MII—P S

TECHNOLOGIES

M| PS64® Architecturefor ProgrammersVolume
IV-a: The MIPS16e™ Application-Specific
Extension to the MIPS64® Architecture

Document Number: M DO0O0077
Revision 2.50
July 1, 2005

MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043-1353

Copyright © 2005 M1PS Technologies Inc. All rights reserved.

Copyright © 2005 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies'). Any copying,
reproducing, modifying or use of thisinformation (in wholeor in part) that isnot expressly permitted in writing by MIPS Technologies
or an authorized third party isstrictly prohibited. At aminimum, thisinformation is protected under unfair competition and copyright
laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in amodifiable form such asin FrameMaker or Microsoft Word format) is subject to
use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO
CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN
SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technol ogiesreservesthe right to change the information contained in this document to improve function, design or otherwise.
MIPS Technologies does not assume any liability arising out of the application or use of thisinformation, or of any error or omission
in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied
warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any written license
agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not give recipient any license
to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or supplements
thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in this document, the
laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial
computer software documentation or other commercial items. If the user of thisinformation, or any related documentation of any
kind, including related technical data or manuals, is an agency, department, or other entity of the United States government
("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of thisinformation, or any related
documentation of any kind, isrestricted in accordance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense
Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of thisinformation by the Government isfurther
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this
information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS I, MIPSIII, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim,
MIPSpro, MIPS Technologies logo, MIPS RISC CERTIFIED POWER logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS,
4K Sc, 4KSd, M4K, 5K, 5K c, 5Kf, 20K c, 24K, 24K c, 24Kf, 24KE, 24K Ec, 24K Ef, 25K, 34K, R3000, R4000, R5000, ASMACRO,
Atlas, "At the core of the user experience.", BusBridge, CorExtend, CoreFPGA, CorelV, EC, FastMIPS, JALGO, Malta, MDMX,
MGB, PDtrace, the Pipeline, Pro Series, QuickMIPS, SEAD, SEAD-2, SmartMIPS, SOC-it, and YAMON are trademarks or
registered trademarks of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

Template: B1.14, Built with tags: 2B ARCH FPU_PS FPU_PSandARCH MIPS64

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1 ADOUL THIS BOOKccuiiiiiieieeeeet ettt ettt h et h e b e bt s b e e b e be s e e se et e e e e e e eneeneeaeenenbenaeebea 1
1.1 TypographiCal CONVENTIONSc.ciiitiriereeieieieeeet ettt se bt se e se e st s ae e st ebesbe s bt sbeebeseese e s e s e e et eneeseeaesbenaas 1
05 0 = o I SR 1
0502 =T o I = SRS 1
R X O TH 1= = SO RRSURURURUR 1

1.2 UNPREDICTABLE @nd UNDEFINEDc.ccoiitiiiisiisienieteseeie sttt sae e ssese st ssnsessesessenessnnes 2
L1212 UNPREDICTABLE ..ottt sttt sttt ettt et 2
L2 2UNDEFINED ...ttt sttt ettt s et s bbb et et et st e e et et e b e s ebensnnentns 2
L2.B3UNSTABLE ..ottt et bbbtk et e b et e b et et et e b et e be st nnentne 2

1.3 Special Symbolsin PSeUdOCOOE NOLEEIONcccoiiiiiiiieie ettt et sae e 3
1.4 FOr MOFE INFOMMEBLION ...ttt ettt et b e et ae e a e h e e bt e be bt sb e b e b e se e e e s e e et ebeeaeeaesbenras 5
Chapter 2 GUIJE tO the INSIIUCTION SELocvitiieeiireeiirie et b bt e bt en bbbt b s na e nnenes 7
2.1 Understanding the INSIFUCLION FIEIASc.coviiiiiieieer bbb 7
BN R 1 S 0 oo g T T o S 8
2.1.2 Instruction Descriptive Name and MNEMONICccovviirieirieiriee ettt 9

B G o 4 0= A = Lo S 9

2 LA PUMPOSE FTEIO ..ot b bbb b e e n bRt nne 10

2. 1.5 DESCIIPLION FIEIA ...ttt b e bbb e bbbt nne 10
A I = g ox o] =Y Y= Lo OSSR 10
2.1.7 OPEFEtioN FIEIA ..ottt b bbb bRt bRt nne 11
218 EXCEPLIONS FIEIA ...t b bbb et nne 11
2.1.9 Programming Notes and Implementation NOteS FIeldS ..o 11

2.2 Operation Section NOtation and FUNCLIONScioiirieiriiiriecreerieereee st 12
2.2.1 INStruction EXECULION OFTEITNGo.eivetirieiirieierieierieesi ettt et e b e n et enene 12
2.2.2 PSEUAOCOOE FUNCLIONS ...ttt ettt st ae s s s eae st e e seesbesbese et et et e e eneeneeneeneesennes 12

2.3 0p and FUNCtion SUDFIEIA NOLAETON ceiieiieieeieeete ettt 22
24 FPU INSLIUCHIONS ...viitiiteitieteste sttt seesee e e e e eseese st saestesaesaesbesbeseessenseeeseemeeseeneeseebessesaeebenbeseeseanteseneenseneeneenessennes 23
Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS64® ArchiteCtureccocvevvvverereereeeecennenn 25
3.1 Base ArchiteCture REQUITEMENLScccoueriereeieeeeeresesteseseestesteseessessessesesseesesseesessessessessessessessensensessesseensensessenses 25
3.2 Software DeteCtion Of tNEASE ...ttt a s 25
3.3 ComPlianCe aNd SUDSEILING ...veiveeierieriesieieeeieeeees s e sttt e e e e e e e e e e eseesessesaessesbeseeseensenseneeneenanneesensenses 25
B4 MIPSLEE OVEIVIBIW vevieetereeteseetesee sttt sttt e b st et e st e be e b e st e st se e s e b e st eben e e b e s e b e b e bt e eb e s e b e neebe e enenben e eeneneenes 25
S5 MIPSLEE ASE FEAIUMNESocveiteieieieie ettt r et e e e et h e b e e bt s bt eb e b e se e se e e e e e e e e e e e eneenennis 26
3.6 MIPSLEE REQISLEN SELocvviveiieieieiesiesiesee et et e et s e s ettt ee s e e e e e e e eseeseeseesessesaesbesbeseeseentenee e nneenannennensenses 26
.7 MIPSLEE ISA MOUES ...ccveietieetereeteriet ettt b et s b e bbbt b et b et b e e e b et e bt st e bbb e s b e be e ene st e s e b enensenes 27
3.7.1 Modes Available in the MIPSLE€ ArChitECIUIEcceovirriririiee e e 28
3.7.2 DEfiNiNG the ISA MO FTEIA ..ot s e e enenns 28
3.7.3 Switching Between Modes When an EXCEPtiON OCCUISccveveeeeeeereeesesesresesieseeseesseseesessseseesesssssenses 28
3.7.4 Using MIPS16e Jump Instructions to SWItCh MOESc..oveieeceeeceecse e 28
3.8JALX, JR, and JALR Operationsin MIPS16e and MIPS32 MOAEcccecveereeerirece et e e 29
3.9 MIPSL6€ INSLIUCHION SUMIMEITES ecuiieiiiieirtiieienes sttt et sb sttt s b e bt b e be e be st ene st e nesbenensenes 29
3.10 MIPS16€ PC-RE@HVE INSIIUCLIONS cuiieieiiiiisiiisieseeteseet sttt sttt s e nsenes 33
3.11 MIPS16€ EXIENSIDIE INSLIUCLIONSeiviiiieiiitiisieis ettt ettt sttt nes 34
3.12 MIPS16e |mplementation-Definable Macro INSLIUCLIONSccevvevieriereeieeeeeecese s e ene e 35
3.13 MIPS16e Jump and BranCh INSEIUCLIONSccccoveireeereiesesesesee e seeseeeeese e sse e ssesre e e sae e sesesseenanseesessenses 36
3.14 MIPSLE€E INSIIUCLION FOMMEESvivieiieiiriecriecsiees ettt ettt b et b e b e bbbt e st n et nennenes 36
T80 R B Y/ o TS W o o 0= 37
3.14.2 RI-typeinStruCtion FOIMELc.occieeiiieiiece ettt r et e st te e e eneene e e neerenns 37
3.14.3 RR-type INSIIUCLION FOMMBEocveceieecieci ettt sttt st e e e eneene e e eneerenns 37

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

3.14.4 RRI-type iNStrUCtiON FOMMELc.oiiiiiiiiiieiese et s et beenas 37

3.14.5 RRR-tYPE INSITUCION FOMMIELcueiiiiiiitiiieiie ettt s b e ettt be e 37
3.14.6 RRI-A type iNStrUCLON FOMMELocooiiiieiietise et et beens 37
3.14.7 Shift INSLIUCHION FOIMEL ...t b e bbb ettt ebeenas 37
3.14.8 18-type iNSLIUCHION FOMMEL ..ottt bbb ettt beenas 37
3.14.918 MOVR32 instruction format (used only by the MOVR32 instruction)ccccceeeeveveeceseenie s, 37
3.14.1018 MOV 32R instruction format (used only by MOV 32R iNStruction)ccccccceeveveeceseeseeseese e, 38
3.14.11 18 SVRSinstruction format (used only by the SAVE and RESTORE instructions)cccceeveeenee. 38
3.14.12 164-type INSLTUCLION TOMMEBLc.eiiiiiiieiieieet ettt bbb bbb et benns 38
3.14.13 RIBA-type iNSIIUCHION FOMMELcoeiuiitiriiiieteite ettt sttt b s 38
3.14.14 JAL and JALX INSLrUCLION TOMMELeoueieiitiiieieesee et e 38
3.14.15 EXT-1 INSIIUCLION FOMMIBE ...ttt s b e b bbbttt bennas 38
3.14.16 ASMACRO INSLIUCLTION FOMMELciuiitiiieiietiiie ettt s e et ebennas 38
3.14.27 EXT-RIINSIFUCLION TOMMBEoouiiiiieiitiieieetese ettt s sttt benns 38
3.14.18 EXT-RRI INSIFUCLION FOMMEEcouiiiiitiiieiiciesie ettt ettt n s 38
3.14.19 EXT-RRI-A INSrUCHION FOIMELccuiiiiiiiiiitiie ettt et st b s 39
3.14.20 EXT-SHIFT INSIIUCLION FOMMIBLccuiitiiieiiiitiiie ittt s et be s 39
3.14.21 EXT-I8INSIIUCLION FOMMELoouiiiiieiiteiieie ettt sttt b e 39
3.14.22 EXT-18_SVRS instruction format (used only by the SAVE and RESTORE instructions) 39
3.14.23 EXT-164 iNSLrUCHION FOMMEEeeiiiieiieeiese ettt et sttt benns 39
3.14.24 EXT-RIBA INSLIUCLION FOMMELeouiieiitiiterie ettt st ettt be e 39
3.14.25 EXT-SHIFTO64 iNSLrUCLION FOMMELcveiiiiiiitirie ittt ettt 39
3.15 INStruCtion Bit ENCOOINGviiieiiiieie sttt sttt et e st et e eteenteeseentesaeesesneesnesnnesrenneens 39
3.16 MIPS16e Instruction Stream Organization and ENAIANNESScccoceeieecieiieie et eee 43
3.17 MIPS16€e INstruction FELCh RESIICHIONS cooiiriiiriere ittt s b bbb et ene s 43
Chapter 4 The MIPS16€™ ASE INSIIUCHION SELc.oiveuiiieiiiieiiiteesiees ettt b e s ebe b 45
4.1 MIPS16€ INSIrUCE ON DESCIIPLIONS c.viueitiieiiietereeiesteiestesesb ettt sttt e b b e b ne b sese b s b b 45
4.1.1 MIPS16e-Specific PSeudoCode FUNCLIONSc.oouciiieiieirieesiee et 45
ADDIU (2-OPEIaING)eieeie ettt sttt s e tesbesbeseeseesseseesee e eneeseeseaseeseaseaaeebesbeseessenbeseeseansanseeeneeneeneanearens 46
ADDIU (2-Operand, EXIENTEM)coeiiiiiieieieetereete sttt sttt b e e b st st b ne e rene 47
ADDIU (B-OPEIAING)vieete ettt ettt sttt s testesbesbeseeseesseseesee e eneeseeseaseeseeseaaeebesbeseessenbeseeseansansenseneeneeneenenrens 48
ADDIU (3-Operand, EXIENTE)coeirieiiiiiieieetereeie ettt sttt b e e b e st p et bt re e b 49
ADDIU (3-Operand, PC-REIGLVE)cccoiiiiiiitirieiereeie sttt st st eb et sn et sb e bt b 50
ADDIU (3-Operand, PC-Relative, EXIENTEM)cooiiiiiieeericereesee ettt 51
ADDIU (2-Operand, SP-REIGLIVE)ccoouiiiiiiteieeerieie ettt se bt ss et n e bbb 52
ADDIU (2-Operand, SP-Relative, EXIENAEA)ccooiiiiiieiricereese et 53
ADDIU (3-Operand, SP-REIGLIVE)cccoiiiiiiteieeteriete ettt se e se e se st sb et b b 54
ADDIU (3-Operand, SP-Relative, EXIENTE)ccooiirieiieeerieisieesee ettt 55
ADDU (3-OPEIANG)ecveeetereeiireeiereet sttt sttt sttt st se b e bt seehe s e ebe s e e st e b et eb e e e b et e b e reebenE e b e e e e b e eeeb e neebe e e Rt R Rt b st Rt rene 56
N VL PSSR 57
F N O (@ SRS 58
PSSR 59
L (a0 (=) USSR 60
BEQXZ ...ttt ettt £ et e R e R e e Rt Rt eEe Rt R e SR e £ SR e £ eA£eeeEeReeReeReeReeEenReeReeEeEeseetenteneeeeneeneenennens 61
12T A (= 110 (= o) USSR 62
BINEZ ...ttt ettt a e h e ARt Ee Rt Ao SR e £ SR e £ eA£e e et eReeReeReeReeEe Rt eReeEeEeseetenteneeteneeneeneerens 63
N (= 10 (=0) USSR 64
BREAK ..ottt ettt sttt sttt e e e R e R £ e Rt SRt eE e Rt SRt R e £ SE e £ eA£e e et eREeRe e Rt eReeEe ARt eReeEe b eeetentenee e eneeneenennens 65
2 = 72U S SRS 66
BTEQZ (EXENUEM) ...ttt sttt s e st besaesbe s bese e s et e se e e en e e st e seeaeebeabeseesbe b seensanteneeneeneeneenennens 67
BTINEZ ..ottt sttt et e et et e a e b e e Rt e Rt e E e e Rt SRt SR e EeSE e £ eA A e e e e eReeReeReeReeEe ARt eReeEe b seetentenee e eneeneenennens 68
BTNEZ (EXIENUEM) ...ttt sttt ettt s e ettt ae e be s £ese e s et e see e eneeaeeseeaeebesbeeeesbebeseensanseneeneeneeneenennens 69
L1 SRS 70
L1 SRS 71
L0V 1 (= 0T (<o) OSSR 72
ii MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DADDIU .. e e R R R R R e R e e b e ere 73

DADDIU (2-Operand, EXIENAEA)ooiiiieiiieeeeee sttt s b e s b b b e se e e se et enea 74
DADDIU (3-OPEIANG) ...ccueeueeterueeueeterie sttt st st ese ettt ese st aesbesbesaesbesbesee s easesee e eseeseaaeeaeebesaesbesbe b seensenseneeneeneeneeneanens 75
DADDIU (3-Operand, EXIENAEA)coiiiieiiieeee ettt st b e e se e e enea 76
DADDIU (3-Operand, PC-REIBLIVE)..........coceiitiieeeieeiieeee sttt et st be b b sbe b e e s e e e see e eseeaeeneenens 77
DADDIU (3-Operand, PC-Relative, EXIENAEA)cccouririiiririiesese sttt e enea 78
DADDIU (2-Operand, SP-REIGLIVE)c.ciiiiiiieieeeeieeee ettt et sttt ae bbb b e b et e e e e se e e e e eneas 79
DADDIU (2-Operand, SP-Relative, EXTENAE)cccouririiiiiiisere ettt s e enea 80
DADDIU (3-Operand, SP-REIGLIVE)cc.ciiiiiiieieeeeieeee ettt ettt b e bbb e e b et e e e e e neeneeneas 81
DADDIU (3-Operand, SP-Relative, EXIENAE)cccouririiiriii ettt s e enea 82
DADDU (B-OPEIANA)ueeueeueetiriieteetesie sttt sttt ettt st et sbesbesae et e s eesee s eaeeae e e eseese e st eaeebesaeebeabe b seensenbeneeneeneeneeneanens 83
[] T A SRRSO 84
DIDIV U ... ettt ettt ettt e st e e be e st e e ebeesate e abeeeaeeebeeaseeeabeesabeeabeesheeebeaeaeeenbeeaaeeeabeesheeebeeaheeebeenaeeeabeeaaeeenreenres 85
[] Y RSP RORRSURRSRRT 86
[] AV A SRRSO 88
DIMULT ettt ettt et e s e e e be e s at e e ebeesaee e ebeeeaeeeabeeaseeeabeesabeeaseeshseeabeesaesenbeesasesaseesheeenbeesbesenbeesseesnbeesaeennbeesens 89
DIMULTU ittt ettt et e e et e st e e ebeesaee e beeeaeeeabeeeaseeabeesabeeaseessseabeeeaesenbeesasesabeesheeenbeesbesenbeenseesnbeesaeennreesens 20
[RSSO 91
[0S I (= 0 L=) S 92
DISLLV ettt ettt e e e be e et e ebe e eh bt e ebeeeheeebe e et eebeeihbeeabeeahteeabeeaaeeebeeateebeeiheeeabeeaheeebeeaaeeebeeaaeenreenres 93
DO R A ettt e e —e e ete e s—eeabeeehteeabeeeh—eateeateebeeihteeabeeahtteabeeaaeeebeeaaaeebeeiheeeabeeaheeebeenaeeebeeaaeeereesres 94
(RS N 4= 10 =) S 95
DISRAV ..ottt et ettt et s bt e abe e te e abeeea—eebee e teabeeiateeaheeahteeabeeaaeeebeeateabeeiheeeabeeaheeebeeaaeeebeeaaeeereenres 96
ISR ..ttt ettt e et e et e bt ehe e teeabeeeateeteeateebeeahteeabeeehteeabeeeaeeebeeaaaeebeeiheeeabeeaheeebeeaaeeebeeaaeeereenaes 97
[0S a0 U=) S 98
DISRLYV ...ttt ettt ettt e et e e be ettt e beesa bt e ebeeehee e beearaeebeeaabeebeeahteeabeeaaeeebeeateebeeiheeeabeeaheeebeeaaeeebeeaaeeereenres 99
DSUBU ...ttt ettt et e st e et e e s e e e te e she e e beeeae s e beeaaeesabeeshaeeabeesheeebeebee e beeaReeeateeabeeeabeebeeebeebeesbeenneesareens 100
JA L ettt e et e e be e e —eeahee s beeaheeeateeaheeateebeeabeeaheeaateeaheeehteebeeeaeebeeiabeeaheeaateeateeeaeeeateeareereennes 101
Y I PR SORRO SRRSO 102
JALRC ettt ettt et e he e —e e eheeeate e abee e —eebeeabeeaheeaateeaheeehteeabeeeteabeeibeeaheeaateeabeeaaeeeabeeerenreeanns 103
JALX (MIPSLOE FOIMEAL) ... eeiteiieiteiiesteeieste et e teete st estesaeesteseestesseesteeaeesbeesaaateessesseenseeseenseaaeesesanessesnsestenneesennsanes 104
BN Y s G o = S 105
N - SR 106
N o PR SORROSERRPRRO 107
N (O - TSROSO SRRSO 108
N (O o QTSROSO SRRSO 109
L B ettt e e be et —eeeteeehee b eeahee e beeaheeabeeahaeeteeiheteabeeaheeebeeaheeaateeaheeeteebeeabeeabeesbeeareesareens 110
LI 2 B €T (=0 U=) 111
LB U ettt e e et s e e e ehe e ehee e b e e eaeeeteeaheeebeeahaeebeeihetabeeaheeebeeaheeaateeateeebeebeeabeeabeesbeenreenareans 112
LI = LU = T o) 113
LD ettt ee e be et —eeeteeehteeabeeaheeateeaheeabeeahaeeteeiheteabeeaheeebeeaheeeateeateeebeeabeeaareeabeesreeareesreens 114
LD (= (=) S 115
LD @ o = 1Y) I 116
(D O e b (A = 10 (=) 117
[S e = 1Y) 118
(DS e S e YT g (= 10 L=) 119
L H ettt ettt et e see e te e ehee e b e e eheeeteeahaeebeeahaeeabeeiheeebeeaheeebeeaheeaateeateeebeebeeateeabeesreeareesreans 120
LI o (=0 (=) S 121
LHU ettt et e st e e te e shee e beeeae e e beeahee e beeahaeebeeaheeebeebeeebeeaheeaateeabeeebeebeeabeeabeeabeeareesareens 122
LI o L (T 0T 1=) 123
Ll ettt ettt e b e e eee e be e s eeeeteeehteebeeaheeeteeahaeabeeihaeebeeiheteabeeaheeebeeaheeeateeateeebeebeeereenbeeabeenreesreens 124
LI (=0T (=) S 125
L ettt e e e e be e s aeeeteeeheeebeeaaeeebeeaheeabeeihaeeateeiheteabeeaheeebeeaheeaateeateeebeebeeateeabeesreenreesreens 126
LY A= e U=) 127
LY Ot (= = (Y7 128

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LW (PC-REIEHVE, EXIENAEA) w..vvvvveeeeereeeeeeeeeeeeeessessssseessssseeesssseessssessssssessessesssssessssssseessesessssssssssssseeesssssssssssssesees 129

[T S e 2 L = LY=)o SRS 130
LW (SP-Rel@ative, EXIENUE).......ccoiiiierieieiieiesieie sttt sttt ettt st sttt st st st seste s sbe s s be e be e be e ntens 131
R OSSP 132
LT (A =0T L=) OSSP 133
Y SRS 134
Y I TSSO 135
L@ Y 1 vZR 2SSOSR 136
L@ Y A 72O 137
1 OSSO 138
0 SRS 139
NSRS 140
N1 SRS 141
N1 2 OSSR 142
O R ettt et ekt a et E e R A e Rt R e At e R et R e £ eE e e eEeeeeEenEeReAEeReeAeRe A eR e eReReeEe Rt e b et eEeneeEeneeEeneebeneeteneerenean 143
L 1 OSSP 144
RS O Sl (1= 10 < o) OSSOSO 146
SAVE .ottt et ettt R et R R et R et £ e £ R e nEeEeneeEeeEeReeEeReeAeRe A eR e e R e Rt e Ee Rt e b et e Ee e eEeneeEeneebeneeteneerenean 150
SAVE (EXEENAEA) ...veviiteiieieieiesie ettt sttt ettt ettt eseebeseebeseebesaeseseesesbene et e st et e e ek e e et e neebesenbeneebenentenenseneas 152
2 SO RPSPTSTPRSTPRS 156
SB (EXLENAEM)cveveieieieieiete ettt sttt ettt st ettt e s e et e seebese e ke s e e b e s e e Re b e Rt e R et R e Re b et e be e e beneebeneebeneeteneenenean 157
S OSSR RPSTPTSTPRSTPRS 158
SEH e h et Rttt E et R e £ R e £ Ee e ke eEeR e A eR e A e Re A e Rt e R eRe e R e Rt e b et e b e neeEeneeEeneebeneeteneerenean 159
SV ettt et R et Rt e At R e e £ e e e R et eEe e eEeeE e R e eEeR e AR e Re A eReeReRe e R e Rt e b et e b et eEeneeEeneebeneeteneerenean 160
S PRSPPSO 161
R D (A =010 L= o) PR PSRPTSTPRSTPRS 162
SD FY (SP-REIGIIVE) ...cveueiieieieietiieete ettt sttt sttt st e teseebeseebesaeseseese st ese st eneebe st et e e ebe st ebeseebeseebeseetesseseneas 163
SPry (SP-Relative, EXIENTEH)ccuo ittt sttt e s r e te s ae e te st e en e e eseenbeeneenteeneennas 164
SD FA(SP-REIGLIVE)eueiieieieieetisieie ettt sttt se et seebe s e e s e seese st ese st e e e bene et e e e be st ebeseebeseebeseetesenseneas 165
SD ra (SP-Relative, EXTENUEA).........ccoiie ettt ettt e st e te s re e te st e en e e eseenbeeneentesneennas 166
SDBBP.....ocutitettieeiesie ettt ettt R et R et e Rt ket E e e R e e Ee e ke eEeR e e A e R e eAe Rt R e Rt e Re Rt R e R e e b et e b et eEeneebeneebeneeteneerenean 167
S OSSR PRSPTSTPSTPRSN 168
IS I (A =010 L= o) SO RPSTPTSTPRSTPTS 169
S PP PTSTPRSPRSN 170
SLL (EXEENAEA)eveviienieieietesee e seete st st sttt seste st stesesbe e eteseebeseebeseebeseesesaeseseese st ese et ene et ene et e e ebe st ebesenbeseebenentenenseneas 171
S ST RRPRSPTSTPSTPRSN 172
S ST UTPSPTSTPRSTPRSN 173
S I ST RPRSPTSTPRSTPRS 174
SLTT (EXTENAE) ..ottt sttt ettt st se et e se et e s e e b e s e e se st ese et e ne e b e ne et e e et e st ebesenbeneebeseebenenseneas 175
S I O S SEPUTPSPTSTPTSTPRS 176
SLTIU (EXEENAEU). ... cveeeeieieieietesiete et see sttt sttt ste st teseebeseebeseebeseebesaesessesessesesbeneabeneebe e et e st ebesenbeseebeseesesensenens 177
S I ST SRPTSRPRSTPRSTN 178
SR A ettt et et e Rt E e Rt R e Rt R et R e £ R e e eEeeEeEeAEeRenE e Rt eAeRe R eReeReRe e R e Rt eE et e b et ebeneebeneebeneeteneenenean 179
SRA (EXLENUEA) ...ttt sttt sttt et e et e seebeseebeseebeseeseseesesbese et eneebene e b e e e beneebeneebene et e neeteneerenean 180
SRAV ettt Rt R et et ket E e e Ee £ Ee e ke AEeR e e A e R e eAe Rt R eR e eEe Rt e R e Re e b et e Ee e eReneeEeneebeneeteneerenean 181
S S RRPSTPTSRPSTPRSN 182
SRL (EXTENAEH) ...ttt sttt ettt st et et e se et e seebeseebe s e eseseese st ese et eneebene e b e e et e ne e ke neebene et e neeteneenenean 183
SRLV ettt ettt ettt Rt e Rt R e Rt R et R e e R e e eEeeeeEeeEeReeAeR e AR e Re R eR e eR e Rt e Ee Rt e b et e b et eReneeEeneebeneeteneerenean 184
S]] SRS SPTSTPTSTPTS 185
SV ettt ettt e Rt ARt A e Rt R e Rt R e Rt R et R e £ eEeeeeEeneeEeAEeRe AR eReeEeRe A eReeRe Rt e R e Rt e b et eEe e eEeneeEeneebeneeteneerenean 186
SW (EXEENAEA) ...ttt sttt sttt sttt et et e et e st ebese et e seebe s e eseseese st ese e b eneebene e b e e ebe st ebeseebenenbeneeteneereneas 187
SW X (SP-REIGLVE)......eueeieeetiieterieie ettt ettt st e be s e be s e e b e st e se st esesbe e e bene et e e ebe st ebeseebeseebeseesenenseneas 188
SW rX (SP-Rel@tive, EXIENAE)covieiiieeiiieiieesieesteeste ettt st sttt ettt be st et e seebeseebeseeteneeneneas 189
Y = WS L = 1AV =) R 190
SW ra (SP-Relative, EXIENAE)..........ccoiiiee ettt et sttt s ae et st e et eereenteeneeneeneennas 191

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

ZEB .t E R A E R £ £ SRR R £ A bR AR A SRR £ SR b SRR R R R e e Rkt e R R e e e b 193
ZEH bR R bR £ R R AR R bR AR A bR £ SR b AR AR b e e Rkt E bRt e e b 194
ZEW et h bR AR R £ £ R R AR R SRR £ A bR e AR R R SRR R R R e e Rkt E R bRt e e b 195
APPENIX A REVISION HISIOMY ..ottt b e bbbt e b e e bbb e b e e bbb n s s 199

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

vi

List of Figures
Figure 2-1: Example Of INStrUCtiON DESCIIPLION.........eiuiitiriireiterie ettt st e et be bt sbesbesbesnen 8
Figure 2-2: Example Of INSEIUCHION FIEIAS........coiiiiiiiiee et et sae b e e 9
Figure 2-3: Example of Instruction Descriptive Name and MNEMONICccoouriririiinere e 9
Figure 2-4: Example Of INSLIUCHON FOMMEL.........coeiiiiiiie ittt e e e bbb bbb snens 9
Figure 2-5: Example Of INSLIUCLION PUIMPOSEcoutiiitiiiii ettt b e sttt se b e saesbe b e 10
Figure 2-6: Example Of INStrUCtioN DESCIIPLION.........ccuiiiiiitirierie ettt st e b e saesre b e 10
Figure 2-7: Example Of INStrUCiON RESIICLIONScc.iiiiiiiiese ettt et s sae b b e 11
Figure 2-8: Example Of INStrUCEION OPEIELIONcoueitiriirieitirierie ettt sttt e e e ese b ae e sbe b e 11
Figure 2-9: Example Of INStrUCON EXCEPLIONcouiitiiiiiitisiesie ettt st st sne b b e 11
Figure 2-10: Example of Instruction Programming NOEES..........cc.oiiieriieirrceescre sttt sre e 12
Figure 2-11: COP_LW Pseud0COde FUNCLION........ccccieiieie ettt st e e e et sae e e stesseestesnaenseesaeseennenseenns 13
Figure 2-12: COP_LD PSeUdOCOUE FUNCLION........cciiiieiiecee sttt st e st et este et e sreesae e e stesseetesaaenteenaeseennenseenns 13
Figure 2-13: COP_SW PseudOCOTE FUNCLIONcocuiiieie ettt et st e e ste s e tesaa e e ena et e ennenneenns 13
Figure 2-14: COP_SD Pseud0COdE FUNCLION.........ciiiiiciicee ittt stee st te e e ste e sreesae e e saessaestessaesseenaeseennenseenns 14
Figure 2-15: CoprocessorOperation PSeudoCode FUNCHION.........oo.iiiieiieieeeeee et 14
Figure 2-16: AddressTrans ation PSeuUdOCOE FUNCLION...........cceiieiieiieie ettt st e b e enreenns 15
Figure 2-17: LoadMemory PseudoCOde FUNCLION..........ciiii ittt st st enne s 15
Figure 2-18: StoreMemory PSeudoCode FUNCLION.............cciiiiie ettt st s te s be s e b e ennenreenns 16
Figure 2-19: Prefetch PSeUdOCOOE FUNCLION...........coi ittt et st e e sae s e e tesra e e enaebeennenseenes 16
Figure 2-20: SyncOperation PSeUdOCOOE FUNCEION.........coiiiiiiieiiecie ettt s sr e 17
Figure 2-21: ValueFPR PSeUdOCOUE FUNCLIONcc.ociiiicee ettt st ste e te s et ena e beennenneenes 18
Figure 2-22: StoreFPR PSeudOCO0E FUNCLIONcciiieiicie ettt e et s te e e e ena e beennenneenns 19
Figure 2-23: CheckFPEXception PSeudoCode FUNCLION ..ot 20
Figure 2-24: FPConditionCode Pseudocode FUNCLION............cooiiieie ettt s st ne s 20
Figure 2-25: SetFPConditionCode Pseudocode FUNCLION...........c.ceiiiieieiiee ettt st s e e nre s 20
Figure 2-26: Signal Exception PSeudoCode FUNCLIONooviiiiiieiiicie ettt s 21
Figure 2-27: Signal DebugBreakpointException PSeudocode FUNCLION............ccoiiiiiiinene e 21
Figure 2-28: Signal DebugM odeBreakpointException Pseudocode FUNCLION..........c.cooiiiiiiinene e 21
Figure 2-29: NullifyCurrentlnstruction PseudoCode FUNCLION.............ccoiiieiiiiierecie e este et 21
Figure 2-30: JumpDelaySlot PSEUAOCOOE FUNCLION ..ottt et s 22
Figure 2-31: NotWordValue PSeUdOCOTE FUNCLIONccuiiieie ettt st st st e b e e e nreenns 22
Figure 2-32: PolyMult PSEUdOCOTE FUNCLION.........cciiieitecee ettt e ae e sae s e tesra et e esa et e ennenreenns 22
Figure 4-1: Xlat PSEUAOCOUE FUNCLIONcceeiiiiiciie ettt sttt st e e e este e e sreetesaeetesaeentessaenseenaenseennensennns 45

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 1-1: Symbols Used in Instruction Operation SEBEEMENTScccoererirereiene e r e s 3
Table 2-1: AccessLength Specifications for LOAdS/SIOrES.couoiiirireeceeeere e e 16
Table 3-1: MIPS16e General-PurPOSE REJISIEIS.coiterierieieiee ettt sttt sr st st e e e et se st ae b e s besae e neas 27
Table 3-2: MIPS16e Special-PurpOSe REQISLENS........c.iiiieieerieieee ettt bbbt sb b sae b e 27
Table 3-3: ISA MOUE Bit ENCOUINGS......ccuiiieiiiieiestieste et ettt see st ste s e s te s e e saa e teeaa e teeseesteeasesseeneesreeneesaeensesseensensnnns 28
Table 3-4: MIPS16e Load and SEOre INSIFUCLIONScouiiiiiiiieiereeieeeee ettt sttt et sb b sae b e 30
Table 3-5: MIPS16e Save and ReStOre INSIIUCLIONS..........ciiiiieieeeeeieeeeeies ettt sttt e sbesaesae b e 30
Table 3-6: MIPS16e ALU IMMEMiate INSITUCLIONScuiiiiieieee ettt e s b e sbe e 30
Table 3-7: MIPS16e Arithmetic One, Two or Three Operand Register INSIIUCLIONScoovververierereceeeeeeeeerese e 30
Table 3-8: MIPSLEE SPECial INSITUCTIONS........ciuiiirie ittt b bbb b e e e se b st aesbesbesaesbe e 32
Table 3-9: MIPS16e Multiply and Divide INSIIUCLIONS........cc.oiuiieieeeeeeenieeere et s sb s sre s 32
Table 3-10: MIPS16e Jump and BranCh INSEIUCLIONS...........oouiieieeeieeeeeeeieee ettt s sbe e sre e 32
Table 3-11: MIPS16€ Shift INSITUCLIONS.......cc.oiiiiii ittt et sttt b et aesbesbesae b e 32
Table 3-12: Implementation-Definable Macro INSIIUCLIONS..........ooceiririrererere et sr e 33
Table 3-13: PC-Relative MIPSLEE INSITUCHIONSc.iitiieieeieieee ettt st e sbe b saesaenaas 33
Table 3-14: PC-Relative Base Used for Address CalCUIBLIONcccoeiirirereiiiisene st 33
Table 3-15: MIPS16€ EXENSIDIE INSITUCLIONScoviieiiiieieeeeie ettt sttt et eb e snesne e 34
Table 3-16: MIPS16€ INSLIUCHION FIEIASc.eiiiiiiie ettt sb e ebe e 36
Table 3-17: Symbols Used in the Instruction ENCOAiNg TablES..........cooviieieiiee e 39
Table 3-18: MIPS16e Encoding of the OpCOde FIEl ..o e e 40
Table 3-19: MIPS16e JAL(X) Encoding Of the X FIEIdc.ccce it 41
Table 3-20: MIPS16e SHIFT Encoding Of thef FIeld ..ottt 41
Table 3-21: MIPS16e RRI-A Encoding of the f FIeld ..ot 41
Table 3-22: MIPS16e 18 Encoding Of the fUNCE FIEIdc.coeiie ettt 41
Table 3-23: MIPS16e RRR Encoding Of the f FIeldcov oot 41
Table 3-24: MIPS16e RR Encoding of the FUNCE FIEI ..ot 42
Table 3-25: MIPS16e 164 Encoding of the fUNCE FIEldooov it 42
Table 3-26: MIPS16e 18 Encoding of the s Field When fUNCI=SVRS.........oeieeee e 42
Table 3-27: MIPS16e RR Encoding of the ry Field when fUNCE=J(AL)R(C)cveceeeieeeee e 42
Table 3-28: MIPS16e RR Encoding of the ry Field When fUNCE=CINV T ... 42
MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 vii

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

viii MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 1

About This Book

The MIPS64® Architecture for Programmers Volume |V-a comes as a multi-volume set.

» Volume | describes conventions used throughout the document set, and provides an introduction to the MIPS64®
Architecture

* Volume Il provides detailed descriptions of each instruction in the M| instruction set

* Volume Il describes the MIPS64® Privileged Resource Architecture which defines and governs the behavior of the
privileged resources included in a MIPS64® processor implementation

* Volume | V-a describes the MIPS16e™ A pplication-Specific Extension to the MIPS64® Architecture
* Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS64® Architecture
* Volume IV-c describes the MIPS-3D® A pplication-Specific Extension to the MIPS64® Architecture

 Volume IV-d describes the SmartM I PS® A ppli cation-Specific Extension to the MIPS32® Architecture and is not
applicable to the MIPS64® document set

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fontsin this book.

1.1.1 Italic Text
* isused for emphasis

* isused for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and various floating point instruction formats, such as S, D, and PS

* isused for the memory access types, such as cached and uncached

1.1.2 Bold Text
* represents aterm that is being defined

* isused for bitsand fields that are important from a hardware perspective (for instance, register bits, which are not
programmabl e but accessible only to hardware)

* isused for ranges of humbers; the range isindicated by an ellipsis. For instance, 5..1 indicates numbers 5 through 1

* isused to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined bel ow.

1.1.3 Courier Text

courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 1

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

1.2 UNPREDICTABLE and UNDEFINED

Theterms UNPREDI CTABL E and UNDEFINED are used throughout this book to describe the behavior of the
processor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions
in aprivileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable bit set in the Status register).
Unprivileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can cause UNPREDI CTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDI CTABLE results may vary from processor implementation to implementation, instruction to instruction, or
as afunction of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDI CTABL E operations may cause aresult to be generated or not. If aresult isgenerated,
itisUNPREDICTABLE. UNPREDICTABL E operations may cause arbitrary exceptions.

UNPREDI CTABLE results or operations have several implementation restrictions:

* Implementations of operations generating UNPREDICTABL E results must not depend on any data source (memory
or internal state) which isinaccessible in the current processor mode

* UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state whichis
inaccessible in the current processor mode. For example, UNPREDICTABL E operations executed in user mode
must not access memory or internal state that isonly accessiblein Kernel Mode or Debug Mode or in another process

» UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as afunction of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED operations
or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

» UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which thereis
no exit other than powering down the processor). The assertion of any of the reset signals must restore the processor
to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDI CTABL E values, software may depend on the fact that asampling of an UNSTABLE valueresultsin alegal
transient value that was correct at some point in time prior to the sampling.

UNSTABL E values have one implementation restriction:

» Implementations of operations generating UNSTABL E results must not depend on any data source (memory or
internal state) which isinaccessible in the current processor mode

2 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

1.3 Special Symbolsin Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1-1.

Table 1-1 Symbols Used in Instruction Operation Statements

Symboal Meaning
«— Assignment
= # Tests for equality and inequality
[Bit string concatenation
xY A y-bit string formed by y copies of the single-bit value x
A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the binary
b#n value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" prefix is
omitted, the default base is 10.
Obn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).
Ooxn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).
X Selection of bitsy through z of bit string x. Little-endian bit notation (rightmost bit is0) is used. If y isless than
y..Z z, this expression is an empty (zero length) bit string.
+ - 2's complement or floating point arithmetic: addition, subtraction
#, X 2's complement or floating point multiplication (both used for either)
div 2's complement integer division
mod 2's complement modulo
/ Floating point division
< 2's complement |ess-than comparison
> 2's complement greater-than comparison
< 2's complement less-than or equal comparison
> 2's complement greater-than or equal comparison
nor Bitwise logical NOR
xor Bitwise logical XOR
and Bitwise logical AND
or Bitwiselogical OR
GPRLEN Thelength in bits (32 or 64) of the CPU general-purpose registers
GPR[X] CPU general-purpose register x. The content of GPR[0] isawayszero. In Release 2 of the Architecture, GPR[X]
is ashort-hand notation for SGPR] SRSCtlcgg, X].
SGPR[sX] ISréR;eRI ease 2 of the Architecture, multiple copies of the CPU general-purpose registers may be implemented.
[sX] refersto GPR set s, register x.
FPR[X] Floating Point operand register x
FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].
FPR[X] Floating Point (Coprocessor unit 1), genera register x

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol M eaning
CPR[zx,9] Coprocessor unit z, general register x, select s
CP2CPR[X] Coprocessor unit 2, general register x
CCR[zX] Coprocessor unit z, control register x
CP2CCR[X] Coprocessor unit 2, control register x
COC[Z Coprocessor unit z condition signal
Xlat[x] Trand ation of the MIPS16e GPR number x into the corresponding 32-bit GPR number
Endian mode as configured at chip reset (0 —Little-Endian, 1 — Big-Endian). Specifies the endianness of the
BigEndianMem memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endianness
of Kernel and Supervisor mode execution.
The endianness for load and store instructions (0 — Little-Endian, 1 — Big-Endian). In User mode, this
BigEndianCPU endianness may be switched by setting the RE bit in the Satus register. Thus, BigeEndianCPU may be computed

as (BigendianMem X OR ReverseEndian).

ReverseEndian

Signal to reverse the endianness of load and store instructions. Thisfeature is available in User mode only, and
isimplemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as (SRgg and
User mode).

LLbit

Bit of virtual state used to specify operation for instructionsthat provide atomic read-modify-write. LLbit isset
when alinked load occurs and istested by the conditional store. Itiscleared, during other CPU operation, when
a store to the location would no longer be atomic. In particular, it is cleared by exception return instructions.

1+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as alabel. It indicates the instruction time
during which the pseudocode appears to “execute.” Unless otherwise indicated, al effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to atime
label of |. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, theinstruction operation iswritten in sectionslabeled
with the instruction time, relative to the current instruction I, in which the effect of that pseudocode appears to
occur. For example, an instruction may have aresult that is not available until after the next instruction. Such an
instruction has the portion of the instruction operation description that writes the result register in a section
labeled | +1.

The effect of pseudocode statements for the current instruction labelled | +1 appearsto occur “at the sametime”
asthe effect of pseudocode statements|abeled | for the following instruction. Within one pseudocode sequence,
the effects of the statements take place in order. However, between sequences of statements for different
instructions that occur “at the sametime,” there is no defined order. Programs must not depend on a particular
order of evaluation between such sections.

The Program Counter value. During the instruction time of an instruction, thisis the address of the instruction
word. The address of the instruction that occurs during the next instruction time is determined by assigning a
value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit M1PS16e instruction)
or 4 before the next instruction time. A taken branch assigns the target address to the PC during the instruction
time of theinstruction in the branch delay dlot.

In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the restart
address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor O register on an
exception. The PC value contains afull 64-bit address all of which are significant during a memory reference.

ISA Mode

In processors that implement the M1PS16e A pplication Specific Extension, the |SA Mode isasingle-bit register
that determines in which mode the processor is executing, as follows:

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing MI1PS16e instructions

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on ajump-and-link or branch-and-link
instruction, or into a Coprocessor O register on an exception.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

1.4 For More Information

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol M eaning

Thenumber of physical address bitsimplemented is represented by the symbol PABITS As such if 36 physical

PABITS address bits were implemented, the size of the physical address space would be 2BITS = 23 hytes

The number of virtual address bitsimplemented in a segment of the address space s represented by the, e.symhe b
SEGBITS SEGBITS Assuch, if 40 virtual address bits areimplemented in a segment, the size of the segment is 258!
=20 pytes.

Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRS). In MIPS32, the FPU has 32 32-bit
FPRsin which 64-bit data types are stored in even-odd pairs of FPRs. In M1PS64, the FPU has 32 64-bit FPRs
in which 64-bit data types are stored in any FPR.

FP32RegistersMode | | \11ps32 implementations, FP32Register sM odeisalwaysa0. MIPS64implementations have acompatibility

mode in which the processor references the FPRs as if it were a MIPS32 implementation. In such a case
FP32Register M ode is computed from the FR bit in the Satus register. If thisbit isa0, the processor operates
asif it had 32 32-bit FPRs. If thisbit isa 1, the processor operates with 32 64-bit FPRs.

The value of FP32Register sMode is computed from the FR bit in the Status register.

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch or
InstructioninBranchD | jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value isfalse

elaySlot if abranch or jump occursto an instruction whose PC immediately follows a branch or jump, but which is not
executed in the delay slot of abranch or jump.

Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
parameter as an exception-specific argument). Control does not return from this pseudocode function - the
exception issignaled at the point of the call.

Signal Exception(exce
ption, argument)

1.4 For More lInformation

Various MIPS RISC processor manualsand additional information about MIPS products can befound at the MIPSURL:
http://www.mips.com

Comments or questions on the MIPS64® Architecture or this document should be directed to

MIPS Architecture Group

MIPS Technologies, Inc.

1225 Charleston Road

Mountain View, CA 94043

or via E-mail to architecture@mips.com.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 5

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

6 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2-1 shows an example instruction. Following the figure are descriptions of the fields listed below:
 “Instruction Fields’ on page 8

* “Instruction Descriptive Name and Mnemonic” on page 9

» “Format Field” on page 9

* “Purpose Field” on page 10

 “Description Field” on page 10

» “Restrictions Field” on page 10

* “Operation Field” on page 11

» “Exceptions Field” on page 11

» “Programming Notes and |mplementation Notes Fields’ on page 11

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

Instruction Mnemonic

and Descriptive Name —# Example Instruction Name EXAMPLE

Instruction encodin

constant and variabgfe\ 31 26 25 21 20 16 15 11 10 6 5 0

field names and values SPECIAL rs rt rd 0 EXAMPLE
000000 00000 000000

Architecture level at 6 5 5 5 5 6

which instruction was

defined/redefined and

assembler format(s) fOI'/V Format: EXAMPLE rd, rs,rt MI1PS32

each definition
Short description ——————» Purpose: to execute an EXAMPLE op

Symbolic descripti - N
ymbolic description Description: GPR[rd] « GPR([r]s exampleop GPR]rt]

Full description of / This section describes the operation of the instruction in text, tables, and
instruction operation illustrations. It includes information that would be difficult to encode in the
Operation section.

Restrictions on o
instruction and Restrictions:

operands Thissection listsany restrictionsfor the instruction. This can include values of the
instruction encoding fields such as register specifiers, operand values, operand
formats, address alignment, instruction scheduling hazards, and type of memory
access for addressed |ocations.

High-level language .
description ofinstruction\> Oper.atlon:. . .) o
operation * This section describes the operation of an instructionin a*/
[* high-level pseudo-language. It is precise in ways that the */
[* Description section is not, but is also missing information */
[* that is hard to expressin pseudocode.*/
temp ¢ GPR[rs] exampleop GPR[rt]
GPR[rd]« sign_extend(temps; g)

Exceptions that

. . Exceptions:
instruction can cause

A list of exceptions taken by the instruction

Notes for programmers —— g Programming Notes;
Information useful to programmers, but not necessary to describe the operation of
the instruction

Notes for implementors .)
~———® |mplementation Notes:
Like Programming Notes, except for processor implementors

Figure 2-1 Example of Instruction Description

2.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The following
rules are followed:

8 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

2.1 Understanding the Instruction Fields

» Thevalues of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 2-2).
Constant valuesin afield are shown in binary below the symbolic or hexadecimal value.

» All variablefields are listed with the lowercase names used in the instruction description (rs, rt and rd in Figure 2-2).

* Fieldsthat contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 2-2). If
such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 ADD
rs rt rd
000000 00000 100000
6 5 5 5 5 6

Figure 2-2 Example of Instruction Fields

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
2-3.

Add Word ADD

Figure 2-3 Example of I nstruction Descriptive Name and M nemonic

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
giveninthe Format field. If theinstruction definition was later extended, the architecture levels at which it was extended
and the assembler formats for the extended definition are shown in their order of extension (for an example, see
C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levelsinclude all instructions in previous
levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the extended
architecture.

Format: 2pp rd, rs, rt MIPS32

Figure 2-4 Example of Instruction For mat

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectural level at which
theinstruction was first defined, for example “MIPS32” is shown at the right side of the page.

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the
ADD.fmt instruction lists both ADD.S and ADD.D.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 9

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Purpose:
To add 32-bit integers. If an overflow occurs, then trap.

Figure 2-5 Example of Instruction Purpose

2.1.5 Description Field

If aone-line symbolic description of the instruction isfeasible, it appears immediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Description: GPR[rd] < GPR[rs] + GPR[rt]
The 32-bit word value in GPR rt is added to the 32-bit value in GPR rsto produce a 32-bit result.

* If the addition results in 32-bit 2's complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs

« If the addition does not overflow, the 32-bit result is signed-extended and placed into GPR rd

Figure 2-6 Example of Instruction Description

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs” is the floating point operand register specified by the instruction field fs. “ CP1 register fd”
isthe coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control /Satus
register.

2.1.6 RestrictionsField
The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictionsfall into one
of the following six categories:
« Vaid valuesfor instruction fields (for example, see floating point ADD.fmt)
e ALIGNMENT requirements for memory addresses (for example, see LW)
« Valid values of operands (for example, see DADD)
« Valid operand formats (for example, see floating point ADD.fmt)

 Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards for
which some processors do not have hardware interlocks (for example, see MUL).

* Valid memory access types (for example, see LL/SC)

10 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

2.1 Understanding the Instruction Fields

Restrictions:

If either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Figure 2-7 Example of Instruction Restrictions

2.1.7 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation
resembling Pascal. This formal description complements the Description section; it is not completein itself because
many of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Operation:

if NotWordvalue (GPR[rs]) or NotWordvValue(GPR[rt]) then
UNPREDICTABLE
endif
temp < (GPR[rsliq||GPRIlrsls; o) + (GPR[rtlsqi||GPRIrtlss q)
if temp;, # temps;; then
SignalException (IntegerOverflow)
else
GPR[rd] ¢« sign_extend(temps; q)
endif

Figure 2-8 Example of Instruction Operation

See Section 2.2, "Operation Section Notation and Functions' on page 12 for more information on the formal notation
used here.

2.1.8 Exceptions Field

The Exceptionsfield lists the exceptions that can be caused by Operation of the instruction. It omits exceptionsthat can
be caused by the instruction fetch, for instance, TLB Réfill, and also omits exceptions that can be caused by
asynchronous external events such as an Interrupt. Although aBus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the
implementation.

Exceptions:
Integer Overflow

Figure 2-9 Example of Instruction Exception

An instruction may cause implementation-dependent exceptions that are not present in the Exceptions section.

2.1.9 Programming Notes and Implementation Notes Fields

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 11

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not
necessary to describe the instruction and does not belong in the description sections.

Programming Notes:
ADDU performs the same arithmetic operation but does not trap on overflow.

Figure 2-10 Example of I nstruction Programming Notes

2.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level 1anguage notation to describe the operation
performed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described bel ow.

This section presents information about the following topics:

* “Instruction Execution Ordering” on page 12

 “Pseudocode Functions’ on page 12

2.2.1 Instruction Execution Ordering

Each of the high-level language statements in the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and include
the following:

» “Coprocessor General Register Access Functions’ on page 12
» “Memory Operation Functions’ on page 14
» “Hoating Point Functions’ on page 17

» “Miscellaneous Functions’” on page 20

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
general registers and the rest of the system. What a coprocessor does with aword or doubleword supplied to it and how
a coprocessor supplies aword or doubleword is defined by the coprocessor itself. This behavior is abstracted into the
functions described in this section.

12 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with aword from memory during aload
word operation. The action is coprocessor-specific. The typical action would be to store the contents of memword in

coprocessor general register rt.

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */

endfunction COP_LW
Figure 2-11 COP_LW Pseudocode Function

COP_LD

The COP_L D function defines the action taken by coprocessor z when supplied with adoubleword from memory during
aload doubleword operation. The action is coprocessor-specific. The typical action would be to store the contents of
memdouble in coprocessor general register rt.

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */

endfunction COP_LD
Figure 2-12 COP_L D Pseudocode Function

COP_SW

The COP_SW function defines the action taken by coprocessor z to supply aword of data during a store word operation.
The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in

coprocessor general register rt.

dataword ¢« COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word value

/* Coprocessor-dependent action */

endfunction COP_SW
Figure 2-13 COP_SW Pseudocode Function

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 13

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

14

COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store
doubleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the
low-order doubleword in coprocessor general register rt.

datadouble ¢« COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
datadouble: 64-bit doubleword value

/* Coprocessor-dependent action */

endfunction COP_SD

Figure 2-14 COP_SD Pseudocode Function

Coprocessor Operation

The CoprocessorOperation function performs the specified Coprocessor operation.

CoprocessorOperation (z, cop_fun)

/* zZ: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */

endfunction CoprocessorOperation

Figure 2-15 Coprocessor Oper ation Pseudocode Function

2.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for alittle-endian
ordering thisis the least-significant byte.

In the Operation pseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the dataitem to be loaded or stored is passed in the
AccessLength field. The valid constant names and values are shown in Table 2-1. The bytes within the addressed unit of
memory (word for 32-bit processors or doubleword for 64-hit processors) that are used can be determined directly from
the AccessLength and the two or three low-order hits of the address.

AddressTranslation

The AddressTranglation function translates a virtual address to a physical address and its cache coherence algorithm,
describing the mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the referenceis to Instructions or Data (1orD), find the corresponding
physical address (pAddr) and the cache coherence algorithm (CCA) used to resolve the reference. If the virtual address
isin one of the unmapped address spaces, the physical address and CCA are determined directly by the virtual address.
If the virtual addressisin one of the mapped address spaces then the TLB or fixed mapping MMU determines the

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

physical address and access type; if the required trandation is not present in the TLB or the desired accessis not
permitted, the function fails and an exception is taken.

(pAddr, CCA) ¢« AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cache Coherence Algorithm, the method used to access caches*/
/* and memory and resolve the reference */

/* vAddr: virtual address */
/* ITorD: Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

Figure 2-16 AddressTranslation Pseudocode Function

LoadMemory
The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cache Coherence Algorithm (CCA) and the access
(lorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The datais returned in a
fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address and the
AccessLength indicate which of the byteswithin MemElem need to be passed to the processor. If the memory accesstype
of the reference is uncached, only the referenced bytes are read from memory and marked as valid within the memory
element. If the accesstype is cached but the datais not present in cache, an implementati on-specific size and alignment
block of memory isread and loaded into the cache to satisfy aload reference. At a minimum, this block isthe entire
memory element.

MemElem ¢« LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */

/* width is the same size as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */

/* respectively. */

/* CCA: Cache Coherence Algorithm, the method used to access caches */
/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */

/* pAddr: physical address */
/* VvAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

Figure 2-17 LoadM emory Pseudocode Function

StoreMemory
The StoreMemory function stores a value to memory.
The specified datais stored into the physical location pAddr using the memory hierarchy (data caches and main memory)

as specified by the Cache Coherence Algorithm (CCA). The MemElem contains the data for an aligned, fixed-width
memory element (aword for 32-bit processors, a doubleword for 64-bit processors), though only the bytes that are

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 15

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

16

actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLength field indicate
which of the bytes within the MemElem data should be stored; only these bytes in memory will actually be changed.

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* CCA:
/‘k

Cache Coherence Algorithm, the method used to access */
caches and memory and resolve the reference. */

/* AccessLength: Length, in bytes, of access */

/* MemElem:
/*

/*

/*

/*

/*

/* pAddr:
/* vAddr:

Data in the width and alignment of a memory element. */

The width is the same size as the CPU general */

purpose register, either 4 or 8 bytes, */

aligned on a 4- or 8-byte boundary. For a */
partial-memory-element store, only the bytes that will be*/
stored must be valid.*/

physical address */

virtual address */

endfunction StoreMemory

Prefetch

Figure 2-18 StoreMemory Pseudocode Function

The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may increase
performance but must not change the meaning of the program or alter architecturally visible state.

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA: Cache Coherence Algorithm, the method used to access */
/* caches and memory and resolve the reference. */

/* pAddr: physical address */

/* vAddr: virtual address */

/* DATA: 1Indicates that access is for DATA */

/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Figure 2-19 Prefetch Pseudocode Function

Table 2-1 lists the data access lengths and their labels for loads and stores.

Table 2-1 AccessL ength Specificationsfor Loads/Stores

AccessL ength Name | Value Meaning

DOUBLEWORD 7 8 bytes (64 bits)
SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

SyncOperation
The SyncOperation function orders loads and stores to synchronize shared memory.

This action makes the effects of the synchronizable loads and stores indicated by stype occur in the same order for all
processors.

SyncOperation (stype)
/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

Figure 2-20 SyncOper ation Pseudocode Function

2.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are
interpreted to form aformatted value. If an FPR contains a value in some format, rather than unformatted contents from
aload (uninterpreted), it isvalid to interpret the value in that format (but not to interpret it in a different format).

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 17

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

value ¢« ValueFPR(fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* s, D, w, L, PSS, */

/* OB, QH, */

/* UNINTERPRETED_WORD, */

/* UNINTERPRETED_DOUBLEWORD */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1 and SDC1l */

case fmt of
S, W, UNINTERPRETED_WORD:
valueFPR < UNPREDICTABLE®” || FPR[fprls;. g

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)
if (fprg # 0) then
valueFPR ¢« UNPREDICTABLE
else
valueFPR « FPR[fpr+lls; o || FPRIfprls; o
endif
else
valueFPR « FPR[fpr]
endif

L, PS, OB, OQH:
if (FP32RegistersMode = 0) then
valueFPR <« UNPREDICTABLE
else
valueFPR <« FPR[fpr]
endif

DEFAULT:
valueFPR ¢« UNPREDICTABLE

endcase
endfunction ValueFPR

Figure 2-21 ValueFPR Pseudocode Function

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by acomputational or move operation. Thisbinary representation isvisibleto store or move-from instructions.
Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a different
format.

18 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

StoreFPR

StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* s, D, w, L, PS, */

/* OB, QH, */

/* UNINTERPRETED_WORD, */

/* UNINTERPRETED_DOUBLEWORD */

/* value: The formattted value to be stored into the FPR

/* The UNINTERPRETED values are used to indicate that the datatype */

/* is not known as, for example, in LWC1 and LDC1l */

case fmt of
S, W, UNINTERPRETED_WORD:
FPR[fpr] <« UNPREDICTABLE’Z || values;

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)
if (fpry # 0) then

UNPREDICTABLE
else
FPR[fpr] < UNPREDICTABLE’? || value,;.
FPR[fpr+l] < UNPREDICTABLE’? || valueg;.
endif
else
FPR[fpr] <« wvalue
endif

L, PS, OB, QH:
if (FP32RegistersMode = 0) then

UNPREDICTABLE
else

FPR[fpr] <« value
endif

endcase

endfunction StoreFPR

Figure 2-22 StoreFPR Pseudocode Function

.0
.32

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

19

Chapter 2 Guide to the Instruction Set

CheckFPEXxception

CheckFPException ()

/* A floating point exception is signaled if the E bit of the Cause field is a 1 */

/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if | (FCSRy7 = 1) or
((FCSRq14. .15 and FCSRqq. . 7) # 0))) then
SignalException (FloatingPointException)
endif

endfunction CheckFPException

Figure 2-23 Check FPException Pseudocode Function

FPConditionCode
The FPConditionCode function returns the value of a specific floating point condition code.
tf «<FPConditionCode (cc)
/* tf: The value of the specified condition code */
/* cc: The Condition code number in the range 0..7 */

if cc = 0 then

FPConditionCode ¢« FCSRj3
else

FPConditionCode ¢ FCSRygicc
endif

endfunction FPConditionCode

Figure 2-24 FPConditionCode Pseudocode Function

SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.

SetFPConditionCode (cc)
if cc = 0 then

FCSR ¢« FCSR3; 44 || tf || FCSRyy o
else
FCSR « FCSRBl..25+cc || tf || FCSR23+CC..0

endif

endfunction SetFPConditionCode

Figure 2-25 SetFPConditionCode Pseudocode Function

2.2.2.4 Miscellaneous Functions
This section lists miscellaneous functions not covered in previous sections.
Signal Exception

The Signal Exception function signals an exception condition.

20 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees areturn
from this function call.

SignalException (Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

Figure 2-26 SignalException Pseudocode Function

Signal DebugBreakpointException

The Signal DebugBreakpointException function signal s a condition that causes entry into Debug Mode from non-Debug
Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees areturn
from this function call.

SignalDebugBreakpointException ()

endfunction SignalDebugBreakpointException

Figure 2-27 Signal DebugBreakpointException Pseudocode Function

Signal DebugM odeBreakpointException

The Signal DebugM odeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees areturn
from this function call.

SignalDebugModeBreakpointException ()

endfunction SignalDebugModeBreakpointException

Figure 2-28 SignalDebugM odeBreak pointException Pseudocode Function

NullifyCurrentl nstruction
The NullifyCurrentlnstruction function nullifies the current instruction.

Theinstruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
kills the instruction in the delay slot of the branch likely instruction.

NullifyCurrentInstruction ()

endfunction NullifyCurrentInstruction

Figure 2-29 NullifyCurrentInstruction PseudoCode Function

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 21

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the PC-relative instructions in the M1PS16e ASE. The
function returns TRUE if theinstruction at vAddr isexecuted in ajump delay slot. A jump delay slot alwaysimmediately
followsaJr, JAL, JALR, or JALX instruction.

JumpDelaySlot (vAddr)
/* vAddr:Virtual address */
endfunction JumpDelaySlot

Figure 2-30 JumpDelaySlot Pseudocode Function

NotWordValue

The NotWordValue function returns a boolean value that determines whether the 64-bit value contains a valid word
(32-bit) value. Such avalue has bits 63..32 equal to bit 31.

result <« NotWordValue (value)

/* result: True if the value is not a correct sign-extended word value; */
/* False otherwise */
/* value: A 64-bit register value to be checked */

NotWordValue ¢« valuegy 35 # (value31)32

endfunction NotWordvValue

Figure 2-31 NotWor dValue Pseudocode Function

PolyMult

The PolyMult function multiplies two binary polynomial coefficients.

PolyMult (x, vy)

temp < 0
for i in 0 .. 31
if x; = 1 then
temp ¢« temp xor (y(31-i)..0 || 0%)
endif
endfor

PolyMult « temp

endfunction PolyMult

Figure 2-32 PolyM ult Pseudocode Function

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When referenceis
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, asingle field has both fixed and variable subfields, so the name contains
both upper- and lowercase characters.

22 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

2.4 FPU Instructions

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfieldsin an instruction format (such asfs, ft,
immediate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in
uppercase.

For the sake of clarity, an aliasis sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an aliasis always lowercase since it refersto a
variable subfield.

Bit encodings for mnemonics are given in Volume |, in the chapters describing the CPU, FPU, MDM X, and MIPS16e
instructions.

See Section 2.3, "Op and Function Subfield Notation" on page 22 for a description of the op and function subfields.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 23

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

24 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 3

The MIPS16e™ Application-Specific Extension to the M1PS64®
Architecture

This chapter describes the purpose and key features of the M1PS16e™ A pplication-Specific Extension (ASE) to the
Ml Architecture. The MIPS16e ASE is an enhancement to the previous MIPS16™ ASE which provides
additional instructions to improve the compaction of the code.

3.1 Base Architecture Requirements

The MI1PS16e A SE requires the following base architecture support:

e The MIPS32 or MIPS64 Architecture: The MIPS16e ASE requires a compliant implementation of the MIPS32 or
MIPS64 Architecture.

3.2 Software Detection of the ASE

Software may determine if the MIPS16e ASE isimplemented by checking the state of the CA bit in the Configl CPO
register.

3.3 Compliance and Subsetting

There are no instruction subsets of the M1PS16e ASE to the MIPS64 Architecture — all MIPS16e instructions must be
implemented. Specifically, this means that the original MIPS16 ASE is not an allowable subset of the MIPS16e ASE.
For the MIPS16e ASE to the MIPS32 Architecture, the instructions which require a 64-bit processor are not
implemented and execution of such an instruction must cause a Reserved Instruction exception.

3.4 MIPS16e Overview

The MI1PS16e ASE allows embedded designs to substantially reduce system cost by reducing overall memory
requirements. The MIPS16e ASE is compatible with any combination of the MIPS32 or MIPS64 Architectures, and
existing MIPS binaries can be run without modification on any embedded processor implementing the MIPS16e ASE.

The MIPS16e ASE must be implemented as part of aMIPS based host processor that includes an implementation of the
MIPS Privileged Resource Architecture, and the other componentsin atypical MIPS based system.

This volume describes only the MIPS16e ASE, and does not include information about any specific hardware
implementation such as processor-specific details, because these details may vary with implementation. For this
information, please refer to the specific processor’s user manual.

This chapter presents specific information about the following topics:

* “MIPS16e ASE Features’ on page 26

» “MIPS16e Register Set” on page 26

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 25

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

* “MIPS16e |SA Modes’ on page 27

« “JALX, JR, and JALR Operationsin MIPS16e and MIPS32 Mode” on page 29
» “MIPS16e Instruction Summaries’ on page 29

» “MIPS16e PC-Relative Instructions’ on page 33

» “MIPS16e Extensible Instructions’ on page 34

» “MIPS16e Implementation-Definable Macro Instructions’ on page 35

» “MIPS16e Jump and Branch Instructions’ on page 36

» “MIPS16e Instruction Formats’” on page 36

 “Instruction Bit Encoding” on page 39

» “MIPS16e Instruction Stream Organization and Endianness’ on page 43
» “MIPS16e Instruction Fetch Restrictions” on page 43

3.5 MIPS16e ASE Features

The MI1PS16e ASE includes the following features:

« alows MIPS16e instructions to be intermixed with existing MIPS instruction binaries

* iscompatible with the M1PS32 and M1PS64 instruction sets

« alows switching between MIPS16e and 32-bit MIPS Mode

* supports 8, 16, 32, and 64-hit data types (64-bit only in conjunction with MIPS64)

« defines eight general-purpose registers, as well asanumber of special-purpose registers

« defines special instructions to increase code density (Extend, PC-relative instructions)

The MIPS16e ASE contains some instructions that are available on M1PS64 host processors only. These instructions

must cause a Reserved Instruction exception on 32-bit processors, or on 64-bit processors on which 64-bit operations
have not been enabled.

3.6 MIPS16e Register Set

The MIPS16eregister setislisted in Table 3-1 and Table 3-2. Thisregister set isatrue subset of the register set available
in 32-bit mode; the M1PS16e ASE can directly access 8 of the 32 registers available in 32-bit mode.

In addition to the eight general-purpose registers, 0-7, listed in Table 3-1, specific instructions in the MIPS16e ASE
reference the stack pointer register (sp), the return addressregister (ra), the condition code register (t8), and the program
counter (PC). Of these, Table 3-1 listssp, ra, and t8, and Table 3-2 liststhe M1PS16e special -purpose registers, including
PC.

The MI1PS16e ASE also contains two move instructions that provide access to all 32 general-purpose registers.

26 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

3.7 MIPS16e ISA Modes

Table 3-1 M1 PS16e Gener al-Pur pose Registers

Symbolic
MIPSl16e 32-Bit MIPS Name
Register Register (From
Encoding® | Encoding? | ArchDefsh)® Description
0 16 0 General-purpose register
1 17 sl General-purpose register
2 2 vO General-purpose register
3 3 vl General-purpose register
4 4 a0 General-purpose register
5 5 al General-purpose register
6 6 a2 General-purpose register
7 7 a3 General-purpose register
MIPS16e Condition Code register;
N/A 24 t8 implicitly referenced by theBTEQZ,
BTNEZ, CMP, CMPI, SLT, SLTU,
SLTI, and SLTIU instructions
N/A 29 sp Stack pointer register
N/A 31 ra Return address register

1. “0-7" correspond to the register’s MIPS16e binary encoding and show how that encoding relates to the
MIPSregisters. “0-7" never refer to the registers, except within the binary MIPS16e instructions. From
the assembler, only the MIPS names ($16, $17, $2, etc.) or the symbolic names (0, s1, vO0, etc.) refer to
the registers. For example, to access register number 17 in the register file, the programmer references

$17 or s1, even though the MIPS16e binary encoding for this register is 001.

2. General registers not shown in the above table are not accessible through the MIPS16e instruction set, ex-
cept by using the Move instructions. The MIPS16e Move instructions can access all 32 general -purpose

registers.

3. The MIPS16e condition code register is referred to as T, t8, or $24 throughout this document, depending

on the context. All three names refer to the same physical register.

Table 3-2 M1 PS16e Special-Pur pose Registers

Symbolic Name

Purpose

Program counter. The PC-relative Add and Load

PC instructions can access this register as an operand.
HI Contains high-order word of multiply or divide result.
LO Contains low-order word of multiply or divide result.

3.7 MIPS16e | SA Modes

This section describes the following:

« the ISA modes available in the architecture, page 28
» the purpose of the ISA Mode field, page 28

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

27

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

* how to switch between 32-bit MIPS and M1PS16e modes, page 28

« therole of the jump instructions when switching modes, page 28

3.7.1 Modes Availablein the M1 PS16e Architecture

There are two ISA modes defined in the MIPS16e Architecture, as follows:
» MIPS 32-bit mode (32-bit instructions)
» MIPS16e mode (16-bit instructions)

3.7.2 Defining the ISA Mode Field

The |SA Mode hit controls the type of code that is executed, as follows:

Table 3-31SA Mode Bit Encodings

Encoding Mode

0b0 MIPS 32-bit mode. In this mode, the processor executes
32-bit MIPS instructions.

Obl MIPS16e mode. In this mode, the processor executes
MIPS16e instructions.

In MIPS 32-bit mode and MIPS16e mode, the JALX, JR, JALR, JALRC, and JRC instructions can change the | SA Mode
bit, as described in Section 3.7.4, "Using MIPS16e Jump Instructions to Switch Modes".

3.7.3 Switching Between M odes When an Exception Occurs

When an exception occurs (including a Reset exception), the ISA Mode bit is cleared so that exceptions are handled by
32-bit code.

The ISA Mode in which the processor was running at the time that the exception occurred is visible to software as bit 0
of the Coprocessor 0 register in which the restart address is stored (EPC, ErrorEPC, or DEPC). See the description of
these instructions in Volume I11 for a complete description of this process.

After the processor switches to 32-bit mode following a Reset exception, the processor starts execution at the 32-bit
mode Reset exception vector.

3.7.4 Using M1 PS16e Jump Instructionsto Switch Modes
The MIPS16e application-specific extension supports procedure calls and returns from both M1PS16e and 32-bit MIPS
code to both MI1PS16e and 32-bit MIPS code. The following instructions are used:
e The JAL instruction supports calls to the same | SA.
e The JALX instruction supports calls that change the | SA.
» The JALR and JALRC instructions support callsto either ISA.
» The JR and JRC instructions support returnsto either |SA.

28 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

3.8 JALX, JR, and JALR Operations in MIPS16e and MIPS32 Mode

The AL, JALR, JALRC, and JALX instructions save the | SA Maode bit in bit O of the general register containing the
return address. The contents of this general register may be used by afuture JR, JRC, JALR, or JALRC instruction to
return and restore the ISA Mode.

The JALX instruction in both modes switches to the other ISA (it changes Ob0 — Ob1 and Ob1 — 0b0).

The JR and JALR instructions in both modes |oad the 1SA Mode bit from bit O of the general register holding the target
address. Bit 0 of the general register is not part of the target address; bit 0 of PC isloaded with a0 so that no address
exceptions can occur.

The JRC and JALRC instructionsin MIPS16e mode load the | SA Mode bit from bit 0 of the general register holding the
target address. Bit O of the general register isnot part of thetarget address; bit 0 of PC isloaded with a0 so that no address
exceptions can occur.

3.8 JALX, JR, and JALR Operationsin MIPS16e and MIPS32 Mode

The behavior of three of the 32-bit MIPS instructions—JAL X, JR, JALR—differs between those processors that

implement MIPS16e and those processors that do not.

In processors that implement the MIPS16e ASE, the three instructions behave as follows:

* The JALX instruction executes a JAL and switches to the other mode.

* JR and JALR instructions load the |SA Maode bit from bit O of the source register. Bit 0 of PC isloaded with a0, and
no Address exception can occur when bit O of the source register isa 1 (MIPS16e mode).

In CPUs that do not implement the M1PS16e ASE, the three instructions behave as follows:

» JALX instructions cause a Reserved Instruction exception.

» JRor JALR instructions cause an Address exception on the target instruction fetch when bit O of the source register is
al

3.9 MIPS16e I nstruction Summaries

This section describesthe variousinstruction categories and then summarizesthe MIPS16einstructionsincluded in each
category. Extensible instructions are al so identified.

There are six instruction categories:

* Loadsand Stores—These instructions move data between memory and the GPRs.

+ Save and Restore—These instructions create and tear down stack frames.

» Computational—These instructions perform arithmetic, logical, and shift operations on valuesin registers.

» Jump and Branch—These instructions change the control flow of a program.

» Special—This category includes the Break and Extend instructions. Break transfers control to an exception handler,
and Extend enlarges the immediate field of the next instruction.

» Implemention-Definable Macro | nstructions—This category includes the capability of defining macros that are
replaced at execution time by a set of 32-bit MIPS instructions, with appropriate parameter substitution.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 29

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

Tables 3-4 through 3-12 list the MIPS16e instruction set.

Table 3-4 MIPS16e L oad and Store I nstructions

Extensible Implemented Only on

Mnemonic Instruction Instruction? MI1PS64 Processors?
LB Load Byte Yes No
LBU Load Byte Unsigned Yes No
LD Load Doubleword Yes Yes
LH Load Halfword Yes No
LHU Load Halfword Unsigned Yes No
Lw Load Word Yes No
Lwu Load Word Unsigned Yes Yes
SB Store Byte Yes No
SD Store Doubleword Yes Yes
SH Store Halfword Yes No
SW Store Word Yes No

Table 3-5 M1 PS16e Save and Restore I nstructions

Extensible Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processor s?
RESTORE Restore Registers and Deallocate Stack Frame Yes No
SAVE Save Registers and SetUp Stack Frame Yes No

Table 3-6 MIPS16e ALU I mmediate | nstructions

Extensible Implemented Only on

Mnemonic Instruction Instruction? MI1PS64 Processors?
ADDIU Add Immediate Unsigned Yes No
CMPI Compare Immediate Yes No
DADDIU Doubleword Add Immediate Unsigned Yes Yes
LI Load Immediate Yes No
SLTI Set on Less Than Immediate Yes No
SLTIU Set on Less Than Immediate Unsigned Yes No

Table 3-7 MIPS16e Arithmetic One, Two or Three Operand Register I nstructions

Extensible Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processors?
ADD Add Unsigned No No
AND AND No No
CMP Compare No No
DADDU Doubleword Add Unsigned No Yes
DSUBU Doubleword Subtract Unsigned No Yes
MOVE Move No No
NEG Negate No No
NOT Not No No
OR OR No No
SEB Sign-Extend Byte No No

30 MIPS64® Architecture for Programmers Volume 1V-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

3.9 MIPS16e Instruction Summaries

Extensible Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processors?
SEH Sign-Extend Halfword No No
SEW Sign-Extend Word No Yes
SLT Set on Less Than No No
SLTU Set on Less Than Unsigned No No
SUBU Subtract Unsigned No No
XOR Exclusive OR No No
ZEB Zero-extend Byte No No
ZEH Zero-Extend Halfword No No
ZEW Zero-Extend Word No Yes

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

31

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

32

Table 3-8 M1 PS16e Special I nstructions

Extensible Implemented Only on

Mnemonic Instruction Instruction? MI1PS64 Processors?
BREAK Breakpoint No No
EXTEND Extend No No

Table 3-9 M1PS16e Multiply and Divide Instructions
Extensible Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processors?
DDIV Doubleword Divide No Yes
DDIVU Doubleword Divide Unsigned No Yes
DIV Divide No No
DIVU Divide Unsigned No No
DMULT Doubleword Multiply No Yes
DMULTU Doubleword Multiply Unsigned No Yes
MFHI Move From HI No No
MFLO Move From LO No No
MULT Multiply No No
MULTU Multiply Unsigned No No

Table 3-10 M1 PS16e Jump and Branch I nstructions
Extensible Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processors?
B Branch Unconditional Yes No
BEQz Branch on Equal to Zero Yes No
BNEZ Branch on Not Equal to Zero Yes No
BTEQZ Branch on T Equal to Zero Yes No
BTNEZ Branch on T Not Equal to Zero Yes No
ALl Jump and Link No No
JALR Jump and Link Register No No
JALRC Jump and Link Register Compact No No
JALX?E Jump and Link Exchange No No
JR Jump Register No No
JRC Jump Register Compact No No

1. The JAL and JALX instructions are not extensible because they are inherently 32-bit instructions.

Table 3-11 M| PS16e Shift I nstructions

Extensible Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processors?
DSLL Doubleword Shift Left Logical Yes Yes
DSLLV Doubleword Shift Left Logical Variable No Yes
DSRA Doubleword Shift Right Arithmetic Yes Yes
DSRAV Doubleword Shift Right Arithmetic Variable No Yes
DSRL Doubleword Shift Right Logical Yes Yes
DSRLV Doubleword Shift Right Logical Variable No Yes

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

3.10 MIPS16e PC-Relative Instructions

Extensible Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processors?
SRA Shift Right Arithmetic Yes No
SRAV Shift Right Arithmetic Variable No No
SLL Shift Left Logical Yes No
SLLV Shift Left Logical Variable No No
SRL Shift Right Logical Yes No
SRLV Shift Right Logical Variable No No

Table 3-12 I mplementation-Definable M acro I nstructions

Extensible Implemented Only on
M nemonic Instruction Instruction? MIPS64 Processors?

ASMACRO Implementation-Definable Macro Instructions Yes! No

1. The Implementation-Definable Macro Instructions are always extended instructions. There are no 16-bit macro instruction

3.10 MIPS16e PC-Rdative Instructions

The MIPS16e ASE provides PC-relative addressing for four instructions, in both extended and non-extended versions.
The four instructions are listed in Table 3-13.

Table 3-13 PC-Relative M1 PS16e I nstructions

Instruction Use
Load Word LW rx, offset(pc)
Load Doubleword LD ry, offset(pc)
Add Immediate Unsigned ADDIU rx, pc, immediate

Doubleword Add Immediate Unsigned DADDIU ry, pc, immediate

These instructions use the PC value of either the PC-relative instruction itself or the PC value for the preceding
instruction as the base for address cal culation.

Table 3-14 summarizes the address cal cul ation base used for the various instruction combinations.

Table 3-14 PC-Réelative Base Used for Address Calculation

Instruction BasePC Value

Non-extended PC-réelative instruction not in Jump . .
Delay Slot Address of instruction

Extended PC-relative instruction Address of Extend instruction

Non-extended PC-relative instructionin JR or JALR . -
jump delay slot Address of JR or JALR instruction

Non-extended PC-relative instruction in JAL or Address of first JAL or JALX
JALX jump delay slot halfword

The JRC and JALRC instructions do not have delay slots and do not affect the PC-relative base address calculated for
an instruction immediately following the JRC or JALRC.

In the descriptive summaries of PC-relative instructions, located in Tables 3-13 and 3-14, the PC value used asthe basis
for calculating the addressisreferred to asthe BasePC value. The BasePC equal s the Exception Program Counter (EPC)
value associated with the PC-relative instruction.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 33

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

3.11 MIPS16e Extensible Instructions

34

This section explainsthe purpose of an Extend instruction, how to useit, and which MI1PS16e instructions are extensible.

The Extend instruction allows you to enlarge the immediate field of any MIPS16e instruction whose immediate field is
smaller than the immediate field in the equivalent 32-bit MIPS instruction. The Extend instruction is a prefix which
modifies the behavior of the instruction which follows it, and must always immediately precede the instruction whose
immediate field you want to extend. Every extended instruction uses 4 bytes in program memory instead of 2 bytes (2
bytes for Extend and 2 bytes for the instruction being extended), and it can cross aword boundary. The PC value of an
extended instruction is the address of the halfword containing the Extend.

For example, the following MIPS16e instruction contains a five-bit immediate.

LW ry, offset(rx)

The immediate expands to 16 bits (ObO0000000O0 || offset || Ob0O) before execution in the pipeline. This allows 32
different offset values of 0, 4, 8, and up through 124, in increments of 4. Once extended, thisinstruction can hold any of
the 65,536 values in the range -32768 through 32767 that are also available with the 32-bit MIPS version of the LW
instruction.

Shift instructions are extended to unsigned immediates of 5 bits. All other immediate instructions expand to either signed
or unsigned 16-bit immediates. There are only two exceptions which can be extended to a 15-bit signed immediate:

ADDIU ry, rx, immediate
DADDIU ry, rx, immediate

Unlike most other extended instructions, an extended RESTORE or SAVE instruction provides both alarger frame size
adjustment, and the ability to save and restore more registers than the non-extended version.

Once both halves of an extended instruction have been fetched and the instruction starts flowing down the pipeline, the
instruction istreated as asingle entity, not as independent instructions. Thisimplies that an exception or interrupt never
reports an EPC value between the EXTEND and the instruction being extended, and that EJTAG single step treats an
instruction step as the execution of the entire extended instruction, not the components.

Thereisonly onerestriction onthelocation of extensibleinstructions: They may not be placed injump delay slots. Doing
so causes UNPREDICTABLE results.

Table 3-15 lists the MIPS16e extensible instructions, the size of their immediate, and how much each immediate can be
extended when preceded with an Extend instruction. Executing an instruction which is not extensible (those which are
maked No inthe “ Extensible Instruction?’ column of Table 3-4 through Table 3-12, including the EXTEND instruction
itself) must cause a Reserved Instruction Exception.

Table 3-15 M PS16e Extensible I nstructions

Mnemonic M1PS16e I nstruction MIPS16e |mmediate Extended Immediate
4 (ADDIU ry, rx, imm) 15 (ADDIU ry, rx, imm)
ADDIU Add Immediate Unsigned
8 16
B Branch Unconditional 11 16
BEQZ Branch on Equal to Zero 8 16
BNEZ Branch on Not Equal to Zero 8 16
BTEQZ Branch on T Equal to Zero 8 16
BTNEZ Branch on T Not Equal to Zero 8 16
CMPI Compare Immediate 8 16
MIPS64® Architecture for Programmers Volume 1V-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

3.12 MIPS16e Implementation-Definable Macro Instructions

Mnemonic MIPS16e I nstruction MIPS16e Immediate Extended Immediate
4 (DADDIU ry, rx, imm) 15 (DADDIU ry, rx, imm)

DADDIU Doubleword Add Immediate Unsigned

5 (or 8) 16
DSLL Doubleword Shift Left Logical 3
DSRA Doubleword Shift Right Arithmetic 3
DSRL Doubleword Shift Right Logical 3
LB Load Byte 5 16
LBU Load Byte Unsigned 5 16
LD Load Doubleword 5 16
LH Load Halfword 5 16
LHU Load Halfword Unsigned 5 16
LI Load Immediate 8 16
LW Load Word 5 (or 8) 16
LwWu Load Word Unsigned 5 16
RESTORE 'F:Qr?n?ée Registers and Deallocate Stack 4 8
SAVE Save Registers and Set Up Stack Frame 4 8
SB Store Byte 5 16
SD Store Doubleword 5 (or 8) 16
SH Store Halfword 5 16
SLL Shift Left Logical 3 5
SLTI Set on Less Than Immediate 8 16
SLTIU Set on Less Than Immediate Unsigned 8 16
SRA Shift Right Arithmetic 3
SRL Shift Right Logical 3
SW Store Word 5 (or 8) 16

3.12 MIPS16e | mplementation-Definable Macro I nstructions

Previous revisions of the MIPS16e ASE assumed that most M1 PS16e instructions mapped to a single 32-bit MIPS
instruction. However, there are several MIPS16e instructions for which there is no corresponding 32-bit MIPS
instruction equivalent. The addition of the SAVE and RESTORE instructions introduced the possibility that asingle
MIPS16einstruction expand to afixed sequence of multiple 32-bit instructions. The obvious extension to this capability
isthe ability to define a Macro capability in which a single extended MIPS16e instruction can be expanded into a
sequence of 32-bit MIPSinstructions, with parameter substitution done between fields of the macro instruction and fields
of the expanded instructions. Thisisthe concept behind the addition of Implementation-Definable Macro Instructions
to the MIPS16e ASE.

The term “Implementation-Definable” refers to the fact that the macro definitions are created when the processor is
implemented, rather than via a programmable mechanism that is available to the user of the processor. The macro
definitions, expansions, and parameter substitutions are defined when the processor isimplemented, and is therefore
implementation-dependent. The programmer visible representation of this macro capability is provided by the
ASMACRO (for Application Specific Macro) instruction, as defined in the next chapter.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 35

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

3.13 MIPS16e Jump and Branch Instructions

Jump and Branch instructions change the control flow of a program.

The JAL, JALR, JALX, and JR instructions occur with aone-instruction delay. That is, the instruction immediately
following the jump is always executed, whether or not the jump is taken.

Branch instructions and the JALRC and JRC jump instructions do not have adelay slot. If abranch or jump istaken, the
instruction immediately following the branch or jump isnever executed. If thebranch or jumpisnot taken, theinstruction
following the branch or jump is always executed.

Branch, jump and extended instructions may not be placed in jump delay slots. Doing so causes UNPREDICTABLE
results.

3.14 MIPS16e | nstruction For mats

This section defines the format? for each MIPS16e instruction type and includes formats for both normal and extended
instructions.

Every MIPS16e instruction consists of 16 bits aligned on a halfword boundary. All variable subfields in an instruction
format (such as rx, ry, rz, and immediate) are shown in lowercase |etters.

Thetwo instruction subfields op and funct have constant valuesfor specific instructions. Thesevaluesaregivenintheir
uppercase mnemonic names. For example, op is LB in the Load Byte instruction; op isRRR and function iSADDU
in the Add Unsigned instruction.

Definitions for the fields that appear in the instruction formats are summarized in Table 3-16.
Table 3-16 M1PS16e I nstruction Fields

Field Definition
funct or f Function field
immediate 4-,5-, 8-, or 11-bit immediate, branch displacement, or
orimm address displacement
op 5-bit major operation code
rx 3-bit source or destination register specifier
ry 3-bit source or destination register specifier
rz 3-bit source or destination register specifier
sa 3- or 5-bit shift amount

1 Asused here, the term format means the layout of the M1PS16e instruction word.

36 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

3.14 MIPS16e Instruction Formats

3.14.1 I-typeinstruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| op immediate

3.14.2 RI-typeinstruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| op rx immediate

3.14.3 RR-typeinstruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RR rx ryt funct

1. When the funct field iseither CNVT or J(AL)R(C), thery field encodes a sub-function to
be performed rather than aregister number

3.14.4 RRI-typeinstruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op rx ry immediate

3.14.5 RRR-typeinstruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| RRR | rx ry rz | f |

3.14.6 RRI-A typeinstruction format
15 14 13 12 11 10 9 8 7 6 5 3 2 1 0

4
| RRI-A | rx ry | f | immediate

3.14.7 Shift instruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
SHIFT rx ry sat | f |

1. The three-bit sa field can encode a shift amount of 0 through 7. 0 bit shifts (NOPs) are
not possible; a0 value translates to a shift amount of 8.

3.14.8 18-typeinstruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| 18 | funct immediate |

3.14.9 18 MOVR32instruction format (used only by the MOVR32 instruction)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18 | funct ry | r32[4:0] |

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 37

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

3.14.10 18 MOV 32R instruction format (used only by MOV 32R instruction)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18 | funct | 322043 | z |

1. Ther32 field uses specia bit encoding. For example, the encoding for $7
(00111) is 11100 in the r32 field.

3.14.11 18 _SVRSinstruction format (used only by the SAVE and RESTORE instructions)
15 14 13 12 11 10 9 8 7 6 5 4 3 0

| 18 | SVRS |s|ra|so|sl| framesize |

3.14.12 164-typeinstruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| 164 funct immediate

3.14.13 RI64-typeinstruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
164 funct ry immediate

3.14.14 JAL and JAL X instruction format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
AL |x1| immediate 20:16 | immediate 25:21 immediate 15:0

1. If x=0, instruction is JAL. If x=1, instruction is JALX.

3.14.15 EXT-I instruction for mat
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EXTEND immediaie 10:5 | immediate 15:11 op |o]ojo|o|o]o] immediae4:0

3.14.16 ASMACRO instruction format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
EXTEND sdect | p4 | p3 RRR 2 | pt | po

3.14.17 EXT-RI instruction for mat
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EXTEND immediate 10:5 immediate 15:11 op x |o|o]o] immediaea:0

3.14.18 EXT-RRI instruction format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
EXTEND immediate 10:5 immediate 15:11 op rx | ry | immediate 4.0

38 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

3.15 Instruction Bit Encoding

3.14.19 EXT-RRI-A instruction format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O
EXTEND immediate 10:4 | immi4a11 RRI-A x | v |[f] imm30

3.14.20 EXT-SHIFT instruction format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
EXTEND sa4:0 |sstlofofo]o]o0] SHIFT x | v [o|lojo] f |
1. s5isequivaent to sab, the most significant bit of the 6-bit shift amount (sa) field. For extended DSLL shifts, this bit may be either O or 1. For all 32-bit
extended shifts, s5 must be 0. None of the extended shift instructions perform the 0-to-8 mapping, so 0 bit shifts are possible using the extended format.

3.14.21 EXT-I8instruction format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EXTEND immediate 10:5 | immediate 15:11 | 18 funct |o| o| o| immediate 4:0 |

3.14.22 EXT-18 SVRSinstruction format (used only by the SAVE and RESTORE instructions)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND Xsregs framesize 7:4 | 0 | aregs | 18 SVRS | S | ra| sO| sl| fram%ize3:0|

3.14.23 EXT-I164 instruction for mat
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EXTEND immediate 10:5 | immediate 15:11 164 funct |o|o|o| immediate 4:0

3.14.24 EXT-RI64 instruction format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
EXTEND immediate 10:5 | immediate 15:11 164 funct | ry | immediate 4:0

3.14.25 EXT-SHIFT64 instruction format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EXTEND sa4:0 |t ofofo]o]o0] RR lofofo] w | function

1. sSisequivaent to sab, the most-significant bit of the 6-bit shift amount (sa) field. None of the extended shift instructions perform the 0-to-8 mapping, so
0 hit shifts are possible using the extended format.

3.15 Instruction Bit Encoding

Table 3-18 through Table 3-26 describe the encoding used for the MIPS16e ASE. Table 3-17 describes the meaning of
the symbols used in the tables.

Table 3-17 Symbols Used in the Instruction Encoding Tables

Symboal Meaning
" Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 39

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

Table 3-17 Symbols Used in the Instruction Encoding Tables

Symbol M eaning

(Alsoitalic field name.) Operation or field codes marked with this symbol denotes afield class.
o Theinstruction word must be further decoded by examining additional tablesthat show valuesfor
another instruction field.

B Operation or field codes marked with this symbol represent avalid encoding for a higher-order
MIPS ISA level. Executing such an instruction must cause a Reserved Instruction Exception.

Operation or field codes marked with this symbol represent instructions which are not legal if the
processor is configured to be backward compatible with MIPS32 processors. If the processor is
executing in Kernel Mode, Debug Mode, or 64-bit instructions are enabled, execution proceeds
1 normally. In other cases, executing such an instruction must cause a Reserved Instruction
Exception (non-coprocessor encodings or coprocessor instruction encodings for a coprocessor to
which access is alowed) or a Coprocessor Unusable Exception (coprocessor instruction
encodings for a coprocessor to which access is not allowed).

Operation or field codes marked with this symbol are available to licensed MIPS partners. To
avoid multiple conflicting instruction definitions, MIPS Technologies will assist the partner in
selecting appropriate encodings if requested by the partner. The partner is not required to consult
9 with MIPS Technologies when one of these encodingsis used. If no instruction is encoded with

thisvalue, executing such an instruction must cause a Reserved Instruction Exception (SPECIAL2
encodings or coprocessor instruction encodings for a coprocessor to which accessis allowed) or
aCoprocessor Unusable Exception (coprocessor instruction encodings for acoprocessor to which
accessis not allowed).

Field codes marked with this symbol represent an EJTAG support instruction and implementation
of this encoding is optional for each implementation. If the encoding is not implemented,
executing such an instruction must cause a Reserved Instruction Exception. If the encoding is
implemented, it must match the instruction encoding as shown in the table.

Operation or field codes marked with this symbol are reserved for MIPS Application Specific
€ Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

o Operation or field codes marked with this symbol are obsolete and will be removed from afuture
revision of the MIPS64 | SA. Software should avoid using these operation or field codes.

Operation or field codes marked with this symbol are not extensible (see Section 3.11, "MIPS16e
® Extensible Instructions' on page 34). Executing such an instruction with an EXTEND prefix must
cause a Reserved Instruction Exception.

Table 3-18 M1PS16e Encoding of the Opcode Field

opcode | bits13..11
0 1 2 3 4 5 6 7
bits15.14 000 001 010 011 100 101 110 111
0| o0 |ADDIUSP!|ADDIUPC? B JAL(X) & BEQZ BNEZ HIFT S LD L
1| o1 | RRI-AS | ADDIUS® SLTI SLTIU 185 LI CMPI SD L
2| 10 LB LH LWSP?* LW LBU LHU LWPC® LWU L
3| 11 SB SH SWSP° SW RRR § RRS |EXTEND 8¢| 16435L

1. The ADDIUSP opcode is used by the ADDIU rx, sp, immediate instruction
2. The ADDIUPC opcode is used by the ADDIU rx, pc, immediate instruction
3. The ADDIUS opcode is used by the ADDIU rx, immediate instruction

4. The LWSP opcode is used by the LW rx, offset(sp) instruction

5. The LWPC opcode is used by the LW rx, offset(pc) instruction

6. The SWSP opcode is used by the SW rx, offset(sp) instruction

40 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

3.15 Instruction Bit Encoding

Table 3-19 M1 PS16e JAL (X) Encoding of the x Field

X bit 26

0 1
JAL ¢ JALX ¢

Table 3-20 M1 PS16e SHIFT Encoding of thef Field

f bits 1..0
0 1 2 3
00 01 10 11
SLL DSLL L SRL SRA

Table 3-21 M1PS16e RRI-A Encoding of thef Field

f bit 4

0 1
ADDIU! [DADDIU? 1
1. The ADDIU function isused by the AD-

DIU ry, rx, immediate instruction

2. The DADDIU function is used by the
DADDIU ry, rx, immediate instruc-
tion

Table 3-22 M1 PS16e 18 Encoding of the funct Field

funct bits 10..8

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
BTEQzZ | BTNEZ | SWRASP!| ADJSP? | SVRSS |[MOV32RS¢ * MOVR32* ¢

1. The SWRASP function is used by the SW ra, offset(sp) instruction

2. The ADJSP function is used by the ADDIU sp, immediate instruction
3. The MOV 32R function is used by the MOVE r32, rz instruction

4. The MOVR32 function is used by the MOVE ry, r32 instruction

Table 3-23 M1 PS16e RRR Encoding of thef Field

f bits 1..0

0 1 2 3
00 01 10 11
DADDU l¢ | ADDU¢ |DSUBU l¢ | SUBU ¢

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

41

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

Table 3-24 M1 PS16e RR Encoding of the Funct Field

funct bits 2..0
0 1 2 3 4 5 6 7
bits4..3 000 001 010 011 100 101 110 111
0| 00 | JAL)R(C) S SDBBP ¢ SLT ¢ SLTU ¢ SLLV ¢ BREAK ¢ SRLV ¢ SRAV ¢
1| 01 DSRL L * CMP ¢ NEG ¢ AND ¢ OR ¢ XOR ¢ NOT ¢
2| 10 MFHI ¢ CNVT 8 MFLO ¢ DSRA L DSLLV l¢ * DSRLV g DSRAV ¢
3| 11 MULT ¢ MULTU ¢ DIV ¢ DIVU ¢ DMULT l¢ |DMULTU ¢ DDIV lg DDIVU ¢
Table 3-25 M1 PS16e 164 Encoding of the funct Field
funct bits 10..8
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
6 7
LDSP' L | SDSP?L |SDRASP®L|DADJSP* L| LDpcS L | DADDIUST DADDIURCTDADDIU
1. The LDSP function is used by the LD ry, offset(sp) instruction
2. The SDSP function is used by the SD ry, offset(sp) instruction
3. The SDRASP function is used by the SD ra, offset(sp) instruction
4. The DADJSP function is used by the DADDIU sp, immediate instruction
5. The LDPC function is used by the LD ry, offset(pc) instruction
6. The DADDIUS function is used by the DADDIU ry, immediate instruction
7. The DADDIUPC function is used by the DADDIU ry, pc, immediate instruction
8. The DADDIUSP function is used by the DADDIU ry, sp, immediate instruction
Table 3-26 M1 PS16e 18 Encoding of the s Field when funct=SVRS
[s | hit7
0 1
RESTORE SAVE
Table 3-27 M1 PS16e RR Encoding of thery Field when funct=J(AL)R(C)
ry bits 7.5
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
JRrxe JRrae JALR¢ JRCrx ¢ JRCra¢ | JALRC¢
Table 3-28 M1 PS16e RR Encoding of the ry Field when funct=CNVT
[ry | bits7.5
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
ZEB ¢ ZEH ¢ ZEW ¢ * SEB ¢ SEH ¢ SEW L¢ *
42 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

3.16 MIPS16e Instruction Stream Organization and Endianness

3.16 MIPS16e Instruction Stream Organization and Endianness

Theinstruction halfword is placed within the 32-bit (or 64-bit) memory element according to system endianness.

» On a 32-bit processor in big-endian mode, the first instruction is read from bits 31..16 and the second instruction is
read from bits 15..0

» On a32-bit processor in little-endian mode, the first instruction is read from bits 15..0 and the second instruction is
read from bits 31..16

The above rule also applies to all extended instructions, since they consist of two 16-bit halfwords. Similarly, JAL and
JALX instructions should be viewed as consisting of two 16-bit halfwords, which means this rule also applies to them.

For a 16-bit-instruction sequence, instructions are placed in memory so that an LH instruction with the PC as an
argument fetches the instruction independent of system endianness.

3.17 MIPS16e | nstruction Fetch Restrictions

When the processor isrunning in M1PS16e mode and fetch addressisin uncacheable memory, certain restrictions apply
to the width of each instruction fetch. Under these circumstances, the processor never fetches more than an aligned word
during each instruction fetch. It is UNPREDICTABLE whether the processor fetches a single aligned word, or two
aligned halfwords during each instruction fetch.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 43

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

44 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 4

The MIPS16e™ ASE Instruction Set

4.1 MIPS16e Instruction Descriptions

This chapter provides an aphabetical listing of the instructions listed in Table 3-4 through Table 3-12.

4.1.1 MIPS16e-Specific Pseudocode Functions

This section defines the pseudocode functions that are specific to the MIPS16e ASE. These functions are used in the
Operation section of each MIPS16e instruction description.

41.1.1 Xlat

The Xlat function trand atesthe M PS16e register field index to the correct 32-bit M1PS physical register index. It isused

to assure that avalue of Ob000 in a MIPS16e register field mapsto GPR 16, and a value of 0b001 mapsto GPR 17. All
other values (0b010 through Ob111) map directly.

PhyReg ¢— Xlat (i)

/* PhyReg: Physical register index, in the range 0..7 */
VA Opcode register field index */

if (i < 2) then
Xlat < i + 16
else
Xlat « i
endif

endfunction Xlat

Figure 4-1 Xlat Pseudocode Function

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 45

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Add Immediate Unsigned Word (2-Operand) ADDIU

46

15 11 10 8 7 0
ADDIUS8
rx immediate
01001
5 3 8
Format: ADDIU rx, immediate MIPS16e
Purpose:

To add a constant to a 32-bit integer.

Description: GPR[rx] ¢ GPR[rx] + immediate

The 8-bit immediate is sign-extended and then added to the contents of GPR rx to form a 32-bit result. The result is
sign-extended and placed in GPR rx.

No integer overflow exception occurs under any circumstances.

Restrictions:

If GPR rx does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if (NotWordvalue (GPR[Xlat(rx)])) then
UNPREDICTABLE
endif
temp ¢ GPR[Xlat(rx)] + sign_extend(immediate)
GPR[Xlat (rx)] ¢ sign_extend(tempsq)
Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Add Immediate Unsigned Word (2-Operand, Extended) ADDIU

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND ADDIUS8 0
imm 10:5 imm 15:11 rx imm 4.0
11110 01001 000
5 6 5 5 3 3 5
Format: ADDIU rx, immediate MIPS16e
Purpose:

To add a constant to a 32-bit integer.

Description: GPR[rx] ¢ GPR[rx] + immediate

The 16-bit immediate is sign-extended and then added to the contents of GPR rx to form a 32-bit result. The result is
sign-extended and placed in GPR rx.

No integer overflow exception occurs under any circumstances.

Restrictions:

If GPR rx does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if (NotWordValue (GPR[Xlat(rx)])) then
UNPREDICTABLE
endif
temp ¢ GPR[Xlat(rx)] + sign_extend(immediate)
GPR[Xlat (rx)] ¢ sign_extend(tempsq)
Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 a7

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Add Immediate Unsigned Word (3-Operand) ADDIU

48

15 11 10 8 7 5 4 3 0
RRI-A ADDIU
rx ry immediate
01000 0
5 3 3 1 4
Format: aADDIU ry, rx, immediate MIPS16e
Purpose:

To add a constant to a 32-bit integer.

Description: GPR[ry] ¢ GPR[rx] + immediate

The 4-bit immediate is sign-extended and then added to the contents of GPR rx to form a 32-bit result. The result is
sign-extended and placed into GPR ry.

No integer overflow exception occurs under any circumstances.

Restrictions:

If GPR rx does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if (NotWordvValue (GPR[Xlat(rx)])) then
UNPREDICTABLE
endif
temp ¢ GPR[Xlat(rx)] + sign_extend(immediate)
GPR[Xlat(ry)] ¢ sign_extend(temps; g)
Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Add Immediate Unsigned Word (3-Operand, Extended) ADDIU

31 27 26 20 19 16 15 11 10 8 7 5 4 3 0
EXTEND imm RRI-A ADDIU
imm 10:4 rx ry imm 3:0
11110 14:11 01000 0
5 7 4 5 3 3 1 4
Format: ADDIU ry, rx, immediate MIPS16e
Purpose:

To add a constant to a 32-bit integer.

Description: GPR[ry] ¢ GPR[rx] + immediate

The 15-bit immediate is sign-extended and then added to the contents of GPR rx to form a 32-bit result. The result is
sign-extended and placed into GPR ry.

No integer overflow exception occurs under any circumstances.

Restrictions:

If GPR rx does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if (NotWordValue (GPR[Xlat (rx)])) then
UNPREDICTABLE
endif
temp ¢ GPR[Xlat(rx)] + sign_extend(immediate)
GPR[Xlat (ry)] ¢ sign_extend(temps; g)
Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 49

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Add Immediate Unsigned Word (3-Operand, PC-Relative) ADDIU

15 11 10 8 7 0
ADDIUPC
rx immediate
00001
5 3 8
Format: ADDIU rx, pc, immediate MIPS16e
Purpose:

To add a constant to the program counter.

Description: GPR[rx] ¢« PC + (immediate << 2)

The 8-bit immediate is shifted left two bits, zero-extended, and added to either the address of the ADDIU instruction
or the address of the jump instruction in whose delay slot the ADDIU is executed. This result (with its two lower bits
cleared) is sign-extended and placed in GPR rx.

No integer overflow exception occurs under any circumstances.

Restrictions:

If the base PC is outside the 32-bit Compatibility Address Space (i.e., bits 63..31 equal), then the result of the opera-
tionis UNPREDICTABLE.

Operation:

I-1: base_pc « PC
I: if not (JumpDelaySlot (PC)) then
base_pc ¢ PC
endif
if NotWordvalue (base_pc) then
UNPREDICTABLE
endif
temp < (base_pCgprrpn-1..2 + zero_extend(immediate)) || 0?)
GPR[Xlat (rx)] ¢ sign_extend(tempsq)

Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

The use of the ADDIUPC instruction on a MIPS64 processor in which the PC is outside the 32-bit Compatibility
Address Space will not produce the expected result. Thisis because the final PC value isrequired to be sign-extended
from the least-significant 32 bits, and such a value will not generate the correct address if PC is not aso a
sign-extended value. In such cases, DADDIUPC should be used instead.

Since the 8-bit immediate is shifted left two bits before being added to the PC, the rangeis 0, 4, 8..1020.

The assembler LA (Load Address) pseudo-instruction is implemented as a PC-relative add (using ADDIUPC for
MIPS32 or DADDIUPC for MIPS64 code).

50 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended) ADDIU

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND ADDIUPC 0
imm 10:5 imm 15:11 rx imm 4.0
11110 00001 000
5 6 5 5 3 3 5
Format: ADDIU rx, pc, immediate MIPS16e
Purpose:

To add a constant to the program counter.

Description: GPR[rx] ¢ PC + immediate

The 16-bit immediate is sign-extended and added to the address of the ADDIU instruction. Before the addition, the
two lower bits of the instruction address are cleared.

Theresult of the addition is sign-extended and placed in GPR rx.
No integer overflow exception occurs under any circumstances.

Restrictions:
A PC-relative, extended ADDIU may not be placed in the delay slot of ajump instruction.

If the PC is outside the 32-hit Compatibility Address Space (i.e., bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:
if NotWordvalue (PC) then
UNPREDICTABLE
endif
temp ¢ (PCoprrgn-1..2 || 0%) + sign_extend(immediate)

GPR[Xlat (rx)] ¢ sign_extend(temps; o)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

The use of the ADDIUPC instruction on a MIPS64 processor in which the PC is outside the 32-bit Compatibility
Address Space will not produce the expected result. Thisis because the final PC valueis required to be sign-extended
from the least-significant 32 bits, and such a value will not generate the correct address if PC is not also a
sign-extended value. In such cases, DADDIUPC should be used instead.

The assembler LA (Load Address) pseudo-instruction is implemented as a PC-relative add (using ADDIUPC for
MIPS32 or DADDIUPC for MIPS64 code).

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 51

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Add Immediate Unsigned Word (2-Operand, SP-Relative) ADDIU

52

15 11 10 8 7 0
18 ADJSP
immediate
01100 011
5 3 8
Format: ADDIU sp, immediate MIPS16e
Purpose:

To add a constant to the stack pointer.

Description: GPR[sp] ¢ GPR[sp] + immediate

The 8-bit immediate is shifted left three bits, sign-extended, and then added to the contents of GPR 29 to form a
32-hit result. The result is sign-extended and placed in GPR 29.

No integer overflow exception occurs under any circumstances.

Restrictions:

If GPR 29 does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:
if (NotWordvalue(GPR[29])) then
UNPREDICTABLE
endif
temp < GPR[29] + sign_extend(immediate || 0%)

GPR[29] ¢ sign_extend(temps;)

Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended) ADDIU

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND 18 ADJSP 0
imm 10:5 imm 15:11 imm 4.0
11110 01100 011 000
5 6 5 5 3 3 5
Format: ADDIU sp, immediate MIPS16e
Purpose:

To add a constant to the stack pointer.

Description: GPR[sp] ¢ GPR[sp] + immediate

The 16-bit immediate is sign-extended, and then added to the contents of GPR 29 to form a 32-hit result. Theresult is
sign-extended and placed in GPR 29.

No integer overflow exception occurs under any circumstances.

Restrictions:

If GPR 29 does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if (NotWordvalue(GPR[29])) then
UNPREDICTABLE
endif
temp ¢ GPR[29] + sign_extend(immediate)
GPR[29] ¢ sign_extend(temps;)
Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 53

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Add Immediate Unsigned Word (3-Operand, SP-Relative) ADDIU

54

15 11 10 8 7 0
ADDIUSP
rx immediate
00000
5 3 8
Format: ADDIU rx, sp, immediate MIPS16e

Purpose:
To add a constant to the stack pointer.

Description: GPR[rx] ¢ GPR[sp] + immediate

The 8-bit immediate is shifted |eft two bits, zero-extended, and then added to the contents of GPR 29 to form a 32-bit
result. The result is sign-extended and placed in GPR rx.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

if (NotWordvalue(GPR[29])) then

UNPREDICTABLE
endif

temp < GPR[29] + zero_extend(immediate || 02’
GPR[Xlat (rx)] ¢ sign_extend(temps; g)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Add Immediate Unsigned Word (3-Operand, SP-Relative, Extended) ADDIU

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND ADDIUSP 0
imm 10:5 imm 15:11 rx imm 4:0
11110 00000 000
5 6 5 5 3 3 5
Format: ADDIU rx, sp, immediate MIPS16e
Purpose:

To add a constant to the stack pointer.

Description: GPR[rx] ¢ GPR[sp] + immediate

The 16-bit immediate is sign-extended and then added to the contents of GPR 29 to form a 32-bit result. The result is
sign-extended and placed in GPR rx.

No integer overflow exception occurs under any circumstances.

Restrictions:
None

Operation:

if (NotWordvalue (GPR[29])) then
UNPREDICTABLE
endif
temp ¢ GPR[29] + sign_extend(immediate
GPR[Xlat (rx)] ¢ sign_extend(temps; o)
Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 55

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Add Unsigned Word (3-Operand) ADDU

56

15 11 10 8 7 5 4 2 1 0
RRR ADDU
rx ry rz
11100 01
5 3 3 3 2
Format: apDU rz, rx, ry MIPS16e
Purpose:

To add 32-bit integers.

Description: GPR[rz] ¢ GPR[rx] + GPR[ry]

The contents of GPR rx and GPR ry are added together to form a 32-bit result. The result is sign-extended and
placed into GPR rz

No integer overflow exception occurs under any circumstances.

Restrictions:

If either GPR rx or GPR ry does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Operation:

if NotWordValue (GPR[Xlat (rx)]) or NotWordvValue (GPR[Xlat(ry)]) then
UNPREDICTABLE
endif
temp ¢ GPR[Xlat(rx)] + GPR[Xlat(ry)]
GPR[Xlat (rz)] ¢ sign_extend(temps; g)
Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

And AND
15 11 10 8 7 5 4 0
RR AND
X ry
11101 01100
5 3 3 5
Format: AND rx, ry MIPS16e

Purpose:

To do abitwise logical AND.

Description: GPR[rx] ¢ GPR[rx] AND GPR[ry]

The contents of GPR ry are combined with the contents of GPR rx in a bitwise logical AND operation. The result is

placed in GPR rx.

Restrictions:
None

Operation:

GPR[Xlat (rx)]

Exceptions:
None

¢ GPR[Xlat (rx)] and GPR[Xlat(ry)]

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

57

Application-Specific Macro Instructions ASMACRO

31 27 26 24 23 21 20 16 15 11 10 8 7 5 4 0
EXTEND RRR
select p4 p3 p2 pl pO0
11110 11100
5 3 3 5 5 3 3 5
Format: ASMACRO select,p0,pl,p2,p3,p4 MIPS16e

58

The format listed is the most generic assembler format and is unlikely to be used for an actual implementation of
application-specific macro instructions. Rather, the assembler format is likely to represent the use of the macro, with
the assembler turning that format into the appropriate bit pattern required by the instruction.

Purpose:

To execute an implementati on-definable macro instruction.

Description:

The ASMACRO instruction is the programming interface to the implementation-definable macro instruction facility
that is defined by the MIPS16e architecture.

The select field specifies which of 8 possible macros is expanded. The definition of each macro specifies how the
parameters p0, pl, p2, p3, and p4 are substituted into the 32-bit instructions with which the macro is defined. The
execution of the 32-bit instructions occurs while PC remains unchanged.

It is implementation-dependent whether a processor implements any implementation-definable macro instructions
and, if it does, how many. It is implementation-dependent whether the macro is executed with interrupts disabled.
Restrictions:

The 32-hit instructions with which the macro is defined must by chosen with care. Issues of atomicity, restartability
of the instruction sequence, and similar factors must be considered when using the implementation-definable macro
instruction facility. Failure to do so can cause UNPREDICTABLE behavior.

If implementation-definable macro instructions are not implemented by the processor, or if the select field references
a specific macro which is not implemented by the processor, a Reserved Instruction exception is signaled.
Operation:

ExecuteMacro(sel,p0,pl,p2,p3,p4)

Exceptions:

Reserved Instruction

Others as may be generated by the 32-bit instructions included in each macro expansion.
Programming Notes:

Implementations may impose certain restrictions on 32-bit instructions are supported within an ASMACRO instruc-
tion. For instance, many implementations may not allow loads, stores, branches or jumps within an ASMACRO defi-
nition. Refer to the Users Guide for each processor which implements this capability for alist of macros defined and
implemented by that processor, and for any specific restrictions imposed by that processor.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Unconditional Branch B

15 11 10 0
B
offset
00010
5 11
Format: B offset MIPS16e
Purpose:

To do an unconditional PC-relative branch.

Description: branch

The 11-bit offset is shifted |eft 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. The program branches to the target address unconditionally.

Restrictions:
None

Operation:

I: PC ¢ PC + 2 + sign_extend(offset || 0)

Exceptions:
None

Programming Notes:

In MIPS16e mode, the branch offset isinterpreted as halfword-aligned. Thisis unlike 32-bit M1PS mode, which inter-
prets the offset value as word-aligned.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 59

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Unconditional Branch (Extended) B

60

31 27 26 21 20 16 15 11 10 5 4 0
EXTEND B 0
offset 10:5 offset 15:11 offset 4.0
11110 00010 000000
5 6 5 5 6 5
Format: B offset MIPS16e
Purpose:

To do an unconditional PC-relative branch.

Description: branch

The 16-bit offset is shifted |eft 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. The program branches to the target address unconditionally.

Restrictions:
None

Operation:

I: PC <~ PC + 4 + sign_extend(offset || 0)

Exceptions:
None

Programming Notes:

In MIPS16e mode, the branch offset isinterpreted as halfword-aligned. Thisis unlike 32-bit M1PS mode, which inter-
prets the offset value as word-aligned.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Branch on Equal to Zero BEQZ

15 11 10 8 7 0
BEQZ
rx offset
00100
5 3 8
Format: BEQZ rx, offset MIPS16e
Purpose:

To test a GPR then do a PC-relative conditional branch.

Description: if (GPR[rx] = 0) then branch

The 8-hit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR rx are equal to zero, the program branches to the target address.

Restrictions:
None
Operation:
I: tgt_offset < sign_extend(offset || 0)
condition ¢ (GPR[Xlat(rx)] = QCFRLEN)

if condition then
PC ¢ PC + 2 + tgt_offset
endif

Exceptions:
None

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. Thisis unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 61

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Branch on Equal to Zero (Extended) BEQZ
31 27 26 21 20 16 15 11 10 8 7 0
EXTEND BEQZ 0
offset 10:5 offset 15:11 rx offset 4:0
11110 00100 000
5 6 5 5 3 3 5
Format: BEQZ rx, offset MIPS16e

62

Purpose:

To test a GPR then do a PC-relative conditional branch.

Description: 1f (GPR[rx] = 0) then branch

The 16-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR rx are equal to zero, the program branches to the target address.

Restrictions:
None
Operation:
I: tgt_offset « sign_extend(offset || 0)
condition ¢ (GPR[Xlat(rx)] = O0CPRLEN)

if condition then

PC < PC + 4 + tgt_offset

endif

Exceptions:
None

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. Thisis unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Branch on Not Equal to Zero BNEZ

15 11 10 8 7 0
BNEZ
rx offset
00101
5 3 8
Format: BNEZ rx, offset MIPS16e
Purpose:

To test a GPR then do a PC-relative conditional branch.

Description: if (GPR[rx] # 0) then branch

The 8-hit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR rx are not equal to zero, the program branches to the target address.
Restrictions:

None

Operation:

I: tgt_offset ¢« sign_extend(offset || 0)
condition ¢ (GPR[Xlat (rx)] # 0CFPRLEN)
if condition then

PC ¢ PC + 2 + tgt_offset
endif
Exceptions:

None

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. Thisis unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 63

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Branch on Not Equal to Zero (Extended) BNEZ
31 27 26 21 20 16 15 11 10 8 7 0
EXTEND BNEZ 0
offset 10:5 offset 15:11 rx offset 4:0
11110 00101 000
5 6 5 5 3 3 5
Format: BNEZ rx, offset MIPS16e

64

Purpose:

To test a GPR then do a PC-relative conditional branch.

Description: if (GPR[rx] # 0) then branch

The 16-bit offset is shifted |eft 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR rx are not equal to zero, the program branches to the target address.

Restrictions:

None

Operation:

I:

Exceptions:
None

tgt_offset < sign_extend(offset || 0)

condition ¢ (GPR[Xlat (rx)] # 0CFPRLEN)

if condition then
PC ¢ PC + 4 + tgt_offset

endif

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. Thisis unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Breakpoint BREAK
15 11 10 8 7 5 4 0
RR BREAK
code
11101 00101
5 6 5
Format: BREAK immediate MIPS16e

Purpose:
To cause a Breakpoint exception.

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler.

Restrictions:
None

Operation:

SignalException (Breakpoint)

Exceptions:
Breakpoint

Programming Notes:

The code field is available for use as software parameters, but is retrieved by the exception handler only by loading

the contents of the memory halfword containing the instruction.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

65

Branch on T Equal to Zero

66

BTEQZ
15 11 10 8 7 0
18 BTEQZ
offset
01100 000
5 3 8
Format: BTEQZ offset MIPS16e

Purpose:

To test specid register T then do a PC-relative conditional branch.

Description: if (T =0) then branch

The 8-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR 24 are equal to zero, the program branches to the target address.

Restrictions:
None
Operation:
I: tgt_offset « sign_extend(offset || 0)
condition ¢« (GPR[24] = (QGFRLEN)

if condition then
PC < PC + 2 + tgt_offset

endif

Exceptions:
None

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. Thisis unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Branch on T Equal to Zero (Extended) BTEQZ
31 27 26 21 20 16 15 11 10 8 7 5 0
EXTEND 18 BTEQZ 000
offset 10:5 offset 15:11 offset 4.0
11110 01100 000 0
5 6 5 5 3 3 5
Format: BTEQZ offset MIPS16e

Purpose:

To test special register T then do a PC-relative conditional branch.

Description: if (T =0) then branch

The 16-bit offset is shifted |eft 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR 24 are equal to zero, the program branches to the target address.

Restrictions:

None

Operation:
I:

Exceptions:

None

tgt_offset ¢ sign_extend(offset || 0)
condition ¢ (GPR[24] = OCFRLEN)
if condition then

PC ¢ PC + 4 + tgt_offset

endif

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. Thisis unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

67

Branch on T Not Equal to Zero BTNEZ
15 11 10 8 7 0
18 BTNEZ
offset
01100 001
5 3 8
Format: BTNEZ offset MIPS16e

68

Purpose:

To test special register T then do a PC-relative conditional branch.

Description: if (T #0) then branch

The 8-hit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR 24 are not equal to zero, the program branches to the target address.

Restrictions:
None

Operation:

I: tgt_offset ¢ sign_extend(offset || 0)
condition ¢ (GPR[24] # 0CFRLEN)

if condition then

PC ¢ PC + 2 + tgt_offset

endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. Thisis unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Branch on T Not Equal to Zero (Extended) BTNEZ
31 27 26 21 20 16 15 11 10 8 7 5 0
EXTEND 18 BTNEZ 000
offset 10:5 offset 15:11 offset 4:0
11110 01100 001 0
5 6 5 5 3 3 5
Format: BTNEZ offset MIPS16e

Purpose:

To test special register T then do a PC-relative conditional branch.

Description: if (T #0) then branch

The 16-bit offset is shifted |eft 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR 24 are not equal to zero, the program branches to the target address.

Restrictions:

None

Operation:

I:

Exceptions:
None

tgt_offset ¢« sign_extend(offset || 0)
condition < (GPR[24] # QCFRLEN)
if condition then

PC ¢ PC + 4 + tgt_offset

endif

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. Thisis unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

69

Compare CMP

15 11 10 8 7 5 4 0
RR CMP
rx ry
11101 01010
5 3 3 5
Format: cMP rx, ry MIPS16e
Purpose:

To compare the contents of two GPRs.

Description: T <~ GPR[rx] XOR GPR[ry]
The contents of GPR ry are Exclusive-ORed with the contents of GPR rx. Theresult is placed into GPR 24.

Restrictions:
None

Operation:

GPR[24] ¢« GPR[Xlat(ry)] xor GPR[Xlat (rx)]

Exceptions:

None

70 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Compare Immediate CMPI

15 11 10 8 7 0
CMPI
rx immediate
01110
5 3 8
Format: CMPI rx, immediate MIPS16e
Purpose:

To compare a constant with the contents of a GPR.

Description: T < GPR[rx] XOR immediate

The 8-bit immediate is zero-extended and Exclusive-ORed with the contents of GPR rx. Theresult is placed into GPR
24.

Restrictions:
None

Operation:

GPR[24] ¢ GPR[Xlat(rx)] xor zero_extend(immediate)

Exceptions:
None

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 71

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Compare Immediate (Extended) CMPI
31 27 26 21 20 16 15 11 10 0
EXTEND CMP 000
imm 10:5 imm 15:11 rx imm 4:0
11110 01110 0
5 6 5 5 3 3 5

Format: CMPI rx, immediate MIPS16e
Purpose:

72

To compare a constant with the contents of a GPR.

Description: T < GPR[rx] XOR immediate
The 16-bit immediate is zero-extended and Exclusive-ORed with the contents of GPR rx. The result is placed into

GPR 24.

Restrictions:

None

Operation:

GPR[24]

Exceptions:

None

< GPR[Xlat (rx)]

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

xor zero_extend (immediate)

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Doubleword Add Immediate Unsigned (2-Operand) DADDIU

15 11 10 8 7 5 4 0
164 DADDIUS
ry immediate
11111 101
5 3 3 5
Format: DADDIU ry, immediate MIPS16e (64-bit only)
Purpose:

To add a constant to a 64-bit integer.

Description: GPR[ry] ¢ GPR[ry] + immediate

The 5-bit immediate is sign-extended to 64 bits and then added to the contents of GPR ry to form a 64-bit result. The
result isplaced in GPR ry.

No integer overflow exception occurs under any circumstances.
Restrictions:

Operation:
GPR[Xlat (ry)] ¢ GPR[Xlat(ry)] + sign_extend(immediate)

Exceptions:
Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 73

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Add Immediate Unsigned (2-Operand, Extended) DADDIU

74

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND 164 DADDIU5
imm 10:5 imm 15:11 ry imm 4:0
11110 11111 101
5 6 5 5 3 3 5
Format: DaADDIU ry, immediate MIPS16e (64-bit only)
Purpose:

To add a constant to a 64-bit integer.

Description: GPR[ry] ¢ GPR[ry] + immediate

The 16-bit immediate is sign-extended to 64 bits and then added to the contents of GPR ry to form a 64-bit result. The
resultis placed in GPR ry.

No integer overflow exception occurs under any circumstances.
Restrictions:

Operation:
GPR[Xlat (ry)] ¢ GPR[Xlat(ry)] + sign_extend(immediate)

Exceptions:
Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Add Immediate Unsigned (3-Operand) DADDIU
15 11 10 8 7 4 0
RRI-A DABDI
rx ry immediate
01000 1
5 3 3 1 4

Format: DADDIU ry, rx, immediate

Purpose:
To add a constant to a 64-bit integer.

Description: GPR[ry] ¢ GPR[rx] + immediate

MIPS16e (64-bit only)

The 4-bit immediate is sign-extended to 64 bits and then added to the contents of GPR rx to form a 64-bit result. The

result is placed in GPR ry.

No integer overflow exception occurs under any circumstances.

Restrictions:

Operation:

GPR[Xlat (ry)] ¢ GPR[Xlat(rx)] + sign_extend(immediate)

Exceptions:
Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-

ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

75

Doubleword Add Immediate Unsigned (3-Operand, Extended) DADDIU

76

31 27 26 20 19 16 15 11 10 8 7 5 4 3 0
EXTEND RRI-A DADDIU
imm 10:4 imm 14:11 rx ry imm 3:0
11110 01000 1
5 7 4 5 3 3 1 4
Format: DADDIU ry, rx, immediate MIPS16e (64-bit only)
Purpose:

To add a constant to a 64-bit integer.

Description: GPR[ry] ¢ GPR[rx] + immediate

The 15-bit immediate is sign-extended to 64 bits and then added to the contents of GPR rx to form a 64-hit result. The
resultis placed in GPR ry.

No integer overflow exception occurs under any circumstances.
Restrictions:

Operation:
GPR[Xlat (ry)] ¢ GPR[Xlat(rx)] + sign_extend(immediate)

Exceptions:
Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Add Immediate Unsigned (3-Operand, PC-Relative) DADDIU

15 11 10 8 7 5 4 0
164 DADDIUPC
ry immediate
11111 110
5 3 3 5
Format: DADDIU ry, pc, immediate MIPS16e (64-bit only)
Purpose:

To add a constant to the program counter.

Description: GPR[ry] ¢ PC + (immediate << 2)

The 5-bit immediate is shifted left 2 bits, zero-extended, and added either to the address of the DADDIU instruction
or to the address of the jump instruction in whose delay slot the DADDIU is executed. This result (with its 2 lower
bits cleared) is placed in GPR ry.

No integer overflow exception occurs under any circumstances.

Restrictions:
Operation:
I-1: base_pc <« PC
I: if not (JumpDelaySlot (PC)) then
base_pc ¢ PC
endif
GPR[Xlat (ry)] ¢ (base_pCuprrmy-1. .2 + zero_extend (immediate)) || 02
Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 77

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Add Immediate Unsigned (3-Operand, PC-Relative, Extended) DADDIU

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND 164 DADDIUP
imm 10:5 imm 15:11 ry imm 4:0
11110 11111
110
5 6 5 5 3 3 5
Format: DADDIU ry, pc, immediate MIPS16e (64-bit only)
Purpose:

To add a constant to the program counter.

Description: GPR[ry] ¢ PC + immediate

The 16-bit immediate is sign-extended and added to the address of the DADDIU instruction. Before the addition, the
two lower bits of the instruction address are cleared. The result of the addition is placed in GPR ry.

No integer overflow exception occurs under any circumstances.

Restrictions:
A PC-relative extended DADDIU may not be placed in the delay slot of ajump instruction.

Operation:
temp ¢ (PCqprren-1..2 || 0?) + sign_extend(immediate)
GPR[Xlat (ry)] ¢ tempgs. o

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

78 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Add Immediate Unsigned (2-Operand, SP-Relative) DADDIU

15 11 10 8 7 0
164 DADJSP
immediate
11111 011
5 3 8
Format: DADDIU sp, immediate MIPS16e (64-bit only)
Purpose:

To add a constant to the stack pointer.

Description: GPR[sp] ¢« GPR[sp] + immediate

The 8-bit immediate is shifted left 3 bits, sign-extended to 64 bits, and then added to the contents of GPR 29 to form
a 64-bit result. Theresult is placed in GPR 29.

No integer overflow exception occurs under any circumstances.
Restrictions:

Operation:

GPR[29] ¢ GPR[29] + sign_extend(immediate || 03)

Exceptions:
Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 79

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Add Immediate Unsigned (2-Operand, SP-Relative, Extended) DADDIU

80

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND 164 DADDJSP 000
imm 10:5 imm 15:11 imm 4:0
11110 11111 011 0
5 6 5 5 3 3 5
Format: DADDIU sp, immediate MIPS16e (64-bit only)
Purpose:

To add a constant to the stack pointer.

Description: GPR[sp] ¢« GPR[sp] + immediate

The 16-bit immediate is sign-extended to 64 bits and then added to the contents of GPR 29 to form a 64-bit result. The
result is placed in GPR 29.

No integer overflow exception occurs under any circumstances.
Restrictions:

Operation:
GPR[29] ¢ GPR[29] + sign_extend(immediate)

Exceptions:
Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Add Immediate Unsigned (3-Operand, SP-Relative) DADDIU

15 11 10 8 7 5 4 0
164 DADDIUSP
ry immediate
11111 111
5 3 3 5
Format: DADDIU ry, sp, immediate MIPS16e (64-bit only)
Purpose:

To add a constant to the stack pointer.

Description: GPR[ry] ¢« GPR[sp] + immediate

The 5-bit immediate is shifted |eft 2 bits, zero-extended to 64 bits, and added to the contents of GPR 29 to form a
64-hit result. Theresult is placed in GPR ry.

No integer overflow exception occurs under any circumstances.
Restrictions:

Operation:

GPR[Xlat (ry)] ¢ GPR[29] + zero_extend(immediate || 02)

Exceptions:
Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 81

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Add Immediate Unsigned (3-Operand, SP-Relative, Extended) DADDIU

82

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND 164 DADDIUSP
imm 10:5 imm 15:11 ry imm 4:0
11110 11111 111
5 6 5 5 3 3 5
Format: DADDIU ry, sp, immediate MIPS16e (64-bit only)
Purpose:

To add a constant to the stack pointer.

Description: GPR[ry] ¢ GPR[sp] + immediate

The 16-bit immediate is sign-extended to 64 bits and added to the contents of GPR 29 to form a 64-bit result. The
result isplaced in GPR ry.

No integer overflow exception occurs under any circumstances.
Restrictions:
Operation:

GPR[Xlat(ry)] ¢« GPR[29] + sign_extend(immediate’
Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Add Unsigned (3-Operand) DADDU
15 11 10 8 7 2 1 0
RRR DADDU
rx ry rz
11100 00
5 3 3 3 2

Format: DADDU rz, rx, ry

Purpose:

To add 64-bit integers.

Description: GPR[rz] ¢ GPR[rx] + GPR[ry]
The contents of GPR ry are added to the contents of GPR rx. The 64-bit result is placed into GPR rz

No integer overflow exception occurs under any circumstances.

Restrictions:

Operation:

GPR[Xlat (rz)]

Exceptions:
Reserved Instruction

¢ GPR[Xlat(rx)] + GPR[Xlat(ry)]

Programming Notes:

MIPS16e (64-bit only)

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

83

Doubleword Divide DDIV

84

15 11 10 8 7 5 4 0
RR DDIV
rx ry
11101 11110
5 3 3 5
Format: DpDIV rx, ry MIPS16e (64-bit only)
Purpose:

To divide 64-bit signed integers.

Description: (LO, HI) <« GPR[rx] / GPR[ry]

The 64-bit doubleword in GPR rx is divided by the 64-bit doubleword in GPR ry, treating both operands as signed
values. The 64-hit quotient is placed into special register LO and the 64-bit remainder is placed into special register
HI.

No arithmetic exception occurs under any circumstances.

Restrictions:
If the divisor in GPR ry is zero, the arithmetic result valueis UNPREDICTABLE.

Operation:

LO ¢ GPR[Xlat(rx)] div GPR[Xlat(ry)]
HI ¢ GPR[Xlat(rx)] mod GPR[Xlat(ry)]

Exceptions:
Reserved Instruction

Programming Notes:
See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS 111, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of the MFHI or
MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subsequent instruc-
tions that write to them by two or more instructions. This restriction was removed in MIPS |V and MIPS32 and all
subsequent levels of the architecture.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Divide Unsigned DDIVU

15 11 10 8 7 5 4 0
RR DDIVU
X ry
11101 11111
5 3 3 5
Format: DDIVU rx, ry MIPS16e (64-bit only)
Purpose:

To divide 64-bit unsigned integers.

Description: (L0, HI) <« GPR[rx] / GPR[ry]

The 64-bit doubleword in GPR rx is divided by the 64-bit doubleword in GPR ry, treating both operands as unsigned
values. The 64-hit quotient is placed into special register LO and the 64-bit remainder is placed into special register
HI.

No arithmetic exception occurs under any circumstances.

Restrictions:
If the divisor in GPR ry is zero, the arithmetic result value is UNPREDICTABLE.

Operation:
g « (0 || GPRI[Xlat(rx)]) div (0 || GPR[Xlat(ry)])
r « (0 || GPR[Xlat(rx)]) mod (0 || GPR[Xlat(ry)])

LO < d63..0
HI « Ye3..0

Exceptions:
Reserved Instruction

Programming Notes:
See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS 111, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of the MFHI or
MFLO isUNPREDICTABLE. Reads of the HI or LO special register must be separated from subsequent instructions
that write to them by two or more instructions. This restriction was removed in MIPS IV and MIPS32 and all subse-
guent levels of the architecture.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 85

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Divide Word DIV

86

15 11 10 8 7 5 4 0
RR DIV
rx ry
11101 11010
5 3 3 5
Format: DIv rx, ry MIPS16e
Purpose:

To divide 32-bit signed integers.

Description: (L0, HI) ¢« GPR[rx] / GPR[ry]

The 32-bit word value in GPR rx is divided by the 32-bit value in GPR ry, treating both operands as signed values.
The 32-bit quotient is sign-extended and placed into special register LO, and the 32-hit remainder is sign-extended
and placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If either GPR rx or GPR ry does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

If thedivisor in GPR ry is zero, the arithmetic result is UNPREDICTABLE.

Operation:

if (NotWordvalue (GPR[Xlat(rx)]) or NotWordvValue (GPR[Xlat(ry)])) then
UNPREDICTABLE

endif

g ¢ GPR[Xlat(rx)] div GPR[Xlat (ry)]

r ¢ GPR[Xlat(rx)] mod GPR[Xlat (ry)]

LO ¢ sign_extend(ds;. g)

HI < sign_extend(rsz; o)

Exceptions:

None

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Divide Word (cont.) DIV

Programming Notes:

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow conditions are detected and
some action taken, then the divide instruction is typically followed by additional instructions to check for a zero divi-
sor and/or for overflow. If the divide is asynchronous then the zero-divisor check can execute in parallel with the
divide. The action taken on either divide-by-zero or overflow is either a convention within the program itself, or more
typically within the system software; one possibility is to take a BREAK exception with a code field value to signal
the problem to the system software.

As an example, the C programming language in a UNIX® environment expects division by zero to either terminate
the program or execute a program-specified signal handler. C does not expect overflow to cause any exceptional con-
dition. If the C compiler uses a divide instruction, it also emits code to test for a zero divisor and execute a BREAK
instruction to inform the operating system if azero is detected.

Where the size of the operands are known, software should place the shorter operand in GPR ry. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

In some processors the integer divide operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the divide so that other instructions can execute in parallel.

Historical Perspective:

In MIPS 1 through MIPS 11, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
guent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 87

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Divide Unsigned Word DIVU

15 11 10 8 7 5 4 0
RR DIVU
X ry
11101 11011
5 3 3 5
Format: DIVU rx, ry MIPS16e
Purpose:

To divide 32-bit unsigned integers.

Description: (L0, HI) <« GPR[rx] / GPR[ry]

The 32-bit word value in GPR rx is divided by the 32-bit value in GPR ry;, treating both operands as unsigned values.
The 32-bit quotient is sign-extended and placed into special register LO, and the 32-bit remainder is sign-extended
and placed into special register HI.

Restrictions:

If either GPR rx or GPR ry does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

If the divisor in GPR ry is zero, the arithmetic result is UNPREDICTABLE.

Operation:
if (NotWordvValue (GPR[Xlat(rx)]) or NotWordvValue (GPR[Xlat(ry)])) then
UNPREDICTABLE
endif
g < (0 || GPR[Xlat(rx)]) div (0 || GPR[Xlat(ry)])
r < (0 || GPR[Xlat(rx)]) mod (0 || GPR[Xlat(ry)])

]
]
LO < sign_extend(dgs;. o)
HI < sign_extend(rsz; o)

Exceptions:
None

Programming Notes:
See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS 1 through MIPS 11, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
guent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

88 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Multiply DMULT

15 11 10 8 7 5 4 0
RR DMULT
rx ry
11101 11100
5 3 3 5
Format: DMULT rx, ry MIPS16e (64-bit only)
Purpose:

To multiply 64-bit signed integers.

Description: (LO, HI) < GPR[rx] XGPR[ry]

The 64-bit doubleword value in GPR rx is multiplied by the 64-bit value in GPR ry, treating both operands as signed
values, to produce a 128-bit result. The low-order 64-bit doubleword of the result is placed into specia register LO,
and the high-order 64-bit doubleword is placed into special register HI.

No arithmetic exception occurs under any circumstances.
Restrictions:

Operation:
prod<«- GPR[Xlat(rx)] X GPR[Xlat(ry)]
LO <« prodgs g
HI <« prodiz7. 64

Exceptions:
Reserved Instruction

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute beforeit is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Historical Perspective:

In MIPS 111, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of the MFHI or
MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subsequent instruc-
tions that write to them by two or more instructions. This restriction was removed in MIPS 1V and all subsequent lev-
els of the architecture.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 89

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Multiply Unsigned DMULTU

15 11 10 8 7 5 4 0
RR DMULTU
X ry
11101 11101
5 3 3 5
Format: DMULTU rx, ry MIPS16e (64-bit only)
Purpose:

To multiply 64-bit unsigned integers.

Description: (O, HI) ¢~ GPR[rx] XGPR[ry]

The 64-bit doubleword value in GPR rx is multiplied by the 64-bit value in GPR ry, treating both operands as
unsigned values, to produce a 128-hit result. The low-order 64-bit doubleword of the result is placed into special reg-
ister LO, and the high-order 64-bit doubleword is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

Operation:
prod« (0] |GPR[Xlat(rx)]) X (0| |GPR[Xlat(ry])
LO <« prodgs. g
HI « prodiz7. 64

Exceptions:

Reserved Instruction

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute beforeit is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Historical Perspective:

In MIPS 111, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of the MFHI or
MFLO isUNPREDICTABLE. Reads of the HI or LO special register must be separated from subsequent instructions
that write to them by two or more instructions. This restriction was removed in MIPS IV and all subsequent levels of
the architecture.

90 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Shift Left Logical

DSLL

15 11 10 8 7 2 1
SHIFT DSLL
rx ry
00110 01
5 3 3 2

Format: bDsSLL rx, ry, sa

Purpose:

To execute a left-shift of a doubleword by afixed amount—1 to 8 hits.

Description: GPR[rx] ¢« GPR[ry] << sa

MIPS16e (64-bit only)

The 64-bit doubleword contents of GPR ry are shifted left, and zeros are inserted into the emptied low-order bits. The
3-bit sa field specifies the shift amount. A shift amount of O is interpreted as a shift amount of 8. The 64-bit result is

placed into GPR rx.
Restrictions:

Operation: 64-bit processors

if sa = 0° then

s< 8
else
s« 03 || sa
endif
GPR[Xlat (rx)] ¢ GPR[Xlat(ry)] s3-g)..0 || 0°
Exceptions:

Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

91

Doubleword Shift Left Logical (Extended) DSLL

31 27 26 22 21 20 16 15 11 10 8 7 5 4 2 1 0
EXTEND 0 SHIFT 0 DSLL
sa4.0 5 rx ry
11110 00000 00110 000 01
5 5 1 5 5 3 3 3 2
Format. DSLL rx, ry, sa MIPS16e (64-bit only)
Purpose:

To execute a left-shift of a doubleword by afixed amount—oO to 63 bits.

Description: GPR[rx] ¢ GPR[ry] << sa

The 64-bit doubleword contents of GPR ry are shifted |eft, and zeros are inserted into the emptied low-order bits. The
S5 bit and the 5-bit sa field specify the effective 6-bit-shift amount. The 64-bit result is placed into GPR rx.
Restrictions:

None

Operation: 64-bit processors

s ¢« s5 || sa
GPR[Xlat (rx)] ¢ GPR[Xlat(ry)] (s3-g)..0 || 0°

Exceptions:
Reserved Instruction

Programming Notes:

For DSLL only, the s5 bit is the most-significant bit of the 6-bit-shift amount (sa) field. For all 32-bit extended shifts,
S5 must be zero. None of the extended shift instructions perform the zero-to-eight mapping, so zero-bit shifts are pos-
sible using the extended format.

92 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Shift Left Logical Variable DSLLV

15 11 10 8 7 5 4 0
RR DSLLV
X ry
11101 10100
5 3 3 5
Format: DSLLV ry, rx MIPS16e (64-bit only)
Purpose:

To execute a left-shift of a doubleword by a variable number of bits.

Description: GPR[ry] ¢ GPR[ry] << GPR[rx]

The 64-bit doubleword contents of GPR ry are shifted l€eft, inserting zeros into the emptied bits; the result is placed
back into GPR ry. The 6 low-order hits of GPR rx specify the shift amount.

Restrictions:

Operation: 64-bit processors

s ¢« GPR[Xlat(rx)ls
GPR[Xlat (ry)] ¢ GPR[Xlat(ry)] 3-g)..0 || 0°

Exceptions:
Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 93

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Shift Right Arithmetic DSRA
15 11 10 8 7 0
RR DSRA
sa ry
11101 10011
5 3 3 5

94

Format: DSrRA ry, sa

Purpose:

To execute an arithmetic right-shift of a doubleword by a fixed amount—1 to 8 bits.

Description: GPR[ry] ¢ GPR[ry] >> sa (arithmetic)

The 64-bit doubleword contents of GPR ry are shifted right, duplicating the sign bit (63) into the emptied bits; the
result is placed in back in GPR ry. The 3-bit sa field specifies the shift amount. A shift amount of O isinterpreted asa

shift amount of 8.
Restrictions:

Operation:

if sa = 0° then
s < 8
else
s « 0% || sa
endif

GPR[Xlat(ry)] ¢ (GPR[Xlat(ry)lgs)® || GPRIXlat(ry)lgs. o

Exceptions:
Reserved Instruction

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

MIPS16e (64-bit only)

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Doubleword Shift Right Arithmetic (Extended) DSRA
31 27 26 22 21 20 16 15 11 10 8 7 0
EXTEND 0 RR 0 DSRA
sa4.0 5 ry
11110 00000 11101 000 10011
5 5 1 5 5 3 3 5

Format: DSrRA ry, sa

Purpose:

To execute an arithmetic right-shift of a doubleword by a fixed amount—O0 to 63 bits.

Description: GPR[ry] ¢ GPR[ry] >> sa (arithmetic)

The 64-bit doubleword contents of GPR ry are shifted right, duplicating the sign bit (63) into the emptied bits; the
result is placed in back in GPR ry. The s5 bit and the 5-bit sa field specify the effective 6-bit-shift amount.

Restrictions:

Operation:

s < s5 || sa
GPR[Xlat (ry)] ¢ (GPR[Xlat(ry)lgs)® || GPRIXlat(ry)les. o

Exceptions:

Reserved Instruction

Programming Notes:

MIPS16e (64-bit only)

The s5 bit is the most-significant bit of the 6-bit-shift amount (sa) field. None of the extended shift instructions per-
form the zero-to-eight mapping, so zero-bit shifts are possible using the extended format.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

95

Doubleword Shift Right Arithmetic Variable DSRAV

96

15 11 10 8 7 5 4 0
RR DSRAV
rx ry
11101 10111
5 3 3 5
Format: DSRAV ry, rx MIPS16e (64-bit only)
Purpose:

To execute an arithmetic right-shift of a doubleword by a variable number of bits.

Description: GPR[ry] ¢ GPR[ry] >> GPR[rx] (arithmetic)

The doubleword contents of GPR ry are shifted right, duplicating the sign bit (63) into the emptied bits; the result is
placed back in GPR ry. The 6 low-order bits of GPR rx specify the shift amount.

Restrictions:
Operation:

s ¢ GPR[Xlat (rx)ls g

GPR[Xlat(ry)] ¢« (GPRIXlat(ry)les)® || GPRIXlat(ry)les. s
Exceptions:

Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Shift Right Logical

DSRL

15 11 10 8 7
RR DSRL
sa ry
11101 01000
5 3 3 5

Format: DSRL ry, sa

Purpose:

To execute alogical right-shift of a doubleword by a fixed amount—1 to 8 bits.

Description: GPR[ry] ¢« GPR[ry] >> sa (logical)

MIPS16e (64-bit only)

The doubleword contents of GPR ry are shifted right, inserting zerosinto the emptied bits; the result is placed back in

GPR ry.The 3-bit sa field specifies the shift amount. A shift amount of O isinterpreted as a shift amount of 8.

Restrictions:

Operation:

if sa = 03 then
s < 8
else
s « 0% || sa
endif
GPR[Xlat(ry)] ¢ 0° || GPR[Xlat(ry)lgs. s

Exceptions:
Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

97

Doubleword Shift Right Logical (Extended) DSRL

98

31 27 26 22 21 20 16 15 11 10 8 7 5 4 0
EXTEND 0 RR 0 DSRL
sa4:0 5 ry
11110 00000 11101 000 01000
5 5 1 5 5 3 3 5
Format: DSRL ry, sa MIPS16e (64-bit only)

Purpose:
To execute alogical right-shift of a doubleword by a fixed amount—oO0 to 63 bits

Description: GPR[ry] ¢« GPR[ry] >> sa (logical)
The doubleword contents of GPR ry are shifted right, inserting zerosinto the emptied bits; the result is placed back in
GPR ry. The s5 bit and the 5-bit sa field specify the effective 6-bit-shift amount.

Restrictions:

Operation: 64-bit processors

s < s5 || sa
GPR[Xlat(ry)] ¢ 0° || GPR[Xlat(ry)lgs. s

Exceptions:
Reserved Instruction

Programming Notes:

The s5 bit is the most-significant bit of the 6-bit-shift amount (sa) field. None of the extended shift instructions per-
form the zero-to-eight mapping, so zero-bit shifts are possible using the extended format.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Shift Right Logical Variable DSRLV

15 11 10 8 7 5 4 0
RR DSRLV
rx ry
11101 10110
5 3 3 5
Format: DSRLV ry, rx MIPS16e (64-bit only)
Purpose:

To execute alogical right-shift of a doubleword by a variable number of bits.

Description: GPR[ry] ¢ GPR[ry] >> GPR[rx] (logical)

The 64-bit doubleword contents of GPR ry are shifted right, inserting zeros into the emptied hits; the result is placed
back in GPR ry. The 6 low-order bits of GPR rx specify the shift amount.

Restrictions:

Operation: 64-bit processors

s ¢ GPR[Xlat (rx)ls g
GPR[Xlat(ry)] « 0° || GPR[Xlat(ry)les. s

Exceptions:
Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 99

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Subtract Unsigned DSUBU

100

15 11 10 8 7 5 4 2 1 0
RRR DSUBU
rx ry rz
11100 10
5 3 3 3 2
Format: DSUBU rz, rx, ry MIPS16e (64-bit only)
Purpose:

To subtract 64-bit integers.

Description: GPR[rz] ¢ GPR[rx] - GPR[ry]

The 64-bit doubleword value in GPR ry is subtracted from the 64-bit value in GPR rx and the 64-bit arithmetic result
isplaced into GPR rz

No integer overflow exception occurs under any circumstances.
Restrictions:

Operation: 64-bit processors
GPR[Xlat(rz)] ¢ GPR[Xlat(rx)] - GPR[Xlat(ry)]

Exceptions:
Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Jump and Link JAL

31 27 26 25 21 20 16 15 0
JAL X target target
target 15:0
00011 0 20:16 25:21
5 1 5 5 16
Format: JAL target MIPS16e
Purpose:

To execute a procedure call within the current 256 M B-aligned region and preserve the current | SA.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call. The value stored in GPR 31 hit O reflects the current
value of the |SA Mode hit.

Thisis a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
Thelow 28 bits of the target addressis the target field shifted |eft 2 bits. The remaining upper bits are the correspond-
ing hits of the address of the instruction in the delay dot (not the branch itself).

Jump to the effective target address, preserving the ISA Mode bit. Execute the instruction that follows the jump, in
the branch delay dlot, before executing the jump itself.

The opcode field describes a general jump-and-link operation, with the x field as a variable. The individual instruc-
tions, JAL and JALX have specific values for this variables.
Restrictions:

An extended instruction should not be placed in a jump delay slot as it causes one-half of an instruction to be exe-
cuted.

Processor operation is UNPREDICTABLE if abranch or jump instruction is placed in the delay slot of ajump.

Operation:
I: GPR[31] ¢ (PC + 6)gprren-1..1 || ISAMode
I+l: PC ¢« PCuprren-1. 28 || target || 02
Exceptions:
None

Programming Notes:

Forming the jump target address by catenating PC and the 26-bit target address rather than adding a signed offset to
the PC is an advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It
allows a branch from anywhere in the region to anywhere in the region, an action not allowed by a signed relative off-
Set.

This definition creates the boundary case where the jump instruction is in the last word of a 256 MB region and can
therefore jJump only to the following 256 MB region containing the jump delay slot.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 101

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Jump and Link Register JALR

102

15 11 10 8 7 6 5 4 0
RR nd I ra JAL)R(C)
X
11101 0 1 0 00000
5 3 1 5
Format. JALR ra, rx MIPS16e
Purpose:

To execute aprocedure call to an instruction address in aregister.

Description: GPR[ra] < return_addr, PC < GPR[rx]

The program unconditionally jumps to the address contained in GPR rx, with adelay of one instruction. The instruc-
tion sets the | SA Mode bit to the value in GPR rx bit O.

The address of the instruction following the delay dlot is placed into GPR 31. The value stored in GPR 31 bit 0
reflects the current value of the | SA Mode hit.

Bit O of the target address is always zero so that no Address Exceptions occur when bit O of the source register is one.
The opcode and function field describe a general jump-thru-register operation, with the nd (no delay dot), | (link),
and ra (source register is ra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have spe-
cific values for these variables.

Restrictions:

The effective target address in GPR rx must be naturally-aligned. If bit 0 is zero and bit 1 is one, an Address Error
exception occurs when the jump target is subsequently fetched as an instruction.

An extended instruction should not be placed in ajump delay slot, because this causes one-half of an instruction to be
executed.

Processor operation is UNPREDICTABLE if abranch or jump instruction is placed in the delay slot of ajump.

Operation:
I: GPR[31] ¢ (PC + 4)gprren-1..1 || ISAMode
I+l: PC ¢« GPR[Xlat (rx)lgprren-1..1 || O
ISAMode < GPR[Xlat(rx)],
Exceptions:
None

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Jump and Link Register, Compact JALRC

15 11 10 8 7 6 5 4 0
RR nd I ra JAL)R(C)
X
11101 1 1 0 00000
5 3 1 1 5
Format: JALRC ra, rx MIPS16e
Purpose:

To execute a procedure call to an instruction address in aregister

Description: GPR[ra] ¢ return_addr, PC ¢ GPR[rx]

The program unconditionally jumps to the address contained in GPR rx, with no delay slot instruction. The instruc-
tion sets the | SA Mode bit to the value in GPR rx bit O.

The address of the instruction following the jump is placed into GPR 31. The value stored in GPR 31 bit O reflects the
current value of the | SA Mode bit.

Bit O of the target address is always zero so that no Address Exceptions occur when bit O of the source register is one.

The opcode and function field describe a general jump-thru-register operation, with the nd (no delay dlot), | (link),
and ra (source register isra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have spe-
cific values for these variables.

Restrictions:

The effective target address in GPR rx must be naturally-aligned. If bit 0 is zero and bit 1 is one, an Address Error
exception occurs when the jump target is subsequently fetched as an instruction.

Operation:
I: GPR[31] ¢ (PC + 2)gprren-1..1 || ISAMode
PC ¢ GPR[Xlat (rx)lgprren-1..1 || O
ISAMode < GPR[Xlat(rx)],
Exceptions:
None.

Programming Notes:
Unlike most MIPS “jump” instructions, JALRC does not have adelay dlot.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 103

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Jump and Link Exchange (MIPS16e Format) JALX

104

31 27 26 25 21 20 16 15 0
JAL X target target
target 15:0
00011 1 20:16 25:21
5 1 5 5 16
Format: JALX target MIPS16e
Purpose:

To execute a procedure call within the current 256 MB-aligned region and change the ISA Mode from MI1PS16e to
32-bit MIPS.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call. The value stored in GPR 31 hit O reflects the current
value of the |SA Mode hit.

Thisis a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
Thelow 28 bits of the target addressis the target field shifted left 2 bits. The remaining upper bits are the correspond-
ing bits of the address of the instruction in the delay dot (not the branch itself).

Jump to the effective target address, toggling the ISA Mode bit. Execute the instruction that follows the jump, in the
branch delay slot, before executing the jump itself.

The opcode field describes a general jump-and-link operation, with the x field as a variable. The individua instruc-
tions, JAL and JALX have specific values for this variables.
Restrictions:

An extended instruction should not be placed in ajump delay slot, because this causes one-half an instruction to be
executed.

Processor operation is UNPREDICTABLE if abranch or jump instruction is placed in the delay slot of ajump.

Operation:
I: GPR[31] ¢ (PC + 6)gprren-1..1 || ISAMode
I+l: PC ¢ PCoprrgn-1..28 || target || 07
ISAMode ¢ (not ISAMode)
Exceptions:
None

Programming Notes:

Forming the jJump target address by catenating PC and the 26-bit target address rather than adding a signed offset to
the PC is an advantage if al program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It
allows ajump to anywhere in the region from anywhere in the region which a signed relative offset would not allow.

This definition creates the boundary case where the jump instruction is in the last word of a 256 MB region and can
therefore jJump only to the following 256 M B region containing the jump delay slot.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Jump and Link Exchange (32-bit MIPS Format) JALX

31 26 25 0
JALX

011101

6 26

instr_index

Format: JALX target MIPS64 with MIPS16e

Purpose:

To execute a procedure call within the current 256 M B-aligned region and change the ISA Mode from 32-bit MIPS to
MIPS16e.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call. The value stored in GPR 31 hit O reflects the current
value of the |SA Mode hit.

Thisis a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
Thelow 28 hits of the target addressistheinstr_index field shifted left 2 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address, toggling the ISA Mode bit. Execute the instruction that follows the jump, in the
branch delay slot, before executing the jump itself.
Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:
I: GPR[31]« PC + 8
I+l: PC < PCuprren. 28 || instr_index || 02
ISAMode ¢ (not ISAMode)
Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC isan
advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 256 MB
region, it can branch only to the following 256 MB region containing the branch delay slot.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 105

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Jump Register Through Register ra JR
15 11 10 8 7 6 5 0
RR nd I ra JAL)R(C)
000
11101 0 0 1 00000
5 3 1 1 5
Format: JRrR ra MIPS16e

106

Purpose:

To execute a branch to the instruction address in the return address register.

Description: pCc < GPR[ra]

The program unconditionally jumps to the address specified in GPR 31, with a delay of one instruction. The instruc-

tion sets the | SA Mode bit to the value in GPR 31

bit O.

Bit O of the target addressis always zero so that no Address Exceptions occur when bit O of the source register is one.

The opcode and function field describe a general jump-thru-register operation, with the nd (no delay dot), | (link),
and ra (source register is ra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have spe-

cific values for these variables.

Restrictions:

The effective target address in GPR 31 must be naturally-aligned. If bit O is zero and bit 1 is one, then an Address

Error exception occurs when the jump target is subsequently fetched as an instruction.

An extended instruction should not be placed in ajump delay slot, because this causes one-half of an instruction to be

executed.

Processor operation is UNPREDICTABLE if abranch or jump instruction is placed in the delay slot of ajump.

Operation:
I+1: PC ¢ GPRI[31lgprren-1..1 || O
ISAMode ¢ GPR[31],
Exceptions:
None

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Jump Register Through MIPS16e GPR JR
15 11 10 8 7 6 5 4 0
RR nd I ra JAL)R(C)
X
11101 0 0 0 00000
5 3 1 5
Format: Jr rx MIPS16e

Purpose:

To execute a branch to an instruction address in aregister.

Description: pC < GPR[rx]

The program unconditionally jumps to the address specified in GPR rx, with a delay of one instruction. The instruc-
tion sets the | SA Mode bit to the value in GPR rx bit O.

Bit O of the target addressis always zero so that no Address Exceptions occur when bit O of the source register is one.

The opcode and function field describe a general jump-thru-register operation, with the nd (no delay dot), | (link),
and ra (source register is ra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have spe-
cific values for these variables.

Restrictions:

The effective target address in GPR rx must be naturally aligned. If bit O is zero and bit 1 is one, then an Address
Error exception occurs when the jump target is subsequently fetched as an instruction.

An extended instruction should not be placed in ajump delay slot, because this causes one-half of an instruction to be

executed.

Processor operation is UNPREDICTABLE if abranch or jump instruction is placed in the delay slot of ajump.

Operation:
I+l: PC ¢ GPR[Xlat(rx)lgprren-1..1 || O
ISAMode < GPR[Xlat(rx)],
Exceptions:
None

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

107

Jump Register Through Register ra, Compact JRC
15 11 10 8 7 6 5 0
RR nd I ra JAL)R(C)
000
11101 1 0 1 00000
5 3 1 1 1 5
Format: JRC ra MIPS16e

108

Purpose:

To execute a branch to the instruction address in the return address register.

Description: pc < GPR[ral

The program unconditionally jumps to the address specified in GPR 31, with no delay ot instruction. The instruction
sets the 1SA Mode bit to the value in GPR 31 bit 0.

Bit O of the target addressis always zero so that no Address Exceptions occur when bit O of the source register is one.

The opcode and function field describe a general jump-thru-register operation, with the nd (no delay dot), | (link),
and ra (source register is ra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have spe-
cific values for these variables.

Restrictions:

The effective target address in GPR 31 must be naturally-aligned. If bit O is zero and bit 1 is one, then an Address

Error exception occurs when the jump target is subsequently fetched as an instruction.

Operation:

I: PC

GPR[31])gprren-1..1 || O

ISAMode ¢ GPR[31],

Exceptions:
None.

Programming Notes:

Unlike most MIPS “jump” instructions, JRC does not have a delay slot.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Jump Register Through M1PS16e GPR, Compact JRC
15 11 10 8 7 6 5 4 0
RR nd I ra JAL)R(C)
X
11101 1 0 0 00000
5 3 1 1 5
Format: JRrC rx MIPS16e

Purpose:

To execute a branch to an instruction address in a register

Description: pc < GPR[rx]

The program unconditionally jumps to the address specified in GPR rx, with no delay slot instruction. The instruction
sets the 1SA Mode bit to the value in GPR rx bit 0.

Bit O of the target address is always zero so that no Address Exceptions occur when bit O of the source register is one.

The opcode and function field describe a general jump-thru-register operation, with the nd (no delay dot), | (link),
and ra (source register is ra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have spe-
cific values for these variables.

Restrictions:

The effective target address in GPR rx must be naturally-aligned. If bit O is zero and bit 1 is one, then an Address
Error exception occurs when the jump target is subsequently fetched as an instruction.

Operation:
I: PC « GPR[Xlat (rx)lgprren-1..1 || O
ISAMode < GPR[Xlat(rx)]j
Exceptions:
None.

Programming Notes:

Unlike most MIPS “jump” instructions, JRC does not have a delay slot.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

109

Load Byte LB

15 11 10 8 7 5 4 0
LB
rx ry offset
10000
5 3 3 5
Format: 1B ry, offset(rx) MIPS16e
Purpose:

To load a byte from memory as a signed value.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 5-bit offset is zero-extended, then added to the contents of GPR rx to form the effective address. The contents of
the byte at the memory location specified by the effective address are sign-extended and loaded into GPR ry.
Restrictions:

None

Operation:

vAddr ¢« zero_extend(offset) + GPR[Xlat (rx)]

(pAddr, CCA)¢« AddressTranslation (vAddr, DATA, LOAD)
PAAAr < pAddrpgrze_1..3 || (PAddr, , xor ReverseEndian?®)
memdoubleword¢« LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor BigEndianCPU?

GPR[Xlat (ry)]« sign_extend(memdoubleword;,gspyte. . g+byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error

110 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Load Byte (Extended) LB

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND LB
offset 10:5 offset 15:11 rx ry offset 4:0
11110 10000
5 6 5 5 3 3 5
Format: 1B ry, offset(rx) MIPS16e
Purpose:

To load a byte from memory as a signed value.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 16-bit offset is sign-extended, then added to the contents of GPR rx to form the effective address. The contents of
the byte at the memory location specified by the effective address are sign-extended and loaded into GPR ry.
Restrictions:

None

Operation:

vAddr < sign_extend(offset) + GPR[Xlat (rx)]

(pAddr, CCA)¢« AddressTranslation (vAddr, DATA, LOAD)
PAAdr < pAddrpgrze_1. .3 || (PAddr, , xor ReverseEndian?)
memdoubleword¢« LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor BigEndianCPU?

GPR[Xlat (ry)]« sign_extend(memdoubleword;,g«pyte. . g*byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 111

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Load Byte Unsigned LBU

112

15 11 10 8 7 5 4 0
LBU
rx ry offset
10100
5 3 3 5
Format: LBU ry, offset(rx) MIPS16e
Purpose:

To load a byte from memory as an unsigned value

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 5-bit offset is zero-extended, then added to the contents of GPR rx to form the effective address. The contents of
the byte at the memory location specified by the effective address are zero-extended and loaded into GPR ry.
Restrictions:

None

Operation:

vAddr ¢« zero_extend(offset) + GPR[Xlat (rx)]

(pAddr, CCA)¢« AddressTranslation (vAddr, DATA, LOAD)
PAAdr < pAddrpgrze_1. .3 || (PAddr, , xor ReverseEndian?)
memdoubleword¢« LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor BigEndianCPU?

GPR[Xlat (ry)]« zero_extend (memdoubleword;,g«pyte. .g*byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Load Byte Unsigned (Extended) LBU

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND LBU
offset 10:5 offset 15:11 rx ry offset 4:0
11110 10100
5 6 5 5 3 3 5
Format: LBU ry, offset(rx) MIPS16e
Purpose:

To load a byte from memory as an unsigned value

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 16-bit offset is sign-extended, then added to the contents of GPR rx to form the effective address. The contents of
the byte at the memory location specified by the effective address are zero-extended and loaded into GPR ry.
Restrictions:

None

Operation:

vAddr < sign_extend(offset) + GPR[Xlat (rx)]

(pAddr, CCA)« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢ pAddrpgrge.1. 3 || (pAddr, , xor ReverseEndian®)
memdoubleword« LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor BigEndianCPU?

GPR[Xlat (ry)]¢ zero_extend (memdoubleword;,gspyte. .g*byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 113

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Load Doubleword LD

114

15 11 10 8 7 5 4 0
LD
rx ry offset
00111
5 3 3 5
Format: 1D ry, offset(rx) MIPS16e (64-bit only)
Purpose:

To load a doubleword from memory.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 5-bit offset is shifted left 3 bits, zero-extended to 64 bits, then added to the contents of GPR rx to form the effec-
tive address. The contents of the 64-bit doubleword at the memory location specified by the effective address are
loaded into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr « zero_extend(offset || 0%) + GPR[Xlat(rx)]
if vAddr, o # 0° then

SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ¢« LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[Xlat (ry)] ¢ memdoubleword

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Load Doubleword (Extended) LD
31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND LD
offset 10:5 offset 15:11 rx ry offset 4:0
11110 00111
5 6 5 5 3 3 5

Format: LD ry, offset(rx)

Purpose:
To load a doubleword from memory.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

MIPS16e (64-bit only)

The 16-bit offset is sign-extended to 64 bits and then added to the contents of GPR rx to form the effective address.
The contents of the 64-bit doubleword at the memory location specified by the effective address are loaded into GPR

ry.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr < sign_extend(offset) + GPR[Xlat (rx)]
if vAddr, , # 0° then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

memdoubleword ¢ LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)

GPR[Xlat (ry)] ¢« memdoubleword

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

115

Load Doubleword (PC-Relative) LD

15 11 10 8 7 5 4 0
164 LDPC
ry offset
11111 100
5 3 3 5
Format: LD ry, offset(pc) MIPS16e (64-bit only)
Purpose:

To load a PC-relative doubleword from memory.

Description: GPR[ry] ¢ memory[PC + offset]

The 5-bit offset is shifted |eft 3 bits, zero-extended to 64 bits, and added either to the address of the LD instruction or
to the address of the jump instruction in whose delay slot the LD is executed. The 3 lower bits of this result are
cleared to form the effective address. The contents of the 64-bit doubleword at the memory location specified by the
effective address are loaded into GPR ry.

Restrictions:
Operation:
I-1: base_pc « PC
I: if not (JumpDelaySlot (PC)) then
base_pc ¢ PC
endif
vAddr < (base_DpCgprien-1. 3 + zero_extend(offset)) || 03

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
memdoubleword <~ LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[Xlat (ry)] ¢« memdoubleword

Exceptions:

TLB R€fill, TLB Invalid, Bus Error, Reserved Instruction

Programming Note

For the purposes of watchpoints (provided by the CPO WatchHi and WatchLo registers) and EJTAG breakpoints, the
PC-relative reference is considered to be a data, rather than an instruction reference. That is, the watchpoint or break-
point istriggered only if enabled for data references.

116 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Load Doubleword (PC-Relative, Extended) LD

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND 164 LDPC
offset 10:5 offset 15:11 ry offset 4.0
11110 11111 100
5 6 5 5 3 3 5
Format: LD ry, offset(pc) MIPS16e (64-bit only)
Purpose:

To load a PC-relative doubleword from memory.

Description: GPR[ry] ¢ memory[PC + offset]

The 16-bit offset is sign-extended and added to the address of the LD instruction; this forms the effective address.
Before the addition, the 3 lower bits of the instruction address are cleared. The contents of the 64-bit doubleword at
the memory location specified by the effective address are loaded into GPR ry.

Restrictions:

A PC-relative, extended LD may not be placed in the delay slot of ajump instruction.

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

VAddr ¢ (PCgppren-1. .3 || 0°) + sign_extend(offset)

if vAddr, o # 0% then

SignalException (AddressError)

endif

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ¢« LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[Xlat (ry)] ¢ memdoubleword

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

Programming Note

For the purposes of watchpoints (provided by the CPO WatchHi and WatchLo registers) and EJTAG breakpoints, the
PC-relative reference is considered to be a data, rather than an instruction reference. That is, the watchpoint or break-
point istriggered only if enabled for data references.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 117

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Load Doubleword (SP-Relative) LD

118

15 11 10 8 7 5 4 0
164 LDSP
ry offset
11111 000
5 3 3 5
Format: LD ry, offset(sp) MIPS16e (64-bit only)
Purpose:

To load a doubleword from memory.

Description: GPR[ry] ¢ memory[GPR[sp] + offset]

The 5-bit offset is shifted | eft 3 bits, zero-extended to 64 bits, then added to the contents of GPR 29 to form the effec-
tive address. The contents of the 64-bit doubleword at the memory location specified by the effective address are
loaded into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr « zero_extend(offset || 03) + GPR[29]
if vAddr, , # 0° then

SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ¢ LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[Xlat (ry)] ¢« memdoubleword

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Load Doubleword (SP-Relative, Extended) LD
31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND 164 LDSP
offset 10:5 offset 15:11 ry offset 4:0
11110 11111 000
5 6 5 5 3 3 5

Format: LD ry, offset(sp)

Purpose:
To load an SP-relative doubleword from memory.

Description: GPR[ry] ¢ memory[GPR[sp] + offset]

MIPS16e (64-bit only)

The 16-bit offset is sign-extended to 64 bits and then added to the contents of GPR 29 to form the effective address.
The contents of the 64-bit doubleword at the memory location specified by the effective address are loaded into GPR

ry.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr < sign_extend(offset) + GPR[29]
if vAddr, , # 0° then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

memdoubleword <~ LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)

GPR[Xlat (ry)] ¢« memdoubleword

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

119

Load Halfword LH

120

15 11 10 8 7 5 4 0
LH
rx ry offset
10001
5 3 3 5
Format: LH ry, offset(rx) MIPS16e
Purpose:

To load a halfword from memory as a signed value.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 5-bit offset is shifted |eft 1 bit, zero-extended, then added to the contents of GPR rx to form the effective address.
The contents of the halfword at the memory location specified by the effective address are sign-extended and loaded
into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ¢« zero_extend(offset || 0) + GPR[Xlat(rx)]
if vAddry # 0 then
SignalException (AddressError)

endif

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)

PAAdr < pAddrpgryp_1. 3 || (pAddr, , xor (ReverseEndian? || 0))
memdoubleword ¢« LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte « vAddr, , xor (BigEndianCPU? || 0)

GPR[Xlat (ry)] ¢« sign_extend(memdoubleword;s,g+pyte..g*byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Load Halfword (Extended) LH
31 27 26 21 20 16 15 11 10 0
EXTEND LH
offset 10:5 offset 15:11 rx ry offset 4:0
11110 10001
5 6 5 5 3 3 5
Format: LH ry, offset(rx) MIPS16e

Purpose:

To load a halfword from memory as a signed value.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 16-hit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The con-
tents of the halfword at the memory location specified by the effective address are sign-extended and loaded into

GPRy.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr <« sign_extend(offset)

if vAddry # 0 then
SignalException (AddressError)

+ GPR[Xlat (rx)]

endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
PAAdr < pAddrpgryp_1. 3 || (pAddr, , xor (ReverseEndian? || 0))

memdoubleword ¢« LoadMemory

byte « vAddr, , xor (BigEndianCPU? || 0)

GPR[Xlat (ry)] ¢« sign_extend(memdoubleword;s,g+pyte..g*byte)

Exceptions:

TLB R€fill, TLB Invalid, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

(CCA, HALFWORD, pAddr, vAddr,

DATA)

121

Load Halfword Unsigned LHU

122

15 11 10 8 7 5 4 0
LHU
rx ry offset
10101
5 3 3 5
Format: LHU ry, offset(rx) MIPS16e
Purpose:

To load a halfword from memory as an unsigned value.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 5-bit offset is shifted |eft 1 bit, zero-extended, then added to the contents of GPR rx to form the effective address.
The contents of the halfword at the memory location specified by the effective address are zero-extended and loaded
into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ¢« zero_extend(offset || 0) + GPR[Xlat(rx)]
if vAddry # 0 then
SignalException (AddressError)

endif

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)

PAAdr < pAddrpgryp_1. 3 || (pAddr, , xor (ReverseEndian? || 0))
memdoubleword ¢« LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte « vAddr, , xor (BigEndianCPU? || 0)

GPR[Xlat (ry)] ¢« zero_extend(memdoubleword;s,g+pyte..g*byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Load Halfword Unsigned (Extended) LHU
31 27 26 21 20 16 15 11 10 8 7 0
EXTEND LHU
offset 10:5 offset 15:11 rx ry offset 4:0
11110 10101
5 6 5 5 3 3 5
Format: LHU ry, offset(rx) MIPS16e

Purpose:

To load a halfword from memory as an unsigned value.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 16-hit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The con-
tents of the halfword at the memory location specified by the effective address are zero-extended and loaded into

GPRy.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr <« sign_extend(offset)

if vAddry # 0 then
SignalException (AddressError)

+ GPR[Xlat (rx)]

endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
PAAdr < pAddrpgryp_1. 3 || (pAddr, , xor (ReverseEndian? || 0))

memdoubleword ¢« LoadMemory

byte « vAddr, , xor (BigEndianCPU? || 0)

GPR[Xlat (ry)] ¢« zero_extend(memdoubleword;s,g+pyte..g*byte)

Exceptions:

TLB R€fill, TLB Invalid, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

(CCA, HALFWORD, pAddr, vAddr,

DATA)

123

Load Immediate

124

LI
15 11 10 8 7 0
LI
rx immediate
01101
5 3 8
Format: LI rx, immediate MIPS16e

Purpose:
To load a constant into a GPR.

Description: GPR[rx] ¢ immediate

The 8-bit immediate is zero-extended and then loaded into GPR rx.

Restrictions:
None

Operation:

GPR[Xlat (rx)] ¢ zero_extend(immediate)

Exceptions:
None

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Load Immediate (Extended)
31 27 26 21 20 16 15 11 10 4 0
EXTEND LI 0
immediate 10:5 immediate 15:11 rx iummediate 4.0
11110 01101 000

5 6 5 5 3 3 5
Format: LI rx, immediate MIPS16e
Purpose:
To load aconstant into a GPR.
Description: GPR[rx] ¢ immediate
The 16-bit immediate is zero-extended and then loaded into GPR rx.
Restrictions:
None
Operation:

GPR[Xlat (rx)] ¢« zero_extend(immediate)
Exceptions:
None

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LI

125

Load Word LW

126

15 11 10 8 7 5 4 0
LW
rx ry offset
10011
5 3 3 5
Format: 1w ry, offset(rx) MIPS16e
Purpose:

To load aword from memory as asigned value.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 5-hit offset is shifted left 2 bits, zero-extended, then added to the contents of GPR rx to form the effective
address. The contents of the word at the memory location specified by the effective address are loaded into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ¢« zero_extend(offset || 02) + GPR[Xlat (rx)]
if vAddr; , # 02 then
SignalException (AddressError)
endif
(pAddr, CCA)¢« AddressTranslation (vAddr, DATA, LOAD)
PAAdr < pAddrpgrze_1. .3 || (pAddr, , xor (ReverseEndian || 02))
memdoubleword¢« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor (BigEndianCPU || 02)
GPR[Xlat (ry)]« sign_extend(memdoublewordsq,g+pyte..8*byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Load Word (Extended) LW

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND LW
offset 10:5 offset 15:11 rx ry offset 4:0
11110 10011
5 6 5 5 3 3 5
Format: 1w ry, offset(rx) MIPS16e
Purpose:

To load aword from memory as a signed value.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 16-hit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The con-
tents of the word at the memory location specified by the effective address are |oaded into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr < sign_extend(offset) + GPR[Xlat (rx)]
if vAddr; # 07 then
SignalException (AddressError)
endif
(pAddr, CCA)<« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢ pAddrpgrge.1. 3 || (pAddr, , xor (ReverseEndian || 0%))
memdoubleword<« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte <« vAddr, , xor (BigEndianCPU || 02)
GPR[Xlat (ry)]« sign_extend (memdoublewordsi,gspyte. .8*byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 127

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Load Word (PC-Relative) LW

15 11 10 8 7 0
Ii\(l)\ﬁg' rx offset
5 3 8
Format: Lw rx, offset (pc) MIPS16e
Purpose:

To load a PC-relative word from memory as a signed value.

Description: GPR[rx] ¢ memory[PC + offset]

The 8-bit offset is shifted left 2 bits, zero-extended, and added either to the address of the LW instruction or to the
address of the jump instruction in whose delay slot the LW is executed. The 2 lower bits of this result are cleared to
form the effective address. The contents of the 32-bit word at the memory location specified by the effective address
areloaded into GPR rx.

Restrictions:
None
Operation:
I-1: base_pc ¢« PC
I: if not (JumpDelaySlot (PC)) then
base_pc « PC
endif
vAddr < (base_pCeprrgn-1..2 + zZero_extend(offset)) || 02
(pAddr, CCA)¢« AddressTranslation (vAddr, DATA, LOAD)
pPAddr < pAddrpgrze_1. .3 || (pAddr, , xor (ReverseEndian || 0?))
memdoubleword<«— LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte « vAddr, , xor (BigEndianCPU || 02)

GPR[Xlat (rx)]« sign_extend(memdoublewordsq,g+pyte..8*byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error

Programming Note

For the purposes of watchpoints (provided by the CPO WatchHi and WatchLo registers) and EJTAG breakpoints, the
PC-relative reference is considered to be a data, rather than an instruction reference. That is, the watchpoint or break-
point istriggered only if enabled for data references.

128 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Load Word (PC-Relative, Extended) LW

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND LWPC 0
offset 10:5 offset 15:11 rx offset 4.0
11110 10110 000
5 6 5 5 3 3 5
Format: Lw rx, offset (pc) MIPS16e
Purpose:

To load a PC-relative word from memory as a signed value.

Description: GPR[rx] ¢ memory[PC + offset]

The 16-hit offset is sign-extended and added to the address of the LW instruction; this forms the effective address.
Before the addition, the 2 lower bits of the instruction address are cleared. The contents of the 32-bit word at the
memory location specified by the effective address are loaded into GPR rx.

Restrictions:
A PC-relative, extended LW may not be placed in the delay slot of ajump instruction.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is hon-zero, an
Address Error exception occurs.

Operation:

vAAdr ¢ (PCgprren-1..2 || 02) + sign_extend(offset)
if vAddr, o # 02 then
SignalException (AddressError)
endif
(pAddr, CCA)¢« AddressTranslation (vAddr, DATA, LOAD)
PAddr < pAddrpgrze_1..3 || (pAddr, , xor (ReverseEndian || 0?))
memdoubleword¢« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor (BigEndianCPU || 02)
GPR[Xlat (rx)]« sign_extend(memdoublewordsi,gspyte..8*byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error

Programming Note

For the purposes of watchpoints (provided by the CPO WatchHi and WatchLo registers) and EJTAG breakpoints, the
PC-relative reference is considered to be a data, rather than an instruction reference. That is, the watchpoint or break-
point istriggered only if enabled for data references.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 129

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Load Word (SP-Relative) LW
15 11 10 8 7 0
LWSP
rx offset
10010
5 3 8
Format: 1w rx, offset (sp) MIPS16e

130

Purpose:

To load an SP-relative word from memory as a signed value.

Description: GPR[rx] ¢ memory[GPR[sp] + offset]

The 8-hit offset is shifted left 2 bits, zero-extended, then added to the contents of GPR 29 to form the effective
address. The contents of the word at the memory location specified by the effective address are loaded into GPR rx.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr ¢« zero_extend(offset || 0%) + GPR[29]

if vAddr; , # 02 then

SignalException (AddressError)

endif

(pAddr, CCA)« AddressTranslation

(vAddr, DATA, LOAD)

PAAdr < pAddrpgrze_1. .3 || (pAddr, , xor (ReverseEndian || 02))
memdoubleword¢« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor (BigEndianCPU || 02)

GPR[Xlat (ry)]« sign_extend(memdoublewordsq,g+pyte..8*byte)

Exceptions:

TLB R€fill, TLB Invalid, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Load Word (SP-Relative, Extended) LW
31 27 26 21 20 16 15 11 10 0
EXTEND LWSP 0
offset 10:5 offset 15:11 rx offset 4:0
11110 10010 000
5 6 5 5 3 3 5

Format: Lw rx, offset(sp) MIPS16e
Purpose:

To load an SP-relative word from memory as a signed value.

Description: GPR[rx] ¢ memory[GPR[sp] + offset]

The 16-hit offset is sign-extended and then added to the contents of GPR 29 to form the effective address. The con-

tents of the word at the memory location specified by the effective address are loaded into GPR rx.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr < sign_extend(offset)

if vAddr; , # 02 then

endif

(pAddr,

memdoubleword<« LoadMemory
byte
GPR[Xlat (ry)]« sign_extend(memdoublewordsq,g+pyte..8*byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SignalException (AddressError)

CCA) ¢« AddressTranslation

+ GPR[29]

(vAddr,

DATA, LOAD)
PAAdr < pAddrpgrze_1. .3 || (pAddr, , xor (ReverseEndian || 02))
(CCA, WORD, pAddr, vAddr,
« vAddr, , xor (BigEndianCPU || 02)

DATA)

131

Load Word Unsigned LwuU

132

15 11 10 8 7 5 4 0
LWU
rx ry offset
10111
5 3 3 5
Format: LwU ry, offset (rx) MIPS16e (64-bit only)
Purpose:

To load aword from memory as an unsigned value.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 5-bit offset is shifted left 2 bits, zero-extended to 64 bits, then added to the contents of GPR rx to form the effec-
tive address. The contents of the word at the memory location specified by the effective address are zero-extended
and loaded into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If either of the two least-significant bits of the address are non-zero,
an Address Error exception occurs.

Operation:

vAddr <« zero_extend(offset || 02) + GPR[Xlat (rx)]
if vAddr; , # 02 then
SignalException (AddressError)

endif
(pAddr, CCA)¢« AddressTranslation (vAddr, DATA, LOAD)
PAddr < pAddrpgrze_1..3 || (pAddr, , xor (ReverseEndian || 0?))
memdoubleword<— LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor (BigEndianCPU || 02)
GPR[Xlat (ry) 1« 0°? || memdoublewords: gspyte. .8 byte

Exceptions:

TLB R€fill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Load Word Unsigned (Extended) LWU
31 27 26 21 20 16 15 11 10 5 4 0
EXTEND LWuU
offset 10:5 offset 15:11 rx ry offset 4:0
11110 10111
5 6 5 5 3 3 5
Format: 1LwU ry, offset (rx) MIPS16e (64-bit only)
Purpose:

To load aword from memory as an unsigned value.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 16-hit offset is sign-extended to 64 bits and then added to the contents of GPR rx to form the effective address.
The contents of the word at the memory location specified by the effective address are zero-extended and loaded into

GPRy.

Restrictions:
The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr <« sign_extend(offset)

+ GPR[Xlat (rx)]

if vAddr; , # 02 then
SignalException (AddressError)

endif
(pAddr, CCA)¢« AddressTranslation (vAddr, DATA, LOAD)
PAddr < pAddrpgrze_1. .3 || (pAddr, , xor (ReverseEndian || 0?))
memdoubleword<« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte « vAddr, , xor (BigEndianCPU || 02)
GPR[Xlat (ry)l« 032 || memdoublewords gspyte. . 8+byte

Exceptions:

TLB R€fill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 133

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Move From HI Register MFHI

15 11 10 8 7 5 4 0
RR 0 MFHI
X
11101 000 10000
5 3 3 5
Format: MFHI rx MIPS16e
Purpose:

To copy the special purpose HI register to a GPR.

Description: GPR[rx] « HI

The contents of special register HI are loaded into GPR rx.
Restrictions:

None

Operation:

GPR[Xlat (rx)] ¢ HI

Exceptions:
None

Historical I nformation:

Inthe MIPS, 11, and 111 architectures, the two instructions which follow the MFHI must not moodify the HI register.
If this restriction is violated, the result of the MFHI is UNPREDICTABLE. This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

134 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Move From LO Register MFLO

15 11 10 8 7 5 4 0
RR 0 MFLO
X
11101 000 10010
5 3 3 5
Format: MFLO rx MIPS16e
Purpose:

To copy the specia purpose LO register to a GPR.

Description: GPR[rx] « LO

The contents of special register LO are loaded into GPR rx.

Restrictions:

None

Operation:
GPR[Xlat (rx)] <« LO

Exceptions:
None

Historical Information:

Inthe MIPSI, 11, and Il architectures, the two instructions which follow the MFHI must not moodify the HI register.
If this restriction is violated, the result of the MFHI is UNPREDICTABLE. This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 135

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Move MOVE

15 11 10 8 7 5 4 3 2 0
18 MOV32R r32 r32
rz
01100 101 2:0 4.3
5 3 3 2 3
Format: MOVE r32, rz MIPS16e
Purpose:

To move the contents of a GPR to a GPR.

Description: GPR[r32] ¢ GPR[rz]

The contents of GPR rz are moved into GPR r32, and r32 can specify any one of the 32 GPRs.

Restrictions:
None

Operation:

GPR[r32] < GPR[Xlat(rz)]

Exceptions:
None

Programming Notes:
move $0, $0, expressed as NOP, is the assembly idiom used to denote no operation.

136 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Move MOVE
15 11 10 0
18 MOVR32
ry r32
01100 111

5 3 3 5
Format. MOVE ry, r32 MIPS16e
Purpose:
To move the contents of a GPR to a GPR.
Description: GPR[ry] ¢ GPR[r32]
The contents of GPR r32 are moved into GPR ry, and r32 can specify any one of the 32 GPRs.
Restrictions:
None
Operation:

GPR[Xlat (ry)] ¢ GPR[r32]
Exceptions:
None
MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 137

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Multiply Word MULT

15 11 10 8 7 5 4 0
RR MULT
X ry
11101 11000
5 3 3 5
Format: MULT rx, ry MIPS16e
Purpose:

To multiply 32-bit signed integers.

Description: (LO, HI) <« GPR[rx] X GPR[ry]

The 32-bit word value in GPR rx is multiplied by the 32-bit value in GPR ry, treating both operands as signed values,
to produce a 64-bit result. The low-order 32-bit word of the result is sign-extended and placed into specia register
LO, and the high-order 32-bit word is sign-extended and placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if either GPR rt or GPR rs does not contain sign-extended 32-hit values (bits 63..31 equal), then
the result of the operation is UNPREDICTABLE.

Operation:
if (NotWordvValue (GPR[rs]) or NotWordvValue (GPR[rt])) then
UndefinedResult ()
endif
prod ¢ GPR[Xlat(rx)] * GPR[Xlat(ry)]
LO < sign_extend(prods; o)
HIT < sign_extend (prodgs . 33)
Exceptions:
None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

138 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Multiply Unsigned Word MULTU

15 11 10 8 7 5 4 0
RR MULTU
rx ry
11101 11001
5 3 3 5
Format: MULTU rx, ry MIPS16e
Purpose:

To multiply 32-bit unsigned integers.

Description: (L0, HI) ¢« GPR[rx] X GPR[ry]

The 32-bit word value in GPR rx is multiplied by the 32-bit value in GPR ry, treating both operands as unsigned val-
ues, to produce a 64-hbit result. The low-order 32-bit word of the result is sign-extended and placed into special regis-
ter LO, and the high-order 32-bit word is sign-extended and placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if either GPR rt or GPR rs does not contain sign-extended 32-hit values (bits 63..31 equal), then
the result of the operation is UNPREDICTABLE.

Operation:
if NotWordvValue (GPR[rs]) or NotWordValue(GPR[rt]) then
UndefinedResult ()
endif
prod < (0 || GPR[Xlat(rx)]) * (0 || GPR[Xlat(ry)])

LO ¢ sign_extend(prods; g)
HI < sign_extend(prodgs 33)

Exceptions:
None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 139

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Negate NEG

15 11 10 8 7 5 4 0
RR NEG
rx ry
11101 01011
5 3 3 5
Format: NEG rx, ry MIPS16e
Purpose:

To negate an integer value.

Description: GPR[rx] ¢ 0 - GPR[ry]

The contents of GPR ry are subtracted from zero to form a 32-hit result. The result is placed in GPR rx.

Restrictions:

If GPR ry does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if (NotWordvalue (GPR[Xlat(ry)]l)) then
UNPREDICTABLE
endif
temp <0 - GPR[Xlat (ry)]
GPR[Xlat (rx)] ¢ sign_extend(tempsq)
Exceptions:

None

140 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

No Operation

NOP

15 11 10 3 2
18 MOV32R 0 0 0
01100 101 000 00 000
5 3 3 2 3

Format:. nNop

Purpose:
To perform no operation.

Description:

MIPS16e Assembly Idiom

NOP is the assembly idiom used to denote no operation. The actua instruction is interpreted by the hardware as

MOVE $0,$16.

Restrictions:
None

Operation:
None

Exceptions:
None

Programming Notes:

The 0x6500 instruction word, which represents MOV E $0,$16, is the preferred NOP for software to use to fill jump
delay slots and to pad out alignment segquences.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

141

Not NOT

15 11 10 8 7 5 4 0
RR NOT
X ry
11101 01111
5 3 3 5
Format: NOT rx, ry MIPS16e
Purpose:

To complement an integer valu

Description: GPR[rx] ¢ (NOT GPR[ry])

The contents of GPR ry are bitwise-inverted and placed in GPR rx.

Restrictions:

None

Operation:

GPR[Xlat (rx)] ¢« (not GPR[Xlat(ry)])

Exceptions:

None

142 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Or OR
15 11 10 0
RR OR
rx ry
11101 01101
5 3 3 5
Format: OR rx, ry MIPS16e

Purpose:
To do abitwise logical OR.

Description: GPR[rx] ¢ GPR[rx] OR GPR[ry]

The contents of GPR ry are combined with the contents of GPR rx in a bitwise logical OR operation. The result is

placed in GPR rx.

Restrictions:
None

Operation:

GPR[Xlat (rx)] ¢ GPR[Xlat (rx)]

Exceptions:
None

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

or GPR[Xlat (ry)]

143

Restore Registers and Deallocate Stack Frame RESTORE

144

15 11 10 8 7 5 4 0
18 SVRS S
ra 0 sl framesize
01100 100 0
5 3 1 1 1 1 4
Format: RESTORE {ra, }{s0/sl1l/s0-1,}{framesize} (All args are optional) MIPS16e
Purpose:

To deallocate a stack frame before exit from a subroutine, restoring return address and static registers, and adjusting
stack

Desmﬂpﬁon:GPR[ra] ¢ Stack and/or GPR[17]¢ Stack and/or GPR[1l6]¢« Stack,
sp ¢ sp + (framesize*8)

Restore the ra and/or GPR 16 and/or GPR 17 (0 and sl in the MIPS ABI calling convention) registers from the stack
if the corresponding ra, SO, or sl bits of the instruction are set, and adjust the stack pointer by 8 times the framesize
value. Registers are loaded from the stack assuming higher numbered registers are stored at higher stack addresses. A
framesize value of O isinterpreted as a stack adjustment of 128. On a MIPS64 implementation, words are loaded from
the stack, sign-extended and loaded into the corresponding GPR, using the equivalent of load word.

The opcode and function field describe a general save/restore operation, with the s fields as a variables. The individ-
ual instructions, RESTORE and SAVE have specific values for this variable.

Restrictions:

If either of the 2 least-significant bits of the stack pointer are not zero, and any of thera, SO, or s1 bits are set, then an
Address Error exception will occur.

Operation:

if framesize= 0 then

temp < GPR[29] + 128
else

temp <~ GPR[29] + (0 || (framesize << 3))
endif
temp2 < temp
if ra= 1 then

temp ¢~ temp-— 4

GPR[31] « LoadStackWord (temp)
endif
if s1= 1 then

temp ¢ temp - 4

GPR[17] « LoadStackWord (temp)
endif
if s0= 1 then

temp ¢ temp-— 4

GPR[16] <« LoadStackWord (temp)
endif
GPR[29] « temp2

LoadStackWord (vaddr)
if vAddr; # 02 then
SignalException (AddressError)

endif
(pAddr, CCA)<« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢ pAddrpgrge.1. 3 || (pAddr, , xor (ReverseEndian || 0%))

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

memdoubleword« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)

byte <« vAddr, , xor (BigEndianCPU || 02)

LoadStackWord ¢ sign_extend (memdoublewords,gspyte. . 8*byte)
enfunction LoadStackWord

Exceptions:
TLB refill, TLB invalid, Address error, Bus Error

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of loads from memory. A
full restart of the sequence of operations will be performed on return from any exception taken during execution.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 145
Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Restore Registers and Deallocate Stack Frame (Extended) RESTORE

146

31 27 26 24 23 20 19 16 15 11 10 8 7 6 5 4 3 0
EXTEND 18 SVRS | s
xsregs | framesize 7:4 aregs ra| 0| sl| framesize 3:0
11110 01100 100 0
5 3 4 4 5 3 1111 4

Format: RESTORE {ra, }{xsregs, }{aregs, } {framesize} (All arguments optional) MIPS1l6e

Purpose:

To dedllocate a stack frame before exit from a subroutine, restoring return address and static registers from an
extended static register set, and adjusting the stack

Description: GPR[ra] < Stack and/or GPR[18-23,30] « Stack and/or GPR[17] « Stack
and/or GPR[16] « Stack and/or GPR[4-7] « Stack, sp<« sp+ (framesize* 8)

Restore the raregister from the stack if the ra bit is set in the instruction. Restore from the stack the number of regis-
ters in the set GPR[18-23,30] indicated by the value of the xsregs field. Restore from the stack GPR 16 and/or GPR
17 (s0 and sl in the MIPS ABI calling convention) from the stack if the corresponding sO and sl bits of the instruc-
tion are set, restore from the stack the number of registers in the range GPR[4-7] indicated by the aregs field, and
adjust the stack pointer by 8 times the 8-bit concatenated framesize value. Registers are loaded from the stack assum-
ing higher numbered registers are stored at higher stack addresses. On a MIPS64 implementation, words are |oaded
from the stack, sign-extended and loaded into the corresponding GPR, using the equivalent of load word.

Interpretation of the aregs Field

In the standard MIPS ABIs, GPR[4-7] are designated as argument passing registers, ad-a3. When they are so used,
they must be saved on the stack at locations allocated by the caller of the routine being entered, but need not be
restored on subroutine exit. In other M1PS16e calling sequences, however, it is possible that some of the registers
GPR[4-7] need to be saved as static registers on the local stack instead of on the caller stack, and restored before
return from the subroutine. The encoding used for the aregs field of an extended RESTORE instruction is the same as
that used for the extended SAVE, but since argument registers can be ignored for the purposes of a RESTORE, only
the registers treated as static need be handled. The following table shows the RESTORE encoding of the aregsfield

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Restore Registers and Deallocate Stack Frame (Extended, cont.) RESTORE

aregs
Encoding Registers Restored as Static
(binary) Registers

0000 None

0001 GPR[7]

0010 GPR[6], GPR[7]

0011 GPR[5], GPR[6], GPR[7]

1011 GPR[4], GPR[5], GPR[6]. GPR[7]

0100 None

0101 GPR[7]

0110 GPR[6], GPR[7]

0111 GPR[5], GPR[6], GPR[7]

1000 None

1001 GPR[7]

1010 GPR[6], GPR[7]

1100 None

1101 GPR[7]

1110 None

1111 Reserved

Restrictions:

If either of the 2 least-significant bits of the stack pointer are not zero, and any of the ra, sO, sl, or xsregs fields are
non-zero or the aregs field contains an encoding that implies a register load, then an Address Error exception will
occur.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 147

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Restore Registersand Deallocate Stack Frame (Extended, cont.) RESTORE

Operation:

temp ¢<— GPR[29] + (0 || (framesize << 3))
temp2 ¢« temp
if ra= 1 then
temp ¢~ temp-— 4
GPR[31] « LoadStackWord (temp)
endif
if xsregs> 0 then
if xsregs > 1 then
if xsregs > 2 then
if xsregs > 3 then
if xsregs > 4 then
if xsregs > 5 then
if xsregs > 6 then
temp ¢ temp-— 4
GPR[30] « LoadStackWord (temp)
endif
temp ¢~ temp-— 4
GPR[23] « LoadStackWord (temp)
endif
temp ¢~ temp-— 4
GPR[22] « LoadStackWord (temp)
endif
temp ¢ temp ~ 4
GPR[21] « LoadStackWord (temp)
endif
temp ¢ temp-— 4
GPR[20] « LoadStackWord (temp)
endif
temp ¢~ temp-— 4
GPR[19] « LoadStackWord (temp)
endif
temp ¢~ temp-— 4
GPR[18] « LoadStackWord (temp)
endif
if sl= 1 then
temp ¢ temp-— 4
GPR[17] ¢« LoadStackWord (temp)
endif
if s0= 1 then
temp ¢ temp-—-14
GPR[16] <« LoadStackWord (temp)
endif
case aregs of
0b0000 0b0100 0b1000 0b1100 0b1110: astatic« 0
0b0001 0b0101 0b1001 0b1101l: astatic« 1
00010 0b0110 0b1010: astatic« 2
0b0011 0b0111l: astatic« 3
0b1011l: astatic« 4
otherwise: UNPREDICTABLE
endcase

148 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Restore Registers and Deallocate Stack Frame (Extended, cont.) RESTORE

if astatic> 0 then
temp ¢ temp-— 4
GPR[7] « LoadStackWord (temp)
if astatic> 1 then
temp ¢ temp-— 4
GPR[6] ¢« LoadStackWord (temp)
if astatic> 2 then
temp ¢ temp-— 4
GPR[5] « LoadStackWord (temp)
if astatic> 3 then
temp « temp-— 4
GPR[4] <« LoadStackWord (temp)
endif
endif
endif
endif
GPR[29] « temp2

LoadStackWord (vaddr)

if vAddr; # 02 then
SignalException (AddressError)

endif
(pAddr, CCA)<« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢ pAddrpgrge-1..3 || (pAddr, , xor (ReverseEndian ||
memdoubleword¢<- LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ¢ vAddr, , xor (BigEndianCPU || 02)

LoadStackWord ¢« sign_extend (memdoublewords,gspyte. . 8*byte)
enfunction LoadStackWord

0%))

Exceptions:
TLB refill, TLB invalid, Address error, Bus Error

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of loads from memory. A
full restart of the sequence of operations will be performed on return from any exception taken during execution.

Behavior of the processor is UNPREDICTABLE for Reserved values of aregs.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 149

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Save Registers and Set Up Stack Frame SAVE

150

15 11 10 8 7 5 4 0
18 SVRS s
ra 0 sl framesize
01100 100 1
5 3 1 1 1 1 4
Format: SAVE {ra, }{s0/sl/s0-1,}{framesize} (All arguments are optional) MIPS16e
Purpose:

To set up astack frame on entry to a subroutine, saving return address and static registers, and adjusting stack

Description: stack <~ GPR[ra] and/or Stack ¢ GPR[17] and/or Stack < GPR[16],
sp ¢ sp - (framesize * 8)

Save the ra and/or GPR 16 and/or GPR 17 (s0 and sl in the MIPS ABI calling convention) on the stack if the corre-
sponding ra, sO, and sl bits of the instruction are set, and adjust the stack pointer by 8 times the framesize value. Reg-
isters are stored with higher numbered registers at higher stack addresses. A framesize value of 0 is interpreted as a
stack adjustment of 128. On a MIPS64 implementation, only the lower 32 bits of each GPR are saved, using the
equivalent of store word.

The opcode and function field describe a general save/restore operation, with the s fields as a variables. The individ-
ual instructions, RESTORE and SAVE have specific values for this variable.

Restrictions:

If either of the 2 least-significant bits of the stack pointer are not zero, and any of thera, sO, or sl bits are set, then an
Address Error exception will occur.

Operation:

temp ¢~ GPR[29]
if ra= 1 then
temp ¢« temp— 4
StoreStackWord (temp, GPR[31])
endif
if s1= 1 then
temp ¢ temp-— 4
StoreStackWord (temp, GPR[17])
endif
if s0= 1 then
temp ¢ temp-— 4
StoreStackWord (temp, GPR[16])
endif
if framesize= 0 then
temp ¢ GPR[29] — 128
else
temp ¢ GPR[29] — (0| (framesize << 3))
endif
GPR[29] ¢ temp

StoreStackWord (vaddr, value)
if vAddr; # 02 then
SignalException (AddressError)

endif

(pAddr, CCA)<« AddressTranslation (vAddr, DATA, STORE)

pAddr ¢ pAddrpgrge.1. 3 || (pAddr, , xor (ReverseEndian || 0%))
bytesel« vAddr, , xor (BigEndianCPU || 0?)

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

datadoubleword« valuegs_gspytesel..o || o8rbytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)
endfunction StoreStackWord
Exceptions:
TLB refill, TLB invalid, TLB modified, Address error, Bus Error

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of storesto memory. A full
restart of the sequence of operations will be performed on return from any exception taken during execution.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 151

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Save Registersand Set Up Stack Frame (Extended) SAVE

152

31

27 26 24 23 20 19 16 15 11 10 8 6 5 4 3 0

EXTEND 18 SVRS
xsregs | framesize 7:4 aregs
11110 01100 100

ra| 0| sl| framesize 3.0

RlRk 0|

5 3 4 4 5 3 1 11 4

Format: SAVE {ra, }{xsregs, }{aregs, } {framesize} (All arguments optional) MIPS16e

Purpose:

To set up a stack frame on entry to a subroutine, saving return address, static, and argument registers, and adjusting
the stack

DeSCI’iptiOI’]: Stack < GPR[ra] and/or Stack ¢« GPR[18-23,30] and/or Stack < GPR[17] and/or
Stack ¢ GPR[16] and/or Stack ¢ GPR[4-7], sp ¢ sp - (framesize * 8)

Save registers GPR[4-7] specified to be treated as incoming arguments by the aregs field. Save the raregister on the
stack if the ra bit of the instruction is set. Save the number of registers in the set GPR[18-23, 30] indicated by the
value of the xsregs field, and/or GPR 16 and/or GPR 17 (s0 and sl in the MIPS ABI calling convention) on the stack
if the corresponding SO and sl bits of the instruction are set. Save the number of registersin the range GPR[4-7] that
areto betreated as static registers asindicated by the aregs field, and adjust the stack pointer by 8 times the 8-bit con-
catenated framesize value. Registers are stored with higher numbered registers at higher stack addresses. On a
MIPS64 implementation, only the lower 32 bits of each GPR are saved, using the equivalent of store word.

Interpretation of the aregs Field

In the standard MIPS ABIs, GPR[4-7] are designated as argument passing registers, ad-a3. When they are so used,
they must be saved on the stack at locations allocated by the caller of the routine being entered. In other MIPS16e
calling sequences, however, it is possible that some of the registers GPR[4-7] will need to be saved as static registers
on the local stack instead of on the caller stack. The encoding of the aregs field allows for 0-4 arguments, 0-4 statics,
and for mixtures of the two. Registers are bound to arguments in ascending order, a0, al, a2, and a3, and thus
assigned to static values in the reverse order, GPR[7], GPR[6], GPR[5], and GPR[4]. The following table shows the
encoding of the aregsfield.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Save Registersand Set Up Stack Frame (Extended, cont.) SAVE

aregs
Encoding Registers Saved as
(binary) Arguments Registers Saved as Static Registers
0000 None None
0001 None GPR[7]
0010 None GPR[6], GPR[7]
0011 None GPR[5], GPR[6], GPR[7]
1011 None GPR[4], GPR[5], GPR[6], GPR[7]
0100 a0 None
0101 a0 GPR([7]
0110 a0 GPR[6], GPR[7]
0111 a0 GPR[5], GPR[6], GPR[7]
1000 a0, al None
1001 a0, al GPR[7]
1010 a0, al GPR[6], GPR[7]
1100 a0, al, a2 None
1101 a0, al, a2 GPR[7]
1110 a0, al, a2, a3 None
1111 Reserved Reserved

Restrictions:

If either of the 2 least-significant bits of the stack pointer are not zero, and any of the ra, sO, sl, or xsregs fields are
non-zero or the aregs field contains an value that implies aregister store, then an Address Error exception will occur.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 153

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Save Registersand Set Up Stack Frame (Extended, cont.) SAVE

Operation:

temp ¢~ GPR[29]
temp2 < GPR[29]
case aregs of
0b0000 0b0001 0b0010 0b0O011 0b1l011l: args <« O
0b0100 0b0101 0b0110 0bO011l1l: args <« 1
0b1000 0b1001 0b1010: args ¢« 2
0b1100 0b1101: args ¢« 3
0b1110: args ¢« 4
otherwise: UNPREDICTABLE
endcase
if args> 0 then
StoreStackWord (temp, GPR[4])
if args> 1 then
StoreStackWord(temp + 4, GPRI[5])
if args> 2 then
StoreStackWord(temp + 8, GPR[6])
if args> 3 then
StoreStackWord(temp + 12, GPRI[7])
endif
endif
endif
endif
if ra= 1 then
temp ¢« temp— 4
StoreStackWord (temp, GPR[31])
endif
if xsregs> 0 then
if xsregs > 1 then
if xsregs > 2 then
if xsregs > 3 then
if xsregs > 4 then
if xsregs > 5 then
if xsregs > 6 then
temp <~ temp— 4
StoreStackWord(temp, GPR[30])
endif
temp ¢~ temp — 4
StoreStackWord (temp, GPR[23])
endif
temp <~ temp— 4
StoreStackWord(temp, GPR[22])
endif
temp ¢~ temp — 4
StoreStackWord (temp, GPR[21])
endif
temp <~ temp— 4
StoreStackWord(temp, GPR[20])
endif
temp ¢~ temp — 4
StoreStackWord (temp, GPR[19])
endif
temp <~ temp— 4
StoreStackWord(temp, GPR[18])
endif

154 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Save Registersand Set Up Stack Frame (Extended, cont.)

if s1 = 1 then
temp ¢« temp— 4
StoreStackWord (temp, GPR[17])
endif
if s0= 1 then
temp <~ temp— 4
StoreStackWord (temp, GPR[16])
endif
case aregs of
0b0000 0b0100 0b1000 0b1100 0b1110: astatic <« O
0b0001 0b0101 0b1001 0b1101l: astatic+<« 1
0b0010 0b0110 0b1l010: astatic« 2
0b0011 0b0111l: astatic ¢« 3
0b1011l: astatic<« 4
otherwise: UNPREDICTABLE
endcase
if astatic> 0 then
temp <~ temp— 4
StoreStackWord (temp, GPR[7])
if astatic> 1 then
temp ¢~ temp — 4
StoreStackWord (temp, GPR[6])
if astatic> 2 then
temp <~ temp— 4
StoreStackWord (temp, GPRI[5])
if astatic> 3 then
temp ¢~ temp — 4
StoreStackWord (temp, GPR[4])
endif
endif
endif
endif
temp <~ temp2 — (0 || (framesize << 3))
GPR[29] < temp

StoreStackWord (vaddr, value)
if vAddr, o # 02 then
SignalException (AddressError)

endif

(pAddr, CCA)« AddressTranslation (vAddr, DATA, STORE)

pAddr ¢ pAddrpgrge.1. 3 || (pAddr, , xor (ReverseEndian || 0%))
bytesele vAddr, , xor (BigEndianCPU || 0%)

datadoubleword« valuegs_gspytesel..o || o8 bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr,
endfunction StoreStackWord

Exceptions:
TLB refill, TLB invalid, TLB modified, Address error, Bus Error

Programming Notes:

SAVE

This instruction executes for a variable number of cycles and performs a variable number of storesto memory. A full

restart of the sequence of operations will be performed on return from any exception taken during execution.

Behavior of the processor is UNPREDICTABLE for Reserved values of aregs.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

155

Store Byte

156

SB
15 11 10 8 7 5 0
SB
rx ry offset
11000
5 3 3 5
Format: sB ry, offset(rx) MIPS16e

Purpose:
To store a byte to memory.

Description: memory [GPR[rx] + offset] ¢ GPR[ry]

The 5-hit offset is zero-extended, then added to the contents of GPR rx to form the effective address. The least-signif-

icant byte of GPR ry is stored at the effective address.

Restrictions:
None
Operation:

vAddr «— zero_extend(offset) + GPR[Xlat (rx)]
(pAddr, CCA)¢« AddressTranslation (vAddr, DATA, STORE)

pAddr «— pAddrpgrze-1..3 || (pAddr, , xor ReverseEndian

bytesel < vAddr, , xor BigEndianCpUu?

datadoublewordé— GPR[rtlgs_gspytesel..o || p8rbytesel

StoreMemory (CCA, BYTE, datadoubleword, pAddr, vAddr,
Exceptions:

TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Store Byte (Extended) SB

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND SB
offset 10:5 offset 15:11 rx ry offset 4:0
11110 11000
5 6 5 5 3 3 5
Format: sB ry, offset(rx) MIPS16e
Purpose:

To store a byte to memory.

Description: memory [GPR[rx] + offset] ¢ GPR[ry]

The 16-bit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The
least-significant byte of GPR ry is stored at the effective address.

Restrictions:

None

Operation:
vAddr ¢« sign_extend(offset) + GPR[Xlat (rx)]
(pAddr, CCA)<« AddressTranslation (vAddr, DATA, STORE)
pAddr ¢« PAddrpgye-1 3 || (pAddr, , xor ReverseEndian?)
bytesel < VAddr, o xor BigEndianCPU’
datadoublewordé« GPR[rtlg3_gspytesel..o || g8 bytesel

StoreMemory (CCA, BYTE, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 157

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Sign-Extend Byte SEB

15 11 10 8 7 5 4 0
RR SEB CNVT
X
11101 100 10001
5 3 3 5
Format: SEB rx MIPS16e
Purpose:

Sign-extend |least significant byte in register rx.

Description: GPR[rx] ¢« sign_extend (GPR[rx],;)

Theleast significant byte of rx is sign-extended and the value written back to rx.

Restrictions:

If GPR rx does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordvValue (GPR[Xlat (rx)]) then
UNPREDICTABLE

endif

temp ¢« GPR[Xlat (rx)]

GPR[Xlat (rx)] < sign_extend(temp;)

Exceptions:
None

Programming Notes:
None.

158 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Sign-Extend Halfword SEH

15 11 10 8 7 5 4 0
RR SEH CNVT
X
11101 101 10001
5 3 3 5
Format: SEH rx MIPS16e
Purpose:

Sign-extend |least significant word in register rx.

Description: GPR[rx] « sign_extend(GPR[rx];5 g);:

Theleast significant halfword of rx is sign-extended and the value written back to rx.

Restrictions:

If GPR rx does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordvValue (GPR[Xlat (rx)]) then
UNPREDICTABLE

endif

temp ¢« GPR[Xlat (rx)]

GPR[Xlat (rx)] < sign_extend(tempis)

Exceptions:
None

Programming Notes:
None.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 159

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Sign-Extend Word SEW

15 11 10 8 7 5 4 0
RR SEW CNVT
X
11101 110 10001
5 3 3 5
Format: SEW rx MIPS16e (64-bit only)
Purpose:

Sign-extend |least significant word in register rx.

Description: GPR[rx] ¢ sign_extend(GPR[rxls; o);

Theleast significant word of rx is sign-extended and the value written back to rx.

Restrictions:

If GPR rx does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordvValue (GPR[Xlat (rx)]) then
UNPREDICTABLE

endif

temp ¢« GPR[Xlat (rx)]

GPR[Xlat (rx)] < sign_extend(temps; ¢)

Exceptions:
Reserved Instruction

Programming Notes:
None.

160 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Store Doubleword

15 11 10 8 7
sb
rx ry offset
01111
5 3 3 5

Format: sD ry, offset(rx)

Purpose:
To store adoubleword to memory.

Description: memory [GPR[rx] + offset] ¢ GPR[ry]

MIPS16e (64-bit only)

SD

The 5-bit offset is shifted left 3 bits, zero-extended to 64 bits, and then added to the contents of GPR rx to form the

effective address. The 64-bit contents of GPR ry are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr ¢« zero_extend(offset]| | 03) + GPR[Xlat (rx)]

if vAddr, , # 0° then
SignalException (AddressError)
endif
(pAddr, CCA)<« AddressTranslation (vAddr,
datadoubleword«- GPR[Xlat (ry)]

StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr,

Exceptions:

DATA, STORE)

DATA)

TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error, Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

161

Store Doubleword (Extended) SD

162

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND SD
offset 10:5 offset 15:11 rx ry offset 4.0
11110 01111
5 6 5 5 3 3 5
Format: sbD ry, offset(rx) MIPS16e (64-bit only)
Purpose:

To store a doubleword to memory.

Description: memory [GPR[rx] + offset] ¢ GPR[ry]

The 16-hit offset is sign-extended to 64 bits and then added to the contents of GPR rx to form the effective address.
The 64-bit contents of GPR ry are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr <« sign_extend(offset) + GPR[Xlat(rx)]
if vAddr, o # 0° then
SignalException (AddressError)
endif
(pAddr, CCA)¢« AddressTranslation (vAddr, DATA, STORE)
datadoubleword¢«— GPR[Xlat (ry)]
StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error, Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Store Doubleword ry (SP-Relative) SD

15 11 10 8 7 5 4

164 SDSP

ry offset
11111 001

5 3 3 5
Format: sD ry, offset(sp) MIPS16e (64-bit only)
Purpose:

To store an SP-relative doubleword to memory.

Description: memory [GPR[sp] + offset] ¢ GPR[ry]

The 5-bit offset is shifted left 3 bits, zero-extended to 64 bits, and then added to the contents of GPR 29 to form the

effective address. The 64-bit contents of GPR ry are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr <« zero_extend(offset || 0%) + GPR[29]
if vAddr, o # 0° then
SignalException (AddressError)
endif
(pAddr, CCA)« AddressTranslation (vAddr, DATA, STORE)
datadoubleword¢« GPR[Xlat (ry)]
StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error, Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

163

Store Doubleword ry (SP-Relative, Extended) SD

164

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND 164 SDSP
offset 10:5 offset 15:11 ry offset 4:0
11110 11111 001
5 6 5 5 3 3 5
Format: sD ry, offset(sp) MIPS16e (64-bit only)
Purpose:

To store an SP-relative doubleword to memory

De&ﬁipﬁonimemory[GPR[sp] + offset] ¢ GPR[ry]

The 16-hit offset is sign-extended to 64 bits and then added to the contents of GPR 29 to form the effective address.
The 64-bit contents of GPR ry are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr <« sign_extend(offset) + GPR[29]
if vAddr, o # 0° then
SignalException (AddressError)
endif
(pAddr, CCA)« AddressTranslation (vAddr, DATA, STORE)
datadoubleword¢« GPR[Xlat (ry)]
StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error, Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SD

Store Doubleword ra (SP-Relative)
15 11 10 0
164 SDRASP offset
11111 010
5 3 8

Format: sD ra, offset(sp)

Purpose:

To store register ra SP-relative to memory.

Description: memory[sp + offset] ¢ ra

The 8-hit offset is shifted left 3 bits, zero-extended to 64 bits, and then added to the contents of GPR 29 to form the
effective address. The 64-bit contents of GPR 31 are stored at the effective address.

Restrictions:

MIPS16e (64-bit only)

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation: 64-bit processors

vAddr ¢ GPR[29] + zero_extend(offset || 03)

if (vAddr, ,) #0° then
SignalException (AddressError)

endif

(pAddr,uncached)

datadouble < GPR[31]

StoreMemory (uncached, DOUBLEWORD, datadouble, pAddr, vAddr, DATA)

Exceptions:

Address Error, Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

¢« AddressTranslation (vAddr, DATA, STORE)

165

Store Doubleword ra (SP-Relative, Extended) SD

166

31 27 26 21 20 16 15 11 10 8 7 5 4 0
Eﬁ- f 1'\(;[) offset 10:5 offset 15:11 11?1 1 SDg{l%SP ra offset 4:0
5 6 5 5 3 3 5
Format: SD ra, offset(sp) MIPS16e (64-bit only)
Purpose:

To store register ra SP-relative to memory.

Description: memory[sp + offset] ¢ ra

The 16-hit offset is sign-extended to 64 bits and then added to the contents of GPR 29 to form the effective address.
The 64-bit contents of GPR 31 are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation: 64-bit processors

vAddr ¢ GPR[29] + sign_extend(offset)
if (vAddr, ,) #0° then
SignalException (AddressError)
endif
(pAddr,uncached) ¢ AddressTranslation (vAddr,DATA, STORE)
datadouble < GPR[31]
StoreMemory (uncached, DOUBLEWORD, datadouble, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Address Error, Reserved I nstruction

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Software Debug Breakpoint SDBBP
15 11 10 5 4 0
RR SDBBP
code
11101 00001
5 6 5
Format: SDBBP code EJTAG

Purpose:
To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executedthe exception is a Debug Mode Exception, which sets
the Debugpgeyccode field to the value 0x9 (Bp). The code field can be used for passing information to the debug
exception handler, and is retrieved by the debug exception handler only by loading the contents of the memory word
containing the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

Operation:

If Debugpy = 0 then
SignalDebugBreakpointException ()
else
SignalDebugModeBreakpointException ()
endif

Exceptions:

Debug Breakpoint Exception
Debug Mode Breakpoint Exception

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

167

Store Halfword SH

168

15 11 10 8 7 5 4 0
SH
rx ry offset
11001
5 3 3 5
Format: SH ry, offset (rx) MIPS16e
Purpose:

To store a halfword to memory.

Description: memory [GPR[rxGPR[+ offset] ¢ GPR[ry]

The 5-bit offset is shifted left 1 bit, zero-extended, and then added to the contents of GPR rx to form the effective
address. The least-significant halfword of GPR ry is stored at the effective address.

Restrictions:
The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr <« zero_extend(offset || 0) + GPR[Xlat(rx)]
if vAddry # 0 then
SignalException (AddressError)

endif

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)

PAAAr < pAddrpgrze_1. .3 || (pPAddrl, , xor (ReverseEndian? || 0))
bytesele vAddrl, , xor (BigEndianCPU? || 0)

datadoubleword¢— GPRI[Xlat (ry)]g3_gsbytesel..o | | p8*bytesel

StoreMemory (CCA, HALFWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Store Halfword (Extended) SH

31 27 26 21 20 16 15 11 10 0

EXTEND SH

offset 10:5 offset 15:11 rx ry offset 4.0
11110 11001
5 6 5 5 3 3 5
Format: SH ry, offset(rx) MIPS16e
Purpose:

To store a halfword to memory.

Description: memory [GPR[rx] + offset] ¢ GPR[ry]

The 16-bit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The
least-significant halfword of GPR ry is stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr < sign_extend(offset)

if vAddry # 0 then

SignalException (AddressError)

+ GPR[Xlat (rx)]

endif

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)

PAAdr < pAddrpgze.1. .3 || (pAddrl, , xor (ReverseEndian? || 0))
bytesel« vAddrl, o xor (BigEndianCPU? || 0)

datadoubleworde GPRIXlat (ry)]gs_gspyresel..o || 087PYEesel
StoreMemory (CCA, HALFWORD, datadoubleword, pAddr, vAddr,

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DATA)

169

Shift Word Left Logical

170

SLL
15 11 10 8 7 5 4 0
SHIFT SLL
rx ry sa
00110 00
5 3 3 3 2
Format: sLL rx, ry, sa MIPS16e

Purpose:

To execute a left-shift of aword by a fixed number of bits—1 to 8 bits.

Description: GPR[rx] ¢ GPR[ry] << sa

The 32-bit contents of GPR ry are shifted left, and zeros are inserted into the emptied low-order bits. The 3-bit sa
field specifies the shift amount. A shift amount of 0 isinterpreted as a shift amount of 8. The result is sign-extended

and placed into GPR rx.
Restrictions:
None
Operation:
if sa = 0° then
s < 8
else
s « 02 || sa
endif
temp ¢ GPR[Xlat(ry)] 31-g)..0 || 0°

GPR[Xlat (rx)]

Exceptions:
None

¢ sign_extend(temp31l..0)

Programming Notes:

Unlike nearly all other word operations, the SLL input operand does not have to be a properly sign-extended word
value to produce avalid sign-extended 32-bit result. The result word is always sign-extended into a 64-bit destination

register.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Shift Word Left Logical (Extended) SLL

31 27 26 22 21 16 15 11 10 8 7 5 4 2 1 0
EXTEND 0 SHIFT 0 SLL
sa4:.0 rx ry
11110 000000 00110 000 00
5 5 6 5 3 3 3 2
Format: sLL rx, ry, sa MIPS16e
Purpose:

To execute a left-shift of aword by a fixed number of bits—0 to 31 bits.

Description: GPR[rx] ¢ GPR[ry] << sa

The 32-bit contents of GPR ry are shifted left, and zeros are inserted into the emptied low-order bits. The 5-bit sa
field specifies the shift amount. The result is sign-extended and placed into GPR rx.

Restrictions:

None

Operation:
S & sa
temp ¢ GPR[Xlat(ry)] 31-g)..0 || 0°
GPR[Xlat (rx)] ¢ sign_extend(tempsq)
Exceptions:

None

Programming Notes:

Unlike nearly all other word operations, the SLL input operand does not have to be a properly sign-extended word
value to produce avalid sign-extended 32-bit result. The result word is always sign-extended into a 64-bit destination
register.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 171

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Shift Word Left Logical Variable SLLV

172

15 11 10 8 7 5 4 0
RR SLLV
rx ry
11101 00100
5 3 3 5
Format: sLLV ry, rx MIPS16e
Purpose:

To execute a left-shift of aword by avariable number of bits.

Description: GPR[ry] ¢ GPR[ry] << GPR[rx]

The 32-bit contents of GPR ry are shifted left, and zeros are inserted into the emptied low-order bits; the result word
is sign-extended and and placed back in GPR ry. The 5 low-order bits of GPR rx specify the shift amount.
Restrictions:

None

Operation:

s ¢ GPRI[Xlat(rx)l, .o
temp < GPR[Xlat(ry)] (31-g)..0 || 0%
GPR[Xlat(ry)] ¢ sign_extend(temps; g)

Exceptions:

None

Programming Notes:

Unlike nearly al other word operations, the input operand does not have to be a properly sign-extended word value to
produce avalid sign-extended 32-bit result. The result word is always sign-extended into a 64-bit destination register;
thisinstruction with a zero shift amount truncates a 64-bit value to 32 bits and sign-extends it.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Set on Less Than SLT
15 11 10 8 7 5 4 0
RR SLT
X ry
11101 00010
5 3 3 5
Format: sSLT rx, ry MIPS16e

Purpose:

To record the result of aless-than comparison.

Description: T < (GPR[rx] < GPR[ry])

The contents of GPR ry are subtracted from the contents of GPR rx. Considering both quantities as signed integers, if
the contents of GPR rx are less than the contents of GPR ry, the result is set to 1 (true); otherwise, theresult is set to 0
(false). Thisresult is placed into GPR 24.

Restrictions:
None

Operation:

if GPR[Xlat(rx)] < GPR[Xlat(ry)] then

GPR[24]
else

GPR[24]
endif

Exceptions:
None

«—

OGPRLEN—l || 1

«— OGPRLEN

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

173

Set on Less Than Immediate SLTI

15 11 10 8 7 0
SLTI
rx immediate
01010
5 3 8
Format: SLTI rx, immediate MIPS16e
Purpose:

To record the result of aless-than comparison with a constant.

Description: T < (GPR[rx] < immediate)

The 8-bit immediate is zero-extended and subtracted from the contents of GPR rx. Considering both quantities as
signed integers, if GPR rx isless than the zero-extended immediate, the result is set to 1 (true); otherwise, theresult is
set to O (false). Theresult is placed into GPR 24.

Restrictions:

None

Operation:

if GPR[Xlat(rx)] < zero_extend(immediate) then
GPR[24] ¢ OQCPREEN-1 || 7

else
GPR[24] ¢« (QCPRLEN

endif

Exceptions:
None

174 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Set on Less Than Immediate (Extended) SLTI
31 27 26 21 20 16 15 11 10 8 7 0
EXTEND SLTI 0
imm 10:5 imm 15:11 rx imm 4:0
11110 01010 000
5 6 5 5 3 3 5
Format: SLTI rx, immediate MIPS16e
Purpose:

To record the result of aless-than comparison with a constant.

Description: T < (GPR[rx] < immediate)

The 16-bit immediate is sign-extended and subtracted from the contents of GPR rx. Considering both quantities as
signed integers, if GPR rx isless than the sign-extended immediate, the result is set to 1 (true); otherwise, theresult is
set to O (false). Theresult is placed into GPR 24.

Restrictions:

None

Operation:

if GPR[Xlat(rx)] < sign_extend(immediate)
GPR[24] ¢ QCPRLEN-1 | 7

else
GPR[24]

endif

Exceptions:

None

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

<« (GPRLEN

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

then

175

Set on Less Than Immediate Unsigned SLTIU

15 11 10 8 7 0
SLTIU
rx immediate
01011
5 3 8
Format: SLTIU rx, immediate MIPS16e
Purpose:

To record the result of an unsigned less-than comparison with a constant.

Description: T < (GPR[rx] < immediate)

The 8-bit immediate is zero-extended and subtracted from the contents of GPR rx. Considering both quantities as
unsigned integers, if GPR rx isless than the zero-extended immediate, the result is set to 1 (true); otherwise, the result
isset to O (false). Theresult is placed into GPR 24.

Restrictions:

None

Operation:

if (0 || GPR[Xlat(rx)]) < (0 || zero_extend(immediate)) then
GPR[24] ¢ QCFRLEN-1 | 7

else
GPR[24] ¢« QCPREEN

endif

Exceptions:

None

176 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Set on Less Than Immediate Unsigned (Extended) SLTIU

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND SLTIU 0
imm 10:5 imm 15:11 rx imm 4.0
11110 01011 000
5 6 5 5 3 3 5
Format: SLTIU rx, immediate MIPS16e
Purpose:

To record the result of an unsigned less-than comparison with a constant.

Description: T < (GPR[rx] < immediate)

The 16-bit immediate is sign-extended and subtracted from the contents of GPR rx. Considering both quantities as
unsigned integers, if GPR rx isless than the sign-extended immediate, the result is set to 1 (true); otherwise, the result
isset to O (false). Theresult is placed into GPR 24.

Restrictions:

None

Operation:

if (0 || GPR[Xlat(rx)]) < (0 || sign_extend(immediate)) then
GPR[24] ¢ QCFRLEN-1 | 7

else
GPR[24] ¢« QCPREEN

endif

Exceptions:

None

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 177

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Set on Less Than Unsigned SLTU
15 11 10 8 7 5 4 0
RR SLTU
X ry
11101 00011
5 3 3 5
Format: SLTU rx, ry MIPS16e

178

Purpose:
To record the result of an unsigned less-than comparison.

Description: T < (GPR[rx] < GPR[ry])

The contents of GPR ry are subtracted from the contents of GPR rx. Considering both quantities as unsigned integers,
if the contents of GPR rx are less than the contents of GPR ry, set the result to 1 (true); otherwise, set the result to 0

(false). Theresult is placed into GPR 24.

Restrictions:
None

Operation:

if (0 || GPR[Xlat(rx)]) < (0 || GPR[Xlat(ry)]) then
GPR[24] ¢ OQCPREEN-1 || 1

else
GPR[24] ¢« (QCFRLEN

endif

Exceptions:
None

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Shift Word Right Arithmetic SRA
15 11 10 8 7
SHIFT SRA
rx
00110 11
5 3 2
Format: sSrRa rx, ry, sa MIPS16e

Purpose:

To execute an arithmetic right-shift of aword by a fixed number of bits—1 to 8 bits.

Description: GPR[rx] ¢ GPR[ry] >> sa (arithmetic)

The 32-bit contents of GPR ry are shifted right, and the sign bit is replicated into the emptied high-order bits. The
3-hit sa field specifies the shift amount. A shift amount of O is interpreted as a shift amount of 8. The result is

sign-extended and placed into GPR rx.

Restrictions:

On 64-hit processors, if GPR ry does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of

the operation is UNPREDICTABLE.

Operation:

if (NotWordvalue (GPR[Xlat(ry)])) then
UNPREDICTABLE

endif

s « 0% || sa

if (s = 0) then
s < 8

endif

temp ¢ (GPR[Xlat(ry)ls1)® || GPR[Xlat(ry)ls; s

GPR[Xlat (rx)] ¢ sign_extend(temps; g)

Exceptions:
None

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

179

Shift Word Right Arithmetic (Extended) SRA

31 27 26 22 21 16 15 11 10 8 7 5 4 2 1 0
EXTEND 0 SHIFT 0 SRA
sa4:.0 rx ry
11110 000000 00110 000 11
5 5 6 5 3 3 3 2
Format: sra rx, ry, sa MIPS16e
Purpose:

To execute an arithmetic right-shift of aword by a fixed number of bits—0 to 31bits.

Description: GPR[rx] ¢ GPR[ry] >> sa (arithmetic)

The 32-bit contents of GPR ry are shifted right, and the sign hit is replicated into the emptied high-order bits. The
5-bit sa field specifies the shift amount. The result is sign-extended and placed into GPR rx.

Restrictions:

On 64-bit processors, if GPR ry does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of
the operation is UNPREDICTABLE.

Operation:
if (NotWordvalue (GPR[Xlat(ry)]l)) then
UNPREDICTABLE
endif
s & sa
temp ¢ (GPR[Xlat(ry)lsq)® || GPR[Xlat(ry)lsi. s

GPR[Xlat (rx)] < sign_extend(temp31l..0)

Exceptions:
None

180 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Shift Word Right Arithmetic Variable SRAV
15 11 10 0
RR SRAV
rx ry
11101 00111
5 3 3 5
Format: SrRaAV ry, rx MIPS16e

Purpose:

To execute an arithmetic right-shift of aword by a variable number of bits.

Description: GPR[ry] ¢ GPR[ry] >> GPR[rx]

(arithmetic)

The 32-bit contents of GPR ry are shifted right, and the sign bit is replicated into the emptied high-order bits; the
word result is sign-extended and placed back in GPR ry. The 5 low-order bits of GPR rx specify the shift amount.

Restrictions:

On 64-bit processors, if GPR ry does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of
the operation is UNPREDICTABLE.

Operation:

if NotWordvalue (GPR[ry]) then
UNPREDICTABLE

endif

s ¢« GPR[Xlat(rx)l,s. g

temp < (GPR[Xlat(ry)ls;)S || GPRIXlat(ry)ls; o
< sign_extend(temps; ¢)

GPR[Xlat (ry)]

Exceptions:
None

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

181

Shift Word Right Logical

182

SRL
15 11 10 8 7 5 4 2 1 0
SHIFT SRL
rx ry sa
00110 10
5 3 3 3 2
Format: SrRL rx, ry, sa MIPS16e

Purpose:

To execute alogical right-shift of aword by afixed number of bits—1 to 8 hits.

Description: GPR[rx] ¢ GPR[ry] >> sa (logical)

The 32-hit contents of GPR ry are shifted right, and zeros are inserted into the emptied high-order bits. The 3-bit sa
field specifies the shift amount. A shift amount of 0 isinterpreted as a shift amount of 8. The result is sign-extended

and placed into GPR rx.

Restrictions:

On 64-bit processors, if GPR ry does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of

the operation is UNPREDICTABLE.

Operation:

if NotWordvalue (GPR[ry]) then
UNPREDICTABLE

endif

if sa = 0° then
s < 8

else
s « 0% || sa

endif

temp < 0° || GPR[Xlat(ry)lsi. s

GPR[Xlat (rx)] ¢ sign_extend(temps; g)

Exceptions:

None

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Shift Word Right Logical (Extended) SRL
31 27 26 22 21 16 15 11 10 8 7 4 210
EXTEND 0 SHIFT 0 SRL
sa4:.0 rx ry
11110 000000 00110 000 10
5 5 6 5 3 3 3 2
Format: SrRL rx, ry, sa MIPS16e

Purpose:

To execute alogical right-shift of aword by afixed number of bits—O0 to 31 bits.

Description: GPR[rx] ¢ GPR[ry] >> sa (logical)

The 32-hit contents of GPR ry are shifted right, and zeros are inserted into the emptied high-order bits. The 5-bit sa

field specifies the shift amount. The result is sign-extended and placed into GPR rx.

Restrictions:

On 64-bit processors, if GPR ry does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of

the operation is UNPREDICTABLE.

Operation:
if NotWordvalue (GPR[ry]) then
UNPREDICTABLE
endif
s & sa
temp < 0° || GPR[Xlat(ry)ls;. s

GPR[Xlat (rx)] ¢ sign_extend(temps;)

Exceptions:
None

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

183

Shift Word Right Logical Variable SRLV

184

15 11 10 8 7 5 4 0
RR SRLV
X ry
11101 00110
5 3 3 5
Format: SRLV ry, rx MIPS16e
Purpose:

To execute alogical right-shift of aword by a variable number of bits.

Description: GPR[ry] ¢ GPR[ry] >> GPR[rx] (logical)

The 32-bit contents of GPR ry are shifted right, and zeros are inserted into the emptied high-order bits; the word
result is sign-extended and placed back in GPR ry. The 5 low-order bits of GPR rx specify the shift amount.

Restrictions:

On 64-hit processors, if GPR ry does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of
the operation is UNPREDICTABLE.

Operation:
if (NotWordvalue (GPR[Xlat(ry)])) then
UNPREDICTABLE
endif
s ¢« GPR[Xlat(rx)l,. g
temp < 0° || GPR[Xlat(ry)ls;. ¢

GPR[Xlat (ry)] < sign_extend(tempsz; g)

Exceptions:
None

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Subtract Unsigned Word SUBU

15 11 10 8 7 5 4 2 1 0
RRR SUBU
rx ry rz
11100 11
5 3 3 3 2
Format: SUBU rz, rx, ry MIPS16e
Purpose:

To subtract 32-bit integers.

Description: GPR[rz] ¢ GPR[rx] - GPR[ry]

The 32-bit word value in GPR ry is subtracted from the 32-bit value in GPR rx and the 32-bit arithmetic result is
sign-extended and placed into GPR rz

No integer overflow exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if GPR rx or GPR ry does not contain sign-extended 32-bit values (bits 63..31 equal), then the
result of the operation is UNPREDICTABLE.

Operation:
if (NotWordvValue (GPR[X1lat (rx)])or NotWordValue (GPR[Xlat(ry)]))then
UNPREDICTABLE
endif
temp ¢ GPR[Xlat(rx)] - GPR[Xlat(ry)]

GPR[Xlat(rz)] < sign_extend(temp3l..0)

Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 185

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Store Word

186

SwW
15 11 10 8 7 5 0
SW
rx ry offset
11011
5 3 3 5
Format: sw ry, offset(rx) MIPS16e

Purpose:
To store aword to memory.

Description: memory[GPR[rx] + offset] ¢ GPR[ry]

The 5-bit offset is shifted |eft 2 bits, zero-extended, and then added to the contents of GPR rx to form the effective

address. The contents of GPR ry are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr <« zero_extend(offset || 0%) + GPR[Xlat (rx)]
if vAddr; , # 0% then
SignalException (AddressError)
endif
(pAddr, CCA)<« AddressTranslation (vAddr, DATA, STORE)

pPAddr < pAddrpgrye.1. 3 || (pAddr, , xor (ReverseEndian || 02))
bytesel« vAddr, o xor (BigEndianCPU || 0%)
datadoubleworde GPRIXlat (ry)lgs gspyresel..o || 087°YEesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr,

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Store Word (Extended) SW

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND SW
offset 10:5 offset 15:11 rx ry offset 4:0
11110 11011
5 6 5 5 3 3 5
Format: sw ry, offset(rx) MIPS16e
Purpose:

To store aword to memory.

Description: memory[GPR[rx] + offset] ¢ GPR[ry]

The 16-hit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The con-
tents of GPR ry are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr < sign_extend(offset) + GPR[Xlat (rx)]
if vAddr; , # 02 then
SignalException (AddressError)
endif
(pAddr, CCA)<« AddressTranslation (vAddr, DATA, STORE)
pPAddr < pAddrpgrye.1. 3 || (pAddr, , xor (ReverseEndian || 02))
bytesel« vAddr, o xor (BigEndianCPU || 0%)
datadoubleworde GPRIXlat (ry)lgs gspyresel..o || 087°YEesel
StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 187

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Store Word rx (SP-Relative) SW
15 11 10 8 7 5 4 0
SWSP
rx offset
11010
5 3 8
Format: sw rx, offset(sp) MIPS16e

188

Purpose:
To store an SP-relative word to memory.

Description: memory[GPR[sp] + offset] ¢ GPR[rx]

The 8-bit offset is shifted left 2 bits, zero-extended, and then added to the contents of GPR 29 to form the effective
address. The contents of GPR rx are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr ¢« zero_extend(offset || 0%) + GPR[29]

if vAddr, o # 02 then

SignalException (AddressError)

endif

(pAddr, CCA)¢« AddressTranslation (vAddr, DATA, STORE)

PAAdr < pAddrpgrze_1..3 || (pAddr, , xor (ReverseEndian || 0?))
bytesele vAddr, , xor (BigEndianCPU || 0%)

datadoubleword«- GPR[Xlat (rx)lg3_grbytesel..

0 || 08*bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Store Word rx (SP-Relative, Extended) SW
31 27 26 21 20 16 15 11 10 8 7 0
EXTEND SWSP 0
offset 10:5 offset 15:11 rx offset 4:0
11110 11010 000
5 6 5 5 3 3 5

Format: sw rx, offset(sp) MIPS16e
Purpose:

To store an SP-relative word to memory.

Description: memory[GPR[sp] + offset] ¢ GPR[rx]

The 16-hit offset is sign-extended and then added to the contents of GPR 29 to form the effective address. The con-
tents of GPR rx are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the two least-significant bits of the address is non-zero,

an Address Error exception occurs.

Operation:

vAddr <« sign_extend(offset) + GPR[29]
if vAddr; , # 02 then

SignalException (AddressError)

endif

(pAddr, CCA)¢« AddressTranslation (vAddr, DATA, STORE)

pPAddr < pAddrpgze_1. .3 || (pAddr, , xor (ReverseEndian || 02))

bytesel« vAddr, , xor (BigEndianCPU || 0?)

datadoubleword¢— GPR[Xlat (rx)]e3_gspytesel..o | | p8rbytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)
Exceptions:

TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

189

Store Word ra (SP-Relative) SW
15 11 10 8 7 0
18 SWRASP
offset
01100 010
5 3 8
Format: sw ra, offset(sp) MIPS16e

190

Purpose:
To store register ra SP-relative to memory.

Description: memory[sp + offset] < ra

The 8-hit offset is shifted left 2 bits, zero-extended, and then added to the contents of GPR 29 to form the effective
address. The contents of GPR 31 are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr <« zero_extend(offset || 0%) + GPR[29]

if vAddr; # 07 then
SignalException (AddressError)
endif

(pAddr, CCA)« AddressTranslation

(vAddr, DATA, STORE)

pAddr ¢ pAddrpgrge.1. 3 || (pAddr, , xor (ReverseEndian || 0%))
bytesele vAddr, , xor (BigEndianCPU || 0?)

datadoubleword¢— GPR[31]g3_gspytesel. .

0 || OS*bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB R€fill, TLB Invalid, TLB Modified, Address Error

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Store Word ra(SP-Relative, Extended) SW
31 27 26 21 20 16 15 11 10 8 7 5 0
EXTEND 18 SWRASP 0
offset 10:5 offset 15:11 offset 4:0
11110 01100 010 000
5 6 5 5 3 3 5
Format: sw ra, offset(sp) MIPS16e

Purpose:

To store register ra SP-relative to memory.

Description: memory[sp + offset] ¢ ra

The 16-hit offset is sign-extended and then added to the contents of GPR 29 to form the effective address. The con-

tents of GPR 31 are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr < sign_extend(offset) + GPR[29]
if vAddr; , # 02 then

SignalException (AddressError)
endif

(pAddr, CCA)« AddressTranslation (vAddr, DATA, STORE)
PAAdr < pAddrpgrze_1. .3 || (pAddr, , xor (ReverseEndian || 02))

bytesel« vAddr, o xor (BigEndianCPU || 0%)
datadoubleword¢— GPR[31]g3_gspytesel. .

StoreMemory (CCA, WORD, datadoubleword, pAddr,

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

8*bytesel
o |l O
vAddr, DATA)

191

Exclusive OR

192

XOR
15 11 10 8 7 0
RR XOR
rx ry
11101 01110
5 3 3 5
Format: XOR rx, ry MIPS16e

Purpose:

To do abitwise logical Exclusive OR.

Description: GPR[rx] ¢ GPR[rx] XOR GPR[ry]

The contents of GPR ry are combined with the contents of GPR rx in a bitwise Exclusive OR operation. The result is

placed in GPR rx.

Restrictions:
None

Operation:

GPR[Xlat (rx)] ¢ GPR[Xlat(rx)]

Exceptions:
None

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

xor GPR[Xlat (ry)]

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Zero-Extend Byte ZEB

15 11 10 8 7 5 4 0
RR ZEB CNVT
X
11101 000 10001
5 3 3 5
Format: zEB rx MIPS16e
Purpose:

Zero-extend least significant byte in register rx.

Description: GPR[rx] ¢ zero_extend (GPR[rx],;)

Theleast significant byte of rx is zero-extended and the value written back to rx.

Restrictions:

If GPR rx does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordvValue (GPR[Xlat (rx)]) then
UNPREDICTABLE

endif

temp ¢« GPR[Xlat (rx)]

GPR[Xlat (rx)] « 0] temp; |

Exceptions:
None

Programming Notes:
None.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 193

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Zero-Extend Halfword ZEH

15 11 10 8 7 5 4 0
RR ZEH CNVT
X
11101 001 10001
5 3 3 5
Format: zEH rx MIPS16e
Purpose:

Zero-extend least significant halfword in register rx.

Description: GPR[rx] ¢ zero_extend (GPR[rx] 5 g);

Theleast significant halfword of rx is zero-extended and the value written back to rx.

Restrictions:

If GPR rx does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordvValue (GPR[Xlat (rx)]) then
UNPREDICTABLE

endif

temp ¢« GPR[Xlat (rx)]

GPR[Xlat (rx)] « 0] tempis 4

Exceptions:
None

Programming Notes:
None.

194 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Zero-Extend Word ZEW

15 11 10 8 7 5 4 0
RR ZEW CNVT
X
11101 010 10001
5 3 3 5
Format: 2zEw rx MIPS16e (64-bit only)
Purpose:

Zero-extend least significant word in register rx.

Description: GPR[rx] ¢ Zero_extend (GPR[rx]s, g);

The least significant word of rx is Zero-extended and the value written back to rx.

Restrictions:

If GPR rx does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordvValue (GPR[Xlat (rx)]) then
UNPREDICTABLE

endif

temp ¢« GPR[Xlat (rx)]

GPR[Xlat (rx)] « 032 || tempsy;

Exceptions:
Reserved Instruction

Programming Notes:
None.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 195

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

196 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 197

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

198 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Appendix A
Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changesto figures. Change bars
on figure titles are used to denote a potential change in the figure itself.

Revision Date Description
0.90 November 1, 2000 External review copy of reorganized and updated architecture documentation.

Changesin thisrevision:

* Correct table 3-10 description of branch instructions (branchesreally are

0.91 November 15. 2000 implemented in the 32-bit architecture and are extensible)

* Correct the pseudo code for all MIPS16 branches - the offset value thould
be added to the address of the instruction following the branch, not the
branch itself.

Changesin thisrevision:

0.92 December 15, 2000
» Add missing I8_MOVERS2 instruction format.

Changesin thisrevision:

0.93 January 25, 2001 « Correct minor typosin the previous version.

» Add the 32-bit MIPS version of JALX and update the instruction
descriptions of JAL and JALX.

0.95 March 12, 2001 Document cleanup for next external release.

Changesin thisrevision:
 Declassify the MIPS32 Architecture for Programmers volume.
* Fix PDF bookmarks for the MIPS16 instructions.
0.96 November 12, 2001
* Fix formatting in instruction translation section.
« Correct the description of the shift count for extended SRA and SLL.
» Changeall uses of “MIPS16” to “MIPS16€”.

Changesin thisrevision:

» Update pseudo code for SAVE and RESTORE to be explicit about the
memory operations inherent in the instructions.

1.00 August 29,2002, orrect extended PC-relative LW and LD to remove the implication that

they can be executed in the delay slot of ajump.

* Add section defining instruction fetch restrictions when the processor is
running in M1PS16e mode and the fetch addressis in uncached memory.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 199

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Appendix A Revision History

Revision Date Description
Changesin thisrevision:

» For MIPS64 processors, add a programming note to ADDIUPC to indicate
that thisinstruction will generate the expected result only when run in the
32-bit Compatibility Address Space.

» For MIPS64 processors, clean up the input operand sign-extension
2.00 May 15, 2003 requirements for ADDIUPC, ADDIUSP, ADDU, NEG, SEB, SEH, SEW,
ZEB, ZEH, and ZEW.

» Add anote to specify that the ISA Mode flag is made available to software
in EPC, ErrorEPC, or DEPC when an exception occurs.

* Clarify that for the purposes of Watchpoints and EJTAG Breskpoints, that
PC-releative load references are consider data, not instruction, references.

Changesin thisrevision:
» Makeit explicit that attempting to execute a non-extensible instruction must
cause a Reserved I nstruction exception. Thiswasimplied, but not explicitly
250 July 1, 2005 stated in the previous revision of the document.

* Update dl filesto FrameMaker 7.1.

200 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

	MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1 Typographical Conventions
	1.1.1 Italic Text
	1.1.2 Bold Text
	1.1.3 Courier Text

	1.2 UNPREDICTABLE and UNDEFINED
	1.2.1 UNPREDICTABLE
	1.2.2 UNDEFINED
	1.2.3 UNSTABLE

	1.3 Special Symbols in Pseudocode Notation
	1.4 For More Information

	Guide to the Instruction Set
	2.1 Understanding the Instruction Fields
	2.1.1 Instruction Fields
	2.1.2 Instruction Descriptive Name and Mnemonic
	2.1.3 Format Field
	2.1.4 Purpose Field
	2.1.5 Description Field
	2.1.6 Restrictions Field
	2.1.7 Operation Field
	2.1.8 Exceptions Field
	2.1.9 Programming Notes and Implementation Notes Fields

	2.2 Operation Section Notation and Functions
	2.2.1 Instruction Execution Ordering
	2.2.2 Pseudocode Functions
	2.2.2.1 Coprocessor General Register Access Functions
	2.2.2.2 Memory Operation Functions
	2.2.2.3 Floating Point Functions
	2.2.2.4 Miscellaneous Functions

	2.3 Op and Function Subfield Notation
	2.4 FPU Instructions

	The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture
	3.1 Base Architecture Requirements
	3.2 Software Detection of the ASE
	3.3 Compliance and Subsetting
	3.4 MIPS16e Overview
	3.5 MIPS16e ASE Features
	3.6 MIPS16e Register Set
	3.7 MIPS16e ISA Modes
	3.7.1 Modes Available in the MIPS16e Architecture
	3.7.2 Defining the ISA Mode Field
	3.7.3 Switching Between Modes When an Exception Occurs
	3.7.4 Using MIPS16e Jump Instructions to Switch Modes

	3.8 JALX, JR, and JALR Operations in MIPS16e and MIPS32 Mode
	3.9 MIPS16e Instruction Summaries
	3.10 MIPS16e PC-Relative Instructions
	3.11 MIPS16e Extensible Instructions
	3.12 MIPS16e Implementation-Definable Macro Instructions
	3.13 MIPS16e Jump and Branch Instructions
	3.14 MIPS16e Instruction Formats
	3.14.1 I-type instruction format
	3.14.2 RI-type instruction format
	3.14.3 RR-type instruction format
	3.14.4 RRI-type instruction format
	3.14.5 RRR-type instruction format
	3.14.6 RRI-A type instruction format
	3.14.7 Shift instruction format
	3.14.8 I8-type instruction format
	3.14.9 I8_MOVR32 instruction format (used only by the MOVR32 instruction)
	3.14.10 I8_MOV32R instruction format (used only by MOV32R instruction)
	3.14.11 I8_SVRS instruction format (used only by the SAVE and RESTORE instructions)
	3.14.12 I64-type instruction format
	3.14.13 RI64-type instruction format
	3.14.14 JAL and JALX instruction format
	3.14.15 EXT-I instruction format
	3.14.16 ASMACRO instruction format
	3.14.17 EXT-RI instruction format
	3.14.18 EXT-RRI instruction format
	3.14.19 EXT-RRI-A instruction format
	3.14.20 EXT-SHIFT instruction format
	3.14.21 EXT-I8 instruction format
	3.14.22 EXT-I8_SVRS instruction format (used only by the SAVE and RESTORE instructions)
	3.14.23 EXT-I64 instruction format
	3.14.24 EXT-RI64 instruction format
	3.14.25 EXT-SHIFT64 instruction format

	3.15 Instruction Bit Encoding
	3.16 MIPS16e Instruction Stream Organization and Endianness
	3.17 MIPS16e Instruction Fetch Restrictions

	The MIPS16e™ ASE Instruction Set
	4.1 MIPS16e Instruction Descriptions
	4.1.1 MIPS16e-Specific Pseudocode Functions
	4.1.1.1 Xlat

	ADDIU (2-Operand)
	ADDIU (2-Operand, Extended)
	ADDIU (3-Operand)
	ADDIU (3-Operand, Extended)
	ADDIU (3-Operand, PC-Relative)
	ADDIU (3-Operand, PC-Relative, Extended)
	ADDIU (2-Operand, SP-Relative)
	ADDIU (2-Operand, SP-Relative, Extended)
	ADDIU (3-Operand, SP-Relative)
	ADDIU (3-Operand, SP-Relative, Extended)
	ADDU (3-Operand)
	AND
	ASMACRO
	B
	B (Extended)
	BEQZ
	BEQZ (Extended)
	BNEZ
	BNEZ (Extended)
	BREAK
	BTEQZ
	BTEQZ (Extended)
	BTNEZ
	BTNEZ (Extended)
	CMP
	CMPI
	CMPI (Extended)
	DADDIU
	DADDIU (2-Operand, Extended)
	DADDIU (3-Operand)
	DADDIU (3-Operand, Extended)
	DADDIU (3-Operand, PC-Relative)
	DADDIU (3-Operand, PC-Relative, Extended)
	DADDIU (2-Operand, SP-Relative)
	DADDIU (2-Operand, SP-Relative, Extended)
	DADDIU (3-Operand, SP-Relative)
	DADDIU (3-Operand, SP-Relative, Extended)
	DADDU (3-Operand)
	DDIV
	DDIVU
	DIV
	DIVU
	DMULT
	DMULTU
	DSLL
	DSLL (Extended)
	DSLLV
	DSRA
	DSRA (Extended)
	DSRAV
	DSRL
	DSRL (Extended)
	DSRLV
	DSUBU
	JAL
	JALR
	JALRC
	JALX (MIPS16e Format)
	JALX (MIPS64 Format)
	JR ra
	JR rx
	JRC ra
	JRC rx
	LB
	LB (Extended)
	LBU
	LBU (Extended)
	LD
	LD (Extended)
	LD (PC-Relative)
	LD (PC-Relative, Extended)
	LD (SP-Relative)
	LD (SP-Relative, Extended)
	LH
	LH (Extended)
	LHU
	LHU (Extended)
	LI
	LI (Extended)
	LW
	LW (Extended)
	LW (PC-Relative)
	LW (PC-Relative, Extended)
	LW (SP-Relative)
	LW (SP-Relative, Extended)
	LWU
	LWU (Extended)
	MFHI
	MFLO
	MOVE r32, rz
	MOVE ry, r32
	MULT
	MULTU
	NEG
	NOP
	NOT
	OR
	RESTORE
	RESTORE (Extended)
	SAVE
	SAVE (Extended)
	SB
	SB (Extended)
	SEB
	SEH
	SEW
	SD
	SD (Extended)
	SD ry (SP-Relative)
	SP ry (SP-Relative, Extended)
	SD ra (SP-Relative)
	SD ra (SP-Relative, Extended)
	SDBBP
	SH
	SH (Extended)
	SLL
	SLL (Extended)
	SLLV
	SLT
	SLTI
	SLTI (Extended)
	SLTIU
	SLTIU (Extended)
	SLTU
	SRA
	SRA (Extended)
	SRAV
	SRL
	SRL (Extended)
	SRLV
	SUBU
	SW
	SW (Extended)
	SW rx (SP-Relative)
	SW rx (SP-Relative, Extended)
	SW ra (SP-Relative)
	SW ra (SP-Relative, Extended)
	XOR
	ZEB
	ZEH
	ZEW

	Revision History

