
Figure 2-6. Register Operand Coded in Opcode Byte; REX.X & REX.R Not Used 2-12
Figure 3-1. Bit Offset for BIT[RAX, 21] .3-10
Figure 3-2. Memory Bit Indexing. .3-11
Figure 3-3. ADDSUBPD—Packed Double-FP Add/Subtract .3-44
Figure 3-4. ADDSUBPS—Packed Single-FP Add/Subtract .3-48
Figure 3-5. Version Information Returned by CPUID in EAX .3-163
Figure 3-6. Extended Feature Information Returned in the ECX Register3-165
Figure 3-7. Feature Information Returned in the EDX Register 3-166
Figure 3-8. Determination of Support for the Processor Brand String 3-173
Figure 3-9. Algorithm for Extracting Maximum Processor Frequency.3-175
Figure 3-10. HADDPD—Packed Double-FP Horizontal Add .3-423
Figure 3-11. HADDPS—Packed Single-FP Horizontal Add .3-427
Figure 3-12. HSUBPD—Packed Double-FP Horizontal Subtract3-433
Figure 3-13. HSUBPS—Packed Single-FP Horizontal Subtract .3-438
Figure 3-14. MOVDDUP—Move One Double-FP and Duplicate 3-604
Figure 3-15. MOVSHDUP—Move Packed Single-FP High and Duplicate3-647
Figure 3-16. MOVSLDUP—Move Packed Single-FP Low and Duplicate.3-650
Figure 4-1. Operation of the PACKSSDW Instruction Using 64-bit Operands4-21
Figure 4-2. PMADDWD Execution Model Using 64-bit Operands 4-70
Figure 4-3. PMULHUW and PMULHW Instruction Operation Using 64-bit Operands . . .4-87
Figure 4-4. PMULLU Instruction Operation Using 64-bit Operands4-95
Figure 4-5. PSADBW Instruction Operation Using 64-bit Operands.4-120
xiv Vol. 2A

CONTENTS

PAGE
Figure 4-6. PSHUFD Instruction Operation. 4-123
Figure 4-7. PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit

Operand . 4-138
Figure 4-8. PSRAW and PSRAD Instruction Operation Using a 64-bit Operand 4-142
Figure 4-9. PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit

Operand . 4-149
Figure 4-10. PUNPCKHBW Instruction Operation Using 64-bit Operands 4-168
Figure 4-11. PUNPCKLBW Instruction Operation Using 64-bit Operands 4-173
Figure 4-12. SHUFPD Shuffle Operation . 4-263
Figure 4-13. SHUFPS Shuffle Operation . 4-266
Figure 4-14. UNPCKHPD Instruction High Unpack and Interleave Operation 4-340
Figure 4-15. UNPCKHPS Instruction High Unpack and Interleave Operation 4-343
Figure 4-16. UNPCKLPD Instruction Low Unpack and Interleave Operation 4-346
Figure 4-17. UNPCKLPS Instruction Low Unpack and Interleave Operation 4-349
Figure A-1. ModR/M Byte nnn Field (Bits 5, 4, and 3) . A-14
Figure B-1. General Machine Instruction Format. B-1

TABLES

Table 2-1. 16-Bit Addressing Forms with the ModR/M Byte . 2-6
Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte . 2-7
Table 2-3. 32-Bit Addressing Forms with the SIB Byte . 2-8
Table 2-4. REX Prefix Fields [BITS: 0100WRXB] . 2-11
Table 2-5. Special Cases of REX Encodings. 2-13
Table 2-6. Direct Memory Offset Form of MOV . 2-14
Table 2-7. RIP-Relative Addressing. 2-15
Table 3-1. Register Codes Associated With +rb, +rw, +rd, +ro . 3-2
Table 3-2. Range of Bit Positions Specified by Bit Offset Operands 3-10
Table 3-3. IA-32 General Exceptions . 3-14
Table 3-4. x87 FPU Floating-Point Exceptions . 3-16
Table 3-5. SIMD Floating-Point Exceptions . 3-16
Table 3-6. Decision Table for CLI Results . 3-107
Table 3-7. Comparison Predicate for CMPPD and CMPPS Instructions 3-122
Table 3-8. Pseudo-Op and CMPPD Implementation . 3-123
Table 3-9. Pseudo-Ops and CMPPS . 3-128
Table 3-10. Pseudo-Ops and CMPSD . 3-137
Table 3-11. Pseudo-Ops and CMPSS . 3-141
Table 3-12. Information Returned by CPUID Instruction . 3-158
Table 3-13. Highest CPUID Source Operand for IA-32 Processors. 3-162
Table 3-14. Processor Type Field . 3-163
Table 3-15. More on Extended Feature Information Returned in the ECX Register . . . 3-165
Table 3-16. More on Feature Information Returned in the EDX Register 3-167
Table 3-17. Encoding of Cache and TLB Descriptors . 3-169
Table 3-18. Processor Brand String Returned with Pentium 4 Processor 3-174
Table 3-19. Mapping of Brand Indices and IA-32 Processor Brand Strings. 3-176
Table 3-20. DIV Action . 3-254
Table 3-21. Results Obtained from F2XM1 . 3-274
Table 3-22. Results Obtained from FABS . 3-276
Table 3-23. FADD/FADDP/FIADD Results . 3-279
Table 3-24. FBSTP Results . 3-284
Vol. 2A xv

CONTENTS

PAGE
Table 3-25. FCHS Results .3-287
Table 3-26. FCOM/FCOMP/FCOMPP Results .3-293
Table 3-27. FCOMI/FCOMIP/ FUCOMI/FUCOMIP Results .3-297
Table 3-28. FCOS Results. .3-300
Table 3-29. FDIV/FDIVP/FIDIV Results. .3-305
Table 3-30. FDIVR/FDIVRP/FIDIVR Results .3-309
Table 3-31. FICOM/FICOMP Results .3-313
Table 3-32. FIST/FISTP Results .3-322
Table 3-33. FISTTP Results .3-326
Table 3-34. FMUL/FMULP/FIMUL Results .3-340
Table 3-35. FPATAN Results. .3-345
Table 3-36. FPREM Results .3-347
Table 3-37. FPREM1 Results .3-350
Table 3-38. FPTAN Results .3-353
Table 3-39. FSCALE Results. .3-365
Table 3-40. FSIN Results. .3-368
Table 3-41. FSINCOS Results. .3-370
Table 3-42. FSQRT Results. .3-373
Table 3-43. FSUB/FSUBP/FISUB Results. .3-388
Table 3-44. FSUBR/FSUBRP/FISUBR Results. .3-392
Table 3-45. FTST Results .3-395
Table 3-46. FUCOM/FUCOMP/FUCOMPP Results .3-397
Table 3-47. FXAM Results. .3-400
Table 3-48. Non-64-bit-Mode Layout of FXSAVE and FXRSTOR Memory Region 3-407
Table 3-49. Field Definitions .3-408
Table 3-50. Recreating FSAVE Format .3-410
Table 3-51. Layout of the 64-bit-mode FXSAVE Map with Promoted OperandSize3-411
Table 3-52. Layout of the 64-bit-mode FXSAVE Map with Default OperandSize3-412
Table 3-53. FYL2X Results .3-418
Table 3-54. FYL2XP1 Results .3-420
Table 3-55. IDIV Results .3-442
Table 3-56. Decision Table .3-459
Table 3-57. Segment and Gate Types. .3-506
Table 3-58. Non-64-bit Mode LEA Operation with Address and Operand Size

Attributes3-521
Table 3-59. 64-bit Mode LEA Operation with Address and Operand Size Attributes . . .3-522
Table 3-60. Segment and Gate Descriptor Types .3-543
Table 3-61. MUL Results .3-678
Table 4-1. Repeat Prefixes .4-211
Table 4-2. Decision Table for STI Results .4-291
Table 4-3. SWAPGS Operation Parameters .4-316
Table 4-4. MSRs Used By the SYSENTER and SYSEXIT Instructions 4-320
Table A-1. Superscripts Utilized in Opcode Tables . A-6
Table A-2. One-byte Opcode Map: (00H — F7H) * . A-8
Table A-3. Two-byte Opcode Map: 00H — 77H (First Byte is 0FH) * A-10
Table A-4. Opcode Extensions for One- and Two-byte Opcodes by Group Number * . A-15
Table A-5. D8 Opcode Map When ModR/M Byte is Within 00H to BFH * A-18
Table A-6. D8 Opcode Map When ModR/M Byte is Outside 00H to BFH * A-18
Table A-7. D9 Opcode Map When ModR/M Byte is Within 00H to BFH * A-19
Table A-8. D9 Opcode Map When ModR/M Byte is Outside 00H to BFH * A-19
Table A-9. DA Opcode Map When ModR/M Byte is Within 00H to BFH * A-20
Table A-10. DA Opcode Map When ModR/M Byte is Outside 00H to BFH *. A-20
xvi Vol. 2A

CONTENTS

PAGE
Table A-11. DB Opcode Map When ModR/M Byte is Within 00H to BFH * A-21
Table A-12. DB Opcode Map When ModR/M Byte is Outside 00H to BFH * A-21
Table A-13. DC Opcode Map When ModR/M Byte is Within 00H to BFH * A-22
Table A-14. DC Opcode Map When ModR/M Byte is Outside 00H to BFH * A-22
Table A-15. DD Opcode Map When ModR/M Byte is Within 00H to BFH * A-23
Table A-16. DD Opcode Map When ModR/M Byte is Outside 00H to BFH * A-23
Table A-17. DE Opcode Map When ModR/M Byte is Within 00H to BFH * A-24
Table A-18. DE Opcode Map When ModR/M Byte is Outside 00H to BFH * A-24
Table A-19. DF Opcode Map When ModR/M Byte is Within 00H to BFH * A-25
Table A-20. DF Opcode Map When ModR/M Byte is Outside 00H to BFH * A-25
Table B-1. Special Fields Within Instruction Encodings . B-3
Table B-2. Encoding of reg Field When w Field is Not Present in Instruction B-3
Table B-4. Encoding of reg Field When w Field is Not Present in Instruction B-4
Table B-3. Encoding of reg Field When w Field is Present in Instruction B-4
Table B-5. Encoding of reg Field When w Field is Present in Instruction B-5
Table B-6. Encoding of Operand Size (w) Bit . B-5
Table B-7. Encoding of Sign-Extend (s) Bit . B-6
Table B-8. Encoding of the Segment Register (sreg) Field . B-6
Table B-9. Encoding of Special-Purpose Register (eee) Field . B-7
Table B-10. Encoding of Conditional Test (tttn) Field . B-8
Table B-11. Encoding of Operation Direction (d) Bit . B-8
Table B-12. Notes on Instruction Encoding . B-9
Table B-13. General Purpose Instruction Formats and Encodings

for Non-64-Bit Modes . B-10
Table B-14. Special Symbols . B-23
Table B-15. General Purpose Instruction Formats and Encodings

for 64-Bit Mode . B-23
Table B-16. Pentium Processor Family Instruction Formats and Encodings,

Non-64-Bit Modes . B-47
Table B-17. Pentium Processor Family Instruction Formats and Encodings,

64-Bit Mode. B-47
Table B-18. Encoding of Granularity of Data Field (gg) . B-48
Table B-19. MMX Instruction Formats and Encodings . B-49
Table B-20. Formats and Encodings of P6 Family Instructions . B-52
Table B-21. Formats and Encodings of SSE Floating-Point Instructions B-53
Table B-22. Formats and Encodings of SSE Integer Instructions B-59
Table B-23. Format and Encoding of SSE Cacheability & Memory Ordering

Instructions . B-60
Table B-24. Encoding of Granularity of Data Field (gg) . B-61
Table B-25. Formats and Encodings of SSE2 Floating-Point Instructions B-61
Table B-26. Formats and Encodings of SSE2 Integer Instructions B-68
Table B-27. Format and Encoding of SSE2 Cacheability Instructions B-74
Table B-28. Formats and Encodings of SSE3 Floating-Point Instructions B-75
Table B-29. Formats and Encodings for SSE3 Event Management Instructions B-76
Table B-30. Formats and Encodings for SSE3 Integer and Move Instructions B-76
Table B-31. Special Case Instructions Promoted Using REX.W B-77
Table B-32. General Floating-Point Instruction Formats . B-80
Table B-33. Floating-Point Instruction Formats and Encodings . B-81
Table B-34. Encodings for VMX Instructions . B-86
Table C-1. Simple Intrinsics . C-3
Table C-2. Composite Intrinsics . C-32
Vol. 2A xvii

CONTENTS

PAGE
xviii Vol. 2A

1

About This Manual

CHAPTER 1
ABOUT THIS MANUAL

The IA-32 Intel® Architecture Software Developer’s Manual, Volumes 2A & 2B: Instruction Set
Reference (order numbers 253666 and 253667) are part of a set that describes the architecture
and programming environment of all IA-32 Intel architecture processors. Other volumes in this
set are:

• The IA-32 Intel® Architecture Software Developer’s Manual, Volume 1: Basic Architecture
(Order Number 253665).

• The IA-32 Intel® Architecture Software Developer’s Manual, Volumes 3A & 3B: System
Programming Guide (order numbers 253668 and 253669).

The IA-32 Intel® Architecture Software Developer’s Manual, Volume 1, describes the basic
architecture and programming environment of an IA-32 processor. The IA-32 Intel® Architec-
ture Software Developer’s Manual, Volumes 2A & 2B, describe the instruction set of the
processor and the opcode structure. These volumes apply to application programmers and to
programmers who write operating systems or executives. The IA-32 Intel® Architecture Soft-
ware Developer’s Manual, Volumes 3A & 3B, describe the operating-system support environ-
ment of an IA-32 processor and IA-32 processor compatibility information. These volumes
target operating-system and BIOS designers. In addition, the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 3B, addresses the programming environment for classes of soft-
ware that host operating systems.

1.1 IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual includes information pertaining primarily to the most recent IA-32 processors,
which include the Intel® Pentium® processors, the P6 family processors, the Pentium 4 proces-
sors, the Intel® Xeon™ processors, and the Pentium M processors. The P6 family processors are
those IA-32 processors based on the P6 family microarchitecture, which include the Pentium
Pro, Pentium II, and Pentium III processors. The Pentium 4 and Intel Xeon processors are based
on the Intel NetBurst® microarchitecture.
Vol. 2A 1-1

ABOUT THIS MANUAL
1.2 OVERVIEW OF VOLUME 2A AND 2B: INSTRUCTION SET
REFERENCE

A description of IA-32 Intel® Architecture Software Developer’s Manual, Volumes 2A & 2B,
content follows:

Chapter 1 — About This Manual. Gives an overview of all three volumes of the IA-32 Intel®
Architecture Software Developer’s Manual. It also describes the notational conventions in these
manuals and lists related Intel manuals and documentation of interest to programmers and hard-
ware designers.

Chapter 2 — Instruction Format. Describes the machine-level instruction format used for all
IA-32 instructions and gives the allowable encodings of prefixes, the operand-identifier byte
(ModR/M byte), the addressing-mode specifier byte (SIB byte), and the displacement and
immediate bytes.

Chapter 3 — Instruction Set Reference, A-M. Describes IA-32 instructions in detail,
including an algorithmic description of operations, the effect on flags, the effect of operand- and
address-size attributes, and the exceptions that may be generated. The instructions are arranged
in alphabetical order. General-purpose, x87 FPU, Intel MMX™ technology, SSE/SSE2/SSE3
extensions, and system instructions are included.

Chapter 4 — Instruction Set Reference, N-Z. Continues the description of IA-32 instructions
started in Chapter 3. It provides the balance of the alphabetized list of instructions and starts IA-
32 Intel® Architecture Software Developer’s Manual, Volume 2B.

Chapter 5 — VMX Instruction Reference. Describes the virtual-machine extensions (VMX)
of IA-32 instructions. VMX is intended to support virtualization of processor hardware and a
system software layer acting as a host to multiple guest software environments.

Appendix A — Opcode Map. Gives an opcode map for the IA-32 instruction set.

Appendix B — Instruction Formats and Encodings. Gives the binary encoding of each form
of each IA-32 instruction.

Appendix C — Intel® C/C++ Compiler Intrinsics and Functional Equivalents. Lists the
Intel® C/C++ compiler intrinsics and their assembly code equivalents for each of the IA-32
MMX and SSE/SSE2/SSE3 instructions.

1.3 NOTATIONAL CONVENTIONS
This manual uses specific notation for data-structure formats, for symbolic representation of
instructions, and for hexadecimal and binary numbers. A review of this notation makes the
manual easier to read.

1.3.1 Bit and Byte Order
In illustrations of data structures in memory, smaller addresses appear toward the bottom of the
figure; addresses increase toward the top. Bit positions are numbered from right to left. The
1-2 Vol. 2A

ABOUT THIS MANUAL
numerical value of a set bit is equal to two raised to the power of the bit position. IA-32 proces-
sors are “little endian” machines; this means the bytes of a word are numbered starting from the
least significant byte. Figure 1-1 illustrates these conventions.

1.3.2 Reserved Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as reserved. When
bits are marked as reserved, it is essential for compatibility with future processors that software
treat these bits as having a future, though unknown, effect. The behavior of reserved bits should
be regarded as not only undefined, but unpredictable. Software should follow these guidelines
in dealing with reserved bits:

• Do not depend on the states of any reserved bits when testing the values of registers which
contain such bits. Mask out the reserved bits before testing.

• Do not depend on the states of any reserved bits when storing to memory or to a register.

• Do not depend on the ability to retain information written into any reserved bits.

• When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.

NOTE
Avoid any software dependence upon the state of reserved bits in IA-32
registers. Depending upon the values of reserved register bits will make
software dependent upon the unspecified manner in which the processor
handles these bits. Programs that depend upon reserved values risk incompat-
ibility with future processors.

Figure 1-1. Bit and Byte Order

Byte 3

Highest
Data Structure

Byte 1Byte 2 Byte 0

31 24 23 16 15 8 7 0Address

Lowest

Bit offset
28
24
20
16
12
8
4
0 Address

Byte Offset
Vol. 2A 1-3

ABOUT THIS MANUAL
1.3.3 Instruction Operands
When instructions are represented symbolically, a subset of the IA-32 assembly language is
used. In this subset, an instruction has the following format:
label: mnemonic argument1, argument2, argument3

where:

• A label is an identifier which is followed by a colon.

• A mnemonic is a reserved name for a class of instruction opcodes which have the same
function.

• The operands argument1, argument2, and argument3 are optional. There may be from zero
to three operands, depending on the opcode. When present, they take the form of either
literals or identifiers for data items. Operand identifiers are either reserved names of
registers or are assumed to be assigned to data items declared in another part of the
program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination.

For example:
LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is
the destination operand, and SUBTOTAL is the source operand. Some assembly languages put
the source and destination in reverse order.

1.3.4 Hexadecimal and Binary Numbers
Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by
the character H (for example, F82EH). A hexadecimal digit is a character from the following
set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the
character B (for example, 1010B). The “B” designation is only used in situations where confu-
sion as to the type of number might arise.

1.3.5 Segmented Addressing
The processor uses byte addressing. This means memory is organized and accessed as a
sequence of bytes. Whether one or more bytes are being accessed, a byte address is used to
locate the byte or bytes in memory. The range of memory that can be addressed is called an
address space.

The processor also supports segmented addressing. This is a form of addressing where a
program may have many independent address spaces, called segments. For example, a program
can keep its code (instructions) and stack in separate segments. Code addresses would always
1-4 Vol. 2A

ABOUT THIS MANUAL
refer to the code space, and stack addresses would always refer to the stack space. The following
notation is used to specify a byte address within a segment:
Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment
pointed by the DS register:
DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS
register points to the code segment and the EIP register contains the address of the instruction.
CS:EIP

1.3.6 Exceptions
An exception is an event that typically occurs when an instruction causes an error. For example,
an attempt to divide by zero generates an exception. However, some exceptions, such as break-
points, occur under other conditions. Some types of exceptions may provide error codes. An
error code reports additional information about the error. An example of the notation used to
show an exception and error code is shown below.
#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a
type of fault is reported. Under some conditions, exceptions which produce error codes may not
be able to report an accurate code. In this case, the error code is zero, as shown below for a
general-protection exception.
#GP(0)

1.3.7 A New Syntax for CPUID, CR, and MSR Values
Obtain feature flags, status, and system information by using the CPUID instruction, by
checking control register bits, and by reading model-specific registers. We are moving toward a
new syntax to represent this information. See Figure 1-2.
Vol. 2A 1-5

ABOUT THIS MANUAL
Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

Control Register Values

Model-Specific Register Values

Input value for EAX register

CPUID.01H:ECX.SSE [bit 25] = 1

Value (or range) of output

CPUID Input and Output

Output register and feature flag or field
name with bit position(s)

CR4.OSFXSR[bit 9] = 1

Feature flag or field name
with bit position(s)
Value (or range) of output

Example CR name

Feature flag or field name with bit position(s)

IA32_MISC_ENABLES.ENABLEFOPCODE[bit 2] = 1

Value (or range) of output

Example MSR name

OM17732
1-6 Vol. 2A

ABOUT THIS MANUAL
1.4 RELATED LITERATURE
Literature related to IA-32 processors is listed on-line at this link:

http://developer.intel.com/design/processor/

Some of the documents listed at this web site can be viewed on-line; others can be ordered. The
literature available is listed by Intel® processor and then by the following literature types: appli-
cations notes, data sheets, manuals, papers, and specification updates.

See also:

• The data sheet for a particular Intel IA-32 processor

• The specification update for a particular Intel IA-32 processor

• AP-485, Intel Processor Identification and the CPUID Instruction, Order Number 241618

• IA-32 Intel® Architecture Optimization Reference Manual, Order Number 248966
Vol. 2A 1-7

http://developer.intel.com/design/processor/

ABOUT THIS MANUAL
1-8 Vol. 2A

2

Instruction Format

CHAPTER 2
INSTRUCTION FORMAT

This chapter describes the instruction format for all IA-32 processors. The instruction format for
protected mode, real-address mode and virtual-8086 mode is described in Section 2.1. Incre-
ments provided for IA-32e mode and its sub-modes are described in Section 2.2.

2.1 INSTRUCTION FORMAT FOR PROTECTED MODE, REAL-
ADDRESS MODE, AND VIRTUAL-8086 MODE

IA-32 instruction encodings are subsets of the format shown in Figure 2-1. Instructions consist
of optional instruction prefixes (in any order), primary opcode bytes (up to three bytes), an
addressing-form specifier (if required) consisting of the ModR/M byte and sometimes the SIB
(Scale-Index-Base) byte, a displacement (if required), and an immediate data field (if required).

Figure 2-1. IA-32 Instruction Format

Instruction
Prefixes Opcode ModR/M SIB Displacement Immediate

Mod R/MReg/
Opcode

027 6 5 3

Scale Base

027 6 5 3

Index

Immediate
data of

1, 2, or 4
bytes or none

Address
displacement
of 1, 2, or 4

bytes or none

1 byte
(if required)

1 byte
(if required)

1-, 2-, or 3-byte
opcode

Up to four
prefixes of
1 byte each
(optional)
Vol. 2A 2-1

INSTRUCTION FORMAT
2.1.1 Instruction Prefixes
Instruction prefixes are divided into four groups, each with a set of allowable prefix codes. For
each instruction, one prefix may be used from each of four groups (Groups 1, 2, 3, 4) and be
placed in any order.

• Group 1

— Lock and repeat prefixes:

• F0H—LOCK

• F2H—REPNE/REPNZ (used only with string instructions; when used with the
escape opcode 0FH, this prefix is treated as a mandatory prefix for some SIMD
instructions)

• F3H—REP or REPE/REPZ (used only with string instructions; when used with
the escape opcode 0FH, this prefix is treated as an mandatory prefix for some
SIMD instructions)

• Group 2

— Segment override prefixes:

• 2EH—CS segment override (use with any branch instruction is reserved)

• 36H—SS segment override prefix (use with any branch instruction is reserved)

• 3EH—DS segment override prefix (use with any branch instruction is reserved)

• 26H—ES segment override prefix (use with any branch instruction is reserved)

• 64H—FS segment override prefix (use with any branch instruction is reserved)

• 65H—GS segment override prefix (use with any branch instruction is reserved)

— Branch hints:

• 2EH—Branch not taken (used only with Jcc instructions)

• 3EH—Branch taken (used only with Jcc instructions)

• Group 3

• 66H—Operand-size override prefix (when used with the escape opcode 0FH, this
is treated as a mandatory prefix for some SIMD instructions)

• Group 4

• 67H—Address-size override prefix
2-2 Vol. 2A

INSTRUCTION FORMAT
The LOCK prefix (F0H) forces an operation that ensures exclusive use of shared memory in a
multiprocessor environment. See “LOCK—Assert LOCK# Signal Prefix” in Chapter 3,
“Instruction Set Reference, A-M”, for a description of this prefix.

Repeat prefixes (F2H, F3H) cause an instruction to be repeated for each element of a string. Use
these prefixes only with string instructions (MOVS, CMPS, SCAS, LODS, STOS, INS, and
OUTS). Their use, followed by 0FH, is treated as a mandatory prefix by a number of
SSE/SSE2/SSE3 instructions. Use of repeat prefixes and/or undefined opcodes with other IA-32
instructions is reserved; such use may cause unpredictable behavior.

Branch hint prefixes (2EH, 3EH) allow a program to give a hint to the processor about the most
likely code path for a branch. Use these prefixes only with conditional branch instructions (Jcc).
Other use of branch hint prefixes and/or other undefined opcodes with IA-32 instructions is
reserved; such use may cause unpredictable behavior.

The operand-size override prefix allows a program to switch between 16- and 32-bit operand
sizes. Either size can be the default; use of the prefix selects the non-default size. Use of 66H
followed by 0FH is treated as a mandatory prefix by some SSE/SSE2/SSE3 instructions. Other
use of the 66H prefix with MMX/SSE/SSE2/SSE3 instructions is reserved; such use may cause
unpredictable behavior.

The address-size override prefix (67H) allows programs to switch between 16- and 32-bit
addressing. Either size can be the default; the prefix selects the non-default size. Using this
prefix and/or other undefined opcodes when operands for the instruction do not reside in
memory is reserved; such use may cause unpredictable behavior.

2.1.2 Opcodes
A primary opcode can be 1, 2, or 3 bytes in length. An additional 3-bit opcode field is some-
times encoded in the ModR/M byte. Smaller fields can be defined within the primary opcode.
Such fields define the direction of operation, size of displacements, register encoding, condition
codes, or sign extension. Encoding fields used by an opcode vary depending on the class of
operation.

Two-byte opcode formats for general-purpose and SIMD instructions consist of:

• An escape opcode byte 0FH as the primary opcode and a second opcode byte

• A mandatory prefix (66FH, F2H, F3H), an escape opcode byte, and a second opcode byte

For example, CVTDQ2PD consists of the following sequence: F3 OF E6. The first byte is a
mandatory prefix for SSE/SSE2/SSE3 instructions (it is not considered as a repeat prefix). Note
that all three byte opcodes are reserved.

Valid opcode expressions are defined in Appendix A and Appendix B.
Vol. 2A 2-3

INSTRUCTION FORMAT
2.1.3 ModR/M and SIB Bytes
Many instructions that refer to an operand in memory have an addressing-form specifier byte
(called the ModR/M byte) following the primary opcode. The ModR/M byte contains three
fields of information:

• The mod field combines with the r/m field to form 32 possible values: eight registers and
24 addressing modes.

• The reg/opcode field specifies either a register number or three more bits of opcode infor-
mation. The purpose of the reg/opcode field is specified in the primary opcode.

• The r/m field can specify a register as an operand or it can be combined with the mod field
to encode an addressing mode. Sometimes, certain combinations of the mod field and the
r/m field is used to express opcode information for some instructions.

Certain encodings of the ModR/M byte require a second addressing byte (the SIB byte). The
base-plus-index and scale-plus-index forms of 32-bit addressing require the SIB byte. The SIB
byte includes the following fields:

• The scale field specifies the scale factor.

• The index field specifies the register number of the index register.

• The base field specifies the register number of the base register.

See Section 2.1.5 for the encodings of the ModR/M and SIB bytes.

2.1.4 Displacement and Immediate Bytes
Some addressing forms include a displacement immediately following the ModR/M byte (or the
SIB byte if one is present). If a displacement is required; it be 1, 2, or 4 bytes.

If an instruction specifies an immediate operand, the operand always follows any displacement
bytes. An immediate operand can be 1, 2 or 4 bytes.
2-4 Vol. 2A

INSTRUCTION FORMAT
2.1.5 Addressing-Mode Encoding of ModR/M and SIB Bytes
The values and corresponding addressing forms of the ModR/M and SIB bytes are shown in
Table 2-1 through Table 2-3: 16-bit addressing forms specified by the ModR/M byte are in
Table 2-1 and 32-bit addressing forms are in Table 2-2. Table 2-3 shows 32-bit addressing forms
specified by the SIB byte. In cases where the reg/opcode field in the ModR/M byte represents
an extended opcode, valid encodings are shown in Appendix B.

In Table 2-1 and Table 2-2, the Effective Address column lists 32 effective addresses that can
be assigned to the first operand of an instruction by using the Mod and R/M fields of the
ModR/M byte. The first 24 options provide ways of specifying a memory location; the last
eight (Mod = 11B) provide ways of specifying general-purpose, MMX technology and XMM
registers.

The Mod and R/M columns in Table 2-1 and Table 2-2 give the binary encodings of the Mod
and R/M fields required to obtain the effective address listed in the first column. For example:
see the row indicated by Mod = 11B, R/M = 000B. The row identifies the general-purpose regis-
ters EAX, AX or AL; MMX technology register MM0; or XMM register XMM0. The register
used is determined by the opcode byte and the operand-size attribute.

Now look at the seventh row in either table (labeled “REG =”). This row specifies the use of the
3-bit Reg/Opcode field when the field is used to give the location of a second operand. The
second operand must be a general-purpose, MMX technology, or XMM register. Rows one
through five list the registers that may correspond to the value in the table. Again, the register
used is determined by the opcode byte along with the operand-size attribute.

If the instruction does not require a second operand, then the Reg/Opcode field may be used as
an opcode extension. This use is represented by the sixth row in the tables (labeled “/digit
(Opcode)”). Note that values in row six are represented in decimal form.

The body of Table 2-1 and Table 2-2 (under the label “Value of ModR/M Byte (in Hexadec-
imal)”) contains a 32 by 8 array that presents all of 256 values of the ModR/M byte (in hexadec-
imal). Bits 3, 4 and 5 are specified by the column of the table in which a byte resides. The row
specifies bits 0, 1 and 2; and bits 6 and 7. The figure below demonstrates interpretation of one
table value.

Figure 2-1. Table Interpretation of ModR/M Byte (C8H)

Mod 00
RM 000
REG = 001
C8H 11001000

/digit (Opcode);
Vol. 2A 2-5

INSTRUCTION FORMAT
NOTES:
1. The default segment register is SS for the effective addresses containing a BP index, DS for other effec-

tive addresses.
2. The disp16 nomenclature denotes a 16-bit displacement that follows the ModR/M byte and that is added

to the index.
3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte and that is sign-

extended and added to the index.

Table 2-1. 16-Bit Addressing Forms with the ModR/M Byte
r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
(In decimal) /digit (Opcode)
(In binary) REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP1

EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective
Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[BX+SI]
[BX+DI]
[BP+SI]
[BP+DI]
[SI]
[DI]
disp162

[BX]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[BX+SI]+disp83

[BX+DI]+disp8
[BP+SI]+disp8
[BP+DI]+disp8
[SI]+disp8
[DI]+disp8
[BP]+disp8
[BX]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[BX+SI]+disp16
[BX+DI]+disp16
[BP+SI]+disp16
[BP+DI]+disp16
[SI]+disp16
[DI]+disp16
[BP]+disp16
[BX]+disp16

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM1/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AHMM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
EQ
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF
2-6 Vol. 2A

INSTRUCTION FORMAT
NOTES:
1. The [--][--] nomenclature means a SIB follows the ModR/M byte.
2. The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB byte if

one is present) and that is added to the index.
3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte (or the SIB byte if

one is present) and that is sign-extended and added to the index.

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte
r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
(In decimal) /digit (Opcode)
(In binary) REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP
EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective
Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
[--][--]1
disp322

[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[EAX]+disp83

[ECX]+disp8
[EDX]+disp8
[EBX]+disp8
[--][--]+disp8
[EBP]+disp8
[ESI]+disp8
[EDI]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[EAX]+disp32
[ECX]+disp32
[EDX]+disp32
[EBX]+disp32
[--][--]+disp32
[EBP]+disp32
[ESI]+disp32
[EDI]+disp32

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AH/MM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
E1
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF
Vol. 2A 2-7

INSTRUCTION FORMAT
Table 2-3 is organized to give 256 possible values of the SIB byte (in hexadecimal). General
purpose registers used as a base are indicated across the top of the table, along with corre-
sponding values for the SIB byte’s base field. Table rows in the body of the table indicate the
register used as the index (SIB byte bits 3, 4 and 5) and the scaling factor (determined by SIB
byte bits 6 and 7).

NOTES:
1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8 or

disp32 + [EBP]. This provides the following address modes:
MOD bits Effective Address
00 [scaled index] + disp32
01 [scaled index] + disp8 + [EBP]
10 [scaled index] + disp32 + [EBP]

Table 2-3. 32-Bit Addressing Forms with the SIB Byte
r32
(In decimal) Base =
(In binary) Base =

EAX
0
000

ECX
1
001

EDX
2
010

EBX
3
011

ESP
4
100

[*]
5
101

ESI
6
110

EDI
7
111

Scaled Index SS Index Value of SIB Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
none
[EBP]
[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
08
10
18
20
28
30
38

01
09
11
19
21
29
31
39

02
0A
12
1A
22
2A
32
3A

03
0B
13
1B
23
2B
33
3B

04
0C
14
1C
24
2C
34
3C

05
0D
15
1D
25
2D
35
3D

06
0E
16
1E
26
2E
36
3E

07
0F
17
1F
27
2F
37
3F

[EAX*2]
[ECX*2]
[EDX*2]
[EBX*2]
none
[EBP*2]
[ESI*2]
[EDI*2]

01 000
001
010
011
100
101
110
111

40
48
50
58
60
68
70
78

41
49
51
59
61
69
71
79

42
4A
52
5A
62
6A
72
7A

43
4B
53
5B
63
6B
73
7B

44
4C
54
5C
64
6C
74
7C

45
4D
55
5D
65
6D
75
7D

46
4E
56
5E
66
6E
76
7E

47
4F
57
5F
67
6F
77
7F

[EAX*4]
[ECX*4]
[EDX*4]
[EBX*4]
none
[EBP*4]
[ESI*4]
[EDI*4]

10 000
001
010
011
100
101
110
111

80
88
90
98
A0
A8
B0
B8

81
89
91
89
A1
A9
B1
B9

82
8A
92
9A
A2
AA
B2
BA

83
8B
93
9B
A3
AB
B3
BB

84
8C
94
9C
A4
AC
B4
BC

85
8D
95
9D
A5
AD
B5
BD

86
8E
96
9E
A6
AE
B6
BE

87
8F
97
9F
A7
AF
B7
BF

[EAX*8]
[ECX*8]
[EDX*8]
[EBX*8]
none
[EBP*8]
[ESI*8]
[EDI*8]

11 000
001
010
011
100
101
110
111

C0
C8
D0
D8
E0
E8
F0
F8

C1
C9
D1
D9
E1
E9
F1
F9

C2
CA
D2
DA
E2
EA
F2
FA

C3
CB
D3
DB
E3
EB
F3
FB

C4
CC
D4
DC
E4
EC
F4
FC

C5
CD
D5
DD
E5
ED
F5
FD

C6
CE
D6
DE
E6
EE
F6
FE

C7
CF
D7
DF
E7
EF
F7
FF
2-8 Vol. 2A

INSTRUCTION FORMAT
2.2 IA-32E MODE
IA-32e mode has two sub-modes. These are:

• Compatibility Mode. Enables a 64-bit operating system to run most legacy protected
mode software unmodified.

• 64-Bit Mode. Enables a 64-bit operating system to run applications written to access
64-bit address space.

2.2.1 REX Prefixes
REX prefixes are instruction-prefix bytes used in 64-bit mode. They do the following:

• Specify GPRs and SSE registers.

• Specify 64-bit operand size.

• Specify extended control registers.

Not all instructions require a REX prefix in 64-bit mode. A prefix is necessary only if an instruc-
tion references one of the extended registers or uses a 64-bit operand. If a REX prefix is used
when it has no meaning, it is ignored.

Only one REX prefix is allowed per instruction. If used, the prefix must immediately precede the
opcode byte or the two-byte opcode escape prefix (if present). Other placements are ignored. The
instruction-size limit of 15 bytes still applies to instructions with a REX prefix. See Figure 2-2.

Figure 2-2. Prefix Ordering in 64-bit Mode

REX
Prefix Opcode ModR/M SIB Displacement Immediate

Immediate data
of 1, 2, or 4
bytes or none

Address dis-
placement of 1,
2, or 4 bytes or
none

1 byte (if
required)

1 byte (if
required)

1-, 2-, or
3-byte
opcode

(optional)Grp 1,
Grp 2,
Grp 3,
Grp 4
(optional)

Legacy
Prefixes
Vol. 2A 2-9

INSTRUCTION FORMAT
2.2.1.1 Encoding

IA-32 instruction formats specify up to three registers by using 3-bit fields in the encoding,
depending on the format:

• ModR/M: the reg and r/m fields of the ModR/M byte

• ModR/M with SIB: the reg field of the ModR/M byte, the base and index fields of the SIB
(scale, index, base) byte

• Instructions without ModR/M: the reg field of the opcode

In 64-bit mode, these formats do not change. Bits needed to define fields in the 64-bit context
are provided by the addition of REX prefixes.

2.2.1.2 More on REX Prefix Fields

REX prefixes are a set of 16 opcodes that span one row of the opcode map and occupy entries
40H to 4FH. These opcodes represent valid instructions (INC or DEC) in legacy IA-32 operating
modes and in compatibility mode. In 64-bit mode, the same opcodes represent the instruction
prefix REX and are not treated as individual instructions.

The single-byte-opcode form of INC/DEC instruction not available in 64-bit mode. INC/DEC
functionality is still available using ModR/M forms of the same instructions (opcodes FF/0 and
FF/1).

See Table 2-4 for a summary of the REX prefix format. Figure 2-3 though Figure 2-6 show
examples of REX prefix fields in use. Some combinations of REX prefix fields are invalid. In
such cases, the prefix is ignored. Some additional information follows:

• Setting REX.W can be used to determine the operand size but does not solely determine
operand width. Like the 66H size prefix, an REX 64-bit operand size override has no effect
on byte-specific operations.

• For non-byte operations: if a 66H prefix is used with an REX prefix (REX.W = 1), 66H is
ignored.

• If a 66H override is used with REX and REX.W = 0, the operand size is 16 bits.

• REX.R modifies the ModR/M reg field when that field encodes a GPR, SSE, control or
debug register. REX.R is ignored when ModR/M specifies other registers or defines an
extended opcode.

• REX.X bit modifies the SIB index field.

• REX.B either modifies the base in the ModR/M r/m field or SIB base field; or it modifies
the opcode reg field used for accessing GPRs.
2-10 Vol. 2A

INSTRUCTION FORMAT
Table 2-4. REX Prefix Fields [BITS: 0100WRXB]
Field Name Bit Position Definition

- 7:4 0100

W 3 0 = Operand size determined by CS.D

1 = 64 Bit Operand Size

R 2 Extension of the ModR/M reg field

X 1 Extension of the SIB index field

B 0 Extension of the ModR/M r/m field, SIB base field, or Opcode
reg field

Figure 2-3. Memory Addressing Without an SIB Byte; REX.X Not Used

Figure 2-4. Register-Register Addressing (No Memory Operand); REX.X Not Used
Vol. 2A 2-11

INSTRUCTION FORMAT
In the legacy IA-32 architecture, byte registers (AH, AL, BH, BL, CH, CL, DH, and DL) are
encoded in the ModR/M byte’s reg field, the r/m field or the opcode reg field as registers 0
through 7. REX prefixes provide an additional addressing capability for byte-registers that
makes the least-significant byte of GPRs available for byte operations.

Certain combinations of the fields of the ModR/M byte and the SIB byte have special meaning
for register encodings. For some combinations, fields expanded by the REX prefix are not
decoded. Table 2-5 describes how each case behaves.

Figure 2-5. Memory Addressing With a SIB Byte

Figure 2-6. Register Operand Coded in Opcode Byte; REX.X & REX.R Not Used
2-12 Vol. 2A

INSTRUCTION FORMAT
2.2.1.3 Displacement

Addressing in 64-bit mode uses existing 32-bit ModR/M and SIB encodings. The ModR/M and
SIB displacement sizes do not change. They remain 8 bits or 32 bits and are sign-extended to
64 bits.

Table 2-5. Special Cases of REX Encodings
ModR/M or
SIB

Sub-field
Encodings

Compatibility
Mode Operation

Compatibility
Mode Implications Additional Implications

ModR/M Byte mod != 11 SIB byte present. SIB byte required
for ESP-based
addressing.

REX prefix adds a fourth
bit (b) which is not
decoded (don't care).

SIB byte also required for
R12-based addressing.

r/m ==
b*100(ESP)

ModR/M Byte mod == 0 Base register not
used.

EBP without a
displacement must
be done using
mod = 01 with
displacement of 0.

REX prefix adds a fourth
bit (b) which is not
decoded (don't care).

Using RBP or R13 without
displacement must be
done using mod = 01 with
a displacement of 0.

r/m ==
b*101(EBP)

SIB Byte index ==
0100(ESP)

Index register not
used.

ESP cannot be used
as an index register.

REX prefix adds a fourth
bit (b) which is decoded.

There are no additional
implications. The
expanded index field
allows distinguishing RSP
from R12, therefore R12
can be used as an index.

SIB Byte base ==
0101(EBP)

Base register is
unused if
mod = 0.

Base register
depends on mod
encoding.

REX prefix adds a fourth
bit (b) which is not
decoded.

This requires explicit
displacement to be used
with EBP/RBP or R13.

NOTES:
* Don’t care about the value of REX.B
Vol. 2A 2-13

INSTRUCTION FORMAT
2.2.1.4 Direct Memory-Offset MOVs

In 64-bit mode, direct memory-offset forms of the MOV instruction are extended to specify a
64-bit immediate absolute address. This address is called a moffset. No prefix is needed to
specify this 64-bit memory offset. For these MOV instructions, the size of the memory offset
follows the address-size default (64 bits in 64-bit mode). See Table 2-6.

2.2.1.5 Immediates

In 64-bit mode, the typical size of immediate operands remains 32 bits. When the operand size
is 64 bits, the processor sign-extends all immediates to 64 bits prior to their use.

Support for 64-bit immediate operands is accomplished by expanding the semantics of the
existing move (MOV reg, imm16/32) instructions. These instructions (opcodes B8H – BFH)
move 16-bits or 32-bits of immediate data (depending on the effective operand size) into a GPR.
When the effective operand size is 64 bits, these instructions can be used to load an immediate
into a GPR. A REX prefix is needed to override the 32-bit default operand size to a 64-bit
operand size.

For example:

48 B8 8877665544332211 MOV RAX,1122334455667788H

2.2.1.6 RIP-Relative Addressing

A new addressing form, RIP-relative (relative instruction-pointer) addressing, is implemented
in 64-bit mode. An effective address is formed by adding displacement to the 64-bit RIP of the
next instruction.

In legacy IA-32 architecture, addressing relative to the instruction pointer is available only with
control-transfer instructions. In 64-bit mode, instructions that use ModR/M addressing can use
RIP-relative addressing. Without RIP-relative addressing, all ModR/M instruction modes
address memory relative to zero.

RIP-relative addressing allows specific ModR/M modes to address memory relative to the
64-bit RIP using a signed 32-bit displacement. This provides an offset range of ±2GB from the
RIP. Table 2-7 shows the ModR/M and SIB encodings for RIP-relative addressing. Redundant
forms of 32-bit displacement-addressing exist in the current ModR/M and SIB encodings. There
is one ModR/M encoding and there are several SIB encodings. RIP-relative addressing is
encoded using a redundant form.

Table 2-6. Direct Memory Offset Form of MOV
Opcode Instruction

A0 MOV AL, moffset

A1 MOV EAX, moffset

A2 MOV moffset, AL

A3 MOV moffset, EAX
2-14 Vol. 2A

INSTRUCTION FORMAT
In 64-bit mode, the ModR/M Disp32 (32-bit displacement) encoding is re-defined to be
RIP+Disp32 rather than displacement-only. See Table 2-7.

The ModR/M encoding for RIP-relative addressing does not depend on using an REX prefix.
Specifically, the r/m bit field encoding of 101B (used to select RIP-relative addressing) is not
affected by the REX prefix. For example, selecting R13 (REX.B = 1, r/m = 101B) with mod =
00B still results in RIP-relative addressing. The 4-bit r/m field of REX.B combined with
ModR/M is not fully decoded. In order to address R13 with no displacement, software must
encode R13 + 0 using a 1-byte displacement of zero.

RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. The use of the
address-size prefix does not disable RIP-relative addressing. The effect of the address-size
prefix is to truncate and zero-extend the computed effective address to 32 bits.

2.2.1.7 Default 64-Bit Operand Size

In 64-bit mode, two groups of instructions have a default operand size of 64 bits (do not need a
REX prefix for this operand size). These are:

• Near branches

• All instructions, except far branches, that implicitly reference the RSP

2.2.2 Additional Encodings for Control and Debug Registers
In 64-bit mode, more encodings for control and debug registers are available. The REX.R bit is
used to modify the ModR/M reg field when that field encodes a control or debug register (see
Table 2-4). These encodings enable the processor to address CR8-CR15 and DR8- DR15. An
additional control register (CR8) is defined in 64-bit mode. CR8 becomes the Task Priority
Register (TPR).

In the first implementation of IA-32e mode, CR9-CR15 and DR8-DR15 are not implemented.
Any attempt to access unimplemented registers results in an invalid-opcode exception (#UD).

Table 2-7. RIP-Relative Addressing
ModR/M and SIB Sub-field
Encodings

Compatibility
Mode Operation

64-bit Mode
Operation

Additional Implications
in 64-bit mode

ModR/M
Byte

mod == 00 Disp32 RIP + Disp32 Must use SIB form with
normal (zero-based)
displacement addressing r/m == 101 (none)

SIB Byte base == 101 (none) if mod = 00, Disp32 Same as
legacy

None

index == 100 (none)

scale = 0, 1, 2, 4
Vol. 2A 2-15

INSTRUCTION FORMAT
2-16 Vol. 2A

3

Instruction Set
Reference, A-M

CHAPTER 3
INSTRUCTION SET REFERENCE, A-M

This chapter describes the IA-32 instruction set (A-M) in IA-32e, protected, Virtual-8086, and
real modes of operation. The set includes general-purpose, x87 FPU, MMX, SSE/SSE2/SSE3,
and system instructions. See also Chapter 4, “Instruction Set Reference, N-Z”, IA-32 Intel®

Architecture Software Developer’s Manual, Volume 2B.

For each instruction, each operand combination is described. A description of the instruction and
its operand, an operational description, a description of the effect of the instructions on flags in
the EFLAGS register, and a summary of exceptions that can be generated are also provided.

3.1 INTERPRETING THE INSTRUCTION REFERENCE PAGES
This section describes the format of information contained in the instruction reference pages in
this chapter. It explains notational conventions and abbreviations used in these sections.

3.1.1 Instruction Format
The following is an example of the format used for each instruction description in this chapter.
The heading below introduces the example. The table below provides an example summary
table.

CMC—Complement Carry Flag [Example Only]

3.1.1.1 Opcode Column in the Instruction Summary Table

The “Opcode” column in the table above shows the object code produced for each form of the
instruction. When possible, codes are given as hexadecimal bytes in the same order in which
they appear in memory. Definitions of entries other than hexadecimal bytes are as follows:

• REX.W — Indicates the use of a REX prefix that affects operand size or instruction
semantics. The ordering of the REX prefix and other optional/mandatory instruction
prefixes are discussed Chapter 2. Note that REX prefixes that promote legacy instructions
to 64-bit behavior are not listed explicitly in the opcode column.

Opcode Instruction 64-bit Mode
Compat/
Leg Mode Description

F5 CMC Valid Valid Complement carry flag.
Vol. 2A 3-1

INSTRUCTION SET REFERENCE, A-M
• /digit — A digit between 0 and 7 indicates that the ModR/M byte of the instruction uses
only the r/m (register or memory) operand. The reg field contains the digit that provides an
extension to the instruction's opcode.

• /r — Indicates that the ModR/M byte of the instruction contains a register operand and an
r/m operand.

• cb, cw, cd, cp, co, ct — A 1-byte (cb), 2-byte (cw), 4-byte (cd), 6-byte (cp), 8-byte (co) or
10-byte (ct) value following the opcode. This value is used to specify a code offset and
possibly a new value for the code segment register.

• ib, iw, id, io — A 1-byte (ib), 2-byte (iw), 4-byte (id) or 8-byte (io) immediate operand to
the instruction that follows the opcode, ModR/M bytes or scale-indexing bytes. The
opcode determines if the operand is a signed value. All words, doublewords and
quadwords are given with the low-order byte first.

• +rb, +rw, +rd, +ro — A register code, from 0 through 7, added to the hexadecimal byte
given at the left of the plus sign to form a single opcode byte. See Table 3-1 for the codes.
The +ro columns in the table are applicable only in 64-bit mode.

• +i — A number used in floating-point instructions when one of the operands is ST(i) from
the FPU register stack. The number i (which can range from 0 to 7) is added to the
hexadecimal byte given at the left of the plus sign to form a single opcode byte.

Table 3-1. Register Codes Associated With +rb, +rw, +rd, +ro

rb rw rd ro (64-Bit Mode only)

R
eg

is
te

r

R
EX

.R

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.R

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.R

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.R

R
eg

Fi
el

d
AL 0 0 AX 0 0 EAX 0 0 RAX 0 0
CL 0 1 CX 0 1 ECX 0 1 RCX 0 1
DL 0 2 DX 0 2 EDX 0 2 RDX 0 2
BL 0 3 BX 0 3 EBX 0 3 RBX 0 3
AH No

REX
prefix

4 SP No
REX
prefix

4 ESP No
REX
prefix

4 N/A N/A N/A

CH No
REX
prefix

5 BP No
REX
prefix

5 EBP No
REX
prefix

5 N/A N/A N/A

DH No
REX
prefix

6 SI No
REX
prefix

6 ESI No
REX
prefix

6 N/A N/A N/A

BH No
REX
prefix

7 DI No
REX
prefix

7 EDI No
REX
prefix

7 N/A N/A N/A
3-2 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
3.1.1.2 Instruction Column in the Opcode Summary Table

The “Instruction” column gives the syntax of the instruction statement as it would appear in an
ASM386 program. The following is a list of the symbols used to represent operands in the
instruction statements:

• rel8 — A relative address in the range from 128 bytes before the end of the instruction to
127 bytes after the end of the instruction.

• rel16, rel32, rel64 — A relative address within the same code segment as the instruction
assembled. The rel16 symbol applies to instructions with an operand-size attribute of 16
bits; the rel32 symbol applies to instructions with an operand-size attribute of 32 bits; the
rel64 symbol applies to instructions with an operand-size attribute of 64 bits.

• ptr16:16, ptr16:32 and ptr16:64 — A far pointer, typically to a code segment different
from that of the instruction. The notation 16:16 indicates that the value of the pointer has
two parts. The value to the left of the colon is a 16-bit selector or value destined for the
code segment register. The value to the right corresponds to the offset within the

SPL Any
REX
Prefix

4 SP 0 4 ESP 0 4 RSP 0 4

BPL Any
REX
Prefix

5 BP 0 5 EBP 0 5 RBP 0 5

SIL Any
REX
Prefix

6 SI 0 6 ESI 0 6 RSI 0 6

DIL Any
REX
Prefix

7 DI 0 7 EDI 0 7 RDI 0 7

Registers R8 - R15 (see below): Available in 64-Bit Mode Only
R8L 1 0 R8W 1 0 R8D 1 0 R8 1 0
R9L 1 1 R9W 1 1 R9D 1 1 R9 1 1
R10L 1 2 R10W 1 2 R10D 1 2 R10 1 2
R11L 1 3 R11W 1 3 R11D 1 3 R11 1 3
R12L 1 4 R12W 1 4 R12D 1 4 R12 1 4
R13L 1 5 R13W 1 5 R13D 1 5 R13 1 5
R14L 1 6 R14W 1 6 R14D 1 6 R14 1 6
R15L 1 7 R15W 1 7 R15D 1 7 R15 1 7

Table 3-1. Register Codes Associated With +rb, +rw, +rd, +ro

rb rw rd ro (64-Bit Mode only)

R
eg

is
te

r

R
EX

.R

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.R

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.R

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.R

R
eg

Fi
el

d

Vol. 2A 3-3

INSTRUCTION SET REFERENCE, A-M
destination segment. The ptr16:16 symbol is used when the instruction's operand-size
attribute is 16 bits; the ptr16:32 symbol is used when the operand-size attribute is 32 bits;
the ptr16:64 symbol is used when the operand-size attribute is 64 bits.

• r8 — One of the byte general-purpose registers: AL, CL, DL, BL, AH, CH, DH, BH, BPL,
SPL, DIL and SIL; or one of the byte registers (R8L - R15L) available when using REX.R
and 64-bit mode.

• r16 — One of the word general-purpose registers: AX, CX, DX, BX, SP, BP, SI, DI; or one
of the word registers (R8-R15) available when using REX.R and 64-bit mode.

• r32 — One of the doubleword general-purpose registers: EAX, ECX, EDX, EBX, ESP,
EBP, ESI, EDI; or one of the doubleword registers (R8D - R15D) available when using
REX.R in 64-bit mode.

• r64 — One of the quadword general-purpose registers: RAX, RBX, RCX, RDX, RDI,
RSI, RBP, RSP, R8–R15. These are available when using REX.R and 64-bit mode.

• imm8 — An immediate byte value. The imm8 symbol is a signed number between –128
and +127 inclusive. For instructions in which imm8 is combined with a word or
doubleword operand, the immediate value is sign-extended to form a word or doubleword.
The upper byte of the word is filled with the topmost bit of the immediate value.

• imm16 — An immediate word value used for instructions whose operand-size attribute is
16 bits. This is a number between –32,768 and +32,767 inclusive.

• imm32 — An immediate doubleword value used for instructions whose operand-
size attribute is 32 bits. It allows the use of a number between +2,147,483,647 and
–2,147,483,648 inclusive.

• imm64 — An immediate quadword value used for instructions whose operand-size
attribute is 64 bits. The value allows the use of a number between
+9,223,372,036,854,775,807 and –9,223,372,036,854,775,808 inclusive.

• r/m8 — A byte operand that is either the contents of a byte general-purpose register (AL,
CL, DL, BL, AH, CH, DH, BH, BPL, SPL, DIL and SIL) or a byte from memory. Byte
registers R8L - R15L are available using REX.R in 64-bit mode.

• r/m16 — A word general-purpose register or memory operand used for instructions whose
operand-size attribute is 16 bits. The word general-purpose registers are: AX, CX, DX,
BX, SP, BP, SI, DI. The contents of memory are found at the address provided by the
effective address computation. Word registers R8W - R15W are available using REX.R in
64-bit mode.

• r/m32 — A doubleword general-purpose register or memory operand used for instructions
whose operand-size attribute is 32 bits. The doubleword general-purpose registers are:
EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI. The contents of memory are found at the
address provided by the effective address computation. Doubleword registers R8D - R15D
are available when using REX.R in 64-bit mode.

• r/m64 — A quadword general-purpose register or memory operand used for instructions
whose operand-size attribute is 64 bits when using REX.W. Quadword general-purpose
registers are: RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8–R15; these are available
3-4 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
only in 64-bit mode. The contents of memory are found at the address provided by the
effective address computation.

• m — A 16-, 32- or 64-bit operand in memory.

• m8 — A byte operand in memory, usually expressed as a variable or array name, but
pointed to by the DS:(E)SI or ES:(E)DI registers. In 64-bit mode, it is pointed to by the
RSI or RDI registers.

• m16 — A word operand in memory, usually expressed as a variable or array name, but
pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the
string instructions.

• m32 — A doubleword operand in memory, usually expressed as a variable or array name,
but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with
the string instructions.

• m64 — A memory quadword operand in memory.

• m128 — A memory double quadword operand in memory. This nomenclature is used only
with SSE and SSE2 instructions.

• m16:16, m16:32 & m16:64 — A memory operand containing a far pointer composed of
two numbers. The number to the left of the colon corresponds to the pointer's segment
selector. The number to the right corresponds to its offset.

• m16&32, m16&16, m32&32, m16&64 — A memory operand consisting of data item
pairs whose sizes are indicated on the left and the right side of the ampersand. All memory
addressing modes are allowed. The m16&16 and m32&32 operands are used by the
BOUND instruction to provide an operand containing an upper and lower bounds for array
indices. The m16&32 operand is used by LIDT and LGDT to provide a word with which to
load the limit field, and a doubleword with which to load the base field of the corre-
sponding GDTR and IDTR registers. The m16&64 operand is used by LIDT and LGDT in
64-bit mode to provide a word with which to load the limit field, and a quadword with
which to load the base field of the corresponding GDTR and IDTR registers.

• moffs8, moffs16, moffs32, moffs64 — A simple memory variable (memory offset) of
type byte, word, or doubleword used by some variants of the MOV instruction. The actual
address is given by a simple offset relative to the segment base. No ModR/M byte is used
in the instruction. The number shown with moffs indicates its size, which is determined by
the address-size attribute of the instruction.

• Sreg — A segment register. The segment register bit assignments are ES = 0, CS = 1,
SS = 2, DS = 3, FS = 4, and GS = 5.

• m32fp, m64fp, m80fp — A single-precision, double-precision, and double extended-
precision (respectively) floating-point operand in memory. These symbols designate
floating-point values that are used as operands for x87 FPU floating-point instructions.

• m16int, m32int, m64int — A word, doubleword, and quadword integer (respectively)
operand in memory. These symbols designate integers that are used as operands for x87
FPU integer instructions.
Vol. 2A 3-5

INSTRUCTION SET REFERENCE, A-M
• ST or ST(0) — The top element of the FPU register stack.

• ST(i) — The ith element from the top of the FPU register stack (i ← 0 through 7).

• mm — An MMX register. The 64-bit MMX registers are: MM0 through MM7.

• mm/m32 — The low order 32 bits of an MMX register or a 32-bit memory operand. The
64-bit MMX registers are: MM0 through MM7. The contents of memory are found at the
address provided by the effective address computation.

• mm/m64 — An MMX register or a 64-bit memory operand. The 64-bit MMX registers
are: MM0 through MM7. The contents of memory are found at the address provided by the
effective address computation.

• xmm — An XMM register. The 128-bit XMM registers are: XMM0 through XMM7;
XMM8 through XMM15 are available using REX.R in 64-bit mode.

• xmm/m32— An XMM register or a 32-bit memory operand. The 128-bit XMM registers
are XMM0 through XMM7; XMM8 through XMM15 are available using REX.R in 64-bit
mode. The contents of memory are found at the address provided by the effective address
computation.

• xmm/m64 — An XMM register or a 64-bit memory operand. The 128-bit SIMD floating-
point registers are XMM0 through XMM7; XMM8 through XMM15 are available using
REX.R in 64-bit mode. The contents of memory are found at the address provided by the
effective address computation.

• xmm/m128 — An XMM register or a 128-bit memory operand. The 128-bit XMM
registers are XMM0 through XMM7; XMM8 through XMM15 are available using REX.R
in 64-bit mode. The contents of memory are found at the address provided by the effective
address computation.

3.1.1.3 64-bit Mode Column in the Instruction Summary Table

The “64-bit Mode” column indicates whether the opcode sequence is supported in 64-bit mode.
The column uses the following notation:

• Valid — Supported.

• Invalid — Not supported.

• N.E. — Indicates an instruction syntax is not encodable in 64-bit mode (it may represent
part of a sequence of valid instructions in other modes).

• N.P. — Indicates the REX prefix does not affect the legacy instruction in 64-bit mode.

• N.I. — Indicates the opcode is treated as a new instruction in 64-bit mode.

• N.S. — Indicates an instruction syntax that requires an address override prefix in 64-bit
mode and is not supported. Using an address override prefix in 64-bit mode may result in
model-specific execution behavior.
3-6 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
3.1.1.4 Compatibility/Legacy Mode Column in the Instruction Summary
Table

The “Compatibility/Legacy Mode” column provides information on the opcode sequence in
either the compatibility mode or other legacy IA-32 modes. The column uses the following nota-
tion:

• Valid — Supported.

• Invalid — Not supported.

• N.E. — Indicates an instruction syntax that is not encodable; the opcode sequence is not
applicable as an individual instruction in compatibility mode or legacy IA-32 mode. It may
represent a valid sequence of legacy IA-32 instructions.

3.1.1.5 Description Column in the Instruction Summary Table

The “Description” column briefly explains forms of the instruction.

3.1.1.6 Description Section

Each instruction is then described by number of information sections. The “Description” section
describes the purpose of the instructions and required operands in more detail.

3.1.1.7 Operation Section

The “Operation” section contains an algorithm description (frequently written in pseudo-code)
for the instruction. Algorithms are composed of the following elements:

• Comments are enclosed within the symbol pairs “(*” and “*)”.

• Compound statements are enclosed in keywords, such as: IF, THEN, ELSE and FI for an if
statement; DO and OD for a do statement; or CASE... OF for a case statement.

• A register name implies the contents of the register. A register name enclosed in brackets
implies the contents of the location whose address is contained in that register. For
example, ES:[DI] indicates the contents of the location whose ES segment relative address
is in register DI. [SI] indicates the contents of the address contained in register SI relative
to the SI register’s default segment (DS) or the overridden segment.

• Parentheses around the “E” in a general-purpose register name, such as (E)SI, indicates
that the offset is read from the SI register if the address-size attribute is 16, from the ESI
register if the address-size attribute is 32. Parentheses around the “R” in a general-purpose
register name, (R)SI, in the presence of a 64-bit register definition such as (R)SI, indicates
that the offset is read from the 64-bit RSI register if the address-size attribute is 64.

• Brackets are used for memory operands where they mean that the contents of the memory
location is a segment-relative offset. For example, [SRC] indicates that the content of the
source operand is a segment-relative offset.

• A ← B indicates that the value of B is assigned to A.
Vol. 2A 3-7

INSTRUCTION SET REFERENCE, A-M
• The symbols =, ≠, >, <, ≥, and ≤ are relational operators used to compare two values:
meaning equal, not equal, greater or equal, less or equal, respectively. A relational
expression such as A ← B is TRUE if the value of A is equal to B; otherwise it is FALSE.

• The expression “<< COUNT” and “>> COUNT” indicates that the destination operand
should be shifted left or right by the number of bits indicated by the count operand.

The following identifiers are used in the algorithmic descriptions:

• OperandSize and AddressSize — The OperandSize identifier represents the operand-size
attribute of the instruction, which is 16, 32 or 64-bits. The AddressSize identifier
represents the address-size attribute, which is 16, 32 or 64-bits. For example, the following
pseudo-code indicates that the operand-size attribute depends on the form of the MOV
instruction used.

IF Instruction ← MOVW
THEN OperandSize ← 16;
ELSE

IF Instruction ← MOVD
THEN OperandSize ← 32;
ELSE

IF Instruction ← MOVQ
THEN OperandSize ← 64; FI;

FI;
FI;

See “Operand-Size and Address-Size Attributes” in Chapter 3 of the IA-32 Intel® Archi-
tecture Software Developer’s Manual, Volume 1, for guidelines on how these attributes are
determined.

• StackAddrSize — Represents the stack address-size attribute associated with the
instruction, which has a value of 16, 32 or 64-bits. See “Address-Size Attribute for Stack”
in Chapter 6, “Procedure Calls, Interrupts, and Exceptions” of the IA-32 Intel® Archi-
tecture Software Developer’s Manual, Volume 1.

• SRC — Represents the source operand.

• DEST — Represents the destination operand.

The following functions are used in the algorithmic descriptions:

• ZeroExtend(value) — Returns a value zero-extended to the operand-size attribute of the
instruction. For example, if the operand-size attribute is 32, zero extending a byte value of
–10 converts the byte from F6H to a doubleword value of 000000F6H. If the value passed
to the ZeroExtend function and the operand-size attribute are the same size, ZeroExtend
returns the value unaltered.

• SignExtend(value) — Returns a value sign-extended to the operand-size attribute of the
instruction. For example, if the operand-size attribute is 32, sign extending a byte
containing the value –10 converts the byte from F6H to a doubleword value of
FFFFFFF6H. If the value passed to the SignExtend function and the operand-size attribute
are the same size, SignExtend returns the value unaltered.
3-8 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
• SaturateSignedWordToSignedByte — Converts a signed 16-bit value to a signed 8-bit
value. If the signed 16-bit value is less than –128, it is represented by the saturated value
-128 (80H); if it is greater than 127, it is represented by the saturated value 127 (7FH).

• SaturateSignedDwordToSignedWord — Converts a signed 32-bit value to a signed
16-bit value. If the signed 32-bit value is less than –32768, it is represented by the
saturated value –32768 (8000H); if it is greater than 32767, it is represented by the
saturated value 32767 (7FFFH).

• SaturateSignedWordToUnsignedByte — Converts a signed 16-bit value to an unsigned
8-bit value. If the signed 16-bit value is less than zero, it is represented by the saturated
value zero (00H); if it is greater than 255, it is represented by the saturated value 255
(FFH).

• SaturateToSignedByte — Represents the result of an operation as a signed 8-bit value. If
the result is less than –128, it is represented by the saturated value –128 (80H); if it is
greater than 127, it is represented by the saturated value 127 (7FH).

• SaturateToSignedWord — Represents the result of an operation as a signed 16-bit value.
If the result is less than –32768, it is represented by the saturated value –32768 (8000H); if
it is greater than 32767, it is represented by the saturated value 32767 (7FFFH).

• SaturateToUnsignedByte — Represents the result of an operation as a signed 8-bit value.
If the result is less than zero it is represented by the saturated value zero (00H); if it is
greater than 255, it is represented by the saturated value 255 (FFH).

• SaturateToUnsignedWord — Represents the result of an operation as a signed 16-bit
value. If the result is less than zero it is represented by the saturated value zero (00H); if it
is greater than 65535, it is represented by the saturated value 65535 (FFFFH).

• LowOrderWord(DEST * SRC) — Multiplies a word operand by a word operand and
stores the least significant word of the doubleword result in the destination operand.

• HighOrderWord(DEST * SRC) — Multiplies a word operand by a word operand and
stores the most significant word of the doubleword result in the destination operand.

• Push(value) — Pushes a value onto the stack. The number of bytes pushed is determined
by the operand-size attribute of the instruction. See the “Operation” section in
“PUSH—Push Word or Doubleword Onto the Stack” in this chapter for more information
on the push operation.

• Pop() removes the value from the top of the stack and returns it. The statement EAX ←
Pop(); assigns to EAX the 32-bit value from the top of the stack. Pop will return either a
word, a doubleword or a quadword depending on the operand-size attribute. See the
“Operation” section in Chapter 4, “POP—Pop a Value from the Stack”, for more
information on the pop operation.

• PopRegisterStack — Marks the FPU ST(0) register as empty and increments the FPU
register stack pointer (TOP) by 1.

• Switch-Tasks — Performs a task switch.
Vol. 2A 3-9

INSTRUCTION SET REFERENCE, A-M
• Bit(BitBase, BitOffset) — Returns the value of a bit within a bit string. The bit string is a
sequence of bits in memory or a register. Bits are numbered from low-order to high-order
within registers and within memory bytes. If the BitBase is a register, the BitOffset can be
in the range 0 to [15, 31, 63] depending on the mode and register size. See Figure 3-1: the
function Bit[RAX, 21] is illustrated.

If BitBase is a memory address, the BitOffset can range has different ranges depending on
the operand size (see Table 3-2).

The addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase +
(BitOffset DIV 8)) where DIV is signed division with rounding towards negative infinity
and MOD returns a positive number (see Figure 3-2).

Figure 3-1. Bit Offset for BIT[RAX, 21]

Table 3-2. Range of Bit Positions Specified by Bit Offset Operands
Operand Size Immediate BitOffset Register BitOffset

16 0 to 15 −215 to 215 − 1
32 0 to 31 −231 to 231 − 1
64 0 to 63 −263 to 263 − 1

02131

Bit Offset ← 21

63
3-10 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
3.1.1.8 Intel® C/C++ Compiler Intrinsics Equivalents Section

The Intel C/C++ compiler intrinsics equivalents are special C/C++ coding extensions that allow
using the syntax of C function calls and C variables instead of hardware registers. Using these
intrinsics frees programmers from having to manage registers and assembly programming.
Further, the compiler optimizes the instruction scheduling so that executable run faster.

The following sections discuss the intrinsics API and the MMX technology and SIMD floating-
point intrinsics. Each intrinsic equivalent is listed with the instruction description. There may be
additional intrinsics that do not have an instruction equivalent. It is strongly recommended that
the reader reference the compiler documentation for the complete list of supported intrinsics.

Please refer to the Intel C/C++ Compiler User’s Guide With Support for the Streaming SIMD
Extensions 2 (Order Number 718195-2001). See Appendix C, “Intel C/C++ Compiler Intrinsics
and Functional Equivalents”, IA-32 Intel® Architecture Software Developer’s Manual, Volume
2B, for more information on using intrinsics.

The Intrinsics API
The benefit of coding with MMX technology intrinsics and the SSE/SSE2/SSE3 intrinsics is
that you can use the syntax of C function calls and C variables instead of hardware registers.
This frees you from managing registers and programming assembly. Further, the compiler opti-
mizes the instruction scheduling so that your executable runs faster. For each computational and
data manipulation instruction in the new instruction set, there is a corresponding C intrinsic that
implements it directly. The intrinsics allow you to specify the underlying implementation
(instruction selection) of an algorithm yet leave instruction scheduling and register allocation to
the compiler.

Figure 3-2. Memory Bit Indexing

BitBase + 1

0777 5 0 0

BitBase − 2

0777 50 0

BitBase BitBase − 1

BitOffset ← +13

BitOffset ← −11

BitBase − 1BitBase
Vol. 2A 3-11

INSTRUCTION SET REFERENCE, A-M
MMX™ Technology Intrinsics
The MMX technology intrinsics are based on a __m64 data type that represents the specific
contents of an MMX technology register. You can specify values in bytes, short integers, 32-bit
values, or a 64-bit object. The __m64 data type, however, is not a basic ANSI C data type, and
therefore you must observe the following usage restrictions:

• Use __m64 data only on the left-hand side of an assignment, as a return value, or as a
parameter. You cannot use it with other arithmetic expressions (“+”, “>>”, and so on).

• Use __m64 objects in aggregates, such as unions to access the byte elements and
structures; the address of an __m64 object may be taken.

• Use __m64 data only with the MMX technology intrinsics described in this manual and the
Intel C/C++ Compiler User’s Guide With Support for the Streaming SIMD Extensions 2
(Order Number 718195-2001). See Appendix C, “Intel C/C++ Compiler Intrinsics and
Functional Equivalents”, IA-32 Intel® Architecture Software Developer’s Manual, Volume
2B, for more information on using intrinsics.

SSE/SSE2/SSE3 Intrinsics
SSE/SSE2/SSE3 intrinsics all make use of the XMM registers of the Pentium III, Pentium 4, and
Intel Xeon processors. There are three data types supported by these intrinsics: __m128,
__m128d, and __m128i.

• The __m128 data type is used to represent the contents of an XMM register used by an
SSE intrinsic. This is either four packed single-precision floating-point values or a scalar
single-precision floating-point value.

• The __m128d data type holds two packed double-precision floating-point values or a
scalar double-precision floating-point value.

• The __m128i data type can hold sixteen byte, eight word, or four doubleword, or two
quadword integer values.

The compiler aligns __m128, __m128d, and __m128i local and global data to 16-byte bound-
aries on the stack. To align integer, float, or double arrays, you can use the declspec statement
as described in the Intel C/C++ Compiler User’s Guide With Support for the Streaming SIMD
Extensions 2 (Order Number 718195-2001).

The __m128, __m128d, and __m128i data types are not basic ANSI C data types and therefore
some restrictions are placed on its usage:

• Use __m128, __m128d, and __m128i only on the left-hand side of an assignment, as a
return value, or as a parameter. Do not use it in other arithmetic expressions such as “+”
and “>>.”

• Do not initialize __m128, __m128d, and __m128i with literals; there is no way to express
128-bit constants.

• Use __m128, __m128d, and __m128i objects in aggregates, such as unions (for example,
to access the float elements) and structures. The address of these objects may be taken.
3-12 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
• Use __m128, __m128d, and __m128i data only with the intrinsics described in this user’s
guide. See Appendix C, “Intel C/C++ Compiler Intrinsics and Functional Equivalents”,
IA-32 Intel® Architecture Software Developer’s Manual, Volume 2B, for more information
on using intrinsics.

The compiler aligns __m128, __m128d, and __m128i local data to 16-byte boundaries on the
stack. Global __m128 data is also aligned on 16-byte boundaries. (To align float arrays, you can
use the alignment declspec described in the following section.) Because the new instruction set
treats the SIMD floating-point registers in the same way whether you are using packed or scalar
data, there is no __m32 data type to represent scalar data as you might expect. For scalar oper-
ations, you should use the __m128 objects and the “scalar” forms of the intrinsics; the compiler
and the processor implement these operations with 32-bit memory references.

The suffixes ps and ss are used to denote “packed single” and “scalar single” precision opera-
tions. The packed floats are represented in right-to-left order, with the lowest word (right-most)
being used for scalar operations: [z, y, x, w]. To explain how memory storage reflects this,
consider the following example.

The operation:
float a[4] ← { 1.0, 2.0, 3.0, 4.0 };
__m128 t ← _mm_load_ps(a);

Produces the same result as follows:
__m128 t ← _mm_set_ps(4.0, 3.0, 2.0, 1.0);

In other words:
t ← [4.0, 3.0, 2.0, 1.0]

Where the “scalar” element is 1.0.

Some intrinsics are “composites” because they require more than one instruction to implement
them. You should be familiar with the hardware features provided by the SSE, SSE2, SSE3, and
MMX technology when writing programs with the intrinsics.

Keep the following important issues in mind:

• Certain intrinsics, such as _mm_loadr_ps and _mm_cmpgt_ss, are not directly supported
by the instruction set. While these intrinsics are convenient programming aids, be mindful
of their implementation cost.

• Data loaded or stored as __m128 objects must generally be 16-byte-aligned.

• Some intrinsics require that their argument be immediates, that is, constant integers
(literals), due to the nature of the instruction.

• The result of arithmetic operations acting on two NaN (Not a Number) arguments is
undefined. Therefore, floating-point operations using NaN arguments may not match the
expected behavior of the corresponding assembly instructions.

For a more detailed description of each intrinsic and additional information related to its usage,
refer to the Intel C/C++ Compiler User’s Guide With Support for the Streaming SIMD Exten-
sions 2 (Order Number 718195-2001). See Appendix C, “Intel C/C++ Compiler Intrinsics and
Vol. 2A 3-13

INSTRUCTION SET REFERENCE, A-M
Functional Equivalents”, IA-32 Intel® Architecture Software Developer’s Manual, Volume 2B,
for more information on using intrinsics.

3.1.1.9 Flags Affected Section

The “Flags Affected” section lists the flags in the EFLAGS register that are affected by the
instruction. When a flag is cleared, it is equal to 0; when it is set, it is equal to 1. The arithmetic
and logical instructions usually assign values to the status flags in a uniform manner (see
Appendix A, “Eflags Cross-Reference”, in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 1). Non-conventional assignments are described in the “Operation” section.
The values of flags listed as undefined may be changed by the instruction in an indeterminate
manner. Flags that are not listed are unchanged by the instruction.

3.1.1.10 FPU Flags Affected Section

The floating-point instructions have an “FPU Flags Affected” section that describes how each
instruction can affect the four condition code flags of the FPU status word.

3.1.1.11 Protected Mode Exceptions Section

The “Protected Mode Exceptions” section lists the exceptions that can occur when the instruc-
tion is executed in protected mode and the reasons for the exceptions. Each exception is given
a mnemonic that consists of a pound sign (#) followed by two letters and an optional error code
in parentheses. For example, #GP(0) denotes a general protection exception with an error code
of 0. Table 3-3 associates each two-letter mnemonic with the corresponding interrupt vector
number and exception name. See Chapter 5, “Interrupt and Exception Handling”, in the IA-32
Intel® Architecture Software Developer’s Manual, Volume 3A, for a detailed description of the
exceptions.

Application programmers should consult the documentation provided with their operating
systems to determine the actions taken when exceptions occur.

Table 3-3. IA-32 General Exceptions

Vector
No. Name Source

Protected
Mode

Real
Address
Mode

Virtual
8086
Mode

 0 #DE—Divide Error DIV and IDIV instructions. Yes Yes Yes

 1 #DB—Debug Any code or data reference. Yes Yes Yes

 3 #BP—Breakpoint INT 3 instruction. Yes Yes Yes

 4 #OF—Overflow INTO instruction. Yes Yes Yes

 5 #BR—BOUND Range
Exceeded

BOUND instruction. Yes Yes Yes

 6 #UD—Invalid Opcode
(Undefined Opcode)

UD2 instruction or reserved
opcode.

Yes Yes Yes
3-14 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
3.1.1.12 Real-Address Mode Exceptions Section

The “Real-Address Mode Exceptions” section lists the exceptions that can occur when the
instruction is executed in real-address mode (see Table 3-3).

3.1.1.13 Virtual-8086 Mode Exceptions Section

The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when the
instruction is executed in virtual-8086 mode (see Table 3-3).

3.1.1.14 Floating-Point Exceptions Section

The “Floating-Point Exceptions” section lists exceptions that can occur when an x87 FPU
floating-point instruction is executed. All of these exception conditions result in a floating-point
error exception (#MF, vector number 16) being generated. Table 3-4 associates a one- or two-
letter mnemonic with the corresponding exception name. See “Floating-Point Exception Condi-

 7 #NM—Device Not
Available (No Math
Coprocessor)

Floating-point or WAIT/FWAIT
instruction.

Yes Yes Yes

 8 #DF—Double Fault Any instruction that can
generate an exception, an NMI,
or an INTR.

Yes Yes Yes

10 #TS—Invalid TSS Task switch or TSS access. Yes Reserved Yes

11 #NP—Segment Not
Present

Loading segment registers or
accessing system segments.

Yes Reserved Yes

12 #SS—Stack Segment
Fault

Stack operations and SS
register loads.

Yes Yes Yes

13 #GP—General
Protection*

Any memory reference and
other protection checks.

Yes Yes Yes

14 #PF—Page Fault Any memory reference. Yes Reserved Yes

16 #MF—Floating-Point
Error (Math Fault)

Floating-point or WAIT/FWAIT
instruction.

Yes Yes Yes

17 #AC—Alignment
Check

Any data reference in memory. Yes Reserved Yes

18 #MC—Machine
Check

Model dependent machine
check errors.

Yes Yes Yes

19 #XF—SIMD Floating-
Point Numeric Error

SSE/SSE2/SSE3 floating-point
instructions.

Yes Yes Yes

NOTES:
* In the real-address mode, vector 13 is the segment overrun exception.

Table 3-3. IA-32 General Exceptions (Contd.)

Vector
No. Name Source

Protected
Mode

Real
Address
Mode

Virtual
8086
Mode
Vol. 2A 3-15

INSTRUCTION SET REFERENCE, A-M
tions” in Chapter 8 of the IA-32 Intel® Architecture Software Developer’s Manual, Volume 1, for
a detailed description of these exceptions.

3.1.1.15 SIMD Floating-Point Exceptions Section

The “SIMD Floating-Point Exceptions” section lists exceptions that can occur when an
SSE/SSE2/SSE3 floating-point instruction is executed. All of these exception conditions result
in an SIMD floating-point error exception (#XF, vector number 19) being generated. Table 3-5
associates a one-letter mnemonic with the corresponding exception name. For a detailed descrip-
tion of these exceptions, refer to ”SSE and SSE2 Exceptions”, in Chapter 11 of the IA-32 Intel®
Architecture Software Developer’s Manual, Volume 1.

3.1.1.16 Compatibility Mode Exceptions Section

This section lists exception that occur within compatibility mode.

3.1.1.17 64-Bit Mode Exceptions Section

This section lists exception that occur within 64-bit mode.

Table 3-4. x87 FPU Floating-Point Exceptions
Mnemonic Name Source

#IS
#IA

Floating-point invalid operation:
- Stack overflow or underflow
- Invalid arithmetic operation

- x87 FPU stack overflow or underflow
- Invalid FPU arithmetic operation

#Z Floating-point divide-by-zero Divide-by-zero

#D Floating-point denormal operand Source operand that is a denormal number

#O Floating-point numeric overflow Overflow in result

#U Floating-point numeric underflow Underflow in result

#P Floating-point inexact result (precision) Inexact result (precision)

Table 3-5. SIMD Floating-Point Exceptions
Mnemonic Name Source

#I Floating-point invalid operation Invalid arithmetic operation or source operand

#Z Floating-point divide-by-zero Divide-by-zero

#D Floating-point denormal operand Source operand that is a denormal number

#O Floating-point numeric overflow Overflow in result

#U Floating-point numeric underflow Underflow in result

#P Floating-point inexact result Inexact result (precision)
3-16 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
3.2 INSTRUCTIONS (A-M)
The remainder of this chapter provides descriptions of IA-32 instructions (A-M). See also:
Chapter 4, “Instruction Set Reference, N-Z”, in the IA-32 Intel® Architecture Software Devel-
oper’s Manual, Volume 2B.
Vol. 2A 3-17

INSTRUCTION SET REFERENCE, A-M
AAA—ASCII Adjust After Addition

Description
Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The AL
register is the implied source and destination operand for this instruction. The AAA instruction
is only useful when it follows an ADD instruction that adds (binary addition) two unpacked
BCD values and stores a byte result in the AL register. The AAA instruction then adjusts the
contents of the AL register to contain the correct 1-digit unpacked BCD result.

If the addition produces a decimal carry, the AH register increments by 1, and the CF and AF
flags are set. If there was no decimal carry, the CF and AF flags are cleared and the AH register
is unchanged. In either case, bits 4 through 7 of the AL register are set to 0.

This instruction executes as described in compatibility mode and legacy mode. It is not valid in
64-bit mode.

Operation
IF 64-Bit Mode

THEN
#UD;

ELSE
IF ((AL AND 0FH) > 9) or (AF = 1)

THEN
AL ← AL + 6;
AH ← AH + 1;
AF ← 1;
CF ← 1;
AL ← AL AND 0FH;

ELSE
AF ← 0;
CF ← 0;
AL ← AL AND 0FH;

FI;
FI;

Flags Affected
The AF and CF flags are set to 1 if the adjustment results in a decimal carry; otherwise they are
set to 0. The OF, SF, ZF, and PF flags are undefined.

Opcode Instruction 64-Bit Mode
Compat/
Leg Mode Description

37 AAA Invalid Valid ASCII adjust AL after addition.
3-18 Vol. 2A AAA—ASCII Adjust After Addition

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

None.

Real-Address Mode Exceptions

None.

-Virtual-8086 Mode Exceptions

None.

Compatibility Mode Exceptions

None.

64-Bit Mode Exceptions

#UD If in 64-bit mode.
Vol. 2A 3-19AAA—ASCII Adjust After Addition

INSTRUCTION SET REFERENCE, A-M
AAD—ASCII Adjust AX Before Division

Description
Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the most-
significant digit in the AH register) so that a division operation performed on the result will yield
a correct unpacked BCD value. The AAD instruction is only useful when it precedes a DIV
instruction that divides (binary division) the adjusted value in the AX register by an unpacked
BCD value.

The AAD instruction sets the value in the AL register to (AL + (10 * AH)), and then clears the
AH register to 00H. The value in the AX register is then equal to the binary equivalent of the
original unpacked two-digit (base 10) number in registers AH and AL.

The generalized version of this instruction allows adjustment of two unpacked digits of any
number base (see the “Operation” section below), by setting the imm8 byte to the selected
number base (for example, 08H for octal, 0AH for decimal, or 0CH for base 12 numbers). The
AAD mnemonic is interpreted by all assemblers to mean adjust ASCII (base 10) values. To
adjust values in another number base, the instruction must be hand coded in machine code (D5
imm8).

This instruction executes as described in compatibility mode and legacy mode. It is not valid in
64-bit mode.

Operation
IF 64-Bit Mode

THEN
#UD;

ELSE
tempAL ← AL;
tempAH ← AH;
AL ← (tempAL + (tempAH ∗ imm8)) AND FFH;
(* imm8 is set to 0AH for the AAD mnemonic.*)
AH ← 0;

FI;

The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL register; the
OF, AF, and CF flags are undefined.

Opcode Instruction 64-Bit Mode
Compat/
Leg Mode Description

D5 0A AAD Invalid Valid ASCII adjust AX before division.
D5 ib (No mnemonic) Invalid Valid Adjust AX before division to

number base imm8.
3-20 Vol. 2A AAD—ASCII Adjust AX Before Division

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

None.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

None.

Compatibility Mode Exceptions

None.

64-Bit Mode Exceptions

#UD If in 64-bit mode.
Vol. 2A 3-21AAD—ASCII Adjust AX Before Division

INSTRUCTION SET REFERENCE, A-M
AAM—ASCII Adjust AX After Multiply

Description
Adjusts the result of the multiplication of two unpacked BCD values to create a pair of unpacked
(base 10) BCD values. The AX register is the implied source and destination operand for this
instruction. The AAM instruction is only useful when it follows an MUL instruction that multi-
plies (binary multiplication) two unpacked BCD values and stores a word result in the AX
register. The AAM instruction then adjusts the contents of the AX register to contain the correct
2-digit unpacked (base 10) BCD result.

The generalized version of this instruction allows adjustment of the contents of the AX to create
two unpacked digits of any number base (see the “Operation” section below). Here, the imm8
byte is set to the selected number base (for example, 08H for octal, 0AH for decimal, or 0CH
for base 12 numbers). The AAM mnemonic is interpreted by all assemblers to mean adjust to
ASCII (base 10) values. To adjust to values in another number base, the instruction must be hand
coded in machine code (D4 imm8).

This instruction executes as described in compatibility mode and legacy mode. It is not valid in
64-bit mode.

Operation
IF 64-Bit Mode

THEN
#UD;

ELSE
tempAL ← AL;
AH ← tempAL / imm8; (* imm8 is set to 0AH for the AAM mnemonic *)
AL ← tempAL MOD imm8;

FI;

The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL register. The
OF, AF, and CF flags are undefined.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D4 0A AAM Invalid Valid ASCII adjust AX after multiply.
D4 ib (No mnemonic) Invalid Valid Adjust AX after multiply to number

base imm8.
3-22 Vol. 2A AAM—ASCII Adjust AX After Multiply

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#DE If an immediate value of 0 is used.

Real-Address Mode Exceptions

Same exception as in Protected Mode.

Virtual-8086 Mode Exceptions

Same exception as in Protected Mode.

Compatibility Mode Exceptions

Same exception as in Protected Mode.

64-Bit Mode Exceptions

#UD If in 64-bit mode.
Vol. 2A 3-23AAM—ASCII Adjust AX After Multiply

INSTRUCTION SET REFERENCE, A-M
AAS—ASCII Adjust AL After Subtraction

Description
Adjusts the result of the subtraction of two unpacked BCD values to create a unpacked BCD
result. The AL register is the implied source and destination operand for this instruction. The
AAS instruction is only useful when it follows a SUB instruction that subtracts (binary subtrac-
tion) one unpacked BCD value from another and stores a byte result in the AL register. The AAA
instruction then adjusts the contents of the AL register to contain the correct 1-digit unpacked
BCD result.

If the subtraction produced a decimal carry, the AH register decrements by 1, and the CF and
AF flags are set. If no decimal carry occurred, the CF and AF flags are cleared, and the AH
register is unchanged. In either case, the AL register is left with its top nibble set to 0.

This instruction executes as described in compatibility mode and legacy mode. It is not valid in
64-bit mode.

Operation
IF 64-bit mode

THEN
#UD;

ELSE
IF ((AL AND 0FH) > 9) or (AF = 1)

THEN
AL ← AL – 6;
AH ← AH – 1;
AF ← 1;
CF ← 1;
AL ← AL AND 0FH;

ELSE
CF ← 0;
AF ← 0;
AL ← AL AND 0FH;

FI;
FI;

Flags Affected

The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are cleared to 0.
The OF, SF, ZF, and PF flags are undefined.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

3F AAS Invalid Valid ASCII adjust AL after subtraction.
3-24 Vol. 2A AAS—ASCII Adjust AL After Subtraction

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

None.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

None.

Compatibility Mode Exceptions

None.

64-Bit Mode Exceptions

#UD If in 64-bit mode.
Vol. 2A 3-25AAS—ASCII Adjust AL After Subtraction

INSTRUCTION SET REFERENCE, A-M
ADC—Add with Carry

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

14 ib ADC AL, imm8 Valid Valid Add with carry imm8 to AL.
15 iw ADC AX, imm16 Valid Valid Add with carry imm16 to AX.
15 id ADC EAX,

imm32
Valid Valid Add with carry imm32 to EAX.

REX.W + 15 id ADC RAX,
imm32

Valid N.E. Add with carry imm32 sign
extended to 64-bits to RAX.

80 /2 ib ADC r/m8, imm8 Valid Valid Add with carry imm8 to r/m8.
REX + 80 /2 ib ADC r/m8*, imm8 Valid N.E. Add with carry imm8 to r/m8.
81 /2 iw ADC r/m16,

imm16
Valid Valid Add with carry imm16 to r/m16.

81 /2 id ADC r/m32,
imm32

Valid Valid Add with CF imm32 to r/m32.

REX.W + 81 /2 id ADC r/m64,
imm32

Valid N.E. Add with CF imm32 sign
extended to 64-bits to r/m64.

83 /2 ib ADC r/m16,
imm8

Valid Valid Add with CF sign-extended
imm8 to r/m16.

83 /2 ib ADC r/m32,
imm8

Valid Valid Add with CF sign-extended
imm8 into r/m32.

REX.W + 83 /2 ib ADC r/m64,
imm8

Valid N.E. Add with CF sign-extended
imm8 into r/m64.

10 /r ADC r/m8, r8 Valid Valid Add with carry byte register to
r/m8.

REX + 10 /r ADC r/m8*, r8* Valid N.E. Add with carry byte register to
r/m64.

11 /r ADC r/m16, r16 Valid Valid Add with carry r16 to r/m16.
11 /r ADC r/m32, r32 Valid Valid Add with CF r32 to r/m32.
REX.W + 11 /r ADC r/m64, r64 Valid N.E. Add with CF r64 to r/m64.
12 /r ADC r8, r/m8 Valid Valid Add with carry r/m8 to byte

register.
REX + 12 /r ADC r8*, r/m8* Valid N.E. Add with carry r/m64 to byte

register.
13 /r ADC r16, r/m16 Valid Valid Add with carry r/m16 to r16.
13 /r ADC r32, r/m32 Valid Valid Add with CF r/m32 to r32.
REX.W + 13 /r ADC r64, r/m64 Valid N.E. Add with CF r/m64 to r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is used:

AH, BH, CH, DH.
3-26 Vol. 2A ADC—Add with Carry

INSTRUCTION SET REFERENCE, A-M
Description
Adds the destination operand (first operand), the source operand (second operand), and the carry
(CF) flag and stores the result in the destination operand. The destination operand can be a
register or a memory location; the source operand can be an immediate, a register, or a memory
location. (However, two memory operands cannot be used in one instruction.) The state of the
CF flag represents a carry from a previous addition. When an immediate value is used as an
operand, it is sign-extended to the length of the destination operand format.

The ADC instruction does not distinguish between signed or unsigned operands. Instead, the
processor evaluates the result for both data types and sets the OF and CF flags to indicate a carry
in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte or multiword addition in which
an ADD instruction is followed by an ADC instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atom-
ically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

DEST ← DEST + SRC + CF;

Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-27ADC—Add with Carry

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-28 Vol. 2A ADC—Add with Carry

INSTRUCTION SET REFERENCE, A-M
ADD—Add

Description
Adds the destination operand (first operand) and the source operand (second operand) and then
stores the result in the destination operand. The destination operand can be a register or a
memory location; the source operand can be an immediate, a register, or a memory location.
(However, two memory operands cannot be used in one instruction.) When an immediate value
is used as an operand, it is sign-extended to the length of the destination operand format.

Opcode Instruction 64-Bit Mode
Compat/
Leg Mode Description

04 ib ADD AL, imm8 Valid Valid Add imm8 to AL.
05 iw ADD AX, imm16 Valid Valid Add imm16 to AX.
05 id ADD EAX, imm32 Valid Valid Add imm32 to EAX.
REX.W + 05 id ADD RAX, imm32 Valid N.E. Add imm32 sign-

extended to 64-bits to
RAX.

80 /0 ib ADD r/m8, imm8 Valid Valid Add imm8 to r/m8.
REX + 80 /0 ib ADD r/m8*, imm8 Valid N.E. Add sign-extended

imm8 to r/m64.
81 /0 iw ADD r/m16, imm16 Valid Valid Add imm16 to r/m16.
81 /0 id ADD r/m32, imm32 Valid Valid Add imm32 to r/m32.
REX.W + 81 /0 id ADD r/m64, imm32 Valid N.E. Add imm32 sign-

extended to 64-bits to
r/m64.

83 /0 ib ADD r/m16, imm8 Valid Valid Add sign-extended
imm8 to r/m16.

83 /0 ib ADD r/m32, imm8 Valid Valid Add sign-extended
imm8 to r/m32.

REX.W + 83 /0 ib ADD r/m64, imm8 Valid N.E. Add sign-extended
imm8 to r/m64.

00 /r ADD r/m8, r8 Valid Valid Add r8 to r/m8.
REX + 00 /r ADD r/m8*, r8* Valid N.E. Add r8 to r/m8.
01 /r ADD r/m16, r16 Valid Valid Add r16 to r/m16.
01 /r ADD r/m32, r32 Valid Valid Add r32 to r/m32.
REX.W + 01 /r ADD r/m64, r64 Valid N.E. Add r64 to r/m64.
02 /r ADD r8, r/m8 Valid Valid Add r/m8 to r8.
REX + 02 /r ADD r8*, r/m8* Valid N.E. Add r/m8 to r8.
03 /r ADD r16, r/m16 Valid Valid Add r/m16 to r16.
03 /r ADD r32, r/m32 Valid Valid Add r/m32 to r32.
REX.W + 03 /r ADD r64, r/m64 Valid N.E. Add r/m64 to r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.
Vol. 2A 3-29ADD—Add

INSTRUCTION SET REFERENCE, A-M
The ADD instruction performs integer addition. It evaluates the result for both signed and
unsigned integer operands and sets the OF and CF flags to indicate a carry (overflow) in the
signed or unsigned result, respectively. The SF flag indicates the sign of the signed result.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation
DEST ← DEST + SRC;

Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.
3-30 Vol. 2A ADD—Add

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-31ADD—Add

INSTRUCTION SET REFERENCE, A-M
ADDPD—Add Packed Double-Precision Floating-Point Values

Description
Performs an SIMD add of the two packed double-precision floating-point values from the source
operand (second operand) and the destination operand (first operand), and stores the packed
double-precision floating-point results in the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. See Chapter 11 in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 1, for an overview of SIMD double-precision floating-point operation.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

DEST[63:0] ← DEST[63:0] + SRC[63:0];
DEST[127:64] ← DEST[127:64] + SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalent
ADDPD __m128d _mm_add_pd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 58 /r ADDPD xmm1,
xmm2/m128

Valid Valid Add packed double-precision
floating-point values from
xmm2/m128 to xmm1.
3-32 Vol. 2A ADDPD—Add Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-33ADDPD—Add Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
3-34 Vol. 2A ADDPD—Add Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
ADDPS—Add Packed Single-Precision Floating-Point Values

Description
Performs an SIMD add of the four packed single-precision floating-point values from the source
operand (second operand) and the destination operand (first operand), and stores the packed
single-precision floating-point results in the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. See Chapter 10 in the IA-32 Intel® Architecture Software Devel-
oper’s Manual, Volume 1, for an overview of SIMD single-precision floating-point operation.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[31:0] ← DEST[31:0] + SRC[31:0];
DEST[63:32] ← DEST[63:32] + SRC[63:32];
DEST[95:64] ← DEST[95:64] + SRC[95:64];
DEST[127:96] ← DEST[127:96] + SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalent
ADDPS __m128 _mm_add_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 58 /r ADDPS xmm1, xmm2/m128 Valid Valid Add packed single-precision
floating-point values from
xmm2/m128 to xmm1.
Vol. 2A 3-35ADDPS—Add Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
3-36 Vol. 2A ADDPS—Add Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
Vol. 2A 3-37ADDPS—Add Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
ADDSD—Add Scalar Double-Precision Floating-Point Values

Description
Adds the low double-precision floating-point values from the source operand (second operand)
and the destination operand (first operand), and stores the double-precision floating-point result
in the destination operand.

The source operand can be an XMM register or a 64-bit memory location. The destination
operand is an XMM register. The high quadword of the destination operand remains unchanged.
See Chapter 11 in the IA-32 Intel® Architecture Software Developer’s Manual, Volume 1, for an
overview of a scalar double-precision floating-point operation.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[63:0] ← DEST[63:0] + SRC[63:0];
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
ADDSD __m128d _mm_add_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F2 0F 58 /r ADDSD xmm1, xmm2/m64 Valid Valid Add the low double-
precision floating-point
value from xmm2/m64 to
xmm1.
3-38 Vol. 2A ADDSD—Add Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.
Vol. 2A 3-39ADDSD—Add Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-40 Vol. 2A ADDSD—Add Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
ADDSS—Add Scalar Single-Precision Floating-Point Values

Description
Adds the low single-precision floating-point values from the source operand (second operand)
and the destination operand (first operand), and stores the single-precision floating-point result
in the destination operand.

The source operand can be an XMM register or a 32-bit memory location. The destination
operand is an XMM register. The three high-order doublewords of the destination operand
remain unchanged. See Chapter 10 in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 1, for an overview of a scalar single-precision floating-point operation.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[31:0] ← DEST[31:0] + SRC[31:0];
(* DEST[127:32] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
ADDSS __m128 _mm_add_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F3 0F 58 /r ADDSS xmm1, xmm2/m32 Valid Valid Add the low single-precision
floating-point value from
xmm2/m32 to xmm1.
Vol. 2A 3-41ADDSS—Add Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
3-42 Vol. 2A ADDSS—Add Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-43ADDSS—Add Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
ADDSUBPD—Packed Double-FP Add/Subtract

Description
Adds the double-precision floating-point values in the high quadword of the source and desti-
nation operands and stores the result in the high quadword of the destination operand.

Subtracts the double-precision floating-point value in the low quadword of the source operand
from the low quadword of the destination operand and stores the result in the low quadword of
the destination operand. See Figure 3-3.

The source operand can be a 128-bit memory location or an XMM register. The destination
operand is an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
xmm1[63:0] = xmm1[63:0] − xmm2/m128[63:0];
xmm1[127:64] = xmm1[127:64] + xmm2/m128[127:64];

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F D0 /r ADDSUBPD xmm1, xmm2/m128 Valid Valid Add/subtract
double-precision
floating-point values
from xmm2/m128 to
xmm1.

Figure 3-3. ADDSUBPD—Packed Double-FP Add/Subtract
3-44 Vol. 2A ADDSUBPD—Packed Double-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-M
Intel C/C++ Compiler Intrinsic Equivalent
ADDSUBPD __m128d _mm_addsub_pd(__m128d a, __m128d b)

Exceptions
When the source operand is a memory operand, it must be aligned on a 16-byte boundary or a
general-protection exception (#GP) will be generated.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric exception,
CR4.OSXMMEXCPT[bit 10] = 1.

#UD If CR0.EM is 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 0).

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If TS bit in CR0 is 1.

#XM For an unmasked Streaming SIMD Extensions numeric exception,
CR4.OSXMMEXCPT[bit 10] = 1.
Vol. 2A 3-45ADDSUBPD—Packed Double-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-M
#UD If CR0.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 0).

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If CR0.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric exception,
CR4.OSXMMEXCPT[bit 10] = 1.

#UD If CR0.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 0).

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
3-46 Vol. 2A ADDSUBPD—Packed Double-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-M
#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.
Vol. 2A 3-47ADDSUBPD—Packed Double-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-M
ADDSUBPS—Packed Single-FP Add/Subtract

Description
Adds odd-numbered single-precision floating-point values of the source operand (second
operand) with the corresponding single-precision floating-point values from the destination
operand (first operand); stores the result in the odd-numbered values of the destination operand.

Subtracts the even-numbered single-precision floating-point values in the source operand from
the corresponding single-precision floating values in the destination operand; stores the result
into the even-numbered values of the destination operand.

The source operand can be a 128-bit memory location or an XMM register. The destination
operand is an XMM register. See Figure 3-4.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F2 0F D0 /r ADDSUBPS xmm1, xmm2/m128 Valid Valid Add/subtract single-
precision floating-
point values from
xmm2/m128 to
xmm1.

Figure 3-4. ADDSUBPS—Packed Single-FP Add/Subtract
3-48 Vol. 2A ADDSUBPS—Packed Single-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-M
Operation
xmm1[31:0] = xmm1[31:0] − xmm2/m128[31:0];
xmm1[63:32] = xmm1[63:32] + xmm2/m128[63:32];
xmm1[95:64] = xmm1[95:64] − xmm2/m128[95:64];
xmm1[127:96] = xmm1[127:96] + xmm2/m128[127:96];

Intel C/C++ Compiler Intrinsic Equivalent
ADDSUBPS __m128 _mm_addsub_ps(__m128 a, __m128 b)

Exceptions
When the source operand is a memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric exception,
CR4.OSXMMEXCPT[bit 10] = 1.

#UD If CR0.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 0).

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.
Vol. 2A 3-49ADDSUBPS—Packed Single-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-M
Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If CR0.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric exception,
CR4.OSXMMEXCPT[bit 10] = 1.

#UD If CR0.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 0).

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If CR0.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric exception,
CR4.OSXMMEXCPT[bit 10] = 1.

#UD If CR0.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 0).

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
3-50 Vol. 2A ADDSUBPS—Packed Single-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.
Vol. 2A 3-51ADDSUBPS—Packed Single-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-M
AND—Logical AND

Description
Performs a bitwise AND operation on the destination (first) and source (second) operands and
stores the result in the destination operand location. The source operand can be an immediate, a
register, or a memory location; the destination operand can be a register or a memory location.
(However, two memory operands cannot be used in one instruction.) Each bit of the result is set to
1 if both corresponding bits of the first and second operands are 1; otherwise, it is set to 0.

This instruction can be used with a LOCK prefix to allow the it to be executed atomically.

Opcode Instruction
64-Bit
Mode

Comp/Leg
Mode Description

24 ib AND AL, imm8 Valid Valid AL AND imm8.
25 iw AND AX, imm16 Valid Valid AX AND imm16.
25 id AND EAX, imm32 Valid Valid EAX AND imm32.
REX.W + 25 id AND RAX, imm32 Valid N.E. RAX AND imm32 sign-

extended to 64-bits.
80 /4 ib AND r/m8, imm8 Valid Valid r/m8 AND imm8.
REX + 80 /4 ib AND r/m8*, imm8 Valid N.E. r/m64 AND imm8 (sign-

extended).
81 /4 iw AND r/m16, imm16 Valid Valid r/m16 AND imm16.
81 /4 id AND r/m32, imm32 Valid Valid r/m32 AND imm32.
REX.W + 81 /4
id

AND r/m64, imm32 Valid N.E. r/m64 AND imm32 sign
extended to 64-bits.

83 /4 ib AND r/m16, imm8 Valid Valid r/m16 AND imm8 (sign-
extended).

83 /4 ib AND r/m32, imm8 Valid Valid r/m32 AND imm8 (sign-
extended).

REX.W + 83 /4
ib

AND r/m64, imm8 Valid N.E. r/m64 AND imm8 (sign-
extended).

20 /r AND r/m8, r8 Valid Valid r/m8 AND r8.
REX + 20 /r AND r/m8*, r8* Valid N.E. r/m64 AND r8 (sign-extended).
21 /r AND r/m16, r16 Valid Valid r/m16 AND r16.
21 /r AND r/m32, r32 Valid Valid r/m32 AND r32.
REX.W + 21 /r AND r/m64, r64 Valid N.E. r/m64 AND r32.
22 /r AND r8, r/m8 Valid Valid r8 AND r/m8.
REX + 22 /r AND r8*, r/m8* Valid N.E. r/m64 AND r8 (sign-extended).
23 /r AND r16, r/m16 Valid Valid r16 AND r/m16.
23 /r AND r32, r/m32 Valid Valid r32 AND r/m32.
REX.W + 23 /r AND r64, r/m64 Valid N.E. r64 AND r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.
3-52 Vol. 2A AND—Logical AND

INSTRUCTION SET REFERENCE, A-M
In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation
DEST ← DEST AND SRC;

Flags Affected
The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The
state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-53AND—Logical AND

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-54 Vol. 2A AND—Logical AND

INSTRUCTION SET REFERENCE, A-M
ANDPD—Bitwise Logical AND of Packed Double-Precision
Floating-Point Values

Description
Performs a bitwise logical AND of the two packed double-precision floating-point values from
the source operand (second operand) and the destination operand (first operand), and stores the
result in the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[127:0] ← DEST[127:0] BitwiseAND SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent
ANDPD __m128d _mm_and_pd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 54 /r ANDPD xmm1,
xmm2/m128

Valid Valid Bitwise logical AND of xmm2/m128 and
xmm1.
Vol. 2A 3-55ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-
Point Values

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
3-56 Vol. 2A ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-
Point Values

INSTRUCTION SET REFERENCE, A-M
ANDPS—Bitwise Logical AND of Packed Single-Precision
Floating-Point Values

Description
Performs a bitwise logical AND of the four packed single-precision floating-point values from
the source operand (second operand) and the destination operand (first operand), and stores the
result in the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[127:0] ← DEST[127:0] BitwiseAND SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent
ANDPS __m128 _mm_and_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 54 /r ANDPS xmm1, xmm2/m128 Valid Valid Bitwise logical AND of
xmm2/m128 and xmm1.
Vol. 2A 3-57ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-
Point Values

INSTRUCTION SET REFERENCE, A-M
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
3-58 Vol. 2A ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-
Point Values

INSTRUCTION SET REFERENCE, A-M
ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision
Floating-Point Values

Description
Inverts the bits of the two packed double-precision floating-point values in the destination
operand (first operand), performs a bitwise logical AND of the two packed double-precision
floating-point values in the source operand (second operand) and the temporary inverted result,
and stores the result in the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[127:0] ← (NOT(DEST[127:0])) BitwiseAND (SRC[127:0]);

Intel C/C++ Compiler Intrinsic Equivalent
ANDNPD __m128d _mm_andnot_pd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 55 /r ANDNPD xmm1, xmm2/m128 Valid Valid Bitwise logical AND
NOT of xmm2/m128
and xmm1.
Vol. 2A 3-59ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
3-60 Vol. 2A ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision
Floating-Point Values

Description
Inverts the bits of the four packed single-precision floating-point values in the destination
operand (first operand), performs a bitwise logical AND of the four packed single-precision
floating-point values in the source operand (second operand) and the temporary inverted result,
and stores the result in the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[127:0] ← (NOT(DEST[127:0])) BitwiseAND (SRC[127:0]);

Intel C/C++ Compiler Intrinsic Equivalent
ANDNPS __m128 _mm_andnot_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 55 /r ANDNPS xmm1, xmm2/m128 Valid Valid Bitwise logical AND NOT of
xmm2/m128 and xmm1.
Vol. 2A 3-61ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
3-62 Vol. 2A ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
ARPL—Adjust RPL Field of Segment Selector

Description
Compares the RPL fields of two segment selectors. The first operand (the destination operand)
contains one segment selector and the second operand (source operand) contains the other. (The
RPL field is located in bits 0 and 1 of each operand.) If the RPL field of the destination operand
is less than the RPL field of the source operand, the ZF flag is set and the RPL field of the desti-
nation operand is increased to match that of the source operand. Otherwise, the ZF flag is cleared
and no change is made to the destination operand. (The destination operand can be a word
register or a memory location; the source operand must be a word register.)

The ARPL instruction is provided for use by operating-system procedures (however, it can also
be used by applications). It is generally used to adjust the RPL of a segment selector that has
been passed to the operating system by an application program to match the privilege level of
the application program. Here the segment selector passed to the operating system is placed in
the destination operand and segment selector for the application program’s code segment is
placed in the source operand. (The RPL field in the source operand represents the privilege level
of the application program.) Execution of the ARPL instruction then insures that the RPL of the
segment selector received by the operating system is no lower (does not have a higher privilege)
than the privilege level of the application program (the segment selector for the application
program’s code segment can be read from the stack following a procedure call).

This instruction executes as described in compatibility mode and legacy mode. It is not encod-
able in 64-bit mode.

See “Checking Caller Access Privileges” in Chapter 3, “Protected-Mode Memory Manage-
ment” of the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3A, for more infor-
mation about the use of this instruction.

Operation
IF 64-BIT MODE

THEN
See MOVSXD;

ELSE
IF DEST[RPL) < SRC[RPL)

THEN
ZF ← 1;
DEST[RPL) ← SRC[RPL);

ELSE
ZF ← 0;

FI;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

63 /r ARPL r/m16, r16 N. E. Valid Adjust RPL of r/m16 to not less than
RPL of r16.
Vol. 2A 3-63ARPL—Adjust RPL Field of Segment Selector

INSTRUCTION SET REFERENCE, A-M
FI;

Flags Affected
The ZF flag is set to 1 if the RPL field of the destination operand is less than that of the source
operand; otherwise, it is set to 0.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#UD The ARPL instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The ARPL instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

None.
3-64 Vol. 2A ARPL—Adjust RPL Field of Segment Selector

INSTRUCTION SET REFERENCE, A-M
BOUND—Check Array Index Against Bounds

Description
BOUND determines if the first operand (array index) is within the bounds of an array specified
the second operand (bounds operand). The array index is a signed integer located in a register.
The bounds operand is a memory location that contains a pair of signed doubleword-integers
(when the operand-size attribute is 32) or a pair of signed word-integers (when the operand-size
attribute is 16). The first doubleword (or word) is the lower bound of the array and the second
doubleword (or word) is the upper bound of the array. The array index must be greater than or
equal to the lower bound and less than or equal to the upper bound plus the operand size in bytes.
If the index is not within bounds, a BOUND range exceeded exception (#BR) is signaled. When
this exception is generated, the saved return instruction pointer points to the BOUND
instruction.

The bounds limit data structure (two words or doublewords containing the lower and upper
limits of the array) is usually placed just before the array itself, making the limits addressable
via a constant offset from the beginning of the array. Because the address of the array already
will be present in a register, this practice avoids extra bus cycles to obtain the effective address
of the array bounds.

This instruction executes as described in compatibility mode and legacy mode. It is not valid in
64-bit mode.

Operation
IF 64bit Mode

THEN
#UD;

ELSE
IF (ArrayIndex < LowerBound OR ArrayIndex > UpperBound)
(* Below lower bound or above upper bound *)

THEN #BR; FI;
FI;

Flags Affected
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

62 /r BOUND r16, m16&16 Invalid Valid Check if r16 (array index) is
within bounds specified by
m16&16.

62 /r BOUND r32, m32&32 Invalid Valid Check if r32 (array index) is
within bounds specified by
m16&16.
Vol. 2A 3-65BOUND—Check Array Index Against Bounds

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#BR If the bounds test fails.

#UD If second operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#BR If the bounds test fails.

#UD If second operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#BR If the bounds test fails.

#UD If second operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#UD If in 64-bit mode.
3-66 Vol. 2A BOUND—Check Array Index Against Bounds

INSTRUCTION SET REFERENCE, A-M
BSF—Bit Scan Forward

Description
Searches the source operand (second operand) for the least significant set bit (1 bit). If a least
significant 1 bit is found, its bit index is stored in the destination operand (first operand). The
source operand can be a register or a memory location; the destination operand is a register. The
bit index is an unsigned offset from bit 0 of the source operand. If the content of the source
operand is 0, the content of the destination operand is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation
IF SRC = 0

THEN
ZF ← 1;
DEST is undefined;

ELSE
ZF ← 0;
temp ← 0;
WHILE Bit(SRC, temp) = 0
DO

temp ← temp + 1;
DEST ← temp;

OD;
FI;

Flags Affected
The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF,
OF, SF, AF, and PF, flags are undefined.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F BC BSF r16, r/m16 Valid Valid Bit scan forward on r/m16.
0F BC BSF r32, r/m32 Valid Valid Bit scan forward on r/m32.
REX.W + 0F BC BSF r64, r/m64 Valid N.E. Bit scan forward on r/m64.
Vol. 2A 3-67BSF—Bit Scan Forward

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-68 Vol. 2A BSF—Bit Scan Forward

INSTRUCTION SET REFERENCE, A-M
BSR—Bit Scan Reverse

Description
Searches the source operand (second operand) for the most significant set bit (1 bit). If a most
significant 1 bit is found, its bit index is stored in the destination operand (first operand). The
source operand can be a register or a memory location; the destination operand is a register. The
bit index is an unsigned offset from bit 0 of the source operand. If the content source operand is
0, the content of the destination operand is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation
IF SRC = 0

THEN
ZF ← 1;
DEST is undefined;

ELSE
ZF ← 0;
temp ← OperandSize – 1;
WHILE Bit(SRC, temp) = 0
DO

temp ← temp − 1;
DEST ← temp;

OD;
FI;

Flags Affected
The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF,
OF, SF, AF, and PF, flags are undefined.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F BD BSR r16, r/m16 Valid Valid Bit scan reverse on r/m16.
0F BD BSR r32, r/m32 Valid Valid Bit scan reverse on r/m32.
REX.W + 0F BD BSR r64, r/m64 Valid N.E. Bit scan reverse on r/m64.
Vol. 2A 3-69BSR—Bit Scan Reverse

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-70 Vol. 2A BSR—Bit Scan Reverse

INSTRUCTION SET REFERENCE, A-M
BSWAP—Byte Swap

Description
Reverses the byte order of a 32-bit or 64-bit (destination) register. This instruction is provided
for converting little-endian values to big-endian format and vice versa. To swap bytes in a word
value (16-bit register), use the XCHG instruction. When the BSWAP instruction references a
16-bit register, the result is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

IA-32 Architecture Legacy Compatibility
The BSWAP instruction is not supported on IA-32 processors earlier than the Intel486™
processor family. For compatibility with this instruction, software should include function-
ally equivalent code for execution on Intel processors earlier than the Intel486 processor family.

Operation
TEMP ← DEST
IF 64-bit mode AND OperandSize = 64

THEN
DEST[7:0] ← TEMP[63:56];
DEST[15:8] ← TEMP[55:48];
DEST[23:16] ← TEMP[47:40];
DEST[31:24] ← TEMP[39:32];
DEST[39:32] ← TEMP[31:24];
DEST[47:40] ← TEMP[23:16];
DEST[55:48] ← TEMP[15:8];
DEST[63:56] ← TEMP[7:0];

ELSE
DEST[7:0] ← TEMP[31:24];
DEST[15:8] ← TEMP[23:16];
DEST[23:16] ← TEMP[15:8];
DEST[31:24] ← TEMP[7:0];

FI;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F C8+rd BSWAP r32 Valid* Valid Reverses the byte order of a 32-bit
register.

REX.W + 0F
C8+rd

BSWAP r64 Valid N.E. Reverses the byte order of a 64-bit
register.

NOTES:
* See IA-32 Architecture Compatibility section below.
Vol. 2A 3-71BSWAP—Byte Swap

INSTRUCTION SET REFERENCE, A-M
Flags Affected
None.

Exceptions (All Operating Modes)
None.
3-72 Vol. 2A BSWAP—Byte Swap

INSTRUCTION SET REFERENCE, A-M
BT—Bit Test

Description
Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset (specified by the second operand) and stores the value of
the bit in the CF flag. The bit base operand can be a register or a memory location; the bit offset
operand can be a register or an immediate value:

• If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of
the bit offset operand (modulo size depends on the mode and register size; 64-bit operands
are available only in 64-bit mode).

• If the bit base operand specifies a memory location, the operand represents the address of
the byte in memory that contains the bit base (bit 0 of the specified byte) of the bit string.
The range of the bit position that can be referenced by the offset operand depends on the
operand size.

See also: Bit(BitBase, BitOffset) on page 3-10.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. In this case, the low-
order 3 or 5 bits (3 for 16-bit operands, 5 for 32-bit operands) of the immediate bit offset are
stored in the immediate bit offset field, and the high-order bits are shifted and combined with
the byte displacement in the addressing mode by the assembler. The processor will ignore the
high order bits if they are not zero.

When accessing a bit in memory, the processor may access 4 bytes starting from the memory
address for a 32-bit operand size, using by the following relationship:

Effective Address + (4 ∗ (BitOffset DIV 32))

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F A3 BT r/m16, r16 Valid Valid Store selected bit in CF
flag.

0F A3 BT r/m32, r32 Valid Valid Store selected bit in CF
flag.

REX.W + 0F A3 BT r/m64, r64 Valid N.E. Store selected bit in CF
flag.

0F BA /4 ib BT r/m16, imm8 Valid Valid Store selected bit in CF
flag.

0F BA /4 ib BT r/m32, imm8 Valid Valid Store selected bit in CF
flag.

REX.W + 0F BA /4 ib BT r/m64, imm8 Valid N.E. Store selected bit in CF
flag.
Vol. 2A 3-73BT—Bit Test

INSTRUCTION SET REFERENCE, A-M
Or, it may access 2 bytes starting from the memory address for a 16-bit operand, using this rela-
tionship:

Effective Address + (2 ∗ (BitOffset DIV 16))

It may do so even when only a single byte needs to be accessed to reach the given bit. When
using this bit addressing mechanism, software should avoid referencing areas of memory close
to address space holes. In particular, it should avoid references to memory-mapped I/O registers.
Instead, software should use the MOV instructions to load from or store to these addresses, and
use the register form of these instructions to manipulate the data.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bit operands. See the summary chart at the beginning
of this section for encoding data and limits.

Operation
CF ← Bit(BitBase, BitOffset);

Flags Affected
The CF flag contains the value of the selected bit. The OF, SF, ZF, AF, and PF flags are
undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.
3-74 Vol. 2A BT—Bit Test

INSTRUCTION SET REFERENCE, A-M
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-75BT—Bit Test

INSTRUCTION SET REFERENCE, A-M
BTC—Bit Test and Complement

Description
Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset operand (second operand), stores the value of the bit in the
CF flag, and complements the selected bit in the bit string. The bit base operand can be a register
or a memory location; the bit offset operand can be a register or an immediate value:

• If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of
the bit offset operand (modulo size depends on the mode and register size; 64-bit operands
are available only in 64-bit mode). This allows any bit position to be selected.

• If the bit base operand specifies a memory location, the operand represents the address of
the byte in memory that contains the bit base (bit 0 of the specified byte) of the bit string.
The range of the bit position that can be referenced by the offset operand depends on the
operand size.

See also: Bit(BitBase, BitOffset) on page 3-10.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. See “BT—Bit Test” in
this chapter for more information on this addressing mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F BB BTC r/m16, r16 Valid Valid Store selected bit in CF flag
and complement.

0F BB BTC r/m32, r32 Valid Valid Store selected bit in CF flag
and complement.

REX.W + 0F BB BTC r/m64, r64 Valid N.E. Store selected bit in CF flag
and complement.

0F BA /7 ib BTC r/m16, imm8 Valid Valid Store selected bit in CF flag
and complement.

0F BA /7 ib BTC r/m32, imm8 Valid Valid Store selected bit in CF flag
and complement.

REX.W + 0F BA /7 ib BTC r/m64, imm8 Valid N.E. Store selected bit in CF flag
and complement.
3-76 Vol. 2A BTC—Bit Test and Complement

INSTRUCTION SET REFERENCE, A-M
Operation
CF ← Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) ← NOT Bit(BitBase, BitOffset);

Flags Affected
The CF flag contains the value of the selected bit before it is complemented. The OF, SF, ZF,
AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-77BTC—Bit Test and Complement

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-78 Vol. 2A BTC—Bit Test and Complement

INSTRUCTION SET REFERENCE, A-M
BTR—Bit Test and Reset

DESCRIPTION
Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset operand (second operand), stores the value of the bit in the
CF flag, and clears the selected bit in the bit string to 0. The bit base operand can be a register
or a memory location; the bit offset operand can be a register or an immediate value:

• If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of
the bit offset operand (modulo size depends on the mode and register size; 64-bit operands
are available only in 64-bit mode). This allows any bit position to be selected.

• If the bit base operand specifies a memory location, the operand represents the address of
the byte in memory that contains the bit base (bit 0 of the specified byte) of the bit string.
The range of the bit position that can be referenced by the offset operand depends on the
operand size.

See also: Bit(BitBase, BitOffset) on page 3-10.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. See “BT—Bit Test” in
this chapter for more information on this addressing mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F B3 BTR r/m16, r16 Valid Valid Store selected bit in CF flag
and clear.

0F B3 BTR r/m32, r32 Valid Valid Store selected bit in CF flag
and clear.

REX.W + 0F B3 BTR r/m64, r64 Valid N.E. Store selected bit in CF flag
and clear.

0F BA /6 ib BTR r/m16, imm8 Valid Valid Store selected bit in CF flag
and clear.

0F BA /6 ib BTR r/m32, imm8 Valid Valid Store selected bit in CF flag
and clear.

REX.W + 0F BA /6 ib BTR r/m64, imm8 Valid N.E. Store selected bit in CF flag
and clear.
Vol. 2A 3-79BTR—Bit Test and Reset

INSTRUCTION SET REFERENCE, A-M
Operation
CF ← Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) ← 0;

Flags Affected
The CF flag contains the value of the selected bit before it is cleared. The OF, SF, ZF, AF, and
PF flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
3-80 Vol. 2A BTR—Bit Test and Reset

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-81BTR—Bit Test and Reset

INSTRUCTION SET REFERENCE, A-M
BTS—Bit Test and Set

Description
Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset operand (second operand), stores the value of the bit in the
CF flag, and sets the selected bit in the bit string to 1. The bit base operand can be a register or
a memory location; the bit offset operand can be a register or an immediate value:

• If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of
the bit offset operand (modulo size depends on the mode and register size; 64-bit operands
are available only in 64-bit mode). This allows any bit position to be selected.

• If the bit base operand specifies a memory location, the operand represents the address of
the byte in memory that contains the bit base (bit 0 of the specified byte) of the bit string.
The range of the bit position that can be referenced by the offset operand depends on the
operand size.

See also: Bit(BitBase, BitOffset) on page 3-10.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. See “BT—Bit Test” in
this chapter for more information on this addressing mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F AB BTS r/m16, r16 Valid Valid Store selected bit in CF
flag and set.

0F AB BTS r/m32, r32 Valid Valid Store selected bit in CF
flag and set.

REX.W + 0F AB BTS r/m64, r64 Valid N.E. Store selected bit in CF
flag and set.

0F BA /5 ib BTS r/m16, imm8 Valid Valid Store selected bit in CF
flag and set.

0F BA /5 ib BTS r/m32, imm8 Valid Valid Store selected bit in CF
flag and set.

REX.W + 0F BA /5 ib BTS r/m64, imm8 Valid N.E. Store selected bit in CF
flag and set.
3-82 Vol. 2A BTS—Bit Test and Set

INSTRUCTION SET REFERENCE, A-M
Operation
CF ← Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) ← 1;

Flags Affected
The CF flag contains the value of the selected bit before it is set. The OF, SF, ZF, AF, and PF
flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-83BTS—Bit Test and Set

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-84 Vol. 2A BTS—Bit Test and Set

INSTRUCTION SET REFERENCE, A-M
CALL—Call Procedure

Description
Saves procedure linking information on the stack and branches to the called procedure specified
using the target operand. The target operand specifies the address of the first instruction in the
called procedure. The operand can be an immediate value, a general-purpose register, or a
memory location.

This instruction can be used to execute four types of calls:

1. Near call — A call to a procedure in the current code segment (the segment currently
pointed to by the CS register), sometimes referred to as an intra-segment call.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

E8 cw CALL rel16 N.S. Valid Call near, relative, displacement relative
to next instruction.

E8 cd CALL rel32 Valid Valid Call near, relative, displacement relative
to next instruction. 32-bit displacement
sign extended to 64-bits in 64-bit mode.

FF /2 CALL r/m16 N.E. Valid Call near, absolute indirect, address
given in r/m16.

FF /2 CALL r/m32 N.E. Valid Call near, absolute indirect, address
given in r/m32.

FF /2 CALL r/m64 Valid N.E. Call near, absolute indirect, address
given in r/m64.

9A cd CALL
ptr16:16

Invalid Valid Call far, absolute, address given in
operand.

9A cp CALL
ptr16:32

Invalid Valid Call far, absolute, address given in
operand.

FF /3 CALL
m16:16

Valid Valid Call far, absolute indirect address given
in m16:16.
In 32-bit mode: if selector points to a
gate, then RIP = 32-bit zero extended
displacement taken from gate; else RIP
= zero extended 16-bit offset from far
pointer referenced in the instruction.

FF /3 CALL
m16:32

Valid Valid In 64-bit mode: If selector points to a
gate, then RIP = 64-bit displacement
taken from gate; else RIP = zero
extended 32-bit offset from far pointer
referenced in the instruction.

REX.W + FF /3 CALL
m16:64

Valid N.E. In 64-bit mode: If selector points to a
gate, then RIP = 64-bit displacement
taken from gate; else RIP = 64-bit offset
from far pointer referenced in the
instruction.
Vol. 2A 3-85CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M
2. Far call — A call to a procedure located in a different segment than the current code
segment, sometimes referred to as an inter-segment call.

3. Inter-privilege-level far call — A far call to a procedure in a segment at a different
privilege level than that of the currently executing program or procedure.

4. Task switch — A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be executed in
protected mode. See “Calling Procedures Using Call and RET” in Chapter 6 of the IA-32 Intel®
Architecture Software Developer’s Manual, Volume 1, for additional information on near, far,
and inter-privilege-level calls. See Chapter 6, “Task Management”, in the IA-32 Intel® Archi-
tecture Software Developer’s Manual, Volume 3A, for information on performing task
switches with the CALL instruction.

Near Call. When executing a near call, the processor pushes the value of the EIP register
(which contains the offset of the instruction following the CALL instruction) on the stack (for
use later as a return-instruction pointer). The processor then branches to the address in the
current code segment specified by the target operand. The target operand specifies either an
absolute offset in the code segment (an offset from the base of the code segment) or a relative
offset (a signed displacement relative to the current value of the instruction pointer in the EIP
register; this value points to the instruction following the CALL instruction). The CS register is
not changed on near calls.

For a near call absolute, an absolute offset is specified indirectly in a general-purpose register or
a memory location (r/m16, r/m32, or r/m64). The operand-size attribute determines the size of
the target operand (16, 32 or 64 bits). When in 64-bit mode, the operand size for near call (and
all near branches) is forced to 64-bits. Absolute offsets are loaded directly into the EIP(RIP)
register. If the operand size attribute is 16, the upper two bytes of the EIP register are cleared,
resulting in a maximum instruction pointer size of 16 bits. When accessing an absolute offset
indirectly using the stack pointer [ESP] as the base register, the base value used is the value of
the ESP before the instruction executes.

A relative offset (rel16 or rel32) is generally specified as a label in assembly code. But at the
machine code level, it is encoded as a signed, 16- or 32-bit immediate value. This value is added
to the value in the EIP(RIP) register. In 64-bit mode the relative offset is always a 32-bit
immediate value which is sign extended to 64-bits before it is added to the value in the RIP
register for the target calculation. As with absolute offsets, the operand-size attribute determines
the size of the target operand (16, 32, or 64 bits). In 64-bit mode the target operand will always
be 64-bits because the operand size is forced to 64-bits for near branches.

Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in real-
address or virtual-8086 mode, the processor pushes the current value of both the CS and EIP
registers on the stack for use as a return-instruction pointer. The processor then performs a “far
branch” to the code segment and offset specified with the target operand for the called proce-
dure. The target operand specifies an absolute far address either directly with a pointer (ptr16:16
or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). With the pointer method,
the segment and offset of the called procedure is encoded in the instruction using a 4-byte (16-
bit operand size) or 6-byte (32-bit operand size) far address immediate. With the indirect
method, the target operand specifies a memory location that contains a 4-byte (16-bit operand
3-86 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M
size) or 6-byte (32-bit operand size) far address. The operand-size attribute determines the size
of the offset (16 or 32 bits) in the far address. The far address is loaded directly into the CS and
EIP registers. If the operand-size attribute is 16, the upper two bytes of the EIP register are
cleared.

Far Calls in Protected Mode. When the processor is operating in protected mode, the CALL
instruction can be used to perform the following types of far calls:

1. Far call to the same privilege level

2. Far call to a different privilege level (inter-privilege level call)

3. Task switch (far call to another task)

In protected mode, the processor always uses the segment selector part of the far address to
access the corresponding descriptor in the GDT or LDT. The descriptor type (code segment, call
gate, task gate, or TSS) and access rights determine the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege
level is performed. (If the selected code segment is at a different privilege level and the code
segment is non-conforming, a general-protection exception is generated.) A far call to the same
privilege level in protected mode is very similar to one carried out in real-address or virtual-8086
mode. The target operand specifies an absolute far address either directly with a pointer
(ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The operand-
size attribute determines the size of the offset (16 or 32 bits) in the far address. The new code
segment selector and its descriptor are loaded into CS register; the offset from the instruction is
loaded into the EIP register.

A call gate (described in the next paragraph) can also be used to perform a far call to a code
segment at the same privilege level. Using this mechanism provides an extra level of indirection
and is the preferred method of making calls between 16-bit and 32-bit code segments.

When executing an inter-privilege-level far call, the code segment for the procedure being called
must be accessed through a call gate. The segment selector specified by the target operand iden-
tifies the call gate. The target operand can specify the call gate segment selector either directly
with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32).
The processor obtains the segment selector for the new code segment and the new instruction
pointer (offset) from the call gate descriptor. (The offset from the target operand is ignored when
a call gate is used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the
called procedure. The segment selector for the new stack segment is specified in the TSS for the
currently running task. The branch to the new code segment occurs after the stack switch. (Note
that when using a call gate to perform a far call to a segment at the same privilege level, no stack
switch occurs.) On the new stack, the processor pushes the segment selector and stack pointer
for the calling procedure’s stack, an optional set of parameters from the calling procedures stack,
and the segment selector and instruction pointer for the calling procedure’s code segment. (A
value in the call gate descriptor determines how many parameters to copy to the new stack.)
Finally, the processor branches to the address of the procedure being called within the new code
segment.
Vol. 2A 3-87CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M
Executing a task switch with the CALL instruction is similar to executing a call through a call
gate. The target operand specifies the segment selector of the task gate for the new task activated
by the switch (the offset in the target operand is ignored). The task gate in turn points to the TSS
for the new task, which contains the segment selectors for the task’s code and stack segments.
Note that the TSS also contains the EIP value for the next instruction that was to be executed
before the calling task was suspended. This instruction pointer value is loaded into the EIP
register to re-start the calling task.

The CALL instruction can also specify the segment selector of the TSS directly, which elimi-
nates the indirection of the task gate. See Chapter 6, “Task Management”, in the IA-32 Intel®

Architecture Software Developer’s Manual, Volume 3A, for information on the mechanics of a
task switch.

When you execute at task switch with a CALL instruction, the nested task flag (NT) is set in the
EFLAGS register and the new TSS’s previous task link field is loaded with the old task’s TSS
selector. Code is expected to suspend this nested task by executing an IRET instruction which,
because the NT flag is set, automatically uses the previous task link to return to the calling task.
(See “Task Linking” in Chapter 6 of the IA-32 Intel® Architecture Software Developer’s Manual,
Volume 3A, for information on nested tasks.) Switching tasks with the CALL instruction differs
in this regard from JMP instruction. JMP does not set the NT flag and therefore does not expect
an IRET instruction to suspend the task.

Mixing 16-Bit and 32-Bit Calls. When making far calls between 16-bit and 32-bit code
segments, use a call gate. If the far call is from a 32-bit code segment to a 16-bit code segment,
the call should be made from the first 64 KBytes of the 32-bit code segment. This is because the
operand-size attribute of the instruction is set to 16, so only a 16-bit return address offset can be
saved. Also, the call should be made using a 16-bit call gate so that 16-bit values can be pushed
on the stack. See Chapter 16, “Mixing 16-Bit and 32-Bit Code”, in IA-32 Intel® Architecture
Software Developer’s Manual, Volume 3A, for more information.

Far Calls in Compatibility Mode. When the processor is operating in compatibility mode,
the CALL instruction can be used to perform the following types of far calls:

1. Far call to the same privilege level, remaining in compatibility mode

2. Far call to the same privilege level, transitioning to 64-bit mode

3. Far call to a different privilege level (inter-privilege level call), transitioning to 64-bit
mode

Note that a CALL instruction can not be used to cause a task switch in compatibility mode since
task switches are not supported in IA-32e mode.

In compatibility mode, the processor always uses the segment selector part of the far address to
access the corresponding descriptor in the GDT or LDT. The descriptor type (code segment, call
gate) and access rights determine the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege
level is performed. (If the selected code segment is at a different privilege level and the code
segment is non-conforming, a general-protection exception is generated.) A far call to the same
privilege level in compatibility mode is very similar to one carried out in protected mode. The
target operand specifies an absolute far address either directly with a pointer (ptr16:16 or
3-88 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M
ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The operand-size attribute
determines the size of the offset (16 or 32 bits) in the far address. The new code segment selector
and its descriptor are loaded into CS register and the offset from the instruction is loaded into
the EIP register. The difference is that 64-bit mode may be entered. This specified by the L bit
in the new code segment descriptor.

Note that a 64-bit call gate (described in the next paragraph) can also be used to perform a far
call to a code segment at the same privilege level. However, using this mechanism requires that
the target code segment descriptor have the L bit set, causing an entry to 64-bit mode.

When executing an inter-privilege-level far call, the code segment for the procedure being called
must be accessed through a 64-bit call gate. The segment selector specified by the target operand
identifies the call gate. The target operand can specify the call gate segment selector either
directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or
m16:32). The processor obtains the segment selector for the new code segment and the new
instruction pointer (offset) from the 16-byte call gate descriptor. (The offset from the target
operand is ignored when a call gate is used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the
called procedure. The segment selector for the new stack segment is set to NULL. The new stack
pointer is specified in the TSS for the currently running task. The branch to the new code
segment occurs after the stack switch. (Note that when using a call gate to perform a far call to
a segment at the same privilege level, an implicit stack switch occurs as a result of entering
64-bit mode. The SS selector is unchanged, but stack segment accesses use a segment base of
0x0, the limit is ignored, and the default stack size is 64-bits. The full value of RSP is used for
the offset, of which the upper 32-bits are undefined.) On the new stack, the processor pushes the
segment selector and stack pointer for the calling procedure’s stack and the segment selector and
instruction pointer for the calling procedure’s code segment. (Parameter copy is not supported
in IA-32e mode.) Finally, the processor branches to the address of the procedure being called
within the new code segment.

Near/(Far) Calls in 64-bit Mode. When the processor is operating in 64-bit mode, the CALL
instruction can be used to perform the following types of far calls:

1. Far call to the same privilege level, transitioning to compatibility mode

2. Far call to the same privilege level, remaining in 64-bit mode

3. Far call to a different privilege level (inter-privilege level call), remaining in 64-bit mode

Note that in this mode the CALL instruction can not be used to cause a task switch in 64-bit
mode since task switches are not supported in IA-32e mode.

In 64-bit mode, the processor always uses the segment selector part of the far address to access
the corresponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate)
and access rights determine the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege
level is performed. (If the selected code segment is at a different privilege level and the code
segment is non-conforming, a general-protection exception is generated.) A far call to the same
privilege level in 64-bit mode is very similar to one carried out in compatibility mode. The target
operand specifies an absolute far address indirectly with a memory location (m16:16, m16:32
Vol. 2A 3-89CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M
or m16:64). The form of CALL with a direct specification of absolute far address is not defined
in 64-bit mode. The operand-size attribute determines the size of the offset (16, 32, or 64 bits)
in the far address. The new code segment selector and its descriptor are loaded into the CS
register; the offset from the instruction is loaded into the EIP register. The new code segment
may specify entry either into compatibility or 64-bit mode, based on the L bit value.

A 64-bit call gate (described in the next paragraph) can also be used to perform a far call to a
code segment at the same privilege level. However, using this mechanism requires that the target
code segment descriptor have the L bit set.

When executing an inter-privilege-level far call, the code segment for the procedure being called
must be accessed through a 64-bit call gate. The segment selector specified by the target operand
identifies the call gate. The target operand can only specify the call gate segment selector
indirectly with a memory location (m16:16, m16:32 or m16:64). The processor obtains the
segment selector for the new code segment and the new instruction pointer (offset) from the
16-byte call gate descriptor. (The offset from the target operand is ignored when a call gate is
used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the
called procedure. The segment selector for the new stack segment is set to NULL. The new stack
pointer is specified in the TSS for the currently running task. The branch to the new code
segment occurs after the stack switch.

Note that when using a call gate to perform a far call to a segment at the same privilege level,
an implicit stack switch occurs as a result of entering 64-bit mode. The SS selector is unchanged,
but stack segment accesses use a segment base of 0x0, the limit is ignored, and the default stack
size is 64-bits. (The full value of RSP is used for the offset.) On the new stack, the processor
pushes the segment selector and stack pointer for the calling procedure’s stack and the segment
selector and instruction pointer for the calling procedure’s code segment. (Parameter copy is not
supported in IA-32e mode.) Finally, the processor branches to the address of the procedure being
called within the new code segment.

Operation
IF near call

THEN IF near relative call
THEN

IF OperandSize = 64
THEN

tempDEST ← SignExtend(DEST); (* DEST is rel32 *)
tempRIP ← RIP + tempDEST;
IF stack not large enough for a 8-byte return address

THEN #SS(0); FI;
Push(RIP);
RIP ← tempRIP;

FI;
IF OperandSize = 32

THEN
tempEIP ← EIP + DEST; (* DEST is rel32 *)
3-90 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address

THEN #SS(0); FI;
Push(EIP);
EIP ← tempEIP;

FI;
IF OperandSize = 16

THEN
tempEIP ← (EIP + DEST) AND 0000FFFFH; (* DEST is rel16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address

THEN #SS(0); FI;
Push(IP);
EIP ← tempEIP;

FI;
ELSE (* Near absolute call *)

IF OperandSize = 64
THEN

tempRIP ← DEST; (* DEST is r/m64 *)
IF stack not large enough for a 8-byte return address

THEN #SS(0); FI;
Push(RIP);
RIP ← tempRIP;

FI;
IF OperandSize = 32

THEN
tempEIP ← DEST; (* DEST is r/m32 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address

THEN #SS(0); FI;
Push(EIP);
EIP ← tempEIP;

FI;
IF OperandSize = 16

THEN
tempEIP ← DEST AND 0000FFFFH; (* DEST is r/m16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address

THEN #SS(0); FI;
Push(IP);
EIP ← tempEIP;

FI;
FI;rel/abs

FI; near

IF far call and (PE = 0 or (PE = 1 and VM = 1)) (* Real-address or virtual-8086 mode *)
THEN
Vol. 2A 3-91CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M
IF OperandSize = 32
THEN

IF stack not large enough for a 6-byte return address
THEN #SS(0); FI;

IF DEST[31:16] is not zero THEN #GP(0); FI;
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS ← DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP ← DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address

THEN #SS(0); FI;
Push(CS);
Push(IP);
CS ← DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP ← DEST[15:0]; (* DEST is ptr16:16 or [m16:16]; clear upper 16 bits *)

FI;
FI;

IF far call and (PE = 1 and VM = 0) (* Protected mode or IA-32e Mode, not virtual-8086 mode*)
THEN

IF segment selector in target operand NULL
THEN #GP(0); FI;

IF segment selector index not within descriptor table limits
THEN #GP(new code segment selector); FI;

Read type and access rights of selected segment descriptor;
IF IA32_EFER.LMA = 0

THEN
IF segment type is not a conforming or nonconforming code segment, call
gate, task gate, or TSS

THEN #GP(segment selector); FI;
ELSE

IF segment type is not a conforming or nonconforming code segment or
64-bit call gate,

THEN #GP(segment selector); FI;
FI;
Depending on type and access rights:

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

FI;

CONFORMING-CODE-SEGMENT:
IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1

THEN GP(new code segment selector); FI;
IF DPL > CPL

THEN #GP(new code segment selector); FI;
IF segment not present

THEN #NP(new code segment selector); FI;
IF stack not large enough for return address

THEN #SS(0); FI;
3-92 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M
tempEIP ← DEST(Offset);
IF OperandSize = 16

THEN
tempEIP ← tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)

IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code
segment limit)

THEN #GP(0); FI;
IF tempEIP is non-canonical

THEN #GP(0); FI;
IF OperandSize = 32

THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS ← DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

ELSE
IF OperandSize = 16

THEN
Push(CS);
Push(IP);
CS ← DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

ELSE (* OperandSize = 64 *)
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS ← DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
RIP ← tempEIP;

FI;
FI;

END;

NONCONFORMING-CODE-SEGMENT:
IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1

THEN GP(new code segment selector); FI;
IF (RPL > CPL) or (DPL ≠ CPL)

THEN #GP(new code segment selector); FI;
IF segment not present

THEN #NP(new code segment selector); FI;
IF stack not large enough for return address

THEN #SS(0); FI;
tempEIP ← DEST(Offset);
IF OperandSize = 16

THEN tempEIP ← tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)
IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code
segment limit)

THEN #GP(0); FI;
IF tempEIP is non-canonical

THEN #GP(0); FI;
IF OperandSize = 32

THEN
Push(CS); (* Padded with 16 high-order bits *)
Vol. 2A 3-93CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M
Push(EIP);
CS ← DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

ELSE
IF OperandSize = 16

THEN
Push(CS);
Push(IP);
CS ← DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

ELSE (* OperandSize = 64 *)
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS ← DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
RIP ← tempEIP;

FI;
FI;

END;

CALL-GATE:
IF call gate (DPL < CPL) or (RPL > DPL)

THEN #GP(call gate selector); FI;
IF call gate not present

THEN #NP(call gate selector); FI;
IF call gate code-segment selector is NULL

THEN #GP(0); FI;
IF call gate code-segment selector index is outside descriptor table limits

THEN #GP(code segment selector); FI;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
or code-segment segment descriptor DPL > CPL

THEN #GP(code segment selector); FI;
IF IA32_EFER.LMA = 1 AND (code-segment segment descriptor is
not a 64-bit code segment or code-segment descriptor has both L-Bit and D-bit set)

THEN #GP(code segment selector); FI;
IF code segment not present

THEN #NP(new code segment selector); FI;
IF code segment is non-conforming and DPL < CPL

THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;

FI;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit TSS

THEN
3-94 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M
TSSstackAddress ← new code segment (DPL ∗ 8) + 4;
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(current TSS selector); FI;
newSS ← TSSstackAddress + 4;
newESP ← stack address;

ELSE
IF current TSS is 16-bit TSS

THEN
TSSstackAddress ← new code segment (DPL ∗ 4) + 2;
IF (TSSstackAddress + 4) > TSS limit

THEN #TS(current TSS selector); FI;
newESP ← TSSstackAddress;
newSS ← TSSstackAddress + 2;

ELSE (* TSS is 64-bit *)
TSSstackAddress ← new code segment (DPL ∗ 8) + 4;
IF (TSSstackAddress + 8) > TSS limit

THEN #TS(current TSS selector); FI;
newESP ← TSSstackAddress;
newSS ← NULL;

FI;
FI;
IF IA32_EFER.LMA = 0 and stack segment selector = NULL

THEN #TS(stack segment selector); FI;
Read code segment descriptor;
IF IA32_EFER.LMA = 0 and (stack segment selector's RPL ≠ DPL of code segment
or stack segment DPL ≠ DPL of code segment or stack segment is not a
writable data segment)

THEN #TS(SS selector); FI
IF IA32_EFER.LMA = 0 and stack segment not present

THEN #SS(SS selector); FI;
IF CallGateSize = 32

THEN
IF stack does not have room for parameters plus 16 bytes

THEN #SS(SS selector); FI;
IF CallGate(InstructionPointer) not within code segment limit

THEN #GP(0); FI;
SS ← newSS;
(* Segment descriptor information also loaded *)
ESP ← newESP;
CS:EIP ← CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp ← parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE
IF CallGateSize = 16

THEN
Vol. 2A 3-95CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M
IF stack does not have room for parameters plus 8 bytes
THEN #SS(SS selector); FI;

IF (CallGate(InstructionPointer) AND FFFFH) not in code segment limit
THEN #GP(0); FI;

SS ← newSS;
(* Segment descriptor information also loaded *)
ESP ← newESP;
CS:IP ← CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp ← parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE (* CallGateSize = 64 *)
IF pushing 32 bytes on the stack touches non-canonical addresses

THEN #SS(SS selector); FI;
IF (CallGate(InstructionPointer) is non-canonical)

THEN #GP(0); FI;
SS ← newSS; (* New SS is NULL)
RSP ← newESP;
CS:IP ← CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

FI;
FI;
CPL ← CodeSegment(DPL)
CS(RPL) ← CPL

END;

SAME-PRIVILEGE:
IF CallGateSize = 32

THEN
IF stack does not have room for 8 bytes

THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit

THEN #GP(0); FI;
CS:EIP ← CallGate(CS:EIP) (* Segment descriptor information also loaded *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE
If CallGateSize = 16

THEN
IF stack does not have room for 4 bytes

THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit

THEN #GP(0); FI;
CS:IP ← CallGate(CS:instruction pointer);
3-96 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M
(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)

ELSE (* CallGateSize = 64)
IF pushing 16 bytes on the stack touches non-canonical addresses

THEN #SS(0); FI;
IF RIP non-canonical

THEN #GP(0); FI;
CS:IP ← CallGate(CS:instruction pointer);
(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)

FI;
FI;
CS(RPL) ← CPL

END;

TASK-GATE:
IF task gate DPL < CPL or RPL

THEN #GP(task gate selector); FI;
IF task gate not present

THEN #NP(task gate selector); FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
or index not within GDT limits

THEN #GP(TSS selector); FI;
Access TSS descriptor in GDT;

IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector); FI;

IF TSS not present
THEN #NP(TSS selector); FI;

SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit

THEN #GP(0); FI;
END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
or TSS descriptor indicates TSS not available

THEN #GP(TSS selector); FI;
IF TSS is not present

THEN #NP(TSS selector); FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit

THEN #GP(0); FI;
END;
Vol. 2A 3-97CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M
Flags Affected
All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

Protected Mode Exceptions
#GP(0) If the target offset in destination operand is beyond the new code segment

limit.

If the segment selector in the destination operand is NULL.

If the code segment selector in the gate is NULL.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#GP(selector) If a code segment or gate or TSS selector index is outside descriptor table
limits.

If the segment descriptor pointed to by the segment selector in the
destination operand is not for a conforming-code segment, noncon-
forming-code segment, call gate, task gate, or task state segment.

If the DPL for a nonconforming-code segment is not equal to the CPL or
the RPL for the segment’s segment selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is less
than the CPL or than the RPL of the call-gate, task-gate, or TSS’s segment
selector.

If the segment descriptor for a segment selector from a call gate does not
indicate it is a code segment.

If the segment selector from a call gate is beyond the descriptor table
limits.

If the DPL for a code-segment obtained from a call gate is greater than the
CPL.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If pushing the return address, parameters, or stack segment pointer onto
the stack exceeds the bounds of the stack segment, when no stack switch
occurs.

If a memory operand effective address is outside the SS segment limit.
3-98 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M
#SS(selector) If pushing the return address, parameters, or stack segment pointer onto
the stack exceeds the bounds of the stack segment, when a stack switch
occurs.

If the SS register is being loaded as part of a stack switch and the segment
pointed to is marked not present.

If stack segment does not have room for the return address, parameters, or
stack segment pointer, when stack switch occurs.

#NP(selector) If a code segment, data segment, stack segment, call gate, task gate, or
TSS is not present.

#TS(selector) If the new stack segment selector and ESP are beyond the end of the TSS.

If the new stack segment selector is NULL.

If the RPL of the new stack segment selector in the TSS is not equal to the
DPL of the code segment being accessed.

If DPL of the stack segment descriptor for the new stack segment is not
equal to the DPL of the code segment descriptor.

If the new stack segment is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table
limits.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the target offset is beyond the code segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the target offset is beyond the code segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-99CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

#GP(selector) If a memory address accessed by the selector is in non-canonical space.

#GP(0) If the target offset in the destination operand is non-canonical.

64-Bit Mode Exceptions

#GP(0) If a memory address is non-canonical.

If target offset in destination operand is non-canonical.

If the segment selector in the destination operand is NULL.

If the code segment selector in the 64-bit gate is NULL.

#GP(selector) If code segment or 64-bit call gate is outside descriptor table limits.

If code segment or 64-bit call gate overlaps non-canonical space.

If the segment descriptor pointed to by the segment selector in the desti-
nation operand is not for a conforming-code segment, nonconforming-
code segment, or 64-bit call gate.

If the segment descriptor pointed to by the segment selector in the desti-
nation operand is a code segment and has both the D-bit and the L- bit set.

If the DPL for a nonconforming-code segment is not equal to the CPL, or
the RPL for the segment’s segment selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of
the 64-bit call-gate.

If the upper type field of a 64-bit call gate is not 0x0.

If the segment selector from a 64-bit call gate is beyond the descriptor
table limits.

If the DPL for a code-segment obtained from a 64-bit call gate is greater
than the CPL.

If the code segment descriptor pointed to by the selector in the 64-bit gate
doesn't have the L-bit set and the D-bit clear.

If the segment descriptor for a segment selector from the 64-bit call gate
does not indicate it is a code segment.
3-100 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M
#SS(0) If pushing the return offset or CS selector onto the stack exceeds the
bounds of the stack segment when no stack switch occurs.

If a memory operand effective address is outside the SS segment limit.

If the stack address is in a non-canonical form.

#SS(selector) If pushing the old values of SS selector, stack pointer, EFLAGS, CS
selector, offset, or error code onto the stack violates the canonical
boundary when a stack switch occurs.

#NP(selector) If a code segment or 64-bit call gate is not present.

#TS(selector) If the load of the new RSP exceeds the limit of the TSS.

#UD (64-bit mode only) If a far call is direct to an absolute address in memory.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-101CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M
CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to
Doubleword/Convert Doubleword to Quadword

Description
Double the size of the source operand by means of sign extension. The CBW (convert byte to
word) instruction copies the sign (bit 7) in the source operand into every bit in the AH register.
The CWDE (convert word to doubleword) instruction copies the sign (bit 15) of the word in the
AX register into the high 16 bits of the EAX register.

CBW and CWDE reference the same opcode. The CBW instruction is intended for use when the
operand-size attribute is 16; CWDE is intended for use when the operand-size attribute is 32.
Some assemblers may force the operand size. Others may treat these two mnemonics as
synonyms (CBW/CWDE) and use the setting of the operand-size attribute to determine the size
of values to be converted.

In 64-bit mode, the default operation size is the size of the destination register. Use of the
REX.W prefix promotes this instruction (CDQE when promoted) to operate on 64-bit operands.
In which case, CDQE copies the sign (bit 31) of the doubleword in the EAX register into the
high 32 bits of RAX.

Operation
IF OperandSize = 16 (* Instruction = CBW *)

THEN
AX ← SignExtend(AL);

ELSE IF (OperandSize = 32, Instruction = CWDE)
EAX ← SignExtend(AX); FI;

ELSE (* 64-Bit Mode, OperandSize = 64, Instruction = CDQE*)
RAX ← SignExtend(EAX);

FI;

Flags Affected
None.

Exceptions (All Operating Modes)
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

98 CBW Valid Valid AX ← sign-extend of AL.
98 CWDE Valid Valid EAX ← sign-extend of AX.
REX.W + 98 CDQE Valid N.E. RAX ← sign-extend of EAX.
3-102 Vol. 2A CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to
Doubleword/Convert Doubleword to Quadword

INSTRUCTION SET REFERENCE, A-M
CLC—Clear Carry Flag

Description
Clears the CF flag in the EFLAGS register. Operation is the same in all non-64-bit modes and
and 64-bit mode.

Operation
CF ← 0;

Flags Affected
The CF flag is set to 0. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F8 CLC Valid Valid Clear CF flag.
Vol. 2A 3-103CLC—Clear Carry Flag

INSTRUCTION SET REFERENCE, A-M
CLD—Clear Direction Flag

Description
Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string operations incre-
ment the index registers (ESI and/or EDI). Operation is the same in all non-64-bit modes and
64-bit mode.

Operation
DF ← 0;

Flags Affected
The DF flag is set to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

FC CLD Valid Valid Clear DF flag.
3-104 Vol. 2A CLD—Clear Direction Flag

INSTRUCTION SET REFERENCE, A-M
CLFLUSH—Flush Cache Line

Description
Invalidates the cache line that contains the linear address specified with the source operand from
all levels of the processor cache hierarchy (data and instruction). The invalidation is broadcast
throughout the cache coherence domain. If, at any level of the cache hierarchy, the line is incon-
sistent with memory (dirty) it is written to memory before invalidation. The source operand is a
byte memory location.

The availability of CLFLUSH is indicated by the presence of the CPUID feature flag CLFSH
(bit 19 of the EDX register, see “CPUID—CPU Identification” in this chapter). The aligned
cache line size affected is also indicated with the CPUID instruction (bits 8 through 15 of the
EBX register when the initial value in the EAX register is 1).

The memory attribute of the page containing the affected line has no effect on the behavior of
this instruction. It should be noted that processors are free to speculatively fetch and cache data
from system memory regions assigned a memory-type allowing for speculative reads (such as,
the WB, WC, and WT memory types). PREFETCHh instructions can be used to provide the
processor with hints for this speculative behavior. Because this speculative fetching can occur
at any time and is not tied to instruction execution, the CLFLUSH instruction is not ordered with
respect to PREFETCHh instructions or any of the speculative fetching mechanisms (that is, data
can be speculatively loaded into a cache line just before, during, or after the execution of a
CLFLUSH instruction that references the cache line).

CLFLUSH is only ordered by the MFENCE instruction. It is not guaranteed to be ordered by
any other fencing or serializing instructions or by another CLFLUSH instruction. For example,
software can use an MFENCE instruction to insure that previous stores are included in the write-
back.

The CLFLUSH instruction can be used at all privilege levels and is subject to all permission
checking and faults associated with a byte load (and in addition, a CLFLUSH instruction is
allowed to flush a linear address in an execute-only segment). Like a load, the CLFLUSH
instruction sets the A bit but not the D bit in the page tables.

The CLFLUSH instruction was introduced with the SSE2 extensions; however, because it has
its own CPUID feature flag, it can be implemented in IA-32 processors that do not include the
SSE2 extensions. Also, detecting the presence of the SSE2 extensions with the CPUID instruc-
tion does not guarantee that the CLFLUSH instruction is implemented in the processor.

CLFLUSH operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction 64-Bit Mode
Compat/
Leg Mode Description

0F AE /7 CLFLUSH m8 Valid Valid Flushes cache line
containing m8.
Vol. 2A 3-105CLFLUSH—Flush Cache Line

INSTRUCTION SET REFERENCE, A-M
Operation
Flush_Cache_Line(SRC);

Intel C/C++ Compiler Intrinsic Equivalents
CLFLUSH void_mm_clflush(void const *p)

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.
3-106 Vol. 2A CLFLUSH—Flush Cache Line

INSTRUCTION SET REFERENCE, A-M
CLI — Clear Interrupt Flag

Description
If protected-mode virtual interrupts are not enabled, CLI clears the IF flag in the EFLAGS
register. No other flags are affected. Clearing the IF flag causes the processor to ignore maskable
external interrupts. The IF flag and the CLI and STI instruction have no affect on the generation
of exceptions and NMI interrupts.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than 3; CLI
clears the VIF flag in the EFLAGS register, leaving IF unaffected. Table 3-6 indicates the action
of the CLI instruction depending on the processor operating mode and the CPL/IOPL of the
running program or procedure.

CLI operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

FA CLI Valid Valid Clear interrupt flag; interrupts disabled
when interrupt flag cleared.

Table 3-6. Decision Table for CLI Results
PE VM IOPL CPL PVI VIP VME CLI Result

0 X X X X X X IF = 0

1 0 ≥ CPL X X X X IF = 0

1 0 < CPL 3 1 X X VIF = 0

1 0 < CPL < 3 X X X GP Fault

1 0 < CPL X 0 X X GP Fault

1 1 3 X X X X IF = 0

1 1 < 3 X X X 1 VIF = 0

1 1 < 3 X X X 0 GP Fault

NOTES:
* X = This setting has no impact.
Vol. 2A 3-107CLI — Clear Interrupt Flag

INSTRUCTION SET REFERENCE, A-M
Operation
IF PE = 0

THEN
IF ← 0; (* Reset Interrupt Flag *)

ELSE
IF VM = 0;

THEN
IF IOPL ← CPL

THEN
IF ← 0; (* Reset Interrupt Flag *)

ELSE
IF ((IOPL < CPL) and (CPL = 3) and (PVI = 1))

THEN
VIF ← 0; (* Reset Virtual Interrupt Flag *)

ELSE
#GP(0);

FI;
FI;

ELSE (* VM = 1 *)
IF IOPL = 3

THEN
IF ← 0; (* Reset Interrupt Flag *)

ELSE
IF (IOPL < 3) AND (VME = 1)

THEN
VIF ← 0; (* Reset Virtual Interrupt Flag *)

ELSE
#GP(0);

FI;
FI;

FI;
FI;

Flags Affected
If protected-mode virtual interrupts are not enabled, IF is set to 0 if the CPL is equal to or less
than the IOPL; otherwise, it is not affected. The other flags in the EFLAGS register are unaf-
fected.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than 3; CLI
clears the VIF flag in the EFLAGS register, leaving IF unaffected.
3-108 Vol. 2A CLI — Clear Interrupt Flag

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current

program or procedure.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current

program or procedure.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.
Vol. 2A 3-109CLI — Clear Interrupt Flag

INSTRUCTION SET REFERENCE, A-M
CLTS—Clear Task-Switched Flag in CR0

Description
Clears the task-switched (TS) flag in the CR0 register. This instruction is intended for use in
operating-system procedures. It is a privileged instruction that can only be executed at a CPL of
0. It is allowed to be executed in real-address mode to allow initialization for protected mode.

The processor sets the TS flag every time a task switch occurs. The flag is used to synchronize
the saving of FPU context in multitasking applications. See the description of the TS flag in the
section titled “Control Registers” in Chapter 2 of the IA-32 Intel® Architecture Software Devel-
oper’s Manual, Volume 3A, for more information about this flag.

CLTS operation is the same in non-64-bit modes and 64-bit mode.

See Chapter 21, “VMX Non-Root Operation” of the IA-32 Intel® Architecture Software Devel-
oper’s Manual, Volume 3B, for more information about the behavior of this instruction in VMX
non-root operation.

Operation
CR0.TS[bit 3] ← 0;

Flags Affected
The TS flag in CR0 register is cleared.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) CLTS is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 06 CLTS Valid Valid Clears TS flag in CR0.
3-110 Vol. 2A CLTS—Clear Task-Switched Flag in CR0

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#GP(0) If the CPL is greater than 0.
Vol. 2A 3-111CLTS—Clear Task-Switched Flag in CR0

INSTRUCTION SET REFERENCE, A-M
CMC—Complement Carry Flag

Description
Complements the CF flag in the EFLAGS register. CMC operation is the same in non-64-bit
modes and 64-bit mode.

Operation
EFLAGS.CF[bit 0]← NOT EFLAGS.CF[bit 0];

Flags Affected
The CF flag contains the complement of its original value. The OF, ZF, SF, AF, and PF flags are
unaffected.

Exceptions (All Operating Modes)
None.

Opcode Instruction 64-Bit Mode
Compat/
Leg Mode Description

F5 CMC Valid Valid Complement CF flag.
3-112 Vol. 2A CMC—Complement Carry Flag

INSTRUCTION SET REFERENCE, A-M
CMOVcc—Conditional Move

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 47 /r CMOVA r16, r/m16 Valid Valid Move if above (CF=0
and ZF=0).

0F 47 /r CMOVA r32, r/m32 Valid Valid Move if above (CF=0
and ZF=0).

REX.W + 0F 47 /r CMOVA r64, r/m64 Valid N.E. Move if above (CF=0
and ZF=0).

0F 43 /r CMOVAE r16, r/m16 Valid Valid Move if above or equal
(CF=0).

0F 43 /r CMOVAE r32, r/m32 Valid Valid Move if above or equal
(CF=0).

REX.W + 0F 43 /r CMOVAE r64, r/m64 Valid N.E. Move if above or equal
(CF=0).

0F 42 /r CMOVB r16, r/m16 Valid Valid Move if below (CF=1).
0F 42 /r CMOVB r32, r/m32 Valid Valid Move if below (CF=1).
REX.W + 0F 42 /r CMOVB r64, r/m64 Valid N.E. Move if below (CF=1).
0F 46 /r CMOVBE r16, r/m16 Valid Valid Move if below or equal

(CF=1 or ZF=1).
0F 46 /r CMOVBE r32, r/m32 Valid Valid Move if below or equal

(CF=1 or ZF=1).
REX.W + 0F 46 /r CMOVBE r64, r/m64 Valid N.E. Move if below or equal

(CF=1 or ZF=1).
0F 42 /r CMOVC r16, r/m16 Valid Valid Move if carry (CF=1).
0F 42 /r CMOVC r32, r/m32 Valid Valid Move if carry (CF=1).
REX.W + 0F 42 /r CMOVC r64, r/m64 Valid N.E. Move if carry (CF=1).
0F 44 /r CMOVE r16, r/m16 Valid Valid Move if equal (ZF=1).
0F 44 /r CMOVE r32, r/m32 Valid Valid Move if equal (ZF=1).
REX.W + 0F 44 /r CMOVE r64, r/m64 Valid N.E. Move if equal (ZF=1).
0F 4F /r CMOVG r16, r/m16 Valid Valid Move if greater (ZF=0

and SF=OF).
0F 4F /r CMOVG r32, r/m32 Valid Valid Move if greater (ZF=0

and SF=OF).
REX.W + 0F 4F /r CMOVG r64, r/m64 Valid N.E. Move if greater (ZF=0

and SF=OF).
0F 4D /r CMOVGE r16, r/m16 Valid Valid Move if greater or equal

(SF=OF).
0F 4D /r CMOVGE r32, r/m32 Valid Valid Move if greater or equal

(SF=OF).
REX.W + 0F 4D /r CMOVGE r64, r/m64 Valid N.E. Move if greater or equal

(SF=OF).
0F 4C /r CMOVL r16, r/m16 Valid Valid Move if less (SF≠ OF).
0F 4C /r CMOVL r32, r/m32 Valid Valid Move if less (SF≠ OF).
REX.W + 0F 4C /r CMOVL r64, r/m64 Valid N.E. Move if less (SF≠ OF).
Vol. 2A 3-113CMOVcc—Conditional Move

INSTRUCTION SET REFERENCE, A-M
Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 4E /r CMOVLE r16, r/m16 Valid Valid Move if less or equal
(ZF=1 or SF≠ OF).

0F 4E /r CMOVLE r32, r/m32 Valid Valid Move if less or equal
(ZF=1 or SF≠ OF).

REX.W + 0F 4E /r CMOVLE r64, r/m64 Valid N.E. Move if less or equal
(ZF=1 or SF≠ OF).

0F 46 /r CMOVNA r16, r/m16 Valid Valid Move if not above (CF=1
or ZF=1).

0F 46 /r CMOVNA r32, r/m32 Valid Valid Move if not above (CF=1
or ZF=1).

REX.W + 0F 46 /r CMOVNA r64, r/m64 Valid N.E. Move if not above (CF=1
or ZF=1).

0F 42 /r CMOVNAE r16, r/m16 Valid Valid Move if not above or
equal (CF=1).

0F 42 /r CMOVNAE r32, r/m32 Valid Valid Move if not above or
equal (CF=1).

REX.W + 0F 42 /r CMOVNAE r64, r/m64 Valid N.E. Move if not above or
equal (CF=1).

0F 43 /r CMOVNB r16, r/m16 Valid Valid Move if not below
(CF=0).

0F 43 /r CMOVNB r32, r/m32 Valid Valid Move if not below
(CF=0).

REX.W + 0F 43 /r CMOVNB r64, r/m64 Valid N.E. Move if not below
(CF=0).

0F 47 /r CMOVNBE r16, r/m16 Valid Valid Move if not below or
equal (CF=0 and ZF=0).

0F 47 /r CMOVNBE r32, r/m32 Valid Valid Move if not below or
equal (CF=0 and ZF=0).

REX.W + 0F 47 /r CMOVNBE r64, r/m64 Valid N.E. Move if not below or
equal (CF=0 and ZF=0).

0F 43 /r CMOVNC r16, r/m16 Valid Valid Move if not carry (CF=0).
0F 43 /r CMOVNC r32, r/m32 Valid Valid Move if not carry (CF=0).
REX.W + 0F 43 /r CMOVNC r64, r/m64 Valid N.E. Move if not carry (CF=0).
0F 45 /r CMOVNE r16, r/m16 Valid Valid Move if not equal (ZF=0).
0F 45 /r CMOVNE r32, r/m32 Valid Valid Move if not equal (ZF=0).
REX.W + 0F 45 /r CMOVNE r64, r/m64 Valid N.E. Move if not equal (ZF=0).
0F 4E /r CMOVNG r16, r/m16 Valid Valid Move if not greater

(ZF=1 or SF≠ OF).
0F 4E /r CMOVNG r32, r/m32 Valid Valid Move if not greater

(ZF=1 or SF≠ OF).
REX.W + 0F 4E /r CMOVNG r64, r/m64 Valid N.E. Move if not greater

(ZF=1 or SF≠ OF).
0F 4C /r CMOVNGE r16, r/m16 Valid Valid Move if not greater or

equal (SF≠ OF).
0F 4C /r CMOVNGE r32, r/m32 Valid Valid Move if not greater or

equal (SF≠ OF).
3-114 Vol. 2A CMOVcc—Conditional Move

INSTRUCTION SET REFERENCE, A-M
Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

REX.W + 0F 4C /r CMOVNGE r64, r/m64 Valid N.E. Move if not greater or
equal (SF≠ OF).

0F 4D /r CMOVNL r16, r/m16 Valid Valid Move if not less
(SF=OF).

0F 4D /r CMOVNL r32, r/m32 Valid Valid Move if not less
(SF=OF).

REX.W + 0F 4D /r CMOVNL r64, r/m64 Valid N.E. Move if not less
(SF=OF).

0F 4F /r CMOVNLE r16, r/m16 Valid Valid Move if not less or equal
(ZF=0 and SF=OF).

0F 4F /r CMOVNLE r32, r/m32 Valid Valid Move if not less or equal
(ZF=0 and SF=OF).

REX.W + 0F 4F /r CMOVNLE r64, r/m64 Valid N.E. Move if not less or equal
(ZF=0 and SF=OF).

0F 41 /r CMOVNO r16, r/m16 Valid Valid Move if not overflow
(OF=0).

0F 41 /r CMOVNO r32, r/m32 Valid Valid Move if not overflow
(OF=0).

REX.W + 0F 41 /r CMOVNO r64, r/m64 Valid N.E. Move if not overflow
(OF=0).

0F 4B /r CMOVNP r16, r/m16 Valid Valid Move if not parity
(PF=0).

0F 4B /r CMOVNP r32, r/m32 Valid Valid Move if not parity
(PF=0).

REX.W + 0F 4B /r CMOVNP r64, r/m64 Valid N.E. Move if not parity
(PF=0).

0F 49 /r CMOVNS r16, r/m16 Valid Valid Move if not sign (SF=0).
0F 49 /r CMOVNS r32, r/m32 Valid Valid Move if not sign (SF=0).
REX.W + 0F 49 /r CMOVNS r64, r/m64 Valid N.E. Move if not sign (SF=0).
0F 45 /r CMOVNZ r16, r/m16 Valid Valid Move if not zero (ZF=0).
0F 45 /r CMOVNZ r32, r/m32 Valid Valid Move if not zero (ZF=0).
REX.W + 0F 45 /r CMOVNZ r64, r/m64 Valid N.E. Move if not zero (ZF=0).
0F 40 /r CMOVO r16, r/m16 Valid Valid Move if overflow (OF=0).
0F 40 /r CMOVO r32, r/m32 Valid Valid Move if overflow (OF=0).
REX.W + 0F 40 /r CMOVO r64, r/m64 Valid N.E. Move if overflow (OF=0).
0F 4A /r CMOVP r16, r/m16 Valid Valid Move if parity (PF=1).
0F 4A /r CMOVP r32, r/m32 Valid Valid Move if parity (PF=1).
REX.W + 0F 4A /r CMOVP r64, r/m64 Valid N.E. Move if parity (PF=1).
0F 4A /r CMOVPE r16, r/m16 Valid Valid Move if parity even

(PF=1).
0F 4A /r CMOVPE r32, r/m32 Valid Valid Move if parity even

(PF=1).
REX.W + 0F 4A /r CMOVPE r64, r/m64 Valid N.E. Move if parity even

(PF=1).
Vol. 2A 3-115CMOVcc—Conditional Move

INSTRUCTION SET REFERENCE, A-M
Description
The CMOVcc instructions check the state of one or more of the status flags in the EFLAGS
register (CF, OF, PF, SF, and ZF) and perform a move operation if the flags are in a specified
state (or condition). A condition code (cc) is associated with each instruction to indicate the
condition being tested for. If the condition is not satisfied, a move is not performed and execu-
tion continues with the instruction following the CMOVcc instruction.

These instructions can move 16-bit, 32-bit or 64-bit values from memory to a general-purpose
register or from one general-purpose register to another. Conditional moves of 8-bit register
operands are not supported.

The condition for each CMOVcc mnemonic is given in the description column of the above
table. The terms “less” and “greater” are used for comparisons of signed integers and the terms
“above” and “below” are used for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two ways, two
mnemonics are defined for some opcodes. For example, the CMOVA (conditional move if
above) instruction and the CMOVNBE (conditional move if not below or equal) instruction are
alternate mnemonics for the opcode 0F 47H.

The CMOVcc instructions were introduced in P6 family processors; however, these instructions
may not be supported by all IA-32 processors. Software can determine if the CMOVcc instruc-
tions are supported by checking the processor’s feature information with the CPUID instruction
(see “CPUID—CPU Identification” in this chapter).

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix
permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation
to 64 bits. See the summary chart at the beginning of this section for encoding data and limits.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 4B /r CMOVPO r16, r/m16 Valid Valid Move if parity odd
(PF=0).

0F 4B /r CMOVPO r32, r/m32 Valid Valid Move if parity odd
(PF=0).

REX.W + 0F 4B /r CMOVPO r64, r/m64 Valid N.E. Move if parity odd
(PF=0).

0F 48 /r CMOVS r16, r/m16 Valid Valid Move if sign (SF=1).
0F 48 /r CMOVS r32, r/m32 Valid Valid Move if sign (SF=1).
REX.W + 0F 48 /r CMOVS r64, r/m64 Valid N.E. Move if sign (SF=1).
0F 44 /r CMOVZ r16, r/m16 Valid Valid Move if zero (ZF=1).
0F 44 /r CMOVZ r32, r/m32 Valid Valid Move if zero (ZF=1).
REX.W + 0F 44 /r CMOVZ r64, r/m64 Valid N.E. Move if zero (ZF=1).
3-116 Vol. 2A CMOVcc—Conditional Move

INSTRUCTION SET REFERENCE, A-M
Operation

temp ← SRC

IF (64-Bit Mode)
THEN

IF condition TRUE
THEN

IF (OperandSize = 64)
THEN

DEST ← temp;
ELSE

DEST ← temp AND 0x00000000_FFFFFFFF;
FI;

FI;
ELSE

IF condition TRUE
THEN

DEST ← temp;
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.
Vol. 2A 3-117CMOVcc—Conditional Move

INSTRUCTION SET REFERENCE, A-M
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-118 Vol. 2A CMOVcc—Conditional Move

INSTRUCTION SET REFERENCE, A-M
CMP—Compare Two Operands

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

3C ib CMP AL, imm8 Valid Valid Compare imm8 with AL.
3D iw CMP AX, imm16 Valid Valid Compare imm16 with AX.
3D id CMP EAX,

imm32
Valid Valid Compare imm32 with EAX.

REX.W + 3D id CMP RAX,
imm32

Valid N.E. Compare imm32 sign-
extended to 64-bits with
RAX.

80 /7 ib CMP r/m8, imm8 Valid Valid Compare imm8 with r/m8.
REX + 80 /7 ib CMP r/m8*,

imm8
Valid N.E. Compare imm8 with r/m8.

81 /7 iw CMP r/m16,
imm16

Valid Valid Compare imm16 with r/m16.

81 /7 id CMP r/m32,
imm32

Valid Valid Compare imm32 with r/m32.

REX.W + 81 /7 id CMP r/m64,
imm32

Valid N.E. Compare imm32 sign-
extended to 64-bits with
r/m64.

83 /7 ib CMP r/m16,
imm8

Valid Valid Compare imm8 with r/m16.

83 /7 ib CMP r/m32,
imm8

Valid Valid Compare imm8 with r/m32.

REX.W + 83 /7 ib CMP r/m64,
imm8

Valid N.E. Compare imm8 with r/m64.

38 /r CMP r/m8, r8 Valid Valid Compare r8 with r/m8.
REX + 38 /r CMP r/m8*, r8* Valid N.E. Compare r8 with r/m8.
39 /r CMP r/m16, r16 Valid Valid Compare r16 with r/m16.
39 /r CMP r/m32, r32 Valid Valid Compare r32 with r/m32.
REX.W + 39 /r CMP r/m64,r64 Valid N.E. Compare r64 with r/m64.
3A /r CMP r8, r/m8 Valid Valid Compare r/m8 with r8.
REX + 3A /r CMP r8*, r/m8* Valid N.E. Compare r/m8 with r8.
3B /r CMP r16, r/m16 Valid Valid Compare r/m16 with r16.
3B /r CMP r32, r/m32 Valid Valid Compare r/m32 with r32.
REX.W + 3B /r CMP r64, r/m64 Valid N.E. Compare r/m64 with r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.
Vol. 2A 3-119CMP—Compare Two Operands

INSTRUCTION SET REFERENCE, A-M
Description
Compares the first source operand with the second source operand and sets the status flags in
the EFLAGS register according to the results. The comparison is performed by subtracting the
second operand from the first operand and then setting the status flags in the same manner as the
SUB instruction. When an immediate value is used as an operand, it is sign-extended to the
length of the first operand.

The condition codes used by the Jcc, CMOVcc, and SETcc instructions are based on the results
of a CMP instruction. Appendix B, “EFLAGS Condition Codes”, in the IA-32 Intel® Architec-
ture Software Developer’s Manual, Volume 1, shows the relationship of the status flags and the
condition codes.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix
permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation
to 64 bits. See the summary chart at the beginning of this section for encoding data and limits.

Operation
temp ← SRC1 − SignExtend(SRC2);
ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction*)

Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.
3-120 Vol. 2A CMP—Compare Two Operands

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-121CMP—Compare Two Operands

INSTRUCTION SET REFERENCE, A-M
CMPPD—Compare Packed Double-Precision Floating-Point Values

Description
Performs an SIMD compare of the two packed double-precision floating-point values in the
source operand (second operand) and the destination operand (first operand) and returns the
results of the comparison to the destination operand. The comparison predicate operand (third
operand) specifies the type of comparison performed on each of the pairs of packed values. The
result of each comparison is a quadword mask of all 1s (comparison true) or all 0s (comparison
false).

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. The comparison predicate operand is an 8-bit immediate, the first
3 bits of which define the type of comparison to be made (see Table 3-7). Bits 4 through 7 of the
immediate are reserved.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F C2 /r ib CMPPD xmm1,
xmm2/m128, imm8

Valid Valid Compare packed double-
precision floating-point
values in xmm2/m128 and
xmm1 using imm8 as
comparison predicate.

Table 3-7. Comparison Predicate for CMPPD and CMPPS Instructions

Predi-
cate

imm8
Encod-
ing Description

Relation where:
A Is 1st Operand
B Is 2nd Operand Emulation

Result if
NaN
Operand

QNaN Oper-
and Signals
Invalid

EQ 000B Equal A = B False No

LT 001B Less-than A < B False Yes

LE 010B Less-than-or-equal A ≤ B False Yes

Greater than A > B Swap
Operands,
Use LT

False Yes

Greater-than-or-equal A ≥ B Swap
Operands,
Use LE

False Yes

UNORD 011B Unordered A, B = Unordered True No

NEQ 100B Not-equal A ≠ B True No

NLT 101B Not-less-than NOT(A < B) True Yes

NLE 110B Not-less-than-or-
equal

NOT(A ≤ B) True Yes
3-122 Vol. 2A CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
The unordered relationship is true when at least one of the two source operands being compared
is a NaN; the ordered relationship is true when neither source operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination operand as
an input operand will not generate an exception, because a mask of all 0s corresponds to a
floating-point value of +0.0 and a mask of all 1s corresponds to a QNaN.

Note that the processor does not implement the greater-than, greater-than-or-equal, not-greater-
than, and not-greater-than-or-equal relations. These comparisons can be made either by using
the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than”
comparison) or by using software emulation. When using software emulation, the program must
swap the operands (copying registers when necessary to protect the data that will now be in the
destination), and then perform the compare using a different predicate. The predicate to be used
for these emulations is listed in Table 3-7 under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to
the three-operand CMPPD instruction. See Table 3-7.

:

The greater-than relations that the processor does not implement require more than one instruc-
tion to emulate in software and therefore should not be implemented as pseudo-ops. (For these,
the programmer should reverse the operands of the corresponding less than relations and use

Not-greater-than NOT(A > B) Swap
Operands,
Use NLT

True Yes

Not-greater-than-or-
equal

NOT(A ≥ B) Swap
Operands,
Use NLE

True Yes

ORD 111B Ordered A , B = Ordered False No

Table 3-8. Pseudo-Op and CMPPD Implementation
Pseudo-Op CMPPD Implementation

CMPEQPD xmm1, xmm2 CMPPD xmm1, xmm2, 0

CMPLTPD xmm1, xmm2 CMPPD xmm1, xmm2, 1

CMPLEPD xmm1, xmm2 CMPPD xmm1, xmm2, 2

CMPUNORDPD xmm1, xmm2 CMPPD xmm1, xmm2, 3

CMPNEQPD xmm1, xmm2 CMPPD xmm1, xmm2, 4

CMPNLTPD xmm1, xmm2 CMPPD xmm1, xmm2, 5

CMPNLEPD xmm1, xmm2 CMPPD xmm1, xmm2, 6

CMPORDPD xmm1, xmm2 CMPPD xmm1, xmm2, 7

Table 3-7. Comparison Predicate for CMPPD and CMPPS Instructions (Contd.)

Predi-
cate

imm8
Encod-
ing Description

Relation where:
A Is 1st Operand
B Is 2nd Operand Emulation

Result if
NaN
Operand

QNaN Oper-
and Signals
Invalid
Vol. 2A 3-123CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
move instructions to ensure that the mask is moved to the correct destination register and that
the source operand is left intact.)

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
CASE (COMPARISON PREDICATE) OF

0: OP ← EQ;
1: OP ← LT;
2: OP ← LE;
3: OP ← UNORD;
4: OP ← NEQ;
5: OP ← NLT;
6: OP ← NLE;
7: OP ← ORD;
DEFAULT: Reserved;

CMP0 ← DEST[63:0] OP SRC[63:0];
CMP1 ← DEST[127:64] OP SRC[127:64];

IF CMP0 = TRUE
THEN DEST[63:0] ← FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] ← 0000000000000000H; FI;

IF CMP1 = TRUE
THEN DEST[127:64] ← FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] ← 0000000000000000H; FI;

Intel C/C++ Compiler Intrinsic Equivalents
CMPPD for equality __m128d _mm_cmpeq_pd(__m128d a, __m128d b)

CMPPD for less-than __m128d _mm_cmplt_pd(__m128d a, __m128d b)

CMPPD for less-than-or-equal __m128d _mm_cmple_pd(__m128d a, __m128d b)

CMPPD for greater-than __m128d _mm_cmpgt_pd(__m128d a, __m128d b)

CMPPD for greater-than-or-equal __m128d _mm_cmpge_pd(__m128d a, __m128d b)

CMPPD for inequality __m128d _mm_cmpneq_pd(__m128d a, __m128d b)

CMPPD for not-less-than __m128d _mm_cmpnlt_pd(__m128d a, __m128d b)

CMPPD for not-greater-than __m128d _mm_cmpngt_pd(__m128d a, __m128d b)

CMPPD for not-greater-than-or-equal __m128d _mm_cmpnge_pd(__m128d a, __m128d b)

CMPPD for ordered __m128d _mm_cmpord_pd(__m128d a, __m128d b)

CMPPD for unordered __m128d _mm_cmpunord_pd(__m128d a, __m128d b)

CMPPD for not-less-than-or-equal __m128d _mm_cmpnle_pd(__m128d a, __m128d b)
3-124 Vol. 2A CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
SIMD Floating-Point Exceptions
Invalid if SNaN operand and invalid if QNaN and predicate as listed in above table, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
Vol. 2A 3-125CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
3-126 Vol. 2A CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
CMPPS—Compare Packed Single-Precision Floating-Point Values

Description
Performs an SIMD compare of the four packed single-precision floating-point values in the
source operand (second operand) and the destination operand (first operand) and returns the
results of the comparison to the destination operand. The comparison predicate operand (third
operand) specifies the type of comparison performed on each of the pairs of packed values. The
result of each comparison is a doubleword mask of all 1s (comparison true) or all 0s (comparison
false).

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. The comparison predicate operand is an 8-bit immediate, the first
3 bits of which define the type of comparison to be made (see Table 3-7). Bits 4 through 7 of the
immediate are reserved.

The unordered relationship is true when at least one of the two source operands being compared
is a NaN; the ordered relationship is true when neither source operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination operand as
an input operand will not generate a fault, because a mask of all 0s corresponds to a floating-
point value of +0.0 and a mask of all 1s corresponds to a QNaN.

Some of the comparisons listed in Table 3-7 (such as the greater-than, greater-than-or-equal,
not-greater-than, and not-greater-than-or-equal relations) can be made only through software
emulation. For these comparisons the program must swap the operands (copying registers when
necessary to protect the data that will now be in the destination), and then perform the compare
using a different predicate. The predicate to be used for these emulations is listed in Table 3-7
under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to
the three-operand CMPPS instruction. See Table 3-9.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F C2 /r ib CMPPS xmm1,
xmm2/m128, imm8

Valid Valid Compare packed single-
precision floating-point values
in xmm2/mem and xmm1
using imm8 as comparison
predicate.
Vol. 2A 3-127CMPPS—Compare Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
The greater-than relations not implemented by the processor require more than one instruction
to emulate in software and therefore should not be implemented as pseudo-ops. (For these, the
programmer should reverse the operands of the corresponding less than relations and use move
instructions to ensure that the mask is moved to the correct destination register and that the
source operand is left intact.)

Operation
CASE (COMPARISON PREDICATE) OF

0: OP ← EQ;
1: OP ← LT;
2: OP ← LE;
3: OP ← UNORD;
4: OP ← NE;
5: OP ← NLT;
6: OP ← NLE;
7: OP ← ORD;

EASC;

CMP0 ← DEST[31:0] OP SRC[31:0];
CMP1 ← DEST[63:32] OP SRC[63:32];
CMP2 ← DEST [95:64] OP SRC[95:64];
CMP3 ← DEST[127:96] OP SRC[127:96];

IF CMP0 = TRUE
THEN DEST[31:0] ← FFFFFFFFH;
ELSE DEST[31:0] ← 00000000H; FI;

IF CMP1 = TRUE
THEN DEST[63:32] ← FFFFFFFFH;
ELSE DEST[63:32] ← 00000000H; FI;

IF CMP2 = TRUE
THEN DEST95:64] ← FFFFFFFFH;
ELSE DEST[95:64] ← 00000000H; FI;

Table 3-9. Pseudo-Ops and CMPPS
Pseudo-Op Implementation

CMPEQPS xmm1, xmm2 CMPPS xmm1, xmm2, 0

CMPLTPS xmm1, xmm2 CMPPS xmm1, xmm2, 1

CMPLEPS xmm1, xmm2 CMPPS xmm1, xmm2, 2

CMPUNORDPS xmm1, xmm2 CMPPS xmm1, xmm2, 3

CMPNEQPS xmm1, xmm2 CMPPS xmm1, xmm2, 4

CMPNLTPS xmm1, xmm2 CMPPS xmm1, xmm2, 5

CMPNLEPS xmm1, xmm2 CMPPS xmm1, xmm2, 6

CMPORDPS xmm1, xmm2 CMPPS xmm1, xmm2, 7
3-128 Vol. 2A CMPPS—Compare Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
IF CMP3 = TRUE
THEN DEST[127:96] ← FFFFFFFFH;
ELSE DEST[127:96] ← 00000000H; FI;

Intel C/C++ Compiler Intrinsic Equivalents
CMPPS for equality __m128 _mm_cmpeq_ps(__m128 a, __m128 b)

CMPPS for less-than __m128 _mm_cmplt_ps(__m128 a, __m128 b)

CMPPS for less-than-or-equal __m128 _mm_cmple_ps(__m128 a, __m128 b)

CMPPS for greater-than __m128 _mm_cmpgt_ps(__m128 a, __m128 b)

CMPPS for greater-than-or-equal __m128 _mm_cmpge_ps(__m128 a, __m128 b)

CMPPS for inequality __m128 _mm_cmpneq_ps(__m128 a, __m128 b)

CMPPS for not-less-than __m128 _mm_cmpnlt_ps(__m128 a, __m128 b)

CMPPS for not-greater-than __m128 _mm_cmpngt_ps(__m128 a, __m128 b)

CMPPS for not-greater-than-or-equal __m128 _mm_cmpnge_ps(__m128 a, __m128 b)

CMPPS for ordered __m128 _mm_cmpord_ps(__m128 a, __m128 b)

CMPPS for unordered __m128 _mm_cmpunord_ps(__m128 a, __m128 b)

CMPPS for not-less-than-or-equal __m128 _mm_cmpnle_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Invalid if SNaN operand and invalid if QNaN and predicate as listed in above table, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
Vol. 2A 3-129CMPPS—Compare Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
3-130 Vol. 2A CMPPS—Compare Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
Vol. 2A 3-131CMPPS—Compare Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String
Operands

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

A6 CMPS m8, m8 Valid Valid For legacy mode, compare byte at
address DS:(E)SI with byte at
address ES:(E)DI; For 64-bit mode
compare byte at address (R|E)SI to
byte at address (R|E)DI. The status
flags are set accordingly.

A7 CMPS m16,
m16

Valid Valid For legacy mode, compare word at
address DS:(E)SI with word at
address ES:(E)DI; For 64-bit mode
compare word at address (R|E)SI
with word at address (R|E)DI. The
status flags are set accordingly.

A7 CMPS m32,
m32

Valid Valid For legacy mode, compare dword
at address DS:(E)SI at dword at
address ES:(E)DI; For 64-bit mode
compare dword at address (R|E)SI
at dword at address (R|E)DI. The
status flags are set accordingly.

REX.W + A7 CMPS m64,
m64

Valid N.E. Compares quadword at address
(R|E)SI with quadword at address
(R|E)DI and sets the status flags
accordingly.

A6 CMPSB Valid Valid For legacy mode, compare byte at
address DS:(E)SI with byte at
address ES:(E)DI; For 64-bit mode
compare byte at address (R|E)SI
with byte at address (R|E)DI. The
status flags are set accordingly.

A7 CMPSW Valid Valid For legacy mode, compare word at
address DS:(E)SI with word at
address ES:(E)DI; For 64-bit mode
compare word at address (R|E)SI
with word at address (R|E)DI. The
status flags are set accordingly.

A7 CMPSD Valid Valid For legacy mode, compare dword
at address DS:(E)SI with dword at
address ES:(E)DI; For 64-bit mode
compare dword at address (R|E)SI
with dword at address (R|E)DI. The
status flags are set accordingly.

REX.W + A7 CMPSQ Valid N.E. Compares quadword at address
(R|E)SI with quadword at address
(R|E)DI and sets the status flags
accordingly.
3-132 Vol. 2A CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

INSTRUCTION SET REFERENCE, A-M
Description
Compares the byte, word, doubleword, or quadword specified with the first source operand with
the byte, word, doubleword, or quadword specified with the second source operand and sets the
status flags in the EFLAGS register according to the results.

Both source operands are located in memory. The address of the first source operand is read
from DS:SI, DS:ESI or RSI (depending on the address-size attribute of the instruction is 16, 32,
or 64, respectively). The address of the second source operand is read from ES:DI, ES:EDI or
RDI (again depending on the address-size attribute of the instruction is 16, 32, or 64). The DS
segment may be overridden with a segment override prefix, but the ES segment cannot be over-
ridden.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the CMPS
mnemonic) allows the two source operands to be specified explicitly. Here, the source operands
should be symbols that indicate the size and location of the source values. This explicit-operand
form is provided to allow documentation. However, note that the documentation provided by
this form can be misleading. That is, the source operand symbols must specify the correct type
(size) of the operands (bytes, words, or doublewords, quadwords), but they do not have to
specify the correct location. Locations of the source operands are always specified by the
DS:(E)SI (or RSI) and ES:(E)DI (or RDI) registers, which must be loaded correctly before the
compare string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
CMPS instructions. Here also the DS:(E)SI (or RSI) and ES:(E)DI (or RDI) registers are
assumed by the processor to specify the location of the source operands. The size of the source
operands is selected with the mnemonic: CMPSB (byte comparison), CMPSW (word compar-
ison), CMPSD (doubleword comparison), or CMPSQ (quadword comparison using REX.W).

After the comparison, the (E/R)SI and (E/R)DI registers increment or decrement automatically
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E/R)SI
and (E/R)DI register increment; if the DF flag is 1, the registers decrement.) The registers incre-
ment or decrement by 1 for byte operations, by 2 for word operations, 4 for doubleword opera-
tions. If operand size is 64, RSI and RDI registers increment by 8 for quadword operations.

The CMPS, CMPSB, CMPSW, CMPSD, and CMPSQ instructions can be preceded by the REP
prefix for block comparisons. More often, however, these instructions will be used in a LOOP
construct that takes some action based on the setting of the status flags before the next compar-
ison is made. See “REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix” in
Chapter 4, in the IA-32 Intel® Architecture Software Developer’s Manual, Volume 2B, for a
description of the REP prefix.

In 64-bit mode, the instruction’s default address size is 64 bits, 32 bit address size is supported
using the prefix 67H. Use of the REX.W prefix promotes doubleword operation to 64 bits (see
CMPSQ). See the summary chart at the beginning of this section for encoding data and limits.
Vol. 2A 3-133CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

INSTRUCTION SET REFERENCE, A-M
Operation
temp SRC1 − SRC2;
SetStatusFlags(temp);

IF (64-Bit Mode)
THEN

IF (Byte comparison)
THEN IF DF = 0

THEN
(R|E)SI ← (R|E)SI + 1;
(R|E)DI ← (R|E)DI + 1;

ELSE
(R|E)SI ← (R|E)SI – 1;
(R|E)DI ← (R|E)DI – 1;

FI;
ELSE IF (Word comparison)

THEN IF DF = 0
THEN

(R|E)SI ← (R|E)SI + 2;
(R|E)DI ← (R|E)DI + 2;

ELSE
(R|E)SI ← (R|E)SI – 2;
(R|E)DI ← (R|E)DI – 2;

FI;
ELSE IF (Doubleword comparison)

THEN IF DF = 0
THEN

(R|E)SI ← (R|E)SI + 4;
(R|E)DI ← (R|E)DI + 4;

ELSE
(R|E)SI ← (R|E)SI – 4;
(R|E)DI ← (R|E)DI – 4;

FI;
ELSE (* Quadword comparison *)

THEN IF DF = 0
(R|E)SI ← (R|E)SI + 8;
(R|E)DI ← (R|E)DI + 8;

ELSE
(R|E)SI ← (R|E)SI – 8;
(R|E)DI ← (R|E)DI – 8;

FI;
FI;

ELSE (* Non-64-bit Mode *)
IF (byte comparison)
THEN IF DF = 0

THEN
(E)SI ← (E)SI + 1;
(E)DI ← (E)DI + 1;

ELSE
(E)SI ← (E)SI – 1;
(E)DI ← (E)DI – 1;
3-134 Vol. 2A CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

INSTRUCTION SET REFERENCE, A-M
FI;
ELSE IF (Word comparison)

THEN IF DF = 0
(E)SI ← (E)SI + 2;
(E)DI ← (E)DI + 2;

ELSE
(E)SI ← (E)SI – 2;
(E)DI ← (E)DI – 2;

FI;
ELSE (* Doubleword comparison *)

THEN IF DF = 0
(E)SI ← (E)SI + 4;
(E)DI ← (E)DI + 4;

ELSE
(E)SI ← (E)SI – 4;
(E)DI ← (E)DI – 4;

FI;
FI;

FI;

Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are set according to the temporary result of the comparison.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.
Vol. 2A 3-135CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

INSTRUCTION SET REFERENCE, A-M
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-136 Vol. 2A CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

INSTRUCTION SET REFERENCE, A-M
CMPSD—Compare Scalar Double-Precision Floating-Point Values

Description
Compares the low double-precision floating-point values in the source operand (second
operand) and the destination operand (first operand) and returns the results of the comparison to
the destination operand. The comparison predicate operand (third operand) specifies the type of
comparison performed. The comparison result is a quadword mask of all 1s (comparison true)
or all 0s (comparison false).

The source operand can be an XMM register or a 64-bit memory location. The destination
operand is an XMM register. The result is stored in the low quadword of the destination operand;
the high quadword remains unchanged. The comparison predicate operand is an 8-bit imme-
diate, the first 3 bits of which define the type of comparison to be made (see Table 3-7). Bits 4
through 7 of the immediate are reserved.

The unordered relationship is true when at least one of the two source operands being compared
is a NaN; the ordered relationship is true when neither source operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination operand as
an input operand will not generate a fault, because a mask of all 0s corresponds to a floating-
point value of +0.0 and a mask of all 1s corresponds to a QNaN.

Some of the comparisons listed in Table 3-7 can be achieved only through software emulation.
For these comparisons the program must swap the operands (copying registers when necessary
to protect the data that will now be in the destination operand), and then perform the compare
using a different predicate. The predicate to be used for these emulations is listed in Table 3-7
under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to
the three-operand CMPSD instruction. See Table 3-10.

..

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F2 0F C2 /r ib CMPSD xmm1,
xmm2/m64, imm8

Valid Valid Compare low double-
precision floating-point
value in xmm2/m64 and
xmm1 using imm8 as
comparison predicate.

Table 3-10. Pseudo-Ops and CMPSD
Pseudo-Op Implementation

CMPEQSD xmm1, xmm2 CMPSD xmm1,xmm2, 0

CMPLTSD xmm1, xmm2 CMPSD xmm1,xmm2, 1

CMPLESD xmm1, xmm2 CMPSD xmm1,xmm2, 2

CMPUNORDSD xmm1, xmm2 CMPSD xmm1,xmm2, 3
Vol. 2A 3-137CMPSD—Compare Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
The greater-than relations not implemented in the processor require more than one instruction
to emulate in software and therefore should not be implemented as pseudo-ops. (For these, the
programmer should reverse the operands of the corresponding less than relations and use move
instructions to ensure that the mask is moved to the correct destination register and that the
source operand is left intact.)

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
CASE (COMPARISON PREDICATE) OF

0: OP ← EQ;
1: OP ← LT;
2: OP ← LE;
3: OP ← UNORD;
4: OP ← NEQ;
5: OP ← NLT;
6: OP ← NLE;
7: OP ← ORD;
DEFAULT: Reserved;

CMP0 ← DEST[63:0] OP SRC[63:0];

IF CMP0 = TRUE
THEN DEST[63:0] ← FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] ← 0000000000000000H; FI;

(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalents
CMPSD for equality __m128d _mm_cmpeq_sd(__m128d a, __m128d b)

CMPSD for less-than __m128d _mm_cmplt_sd(__m128d a, __m128d b)

CMPSD for less-than-or-equal __m128d _mm_cmple_sd(__m128d a, __m128d b)

CMPSD for greater-than __m128d _mm_cmpgt_sd(__m128d a, __m128d b)

CMPSD for greater-than-or-equal __m128d _mm_cmpge_sd(__m128d a, __m128d b)

CMPSD for inequality __m128d _mm_cmpneq_sd(__m128d a, __m128d b)

CMPSD for not-less-than __m128d _mm_cmpnlt_sd(__m128d a, __m128d b)

CMPSD for not-greater-than __m128d _mm_cmpngt_sd(__m128d a, __m128d b)

CMPNEQSD xmm1, xmm2 CMPSD xmm1,xmm2, 4

CMPNLTSD xmm1, xmm2 CMPSD xmm1,xmm2, 5

CMPNLESD xmm1, xmm2 CMPSD xmm1,xmm2, 6

CMPORDSD xmm1, xmm2 CMPSD xmm1,xmm2, 7

Table 3-10. Pseudo-Ops and CMPSD (Contd.)
Pseudo-Op Implementation
3-138 Vol. 2A CMPSD—Compare Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
CMPSD for not-greater-than-or-equal __m128d _mm_cmpnge_sd(__m128d a, __m128d b)

CMPSD for ordered __m128d _mm_cmpord_sd(__m128d a, __m128d b)

CMPSD for unordered __m128d _mm_cmpunord_sd(__m128d a, __m128d b)

CMPSD for not-less-than-or-equal __m128d _mm_cmpnle_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions
Invalid if SNaN operand, Invalid if QNaN and predicate as listed in above table, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
Vol. 2A 3-139CMPSD—Compare Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-140 Vol. 2A CMPSD—Compare Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
CMPSS—Compare Scalar Single-Precision Floating-Point Values

Description
Compares the low single-precision floating-point values in the source operand (second operand)
and the destination operand (first operand) and returns the results of the comparison to the desti-
nation operand. The comparison predicate operand (third operand) specifies the type of compar-
ison performed. The comparison result is a doubleword mask of all 1s (comparison true) or all
0s (comparison false).

The source operand can be an XMM register or a 32-bit memory location. The destination
operand is an XMM register. The result is stored in the low doubleword of the destination
operand; the 3 high-order doublewords remain unchanged. The comparison predicate operand
is an 8-bit immediate, the first 3 bits of which define the type of comparison to be made (see
Table 3-7). Bits 4 through 7 of the immediate are reserved.

The unordered relationship is true when at least one of the two source operands being compared
is a NaN; the ordered relationship is true when neither source operand is a NaN

A subsequent computational instruction that uses the mask result in the destination operand as
an input operand will not generate a fault, since a mask of all 0s corresponds to a floating-point
value of +0.0 and a mask of all 1s corresponds to a QNaN.

Some of the comparisons listed in Table 3-7 can be achieved only through software emulation.
For these comparisons the program must swap the operands (copying registers when necessary
to protect the data that will now be in the destination operand), and then perform the compare
using a different predicate. The predicate to be used for these emulations is listed in Table 3-7
under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to
the three-operand CMPSS instruction. See Table 3-11.

Opcode Instruction 64-Bit Mode
Compat/
Leg Mode Description

F3 0F C2 /r ib CMPSS xmm1,
xmm2/m32,
imm8

Valid Valid Compare low single-precision
floating-point value in
xmm2/m32 and xmm1 using
imm8 as comparison
predicate.

Table 3-11. Pseudo-Ops and CMPSS
Pseudo-Op CMPSS Implementation

CMPEQSS xmm1, xmm2 CMPSS xmm1, xmm2, 0

CMPLTSS xmm1, xmm2 CMPSS xmm1, xmm2, 1

CMPLESS xmm1, xmm2 CMPSS xmm1, xmm2, 2

CMPUNORDSS xmm1, xmm2 CMPSS xmm1, xmm2, 3
Vol. 2A 3-141CMPSS—Compare Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
The greater-than relations not implemented in the processor require more than one instruction
to emulate in software and therefore should not be implemented as pseudo-ops. (For these, the
programmer should reverse the operands of the corresponding less than relations and use move
instructions to ensure that the mask is moved to the correct destination register and that the
source operand is left intact.)

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
CASE (COMPARISON PREDICATE) OF

0: OP ← EQ;
1: OP ← LT;
2: OP ← LE;
3: OP ← UNORD;
4: OP ← NEQ;
5: OP ← NLT;
6: OP ← NLE;
7: OP ← ORD;
DEFAULT: Reserved;

CMP0 ← DEST[31:0] OP SRC[31:0];

IF CMP0 = TRUE
THEN DEST[31:0] ← FFFFFFFFH;
ELSE DEST[31:0] ← 00000000H; FI;

(* DEST[127:32] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalents
CMPSS for equality __m128 _mm_cmpeq_ss(__m128 a, __m128 b)

CMPSS for less-than __m128 _mm_cmplt_ss(__m128 a, __m128 b)

CMPSS for less-than-or-equal __m128 _mm_cmple_ss(__m128 a, __m128 b)

CMPSS for greater-than __m128 _mm_cmpgt_ss(__m128 a, __m128 b)

CMPSS for greater-than-or-equal __m128 _mm_cmpge_ss(__m128 a, __m128 b)

CMPSS for inequality __m128 _mm_cmpneq_ss(__m128 a, __m128 b)

CMPSS for not-less-than __m128 _mm_cmpnlt_ss(__m128 a, __m128 b)

CMPSS for not-greater-than __m128 _mm_cmpngt_ss(__m128 a, __m128 b)

CMPNEQSS xmm1, xmm2 CMPSS xmm1, xmm2, 4

CMPNLTSS xmm1, xmm2 CMPSS xmm1, xmm2, 5

CMPNLESS xmm1, xmm2 CMPSS xmm1, xmm2, 6

CMPORDSS xmm1, xmm2 CMPSS xmm1, xmm2, 7

Table 3-11. Pseudo-Ops and CMPSS (Contd.)
Pseudo-Op CMPSS Implementation
3-142 Vol. 2A CMPSS—Compare Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
CMPSS for not-greater-than-or-equal __m128 _mm_cmpnge_ss(__m128 a, __m128 b)

CMPSS for ordered __m128 _mm_cmpord_ss(__m128 a, __m128 b)

CMPSS for unordered __m128 _mm_cmpunord_ss(__m128 a, __m128 b)

CMPSS for not-less-than-or-equal __m128 _mm_cmpnle_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Invalid if SNaN operand, Invalid if QNaN and predicate as listed in above table, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
Vol. 2A 3-143CMPSS—Compare Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-144 Vol. 2A CMPSS—Compare Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
CMPXCHG—Compare and Exchange

Description
Compares the value in the AL, AX, EAX, or RAX register with the first operand (destination
operand). If the two values are equal, the second operand (source operand) is loaded into the
destination operand. Otherwise, the destination operand is loaded into the AL, AX, EAX or
RAX register. RAX register is available only in 64-bit mode.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally. To simplify the interface to the processor’s bus, the destination operand receives a write
cycle without regard to the result of the comparison. The destination operand is written back if
the comparison fails; otherwise, the source operand is written into the destination. (The
processor never produces a locked read without also producing a locked write.)

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix
permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation
to 64 bits. See the summary chart at the beginning of this section for encoding data and limits.

IA-32 Architecture Legacy Compatibility
This instruction is not supported on Intel processors earlier than the Intel486 processors.

Opcode Instruction 64-Bit Mode
Compat/
Leg Mode Description

0F B0/r CMPXCHG r/m8,
r8

Valid Valid* Compare AL with r/m8. If
equal, ZF is set and r8 is
loaded into r/m8. Else, clear
ZF and load r/m8 into AL.

REX + 0F
B0/r

CMPXCHG
r/m8**,r8

Valid N.E. Compare AL with r/m8. If
equal, ZF is set and r8 is
loaded into r/m8. Else, clear
ZF and load r/m8 into AL.

0F B1/r CMPXCHG
r/m16, r16

Valid Valid* Compare AX with r/m16. If
equal, ZF is set and r16 is
loaded into r/m16. Else, clear
ZF and load r/m16 into AX.

0F B1/r CMPXCHG
r/m32, r32

Valid Valid* Compare EAX with r/m32. If
equal, ZF is set and r32 is
loaded into r/m32. Else, clear
ZF and load r/m32 into EAX.

REX.W + 0F
B1/r

CMPXCHG
r/m64, r64

Valid N.E. Compare RAX with r/m64. If
equal, ZF is set and r64 is
loaded into r/m64. Else, clear
ZF and load r/m64 into RAX.

NOTES:
* See the IA-32 Architecture Legacy Compatibility section below.
** In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.
Vol. 2A 3-145CMPXCHG—Compare and Exchange

INSTRUCTION SET REFERENCE, A-M
Operation
(* Accumulator = AL, AX, EAX, or RAX depending on whether a byte, word, doubleword, or
quadword comparison is being performed *)

IF accumulator = DEST
THEN

ZF ← 1;
DEST ← SRC;

ELSE
ZF ← 0;
accumulator ← DEST;

FI;

Flags Affected
The ZF flag is set if the values in the destination operand and register AL, AX, or EAX are equal;
otherwise it is cleared. The CF, PF, AF, SF, and OF flags are set according to the results of the
comparison operation.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-146 Vol. 2A CMPXCHG—Compare and Exchange

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-147CMPXCHG—Compare and Exchange

INSTRUCTION SET REFERENCE, A-M
CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes

Description
Compares the 64-bit value in EDX:EAX (or 128-bit value in RDX:RAX if operand size is 128
bits) with the operand (destination operand). If the values are equal, the 64-bit value in
ECX:EBX (or 128-bit value in RCX:RBX) is stored in the destination operand. Otherwise, the
value in the destination operand is loaded into EDX:EAX (or RDX:RAX). The destination
operand is an 8-byte memory location (or 16-byte memory location if operand size is 128 bits).
For the EDX:EAX and ECX:EBX register pairs, EDX and ECX contain the high-order 32 bits
and EAX and EBX contain the low-order 32 bits of a 64-bit value. For the RDX:RAX and
RCX:RBX register pairs, RDX and RCX contain the high-order 64 bits and RAX and RBX
contain the low-order 64bits of a 128-bit value.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally. To simplify the interface to the processor’s bus, the destination operand receives a write
cycle without regard to the result of the comparison. The destination operand is written back if
the comparison fails; otherwise, the source operand is written into the destination. (The
processor never produces a locked read without also producing a locked write.)

In 64-bit mode, default operation size is 64 bits. Use of the REX.W prefix promotes operation
to 128 bits. Note that CMPXCHG16B requires that the destination (memory) operand be
16-byte aligned. See the summary chart at the beginning of this section for encoding data and
limits. For information on the CPUID flag that indicates CMPXCHG16B, see page 3-165.

IA-32 Architecture Legacy Compatibility
This legacy instruction encoding is not supported on Intel processors earlier than the Pentium
processors.

Opcode* Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F C7 /1 m64 CMPXCHG8B m64 Valid Valid* Compare EDX:EAX with
m64. If equal, set ZF and
load ECX:EBX into m64.
Else, clear ZF and load
m64 into EDX:EAX.

REX.W + 0F C7 /1
m128

CMPXCHG16B
m128

Valid N.E. Compare RDX:RAX with
m128. If equal, set ZF and
load RCX:RBX into m128.
Else, clear ZF and load
m128 into RDX:RAX.

NOTES:
* See IA-32 Architecture Legacy Compatibility section below.
3-148 Vol. 2A CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes

INSTRUCTION SET REFERENCE, A-M
Operation
IF (64-Bit Mode and OperandSize = 64)

THEN
IF (RDX:RAX = DEST)
ZF ← 1;

DEST ← RCX:RBX;
ELSE

ZF ← 0;
RDX:RAX ← DEST;

FI
ELSE

IF (EDX:EAX = DEST)
ZF ← 1;
DEST ← ECX:EBX;

ELSE
ZF ← 0;
EDX:EAX ← DEST;

FI
FI

Flags Affected
The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is cleared.
The CF, PF, AF, SF, and OF flags are unaffected.

Protected Mode Exceptions
#UD If the destination operand is not a memory location.

#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#UD If the destination operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.
Vol. 2A 3-149CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#UD If the destination operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand for CMPXCHG16B is not aligned on a 16-byte
boundary.

IfIf CPUID.01H:ECX.CMPXCHG16B[bit 13] = 0.

#UD If the destination operand is not a memory location.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-150 Vol. 2A CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes

INSTRUCTION SET REFERENCE, A-M
COMISD—Compare Scalar Ordered Double-Precision Floating-
Point Values and Set EFLAGS

Description
Compares the double-precision floating-point values in the low quadwords of operand 1 (first
operand) and operand 2 (second operand), and sets the ZF, PF, and CF flags in the EFLAGS
register according to the result (unordered, greater than, less than, or equal). The OF, SF and AF
flags in the EFLAGS register are set to 0. The unordered result is returned if either source
operand is a NaN (QNaN or SNaN).

Operand 1 is an XMM register; operand 2 can be an XMM register or a 64 bit memory location.

The COMISD instruction differs from the UCOMISD instruction in that it signals an SIMD
floating-point invalid operation exception (#I) when a source operand is either a QNaN or
SNaN. The UCOMISD instruction signals an invalid numeric exception only if a source operand
is an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
RESULT ← OrderedCompare(DEST[63:0] <> SRC[63:0]) {
(* Set EFLAGS *) CASE (RESULT) OF

UNORDERED: ZF,PF,CF ← 111;
GREATER_THAN: ZF,PF,CF ← 000;
LESS_THAN: ZF,PF,CF ← 001;
EQUAL: ZF,PF,CF ← 100;

ESAC;
OF, AF, SF ← 0; }

Intel C/C++ Compiler Intrinsic Equivalents
int_mm_comieq_sd(__m128d a, __m128d b)

int_mm_comilt_sd(__m128d a, __m128d b)

int_mm_comile_sd(__m128d a, __m128d b)

Opcode Instruction 64-Bit Mode
Compat/
Leg Mode Description

66 0F 2F /r COMISD xmm1,
xmm2/m64

Valid Valid Compare low double-
precision floating-point values
in xmm1 and xmm2/mem64
and set the EFLAGS flags
accordingly.
Vol. 2A 3-151COMISD—Compare Scalar Ordered Double-Precision Floating-Point
Values and Set EFLAGS

INSTRUCTION SET REFERENCE, A-M
int_mm_comigt_sd(__m128d a, __m128d b)

int_mm_comige_sd(__m128d a, __m128d b)

int_mm_comineq_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions
Invalid (if SNaN or QNaN operands), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
3-152 Vol. 2A COMISD—Compare Scalar Ordered Double-Precision Floating-Point
Values and Set EFLAGS

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-153COMISD—Compare Scalar Ordered Double-Precision Floating-Point
Values and Set EFLAGS

INSTRUCTION SET REFERENCE, A-M
COMISS—Compare Scalar Ordered Single-Precision Floating-
Point Values and Set EFLAGS

Description
Compares the single-precision floating-point values in the low doublewords of operand 1 (first
operand) and operand 2 (second operand), and sets the ZF, PF, and CF flags in the EFLAGS
register according to the result (unordered, greater than, less than, or equal). The OF, SF, and AF
flags in the EFLAGS register are set to 0. The unordered result is returned if either source
operand is a NaN (QNaN or SNaN).

Operand 1 is an XMM register; Operand 2 can be an XMM register or a 32 bit memory location.

The COMISS instruction differs from the UCOMISS instruction in that it signals an SIMD
floating-point invalid operation exception (#I) when a source operand is either a QNaN or
SNaN. The UCOMISS instruction signals an invalid numeric exception only if a source operand
is an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is gener-
ated.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
RESULT ← OrderedCompare(SRC1[31:0] <> SRC2[31:0]) {
(* Set EFLAGS *) CASE (RESULT) OF

UNORDERED: ZF,PF,CF ← 111;
GREATER_THAN: ZF,PF,CF ← 000;
LESS_THAN: ZF,PF,CF ← 001;
EQUAL: ZF,PF,CF ← 100;

ESAC;
OF,AF,SF ← 0; }

Intel C/C++ Compiler Intrinsic Equivalents
int_mm_comieq_ss(__m128 a, __m128 b)

int_mm_comilt_ss(__m128 a, __m128 b)

int_mm_comile_ss(__m128 a, __m128 b)

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 2F /r COMISS xmm1,
xmm2/m32

Valid Valid Compare low single-precision
floating-point values in xmm1 and
xmm2/mem32 and set the EFLAGS
flags accordingly.
3-154 Vol. 2A COMISS—Compare Scalar Ordered Single-Precision Floating-Point
Values and Set EFLAGS

INSTRUCTION SET REFERENCE, A-M
int_mm_comigt_ss(__m128 a, __m128 b)

int_mm_comige_ss(__m128 a, __m128 b)

int_mm_comineq_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Invalid (if SNaN or QNaN operands), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
Vol. 2A 3-155COMISS—Compare Scalar Ordered Single-Precision Floating-Point
Values and Set EFLAGS

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-156 Vol. 2A COMISS—Compare Scalar Ordered Single-Precision Floating-Point
Values and Set EFLAGS

INSTRUCTION SET REFERENCE, A-M
CPUID—CPU Identification

Description
The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a
software procedure can set and clear this flag, the processor executing the procedure supports
the CPUID instruction. This instruction operates the same in non-64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and
EDX registers. The instruction’s output is dependent on the contents of the EAX register upon
execution. For example, the following pseudocode loads EAX with 00H and causes CPUID to
return a Maximum Return Value and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H
CPUID

Table 3-12 shows information returned, depending on the initial value loaded into the EAX
register. Table 3-13 shows the maximum CPUID input value recognized for each family of
IA-32 processors on which CPUID is implemented.

Two types of information are returned: basic and extended function information. If a value is
entered for CPUID.EAX is invalid for a particular processor, the data for the highest basic infor-
mation leaf is returned. For example, using the Intel Pentium 4 Processor Extreme Edition, the
following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *)
CPUID.EAX = 09H (* INVALID: Returns the same information as CPUID.EAX = 05H. *)
CPUID.EAX = 80000008H (* Returns virtual/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 05H. *)

CPUID can be executed at any privilege level to serialize instruction execution. Serializing
instruction execution guarantees that any modifications to flags, registers, and memory for
previous instructions are completed before the next instruction is fetched and executed.

See also:

“Serializing Instructions” in Chapter 7, “Multiple-Processor Management”, in the IA-32
Intel® Architecture Software Developer’s Manual, Volume 3A

AP-485, Intel Processor Identification and the CPUID Instruction (Order Number
241618)

Opcode Instruction 64-Bit Mode
Compat/
Leg Mode Description

0F A2 CPUID Valid Valid Returns processor identification
and feature information to the
EAX, EBX, ECX, and EDX
registers, as determined by the
input value entered in EAX.
Vol. 2A 3-157CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M
Table 3-12. Information Returned by CPUID Instruction
Initial EAX

Value Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 3-13)
“Genu”
“ntel”
“ineI”

01H EAX

EBX

ECX
EDX

Version Information: Type, Family, Model, and Stepping ID (see Figure 3-5)

Bits 7-0: Brand Index
Bits 15-8: CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Maximum number of logical processors in this physical package.
Bits 31-24: Initial APIC ID

Extended Feature Information (see Figure 3-6 and Table 3-15)
Feature Information (see Figure 3-7 and Table 3-16)

02H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 3-17)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H EAX
EBX

ECX

EDX

Reserved.
Reserved.

Bits 00-31 of 96 bit processor serial number. (Available in Pentium III
processor only; otherwise, the value in this register is reserved.)

Bits 32-63 of 96 bit processor serial number. (Available in Pentium III
processor only; otherwise, the value in this register is reserved.)

NOTE: Processor serial number (PSN) is not supported in the Pentium 4
processor or later. On all models, use the PSN flag (returned using CPUID)
to check for PSN support before accessing the feature. See AP-485, Intel
Processor Identification and the CPUID Instruction (Order Number 241618)
for more information on PSN.
3-158 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M
CPUID leaves > 3 < 80000000 are visible only when
IA32_MISC_ENABLES.BOOT_NT4[bit 22] = 0 (default).

Deterministic Cache Parameters Leaf

04H

EAX

EBX

ECX

EDX

NOTE:
04H output also depends on the initial value in ECX. See also: “INPUT
EAX = 4: Returns Deterministic Cache Parameters for Each Level” on
page 3-172.

Bits 4-0: Cache Type*
Bits 7-5: Cache Level (starts at 1)
Bits 8: Self Initializing cache level (does not need SW initialization)
Bits 9: Fully Associative cache
Bits 13-10: Reserved
Bits 25-14: Maximum number of threads sharing this cache in a physical
package (see note)**
Bits 31-26: Maximum number of processor cores in this physical package**

Bits 11-00: L = System Coherency Line Size**
Bits 21-12: P = Physical Line partitions**
Bits 31-22: W = Ways of associativity**

Bits 31-00: S = Number of Sets**

Reserved = 0

MORE NOTES:
* Cache Type fields:

0 = Null - No more caches 3 = Unified Cache
1 = Data Cache 4-31 = Reserved
2 = Instruction Cache

** Add one to the value in the register to get the number.
For example, the number of processor cores is EAX[31:26]+1.

MONITOR/MWAIT Leaf

5H EAX

EBX

ECX
EDX

Bits 15-00: Smallest monitor-line size in bytes (default is processor's monitor
granularity)
Bits 31-16: Reserved = 0

Bits 15-00: Largest monitor-line size in bytes (default is processor's monitor
granularity)
Bits 31-16: Reserved = 0

Reserved = 0
Reserved = 0

Table 3-12. Information Returned by CPUID Instruction (Contd.)
Initial EAX

Value Information Provided about the Processor
Vol. 2A 3-159CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M
Extended Function CPUID Information

80000000H EAX

EBX
ECX
EDX

Maximum Input Value for Extended Function CPUID Information (see
Table 3-13).

Reserved
Reserved
Reserved

80000001H EAX

EBX

ECX

EDX

Extended Processor Signature and Extended Feature Bits.

Reserved

Bit 0: LAHF/SAHF available in 64-bit mode
Bits 31-1 Reserved

Bits 10-0: Reserved
Bit 11: SYSCALL/SYSRET available (when in 64-bit mode)
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 28-21: Reserved = 0
Bit 29: Intel EM64T available = 1
Bits 31-30: Reserved = 0

80000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

Table 3-12. Information Returned by CPUID Instruction (Contd.)
Initial EAX

Value Information Provided about the Processor
3-160 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M
INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information
and the Vendor Identification String
When CPUID executes with EAX set to 0, the processor returns the highest value the CPUID
recognizes for returning basic processor information. The value is returned in the EAX register
(see Table 3-13) and is processor specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel processors, the
string is “GenuineIntel” and is expressed:

EBX ← 756e6547h (* "Genu", with G in the low nibble of BL *)
EDX ← 49656e69h (* "ineI", with i in the low nibble of DL *)
ECX ← 6c65746eh (* "ntel", with n in the low nibble of CL *)

80000006H EAX
EBX

ECX

EDX

Reserved = 0
Reserved = 0

Bits 7-0: Cache Line size
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units

Reserved = 0

NOTES:
* L2 associativity field encodings:

00H - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
0FH - Fully associative

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000008H EAX

EBX
ECX
EDX

Virtual/Physical Address size
Bits 7-0: #Physical Address Bits*
Bits 15-8: #Virtual Address Bits
Bits 31-16: Reserved = 0

Reserved = 0
Reserved = 0
Reserved = 0

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical

address number supported should come from this field.

Table 3-12. Information Returned by CPUID Instruction (Contd.)
Initial EAX

Value Information Provided about the Processor
Vol. 2A 3-161CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M
INPUT EAX = 80000000H: Returns CPUID’s Highest Value for
Extended Processor Information
When CPUID executes with EAX set to 0, the processor returns the highest value the processor
recognizes for returning extended processor information. The value is returned in the EAX
register (see Table 3-13) and is processor specific.

IA32_BIOS_SIGN_ID Returns Microcode Update Signature
For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID MSR is
loaded with the update signature whenever CPUID executes. The signature is returned in the
upper DWORD. For details, see Chapter 9 in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 3A.

INPUT EAX = 1: Returns Model, Family, Stepping Information
When CPUID executes with EAX set to 1, version information is returned in EAX (see
Figure 3-5). For example: model, family, and processor type for the first processor in the Intel
Pentium 4 family is returned as follows:

• Model — 0000B

• Family — 1111B

• Processor Type — 00B

See Table 3-14 for available processor type values. Stepping IDs are provided as needed.

Table 3-13. Highest CPUID Source Operand for IA-32 Processors

IA-32 Processors
Highest Value in EAX

Basic Information Extended Function Information

Earlier Intel486 Processors CPUID Not Implemented CPUID Not Implemented

Later Intel486 Processors and
Pentium Processors

01H Not Implemented

Pentium Pro and Pentium II
Processors, Intel® Celeron™
Processors

02H Not Implemented

Pentium III Processors 03H Not Implemented

Pentium 4 Processors 02H 80000004H

Intel Xeon Processors 02H 80000004H

Pentium M Processor 02H 80000004H

Pentium 4 Processor supporting
Hyper-Threading Technology

05H 80000008H
3-162 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M
NOTE
See AP-485, Intel Processor Identification and the CPUID Instruction (Order
Number 241618) and Chapter 14 in the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 1, for information on identifying earlier IA-32
processors.

The Extended Family ID needs to be examined only when the Family ID is 0FH. Integrate the
fields into a display using the following rule:

IF Family_ID ≠ 0FH
THEN Displayed_Family = Family_ID;
ELSE Displayed_Family = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)

FI;
(* Show Display_Family as HEX field. *)

Figure 3-5. Version Information Returned by CPUID in EAX

Table 3-14. Processor Type Field
Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor (not applicable to Intel486
processors)

10B

Intel reserved 11B

OM16525

Processor Type

034781112131415161920272831

EAX

Family (0FH for the Pentium 4 Processor Family)
Model

Extended
Family ID

Extended
Model ID

Family
ID Model Stepping

ID

Extended Family ID (0)
Extended Model ID (0)

Reserved
Vol. 2A 3-163CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M
The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH. Integrate
the field into a display using the following rule:

IF (Family_ID = 06H or Family_ID = 0FH)
THEN Displayed_Model = (Extended_Model_ID << 4) + Model_ID;
(* Right justify and zero-extend Extended_Model_ID and Model_ID. *)
ELSE Displayed_Model = Model_ID;

FI;
(* Show Display_Model as HEX field. *)

INPUT EAX = 1: Returns Additional Information in EBX
When CPUID executes with EAX set to 1, additional information is returned to the EBX
register:

• Brand index (low byte of EBX) — this number provides an entry into a brand string table
that contains brand strings for IA-32 processors. More information about this field is
provided later in this section.

• CLFLUSH instruction cache line size (second byte of EBX) — this number indicates the
size of the cache line flushed with CLFLUSH instruction in 8-byte increments. This field
was introduced in the Pentium 4 processor.

• Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the
local APIC on the processor during power up. This field was introduced in the Pentium 4
processor.

INPUT EAX = 1: Returns Feature Information in ECX and EDX
When CPUID executes with EAX set to 1, feature information is returned in ECX and EDX.

• Figure 3-6 and Table 3-15 show encodings for ECX.

• Figure 3-7 and Table 3-16 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly interpret
feature flags.

NOTE
Software must confirm that a processor feature is present using feature flags
returned by CPUID prior to using the feature. Software should not depend on
future offerings retaining all features.
3-164 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M
Figure 3-6. Extended Feature Information Returned in the ECX Register

Table 3-15. More on Extended Feature Information Returned in the ECX Register

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the
processor supports this technology.

1-2 Reserved Reserved
3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this

feature.
4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor

supports the extensions to the Debug Store feature to allow for branch
message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the processor
supports this technology

6 Reserved Reserved
7 EST Enhanced Intel SpeedStep® technology. A value of 1 indicates that

the processor supports this technology.
8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor

supports this technology.
9 Reserved Reserved
10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be

set to either adaptive mode or shared mode. A value of 0 indicates this
feature is not supported. See definition of the IA32_MISC_ENABLE
MSR Bit 24 (L1 Data Cache Context Mode) for details.

11-12 Reserved Reserved
13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is

available. See the “CMPXCHG8B/CMPXCHG16B—Compare and
Exchange Bytes” section in this chapter for a description.

14-31 Reserved Reserved

OM16524a

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2
EST — Enhanced Intel SpeedStep® Technology

DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT
SSE3 — SSE3 Extensions

Reserved

CMPXCHG16B

VMX — Virtual Machine Technology
Vol. 2A 3-165CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M
Figure 3-7. Feature Information Returned in the EDX Register
3-166 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M
Table 3-16. More on Feature Information Returned in the EDX Register
Bit # Mnemonic Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including
CR4.VME for controlling the feature, CR4.PVI for protected mode virtual
interrupts, software interrupt indirection, expansion of the TSS with the software
indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.

2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for
controlling the feature, and optional trapping of accesses to DR4 and DR5.

3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including
CR4.PSE for controlling the feature, the defined dirty bit in PDE (Page Directory
Entries), optional reserved bit trapping in CR3, PDEs, and PTEs.

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD
for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and
WRMSR instructions are supported. Some of the MSRs are implementation
dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are
supported: extended page table entry formats, an extra level in the page
translation tables is defined, 2-MByte pages are supported instead of 4 Mbyte
pages if PAE bit is 1. The actual number of address bits beyond 32 is not defined,
and is implementation specific.

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks,
including CR4.MCE for controlling the feature. This feature does not define the
model-specific implementations of machine-check error logging, reporting, and
processor shutdowns. Machine Check exception handlers may have to depend on
processor version to do model specific processing of the exception, or test for the
presence of the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits)
instruction is supported (implicitly locked and atomic).

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt
Controller (APIC), responding to memory mapped commands in the physical
address range FFFE0000H to FFFE0FFFH (by default - some processors permit
the APIC to be relocated).

10 Reserved Reserved

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and
associated MSRs are supported.

12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR
contains feature bits that describe what memory types are supported, how many
variable MTRRs are supported, and whether fixed MTRRs are supported.

13 PGE PTE Global Bit. The global bit in page directory entries (PDEs) and page table
entries (PTEs) is supported, indicating TLB entries that are common to different
processes and need not be flushed. The CR4.PGE bit controls this feature.

14 MCA Machine Check Architecture. The Machine Check Architecture, which provides
a compatible mechanism for error reporting in P6 family, Pentium 4, Intel Xeon
processors, and future processors, is supported. The MCG_CAP MSR contains
feature bits describing how many banks of error reporting MSRs are supported.
Vol. 2A 3-167CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M
15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is
supported. In addition, if x87 FPU is present as indicated by the CPUID.FPU
feature bit, then the FCOMI and FCMOV instructions are supported

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature augments
the Memory Type Range Registers (MTRRs), allowing an operating system to
specify attributes of memory on a 4K granularity through a linear address.

17 PSE-36 36-Bit Page Size Extension. Extended 4-MByte pages that are capable of
addressing physical memory beyond 4 GBytes are supported. This feature
indicates that the upper four bits of the physical address of the 4-MByte page is
encoded by bits 13-16 of the page directory entry.

18 PSN Processor Serial Number. The processor supports the 96-bit processor
identification number feature and the feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved

21 DS Debug Store. The processor supports the ability to write debug information into a
memory resident buffer. This feature is used by the branch trace store (BTS) and
precise event-based sampling (PEBS) facilities (see Chapter 18, “Debugging and
Performance Monitoring”, in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 3B).

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor
implements internal MSRs that allow processor temperature to be monitored and
processor performance to be modulated in predefined duty cycles under software
control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions
are supported for fast save and restore of the floating point context. Presence of
this bit also indicates that CR4.OSFXSR is available for an operating system to
indicate that it supports the FXSAVE and FXRSTOR instructions.

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting memory
types by performing a snoop of its own cache structure for transactions issued to
the bus.

28 HTT Multi-Threading. The physical processor package is capable of supporting more
than one logical processor.

29 TM Thermal Monitor. The processor implements the thermal monitor automatic
thermal control circuitry (TCC).

30 Reserved Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE# pin
when the processor is in the stop-clock state (STPCLK# is asserted) to signal the
processor that an interrupt is pending and that the processor should return to
normal operation to handle the interrupt. Bit 10 (PBE enable) in the
IA32_MISC_ENABLE MSR enables this capability.

Table 3-16. More on Feature Information Returned in the EDX Register (Contd.)
Bit # Mnemonic Description
3-168 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M
INPUT EAX = 2: Cache and TLB Information Returned in EAX, EBX, ECX, EDX
When CPUID executes with EAX set to 2, the processor returns information about the
processor’s internal caches and TLBs in the EAX, EBX, ECX, and EDX registers.

The encoding is as follows:

• The least-significant byte in register EAX (register AL) indicates the number of times the
CPUID instruction must be executed with an input value of 2 to get a complete description
of the processor’s caches and TLBs. The first member of the family of Pentium 4
processors will return a 1.

• The most significant bit (bit 31) of each register indicates whether the register contains
valid information (set to 0) or is reserved (set to 1).

• If a register contains valid information, the information is contained in 1 byte descriptors.
Table 3-17 shows the encoding of these descriptors. Note that the order of descriptors in
the EAX, EBX, ECX, and EDX registers is not defined; that is, specific bytes are not
designated to contain descriptors for specific cache or TLB types. The descriptors may
appear in any order.

Table 3-17. Encoding of Cache and TLB Descriptors
Descriptor Value Cache or TLB Description

00H Null descriptor

01H Instruction TLB: 4 KByte Pages, 4-way set associative, 32 entries

02H Instruction TLB: 4 MByte Pages, 4-way set associative, 2 entries

03H Data TLB: 4 KByte Pages, 4-way set associative, 64 entries

04H Data TLB: 4 MByte Pages, 4-way set associative, 8 entries

06H 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size

0AH 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0CH 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

22H 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per
sector

23H 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector

25H 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector

29H 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector

2CH 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size

40H No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level
cache
Vol. 2A 3-169CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M
41H 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

50H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

5BH Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH Data TLB: 4 KByte and 4 MByte pages,256 entries

60H 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

66H 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

70H Trace cache: 12 K-µop, 8-way set associative

71H Trace cache: 16 K-µop, 8-way set associative

72H Trace cache: 32 K-µop, 8-way set associative

78H 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per
sector

7AH 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per
sector

7BH 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per
sector

7CH 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per
sector

7DH 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

82H 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

Table 3-17. Encoding of Cache and TLB Descriptors (Contd.)
Descriptor Value Cache or TLB Description
3-170 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M
Example 3-1. Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following information about
caches and TLBs when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 00H

Which means:

• The least-significant byte (byte 0) of register EAX is set to 01H. This indicates that CPUID
needs to be executed once with an input value of 2 to retrieve complete information about
caches and TLBs.

• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0,
indicating that each register contains valid 1-byte descriptors.

• Bytes 1, 2, and 3 of register EAX indicate that the processor has:

— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte
pages.

— 5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte cache
line size.

• The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.

• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:

— 00H - NULL descriptor.

— 70H - a 12-KByte 1st level code cache, 4-way set associative, with a 64-byte cache
line size.

85H 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

B0H Instruction TLB: 4 KByte Pages, 4-way set associative, 128 entries

B3H Data TLB: 4 KByte Pages, 4-way set associative, 128 entries

F0H 64-Byte Prefetching

F1H 128-Byte Prefetching

Table 3-17. Encoding of Cache and TLB Descriptors (Contd.)
Descriptor Value Cache or TLB Description
Vol. 2A 3-171CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M
— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte
cache line size.

— 00H - NULL descriptor.

INPUT EAX = 4: Returns Deterministic Cache Parameters for Each Level
When CPUID executes with EAX set to 4 and ECX contains an index value, the processor
returns encoded data that describe a set of deterministic cache parameters (for the cache level
associated with the input in ECX).

Software can enumerate the deterministic cache parameters for each level of the cache hierarchy
starting with an index value of 0, until the parameters report the value associated with the cache
type field is 0. The architecturally defined fields reported by deterministic cache parameters are
documented in Table 3-12.

METHODS FOR RETURNING BRANDING INFORMATION
Use the following techniques to access branding information:

1. Processor brand string method; this method also returns the processor’s maximum
operating frequency

2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are available in
early processors, see Section: “Identification of Earlier IA-32 Processors” in Chapter 14 of the
IA-32 Intel® Architecture Software Developer’s Manual, Volume 1.

The Processor Brand String Method
Figure 3-8 describes the algorithm used for detection of the brand string. Processor brand iden-
tification software should execute this algorithm on all IA-32 architecture compatible proces-
sors.

This method (introduced with Pentium 4 processors) returns an ASCII brand identification
string and the maximum operating frequency of the processor to the EAX, EBX, ECX, and EDX
registers.
3-172 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M
How Brand Strings Work
To use the brand string method, execute CPUID with EAX input of 8000002H through
80000004H. For each input value, CPUID returns 16 ASCII characters using EAX, EBX, ECX,
and EDX. The returned string will be NULL-terminated.

Figure 3-8. Determination of Support for the Processor Brand String

OM15194

IF (EAX & 0x80000000)

CPUID

IF (EAX Return Value
≥ 0x80000004)

CPUID
Function

Supported

True ≥
Extended

EAX Return Value =
Max. Extended CPUID

Function Index

Input: EAX=
0x80000000

Processor Brand
String Not
Supported

False

Processor Brand
String Supported

True
Vol. 2A 3-173CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M
Table 3-18 shows the brand string that is returned by the first processor in the Pentium 4
processor family.

Extracting the Maximum Processor Frequency from Brand Strings
Figure 3-9 provides an algorithm which software can use to extract the maximum processor
operating frequency from the processor brand string.

NOTE
When a frequency is given in a brand string, it is the maximum qualified
frequency of the processor, not the frequency at which the processor is
currently running.

Table 3-18. Processor Brand String Returned with Pentium 4 Processor
EAX Input Value Return Values ASCII Equivalent

80000002H EAX = 20202020H
EBX = 20202020H
ECX = 20202020H
EDX = 6E492020H

“ ”
“ ”
“ ”
“nI ”

80000003H EAX = 286C6574H
EBX = 50202952H
ECX = 69746E65H
EDX = 52286D75H

“(let”
“P)R”
“itne”
“R(mu”

80000004H EAX = 20342029H
EBX = 20555043H
ECX = 30303531H
EDX = 007A484DH

“ 4)”
“ UPC”
“0051”
“\0zHM”
3-174 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M
The Processor Brand Index Method
The brand index method (introduced with Pentium III Xeon processors) provides an entry point
into a brand identification table that is maintained in memory by system software and is acces-
sible from system- and user-level code. In this table, each brand index is associate with an ASCII
brand identification string that identifies the official Intel family and model number of a
processor.

When CPUID executes with EAX set to 1, the processor returns a brand index to the low byte
in EBX. Software can then use this index to locate the brand identification string for the
processor in the brand identification table. The first entry (brand index 0) in this table is
reserved, allowing for backward compatibility with processors that do not support the brand

Figure 3-9. Algorithm for Extracting Maximum Processor Frequency
Vol. 2A 3-175CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M
identification feature. Starting with processor signature family ID = 0FH, model = 03H, brand
index method is no longer supported. Use brand string method instead.

Table 3-19 shows brand indices that have identification strings associated with them.

IA-32 Architecture Compatibility
CPUID is not supported in early models of the Intel486 processor or in any IA-32 processor
earlier than the Intel486 processor.

Table 3-19. Mapping of Brand Indices and IA-32 Processor Brand Strings
Brand Index Brand String

00H This processor does not support the brand identification feature

01H Intel(R) Celeron(R) processor1

02H Intel(R) Pentium(R) III processor1

03H Intel(R) Pentium(R) III XeonTM processor; If processor signature = 000006B1h, then
Intel(R) Celeron(R) processor

04H Intel(R) Pentium(R) III processor

06H Mobile Intel(R) Pentium(R) III processor-M

07H Mobile Intel(R) Celeron(R) processor1

08H Intel(R) Pentium(R) 4 processor

09H Intel(R) Pentium(R) 4 processor

0AH Intel(R) Celeron(R) processor1

0BH Intel(R) Xeon(TM) processor; If processor signature = 00000F13h, then Intel(R)
Xeon(TM) processor MP

0CH Intel(R) Xeon(TM) processor MP

0EH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h,
then Intel(R) Xeon(TM) processor

0FH Mobile Intel(R) Celeron(R) processor1

11H Mobile Genuine Intel(R) processor

12H Intel(R) Celeron(R) M processor

13H Mobile Intel(R) Celeron(R) processor1

14H Intel(R) Celeron(R) processor

15H Mobile Genuine Intel(R) processor

16H Intel(R) Pentium(R) M processor

17H Mobile Intel(R) Celeron(R) processor1

18H – 0FFH RESERVED

NOTES:
1. Indicates versions of these processors that were introduced after the Pentium III
3-176 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M
Operation

IA32_BIOS_SIGN_ID MSR ← Update with installed microcode revision number;
CASE (EAX) OF

EAX = 0:
EAX ← Highest basic function input value understood by CPUID;
EBX ← Vendor identification string;
EDX ← Vendor identification string;
ECX ← Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0] ← Stepping ID;
EAX[7:4] ← Model;
EAX[11:8] ← Family;
EAX[13:12] ← Processor type;
EAX[15:14] ← Reserved;
EAX[19:16] ← Extended Model;
EAX[23:20] ← Extended Family;
EAX[31:24] ← Reserved;
EBX[7:0] ← Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] ← CLFLUSH Line Size;
EBX[16:23] ← Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] ← Initial APIC ID;
ECX ← Feature flags; (* See Figure 3-6. *)
EDX ← Feature flags; (* See Figure 3-7. *)

BREAK;
EAX = 2H:

EAX ← Cache and TLB information;
 EBX ← Cache and TLB information;
 ECX ← Cache and TLB information;

EDX ← Cache and TLB information;
BREAK;
EAX = 3H:

EAX ← Reserved;
 EBX ← Reserved;
 ECX ← ProcessorSerialNumber[31:0];

(* Pentium III processors only, otherwise reserved. *)
EDX ← ProcessorSerialNumber[63:32];
(* Pentium III processors only, otherwise reserved. *

BREAK
EAX = 4H:

EAX ← Deterministic Cache Parameters Leaf; (* See Table 3-12. *)
EBX ← Deterministic Cache Parameters Leaf;

 ECX ← Deterministic Cache Parameters Leaf;
Vol. 2A 3-177CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M
EDX ← Deterministic Cache Parameters Leaf;
BREAK;
EAX = 5H:

EAX ← MONITOR/MWAIT Leaf; (* See Table 3-12. *)
 EBX ← MONITOR/MWAIT Leaf;
 ECX ← MONITOR/MWAIT Leaf;

EDX ← MONITOR/MWAIT Leaf;
BREAK;
EAX = 80000000H:

EAX ← Highest extended function input value understood by CPUID;
EBX ← Reserved;
ECX ← Reserved;
EDX ← Reserved;

BREAK;
EAX = 80000001H:

EAX ← Reserved;
EBX ← Reserved;
ECX ← Extended Feature Bits (* See Table 3-12.*);
EDX ← Extended Feature Bits (* See Table 3-12. *);

BREAK;
EAX = 80000002H:

EAX ← Processor Brand String;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000003H:

EAX ← Processor Brand String, continued;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000004H:

EAX ← Processor Brand String, continued;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000005H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Reserved = 0;
EDX ← Reserved = 0;

BREAK;
3-178 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M
EAX = 80000006H:
EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Cache information;
EDX ← Reserved = 0;

BREAK;
EAX = 80000007H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Reserved = 0;
EDX ← Reserved = 0;

BREAK;
EAX = 80000008H:

EAX ← Reserved = 0;

EBX ← Reserved = 0;
ECX ← Reserved = 0;
EDX ← Reserved = 0;

BREAK;
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)

EAX ← Reserved; (* Information returned for highest basic information leaf. *)
EBX ← Reserved; (* Information returned for highest basic information leaf. *)
ECX ← Reserved; (* Information returned for highest basic information leaf. *)
EDX ← Reserved; (* Information returned for highest basic information leaf. *)

BREAK;
ESAC;

Flags Affected
None.

Exceptions (All Operating Modes)
None.

NOTE
In earlier IA-32 processors that do not support the CPUID instruction,
execution of the instruction results in an invalid opcode (#UD) exception
being generated.
Vol. 2A 3-179CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M
CVTDQ2PD—Convert Packed Doubleword Integers to Packed
Double-Precision Floating-Point Values

Description
Converts two packed signed doubleword integers in the source operand (second operand) to two
packed double-precision floating-point values in the destination operand (first operand).

The source operand can be an XMM register or a 64-bit memory location. The destination
operand is an XMM register. When the source operand is an XMM register, the packed integers
are located in the low quadword of the register.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[63:0] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]);
DEST[127:64] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32]);

Intel C/C++ Compiler Intrinsic Equivalent
CVTDQ2PD __m128d _mm_cvtepi32_pd(__m128di a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F3 0F E6 CVTDQ2PD xmm1,
xmm2/m64

Valid Valid Convert two packed signed
doubleword integers from
xmm2/m128 to two packed
double-precision floating-point
values in xmm1.
3-180 Vol. 2A CVTDQ2PD—Convert Packed Doubleword Integers to Packed Double-
Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-181CVTDQ2PD—Convert Packed Doubleword Integers to Packed Double-
Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
CVTDQ2PS—Convert Packed Doubleword Integers to Packed
Single-Precision Floating-Point Values

Description
Converts four packed signed doubleword integers in the source operand (second operand) to
four packed single-precision floating-point values in the destination operand (first operand).

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. When a conversion is inexact, rounding is performed according to
the rounding control bits in the MXCSR register.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[31:0] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
DEST[63:32] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32]);
DEST[95:64] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64]);
DEST[127:96] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[127:96]);

Intel C/C++ Compiler Intrinsic Equivalent
CVTDQ2PS __m128d _mm_cvtepi32_ps(__m128di a)

SIMD Floating-Point Exceptions

Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 5B /r CVTDQ2PS xmm1,
xmm2/m128

Valid Valid Convert four packed signed
doubleword integers from
xmm2/m128 to four packed
single-precision floating-point
values in xmm1.
3-182 Vol. 2A CVTDQ2PS—Convert Packed Doubleword Integers to Packed Single-
Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-183CVTDQ2PS—Convert Packed Doubleword Integers to Packed Single-
Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
3-184 Vol. 2A CVTDQ2PS—Convert Packed Doubleword Integers to Packed Single-
Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
CVTPD2DQ—Convert Packed Double-Precision Floating-Point
Values to Packed Doubleword Integers

Description
Converts two packed double-precision floating-point values in the source operand (second
operand) to two packed signed doubleword integers in the destination operand (first operand).

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. The result is stored in the low quadword of the destination operand
and the high quadword is cleared to all 0s.

When a conversion is inexact, the value returned is rounded according to the rounding control
bits in the MXCSR register. If a converted result is larger than the maximum signed doubleword
integer, the floating-point invalid exception is raised, and if this exception is masked, the indef-
inite integer value (80000000H) is returned.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]);
DEST[63:32] ← Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64]);
DEST[127:64] ← 0000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent
CVTPD2DQ __m128d _mm_cvtpd_epi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F2 0F E6 CVTPD2DQ xmm1,
xmm2/m128

Valid Valid Convert two packed double-
precision floating-point values
from xmm2/m128 to two packed
signed doubleword integers in
xmm1.
Vol. 2A 3-185CVTPD2DQ—Convert Packed Double-Precision Floating-Point Values
to Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
3-186 Vol. 2A CVTPD2DQ—Convert Packed Double-Precision Floating-Point Values
to Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
Vol. 2A 3-187CVTPD2DQ—Convert Packed Double-Precision Floating-Point Values
to Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
CVTPD2PI—Convert Packed Double-Precision Floating-Point
Values to Packed Doubleword Integers

Description
Converts two packed double-precision floating-point values in the source operand (second
operand) to two packed signed doubleword integers in the destination operand (first operand).

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an MMX technology register.

When a conversion is inexact, the value returned is rounded according to the rounding control
bits in the MXCSR register. If a converted result is larger than the maximum signed doubleword
integer, the floating-point invalid exception is raised, and if this exception is masked, the indef-
inite integer value (80000000H) is returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the
x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this
instruction is executed while an x87 FPU floating-point exception is pending, the exception is
handled before the CVTPD2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]);
DEST[63:32] ← Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64]);

Intel C/C++ Compiler Intrinsic Equivalent
CVTPD1PI __m64 _mm_cvtpd_pi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Opcode Instruction 64-Bit Mode
Compat/
Leg Mode Description

66 0F 2D /r CVTPD2PI mm,
xmm/m128

Valid Valid Convert two packed double-
precision floating-point values
from xmm/m128 to two
packed signed doubleword
integers in mm.
3-188 Vol. 2A CVTPD2PI—Convert Packed Double-Precision Floating-Point Values
to Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#MF If there is a pending x87 FPU exception.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
Vol. 2A 3-189CVTPD2PI—Convert Packed Double-Precision Floating-Point Values
to Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#MF If there is a pending x87 FPU exception.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
3-190 Vol. 2A CVTPD2PI—Convert Packed Double-Precision Floating-Point Values
to Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
CVTPD2PS—Convert Packed Double-Precision Floating-Point
Values to Packed Single-Precision Floating-Point Values

Description
Converts two packed double-precision floating-point values in the source operand (second
operand) to two packed single-precision floating-point values in the destination operand (first
operand).

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. The result is stored in the low quadword of the destination operand,
and the high quadword is cleared to all 0s. When a conversion is inexact, the value returned is
rounded according to the rounding control bits in the MXCSR register.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[31:0] ← Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0]);
DEST[63:32] ← Convert_Double_Precision_To_Single_Precision_

Floating_Point(SRC[127:64]);
DEST[127:64] ← 0000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent
CVTPD2PS __m128d _mm_cvtpd_ps(__m128d a)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 5A /r CVTPD2PS xmm1,
xmm2/m128

Valid Valid Convert two packed double-
precision floating-point values in
xmm2/m128 to two packed single-
precision floating-point values in
xmm1.
Vol. 2A 3-191CVTPD2PS—Convert Packed Double-Precision Floating-Point Values
to Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
3-192 Vol. 2A CVTPD2PS—Convert Packed Double-Precision Floating-Point Values
to Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
Vol. 2A 3-193CVTPD2PS—Convert Packed Double-Precision Floating-Point Values
to Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
CVTPI2PD—Convert Packed Doubleword Integers to Packed
Double-Precision Floating-Point Values

Description
Converts two packed signed doubleword integers in the source operand (second operand) to two
packed double-precision floating-point values in the destination operand (first operand).

The source operand can be an MMX technology register or a 64-bit memory location. The desti-
nation operand is an XMM register. In addition, depending on the operand configuration:

• For operands xmm, mm: the instruction causes a transition from x87 FPU to MMX
technology operation (that is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU
tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU floating-
point exception is pending, the exception is handled before the CVTPI2PD instruction is
executed.

• For operands xmm, m64: the instruction does not cause a transition to MMX technology
and does not take x87 FPU exceptions.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[63:0] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]);
DEST[127:64] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32]);

Intel C/C++ Compiler Intrinsic Equivalent
CVTPI2PD __m128d _mm_cvtpi32_pd(__m64 a)

SIMD Floating-Point Exceptions

None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 2A /r CVTPI2PD
xmm,
mm/m64*

Valid Valid Convert two packed signed
doubleword integers from mm/mem64
to two packed double-precision
floating-point values in xmm.

NOTES:
* Operation is different for different operand sets; see the Description section.
3-194 Vol. 2A CVTPI2PD—Convert Packed Doubleword Integers to Packed Double-
Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-195CVTPI2PD—Convert Packed Doubleword Integers to Packed Double-
Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-196 Vol. 2A CVTPI2PD—Convert Packed Doubleword Integers to Packed Double-
Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
CVTPI2PS—Convert Packed Doubleword Integers to Packed
Single-Precision Floating-Point Values

Description
Converts two packed signed doubleword integers in the source operand (second operand) to two
packed single-precision floating-point values in the destination operand (first operand).

The source operand can be an MMX technology register or a 64-bit memory location. The desti-
nation operand is an XMM register. The results are stored in the low quadword of the destination
operand, and the high quadword remains unchanged. When a conversion is inexact, the value
returned is rounded according to the rounding control bits in the MXCSR register.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the
x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this
instruction is executed while an x87 FPU floating-point exception is pending, the exception is
handled before the CVTPI2PS instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[31:0] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
DEST[63:32] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32]);
(* High quadword of destination unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
CVTPI2PS __m128 _mm_cvtpi32_ps(__m128 a, __m64 b)

SIMD Floating-Point Exceptions

Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 2A /r CVTPI2PS xmm,
mm/m64

Valid Valid Convert two signed doubleword
integers from mm/m64 to two single-
precision floating-point values in xmm.
Vol. 2A 3-197CVTPI2PS—Convert Packed Doubleword Integers to Packed Single-
Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
3-198 Vol. 2A CVTPI2PS—Convert Packed Doubleword Integers to Packed Single-
Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-199CVTPI2PS—Convert Packed Doubleword Integers to Packed Single-
Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
CVTPS2DQ—Convert Packed Single-Precision Floating-Point
Values to Packed Doubleword Integers

Description
Converts four packed single-precision floating-point values in the source operand (second
operand) to four packed signed doubleword integers in the destination operand (first operand).

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

When a conversion is inexact, the value returned is rounded according to the rounding control
bits in the MXCSR register. If a converted result is larger than the maximum signed doubleword
integer, the floating-point invalid exception is raised, and if this exception is masked, the indef-
inite integer value (80000000H) is returned.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
DEST[63:32] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32]);
DEST[95:64] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64]);
DEST[127:96] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96]);

Intel C/C++ Compiler Intrinsic Equivalent
__m128d _mm_cvtps_epi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 5B /r CVTPS2DQ xmm1,
xmm2/m128

Valid Valid Convert four packed single-precision
floating-point values from
xmm2/m128 to four packed signed
doubleword integers in xmm1.
3-200 Vol. 2A CVTPS2DQ—Convert Packed Single-Precision Floating-Point Values
to Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-201CVTPS2DQ—Convert Packed Single-Precision Floating-Point Values
to Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
3-202 Vol. 2A CVTPS2DQ—Convert Packed Single-Precision Floating-Point Values
to Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
CVTPS2PD—Convert Packed Single-Precision Floating-Point
Values to Packed Double-Precision Floating-Point Values

Description
Converts two packed single-precision floating-point values in the source operand (second
operand) to two packed double-precision floating-point values in the destination operand (first
operand).

The source operand can be an XMM register or a 64-bit memory location. The destination
operand is an XMM register. When the source operand is an XMM register, the packed single-
precision floating-point values are contained in the low quadword of the register.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[63:0] ← Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0]);
DEST[127:64] ← Convert_Single_Precision_To_Double_Precision_

Floating_Point(SRC[63:32]);

Intel C/C++ Compiler Intrinsic Equivalent
CVTPS2PD __m128d _mm_cvtps_pd(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 5A /r CVTPS2PD xmm1,
xmm2/m64

Valid Valid Convert two packed single-precision
floating-point values in xmm2/m64 to
two packed double-precision floating-
point values in xmm1.
Vol. 2A 3-203CVTPS2PD—Convert Packed Single-Precision Floating-Point Values
to Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.
3-204 Vol. 2A CVTPS2PD—Convert Packed Single-Precision Floating-Point Values
to Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-205CVTPS2PD—Convert Packed Single-Precision Floating-Point Values
to Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
CVTPS2PI—Convert Packed Single-Precision Floating-Point
Values to Packed Doubleword Integers

Description
Converts two packed single-precision floating-point values in the source operand (second
operand) to two packed signed doubleword integers in the destination operand (first operand).

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an MMX technology register. When the source operand is an XMM register, the two
single-precision floating-point values are contained in the low quadword of the register. When
a conversion is inexact, the value returned is rounded according to the rounding control bits in
the MXCSR register. If a converted result is larger than the maximum signed doubleword
integer, the floating-point invalid exception is raised, and if this exception is masked, the indef-
inite integer value (80000000H) is returned.

CVTPS2PI causes a transition from x87 FPU to MMX technology operation (that is, the x87
FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this
instruction is executed while an x87 FPU floating-point exception is pending, the exception is
handled before the CVTPS2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
DEST[63:32] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32]);

Intel C/C++ Compiler Intrinsic Equivalent
__m64 _mm_cvtps_pi32(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 2D /r CVTPS2PI mm,
xmm/m64

Valid Valid Convert two packed single-precision
floating-point values from xmm/m64 to two
packed signed doubleword integers in mm.
3-206 Vol. 2A CVTPS2PI—Convert Packed Single-Precision Floating-Point Values to
Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#MF If there is a pending x87 FPU exception.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-207CVTPS2PI—Convert Packed Single-Precision Floating-Point Values to
Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-208 Vol. 2A CVTPS2PI—Convert Packed Single-Precision Floating-Point Values to
Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value
to Doubleword Integer

Description
Converts a double-precision floating-point value in the source operand (second operand) to a
signed doubleword integer in the destination operand (first operand). The source operand can be
an XMM register or a 64-bit memory location. The destination operand is a general-purpose
register. When the source operand is an XMM register, the double-precision floating-point value
is contained in the low quadword of the register.

When a conversion is inexact, the value returned is rounded according to the rounding control
bits in the MXCSR register. If a converted result is larger than the maximum signed doubleword
integer, the floating-point invalid exception is raised, and if this exception is masked, the indef-
inite integer value (80000000H) is returned.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when
used with an REX.R prefix. Use of the REX.W prefix promotes the instruction to 64-bit opera-
tion. See the summary chart at the beginning of this section for encoding data and limits.

Operation
IF 64-Bit Mode and OperandSize = 64

THEN
DEST[63:0] ← Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]);

ELSE
DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]);

FI;

Intel C/C++ Compiler Intrinsic Equivalent
int_mm_cvtsd_si32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F2 0F 2D /r CVTSD2SI
r32, xmm/m64

Valid Valid Convert one double-precision
floating-point value from
xmm/m64 to one signed
doubleword integer r32.

REX.W + F2 0F 2D /r CVTSD2SI
r64, xmm/m64

Valid N.E. Convert one double-precision
floating-point value from
xmm/m64 to one signed
quadword integer sign-
extended into r64.
Vol. 2A 3-209CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value to
Doubleword Integer

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-210 Vol. 2A CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value to
Doubleword Integer

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-211CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value to
Doubleword Integer

INSTRUCTION SET REFERENCE, A-M
CVTSD2SS—Convert Scalar Double-Precision Floating-Point
Value to Scalar Single-Precision Floating-Point Value

Description
Converts a double-precision floating-point value in the source operand (second operand) to a
single-precision floating-point value in the destination operand (first operand).

The source operand can be an XMM register or a 64-bit memory location. The destination
operand is an XMM register. When the source operand is an XMM register, the double-precision
floating-point value is contained in the low quadword of the register. The result is stored in the
low doubleword of the destination operand, and the upper 3 doublewords are left unchanged.
When the conversion is inexact, the value returned is rounded according to the rounding control
bits in the MXCSR register.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[31:0] ← Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0]);
(* DEST[127:32] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
CVTSD2SS __m128_mm_cvtsd_ss(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F2 0F 5A /r CVTSD2SS xmm1,
xmm2/m64

Valid Valid Convert one double-precision floating-
point value in xmm2/m64 to one single-
precision floating-point value in xmm1.
3-212 Vol. 2A CVTSD2SS—Convert Scalar Double-Precision Floating-Point Value to
Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.
Vol. 2A 3-213CVTSD2SS—Convert Scalar Double-Precision Floating-Point Value to
Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-214 Vol. 2A CVTSD2SS—Convert Scalar Double-Precision Floating-Point Value to
Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
CVTSI2SD—Convert Doubleword Integer to Scalar Double-
Precision Floating-Point Value

Description
Converts a signed doubleword integer (or signed quadword integer if operand size is 64 bits) in
the source operand (second operand) to a double-precision floating-point value in the destina-
tion operand (first operand). The source operand can be a general-purpose register or a memory
location. The destination operand is an XMM register. The result is stored in the low quadword
of the destination operand, and the high quadword left unchanged.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when
used with an REX.R prefix. Use of the REX.W prefix promotes the instruction to 64-bit oper-
ands. See the summary chart at the beginning of this section for encoding data and limits.

Operation
IF 64-Bit Mode And OperandSize = 64

THEN
DEST[63:0] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:0]);
(* DEST[127:64] unchanged *)

ELSE
DEST[63:0] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]);
(* DEST[127:64] unchanged *)

FI;

Intel C/C++ Compiler Intrinsic Equivalent
int_mm_cvtsd_si32(__m128d a)

SIMD Floating-Point Exceptions

None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F2 0F 2A /r CVTSI2SD xmm,
r/m32

Valid Valid Convert one signed doubleword
integer from r/m32 to one
double-precision floating-point
value in xmm.

REX.W + F2 0F 2A /r CVTSI2SD xmm,
r/m64

Valid N.E. Convert one signed quadword
integer from r/m64 to one
double-precision floating-point
value in xmm.
Vol. 2A 3-215CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision
Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-216 Vol. 2A CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision
Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-217CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision
Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
CVTSI2SS—Convert Doubleword Integer to Scalar Single-
Precision Floating-Point Value

Description
Converts a signed doubleword integer (or signed quadword integer if operand size is 64 bits) in
the source operand (second operand) to a single-precision floating-point value in the destination
operand (first operand). The source operand can be a general-purpose register or a memory loca-
tion. The destination operand is an XMM register. The result is stored in the low doubleword of
the destination operand, and the upper three doublewords are left unchanged. When a conver-
sion is inexact, the value returned is rounded according to the rounding control bits in the
MXCSR register.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when
used with an REX.R prefix. Use of the REX.W prefix promotes the instruction to 64-bit oper-
ands. See the summary chart at the beginning of this section for encoding data and limits.

Operation
IF 64-Bit Mode And OperandSize = 64

THEN
DEST[31:0] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:0]);
(* DEST[127:32] unchanged *)

ELSE
DEST[31:0] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
(* DEST[127:32] unchanged *)

FI;

Intel C/C++ Compiler Intrinsic Equivalent
__m128_mm_cvtsi32_ss(__m128d a, int b)

SIMD Floating-Point Exceptions

Precision.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F3 0F 2A /r CVTSI2SS
xmm, r/m32

Valid Valid Convert one signed doubleword
integer from r/m32 to one single-
precision floating-point value in
xmm.

REX.W + F3 0F 2A /r CVTSI2SS
xmm, r/m64

Valid N.E. Convert one signed quadword
integer from r/m64 to one single-
precision floating-point value in
xmm.
3-218 Vol. 2A CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision
Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-219CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision
Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-220 Vol. 2A CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision
Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value
to Scalar Double-Precision Floating-Point Value

Description
Converts a single-precision floating-point value in the source operand (second operand) to a
double-precision floating-point value in the destination operand (first operand). The source
operand can be an XMM register or a 32-bit memory location. The destination operand is an
XMM register. When the source operand is an XMM register, the single-precision floating-point
value is contained in the low doubleword of the register. The result is stored in the low quadword
of the destination operand, and the high quadword is left unchanged.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[63:0] ← Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0]);
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
CVTSS2SD __m128d_mm_cvtss_sd(__m128d a, __m128 b)

SIMD Floating-Point Exceptions

Invalid, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F3 0F 5A /r CVTSS2SD xmm1,
xmm2/m32

Valid Valid Convert one single-precision floating-
point value in xmm2/m32 to one
double-precision floating-point value in
xmm1.
Vol. 2A 3-221CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value to
Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
3-222 Vol. 2A CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value to
Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0exception and CR4.OSXMMEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-223CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value to
Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value
to Doubleword Integer

Description
Converts a single-precision floating-point value in the source operand (second operand) to a
signed doubleword integer (or signed quadword integer if operand size is 64 bits) in the desti-
nation operand (first operand). The source operand can be an XMM register or a memory loca-
tion. The destination operand is a general-purpose register. When the source operand is an XMM
register, the single-precision floating-point value is contained in the low doubleword of the
register.

When a conversion is inexact, the value returned is rounded according to the rounding control
bits in the MXCSR register. If a converted result is larger than the maximum signed doubleword
integer, the floating-point invalid exception is raised, and if this exception is masked, the indef-
inite integer value (80000000H) is returned.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when
used with an REX.R prefix. Use of the REX.W prefix promotes the instruction to 64-bit oper-
ands. See the summary chart at the beginning of this section for encoding data and limits.

Operation
IF 64-bit Mode and OperandSize = 64

THEN
DEST[64:0] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);

ELSE
DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);

FI;

Intel C/C++ Compiler Intrinsic Equivalent
int_mm_cvtss_si32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F3 0F 2D /r CVTSS2SI r32,
xmm/m32

Valid Valid Convert one single-precision
floating-point value from
xmm/m32 to one signed
doubleword integer in r32.

REX.W + F3 0F 2D /r CVTSS2SI r64,
xmm/m32

Valid N.E. Convert one single-precision
floating-point value from
xmm/m32 to one signed
quadword integer in r64.
3-224 Vol. 2A CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value to
Doubleword Integer

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-225CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value to
Doubleword Integer

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-226 Vol. 2A CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value to
Doubleword Integer

INSTRUCTION SET REFERENCE, A-M
CVTTPD2PI—Convert with Truncation Packed Double-Precision
Floating-Point Values to Packed Doubleword Integers

Description
Converts two packed double-precision floating-point values in the source operand (second
operand) to two packed signed doubleword integers in the destination operand (first operand).
The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an MMX technology register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted
result is larger than the maximum signed doubleword integer, the floating-point invalid excep-
tion is raised, and if this exception is masked, the indefinite integer value (80000000H) is
returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the
x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this
instruction is executed while an x87 FPU floating-point exception is pending, the exception is
handled before the CVTTPD2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0]);
DEST[63:32] ← Convert_Double_Precision_Floating_Point_To_Integer_

Truncate(SRC[127:64]);

Intel C/C++ Compiler Intrinsic Equivalent
CVTTPD1PI __m64 _mm_cvttpd_pi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 2C /r CVTTPD2PI mm,
xmm/m128

Valid Valid Convert two packer double-precision
floating-point values from xmm/m128 to
two packed signed doubleword integers
in mm using truncation.
Vol. 2A 3-227CVTTPD2PI—Convert with Truncation Packed Double-Precision
Floating-Point Values to Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#MF If there is a pending x87 FPU exception.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
3-228 Vol. 2A CVTTPD2PI—Convert with Truncation Packed Double-Precision
Floating-Point Values to Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
Vol. 2A 3-229CVTTPD2PI—Convert with Truncation Packed Double-Precision
Floating-Point Values to Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
CVTTPD2DQ—Convert with Truncation Packed Double-Precision
Floating-Point Values to Packed Doubleword Integers

Description
Converts two packed double-precision floating-point values in the source operand (second
operand) to two packed signed doubleword integers in the destination operand (first operand).
The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. The result is stored in the low quadword of the destination operand
and the high quadword is cleared to all 0s.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted
result is larger than the maximum signed doubleword integer, the floating-point invalid excep-
tion is raised, and if this exception is masked, the indefinite integer value (80000000H) is
returned.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0]);
DEST[63:32] ← Convert_Double_Precision_Floating_Point_To_Integer_

Truncate(SRC[127-64]);
DEST[127:64] ← 0000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent
CVTTPD2DQ __m128i _mm_cvttpd_epi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F E6 CVTTPD2DQ xmm1,
xmm2/m128

Valid Valid Convert two packed double-
precision floating-point values from
xmm2/m128 to two packed signed
doubleword integers in xmm1 using
truncation.
3-230 Vol. 2A CVTTPD2DQ—Convert with Truncation Packed Double-Precision
Floating-Point Values to Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-231CVTTPD2DQ—Convert with Truncation Packed Double-Precision
Floating-Point Values to Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
3-232 Vol. 2A CVTTPD2DQ—Convert with Truncation Packed Double-Precision
Floating-Point Values to Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
CVTTPS2DQ—Convert with Truncation Packed Single-Precision
Floating-Point Values to Packed Doubleword Integers

Description
Converts four packed single-precision floating-point values in the source operand (second
operand) to four packed signed doubleword integers in the destination operand (first operand).
The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. When a conversion is inexact, a truncated (round toward zero)
result is returned. If a converted result is larger than the maximum signed doubleword integer,
the floating-point invalid exception is raised, and if this exception is masked, the indefinite
integer value (80000000H) is returned.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]);
DEST[63:32] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32]);
DEST[95:64] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64]);
DEST[127:96] ← Convert_Single_Precision_Floating_Point_To_Integer_

Truncate(SRC[127:96]);

Intel C/C++ Compiler Intrinsic Equivalent
__m128d _mm_cvttps_epi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F3 0F 5B /r CVTTPS2DQ xmm1,
xmm2/m128

Valid Valid Convert four single-precision
floating-point values from
xmm2/m128 to four signed
doubleword integers in xmm1 using
truncation.
Vol. 2A 3-233CVTTPS2DQ—Convert with Truncation Packed Single-Precision
Floating-Point Values to Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
3-234 Vol. 2A CVTTPS2DQ—Convert with Truncation Packed Single-Precision
Floating-Point Values to Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
Vol. 2A 3-235CVTTPS2DQ—Convert with Truncation Packed Single-Precision
Floating-Point Values to Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
CVTTPS2PI—Convert with Truncation Packed Single-Precision
Floating-Point Values to Packed Doubleword Integers

Description
Converts two packed single-precision floating-point values in the source operand (second
operand) to two packed signed doubleword integers in the destination operand (first operand).
The source operand can be an XMM register or a 64-bit memory location. The destination
operand is an MMX technology register. When the source operand is an XMM register, the two
single-precision floating-point values are contained in the low quadword of the register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted
result is larger than the maximum signed doubleword integer, the floating-point invalid excep-
tion is raised, and if this exception is masked, the indefinite integer value (80000000H) is
returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the
x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this
instruction is executed while an x87 FPU floating-point exception is pending, the exception is
handled before the CVTTPS2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]);
DEST[63:32] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32]);

Intel C/C++ Compiler Intrinsic Equivalent
__m64 _mm_cvttps_pi32(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 2C /r CVTTPS2PI mm,
xmm/m64

Valid Valid Convert two single-precision floating-point
values from xmm/m64 to two signed
doubleword signed integers in mm using
truncation.
3-236 Vol. 2A CVTTPS2PI—Convert with Truncation Packed Single-Precision
Floating-Point Values to Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#MF If there is a pending x87 FPU exception.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
Vol. 2A 3-237CVTTPS2PI—Convert with Truncation Packed Single-Precision
Floating-Point Values to Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-238 Vol. 2A CVTTPS2PI—Convert with Truncation Packed Single-Precision
Floating-Point Values to Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M
CVTTSD2SI—Convert with Truncation Scalar Double-Precision
Floating-Point Value to Signed Doubleword Integer

Description
Converts a double-precision floating-point value in the source operand (second operand) to a
signed doubleword integer (or signed quadword integer if operand size is 64 bits) in the desti-
nation operand (first operand). The source operand can be an XMM register or a 64-bit memory
location. The destination operand is a general-purpose register. When the source operand is an
XMM register, the double-precision floating-point value is contained in the low quadword of
the register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted
result is larger than the maximum signed doubleword integer, the floating-point invalid excep-
tion is raised. If this exception is masked, the indefinite integer value (80000000H) is returned.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when
used with an REX.R prefix. Use of the REX.W prefix promotes the instruction to 64-bit opera-
tion. See the summary chart at the beginning of this section for encoding data and limits.

Operation
IF 64-Bit Mode and OperandSize = 64

THEN
DEST[63:0] ← Convert_Double_Precision_Floating_Point_To_

Integer_Truncate(SRC[63:0]);
ELSE

DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_
Integer_Truncate(SRC[63:0]);

FI;

Intel C/C++ Compiler Intrinsic Equivalent
int_mm_cvttsd_si32(__m128d a)

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F2 0F 2C /r CVTTSD2SI
r32, xmm/m64

Valid Valid Convert one double-precision
floating-point value from
xmm/m64 to one signed
doubleword integer in r32 using
truncation.

REX.W + F2 0F 2C /r CVTTSD2SI
r64, xmm/m64

Valid N.E. Convert one double precision
floating-point value from
xmm/m64 to one signed
quadword integer in r64 using
truncation.
Vol. 2A 3-239CVTTSD2SI—Convert with Truncation Scalar Double-Precision
Floating-Point Value to Signed Doubleword Integer

INSTRUCTION SET REFERENCE, A-M
SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
3-240 Vol. 2A CVTTSD2SI—Convert with Truncation Scalar Double-Precision
Floating-Point Value to Signed Doubleword Integer

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-241CVTTSD2SI—Convert with Truncation Scalar Double-Precision
Floating-Point Value to Signed Doubleword Integer

INSTRUCTION SET REFERENCE, A-M
CVTTSS2SI—Convert with Truncation Scalar Single-Precision
Floating-Point Value to Doubleword Integer

Description
Converts a single-precision floating-point value in the source operand (second operand) to a
signed doubleword integer (or signed quadword integer if operand size is 64 bits) in the desti-
nation operand (first operand). The source operand can be an XMM register or a 32-bit memory
location. The destination operand is a general-purpose register. When the source operand is an
XMM register, the single-precision floating-point value is contained in the low doubleword of
the register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted
result is larger than the maximum signed doubleword integer, the floating-point invalid excep-
tion is raised. If this exception is masked, the indefinite integer value (80000000H) is returned.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when
used with an REX.R prefix. Use of the REX.W prefix promotes the instruction to 64-bit opera-
tion. See the summary chart at the beginning of this section for encoding data and limits.

Operation
IF 64-Bit Mode and OperandSize = 64

THEN
DEST[63:0] ← Convert_Single_Precision_Floating_Point_To_

 Integer_Truncate(SRC[31:0]);
ELSE

DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_
Integer_Truncate(SRC[31:0]);

FI;

Intel C/C++ Compiler Intrinsic Equivalent
int_mm_cvttss_si32(__m128d a)

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F3 0F 2C /r CVTTSS2SI r32,
xmm/m32

Valid Valid Convert one single-precision
floating-point value from xmm/m32
to one signed doubleword integer
in r32 using truncation.

REX.W + F3 0F
2C /r

CVTTSS2SI r64,
xmm/m32

Valid N.E. Convert one single-precision
floating-point value from xmm/m32
to one signed quadword integer in
r64 using truncation.
3-242 Vol. 2A CVTTSS2SI—Convert with Truncation Scalar Single-Precision
Floating-Point Value to Doubleword Integer

INSTRUCTION SET REFERENCE, A-M
SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
Vol. 2A 3-243CVTTSS2SI—Convert with Truncation Scalar Single-Precision
Floating-Point Value to Doubleword Integer

INSTRUCTION SET REFERENCE, A-M
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-244 Vol. 2A CVTTSS2SI—Convert with Truncation Scalar Single-Precision
Floating-Point Value to Doubleword Integer

INSTRUCTION SET REFERENCE, A-M
CWD/CDQ/CQO—Convert Word to Doubleword/Convert
Doubleword to Quadword

Description
Doubles the size of the operand in register AX, EAX, or RAX (depending on the operand size)
by means of sign extension and stores the result in registers DX:AX, EDX:EAX, or RDX:RAX,
respectively. The CWD instruction copies the sign (bit 15) of the value in the AX register into
every bit position in the DX register. The CDQ instruction copies the sign (bit 31) of the value
in the EAX register into every bit position in the EDX register. The CQO instruction (available
in 64-bit mode only) copies the sign (bit 63) of the value in the RAX register into every bit posi-
tion in the RDX register.

The CWD instruction can be used to produce a doubleword dividend from a word before word
division. The CDQ instruction can be used to produce a quadword dividend from a doubleword
before doubleword division. The CQO instruction can be used to produce a double quadword
dividend from a quadword before a quadword division.

The CWD and CDQ mnemonics reference the same opcode. The CWD instruction is intended
for use when the operand-size attribute is 16 and the CDQ instruction for when the operand-size
attribute is 32. Some assemblers may force the operand size to 16 when CWD is used and to 32
when CDQ is used. Others may treat these mnemonics as synonyms (CWD/CDQ) and use the
current setting of the operand-size attribute to determine the size of values to be converted,
regardless of the mnemonic used.

In 64-bit mode, use of the REX.W prefix promotes operation to 64 bits. The CQO mnemonics
reference the same opcode as CWD/CDQ. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

IF OperandSize = 16 (* CWD instruction *)
THEN

DX ← SignExtend(AX);
ELSE IF OperandSize = 32 (* CDQ instruction *)

EDX ← SignExtend(EAX); FI;
ELSE IF 64-Bit Mode and OperandSize = 64 (* CQO instruction*)

RDX ← SignExtend(RAX); FI;
FI;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

99 CWD Valid Valid DX:AX ← sign-extend of AX.
99 CDQ Valid Valid EDX:EAX ← sign-extend of EAX.
REX.W + 99 CQO Valid N.E. RDX:RAX← sign-extend of RAX.
Vol. 2A 3-245CWD/CDQ/CQO—Convert Word to Doubleword/Convert Doubleword
to Quadword

INSTRUCTION SET REFERENCE, A-M
Flags Affected
None.

Exceptions (All Operating Modes)
None.
3-246 Vol. 2A CWD/CDQ/CQO—Convert Word to Doubleword/Convert Doubleword
to Quadword

INSTRUCTION SET REFERENCE, A-M
DAA—Decimal Adjust AL after Addition

Description
Adjusts the sum of two packed BCD values to create a packed BCD result. The AL register is
the implied source and destination operand. The DAA instruction is only useful when it follows
an ADD instruction that adds (binary addition) two 2-digit, packed BCD values and stores a byte
result in the AL register. The DAA instruction then adjusts the contents of the AL register to
contain the correct 2-digit, packed BCD result. If a decimal carry is detected, the CF and AF
flags are set accordingly.

This instruction executes as described above in compatibility mode and legacy mode. It is not
valid in 64-bit mode.

Operation
IF 64-Bit Mode

THEN
#UD;

ELSE
old_AL ← AL;
old_CF ← CF;
CF ← 0;
IF (((AL AND 0FH) > 9) or AF = 1)

 THEN
 AL ← AL + 6;
 CF ← old_CF or (Carry from AL ← AL + 6);
 AF ← 1;

 ELSE
 AF ← 0;

FI;
IF ((old_AL > 99H) or (old_CF = 1))

 THEN
 AL ← AL + 60H;

 CF ← 1;
ELSE

 CF ← 0;
FI;

FI;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

27 DAA Invalid Valid Decimal adjust AL after addition.
Vol. 2A 3-247DAA—Decimal Adjust AL after Addition

INSTRUCTION SET REFERENCE, A-M
Example
ADD AL, BL Before: AL=79H BL=35H EFLAGS(OSZAPC)=XXXXXX

After: AL=AEH BL=35H EFLAGS(0SZAPC)=110000
DAA Before: AL=AEH BL=35H EFLAGS(OSZAPC)=110000

After: AL=14H BL=35H EFLAGS(0SZAPC)=X00111
DAA Before: AL=2EH BL=35H EFLAGS(OSZAPC)=110000

After: AL=34H BL=35H EFLAGS(0SZAPC)=X00101

Flags Affected
The CF and AF flags are set if the adjustment of the value results in a decimal carry in either
digit of the result (see the “Operation” section above). The SF, ZF, and PF flags are set according
to the result. The OF flag is undefined.

Protected Mode Exceptions

None.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

None.

Compatibility Mode Exceptions

None.

64-Bit Mode Exceptions

#UD If in 64-bit mode.
3-248 Vol. 2A DAA—Decimal Adjust AL after Addition

INSTRUCTION SET REFERENCE, A-M
DAS—Decimal Adjust AL after Subtraction

Description
Adjusts the result of the subtraction of two packed BCD values to create a packed BCD result.
The AL register is the implied source and destination operand. The DAS instruction is only
useful when it follows a SUB instruction that subtracts (binary subtraction) one 2-digit, packed
BCD value from another and stores a byte result in the AL register. The DAS instruction then
adjusts the contents of the AL register to contain the correct 2-digit, packed BCD result. If a
decimal borrow is detected, the CF and AF flags are set accordingly.

This instruction executes as described above in compatibility mode and legacy mode. It is not
valid in 64-bit mode.

Operation
IF 64-Bit Mode

THEN
#UD;

ELSE
old_AL ← AL;
old_CF ← CF;
CF ← 0;
IF (((AL AND 0FH) > 9) or AF = 1)
 THEN
 AL ← AL − 6;

CF ← old_CF or (Borrow from AL ← AL − 6);
AF ← 1;

ELSE
AF ← 0;

FI;
IF ((old_AL > 99H) or (old_CF = 1))

 THEN
AL ← AL − 60H;
CF ← 1;

ELSE
 CF ← 0;

FI;
FI;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

2F DAS Invalid Valid Decimal adjust AL after
subtraction.
Vol. 2A 3-249DAS—Decimal Adjust AL after Subtraction

INSTRUCTION SET REFERENCE, A-M
Example

SUB AL, BL Before: AL=35H BL=47H EFLAGS(OSZAPC)= XXXXXX
After: AL=EEH BL=47H EFLAGS(0SZAPC)= 010111

DAA Before: AL=EEH BL=47H EFLAGS(OSZAPC)= 010111
After: AL=88H BL=47H EFLAGS(0SZAPC)= X10111

Flags Affected
The CF and AF flags are set if the adjustment of the value results in a decimal borrow in either
digit of the result (see the “Operation” section above). The SF, ZF, and PF flags are set according
to the result. The OF flag is undefined.

Protected Mode Exceptions

None.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

None.

Compatibility Mode Exceptions

None.

64-Bit Mode Exceptions

#UD If in 64-bit mode.
3-250 Vol. 2A DAS—Decimal Adjust AL after Subtraction

INSTRUCTION SET REFERENCE, A-M
DEC—Decrement by 1

Description
Subtracts 1 from the destination operand, while preserving the state of the CF flag. The destina-
tion operand can be a register or a memory location. This instruction allows a loop counter to be
updated without disturbing the CF flag. (To perform a decrement operation that updates the CF
flag, use a SUB instruction with an immediate operand of 1.)

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

In 64-bit mode, DEC r16 and DEC r32 are not encodable (because opcodes 48H through 4FH
are REX prefixes). Otherwise, the instruction’s 64-bit mode default operation size is 32 bits. Use
of the REX.R prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits.

See the summary chart at the beginning of this section for encoding data and limits.

Operation
DEST ← DEST – 1;

Flags Affected
The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination operand is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

FE /1 DEC r/m8 Valid Valid Decrement r/m8 by 1.
REX + FE /1 DEC r/m8* Valid N.E. Decrement r/m8 by 1.
FF /1 DEC r/m16 Valid Valid Decrement r/m16 by 1.
FF /1 DEC r/m32 Valid Valid Decrement r/m32 by 1.
REX.W + FF /1 DEC r/m64 Valid N.E. Decrement r/m64 by 1.
48+rw DEC r16 N.E. Valid Decrement r16 by 1.
48+rd DEC r32 N.E. Valid Decrement r32 by 1.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.
Vol. 2A 3-251DEC—Decrement by 1

INSTRUCTION SET REFERENCE, A-M
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-252 Vol. 2A DEC—Decrement by 1

INSTRUCTION SET REFERENCE, A-M
DIV—Unsigned Divide

Description
Divides unsigned the value in the AX, DX:AX, EDX:EAX, or RDX:RAX registers (dividend)
by the source operand (divisor) and stores the result in the AX (AH:AL), DX:AX, EDX:EAX,
or RDX:RAX registers. The source operand can be a general-purpose register or a memory loca-
tion. The action of this instruction depends on the operand size (dividend/divisor). Division
using 64-bit operand is available only in 64-bit mode.

Non-integral results are truncated (chopped) towards 0. The remainder is always less than the
divisor in magnitude. Overflow is indicated with the #DE (divide error) exception rather than
with the CF flag.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix
permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation
to 64 bits. In 64-bit mode when REX.W is applied, the instruction divides the unsigned value in
RDX:RAX by the source operand and stores the quotient in RAX, the remainder in RDX.

See the summary chart at the beginning of this section for encoding data and limits. See Table
3-20.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F6 /6 DIV r/m8 Valid Valid Unsigned divide AX by r/m8, with result
stored in AL ← Quotient, AH ←
Remainder.

REX + F6 /6 DIV r/m8* Valid N.E. Unsigned divide AX by r/m8, with result
stored in AL ← Quotient, AH ←
Remainder.

F7 /6 DIV r/m16 Valid Valid Unsigned divide DX:AX by r/m16, with
result stored in AX ← Quotient, DX ←
Remainder.

F7 /6 DIV r/m32 Valid Valid Unsigned divide EDX:EAX by r/m32,
with result stored in EAX ← Quotient,
EDX ← Remainder.

REX.W + F7 /6 DIV r/m64 Valid N.E. Unsigned divide RDX:RAX by r/m64,
with result stored in RAX ← Quotient,
RDX ← Remainder.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.
Vol. 2A 3-253DIV—Unsigned Divide

INSTRUCTION SET REFERENCE, A-M
Operation
IF SRC = 0

THEN #DE; FI; (* Divide Error *)
IF OperandSize = 8 (* Word/Byte Operation *)

THEN
temp ← AX / SRC;
IF temp > FFH

THEN #DE; (* Divide error *)
ELSE

AL ← temp;
AH ← AX MOD SRC;

FI;
ELSE IF OperandSize = 16 (* Doubleword/word operation *)

THEN
temp ← DX:AX / SRC;
IF temp > FFFFH

THEN #DE; (* Divide error *)
ELSE

AX ← temp;
DX ← DX:AX MOD SRC;

FI;
FI;

ELSE IF Operandsize = 32 (* Quadword/doubleword operation *)
THEN

temp ← EDX:EAX / SRC;
IF temp > FFFFFFFFH

THEN #DE; (* Divide error *)
ELSE

EAX ← temp;
EDX ← EDX:EAX MOD SRC;

FI;
FI;

ELSE IF 64-Bit Mode and Operandsize = 64 (* Doublequadword/quadword operation *)
THEN

temp ← RDX:RAX / SRC;

Table 3-20. DIV Action

Operand Size Dividend Divisor Quotient Remainder
Maximum
Quotient

Word/byte AX r/m8 AL AH 255

Doubleword/word DX:AX r/m16 AX DX 65,535

Quadword/doubleword EDX:EAX r/m32 EAX EDX 232 − 1

Doublequadword/
quadword

RDX:RAX r/m64 RAX RDX 264 − 1
3-254 Vol. 2A DIV—Unsigned Divide

INSTRUCTION SET REFERENCE, A-M
IF temp > FFFFFFFFFFFFFFFFH
THEN #DE; (* Divide error *)

ELSE
RAX ← temp;
RDX ← RDX:RAX MOD SRC;

FI;
FI;

FI;

Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.
Vol. 2A 3-255DIV—Unsigned Divide

INSTRUCTION SET REFERENCE, A-M
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-256 Vol. 2A DIV—Unsigned Divide

INSTRUCTION SET REFERENCE, A-M
DIVPD—Divide Packed Double-Precision Floating-Point Values

Description
Performs an SIMD divide of the two packed double-precision floating-point values in the desti-
nation operand (first operand) by the two packed double-precision floating-point values in the
source operand (second operand), and stores the packed double-precision floating-point results
in the destination operand. The source operand can be an XMM register or a 128-bit memory
location. The destination operand is an XMM register. See Chapter 11 in the IA-32 Intel® Archi-
tecture Software Developer’s Manual, Volume 1, for an overview of an SIMD double-precision
floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[63:0] ← DEST[63:0] / (SRC[63:0]);
DEST[127:64] ← DEST[127:64] / (SRC[127:64]);

Intel C/C++ Compiler Intrinsic Equivalent
DIVPD __m128 _mm_div_pd(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 5E /r DIVPD xmm1,
xmm2/m128

Valid Valid Divide packed double-precision floating-
point values in xmm1 by packed double-
precision floating-point values xmm2/m128.
Vol. 2A 3-257DIVPD—Divide Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.
3-258 Vol. 2A DIVPD—Divide Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
Vol. 2A 3-259DIVPD—Divide Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
DIVPS—Divide Packed Single-Precision Floating-Point Values

Description
Performs an SIMD divide of the four packed single-precision floating-point values in the desti-
nation operand (first operand) by the four packed single-precision floating-point values in the
source operand (second operand), and stores the packed single-precision floating-point results
in the destination operand. The source operand can be an XMM register or a 128-bit memory
location. The destination operand is an XMM register. See Chapter 10 in the IA-32 Intel® Archi-
tecture Software Developer’s Manual, Volume 1, for an overview of an SIMD single-precision
floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[31:0] ← DEST[31:0] / (SRC[31:0]);
DEST[63:32] ← DEST[63:32] / (SRC[63:32]);
DEST[95:64] ← DEST[95:64] / (SRC[95:64]);
DEST[127:96] ← DEST[127:96] / (SRC[127:96]);

Intel C/C++ Compiler Intrinsic Equivalent
DIVPS __m128 _mm_div_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 5E /r DIVPS xmm1,
xmm2/m128

Valid Valid Divide packed single-precision floating-point
values in xmm1 by packed single-precision
floating-point values xmm2/m128.
3-260 Vol. 2A DIVPS—Divide Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-261DIVPS—Divide Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
3-262 Vol. 2A DIVPS—Divide Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
DIVSD—Divide Scalar Double-Precision Floating-Point Values

Description
Divides the low double-precision floating-point value in the destination operand (first operand)
by the low double-precision floating-point value in the source operand (second operand), and
stores the double-precision floating-point result in the destination operand. The source operand
can be an XMM register or a 64-bit memory location. The destination operand is an XMM
register. The high quadword of the destination operand remains unchanged. See Chapter 11 in
the IA-32 Intel® Architecture Software Developer’s Manual, Volume 1, for an overview of a
scalar double-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[63:0] ← DEST[63:0] / SRC[63:0];
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
DIVSD __m128d _mm_div_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F2 0F 5E /r DIVSD xmm1,
xmm2/m64

Valid Valid Divide low double-precision floating-point
value n xmm1 by low double-precision
floating-point value in xmm2/mem64.
Vol. 2A 3-263DIVSD—Divide Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
3-264 Vol. 2A DIVSD—Divide Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-265DIVSD—Divide Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
DIVSS—Divide Scalar Single-Precision Floating-Point Values

Description
Divides the low single-precision floating-point value in the destination operand (first operand)
by the low single-precision floating-point value in the source operand (second operand), and
stores the single-precision floating-point result in the destination operand. The source operand
can be an XMM register or a 32-bit memory location. The destination operand is an XMM
register. The three high-order doublewords of the destination operand remain unchanged. See
Chapter 10 in the IA-32 Intel® Architecture Software Developer’s Manual, Volume 1, for an
overview of a scalar single-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[31:0] ← DEST[31:0] / SRC[31:0];
(* DEST[127:32] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
DIVSS __m128 _mm_div_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F3 0F 5E /r DIVSS xmm1,
xmm2/m32

Valid Valid Divide low single-precision floating-point
value in xmm1 by low single-precision
floating-point value in xmm2/m32.
3-266 Vol. 2A DIVSS—Divide Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
Vol. 2A 3-267DIVSS—Divide Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-268 Vol. 2A DIVSS—Divide Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
EMMS—Empty MMX Technology State

Description
Sets the values of all the tags in the x87 FPU tag word to empty (all 1s). This operation marks
the x87 FPU data registers (which are aliased to the MMX technology registers) as available
for use by x87 FPU floating-point instructions. (See Figure 8-7 in the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 1, for the format of the x87 FPU tag word.) All other
MMX instructions (other than the EMMS instruction) set all the tags in x87 FPU tag word to
valid (all 0s).
The EMMS instruction must be used to clear the MMX technology state at the end of all MMX
technology procedures or subroutines and before calling other procedures or subroutines that
may execute x87 floating-point instructions. If a floating-point instruction loads one of the regis-
ters in the x87 FPU data register stack before the x87 FPU tag word has been reset by the EMMS
instruction, an x87 floating-point register stack overflow can occur that will result in an x87
floating-point exception or incorrect result.

EMMS operation is the same in non-64-bit modes and 64-bit mode.

Operation
x87FPUTagWord ← FFFFH;

Intel C/C++ Compiler Intrinsic Equivalent
void_mm_empty()

Flags Affected
None.

Protected Mode Exceptions
#UD If CR0.EM[bit 2] = 1.

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 77 EMMS Valid Valid Set the x87 FPU tag word to empty.
Vol. 2A 3-269EMMS—Empty MMX Technology State

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
3-270 Vol. 2A EMMS—Empty MMX Technology State

INSTRUCTION SET REFERENCE, A-M
ENTER—Make Stack Frame for Procedure Parameters

Description
Creates a stack frame for a procedure. The first operand (size operand) specifies the size of the
stack frame (that is, the number of bytes of dynamic storage allocated on the stack for the proce-
dure). The second operand (nesting level operand) gives the lexical nesting level (0 to 31) of the
procedure. The nesting level determines the number of stack frame pointers that are copied into
the “display area” of the new stack frame from the preceding frame. Both of these operands are
immediate values.

The stack-size attribute determines whether the BP (16 bits), EBP (32 bits), or RBP (64 bits)
register specifies the current frame pointer and whether SP (16 bits), ESP (32 bits), or RSP
(64 bits) specifies the stack pointer. In 64-bit mode, stack-size attribute is always 64-bits.

The ENTER and companion LEAVE instructions are provided to support block structured
languages. The ENTER instruction (when used) is typically the first instruction in a procedure
and is used to set up a new stack frame for a procedure. The LEAVE instruction is then used at
the end of the procedure (just before the RET instruction) to release the stack frame.

If the nesting level is 0, the processor pushes the frame pointer from the BP/EBP/RBP register
onto the stack, copies the current stack pointer from the SP/ESP/RSP register into the
BP/EBP/RBP register, and loads the SP/ESP/RSP register with the current stack-pointer value
minus the value in the size operand. For nesting levels of 1 or greater, the processor pushes addi-
tional frame pointers on the stack before adjusting the stack pointer. These additional frame
pointers provide the called procedure with access points to other nested frames on the stack. See
“Procedure Calls for Block-Structured Languages” in Chapter 6 of the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 1, for more information about the actions of the ENTER
instruction.

In 64-bit mode, default operation size is 64 bits; 32-bit operation size cannot be encoded.

Operation
NestingLevel ← NestingLevel MOD 32
IF 64-Bit Mode (StackSize = 64)

THEN
Push(RBP);
FrameTemp ← RSP;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

C8 iw 00 ENTER imm16, 0 Valid Valid Create a stack frame for a
procedure.

C8 iw 01 ENTER imm16,1 Valid Valid Create a nested stack frame for a
procedure.

C8 iw ib ENTER imm16,
imm8

Valid Valid Create a nested stack frame for a
procedure.
Vol. 2A 3-271ENTER—Make Stack Frame for Procedure Parameters

INSTRUCTION SET REFERENCE, A-M
ELSE IF StackSize = 32
THEN

Push(EBP);
FrameTemp ← ESP; FI;

ELSE (* StackSize = 16 *)
Push(BP);
FrameTemp ← SP;

FI;
IF NestingLevel = 0

THEN GOTO CONTINUE; FI;
IF (NestingLevel > 0)

FOR i ← 1 to (NestingLevel − 1)
DO

IF 64-Bit Mode (StackSize = 64)
THEN

RBP ← RBP − 8;
Push([RBP]); (* Quadword push *)

ELSE IF OperandSize = 32
THEN

IF StackSize = 32
EBP ← EBP − 4;
Push([EBP]); (* Doubleword push *)

ELSE (* StackSize = 16 *)
BP ← BP − 4;
Push([BP]); (* Doubleword push *)

FI;
FI;

ELSE (* OperandSize = 16 *)
IF StackSize = 32

THEN
EBP ← EBP − 2;
Push([EBP]); (* Word push *)

ELSE (* StackSize = 16 *)
BP ← BP − 2;
Push([BP]); (* Word push *)

FI;
FI;

OD;
IF 64-Bit Mode (StackSize = 64)

THEN
Push(FrameTemp); (* Quadword push *)

ELSE IF OperandSize = 32
THEN

Push(FrameTemp); FI; (* Doubleword push *)
ELSE (* OperandSize = 16 *)

Push(FrameTemp); (* Word push *)
FI;
3-272 Vol. 2A ENTER—Make Stack Frame for Procedure Parameters

INSTRUCTION SET REFERENCE, A-M
GOTO CONTINUE;
FI;
CONTINUE:
IF 64-Bit Mode (StackSize = 64)

THEN
RBP ← FrameTemp;
RSP ← RSP − Size;

ELSE IF StackSize = 32
THEN

EBP ← FrameTemp;
ESP ← ESP − Size; FI;

ELSE (* StackSize = 16 *)
BP ← FrameTemp;
SP ← SP − Size;

FI;
END;

Flags Affected
None.

Protected Mode Exceptions
#SS(0) If the new value of the SP or ESP register is outside the stack segment

limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#SS(0) If the new value of the SP or ESP register is outside the stack segment

limit.

Virtual-8086 Mode Exceptions
#SS(0) If the new value of the SP or ESP register is outside the stack segment

limit.

#PF(fault-code) If a page fault occurs.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.
Vol. 2A 3-273ENTER—Make Stack Frame for Procedure Parameters

INSTRUCTION SET REFERENCE, A-M
F2XM1—Compute 2x–1

Description
Computes the exponential value of 2 to the power of the source operand minus 1. The source
operand is located in register ST(0) and the result is also stored in ST(0). The value of the source
operand must lie in the range –1.0 to +1.0. If the source value is outside this range, the result is
undefined.

The following table shows the results obtained when computing the exponential value of various
classes of numbers, assuming that neither overflow nor underflow occurs.

Values other than 2 can be exponentiated using the following formula:
xy ← 2(y ∗ log2x)

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
ST(0) ← (2ST(0) − 1);

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 F0 F2XM1 Valid Valid Replace ST(0) with (2ST(0) – 1).

Table 3-21. Results Obtained from F2XM1
ST(0) SRC ST(0) DEST

−1.0 to −0 −0.5 to −0

−0 −0

+0 +0

+0 to +1.0 +0 to 1.0
3-274 Vol. 2A F2XM1—Compute 2x–1

INSTRUCTION SET REFERENCE, A-M
#D Source is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Real-Address Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-275F2XM1—Compute 2x–1

INSTRUCTION SET REFERENCE, A-M
FABS—Absolute Value

Description
Clears the sign bit of ST(0) to create the absolute value of the operand. The following table
shows the results obtained when creating the absolute value of various classes of numbers.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
ST(0) ← |ST(0)|;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 E1 FABS Valid Valid Replace ST with its absolute value.

Table 3-22. Results Obtained from FABS
ST(0) SRC ST(0) DEST

−∞ +∞

−F +F

−0 +0

+0 +0

+F +F

+∞ +∞

NaN NaN

NOTES:
F Means finite floating-point value.
3-276 Vol. 2A FABS—Absolute Value

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-277FABS—Absolute Value

INSTRUCTION SET REFERENCE, A-M
FADD/FADDP/FIADD—Add

Description
Adds the destination and source operands and stores the sum in the destination location. The
destination operand is always an FPU register; the source operand can be a register or a memory
location. Source operands in memory can be in single-precision or double-precision floating-
point format or in word or doubleword integer format.

The no-operand version of the instruction adds the contents of the ST(0) register to the ST(1)
register. The one-operand version adds the contents of a memory location (either a floating-point
or an integer value) to the contents of the ST(0) register. The two-operand version, adds the
contents of the ST(0) register to the ST(i) register or vice versa. The value in ST(0) can be
doubled by coding:

FADD ST(0), ST(0);

The FADDP instructions perform the additional operation of popping the FPU register stack
after storing the result. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1. (The no-operand version of the floating-point add
instructions always results in the register stack being popped. In some assemblers, the
mnemonic for this instruction is FADD rather than FADDP.)

The FIADD instructions convert an integer source operand to double extended-precision
floating-point format before performing the addition.

The table on the following page shows the results obtained when adding various classes of
numbers, assuming that neither overflow nor underflow occurs.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D8 /0 FADD m32fp Valid Valid Add m32fp to ST(0) and store result
in ST(0).

DC /0 FADD m64fp Valid Valid Add m64fp to ST(0) and store result
in ST(0).

D8 C0+i FADD ST(0), ST(i) Valid Valid Add ST(0) to ST(i) and store result in
ST(0).

DC C0+i FADD ST(i), ST(0) Valid Valid Add ST(i) to ST(0) and store result in
ST(i).

DE C0+i FADDP ST(i), ST(0) Valid Valid Add ST(0) to ST(i), store result in
ST(i), and pop the register stack.

DE C1 FADDP Valid Valid Add ST(0) to ST(1), store result in
ST(1), and pop the register stack.

DA /0 FIADD m32int Valid Valid Add m32int to ST(0) and store result
in ST(0).

DE /0 FIADD m16int Valid Valid Add m16int to ST(0) and store result
in ST(0).
3-278 Vol. 2A FADD/FADDP/FIADD—Add

INSTRUCTION SET REFERENCE, A-M
When the sum of two operands with opposite signs is 0, the result is +0, except for the round
toward −∞ mode, in which case the result is −0. When the source operand is an integer 0, it is
treated as a +0.

When both operand are infinities of the same sign, the result is ∞ of the expected sign. If both
operands are infinities of opposite signs, an invalid-operation exception is generated. See
Table 3-23.

.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
IF Instruction = FIADD

THEN
DEST ← DEST + ConvertToDoubleExtendedPrecisionFP(SRC);

ELSE (* Source operand is floating-point value *)
DEST ← DEST + SRC;

FI;
IF Instruction = FADDP

THEN
PopRegisterStack;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Table 3-23. FADD/FADDP/FIADD Results
DEST

−∞ −F −0 +0 +F +∞ NaN

-∞ -∞ -∞ -∞ -∞ -∞ * NaN

−F or −I -∞ −F SRC SRC ±F or ±0 +∞ NaN

SRC −0 -∞ DEST −0 ±0 DEST +∞ NaN

+0 -∞ DEST ±0 +0 DEST +∞ NaN

+F or +I -∞ ±F or ±0 SRC SRC +F +∞ NaN

+∞ * +∞ +∞ +∞ +∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
Vol. 2A 3-279FADD/FADDP/FIADD—Add

INSTRUCTION SET REFERENCE, A-M
Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of unlike sign.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-280 Vol. 2A FADD/FADDP/FIADD—Add

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-281FADD/FADDP/FIADD—Add

INSTRUCTION SET REFERENCE, A-M
FBLD—Load Binary Coded Decimal

Description
Converts the BCD source operand into double extended-precision floating-point format and
pushes the value onto the FPU stack. The source operand is loaded without rounding errors. The
sign of the source operand is preserved, including that of −0.

The packed BCD digits are assumed to be in the range 0 through 9; the instruction does not
check for invalid digits (AH through FH). Attempting to load an invalid encoding produces an
undefined result.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
TOP ← TOP − 1;
ST(0) ← ConvertToDoubleExtendedPrecisionFP(SRC);

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, set to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack overflow occurred.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

DF /4 FBLD m80 dec Valid Valid Convert BCD value to floating-point and
push onto the FPU stack.
3-282 Vol. 2A FBLD—Load Binary Coded Decimal

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-283FBLD—Load Binary Coded Decimal

INSTRUCTION SET REFERENCE, A-M
FBSTP—Store BCD Integer and Pop

Description
Converts the value in the ST(0) register to an 18-digit packed BCD integer, stores the result in
the destination operand, and pops the register stack. If the source value is a non-integral value,
it is rounded to an integer value, according to rounding mode specified by the RC field of the
FPU control word. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1.

The destination operand specifies the address where the first byte destination value is to be
stored. The BCD value (including its sign bit) requires 10 bytes of space in memory.

The following table shows the results obtained when storing various classes of numbers in
packed BCD format.

If the converted value is too large for the destination format, or if the source operand is an ∞,
SNaN, QNAN, or is in an unsupported format, an invalid-arithmetic-operand condition is
signaled. If the invalid-operation exception is not masked, an invalid-arithmetic-operand excep-
tion (#IA) is generated and no value is stored in the destination operand. If the invalid-operation
exception is masked, the packed BCD indefinite value is stored in memory.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

DF /6 FBSTP m80bcd Valid Valid Store ST(0) in m80bcd and pop ST(0).

Table 3-24. FBSTP Results
ST(0) DEST

-∞ or Value Too Large for DEST Format *

F ≤ −1 −D

−1 < F < −0 **

−0 −0

+0 +0

+0 < F < +1 **

F ≥ +1 +D

+∞ or Value Too Large for DEST Format *

NaN *

NOTES:
F Means finite floating-point value.
D Means packed-BCD number.
* Indicates floating-point invalid-operation (#IA) exception.
** ±0 or ±1, depending on the rounding mode.
3-284 Vol. 2A FBSTP—Store BCD Integer and Pop

INSTRUCTION SET REFERENCE, A-M
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
DEST ← BCD(ST(0));
PopRegisterStack;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Converted value that exceeds 18 BCD digits in length.

Source operand is an SNaN, QNaN, ±∞, or in an unsupported format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a segment register is being loaded with a segment selector that points to

a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
Vol. 2A 3-285FBSTP—Store BCD Integer and Pop

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-286 Vol. 2A FBSTP—Store BCD Integer and Pop

INSTRUCTION SET REFERENCE, A-M
FCHS—Change Sign

Description
Complements the sign bit of ST(0). This operation changes a positive value into a negative value
of equal magnitude or vice versa. The following table shows the results obtained when changing
the sign of various classes of numbers.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
SignBit(ST(0)) ← NOT (SignBit(ST(0)));

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Real-Address Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 E0 FCHS Valid Valid Complements sign of ST(0).

Table 3-25. FCHS Results
ST(0) SRC ST(0) DEST

−∞ +∞

−F +F

−0 +0

+0 −0

+F −F

+∞ −∞

NaN NaN

NOTES:
* F means finite floating-point value.
Vol. 2A 3-287FCHS—Change Sign

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
3-288 Vol. 2A FCHS—Change Sign

INSTRUCTION SET REFERENCE, A-M
FCLEX/FNCLEX—Clear Exceptions

Description
Clears the floating-point exception flags (PE, UE, OE, ZE, DE, and IE), the exception summary
status flag (ES), the stack fault flag (SF), and the busy flag (B) in the FPU status word. The
FCLEX instruction checks for and handles any pending unmasked floating-point exceptions
before clearing the exception flags; the FNCLEX instruction does not.

The assembler issues two instructions for the FCLEX instruction (an FWAIT instruction
followed by an FNCLEX instruction), and the processor executes each of these instructions
separately. If an exception is generated for either of these instructions, the save EIP points to the
instruction that caused the exception.

IA-32 Architecture Compatibility
When operating a Pentium or Intel486 processor in MS-DOS* compatibility mode, it is possible
(under unusual circumstances) for an FNCLEX instruction to be interrupted prior to being
executed to handle a pending FPU exception. See the section titled “No-Wait FPU Instructions
Can Get FPU Interrupt in Window” in Appendix D of the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 1, for a description of these circumstances. An FNCLEX instruc-
tion cannot be interrupted in this way on a Pentium 4, Intel Xeon, or P6 family processor.

This instruction affects only the x87 FPU floating-point exception flags. It does not affect the
SIMD floating-point exception flags in the MXCRS register.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
FPUStatusWord[0:7] ← 0;
FPUStatusWord[15] ← 0;

FPU Flags Affected
The PE, UE, OE, ZE, DE, IE, ES, SF, and B flags in the FPU status word are cleared. The C0,
C1, C2, and C3 flags are undefined.

Opcode* Instruction
64-Bit
Mode

Compat/
Leg Mode Description

9B DB E2 FCLEX Valid Valid Clear floating-point exception flags after
checking for pending unmasked floating-
point exceptions.

DB E2 FNCLEX* Valid Valid Clear floating-point exception flags without
checking for pending unmasked floating-
point exceptions.

NOTES:
* See IA-32 Architecture Compatibility section below.
Vol. 2A 3-289FCLEX/FNCLEX—Clear Exceptions

INSTRUCTION SET REFERENCE, A-M
Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Real-Address Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
3-290 Vol. 2A FCLEX/FNCLEX—Clear Exceptions

INSTRUCTION SET REFERENCE, A-M
FCMOVcc—Floating-Point Conditional Move

Description
Tests the status flags in the EFLAGS register and moves the source operand (second operand)
to the destination operand (first operand) if the given test condition is true. The condition for
each mnemonic os given in the Description column above and in Chapter 7 in the IA-32 Intel®

Architecture Software Developer’s Manual, Volume 1. The source operand is always in the ST(i)
register and the destination operand is always ST(0).

The FCMOVcc instructions are useful for optimizing small IF constructions. They also help
eliminate branching overhead for IF operations and the possibility of branch mispredictions by
the processor.

A processor may not support the FCMOVcc instructions. Software can check if the FCMOVcc
instructions are supported by checking the processor’s feature information with the CPUID
instruction (see “COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values
and Set EFLAGS” in this chapter). If both the CMOV and FPU feature bits are set, the
FCMOVcc instructions are supported.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Legacy Compatibility
The FCMOVcc instructions were introduced to the IA-32 Architecture in the P6 family proces-
sors and are not available in earlier IA-32 processors.

Operation
IF condition TRUE

THEN ST(0) ← ST(i);
FI;

Opcode* Instruction
64-Bit
Mode

Compat/
Leg Mode* Description

DA C0+i FCMOVB ST(0), ST(i) Valid Valid Move if below (CF=1).
DA C8+i FCMOVE ST(0), ST(i) Valid Valid Move if equal (ZF=1).
DA D0+i FCMOVBE ST(0), ST(i) Valid Valid Move if below or equal (CF=1 or

ZF=1).
DA D8+i FCMOVU ST(0), ST(i) Valid Valid Move if unordered (PF=1).
DB C0+i FCMOVNB ST(0), ST(i) Valid Valid Move if not below (CF=0).
DB C8+i FCMOVNE ST(0), ST(i) Valid Valid Move if not equal (ZF=0).
DB D0+i FCMOVNBE ST(0), ST(i) Valid Valid Move if not below or equal (CF=0

and ZF=0).
DB D8+i FCMOVNU ST(0), ST(i) Valid Valid Move if not unordered (PF=0).

NOTES:
* See IA-32 Architecture Compatibility section below.
Vol. 2A 3-291FCMOVcc—Floating-Point Conditional Move

INSTRUCTION SET REFERENCE, A-M
FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Integer Flags Affected
None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
3-292 Vol. 2A FCMOVcc—Floating-Point Conditional Move

INSTRUCTION SET REFERENCE, A-M
FCOM/FCOMP/FCOMPP—Compare Floating Point Values

Description
Compares the contents of register ST(0) and source value and sets condition code flags C0, C2,
and C3 in the FPU status word according to the results (see the table below). The source operand
can be a data register or a memory location. If no source operand is given, the value in ST(0) is
compared with the value in ST(1). The sign of zero is ignored, so that –0.0 is equal to +0.0.

This instruction checks the class of the numbers being compared (see “FXAM—Exam-
ineModR/M” in this chapter). If either operand is a NaN or is in an unsupported format, an
invalid-arithmetic-operand exception (#IA) is raised and, if the exception is masked, the condi-
tion flags are set to “unordered.” If the invalid-arithmetic-operand exception is unmasked, the
condition code flags are not set.

The FCOMP instruction pops the register stack following the comparison operation and the
FCOMPP instruction pops the register stack twice following the comparison operation. To pop

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D8 /2 FCOM m32fp Valid Valid Compare ST(0) with m32fp.
DC /2 FCOM m64fp Valid Valid Compare ST(0) with m64fp.
D8 D0+i FCOM ST(i) Valid Valid Compare ST(0) with ST(i).
D8 D1 FCOM Valid Valid Compare ST(0) with ST(1).
D8 /3 FCOMP m32fp Valid Valid Compare ST(0) with m32fp and pop

register stack.
DC /3 FCOMP m64fp Valid Valid Compare ST(0) with m64fp and pop

register stack.
D8 D8+i FCOMP ST(i) Valid Valid Compare ST(0) with ST(i) and pop

register stack.
D8 D9 FCOMP Valid Valid Compare ST(0) with ST(1) and pop

register stack.
DE D9 FCOMPP Valid Valid Compare ST(0) with ST(1) and pop

register stack twice.

Table 3-26. FCOM/FCOMP/FCOMPP Results
Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordered* 1 1 1

NOTES:
* Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.
Vol. 2A 3-293FCMOVcc—Floating-Point Conditional Move

INSTRUCTION SET REFERENCE, A-M
the register stack, the processor marks the ST(0) register as empty and increments the stack
pointer (TOP) by 1.

The FCOM instructions perform the same operation as the FUCOM instructions. The only
difference is how they handle QNaN operands. The FCOM instructions raise an invalid-arith-
metic-operand exception (#IA) when either or both of the operands is a NaN value or is in an
unsupported format. The FUCOM instructions perform the same operation as the FCOM
instructions, except that they do not generate an invalid-arithmetic-operand exception for
QNaNs.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
CASE (relation of operands) OF

ST > SRC: C3, C2, C0 ← 000;
ST < SRC: C3, C2, C0 ← 001;
ST = SRC: C3, C2, C0 ← 100;

ESAC;
IF ST(0) or SRC = NaN or unsupported format

THEN
#IA
IF FPUControlWord.IM = 1

THEN
C3, C2, C0 ← 111;

FI;
FI;
IF Instruction = FCOMP

THEN
PopRegisterStack;

FI;
IF Instruction = FCOMPP

THEN
PopRegisterStack;
PopRegisterStack;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, set to 0.

C0, C2, C3 See table on previous page.
3-294 Vol. 2A FCMOVcc—Floating-Point Conditional Move

INSTRUCTION SET REFERENCE, A-M
Floating-Point Exceptions
#IS Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.

Register is marked empty.

#D One or both operands are denormal values.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-295FCMOVcc—Floating-Point Conditional Move

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-296 Vol. 2A FCMOVcc—Floating-Point Conditional Move

INSTRUCTION SET REFERENCE, A-M
FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point
Values and Set EFLAGS

Description
Performs an unordered comparison of the contents of registers ST(0) and ST(i) and sets the
status flags ZF, PF, and CF in the EFLAGS register according to the results (see the table below).
The sign of zero is ignored for comparisons, so that –0.0 is equal to +0.0.

An unordered comparison checks the class of the numbers being compared (see
“FXAM—ExamineModR/M” in this chapter). The FUCOMI/FUCOMIP instructions perform
the same operations as the FCOMI/FCOMIP instructions. The only difference is that the
FUCOMI/FUCOMIP instructions raise the invalid-arithmetic-operand exception (#IA) only
when either or both operands are an SNaN or are in an unsupported format; QNaNs cause the
condition code flags to be set to unordered, but do not cause an exception to be generated. The
FCOMI/FCOMIP instructions raise an invalid-operation exception when either or both of the
operands are a NaN value of any kind or are in an unsupported format.

If the operation results in an invalid-arithmetic-operand exception being raised, the status flags
in the EFLAGS register are set only if the exception is masked.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

DB F0+i FCOMI ST, ST(i) Valid Valid Compare ST(0) with ST(i) and set status
flags accordingly.

DF F0+i FCOMIP ST,
ST(i)

Valid Valid Compare ST(0) with ST(i), set status flags
accordingly, and pop register stack.

DB E8+i FUCOMI ST,
ST(i)

Valid Valid Compare ST(0) with ST(i), check for
ordered values, and set status flags
accordingly.

DF E8+i FUCOMIP ST,
ST(i)

Valid Valid Compare ST(0) with ST(i), check for
ordered values, set status flags
accordingly, and pop register stack.

Table 3-27. FCOMI/FCOMIP/ FUCOMI/FUCOMIP Results
Comparison Results* ZF PF CF

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered** 1 1 1

NOTES:
* See the IA-32 Architecture Compatibility section below.
** Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.
Vol. 2A 3-297FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values
and Set EFLAGS

INSTRUCTION SET REFERENCE, A-M
The FCOMI/FCOMIP and FUCOMI/FUCOMIP instructions clear the OF flag in the EFLAGS
register (regardless of whether an invalid-operation exception is detected).

The FCOMIP and FUCOMIP instructions also pop the register stack following the comparison
operation. To pop the register stack, the processor marks the ST(0) register as empty and incre-
ments the stack pointer (TOP) by 1.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility
The FCOMI/FCOMIP/FUCOMI/FUCOMIP instructions were introduced to the IA-32 Archi-
tecture in the P6 family processors and are not available in earlier IA-32 processors.

Operation
CASE (relation of operands) OF

ST(0) > ST(i): ZF, PF, CF ← 000;
ST(0) < ST(i): ZF, PF, CF ← 001;
ST(0) = ST(i): ZF, PF, CF ← 100;

ESAC;
IF Instruction is FCOMI or FCOMIP

THEN
IF ST(0) or ST(i) = NaN or unsupported format

THEN
#IA
IF FPUControlWord.IM = 1

THEN
ZF, PF, CF ← 111;

FI;
FI;

FI;
IF Instruction is FUCOMI or FUCOMIP

THEN
IF ST(0) or ST(i) = QNaN, but not SNaN or unsupported format

THEN
ZF, PF, CF ← 111;

ELSE (* ST(0) or ST(i) is SNaN or unsupported format *)
 #IA;
IF FPUControlWord.IM = 1

THEN
ZF, PF, CF ← 111;

FI;
FI;

FI;
3-298 Vol. 2A FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values
and Set EFLAGS

INSTRUCTION SET REFERENCE, A-M
IF Instruction is FCOMIP or FUCOMIP
THEN

PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, set to 0.

C0, C2, C3 Not affected.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA (FCOMI or FCOMIP instruction) One or both operands are NaN values or
have unsupported formats.

(FUCOMI or FUCOMIP instruction) One or both operands are SNaN
values (but not QNaNs) or have undefined formats. Detection of a QNaN
value does not raise an invalid-operand exception.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-299FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values
and Set EFLAGS

INSTRUCTION SET REFERENCE, A-M
FCOS—Cosine

Description
Computes the cosine of the source operand in register ST(0) and stores the result in ST(0). The
source operand must be given in radians and must be within the range −263 to +263. The following
table shows the results obtained when taking the cosine of various classes of numbers.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the range −263 to +263 can be reduced to the range of the
instruction by subtracting an appropriate integer multiple of 2π or by using the FPREM instruc-
tion with a divisor of 2π. See the section titled “Pi” in Chapter 8 of the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in
performing such reductions.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 FF FCOS Valid Valid Replace ST(0) with its cosine.

Table 3-28. FCOS Results
ST(0) SRC ST(0) DEST

−∞ *

−F −1 to +1

−0 +1

+0 +1

+F −1 to +1

+∞ *

NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
3-300 Vol. 2A FCOS—Cosine

INSTRUCTION SET REFERENCE, A-M
Operation
IF |ST(0)| < 263

THEN
C2 ← 0;
ST(0) ← cosine(ST(0));

ELSE (* Source operand is out-of-range *)
C2 ← 1;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

Undefined if C2 is 1.

C2 Set to 1 if outside range (−263 < source operand < +263); otherwise, set to 0.

C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

#D Source is a denormal value.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-301FCOS—Cosine

INSTRUCTION SET REFERENCE, A-M
FDECSTP—Decrement Stack-Top Pointer

Description
Subtracts one from the TOP field of the FPU status word (decrements the top-of-stack pointer).
If the TOP field contains a 0, it is set to 7. The effect of this instruction is to rotate the stack by
one position. The contents of the FPU data registers and tag register are not affected.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
IF TOP = 0

THEN TOP ← 7;
ELSE TOP ← TOP – 1;

FI;

FPU Flags Affected
The C1 flag is set to 0. The C0, C2, and C3 flags are undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 F6 FDECSTP Valid Valid Decrement TOP field in FPU status
word.
3-302 Vol. 2A FDECSTP—Decrement Stack-Top Pointer

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-303FDECSTP—Decrement Stack-Top Pointer

INSTRUCTION SET REFERENCE, A-M
FDIV/FDIVP/FIDIV—Divide

Description
Divides the destination operand by the source operand and stores the result in the destination
location. The destination operand (dividend) is always in an FPU register; the source operand
(divisor) can be a register or a memory location. Source operands in memory can be in single-
precision or double-precision floating-point format, word or doubleword integer format.

The no-operand version of the instruction divides the contents of the ST(1) register by the
contents of the ST(0) register. The one-operand version divides the contents of the ST(0) register
by the contents of a memory location (either a floating-point or an integer value). The two-
operand version, divides the contents of the ST(0) register by the contents of the ST(i) register
or vice versa.

The FDIVP instructions perform the additional operation of popping the FPU register stack after
storing the result. To pop the register stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1. The no-operand version of the floating-point divide
instructions always results in the register stack being popped. In some assemblers, the
mnemonic for this instruction is FDIV rather than FDIVP.

The FIDIV instructions convert an integer source operand to double extended-precision
floating-point format before performing the division. When the source operand is an integer 0,
it is treated as a +0.

If an unmasked divide-by-zero exception (#Z) is generated, no result is stored; if the exception
is masked, an ∞ of the appropriate sign is stored in the destination operand.

The following table shows the results obtained when dividing various classes of numbers,
assuming that neither overflow nor underflow occurs.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D8 /6 FDIV m32fp Valid Valid Divide ST(0) by m32fp and store
result in ST(0).

DC /6 FDIV m64fp Valid Valid Divide ST(0) by m64fp and store
result in ST(0).

D8 F0+i FDIV ST(0), ST(i) Valid Valid Divide ST(0) by ST(i) and store result
in ST(0).

DC F8+i FDIV ST(i), ST(0) Valid Valid Divide ST(i) by ST(0) and store result
in ST(i).

DE F8+i FDIVP ST(i), ST(0) Valid Valid Divide ST(i) by ST(0), store result in
ST(i), and pop the register stack.

DE F9 FDIVP Valid Valid Divide ST(1) by ST(0), store result in
ST(1), and pop the register stack.

DA /6 FIDIV m32int Valid Valid Divide ST(0) by m32int and store
result in ST(0).

DE /6 FIDIV m16int Valid Valid Divide ST(0) by m64int and store
result in ST(0).
3-304 Vol. 2A FDIV/FDIVP/FIDIV—Divide

INSTRUCTION SET REFERENCE, A-M
.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
IF SRC = 0

THEN
#Z;

ELSE
IF Instruction is FIDIV

THEN
DEST ← DEST / ConvertToDoubleExtendedPrecisionFP(SRC);

ELSE (* Source operand is floating-point value *)
DEST ← DEST / SRC;

FI;
FI;
IF Instruction = FDIVP

THEN
PopRegisterStack;

FI;

Table 3-29. FDIV/FDIVP/FIDIV Results
DEST

−∞ −F −0 +0 +F +∞ NaN

-∞ * +0 +0 −0 −0 * NaN

−F +∞ +F +0 −0 −F −∞ NaN

−I +∞ +F +0 −0 −F −∞ NaN

SRC −0 +∞ ** * * ** −∞ NaN

+0 −∞ ** * * ** +∞ NaN

+I −∞ −F −0 +0 +F +∞ NaN

+F −∞ −F −0 +0 +F +∞ NaN

+∞ * −0 −0 +0 +0 * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.
Vol. 2A 3-305FDIV/FDIVP/FIDIV—Divide

INSTRUCTION SET REFERENCE, A-M
FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

±∞ / ±∞; ±0 / ±0

#D Source is a denormal value.

#Z DEST / ±0, where DEST is not equal to ±0.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.
3-306 Vol. 2A FDIV/FDIVP/FIDIV—Divide

INSTRUCTION SET REFERENCE, A-M
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-307FDIV/FDIVP/FIDIV—Divide

INSTRUCTION SET REFERENCE, A-M
FDIVR/FDIVRP/FIDIVR—Reverse Divide

Description
Divides the source operand by the destination operand and stores the result in the destination
location. The destination operand (divisor) is always in an FPU register; the source operand
(dividend) can be a register or a memory location. Source operands in memory can be in single-
precision or double-precision floating-point format, word or doubleword integer format.

These instructions perform the reverse operations of the FDIV, FDIVP, and FIDIV instructions.
They are provided to support more efficient coding.

The no-operand version of the instruction divides the contents of the ST(0) register by the
contents of the ST(1) register. The one-operand version divides the contents of a memory loca-
tion (either a floating-point or an integer value) by the contents of the ST(0) register. The two-
operand version, divides the contents of the ST(i) register by the contents of the ST(0) register
or vice versa.

The FDIVRP instructions perform the additional operation of popping the FPU register stack
after storing the result. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1. The no-operand version of the floating-point
divide instructions always results in the register stack being popped. In some assemblers, the
mnemonic for this instruction is FDIVR rather than FDIVRP.

The FIDIVR instructions convert an integer source operand to double extended-precision
floating-point format before performing the division.

If an unmasked divide-by-zero exception (#Z) is generated, no result is stored; if the exception
is masked, an ∞ of the appropriate sign is stored in the destination operand.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D8 /7 FDIVR m32fp Valid Valid Divide m32fp by ST(0) and store result in
ST(0).

DC /7 FDIVR m64fp Valid Valid Divide m64fp by ST(0) and store result in
ST(0).

D8 F8+i FDIVR ST(0),
ST(i)

Valid Valid Divide ST(i) by ST(0) and store result in
ST(0).

DC F0+i FDIVR ST(i),
ST(0)

Valid Valid Divide ST(0) by ST(i) and store result in
ST(i).

DE F0+i FDIVRP ST(i),
ST(0)

Valid Valid Divide ST(0) by ST(i), store result in
ST(i), and pop the register stack.

DE F1 FDIVRP Valid Valid Divide ST(0) by ST(1), store result in
ST(1), and pop the register stack.

DA /7 FIDIVR m32int Valid Valid Divide m32int by ST(0) and store result
in ST(0).

DE /7 FIDIVR m16int Valid Valid Divide m16int by ST(0) and store result
in ST(0).
3-308 Vol. 2A FDIVR/FDIVRP/FIDIVR—Reverse Divide

INSTRUCTION SET REFERENCE, A-M
The following table shows the results obtained when dividing various classes of numbers,
assuming that neither overflow nor underflow occurs.

When the source operand is an integer 0, it is treated as a +0.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
IF DEST = 0

THEN
#Z;

ELSE
IF Instruction = FIDIVR

THEN
DEST ← ConvertToDoubleExtendedPrecisionFP(SRC) / DEST;

ELSE (* Source operand is floating-point value *)
DEST ← SRC / DEST;

FI;
FI;
IF Instruction = FDIVRP

THEN
PopRegisterStack;

FI;

Table 3-30. FDIVR/FDIVRP/FIDIVR Results
DEST

−∞ −F −0 +0 +F +∞ NaN

−∞ * +∞ +∞ −∞ −∞ * NaN

SRC −F +0 +F ** ** -F −0 NaN

−I +0 +F ** ** -F −0 NaN

−0 +0 +0 * * −0 −0 NaN

+0 −0 −0 * * +0 +0 NaN

+I −0 -F ** ** +F +0 NaN

+F −0 -F ** ** +F +0 NaN

+∞ * −∞ −∞ +∞ +∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.
Vol. 2A 3-309FDIVR/FDIVRP/FIDIVR—Reverse Divide

INSTRUCTION SET REFERENCE, A-M
FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

±∞ / ±∞; ±0 / ±0

#D Source is a denormal value.

#Z SRC / ±0, where SRC is not equal to ±0.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.
3-310 Vol. 2A FDIVR/FDIVRP/FIDIVR—Reverse Divide

INSTRUCTION SET REFERENCE, A-M
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-311FDIVR/FDIVRP/FIDIVR—Reverse Divide

INSTRUCTION SET REFERENCE, A-M
FFREE—Free Floating-Point Register

Description
Sets the tag in the FPU tag register associated with register ST(i) to empty (11B). The contents
of ST(i) and the FPU stack-top pointer (TOP) are not affected.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
TAG(i) ← 11B;

FPU Flags Affected
C0, C1, C2, C3 undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

DD C0+i FFREE ST(i) Valid Valid Sets tag for ST(i) to empty.
3-312 Vol. 2A FFREE—Free Floating-Point Register

INSTRUCTION SET REFERENCE, A-M
FICOM/FICOMP—Compare Integer

Description
Compares the value in ST(0) with an integer source operand and sets the condition code flags
C0, C2, and C3 in the FPU status word according to the results (see table below). The integer
value is converted to double extended-precision floating-point format before the comparison is
made.

These instructions perform an “unordered comparison.” An unordered comparison also checks
the class of the numbers being compared (see “FXAM—ExamineModR/M” in this chapter). If
either operand is a NaN or is in an undefined format, the condition flags are set to “unordered.”

The sign of zero is ignored, so that –0.0 ← +0.0.

The FICOMP instructions pop the register stack following the comparison. To pop the register
stack, the processor marks the ST(0) register empty and increments the stack pointer (TOP) by 1.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
CASE (relation of operands) OF

ST(0) > SRC: C3, C2, C0 ← 000;
ST(0) < SRC: C3, C2, C0 ← 001;
ST(0) = SRC: C3, C2, C0 ← 100;
Unordered: C3, C2, C0 ← 111;

ESAC;
IF Instruction = FICOMP

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

DE /2 FICOM m16int Valid Valid Compare ST(0) with m16int.
DA /2 FICOM m32int Valid Valid Compare ST(0) with m32int.
DE /3 FICOMP m16int Valid Valid Compare ST(0) with m16int and pop

stack register.
DA /3 FICOMP m32int Valid Valid Compare ST(0) with m32int and pop

stack register.

Table 3-31. FICOM/FICOMP Results
Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordered 1 1 1
Vol. 2A 3-313FICOM/FICOMP—Compare Integer

INSTRUCTION SET REFERENCE, A-M
THEN
PopRegisterStack;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, set to 0.

C0, C2, C3 See table on previous page.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.

#D One or both operands are denormal values.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.
3-314 Vol. 2A FICOM/FICOMP—Compare Integer

INSTRUCTION SET REFERENCE, A-M
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-315FICOM/FICOMP—Compare Integer

INSTRUCTION SET REFERENCE, A-M
FILD—Load Integer

Description
Converts the signed-integer source operand into double extended-precision floating-point
format and pushes the value onto the FPU register stack. The source operand can be a word,
doubleword, or quadword integer. It is loaded without rounding errors. The sign of the source
operand is preserved.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
TOP ← TOP − 1;
ST(0) ← ConvertToDoubleExtendedPrecisionFP(SRC);

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; set to 0 otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack overflow occurred.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

DF /0 FILD m16int Valid Valid Push m16int onto the FPU register stack.
DB /0 FILD m32int Valid Valid Push m32int onto the FPU register stack.
DF /5 FILD m64int Valid Valid Push m64int onto the FPU register stack.
3-316 Vol. 2A FILD—Load Integer

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-317FILD—Load Integer

INSTRUCTION SET REFERENCE, A-M
FINCSTP—Increment Stack-Top Pointer

Description
Adds one to the TOP field of the FPU status word (increments the top-of-stack pointer). If the
TOP field contains a 7, it is set to 0. The effect of this instruction is to rotate the stack by one
position. The contents of the FPU data registers and tag register are not affected. This operation
is not equivalent to popping the stack, because the tag for the previous top-of-stack register is
not marked empty.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
IF TOP = 7

THEN TOP ← 0;
ELSE TOP ← TOP + 1;

FI;

FPU Flags Affected
The C1 flag is set to 0. The C0, C2, and C3 flags are undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 F7 FINCSTP Valid Valid Increment the TOP field in the FPU
status register.
3-318 Vol. 2A FINCSTP—Increment Stack-Top Pointer

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-319FINCSTP—Increment Stack-Top Pointer

INSTRUCTION SET REFERENCE, A-M
FINIT/FNINIT—Initialize Floating-Point Unit

Description
Sets the FPU control, status, tag, instruction pointer, and data pointer registers to their default
states. The FPU control word is set to 037FH (round to nearest, all exceptions masked, 64-bit
precision). The status word is cleared (no exception flags set, TOP is set to 0). The data registers
in the register stack are left unchanged, but they are all tagged as empty (11B). Both the instruc-
tion and data pointers are cleared.

The FINIT instruction checks for and handles any pending unmasked floating-point exceptions
before performing the initialization; the FNINIT instruction does not.

The assembler issues two instructions for the FINIT instruction (an FWAIT instruction followed
by an FNINIT instruction), and the processor executes each of these instructions in separately.
If an exception is generated for either of these instructions, the save EIP points to the instruction
that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility
When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible
(under unusual circumstances) for an FNINIT instruction to be interrupted prior to being
executed to handle a pending FPU exception. See the section titled “No-Wait FPU Instructions
Can Get FPU Interrupt in Window” in Appendix D of the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 1, for a description of these circumstances. An FNINIT instruction
cannot be interrupted in this way on a Pentium 4, Intel Xeon, or P6 family processor.

In the Intel387 math coprocessor, the FINIT/FNINIT instruction does not clear the instruction
and data pointers.

This instruction affects only the x87 FPU. It does not affect the XMM and MXCSR registers.

Operation
FPUControlWord ← 037FH;
FPUStatusWord ← 0;
FPUTagWord ← FFFFH;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

9B DB E3 FINIT Valid Valid Initialize FPU after checking for pending
unmasked floating-point exceptions.

DB E3 FNINIT* Valid Valid Initialize FPU without checking for
pending unmasked floating-point
exceptions.

NOTES:
* See IA-32 Architecture Compatibility section below.
3-320 Vol. 2A FINIT/FNINIT—Initialize Floating-Point Unit

INSTRUCTION SET REFERENCE, A-M
FPUDataPointer ← 0;
FPUInstructionPointer ← 0;
FPULastInstructionOpcode ← 0;

FPU Flags Affected
C0, C1, C2, C3 set to 0.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-321FINIT/FNINIT—Initialize Floating-Point Unit

INSTRUCTION SET REFERENCE, A-M
FIST/FISTP—Store Integer

Description
The FIST instruction converts the value in the ST(0) register to a signed integer and stores the
result in the destination operand. Values can be stored in word or doubleword integer format.
The destination operand specifies the address where the first byte of the destination value is to
be stored.

The FISTP instruction performs the same operation as the FIST instruction and then pops the
register stack. To pop the register stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1. The FISTP instruction also stores values in quadword
integer format.

The following table shows the results obtained when storing various classes of numbers in
integer format.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

DF /2 FIST m16int Valid Valid Store ST(0) in m16int.
DB /2 FIST m32int Valid Valid Store ST(0) in m32int.
DF /3 FISTP m16int Valid Valid Store ST(0) in m16int and pop

register stack.
DB /3 FISTP m32int Valid Valid Store ST(0) in m32int and pop

register stack.
DF /7 FISTP m64int Valid Valid Store ST(0) in m64int and pop

register stack.

Table 3-32. FIST/FISTP Results
ST(0) DEST

−∞ or Value Too Large for DEST Format *

F ≤ −1 −I

−1 < F < −0 **

−0 0

+0 0

+0 < F < +1 **

F ≥ +1 +I
3-322 Vol. 2A FIST/FISTP—Store Integer

INSTRUCTION SET REFERENCE, A-M
If the source value is a non-integral value, it is rounded to an integer value, according to the
rounding mode specified by the RC field of the FPU control word.

If the converted value is too large for the destination format, or if the source operand is an ∞,
SNaN, QNAN, or is in an unsupported format, an invalid-arithmetic-operand condition is
signaled. If the invalid-operation exception is not masked, an invalid-arithmetic-operand excep-
tion (#IA) is generated and no value is stored in the destination operand. If the invalid-operation
exception is masked, the integer indefinite value is stored in memory.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
DEST ← Integer(ST(0));
IF Instruction = FISTP

THEN
PopRegisterStack;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the inexact exception (#P) is generated:
0 ← not roundup; 1 ← roundup.

Set to 0 otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Converted value is too large for the destination format.

Source operand is an SNaN, QNaN, ±∞, or unsupported format.

#P Value cannot be represented exactly in destination format.

+∞ or Value Too Large for DEST Format *

NaN *

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-operation (#IA) exception.
** 0 or ±1, depending on the rounding mode.

Table 3-32. FIST/FISTP Results (Contd.)
Vol. 2A 3-323FIST/FISTP—Store Integer

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
3-324 Vol. 2A FIST/FISTP—Store Integer

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-325FIST/FISTP—Store Integer

INSTRUCTION SET REFERENCE, A-M
FISTTP—Store Integer with Truncation

Description
FISTTP converts the value in ST into a signed integer using truncation (chop) as rounding mode,
transfers the result to the destination, and pop ST. FISTTP accepts word, short integer, and long
integer destinations.

The following table shows the results obtained when storing various classes of numbers in
integer format.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DEST ← ST;
pop ST;

Flags Affected
C1 is cleared; C0, C2, C3 undefined.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

DF /1 FISTTP m16int Valid Valid Store ST(0) in m16int with
truncation.

DB /1 FISTTP m32int Valid Valid Store ST(0) in m32int with
truncation.

DD /1 FISTTP m64int Valid Valid Store ST(0) in m64int with
truncation.

Table 3-33. FISTTP Results
ST(0) DEST

− ∞ or Value Too Large for DEST Format ∗

F ≤ − 1 − Ι

− 1 < F < +1 0

F ≥ +1 + Ι

+ ∞ or Value Too Large for DEST Format ∗

NaN ∗

NOTES:
F Means finite floating-point value.
Ι Means integer.
∗ Indicates floating-point invalid-operation (#IA) exception.
3-326 Vol. 2A FISTTP—Store Integer with Truncation

INSTRUCTION SET REFERENCE, A-M
Numeric Exceptions
Invalid, Stack Invalid (stack underflow), Precision.

Protected Mode Exceptions
#GP(0) If the destination is in a nonwritable segment.

For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

#NM If CR0.EM[bit 2] = 1.

If CR0.TS[bit 3] = 1.

#UD If CPUID.01H:ECX.SSE3[bit 0] = 0.

Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

#NM If CR0.EM[bit 2] = 1.

If CR0.TS[bit 3] = 1.

#UD If CPUID.01H:ECX.SSE3[bit 0] = 0.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

#NM If CR0.EM[bit 2] = 1.

If CR0.TS[bit 3] = 1.

#UD If CPUID.01H:ECX.SSE3[bit 0] = 0.

#PF(fault-code) For a page fault.

#AC(0) For unaligned memory reference if the current privilege is 3.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-327FISTTP—Store Integer with Truncation

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-328 Vol. 2A FISTTP—Store Integer with Truncation

INSTRUCTION SET REFERENCE, A-M
FLD—Load Floating Point Value

Description
Pushes the source operand onto the FPU register stack. The source operand can be in single-
precision, double-precision, or double extended-precision floating-point format. If the source
operand is in single-precision or double-precision floating-point format, it is automatically
converted to the double extended-precision floating-point format before being pushed on the
stack.

The FLD instruction can also push the value in a selected FPU register [ST(i)] onto the stack.
Here, pushing register ST(0) duplicates the stack top.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
IF SRC is ST(i)

THEN
temp ← ST(i);

FI;
TOP ← TOP − 1;
IF SRC is memory-operand

THEN
ST(0) ← ConvertToDoubleExtendedPrecisionFP(SRC);

ELSE (* SRC is ST(i) *)
ST(0) ← temp;

FI;

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, set to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack overflow occurred.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 /0 FLD m32fp Valid Valid Push m32fp onto the FPU register stack.
DD /0 FLD m64fp Valid Valid Push m64fp onto the FPU register stack.
DB /5 FLD m80fp Valid Valid Push m80fp onto the FPU register stack.
D9 C0+i FLD ST(i) Valid Valid Push ST(i) onto the FPU register stack.
Vol. 2A 3-329FLD—Load Floating Point Value

INSTRUCTION SET REFERENCE, A-M
#IA Source operand is an SNaN. Does not occur if the source operand is in
double extended-precision floating-point format (FLD m80fp or FLD
ST(i)).

Protected Mode Exceptions
#D Source operand is a denormal value. Does not occur if the source operand

is in double extended-precision floating-point format.

#GP(0) If destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
3-330 Vol. 2A FLD—Load Floating Point Value

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-331FLD—Load Floating Point Value

INSTRUCTION SET REFERENCE, A-M
FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load
Constant

Description
Push one of seven commonly used constants (in double extended-precision floating-point
format) onto the FPU register stack. The constants that can be loaded with these instructions
include +1.0, +0.0, log210, log2e, π, log102, and loge2. For each constant, an internal 66-bit
constant is rounded (as specified by the RC field in the FPU control word) to double extended-
precision floating-point format. The inexact-result exception (#P) is not generated as a result of
the rounding, nor is the C1 flag set in the x87 FPU status word if the value is rounded up.

See the section titled “Pi” in Chapter 8 of the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 1, for a description of the π constant.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility
When the RC field is set to round-to-nearest, the FPU produces the same constants that is
produced by the Intel 8087 and Intel 287 math coprocessors.

Operation
TOP ← TOP − 1;
ST(0) ← CONSTANT;

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, set to 0.

C0, C2, C3 Undefined.

Opcode* Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 E8 FLD1 Valid Valid Push +1.0 onto the FPU register stack.
D9 E9 FLDL2T Valid Valid Push log210 onto the FPU register stack.
D9 EA FLDL2E Valid Valid Push log2e onto the FPU register stack.
D9 EB FLDPI Valid Valid Push π onto the FPU register stack.
D9 EC FLDLG2 Valid Valid Push log102 onto the FPU register stack.
D9 ED FLDLN2 Valid Valid Push loge2 onto the FPU register stack.
D9 EE FLDZ Valid Valid Push +0.0 onto the FPU register stack.

NOTES:
* See IA-32 Architecture Compatibility section below.
3-332 Vol. 2A FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load
Constant

INSTRUCTION SET REFERENCE, A-M
Floating-Point Exceptions
#IS Stack overflow occurred.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions

Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-333FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load
Constant

INSTRUCTION SET REFERENCE, A-M
FLDCW—Load x87 FPU Control Word

Description
Loads the 16-bit source operand into the FPU control word. The source operand is a memory
location. This instruction is typically used to establish or change the FPU’s mode of operation.

If one or more exception flags are set in the FPU status word prior to loading a new FPU control
word and the new control word unmasks one or more of those exceptions, a floating-point
exception will be generated upon execution of the next floating-point instruction (except for the
no-wait floating-point instructions, see the section titled “Software Exception Handling” in
Chapter 8 of the IA-32 Intel® Architecture Software Developer’s Manual, Volume 1). To avoid
raising exceptions when changing FPU operating modes, clear any pending exceptions (using
the FCLEX or FNCLEX instruction) before loading the new control word.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
FPUControlWord ← SRC;

FPU Flags Affected
C0, C1, C2, C3 undefined.

Floating-Point Exceptions
None; however, this operation might unmask a pending exception in the FPU status word. That
exception is then generated upon execution of the next “waiting” floating-point instruction.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 /5 FLDCW m2byte Valid Valid Load FPU control word from m2byte.
3-334 Vol. 2A FLDCW—Load x87 FPU Control Word

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-335FLDCW—Load x87 FPU Control Word

INSTRUCTION SET REFERENCE, A-M
FLDENV—Load x87 FPU Environment

Description
Loads the complete x87 FPU operating environment from memory into the FPU registers. The
source operand specifies the first byte of the operating-environment data in memory. This data
is typically written to the specified memory location by a FSTENV or FNSTENV instruction.

The FPU operating environment consists of the FPU control word, status word, tag word,
instruction pointer, data pointer, and last opcode. Figures 8-9 through 8-12 in the IA-32 Intel®
Architecture Software Developer’s Manual, Volume 1, show the layout in memory of the loaded
environment, depending on the operating mode of the processor (protected or real) and the
current operand-size attribute (16-bit or 32-bit). In virtual-8086 mode, the real mode layouts are
used.

The FLDENV instruction should be executed in the same operating mode as the corresponding
FSTENV/FNSTENV instruction.

If one or more unmasked exception flags are set in the new FPU status word, a floating-point
exception will be generated upon execution of the next floating-point instruction (except for the
no-wait floating-point instructions, see the section titled “Software Exception Handling” in
Chapter 8 of the IA-32 Intel® Architecture Software Developer’s Manual, Volume 1). To avoid
generating exceptions when loading a new environment, clear all the exception flags in the FPU
status word that is being loaded.

If a page or limit fault occurs during the execution of this instruction, the state of the x87 FPU
registers as seen by the fault handler may be different than the state being loaded from memory.
In such situations, the fault handler should ignore the status of the x87 FPU registers, handle the
fault, and return. The FLDENV instruction will then complete the loading of the x87 FPU regis-
ters with no resulting context inconsistency.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
FPUControlWord ← SRC[FPUControlWord];
FPUStatusWord ← SRC[FPUStatusWord];
FPUTagWord ← SRC[FPUTagWord];
FPUDataPointer ← SRC[FPUDataPointer];
FPUInstructionPointer ← SRC[FPUInstructionPointer];
FPULastInstructionOpcode ← SRC[FPULastInstructionOpcode];

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 /4 FLDENV m14/28byte Valid Valid Load FPU environment from
m14byte or m28byte.
3-336 Vol. 2A FLDENV—Load x87 FPU Environment

INSTRUCTION SET REFERENCE, A-M
FPU Flags Affected
The C0, C1, C2, C3 flags are loaded.

Floating-Point Exceptions
None; however, if an unmasked exception is loaded in the status word, it is generated upon
execution of the next “waiting” floating-point instruction.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-337FLDENV—Load x87 FPU Environment

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-338 Vol. 2A FLDENV—Load x87 FPU Environment

INSTRUCTION SET REFERENCE, A-M
FMUL/FMULP/FIMUL—Multiply

Description
Multiplies the destination and source operands and stores the product in the destination location.
The destination operand is always an FPU data register; the source operand can be an FPU data
register or a memory location. Source operands in memory can be in single-precision or double-
precision floating-point format or in word or doubleword integer format.

The no-operand version of the instruction multiplies the contents of the ST(1) register by the
contents of the ST(0) register and stores the product in the ST(1) register. The one-operand
version multiplies the contents of the ST(0) register by the contents of a memory location (either
a floating point or an integer value) and stores the product in the ST(0) register. The two-operand
version, multiplies the contents of the ST(0) register by the contents of the ST(i) register, or vice
versa, with the result being stored in the register specified with the first operand (the destination
operand).

The FMULP instructions perform the additional operation of popping the FPU register stack
after storing the product. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1. The no-operand version of the floating-
point multiply instructions always results in the register stack being popped. In some assem-
blers, the mnemonic for this instruction is FMUL rather than FMULP.

The FIMUL instructions convert an integer source operand to double extended-precision
floating-point format before performing the multiplication.

The sign of the result is always the exclusive-OR of the source signs, even if one or more of the
values being multiplied is 0 or ∞. When the source operand is an integer 0, it is treated as a +0.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D8 /1 FMUL m32fp Valid Valid Multiply ST(0) by m32fp and store
result in ST(0).

DC /1 FMUL m64fp Valid Valid Multiply ST(0) by m64fp and store
result in ST(0).

D8 C8+i FMUL ST(0), ST(i) Valid Valid Multiply ST(0) by ST(i) and store result
in ST(0).

DC C8+i FMUL ST(i), ST(0) Valid Valid Multiply ST(i) by ST(0) and store result
in ST(i).

DE C8+i FMULP ST(i), ST(0) Valid Valid Multiply ST(i) by ST(0), store result in
ST(i), and pop the register stack.

DE C9 FMULP Valid Valid Multiply ST(1) by ST(0), store result in
ST(1), and pop the register stack.

DA /1 FIMUL m32int Valid Valid Multiply ST(0) by m32int and store
result in ST(0).

DE /1 FIMUL m16int Valid Valid Multiply ST(0) by m16int and store
result in ST(0).
Vol. 2A 3-339FMUL/FMULP/FIMUL—Multiply

INSTRUCTION SET REFERENCE, A-M
The following table shows the results obtained when multiplying various classes of numbers,
assuming that neither overflow nor underflow occurs.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
IF Instruction = FIMUL

THEN
DEST ← DEST ∗ ConvertToDoubleExtendedPrecisionFP(SRC);

ELSE (* Source operand is floating-point value *)
DEST ← DEST ∗ SRC;

FI;
IF Instruction = FMULP

THEN
PopRegisterStack;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Table 3-34. FMUL/FMULP/FIMUL Results
DEST

−∞ −F −0 +0 +F +∞ NaN

−∞ +∞ +∞ * * −∞ −∞ NaN

−F +∞ +F +0 −0 −F −∞ NaN

−I +∞ +F +0 −0 −F −∞ NaN

SRC −0 * +0 +0 −0 −0 * NaN

+0 * −0 −0 +0 +0 * NaN

+I −∞ −F −0 +0 +F +∞ NaN

+F −∞ −F −0 +0 +F +∞ NaN

+∞ −∞ −∞ * * +∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means Integer.
* Indicates invalid-arithmetic-operand (#IA) exception.
3-340 Vol. 2A FMUL/FMULP/FIMUL—Multiply

INSTRUCTION SET REFERENCE, A-M
#IA Operand is an SNaN value or unsupported format.

One operand is ±0 and the other is ±∞.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-341FMUL/FMULP/FIMUL—Multiply

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-342 Vol. 2A FMUL/FMULP/FIMUL—Multiply

INSTRUCTION SET REFERENCE, A-M
FNOP—No Operation

Description
Performs no FPU operation. This instruction takes up space in the instruction stream but does
not affect the FPU or machine context, except the EIP register.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

FPU Flags Affected
C0, C1, C2, C3 undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 D0 FNOP Valid Valid No operation is performed.
Vol. 2A 3-343FNOP—No Operation

INSTRUCTION SET REFERENCE, A-M
FPATAN—Partial Arctangent

Description
Computes the arctangent of the source operand in register ST(1) divided by the source operand
in register ST(0), stores the result in ST(1), and pops the FPU register stack. The result in register
ST(0) has the same sign as the source operand ST(1) and a magnitude less than +π.

The FPATAN instruction returns the angle between the X axis and the line from the origin to the
point (X,Y), where Y (the ordinate) is ST(1) and X (the abscissa) is ST(0). The angle depends
on the sign of X and Y independently, not just on the sign of the ratio Y/X. This is because a
point (−X,Y) is in the second quadrant, resulting in an angle between π/2 and π, while a point
(X,−Y) is in the fourth quadrant, resulting in an angle between 0 and −π/2. A point (−X,−Y) is
in the third quadrant, giving an angle between −π/2 and −π.

The following table shows the results obtained when computing the arctangent of various
classes of numbers, assuming that underflow does not occur.

Opcode* Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 F3 FPATAN Valid Valid Replace ST(1) with arctan(ST(1)/ST(0)) and pop
the register stack.

NOTES:
* See IA-32 Architecture Compatibility section below.
3-344 Vol. 2A FPATAN—Partial Arctangent

INSTRUCTION SET REFERENCE, A-M
There is no restriction on the range of source operands that FPATAN can accept.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility
The source operands for this instruction are restricted for the 80287 math coprocessor to the
following range:
0 ≤ |ST(1)| < |ST(0)| < +∞

Operation
ST(1) ← arctan(ST(1) / ST(0));
PopRegisterStack;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

Table 3-35. FPATAN Results
ST(0)

−∞ −F −0 +0 +F +∞ NaN

−∞ −3π/4* −π/2 −π/2 −π/2 −π/2 −π/4* NaN

ST(1) −F −π −π to −π/2 −π/2 −π/2 −π/2 to −0 -0 NaN

−0 −π −π −π* −0* −0 −0 NaN

+0 +π +π +π* +0* +0 +0 NaN

+F +π +π to +π/2 +π/2 +π/2 +π/2 to +0 +0 NaN

+∞ +3π/4* +π/2 +π/2 +π/2 +π/2 +π/4* NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Table 8-10 in the IA-32 Intel® Architecture Software Developer’s Manual, Volume 1, specifies that the

ratios 0/0 and •/• generate the floating-point invalid arithmetic-operation exception and, if this exception
is masked, the floating-point QNaN indefinite value is returned. With the FPATAN instruction, the 0/0 or
•/• value is actually not calculated using division. Instead, the arctangent of the two variables is derived
from a standard mathematical formulation that is generalized to allow complex numbers as arguments.
In this complex variable formulation, arctangent(0,0) etc. has well defined values. These values are
needed to develop a library to compute transcendental functions with complex arguments, based on the
FPU functions that only allow floating-point values as arguments.
Vol. 2A 3-345FPATAN—Partial Arctangent

INSTRUCTION SET REFERENCE, A-M
#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
3-346 Vol. 2A FPATAN—Partial Arctangent

INSTRUCTION SET REFERENCE, A-M
FPREM—Partial Remainder

Description
Computes the remainder obtained from dividing the value in the ST(0) register (the dividend)
by the value in the ST(1) register (the divisor or modulus), and stores the result in ST(0). The
remainder represents the following value:

Remainder ← ST(0) − (Q ∗ ST(1))

Here, Q is an integer value that is obtained by truncating the floating-point number quotient of
[ST(0) / ST(1)] toward zero. The sign of the remainder is the same as the sign of the dividend.
The magnitude of the remainder is less than that of the modulus, unless a partial remainder was
computed (as described below).

This instruction produces an exact result; the inexact-result exception does not occur and the
rounding control has no effect. The following table shows the results obtained when computing
the remainder of various classes of numbers, assuming that underflow does not occur.

When the result is 0, its sign is the same as that of the dividend. When the modulus is ∞, the
result is equal to the value in ST(0).

The FPREM instruction does not compute the remainder specified in IEEE Std 754. The IEEE
specified remainder can be computed with the FPREM1 instruction. The FPREM instruction is
provided for compatibility with the Intel 8087 and Intel287 math coprocessors.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 F8 FPREM Valid Valid Replace ST(0) with the remainder obtained
from dividing ST(0) by ST(1).

Table 3-36. FPREM Results
ST(1)

−∞ −F −0 +0 +F +∞ NaN

−∞ * * * * * * NaN

ST(0) −F ST(0) −F or −0 ** ** −F or −0 ST(0) NaN

−0 −0 −0 * * −0 −0 NaN

+0 +0 +0 * * +0 +0 NaN

+F ST(0) +F or +0 ** ** +F or +0 ST(0) NaN

+∞ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.
Vol. 2A 3-347FPREM—Partial Remainder

INSTRUCTION SET REFERENCE, A-M
The FPREM instruction gets its name “partial remainder” because of the way it computes the
remainder. This instruction arrives at a remainder through iterative subtraction. It can, however,
reduce the exponent of ST(0) by no more than 63 in one execution of the instruction. If the
instruction succeeds in producing a remainder that is less than the modulus, the operation is
complete and the C2 flag in the FPU status word is cleared. Otherwise, C2 is set, and the result
in ST(0) is called the partial remainder. The exponent of the partial remainder will be less than
the exponent of the original dividend by at least 32. Software can re-execute the instruction
(using the partial remainder in ST(0) as the dividend) until C2 is cleared. (Note that while
executing such a remainder-computation loop, a higher-priority interrupting routine that needs
the FPU can force a context switch in-between the instructions in the loop.)

An important use of the FPREM instruction is to reduce the arguments of periodic functions.
When reduction is complete, the instruction stores the three least-significant bits of the quotient
in the C3, C1, and C0 flags of the FPU status word. This information is important in argument
reduction for the tangent function (using a modulus of π/4), because it locates the original angle
in the correct one of eight sectors of the unit circle.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
D ← exponent(ST(0)) – exponent(ST(1));
IF D < 64

THEN
Q ← Integer(TruncateTowardZero(ST(0) / ST(1)));
ST(0) ← ST(0) – (ST(1) ∗ Q);
C2 ← 0;
C0, C3, C1 ← LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE
C2 ← 1;
N ← An implementation-dependent number between 32 and 63;
QQ ← Integer(TruncateTowardZero((ST(0) / ST(1)) / 2(D − N)));
ST(0) ← ST(0) – (ST(1) ∗ QQ ∗ 2(D − N));

FI;

FPU Flags Affected
C0 Set to bit 2 (Q2) of the quotient.

C1 Set to 0 if stack underflow occurred; otherwise, set to least significant bit
of quotient (Q0).

C2 Set to 0 if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.

Floating-Point Exceptions
#IS Stack underflow occurred.
3-348 Vol. 2A FPREM—Partial Remainder

INSTRUCTION SET REFERENCE, A-M
#IA Source operand is an SNaN value, modulus is 0, dividend is ∞, or unsup-
ported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-349FPREM—Partial Remainder

INSTRUCTION SET REFERENCE, A-M
FPREM1—Partial Remainder

Description
Computes the IEEE remainder obtained from dividing the value in the ST(0) register (the divi-
dend) by the value in the ST(1) register (the divisor or modulus), and stores the result in ST(0).
The remainder represents the following value:

Remainder ← ST(0) − (Q ∗ ST(1))

Here, Q is an integer value that is obtained by rounding the floating-point number quotient of
[ST(0) / ST(1)] toward the nearest integer value. The magnitude of the remainder is less than or
equal to half the magnitude of the modulus, unless a partial remainder was computed (as
described below).

This instruction produces an exact result; the precision (inexact) exception does not occur and
the rounding control has no effect. The following table shows the results obtained when
computing the remainder of various classes of numbers, assuming that underflow does not
occur.

When the result is 0, its sign is the same as that of the dividend. When the modulus is ∞, the
result is equal to the value in ST(0).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 F5 FPREM1 Valid Valid Replace ST(0) with the IEEE remainder
obtained from dividing ST(0) by ST(1).

Table 3-37. FPREM1 Results
ST(1)

−∞ −F −0 +0 +F +∞ NaN

−∞ * * * * * * NaN

ST(0) −F ST(0) ±F or −0 ** ** ±F or −0 ST(0) NaN

−0 −0 −0 * * −0 −0 NaN

+0 +0 +0 * * +0 +0 NaN

+F ST(0) ±F or +0 ** ** ±F or +0 ST(0) NaN

+∞ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.
3-350 Vol. 2A FPREM1—Partial Remainder

INSTRUCTION SET REFERENCE, A-M
The FPREM1 instruction computes the remainder specified in IEEE Standard 754. This instruc-
tion operates differently from the FPREM instruction in the way that it rounds the quotient of
ST(0) divided by ST(1) to an integer (see the “Operation” section below).

Like the FPREM instruction, FPREM1 computes the remainder through iterative subtraction,
but can reduce the exponent of ST(0) by no more than 63 in one execution of the instruction. If
the instruction succeeds in producing a remainder that is less than one half the modulus, the
operation is complete and the C2 flag in the FPU status word is cleared. Otherwise, C2 is set,
and the result in ST(0) is called the partial remainder. The exponent of the partial remainder
will be less than the exponent of the original dividend by at least 32. Software can re-execute
the instruction (using the partial remainder in ST(0) as the dividend) until C2 is cleared. (Note
that while executing such a remainder-computation loop, a higher-priority interrupting routine
that needs the FPU can force a context switch in-between the instructions in the loop.)

An important use of the FPREM1 instruction is to reduce the arguments of periodic functions.
When reduction is complete, the instruction stores the three least-significant bits of the quotient
in the C3, C1, and C0 flags of the FPU status word. This information is important in argument
reduction for the tangent function (using a modulus of π/4), because it locates the original angle
in the correct one of eight sectors of the unit circle.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
D ← exponent(ST(0)) – exponent(ST(1));
IF D < 64

THEN
Q ← Integer(RoundTowardNearestInteger(ST(0) / ST(1)));
ST(0) ← ST(0) – (ST(1) ∗ Q);
C2 ← 0;
C0, C3, C1 ← LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE
C2 ← 1;
N ← An implementation-dependent number between 32 and 63;
QQ ← Integer(TruncateTowardZero((ST(0) / ST(1)) / 2(D − N)));
ST(0) ← ST(0) – (ST(1) ∗ QQ ∗ 2(D − N));

FI;

FPU Flags Affected
C0 Set to bit 2 (Q2) of the quotient.

C1 Set to 0 if stack underflow occurred; otherwise, set to least significant bit
of quotient (Q0).

C2 Set to 0 if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.
Vol. 2A 3-351FPREM1—Partial Remainder

INSTRUCTION SET REFERENCE, A-M
Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value, modulus (divisor) is 0, dividend is ∞,
or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
3-352 Vol. 2A FPREM1—Partial Remainder

INSTRUCTION SET REFERENCE, A-M
FPTAN—Partial Tangent

Description
Computes the tangent of the source operand in register ST(0), stores the result in ST(0), and
pushes a 1.0 onto the FPU register stack. The source operand must be given in radians and must
be less than ±263. The following table shows the unmasked results obtained when computing the
partial tangent of various classes of numbers, assuming that underflow does not occur.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the range −263 to +263 can be reduced to the range of the
instruction by subtracting an appropriate integer multiple of 2π or by using the FPREM instruc-
tion with a divisor of 2π. See the section titled “Pi” in Chapter 8 of the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in
performing such reductions.

The value 1.0 is pushed onto the register stack after the tangent has been computed to maintain
compatibility with the Intel 8087 and Intel287 math coprocessors. This operation also simplifies
the calculation of other trigonometric functions. For instance, the cotangent (which is the recip-
rocal of the tangent) can be computed by executing a FDIVR instruction after the FPTAN
instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 F2 FPTAN Valid Valid Replace ST(0) with its tangent and push
1 onto the FPU stack.

Table 3-38. FPTAN Results
ST(0) SRC ST(0) DEST

−∞ *

−F −F to +F

−0 −0

+0 +0

+F −F to +F

+∞ *

NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
Vol. 2A 3-353FPTAN—Partial Tangent

INSTRUCTION SET REFERENCE, A-M
Operation
IF ST(0) < 263

THEN
C2 ← 0;
ST(0) ← tan(ST(0));
TOP ← TOP − 1;
ST(0) ← 1.0;

ELSE (* Source operand is out-of-range *)
C2 ← 1;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow occurred.

Set if result was rounded up; cleared otherwise.

C2 Set to 1 if outside range (−263 < source operand < +263); otherwise, set to 0.

C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow or overflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.
3-354 Vol. 2A FPTAN—Partial Tangent

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-355FPTAN—Partial Tangent

INSTRUCTION SET REFERENCE, A-M
FRNDINT—Round to Integer

Description
Rounds the source value in the ST(0) register to the nearest integral value, depending on the
current rounding mode (setting of the RC field of the FPU control word), and stores the result
in ST(0).

If the source value is ∞, the value is not changed. If the source value is not an integral value, the
floating-point inexact-result exception (#P) is generated.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
ST(0) ← RoundToIntegralValue(ST(0));

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#P Source operand is not an integral value.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 FC FRNDINT Valid Valid Round ST(0) to an integer.
3-356 Vol. 2A FRNDINT—Round to Integer

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-357FRNDINT—Round to Integer

INSTRUCTION SET REFERENCE, A-M
FRSTOR—Restore x87 FPU State

Description
Loads the FPU state (operating environment and register stack) from the memory area specified
with the source operand. This state data is typically written to the specified memory location by
a previous FSAVE/FNSAVE instruction.

The FPU operating environment consists of the FPU control word, status word, tag word,
instruction pointer, data pointer, and last opcode. Figures 8-9 through 8-12 in the IA-32 Intel®
Architecture Software Developer’s Manual, Volume 1, show the layout in memory of the stored
environment, depending on the operating mode of the processor (protected or real) and the
current operand-size attribute (16-bit or 32-bit). In virtual-8086 mode, the real mode layouts are
used. The contents of the FPU register stack are stored in the 80 bytes immediately following
the operating environment image.

The FRSTOR instruction should be executed in the same operating mode as the corresponding
FSAVE/FNSAVE instruction.

If one or more unmasked exception bits are set in the new FPU status word, a floating-point
exception will be generated. To avoid raising exceptions when loading a new operating environ-
ment, clear all the exception flags in the FPU status word that is being loaded.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
FPUControlWord ← SRC[FPUControlWord];
FPUStatusWord ← SRC[FPUStatusWord];
FPUTagWord ← SRC[FPUTagWord];
FPUDataPointer ← SRC[FPUDataPointer];
FPUInstructionPointer ← SRC[FPUInstructionPointer];
FPULastInstructionOpcode ← SRC[FPULastInstructionOpcode];
ST(0) ← SRC[ST(0)];
ST(1) ← SRC[ST(1)];
ST(2) ← SRC[ST(2)];
ST(3) ← SRC[ST(3)];
ST(4) ← SRC[ST(4)];
ST(5) ← SRC[ST(5)];
ST(6) ← SRC[ST(6)];
ST(7) ← SRC[ST(7)];

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

DD /4 FRSTOR m94/108byte Valid Valid Load FPU state from
m94byte or m108byte.
3-358 Vol. 2A FRSTOR—Restore x87 FPU State

INSTRUCTION SET REFERENCE, A-M
FPU Flags Affected
The C0, C1, C2, C3 flags are loaded.

Floating-Point Exceptions
None; however, this operation might unmask an existing exception that has been detected but
not generated, because it was masked. Here, the exception is generated at the completion of the
instruction.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-359FRSTOR—Restore x87 FPU State

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-360 Vol. 2A FRSTOR—Restore x87 FPU State

INSTRUCTION SET REFERENCE, A-M
FSAVE/FNSAVE—Store x87 FPU State

Description
Stores the current FPU state (operating environment and register stack) at the specified destina-
tion in memory, and then re-initializes the FPU. The FSAVE instruction checks for and handles
pending unmasked floating-point exceptions before storing the FPU state; the FNSAVE instruc-
tion does not.

The FPU operating environment consists of the FPU control word, status word, tag word,
instruction pointer, data pointer, and last opcode. Figures 8-9 through 8-12 in the IA-32 Intel®

Architecture Software Developer’s Manual, Volume 1, show the layout in memory of the stored
environment, depending on the operating mode of the processor (protected or real) and the
current operand-size attribute (16-bit or 32-bit). In virtual-8086 mode, the real mode layouts are
used. The contents of the FPU register stack are stored in the 80 bytes immediately follow the
operating environment image.

The saved image reflects the state of the FPU after all floating-point instructions preceding the
FSAVE/FNSAVE instruction in the instruction stream have been executed.

After the FPU state has been saved, the FPU is reset to the same default values it is set to with
the FINIT/FNINIT instructions (see “FINIT/FNINIT—Initialize Floating-Point Unit” in this
chapter).

The FSAVE/FNSAVE instructions are typically used when the operating system needs to
perform a context switch, an exception handler needs to use the FPU, or an application program
needs to pass a “clean” FPU to a procedure.

The assembler issues two instructions for the FSAVE instruction (an FWAIT instruction
followed by an FNSAVE instruction), and the processor executes each of these instructions
separately. If an exception is generated for either of these instructions, the save EIP points to the
instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

9B DD /6 FSAVE m94/108byte Valid Valid Store FPU state to m94byte or
m108byte after checking for
pending unmasked floating-point
exceptions. Then re-initialize the
FPU.

DD /6 FNSAVE* m94/108byte Valid Valid Store FPU environment to
m94byte or m108byte without
checking for pending unmasked
floating-point exceptions. Then
re-initialize the FPU.

NOTES:
* See IA-32 Architecture Compatibility section below.
Vol. 2A 3-361FSAVE/FNSAVE—Store x87 FPU State

INSTRUCTION SET REFERENCE, A-M
IA-32 Architecture Compatibility
For Intel math coprocessors and FPUs prior to the Intel Pentium processor, an FWAIT instruc-
tion should be executed before attempting to read from the memory image stored with a prior
FSAVE/FNSAVE instruction. This FWAIT instruction helps insure that the storage operation
has been completed.

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible
(under unusual circumstances) for an FNSAVE instruction to be interrupted prior to being
executed to handle a pending FPU exception. See the section titled “No-Wait FPU Instructions
Can Get FPU Interrupt in Window” in Appendix D of the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 1, for a description of these circumstances. An FNSAVE instruc-
tion cannot be interrupted in this way on a Pentium 4, Intel Xeon, or P6 family processor.

Operation
(* Save FPU State and Registers *)
DEST[FPUControlWord] ← FPUControlWord;
DEST[FPUStatusWord] ← FPUStatusWord;
DEST[FPUTagWord] ← FPUTagWord;
DEST[FPUDataPointer] ← FPUDataPointer;
DEST[FPUInstructionPointer] ← FPUInstructionPointer;
DEST[FPULastInstructionOpcode] ← FPULastInstructionOpcode;
DEST[ST(0)] ← ST(0);
DEST[ST(1)] ← ST(1);
DEST[ST(2)] ← ST(2);
DEST[ST(3)] ← ST(3);
DEST[ST(4)]← ST(4);
DEST[ST(5)] ← ST(5);
DEST[ST(6)] ← ST(6);
DEST[ST(7)] ← ST(7);
(* Initialize FPU *)
FPUControlWord ← 037FH;
FPUStatusWord ← 0;
FPUTagWord ← FFFFH;
FPUDataPointer ← 0;
FPUInstructionPointer ← 0;
FPULastInstructionOpcode ← 0;

FPU Flags Affected
The C0, C1, C2, and C3 flags are saved and then cleared.

Floating-Point Exceptions
None.
3-362 Vol. 2A FSAVE/FNSAVE—Store x87 FPU State

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0) If destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-363FSAVE/FNSAVE—Store x87 FPU State

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-364 Vol. 2A FSAVE/FNSAVE—Store x87 FPU State

INSTRUCTION SET REFERENCE, A-M
FSCALE—Scale

Description
Truncates the value in the source operand (toward 0) to an integral value and adds that value to
the exponent of the destination operand. The destination and source operands are floating-point
values located in registers ST(0) and ST(1), respectively. This instruction provides rapid multi-
plication or division by integral powers of 2. The following table shows the results obtained
when scaling various classes of numbers, assuming that neither overflow nor underflow occurs.

In most cases, only the exponent is changed and the mantissa (significand) remains unchanged.
However, when the value being scaled in ST(0) is a denormal value, the mantissa is also changed
and the result may turn out to be a normalized number. Similarly, if overflow or underflow
results from a scale operation, the resulting mantissa will differ from the source’s mantissa.

The FSCALE instruction can also be used to reverse the action of the FXTRACT instruction, as
shown in the following example:

FXTRACT;
FSCALE;
FSTP ST(1);

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 FD FSCALE Valid Valid Scale ST(0) by ST(1).

Table 3-39. FSCALE Results
ST(1)

−∞ −F −0 +0 +F +∞ NaN

−∞ NaN −∞ −∞ −∞ −∞ −∞ NaN

ST(0) −F −0 −F −F −F −F −∞ NaN

−0 −0 −0 −0 −0 −0 NaN NaN

+0 +0 +0 +0 +0 +0 NaN NaN

+F +0 +F +F +F +F +∞ NaN

+∞ NaN +∞ +∞ +∞ +∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
Vol. 2A 3-365FSCALE—Scale

INSTRUCTION SET REFERENCE, A-M
In this example, the FXTRACT instruction extracts the significand and exponent from the value
in ST(0) and stores them in ST(0) and ST(1) respectively. The FSCALE then scales the signifi-
cand in ST(0) by the exponent in ST(1), recreating the original value before the FXTRACT
operation was performed. The FSTP ST(1) instruction overwrites the exponent (extracted by the
FXTRACT instruction) with the recreated value, which returns the stack to its original state with
only one register [ST(0)] occupied.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
ST(0) ← ST(0) ∗ 2RoundTowardZero(ST(1));

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.
3-366 Vol. 2A FSCALE—Scale

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-367FSCALE—Scale

INSTRUCTION SET REFERENCE, A-M
FSIN—Sine

Description
Computes the sine of the source operand in register ST(0) and stores the result in ST(0). The
source operand must be given in radians and must be within the range −263 to +263. The
following table shows the results obtained when taking the sine of various classes of numbers,
assuming that underflow does not occur.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the range −263 to +263 can be reduced to the range of the
instruction by subtracting an appropriate integer multiple of 2π or by using the FPREM instruc-
tion with a divisor of 2π. See the section titled “Pi” in Chapter 8 of the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in
performing such reductions.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 FE FSIN Valid Valid Replace ST(0) with its sine.

Table 3-40. FSIN Results
SRC (ST(0)) DEST (ST(0))

−∞ *

−F −1 to +1

−0 −0

+0 +0

+F −1 to +1

+∞ *

NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
3-368 Vol. 2A FSIN—Sine

INSTRUCTION SET REFERENCE, A-M
Operation
IF ST(0) < 263

THEN
C2 ← 0;
ST(0) ← sin(ST(0));

ELSE (* Source operand out of range *)
C2 ← 1;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C2 Set to 1 if outside range (−263 < source operand < +263); otherwise, set to 0.

C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-369FSIN—Sine

INSTRUCTION SET REFERENCE, A-M
FSINCOS—Sine and Cosine

Description
Computes both the sine and the cosine of the source operand in register ST(0), stores the sine in
ST(0), and pushes the cosine onto the top of the FPU register stack. (This instruction is faster
than executing the FSIN and FCOS instructions in succession.)

The source operand must be given in radians and must be within the range −263 to +263. The
following table shows the results obtained when taking the sine and cosine of various classes of
numbers, assuming that underflow does not occur.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the range −263 to +263 can be reduced to the range of the
instruction by subtracting an appropriate integer multiple of 2π or by using the FPREM instruc-
tion with a divisor of 2π. See the section titled “Pi” in Chapter 8 of the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in
performing such reductions.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 FB FSINCOS Valid Valid Compute the sine and cosine of ST(0);
replace ST(0) with the sine, and push the
cosine onto the register stack.

Table 3-41. FSINCOS Results
SRC DEST

ST(0) ST(1) Cosine ST(0) Sine

−∞ * *

−F −1 to +1 −1 to +1

−0 +1 −0

+0 +1 +0

+F −1 to +1 −1 to +1

+∞ * *

NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
3-370 Vol. 2A FSINCOS—Sine and Cosine

INSTRUCTION SET REFERENCE, A-M
Operation
IF ST(0) < 263

THEN
C2 ← 0;
TEMP ← cosine(ST(0));
ST(0) ← sine(ST(0));
TOP ← TOP − 1;
ST(0) ← TEMP;

ELSE (* Source operand out of range *)
C2 ← 1;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; set to 1 of stack overflow occurs.

Set if result was rounded up; cleared otherwise.

C2 Set to 1 if outside range (−263 < source operand < +263); otherwise, set to 0.

C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow or overflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.
Vol. 2A 3-371FSINCOS—Sine and Cosine

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
3-372 Vol. 2A FSINCOS—Sine and Cosine

INSTRUCTION SET REFERENCE, A-M
FSQRT—Square Root

Description
Computes the square root of the source value in the ST(0) register and stores the result in ST(0).

The following table shows the results obtained when taking the square root of various classes of
numbers, assuming that neither overflow nor underflow occurs.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
ST(0) ← SquareRoot(ST(0));

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 FA FSQRT Valid Valid Computes square root of ST(0) and stores the
result in ST(0).

Table 3-42. FSQRT Results
SRC (ST(0)) DEST (ST(0))

−∞ *

−F *

−0 −0

+0 +0

+F +F

+∞ +∞

NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
Vol. 2A 3-373FSQRT—Square Root

INSTRUCTION SET REFERENCE, A-M
Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

Source operand is a negative value (except for −0).

#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
3-374 Vol. 2A FSQRT—Square Root

INSTRUCTION SET REFERENCE, A-M
FST/FSTP—Store Floating Point Value

Description
The FST instruction copies the value in the ST(0) register to the destination operand, which can
be a memory location or another register in the FPU register stack. When storing the value in
memory, the value is converted to single-precision or double-precision floating-point format.

The FSTP instruction performs the same operation as the FST instruction and then pops the
register stack. To pop the register stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1. The FSTP instruction can also store values in memory
in double extended-precision floating-point format.

If the destination operand is a memory location, the operand specifies the address where the first
byte of the destination value is to be stored. If the destination operand is a register, the operand
specifies a register in the register stack relative to the top of the stack.

If the destination size is single-precision or double-precision, the significand of the value being
stored is rounded to the width of the destination (according to the rounding mode specified by
the RC field of the FPU control word), and the exponent is converted to the width and bias of
the destination format. If the value being stored is too large for the destination format, a numeric
overflow exception (#O) is generated and, if the exception is unmasked, no value is stored in the
destination operand. If the value being stored is a denormal value, the denormal exception (#D)
is not generated. This condition is simply signaled as a numeric underflow exception (#U)
condition.

If the value being stored is ±0, ±∞, or a NaN, the least-significant bits of the significand and the
exponent are truncated to fit the destination format. This operation preserves the value’s identity
as a 0, ∞, or NaN.

If the destination operand is a non-empty register, the invalid-operation exception is not
generated.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 /2 FST m32fp Valid Valid Copy ST(0) to m32fp.
DD /2 FST m64fp Valid Valid Copy ST(0) to m64fp.
DD D0+i FST ST(i) Valid Valid Copy ST(0) to ST(i).
D9 /3 FSTP m32fp Valid Valid Copy ST(0) to m32fp and pop register

stack.
DD /3 FSTP m64fp Valid Valid Copy ST(0) to m64fp and pop register

stack.
DB /7 FSTP m80fp Valid Valid Copy ST(0) to m80fp and pop register

stack.
DD D8+i FSTP ST(i) Valid Valid Copy ST(0) to ST(i) and pop register

stack.
Vol. 2A 3-375FST/FSTP—Store Floating Point Value

INSTRUCTION SET REFERENCE, A-M
Operation
DEST ← ST(0);
IF Instruction = FSTP

THEN
PopRegisterStack;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the floating-point inexact exception (#P)
is generated: 0 ← not roundup; 1 ← roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format. Does not occur
if the source operand is in double extended-precision floating-point
format.

#U Result is too small for the destination format.

#O Result is too large for the destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.
3-376 Vol. 2A FST/FSTP—Store Floating Point Value

INSTRUCTION SET REFERENCE, A-M
#SS If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-377FST/FSTP—Store Floating Point Value

INSTRUCTION SET REFERENCE, A-M
FSTCW/FNSTCW—Store x87 FPU Control Word

Description
Stores the current value of the FPU control word at the specified destination in memory. The
FSTCW instruction checks for and handles pending unmasked floating-point exceptions before
storing the control word; the FNSTCW instruction does not.

The assembler issues two instructions for the FSTCW instruction (an FWAIT instruction
followed by an FNSTCW instruction), and the processor executes each of these instructions in
separately. If an exception is generated for either of these instructions, the save EIP points to the
instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility
When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible
(under unusual circumstances) for an FNSTCW instruction to be interrupted prior to being
executed to handle a pending FPU exception. See the section titled “No-Wait FPU Instructions
Can Get FPU Interrupt in Window” in Appendix D of the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 1, for a description of these circumstances. An FNSTCW instruc-
tion cannot be interrupted in this way on a Pentium 4, Intel Xeon, or P6 family processor.

Operation
DEST ← FPUControlWord;

FPU Flags Affected
The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

9B D9 /7 FSTCW m2byte Valid Valid Store FPU control word to m2byte after
checking for pending unmasked
floating-point exceptions.

D9 /7 FNSTCW* m2byte Valid Valid Store FPU control word to m2byte
without checking for pending unmasked
floating-point exceptions.

NOTES:
* See IA-32 Architecture Compatibility section below.
3-378 Vol. 2A FSTCW/FNSTCW—Store x87 FPU Control Word

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-379FSTCW/FNSTCW—Store x87 FPU Control Word

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-380 Vol. 2A FSTCW/FNSTCW—Store x87 FPU Control Word

INSTRUCTION SET REFERENCE, A-M
FSTENV/FNSTENV—Store x87 FPU Environment

Description
Saves the current FPU operating environment at the memory location specified with the desti-
nation operand, and then masks all floating-point exceptions. The FPU operating environment
consists of the FPU control word, status word, tag word, instruction pointer, data pointer, and
last opcode. Figures 8-9 through 8-12 in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 1, show the layout in memory of the stored environment, depending on the
operating mode of the processor (protected or real) and the current operand-size attribute (16-bit
or 32-bit). In virtual-8086 mode, the real mode layouts are used.

The FSTENV instruction checks for and handles any pending unmasked floating-point excep-
tions before storing the FPU environment; the FNSTENV instruction does not. The saved
image reflects the state of the FPU after all floating-point instructions preceding the
FSTENV/FNSTENV instruction in the instruction stream have been executed.

These instructions are often used by exception handlers because they provide access to the FPU
instruction and data pointers. The environment is typically saved in the stack. Masking all
exceptions after saving the environment prevents floating-point exceptions from interrupting the
exception handler.

The assembler issues two instructions for the FSTENV instruction (an FWAIT instruction
followed by an FNSTENV instruction), and the processor executes each of these instructions
separately. If an exception is generated for either of these instructions, the save EIP points to the
instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

9B D9 /6 FSTENV m14/28byte Valid Valid Store FPU environment to m14byte
or m28byte after checking for
pending unmasked floating-point
exceptions. Then mask all floating-
point exceptions.

D9 /6 FNSTENV*
m14/28byte

Valid Valid Store FPU environment to m14byte
or m28byte without checking for
pending unmasked floating-point
exceptions. Then mask all floating-
point exceptions.

NOTES:
* See IA-32 Architecture Compatibility section below.
Vol. 2A 3-381FSTENV/FNSTENV—Store x87 FPU Environment

INSTRUCTION SET REFERENCE, A-M
IA-32 Architecture Compatibility
When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible
(under unusual circumstances) for an FNSTENV instruction to be interrupted prior to being
executed to handle a pending FPU exception. See the section titled “No-Wait FPU Instructions
Can Get FPU Interrupt in Window” in Appendix D of the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 1, for a description of these circumstances. An FNSTENV instruc-
tion cannot be interrupted in this way on a Pentium 4, Intel Xeon, or P6 family processor.

Operation
DEST[FPUControlWord] ← FPUControlWord;
DEST[FPUStatusWord] ← FPUStatusWord;
DEST[FPUTagWord] ← FPUTagWord;
DEST[FPUDataPointer] ← FPUDataPointer;
DEST[FPUInstructionPointer] ← FPUInstructionPointer;
DEST[FPULastInstructionOpcode] ← FPULastInstructionOpcode;

FPU Flags Affected
The C0, C1, C2, and C3 are undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
3-382 Vol. 2A FSTENV/FNSTENV—Store x87 FPU Environment

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-383FSTENV/FNSTENV—Store x87 FPU Environment

INSTRUCTION SET REFERENCE, A-M
FSTSW/FNSTSW—Store x87 FPU Status Word

Description
Stores the current value of the x87 FPU status word in the destination location. The destination
operand can be either a two-byte memory location or the AX register. The FSTSW instruction
checks for and handles pending unmasked floating-point exceptions before storing the status
word; the FNSTSW instruction does not.

The FNSTSW AX form of the instruction is used primarily in conditional branching (for
instance, after an FPU comparison instruction or an FPREM, FPREM1, or FXAM instruction),
where the direction of the branch depends on the state of the FPU condition code flags. (See the
section titled “Branching and Conditional Moves on FPU Condition Codes” in Chapter 8 of the
IA-32 Intel® Architecture Software Developer’s Manual, Volume 1.) This instruction can also be
used to invoke exception handlers (by examining the exception flags) in environments that do
not use interrupts. When the FNSTSW AX instruction is executed, the AX register is updated
before the processor executes any further instructions. The status stored in the AX register is
thus guaranteed to be from the completion of the prior FPU instruction.

The assembler issues two instructions for the FSTSW instruction (an FWAIT instruction
followed by an FNSTSW instruction), and the processor executes each of these instructions
separately. If an exception is generated for either of these instructions, the save EIP points to the
instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

9B DD /7 FSTSW m2byte Valid Valid Store FPU status word at
m2byte after checking for
pending unmasked floating-
point exceptions.

9B DF E0 FSTSW AX Valid Valid Store FPU status word in AX
register after checking for
pending unmasked floating-
point exceptions.

DD /7 FNSTSW* m2byte Valid Valid Store FPU status word at
m2byte without checking for
pending unmasked floating-
point exceptions.

DF E0 FNSTSW* AX Valid Valid Store FPU status word in AX
register without checking for
pending unmasked floating-
point exceptions.

NOTES:
* See IA-32 Architecture Compatibility section below.
3-384 Vol. 2A FSTSW/FNSTSW—Store x87 FPU Status Word

INSTRUCTION SET REFERENCE, A-M
IA-32 Architecture Compatibility
When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible
(under unusual circumstances) for an FNSTSW instruction to be interrupted prior to being
executed to handle a pending FPU exception. See the section titled “No-Wait FPU Instructions
Can Get FPU Interrupt in Window” in Appendix D of the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 1, for a description of these circumstances. An FNSTSW instruc-
tion cannot be interrupted in this way on a Pentium 4, Intel Xeon, or P6 family processor.

Operation
DEST ← FPUStatusWord;

FPU Flags Affected
The C0, C1, C2, and C3 are undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
Vol. 2A 3-385FSTSW/FNSTSW—Store x87 FPU Status Word

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-386 Vol. 2A FSTSW/FNSTSW—Store x87 FPU Status Word

INSTRUCTION SET REFERENCE, A-M
FSUB/FSUBP/FISUB—Subtract

Description
Subtracts the source operand from the destination operand and stores the difference in the desti-
nation location. The destination operand is always an FPU data register; the source operand can
be a register or a memory location. Source operands in memory can be in single-precision or
double-precision floating-point format or in word or doubleword integer format.

The no-operand version of the instruction subtracts the contents of the ST(0) register from the
ST(1) register and stores the result in ST(1). The one-operand version subtracts the contents of
a memory location (either a floating-point or an integer value) from the contents of the ST(0)
register and stores the result in ST(0). The two-operand version, subtracts the contents of the
ST(0) register from the ST(i) register or vice versa.

The FSUBP instructions perform the additional operation of popping the FPU register stack
following the subtraction. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1. The no-operand version of the floating-
point subtract instructions always results in the register stack being popped. In some assemblers,
the mnemonic for this instruction is FSUB rather than FSUBP.

The FISUB instructions convert an integer source operand to double extended-precision
floating-point format before performing the subtraction.

Table 3-43 shows the results obtained when subtracting various classes of numbers from one
another, assuming that neither overflow nor underflow occurs. Here, the SRC value is subtracted
from the DEST value (DEST − SRC = result).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D8 /4 FSUB m32fp Valid Valid Subtract m32fp from ST(0) and
store result in ST(0).

DC /4 FSUB m64fp Valid Valid Subtract m64fp from ST(0) and
store result in ST(0).

D8 E0+i FSUB ST(0), ST(i) Valid Valid Subtract ST(i) from ST(0) and
store result in ST(0).

DC E8+i FSUB ST(i), ST(0) Valid Valid Subtract ST(0) from ST(i) and
store result in ST(i).

DE E8+i FSUBP ST(i), ST(0) Valid Valid Subtract ST(0) from ST(i),
store result in ST(i), and pop
register stack.

DE E9 FSUBP Valid Valid Subtract ST(0) from ST(1),
store result in ST(1), and pop
register stack.

DA /4 FISUB m32int Valid Valid Subtract m32int from ST(0)
and store result in ST(0).

DE /4 FISUB m16int Valid Valid Subtract m16int from ST(0)
and store result in ST(0).
Vol. 2A 3-387FSUB/FSUBP/FISUB—Subtract

INSTRUCTION SET REFERENCE, A-M
When the difference between two operands of like sign is 0, the result is +0, except for the round
toward −∞ mode, in which case the result is −0. This instruction also guarantees that +0 − (−0)
= +0, and that −0 − (+0) = −0. When the source operand is an integer 0, it is treated as a +0.

When one operand is ∞, the result is ∞ of the expected sign. If both operands are ∞ of the same
sign, an invalid-operation exception is generated.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
IF Instruction = FISUB

THEN
DEST ← DEST − ConvertToDoubleExtendedPrecisionFP(SRC);

ELSE (* Source operand is floating-point value *)
DEST ← DEST − SRC;

FI;
IF Instruction = FSUBP

THEN
PopRegisterStack;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Table 3-43. FSUB/FSUBP/FISUB Results
SRC

−∞ −F or −I −0 +0 +F or +I +∞ NaN

−∞ * −∞ −∞ −∞ −∞ −∞ NaN

−F +∞ ±F or ±0 DEST DEST −F −∞ NaN

DEST −0 +∞ −SRC ±0 −0 −SRC −∞ NaN

+0 +∞ −SRC +0 ±0 −SRC −∞ NaN

+F +∞ +F DEST DEST ±F or ±0 −∞ NaN

+∞ +∞ +∞ +∞ +∞ +∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
3-388 Vol. 2A FSUB/FSUBP/FISUB—Subtract

INSTRUCTION SET REFERENCE, A-M
Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-389FSUB/FSUBP/FISUB—Subtract

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-390 Vol. 2A FSUB/FSUBP/FISUB—Subtract

INSTRUCTION SET REFERENCE, A-M
FSUBR/FSUBRP/FISUBR—Reverse Subtract

Description
Subtracts the destination operand from the source operand and stores the difference in the desti-
nation location. The destination operand is always an FPU register; the source operand can be a
register or a memory location. Source operands in memory can be in single-precision or double-
precision floating-point format or in word or doubleword integer format.

These instructions perform the reverse operations of the FSUB, FSUBP, and FISUB instruc-
tions. They are provided to support more efficient coding.

The no-operand version of the instruction subtracts the contents of the ST(1) register from the
ST(0) register and stores the result in ST(1). The one-operand version subtracts the contents of
the ST(0) register from the contents of a memory location (either a floating-point or an integer
value) and stores the result in ST(0). The two-operand version, subtracts the contents of the
ST(i) register from the ST(0) register or vice versa.

The FSUBRP instructions perform the additional operation of popping the FPU register stack
following the subtraction. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1. The no-operand version of the floating-
point reverse subtract instructions always results in the register stack being popped. In some
assemblers, the mnemonic for this instruction is FSUBR rather than FSUBRP.

The FISUBR instructions convert an integer source operand to double extended-precision
floating-point format before performing the subtraction.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D8 /5 FSUBR m32fp Valid Valid Subtract ST(0) from m32fp and
store result in ST(0).

DC /5 FSUBR m64fp Valid Valid Subtract ST(0) from m64fp and
store result in ST(0).

D8 E8+i FSUBR ST(0), ST(i) Valid Valid Subtract ST(0) from ST(i) and
store result in ST(0).

DC E0+i FSUBR ST(i), ST(0) Valid Valid Subtract ST(i) from ST(0) and
store result in ST(i).

DE E0+i FSUBRP ST(i), ST(0) Valid Valid Subtract ST(i) from ST(0), store
result in ST(i), and pop register
stack.

DE E1 FSUBRP Valid Valid Subtract ST(1) from ST(0), store
result in ST(1), and pop register
stack.

DA /5 FISUBR m32int Valid Valid Subtract ST(0) from m32int and
store result in ST(0).

DE /5 FISUBR m16int Valid Valid Subtract ST(0) from m16int and
store result in ST(0).
Vol. 2A 3-391FSUBR/FSUBRP/FISUBR—Reverse Subtract

INSTRUCTION SET REFERENCE, A-M
The following table shows the results obtained when subtracting various classes of numbers
from one another, assuming that neither overflow nor underflow occurs. Here, the DEST value
is subtracted from the SRC value (SRC − DEST = result).

When the difference between two operands of like sign is 0, the result is +0, except for the round
toward −∞ mode, in which case the result is −0. This instruction also guarantees that +0 − (−0)
= +0, and that −0 − (+0) = −0. When the source operand is an integer 0, it is treated as a +0.

When one operand is ∞, the result is ∞ of the expected sign. If both operands are ∞ of the same
sign, an invalid-operation exception is generated.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
IF Instruction = FISUBR

THEN
DEST ← ConvertToDoubleExtendedPrecisionFP(SRC) − DEST;

ELSE (* Source operand is floating-point value *)
DEST ← SRC − DEST;

FI;
IF Instruction = FSUBRP

THEN
PopRegisterStack;

FI;

Table 3-44. FSUBR/FSUBRP/FISUBR Results
SRC

−∞ −F or −I −0 +0 +F or +I +∞ NaN

−∞ * +∞ +∞ +∞ +∞ +∞ NaN

−F −∞ ±F or ±0 −DEST −DEST +F +∞ NaN

DEST −0 −∞ SRC ±0 +0 SRC +∞ NaN

+0 −∞ SRC −0 ±0 SRC +∞ NaN

+F −∞ −F −DEST −DEST ±F or ±0 +∞ NaN

+∞ −∞ −∞ −∞ −∞ −∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
3-392 Vol. 2A FSUBR/FSUBRP/FISUBR—Reverse Subtract

INSTRUCTION SET REFERENCE, A-M
FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.
Vol. 2A 3-393FSUBR/FSUBRP/FISUBR—Reverse Subtract

INSTRUCTION SET REFERENCE, A-M
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-394 Vol. 2A FSUBR/FSUBRP/FISUBR—Reverse Subtract

INSTRUCTION SET REFERENCE, A-M
FTST—TEST

Description
Compares the value in the ST(0) register with 0.0 and sets the condition code flags C0, C2, and
C3 in the FPU status word according to the results (see table below).

This instruction performs an “unordered comparison.” An unordered comparison also checks
the class of the numbers being compared (see “FXAM—ExamineModR/M” in this chapter). If
the value in register ST(0) is a NaN or is in an undefined format, the condition flags are set to
“unordered” and the invalid operation exception is generated.

The sign of zero is ignored, so that (– 0.0 ← +0.0).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
CASE (relation of operands) OF

Not comparable: C3, C2, C0 ← 111;
ST(0) > 0.0: C3, C2, C0 ← 000;
ST(0) < 0.0: C3, C2, C0 ← 001;
ST(0) = 0.0: C3, C2, C0 ← 100;

ESAC;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, set to 0.

C0, C2, C3 See Table 3-45.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 E4 FTST Valid Valid Compare ST(0) with 0.0.

Table 3-45. FTST Results
Condition C3 C2 C0

ST(0) > 0.0 0 0 0

ST(0) < 0.0 0 0 1

ST(0) = 0.0 1 0 0

Unordered 1 1 1
Vol. 2A 3-395FTST—TEST

INSTRUCTION SET REFERENCE, A-M
Floating-Point Exceptions
#IS Stack underflow occurred.

#IA The source operand is a NaN value or is in an unsupported format.

#D The source operand is a denormal value.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
3-396 Vol. 2A FTST—TEST

INSTRUCTION SET REFERENCE, A-M
FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point
Values

Description
Performs an unordered comparison of the contents of register ST(0) and ST(i) and sets condition
code flags C0, C2, and C3 in the FPU status word according to the results (see the table below).
If no operand is specified, the contents of registers ST(0) and ST(1) are compared. The sign of
zero is ignored, so that –0.0 is equal to +0.0.

An unordered comparison checks the class of the numbers being compared (see
“FXAM—ExamineModR/M” in this chapter). The FUCOM/FUCOMP/FUCOMPP instruc-
tions perform the same operations as the FCOM/FCOMP/FCOMPP instructions. The only
difference is that the FUCOM/FUCOMP/FUCOMPP instructions raise the invalid-arithmetic-
operand exception (#IA) only when either or both operands are an SNaN or are in an unsup-
ported format; QNaNs cause the condition code flags to be set to unordered, but do not cause an
exception to be generated. The FCOM/FCOMP/FCOMPP instructions raise an invalid-opera-
tion exception when either or both of the operands are a NaN value of any kind or are in an
unsupported format.

As with the FCOM/FCOMP/FCOMPP instructions, if the operation results in an invalid-arith-
metic-operand exception being raised, the condition code flags are set only if the exception is
masked.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

DD E0+i FUCOM ST(i) Valid Valid Compare ST(0) with ST(i).
DD E1 FUCOM Valid Valid Compare ST(0) with ST(1).
DD E8+i FUCOMP

ST(i)
Valid Valid Compare ST(0) with ST(i) and pop

register stack.
DD E9 FUCOMP Valid Valid Compare ST(0) with ST(1) and pop

register stack.
DA E9 FUCOMPP Valid Valid Compare ST(0) with ST(1) and pop

register stack twice.

Table 3-46. FUCOM/FUCOMP/FUCOMPP Results
Comparison Results* C3 C2 C0

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered 1 1 1

NOTES:
* Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.
Vol. 2A 3-397FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point
Values

INSTRUCTION SET REFERENCE, A-M
The FUCOMP instruction pops the register stack following the comparison operation and the
FUCOMPP instruction pops the register stack twice following the comparison operation. To pop
the register stack, the processor marks the ST(0) register as empty and increments the stack
pointer (TOP) by 1.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
CASE (relation of operands) OF

ST > SRC: C3, C2, C0 ← 000;
ST < SRC: C3, C2, C0 ← 001;
ST = SRC: C3, C2, C0 ← 100;

ESAC;
IF ST(0) or SRC = QNaN, but not SNaN or unsupported format

THEN
C3, C2, C0 ← 111;

ELSE (* ST(0) or SRC is SNaN or unsupported format *)
 #IA;
IF FPUControlWord.IM = 1

THEN
C3, C2, C0 ← 111;

FI;
FI;
IF Instruction = FUCOMP

THEN
PopRegisterStack;

FI;
IF Instruction = FUCOMPP

THEN
PopRegisterStack;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

C0, C2, C3 See Table 3-46.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA One or both operands are SNaN values or have unsupported formats.
Detection of a QNaN value in and of itself does not raise an invalid-
operand exception.

#D One or both operands are denormal values.
3-398 Vol. 2A FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point
Values

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-399FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point
Values

INSTRUCTION SET REFERENCE, A-M
FXAM—ExamineModR/M

Description
Examines the contents of the ST(0) register and sets the condition code flags C0, C2, and C3 in
the FPU status word to indicate the class of value or number in the register (see the table below).

.

The C1 flag is set to the sign of the value in ST(0), regardless of whether the register is empty
or full.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
C1 ← sign bit of ST; (* 0 for positive, 1 for negative *)
CASE (class of value or number in ST(0)) OF

Unsupported:C3, C2, C0 ← 000;
NaN: C3, C2, C0 ← 001;
Normal: C3, C2, C0 ← 010;
Infinity: C3, C2, C0 ← 011;
Zero: C3, C2, C0 ← 100;
Empty: C3, C2, C0 ← 101;
Denormal: C3, C2, C0 ← 110;

ESAC;

FPU Flags Affected
C1 Sign of value in ST(0).

C0, C2, C3 See Table 3-47.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 E5 FXAM Valid Valid Classify value or number in ST(0).

Table 3-47. FXAM Results
Class C3 C2 C0

Unsupported 0 0 0

NaN 0 0 1

Normal finite number 0 1 0

Infinity 0 1 1

Zero 1 0 0

Empty 1 0 1

Denormal number 1 1 0
3-400 Vol. 2A FXAM—ExamineModR/M

INSTRUCTION SET REFERENCE, A-M
Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-401FXAM—ExamineModR/M

INSTRUCTION SET REFERENCE, A-M
FXCH—Exchange Register Contents

Description
Exchanges the contents of registers ST(0) and ST(i). If no source operand is specified, the
contents of ST(0) and ST(1) are exchanged.

This instruction provides a simple means of moving values in the FPU register stack to the top
of the stack [ST(0)], so that they can be operated on by those floating-point instructions that can
only operate on values in ST(0). For example, the following instruction sequence takes the
square root of the third register from the top of the register stack:
FXCH ST(3);
FSQRT;
FXCH ST(3);

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
IF (Number-of-operands) is 1

THEN
temp ← ST(0);
ST(0) ← SRC;
SRC ← temp;

ELSE
temp ← ST(0);
ST(0) ← ST(1);
ST(1) ← temp;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, set to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 C8+i FXCH ST(i) Valid Valid Exchange the contents of ST(0) and
ST(i).

D9 C9 FXCH Valid Valid Exchange the contents of ST(0) and
ST(1).
3-402 Vol. 2A FXCH—Exchange Register Contents

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-403FXCH—Exchange Register Contents

INSTRUCTION SET REFERENCE, A-M
FXRSTOR—Restore x87 FPU, MMX Technology, SSE, SSE2, and
SSE3 State

Description
Reloads the x87 FPU, MMX technology, XMM, and MXCSR registers from the 512-byte
memory image specified in the source operand. This data should have been written to memory
previously using the FXSAVE instruction, and in the same format as required by the operating
modes. The first byte of the data should be located on a 16-byte boundary. There are three
distinct layout of the FXSAVE state map: one for legacy and compatibility mode, a second
format for 64-bit mode with promoted operandsize, and the third format is for 64-bit mode with
default operand size. Table 3-48 shows the layout of the legacy/compatibility mode state infor-
mation in memory and describes the fields in the memory image for the FXRSTOR and
FXSAVE instructions. Table 3-51 shows the layout of the 64-bit mode stat information when
REX.W is set. Table 3-52 shows the layout of the 64-bit mode stat information when REX.W is
clear.

The state image referenced with an FXRSTOR instruction must have been saved using an
FXSAVE instruction or be in the same format as required by Table 3-48, Table 3-51, or Table
3-52. Referencing a state image saved with an FSAVE, FNSAVE instruction or incompatible
field layout will result in an incorrect state restoration.

The FXRSTOR instruction does not flush pending x87 FPU exceptions. To check and raise
exceptions when loading x87 FPU state information with the FXRSTOR instruction, use an
FWAIT instruction after the FXRSTOR instruction.

If the OSFXSR bit in control register CR4 is not set, the FXRSTOR instruction may not restore
the states of the XMM and MXCSR registers. This behavior is implementation dependent.

If the MXCSR state contains an unmasked exception with a corresponding status flag also set,
loading the register with the FXRSTOR instruction will not result in an SIMD floating-point
error condition being generated. Only the next occurrence of this unmasked exception will result
in the exception being generated.

Bit 6 and bits 16 through 32 of the MXCSR register are defined as reserved and should be set to
0. Attempting to write a 1 in any of these bits from the saved state image will result in a general
protection exception (#GP) being generated.

Operation
(x87 FPU, MMX, XMM7-XMM0, MXCSR) ← Load(SRC);

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F AE /1 FXRSTOR m512byte Valid Valid Restore the x87 FPU, MMX, XMM,
and MXCSR register state from
m512byte.
3-404 Vol. 2A FXRSTOR—Restore x87 FPU, MMX Technology, SSE, SSE2, and
SSE3 State

INSTRUCTION SET REFERENCE, A-M
x87 FPU and SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment. (See alignment check exception [#AC] below.)

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CPUID.01H:EDX.FXSR[bit 24] = 0.

If instruction is preceded by a LOCK prefix.

#AC If this exception is disabled a general protection exception (#GP) is
signaled if the memory operand is not aligned on a 16-byte boundary, as
described above. If the alignment check exception (#AC) is enabled (and
the CPL is 3), signaling of #AC is not guaranteed and may vary with
implementation, as follows. In all implementations where #AC is not
signaled, a general protection exception is signaled in its place. In addi-
tion, the width of the alignment check may also vary with implementation.
For instance, for a given implementation, an alignment check exception
might be signaled for a 2-byte misalignment, whereas a general protection
exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If instruction is preceded by a LOCK override prefix.
Vol. 2A 3-405FXRSTOR—Restore x87 FPU, MMX Technology, SSE, SSE2, and
SSE3 State

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CPUID.01H:EDX.FXSR[bit 24] = 0.

If instruction is preceded by a LOCK prefix.

#AC If this exception is disabled a general protection exception (#GP) is
signaled if the memory operand is not aligned on a 16-byte boundary, as
described above. If the alignment check exception (#AC) is enabled (and
the CPL is 3), signaling of #AC is not guaranteed and may vary with
implementation, as follows. In all implementations where #AC is not
signaled, a general protection exception is signaled in its place. In addi-
tion, the width of the alignment check may also vary with implementation.
For instance, for a given implementation, an alignment check exception
might be signaled for a 2-byte misalignment, whereas a general protection
exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).
3-406 Vol. 2A FXRSTOR—Restore x87 FPU, MMX Technology, SSE, SSE2, and
SSE3 State

INSTRUCTION SET REFERENCE, A-M
FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State

Description
Saves the current state of the x87 FPU, MMX technology, XMM, and MXCSR registers to a
512-byte memory location specified in the destination operand. The content layout of the 512
byte region depends on whether the processor is operating in non-64-bit operating modes or
64-bit sub-mode of IA-32e mode. The operation of FXSAVE in non-64-bit modes are described
first.

Non-64-Bit Mode Operation
Table 3-48 shows the layout of the state information in memory when the processor is operating
in legacy modes.
.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F AE /0 FXSAVE m512byte Valid Valid Save the x87 FPU, MMX, XMM,
and MXCSR register state to
m512byte.

Table 3-48. Non-64-bit-Mode Layout of FXSAVE and FXRSTOR Memory Region
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsrvd CS FPU IP FOP FT
W

FSW FCW 0

MXCSR_MASK MXCSR Rsrvd DS FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

Reserved 288
Vol. 2A 3-407FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State

INSTRUCTION SET REFERENCE, A-M
The destination operand contains the first byte of the memory image, and it must be aligned on
a 16-byte boundary. A misaligned destination operand will result in a general-protection (#GP)
exception being generated (or in some cases, an alignment check exception [#AC]).

The FXSAVE instruction is used when an operating system needs to perform a context switch
or when an exception handler needs to save and examine the current state of the x87 FPU, MMX
technology, and/or XMM and MXCSR registers.

The fields in Table 3-48 are defined in Table 3-49.

Reserved 304

Reserved 320

Reserved 336

Reserved 352

Reserved 368

Reserved 384

Reserved 400

Reserved 416

Reserved 432

Reserved 448

Reserved 464

Reserved 480

Reserved 496

Table 3-49. Field Definitions

Field Definition

FCW

x87 FPU Control Word (16 bits). See Figure 8-6 in the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 1, for the layout of the x87 FPU control
word.

FSW

x87 FPU Status Word (16 bits). See Figure 8-4 in the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 1, for the layout of the x87 FPU status
word.

FTW

x87 FPU Tag Word (8 bits). The tag information saved here is abridged, as
described in the following paragraphs. See Figure 8-7 in the IA-32 Intel®
Architecture Software Developer’s Manual, Volume 1, for the layout of the x87
FPU tag word.

FOP

x87 FPU Opcode (16 bits). The lower 11 bits of this field contain the opcode,
upper 5 bits are reserved. See Figure 8-8 in the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 1, for the layout of the x87 FPU opcode
field.

Table 3-48. Non-64-bit-Mode Layout of FXSAVE and FXRSTOR Memory Region
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
3-408 Vol. 2A FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State

INSTRUCTION SET REFERENCE, A-M
The FXSAVE instruction saves an abridged version of the x87 FPU tag word in the FTW field
(unlike the FSAVE instruction, which saves the complete tag word). The tag information is
saved in physical register order (R0 through R7), rather than in top-of-stack (TOS) order. With

FPU IP

x87 FPU Instruction Pointer Offset (32 bits). The contents of this field differ
depending on the current addressing mode (32-bit or 16-bit) of the processor
when the FXSAVE instruction was executed:
32-bit mode — 32-bit IP offset.
16-bit mode — low 16 bits are IP offset; high 16 bits are reserved.
See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the IA-32
Intel® Architecture Software Developer’s Manual, Volume 1, for a description of
the x87 FPU instruction pointer.

CS x87 FPU Instruction Pointer Selector (16 bits).

FPU DP

x87 FPU Instruction Operand (Data) Pointer Offset (32 bits). The contents of this
field differ depending on the current addressing mode (32-bit or 16-bit) of the
processor when the FXSAVE instruction was executed:
32-bit mode — 32-bit IP offset.
16-bit mode — low 16 bits are IP offset; high 16 bits are reserved.
See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the IA-32
Intel® Architecture Software Developer’s Manual, Volume 1, for a description of
the x87 FPU operand pointer.

DS x87 FPU Instruction Operand (Data) Pointer Selector (16 bits).

MXCSR

MXCSR Register State (32 bits). See Figure 10-3 in the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 1, for the layout of the MXCSR register. If
the OSFXSR bit in control register CR4 is not set, the FXSAVE instruction may
not save this register. This behavior is implementation dependent.

MXCSR_
MASK

MXCSR_MASK (32 bits). This mask can be used to adjust values written to the
MXCSR register, ensuring that reserved bits are set to 0. Set the mask bits and
flags in MXCSR to the mode of operation desired for SSE and SSE2 SIMD
floating-point instructions. See “Guidelines for Writing to the MXCSR Register” in
Chapter 11 of the IA-32 Intel® Architecture Software Developer’s Manual, Volume
1, for instructions for how to determine and use the MXCSR_MASK value.

ST0/MM0 through
ST7/MM7

x87 FPU or MMX technology registers. These 80-bit fields contain the x87 FPU
data registers or the MMX technology registers, depending on the state of the
processor prior to the execution of the FXSAVE instruction. If the processor had
been executing x87 FPU instruction prior to the FXSAVE instruction, the x87 FPU
data registers are saved; if it had been executing MMX instructions (or SSE or
SSE2 instructions that operated on the MMX technology registers), the MMX
technology registers are saved. When the MMX technology registers are saved,
the high 16 bits of the field are reserved.

XMM0 through
XMM7

XMM registers (128 bits per field). If the OSFXSR bit in control register CR4 is not
set, the FXSAVE instruction may not save these registers. This behavior is
implementation dependent.

Table 3-49. Field Definitions (Contd.)

Field Definition
Vol. 2A 3-409FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State

INSTRUCTION SET REFERENCE, A-M
the FXSAVE instruction, however, only a single bit (1 for valid or 0 for empty) is saved for each
tag. For example, assume that the tag word is currently set as follows:

R7 R6 R5 R4 R3 R2 R1 R0

11 xx xx xx 11 11 11 11

Here, 11B indicates empty stack elements and “xx” indicates valid (00B), zero (01B), or special
(10B).

For this example, the FXSAVE instruction saves only the following 8 bits of information:

R7 R6 R5 R4 R3 R2 R1 R0

0 1 1 1 0 0 0 0

Here, a 1 is saved for any valid, zero, or special tag, and a 0 is saved for any empty tag.

The operation of the FXSAVE instruction differs from that of the FSAVE instruction, the as
follows:

• FXSAVE instruction does not check for pending unmasked floating-point exceptions. (The
FXSAVE operation in this regard is similar to the operation of the FNSAVE instruction).

• After the FXSAVE instruction has saved the state of the x87 FPU, MMX technology,
XMM, and MXCSR registers, the processor retains the contents of the registers. Because
of this behavior, the FXSAVE instruction cannot be used by an application program to pass
a “clean” x87 FPU state to a procedure, since it retains the current state. To clean the x87
FPU state, an application must explicitly execute an FINIT instruction after an FXSAVE
instruction to reinitialize the x87 FPU state.

• The format of the memory image saved with the FXSAVE instruction is the same
regardless of the current addressing mode (32-bit or 16-bit) and operating mode (protected,
real address, or system management). This behavior differs from the FSAVE instructions,
where the memory image format is different depending on the addressing mode and
operating mode. Because of the different image formats, the memory image saved with the
FXSAVE instruction cannot be restored correctly with the FRSTOR instruction, and
likewise the state saved with the FSAVE instruction cannot be restored correctly with the
FXRSTOR instruction.

The FSAVE format for FTW can be recreated from the FTW valid bits and the stored 80-bit
FP data (assuming the stored data was not the contents of MMX technology registers) using
Table 3-50.

Table 3-50. Recreating FSAVE Format

Exponent
all 1’s

Exponent
all 0’s

Fraction
all 0’s

J and M
bits

FTW valid
bit x87 FTW

0 0 0 0x 1 Special 10
0 0 0 1x 1 Valid 00
0 0 1 00 1 Special 10
0 0 1 10 1 Valid 00
3-410 Vol. 2A FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State

INSTRUCTION SET REFERENCE, A-M
The J-bit is defined to be the 1-bit binary integer to the left of the decimal place in the signifi-
cand. The M-bit is defined to be the most significant bit of the fractional portion of the signifi-
cand (i.e., the bit immediately to the right of the decimal place).

When the M-bit is the most significant bit of the fractional portion of the significand, it must be
0 if the fraction is all 0’s.

IA-32e Mode Operation
In compatibility sub-mode of IA-32e mode, legacy SSE registers, XMM0 through XMM7, are
saved according to the legacy FXSAVE map. In 64-bit mode, all of the SSE registers, XMM0
through XMM15, are saved. But the layout of the 64-bit FXSAVE map has two flavors,
depending on the value of the REX.W bit. The difference of these two flavors is in the FPU IP
and FPU DP pointers. When REX.W = 0, the FPU IP is saved as CS with the 32 bit IP, and the
FPU DP is saved as DS with the 32 bit DP. When REX.W = 1, the FPU IP and FPU DP are both
64 bit values without and segment selectors.

The IA-32e mode save formats are shown in Table 3-51 and Table 3-52 listed below.

0 1 0 0x 1 Special 10
0 1 0 1x 1 Special 10
0 1 1 00 1 Zero 01
0 1 1 10 1 Special 10
1 0 0 1x 1 Special 10
1 0 0 1x 1 Special 10
1 0 1 00 1 Special 10
1 0 1 10 1 Special 10

For all legal combinations above. 0 Empty 11

Table 3-51. Layout of the 64-bit-mode FXSAVE Map with Promoted OperandSize
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FPU IP FOP FTW FSW FCW 0

MXCSR_MASK MXCSR FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Table 3-50. Recreating FSAVE Format (Contd.)

Exponent
all 1’s

Exponent
all 0’s

Fraction
all 0’s

J and M
bits

FTW valid
bit x87 FTW
Vol. 2A 3-411FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State

INSTRUCTION SET REFERENCE, A-M
Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

Reserved 416

Reserved 432

Reserved 448

Reserved 464

Reserved 480

Reserved 496

Table 3-52. Layout of the 64-bit-mode FXSAVE Map with Default OperandSize
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserve
d

CS FPU IP FOP FTW FSW FCW 0

MXCSR_MASK MXCSR Reserve
d

DS FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Table 3-51. Layout of the 64-bit-mode FXSAVE Map with Promoted OperandSize (Contd.)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
3-412 Vol. 2A FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State

INSTRUCTION SET REFERENCE, A-M
Operation
IF 64-Bit Mode

THEN
IF REX.W = 1

THEN
DEST ← Save64BitPromotedFxsave(x87 FPU, MMX, XMM7-XMM0,
MXCSR);

ELSE
DEST ← Save64BitDefaultFxsave(x87 FPU, MMX, XMM7-XMM0, MXCSR);

FI;
ELSE

DEST ← SaveLegacyFxsave(x87 FPU, MMX, XMM7-XMM0, MXCSR);
FI;

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

Reserved 416

Reserved 432

Reserved 448

Reserved 464

Reserved 480

Reserved 496

Table 3-52. Layout of the 64-bit-mode FXSAVE Map with Default OperandSize (Contd.)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Vol. 2A 3-413FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment. (See the description of the alignment check exception [#AC]
below.)

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CPUID.01H:EDX.FXSR[bit 24] = 0.

If instruction is preceded by a LOCK override prefix.

#AC If this exception is disabled a general protection exception (#GP) is
signaled if the memory operand is not aligned on a 16-byte boundary, as
described above. If the alignment check exception (#AC) is enabled (and
the CPL is 3), signaling of #AC is not guaranteed and may vary with
implementation, as follows. In all implementations where #AC is not
signaled, a general protection exception is signaled in its place. In addi-
tion, the width of the alignment check may also vary with implementation.
For instance, for a given implementation, an alignment check exception
might be signaled for a 2-byte misalignment, whereas a general protection
exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CPUID.01H:EDX.FXSR[bit 24] = 0.

If instruction is preceded by a LOCK override prefix.
3-414 Vol. 2A FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CPUID.01H:EDX.FXSR[bit 24] = 0.

If instruction is preceded by a LOCK prefix.

#AC If this exception is disabled a general protection exception (#GP) is
signaled if the memory operand is not aligned on a 16-byte boundary, as
described above. If the alignment check exception (#AC) is enabled (and
the CPL is 3), signaling of #AC is not guaranteed and may vary with
implementation, as follows. In all implementations where #AC is not
signaled, a general protection exception is signaled in its place. In addi-
tion, the width of the alignment check may also vary with implementation.
For instance, for a given implementation, an alignment check exception
might be signaled for a 2-byte misalignment, whereas a general protection
exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Implementation Note

The order in which the processor signals general-protection (#GP) and page-fault (#PF) excep-
tions when they both occur on an instruction boundary is given in Table 5-2 in the IA-32 Intel®

Architecture Software Developer’s Manual, Volume 3B. This order vary for FXSAVE for
different processor implementations.
Vol. 2A 3-415FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State

INSTRUCTION SET REFERENCE, A-M
FXTRACT—Extract Exponent and Significand

Description
Separates the source value in the ST(0) register into its exponent and significand, stores the
exponent in ST(0), and pushes the significand onto the register stack. Following this operation,
the new top-of-stack register ST(0) contains the value of the original significand expressed as a
floating-point value. The sign and significand of this value are the same as those found in the
source operand, and the exponent is 3FFFH (biased value for a true exponent of zero). The ST(1)
register contains the value of the original operand’s true (unbiased) exponent expressed as a
floating-point value. (The operation performed by this instruction is a superset of the IEEE-
recommended logb(x) function.)

This instruction and the F2XM1 instruction are useful for performing power and range scaling
operations. The FXTRACT instruction is also useful for converting numbers in double
extended-precision floating-point format to decimal representations (e.g., for printing or
displaying).

If the floating-point zero-divide exception (#Z) is masked and the source operand is zero, an
exponent value of –∞ is stored in register ST(1) and 0 with the sign of the source operand is
stored in register ST(0).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
TEMP ← Significand(ST(0));
ST(0) ← Exponent(ST(0));
TOP← TOP − 1;
ST(0) ← TEMP;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow occurred.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow or overflow occurred.

#IA Source operand is an SNaN value or unsupported format.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 F4 FXTRACT Valid Valid Separate value in ST(0) into exponent and
significand, store exponent in ST(0), and
push the significand onto the register stack.
3-416 Vol. 2A FXTRACT—Extract Exponent and Significand

INSTRUCTION SET REFERENCE, A-M
#Z ST(0) operand is ±0.

#D Source operand is a denormal value.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-417FXTRACT—Extract Exponent and Significand

INSTRUCTION SET REFERENCE, A-M
FYL2X—Compute y ∗ log2x

Description
Computes (ST(1) ∗ log2 (ST(0))), stores the result in resister ST(1), and pops the FPU register
stack. The source operand in ST(0) must be a non-zero positive number.

The following table shows the results obtained when taking the log of various classes of
numbers, assuming that neither overflow nor underflow occurs.

If the divide-by-zero exception is masked and register ST(0) contains ±0, the instruction returns
∞ with a sign that is the opposite of the sign of the source operand in register ST(1).

The FYL2X instruction is designed with a built-in multiplication to optimize the calculation of
logarithms with an arbitrary positive base (b):

logbx ← (log2b)–1 ∗ log2x

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
ST(1) ← ST(1) ∗ log2ST(0);
PopRegisterStack;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 F1 FYL2X Valid Valid Replace ST(1) with (ST(1) ∗ log2ST(0))
and pop the register stack.

Table 3-53. FYL2X Results
ST(0)

−∞ −F ±0 +0 < +F < +1 +1 +F > +1 +∞ NaN

−∞ * * +∞ +∞ * −∞ −∞ NaN

ST(1) −F * * ** +F −0 −F −∞ NaN

−0 * * * +0 −0 −0 * NaN

+0 * * * −0 +0 +0 * NaN

+F * * ** −F +0 +F +∞ NaN

+∞ * * −∞ −∞ ∗ +∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-operation (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.
3-418 Vol. 2A FYL2X—Compute y * log2x

INSTRUCTION SET REFERENCE, A-M
FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Either operand is an SNaN or unsupported format.

Source operand in register ST(0) is a negative finite value (not −0).

#Z Source operand in register ST(0) is ±0.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-419FYL2X—Compute y * log2x

INSTRUCTION SET REFERENCE, A-M
FYL2XP1—Compute y ∗ log2(x +1)

Description
Computes (ST(1) ∗ log2(ST(0) + 1.0)), stores the result in register ST(1), and pops the FPU
register stack. The source operand in ST(0) must be in the range:

The source operand in ST(1) can range from −∞ to +∞. If the ST(0) operand is outside of its
acceptable range, the result is undefined and software should not rely on an exception being
generated. Under some circumstances exceptions may be generated when ST(0) is out of range,
but this behavior is implementation specific and not guaranteed.

The following table shows the results obtained when taking the log epsilon of various classes of
numbers, assuming that underflow does not occur.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 F9 FYL2XP1 Valid Valid Replace ST(1) with ST(1) ∗ log2(ST(0) +
1.0) and pop the register stack.

Table 3-54. FYL2XP1 Results
ST(0)

−(1 − ()) to −0 −0 +0 +0 to +(1 − ()) NaN

−∞ +∞ * * −∞ NaN

ST(1) −F +F +0 −0 −F NaN

−0 +0 +0 −0 −0 NaN

+0 −0 −0 +0 +0 NaN

+F −F −0 +0 +F NaN

+∞ −∞ * * +∞ NaN

NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-operation (#IA) exception.

1 2 2⁄–())to 1 2 2⁄–()–

2 2⁄ 2 2⁄
3-420 Vol. 2A FYL2XP1—Compute y * log2(x +1)

INSTRUCTION SET REFERENCE, A-M
This instruction provides optimal accuracy for values of epsilon [the value in register ST(0)] that
are close to 0. For small epsilon (ε) values, more significant digits can be retained by using the
FYL2XP1 instruction than by using (ε+1) as an argument to the FYL2X instruction. The (ε+1)
expression is commonly found in compound interest and annuity calculations. The result can be
simply converted into a value in another logarithm base by including a scale factor in the ST(1)
source operand. The following equation is used to calculate the scale factor for a particular loga-
rithm base, where n is the logarithm base desired for the result of the FYL2XP1 instruction:

scale factor ← logn 2

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
ST(1) ← ST(1) ∗ log2(ST(0) + 1.0);
PopRegisterStack;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Either operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.
Vol. 2A 3-421FYL2XP1—Compute y * log2(x +1)

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
3-422 Vol. 2A FYL2XP1—Compute y * log2(x +1)

INSTRUCTION SET REFERENCE, A-M
HADDPD—Packed Double-FP Horizontal Add

Description
Adds the double-precision floating-point values in the high and low quadwords of the destina-
tion operand and stores the result in the low quadword of the destination operand.

Adds the double-precision floating-point values in the high and low quadwords of the source
operand and stores the result in the high quadword of the destination operand. See Figure 3-10.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 7C /r HADDPD xmm1,
xmm2/m128

Valid Valid Horizontal add packed double-
precision floating-point values
from xmm2/m128 to xmm1.

Figure 3-10. HADDPD—Packed Double-FP Horizontal Add
Vol. 2A 3-423HADDPD—Packed Double-FP Horizontal Add

INSTRUCTION SET REFERENCE, A-M
Operation
xmm1[63:0] = xmm1[63:0] + xmm1[127:64];
xmm1[127:64] = xmm2/m128[63:0] + xmm2/m128[127:64];

Intel C/C++ Compiler Intrinsic Equivalent
HADDPD __m128d _mm_hadd_pd(__m128d a, __m128d b)

Exceptions
When the source operand is a memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

Numeric Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 1).

#UD If CR0.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 0).

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If CR0.TS[bit 3] = 1.
3-424 Vol. 2A HADDPD—Packed Double-FP Horizontal Add

INSTRUCTION SET REFERENCE, A-M
#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 1).

#UD If CR0.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 0).

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If CR0.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 1).

#UD If CR0.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 0).

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
Vol. 2A 3-425HADDPD—Packed Double-FP Horizontal Add

INSTRUCTION SET REFERENCE, A-M
#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID feature flag SSE3 is 0.
3-426 Vol. 2A HADDPD—Packed Double-FP Horizontal Add

INSTRUCTION SET REFERENCE, A-M
HADDPS—Packed Single-FP Horizontal Add

Description
Adds the single-precision floating-point values in the first and second dwords of the destination
operand and stores the result in the first dword of the destination operand.

Adds single-precision floating-point values in the third and fourth dword of the destination
operand and stores the result in the second dword of the destination operand.

Adds single-precision floating-point values in the first and second dword of the source operand
and stores the result in the third dword of the destination operand.

Adds single-precision floating-point values in the third and fourth dword of the source operand
and stores the result in the fourth dword of the destination operand. See Figure 3-11.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F2 0F 7C /r HADDPS xmm1,
xmm2/m128

Valid Valid Horizontal add packed single-
precision floating-point values from
xmm2/m128 to xmm1.

Figure 3-11. HADDPS—Packed Single-FP Horizontal Add
Vol. 2A 3-427HADDPS—Packed Single-FP Horizontal Add

INSTRUCTION SET REFERENCE, A-M
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
xmm1[31:0] = xmm1[31:0] + xmm1[63:32];
xmm1[63:32] = xmm1[95:64] + xmm1[127:96];
xmm1[95:64] = xmm2/m128[31:0] + xmm2/m128[63:32];
xmm1[127:96] = xmm2/m128[95:64] + xmm2/m128[127:96];

Intel C/C++ Compiler Intrinsic Equivalent
HADDPS __m128 _mm_hadd_ps(__m128 a, __m128 b)

Exceptions
When the source operand is a memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

Numeric Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 1).

#UD If CR0.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 0).

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.
3-428 Vol. 2A HADDPS—Packed Single-FP Horizontal Add

INSTRUCTION SET REFERENCE, A-M
Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If CR0.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 1).

#UD If CR0.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 0).

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If CR0.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 1).

#UD If CR0.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 0).

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.
Vol. 2A 3-429HADDPS—Packed Single-FP Horizontal Add

INSTRUCTION SET REFERENCE, A-M
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID feature flag SSE3 is 0.
3-430 Vol. 2A HADDPS—Packed Single-FP Horizontal Add

INSTRUCTION SET REFERENCE, A-M
HLT—Halt

Description
Stops instruction execution and places the processor in a HALT state. An enabled interrupt
(including NMI and SMI), a debug exception, the BINIT# signal, the INIT# signal, or the
RESET# signal will resume execution. If an interrupt (including NMI) is used to resume execu-
tion after a HLT instruction, the saved instruction pointer (CS:EIP) points to the instruction
following the HLT instruction.

When a HLT instruction is executed on an IA-32 processor supporting Hyper-Threading Tech-
nology, only the logical processor that executes the instruction is halted. The other logical
processors in the physical processor remain active, unless they are each individually halted by
executing a HLT instruction.

The HLT instruction is a privileged instruction. When the processor is running in protected or
virtual-8086 mode, the privilege level of a program or procedure must be 0 to execute the HLT
instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
Enter Halt state;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F4 HLT Valid Valid Halt
Vol. 2A 3-431HLT—Halt

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
3-432 Vol. 2A HLT—Halt

INSTRUCTION SET REFERENCE, A-M
HSUBPD—Packed Double-FP Horizontal Subtract

Description
The HSUBPD instruction subtracts horizontally the packed DP FP numbers of both operands.

Subtracts the double-precision floating-point value in the high quadword of the destination
operand from the low quadword of the destination operand and stores the result in the low quad-
word of the destination operand.

Subtracts the double-precision floating-point value in the high quadword of the source operand
from the low quadword of the source operand and stores the result in the high quadword of the
destination operand. See Figure 3-12.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 7D /r HSUBPD xmm1,
xmm2/m128

Valid Valid Horizontal subtract packed double-
precision floating-point values from
xmm2/m128 to xmm1.

Figure 3-12. HSUBPD—Packed Double-FP Horizontal Subtract
Vol. 2A 3-433HSUBPD—Packed Double-FP Horizontal Subtract

INSTRUCTION SET REFERENCE, A-M
Operation
xmm1[63:0] = xmm1[63:0] − xmm1[127:64];
xmm1[127:64] = xmm2/m128[63:0] − xmm2/m128[127:64];

Intel C/C++ Compiler Intrinsic Equivalent
HSUBPD __m128d _mm_hsub_pd(__m128d a, __m128d b)

Exceptions
When the source operand is a memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

Numeric Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 1).

#UD If CR0.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 0).

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If CR0.TS[bit 3] = 1.
3-434 Vol. 2A HSUBPD—Packed Double-FP Horizontal Subtract

INSTRUCTION SET REFERENCE, A-M
#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 1).

#UD If CR0.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 0).

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If CR0.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 1).

#UD If CR0.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 0).

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.
Vol. 2A 3-435HSUBPD—Packed Double-FP Horizontal Subtract

INSTRUCTION SET REFERENCE, A-M
#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID feature flag SSE3 is 0.
3-436 Vol. 2A HSUBPD—Packed Double-FP Horizontal Subtract

INSTRUCTION SET REFERENCE, A-M
HSUBPS—Packed Single-FP Horizontal Subtract

Description
Subtracts the single-precision floating-point value in the second dword of the destination
operand from the first dword of the destination operand and stores the result in the first dword
of the destination operand.

Subtracts the single-precision floating-point value in the fourth dword of the destination operand
from the third dword of the destination operand and stores the result in the second dword of the
destination operand.

Subtracts the single-precision floating-point value in the second dword of the source operand
from the first dword of the source operand and stores the result in the third dword of the desti-
nation operand.

Subtracts the single-precision floating-point value in the fourth dword of the source operand
from the third dword of the source operand and stores the result in the fourth dword of the desti-
nation operand.

See Figure 3-13.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F2 0F 7D /r HSUBPS xmm1,
xmm2/m128

Valid Valid Horizontal subtract packed single-
precision floating-point values from
xmm2/m128 to xmm1.
Vol. 2A 3-437HSUBPS—Packed Single-FP Horizontal Subtract

INSTRUCTION SET REFERENCE, A-M
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
xmm1[31:0] = xmm1[31:0] − xmm1[63:32];
xmm1[63:32] = xmm1[95:64] −xmm1[127:96];
xmm1[95:64] = xmm2/m128[31:0] − xmm2/m128[63:32];
xmm1[127:96] = xmm2/m128[95:64] − xmm2/m128[127:96];

Intel C/C++ Compiler Intrinsic Equivalent
HSUBPS __m128 _mm_hsub_ps(__m128 a, __m128 b)

Exceptions
When the source operand is a memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

Figure 3-13. HSUBPS—Packed Single-FP Horizontal Subtract
3-438 Vol. 2A HSUBPS—Packed Single-FP Horizontal Subtract

INSTRUCTION SET REFERENCE, A-M
Numeric Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 1).

#UD If CR0.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 0).

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If CR0.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 1).

#UD If CR0.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 0).

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.
Vol. 2A 3-439HSUBPS—Packed Single-FP Horizontal Subtract

INSTRUCTION SET REFERENCE, A-M
Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If CR0.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 1).

#UD If CR0.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT[bit 10] = 0).

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.
3-440 Vol. 2A HSUBPS—Packed Single-FP Horizontal Subtract

INSTRUCTION SET REFERENCE, A-M
IDIV—Signed Divide

Description
Divides the (signed) value in the AX, DX:AX, or EDX:EAX (dividend) by the source operand
(divisor) and stores the result in the AX (AH:AL), DX:AX, or EDX:EAX registers. The source
operand can be a general-purpose register or a memory location. The action of this instruction
depends on the operand size (dividend/divisor).

Non-integral results are truncated (chopped) towards 0. The remainder is always less than the
divisor in magnitude. Overflow is indicated with the #DE (divide error) exception rather than
with the CF flag.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix
permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation
to 64 bits. In 64-bit mode when REX.W is applied, the instruction divides the signed value in
RDX:RAX by the source operand. RAX contains a 64-bit quotient; RDX contains a 64-bit
remainder.

See the summary chart at the beginning of this section for encoding data and limits. See Table
3-55.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F6 /7 IDIV r/m8 Valid Valid Signed divide AX by r/m8, with result
stored in: AL ← Quotient, AH ←
Remainder.

REX + F6 /7 IDIV r/m8* Valid N.E. Signed divide AX by r/m8, with result
stored in AL ← Quotient, AH ←
Remainder.

F7 /7 IDIV r/m16 Valid Valid Signed divide DX:AX by r/m16, with
result stored in AX ← Quotient, DX ←
Remainder.

F7 /7 IDIV r/m32 Valid Valid Signed divide EDX:EAX by r/m32, with
result stored in EAX ← Quotient, EDX
← Remainder.

REX.W + F7 /7 IDIV r/m64 Valid N.E. Signed divide RDX:RAX by r/m64, with
result stored in RAX ← Quotient, RDX
← Remainder.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.
Vol. 2A 3-441IDIV—Signed Divide

INSTRUCTION SET REFERENCE, A-M
Operation
IF SRC = 0

THEN #DE; (* Divide error *)
FI;
IF OperandSize = 8 (* Word/byte operation *)

THEN
temp ← AX / SRC; (* Signed division *)
IF (temp > 7FH) or (temp < 80H)
(* If a positive result is greater than 7FH or a negative result is less than 80H *)

THEN #DE; (* Divide error *)
ELSE

AL ← temp;
AH ← AX SignedModulus SRC;

FI;
ELSE IF OperandSize = 16 (* Doubleword/word operation *)

THEN
temp ← DX:AX / SRC; (* Signed division *)
IF (temp > 7FFFH) or (temp < 8000H)
(* If a positive result is greater than 7FFFH
or a negative result is less than 8000H *)

THEN
#DE; (* Divide error *)

ELSE
AX ← temp;
DX ← DX:AX SignedModulus SRC;

FI;
FI;

ELSE IF OperandSize = 32 (* Quadword/doubleword operation *)
temp ← EDX:EAX / SRC; (* Signed division *)
IF (temp > 7FFFFFFFH) or (temp < 80000000H)
(* If a positive result is greater than 7FFFFFFFH
or a negative result is less than 80000000H *)

THEN
#DE; (* Divide error *)

ELSE
EAX ← temp;

Table 3-55. IDIV Results
Operand Size Dividend Divisor Quotient Remainder Quotient Range

Word/byte AX r/m8 AL AH −128 to +127

Doubleword/word DX:AX r/m16 AX DX −32,768 to +32,767

Quadword/doubleword EDX:EAX r/m32 EAX EDX −231 to 232 − 1

Doublequadword/
quadword

RDX:RAX r/m64 RAX RDX −263 to 264 − 1
3-442 Vol. 2A IDIV—Signed Divide

INSTRUCTION SET REFERENCE, A-M
EDX ← EDXE:AX SignedModulus SRC;
FI;

FI;
ELSE IF OperandSize = 64 (* Doublequadword/quadword operation *)

temp ← RDX:RAX / SRC; (* Signed division *)
IF (temp > 7FFFFFFFFFFFH) or (temp < 8000000000000000H)
(* If a positive result is greater than 7FFFFFFFFFFFH
or a negative result is less than 8000000000000000H *)

THEN
#DE; (* Divide error *)

ELSE
RAX ← temp;
RDX ← RDE:RAX SignedModulus SRC;

FI;
FI;

FI;

Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.
Vol. 2A 3-443IDIV—Signed Divide

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-444 Vol. 2A IDIV—Signed Divide

INSTRUCTION SET REFERENCE, A-M
IMUL—Signed Multiply

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F6 /5 IMUL r/m8* Valid Valid AX← AL ∗ r/m byte.
F7 /5 IMUL r/m16 Valid Valid DX:AX ← AX ∗ r/m word.
F7 /5 IMUL r/m32 Valid Valid EDX:EAX ← EAX ∗ r/m32.
REX.W + F7 /5 IMUL r/m64 Valid N.E. RDX:RAX ← RAX ∗ r/m64.
0F AF /r IMUL r16, r/m16 Valid Valid word register ← word register ∗

r/m16.
0F AF /r IMUL r32, r/m32 Valid Valid doubleword register ←

doubleword register ∗ r/m32.
REX.W + 0F AF /r IMUL r64, r/m64 Valid N.E. Quadword register ← Quadword

register ∗ r/m64.
6B /r ib IMUL r16, r/m16,

imm8
Valid Valid word register ← r/m16 ∗ sign-

extended immediate byte.
6B /r ib IMUL r32, r/m32,

imm8
Valid Valid doubleword register ← r/m32 ∗

sign-extended immediate byte.
REX.W + 6B /r ib IMUL r64, r/m64,

imm8
Valid N.E. Quadword register ← r/m64 ∗

sign-extended immediate byte.
6B /r ib IMUL r16, imm8 Valid Valid word register ← word register ∗

sign-extended immediate byte.
6B /r ib IMUL r32, imm8 Valid Valid doubleword register ←

doubleword register ∗ sign-
extended immediate byte.

REX.W + 6B /r ib IMUL r64, imm8 Valid N.E. Quadword register ← Quadword
register ∗ sign-extended
immediate byte.

69 /r iw IMUL r16, r/m16,
imm16

Valid Valid word register ← r/m16 ∗
immediate word.

69 /r id IMUL r32, r/m32,
imm32

Valid Valid doubleword register ← r/m32 ∗
immediate doubleword.

REX.W + 69 /r id IMUL r64, r/m64,
imm32

Valid N.E. Quadword register ← r/m64 ∗
immediate doubleword.

69 /r iw IMUL r16, imm16 Valid Valid word register ← r/m16 ∗
immediate word.

69 /r id IMUL r32, imm32 Valid Valid doubleword register ← r/m32 ∗
immediate doubleword.

REX.W + 69 /r id IMUL r64, imm32 Valid N.E. Quadword register ← r/m64 ∗
immediate doubleword.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.
Vol. 2A 3-445IMUL—Signed Multiply

INSTRUCTION SET REFERENCE, A-M
Description
Performs a signed multiplication of two operands. This instruction has three forms, depending
on the number of operands.

• One-operand form — This form is identical to that used by the MUL instruction. Here,
the source operand (in a general-purpose register or memory location) is multiplied by the
value in the AL, AX, EAX, or RAX register (depending on the operand size) and the
product is stored in the AX, DX:AX, EDX:EAX, or RDX:RAX registers, respectively.

• Two-operand form — With this form the destination operand (the first operand) is
multiplied by the source operand (second operand). The destination operand is a general-
purpose register and the source operand is an immediate value, a general-purpose register,
or a memory location. The product is then stored in the destination operand location.

• Three-operand form — This form requires a destination operand (the first operand) and
two source operands (the second and the third operands). Here, the first source operand
(which can be a general-purpose register or a memory location) is multiplied by the second
source operand (an immediate value). The product is then stored in the destination operand
(a general-purpose register).

When an immediate value is used as an operand, it is sign-extended to the length of the destina-
tion operand format.

The CF and OF flags are set when significant bit (including the sign bit) are carried into the
upper half of the result. The CF and OF flags are cleared when the result (including the sign bit)
fits exactly in the lower half of the result.

The three forms of the IMUL instruction are similar in that the length of the product is calculated
to twice the length of the operands. With the one-operand form, the product is stored exactly in
the destination. With the two- and three- operand forms, however, the result is truncated to the
length of the destination before it is stored in the destination register. Because of this truncation,
the CF or OF flag should be tested to ensure that no significant bits are lost.

The two- and three-operand forms may also be used with unsigned operands because the lower
half of the product is the same regardless if the operands are signed or unsigned. The CF and OF
flags, however, cannot be used to determine if the upper half of the result is non-zero.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix
permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation
to 64 bits. Use of REX.W modifies the three forms of the instruction as follows.

• One-operand form —The source operand (in a 64-bit general-purpose register or memory
location) is multiplied by the value in the RAX register and the product is stored in the
RDX:RAX registers.

• Two-operand form — The source operand is promoted to 64 bits if it is a register or a
memory location. If the source operand is an immediate, it is sign extended to 64 bits. The
destination operand is promoted to 64 bits.

• Three-operand form — The first source operand (either a register or a memory location)
and destination operand are promoted to 64 bits.
3-446 Vol. 2A IMUL—Signed Multiply

INSTRUCTION SET REFERENCE, A-M
Operation
IF (NumberOfOperands = 1)

THEN IF (OperandSize = 8)
THEN

AX ← AL ∗ SRC (* Signed multiplication *)
IF AL = AX

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

ELSE IF OperandSize = 16
THEN

DX:AX ← AX ∗ SRC (* Signed multiplication *)
IF sign_extend_to_32 (AX) = DX:AX

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

ELSE IF OperandSize = 32
THEN

EDX:EAX ← EAX ∗ SRC (* Signed multiplication *)
IF EAX = EDX:EAX

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

ELSE (* OperandSize = 64 *)
RDX:RAX ← RAX ∗ SRC (* Signed multiplication *)
IF RAX = RDX:RAX

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

FI;
FI;

ELSE IF (NumberOfOperands = 2)
THEN

temp ← DEST ∗ SRC (* Signed multiplication; temp is double DEST size *)
DEST ← DEST ∗ SRC (* Signed multiplication *)
IF temp ≠ DEST

THEN CF ← 1; OF ← 1;
ELSE CF ← 0; OF ← 0; FI;

ELSE (* NumberOfOperands = 3 *)
DEST ← SRC1 ∗ SRC2 (* Signed multiplication *)
temp ← SRC1 ∗ SRC2 (* Signed multiplication; temp is double SRC1 size *)
IF temp ≠ DEST

THEN CF ← 1; OF ← 1;
ELSE CF ← 0; OF ← 0; FI;

FI;
FI;
Vol. 2A 3-447IMUL—Signed Multiply

INSTRUCTION SET REFERENCE, A-M
Flags Affected
For the one operand form of the instruction, the CF and OF flags are set when significant bits
are carried into the upper half of the result and cleared when the result fits exactly in the lower
half of the result. For the two- and three-operand forms of the instruction, the CF and OF flags
are set when the result must be truncated to fit in the destination operand size and cleared when
the result fits exactly in the destination operand size. The SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
3-448 Vol. 2A IMUL—Signed Multiply

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-449IMUL—Signed Multiply

INSTRUCTION SET REFERENCE, A-M
IN—Input from Port

Description
Copies the value from the I/O port specified with the second operand (source operand) to the
destination operand (first operand). The source operand can be a byte-immediate or the DX
register; the destination operand can be register AL, AX, or EAX, depending on the size of the
port being accessed (8, 16, or 32 bits, respectively). Using the DX register as a source operand
allows I/O port addresses from 0 to 65,535 to be accessed; using a byte immediate allows I/O
port addresses 0 to 255 to be accessed.

When accessing an 8-bit I/O port, the opcode determines the port size; when accessing a 16- and
32-bit I/O port, the operand-size attribute determines the port size. At the machine code level,
I/O instructions are shorter when accessing 8-bit I/O ports. Here, the upper eight bits of the port
address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O address
space. See Chapter 13, “Input/Output”, in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 1, for more information on accessing I/O ports in the I/O address space.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))

THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)
IF (Any I/O Permission Bit for I/O port being accessed = 1)

THEN (* I/O operation is not allowed *)
#GP(0);

ELSE (* I/O operation is allowed *)
DEST ← SRC; (* Read from selected I/O port *)

FI;
ELSE (Real Mode or Protected Mode with CPL ≤ IOPL *)

DEST ← SRC; (* Read from selected I/O port *)
FI;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

E4 ib IN AL, imm8 Valid Valid Input byte from imm8 I/O port address into AL.
E5 ib IN AX, imm8 Valid Valid Input word from imm8 I/O port address into AX.
E5 ib IN EAX, imm8 Valid Valid Input dword from imm8 I/O port address into

EAX.
EC IN AL,DX Valid Valid Input byte from I/O port in DX into AL.
ED IN AX,DX Valid Valid Input word from I/O port in DX into AX.
ED IN EAX,DX Valid Valid Input doubleword from I/O port in DX into EAX.
3-450 Vol. 2A IN—Input from Port

INSTRUCTION SET REFERENCE, A-M
Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL)

and any of the corresponding I/O permission bits in TSS for the I/O port
being accessed is 1.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed

is 1.

#PF(fault-code) If a page fault occurs.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL)
and any of the corresponding I/O permission bits in TSS for the I/O port
being accessed is 1.
Vol. 2A 3-451IN—Input from Port

INSTRUCTION SET REFERENCE, A-M
INC—Increment by 1

Description
Adds 1 to the destination operand, while preserving the state of the CF flag. The destination
operand can be a register or a memory location. This instruction allows a loop counter to be
updated without disturbing the CF flag. (Use a ADD instruction with an immediate operand of
1 to perform an increment operation that does updates the CF flag.)

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

In 64-bit mode, INC r16 and INC r32 are not encodable (because opcodes 40H through 47H are
REX prefixes). Otherwise, the instruction’s 64-bit mode default operation size is 32 bits. Use of
the REX.R prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits.

Operation
DEST ← DEST + 1;

AFlags Affected
The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination operand is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULLsegment selector.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

FE /0 INC r/m8 Valid Valid Increment r/m byte by 1.
REX + FE /0 INC r/m8* Valid N.E. Increment r/m byte by 1.
FF /0 INC r/m16 Valid Valid Increment r/m word by 1.
FF /0 INC r/m32 Valid Valid Increment r/m doubleword by 1.
REX.W + FF /0 INC r/m64 Valid N.E. Increment r/m quadword by 1.
40+ rw** INC r16 N.E. Valid Increment word register by 1.
40+ rd INC r32 N.E. Valid Increment doubleword register by 1.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.
** 40H through 47H are REX prefixes in 64-bit mode.
3-452 Vol. 2A INC—Increment by 1

INSTRUCTION SET REFERENCE, A-M
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-453INC—Increment by 1

INSTRUCTION SET REFERENCE, A-M
INS/INSB/INSW/INSD—Input from Port to String

Description
Copies the data from the I/O port specified with the source operand (second operand) to the
destination operand (first operand). The source operand is an I/O port address (from 0 to 65,535)
that is read from the DX register. The destination operand is a memory location, the address of
which is read from either the ES:DI, ES:EDI or the RDI registers (depending on the address-size
attribute of the instruction, 16, 32 or 64, respectively). (The ES segment cannot be overridden
with a segment override prefix.) The size of the I/O port being accessed (that is, the size of the
source and destination operands) is determined by the opcode for an 8-bit I/O port or by the
operand-size attribute of the instruction for a 16- or 32-bit I/O port.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the INS
mnemonic) allows the source and destination operands to be specified explicitly. Here, the
source operand must be “DX,” and the destination operand should be a symbol that indicates the
size of the I/O port and the destination address. This explicit-operands form is provided to allow
documentation; however, note that the documentation provided by this form can be misleading.
That is, the destination operand symbol must specify the correct type (size) of the operand (byte,
word, or doubleword), but it does not have to specify the correct location. The location is always
specified by the ES:(E)DI registers, which must be loaded correctly before the INS instruction
is executed.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

6C INS m8, DX Valid Valid Input byte from I/O port specified in DX into
memory location specified in ES:(E)DI or
RDI.1

Notes
1. n 64-bit mode, only 64-bit (RDI) and 32-bit (EDI) address sizes are supported. In non-64-bit mode, only

32-bit (EDI) and 16-bit (DI) address sizes are supported

6D INS m16, DX Valid Valid Input word from I/O port specified in DX
into memory location specified in ES:(E)DI
or RDI.1

6D INS m32, DX Valid Valid Input doubleword from I/O port specified in
DX into memory location specified in
ES:(E)DI or RDI.1

6C INSB Valid Valid Input byte from I/O port specified in DX into
memory location specified with ES:(E)DI or
RDI.1

6D INSW Valid Valid Input word from I/O port specified in DX
into memory location specified in ES:(E)DI
or RDI.1

6D INSD Valid Valid Input doubleword from I/O port specified in
DX into memory location specified in
ES:(E)DI or RDI.1
3-454 Vol. 2A INS/INSB/INSW/INSD—Input from Port to String

INSTRUCTION SET REFERENCE, A-M
The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
INS instructions. Here also DX is assumed by the processor to be the source operand and
ES:(E)DI is assumed to be the destination operand. The size of the I/O port is specified with the
choice of mnemonic: INSB (byte), INSW (word), or INSD (doubleword).

After the byte, word, or doubleword is transfer from the I/O port to the memory location, the
DI/EDI/RDI register is incremented or decremented automatically according to the setting of the
DF flag in the EFLAGS register. (If the DF flag is 0, the (E)DI register is incremented; if the DF
flag is 1, the (E)DI register is decremented.) The (E)DI register is incremented or decremented
by 1 for byte operations, by 2 for word operations, or by 4 for doubleword operations.

The INS, INSB, INSW, and INSD instructions can be preceded by the REP prefix for block
input of ECX bytes, words, or doublewords. See “REP/REPE/REPZ/REPNE /REPNZ—Repeat
String Operation Prefix” in IA-32 Intel® Architecture Software Developer’s Manual, Volume 2B,
for a description of the REP prefix.

These instructions are only useful for accessing I/O ports located in the processor’s I/O address
space. See Chapter 13, “Input/Output”, in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 1, for more information on accessing I/O ports in the I/O address space.

In 64-bit mode, default address size is 64 bits, 32 bit address size is supported using the prefix
67H. The address of the memory destination is specified by RDI or EDI. 16-bit address size is
not supported in 64-bit mode. The operand size is not promoted.
Vol. 2A 3-455INS/INSB/INSW/INSD—Input from Port to String

INSTRUCTION SET REFERENCE, A-M
Operation

IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)

#GP(0);
ELSE (* I/O operation is allowed *)

DEST ← SRC; (* Read from I/O port *)
FI;

ELSE (Real Mode or Protected Mode with CPL IOPL *)
DEST ← SRC; (* Read from I/O port *)

FI;
Non-64-bit Mode:
IF (Byte transfer)

THEN IF DF = 0
THEN (E)DI ← (E)DI + 1;
ELSE (E)DI ← (E)DI – 1; FI;

ELSE IF (Word transfer)
THEN IF DF = 0

THEN (E)DI ← (E)DI + 2;
ELSE (E)DI ← (E)DI – 2; FI;

ELSE (* Doubleword transfer *)
THEN IF DF = 0

THEN (E)DI ← (E)DI + 4;
ELSE (E)DI ← (E)DI – 4; FI;

FI;
FI;
FI64-bit Mode:
IF (Byte transfer)

THEN IF DF = 0
THEN (E|R)DI ← (E|R)DI + 1;
ELSE (E|R)DI ← (E|R)DI – 1; FI;

ELSE IF (Word transfer)
THEN IF DF = 0

THEN (E)DI ← (E)DI + 2;
ELSE (E)DI ← (E)DI – 2; FI;

ELSE (* Doubleword transfer *)
THEN IF DF = 0

THEN (E|R)DI ← (E|R)DI + 4;
ELSE (E|R)DI ← (E|R)DI – 4; FI;

FI;
FI;

Flags Affected
None.
3-456 Vol. 2A INS/INSB/INSW/INSD—Input from Port to String

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL)

and any of the corresponding I/O permission bits in TSS for the I/O port
being accessed is 1.

If the destination is located in a non-writable segment.

If an illegal memory operand effective address in the ES segments is
given.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed

is 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL)
and any of the corresponding I/O permission bits in TSS for the I/O port
being accessed is 1.

If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-457INS/INSB/INSW/INSD—Input from Port to String

INSTRUCTION SET REFERENCE, A-M
INT n/INTO/INT 3—Call to Interrupt Procedure

Description
The INT n instruction generates a call to the interrupt or exception handler specified with the
destination operand (see the section titled “Interrupts and Exceptions” in Chapter 6 of the IA-32
Intel® Architecture Software Developer’s Manual, Volume 1). The destination operand specifies
an interrupt vector number from 0 to 255, encoded as an 8-bit unsigned intermediate value. Each
interrupt vector number provides an index to a gate descriptor in the IDT. The first 32 interrupt
vector numbers are reserved by Intel for system use. Some of these interrupts are used for inter-
nally generated exceptions.

The INT n instruction is the general mnemonic for executing a software-generated call to an
interrupt handler. The INTO instruction is a special mnemonic for calling overflow exception
(#OF), interrupt vector number 4. The overflow interrupt checks the OF flag in the EFLAGS
register and calls the overflow interrupt handler if the OF flag is set to 1.

The INT 3 instruction generates a special one byte opcode (CC) that is intended for calling the
debug exception handler. (This one byte form is valuable because it can be used to replace the
first byte of any instruction with a breakpoint, including other one byte instructions, without
over-writing other code). To further support its function as a debug breakpoint, the interrupt
generated with the CC opcode also differs from the regular software interrupts as follows:

• Interrupt redirection does not happen when in VME mode; the interrupt is handled by a
protected-mode handler.

• The virtual-8086 mode IOPL checks do not occur. The interrupt is taken without faulting at
any IOPL level.

Note that the “normal” 2-byte opcode for INT 3 (CD03) does not have these special features.
Intel and Microsoft assemblers will not generate the CD03 opcode from any mnemonic, but this
opcode can be created by direct numeric code definition or by self-modifying code.

The action of the INT n instruction (including the INTO and INT 3 instructions) is similar to that
of a far call made with the CALL instruction. The primary difference is that with the INT n
instruction, the EFLAGS register is pushed onto the stack before the return address. (The return
address is a far address consisting of the current values of the CS and EIP registers.) Returns
from interrupt procedures are handled with the IRET instruction, which pops the EFLAGS
information and return address from the stack.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

CC INT 3 Valid Valid Interrupt 3—trap to debugger.
CD ib INT imm8 Valid Valid Interrupt vector number specified by

immediate byte.
CE INTO Invalid Valid Interrupt 4—if overflow flag is 1.
3-458 Vol. 2A INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-M
The interrupt vector number specifies an interrupt descriptor in the interrupt descriptor table
(IDT); that is, it provides index into the IDT. The selected interrupt descriptor in turn contains a
pointer to an interrupt or exception handler procedure. In protected mode, the IDT contains
an array of 8-byte descriptors, each of which is an interrupt gate, trap gate, or task gate. In real-
address mode, the IDT is an array of 4-byte far pointers (2-byte code segment selector and
a 2-byte instruction pointer), each of which point directly to a procedure in the selected segment.
(Note that in real-address mode, the IDT is called the interrupt vector table, and its pointers
are called interrupt vectors.)

The following decision table indicates which action in the lower portion of the table is taken
given the conditions in the upper portion of the table. Each Y in the lower section of the decision
table represents a procedure defined in the “Operation” section for this instruction (except #GP).

Table 3-56. Decision Table
PE 0 1 1 1 1 1 1 1

VM – – – – – 0 1 1

IOPL – – – – – – <3 =3

DPL/CPL
RELATIONSHIP

– DPL<
CPL

– DPL>
CPL

DPL=
CPL or C

DPL<
CPL &
NC

– –

INTERRUPT TYPE – S/W – – – – – –

GATE TYPE – – Task Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

REAL-ADDRESS-
MODE

Y

PROTECTED-MODE Y Y Y Y Y Y Y

TRAP-OR-
INTERRUPT-GATE

Y Y Y Y Y

INTER-PRIVILEGE-
LEVEL-INTERRUPT

Y

INTRA-PRIVILEGE-
LEVEL-INTERRUPT

Y

INTERRUPT-FROM-
VIRTUAL-8086-
MODE

Y

TASK-GATE Y

#GP Y Y Y

NOTES:
− Don't Care.
Y Yes, action taken.

Blank Action not taken.
Vol. 2A 3-459INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-M
When the processor is executing in virtual-8086 mode, the IOPL determines the action of the
INT n instruction. If the IOPL is less than 3, the processor generates a #GP(selector) exception;
if the IOPL is 3, the processor executes a protected mode interrupt to privilege level 0. The inter-
rupt gate's DPL must be set to 3 and the target CPL of the interrupt handler procedure must be
0 to execute the protected mode interrupt to privilege level 0.

The interrupt descriptor table register (IDTR) specifies the base linear address and limit of the
IDT. The initial base address value of the IDTR after the processor is powered up or reset is 0.

Operation
The following operational description applies not only to the INT n and INTO instructions, but
also to external interrupts and exceptions.
IF PE = 0

THEN
GOTO REAL-ADDRESS-MODE;

ELSE (* PE = 1 *)
IF (VM = 1 and IOPL < 3 AND INT n)

THEN
 #GP(0);

ELSE (* Protected mode, IA-32e mode, or virtual-8086 mode interrupt *)
IF (IA32_EFER.LMA = 0)

THEN (* Protected mode, or virtual-8086 mode interrupt *)
GOTO PROTECTED-MODE;

ELSE (* IA-32e mode interrupt *)
GOTO IA-32e-MODE;

FI;
FI;

FI;
REAL-ADDRESS-MODE:

IF ((vector_number ∗ 4) + 3) is not within IDT limit
THEN #GP; FI;

IF stack not large enough for a 6-byte return information
THEN #SS; FI;

Push (EFLAGS[15:0]);
IF ← 0; (* Clear interrupt flag *)
TF ← 0; (* Clear trap flag *)
AC ← 0; (* Clear AC flag *)
Push(CS);
Push(IP);
(* No error codes are pushed *)
CS ← IDT(Descriptor (vector_number ∗ 4), selector));
EIP ← IDT(Descriptor (vector_number ∗ 4), offset)); (* 16 bit offset AND 0000FFFFH *)

END;
PROTECTED-MODE:

IF ((vector_number ∗ 8) + 7) is not within IDT limits
or selected IDT descriptor is not an interrupt-, trap-, or task-gate type
3-460 Vol. 2A INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-M
THEN #GP((vector_number ∗ 8) + 2 + EXT); FI;
(* EXT is bit 0 in error code *)

IF software interrupt (* Generated by INT n, INT 3, or INTO *)
THEN

IF gate descriptor DPL < CPL
THEN #GP((vector_number ∗ 8) + 2); FI;
(* PE = 1, DPL<CPL, software interrupt *)

FI;
IF gate not present

THEN #NP((vector_number ∗ 8) + 2 + EXT); FI;
IF task gate (* Specified in the selected interrupt table descriptor *)

THEN GOTO TASK-GATE;
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE = 1, trap/interrupt gate *)

FI;
END;
IA-32e-MODE:

IF ((vector_number ∗ 16) + 15) is not in IDT limits
or selected IDT descriptor is not an interrupt-, or trap-gate type

THEN #GP((vector_number ∗ 16) + 2 + EXT); FI;
(* EXT is bit 0 in error code *)

IF software interrupt (* Generated by INT n, INT 3, but not INTO *)
THEN

IF gate descriptor DPL < CPL
THEN #GP((vector_number ∗ 16) + 2); FI;
(* PE = 1, DPL < CPL, software interrupt *)

ELSE (* Generated by INTO *)
THEN #UD;

FI;
IF gate not present

THEN #NP((vector_number ∗ 16) + 2 + EXT); FI;
IF ((vector_number * 16)[IST] ≠ 0)

NewRSP ← TSS[ISTx]; FI;
GOTO TRAP-OR-INTERRUPT-GATE; (* Trap/interrupt gate *)

END;
TASK-GATE: (* PE = 1, task gate *)

Read segment selector in task gate (IDT descriptor);
IF local/global bit is set to local
or index not within GDT limits

THEN #GP(TSS selector); FI;
Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)

THEN #GP(TSS selector); FI;
IF TSS not present

THEN #NP(TSS selector); FI;
SWITCH-TASKS (with nesting) to TSS;
IF interrupt caused by fault with error code
Vol. 2A 3-461INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-M
THEN
IF stack limit does not allow push of error code

THEN #SS(0); FI;
Push(error code);

FI;
IF EIP not within code segment limit

THEN #GP(0); FI;
END;
TRAP-OR-INTERRUPT-GATE:

Read segment selector for trap or interrupt gate (IDT descriptor);
IF segment selector for code segment is NULL

THEN #GP(0H + EXT); FI; (* NULL selector with EXT flag set *)
IF segment selector is not within its descriptor table limits

THEN #GP(selector + EXT); FI;
Read trap or interrupt handler descriptor;
IF descriptor does not indicate a code segment
or code segment descriptor DPL > CPL

THEN #GP(selector + EXT); FI;
IF trap or interrupt gate segment is not present,

THEN #NP(selector + EXT); FI;
IF code segment is non-conforming and DPL < CPL

THEN
IF VM = 0

THEN
GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT;
(* PE = 1, interrupt or trap gate, nonconforming
code segment, DPL < CPL, VM = 0 *)

ELSE (* VM = 1 *)
IF code segment DPL ≠ 0

THEN #GP; (new code segment selector);
GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE; FI;
(* PE = 1, interrupt or trap gate, DPL < CPL, VM = 1 *)

FI;
ELSE (* PE = 1, interrupt or trap gate, DPL ≥ CPL *)

IF VM = 1
THEN #GP(new code segment selector); FI;

IF code segment is conforming or code segment DPL = CPL
THEN

GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT;
ELSE

#GP(CodeSegmentSelector + EXT);
(* PE = 1, interrupt or trap gate, nonconforming
code segment, DPL > CPL *)

FI;
FI;

END;
3-462 Vol. 2A INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-M
INTER-PRIVILEGE-LEVEL-INTERRUPT:
(* PE = 1, interrupt or trap gate, non-conforming code segment, DPL < CPL *)
(* Check segment selector and descriptor for stack of new privilege level in current TSS *)
IF current TSS is 32-bit TSS

THEN
TSSstackAddress ← (new code segment DPL ∗ 8) + 4;
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(current TSS selector); FI;
NewSS ← TSSstackAddress + 4;
NewESP ← stack address;

ELSE
IF current TSS is 16-bit TSS

THEN(* TSS is 16-bit *)
TSSstackAddress ← (new code segment DPL ∗ 4) + 2
IF (TSSstackAddress + 4) > TSS limit

THEN #TS(current TSS selector); FI;
NewESP ← TSSstackAddress;
NewSS ← TSSstackAddress + 2;

ELSE (* TSS is 64-bit *)
NewESP ← TSS[RSP FOR NEW TARGET DPL];
NewSS ← 0;

FI;
FI;
IF segment selector is NULL

THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits
or segment selector's RPL ≠ DPL of code segment,

THEN #TS(SS selector + EXT); FI;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

Read segment descriptor for stack segment in GDT or LDT;
IF stack segment DPL ≠ DPL of code segment,
or stack segment does not indicate writable data segment

THEN #TS(SS selector + EXT); FI;
IF stack segment not present

THEN #SS(SS selector + EXT); FI;
FI
IF 32-bit gate

THEN
IF new stack does not have room for 24 bytes (error code pushed)
or 20 bytes (no error code pushed)

THEN #SS(segment selector + EXT); FI;
FI

ELSE
IF 16-bit gate

THEN
IF new stack does not have room for 12 bytes (error code pushed)
or 10 bytes (no error code pushed);
Vol. 2A 3-463INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-M
THEN #SS(segment selector + EXT); FI;
ELSE (* 64-bit gate*)

IF StackAddress is non-canonical
THEN #SS(0);FI;

FI;
FI;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN
IF instruction pointer is not within code segment limits

THEN #GP(0); FI;
SS:ESP ← TSS(NewSS:NewESP);

(* Segment descriptor information also loaded *)
ELSE

IF instruction pointer points to non-canonical address
THEN #GP(0); FI:

FI;
IF 32-bit gate

THEN
CS:EIP ← Gate(CS:EIP); (* Segment descriptor information also loaded *)

ELSE
IF 16-bit gate

THEN
CS:IP ← Gate(CS:IP);
(* Segment descriptor information also loaded *)

ELSE (* 64-bit gate *)
CS:RIP ← Gate(CS:RIP);
(* Segment descriptor information also loaded *)

FI;
FI;
IF 32-bit gate

THEN
Push(far pointer to old stack);
(* Old SS and ESP, 3 words padded to 4 *)
Push(EFLAGS);
Push(far pointer to return instruction);
(* Old CS and EIP, 3 words padded to 4 *)
Push(ErrorCode); (* If needed, 4 bytes *)

ELSE
IF 16-bit gate

THEN
Push(far pointer to old stack);
(* Old SS and SP, 2 words *)
Push(EFLAGS(15-0]);
Push(far pointer to return instruction);
(* Old CS and IP, 2 words *)
Push(ErrorCode); (* If needed, 2 bytes *)

ELSE (* 64-bit gate *)
3-464 Vol. 2A INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-M
Push(far pointer to old stack);
(* Old SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)
Push(far pointer to return instruction);
(* Old CS and RIP, each an 8-byte push *)
Push(ErrorCode); (* If needed, 8-bytes *)

FI;
FI;
CPL ← CodeSegmentDescriptor(DPL);
CS(RPL) ← CPL;
IF interrupt gate

THEN IF ← 0 (* Interrupt flag set to 0: disabled *); FI;
TF ← 0;
VM ← 0;
RF ← 0;
NT ← 0;

END;
INTERRUPT-FROM-VIRTUAL-8086-MODE:

(* Check segment selector and descriptor for privilege level 0 stack in current TSS *)
IF current TSS is 32-bit TSS

THEN
TSSstackAddress ← (new code segment DPL ∗ 8) + 4;
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(current TSS selector); FI;
NewSS ← TSSstackAddress + 4;
NewESP ← stack address;

ELSE (* TSS is 16-bit *)
TSSstackAddress ← (new code segment DPL ∗ 4) + 2;
IF (TSSstackAddress + 4) > TSS limit

THEN #TS(current TSS selector); FI;
NewESP ← TSSstackAddress;
NewSS ← TSSstackAddress + 2;

FI;
IF segment selector is NULL

THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits
or segment selector's RPL ≠ DPL of code segment

THEN #TS(SS selector + EXT); FI;
Access segment descriptor for stack segment in GDT or LDT;
IF stack segment DPL ≠ DPL of code segment,
or stack segment does not indicate writable data segment

THEN #TS(SS selector + EXT); FI;
IF stack segment not present

THEN #SS(SS selector + EXT); FI;
IF 32-bit gate

THEN
IF new stack does not have room for 40 bytes (error code pushed)
Vol. 2A 3-465INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-M
or 36 bytes (no error code pushed)
THEN #SS(segment selector + EXT); FI;

ELSE IF 16-bit gate
THEN

IF new stack does not have room for 20 bytes (error code pushed)
or 18 bytes (no error code pushed)

THEN #SS(segment selector + EXT); FI;
ELSE (* 64-bit gate*)

IF StackAddress is non-canonical
THEN #SS(0);

FI;
FI;
IF instruction pointer is not within code segment limits

THEN #GP(0); FI;
tempEFLAGS ← EFLAGS;
VM ← 0;
TF ← 0;
RF ← 0;
NT ← 0;
IF service through interrupt gate

THEN IF = 0; FI;
TempSS ← SS;
TempESP ← ESP;
SS:ESP ← TSS(SS0:ESP0); (* Change to level 0 stack segment *)
(* Following pushes are 16 bits for 16-bit gate and 32 bits for 32-bit gates;
Segment selector pushes in 32-bit mode are padded to two words *)
Push(GS);
Push(FS);
Push(DS);
Push(ES);
Push(TempSS);
Push(TempESP);
Push(TempEFlags);
Push(CS);
Push(EIP);
GS ← 0; (* Segment registers NULLified, invalid in protected mode *)
FS ← 0;
DS ← 0;
ES ← 0;
CS ← Gate(CS);
IF OperandSize = 32

THEN
EIP ← Gate(instruction pointer);

ELSE (* OperandSize is 16 *)
EIP ← Gate(instruction pointer) AND 0000FFFFH;

FI;
3-466 Vol. 2A INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-M
(* Start execution of new routine in Protected Mode *)
END;
INTRA-PRIVILEGE-LEVEL-INTERRUPT:

(* PE = 1, DPL = CPL or conforming segment *)
IF 32-bit gate and IA32_EFER.LMA = 0

THEN
IF current stack does not have room for 16 bytes (error code pushed)
or 12 bytes (no error code pushed)

THEN #SS(0); FI;
ELSE IF 16-bit gate

IF current stack does not have room for 8 bytes (error code pushed)
or 6 bytes (no error code pushed)

THEN #SS(0); FI;
ELSE (* 64-bit gate*)

IF StackAddress is non-canonical
THEN #SS(0);

FI;
FI;
IF instruction pointer not within code segment limit

THEN #GP(0); FI;
IF 32-bit gate

THEN
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS:EIP ← Gate(CS:EIP); (* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)

ELSE
IF 16-bit gate

THEN
Push (FLAGS);
Push (far pointer to return location); (* 2 words *)
CS:IP ← Gate(CS:IP);
(* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)

ELSE (* 64-bit gate*)
Push(far pointer to old stack);
(* Old SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)
Push(far pointer to return instruction);
(* Old CS and RIP, each an 8-byte push *)
Push(ErrorCode); (* If needed, 8 bytes *)
CS:RIP ← GATE(CS:RIP);
(* Segment descriptor information also loaded *)

FI;
FI;
CS(RPL) ← CPL;
IF interrupt gate
Vol. 2A 3-467INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-M
THEN IF ← 0; FI; (* Interrupt flag set to 0: disabled *)
TF ← 0;
NT ← 0;
VM ← 0;
RF ← 0;

END;

Flags Affected
The EFLAGS register is pushed onto the stack. The IF, TF, NT, AC, RF, and VM flags may be
cleared, depending on the mode of operation of the processor when the INT instruction is
executed (see the “Operation” section). If the interrupt uses a task gate, any flags may be set or
cleared, controlled by the EFLAGS image in the new task’s TSS.

Protected Mode Exceptions
#GP(0) If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate

is beyond the code segment limits.

#GP(selector) If the segment selector in the interrupt-, trap-, or task gate is NULL.

If an interrupt-, trap-, or task gate, code segment, or TSS segment selector
index is outside its descriptor table limits.

If the interrupt vector number is outside the IDT limits.

If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INT n, INT 3, or INTO instruction and
the DPL of an interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point to a
segment descriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If pushing the return address, flags, or error code onto the stack exceeds
the bounds of the stack segment and no stack switch occurs.

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not
present.

If pushing the return address, flags, error code, or stack segment pointer
exceeds the bounds of the new stack segment when a stack switch occurs.

#NP(selector) If code segment, interrupt-, trap-, or task gate, or TSS is not present.

#TS(selector) If the RPL of the stack segment selector in the TSS is not equal to the DPL
of the code segment being accessed by the interrupt or trap gate.
3-468 Vol. 2A INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-M
If DPL of the stack segment descriptor pointed to by the stack segment
selector in the TSS is not equal to the DPL of the code segment descriptor
for the interrupt or trap gate.

If the stack segment selector in the TSS is NULL.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table
limits.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the interrupt vector number is outside the IDT limits.

#SS If stack limit violation on push.

If pushing the return address, flags, or error code onto the stack exceeds
the bounds of the stack segment.

Virtual-8086 Mode Exceptions
#GP(0) (For INT n, INTO, or BOUND instruction) If the IOPL is less than 3 or the

DPL of the interrupt-, trap-, or task-gate descriptor is not equal to 3.

If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate
is beyond the code segment limits.

#GP(selector) If the segment selector in the interrupt-, trap-, or task gate is NULL.

If a interrupt-, trap-, or task gate, code segment, or TSS segment selector
index is outside its descriptor table limits.

If the interrupt vector number is outside the IDT limits.

If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INT n instruction and the DPL of an
interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point to a
segment descriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not
present.

If pushing the return address, flags, error code, stack segment pointer, or
data segments exceeds the bounds of the stack segment.
Vol. 2A 3-469INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-M
#NP(selector) If code segment, interrupt-, trap-, or task gate, or TSS is not present.

#TS(selector) If the RPL of the stack segment selector in the TSS is not equal to the DPL
of the code segment being accessed by the interrupt or trap gate.

If DPL of the stack segment descriptor for the TSS’s stack segment is not
equal to the DPL of the code segment descriptor for the interrupt or trap
gate.

If the stack segment selector in the TSS is NULL.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table
limits.

#PF(fault-code) If a page fault occurs.

#BP If the INT 3 instruction is executed.

#OF If the INTO instruction is executed and the OF flag is set.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the instruction pointer in the 64-bit interrupt gate or 64-bit trap gate is
non-canonical.

#GP(selector) If the segment selector in the 64-bit interrupt or trap gate is NULL.

If the interrupt vector number is outside the IDT limits.

If the interrupt vector number points to a gate which is in non-canonical
space.

If the interrupt vector number points to a descriptor which is not a 64-bit
interrupt gate or 64-bit trap gate.

If the descriptor pointed to by the gate selector is outside the descriptor
table limit.

If the descriptor pointed to by the gate selector is in non-canonical space.

If the descriptor pointed to by the gate selector is not a code segment.

If the descriptor pointed to by the gate selector doesn’t have the L-bit set,
or has both the L-bit and D-bit set.

If the descriptor pointed to by the gate selector has DPL > CPL.

#SS(0) If a push of the old EFLAGS, CS selector, EIP, or error code is in non-
canonical space with no stack switch.
3-470 Vol. 2A INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-M
#SS(selector) If a push of the old SS selector, ESP, EFLAGS, CS selector, EIP, or error
code is in non-canonical space on a stack switch (either CPL change or no-
CPL with IST).

#NP(selector) If the 64-bit interrupt-gate, 64-bit trap-gate, or code segment is not
present.

#TS(selector) If an attempt to load RSP from the TSS causes an access to non-canonical
space.

If the RSP from the TSS is outside descriptor table limits.

#PF(fault-code) If a page fault occurs.
Vol. 2A 3-471INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-M
INVD—Invalidate Internal Caches

Description
Invalidates (flushes) the processor’s internal caches and issues a special-function bus cycle that
directs external caches to also flush themselves. Data held in internal caches is not written back
to main memory.

After executing this instruction, the processor does not wait for the external caches to complete
their flushing operation before proceeding with instruction execution. It is the responsibility of
hardware to respond to the cache flush signal.

The INVD instruction is a privileged instruction. When the processor is running in protected
mode, the CPL of a program or procedure must be 0 to execute this instruction.

Use this instruction with care. Data cached internally and not written back to main memory will
be lost. Unless there is a specific requirement or benefit to flushing caches without writing back
modified cache lines (for example, testing or fault recovery where cache coherency with main
memory is not a concern), software should use the WBINVD instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility
The INVD instruction is implementation dependent; it may be implemented differently on
different families of IA-32 processors. This instruction is not supported on IA-32 processors
earlier than the Intel486 processor.

Operation
Flush(InternalCaches);
SignalFlush(ExternalCaches);
Continue (* Continue execution *)

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

Opcode* Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 08 INVD Valid Valid Flush internal caches; initiate flushing of
external caches.

NOTES:
* See the IA-32 Architecture Compatibility section below.
3-472 Vol. 2A INVD—Invalidate Internal Caches

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) The INVD instruction cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-473INVD—Invalidate Internal Caches

INSTRUCTION SET REFERENCE, A-M
INVLPG—Invalidate TLB Entry

Description
Invalidates (flushes) the translation lookaside buffer (TLB) entry specified with the source
operand. The source operand is a memory address. The processor determines the page that
contains that address and flushes the TLB entry for that page.

The INVLPG instruction is a privileged instruction. When the processor is running in protected
mode, the CPL of a program or procedure must be 0 to execute this instruction.

The INVLPG instruction normally flushes the TLB entry only for the specified page; however,
in some cases, it flushes the entire TLB. See “MOV—Move to/from Control Registers” in this
chapter for further information on operations that flush the TLB.

This instruction’s operation is the same in all non-64-bit modes. It also operates the same in
64-bit mode, except if the memory address is in non-canonical form. In this case, INVLPG is
the same as a NOP.

IA-32 Architecture Compatibility
The INVLPG instruction is implementation dependent, and its function may be implemented
differently on different families of IA-32 processors. This instruction is not supported on IA-32
processors earlier than the Intel486 processor.

Operation
Flush(RelevantTLBEntries);
Continue; (* Continue execution *)

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

#UD Operand is a register.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 01/7 INVLPG m Valid Valid Invalidate TLB Entry for page that
contains m.

NOTES:
* See the IA-32 Architecture Compatibility section below.
3-474 Vol. 2A INVLPG—Invalidate TLB Entry

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#UD Operand is a register.

Virtual-8086 Mode Exceptions
#GP(0) The INVLPG instruction cannot be executed at the virtual-8086 mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the current privilege level is not 0.

#UD Operand is a register.
Vol. 2A 3-475INVLPG—Invalidate TLB Entry

INSTRUCTION SET REFERENCE, A-M
IRET/IRETD—Interrupt Return

Description
Returns program control from an exception or interrupt handler to a program or procedure that
was interrupted by an exception, an external interrupt, or a software-generated interrupt. These
instructions are also used to perform a return from a nested task. (A nested task is created when
a CALL instruction is used to initiate a task switch or when an interrupt or exception causes a
task switch to an interrupt or exception handler.) See the section titled “Task Linking” in
Chapter 6 of the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3A.

IRET and IRETD are mnemonics for the same opcode. The IRETD mnemonic (interrupt return
double) is intended for use when returning from an interrupt when using the 32-bit operand size;
however, most assemblers use the IRET mnemonic interchangeably for both operand sizes.

In Real-Address Mode, the IRET instruction preforms a far return to the interrupted program or
procedure. During this operation, the processor pops the return instruction pointer, return code
segment selector, and EFLAGS image from the stack to the EIP, CS, and EFLAGS registers,
respectively, and then resumes execution of the interrupted program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT (nested
task) and VM flags in the EFLAGS register and the VM flag in the EFLAGS image stored on
the current stack. Depending on the setting of these flags, the processor performs the following
types of interrupt returns:

• Return from virtual-8086 mode.

• Return to virtual-8086 mode.

• Intra-privilege level return.

• Inter-privilege level return.

• Return from nested task (task switch).

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return from the
interrupt procedure, without a task switch. The code segment being returned to must be equally
or less privileged than the interrupt handler routine (as indicated by the RPL field of the code
segment selector popped from the stack). As with a real-address mode interrupt return, the IRET
instruction pops the return instruction pointer, return code segment selector, and EFLAGS
image from the stack to the EIP, CS, and EFLAGS registers, respectively, and then resumes
execution of the interrupted program or procedure. If the return is to another privilege level, the
IRET instruction also pops the stack pointer and SS from the stack, before resuming program

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

CF IRET Valid Valid Interrupt return (16-bit operand size).
CF IRETD Valid Valid Interrupt return (32-bit operand size).
REX.W + CF IRETQ Valid N.E. Interrupt return (64-bit operand size).
3-476 Vol. 2A IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-M
execution. If the return is to virtual-8086 mode, the processor also pops the data segment regis-
ters from the stack.

If the NT flag is set, the IRET instruction performs a task switch (return) from a nested task (a
task called with a CALL instruction, an interrupt, or an exception) back to the calling or inter-
rupted task. The updated state of the task executing the IRET instruction is saved in its TSS. If
the task is re-entered later, the code that follows the IRET instruction is executed.

If the NT flag is set and the processor is in IA-32e mode, the IRET instruction causes a general
protection exception.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.W prefix
promotes operation to 64 bits (IRETQ). See the summary chart at the beginning of this section
for encoding data and limits.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of the IA-32
Intel® Architecture Software Developer’s Manual, Volume 3B, for more information about the
behavior of this instruction in VMX non-root operation.

Operation

IF PE = 0
THEN

GOTO REAL-ADDRESS-MODE;
ELSE

IF (IA32_EFER.LMA = 0)
THEN (* Protected mode *)

GOTO PROTECTED-MODE;
ELSE (* IA-32e mode *)

GOTO IA-32e-MODE;
FI;

FI;

REAL-ADDRESS-MODE;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS; FI;
tempEIP ← 4 bytes at end of stack
IF tempEIP[31:16] is not zero THEN #GP(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS ← Pop();
EFLAGS ← (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS; FI;
EIP ← Pop(); (* 16-bit pop; clear upper 16 bits *)
Vol. 2A 3-477IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-M
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop();

FI;
END;

PROTECTED-MODE:
IF VM = 1 (* Virtual-8086 mode: PE = 1, VM = 1 *)

THEN
GOTO RETURN-FROM-VIRTUAL-8086-MODE; (* PE = 1, VM = 1 *)

FI;
IF NT = 1

THEN
GOTO TASK-RETURN; (* PE = 1, VM = 0, NT = 1 *)

FI;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempEIP ← tempEIP AND FFFFH;
tempEFLAGS ← tempEFLAGS AND FFFFH;

FI;

IF tempEFLAGS(VM) = 1 and CPL = 0
THEN

GOTO RETURN-TO-VIRTUAL-8086-MODE;
(* PE = 1, VM = 1 in EFLAGS image *)

ELSE
GOTO PROTECTED-MODE-RETURN;
(* PE = 1, VM = 0 in EFLAGS image *)

FI;

IA-32e-MODE:
IF NT = 1

THEN #GP(0);
ELSE IF OperandSize = 32
3-478 Vol. 2A IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-M
THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();

ELSE IF OperandSize = 16
THEN

IF top 6 bytes of stack are not within stack limits
THEN #SS(0); FI;

tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempEIP ← tempEIP AND FFFFH;
tempEFLAGS ← tempEFLAGS AND FFFFH;

FI;
ELSE (* OperandSize = 64 *)

THEN
tempRIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempRSP ← Pop();
tempSS ← Pop();

FI;
GOTO IA-32e-MODE-RETURN;

RETURN-FROM-VIRTUAL-8086-MODE:
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)

IF IOPL = 3 (* Virtual mode: PE = 1, VM = 1, IOPL = 3 *)
THEN IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;
IF instruction pointer not within code segment limits

THEN #GP(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
EFLAGS ← Pop();
(* VM, IOPL,VIP and VIF EFLAG bits not modified by pop *)

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS(0); FI;
IF instruction pointer not within code segment limits
Vol. 2A 3-479IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-M
THEN #GP(0); FI;
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop(); (* IOPL in EFLAGS not modified by pop *)

FI;
ELSE

#GP(0); (* Trap to virtual-8086 monitor: PE = 1, VM = 1, IOPL < 3 *)
FI;

END;

RETURN-TO-VIRTUAL-8086-MODE:
(* Interrupted procedure was in virtual-8086 mode: PE = 1, VM = 1 in flag image *)
IF top 24 bytes of stack are not within stack segment limits

THEN #SS(0); FI;
IF instruction pointer not within code segment limits

THEN #GP(0); FI;
CS ← tempCS;
EIP ← tempEIP;
EFLAGS ← tempEFLAGS;
TempESP ← Pop();
TempSS ← Pop();
ES ← Pop(); (* Pop 2 words; throw away high-order word *)
DS ← Pop(); (* Pop 2 words; throw away high-order word *)
FS ← Pop(); (* Pop 2 words; throw away high-order word *)
GS ← Pop(); (* Pop 2 words; throw away high-order word *)
SS:ESP ← TempSS:TempESP;
CPL ← 3;
(* Resume execution in Virtual-8086 mode *)

END;

TASK-RETURN: (* PE = 1, VM = 1, NT = 1 *)
Read segment selector in link field of current TSS;
IF local/global bit is set to local
or index not within GDT limits

THEN #TS (TSS selector); FI;
Access TSS for task specified in link field of current TSS;
IF TSS descriptor type is not TSS or if the TSS is marked not busy

THEN #TS (TSS selector); FI;
IF TSS not present

THEN #NP(TSS selector); FI;
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within code segment limit
3-480 Vol. 2A IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-M
THEN #GP(0); FI;
END;

PROTECTED-MODE-RETURN: (* PE = 1, VM = 0 in flags image *)
IF return code segment selector is NULL

THEN GP(0); FI;
IF return code segment selector addrsses descriptor beyond descriptor table limit

THEN GP(selector); FI;
Read segment descriptor pointed to by the return code segment selector;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI;
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE = 1, VM = 0 in flags image, RPL = CPL *)
IF new mode ≠ 64-Bit Mode

THEN
IF tempEIP is not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;

ELSE (* new mode = 64-bit mode *)
IF tempRIP is non-canonical

THEN #GP(0); FI;
RIP ← tempRIP;

FI;
CS ← tempCS; (* Segment descriptor information also loaded *)
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;
IF CPL ≤ IOPL

THEN EFLAGS(IF) ← tempEFLAGS; FI;
IF CPL = 0

THEN EFLAGS(IOPL) ← tempEFLAGS;
Vol. 2A 3-481IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-M
IF OperandSize = 32
THEN EFLAGS(VM, VIF, VIP) ← tempEFLAGS; FI;

IF OperandSize = 64
THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;

FI;
END;

RETURN-TO-OUTER-PRIVILEGE-LEVEL:
IF OperandSize = 32

THEN
IF top 8 bytes on stack are not within limits

THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)

IF top 4 bytes on stack are not within limits
THEN #SS(0); FI;

FI;
Read return segment selector;
IF stack segment selector is NULL

THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(SSselector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or the stack segment descriptor does not indicate a a writable data segment;
or the stack segment DPL ≠ RPL of the return code segment selector

THEN #GP(SS selector); FI;
IF stack segment is not present

THEN #SS(SS selector); FI;
IF new mode ≠ 64-Bit Mode

THEN
IF tempEIP is not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;

ELSE (* new mode = 64-bit mode *)
IF tempRIP is non-canonical

THEN #GP(0); FI;
RIP ← tempRIP;

FI;
CS ← tempCS;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize = 32
3-482 Vol. 2A IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-M
THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;
IF CPL ≤ IOPL

THEN EFLAGS(IF) ← tempEFLAGS; FI;
IF CPL = 0

THEN
EFLAGS(IOPL) ← tempEFLAGS;
IF OperandSize = 32

THEN EFLAGS(VM, VIF, VIP) ← tempEFLAGS; FI;
IF OperandSize = 64

THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;
FI;
CPL ← RPL of the return code segment selector;
FOR each of segment register (ES, FS, GS, and DS)

DO
IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL (* Stored in hidden part of segment register *)

THEN (* Segment register invalid *)
SegmentSelector ← 0; (* NULL segment selector *)

FI;
OD;

END;

IA-32e-MODE-RETURN: (* IA32_EFER.LMA = 1, PE = 1, VM = 0 in flags image *)
IF ((return code segment selector is NULL) or (return RIP is non-canonical) or

(SS selector is NULL going back to compatibility mode) or
(SS selector is NULL going back to CPL3 64-bit mode) or
(RPL <> CPL going back to non-CPL3 64-bit mode for a NULL SS selector))

THEN GP(0); FI;
IF return code segment selector addrsses descriptor beyond descriptor table limit

THEN GP(selector); FI;
Read segment descriptor pointed to by the return code segment selector;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI;
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
Vol. 2A 3-483IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-M
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;
END;

Flags Affected
All the flags and fields in the EFLAGS register are potentially modified, depending on the mode
of operation of the processor. If performing a return from a nested task to a previous task, the
EFLAGS register will be modified according to the EFLAGS image stored in the previous task’s
TSS.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector is NULL.

If the return instruction pointer is not within the return code segment limit.

#GP(selector) If a segment selector index is outside its descriptor table limits.

If the return code segment selector RPL is greater than the CPL.

If the DPL of a conforming-code segment is greater than the return code
segment selector RPL.

If the DPL for a nonconforming-code segment is not equal to the RPL of
the code segment selector.

If the stack segment descriptor DPL is not equal to the RPL of the return
code segment selector.

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the return code
segment selector.

If the segment descriptor for a code segment does not indicate it is a code
segment.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is not busy.

If a TSS segment descriptor specifies that the TSS is not available.

#SS(0) If the top bytes of stack are not within stack limits.

#NP(selector) If the return code or stack segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment
checking is enabled.
3-484 Vol. 2A IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code segment limit.

#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions
#GP(0) If the return instruction pointer is not within the return code segment limit.

IF IOPL not equal to 3.

#PF(fault-code) If a page fault occurs.

#SS(0) If the top bytes of stack are not within stack limits.

#AC(0) If an unaligned memory reference occurs and alignment checking is
enabled.

Compatibility Mode Exceptions

#GP(0) If EFLAGS.NT[bit 14] = 1.

Other exceptions same as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If EFLAGS.NT[bit 14] = 1.

If the return code segment selector is NULL.

If the stack segment selector is NULL going back to compatibility mode.

If the stack segment selector is NULL going back to CPL3 64-bit mode.

If a NULL stack segment selector RPL is not equal to CPL going back to
non-CPL3 64-bit mode.

If the return instruction pointer is not within the return code segment limit.

If the return instruction pointer is non-canonical.

#GP(Selector) If a segment selector index is outside its descriptor table limits.

If a segment descriptor memory address is non-canonical.

If the segment descriptor for a code segment does not indicate it is a code
segment.

If the proposed new code segment descriptor has both the D-bit and L-bit
set.

If the DPL for a nonconforming-code segment is not equal to the RPL of
the code segment selector.

If CPL is greater than the RPL of the code segment selector.
Vol. 2A 3-485IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-M
If the DPL of a conforming-code segment is greater than the return code
segment selector RPL.

If the stack segment is not a writable data segment.

If the stack segment descriptor DPL is not equal to the RPL of the return
code segment selector.

If the stack segment selector RPL is not equal to the RPL of the return code
segment selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.

If an attempt to pop a value off the stack causes a non-canonical address
to be referenced.

#NP(selector) If the return code or stack segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment
checking is enabled.
3-486 Vol. 2A IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-M
Jcc—Jump if Condition Is Met

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

77 cb JA rel8 Valid Valid Jump short if above (CF=0 and ZF=0).
73 cb JAE rel8 Valid Valid Jump short if above or equal (CF=0).
72 cb JB rel8 Valid Valid Jump short if below (CF=1).
76 cb JBE rel8 Valid Valid Jump short if below or equal (CF=1 or

ZF=1).
72 cb JC rel8 Valid Valid Jump short if carry (CF=1).
E3 cb JCXZ rel8 N.E. Valid Jump short if CX register is 0.
E3 cb JECXZ rel8 Valid Valid Jump short if ECX register is 0.
E3 cb JRCXZ rel8 Valid N.E. Jump short if RCX register is 0.
74 cb JE rel8 Valid Valid Jump short if equal (ZF=1).
7F cb JG rel8 Valid Valid Jump short if greater (ZF=0 and SF=OF).
7D cb JGE rel8 Valid Valid Jump short if greater or equal (SF=OF).
7C cb JL rel8 Valid Valid Jump short if less (SF≠ OF).
7E cb JLE rel8 Valid Valid Jump short if less or equal (ZF=1 or SF≠

OF).
76 cb JNA rel8 Valid Valid Jump short if not above (CF=1 or ZF=1).
72 cb JNAE rel8 Valid Valid Jump short if not above or equal (CF=1).
73 cb JNB rel8 Valid Valid Jump short if not below (CF=0).
77 cb JNBE rel8 Valid Valid Jump short if not below or equal (CF=0

and ZF=0).
73 cb JNC rel8 Valid Valid Jump short if not carry (CF=0).
75 cb JNE rel8 Valid Valid Jump short if not equal (ZF=0).
7E cb JNG rel8 Valid Valid Jump short if not greater (ZF=1 or SF≠

OF).
7C cb JNGE rel8 Valid Valid Jump short if not greater or equal (SF≠

OF).
7D cb JNL rel8 Valid Valid Jump short if not less (SF=OF).
7F cb JNLE rel8 Valid Valid Jump short if not less or equal (ZF=0 and

SF=OF).
71 cb JNO rel8 Valid Valid Jump short if not overflow (OF=0).
7B cb JNP rel8 Valid Valid Jump short if not parity (PF=0).
79 cb JNS rel8 Valid Valid Jump short if not sign (SF=0).
75 cb JNZ rel8 Valid Valid Jump short if not zero (ZF=0).
70 cb JO rel8 Valid Valid Jump short if overflow (OF=1).
7A cb JP rel8 Valid Valid Jump short if parity (PF=1).
7A cb JPE rel8 Valid Valid Jump short if parity even (PF=1).
7B cb JPO rel8 Valid Valid Jump short if parity odd (PF=0).
78 cb JS rel8 Valid Valid Jump short if sign (SF=1).
Vol. 2A 3-487Jcc—Jump if Condition Is Met

INSTRUCTION SET REFERENCE, A-M
74 cb JZ rel8 Valid Valid Jump short if zero (ZF ← 1).
0F 87 cw JA rel16 N.S. Valid Jump near if above (CF=0 and ZF=0). Not

supported in 64-bit mode.
0F 87 cd JA rel32 Valid Valid Jump near if above (CF=0 and ZF=0).
0F 83 cw JAE rel16 N.S. Valid Jump near if above or equal (CF=0). Not

supported in 64-bit mode.
0F 83 cd JAE rel32 Valid Valid Jump near if above or equal (CF=0).
0F 82 cw JB rel16 N.S. Valid Jump near if below (CF=1). Not supported

in 64-bit mode.
0F 82 cd JB rel32 Valid Valid Jump near if below (CF=1).
0F 86 cw JBE rel16 N.S. Valid Jump near if below or equal (CF=1 or

ZF=1). Not supported in 64-bit mode.
0F 86 cd JBE rel32 Valid Valid Jump near if below or equal (CF=1 or

ZF=1).
0F 82 cw JC rel16 N.S. Valid Jump near if carry (CF=1). Not supported

in 64-bit mode.
0F 82 cd JC rel32 Valid Valid Jump near if carry (CF=1).
0F 84 cw JE rel16 N.S. Valid Jump near if equal (ZF=1). Not supported

in 64-bit mode.
0F 84 cd JE rel32 Valid Valid Jump near if equal (ZF=1).
0F 84 cw JZ rel16 N.S. Valid Jump near if 0 (ZF=1). Not supported in

64-bit mode.
0F 84 cd JZ rel32 Valid Valid Jump near if 0 (ZF=1).
0F 8F cw JG rel16 N.S. Valid Jump near if greater (ZF=0 and SF=OF).

Not supported in 64-bit mode.
0F 8F cd JG rel32 Valid Valid Jump near if greater (ZF=0 and SF=OF).
0F 8D cw JGE rel16 N.S. Valid Jump near if greater or equal (SF=OF).

Not supported in 64-bit mode.
0F 8D cd JGE rel32 Valid Valid Jump near if greater or equal (SF=OF).
0F 8C cw JL rel16 N.S. Valid Jump near if less (SF≠ OF). Not

supported in 64-bit mode.
0F 8C cd JL rel32 Valid Valid Jump near if less (SF≠ OF).
0F 8E cw JLE rel16 N.S. Valid Jump near if less or equal (ZF=1 or SF≠

OF). Not supported in 64-bit mode.
0F 8E cd JLE rel32 Valid Valid Jump near if less or equal (ZF=1 or SF≠

OF).
0F 86 cw JNA rel16 N.S. Valid Jump near if not above (CF=1 or ZF=1).

Not supported in 64-bit mode.
0F 86 cd JNA rel32 Valid Valid Jump near if not above (CF=1 or ZF=1).
0F 82 cw JNAE rel16 N.S. Valid Jump near if not above or equal (CF=1).

Not supported in 64-bit mode.
0F 82 cd JNAE rel32 Valid Valid Jump near if not above or equal (CF=1).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description
3-488 Vol. 2A Jcc—Jump if Condition Is Met

INSTRUCTION SET REFERENCE, A-M
0F 83 cw JNB rel16 N.S. Valid Jump near if not below (CF=0). Not
supported in 64-bit mode.

0F 83 cd JNB rel32 Valid Valid Jump near if not below (CF=0).
0F 87 cw JNBE rel16 N.S. Valid Jump near if not below or equal (CF=0

and ZF=0). Not supported in 64-bit mode.
0F 87 cd JNBE rel32 Valid Valid Jump near if not below or equal (CF=0

and ZF=0).

0F 83 cw JNC rel16 N.S. Valid Jump near if not carry (CF=0). Not
supported in 64-bit mode.

0F 83 cd JNC rel32 Valid Valid Jump near if not carry (CF=0).
0F 85 cw JNE rel16 N.S. Valid Jump near if not equal (ZF=0). Not

supported in 64-bit mode.
0F 85 cd JNE rel32 Valid Valid Jump near if not equal (ZF=0).
0F 8E cw JNG rel16 N.S. Valid Jump near if not greater (ZF=1 or SF≠

OF). Not supported in 64-bit mode.
0F 8E cd JNG rel32 Valid Valid Jump near if not greater (ZF=1 or SF≠

OF).
0F 8C cw JNGE rel16 N.S. Valid Jump near if not greater or equal (SF≠

OF). Not supported in 64-bit mode.
0F 8C cd JNGE rel32 Valid Valid Jump near if not greater or equal (SF≠

OF).
0F 8D cw JNL rel16 N.S. Valid Jump near if not less (SF=OF). Not

supported in 64-bit mode.
0F 8D cd JNL rel32 Valid Valid Jump near if not less (SF=OF).
0F 8F cw JNLE rel16 N.S. Valid Jump near if not less or equal (ZF=0 and

SF=OF). Not supported in 64-bit mode.
0F 8F cd JNLE rel32 Valid Valid Jump near if not less or equal (ZF=0 and

SF=OF).
0F 81 cw JNO rel16 N.S. Valid Jump near if not overflow (OF=0). Not

supported in 64-bit mode.
0F 81 cd JNO rel32 Valid Valid Jump near if not overflow (OF=0).
0F 8B cw JNP rel16 N.S. Valid Jump near if not parity (PF=0). Not

supported in 64-bit mode.
0F 8B cd JNP rel32 Valid Valid Jump near if not parity (PF=0).
0F 89 cw JNS rel16 N.S. Valid Jump near if not sign (SF=0). Not

supported in 64-bit mode.
0F 89 cd JNS rel32 Valid Valid Jump near if not sign (SF=0).
0F 85 cw JNZ rel16 N.S. Valid Jump near if not zero (ZF=0). Not

supported in 64-bit mode.
0F 85 cd JNZ rel32 Valid Valid Jump near if not zero (ZF=0).
0F 80 cw JO rel16 N.S. Valid Jump near if overflow (OF=1). Not

supported in 64-bit mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description
Vol. 2A 3-489Jcc—Jump if Condition Is Met

INSTRUCTION SET REFERENCE, A-M
Description
Checks the state of one or more of the status flags in the EFLAGS register (CF, OF, PF, SF, and
ZF) and, if the flags are in the specified state (condition), performs a jump to the target instruc-
tion specified by the destination operand. A condition code (cc) is associated with each instruc-
tion to indicate the condition being tested for. If the condition is not satisfied, the jump is not
performed and execution continues with the instruction following the Jcc instruction.

The target instruction is specified with a relative offset (a signed offset relative to the current
value of the instruction pointer in the EIP register). A relative offset (rel8, rel16, or rel32) is
generally specified as a label in assembly code, but at the machine code level, it is encoded as a
signed, 8-bit or 32-bit immediate value, which is added to the instruction pointer. Instruction
coding is most efficient for offsets of –128 to +127. If the operand-size attribute is 16, the upper
two bytes of the EIP register are cleared, resulting in a maximum instruction pointer size of 16
bits.

The conditions for each Jcc mnemonic are given in the “Description” column of the table on the
preceding page. The terms “less” and “greater” are used for comparisons of signed integers and
the terms “above” and “below” are used for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two ways, two
mnemonics are defined for some opcodes. For example, the JA (jump if above) instruction and
the JNBE (jump if not below or equal) instruction are alternate mnemonics for the opcode 77H.

The Jcc instruction does not support far jumps (jumps to other code segments). When the target
for the conditional jump is in a different segment, use the opposite condition from the condition
being tested for the Jcc instruction, and then access the target with an unconditional far jump

0F 80 cd JO rel32 Valid Valid Jump near if overflow (OF=1).
0F 8A cw JP rel16 N.S. Valid Jump near if parity (PF=1). Not supported

in 64-bit mode.
0F 8A cd JP rel32 Valid Valid Jump near if parity (PF=1).
0F 8A cw JPE rel16 N.S. Valid Jump near if parity even (PF=1). Not

supported in 64-bit mode.
0F 8A cd JPE rel32 Valid Valid Jump near if parity even (PF=1).
0F 8B cw JPO rel16 N.S. Valid Jump near if parity odd (PF=0). Not

supported in 64-bit mode.
0F 8B cd JPO rel32 Valid Valid Jump near if parity odd (PF=0).

0F 88 cw JS rel16 N.S. Valid Jump near if sign (SF=1). Not supported in
64-bit mode.

0F 88 cd JS rel32 Valid Valid Jump near if sign (SF=1).
0F 84 cw JZ rel16 N.S. Valid Jump near if 0 (ZF=1). Not supported in

64-bit mode.
0F 84 cd JZ rel32 Valid Valid Jump near if 0 (ZF=1).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description
3-490 Vol. 2A Jcc—Jump if Condition Is Met

INSTRUCTION SET REFERENCE, A-M
(JMP instruction) to the other segment. For example, the following conditional far jump is
illegal:

JZ FARLABEL;

To accomplish this far jump, use the following two instructions:
JNZ BEYOND;
JMP FARLABEL;
BEYOND:

The JRCXZ, JECXZ and JCXZ instructions differ from other Jcc instructions because they do
not check status flags. Instead, they check RCX, ECX or CX for 0. The register checked is deter-
mined by the address-size attribute. These instructions are useful when used at the beginning of
a loop that terminates with a conditional loop instruction (such as LOOPNE). They can be used
to prevent an instruction sequence from entering a loop when RCX, ECX or CX is 0. This would
cause the loop to execute 264, 232 or 64K times (not zero times).

All conditional jumps are converted to code fetches of one or two cache lines, regardless of jump
address or cacheability.

In 64-bit mode, operand size is fixed at 64 bits. JMP Short is RIP = RIP + 8-bit offset sign
extended to 64 bits. JMP Near is RIP = RIP + 32-bit offset sign extended to 64-bits.

Operation
IF condition

THEN
 tempEIP ← EIP + SignExtend(DEST);
 IF OperandSize = 16
 THEN tempEIP ← tempEIP AND 0000FFFFH;
 FI;

IF tempEIP is not within code segment limit
THEN #GP(0);

 ELSE EIP ← tempEIP
 FI;
FI;

Protected Mode Exceptions
#GP(0) If the offset being jumped to is beyond the limits of the CS segment.

Real-Address Mode Exceptions
#GP If the offset being jumped to is beyond the limits of the CS segment or is

outside of the effective address space from 0 to FFFFH. This condition can
occur if a 32-bit address size override prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode.
Vol. 2A 3-491Jcc—Jump if Condition Is Met

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
3-492 Vol. 2A Jcc—Jump if Condition Is Met

INSTRUCTION SET REFERENCE, A-M
JMP—Jump

Description
Transfers program control to a different point in the instruction stream without recording return
information. The destination (target) operand specifies the address of the instruction being
jumped to. This operand can be an immediate value, a general-purpose register, or a memory
location.

This instruction can be used to execute four different types of jumps:

• Near jump—A jump to an instruction within the current code segment (the segment
currently pointed to by the CS register), sometimes referred to as an intrasegment jump.

• Short jump—A near jump where the jump range is limited to –128 to +127 from the
current EIP value.

• Far jump—A jump to an instruction located in a different segment than the current code
segment but at the same privilege level, sometimes referred to as an intersegment jump.

• Task switch—A jump to an instruction located in a different task.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

EB cb JMP rel8 Valid Valid Jump short, RIP = RIP + 8-bit displacement
sign extended to 64-bits

E9 cw JMP rel16 N.S. Valid Jump near, relative, displacement relative to
next instruction. Not supported in 64-bit
mode.

E9 cd JMP rel32 Valid Valid Jump near, relative, RIP = RIP + 32-bit
displacement sign extended to 64-bits

FF /4 JMP r/m16 N.S. Valid Jump near, absolute indirect, address =
sign-extended r/m16. Not supported in 64-bit
mode.

FF /4 JMP r/m32 N.S. Valid Jump near, absolute indirect, address =
sign-extended r/m32. Not supported in 64-bit
mode.

FF /4 JMP r/m64 Valid N.E. Jump near, absolute indirect, RIP = 64-Bit
offset from register or memory

EA cd JMP
ptr16:16

Inv. Valid Jump far, absolute, address given in
operand

EA cp JMP
ptr16:32

Inv. Valid Jump far, absolute, address given in
operand

FF /5 JMP
m16:16

Valid Valid Jump far, absolute indirect, address given in
m16:16

FF /5 JMP
m16:32

Valid Valid Jump far, absolute indirect, address given in
m16:32.

REX.W
+ FF /5

JMP
m16:64

Valid N.E. Jump far, absolute indirect, address given in
m16:64.
Vol. 2A 3-493JMP—Jump

INSTRUCTION SET REFERENCE, A-M
A task switch can only be executed in protected mode (see Chapter 6, in the IA-32 Intel® Archi-
tecture Software Developer’s Manual, Volume 3A, for information on performing task switches
with the JMP instruction).

Near and Short Jumps. When executing a near jump, the processor jumps to the address
(within the current code segment) that is specified with the target operand. The target operand
specifies either an absolute offset (that is an offset from the base of the code segment) or a rela-
tive offset (a signed displacement relative to the current value of the instruction pointer in the
EIP register). A near jump to a relative offset of 8-bits (rel8) is referred to as a short jump. The
CS register is not changed on near and short jumps.

An absolute offset is specified indirectly in a general-purpose register or a memory location
(r/m16 or r/m32). The operand-size attribute determines the size of the target operand (16 or 32
bits). Absolute offsets are loaded directly into the EIP register. If the operand-size attribute is
16, the upper two bytes of the EIP register are cleared, resulting in a maximum instruction
pointer size of 16 bits.

A relative offset (rel8, rel16, or rel32) is generally specified as a label in assembly code, but at
the machine code level, it is encoded as a signed 8-, 16-, or 32-bit immediate value. This value
is added to the value in the EIP register. (Here, the EIP register contains the address of the
instruction following the JMP instruction). When using relative offsets, the opcode (for short vs.
near jumps) and the operand-size attribute (for near relative jumps) determines the size of the
target operand (8, 16, or 32 bits).

Far Jumps in Real-Address or Virtual-8086 Mode. When executing a far jump in real-
address or virtual-8086 mode, the processor jumps to the code segment and offset specified with
the target operand. Here the target operand specifies an absolute far address either directly with
a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). With
the pointer method, the segment and address of the called procedure is encoded in the instruc-
tion, using a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address immediate.
With the indirect method, the target operand specifies a memory location that contains a 4-byte
(16-bit operand size) or 6-byte (32-bit operand size) far address. The far address is loaded
directly into the CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of
the EIP register are cleared.

Far Jumps in Protected Mode. When the processor is operating in protected mode, the JMP
instruction can be used to perform the following three types of far jumps:

• A far jump to a conforming or non-conforming code segment.

• A far jump through a call gate.

• A task switch.

(The JMP instruction cannot be used to perform inter-privilege-level far jumps.)

In protected mode, the processor always uses the segment selector part of the far address to
access the corresponding descriptor in the GDT or LDT. The descriptor type (code segment, call
gate, task gate, or TSS) and access rights determine the type of jump to be performed.

If the selected descriptor is for a code segment, a far jump to a code segment at the same privi-
lege level is performed. (If the selected code segment is at a different privilege level and the code
3-494 Vol. 2A JMP—Jump

INSTRUCTION SET REFERENCE, A-M
segment is non-conforming, a general-protection exception is generated.) A far jump to the same
privilege level in protected mode is very similar to one carried out in real-address or virtual-8086
mode. The target operand specifies an absolute far address either directly with a pointer
(ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The operand-
size attribute determines the size of the offset (16 or 32 bits) in the far address. The new code
segment selector and its descriptor are loaded into CS register, and the offset from the instruc-
tion is loaded into the EIP register. Note that a call gate (described in the next paragraph) can
also be used to perform far call to a code segment at the same privilege level. Using this mech-
anism provides an extra level of indirection and is the preferred method of making jumps
between 16-bit and 32-bit code segments.

When executing a far jump through a call gate, the segment selector specified by the target
operand identifies the call gate. (The offset part of the target operand is ignored.) The processor
then jumps to the code segment specified in the call gate descriptor and begins executing the
instruction at the offset specified in the call gate. No stack switch occurs. Here again, the target
operand can specify the far address of the call gate either directly with a pointer (ptr16:16 or
ptr16:32) or indirectly with a memory location (m16:16 or m16:32).

Executing a task switch with the JMP instruction is somewhat similar to executing a jump
through a call gate. Here the target operand specifies the segment selector of the task gate for
the task being switched to (and the offset part of the target operand is ignored). The task gate in
turn points to the TSS for the task, which contains the segment selectors for the task’s code and
stack segments. The TSS also contains the EIP value for the next instruction that was to be
executed before the task was suspended. This instruction pointer value is loaded into the EIP
register so that the task begins executing again at this next instruction.

The JMP instruction can also specify the segment selector of the TSS directly, which eliminates
the indirection of the task gate. See Chapter 6 in IA-32 Intel® Architecture Software Developer’s
Manual, Volume 3A, for detailed information on the mechanics of a task switch.

Note that when you execute at task switch with a JMP instruction, the nested task flag (NT) is
not set in the EFLAGS register and the new TSS’s previous task link field is not loaded with the
old task’s TSS selector. A return to the previous task can thus not be carried out by executing
the IRET instruction. Switching tasks with the JMP instruction differs in this regard from the
CALL instruction which does set the NT flag and save the previous task link information,
allowing a return to the calling task with an IRET instruction.

In 64-Bit Mode — The instruction’s operation size is fixed at 64 bits. If a selector points to a
gate, then RIP equals the 64-bit displacement taken from gate; else RIP equals the zero-extended
offset from the far pointer referenced in the instruction.

See the summary chart at the beginning of this section for encoding data and limits.
Vol. 2A 3-495JMP—Jump

INSTRUCTION SET REFERENCE, A-M
Operation

IF near jump

IF 64-bit Mode
 THEN

IF near relative jump
 THEN

tempRIP ← RIP + DEST; (* RIP is instruction following JMP instruction*)
 ELSE (* Near absolute jump *)

tempRIP ← DEST;
FI:

ELSE
IF near relative jump
 THEN

tempEIP ← EIP + DEST; (* EIP is instruction following JMP instruction*)
 ELSE (* Near absolute jump *)

tempEIP ← DEST;
FI:

FI;
IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode)
and tempEIP outside code segment limit

THEN #GP(0); FI
IF 64-bit mode and tempRIP is not canonical

THEN #GP(0);
FI;
IF OperandSize = 32

 THEN
EIP ← tempEIP;

 ELSE
IF OperandSize = 16

THEN (* OperandSize = 16 *)
EIP ← tempEIP AND 0000FFFFH;

 ELSE (* OperandSize = 64)
 RIP ← tempRIP;

FI;
 FI;

FI;

IF far jump and (PE = 0 or (PE = 1 AND VM = 1)) (* Real-address or virtual-8086 mode *)
 THEN

 tempEIP ← DEST(Offset); (* DEST is ptr16:32 or [m16:32] *)
3-496 Vol. 2A JMP—Jump

INSTRUCTION SET REFERENCE, A-M
 IF tempEIP is beyond code segment limit
THEN #GP(0); FI;

 CS ← DEST(segment selector); (* DEST is ptr16:32 or [m16:32] *)
 IF OperandSize = 32

 THEN
EIP ← tempEIP; (* DEST is ptr16:32 or [m16:32] *)

 ELSE (* OperandSize = 16 *)
EIP ← tempEIP AND 0000FFFFH; (* Clear upper 16 bits *)

 FI;
FI;
IF far jump and (PE = 1 and VM = 0)
(* IA-32e mode or protected mode, not virtual-8086 mode *)

 THEN
 IF effective address in the CS, DS, ES, FS, GS, or SS segment is illegal
or segment selector in target operand NULL

THEN #GP(0); FI;
 IF segment selector index not within descriptor table limits

THEN #GP(new selector); FI;
Read type and access rights of segment descriptor;
IF (EFER.LMA = 0)

THEN
IF segment type is not a conforming or nonconforming code
segment, call gate, task gate, or TSS

THEN #GP(segment selector); FI;
ELSE

IF segment type is not a conforming or nonconforming code segment
call gate

THEN #GP(segment selector); FI;
FI;
Depending on type and access rights:

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

 ELSE
 #GP(segment selector);

FI;

CONFORMING-CODE-SEGMENT:
IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1
Vol. 2A 3-497JMP—Jump

INSTRUCTION SET REFERENCE, A-M
THEN GP(new code segment selector); FI;
 IF DPL > CPL

THEN #GP(segment selector); FI;
 IF segment not present

THEN #NP(segment selector); FI;
tempEIP ← DEST(Offset);
IF OperandSize = 16

 THEN tempEIP ← tempEIP AND 0000FFFFH;
FI;
IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode) and
tempEIP outside code segment limit

THEN #GP(0); FI
IF tempEIP is non-canonical

THEN #GP(0); FI;
CS ← DEST[segment selector]; (* Segment descriptor information also loaded *)
CS(RPL) ← CPL
EIP ← tempEIP;

END;

NONCONFORMING-CODE-SEGMENT:
IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1

THEN GP(new code segment selector); FI;
IF (RPL > CPL) OR (DPL ≠ CPL)

THEN #GP(code segment selector); FI;
IF segment not present

THEN #NP(segment selector); FI;
tempEIP ← DEST(Offset);
IF OperandSize = 16

 THEN tempEIP ← tempEIP AND 0000FFFFH; FI;
IF (IA32_EFER.LMA = 0 OR target mode = Compatibility mode)
and tempEIP outside code segment limit

THEN #GP(0); FI
IF tempEIP is non-canonical THEN #GP(0); FI;
CS ← DEST[segment selector]; (* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

END;

CALL-GATE:
 IF call gate DPL < CPL
or call gate DPL < call gate segment-selector RPL
3-498 Vol. 2A JMP—Jump

INSTRUCTION SET REFERENCE, A-M
THEN #GP(call gate selector); FI;
IF call gate not present

THEN #NP(call gate selector); FI;
IF call gate code-segment selector is NULL

THEN #GP(0); FI;
IF call gate code-segment selector index outside descriptor table limits

THEN #GP(code segment selector); FI;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
or code-segment segment descriptor is conforming and DPL > CPL
or code-segment segment descriptor is non-conforming and DPL ≠ CPL

THEN #GP(code segment selector); FI;
IF IA32_EFER.LMA = 1 and (code-segment descriptor is not a 64-bit code segment
or code-segment segment descriptor has both L-Bit and D-bit set)

THEN #GP(code segment selector); FI;
IF code segment is not present

THEN #NP(code-segment selector); FI;
 IF instruction pointer is not within code-segment limit

THEN #GP(0); FI;
 tempEIP ← DEST(Offset);
 IF GateSize = 16

 THEN tempEIP ← tempEIP AND 0000FFFFH; FI;
IF (IA32_EFER.LMA = 0 OR target mode = Compatibility mode) AND tempEIP
outside code segment limit

THEN #GP(0); FI
CS ← DEST[SegmentSelector); (* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

END;

TASK-GATE:
IF task gate DPL < CPL
or task gate DPL < task gate segment-selector RPL

THEN #GP(task gate selector); FI;
IF task gate not present

THEN #NP(gate selector); FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
or index not within GDT limits
or TSS descriptor specifies that the TSS is busy

THEN #GP(TSS selector); FI;
Vol. 2A 3-499JMP—Jump

INSTRUCTION SET REFERENCE, A-M
 IF TSS not present
THEN #NP(TSS selector); FI;

 SWITCH-TASKS to TSS;
 IF EIP not within code segment limit

THEN #GP(0); FI;
END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL
or TSS DPL < TSS segment-selector RPL
or TSS descriptor indicates TSS not available

THEN #GP(TSS selector); FI;
IF TSS is not present

THEN #NP(TSS selector); FI;
SWITCH-TASKS to TSS;
IF EIP not within code segment limit

THEN #GP(0); FI;
END;

Flags Affected
All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

Protected Mode Exceptions
#GP(0) If offset in target operand, call gate, or TSS is beyond the code segment

limits.

If the segment selector in the destination operand, call gate, task gate, or
TSS is NULL.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#GP(selector) If the segment selector index is outside descriptor table limits.

If the segment descriptor pointed to by the segment selector in the
destination operand is not for a conforming-code segment, noncon-
forming-code segment, call gate, task gate, or task state segment.

If the DPL for a nonconforming-code segment is not equal to the CPL

(When not using a call gate.) If the RPL for the segment’s segment selector
is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.
3-500 Vol. 2A JMP—Jump

INSTRUCTION SET REFERENCE, A-M
If the DPL from a call-gate, task-gate, or TSS segment descriptor is less
than the CPL or than the RPL of the call-gate, task-gate, or TSS’s segment
selector.

If the segment descriptor for selector in a call gate does not indicate it is a
code segment.

If the segment descriptor for the segment selector in a task gate does not
indicate an available TSS.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NP (selector) If the code segment being accessed is not present.

If call gate, task gate, or TSS not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3. (Only occurs when fetching
target from memory.)

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If the target operand is beyond the code segment limits.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made. (Only occurs when fetching target from memory.)

Compatibility Mode Exceptions

Same as 64-bit mode exceptions.
Vol. 2A 3-501JMP—Jump

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#GP(0) If a memory address is non-canonical.

If target offset in destination operand is non-canonical.

If target offset in destination operand is beyond the new code segment
limit.

If the segment selector in the destination operand is NULL.

If the code segment selector in the 64-bit gate is NULL.

#GP(selector) If the code segment or 64-bit call gate is outside descriptor table limits.

If the code segment or 64-bit call gate overlaps non-canonical space.

If the segment descriptor from a 64-bit call gate is in non-canonical space.

If the segment descriptor pointed to by the segment selector in the
destination operand is not for a conforming-code segment, noncon-
forming-code segment, 64-bit call gate.

If the segment descriptor pointed to by the segment selector in the
destination operand is a code segment, and has both the D-bit and the L-bit
set.

If the DPL for a nonconforming-code segment is not equal to the CPL, or
the RPL for the segment’s segment selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of
the 64-bit call-gate.

If the upper type field of a 64-bit call gate is not 0x0.

If the segment selector from a 64-bit call gate is beyond the descriptor
table limits.

If the code segment descriptor pointed to by the selector in the 64-bit gate
doesn't have the L-bit set and the D-bit clear.

If the segment descriptor for a segment selector from the 64-bit call gate
does not indicate it is a code segment.

If the code segment is non-confirming and CPL ≠ DPL.

If the code segment is confirming and CPL < DPL.

#NP(selector) If a code segment or 64-bit call gate is not present.

#UD (64-bit mode only) If a far jump is direct to an absolute address in memory.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-502 Vol. 2A JMP—Jump

INSTRUCTION SET REFERENCE, A-M
LAHF—Load Status Flags into AH Register

Description
Moves the low byte of the EFLAGS register (which includes status flags SF, ZF, AF, PF, and
CF) to the AH register. Reserved bits 1, 3, and 5 of the EFLAGS register are set in the AH
register as shown in the “Operation” section below.

This instruction executes as described above in compatibility mode and legacy mode. It is valid
in 64-bit mode only if CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1.

Operation
IF 64-Bit Mode

THEN
IF CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1;

THEN AH ← RFLAGS(SF:ZF:0:AF:0:PF:1:CF);
ELSE #UD;

FI;
ELSE

AH ← EFLAGS(SF:ZF:0:AF:0:PF:1:CF);
FI;

Flags Affected
None. The state of the flags in the EFLAGS register is not affected.

Protected Mode Exceptions

None.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

9F LAHF Invalid* Valid Load: AH ←
EFLAGS(SF:ZF:0:AF:0:PF:1:CF).

NOTES:
* Valid in specific steppings. See Description section.
Vol. 2A 3-503LAHF—Load Status Flags into AH Register

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

None.

64-Bit Mode Exceptions

#UD If CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 0.
3-504 Vol. 2A LAHF—Load Status Flags into AH Register

INSTRUCTION SET REFERENCE, A-M
LAR—Load Access Rights Byte

Description

Loads the access rights from the segment descriptor specified by the second operand (source
operand) into the first operand (destination operand) and sets the ZF flag in the flag register. The
source operand (which can be a register or a memory location) contains the segment selector for
the segment descriptor being accessed. If the source operand is a memory address, only 16 bits
of data are accessed. The destination operand is a general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in the desti-
nation register, software can perform additional checks on the access rights information.

When the operand size is 32 bits, the access rights for a segment descriptor include the type and
DPL fields and the S, P, AVL, D/B, and G flags, all of which are located in the second double-
word (bytes 4 through 7) of the segment descriptor. The doubleword is masked by 00FXFF00H
before it is loaded into the destination operand. When the operand size is 16 bits, the access
rights include the type and DPL fields. Here, the two lower-order bytes of the doubleword are
masked by FF00H before being loaded into the destination operand.

This instruction performs the following checks before it loads the access rights in the destination
register:

• Checks that the segment selector is not NULL.

• Checks that the segment selector points to a descriptor that is within the limits of the GDT
or LDT being accessed

• Checks that the descriptor type is valid for this instruction. All code and data segment
descriptors are valid for (can be accessed with) the LAR instruction. The valid system
segment and gate descriptor types are given in Table 3-57.

• If the segment is not a conforming code segment, it checks that the specified segment
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment selector are
less than or equal to the DPL of the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction, the ZF flag
is cleared and no access rights are loaded in the destination operand.

Opcode Instruction 64-Bit Mode
Compat/
Leg Mode Description

0F 02 /r LAR r16, r16/m16 Valid Valid r16 ← r16/m16 masked by
FF00H.

0F 02 /r LAR r32, r32/m161 Valid Valid r32 ← r32/m16 masked by
00FxFF00H

REX.W +
0F 02 /r

LAR r64, r32/m161 Valid N.E. r64 ← r32/m16 masked by
00FxFF00H and zero extended

NOTES:
1. For all loads (regardless of source or destination sizing) only bits 16-0 are used. Other bits are ignored.
Vol. 2A 3-505LAR—Load Access Rights Byte

INSTRUCTION SET REFERENCE, A-M
The LAR instruction can only be executed in protected mode and IA-32e mode.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.W prefix
permits access to 64-bit registers as destination.

When the destination operand size is 64 bits, the access rights are loaded from the second
doubleword (bytes 4 through 7) of the segment descriptor. The doubleword is masked by
00FXFF00H and zero extended to 64 bits before it is loaded into the destination operand.

Table 3-57. Segment and Gate Types
Type Protected Mode IA-32e Mode

Name Valid Name Valid

0 Reserved No Reserved No

1 Available 16-bit TSS Yes Reserved No

2 LDT Yes LDT No

3 Busy 16-bit TSS Yes Reserved No

4 16-bit call gate Yes Reserved No

5 16-bit/32-bit task gate Yes Reserved No

6 16-bit interrupt gate No Reserved No

7 16-bit trap gate No Reserved No

8 Reserved No Reserved No

9 Available 32-bit TSS Yes Available 64-bit TSS Yes

A Reserved No Reserved No

B Busy 32-bit TSS Yes Busy 64-bit TSS Yes

C 32-bit call gate Yes 64-bit call gate Yes

D Reserved No Reserved No

E 32-bit interrupt gate No 64-bit interrupt gate No

F 32-bit trap gate No 64-bit trap gate No
3-506 Vol. 2A LAR—Load Access Rights Byte

INSTRUCTION SET REFERENCE, A-M
Operation
IF Offset(SRC) > descriptor table limit

THEN
ZF = 0;

ELSE
IF SegmentDescriptor(Type) ≠ conforming code segment
and (CPL > DPL) or (RPL > DPL)
or segment type is not valid for instruction

THEN
ZF ← 0

ELSE
TEMP ← Read segment descriptor ;
IF OperandSize = 64

THEN
DEST ← (ACCESSRIGHTWORD(TEMP) AND

00000000_00FxFF00H);
ELSE (* OperandSize = 32*)

DEST ← (ACCESSRIGHTWORD(TEMP) AND 00FxFF00H);
ELSE (* OperandSize = 16 *)

DEST ← (ACCESSRIGHTWORD(TEMP) AND FF00H);
FI;

FI;
FI:

Flags Affected
The ZF flag is set to 1 if the access rights are loaded successfully; otherwise, it is set to 0.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and the memory operand effective
address is unaligned while the current privilege level is 3.

Real-Address Mode Exceptions
#UD The LAR instruction is not recognized in real-address mode.
Vol. 2A 3-507LAR—Load Access Rights Byte

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#UD The LAR instruction cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If the memory operand effective address referencing the SS segment is in
a non-canonical form.

#GP(0) If the memory operand effective address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and the memory operand effective
address is unaligned while the current privilege level is 3.
3-508 Vol. 2A LAR—Load Access Rights Byte

INSTRUCTION SET REFERENCE, A-M
LDDQU—Load Unaligned Integer 128 Bits

Description
The instruction is functionally similar to MOVDQU xmm, m128 for loading from memory. That
is: 16 bytes of data starting at an address specified by the source memory operand (second
operand) are fetched from memory and placed in a destination register (first operand). The
source operand need not be aligned on a 16-byte boundary. Up to 32 bytes may be loaded from
memory; this is implementation dependent.

This instruction may improve performance relative to MOVDQU if the source operand crosses
a cache line boundary. In situations that require the data loaded by LDDQU be modified and
stored to the same location, use MOVDQU or MOVDQA instead of LDDQU. To move a double
quadword to or from memory locations that are known to be aligned on 16-byte boundaries, use
the MOVDQA instruction.

Implementation Notes
• If the source is aligned to a 16-byte boundary, based on the implementation, the 16 bytes

may be loaded more than once. For that reason, the usage of LDDQU should be avoided
when using uncached or write-combining (WC) memory regions. For uncached or WC
memory regions, keep using MOVDQU.

• This instruction is a replacement for MOVDQU (load) in situations where cache line splits
significantly affect performance. It should not be used in situations where store-load
forwarding is performance critical. If performance of store-load forwarding is critical to
the application, use MOVDQA store-load pairs when data is 128-bit aligned or MOVDQU
store-load pairs when data is 128-bit unaligned.

• If the memory address is not aligned on 16-byte boundary, some implementations may
load up to 32 bytes and return 16 bytes in the destination. Some processor implementations
may issue multiple loads to access the appropriate 16 bytes. Developers of multi-threaded
or multi-processor software should be aware that on these processors the loads will be
performed in a non-atomic way.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
xmm[127:0] = m128;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F2 0F F0 /r LDDQU xmm1, mem Valid Valid Load unaligned data from mem
and return double quadword in
xmm1.
Vol. 2A 3-509LDDQU—Load Unaligned Integer 128 Bits

INSTRUCTION SET REFERENCE, A-M
Intel C/C++ Compiler Intrinsic Equivalent
LDDQU __m128i _mm_lddqu_si128(__m128i const *p)

Numeric Exceptions
None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR4.OSFXSR[bit 9] = 0.

If CR0.EM[bit 2] = 1.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

#PF(fault-code) For a page fault.
3-510 Vol. 2A LDDQU—Load Unaligned Integer 128 Bits

INSTRUCTION SET REFERENCE, A-M
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

#PF(fault-code) If a page fault occurs.
Vol. 2A 3-511LDDQU—Load Unaligned Integer 128 Bits

INSTRUCTION SET REFERENCE, A-M
LDMXCSR—Load MXCSR Register

Description
Loads the source operand into the MXCSR control/status register. The source operand is a 32-bit
memory location. See “MXCSR Control and Status Register” in Chapter 10, of the IA-32 Intel®

Architecture Software Developer’s Manual, Volume 1, for a description of the MXCSR register
and its contents.

The LDMXCSR instruction is typically used in conjunction with the STMXCSR instruction,
which stores the contents of the MXCSR register in memory.

The default MXCSR value at reset is 1F80H.

If a LDMXCSR instruction clears an SIMD floating-point exception mask bit and sets the corre-
sponding exception flag bit, an SIMD floating-point exception will not be immediately gener-
ated. The exception will be generated only upon the execution of the next SSE or SSE2
instruction that causes that particular SIMD floating-point exception to be reported.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
MXCSR ← m32;

C/C++ Compiler Intrinsic Equivalent
_mm_setcsr(unsigned int i)

Numeric Exceptions
None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS, or

GS segments.

For an attempt to set reserved bits in MXCSR.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F,AE,/2 LDMXCSR m32 Valid Valid Load MXCSR register from m32.
3-512 Vol. 2A LDMXCSR—Load MXCSR Register

INSTRUCTION SET REFERENCE, A-M
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

GP(0) If any part of the operand would lie outside of the effective address space
from 0 to FFFFH.

For an attempt to set reserved bits in MXCSR.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

For an attempt to set reserved bits in MXCSR.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.
Vol. 2A 3-513LDMXCSR—Load MXCSR Register

INSTRUCTION SET REFERENCE, A-M
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-514 Vol. 2A LDMXCSR—Load MXCSR Register

INSTRUCTION SET REFERENCE, A-M
LDS/LES/LFS/LGS/LSS—Load Far Pointer

Description

Loads a far pointer (segment selector and offset) from the second operand (source operand) into
a segment register and the first operand (destination operand). The source operand specifies a
48-bit or a 32-bit pointer in memory depending on the current setting of the operand-size
attribute (32 bits or 16 bits, respectively). The instruction opcode and the destination operand
specify a segment register/general-purpose register pair. The 16-bit segment selector from the
source operand is loaded into the segment register specified with the opcode (DS, SS, ES, FS,
or GS). The 32-bit or 16-bit offset is loaded into the register specified with the destination
operand.

If one of these instructions is executed in protected mode, additional information from the
segment descriptor pointed to by the segment selector in the source operand is loaded in the
hidden part of the selected segment register.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

C5 /r LDS
r16,m16:16

Invalid Valid Load DS:r16 with far pointer from
memory.

C5 /r LDS
r32,m16:32

Invalid Valid Load DS:r32 with far pointer from
memory.

0F B2 /r LSS
r16,m16:16

Valid Valid Load SS:r16 with far pointer from
memory.

0F B2 /r LSS
r32,m16:32

Valid Valid Load SS:r32 with far pointer from
memory.

REX + 0F B2 /r LSS
r64,m16:64

Valid N.E. Load SS:r64 with far pointer from
memory.

C4 /r LES
r16,m16:16

Invalid Valid Load ES:r16 with far pointer from
memory.

C4 /r LES
r32,m16:32

Invalid Valid Load ES:r32 with far pointer from
memory.

0F B4 /r LFS
r16,m16:16

Valid Valid Load FS:r16 with far pointer from
memory.

0F B4 /r LFS
r32,m16:32

Valid Valid Load FS:r32 with far pointer from
memory.

REX + 0F B4 /r LFS
r64,m16:64

Valid N.E. Load FS:r64 with far pointer from
memory.

0F B5 /r LGS
r16,m16:16

Valid Valid Load GS:r16 with far pointer from
memory.

0F B5 /r LGS
r32,m16:32

Valid Valid Load GS:r32 with far pointer from
memory.

REX + 0F B5 /r LGS
r64,m16:64

Valid N.E. Load GS:r64 with far pointer from
memory.
Vol. 2A 3-515LDS/LES/LFS/LGS/LSS—Load Far Pointer

INSTRUCTION SET REFERENCE, A-M
Also in protected mode, a NULL selector (values 0000 through 0003) can be loaded into DS,
ES, FS, or GS registers without causing a protection exception. (Any subsequent reference to a
segment whose corresponding segment register is loaded with a NULL selector, causes a
general-protection exception (#GP) and no memory reference to the segment occurs.)

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.W promotes operation to specify a source operand referencing an 80-bit pointer
(16-bit selector, 64-bit offset) in memory. Using an REX prefix in the form of REX.R permits
access to additional registers (R8-R15). See the summary chart at the beginning of this section
for encoding data and limits.

Operation
64-BIT_MODE

IF SS is loaded
THEN

IF SegmentSelector = NULL and ((RPL = 3) or
(RPL ≠ 3 and RPL ≠ CPL))

THEN #GP(0);
ELSE IF descriptor is in non-canonical space

THEN #GP(0); FI;
ELSE IF Segment selector index is not within descriptor table limits

or segment selector RPL ≠ CPL
or access rights indicate nonwritable data segment
or DPL ≠ CPL

THEN #GP(selector); FI;
ELSE IF Segment marked not present

THEN #SS(selector); FI;
FI;
SS ← SegmentSelector(SRC);
SS ← SegmentDescriptor([SRC]);

ELSE IF attempt to load DS, or ES
THEN #UD;

ELSE IF FS, or GS is loaded with non-NULL segment selector
THEN IF Segment selector index is not within descriptor table limits

or access rights indicate segment neither data nor readable code segment
or segment is data or nonconforming-code segment
and (RPL > DPL or CPL > DPL)

THEN #GP(selector); FI;
ELSE IF Segment marked not present

THEN #NP(selector); FI;
FI;
SegmentRegister ← SegmentSelector(SRC) ;
3-516 Vol. 2A LDS/LES/LFS/LGS/LSS—Load Far Pointer

INSTRUCTION SET REFERENCE, A-M
SegmentRegister ← SegmentDescriptor([SRC]);
FI;

ELSE IF FS, or GS is loaded with a NULL selector:
THEN

SegmentRegister ← NULLSelector;
SegmentRegister(DescriptorValidBit) ← 0; FI; (* Hidden flag;

not accessible by software *)
FI;
DEST ← Offset(SRC);

PREOTECTED MODE OR COMPATIBILITY MODE;
IF SS is loaded

THEN
IF SegementSelector = NULL

THEN #GP(0);
ELSE IF Segment selector index is not within descriptor table limits

or segment selector RPL ≠ CPL
or access rights indicate nonwritable data segment
or DPL ≠ CPL

THEN #GP(selector); FI;
ELSE IF Segment marked not present

THEN #SS(selector); FI;
FI;
SS ← SegmentSelector(SRC);
SS ← SegmentDescriptor([SRC]);

ELSE IF DS, ES, FS, or GS is loaded with non-NULL segment selector
THEN IF Segment selector index is not within descriptor table limits

or access rights indicate segment neither data nor readable code segment
or segment is data or nonconforming-code segment
and (RPL > DPL or CPL > DPL)

THEN #GP(selector); FI;
ELSE IF Segment marked not present

THEN #NP(selector); FI;
FI;
SegmentRegister ← SegmentSelector(SRC) AND RPL;
SegmentRegister ← SegmentDescriptor([SRC]);

FI;
ELSE IF DS, ES, FS, or GS is loaded with a NULL selector:

THEN
SegmentRegister ← NULLSelector;
Vol. 2A 3-517LDS/LES/LFS/LGS/LSS—Load Far Pointer

INSTRUCTION SET REFERENCE, A-M
SegmentRegister(DescriptorValidBit) ← 0; FI; (* Hidden flag;
not accessible by software *)

FI;
DEST ← Offset(SRC);

Real-Address or Virtual-8086 Mode
SegmentRegister ← SegmentSelector(SRC); FI;
DEST ← Offset(SRC);

Flags Affected
None.

Protected Mode Exceptions
#UD If source operand is not a memory location.

#GP(0) If a NULL selector is loaded into the SS register.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#GP(selector) If the SS register is being loaded and any of the following is true: the
segment selector index is not within the descriptor table limits, the
segment selector RPL is not equal to CPL, the segment is a non-writable
data segment, or DPL is not equal to CPL.

If the DS, ES, FS, or GS register is being loaded with a non-NULL
segment selector and any of the following is true: the segment selector
index is not within descriptor table limits, the segment is neither a data nor
a readable code segment, or the segment is a data or nonconforming-code
segment and both RPL and CPL are greater than DPL.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#SS(selector) If the SS register is being loaded and the segment is marked not present.

#NP(selector) If DS, ES, FS, or GS register is being loaded with a non-NULL segment
selector and the segment is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.
3-518 Vol. 2A LDS/LES/LFS/LGS/LSS—Load Far Pointer

INSTRUCTION SET REFERENCE, A-M
#SS If a memory operand effective address is outside the SS segment limit.

#UD If source operand is not a memory location.

Virtual-8086 Mode Exceptions
#UD If source operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

If a NULL selector is attempted to be loaded into the SS register in
compatibility mode.

If a NULL selector is attempted to be loaded into the SS register in CPL3
and 64-bit mode.

If a NULL selector is attempted to be loaded into the SS register in non-
CPL3 and 64-bit mode where its RPL is not equal to CPL.

#GP(Selector) If the FS, or GS register is being loaded with a non-NULL segment
selector and any of the following is true: the segment selector index is not
within descriptor table limits, the memory address of the descriptor is non-
canonical, the segment is neither a data nor a readable code segment, or
the segment is a data or nonconforming-code segment and both RPL and
CPL are greater than DPL.

If the SS register is being loaded and any of the following is true: the
segment selector index is not within the descriptor table limits, the
memory address of the descriptor is non-canonical, the segment selector
RPL is not equal to CPL, the segment is a nonwritable data segment, or
DPL is not equal to CPL.

#SS(0) If a memory operand effective address is non-canonical

#SS(Selector) If the SS register is being loaded and the segment is marked not present.
Vol. 2A 3-519LDS/LES/LFS/LGS/LSS—Load Far Pointer

INSTRUCTION SET REFERENCE, A-M
#NP(selector) If FS, or GS register is being loaded with a non-NULL segment selector
and the segment is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

#UD If source operand is not a memory location.
3-520 Vol. 2A LDS/LES/LFS/LGS/LSS—Load Far Pointer

INSTRUCTION SET REFERENCE, A-M
LEA—Load Effective Address

Description

Computes the effective address of the second operand (the source operand) and stores it in the
first operand (destination operand). The source operand is a memory address (offset part) spec-
ified with one of the processors addressing modes; the destination operand is a general-purpose
register. The address-size and operand-size attributes affect the action performed by this instruc-
tion, as shown in the following table. The operand-size attribute of the instruction is determined
by the chosen register; the address-size attribute is determined by the attribute of the code
segment.

Different assemblers may use different algorithms based on the size attribute and symbolic
reference of the source operand.

In 64-bit mode, the instruction’s destination operand is governed by operand size attribute, the
default operand size is 32 bits. Address calculation is governed by address size attribute, the
default address size is 64-bits. In 64-bit mode, address size of 16 bits is not encodable. See
Table 3-59.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

8D /r LEA r16,m Valid Valid Store effective address for m in register r16.
8D /r LEA r32,m Valid Valid Store effective address for m in register r32.
REX.W + 8D /r LEA r64,m Valid N.E. Store effective address for m in register r64.

Table 3-58. Non-64-bit Mode LEA Operation with Address and Operand Size Attributes
Operand Size Address Size Action Performed

16 16 16-bit effective address is calculated and stored in requested
16-bit register destination.

16 32 32-bit effective address is calculated. The lower 16 bits of the
address are stored in the requested 16-bit register destination.

32 16 16-bit effective address is calculated. The 16-bit address is zero-
extended and stored in the requested 32-bit register destination.

32 32 32-bit effective address is calculated and stored in the requested
32-bit register destination.
Vol. 2A 3-521LEA—Load Effective Address

INSTRUCTION SET REFERENCE, A-M
Operation
IF OperandSize = 16 and AddressSize = 16

THEN
DEST ← EffectiveAddress(SRC); (* 16-bit address *)

ELSE IF OperandSize = 16 and AddressSize = 32
THEN

temp ← EffectiveAddress(SRC); (* 32-bit address *)
DEST ← temp[0:15]; (* 16-bit address *)

FI;
ELSE IF OperandSize = 32 and AddressSize = 16

THEN
temp ← EffectiveAddress(SRC); (* 16-bit address *)
DEST ← ZeroExtend(temp); (* 32-bit address *)

FI;
ELSE IF OperandSize = 32 and AddressSize = 32

THEN
DEST ← EffectiveAddress(SRC); (* 32-bit address *)

FI;
ELSE IF OperandSize = 16 and AddressSize = 64

THEN
temp ← EffectiveAddress(SRC); (* 64-bit address *)
DEST ← temp[0:15]; (* 16-bit address *)

FI;
ELSE IF OperandSize = 32 and AddressSize = 64

THEN

Table 3-59. 64-bit Mode LEA Operation with Address and Operand Size Attributes
Operand Size Address Size Action Performed

16 32 32-bit effective address is calculated (using 67H prefix). The
lower 16 bits of the address are stored in the requested 16-bit
register destination (using 66H prefix).

16 64 64-bit effective address is calculated (default address size). The
lower 16 bits of the address are stored in the requested 16-bit
register destination (using 66H prefix).

32 32 32-bit effective address is calculated (using 67H prefix) and
stored in the requested 32-bit register destination.

32 64 64-bit effective address is calculated (default address size) and
the lower 32 bits of the address are stored in the requested 32-bit
register destination.

64 32 32-bit effective address is calculated (using 67H prefix), zero-
extended to 64-bits, and stored in the requested 64-bit register
destination (using REX.W).

64 64 64-bit effective address is calculated (default address size) and
all 64-bits of the address are stored in the requested 64-bit
register destination (using REX.W).
3-522 Vol. 2A LEA—Load Effective Address

INSTRUCTION SET REFERENCE, A-M
temp ← EffectiveAddress(SRC); (* 64-bit address *)
DEST ← temp[0:31]; (* 16-bit address *)

FI;
ELSE IF OperandSize = 64 and AddressSize = 64

THEN
DEST ← EffectiveAddress(SRC); (* 64-bit address *)

FI;
FI;

Flags Affected
None.

Protected Mode Exceptions
#UD If source operand is not a memory location.

Real-Address Mode Exceptions
#UD If source operand is not a memory location.

Virtual-8086 Mode Exceptions
#UD If source operand is not a memory location.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#UD If source operand is not a memory location.
Vol. 2A 3-523LEA—Load Effective Address

INSTRUCTION SET REFERENCE, A-M
LEAVE—High Level Procedure Exit

Description
Releases the stack frame set up by an earlier ENTER instruction. The LEAVE instruction copies
the frame pointer (in the EBP register) into the stack pointer register (ESP), which releases the
stack space allocated to the stack frame. The old frame pointer (the frame pointer for the calling
procedure that was saved by the ENTER instruction) is then popped from the stack into the EBP
register, restoring the calling procedure’s stack frame.

A RET instruction is commonly executed following a LEAVE instruction to return program
control to the calling procedure.

See “Procedure Calls for Block-Structured Languages” in Chapter 6 of the IA-32 Intel® Archi-
tecture Software Developer’s Manual, Volume 1, for detailed information on the use of the
ENTER and LEAVE instructions.

In 64-bit mode, the instruction’s default operation size is 64 bits; 32-bit operation cannot be
encoded. See the summary chart at the beginning of this section for encoding data and limits.

Operation
IF StackAddressSize = 32

THEN
ESP ← EBP;

ELSE IF StackAddressSize = 64
THEN RSP ← RBP; FI;

ELSE IF StackAddressSize = 16
THEN SP ← BP; FI;

FI;
IF OperandSize = 32

THEN EBP ← Pop();
ELSE IF OperandSize = 64

THEN RBP ← Pop(); FI;
ELSE IF OperandSize = 16

THEN BP ← Pop(); FI;
FI;

Flags Affected
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

C9 LEAVE Valid Valid Set SP to BP, then pop BP.
C9 LEAVE N.E. Valid Set ESP to EBP, then pop EBP.
C9 LEAVE Valid N.E. Set RSP to RBP, then pop RBP.
3-524 Vol. 2A LEAVE—High Level Procedure Exit

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#SS(0) If the EBP register points to a location that is not within the limits of the

current stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If the EBP register points to a location outside of the effective address

space from 0 to FFFFH.

Virtual-8086 Mode Exceptions
#GP(0) If the EBP register points to a location outside of the effective address

space from 0 to FFFFH.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If the memory address is in a non-canonical form.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-525LEAVE—High Level Procedure Exit

INSTRUCTION SET REFERENCE, A-M
LFENCE—Load Fence

Description
Performs a serializing operation on all load-from-memory instructions that were issued prior the
LFENCE instruction. This serializing operation guarantees that every load instruction that
precedes in program order the LFENCE instruction is globally visible before any load instruc-
tion that follows the LFENCE instruction is globally visible. The LFENCE instruction is
ordered with respect to load instructions, other LFENCE instructions, any MFENCE instruc-
tions, and any serializing instructions (such as the CPUID instruction). It is not ordered with
respect to store instructions or the SFENCE instruction.

Weakly ordered memory types can be used to achieve higher processor performance through
such techniques as out-of-order issue and speculative reads. The degree to which a consumer of
data recognizes or knows that the data is weakly ordered varies among applications and may be
unknown to the producer of this data. The LFENCE instruction provides a performance-efficient
way of insuring load ordering between routines that produce weakly-ordered results and
routines that consume that data.

It should be noted that processors are free to speculatively fetch and cache data from system
memory regions that are assigned a memory-type that permits speculative reads (that is, the WB,
WC, and WT memory types). The PREFETCHh instruction is considered a hint to this specula-
tive behavior. Because this speculative fetching can occur at any time and is not tied to instruc-
tion execution, the LFENCE instruction is not ordered with respect to PREFETCHh instructions
or any other speculative fetching mechanism (that is, data could be speculative loaded into the
cache just before, during, or after the execution of an LFENCE instruction).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
Wait_On_Following_Loads_Until(preceding_loads_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent
void_mm_lfence(void)

Exceptions (All Modes of Operation)
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F AE /5 LFENCE Valid Valid Serializes load operations.
3-526 Vol. 2A LFENCE—Load Fence

INSTRUCTION SET REFERENCE, A-M
LGDT/LIDT—Load Global/Interrupt Descriptor Table Register

Description
Loads the values in the source operand into the global descriptor table register (GDTR) or the
interrupt descriptor table register (IDTR). The source operand specifies a 6-byte memory loca-
tion that contains the base address (a linear address) and the limit (size of table in bytes) of the
global descriptor table (GDT) or the interrupt descriptor table (IDT). If operand-size attribute is
32 bits, a 16-bit limit (lower 2 bytes of the 6-byte data operand) and a 32-bit base address (upper
4 bytes of the data operand) are loaded into the register. If the operand-size attribute is
16 bits, a 16-bit limit (lower 2 bytes) and a 24-bit base address (third, fourth, and fifth byte) are
loaded. Here, the high-order byte of the operand is not used and the high-order byte of the base
address in the GDTR or IDTR is filled with zeros.

The LGDT and LIDT instructions are used only in operating-system software; they are not used
in application programs. They are the only instructions that directly load a linear address (that
is, not a segment-relative address) and a limit in protected mode. They are commonly executed
in real-address mode to allow processor initialization prior to switching to protected mode.

In 64-bit mode, the instruction’s operand size is fixed at 8+2 bytes (an 8-byte base and a 2-byte
limit). See the summary chart at the beginning of this section for encoding data and limits.

See “SGDT—Store Global Descriptor Table Register” in Chapter 4, IA-32 Intel® Architecture
Software Developer’s Manual, Volume 2B, for information on storing the contents of the GDTR
and IDTR.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 01 /2 LGDT m16&32 N.E. Valid Load m into GDTR.
0F 01 /3 LIDT m16&32 N.E. Valid Load m into IDTR.
0F 01 /2 LGDT m16&64 Valid N.E. Load m into GDTR.
0F 01 /3 LIDT m16&64 Valid N.E. Load m into IDTR.
Vol. 2A 3-527LGDT/LIDT—Load Global/Interrupt Descriptor Table Register

INSTRUCTION SET REFERENCE, A-M
Operation
IF Instruction is LIDT

THEN
IF OperandSize = 16

THEN
IDTR(Limit) ← SRC[0:15];
IDTR(Base) ← SRC[16:47] AND 00FFFFFFH;

ELSE IF 32-bit Operand Size
THEN

IDTR(Limit) ← SRC[0:15];
IDTR(Base) ← SRC[16:47];

FI;
ELSE IF 64-bit Operand Size (* In 64-Bit Mode *)

THEN
IDTR(Limit) ← SRC[0:15];
IDTR(Base) ← SRC[16:79];

FI;
FI;

ELSE (* Instruction is LGDT *)
IF OperandSize = 16

THEN
GDTR(Limit) ← SRC[0:15];
GDTR(Base) ← SRC[16:47] AND 00FFFFFFH;

ELSE IF 32-bit Operand Size
THEN

GDTR(Limit) ← SRC[0:15];
GDTR(Base) ← SRC[16:47];

FI;
ELSE IF 64-bit Operand Size (* In 64-Bit Mode *)

THEN
GDTR(Limit) ← SRC[0:15];
GDTR(Base) ← SRC[16:79];

FI;
FI;

FI;

Flags Affected
None.

Protected Mode Exceptions
#UD If source operand is not a memory location.

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
3-528 Vol. 2A LGDT/LIDT—Load Global/Interrupt Descriptor Table Register

INSTRUCTION SET REFERENCE, A-M
If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#UD If source operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#UD If source operand is not a memory location.

#GP(0) The LGDT and LIDT instructions are not recognized in virtual-8086
mode.

#GP If the current privilege level is not 0.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.

#UD If source operand is not a memory location.

#PF(fault-code) If a page fault occurs.
Vol. 2A 3-529LGDT/LIDT—Load Global/Interrupt Descriptor Table Register

INSTRUCTION SET REFERENCE, A-M
LLDT—Load Local Descriptor Table Register

Description
Loads the source operand into the segment selector field of the local descriptor table register
(LDTR). The source operand (a general-purpose register or a memory location) contains a
segment selector that points to a local descriptor table (LDT). After the segment selector is
loaded in the LDTR, the processor uses the segment selector to locate the segment descriptor for
the LDT in the global descriptor table (GDT). It then loads the segment limit and base address
for the LDT from the segment descriptor into the LDTR. The segment registers DS, ES, SS, FS,
GS, and CS are not affected by this instruction, nor is the LDTR field in the task state segment
(TSS) for the current task.

If bits 2-15 of the source operand are 0, LDTR is marked invalid and the LLDT instruction
completes silently. However, all subsequent references to descriptors in the LDT (except by the
LAR, VERR, VERW or LSL instructions) cause a general protection exception (#GP).

The operand-size attribute has no effect on this instruction.

The LLDT instruction is provided for use in operating-system software; it should not be used in
application programs. This instruction can only be executed in protected mode or 64-bit mode.

In 64-bit mode, the operand size is fixed at 16 bits.

Operation
IF SRC(Offset) > descriptor table limit

THEN #GP(segment selector); FI;

IF segment selector is valid
Read segment descriptor;
IF SegmentDescriptor(Type) ≠ LDT

THEN #GP(segment selector); FI;
IF segment descriptor is not present

THEN #NP(segment selector); FI;
LDTR(SegmentSelector) ← SRC;
LDTR(SegmentDescriptor) ← GDTSegmentDescriptor;

ELSE LDTR ← INVALID
FI;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 00 /2 LLDT r/m16 Valid Valid Load segment selector r/m16 into
LDTR.
3-530 Vol. 2A LLDT—Load Local Descriptor Table Register

INSTRUCTION SET REFERENCE, A-M
Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#GP(selector) If the selector operand does not point into the Global Descriptor Table or
if the entry in the GDT is not a Local Descriptor Table.

Segment selector is beyond GDT limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NP(selector) If the LDT descriptor is not present.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#UD The LLDT instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The LLDT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.

#GP(selector) If the selector operand does not point into the Global Descriptor Table or
if the entry in the GDT is not a Local Descriptor Table.

Segment selector is beyond GDT limit.

#NP(selector) If the LDT descriptor is not present.

#PF(fault-code) If a page fault occurs.
Vol. 2A 3-531LLDT—Load Local Descriptor Table Register

INSTRUCTION SET REFERENCE, A-M
LMSW—Load Machine Status Word

Description
Loads the source operand into the machine status word, bits 0 through 15 of register CR0. The
source operand can be a 16-bit general-purpose register or a memory location. Only the low-
order 4 bits of the source operand (which contains the PE, MP, EM, and TS flags) are loaded
into CR0. The PG, CD, NW, AM, WP, NE, and ET flags of CR0 are not affected. The operand-
size attribute has no effect on this instruction.

If the PE flag of the source operand (bit 0) is set to 1, the instruction causes the processor to
switch to protected mode. While in protected mode, the LMSW instruction cannot be used to
clear the PE flag and force a switch back to real-address mode.

The LMSW instruction is provided for use in operating-system software; it should not be used
in application programs. In protected or virtual-8086 mode, it can only be executed at CPL 0.

This instruction is provided for compatibility with the Intel 286™ processor; programs and
procedures intended to run on the Pentium 4, Intel Xeon, P6 family, Pentium, Intel486, and
Intel386 processors should use the MOV (control registers) instruction to load the whole CR0
register. The MOV CR0 instruction can be used to set and clear the PE flag in CR0, allowing a
procedure or program to switch between protected and real-address modes.

This instruction is a serializing instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Note that the
operand size is fixed at 16 bits.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of the IA-
32 Intel® Architecture Software Developer’s Manual, Volume 3B, for more information about the
behavior of this instruction in VMX non-root operation.

Operation
CR0[0:3] ← SRC[0:3];

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 01 /6 LMSW r/m16 Valid Valid Loads r/m16 in machine status word of
CR0.
3-532 Vol. 2A LMSW—Load Machine Status Word

INSTRUCTION SET REFERENCE, A-M
If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.
Vol. 2A 3-533LMSW—Load Machine Status Word

INSTRUCTION SET REFERENCE, A-M
LOCK—Assert LOCK# Signal Prefix

Description
Causes the processor’s LOCK# signal to be asserted during execution of the accompanying
instruction (turns the instruction into an atomic instruction). In a multiprocessor environment,
the LOCK# signal insures that the processor has exclusive use of any shared memory while the
signal is asserted.

Note that, in later IA-32 processors (including the Pentium 4, Intel Xeon, and P6 family proces-
sors), locking may occur without the LOCK# signal being asserted. See IA-32 Architecture
Compatibility below.

The LOCK prefix can be prepended only to the following instructions and only to those forms
of the instructions where the destination operand is a memory operand: ADD, ADC, AND,
BTC, BTR, BTS, CMPXCHG, CMPXCH8B, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR,
XADD, and XCHG. If the LOCK prefix is used with one of these instructions and the source
operand is a memory operand, an undefined opcode exception (#UD) may be generated. An
undefined opcode exception will also be generated if the LOCK prefix is used with any instruc-
tion not in the above list. The XCHG instruction always asserts the LOCK# signal regardless of
the presence or absence of the LOCK prefix.

The LOCK prefix is typically used with the BTS instruction to perform a read-modify-write
operation on a memory location in shared memory environment.

The integrity of the LOCK prefix is not affected by the alignment of the memory field. Memory
locking is observed for arbitrarily misaligned fields.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility
Beginning with the P6 family processors, when the LOCK prefix is prefixed to an instruction
and the memory area being accessed is cached internally in the processor, the LOCK# signal is
generally not asserted. Instead, only the processor’s cache is locked. Here, the processor’s cache
coherency mechanism insures that the operation is carried out atomically with regards to
memory. See “Effects of a Locked Operation on Internal Processor Caches” in Chapter 7 of
IA-32 Intel® Architecture Software Developer’s Manual, Volume 3A, the for more information
on locking of caches.

Opcode* Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F0 LOCK Valid Valid Asserts LOCK# signal for duration of the
accompanying instruction.

NOTES:
* See IA-32 Architecture Compatibility section below.
3-534 Vol. 2A LOCK—Assert LOCK# Signal Prefix

INSTRUCTION SET REFERENCE, A-M
Operation
AssertLOCK#(DurationOfAccompaningInstruction);

Flags Affected
None.

Protected Mode Exceptions
#UD If the LOCK prefix is used with an instruction not listed in the “Descrip-

tion” section above. Other exceptions can be generated by the instruction
that the LOCK prefix is being applied to.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-535LOCK—Assert LOCK# Signal Prefix

INSTRUCTION SET REFERENCE, A-M
LODS/LODSB/LODSW/LODSD/LODSQ—Load String

Description
Loads a byte, word, or doubleword from the source operand into the AL, AX, or EAX register,
respectively. The source operand is a memory location, the address of which is read from the
DS:EDI or the DS:SI registers (depending on the address-size attribute of the instruction, 32 or
16, respectively). The DS segment may be overridden with a segment override prefix.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the LODS
mnemonic) allows the source operand to be specified explicitly. Here, the source operand should
be a symbol that indicates the size and location of the source value. The destination operand is
then automatically selected to match the size of the source operand (the AL register for byte
operands, AX for word operands, and EAX for doubleword operands). This explicit-operands
form is provided to allow documentation; however, note that the documentation provided by this
form can be misleading. That is, the source operand symbol must specify the correct type (size)
of the operand (byte, word, or doubleword), but it does not have to specify the correct location.
The location is always specified by the DS:(E)SI registers, which must be loaded correctly
before the load string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
LODS instructions. Here also DS:(E)SI is assumed to be the source operand and the AL, AX, or
EAX register is assumed to be the destination operand. The size of the source and destination

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

AC LODS m8 Valid Valid For legacy mode, Load byte at address
DS:(E)SI into AL. For 64-bit mode load byte
at address (R)SI into AL.

AD LODS m16 Valid Valid For legacy mode, Load word at address
DS:(E)SI into AX. For 64-bit mode load
word at address (R)SI into AX.

AD LODS m32 Valid Valid For legacy mode, Load dword at address
DS:(E)SI into EAX. For 64-bit mode load
dword at address (R)SI into EAX.

REX.W + AD LODS m64 Valid N.E. Load qword at address (R)SI into RAX.
AC LODSB Valid Valid For legacy mode, Load byte at address

DS:(E)SI into AL. For 64-bit mode load byte
at address (R)SI into AL.

AD LODSW Valid Valid For legacy mode, Load word at address
DS:(E)SI into AX. For 64-bit mode load
word at address (R)SI into AX.

AD LODSD Valid Valid For legacy mode, Load dword at address
DS:(E)SI into EAX. For 64-bit mode load
dword at address (R)SI into EAX.

REX.W + AD LODSQ Valid N.E. Load qword at address (R)SI into RAX.
3-536 Vol. 2A LODS/LODSB/LODSW/LODSD/LODSQ—Load String

INSTRUCTION SET REFERENCE, A-M
operands is selected with the mnemonic: LODSB (byte loaded into register AL), LODSW (word
loaded into AX), or LODSD (doubleword loaded into EAX).

After the byte, word, or doubleword is transferred from the memory location into the AL, AX,
or EAX register, the (E)SI register is incremented or decremented automatically according to the
setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)SI register is incre-
mented; if the DF flag is 1, the ESI register is decremented.) The (E)SI register is incremented
or decremented by 1 for byte operations, by 2 for word operations, or by 4 for doubleword oper-
ations.

In 64-bit mode, use of the REX.W prefix promotes operation to 64 bits. LODS/LODSQ load the
quadword at address (R)SI into RAX. The (R)SI register is then incremented or decremented
automatically according to the setting of the DF flag in the EFLAGS register.

The LODS, LODSB, LODSW, and LODSD instructions can be preceded by the REP prefix for
block loads of ECX bytes, words, or doublewords. More often, however, these instructions
are used within a LOOP construct because further processing of the data moved into the register
is usually necessary before the next transfer can be made. See “REP/REPE/REPZ/REPNE
/REPNZ—Repeat String Operation Prefix” in Chapter 4, IA-32 Intel® Architecture Software
Developer’s Manual, Volume 2B, for a description of the REP prefix.

Operation
IF AL ← SRC; (* Byte load *)

THEN AL ← SRC; (* Byte load *)
IF DF = 0

THEN (E)SI ← (E)SI + 1;
ELSE (E)SI ← (E)SI – 1;

FI;
ELSE IF AX ← SRC; (* Word load *)

THEN IF DF = 0
THEN (E)SI ← (E)SI + 2;
ELSE (E)SI ← (E)SI – 2;

IF;
FI;

ELSE IF EAX ← SRC; (* Doubleword load *)
THEN IF DF = 0

THEN (E)SI ← (E)SI + 4;
ELSE (E)SI ← (E)SI – 4;

FI;
FI;

ELSE IF RAX ← SRC; (* Quadword load *)
THEN IF DF = 0

THEN (R)SI ← (R)SI + 8;
ELSE (R)SI ← (R)SI – 8;

FI;
FI;

FI;
Vol. 2A 3-537LODS/LODSB/LODSW/LODSD/LODSQ—Load String

INSTRUCTION SET REFERENCE, A-M
Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-538 Vol. 2A LODS/LODSB/LODSW/LODSD/LODSQ—Load String

INSTRUCTION SET REFERENCE, A-M
LOOP/LOOPcc—Loop According to ECX Counter

Description
Performs a loop operation using the ECX or CX register as a counter. Each time the LOOP
instruction is executed, the count register is decremented, then checked for 0. If the count is 0,
the loop is terminated and program execution continues with the instruction following the LOOP
instruction. If the count is not zero, a near jump is performed to the destination (target) operand,
which is presumably the instruction at the beginning of the loop. If the address-size attribute is
32 bits, the ECX register is used as the count register. Otherwise, the CX register is used.

The target instruction is specified with a relative offset (a signed offset relative to the current
value of the instruction pointer in the EIP register). This offset is generally specified as a label
in assembly code, but at the machine code level, it is encoded as a signed, 8-bit immediate value,
which is added to the instruction pointer. Offsets of –128 to +127 are allowed with this instruc-
tion.

Some forms of the loop instruction (LOOPcc) also accept the ZF flag as a condition for termi-
nating the loop before the count reaches zero. With these forms of the instruction, a condition
code (cc) is associated with each instruction to indicate the condition being tested for. Here, the
LOOPcc instruction itself does not affect the state of the ZF flag; the ZF flag is changed by other
instructions in the loop.

In 64-bit mode, use of the REX.W prefix enables 64 bit counts. JMP Short is RIP = RIP + 8-bit
offset sign extended to 64 bits. See the summary chart at the beginning of this section for
encoding data and limits.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

E2 cb LOOP rel8 Valid Valid Decrement count; jump short if count ≠ 0.
REX.W + E2 cb LOOP rel8 Valid N.E. Decrement 64-bit count in RCX; jump short

if count ≠ 0.
E1 cb LOOPE rel8 Valid Valid Decrement count; jump short if count ≠ 0

and ZF = 1.
REX.W + E1 cb LOOPE rel8 Valid N.E. Decrement 64-bit count in RCX; jump short

if count ≠ 0 and ZF = 1.
E0 cb LOOPNE

rel8
Valid Valid Decrement count; jump short if count ≠ 0

and ZF = 0.
REX.W + E0 cb LOOPNZ

rel8
Valid N.E. Decrement 64-bit count in RCX; jump short

if count ≠ 0 and ZF = 0.
Vol. 2A 3-539LOOP/LOOPcc—Loop According to ECX Counter

INSTRUCTION SET REFERENCE, A-M
Operation
IF AddressSize = 32

THEN Count is ECX;
ELSE IF AddressSize = 64 and REX.W used

THEN Count is RCX
FI;

ELSE AddressSize = 16
THEN Count is CX;

FI;
Count ← Count – 1;
IF Instruction is not LOOP

THEN
IF (Instruction ← LOOPE) or (Instruction ← LOOPZ)

THEN IF (ZF = 1) and (Count ≠ 0)
THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
ELSE (Instruction = LOOPNE) or (Instruction = LOOPNZ)

IF (ZF = 0) and (Count ≠ 0)
THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
FI;

ELSE (* Instruction = LOOP *)
IF (Count ≠ 0)

THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
FI;

IF BranchCond = 1
THEN

IF OperandSize = 32
THEN EIP ← EIP + SignExtend(DEST);
ELSE IF OperandSize = 64

THEN RIP ← RIP + SignExtend(DEST);
FI;

ELSE IF OperandSize = 16
THEN EIP ← EIP AND 0000FFFFH;
FI;

ELSE IF OperandSize = (32 or 64)
THEN IF (R/E)IP < CS.Base or (R/E)IP > CS.Limit

#GP; FI;
FI;

FI;
3-540 Vol. 2A LOOP/LOOPcc—Loop According to ECX Counter

INSTRUCTION SET REFERENCE, A-M
ELSE
Terminate loop and continue program execution at (R/E)IP;

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the offset being jumped to is beyond the limits of the CS segment.

Real-Address Mode Exceptions
#GP If the offset being jumped to is beyond the limits of the CS segment or is

outside of the effective address space from 0 to FFFFH. This condition can
occur if a 32-bit address size override prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the offset being jumped to is in a non-canonical form.
Vol. 2A 3-541LOOP/LOOPcc—Loop According to ECX Counter

INSTRUCTION SET REFERENCE, A-M
LSL—Load Segment Limit

Description
Loads the unscrambled segment limit from the segment descriptor specified with the second
operand (source operand) into the first operand (destination operand) and sets the ZF flag in the
EFLAGS register. The source operand (which can be a register or a memory location) contains
the segment selector for the segment descriptor being accessed. The destination operand is a
general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in the desti-
nation register, software can compare the segment limit with the offset of a pointer.

The segment limit is a 20-bit value contained in bytes 0 and 1 and in the first 4 bits of byte 6 of
the segment descriptor. If the descriptor has a byte granular segment limit (the granularity flag
is set to 0), the destination operand is loaded with a byte granular value (byte limit). If the
descriptor has a page granular segment limit (the granularity flag is set to 1), the LSL instruction
will translate the page granular limit (page limit) into a byte limit before loading it into the desti-
nation operand. The translation is performed by shifting the 20-bit “raw” limit left 12 bits and
filling the low-order 12 bits with 1s.

When the operand size is 32 bits, the 32-bit byte limit is stored in the destination operand. When
the operand size is 16 bits, a valid 32-bit limit is computed; however, the upper 16 bits are trun-
cated and only the low-order 16 bits are loaded into the destination operand.

This instruction performs the following checks before it loads the segment limit into the desti-
nation register:

• Checks that the segment selector is not NULL.

• Checks that the segment selector points to a descriptor that is within the limits of the GDT
or LDT being accessed

• Checks that the descriptor type is valid for this instruction. All code and data segment
descriptors are valid for (can be accessed with) the LSL instruction. The valid special
segment and gate descriptor types are given in the following table.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 03 /r LSL r16, r16/m16 Valid Valid Load: r16 ← segment limit,
selector r16/m16.

0F 03 /r LSL r32, r32/m161 Valid Valid Load: r32 ← segment limit,
selector r32/m16.

REX.W + 0F 03 /r LSL r64, r32/m161 Valid Valid Load: r64 ← segment limit,
selector r32/m16

NOTES:
1 For all loads (regardless of destination sizing), only bits 16-0 are used. Other bits are ignored.
3-542 Vol. 2A LSL—Load Segment Limit

INSTRUCTION SET REFERENCE, A-M
• If the segment is not a conforming code segment, the instruction checks that the specified
segment descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment
selector are less than or equal to the DPL of the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction, the ZF flag
is cleared and no value is loaded in the destination operand.

Table 3-60. Segment and Gate Descriptor Types
Type Protected Mode IA-32e Mode

Name Valid Name Valid

0 Reserved No Upper 8 byte of a 16-
Byte descriptor

Yes

1 Available 16-bit TSS Yes Reserved No

2 LDT Yes LDT Yes

3 Busy 16-bit TSS Yes Reserved No

4 16-bit call gate No Reserved No

5 16-bit/32-bit task gate No Reserved No

6 16-bit interrupt gate No Reserved No

7 16-bit trap gate No Reserved No

8 Reserved No Reserved No

9 Available 32-bit TSS Yes 64-bit TSS Yes

A Reserved No Reserved No

B Busy 32-bit TSS Yes Busy 64-bit TSS Yes

C 32-bit call gate No 64-bit call gate No

D Reserved No Reserved No

E 32-bit interrupt gate No 64-bit interrupt gate No

F 32-bit trap gate No 64-bit trap gate No
Vol. 2A 3-543LSL—Load Segment Limit

INSTRUCTION SET REFERENCE, A-M
Operation
IF SRC(Offset) > descriptor table limit

THEN ZF ← 0; FI;
Read segment descriptor;
IF SegmentDescriptor(Type) ≠ conforming code segment
and (CPL > DPL) OR (RPL > DPL)
or Segment type is not valid for instruction

THEN
ZF ← 0;

ELSE
temp ← SegmentLimit([SRC]);
IF (G ← 1)

THEN temp ← ShiftLeft(12, temp) OR 00000FFFH;
ELSE IF OperandSize = 32

THEN DEST ← temp; FI;
ELSE IF OperandSize = 64 (* REX.W used *)

THEN DEST (* Zero-extended *) ← temp; FI;
ELSE (* OperandSize = 16 *)

DEST ← temp AND FFFFH;
FI;

FI;

Flags Affected
The ZF flag is set to 1 if the segment limit is loaded successfully; otherwise, it is set to 0.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and the memory operand effective
address is unaligned while the current privilege level is 3.

Real-Address Mode Exceptions
#UD The LAR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The LAR instruction cannot be executed in virtual-8086 mode.
3-544 Vol. 2A LSL—Load Segment Limit

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If the memory operand effective address referencing the SS segment is in
a non-canonical form.

#GP(0) If the memory operand effective address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and the memory operand effective
address is unaligned while the current privilege level is 3.
Vol. 2A 3-545LSL—Load Segment Limit

INSTRUCTION SET REFERENCE, A-M
LTR—Load Task Register

Description
Loads the source operand into the segment selector field of the task register. The source operand
(a general-purpose register or a memory location) contains a segment selector that points to a
task state segment (TSS). After the segment selector is loaded in the task register, the processor
uses the segment selector to locate the segment descriptor for the TSS in the global descriptor
table (GDT). It then loads the segment limit and base address for the TSS from the segment
descriptor into the task register. The task pointed to by the task register is marked busy, but a
switch to the task does not occur.

The LTR instruction is provided for use in operating-system software; it should not be used in
application programs. It can only be executed in protected mode when the CPL is 0. It is
commonly used in initialization code to establish the first task to be executed.

The operand-size attribute has no effect on this instruction.

In 64-bit mode, the operand size is still fixed at 16 bits. The instruction references a 16-byte
descriptor to load the 64-bit base.

Operation
IF SRC is a null selector

THEN #GP(0);
IF SRC(Offset) > descriptor table limit OR IF SRC(type) ≠ global

THEN #GP(segment selector); FI;
Read segment descriptor;
IF segment descriptor is not for an available TSS

THEN #GP(segment selector); FI;
IF segment descriptor is not present

THEN #NP(segment selector); FI;
TSSsegmentDescriptor(busy) ← 1;
(* Locked read-modify-write operation on the entire descriptor when setting busy flag *)
TaskRegister(SegmentSelector) ← SRC;
TaskRegister(SegmentDescriptor) ← TSSSegmentDescriptor;

Flags Affected
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 00 /3 LTR r/m16 Valid Valid Load r/m16 into task register.
3-546 Vol. 2A LTR—Load Task Register

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the source operand contains a NULL segment selector.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#GP(selector) If the source selector points to a segment that is not a TSS or to one for a
task that is already busy.

If the selector points to LDT or is beyond the GDT limit.

#NP(selector) If the TSS is marked not present.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#UD The LTR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The LTR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.

If the source operand contains a NULL segment selector.

#GP(selector) If the source selector points to a segment that is not a TSS or to one for a
task that is already busy.

If the selector points to LDT or is beyond the GDT limit.

If the descriptor type of the upper 8-byte of the 16-byte descriptor is non-
zero.
Vol. 2A 3-547LTR—Load Task Register

INSTRUCTION SET REFERENCE, A-M
#NP(selector) If the TSS is marked not present.

#PF(fault-code) If a page fault occurs.
3-548 Vol. 2A LTR—Load Task Register

INSTRUCTION SET REFERENCE, A-M
MASKMOVDQU—Store Selected Bytes of Double Quadword

Description
Stores selected bytes from the source operand (first operand) into an 128-bit memory location.
The mask operand (second operand) selects which bytes from the source operand are written to
memory. The source and mask operands are XMM registers. The location of the first byte of the
memory location is specified by DI/EDI and DS registers. The memory location does not need
to be aligned on a natural boundary. (The size of the store address depends on the address-size
attribute.)

The most significant bit in each byte of the mask operand determines whether the corresponding
byte in the source operand is written to the corresponding byte location in memory: 0 indicates
no write and 1 indicates write.

The MASKMOVEDQU instruction generates a non-temporal hint to the processor to minimize
cache pollution. The non-temporal hint is implemented by using a write combining (WC)
memory type protocol (see “Caching of Temporal vs. Non-Temporal Data” in Chapter 10, of the
IA-32 Intel® Architecture Software Developer’s Manual, Volume 1). Because the WC protocol
uses a weakly-ordered memory consistency model, a fencing operation implemented with the
SFENCE or MFENCE instruction should be used in conjunction with MASKMOVEDQU
instructions if multiple processors might use different memory types to read/write the destina-
tion memory locations.

Behavior with a mask of all 0s is as follows:

• No data will be written to memory.

• Signaling of breakpoints (code or data) is not guaranteed; different processor implementa-
tions may signal or not signal these breakpoints.

• Exceptions associated with addressing memory and page faults may still be signaled
(implementation dependent).

• If the destination memory region is mapped as UC or WP, enforcement of associated
semantics for these memory types is not guaranteed (that is, is reserved) and is implemen-
tation-specific.

The MASKMOVDQU instruction can be used to improve performance of algorithms that need
to merge data on a byte-by-byte basis. MASKMOVDQU should not cause a read for ownership;
doing so generates unnecessary bandwidth since data is to be written directly using the byte-
mask without allocating old data prior to the store.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F F7 /r MASKMOVDQU
xmm1, xmm2

Valid Valid Selectively write bytes from xmm1 to
memory location using the byte mask in
xmm2. The default memory location is
specified by DS:EDI.
Vol. 2A 3-549MASKMOVDQU—Store Selected Bytes of Double Quadword

INSTRUCTION SET REFERENCE, A-M
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
IF (MASK[7] = 1)

THEN DEST[DI/EDI] ← SRC[7:0] ELSE (* Memory location unchanged *); FI;
IF (MASK[15] = 1)

THEN DEST[DI/EDI +1] ← SRC[15:8] ELSE (* Memory location unchanged *); FI;
(* Repeat operation for 3rd through 14th bytes in source operand *)

IF (MASK[127] = 1)
THEN DEST[DI/EDI +15] ← SRC[127:120] ELSE (* Memory location unchanged *); FI;

Intel C/C++ Compiler Intrinsic Equivalent
void_mm_maskmoveu_si128(__m128i d, __m128i n, char * p)

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments. (even if mask is all 0s).

If the destination operand is in a nonwritable segment.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) For an illegal address in the SS segment (even if mask is all 0s).

#PF(fault-code) For a page fault (implementation specific).

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH. (even if mask is all 0s).

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
3-550 Vol. 2A MASKMOVDQU—Store Selected Bytes of Double Quadword

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault (implementation specific).

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#PF(fault-code) For a page fault (implementation specific).

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
Vol. 2A 3-551MASKMOVDQU—Store Selected Bytes of Double Quadword

INSTRUCTION SET REFERENCE, A-M
MASKMOVQ—Store Selected Bytes of Quadword

Description
Stores selected bytes from the source operand (first operand) into a 64-bit memory location. The
mask operand (second operand) selects which bytes from the source operand are written to
memory. The source and mask operands are MMX technology registers. The location of the first
byte of the memory location is specified by DI/EDI and DS registers. (The size of the store
address depends on the address-size attribute.)

The most significant bit in each byte of the mask operand determines whether the corresponding
byte in the source operand is written to the corresponding byte location in memory: 0 indicates
no write and 1 indicates write.

The MASKMOVQ instruction generates a non-temporal hint to the processor to minimize cache
pollution. The non-temporal hint is implemented by using a write combining (WC) memory
type protocol (see “Caching of Temporal vs. Non-Temporal Data” in Chapter 10, of the IA-32
Intel® Architecture Software Developer’s Manual, Volume 1). Because the WC protocol uses a
weakly-ordered memory consistency model, a fencing operation implemented with the
SFENCE or MFENCE instruction should be used in conjunction with MASKMOVEDQU
instructions if multiple processors might use different memory types to read/write the destina-
tion memory locations.

This instruction causes a transition from x87 FPU to MMX technology state (that is, the x87
FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]).

The behavior of the MASKMOVQ instruction with a mask of all 0s is as follows:

• No data will be written to memory.

• Transition from x87 FPU to MMX technology state will occur.

• Exceptions associated with addressing memory and page faults may still be signaled
(implementation dependent).

• Signaling of breakpoints (code or data) is not guaranteed (implementation dependent).

• If the destination memory region is mapped as UC or WP, enforcement of associated
semantics for these memory types is not guaranteed (that is, is reserved) and is implemen-
tation-specific.

The MASKMOVQ instruction can be used to improve performance for algorithms that need to
merge data on a byte-by-byte basis. It should not cause a read for ownership; doing so generates

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F F7 /r MASKMOVQ mm1,
mm2

Valid Valid Selectively write bytes from mm1 to
memory location using the byte mask in
mm2. The default memory location is
specified by DS:EDI.
3-552 Vol. 2A MASKMOVQ—Store Selected Bytes of Quadword

INSTRUCTION SET REFERENCE, A-M
unnecessary bandwidth since data is to be written directly using the byte-mask without allo-
cating old data prior to the store.

In 64-bit mode, the memory address is specified by DS:RDI.

Operation
IF (MASK[7] = 1)

THEN DEST[DI/EDI] ← SRC[7:0] ELSE (* Memory location unchanged *); FI;
IF (MASK[15] = 1)

THEN DEST[DI/EDI +1] ← SRC[15:8] ELSE (* Memory location unchanged *); FI;
(* Repeat operation for 3rd through 6th bytes in source operand *)

IF (MASK[63] = 1)
THEN DEST[DI/EDI +15] ← SRC[63:56] ELSE (* Memory location unchanged *); FI;

Intel C/C++ Compiler Intrinsic Equivalent
void_mm_maskmove_si64(__m64d, __m64n, char * p)

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments (even if mask is all 0s).

If the destination operand is in a nonwritable segment.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) For an illegal address in the SS segment (even if mask is all 0s).

#PF(fault-code) For a page fault (implementation specific).

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending FPU exception.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If Mod field of the ModR/M byte not 11B

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH. (even if mask is all 0s).

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending FPU exception.
Vol. 2A 3-553MASKMOVQ—Store Selected Bytes of Quadword

INSTRUCTION SET REFERENCE, A-M
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault (implementation specific).

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#PF(fault-code) For a page fault (implementation specific).

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending FPU exception.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If Mod field of the ModR/M byte not 11B

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-554 Vol. 2A MASKMOVQ—Store Selected Bytes of Quadword

INSTRUCTION SET REFERENCE, A-M
MAXPD—Return Maximum Packed Double-Precision Floating-
Point Values

Description
Performs an SIMD compare of the packed double-precision floating-point values in the destina-
tion operand (first operand) and the source operand (second operand), and returns the maximum
value for each pair of values to the destination operand. The source operand can be an XMM
register or a 128-bit memory location. The destination operand is an XMM register.

If the values being compared are both 0.0s (of either sign), the value in the second operand
(source operand) is returned. If a value in the second operand is an SNaN, that SNaN is
forwarded unchanged to the destination (that is, a QNaN version of the SNaN is not returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source
operand), either a NaN or a valid floating-point value, is written to the result. If instead of this
behavior, it is required that the NaN source operand (from either the first or second operand) be
returned, the action of MAXPD can be emulated using a sequence of instructions, such as, a
comparison followed by AND, ANDN and OR.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[63:0] ← IF ((DEST[63:0] = 0.0) and (SRC[63:0] = 0.0))

THEN SRC[63:0];
ELSE IF (DEST[63:0] = SNaN) THEN SRC[63:0]; FI;

 ELSE IF SRC[63:0] = SNaN) THEN SRC[63:0]; FI;
 ELSE IF (DEST[63:0] > SRC[63:0])

THEN DEST[63:0];
ELSE SRC[63:0]; FI; FI;

DEST[127:64] ← IF ((DEST[127:64] = 0.0) and (SRC[127:64] = 0.0))
THEN SRC[127:64];
ELSE IF (DEST[127:64] = SNaN) THEN SRC[127:64]; FI;

 ELSE IF SRC[127:64] = SNaN) THEN SRC[127:64]; FI;
 ELSE IF (DEST[127:64] > SRC[63:0])

THEN DEST[127:64];
ELSE SRC[127:64]; FI; FI;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 5F /r MAXPD xmm1,
xmm2/m128

Valid Valid Return the maximum double-precision
floating-point values between
xmm2/m128 and xmm1.
Vol. 2A 3-555MAXPD—Return Maximum Packed Double-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
Intel C/C++ Compiler Intrinsic Equivalent
MAXPD __m128d _mm_max_pd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
3-556 Vol. 2A MAXPD—Return Maximum Packed Double-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
Vol. 2A 3-557MAXPD—Return Maximum Packed Double-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
MAXPS—Return Maximum Packed Single-Precision Floating-Point
Values

Description
Performs an SIMD compare of the packed single-precision floating-point values in the destina-
tion operand (first operand) and the source operand (second operand), and returns the maximum
value for each pair of values to the destination operand. The source operand can be an XMM
register or a 128-bit memory location. The destination operand is an XMM register.

If the values being compared are both 0.0s (of either sign), the value in the second operand
(source operand) is returned. If a value in the second operand is an SNaN, that SNaN is returned
unchanged to the destination (that is, a QNaN version of the SNaN is not returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source
operand), either a NaN or a valid floating-point value, is written to the result. If instead of this
behavior, it is required that the NaN source operand (from either the first or second operand) be
returned, the action of MAXPS can be emulated using a sequence of instructions, such as, a
comparison followed by AND, ANDN and OR.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[31:0] ← IF ((DEST[31:0] = 0.0) and (SRC[31:0] = 0.0))

THEN SRC[31:0];
ELSE IF (DEST[31:0] = SNaN) THEN SRC[31:0]; FI;

 ELSE IF SRC[31:0] = SNaN) THEN SRC[31:0]; FI;
 ELSE IF (DEST[31:0] > SRC[31:0]); FI;

THEN DEST[31:0];
ELSE SRC[31:0]; FI; FI;

(* Repeat operation for 2nd and 3rd doublewords *);
DEST[127:64] ← IF ((DEST[127:96] = 0.0) and (SRC[127:96] = 0.0))

THEN SRC[127:96];
ELSE IF (DEST[127:96] = SNaN) THEN SRC[127:96];

 ELSE IF SRC[127:96] = SNaN) THEN SRC[127:96];
 ELSE IF (DEST[127:96] > SRC[127:96])

THEN DEST[127:96];
ELSE SRC[127:96]; FI; FI;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 5F /r MAXPS xmm1,
xmm2/m128

Valid Valid Return the maximum single-precision
floating-point values between xmm2/m128
and xmm1.
3-558 Vol. 2A MAXPS—Return Maximum Packed Single-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
Intel C/C++ Compiler Intrinsic Equivalent
MAXPS __m128d _mm_max_ps(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
Vol. 2A 3-559MAXPS—Return Maximum Packed Single-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
3-560 Vol. 2A MAXPS—Return Maximum Packed Single-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
MAXSD—Return Maximum Scalar Double-Precision Floating-Point
Value

Description
Compares the low double-precision floating-point values in the destination operand (first
operand) and the source operand (second operand), and returns the maximum value to the low
quadword of the destination operand. The source operand can be an XMM register or a 64-bit
memory location. The destination operand is an XMM register. When the source operand is a
memory operand, only 64 bits are accessed. The high quadword of the destination operand
remains unchanged.

If the values being compared are both 0.0s (of either sign), the value in the second operand
(source operand) is returned. If a value in the second operand is an SNaN, that SNaN is returned
unchanged to the destination (that is, a QNaN version of the SNaN is not returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source
operand), either a NaN or a valid floating-point value, is written to the result. If instead of this
behavior, it is required that the NaN source operand (from either the first or second operand) be
returned, the action of MAXSD can be emulated using a sequence of instructions, such as, a
comparison followed by AND, ANDN and OR.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[63:0] ← IF ((DEST[63:0] = 0.0) and (SRC[63:0] = 0.0))

THEN SRC[63:0]; FI;
IF (DEST[63:0] = SNaN)

THEN SRC[63:0];
 ELSE IF SRC[63:0] = SNaN)

THEN SRC[63:0]; FI;
 ELSE IF (DEST[63:0] > SRC[63:0])

THEN DEST[63:0];
ELSE SRC[63:0]; FI; FI;

(* DEST[127:64] is unchanged *);

Intel C/C++ Compiler Intrinsic Equivalent
MAXSD __m128d _mm_max_sd(__m128d a, __m128d b)

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F2 0F 5F /r MAXSD xmm1,
xmm2/m64

Valid Valid Return the maximum scalar double-
precision floating-point value
between xmm2/mem64 and xmm1.
Vol. 2A 3-561MAXSD—Return Maximum Scalar Double-Precision Floating-Point
Value

INSTRUCTION SET REFERENCE, A-M
SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
3-562 Vol. 2A MAXSD—Return Maximum Scalar Double-Precision Floating-Point
Value

INSTRUCTION SET REFERENCE, A-M
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-563MAXSD—Return Maximum Scalar Double-Precision Floating-Point
Value

INSTRUCTION SET REFERENCE, A-M
MAXSS—Return Maximum Scalar Single-Precision Floating-Point
Value

Description
Compares the low single-precision floating-point values in the destination operand (first
operand) and the source operand (second operand), and returns the maximum value to the low
doubleword of the destination operand. The source operand can be an XMM register or a 32-bit
memory location. The destination operand is an XMM register. When the source operand is a
memory operand, only 32 bits are accessed. The three high-order doublewords of the destination
operand remain unchanged.

If the values being compared are both 0.0s (of either sign), the value in the second operand
(source operand) is returned. If a value in the second operand is an SNaN, that SNaN is returned
unchanged to the destination (that is, a QNaN version of the SNaN is not returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source
operand), either a NaN or a valid floating-point value, is written to the result. If instead of this
behavior, it is required that the NaN source operand (from either the first or second operand) be
returned, the action of MAXSS can be emulated using a sequence of instructions, such as, a
comparison followed by AND, ANDN and OR.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[63:0] ← IF ((DEST[31:0] = 0.0) and (SRC[31:0] = 0.0))

THEN SRC[31:0];
ELSE IF (DEST[31:0] = SNaN) THEN SRC[31:0]; FI;

 ELSE IF SRC[31:0] = SNaN) THEN SRC[31:0]; FI;
 ELSE IF (DEST[31:0] > SRC[31:0])

THEN DEST[31:0]
ELSE SRC[31:0]; FI; FI;

(* DEST[127:32] is unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
__m128d _mm_max_ss(__m128d a, __m128d b)

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F3 0F 5F /r MAXSS xmm1,
xmm2/m32

Valid Valid Return the maximum scalar single-
precision floating-point value
between xmm2/mem32 and xmm1.
3-564 Vol. 2A MAXSS—Return Maximum Scalar Single-Precision Floating-Point
Value

INSTRUCTION SET REFERENCE, A-M
SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
Vol. 2A 3-565MAXSS—Return Maximum Scalar Single-Precision Floating-Point
Value

INSTRUCTION SET REFERENCE, A-M
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-566 Vol. 2A MAXSS—Return Maximum Scalar Single-Precision Floating-Point
Value

INSTRUCTION SET REFERENCE, A-M
MFENCE—Memory Fence

Description
Performs a serializing operation on all load-from-memory and store-to-memory instructions that
were issued prior the MFENCE instruction. This serializing operation guarantees that every load
and store instruction that precedes in program order the MFENCE instruction is globally visible
before any load or store instruction that follows the MFENCE instruction is globally visible. The
MFENCE instruction is ordered with respect to all load and store instructions, other MFENCE
instructions, any SFENCE and LFENCE instructions, and any serializing instructions (such as
the CPUID instruction).

Weakly ordered memory types can be used to achieve higher processor performance through
such techniques as out-of-order issue, speculative reads, write-combining, and write-collapsing.
The degree to which a consumer of data recognizes or knows that the data is weakly ordered
varies among applications and may be unknown to the producer of this data. The MFENCE
instruction provides a performance-efficient way of ensuring load and store ordering between
routines that produce weakly-ordered results and routines that consume that data.

It should be noted that processors are free to speculatively fetch and cache data from system
memory regions that are assigned a memory-type that permits speculative reads (that is, the WB,
WC, and WT memory types). The PREFETCHh instruction is considered a hint to this specula-
tive behavior. Because this speculative fetching can occur at any time and is not tied to instruc-
tion execution, the MFENCE instruction is not ordered with respect to PREFETCHh
instructions or any other speculative fetching mechanism (that is, data could be speculatively
loaded into the cache just before, during, or after the execution of an MFENCE instruction).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
Wait_On_Following_Loads_And_Stores_Until(preceding_loads_and_stores_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent
void_mm_mfence(void)

Exceptions (All Modes of Operation)
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F AE /6 MFENCE Valid Valid Serializes load and store operations.
Vol. 2A 3-567MFENCE—Memory Fence

INSTRUCTION SET REFERENCE, A-M
MINPD—Return Minimum Packed Double-Precision Floating-Point
Values

Description
Performs an SIMD compare of the packed double-precision floating-point values in the destina-
tion operand (first operand) and the source operand (second operand), and returns the minimum
value for each pair of values to the destination operand. The source operand can be an XMM
register or a 128-bit memory location. The destination operand is an XMM register.

If the values being compared are both 0.0s (of either sign), the value in the second operand
(source operand) is returned. If a value in the second operand is an SNaN, that SNaN is returned
unchanged to the destination (that is, a QNaN version of the SNaN is not returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source
operand), either a NaN or a valid floating-point value, is written to the result. If instead of this
behavior, it is required that the NaN source operand (from either the first or second operand) be
returned, the action of MINPD can be emulated using a sequence of instructions, such as, a
comparison followed by AND, ANDN and OR.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[63:0] ← IF ((DEST[63:0] = 0.0) and (SRC[63:0] = 0.0))

THEN SRC[63:0]; FI;
ELSE IF (DEST[63:0] = SNaN) THEN SRC[63:0]; FI;

 ELSE IF SRC[63:0] = SNaN) THEN SRC[63:0]; FI;
 ELSE IF (DEST[63:0] < SRC[63:0])

THEN DEST[63:0]
ELSE SRC[63:0]; FI; FI;

DEST[127:64] ← IF ((DEST[127:64] = 0.0) and (SRC[127:64] = 0.0))
THEN SRC[127:64]; FI;
ELSE IF (DEST[127:64] = SNaN) THEN SRC[127:64]; FI;

 ELSE IF SRC[127:64] = SNaN) THEN SRC[127:64]; FI;
 ELSE IF (DEST[127:64] < SRC[63:0])

THEN DEST[127:64]
ELSE SRC[127:64]; FI; FI;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 5D /r MINPD xmm1,
xmm2/m128

Valid Valid Return the minimum double-
precision floating-point values
between xmm2/m128 and xmm1.
3-568 Vol. 2A MINPD—Return Minimum Packed Double-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
Intel C/C++ Compiler Intrinsic Equivalent
MINPD __m128d _mm_min_pd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
Vol. 2A 3-569MINPD—Return Minimum Packed Double-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
3-570 Vol. 2A MINPD—Return Minimum Packed Double-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
MINPS—Return Minimum Packed Single-Precision Floating-Point
Values

Description
Performs an SIMD compare of the packed single-precision floating-point values in the destina-
tion operand (first operand) and the source operand (second operand), and returns the minimum
value for each pair of values to the destination operand. The source operand can be an XMM
register or a 128-bit memory location. The destination operand is an XMM register.

If the values being compared are both 0.0s (of either sign), the value in the second operand
(source operand) is returned. If a value in the second operand is an SNaN, that SNaN is returned
unchanged to the destination (that is, a QNaN version of the SNaN is not returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source
operand), either a NaN or a valid floating-point value, is written to the result. If instead of this
behavior, it is required that the NaN source operand (from either the first or second operand) be
returned, the action of MINPS can be emulated using a sequence of instructions, such as, a
comparison followed by AND, ANDN and OR.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[63:0] ← IF ((DEST[31:0] = 0.0) and (SRC[31:0] = 0.0))

THEN SRC[31:0];
ELSE IF (DEST[31:0] = SNaN) THEN SRC[31:0]; FI;

 ELSE IF SRC[31:0] = SNaN) THEN SRC[31:0]; FI;
 ELSE IF (DEST[31:0] > SRC[31:0])

THEN DEST[31:0]
ELSE SRC[31:0]; FI; FI;

(* Repeat operation for 2nd and 3rd doublewords *);
DEST[127:64] ← IF ((DEST127:96] = 0.0) and (SRC[127:96] = 0.0))

THEN SRC[127:96];
ELSE IF (DEST[127:96] = SNaN) THEN SRC[127:96]; FI;

 ELSE IF SRC[127:96] = SNaN) THEN SRC[127:96]; FI;
 ELSE IF (DEST[127:96] < SRC[127:96])

THEN DEST[127:96]
ELSE SRC[127:96]; FI; FI;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 5D /r MINPS xmm1,
xmm2/m128

Valid Valid Return the minimum single-precision
floating-point values between
xmm2/m128 and xmm1.
Vol. 2A 3-571MINPS—Return Minimum Packed Single-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
Intel C/C++ Compiler Intrinsic Equivalent
MINPS __m128d _mm_min_ps(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
3-572 Vol. 2A MINPS—Return Minimum Packed Single-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
Vol. 2A 3-573MINPS—Return Minimum Packed Single-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
MINSD—Return Minimum Scalar Double-Precision Floating-Point
Value

Description
Compares the low double-precision floating-point values in the destination operand (first
operand) and the source operand (second operand), and returns the minimum value to the low
quadword of the destination operand. The source operand can be an XMM register or a 64-bit
memory location. The destination operand is an XMM register. When the source operand is a
memory operand, only the 64 bits are accessed. The high quadword of the destination operand
remains unchanged.

If the values being compared are both 0.0s (of either sign), the value in the second operand
(source operand) is returned. If a value in the second operand is an SNaN, that SNaN is returned
unchanged to the destination (that is, a QNaN version of the SNaN is not returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source
operand), either a NaN or a valid floating-point value, is written to the result. If instead of this
behavior, it is required that the NaN source operand (from either the first or second operand) be
returned, the action of MINSD can be emulated using a sequence of instructions, such as, a
comparison followed by AND, ANDN and OR.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[63:0] ← IF ((DEST[63:0] = 0.0) and (SRC[63:0] = 0.0))

THEN SRC[63:0];
ELSE IF (DEST[63:0] = SNaN) THEN SRC[63:0]; FI;

 ELSE IF SRC[63:0] = SNaN) THEN SRC[63:0]; FI;
 ELSE IF (DEST[63:0] < SRC[63:0])

THEN DEST[63:0];
ELSE SRC[63:0]; FI; FI;

(* DEST[127:64] is unchanged *);

Intel C/C++ Compiler Intrinsic Equivalent
MINSD __m128d _mm_min_sd(__m128d a, __m128d b)

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F2 0F 5D /r MINSD xmm1,
xmm2/m64

Valid Valid Return the minimum scalar double-
precision floating-point value between
xmm2/mem64 and xmm1.
3-574 Vol. 2A MINSD—Return Minimum Scalar Double-Precision Floating-Point
Value

INSTRUCTION SET REFERENCE, A-M
SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
Vol. 2A 3-575MINSD—Return Minimum Scalar Double-Precision Floating-Point
Value

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-576 Vol. 2A MINSD—Return Minimum Scalar Double-Precision Floating-Point
Value

INSTRUCTION SET REFERENCE, A-M
MINSS—Return Minimum Scalar Single-Precision Floating-Point
Value

Description
Compares the low single-precision floating-point values in the destination operand (first
operand) and the source operand (second operand), and returns the minimum value to the low
doubleword of the destination operand. The source operand can be an XMM register or a 32-bit
memory location. The destination operand is an XMM register. When the source operand is a
memory operand, only 32 bits are accessed. The three high-order doublewords of the destination
operand remain unchanged.

If the values being compared are both 0.0s (of either sign), the value in the second operand
(source operand) is returned. If a value in the second operand is an SNaN, that SNaN is returned
unchanged to the destination (that is, a QNaN version of the SNaN is not returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source
operand), either a NaN or a valid floating-point value, is written to the result. If instead of this
behavior, it is required that the NaN source operand (from either the first or second operand) be
returned, the action of MINSD can be emulated using a sequence of instructions, such as, a
comparison followed by AND, ANDN and OR.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[63:0] ← IF ((DEST[31:0] = 0.0) AND (SRC[31:0] = 0.0))

THEN SRC[31:0];
ELSE IF (DEST[31:0] = SNaN) THEN SRC[31:0]; FI;

 ELSE IF SRC[31:0] = SNaN) THEN SRC[31:0]; FI;
 ELSE IF (DEST[31:0] < SRC[31:0])

THEN DEST[31:0]
ELSE SRC[31:0]; FI; FI;

(* DEST[127:32] is unchanged *);

Intel C/C++ Compiler Intrinsic Equivalent
MINSS __m128d _mm_min_ss(__m128d a, __m128d b)

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F3 0F 5D /r MINSS xmm1,
xmm2/m32

Valid Valid Return the minimum scalar single-
precision floating-point value
between xmm2/mem32 and xmm1.
Vol. 2A 3-577MINSS—Return Minimum Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
3-578 Vol. 2A MINSS—Return Minimum Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-579MINSS—Return Minimum Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
MONITOR—Set Up Monitor Address

Description
The MONITOR instruction arms address monitoring hardware using an address specified in
EAX (the address range that the monitoring hardware checks for store operations can be deter-
mined by using CPUID). A store to an address within the specified address range triggers the
monitoring hardware. The state of monitor hardware is used by MWAIT.

The content of EAX is an effective address. By default, the DS segment is used to create a linear
address that is monitored. Segment overrides can be used.

ECX and EDX are also used. They communicate other information to MONITOR. ECX speci-
fies optional extensions. EDX specifies optional hints; it does not change the architectural
behavior of the instruction. For the Pentium 4 processor (family 15, model 3), no extensions or
hints are defined. Undefined hints in EDX are ignored by the processor; undefined extensions
in ECX raises a general protection fault.

The address range must use memory of the write-back type. Only write-back memory will
correctly trigger the monitoring hardware. Additional information on determining what address
range to use in order to prevent false wake-ups is described in Chapter 7 of the IA-32 Intel Archi-
tecture Software Developer’s Manual, Volume 3.

The MONITOR instruction is ordered as a load operation with respect to other memory trans-
actions. The instruction can be used at all privilege levels and is subject to the permission
checking and faults associated with a byte load. Like a load, MONITOR sets the A-bit but not
the D-bit in page tables.

The MONITOR CPUID feature flag (ECX bit 3; CPUID executed EAX = 1) indicates the avail-
ability of MONITOR and MWAIT in the processor. When set, the unconditional execution of
MONITOR is supported at privilege levels 0; conditional execution is supported at privilege
levels 1 through 3 (test for the appropriate support before unconditional use). The operating
system or system BIOS may disable this instruction by using the IA32_MISC_ENABLES
MSR; disabling MONITOR clears the CPUID feature flag and causes execution to generate an
illegal opcode exception.

The instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

OF 01 C8 MONITOR Valid Valid Sets up a linear address range to be
monitored by hardware and activates the
monitor. The address range should be a
write-back memory caching type. The
default address is DS:EAX.
3-580 Vol. 2A MONITOR—Set Up Monitor Address

INSTRUCTION SET REFERENCE, A-M
Operation
MONITOR sets up an address range for the monitor hardware using the content of EAX as an
effective address and puts the monitor hardware in armed state. Always use memory of the
write-back caching type. A store to the specified address range will trigger the monitor hard-
ware. The content of ECX and EDX are used to communicate other information to the monitor
hardware.

Intel C/C++ Compiler Intrinsic Equivalent

MONITOR void _mm_monitor(void const *p, unsigned extensions,unsigned hints)

Exceptions
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

#GP(0) For ECX has a value other than 0.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault (TBD).

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If executed at privilege level 1 through 3 when the instruction is not avail-
able.

If LOCK, REP, REPNE/NZ and Operand Size override prefixes are used.

Real Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from

0 to FFFFH.

#GP(0) For ECX has a value other than 0.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If LOCK, REP, REPNE/NZ and Operand Size override prefixes are used.

Virtual 8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from

0 to FFFFH.

#GP(0) For ECX has a value other than 0.
Vol. 2A 3-581MONITOR—Set Up Monitor Address

INSTRUCTION SET REFERENCE, A-M
#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If executed at privilege level 1 through 3 when the instruction is not
available.

If LOCK, REP, REPNE/NZ and Operand Size override prefixes are used.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.

If ECX ≠ 0.

#PF(fault-code) For a page fault.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If the F3H, F2H, 66H or LOCK prefix is used.
3-582 Vol. 2A MONITOR—Set Up Monitor Address

INSTRUCTION SET REFERENCE, A-M
MOV—Move

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

88 /r MOV r/m8,r8 Valid Valid Move r8 to r/m8.
REX + 88 /r MOV r/m8***,r8*** Valid N.E. Move r8 to r/m8.
89 /r MOV r/m16,r16 Valid Valid Move r16 to r/m16.
89 /r MOV r/m32,r32 Valid Valid Move r32 to r/m32.
REX.W + 89 /r MOV r/m64,r64 Valid N.E. Move r64 to r/m64.
8A /r MOV r8,r/m8 Valid Valid Move r/m8 to r8.
REX + 8A /r MOV r8***,r/m8*** Valid N.E. Move r/m8 to r8.
8B /r MOV r16,r/m16 Valid Valid Move r/m16 to r16.
8B /r MOV r32,r/m32 Valid Valid Move r/m32 to r32.
REX.W + 8B /r MOV r64,r/m64 Valid N.E. Move r/m64 to r64.
8C /r MOV r/m16,Sreg** Valid Valid Move segment register to

r/m16.
REX.W + 8C /r MOV r/m64,Sreg** Valid Valid Move zero extended 16-bit

segment register to r/m64.
8E /r MOV Sreg,r/m16** Valid Valid Move r/m16 to segment

register.
REX.W + 8E /r MOV Sreg,r/m64** Valid Valid Move lower 16 bits of

r/m64 to segment register.
A0 MOV AL,moffs8* Valid Valid Move byte at (seg:offset) to

AL.
REX.W + A0 MOV AL,moffs8* Valid N.E. Move byte at (offset) to AL.
A1 MOV AX,moffs16* Valid Valid Move word at (seg:offset)

to AX.
A1 MOV EAX,moffs32* Valid Valid Move doubleword at

(seg:offset) to EAX.
REX.W + A1 MOV RAX,moffs64* Valid N.E. Move quadword at (offset)

to RAX.
A2 MOV moffs8,AL Valid Valid Move AL to (seg:offset).
REX.W + A2 MOV moffs8***,AL Valid N.E. Move AL to (offset).
A3 MOV moffs16*,AX Valid Valid Move AX to (seg:offset).
A3 MOV moffs32*,EAX Valid Valid Move EAX to (seg:offset).
REX.W + A3 MOV moffs64*,RAX Valid N.E. Move RAX to (offset).
B0+ rb MOV r8, imm8 Valid Valid Move imm8 to r8.
REX + B0+ rb MOV r8***, imm8 Valid N.E. Move imm8 to r8.
B8+ rw MOV r16, imm16 Valid Valid Move imm16 to r16.
B8+ rd MOV r32, imm32 Valid Valid Move imm32 to r32.
REX.W + B8+ rd MOV r64, imm64 Valid N.E. Move imm64 to r64.
C6 /0 MOV r/m8, imm8 Valid Valid Move imm8 to r/m8.
REX + C6 /0 MOV r/m8***, imm8 Valid N.E. Move imm8 to r/m8.
C7 /0 MOV r/m16, imm16 Valid Valid Move imm16 to r/m16.
Vol. 2A 3-583MOV—Move

INSTRUCTION SET REFERENCE, A-M
Description
Copies the second operand (source operand) to the first operand (destination operand). The
source operand can be an immediate value, general-purpose register, segment register, or
memory location; the destination register can be a general-purpose register, segment register, or
memory location. Both operands must be the same size, which can be a byte, a word, or a
doubleword.

The MOV instruction cannot be used to load the CS register. Attempting to do so results in an
invalid opcode exception (#UD). To load the CS register, use the far JMP, CALL, or RET
instruction.

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source operand must
be a valid segment selector. In protected mode, moving a segment selector into a segment
register automatically causes the segment descriptor information associated with that segment
selector to be loaded into the hidden (shadow) part of the segment register. While loading this
information, the segment selector and segment descriptor information is validated (see the
“Operation” algorithm below). The segment descriptor data is obtained from the GDT or LDT
entry for the specified segment selector.

A NULL segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and GS regis-
ters without causing a protection exception. However, any subsequent attempt to reference a
segment whose corresponding segment register is loaded with a NULL value causes a general
protection exception (#GP) and no memory reference occurs.

Loading the SS register with a MOV instruction inhibits all interrupts until after the execution of
the next instruction. This operation allows a stack pointer to be loaded into the ESP register with
the next instruction (MOV ESP, stack-pointer value) before an interrupt occurs1. Be aware that
the LSS instruction offers a more efficient method of loading the SS and ESP registers.

When operating in 32-bit mode and moving data between a segment register and a general-
purpose register, the 32-bit IA-32 processors do not require the use of the 16-bit operand-size
prefix (a byte with the value 66H) with this instruction, but most assemblers will insert it if the
standard form of the instruction is used (for example, MOV DS, AX). The processor will

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

C7 /0 MOV r/m32, imm32 Valid Valid Move imm32 to r/m32.
REX.W + C7 /0 MOV r/m64, imm32 Valid N.E. Move imm32 sign

extended to 64-bits to
r/m64.

NOTES:
* The moffs8, moffs16, moffs32 and moffs64 operands specify a simple offset relative to the segment

base, where 8, 16, 32 and 64 refer to the size of the data. The address-size attribute of the instruction
determines the size of the offset, either 16, 32 or 64 bits.

** In 32-bit mode, the assembler may insert the 16-bit operand-size prefix with this instruction (see the
following “Description” section for further information).

***In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is
used: AH, BH, CH, DH.
3-584 Vol. 2A MOV—Move

INSTRUCTION SET REFERENCE, A-M
execute this instruction correctly, but it will usually require an extra clock. With most assem-
blers, using the instruction form MOV DS, EAX will avoid this unneeded 66H prefix. When the
processor executes the instruction with a 32-bit general-purpose register, it assumes that the 16
least-significant bits of the general-purpose register are the destination or source operand. If the
register is a destination operand, the resulting value in the two high-order bytes of the register
is implementation dependent. For the Pentium 4, Intel Xeon, and P6 family processors, the two
high-order bytes are filled with zeros; for earlier 32-bit IA-32 processors, the two high order
bytes are undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix
permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation
to 64 bits. See the summary chart at the beginning of this section for encoding data and limits.

Operation
DEST ← SRC;

Loading a segment register while in protected mode results in special checks and actions, as
described in the following listing. These checks are performed on the segment selector and the
segment descriptor to which it points.

IF SS is loaded
THEN

IF segment selector is NULL
THEN #GP(0); FI;

IF segment selector index is outside descriptor table limits
or segment selector's RPL ≠ CPL
or segment is not a writable data segment
or DPL ≠ CPL

THEN #GP(selector); FI;
IF segment not marked present

THEN #SS(selector);
ELSE

SS ← segment selector;
SS ← segment descriptor; FI;

FI;
IF DS, ES, FS, or GS is loaded with non-NULL selector
THEN

IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after a MOV
SS instruction, the breakpoint may not be triggered. However, in a sequence of instructions that load the
SS register, only the first instruction in the sequence is guaranteed to delay an interrupt.
In the following sequence, interrupts may be recognized before MOV ESP, EBP executes:
MOV SS, EDX
MOV SS, EAX
MOV ESP, EBP
Vol. 2A 3-585MOV—Move

INSTRUCTION SET REFERENCE, A-M
or ((segment is a data or nonconforming code segment)
and (both RPL and CPL > DPL))

THEN #GP(selector); FI;
IF segment not marked present

THEN #NP(selector);
ELSE

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor; FI;

FI;
IF DS, ES, FS, or GS is loaded with NULL selector

THEN
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If attempt is made to load SS register with NULL segment selector.

If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector's RPL and the
segment descriptor’s DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a
non-writable data segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is not a data or readable code segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is a data or nonconforming code segment, but both the RPL and the CPL
are greater than the DPL.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not
present.

#NP If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is marked not present.
3-586 Vol. 2A MOV—Move

INSTRUCTION SET REFERENCE, A-M
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

#UD If attempt is made to load the CS register.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#UD If attempt is made to load the CS register.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

#UD If attempt is made to load the CS register.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If an attempt is made to load SS register with NULL segment selector
when CPL = 3.

If an attempt is made to load SS register with NULL segment selector
when CPL < 3 and CPL ≠ RPL.

#GP(selector) If segment selector index is outside descriptor table limits.

If the memory access to the descriptor table is non-canonical.

If the SS register is being loaded and the segment selector's RPL and the
segment descriptor’s DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a nonwrit-
able data segment.
Vol. 2A 3-587MOV—Move

INSTRUCTION SET REFERENCE, A-M
If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is not a data or readable code segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is a data or nonconforming code segment, but both the RPL and the CPL
are greater than the DPL.

#SS(0) If the stack address is in a non-canonical form.

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not
present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

#UD If attempt is made to load the CS register.
3-588 Vol. 2A MOV—Move

INSTRUCTION SET REFERENCE, A-M
MOV—Move to/from Control Registers

Description
Moves the contents of a control register (CR0, CR2, CR3, or CR4) to a general-purpose register
or the contents of a general purpose register to a control register. The operand size for these
instructions is always 32 bits in non-64-bit modes, regardless of the operand-size attribute. (See
“Control Registers” in Chapter 2 of the IA-32 Intel® Architecture Software Developer’s Manual,
Volume 3A, for a detailed description of the flags and fields in the control registers.) This instruc-
tion can be executed only when the current privilege level is 0.

When loading control registers, programs should not attempt to change the reserved bits; that is,
always set reserved bits to the value previously read. An attempt to change CR4's reserved bits
will cause a general protection fault. Reserved bits in CR0 and CR3 remain clear after any load
of those registers; attempts to set them have no impact. On Pentium 4, Intel Xeon and P6 family
processors, CR0.ET remains set after any load of CR0; attempts to clear this bit have no impact.

At the opcode level, the reg field within the ModR/M byte specifies which of the control regis-
ters is loaded or read. The 2 bits in the mod field are always 11B. The r/m field specifies the
general-purpose register loaded or read.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 22 /r MOV CR0,r32 N.E. Valid Move r32 to CR0.
REX + 0F 22 /r MOV CR0,r64 Valid N.E. Move r64 to extended CR0.
0F 22 /r MOV CR2,r32 N.E. Valid Move r32 to CR2.
REX + 0F 22 /r MOV CR2,r64 Valid N.E. Move r64 to extended CR2.
0F 22 /r MOV CR3,r32 N.E. Valid Move r32 to CR3.
REX + 0F 22 /r MOV CR3,r64 Valid N.E. Move r64 to extended CR3.
0F 22 /r MOV CR4,r32 N.E. Valid Move r32 to CR4.
REX + 0F 22 /r MOV CR4,r64 Valid N.E. Move r64 to extended CR4.
0F 20 /r MOV r32,CR0 N.E. Valid Move CR0 to r32.
REX + 0F 20 /r MOV r64,CR0 Valid N.E. Move extended CR0 to r64.
0F 20 /r MOV r32,CR2 N.E. Valid Move CR2 to r32.
REX + 0F 20 /r MOV r64,CR2 Valid N.E. Move extended CR2 to r64.
0F 20 /r MOV r32,CR3 N.E. Valid Move CR3 to r32.
REX + 0F 20 /r MOV r64,CR3 Valid N.E. Move extended CR3 to r64.
0F 20 /r MOV r32,CR4 N.E. Valid Move CR4 to r32.
REX + 0F 20 /r MOV r64,CR4 Valid N.E. Move extended CR4 to r64.
0F 20 /r MOV r32,CR8 N.E. N.E. Move CR8 to r32.
REX + 0F 20 /r MOV r64,CR8 Valid N.E. Move extended CR8 to r64.
Vol. 2A 3-589MOV—Move to/from Control Registers

INSTRUCTION SET REFERENCE, A-M
These instructions have the following side effect:

• When writing to control register CR3, all non-global TLB entries are flushed (see “Trans-
lation Lookaside Buffers (TLBs)” in Chapter 3 of the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 3A).

The following side effects are implementation specific for the Pentium 4, Intel Xeon, and P6
processor family. Software should not depend on this functionality in all IA-32 processors:

• When modifying any of the paging flags in the control registers (PE and PG in register
CR0 and PGE, PSE, and PAE in register CR4), all TLB entries are flushed, including
global entries.

• If the PG flag is set to 1 and control register CR4 is written to set the PAE flag to 1 (to
enable the physical address extension mode), the pointers in the page-directory pointers
table (PDPT) are loaded into the processor (into internal, non-architectural registers).

• If the PAE flag is set to 1 and the PG flag set to 1, writing to control register CR3 will
cause the PDPTRs to be reloaded into the processor. If the PAE flag is set to 1 and control
register CR0 is written to set the PG flag, the PDPTRs are reloaded into the processor.

In 64-bit mode, the instruction’s default operation size is 64 bits. Use of the REX.R prefix
permits access to additional registers (R8-R15). Use of the REX.W or 66H prefix is ignored. See
the summary chart at the beginning of this section for encoding data and limits.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of the IA-32
Intel® Architecture Software Developer’s Manual, Volume 3B, for more information about the
behavior of this instruction in VMX non-root operation.

Operation
DEST ← SRC;

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are undefined.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0 (such as
setting the PG flag to 1 when the PE flag is set to 0, or setting the CD flag
to 0 when the NW flag is set to 1).

If an attempt is made to write a 1 to any reserved bit in CR4.

If any of the reserved bits are set in the page-directory pointers table
(PDPT) and the loading of a control register causes the PDPT to be loaded
into the processor.
3-590 Vol. 2A MOV—Move to/from Control Registers

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#GP If an attempt is made to write a 1 to any reserved bit in CR4.

If an attempt is made to write invalid bit combinations in CR0 (such as
setting the PG flag to 1 when the PE flag is set to 0).

Virtual-8086 Mode Exceptions
#GP(0) These instructions cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions

#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0 (such as
setting the PG flag to 1 when the PE flag is set to 0, or setting the CD flag
to 0 when the NW flag is set to 1).

If an attempt is made to write a 1 to any reserved bit in CR3.

If an attempt is made to leave IA-32e mode by clearing CR4.PAE[bit 5].

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0 (such as
setting the PG flag to 1 when the PE flag is set to 0, or setting the CD flag
to 0 when the NW flag is set to 1).

Attempting to clear CR0.PG[bit 32].

If an attempt is made to write a 1 to any reserved bit in CR4.

If an attempt is made to write a 1 to any reserved bit in CR8.

If an attempt is made to write a 1 to any reserved bit in CR3.

If an attempt is made to leave IA-32e mode by clearing CR4.PAE[bit 5].
Vol. 2A 3-591MOV—Move to/from Control Registers

INSTRUCTION SET REFERENCE, A-M
MOV—Move to/from Debug Registers

Description
Moves the contents of a debug register (DR0, DR1, DR2, DR3, DR4, DR5, DR6, or DR7) to a
general-purpose register or vice versa. The operand size for these instructions is always 32 bits,
regardless of the operand-size attribute. (See Chapter 18, “Debugging and Performance Moni-
toring”, of the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3A, for a detailed
description of the flags and fields in the debug registers.)

The instructions must be executed at privilege level 0 or in real-address mode.

When the debug extension (DE) flag in register CR4 is clear, these instructions operate on debug
registers in a manner that is compatible with Intel386 and Intel486 processors. In this mode,
references to DR4 and DR5 refer to DR6 and DR7, respectively. When the DE flag in CR4 is
set, attempts to reference DR4 and DR5 result in an undefined opcode (#UD) exception. (The
CR4 register was added to the IA-32 Architecture beginning with the Pentium processor.)

At the opcode level, the reg field within the ModR/M byte specifies which of the debug registers
is loaded or read. The two bits in the mod field are always 11. The r/m field specifies the general-
purpose register loaded or read.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix
permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation
to 64 bits. See the summary chart at the beginning of this section for encoding data and limits.

Operation
IF ((DE = 1) and (SRC or DEST = DR4 or DR5))

THEN
#UD;

ELSE
DEST ← SRC;

FI;

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are undefined.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 21/r MOV r32, DR0-DR7 Valid Valid Move debug register to r32
REX.W + 0F 21/r MOV r64, DR0-DR7 Valid N.E. Move extended debug register

to r64.
0F 23 /r MOV DR0-DR7,r32 Valid Valid Move r32 to debug register
REX.W + 0F 23 /r MOV DR0-DR7,r64 Valid N.E. Move r64 to extended debug

register.
3-592 Vol. 2A MOV—Move to/from Debug Registers

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

#UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction is
executed involving DR4 or DR5.

#DB If any debug register is accessed while the DR7.GD[bit 13] = 1.

Real-Address Mode Exceptions
#UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction is

executed involving DR4 or DR5.

#DB If any debug register is accessed while the DR7.GD[bit 13] = 1.

Virtual-8086 Mode Exceptions
#GP(0) The debug registers cannot be loaded or read when in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0.

#UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction is
executed involving DR4 or DR5.

#DB If any debug register is accessed while the DR7.GD[bit 13] = 1.
Vol. 2A 3-593MOV—Move to/from Debug Registers

INSTRUCTION SET REFERENCE, A-M
MOVAPD—Move Aligned Packed Double-Precision Floating-Point
Values

Description
Moves a double quadword containing two packed double-precision floating-point values from
the source operand (second operand) to the destination operand (first operand). This instruction
can be used to load an XMM register from a 128-bit memory location, to store the contents of
an XMM register into a 128-bit memory location, or to move data between two XMM registers.
When the source or destination operand is a memory operand, the operand must be aligned on
a 16-byte boundary or a general-protection exception (#GP) will be generated.

To move double-precision floating-point values to and from unaligned memory locations, use
the MOVUPD instruction.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST ← SRC;
(* #GP if SRC or DEST unaligned memory operand *)

Intel C/C++ Compiler Intrinsic Equivalent
__m128 _mm_load_pd(double * p)
void_mm_store_pd(double *p, __m128 a)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 28 /r MOVAPD xmm1,
xmm2/m128

Valid Valid Move packed double-precision
floating-point values from
xmm2/m128 to xmm1.

66 0F 29 /r MOVAPD
xmm2/m128, xmm1

Valid Valid Move packed double-precision
floating-point values from xmm1 to
xmm2/m128.
3-594 Vol. 2A MOVAPD—Move Aligned Packed Double-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.
Vol. 2A 3-595MOVAPD—Move Aligned Packed Double-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
3-596 Vol. 2A MOVAPD—Move Aligned Packed Double-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
MOVAPS—Move Aligned Packed Single-Precision Floating-Point
Values

Description
Moves a double quadword containing four packed single-precision floating-point values from
the source operand (second operand) to the destination operand (first operand). This instruction
can be used to load an XMM register from a 128-bit memory location, to store the contents of
an XMM register into a 128-bit memory location, or to move data between two XMM registers.
When the source or destination operand is a memory operand, the operand must be aligned on
a 16-byte boundary or a general-protection exception (#GP) is generated.

To move packed single-precision floating-point values to or from unaligned memory locations,
use the MOVUPS instruction.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST ← SRC;
(* #GP if SRC or DEST unaligned memory operand *)

Intel C/C++ Compiler Intrinsic Equivalent
__m128 _mm_load_ps (float * p)
void_mm_store_ps (float *p, __m128 a)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 28 /r MOVAPS xmm1,
xmm2/m128

Valid Valid Move packed single-precision
floating-point values from
xmm2/m128 to xmm1.

0F 29 /r MOVAPS
xmm2/m128, xmm1

Valid Valid Move packed single-precision
floating-point values from xmm1 to
xmm2/m128.
Vol. 2A 3-597MOVAPS—Move Aligned Packed Single-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.
3-598 Vol. 2A MOVAPS—Move Aligned Packed Single-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
Vol. 2A 3-599MOVAPS—Move Aligned Packed Single-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
MOVD/MOVQ—Move Doubleword/Move Quadword

Description
Copies a doubleword from the source operand (second operand) to the destination operand (first
operand). The source and destination operands can be general-purpose registers, MMX tech-
nology registers, XMM registers, or 32-bit memory locations. This instruction can be used to
move a doubleword to and from the low doubleword of an MMX technology register and a
general-purpose register or a 32-bit memory location, or to and from the low doubleword of an
XMM register and a general-purpose register or a 32-bit memory location. The instruction
cannot be used to transfer data between MMX technology registers, between XMM registers,
between general-purpose registers, or between memory locations.

When the destination operand is an MMX technology register, the source operand is written to
the low doubleword of the register, and the register is zero-extended to 64 bits. When the desti-
nation operand is an XMM register, the source operand is written to the low doubleword of the
register, and the register is zero-extended to 128 bits.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix
permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation
to 64 bits. See the summary chart at the beginning of this section for encoding data and limits.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 6E /r MOVD mm,
r/m32

Valid Valid Move doubleword from
r/m32 to mm.

REX.W + 0F 6E /r MOVQ mm,
r/m64

Valid N.E. Move quadword from r/m64
to mm.

0F 7E /r MOVD r/m32,
mm

Valid Valid Move doubleword from mm
to r/m32.

REX.W + 0F 7E /r MOVQ r/m64,
mm

Valid N.E. Move quadword from mm to
r/m64.

66 0F 6E /r MOVD xmm,
r/m32

Valid Valid Move doubleword from
r/m32 to xmm.

REX.W + 66 0F 6E /r MOVQ xmm,
r/m64

Valid N.E. Move quadword from r/m64
to xmm.

66 0F 7E /r MOVD r/m32,
xmm

Valid Valid Move doubleword from xmm
register to r/m32.

REX.W + 66 0F 7E /r MOVQ r/m64,
xmm

Valid N.E. Move quadword from xmm
register to r/m64.
3-600 Vol. 2A MOVD/MOVQ—Move Doubleword/Move Quadword

INSTRUCTION SET REFERENCE, A-M
Operation
MOVD instruction when destination operand is MMX technology register:

DEST[31:0] ← SRC;
DEST[63:32] ← 00000000H;

MOVD instruction when destination operand is XMM register:
DEST[31:0] ← SRC;
DEST[127:32] ← 000000000000000000000000H;

MOVD instruction when source operand is MMX technology or XMM register:
DEST ← SRC[31:0];

MOVQ instruction when destination operand is XMM register:
DEST[63:0] ← SRC[63:0];
DEST[127:64] ← 0000000000000000H;

MOVQ instruction when destination operand is r/m64:
DEST[63:0] ← SRC[63:0];

MOVQ instruction when source operand is XMM register or r/m64:
DEST ← SRC[63:0];

Intel C/C++ Compiler Intrinsic Equivalent
MOVD __m64 _mm_cvtsi32_si64 (int i)
MOVD int _mm_cvtsi64_si32 (__m64m)
MOVD __m128i _mm_cvtsi32_si128 (int a)
MOVD int _mm_cvtsi128_si32 (__m128i a)

Flags Affected
None.

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions
#GP(0) If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.
Vol. 2A 3-601MOVD/MOVQ—Move Doubleword/Move Quadword

INSTRUCTION SET REFERENCE, A-M
#NM If CR0.TS[bit 3] = 1.

#MF (MMX register operations only) If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from

0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (MMX register operations only) If there is a pending FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
3-602 Vol. 2A MOVD/MOVQ—Move Doubleword/Move Quadword

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#UD If CR0.EM[bit 2] = 1.

(XMM register operations only) if CR4.OSFXSR[bit 9] = 0.

(XMM register operations only) if CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (MMX register operations only) If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-603MOVD/MOVQ—Move Doubleword/Move Quadword

INSTRUCTION SET REFERENCE, A-M
MOVDDUP—Move One Double-FP and Duplicate

Description
The linear address corresponds to the address of the least-significant byte of the referenced
memory data. When a memory address is indicated, the 8 bytes of data at memory location m64
are loaded. When the register-register form of this operation is used, the lower half of the 128-bit
source register is duplicated and copied into the 128-bit destination register. See Figure 3-14.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F2 0F 12 /r MOVDDUP xmm1,
xmm2/m64

Valid Valid Move one double-precision floating-
point value from the lower 64-bit
operand in xmm2/m64 to xmm1 and
duplicate.

Figure 3-14. MOVDDUP—Move One Double-FP and Duplicate
3-604 Vol. 2A MOVDDUP—Move One Double-FP and Duplicate

INSTRUCTION SET REFERENCE, A-M
Operation
IF (Source == m64)

THEN
(* Load instruction *)
xmm1[63:0] = m64;
xmm1[127:64] = m64;

ELSE
(* Move instruction *)
xmm1[63:0] = xmm2[63:0];
xmm1[127:64] = xmm2[63:0];

FI;

Intel C/C++ Compiler Intrinsic Equivalent
MOVDDUP __m128d _mm_movedup_pd(__m128d a)

__m128d _mm_loaddup_pd(double const * dp)

Exceptions
None

Numeric Exceptions
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

#NM If CR0.TS[bit 3] = 1.
Vol. 2A 3-605MOVDDUP—Move One Double-FP and Duplicate

INSTRUCTION SET REFERENCE, A-M
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.SSE3(ECX, bit 0) is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-606 Vol. 2A MOVDDUP—Move One Double-FP and Duplicate

INSTRUCTION SET REFERENCE, A-M
MOVDQA—Move Aligned Double Quadword

Description
Moves a double quadword from the source operand (second operand) to the destination operand
(first operand). This instruction can be used to load an XMM register from a 128-bit memory
location, to store the contents of an XMM register into a 128-bit memory location, or to move
data between two XMM registers. When the source or destination operand is a memory operand,
the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will
be generated.

To move a double quadword to or from unaligned memory locations, use the MOVDQU
instruction.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST ← SRC;
(* #GP if SRC or DEST unaligned memory operand *)

Intel C/C++ Compiler Intrinsic Equivalent
MOVDQA __m128i _mm_load_si128 (__m128i *p)
MOVDQA void _mm_store_si128 (__m128i *p, __m128i a)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#PF(fault-code) If a page fault occurs.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 6F /r MOVDQA xmm1,
xmm2/m128

Valid Valid Move aligned double quadword
from xmm2/m128 to xmm1.

66 0F 7F /r MOVDQA xmm2/m128,
xmm1

Valid Valid Move aligned double quadword
from xmm1 to xmm2/m128.
Vol. 2A 3-607MOVDQA—Move Aligned Double Quadword

INSTRUCTION SET REFERENCE, A-M
#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0

Real-Address Mode Exceptions
#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of

segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
3-608 Vol. 2A MOVDQA—Move Aligned Double Quadword

INSTRUCTION SET REFERENCE, A-M
MOVDQU—Move Unaligned Double Quadword

Description
Moves a double quadword from the source operand (second operand) to the destination operand
(first operand). This instruction can be used to load an XMM register from a 128-bit memory
location, to store the contents of an XMM register into a 128-bit memory location, or to move
data between two XMM registers. When the source or destination operand is a memory operand,
the operand may be unaligned on a 16-byte boundary without causing a general-protection
exception (#GP) to be generated.

To move a double quadword to or from memory locations that are known to be aligned on
16-byte boundaries, use the MOVDQA instruction.

While executing in 16-bit addressing mode, a linear address for a 128-bit data access that over-
laps the end of a 16-bit segment is not allowed and is defined as reserved behavior. A specific
processor implementation may or may not generate a general-protection exception (#GP) in this
situation, and the address that spans the end of the segment may or may not wrap around to the
beginning of the segment.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent
MOVDQU void _mm_storeu_si128 (__m128i *p, __m128i a)
MOVDQU __m128i _mm_loadu_si128 (__m128i *p)

SIMD Floating-Point Exceptions
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F3 0F 6F /r MOVDQU xmm1,
xmm2/m128

Valid Valid Move unaligned double
quadword from xmm2/m128 to
xmm1.

F3 0F 7F /r MOVDQU xmm2/m128,
xmm1

Valid Valid Move unaligned double
quadword from xmm1 to
xmm2/m128.
Vol. 2A 3-609MOVDQU—Move Unaligned Double Quadword

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from

0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
3-610 Vol. 2A MOVDQU—Move Unaligned Double Quadword

INSTRUCTION SET REFERENCE, A-M
MOVDQ2Q—Move Quadword from XMM to MMX Technology
Register

Description
Moves the low quadword from the source operand (second operand) to the destination operand
(first operand). The source operand is an XMM register and the destination operand is an MMX
technology register.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the
x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this
instruction is executed while an x87 FPU floating-point exception is pending, the exception is
handled before the MOVDQ2Q instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST ← SRC[63:0];

Intel C/C++ Compiler Intrinsic Equivalent
MOVDQ2Q __m64 _mm_movepi64_pi64 (__m128i a)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

Same exceptions as in Protected Mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F2 0F D6 MOVDQ2Q mm, xmm Valid Valid Move low quadword from
xmm to mmx register.
Vol. 2A 3-611MOVDQ2Q—Move Quadword from XMM to MMX Technology Register

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
3-612 Vol. 2A MOVDQ2Q—Move Quadword from XMM to MMX Technology Register

INSTRUCTION SET REFERENCE, A-M
MOVHLPS— Move Packed Single-Precision Floating-Point Values
High to Low

Description
Moves two packed single-precision floating-point values from the high quadword of the source
operand (second operand) to the low quadword of the destination operand (first operand). The
high quadword of the destination operand is left unchanged.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[63:0] ← SRC[127:64];
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
MOVHLPS __m128 _mm_movehl_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual 8086 Mode Exceptions
Same exceptions as in Protected Mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

OF 12 /r MOVHLPS xmm1, xmm2 Valid Valid Move two packed single-precision
floating-point values from high
quadword of xmm2 to low
quadword of xmm1.
Vol. 2A 3-613MOVHLPS— Move Packed Single-Precision Floating-Point Values
High to Low

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
3-614 Vol. 2A MOVHLPS— Move Packed Single-Precision Floating-Point Values
High to Low

INSTRUCTION SET REFERENCE, A-M
MOVHPD—Move High Packed Double-Precision Floating-Point
Value

Description
Moves a double-precision floating-point value from the source operand (second operand) to the
destination operand (first operand). The source and destination operands can be an XMM
register or a 64-bit memory location. This instruction allows a double-precision floating-point
value to be moved to and from the high quadword of an XMM register and memory. It cannot
be used for register to register or memory to memory moves. When the destination operand is
an XMM register, the low quadword of the register remains unchanged.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
MOVHPD instruction for memory to XMM move:

DEST[127:64] ← SRC;
(* DEST[63:0] unchanged *)

MOVHPD instruction for XMM to memory move:
DEST ← SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalent
MOVHPD __m128d _mm_loadh_pd (__m128d a, double *p)
MOVHPD void _mm_storeh_pd (double *p, __m128d a)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 16 /r MOVHPD xmm,
m64

Valid Valid Move double-precision floating-point
value from m64 to high quadword of xmm.

66 0F 17 /r MOVHPD m64,
xmm

Valid Valid Move double-precision floating-point
value from high quadword of xmm to m64.
Vol. 2A 3-615MOVHPD—Move High Packed Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
3-616 Vol. 2A MOVHPD—Move High Packed Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-617MOVHPD—Move High Packed Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
MOVHPS—Move High Packed Single-Precision Floating-Point
Values

Description
Moves two packed single-precision floating-point values from the source operand (second
operand) to the destination operand (first operand). The source and destination operands can be
an XMM register or a 64-bit memory location. This instruction allows two single-precision
floating-point values to be moved to and from the high quadword of an XMM register and
memory. It cannot be used for register to register or memory to memory moves. When the desti-
nation operand is an XMM register, the low quadword of the register remains unchanged.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
MOVHPD instruction for memory to XMM move:

DEST[127:64] ← SRC;
(* DEST[63:0] unchanged *)

MOVHPD instruction for XMM to memory move:
DEST ← SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalent
MOVHPS __m128d _mm_loadh_pi (__m128d a, __m64 *p)
MOVHPS void _mm_storeh_pi (__m64 *p, __m128d a)

SIMD Floating-Point Exceptions
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 16 /r MOVHPS xmm,
m64

Valid Valid Move two packed single-precision
floating-point values from m64 to
high quadword of xmm.

0F 17 /r MOVHPS m64,
xmm

Valid Valid Move two packed single-precision
floating-point values from high
quadword of xmm to m64.
3-618 Vol. 2A MOVHPS—Move High Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-619MOVHPS—Move High Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-620 Vol. 2A MOVHPS—Move High Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
MOVLHPS—Move Packed Single-Precision Floating-Point Values
Low to High

Description
Moves two packed single-precision floating-point values from the low quadword of the source
operand (second operand) to the high quadword of the destination operand (first operand). The
low quadword of the destination operand is left unchanged.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[127:64] ← SRC[63:0];
(* DEST[63:0] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
MOVHLPS __m128 _mm_movelh_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual 8086 Mode Exceptions
Same exceptions as in Protected Mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

OF 16 /r MOVLHPS xmm1,
xmm2

Valid Valid Move two packed single-precision floating-
point values from low quadword of xmm2 to
high quadword of xmm1.
Vol. 2A 3-621MOVLHPS—Move Packed Single-Precision Floating-Point Values Low
to High

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
3-622 Vol. 2A MOVLHPS—Move Packed Single-Precision Floating-Point Values Low
to High

INSTRUCTION SET REFERENCE, A-M
MOVLPD—Move Low Packed Double-Precision Floating-Point
Value

Description
Moves a double-precision floating-point value from the source operand (second operand) to the
destination operand (first operand). The source and destination operands can be an XMM
register or a 64-bit memory location. This instruction allows a double-precision floating-point
value to be moved to and from the low quadword of an XMM register and memory. It cannot be
used for register to register or memory to memory moves. When the destination operand is an
XMM register, the high quadword of the register remains unchanged.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
MOVLPD instruction for memory to XMM move:

DEST[63:0] ← SRC;
(* DEST[127:64] unchanged *)

MOVLPD instruction for XMM to memory move:
DEST ← SRC[63:0];

Intel C/C++ Compiler Intrinsic Equivalent
MOVLPD __m128d _mm_loadl_pd (__m128d a, double *p)
MOVLPD void _mm_storel_pd (double *p, __m128d a)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 12 /r MOVLPD xmm,
m64

Valid Valid Move double-precision floating-point value
from m64 to low quadword of xmm register.

66 0F 13 /r MOVLPD m64,
xmm

Valid Valid Move double-precision floating-point
nvalue from low quadword of xmm register
to m64.
Vol. 2A 3-623MOVLPD—Move Low Packed Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.
3-624 Vol. 2A MOVLPD—Move Low Packed Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-625MOVLPD—Move Low Packed Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
MOVLPS—Move Low Packed Single-Precision Floating-Point
Values

Description
Moves two packed single-precision floating-point values from the source operand (second
operand) and the destination operand (first operand). The source and destination operands can
be an XMM register or a 64-bit memory location. This instruction allows two single-precision
floating-point values to be moved to and from the low quadword of an XMM register and
memory. It cannot be used for register to register or memory to memory moves. When the desti-
nation operand is an XMM register, the high quadword of the register remains unchanged.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
MOVLPD instruction for memory to XMM move:

DEST[63:0] ← SRC;
(* DEST[127:64] unchanged *)

MOVLPD instruction for XMM to memory move:
DEST ← SRC[63:0];

Intel C/C++ Compiler Intrinsic Equivalent
MOVLPS __m128 _mm_loadl_pi (__m128 a, __m64 *p)
MOVLPS void _mm_storel_pi (__m64 *p, __m128 a)

SIMD Floating-Point Exceptions
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 12 /r MOVLPS xmm,
m64

Valid Valid Move two packed single-precision
floating-point values from m64 to low
quadword of xmm.

0F 13 /r MOVLPS m64,
xmm

Valid Valid Move two packed single-precision
floating-point values from low quadword
of xmm to m64.
3-626 Vol. 2A MOVLPS—Move Low Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-627MOVLPS—Move Low Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-628 Vol. 2A MOVLPS—Move Low Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
MOVMSKPD—Extract Packed Double-Precision Floating-Point
Sign Mask

Description
Extracts the sign bits from the packed double-precision floating-point values in the source
operand (second operand), formats them into a 2-bit mask, and stores the mask in the destination
operand (first operand). The source operand is an XMM register, and the destination operand is
a general-purpose register. The mask is stored in the 2 low-order bits of the destination operand.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when
used with an REX.R prefix. Use of the REX.W prefix promotes the instruction to 64-bit oper-
ands. See the summary chart at the beginning of this section for encoding data and limits.

Operation
DEST[0] ← SRC[63];
DEST[1] ← SRC[127];
IF DEST = r32

THEN DEST[3:2] ← ZeroExtend;
ELSE DEST[63:2] ← ZeroExtend;

FI;

Intel C/C++ Compiler Intrinsic Equivalent
MOVMSKPD int _mm_movemask_pd (__m128 a)

SIMD Floating-Point Exceptions

None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 50 /r MOVMSKPD r32,
xmm

Valid Valid Extract 2-bit sign mask from
xmm and store in r32.

66 + REX.W 0F 50 /r MOVMSKPD r64,
xmm

Valid N.E. Extract 2-bit sign mask from
xmm and store in r64. Zero
extend 32-bit results to
64-bits.
Vol. 2A 3-629MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign
Mask

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions

Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
3-630 Vol. 2A MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign
Mask

INSTRUCTION SET REFERENCE, A-M
MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign
Mask

Description
Extracts the sign bits from the packed single-precision floating-point values in the source
operand (second operand), formats them into a 4-bit mask, and stores the mask in the destination
operand (first operand). The source operand is an XMM register, and the destination operand is
a general-purpose register. The mask is stored in the 4 low-order bits of the destination operand.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when
used with an REX.R prefix. Use of the REX.W prefix promotes the instruction to 64-bit oper-
ands. See the summary chart at the beginning of this section for encoding data and limits.

Operation
DEST[0] ← SRC[31];
DEST[1] ← SRC[63];
DEST[2] ← SRC[95];
DEST[3] ← SRC[127];
IF DEST = r32

THEN DEST[31:4] ← ZeroExtend;
ELSE DEST[63:4] ← ZeroExtend;

FI;

Intel C/C++ Compiler Intrinsic Equivalent
int_mm_movemask_ps(__m128 a)

SIMD Floating-Point Exceptions

None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 50 /r MOVMSKPS r32,
xmm

Valid Valid Extract 4-bit sign mask from xmm
and store in r32.

REX.W + 0F 50 /r MOVMSKPS r64,
xmm

Valid N.E. Extract 4-bit sign mask from xmm
and store in r64. Zero extend
32-bit results to 64-bits.
Vol. 2A 3-631MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign
Mask

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

Same exceptions as in Protected Mode.

Virtual 8086 Mode Exceptions

Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
3-632 Vol. 2A MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign
Mask

INSTRUCTION SET REFERENCE, A-M
MOVNTDQ—Store Double Quadword Using Non-Temporal Hint

Description
Moves the double quadword in the source operand (second operand) to the destination operand
(first operand) using a non-temporal hint to prevent caching of the data during the write to
memory. The source operand is an XMM register, which is assumed to contain integer data
(packed bytes, words, doublewords, or quadwords). The destination operand is a 128-bit
memory location.

The non-temporal hint is implemented by using a write combining (WC) memory type protocol
when writing the data to memory. Using this protocol, the processor does not write the data into
the cache hierarchy, nor does it fetch the corresponding cache line from memory into the cache
hierarchy. The memory type of the region being written to can override the non-temporal hint,
if the memory address specified for the non-temporal store is in an uncacheable (UC) or write
protected (WP) memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a fencing opera-
tion implemented with the SFENCE or MFENCE instruction should be used in conjunction with
MOVNTDQ instructions if multiple processors might use different memory types to read/write
the destination memory locations.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent
MOVNTDQ void_mm_stream_si128 (__m128i *p, __m128i a)

SIMD Floating-Point Exceptions
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F E7 /r MOVNTDQ m128,
xmm

Valid Valid Move double quadword from xmm
to m128 using non-temporal hint.
Vol. 2A 3-633MOVNTDQ—Store Double Quadword Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
3-634 Vol. 2A MOVNTDQ—Store Double Quadword Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
Vol. 2A 3-635MOVNTDQ—Store Double Quadword Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, A-M
MOVNTI—Store Doubleword Using Non-Temporal Hint

Description
Moves the doubleword integer in the source operand (second operand) to the destination
operand (first operand) using a non-temporal hint to minimize cache pollution during the write
to memory. The source operand is a general-purpose register. The destination operand is a 32-bit
memory location.

The non-temporal hint is implemented by using a write combining (WC) memory type protocol
when writing the data to memory. Using this protocol, the processor does not write the data into
the cache hierarchy, nor does it fetch the corresponding cache line from memory into the cache
hierarchy. The memory type of the region being written to can override the non-temporal hint,
if the memory address specified for the non-temporal store is in an uncacheable (UC) or write
protected (WP) memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a fencing opera-
tion implemented with the SFENCE or MFENCE instruction should be used in conjunction with
MOVNTI instructions if multiple processors might use different memory types to read/write the
destination memory locations.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix
permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation
to 64 bits. See the summary chart at the beginning of this section for encoding data and limits.

Operation
DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent
MOVNTDQ void_mm_stream_si32 (int *p, int a)

SIMD Floating-Point Exceptions
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F C3 /r MOVNTI m32, r32 Valid Valid Move doubleword from r32 to
m32 using non-temporal hint.

REX.W + 0F C3 /r MOVNTI m64, r64 Valid N.E. Move quadword from r64 to
m64 using non-temporal hint.
3-636 Vol. 2A MOVNTI—Store Doubleword Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-637MOVNTI—Store Doubleword Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, A-M
MOVNTPD—Store Packed Double-Precision Floating-Point Values
Using Non-Temporal Hint

Description
Moves the double quadword in the source operand (second operand) to the destination operand
(first operand) using a non-temporal hint to minimize cache pollution during the write to
memory. The source operand is an XMM register, which is assumed to contain two packed
double-precision floating-point values. The destination operand is a 128-bit memory location.

The non-temporal hint is implemented by using a write combining (WC) memory type protocol
when writing the data to memory. Using this protocol, the processor does not write the data into
the cache hierarchy, nor does it fetch the corresponding cache line from memory into the cache
hierarchy. The memory type of the region being written to can override the non-temporal hint,
if the memory address specified for the non-temporal store is in an uncacheable (UC) or write
protected (WP) memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a fencing opera-
tion implemented with the SFENCE or MFENCE instruction should be used in conjunction with
MOVNTPD instructions if multiple processors might use different memory types to read/write
the destination memory locations.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent
MOVNTDQ void_mm_stream_pd(double *p, __m128i a)

SIMD Floating-Point Exceptions
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 2B /r MOVNTPD m128,
xmm

Valid Valid Move packed double-precision
floating-point values from xmm to
m128 using non-temporal hint.
3-638 Vol. 2A MOVNTPD—Store Packed Double-Precision Floating-Point Values
Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-639MOVNTPD—Store Packed Double-Precision Floating-Point Values
Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
3-640 Vol. 2A MOVNTPD—Store Packed Double-Precision Floating-Point Values
Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, A-M
MOVNTPS—Store Packed Single-Precision Floating-Point Values
Using Non-Temporal Hint

Description
Moves the double quadword in the source operand (second operand) to the destination operand
(first operand) using a non-temporal hint to minimize cache pollution during the write to
memory. The source operand is an XMM register, which is assumed to contain four packed
single-precision floating-point values. The destination operand is a 128-bit memory location.

The non-temporal hint is implemented by using a write combining (WC) memory type protocol
when writing the data to memory. Using this protocol, the processor does not write the data into
the cache hierarchy, nor does it fetch the corresponding cache line from memory into the cache
hierarchy. The memory type of the region being written to can override the non-temporal hint,
if the memory address specified for the non-temporal store is in an uncacheable (UC) or write
protected (WP) memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a fencing opera-
tion implemented with the SFENCE or MFENCE instruction should be used in conjunction with
MOVNTPS instructions if multiple processors might use different memory types to read/write
the destination memory locations.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent
MOVNTDQ void_mm_stream_ps(float * p, __m128 a)

SIMD Floating-Point Exceptions
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 2B /r MOVNTPS m128,
xmm

Valid Valid Move packed single-precision floating-
point values from xmm to m128 using
non-temporal hint.
Vol. 2A 3-641MOVNTPS—Store Packed Single-Precision Floating-Point Values
Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
3-642 Vol. 2A MOVNTPS—Store Packed Single-Precision Floating-Point Values
Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
Vol. 2A 3-643MOVNTPS—Store Packed Single-Precision Floating-Point Values
Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, A-M
MOVNTQ—Store of Quadword Using Non-Temporal Hint

Description
Moves the quadword in the source operand (second operand) to the destination operand (first
operand) using a non-temporal hint to minimize cache pollution during the write to memory. The
source operand is an MMX technology register, which is assumed to contain packed integer data
(packed bytes, words, or doublewords). The destination operand is a 64-bit memory location.

The non-temporal hint is implemented by using a write combining (WC) memory type protocol
when writing the data to memory. Using this protocol, the processor does not write the data into
the cache hierarchy, nor does it fetch the corresponding cache line from memory into the cache
hierarchy. The memory type of the region being written to can override the non-temporal hint,
if the memory address specified for the non-temporal store is in an uncacheable (UC) or write
protected (WP) memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a fencing opera-
tion implemented with the SFENCE or MFENCE instruction should be used in conjunction with
MOVNTQ instructions if multiple processors might use different memory types to read/write
the destination memory locations.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent
MOVNTQ void_mm_stream_pi(__m64 * p, __m64 a)

SIMD Floating-Point Exceptions
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F E7 /r MOVNTQ m64,
mm

Valid Valid Move quadword from mm to m64 using
non-temporal hint.
3-644 Vol. 2A MOVNTQ—Store of Quadword Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#UD If CR0.EM[bit 2] = 1.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#UD If CR0.EM[bit 2] = 1.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-645MOVNTQ—Store of Quadword Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#UD If CR0.EM[bit 2] = 1.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-646 Vol. 2A MOVNTQ—Store of Quadword Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, A-M
MOVSHDUP—Move Packed Single-FP High and Duplicate

Description
The linear address corresponds to the address of the least-significant byte of the referenced
memory data. When a memory address is indicated, the 16 bytes of data at memory location
m128 are loaded and the single-precision elements in positions 1 and 3 are duplicated. When the
register-register form of this operation is used, the same operation is performed but with data
coming from the 128-bit source register. See Figure 3-15.

In 64-bit mode, use of the REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F3 0F 16 /r MOVSHDUP xmm1,
xmm2/m128

Valid Valid Move two single-precision floating-
point values from the higher 32-bit
operand of each qword in
xmm2/m128 to xmm1 and duplicate
each 32-bit operand to the lower
32-bits of each qword.

Figure 3-15. MOVSHDUP—Move Packed Single-FP High and Duplicate
Vol. 2A 3-647MOVSHDUP—Move Packed Single-FP High and Duplicate

INSTRUCTION SET REFERENCE, A-M
Operation
IF (Source == m128)

THEN (* Load instruction *)
xmm1[31:0] = m128[63:32];
xmm1[63:32] = m128[63:32];
xmm1[95:64] = m128[127:96];
xmm1[127:96] = m128[127:96];

ELSE (* Move instruction *)
xmm1[31:0] = xmm2[63:32];
xmm1[63:32] = xmm2[63:32];
xmm1[95:64] = xmm2[127:96];
xmm1[127:96] = xmm2[127:96];

FI;

Intel C/C++ Compiler Intrinsic Equivalent

MOVSHDUP __m128 _mm_movehdup_ps(__m128 a)

Exceptions
General protection exception if not aligned on 16-byte boundary, regardless of segment.

Numeric Exceptions
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.
3-648 Vol. 2A MOVSHDUP—Move Packed Single-FP High and Duplicate

INSTRUCTION SET REFERENCE, A-M
Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is not non-canonical.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.SSE3(ECX, bit 0) is 0.
Vol. 2A 3-649MOVSHDUP—Move Packed Single-FP High and Duplicate

INSTRUCTION SET REFERENCE, A-M
MOVSLDUP—Move Packed Single-FP Low and Duplicate

Description
The linear address corresponds to the address of the least-significant byte of the referenced
memory data. When a memory address is indicated, the 16 bytes of data at memory location
m128 are loaded and the single-precision elements in positions 0 and 2 are duplicated. When the
register-register form of this operation is used, the same operation is performed but with data
coming from the 128-bit source register.

See Figure 3-16.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F3 0F 12 /r MOVSLDUP xmm1,
xmm2/m128

Valid Valid Move two single-precision floating-point
values from the lower 32-bit operand of
each qword in xmm2/m128 to xmm1 and
duplicate each 32-bit operand to the
higher 32-bits of each qword.

Figure 3-16. MOVSLDUP—Move Packed Single-FP Low and Duplicate
3-650 Vol. 2A MOVSLDUP—Move Packed Single-FP Low and Duplicate

INSTRUCTION SET REFERENCE, A-M
Operation
IF (Source == m128)

THEN (* Load instruction *)
xmm1[31:0] = m128[31:0];
xmm1[63:32] = m128[31:0];
xmm1[95:64] = m128[95:64];
xmm1[127:96] = m128[95::64];

ELSE (* Move instruction *)
xmm1[31:0] = xmm2[31:0];
xmm1[63:32] = xmm2[31:0];
xmm1[95:64] = xmm2[95:64];
xmm1[127:96] = xmm2[95:64];

FI;

Intel C/C++ Compiler Intrinsic Equivalent

MOVSLDUP__m128 _mm_moveldup_ps(__m128 a)

Exceptions
General protection exception if not aligned on 16-byte boundary, regardless of segment.

Numeric Exceptions
None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.
Vol. 2A 3-651MOVSLDUP—Move Packed Single-FP Low and Duplicate

INSTRUCTION SET REFERENCE, A-M
If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If CR0.TS[bit 3] = 1.If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.SSE3(ECX, bit 0) is 0.
3-652 Vol. 2A MOVSLDUP—Move Packed Single-FP Low and Duplicate

INSTRUCTION SET REFERENCE, A-M
MOVQ—Move Quadword

Description
Copies a quadword from the source operand (second operand) to the destination operand (first
operand). The source and destination operands can be MMX technology registers, XMM regis-
ters, or 64-bit memory locations. This instruction can be used to move a quadword between two
MMX technology registers or between an MMX technology register and a 64-bit memory loca-
tion, or to move data between two XMM registers or between an XMM register and a 64-bit
memory location. The instruction cannot be used to transfer data between memory locations.

When the source operand is an XMM register, the low quadword is moved; when the destination
operand is an XMM register, the quadword is stored to the low quadword of the register, and the
high quadword is cleared to all 0s.

In 64-bit mode, use of the REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
MOVQ instruction when operating on MMX technology registers and memory locations:

DEST ← SRC;
MOVQ instruction when source and destination operands are XMM registers:

DEST[63:0] ← SRC[63:0];
MOVQ instruction when source operand is XMM register and destination
operand is memory location:

DEST ← SRC[63:0];
MOVQ instruction when source operand is memory location and destination
operand is XMM register:

DEST[63:0] ← SRC;
DEST[127:64] ← 0000000000000000H;

Flags Affected
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 6F /r MOVQ mm, mm/m64 Valid Valid Move quadword from mm/m64
to mm.

0F 7F /r MOVQ mm/m64, mm Valid Valid Move quadword from mm to
mm/m64.

F3 0F 7E MOVQ xmm1, xmm2/m64 Valid Valid Move quadword from
xmm2/mem64 to xmm1.

66 0F D6 MOVQ xmm2/m64, xmm1 Valid Valid Move quadword from xmm1 to
xmm2/mem64.
Vol. 2A 3-653MOVQ—Move Quadword

INSTRUCTION SET REFERENCE, A-M
SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions
#GP(0) If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (MMX register operations only) If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from

0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (MMX register operations only) If there is a pending FPU exception.
3-654 Vol. 2A MOVQ—Move Quadword

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#UD If CR0.EM[bit 2] = 1.

(XMM register operations only) If CR4.OSFXSR[bit 9] = 0.

(XMM register operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (MMX register operations only) If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-655MOVQ—Move Quadword

INSTRUCTION SET REFERENCE, A-M
MOVQ2DQ—Move Quadword from MMX Technology to XMM
Register

Description
Moves the quadword from the source operand (second operand) to the low quadword of the
destination operand (first operand). The source operand is an MMX technology register and the
destination operand is an XMM register.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the
x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this
instruction is executed while an x87 FPU floating-point exception is pending, the exception is
handled before the MOVQ2DQ instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[63:0] ← SRC[63:0];
DEST[127:64] ← 00000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent
MOVQ2DQ __128i _mm_movpi64_pi64 (__m64 a)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#MF If there is a pending x87 FPU exception.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F3 0F D6 MOVQ2DQ xmm, mm Valid Valid Move quadword from mmx to low
quadword of xmm.
3-656 Vol. 2A MOVQ2DQ—Move Quadword from MMX Technology to XMM Register

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions

Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions

Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-657MOVQ2DQ—Move Quadword from MMX Technology to XMM Register

INSTRUCTION SET REFERENCE, A-M
MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from
String to String
\

Description
Moves the byte, word, or doubleword specified with the second operand (source operand) to the
location specified with the first operand (destination operand). Both the source and destination
operands are located in memory. The address of the source operand is read from the DS:ESI or
the DS:SI registers (depending on the address-size attribute of the instruction, 32 or 16, respec-
tively). The address of the destination operand is read from the ES:EDI or the ES:DI registers
(again depending on the address-size attribute of the instruction). The DS segment may be over-
ridden with a segment override prefix, but the ES segment cannot be overridden.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the MOVS
mnemonic) allows the source and destination operands to be specified explicitly. Here, the source
and destination operands should be symbols that indicate the size and location of the source value
and the destination, respectively. This explicit-operands form is provided to allow documenta-
tion; however, note that the documentation provided by this form can be misleading. That is, the

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

A4 MOVS m8, m8 Valid Valid For legacy mode, Move byte from address
DS:(E)SI to ES:(E)DI. For 64-bit mode
move byte from address (R|E)SI to
(R|E)DI.

A5 MOVS m16, m16 Valid Valid For legacy mode, move word from
address DS:(E)SI to ES:(E)DI. For 64-bit
mode move word at address (R|E)SI to
(R|E)DI.

A5 MOVS m32, m32 Valid Valid For legacy mode, move dword from
address DS:(E)SI to ES:(E)DI. For 64-bit
mode move dword from address (R|E)SI
to (R|E)DI.

REX.W + A5 MOVS m64, m64 Valid N.E. Move qword from address (R|E)SI to
(R|E)DI.

A4 MOVSB Valid Valid For legacy mode, Move byte from address
DS:(E)SI to ES:(E)DI. For 64-bit mode
move byte from address (R|E)SI to
(R|E)DI.

A5 MOVSW Valid Valid For legacy mode, move word from
address DS:(E)SI to ES:(E)DI. For 64-bit
mode move word at address (R|E)SI to
(R|E)DI.

A5 MOVSD Valid Valid For legacy mode, move dword from
address DS:(E)SI to ES:(E)DI. For 64-bit
mode move dword from address (R|E)SI
to (R|E)DI.

REX.W + A5 MOVSQ Valid N.E. Move qword from address (R|E)SI to
(R|E)DI.
3-658 Vol. 2A MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from
String to String

INSTRUCTION SET REFERENCE, A-M
source and destination operand symbols must specify the correct type (size) of the operands
(bytes, words, or doublewords), but they do not have to specify the correct location. The loca-
tions of the source and destination operands are always specified by the DS:(E)SI and ES:(E)DI
registers, which must be loaded correctly before the move string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
MOVS instructions. Here also DS:(E)SI and ES:(E)DI are assumed to be the source and desti-
nation operands, respectively. The size of the source and destination operands is selected with
the mnemonic: MOVSB (byte move), MOVSW (word move), or MOVSD (doubleword move).

After the move operation, the (E)SI and (E)DI registers are incremented or decremented auto-
matically according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the
(E)SI and (E)DI register are incremented; if the DF flag is 1, the (E)SI and (E)DI registers are
decremented.) The registers are incremented or decremented by 1 for byte operations, by 2 for
word operations, or by 4 for doubleword operations.

The MOVS, MOVSB, MOVSW, and MOVSD instructions can be preceded by the REP prefix
(see “REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix” in Chapter 4, IA-32
Intel® Architecture Software Developer’s Manual, Volume 2B) for block moves of ECX bytes,
words, or doublewords.

In 64-bit mode, the instruction’s default address size is 64 bits, 32-bit address size is supported
using the prefix 67H. The 64-bit addresses are specified by RSI and RDI; 32-bit address are
specified by ESI and EDI. Use of the REX.W prefix promotes doubleword operation to 64 bits.
See the summary chart at the beginning of this section for encoding data and limits.

Operation
DEST ← SRC;
Non-64-bit Mode:
IF (Byte move)

THEN IF DF = 0
THEN

(E)SI ← (E)SI + 1;
(E)DI ← (E)DI + 1;

ELSE
(E)SI ← (E)SI – 1;
(E)DI ← (E)DI – 1;

FI;
ELSE IF (Word move)

THEN IF DF = 0
(E)SI ← (E)SI + 2;
(E)DI ← (E)DI + 2;
FI;

ELSE
(E)SI ← (E)SI – 2;
(E)DI ← (E)DI – 2;

FI;
ELSE IF (Doubleword move)
Vol. 2A 3-659MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from
String to String

INSTRUCTION SET REFERENCE, A-M
THEN IF DF = 0
(E)SI ← (E)SI + 4;
(E)DI ← (E)DI + 4;
FI;

ELSE
(E)SI ← (E)SI – 4;
(E)DI ← (E)DI – 4;

FI;
FI;
64-bit Mode:
IF (Byte move)

THEN IF DF = 0
THEN

(R|E)SI ← (R|E)SI + 1;
(R|E)DI ← (R|E)DI + 1;

ELSE
(R|E)SI ← (R|E)SI – 1;
(R|E)DI ← (R|E)DI – 1;

FI;
ELSE IF (Word move)

THEN IF DF = 0
(R|E)SI ← (R|E)SI + 2;
(R|E)DI ← (R|E)DI + 2;
FI;

ELSE
(R|E)SI ← (R|E)SI – 2;
(R|E)DI ← (R|E)DI – 2;

FI;
ELSE IF (Doubleword move)

THEN IF DF = 0
(R|E)SI ← (R|E)SI + 4;
(R|E)DI ← (R|E)DI + 4;
FI;

ELSE
(R|E)SI ← (R|E)SI – 4;
(R|E)DI ← (R|E)DI – 4;

FI;
ELSE IF (Quadword move)

THEN IF DF = 0
(R|E)SI ← (R|E)SI + 8;
(R|E)DI ← (R|E)DI + 8;
FI;

ELSE
(R|E)SI ← (R|E)SI – 8;
(R|E)DI ← (R|E)DI – 8;

FI;
FI;
3-660 Vol. 2A MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from
String to String

INSTRUCTION SET REFERENCE, A-M
Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-661MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from
String to String

INSTRUCTION SET REFERENCE, A-M
MOVSD—Move Scalar Double-Precision Floating-Point Value

Description
Moves a scalar double-precision floating-point value from the source operand (second operand)
to the destination operand (first operand). The source and destination operands can be XMM
registers or 64-bit memory locations. This instruction can be used to move a double-precision
floating-point value to and from the low quadword of an XMM register and a 64-bit memory
location, or to move a double-precision floating-point value between the low quadwords of two
XMM registers. The instruction cannot be used to transfer data between memory locations.

When the source and destination operands are XMM registers, the high quadword of the desti-
nation operand remains unchanged. When the source operand is a memory location and desti-
nation operand is an XMM registers, the high quadword of the destination operand is cleared to
all 0s.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
MOVSD instruction when source and destination operands are XMM registers:

DEST[63:0] ← SRC[63:0];
(* DEST[127:64] unchanged *)

MOVSD instruction when source operand is XMM register and destination operand is
memory location:

DEST ← SRC[63:0];
MOVSD instruction when source operand is memory location and destination operand is
XMM register:

DEST[63:0] ← SRC;
DEST[127:64] ← 0000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent
MOVSD __m128d _mm_load_sd (double *p)
MOVSD void _mm_store_sd (double *p, __m128d a)
MOVSD __m128d _mm_store_sd (__m128d a, __m128d b)

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F2 0F 10 /r MOVSD xmm1,
xmm2/m64

Valid Valid Move scalar double-precision
floating-point value from xmm2/m64
to xmm1 register.

F2 0F 11 /r MOVSD xmm2/m64,
xmm1

Valid Valid Move scalar double-precision
floating-point value from xmm1
register to xmm2/m64.
3-662 Vol. 2A MOVSD—Move Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-663MOVSD—Move Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-664 Vol. 2A MOVSD—Move Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M
MOVSS—Move Scalar Single-Precision Floating-Point Values

Description
Moves a scalar single-precision floating-point value from the source operand (second operand)
to the destination operand (first operand). The source and destination operands can be XMM
registers or 32-bit memory locations. This instruction can be used to move a single-precision
floating-point value to and from the low doubleword of an XMM register and a 32-bit memory
location, or to move a single-precision floating-point value between the low doublewords of two
XMM registers. The instruction cannot be used to transfer data between memory locations.

When the source and destination operands are XMM registers, the three high-order doublewords
of the destination operand remain unchanged. When the source operand is a memory location
and destination operand is an XMM registers, the three high-order doublewords of the destina-
tion operand are cleared to all 0s.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
MOVSS instruction when source and destination operands are XMM registers:

DEST[31:0] ← SRC[31:0];
(* DEST[127:32] remains unchanged *)

MOVSS instruction when source operand is XMM register and destination operand is
memory location:

DEST ← SRC[31:0];
MOVSS instruction when source operand is memory location and destination operand is
XMM register:

DEST[31:0] ← SRC;
DEST[127:32] ← 000000000000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent
MOVSS __m128 _mm_load_ss(float * p)
MOVSS void_mm_store_ss(float * p, __m128 a)
MOVSS __m128 _mm_move_ss(__m128 a, __m128 b)

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F3 0F 10 /r MOVSS xmm1,
xmm2/m32

Valid Valid Move scalar single-precision
floating-point value from xmm2/m32
to xmm1 register.

F3 0F 11 /r MOVSS xmm2/m32,
xmm

Valid Valid Move scalar single-precision
floating-point value from xmm1
register to xmm2/m32.
Vol. 2A 3-665MOVSS—Move Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
3-666 Vol. 2A MOVSS—Move Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-667MOVSS—Move Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
MOVSX/MOVSXD—Move with Sign-Extension

Description
Copies the contents of the source operand (register or memory location) to the destination
operand (register) and sign extends the value to 16 or 32 bits (see Figure 7-6 in the IA-32 Intel®

Architecture Software Developer’s Manual, Volume 1). The size of the converted value depends
on the operand-size attribute.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix
permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation
to 64 bits. See the summary chart at the beginning of this section for encoding data and limits.

Operation
DEST ← SignExtend(SRC);

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F BE /r MOVSX r16, r/m8 Valid Valid Move byte to word with sign-
extension.

0F BE /r MOVSX r32, r/m8 Valid Valid Move byte to doubleword with
sign-extension.

REX + 0F BE /r MOVSX r64, r/m8* Valid N.E. Move byte to quadword with
sign-extension.

0F BF /r MOVSX r32, r/m16 Valid Valid Move word to doubleword,
with sign-extension.

REX.W + 0F BF /r MOVSX r64, r/m16 Valid N.E. Move word to quadword with
sign-extension.

REX.W** + 63 /r MOVSXD r64, r/m32 Valid N.E. Move doubleword to
quadword with sign-extension.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.
** The use of MOVSXD without REX.W in 64-bit mode is discouraged, Regular MOV should be used

instead of using MOVSXD without REX.W.
3-668 Vol. 2A MOVSX/MOVSXD—Move with Sign-Extension

INSTRUCTION SET REFERENCE, A-M
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-669MOVSX/MOVSXD—Move with Sign-Extension

INSTRUCTION SET REFERENCE, A-M
MOVUPD—Move Unaligned Packed Double-Precision Floating-
Point Values

Description
Moves a double quadword containing two packed double-precision floating-point values from
the source operand (second operand) to the destination operand (first operand). This instruction
can be used to load an XMM register from a 128-bit memory location, store the contents of an
XMM register into a 128-bit memory location, or move data between two XMM registers. When
the source or destination operand is a memory operand, the operand may be unaligned on a
16-byte boundary without causing a general-protection exception (#GP) to be generated.

To move double-precision floating-point values to and from memory locations that are known
to be aligned on 16-byte boundaries, use the MOVAPD instruction.

While executing in 16-bit addressing mode, a linear address for a 128-bit data access that over-
laps the end of a 16-bit segment is not allowed and is defined as reserved behavior. A specific
processor implementation may or may not generate a general-protection exception (#GP) in this
situation, and the address that spans the end of the segment may or may not wrap around to the
beginning of the segment.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent
MOVUPD __m128 _mm_loadu_pd(double * p)
MOVUPD void_mm_storeu_pd(double *p, __m128 a)

SIMD Floating-Point Exceptions
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 10 /r MOVUPD xmm1,
xmm2/m128

Valid Valid Move packed double-precision
floating-point values from
xmm2/m128 to xmm1.

66 0F 11 /r MOVUPD
xmm2/m128, xmm

Valid Valid Move packed double-precision
floating-point values from xmm1
to xmm2/m128.
3-670 Vol. 2A MOVUPD—Move Unaligned Packed Double-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made.

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made.

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-671MOVUPD—Move Unaligned Packed Double-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
3-672 Vol. 2A MOVUPD—Move Unaligned Packed Double-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
MOVUPS—Move Unaligned Packed Single-Precision Floating-
Point Values

Description
Moves a double quadword containing four packed single-precision floating-point values from
the source operand (second operand) to the destination operand (first operand). This instruction
can be used to load an XMM register from a 128-bit memory location, store the contents of an
XMM register into a 128-bit memory location, or move data between two XMM registers. When
the source or destination operand is a memory operand, the operand may be unaligned on a
16-byte boundary without causing a general-protection exception (#GP) to be generated.

To move packed single-precision floating-point values to and from memory locations that are
known to be aligned on 16-byte boundaries, use the MOVAPS instruction.

While executing in 16-bit addressing mode, a linear address for a 128-bit data access that over-
laps the end of a 16-bit segment is not allowed and is defined as reserved behavior. A specific
processor implementation may or may not generate a general-protection exception (#GP) in this
situation, and the address that spans the end of the segment may or may not wrap around to the
beginning of the segment.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent
MOVUPS __m128 _mm_loadu_ps(double * p)
MOVUPS void_mm_storeu_ps(double *p, __m128 a)

SIMD Floating-Point Exceptions
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 10 /r MOVUPS xmm1,
xmm2/m128

Valid Valid Move packed single-precision floating-
point values from xmm2/m128 to
xmm1.

0F 11 /r MOVUPS xmm2/m128,
xmm1

Valid Valid Move packed single-precision floating-
point values from xmm1 to
xmm2/m128.
Vol. 2A 3-673MOVUPS—Move Unaligned Packed Single-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made.

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made.

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
3-674 Vol. 2A MOVUPS—Move Unaligned Packed Single-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made.

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
Vol. 2A 3-675MOVUPS—Move Unaligned Packed Single-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, A-M
MOVZX—Move with Zero-Extend

Description
Copies the contents of the source operand (register or memory location) to the destination
operand (register) and zero extends the value to 16 or 32 bits. The size of the converted value
depends on the operand-size attribute.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix
permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation
to 64 bit operands. See the summary chart at the beginning of this section for encoding data and
limits.

Operation
DEST ← ZeroExtend(SRC);

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F B6 /r MOVZX r16, r/m8 Valid Valid Move byte to word with zero-
extension.

0F B6 /r MOVZX r32, r/m8 Valid Valid Move byte to doubleword, zero-
extension.

REX.W + 0F B6 /r MOVZX r64, r/m8* Valid N.E. Move byte to quadword, zero-
extension.

0F B7 /r MOVZX r32, r/m16 Valid Valid Move word to doubleword,
zero-extension.

REX.W + 0F B7 /r MOVZX r64, r/m32 Valid N.E. Move doubleword to quadword,
zero-extension.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.
3-676 Vol. 2A MOVZX—Move with Zero-Extend

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-677MOVZX—Move with Zero-Extend

INSTRUCTION SET REFERENCE, A-M
MUL—Unsigned Multiply

Description
Performs an unsigned multiplication of the first operand (destination operand) and the second
operand (source operand) and stores the result in the destination operand. The destination
operand is an implied operand located in register AL, AX or EAX (depending on the size of the
operand); the source operand is located in a general-purpose register or a memory location. The
action of this instruction and the location of the result depends on the opcode and the operand
size as shown in Table 3-61.

The result is stored in register AX, register pair DX:AX, or register pair EDX:EAX (depending
on the operand size), with the high-order bits of the product contained in register AH, DX, or
EDX, respectively. If the high-order bits of the product are 0, the CF and OF flags are cleared;
otherwise, the flags are set.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix
permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation
to 64 bits.

See the summary chart at the beginning of this section for encoding data and limits.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F6 /4 MUL r/m8 Valid Valid Unsigned multiply (AX ← AL ∗ r/m8).
REX + F6 /4 MUL r/m8* Valid N.E. Unsigned multiply (AX ← AL ∗ r/m8).
F7 /4 MUL r/m16 Valid Valid Unsigned multiply (DX:AX ← AX ∗

r/m16).
F7 /4 MUL r/m32 Valid Valid Unsigned multiply (EDX:EAX ← EAX ∗

r/m32).
REX.W + F7 /4 MUL r/m64 Valid N.E. Unsigned multiply (RDX:RAX ← RAX ∗

r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.

Table 3-61. MUL Results
Operand Size Source 1 Source 2 Destination

Byte AL r/m8 AX

Word AX r/m16 DX:AX

Doubleword EAX r/m32 EDX:EAX

Quadword RAX r/m64 RDX:RAX
3-678 Vol. 2A MUL—Unsigned Multiply

INSTRUCTION SET REFERENCE, A-M
Operation
IF (Byte operation)

THEN
AX ← AL ∗ SRC;

ELSE (* Word or doubleword operation *)
IF OperandSize = 16

THEN
DX:AX ← AX ∗ SRC;

ELSE IF OperandSize = 32
THEN EDX:EAX ← EAX ∗ SRC; FI;

ELSE (* OperandSize = 64 *)
RDX:RAX ← RAX ∗ SRC;

FI;
FI;

Flags Affected
The OF and CF flags are set to 0 if the upper half of the result is 0; otherwise, they are set to 1.
The SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-679MUL—Unsigned Multiply

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-680 Vol. 2A MUL—Unsigned Multiply

INSTRUCTION SET REFERENCE, A-M
MULPD—Multiply Packed Double-Precision Floating-Point Values

Description
Performs an SIMD multiply of the two packed double-precision floating-point values from the
source operand (second operand) and the destination operand (first operand), and stores the
packed double-precision floating-point results in the destination operand. The source operand can
be an XMM register or a 128-bit memory location. The destination operand is an XMM register.
See Figure 11-3 in the IA-32 Intel® Architecture Software Developer’s Manual, Volume 1, for an
illustration of an SIMD double-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[63:0] ← DEST[63:0] ∗ SRC[63:0];
DEST[127:64] ← DEST[127:64] ∗ SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalent
MULPD __m128d _mm_mul_pd (m128d a, m128d b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 59 /r MULPD xmm1,
xmm2/m128

Valid Valid Multiply packed double-precision
floating-point values in xmm2/m128 by
xmm1.
Vol. 2A 3-681MULPD—Multiply Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.
3-682 Vol. 2A MULPD—Multiply Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
Vol. 2A 3-683MULPD—Multiply Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
MULPS—Multiply Packed Single-Precision Floating-Point Values

Description
Performs an SIMD multiply of the four packed single-precision floating-point values from the
source operand (second operand) and the destination operand (first operand), and stores the
packed single-precision floating-point results in the destination operand. The source operand can
be an XMM register or a 128-bit memory location. The destination operand is an XMM register.
See Figure 10-5 in the IA-32 Intel® Architecture Software Developer’s Manual, Volume 1, for an
illustration of an SIMD single-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[31:0] ← DEST[31:0] ∗ SRC[31:0];
DEST[63:32] ← DEST[63:32] ∗ SRC[63:32];
DEST[95:64] ← DEST[95:64] ∗ SRC[95:64];
DEST[127:96] ← DEST[127:96] ∗ SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalent
MULPS __m128 _mm_mul_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 59 /r MULPS xmm1,
xmm2/m128

Valid Valid Multiply packed single-precision floating-
point values in xmm2/mem by xmm1.
3-684 Vol. 2A MULPS—Multiply Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-685MULPS—Multiply Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
3-686 Vol. 2A MULPS—Multiply Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
MULSD—Multiply Scalar Double-Precision Floating-Point Values

Description
Multiplies the low double-precision floating-point value in the source operand (second operand)
by the low double-precision floating-point value in the destination operand (first operand), and
stores the double-precision floating-point result in the destination operand. The source operand
can be an XMM register or a 64-bit memory location. The destination operand is an XMM
register. The high quadword of the destination operand remains unchanged. See Figure 11-4 in
the IA-32 Intel® Architecture Software Developer’s Manual, Volume 1, for an illustration of a
scalar double-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[63:0] ← DEST[63:0] * xmm2/m64[63:0];
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
MULSD __m128d _mm_mul_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F2 0F 59 /r MULSD xmm1,
xmm2/m64

Valid Valid Multiply the low double-precision
floating-point value in xmm2/mem64
by low double-precision floating-point
value in xmm1.
Vol. 2A 3-687MULSD—Multiply Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
3-688 Vol. 2A MULSD—Multiply Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-689MULSD—Multiply Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
MULSS—Multiply Scalar Single-Precision Floating-Point Values

Description
Multiplies the low single-precision floating-point value from the source operand (second
operand) by the low single-precision floating-point value in the destination operand (first
operand), and stores the single-precision floating-point result in the destination operand. The
source operand can be an XMM register or a 32-bit memory location. The destination operand
is an XMM register. The three high-order doublewords of the destination operand remain
unchanged. See Figure 10-6 in the IA-32 Intel® Architecture Software Developer’s Manual,
Volume 1, for an illustration of a scalar single-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers
(XMM8-XMM15).

Operation
DEST[31:0] ← DEST[31:0] ∗ SRC[31:0];
(* DEST[127:32] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
MULSS __m128 _mm_mul_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F3 0F 59 /r MULSS xmm1,
xmm2/m32

Valid Valid Multiply the low single-precision floating-
point value in xmm2/mem by the low single-
precision floating-point value in xmm1.
3-690 Vol. 2A MULSS—Multiply Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.
Vol. 2A 3-691MULSS—Multiply Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-692 Vol. 2A MULSS—Multiply Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M
MWAIT—Monitor Wait

Description
The MWAIT instruction operates with the MONITOR instruction. The two instructions allow
the definition of an address at which to wait (MONITOR) and a implementation-dependent-
optimized operation to commence at the wait address (MWAIT). The execution of MWAIT is a
hint to the processor that it can enter an implementation-dependent-optimized state while
waiting for an event or a store operation to the address range armed by MONITOR.

ECX specifies optional extensions for the MWAIT instruction. EAX may contain hints such as
the preferred optimized state the processor should enter. For Pentium 4 processors (CPUID
signature family 15 and model 3), non-zero values for EAX and ECX are reserved.

A store to the address range armed by the MONITOR instruction, an interrupt, an NMI or SMI,
a debug exception, a machine check exception, the BINIT# signal, the INIT# signal, or the
RESET# signal will exit the implementation-dependent-optimized state. Note that an interrupt
will cause the processor to exit only if the state was entered with interrupts enabled.

If a store to the address range causes the processor to exit, execution will resume at the instruc-
tion following the MWAIT instruction. If an interrupt (including NMI) caused the processor to
exit the implementation-dependent-optimized state, the processor will exit the state and handle
the interrupt. If an SMI caused the processor to exit the implementation-dependent-optimized
state, execution will resume at the instruction following MWAIT after handling of the SMI.
Unlike the HLT instruction, the MWAIT instruction does not support a restart at the MWAIT
instruction. There may also be other implementation-dependent events or time-outs that may
take the processor out of the implementation-dependent-optimized state and resume execution
at the instruction following the MWAIT.

If the preceding MONITOR instruction did not successfully arm an address range or if the
MONITOR instruction has not been executed prior to executing MWAIT, then the processor will
not enter the implementation-dependent-optimized state. Execution will resume at the instruc-
tion following the MWAIT.

A CPUID feature flag (ECX bit 3; CPUID executed EAX = 1) indicates the availability of
MONITOR and MWAIT in the processor. When set, the unconditional execution of MWAIT is
supported at privilege levels 0; conditional execution is supported at privilege levels 1 through
3 (test for the appropriate support before unconditional use). The operating system or system
BIOS may disable this instruction by using the IA32_MISC_ENABLES MSR; disabling
MWAIT clears the CPUID feature flag and causes execution to generate an illegal opcode
exception.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

OF 01 C9 MWAIT Valid Valid A hint that allow the processor to stop
instruction execution and enter an
implementation-dependent optimized state
until occurrence of a class of events.
Vol. 2A 3-693MWAIT—Monitor Wait

INSTRUCTION SET REFERENCE, A-M
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
(* MWAIT takes the argument in EAX as a hint extension and is architected to take the
argument in ECX as an instruction extension MWAIT EAX, ECX *)
{
WHILE (! ("Monitor Hardware is in armed state")) {

implementation_dependent_optimized_state(EAX, ECX); }
Set the state of Monitor Hardware as triggered;
}

Intel C/C++ Compiler Intrinsic Equivalent
MWAIT void _mm_mwait(unsigned extensions, unsigned hints)

Example
The Monitor and MWAIT instructions must be coded in the same loop because execution of the
MWAIT instruction will trigger the monitor hardware. It is not a proper usage to execute
MONITOR once and then execute MWAIT in a loop. Setting up MONITOR without executing
MWAIT has no adverse effects.

Typically the MONITOR/MWAIT pair is used in a sequence, such as:

EAX = Logical Address(Trigger)
ECX = 0 (*Hints *)
EDX = 0 (* Hints *)
IF (!trigger_store_happened) {

MONITOR EAX, ECX, EDX
IF (!trigger_store_happened) {

MWAIT EAX, ECX
}

}

The above code sequence makes sure that a triggering store does not happen between the first
check of the trigger and the execution of the monitor instruction. Without the second check that
triggering store would go un-noticed. Typical usage of MONITOR and MWAIT would have the
above code sequence within a loop.

Numeric Exceptions
None.
3-694 Vol. 2A MWAIT—Monitor Wait

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0) If ECX ≠ 0.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If executed at privilege level 1 through 3 when the instruction is not avail-
able.

If LOCK prefixes are used.

If REPE, REPNE or operand size prefixes are used.

Real Address Mode Exceptions
#GP(0) For ECX has a value other than 0.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If LOCK prefix is used.

If REPE, REPNE or operand size prefixes are used.

Virtual 8086 Mode Exceptions
#GP(0) For ECX has a value other than 0.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0; or the instruction is executed
at privilege level 1-2-3 when the instruction is not available.

If LOCK prefix is used.

If REPE, REPNE or operand size prefixes are used.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0.

If RCX ≠ 0.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If the F3H, F2H, 66H or LOCK prefix is used.
Vol. 2A 3-695MWAIT—Monitor Wait

INSTRUCTION SET REFERENCE, A-M
3-696 Vol. 2A MWAIT—Monitor Wait

INTEL SALES OFFICES

ASIA PACIFIC
Australia
Intel Corp.
Level 2
448 St Kilda Road
Melbourne VIC
3004
Australia
Fax:613-9862 5599

China
Intel Corp.
Rm 709, Shaanxi
Zhongda Int'l Bldg
No.30 Nandajie Street
Xian AX710002
China
Fax:(86 29) 7203356

Intel Corp.
Rm 2710, Metropolian
Tower
68 Zourong Rd
Chongqing CQ
400015
China

Intel Corp.
C1, 15 Flr, Fujian
Oriental Hotel
No. 96 East Street
Fuzhou FJ
350001
China

Intel Corp.
Rm 5803 CITIC Plaza
233 Tianhe Rd
Guangzhou GD
510613
China

Intel Corp.
Rm 1003, Orient Plaza
No. 235 Huayuan Street
Nangang District
Harbin HL
150001
China

Intel Corp.
Rm 1751 World Trade
Center, No 2
Han Zhong Rd
Nanjing JS
210009
China

Intel Corp.
Hua Xin International
Tower
215 Qing Nian St.
ShenYang LN
110015
China

Intel Corp.
Suite 1128 CITIC Plaza
Jinan
150 Luo Yuan St.
Jinan SN
China

Intel Corp.
Suite 412, Holiday Inn
Crowne Plaza
31, Zong Fu Street
Chengdu SU
610041
China
Fax:86-28-6785965

Intel Corp.
Room 0724, White Rose
Hotel
No 750, MinZhu Road
WuChang District
Wuhan UB
430071
China

India
Intel Corp.
Paharpur Business
Centre
21 Nehru Place
New Delhi DH
110019
India

Intel Corp.
Hotel Rang Sharda, 6th
Floor
Bandra Reclamation
Mumbai MH
400050
India
Fax:91-22-6415578

Intel Corp.
DBS Corporate Club
31A Cathedral Garden
Road
Chennai TD
600034
India

Intel Corp.
DBS Corporate Club
2nd Floor, 8 A.A.C. Bose
Road
Calcutta WB
700017
India

Japan
Intel Corp.
Kokusai Bldg 5F, 3-1-1,
Marunouchi
Chiyoda-Ku, Tokyo
1000005
Japan

Intel Corp.
2-4-1 Terauchi
Toyonaka-Shi
Osaka
5600872
Japan

Malaysia
Intel Corp.
Lot 102 1/F Block A
Wisma Semantan
12 Jalan Gelenggang
Damansara Heights
Kuala Lumpur SL
50490
Malaysia

Thailand
Intel Corp.
87 M. Thai Tower, 9th Fl.
All Seasons Place,
Wireless Road
Lumpini, Patumwan
Bangkok
10330
Thailand

Viet Nam
Intel Corp.
Hanoi Tung Shing
Square, Ste #1106
2 Ngo Quyen St
Hoan Kiem District
Hanoi
Viet Nam

EUROPE & AFRICA
Belgium
Intel Corp.
Woluwelaan 158
Diegem
1831
Belgium

Czech Rep
Intel Corp.
Nahorni 14
Brno
61600
Czech Rep

Denmark
Intel Corp.
Soelodden 13
Maaloev
DK2760
Denmark

Germany
Intel Corp.
Sandstrasse 4
Aichner
86551
Germany

Intel Corp.
Dr Weyerstrasse 2
Juelich
52428
Germany

Intel Corp.
Buchenweg 4
Wildberg
72218
Germany

Intel Corp.
Kemnader Strasse 137
Bochum
44797
Germany

Intel Corp.
Klaus-Schaefer Strasse
16-18
Erfstadt NW
50374
Germany

Intel Corp.
Heldmanskamp 37
Lemgo NW
32657
Germany

Italy
Intel Corp Italia Spa
Milanofiori Palazzo E/4
Assago
Milan
20094
Italy
Fax:39-02-57501221

Netherland
Intel Corp.
Strausslaan 31
Heesch
5384CW
Netherland

Poland
Intel Poland
Developments, Inc
Jerozolimskie Business
Park
Jerozolimskie 146c
Warsaw
2305
Poland
Fax:+48-22-570 81 40

Portugal
Intel Corp.
PO Box 20
Alcabideche
2765
Portugal

Spain
Intel Corp.
Calle Rioja, 9
Bajo F Izquierda
Madrid
28042
Spain

South Africa
Intel SA Corporation
Bldg 14, South Wing,
2nd Floor
Uplands, The Woodlands
Western Services Road
Woodmead
2052
Sth Africa
Fax:+27 11 806 4549

Intel Corp.
19 Summit Place,
Halfway House
Cnr 5th and Harry
Galaun Streets
Midrad
1685
Sth Africa

United Kingdom
Intel Corp.
The Manse
Silver Lane
Needingworth CAMBS
PE274SL
UK

Intel Corp.
2 Cameron Close
Long Melford SUFFK
CO109TS
UK

Israel
Intel Corp.
MTM Industrial Center,
P.O.Box 498
Haifa
31000
Israel
Fax:972-4-8655444

LATIN AMERICA &
CANADA
Argentina
Intel Corp.
Dock IV - Bldg 3 - Floor 3
Olga Cossentini 240
Buenos Aires
C1107BVA
Argentina

Brazil
Intel Corp.
Rua Carlos Gomez
111/403
Porto Alegre
90480-003
Brazil

Intel Corp.
Av. Dr. Chucri Zaidan
940 - 10th Floor
San Paulo
04583-904
Brazil

Intel Corp.
Av. Rio Branco,
1 - Sala 1804
Rio de Janeiro
20090-003
Brazil

Columbia
Intel Corp.
Carrera 7 No. 71021
Torre B, Oficina 603
Santefe de Bogota
Columbia

Mexico
Intel Corp.
Av. Mexico No. 2798-9B,
S.H.
Guadalajara
44680
Mexico

Intel Corp.
Torre Esmeralda II,
7th Floor
Blvd. Manuel Avila
Comacho #36
Mexico Cith DF
11000
Mexico

Intel Corp.
Piso 19, Suite 4
Av. Batallon de San
Patricio No 111
Monterrey, Nuevo le
66269
Mexico

Canada
Intel Corp.
168 Bonis Ave, Suite 202
Scarborough
MIT3V6
Canada
Fax:416-335-7695

Intel Corp.
3901 Highway #7,
Suite 403
Vaughan
L4L 8L5
Canada
Fax:905-856-8868

Intel Corp.
999 CANADA PLACE,
Suite 404,#11
Vancouver BC
V6C 3E2
Canada
Fax:604-844-2813

Intel Corp.
2650 Queensview Drive,
Suite 250
Ottawa ON
K2B 8H6
Canada
Fax:613-820-5936

Intel Corp.
190 Attwell Drive,
Suite 500
Rexcdale ON
M9W 6H8
Canada
Fax:416-675-2438

Intel Corp.
171 St. Clair Ave. E,
Suite 6
Toronto ON
Canada

Intel Corp.
1033 Oak Meadow Road
Oakville ON
L6M 1J6
Canada

USA
California
Intel Corp.
551 Lundy Place
Milpitas CA
95035-6833
USA
Fax:408-451-8266

Intel Corp.
1551 N. Tustin Avenue,
Suite 800
Santa Ana CA
92705
USA
Fax:714-541-9157

Intel Corp.
Executive Center del Mar
12230 El Camino Real
Suite 140
San Diego CA
92130
USA
Fax:858-794-5805

Intel Corp.
1960 E. Grand Avenue,
Suite 150
El Segundo CA
90245
USA
Fax:310-640-7133

Intel Corp.
23120 Alicia Parkway,
Suite 215
Mission Viejo CA
92692
USA
Fax:949-586-9499

Intel Corp.
30851 Agoura Road
Suite 202
Agoura Hills CA
91301
USA
Fax:818-874-1166

Intel Corp.
28202 Cabot Road,
Suite #363 & #371
Laguna Niguel CA
92677
USA

Intel Corp.
657 S Cendros Avenue
Solana Beach CA
90075
USA

Intel Corp.
43769 Abeloe Terrace
Fremont CA
94539
USA

Intel Corp.
1721 Warburton, #6
Santa Clara CA
95050
USA

Colorado
Intel Corp.
600 S. Cherry Street,
Suite 700
Denver CO
80222
USA
Fax:303-322-8670

Connecticut
Intel Corp.
Lee Farm Corporate Pk
83 Wooster Heights
Road
Danbury CT
6810
USA
Fax:203-778-2168

Florida
Intel Corp.
7777 Glades Road
Suite 310B
Boca Raton FL
33434
USA
Fax:813-367-5452

Georgia
Intel Corp.
20 Technology Park,
Suite 150
Norcross GA
30092
USA
Fax:770-448-0875

Intel Corp.
Three Northwinds Center
2500 Northwinds
Parkway, 4th Floor
Alpharetta GA
30092
USA
Fax:770-663-6354

Idaho
Intel Corp.
910 W. Main Street, Suite
236
Boise ID
83702
USA
Fax:208-331-2295

Illinois
Intel Corp.
425 N. Martingale Road
Suite 1500
Schaumburg IL
60173
USA
Fax:847-605-9762

Intel Corp.
999 Plaza Drive
Suite 360
Schaumburg IL
60173
USA

Intel Corp.
551 Arlington Lane
South Elgin IL
60177
USA

Indiana
Intel Corp.
9465 Counselors Row,
Suite 200
Indianapolis IN
46240
USA
Fax:317-805-4939

Massachusetts
Intel Corp.
125 Nagog Park
Acton MA
01720
USA
Fax:978-266-3867

Intel Corp.
59 Composit Way
suite 202
Lowell MA
01851
USA

Intel Corp.
800 South Street,
Suite 100
Waltham MA
02154
USA

Maryland
Intel Corp.
131 National Business
Parkway, Suite 200
Annapolis Junction MD
20701
USA
Fax:301-206-3678

Michigan
Intel Corp.
32255 Northwestern
Hwy., Suite 212
Farmington Hills MI
48334
USA
Fax:248-851-8770

MInnesota
Intel Corp.
3600 W 80Th St
Suite 450
Bloomington MN
55431
USA
Fax:952-831-6497

North Carolina
Intel Corp.
2000 CentreGreen Way,
Suite 190
Cary NC
27513
USA
Fax:919-678-2818

New Hampshire
Intel Corp.
7 Suffolk Park
Nashua NH
03063
USA

New Jersey
Intel Corp.
90 Woodbridge Center
Dr, Suite. 240
Woodbridge NJ
07095
USA
Fax:732-602-0096

New York
Intel Corp.
628 Crosskeys Office Pk
Fairport NY
14450
USA
Fax:716-223-2561

Intel Corp.
888 Veterans Memorial
Highway
Suite 530
Hauppauge NY
11788
USA
Fax:516-234-5093

Ohio
Intel Corp.
3401 Park Center Drive
Suite 220
Dayton OH
45414
USA
Fax:937-890-8658

Intel Corp.
56 Milford Drive
Suite 205
Hudson OH
44236
USA
Fax:216-528-1026

Oregon
Intel Corp.
15254 NW Greenbrier
Parkway, Building B
Beaverton OR
97006
USA
Fax:503-645-8181

Pennsylvania
Intel Corp.
925 Harvest Drive
Suite 200
Blue Bell PA
19422
USA
Fax:215-641-0785

Intel Corp.
7500 Brooktree
Suite 213
Wexford PA
15090
USA
Fax:714-541-9157

Texas
Intel Corp.
5000 Quorum Drive,
Suite 750
Dallas TX
75240
USA
Fax:972-233-1325

Intel Corp.
20445 State Highway
249, Suite 300
Houston TX
77070
USA
Fax:281-376-2891

Intel Corp.
8911 Capital of Texas
Hwy, Suite 4230
Austin TX
78759
USA
Fax:512-338-9335

Intel Corp.
7739 La Verdura Drive
Dallas TX
75248
USA

Intel Corp.
77269 La Cabeza Drive
Dallas TX
75249
USA

Intel Corp.
3307 Northland Drive
Austin TX
78731
USA

Intel Corp.
15190 Prestonwood
Blvd. #925
Dallas TX
75248
USA
Intel Corp.

Washington
Intel Corp.
2800 156Th Ave. SE
Suite 105
Bellevue WA
98007
USA
Fax:425-746-4495

Intel Corp.
550 Kirkland Way
Suite 200
Kirkland WA
98033
USA

Wisconsin
Intel Corp.
405 Forest Street
Suites 109/112
Oconomowoc Wi
53066
USA

	IA-32 Intel® Architecture Software Developer's Manual
	Disclaimer
	CONTENTS FOR VOLUME 2A AND 2B
	CHAPTER 1 About This Manual
	1.1 IA-32 Processors Covered in this Manual
	1.2 Overview of Volume 2A and 2B: Instruction Set Reference
	1.3 Notational Conventions
	1.3.1 Bit and Byte Order
	1.3.2 Reserved Bits and Software Compatibility
	1.3.3 Instruction Operands
	1.3.4 Hexadecimal and Binary Numbers
	1.3.5 Segmented Addressing
	1.3.6 Exceptions
	1.3.7 A New Syntax for CPUID, CR, and MSR Values

	1.4 Related Literature

	CHAPTER 2 Instruction Format
	2.1 Instruction Format for Protected Mode, real- address Mode, and virtual-8086 mode
	2.1.1 Instruction Prefixes
	2.1.2 Opcodes
	2.1.3 ModR/M and SIB Bytes
	2.1.4 Displacement and Immediate Bytes
	2.1.5 Addressing-Mode Encoding of ModR/M and SIB Bytes

	2.2 IA-32e Mode
	2.2.1 REX Prefixes
	2.2.1.1 Encoding
	2.2.1.2 More on REX Prefix Fields
	2.2.1.3 Displacement
	2.2.1.4 Direct Memory-Offset MOVs
	2.2.1.5 Immediates
	2.2.1.6 RIP-Relative Addressing
	2.2.1.7 Default 64-Bit Operand Size

	2.2.2 Additional Encodings for Control and Debug Registers

	CHAPTER 3 Instruction Set Reference, A-M
	3.1 Interpreting the Instruction Reference Pages
	3.1.1 Instruction Format
	3.1.1.1 Opcode Column in the Instruction Summary Table
	3.1.1.2 Instruction Column in the Opcode Summary Table
	3.1.1.3 64-bit Mode Column in the Instruction Summary Table
	3.1.1.4 Compatibility/Legacy Mode Column in the Instruction Summary Table
	3.1.1.5 Description Column in the Instruction Summary Table
	3.1.1.6 Description Section
	3.1.1.7 Operation Section
	3.1.1.8 Intel® C/C++ Compiler Intrinsics Equivalents Section
	3.1.1.9 Flags Affected Section
	3.1.1.10 FPU Flags Affected Section
	3.1.1.11 Protected Mode Exceptions Section
	3.1.1.12 Real-Address Mode Exceptions Section
	3.1.1.13 Virtual-8086 Mode Exceptions Section
	3.1.1.14 Floating-Point Exceptions Section
	3.1.1.15 SIMD Floating-Point Exceptions Section
	3.1.1.16 Compatibility Mode Exceptions Section
	3.1.1.17 64-Bit Mode Exceptions Section

	3.2 Instructions (A-M)
	AAA-ASCII Adjust After Addition
	AAD-ASCII Adjust AX Before Division
	AAM-ASCII Adjust AX After Multiply
	AAS-ASCII Adjust AL After Subtraction
	ADC-Add with Carry
	ADD-Add
	ADDPD-Add Packed Double-Precision Floating-Point Values
	ADDPS-Add Packed Single-Precision Floating-Point Values
	ADDSD-Add Scalar Double-Precision Floating-Point Values
	ADDSS-Add Scalar Single-Precision Floating-Point Values
	ADDSUBPD-Packed Double-FP Add/Subtract
	ADDSUBPS-Packed Single-FP Add/Subtract
	AND-Logical AND
	ANDPD-Bitwise Logical AND of Packed Double-Precision Floating-Point Values
	ANDPS-Bitwise Logical AND of Packed Single-Precision Floating-Point Values
	ANDNPD-Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
	ANDNPS-Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values
	ARPL-Adjust RPL Field of Segment Selector
	BOUND-Check Array Index Against Bounds
	BSF-Bit Scan Forward
	BSR-Bit Scan Reverse
	BSWAP-Byte Swap
	BT-Bit Test
	BTC-Bit Test and Complement
	BTR-Bit Test and Reset
	BTS-Bit Test and Set
	CALL-Call Procedure
	CBW/CWDE/CDQE-Convert Byte to Word/Convert Word to Doubleword/Convert Doubleword to Quadword
	CLC-Clear Carry Flag
	CLD-Clear Direction Flag
	CLFLUSH-Flush Cache Line
	CLI - Clear Interrupt Flag
	CLTS-Clear Task-Switched Flag in CR0
	CMC-Complement Carry Flag
	CMOVcc-Conditional Move
	CMP-Compare Two Operands
	CMPPD-Compare Packed Double-Precision Floating-Point Values
	CMPPS-Compare Packed Single-Precision Floating-Point Values
	CMPS/CMPSB/CMPSW/CMPSD/CMPSQ-Compare String Operands
	CMPSD-Compare Scalar Double-Precision Floating-Point Values
	CMPSS-Compare Scalar Single-Precision Floating-Point Values
	CMPXCHG-Compare and Exchange
	CMPXCHG8B/CMPXCHG16B-Compare and Exchange Bytes
	COMISD-Compare Scalar Ordered Double-Precision Floating- Point Values and Set EFLAGS
	COMISS-Compare Scalar Ordered Single-Precision Floating- Point Values and Set EFLAGS
	CPUID-CPU Identification
	CVTDQ2PD-Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
	CVTDQ2PS-Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
	CVTPD2DQ-Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
	CVTPD2PI-Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
	CVTPD2PS-Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
	CVTPI2PD-Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
	CVTPI2PS-Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
	CVTPS2DQ-Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
	CVTPS2PD-Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
	CVTPS2PI-Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
	CVTSD2SI-Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
	CVTSD2SS-Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
	CVTSI2SD-Convert Doubleword Integer to Scalar Double- Precision Floating-Point Value
	CVTSI2SS-Convert Doubleword Integer to Scalar Single- Precision Floating-Point Value
	CVTSS2SD-Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
	CVTSS2SI-Convert Scalar Single-Precision Floating-Point Value to Doubleword Integer
	CVTTPD2PI-Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
	CVTTPD2DQ-Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
	CVTTPS2DQ-Convert with Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
	CVTTPS2PI-Convert with Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
	CVTTSD2SI-Convert with Truncation Scalar Double-Precision Floating-Point Value to Signed Doubleword Integer
	CVTTSS2SI-Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
	CWD/CDQ/CQO-Convert Word to Doubleword/Convert Doubleword to Quadword
	DAA-Decimal Adjust AL after Addition
	DAS-Decimal Adjust AL after Subtraction
	DEC-Decrement by 1
	DIV-Unsigned Divide
	DIVPD-Divide Packed Double-Precision Floating-Point Values
	DIVPS-Divide Packed Single-Precision Floating-Point Values
	DIVSD-Divide Scalar Double-Precision Floating-Point Values
	DIVSS-Divide Scalar Single-Precision Floating-Point Values
	EMMS-Empty MMX Technology State
	ENTER-Make Stack Frame for Procedure Parameters
	F2XM1-Compute 2x-1
	FABS-Absolute Value
	FADD/FADDP/FIADD-Add
	FBLD-Load Binary Coded Decimal
	FBSTP-Store BCD Integer and Pop
	FCHS-Change Sign
	FCLEX/FNCLEX-Clear Exceptions
	FCMOVcc-Floating-Point Conditional Move
	FCOMI/FCOMIP/ FUCOMI/FUCOMIP-Compare Floating Point Values and Set EFLAGS
	FCOS-Cosine
	FDECSTP-Decrement Stack-Top Pointer
	FDIV/FDIVP/FIDIV-Divide
	FDIVR/FDIVRP/FIDIVR-Reverse Divide
	FFREE-Free Floating-Point Register
	FICOM/FICOMP-Compare Integer
	FILD-Load Integer
	FINCSTP-Increment Stack-Top Pointer
	FINIT/FNINIT-Initialize Floating-Point Unit
	FIST/FISTP-Store Integer
	FISTTP-Store Integer with Truncation
	FLD-Load Floating Point Value
	FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ-Load Constant
	FLDCW-Load x87 FPU Control Word
	FLDENV-Load x87 FPU Environment
	FMUL/FMULP/FIMUL-Multiply
	FNOP-No Operation
	FPATAN-Partial Arctangent
	FPREM-Partial Remainder
	FPREM1-Partial Remainder
	FPTAN-Partial Tangent
	FRNDINT-Round to Integer
	FRSTOR-Restore x87 FPU State
	FSAVE/FNSAVE-Store x87 FPU State
	FSCALE-Scale
	FSIN-Sine
	FSINCOS-Sine and Cosine
	FSQRT-Square Root
	FST/FSTP-Store Floating Point Value
	FSTCW/FNSTCW-Store x87 FPU Control Word
	FSTENV/FNSTENV-Store x87 FPU Environment
	FSTSW/FNSTSW-Store x87 FPU Status Word
	FSUB/FSUBP/FISUB-Subtract
	FSUBR/FSUBRP/FISUBR-Reverse Subtract
	FTST-TEST
	FUCOM/FUCOMP/FUCOMPP-Unordered Compare Floating Point Values
	FXAM-ExamineModR/M
	FXCH-Exchange Register Contents
	FXRSTOR-Restore x87 FPU, MMX Technology, SSE, SSE2, and SSE3 State
	FXSAVE-Save x87 FPU, MMX Technology, SSE, and SSE2 State
	FXTRACT-Extract Exponent and Significand
	FYL2X-Compute y * log2x
	FYL2XP1-Compute y * log2(x +1)
	HADDPD-Packed Double-FP Horizontal Add
	HADDPS-Packed Single-FP Horizontal Add
	HLT-Halt
	HSUBPD-Packed Double-FP Horizontal Subtract
	HSUBPS-Packed Single-FP Horizontal Subtract
	IDIV-Signed Divide
	IMUL-Signed Multiply
	IN-Input from Port
	INC-Increment by 1
	INS/INSB/INSW/INSD-Input from Port to String
	INT n/INTO/INT 3-Call to Interrupt Procedure
	INVD-Invalidate Internal Caches
	INVLPG-Invalidate TLB Entry
	IRET/IRETD-Interrupt Return
	Jcc-Jump if Condition Is Met
	JMP-Jump
	LAHF-Load Status Flags into AH Register
	LAR-Load Access Rights Byte
	LDDQU-Load Unaligned Integer 128 Bits
	LDMXCSR-Load MXCSR Register
	LDS/LES/LFS/LGS/LSS-Load Far Pointer
	LEA-Load Effective Address
	LEAVE-High Level Procedure Exit
	LFENCE-Load Fence
	LGDT/LIDT-Load Global/Interrupt Descriptor Table Register
	LLDT-Load Local Descriptor Table Register
	LMSW-Load Machine Status Word
	LOCK-Assert LOCK# Signal Prefix
	LODS/LODSB/LODSW/LODSD/LODSQ-Load String
	LOOP/LOOPcc-Loop According to ECX Counter
	LSL-Load Segment Limit
	LTR-Load Task Register
	MASKMOVDQU-Store Selected Bytes of Double Quadword
	MASKMOVQ-Store Selected Bytes of Quadword
	MAXPD-Return Maximum Packed Double-Precision Floating- Point Values
	MAXPS-Return Maximum Packed Single-Precision Floating-Point Values
	MAXSD-Return Maximum Scalar Double-Precision Floating-Point Value
	MAXSS-Return Maximum Scalar Single-Precision Floating-Point Value
	MFENCE-Memory Fence
	MINPD-Return Minimum Packed Double-Precision Floating-Point Values
	MINPS-Return Minimum Packed Single-Precision Floating-Point Values
	MINSD-Return Minimum Scalar Double-Precision Floating-Point Value
	MINSS-Return Minimum Scalar Single-Precision Floating-Point Value
	MONITOR-Set Up Monitor Address
	MOV-Move
	MOV-Move to/from Control Registers
	MOV-Move to/from Debug Registers
	MOVAPD-Move Aligned Packed Double-Precision Floating-Point Values
	MOVAPS-Move Aligned Packed Single-Precision Floating-Point Values
	MOVD/MOVQ-Move Doubleword/Move Quadword
	MOVDDUP-Move One Double-FP and Duplicate
	MOVDQA-Move Aligned Double Quadword
	MOVDQU-Move Unaligned Double Quadword
	MOVDQ2Q-Move Quadword from XMM to MMX Technology Register
	MOVHLPS- Move Packed Single-Precision Floating-Point Values High to Low
	MOVHPD-Move High Packed Double-Precision Floating-Point Value
	MOVHPS-Move High Packed Single-Precision Floating-Point Values
	MOVLHPS-Move Packed Single-Precision Floating-Point Values Low to High
	MOVLPD-Move Low Packed Double-Precision Floating-Point Value
	MOVLPS-Move Low Packed Single-Precision Floating-Point Values
	MOVMSKPD-Extract Packed Double-Precision Floating-Point Sign Mask
	MOVMSKPS-Extract Packed Single-Precision Floating-Point Sign Mask
	MOVNTDQ-Store Double Quadword Using Non-Temporal Hint
	MOVNTI-Store Doubleword Using Non-Temporal Hint
	MOVNTPD-Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
	MOVNTPS-Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint
	MOVNTQ-Store of Quadword Using Non-Temporal Hint
	MOVSHDUP-Move Packed Single-FP High and Duplicate
	MOVSLDUP-Move Packed Single-FP Low and Duplicate
	MOVQ-Move Quadword
	MOVQ2DQ-Move Quadword from MMX Technology to XMM Register
	MOVS/MOVSB/MOVSW/MOVSD/MOVSQ-Move Data from String to String
	MOVSD-Move Scalar Double-Precision Floating-Point Value
	MOVSS-Move Scalar Single-Precision Floating-Point Values
	MOVSX/MOVSXD-Move with Sign-Extension
	MOVUPD-Move Unaligned Packed Double-Precision Floating- Point Values
	MOVUPS-Move Unaligned Packed Single-Precision Floating- Point Values
	MOVZX-Move with Zero-Extend
	MUL-Unsigned Multiply
	MULPD-Multiply Packed Double-Precision Floating-Point Values
	MULPS-Multiply Packed Single-Precision Floating-Point Values
	MULSD-Multiply Scalar Double-Precision Floating-Point Values
	MULSS-Multiply Scalar Single-Precision Floating-Point Values
	MWAIT-Monitor Wait

	INTEL SALES OFFICES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

