
Document Number: MD00077
Revision 2.50
July 1, 2005

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

MIPS64® Architecture for Programmers Volume
IV-a: The MIPS16e™ Application-Specific

Extension to the MIPS64® Architecture

Copyright © 2005 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying,
reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies
or an authorized third party is strictly prohibited. At a minimum, this information is protected under unfair competition and copyright
laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to
use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO
CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN
SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise.
MIPS Technologies does not assume any liability arising out of the application or use of this information, or of any error or omission
in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied
warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any written license
agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not give recipient any license
to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or supplements
thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in this document, the
laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial
computer software documentation or other commercial items. If the user of this information, or any related documentation of any
kind, including related technical data or manuals, is an agency, department, or other entity of the United States government
("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this information, or any related
documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense
Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this
information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim,
MIPSpro, MIPS Technologies logo, MIPS RISC CERTIFIED POWER logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS,
4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 20Kc, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 25Kf, 34K, R3000, R4000, R5000, ASMACRO,
Atlas, "At the core of the user experience.", BusBridge, CorExtend, CoreFPGA, CoreLV, EC, FastMIPS, JALGO, Malta, MDMX,
MGB, PDtrace, the Pipeline, Pro Series, QuickMIPS, SEAD, SEAD-2, SmartMIPS, SOC-it, and YAMON are trademarks or
registered trademarks of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Template: B1.14, Built with tags: 2B ARCH FPU_PS FPU_PSandARCH MIPS64

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 i

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1 About This Book ... 1
1.1 Typographical Conventions ... 1

1.1.1 Italic Text ... 1
1.1.2 Bold Text ... 1
1.1.3 Courier Text ... 1

1.2 UNPREDICTABLE and UNDEFINED .. 2
1.2.1 UNPREDICTABLE ... 2
1.2.2 UNDEFINED ... 2
1.2.3 UNSTABLE ... 2

1.3 Special Symbols in Pseudocode Notation .. 3
1.4 For More Information .. 5

Chapter 2 Guide to the Instruction Set ... 7
2.1 Understanding the Instruction Fields ... 7

2.1.1 Instruction Fields ... 8
2.1.2 Instruction Descriptive Name and Mnemonic ... 9
2.1.3 Format Field ... 9
2.1.4 Purpose Field ... 10
2.1.5 Description Field .. 10
2.1.6 Restrictions Field ... 10
2.1.7 Operation Field .. 11
2.1.8 Exceptions Field ... 11
2.1.9 Programming Notes and Implementation Notes Fields ... 11

2.2 Operation Section Notation and Functions .. 12
2.2.1 Instruction Execution Ordering .. 12
2.2.2 Pseudocode Functions .. 12

2.3 Op and Function Subfield Notation ... 22
2.4 FPU Instructions .. 23

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture ... 25
3.1 Base Architecture Requirements .. 25
3.2 Software Detection of the ASE .. 25
3.3 Compliance and Subsetting .. 25
3.4 MIPS16e Overview .. 25
3.5 MIPS16e ASE Features ... 26
3.6 MIPS16e Register Set .. 26
3.7 MIPS16e ISA Modes ... 27

3.7.1 Modes Available in the MIPS16e Architecture ... 28
3.7.2 Defining the ISA Mode Field .. 28
3.7.3 Switching Between Modes When an Exception Occurs .. 28
3.7.4 Using MIPS16e Jump Instructions to Switch Modes .. 28

3.8 JALX, JR, and JALR Operations in MIPS16e and MIPS32 Mode ... 29
3.9 MIPS16e Instruction Summaries ... 29
3.10 MIPS16e PC-Relative Instructions .. 33
3.11 MIPS16e Extensible Instructions ... 34
3.12 MIPS16e Implementation-Definable Macro Instructions .. 35
3.13 MIPS16e Jump and Branch Instructions .. 36
3.14 MIPS16e Instruction Formats .. 36

3.14.1 I-type instruction format .. 37
3.14.2 RI-type instruction format .. 37
3.14.3 RR-type instruction format .. 37

ii MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

3.14.4 RRI-type instruction format ... 37
3.14.5 RRR-type instruction format .. 37
3.14.6 RRI-A type instruction format ... 37
3.14.7 Shift instruction format .. 37
3.14.8 I8-type instruction format .. 37
3.14.9 I8_MOVR32 instruction format (used only by the MOVR32 instruction) ... 37
3.14.10 I8_MOV32R instruction format (used only by MOV32R instruction) ... 38
3.14.11 I8_SVRS instruction format (used only by the SAVE and RESTORE instructions) 38
3.14.12 I64-type instruction format .. 38
3.14.13 RI64-type instruction format .. 38
3.14.14 JAL and JALX instruction format ... 38
3.14.15 EXT-I instruction format ... 38
3.14.16 ASMACRO instruction format .. 38
3.14.17 EXT-RI instruction format ... 38
3.14.18 EXT-RRI instruction format .. 38
3.14.19 EXT-RRI-A instruction format .. 39
3.14.20 EXT-SHIFT instruction format .. 39
3.14.21 EXT-I8 instruction format ... 39
3.14.22 EXT-I8_SVRS instruction format (used only by the SAVE and RESTORE instructions) 39
3.14.23 EXT-I64 instruction format ... 39
3.14.24 EXT-RI64 instruction format ... 39
3.14.25 EXT-SHIFT64 instruction format .. 39

3.15 Instruction Bit Encoding .. 39
3.16 MIPS16e Instruction Stream Organization and Endianness .. 43
3.17 MIPS16e Instruction Fetch Restrictions .. 43

Chapter 4 The MIPS16e™ ASE Instruction Set .. 45
4.1 MIPS16e Instruction Descriptions ... 45

4.1.1 MIPS16e-Specific Pseudocode Functions ... 45
ADDIU (2-Operand) .. 46
ADDIU (2-Operand, Extended) ... 47
ADDIU (3-Operand) .. 48
ADDIU (3-Operand, Extended) ... 49
ADDIU (3-Operand, PC-Relative) .. 50
ADDIU (3-Operand, PC-Relative, Extended) ... 51
ADDIU (2-Operand, SP-Relative) ... 52
ADDIU (2-Operand, SP-Relative, Extended) .. 53
ADDIU (3-Operand, SP-Relative) ... 54
ADDIU (3-Operand, SP-Relative, Extended).. 55
ADDU (3-Operand) ... 56
AND ... 57
ASMACRO.. 58
B ... 59
B (Extended) .. 60
BEQZ ... 61
BEQZ (Extended) .. 62
BNEZ ... 63
BNEZ (Extended) .. 64
BREAK .. 65
BTEQZ... 66
BTEQZ (Extended) .. 67
BTNEZ... 68
BTNEZ (Extended) .. 69
CMP ... 70
CMPI.. 71
CMPI (Extended) ... 72

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 iii

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DADDIU.. 73
DADDIU (2-Operand, Extended) .. 74
DADDIU (3-Operand) ... 75
DADDIU (3-Operand, Extended) .. 76
DADDIU (3-Operand, PC-Relative).. 77
DADDIU (3-Operand, PC-Relative, Extended) .. 78
DADDIU (2-Operand, SP-Relative) .. 79
DADDIU (2-Operand, SP-Relative, Extended) ... 80
DADDIU (3-Operand, SP-Relative) .. 81
DADDIU (3-Operand, SP-Relative, Extended) ... 82
DADDU (3-Operand) .. 83
DDIV.. 84
DDIVU... 85
DIV... 86
DIVU.. 88
DMULT ... 89
DMULTU... 90
DSLL.. 91
DSLL (Extended) ... 92
DSLLV... 93
DSRA ... 94
DSRA (Extended) .. 95
DSRAV .. 96
DSRL ... 97
DSRL (Extended)... 98
DSRLV... 99
DSUBU .. 100
JAL... 101
JALR .. 102
JALRC ... 103
JALX (MIPS16e Format)... 104
JALX (MIPS64 Format) .. 105
JR ra ... 106
JR rx ... 107
JRC ra... 108
JRC rx .. 109
LB... 110
LB (Extended).. 111
LBU.. 112
LBU (Extended) ... 113
LD .. 114
LD (Extended).. 115
LD (PC-Relative) ... 116
LD (PC-Relative, Extended) .. 117
LD (SP-Relative).. 118
LD (SP-Relative, Extended) .. 119
LH .. 120
LH (Extended).. 121
LHU ... 122
LHU (Extended)... 123
LI .. 124
LI (Extended) ... 125
LW ... 126
LW (Extended)... 127
LW (PC-Relative) .. 128

iv MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LW (PC-Relative, Extended) ... 129
LW (SP-Relative)... 130
LW (SP-Relative, Extended).. 131
LWU... 132
LWU (Extended).. 133
MFHI.. 134
MFLO... 135
MOVE r32, rz .. 136
MOVE ry, r32 .. 137
MULT .. 138
MULTU ... 139
NEG ... 140
NOP.. 141
NOT ... 142
OR .. 143
RESTORE.. 144
RESTORE (Extended) ... 146
SAVE ... 150
SAVE (Extended) .. 152
SB... 156
SB (Extended) .. 157
SEB .. 158
SEH .. 159
SEW ... 160
SD... 161
SD (Extended).. 162
SD ry (SP-Relative) ... 163
SP ry (SP-Relative, Extended) ... 164
SD ra (SP-Relative).. 165
SD ra (SP-Relative, Extended)... 166
SDBBP ... 167
SH... 168
SH (Extended).. 169
SLL... 170
SLL (Extended).. 171
SLLV.. 172
SLT... 173
SLTI ... 174
SLTI (Extended) .. 175
SLTIU .. 176
SLTIU (Extended).. 177
SLTU.. 178
SRA.. 179
SRA (Extended) ... 180
SRAV ... 181
SRL .. 182
SRL (Extended).. 183
SRLV ... 184
SUBU ... 185
SW.. 186
SW (Extended) ... 187
SW rx (SP-Relative)... 188
SW rx (SP-Relative, Extended) ... 189
SW ra (SP-Relative)... 190
SW ra (SP-Relative, Extended).. 191

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 v

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

XOR ... 192
ZEB .. 193
ZEH.. 194
ZEW ... 195

Appendix A Revision History .. 199

vi MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 2-1: Example of Instruction Description.. 8
Figure 2-2: Example of Instruction Fields... 9
Figure 2-3: Example of Instruction Descriptive Name and Mnemonic .. 9
Figure 2-4: Example of Instruction Format... 9
Figure 2-5: Example of Instruction Purpose ... 10
Figure 2-6: Example of Instruction Description.. 10
Figure 2-7: Example of Instruction Restrictions ... 11
Figure 2-8: Example of Instruction Operation .. 11
Figure 2-9: Example of Instruction Exception .. 11
Figure 2-10: Example of Instruction Programming Notes .. 12
Figure 2-11: COP_LW Pseudocode Function ... 13
Figure 2-12: COP_LD Pseudocode Function.. 13
Figure 2-13: COP_SW Pseudocode Function ... 13
Figure 2-14: COP_SD Pseudocode Function .. 14
Figure 2-15: CoprocessorOperation Pseudocode Function ... 14
Figure 2-16: AddressTranslation Pseudocode Function.. 15
Figure 2-17: LoadMemory Pseudocode Function ... 15
Figure 2-18: StoreMemory Pseudocode Function... 16
Figure 2-19: Prefetch Pseudocode Function.. 16
Figure 2-20: SyncOperation Pseudocode Function ... 17
Figure 2-21: ValueFPR Pseudocode Function .. 18
Figure 2-22: StoreFPR Pseudocode Function ... 19
Figure 2-23: CheckFPException Pseudocode Function .. 20
Figure 2-24: FPConditionCode Pseudocode Function .. 20
Figure 2-25: SetFPConditionCode Pseudocode Function... 20
Figure 2-26: SignalException Pseudocode Function .. 21
Figure 2-27: SignalDebugBreakpointException Pseudocode Function .. 21
Figure 2-28: SignalDebugModeBreakpointException Pseudocode Function... 21
Figure 2-29: NullifyCurrentInstruction PseudoCode Function ... 21
Figure 2-30: JumpDelaySlot Pseudocode Function .. 22
Figure 2-31: NotWordValue Pseudocode Function .. 22
Figure 2-32: PolyMult Pseudocode Function.. 22
Figure 4-1: Xlat Pseudocode Function .. 45

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 vii

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 1-1: Symbols Used in Instruction Operation Statements .. 3
Table 2-1: AccessLength Specifications for Loads/Stores.. 16
Table 3-1: MIPS16e General-Purpose Registers... 27
Table 3-2: MIPS16e Special-Purpose Registers.. 27
Table 3-3: ISA Mode Bit Encodings ... 28
Table 3-4: MIPS16e Load and Store Instructions .. 30
Table 3-5: MIPS16e Save and Restore Instructions.. 30
Table 3-6: MIPS16e ALU Immediate Instructions ... 30
Table 3-7: MIPS16e Arithmetic One, Two or Three Operand Register Instructions ... 30
Table 3-8: MIPS16e Special Instructions.. 32
Table 3-9: MIPS16e Multiply and Divide Instructions ... 32
Table 3-10: MIPS16e Jump and Branch Instructions.. 32
Table 3-11: MIPS16e Shift Instructions.. 32
Table 3-12: Implementation-Definable Macro Instructions.. 33
Table 3-13: PC-Relative MIPS16e Instructions ... 33
Table 3-14: PC-Relative Base Used for Address Calculation .. 33
Table 3-15: MIPS16e Extensible Instructions .. 34
Table 3-16: MIPS16e Instruction Fields ... 36
Table 3-17: Symbols Used in the Instruction Encoding Tables .. 39
Table 3-18: MIPS16e Encoding of the Opcode Field ... 40
Table 3-19: MIPS16e JAL(X) Encoding of the x Field .. 41
Table 3-20: MIPS16e SHIFT Encoding of the f Field .. 41
Table 3-21: MIPS16e RRI-A Encoding of the f Field .. 41
Table 3-22: MIPS16e I8 Encoding of the funct Field ... 41
Table 3-23: MIPS16e RRR Encoding of the f Field ... 41
Table 3-24: MIPS16e RR Encoding of the Funct Field .. 42
Table 3-25: MIPS16e I64 Encoding of the funct Field ... 42
Table 3-26: MIPS16e I8 Encoding of the s Field when funct=SVRS... 42
Table 3-27: MIPS16e RR Encoding of the ry Field when funct=J(AL)R(C) ... 42
Table 3-28: MIPS16e RR Encoding of the ry Field when funct=CNVT .. 42

viii MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 1

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 1

About This Book

The MIPS64® Architecture for Programmers Volume IV-a comes as a multi-volume set.

• Volume I describes conventions used throughout the document set, and provides an introduction to the MIPS64®
Architecture

• Volume II provides detailed descriptions of each instruction in the MIPS64® instruction set

• Volume III describes the MIPS64® Privileged Resource Architecture which defines and governs the behavior of the
privileged resources included in a MIPS64® processor implementation

• Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

• Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS64® Architecture

• Volume IV-c describes the MIPS-3D® Application-Specific Extension to the MIPS64® Architecture

• Volume IV-d describes the SmartMIPS®Application-Specific Extension to the MIPS32® Architecture and is not
applicable to the MIPS64® document set

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.

1.1.1 Italic Text

• is used for emphasis

• is used for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and various floating point instruction formats, such as S, D, and PS

• is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

• represents a term that is being defined

• is used for bits and fields that are important from a hardware perspective (for instance, register bits, which are not
programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers 5 through 1

• is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

2 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the
processor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions
in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register).
Unprivileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction, or
as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is generated,
it is UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generating UNPREDICTABLE results must not depend on any data source (memory
or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which is
inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user mode
must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in another process

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED operations
or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which there is
no exit other than powering down the processor). The assertion of any of the reset signals must restore the processor
to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABLE values, software may depend on the fact that a sampling of an UNSTABLE value results in a legal
transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

• Implementations of operations generating UNSTABLE results must not depend on any data source (memory or
internal state) which is inaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 3

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1-1.

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning

← Assignment

=, ≠ Tests for equality and inequality

|| Bit string concatenation

xy A y-bit string formed by y copies of the single-bit value x

b#n
A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the binary
value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" prefix is
omitted, the default base is 10.

0bn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).

0xn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).

xy..z
Selection of bits y through z of bit string x. Little-endian bit notation (rightmost bit is 0) is used. If y is less than
z, this expression is an empty (zero length) bit string.

+, − 2’s complement or floating point arithmetic: addition, subtraction

∗, × 2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

/ Floating point division

< 2’s complement less-than comparison

> 2’s complement greater-than comparison

≤ 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture, GPR[x]
is a short-hand notation for SGPR[SRSCtlCSS, x].

SGPR[s,x] In Release 2 of the Architecture, multiple copies of the CPU general-purpose registers may be implemented.
SGPR[s,x] refers to GPR set s, register x.

FPR[x] Floating Point operand register x

FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].

FPR[x] Floating Point (Coprocessor unit 1), general register x

4 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

CPR[z,x,s] Coprocessor unit z, general register x, select s

CP2CPR[x] Coprocessor unit 2, general register x

CCR[z,x] Coprocessor unit z, control register x

CP2CCR[x] Coprocessor unit 2, control register x

COC[z] Coprocessor unit z condition signal

Xlat[x] Translation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

BigEndianMem
Endian mode as configured at chip reset (0 →Little-Endian, 1 → Big-Endian). Specifies the endianness of the
memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endianness
of Kernel and Supervisor mode execution.

BigEndianCPU
The endianness for load and store instructions (0 → Little-Endian, 1 → Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be computed
as (BigEndianMem XOR ReverseEndian).

ReverseEndian
Signal to reverse the endianness of load and store instructions. This feature is available in User mode only, and
is implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as (SRRE and
User mode).

LLbit
Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is set
when a linked load occurs and is tested by the conditional store. It is cleared, during other CPU operation, when
a store to the location would no longer be atomic. In particular, it is cleared by exception return instructions.

I:,
I+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as a label. It indicates the instruction time
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a time
label of I. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections labeled
with the instruction time, relative to the current instruction I, in which the effect of that pseudocode appears to
occur. For example, an instruction may have a result that is not available until after the next instruction. Such an
instruction has the portion of the instruction operation description that writes the result register in a section
labeled I+1.

The effect of pseudocode statements for the current instruction labelled I+1 appears to occur “at the same time”
as the effect of pseudocode statements labeled I for the following instruction. Within one pseudocode sequence,
the effects of the statements take place in order. However, between sequences of statements for different
instructions that occur “at the same time,” there is no defined order. Programs must not depend on a particular
order of evaluation between such sections.

PC

The Program Counter value. During the instruction time of an instruction, this is the address of the instruction
word. The address of the instruction that occurs during the next instruction time is determined by assigning a
value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruction)
or 4 before the next instruction time. A taken branch assigns the target address to the PC during the instruction
time of the instruction in the branch delay slot.

In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the restart
address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register on an
exception. The PC value contains a full 64-bit address all of which are significant during a memory reference.

ISA Mode

In processors that implement the MIPS16e Application Specific Extension, the ISA Mode is a single-bit register
that determines in which mode the processor is executing, as follows:

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing MIIPS16e instructions

1.4 For More Information

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 5

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS URL:

http://www.mips.com

Comments or questions on the MIPS64® Architecture or this document should be directed to

MIPS Architecture Group
MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043

or via E-mail to architecture@mips.com.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 physical
address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

SEGBITS
The number of virtual address bits implemented in a segment of the address space is represented by the symbol
SEGBITS. As such, if 40 virtual address bits are implemented in a segment, the size of the segment is 2SEGBITS

= 240 bytes.

FP32RegistersMode

Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32, the FPU has 32 32-bit
FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, the FPU has 32 64-bit FPRs
in which 64-bit data types are stored in any FPR.

In MIPS32 implementations, FP32RegistersMode is always a 0. MIPS64 implementations have a compatibility
mode in which the processor references the FPRs as if it were a MIPS32 implementation. In such a case
FP32RegisterMode is computed from the FR bit in the Status register. If this bit is a 0, the processor operates
as if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.

The value of FP32RegistersMode is computed from the FR bit in the Status register.

InstructionInBranchD
elaySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch or
jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is false
if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which is not
executed in the delay slot of a branch or jump.

SignalException(exce
ption, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
parameter as an exception-specific argument). Control does not return from this pseudocode function - the
exception is signaled at the point of the call.

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning

6 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 7

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2-1 shows an example instruction. Following the figure are descriptions of the fields listed below:

• “Instruction Fields” on page 8

• “Instruction Descriptive Name and Mnemonic” on page 9

• “Format Field” on page 9

• “Purpose Field” on page 10

• “Description Field” on page 10

• “Restrictions Field” on page 10

• “Operation Field” on page 11

• “Exceptions Field” on page 11

• “Programming Notes and Implementation Notes Fields” on page 11

8 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

Figure 2-1 Example of Instruction Description

2.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The following
rules are followed:

 0

Example Instruction Name EXAMPLE

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 EXAMPLE

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Format: EXAMPLE rd, rs,rt MIPS32

Purpose: to execute an EXAMPLE op

Description: GPR[rd] ← GPR[r]s exampleop GPR[rt]
This section describes the operation of the instruction in text, tables, and
illustrations. It includes information that would be difficult to encode in the
Operation section.

Restrictions:
This section lists any restrictions for the instruction. This can include values of the
instruction encoding fields such as register specifiers, operand values, operand
formats, address alignment, instruction scheduling hazards, and type of memory
access for addressed locations.

Operation:
/* This section describes the operation of an instruction in a */
/* high-level pseudo-language. It is precise in ways that the */
/* Description section is not, but is also missing information */
/* that is hard to express in pseudocode.*/

temp ← GPR[rs] exampleop GPR[rt]
GPR[rd]← sign_extend(temp31..0)

Exceptions:
A list of exceptions taken by the instruction

Programming Notes:
Information useful to programmers, but not necessary to describe the operation of
the instruction

Implementation Notes:
Like Programming Notes, except for processor implementors

Instruction Mnemonic
and Descriptive Name

Instruction encoding
constant and variable
field names and values

Architecture level at
which instruction was
defined/redefined and
assembler format(s) for
each definition

Short description

Symbolic description

Full description of
instruction operation

Restrictions on
instruction and
operands

High-level language
description of instruction
operation

Exceptions that
instruction can cause

Notes for programmers

Notes for implementors

2.1 Understanding the Instruction Fields

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 9

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

• The values of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 2-2).
Constant values in a field are shown in binary below the symbolic or hexadecimal value.

• All variable fields are listed with the lowercase names used in the instruction description (rs, rt and rd in Figure 2-2).

• Fields that contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 2-2). If
such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

Figure 2-2 Example of Instruction Fields

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
2-3.

Figure 2-3 Example of Instruction Descriptive Name and Mnemonic

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in the Format field. If the instruction definition was later extended, the architecture levels at which it was extended
and the assembler formats for the extended definition are shown in their order of extension (for an example, see
C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in previous
levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the extended
architecture.

Format: ADD rd, rs, rt MIPS32

Figure 2-4 Example of Instruction Format

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectural level at which
the instruction was first defined, for example “MIPS32” is shown at the right side of the page.

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the
ADD.fmt instruction lists both ADD.S and ADD.D.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

ADD

100000

6 5 5 5 5 6

Add Word ADD

10 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Purpose:

To add 32-bit integers. If an overflow occurs, then trap.

Figure 2-5 Example of Instruction Purpose

2.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Description: GPR[rd] ← GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs

• If the addition does not overflow, the 32-bit result is signed-extended and placed into GPR rd

Figure 2-6 Example of Instruction Description

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs” is the floating point operand register specified by the instruction field fs. “CP1 register fd”
is the coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control /Status
register.

2.1.6 Restrictions Field

The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictions fall into one
of the following six categories:

• Valid values for instruction fields (for example, see floating point ADD.fmt)

• ALIGNMENT requirements for memory addresses (for example, see LW)

• Valid values of operands (for example, see DADD)

• Valid operand formats (for example, see floating point ADD.fmt)

• Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards for
which some processors do not have hardware interlocks (for example, see MUL).

• Valid memory access types (for example, see LL/SC)

2.1 Understanding the Instruction Fields

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 11

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Restrictions:

If either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Figure 2-7 Example of Instruction Restrictions

2.1.7 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation
resembling Pascal. This formal description complements the Description section; it is not complete in itself because
many of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← (GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0)
if temp32 ≠ temp31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← sign_extend(temp31..0)
endif

Figure 2-8 Example of Instruction Operation

See Section 2.2, "Operation Section Notation and Functions" on page 12 for more information on the formal notation
used here.

2.1.8 Exceptions Field

The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that can
be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by
asynchronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the
implementation.

Exceptions:

Integer Overflow

Figure 2-9 Example of Instruction Exception

An instruction may cause implementation-dependent exceptions that are not present in the Exceptions section.

2.1.9 Programming Notes and Implementation Notes Fields

12 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not
necessary to describe the instruction and does not belong in the description sections.

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

Figure 2-10 Example of Instruction Programming Notes

2.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level language notation to describe the operation
performed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described below.

This section presents information about the following topics:

• “Instruction Execution Ordering” on page 12

• “Pseudocode Functions” on page 12

2.2.1 Instruction Execution Ordering

Each of the high-level language statements in the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and include
the following:

• “Coprocessor General Register Access Functions” on page 12

• “Memory Operation Functions” on page 14

• “Floating Point Functions” on page 17

• “Miscellaneous Functions” on page 20

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
general registers and the rest of the system. What a coprocessor does with a word or doubleword supplied to it and how
a coprocessor supplies a word or doubleword is defined by the coprocessor itself. This behavior is abstracted into the
functions described in this section.

2.2 Operation Section Notation and Functions

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 13

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with a word from memory during a load
word operation. The action is coprocessor-specific. The typical action would be to store the contents of memword in
coprocessor general register rt.

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */

endfunction COP_LW

Figure 2-11 COP_LW Pseudocode Function

COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory during
a load doubleword operation. The action is coprocessor-specific. The typical action would be to store the contents of
memdouble in coprocessor general register rt.

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */

endfunction COP_LD

Figure 2-12 COP_LD Pseudocode Function

COP_SW

The COP_SW function defines the action taken by coprocessor z to supply a word of data during a store word operation.
The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in
coprocessor general register rt.

dataword ← COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word value

/* Coprocessor-dependent action */

endfunction COP_SW

Figure 2-13 COP_SW Pseudocode Function

14 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store
doubleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the
low-order doubleword in coprocessor general register rt.

datadouble ← COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
datadouble: 64-bit doubleword value

/* Coprocessor-dependent action */

endfunction COP_SD

Figure 2-14 COP_SD Pseudocode Function

CoprocessorOperation

The CoprocessorOperation function performs the specified Coprocessor operation.

CoprocessorOperation (z, cop_fun)

/* z: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */

endfunction CoprocessorOperation

Figure 2-15 CoprocessorOperation Pseudocode Function

2.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-endian
ordering this is the least-significant byte.

In the Operation pseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in the
AccessLength field. The valid constant names and values are shown in Table 2-1. The bytes within the addressed unit of
memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly from
the AccessLength and the two or three low-order bits of the address.

AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cache coherence algorithm,
describing the mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the reference is to Instructions or Data (IorD), find the corresponding
physical address (pAddr) and the cache coherence algorithm (CCA) used to resolve the reference. If the virtual address
is in one of the unmapped address spaces, the physical address and CCA are determined directly by the virtual address.
If the virtual address is in one of the mapped address spaces then the TLB or fixed mapping MMU determines the

2.2 Operation Section Notation and Functions

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 15

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

physical address and access type; if the required translation is not present in the TLB or the desired access is not
permitted, the function fails and an exception is taken.

(pAddr, CCA) ← AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cache Coherence Algorithm, the method used to access caches*/
/* and memory and resolve the reference */

/* vAddr: virtual address */
/* IorD: Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

Figure 2-16 AddressTranslation Pseudocode Function

LoadMemory

The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cache Coherence Algorithm (CCA) and the access
(IorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The data is returned in a
fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address and the
AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory access type
of the reference is uncached, only the referenced bytes are read from memory and marked as valid within the memory
element. If the access type is cached but the data is not present in cache, an implementation-specific size and alignment
block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this block is the entire
memory element.

MemElem ← LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */
/* width is the same size as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */
/* respectively. */
/* CCA: Cache Coherence Algorithm, the method used to access caches */
/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */
/* pAddr: physical address */
/* vAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

Figure 2-17 LoadMemory Pseudocode Function

StoreMemory

The StoreMemory function stores a value to memory.

The specified data is stored into the physical location pAddr using the memory hierarchy (data caches and main memory)
as specified by the Cache Coherence Algorithm (CCA). The MemElem contains the data for an aligned, fixed-width
memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the bytes that are

16 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLength field indicate
which of the bytes within the MemElem data should be stored; only these bytes in memory will actually be changed.

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* CCA: Cache Coherence Algorithm, the method used to access */
/* caches and memory and resolve the reference. */
/* AccessLength: Length, in bytes, of access */
/* MemElem: Data in the width and alignment of a memory element. */
/* The width is the same size as the CPU general */
/* purpose register, either 4 or 8 bytes, */
/* aligned on a 4- or 8-byte boundary. For a */
/* partial-memory-element store, only the bytes that will be*/
/* stored must be valid.*/
/* pAddr: physical address */
/* vAddr: virtual address */

endfunction StoreMemory

Figure 2-18 StoreMemory Pseudocode Function

Prefetch

The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may increase
performance but must not change the meaning of the program or alter architecturally visible state.

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA: Cache Coherence Algorithm, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr: physical address */
/* vAddr: virtual address */
/* DATA: Indicates that access is for DATA */
/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Figure 2-19 Prefetch Pseudocode Function

Table 2-1 lists the data access lengths and their labels for loads and stores.

Table 2-1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning

DOUBLEWORD 7 8 bytes (64 bits)

SEPTIBYTE 6 7 bytes (56 bits)

SEXTIBYTE 5 6 bytes (48 bits)

QUINTIBYTE 4 5 bytes (40 bits)

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)

2.2 Operation Section Notation and Functions

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 17

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SyncOperation

The SyncOperation function orders loads and stores to synchronize shared memory.

This action makes the effects of the synchronizable loads and stores indicated by stype occur in the same order for all
processors.

SyncOperation(stype)

/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

Figure 2-20 SyncOperation Pseudocode Function

2.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are
interpreted to form a formatted value. If an FPR contains a value in some format, rather than unformatted contents from
a load (uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

18 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

value ← ValueFPR(fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1 and SDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

valueFPR ← UNPREDICTABLE32 || FPR[fpr]31..0

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)

if (fpr0 ≠ 0) then
valueFPR ← UNPREDICTABLE

else
valueFPR ← FPR[fpr+1]31..0 || FPR[fpr]31..0

endif
else

valueFPR ← FPR[fpr]
endif

L, PS, OB, QH:
if (FP32RegistersMode = 0) then

valueFPR ← UNPREDICTABLE
else

valueFPR ← FPR[fpr]
endif

DEFAULT:
valueFPR ← UNPREDICTABLE

endcase
endfunction ValueFPR

Figure 2-21 ValueFPR Pseudocode Function

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instructions.
Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a different
format.

2.2 Operation Section Notation and Functions

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 19

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

StoreFPR

StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

FPR[fpr] ← UNPREDICTABLE32 || value31..0

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)

if (fpr0 ≠ 0) then
UNPREDICTABLE

else
FPR[fpr] ← UNPREDICTABLE32 || value31..0
FPR[fpr+1] ← UNPREDICTABLE32 || value63..32

endif
else

FPR[fpr] ← value
endif

L, PS, OB, QH:
if (FP32RegistersMode = 0) then

UNPREDICTABLE
else

FPR[fpr] ← value
endif

endcase

endfunction StoreFPR

Figure 2-22 StoreFPR Pseudocode Function

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.

20 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

CheckFPException

CheckFPException()

/* A floating point exception is signaled if the E bit of the Cause field is a 1 */
/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if ((FCSR17 = 1) or
((FCSR16..12 and FCSR11..7) ≠ 0))) then

SignalException(FloatingPointException)
endif

endfunction CheckFPException

Figure 2-23 CheckFPException Pseudocode Function

FPConditionCode

The FPConditionCode function returns the value of a specific floating point condition code.

tf ←FPConditionCode(cc)

/* tf: The value of the specified condition code */

/* cc: The Condition code number in the range 0..7 */

if cc = 0 then
FPConditionCode ← FCSR23

else
FPConditionCode ← FCSR24+cc

endif

endfunction FPConditionCode

Figure 2-24 FPConditionCode Pseudocode Function

SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.

SetFPConditionCode(cc)
if cc = 0 then

FCSR ← FCSR31..24 || tf || FCSR22..0
else

FCSR ← FCSR31..25+cc || tf || FCSR23+cc..0
endif

endfunction SetFPConditionCode

Figure 2-25 SetFPConditionCode Pseudocode Function

2.2.2.4 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

SignalException

The SignalException function signals an exception condition.

2.2 Operation Section Notation and Functions

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 21

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a return
from this function call.

SignalException(Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

Figure 2-26 SignalException Pseudocode Function

SignalDebugBreakpointException

The SignalDebugBreakpointException function signals a condition that causes entry into Debug Mode from non-Debug
Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a return
from this function call.

SignalDebugBreakpointException()

endfunction SignalDebugBreakpointException

Figure 2-27 SignalDebugBreakpointException Pseudocode Function

SignalDebugModeBreakpointException

The SignalDebugModeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a return
from this function call.

SignalDebugModeBreakpointException()

endfunction SignalDebugModeBreakpointException

Figure 2-28 SignalDebugModeBreakpointException Pseudocode Function

NullifyCurrentInstruction

The NullifyCurrentInstruction function nullifies the current instruction.

The instruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
kills the instruction in the delay slot of the branch likely instruction.

NullifyCurrentInstruction()

endfunction NullifyCurrentInstruction

Figure 2-29 NullifyCurrentInstruction PseudoCode Function

22 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the PC-relative instructions in the MIPS16e ASE. The
function returns TRUE if the instruction at vAddr is executed in a jump delay slot. A jump delay slot always immediately
follows a JR, JAL, JALR, or JALX instruction.

JumpDelaySlot(vAddr)

/* vAddr:Virtual address */

endfunction JumpDelaySlot

Figure 2-30 JumpDelaySlot Pseudocode Function

NotWordValue

The NotWordValue function returns a boolean value that determines whether the 64-bit value contains a valid word
(32-bit) value. Such a value has bits 63..32 equal to bit 31.

result ← NotWordValue(value)

/* result: True if the value is not a correct sign-extended word value; */
/* False otherwise */

/* value: A 64-bit register value to be checked */

NotWordValue ← value63..32 ≠ (value31)32

endfunction NotWordValue

Figure 2-31 NotWordValue Pseudocode Function

PolyMult

The PolyMult function multiplies two binary polynomial coefficients.

PolyMult(x, y)
temp ← 0
for i in 0 .. 31

if xi = 1 then
temp ← temp xor (y(31-i)..0 || 0

i)
endif

endfor

PolyMult ← temp

endfunction PolyMult

Figure 2-32 PolyMult Pseudocode Function

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When reference is
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, a single field has both fixed and variable subfields, so the name contains
both upper- and lowercase characters.

2.4 FPU Instructions

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 23

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfields in an instruction format (such as fs, ft,
immediate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in
uppercase.

For the sake of clarity, an alias is sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an alias is always lowercase since it refers to a
variable subfield.

Bit encodings for mnemonics are given in Volume I, in the chapters describing the CPU, FPU, MDMX, and MIPS16e
instructions.

See Section 2.3, "Op and Function Subfield Notation" on page 22 for a description of the op and function subfields.

24 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 25

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 3

The MIPS16e™ Application-Specific Extension to the MIPS64®
Architecture

This chapter describes the purpose and key features of the MIPS16e™ Application-Specific Extension (ASE) to the
MIPS64® Architecture. The MIPS16e ASE is an enhancement to the previous MIPS16™ ASE which provides
additional instructions to improve the compaction of the code.

3.1 Base Architecture Requirements

The MIPS16e ASE requires the following base architecture support:

• The MIPS32 or MIPS64 Architecture: The MIPS16e ASE requires a compliant implementation of the MIPS32 or
MIPS64 Architecture.

3.2 Software Detection of the ASE

Software may determine if the MIPS16e ASE is implemented by checking the state of the CA bit in the Config1 CP0
register.

3.3 Compliance and Subsetting

There are no instruction subsets of the MIPS16e ASE to the MIPS64 Architecture — all MIPS16e instructions must be
implemented. Specifically, this means that the original MIPS16 ASE is not an allowable subset of the MIPS16e ASE.
For the MIPS16e ASE to the MIPS32 Architecture, the instructions which require a 64-bit processor are not
implemented and execution of such an instruction must cause a Reserved Instruction exception.

3.4 MIPS16e Overview

The MIPS16e ASE allows embedded designs to substantially reduce system cost by reducing overall memory
requirements. The MIPS16e ASE is compatible with any combination of the MIPS32 or MIPS64 Architectures, and
existing MIPS binaries can be run without modification on any embedded processor implementing the MIPS16e ASE.

The MIPS16e ASE must be implemented as part of a MIPS based host processor that includes an implementation of the
MIPS Privileged Resource Architecture, and the other components in a typical MIPS based system.

This volume describes only the MIPS16e ASE, and does not include information about any specific hardware
implementation such as processor-specific details, because these details may vary with implementation. For this
information, please refer to the specific processor’s user manual.

This chapter presents specific information about the following topics:

• “MIPS16e ASE Features” on page 26

• “MIPS16e Register Set” on page 26

26 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

• “MIPS16e ISA Modes” on page 27

• “JALX, JR, and JALR Operations in MIPS16e and MIPS32 Mode” on page 29

• “MIPS16e Instruction Summaries” on page 29

• “MIPS16e PC-Relative Instructions” on page 33

• “MIPS16e Extensible Instructions” on page 34

• “MIPS16e Implementation-Definable Macro Instructions” on page 35

• “MIPS16e Jump and Branch Instructions” on page 36

• “MIPS16e Instruction Formats” on page 36

• “Instruction Bit Encoding” on page 39

• “MIPS16e Instruction Stream Organization and Endianness” on page 43

• “MIPS16e Instruction Fetch Restrictions” on page 43

3.5 MIPS16e ASE Features

The MIPS16e ASE includes the following features:

• allows MIPS16e instructions to be intermixed with existing MIPS instruction binaries

• is compatible with the MIPS32 and MIPS64 instruction sets

• allows switching between MIPS16e and 32-bit MIPS Mode

• supports 8, 16, 32, and 64-bit data types (64-bit only in conjunction with MIPS64)

• defines eight general-purpose registers, as well as a number of special-purpose registers

• defines special instructions to increase code density (Extend, PC-relative instructions)

The MIPS16e ASE contains some instructions that are available on MIPS64 host processors only. These instructions
must cause a Reserved Instruction exception on 32-bit processors, or on 64-bit processors on which 64-bit operations
have not been enabled.

3.6 MIPS16e Register Set

The MIPS16e register set is listed in Table 3-1 and Table 3-2. This register set is a true subset of the register set available
in 32-bit mode; the MIPS16e ASE can directly access 8 of the 32 registers available in 32-bit mode.

In addition to the eight general-purpose registers, 0-7, listed in Table 3-1, specific instructions in the MIPS16e ASE
reference the stack pointer register (sp), the return address register (ra), the condition code register (t8), and the program
counter (PC). Of these, Table 3-1 lists sp, ra, and t8, and Table 3-2 lists the MIPS16e special-purpose registers, including
PC.

The MIPS16e ASE also contains two move instructions that provide access to all 32 general-purpose registers.

3.7 MIPS16e ISA Modes

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 27

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

3.7 MIPS16e ISA Modes

This section describes the following:

• the ISA modes available in the architecture, page 28

• the purpose of the ISA Mode field, page 28

Table 3-1 MIPS16e General-Purpose Registers

MIPS16e
Register

Encoding1

1. “0-7” correspond to the register’s MIPS16e binary encoding and show how that encoding relates to the
MIPS registers. “0-7” never refer to the registers, except within the binary MIPS16e instructions. From
the assembler, only the MIPS names ($16, $17, $2, etc.) or the symbolic names (s0, s1, v0, etc.) refer to
the registers. For example, to access register number 17 in the register file, the programmer references
$17 or s1, even though the MIPS16e binary encoding for this register is 001.

32-Bit MIPS
Register

Encoding2

2. General registers not shown in the above table are not accessible through the MIPS16e instruction set, ex-
cept by using the Move instructions. The MIPS16e Move instructions can access all 32 general-purpose
registers.

Symbolic
Name
(From

ArchDefs.h)3

3. The MIPS16e condition code register is referred to as T, t8, or $24 throughout this document, depending
on the context. All three names refer to the same physical register.

Description

0 16 s0 General-purpose register

1 17 s1 General-purpose register

2 2 v0 General-purpose register

3 3 v1 General-purpose register

4 4 a0 General-purpose register

5 5 a1 General-purpose register

6 6 a2 General-purpose register

7 7 a3 General-purpose register

N/A 24 t8

MIPS16e Condition Code register;
implicitly referenced by the BTEQZ,
BTNEZ, CMP, CMPI, SLT, SLTU,
SLTI, and SLTIU instructions

N/A 29 sp Stack pointer register

N/A 31 ra Return address register

Table 3-2 MIPS16e Special-Purpose Registers

Symbolic Name Purpose

PC Program counter. The PC-relative Add and Load
instructions can access this register as an operand.

HI Contains high-order word of multiply or divide result.

LO Contains low-order word of multiply or divide result.

28 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

• how to switch between 32-bit MIPS and MIPS16e modes, page 28

• the role of the jump instructions when switching modes, page 28

3.7.1 Modes Available in the MIPS16e Architecture

There are two ISA modes defined in the MIPS16e Architecture, as follows:

• MIPS 32-bit mode (32-bit instructions)

• MIPS16e mode (16-bit instructions)

3.7.2 Defining the ISA Mode Field

The ISA Mode bit controls the type of code that is executed, as follows:

In MIPS 32-bit mode and MIPS16e mode, the JALX, JR, JALR, JALRC, and JRC instructions can change the ISA Mode
bit, as described in Section 3.7.4, "Using MIPS16e Jump Instructions to Switch Modes".

3.7.3 Switching Between Modes When an Exception Occurs

When an exception occurs (including a Reset exception), the ISA Mode bit is cleared so that exceptions are handled by
32-bit code.

The ISA Mode in which the processor was running at the time that the exception occurred is visible to software as bit 0
of the Coprocessor 0 register in which the restart address is stored (EPC, ErrorEPC, or DEPC). See the description of
these instructions in Volume III for a complete description of this process.

After the processor switches to 32-bit mode following a Reset exception, the processor starts execution at the 32-bit
mode Reset exception vector.

3.7.4 Using MIPS16e Jump Instructions to Switch Modes

The MIPS16e application-specific extension supports procedure calls and returns from both MIPS16e and 32-bit MIPS
code to both MIPS16e and 32-bit MIPS code. The following instructions are used:

• The JAL instruction supports calls to the same ISA.

• The JALX instruction supports calls that change the ISA.

• The JALR and JALRC instructions support calls to either ISA.

• The JR and JRC instructions support returns to either ISA.

Table 3-3 ISA Mode Bit Encodings

Encoding Mode

0b0 MIPS 32-bit mode. In this mode, the processor executes
32-bit MIPS instructions.

0b1 MIPS16e mode. In this mode, the processor executes
MIPS16e instructions.

3.8 JALX, JR, and JALR Operations in MIPS16e and MIPS32 Mode

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 29

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

The JAL, JALR, JALRC, and JALX instructions save the ISA Mode bit in bit 0 of the general register containing the
return address. The contents of this general register may be used by a future JR, JRC, JALR, or JALRC instruction to
return and restore the ISA Mode.

The JALX instruction in both modes switches to the other ISA (it changes 0b0 → 0b1 and 0b1 → 0b0).

The JR and JALR instructions in both modes load the ISA Mode bit from bit 0 of the general register holding the target
address. Bit 0 of the general register is not part of the target address; bit 0 of PC is loaded with a 0 so that no address
exceptions can occur.

The JRC and JALRC instructions in MIPS16e mode load the ISA Mode bit from bit 0 of the general register holding the
target address. Bit 0 of the general register is not part of the target address; bit 0 of PC is loaded with a 0 so that no address
exceptions can occur.

3.8 JALX, JR, and JALR Operations in MIPS16e and MIPS32 Mode

The behavior of three of the 32-bit MIPS instructions—JALX, JR, JALR—differs between those processors that
implement MIPS16e and those processors that do not.

In processors that implement the MIPS16e ASE, the three instructions behave as follows:

• The JALX instruction executes a JAL and switches to the other mode.

• JR and JALR instructions load the ISA Mode bit from bit 0 of the source register. Bit 0 of PC is loaded with a 0, and
no Address exception can occur when bit 0 of the source register is a 1 (MIPS16e mode).

In CPUs that do not implement the MIPS16e ASE, the three instructions behave as follows:

• JALX instructions cause a Reserved Instruction exception.

• JR or JALR instructions cause an Address exception on the target instruction fetch when bit 0 of the source register is
a 1.

3.9 MIPS16e Instruction Summaries

This section describes the various instruction categories and then summarizes the MIPS16e instructions included in each
category. Extensible instructions are also identified.

There are six instruction categories:

• Loads and Stores—These instructions move data between memory and the GPRs.

• Save and Restore—These instructions create and tear down stack frames.

• Computational—These instructions perform arithmetic, logical, and shift operations on values in registers.

• Jump and Branch—These instructions change the control flow of a program.

• Special—This category includes the Break and Extend instructions. Break transfers control to an exception handler,
and Extend enlarges the immediate field of the next instruction.

• Implemention-Definable Macro Instructions—This category includes the capability of defining macros that are
replaced at execution time by a set of 32-bit MIPS instructions, with appropriate parameter substitution.

30 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

Tables 3-4 through 3-12 list the MIPS16e instruction set.

Table 3-4 MIPS16e Load and Store Instructions

Table 3-5 MIPS16e Save and Restore Instructions

Table 3-6 MIPS16e ALU Immediate Instructions

Table 3-7 MIPS16e Arithmetic One, Two or Three Operand Register Instructions

Mnemonic Instruction
Extensible

Instruction?
Implemented Only on
MIPS64 Processors?

LB Load Byte Yes No

LBU Load Byte Unsigned Yes No

LD Load Doubleword Yes Yes

LH Load Halfword Yes No

LHU Load Halfword Unsigned Yes No

LW Load Word Yes No

LWU Load Word Unsigned Yes Yes

SB Store Byte Yes No

SD Store Doubleword Yes Yes

SH Store Halfword Yes No

SW Store Word Yes No

Mnemonic Instruction
Extensible

Instruction?
Implemented Only on
MIPS64 Processors?

RESTORE Restore Registers and Deallocate Stack Frame Yes No

SAVE Save Registers and SetUp Stack Frame Yes No

Mnemonic Instruction
Extensible

Instruction?
Implemented Only on
MIPS64 Processors?

ADDIU Add Immediate Unsigned Yes No

CMPI Compare Immediate Yes No

DADDIU Doubleword Add Immediate Unsigned Yes Yes

LI Load Immediate Yes No

SLTI Set on Less Than Immediate Yes No

SLTIU Set on Less Than Immediate Unsigned Yes No

Mnemonic Instruction
Extensible

Instruction?
Implemented Only on
MIPS64 Processors?

ADD Add Unsigned No No

AND AND No No

CMP Compare No No

DADDU Doubleword Add Unsigned No Yes

DSUBU Doubleword Subtract Unsigned No Yes

MOVE Move No No

NEG Negate No No

NOT Not No No

OR OR No No

SEB Sign-Extend Byte No No

3.9 MIPS16e Instruction Summaries

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 31

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SEH Sign-Extend Halfword No No

SEW Sign-Extend Word No Yes

SLT Set on Less Than No No

SLTU Set on Less Than Unsigned No No

SUBU Subtract Unsigned No No

XOR Exclusive OR No No

ZEB Zero-extend Byte No No

ZEH Zero-Extend Halfword No No

ZEW Zero-Extend Word No Yes

Mnemonic Instruction
Extensible

Instruction?
Implemented Only on
MIPS64 Processors?

32 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

Table 3-8 MIPS16e Special Instructions

Table 3-9 MIPS16e Multiply and Divide Instructions

Table 3-10 MIPS16e Jump and Branch Instructions

Table 3-11 MIPS16e Shift Instructions

Mnemonic Instruction
Extensible

Instruction?
Implemented Only on
MIPS64 Processors?

BREAK Breakpoint No No

EXTEND Extend No No

Mnemonic Instruction
Extensible

Instruction?
Implemented Only on
MIPS64 Processors?

DDIV Doubleword Divide No Yes

DDIVU Doubleword Divide Unsigned No Yes

DIV Divide No No

DIVU Divide Unsigned No No

DMULT Doubleword Multiply No Yes

DMULTU Doubleword Multiply Unsigned No Yes

MFHI Move From HI No No

MFLO Move From LO No No

MULT Multiply No No

MULTU Multiply Unsigned No No

Mnemonic Instruction
Extensible

Instruction?
Implemented Only on
MIPS64 Processors?

B Branch Unconditional Yes No

BEQZ Branch on Equal to Zero Yes No

BNEZ Branch on Not Equal to Zero Yes No

BTEQZ Branch on T Equal to Zero Yes No

BTNEZ Branch on T Not Equal to Zero Yes No

JAL1

1. The JAL and JALX instructions are not extensible because they are inherently 32-bit instructions.

Jump and Link No No

JALR Jump and Link Register No No

JALRC Jump and Link Register Compact No No

JALX1 Jump and Link Exchange No No

JR Jump Register No No

JRC Jump Register Compact No No

Mnemonic Instruction
Extensible

Instruction?
Implemented Only on
MIPS64 Processors?

DSLL Doubleword Shift Left Logical Yes Yes

DSLLV Doubleword Shift Left Logical Variable No Yes

DSRA Doubleword Shift Right Arithmetic Yes Yes

DSRAV Doubleword Shift Right Arithmetic Variable No Yes

DSRL Doubleword Shift Right Logical Yes Yes

DSRLV Doubleword Shift Right Logical Variable No Yes

3.10 MIPS16e PC-Relative Instructions

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 33

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Table 3-12 Implementation-Definable Macro Instructions

3.10 MIPS16e PC-Relative Instructions

The MIPS16e ASE provides PC-relative addressing for four instructions, in both extended and non-extended versions.
The four instructions are listed in Table 3-13.

Table 3-13 PC-Relative MIPS16e Instructions

These instructions use the PC value of either the PC-relative instruction itself or the PC value for the preceding
instruction as the base for address calculation.

Table 3-14 summarizes the address calculation base used for the various instruction combinations.

Table 3-14 PC-Relative Base Used for Address Calculation

The JRC and JALRC instructions do not have delay slots and do not affect the PC-relative base address calculated for
an instruction immediately following the JRC or JALRC.

In the descriptive summaries of PC-relative instructions, located in Tables 3-13 and 3-14, the PC value used as the basis
for calculating the address is referred to as the BasePC value. The BasePC equals the Exception Program Counter (EPC)
value associated with the PC-relative instruction.

SRA Shift Right Arithmetic Yes No

SRAV Shift Right Arithmetic Variable No No

SLL Shift Left Logical Yes No

SLLV Shift Left Logical Variable No No

SRL Shift Right Logical Yes No

SRLV Shift Right Logical Variable No No

Mnemonic Instruction
Extensible

Instruction?
Implemented Only on
MIPS64 Processors?

ASMACRO Implementation-Definable Macro Instructions Yes1

1. The Implementation-Definable Macro Instructions are always extended instructions. There are no 16-bit macro instruction

No

Instruction Use

Load Word LW rx, offset(pc)

Load Doubleword LD ry, offset(pc)

Add Immediate Unsigned ADDIU rx, pc, immediate

Doubleword Add Immediate Unsigned DADDIU ry, pc, immediate

Instruction BasePC Value

Non-extended PC-relative instruction not in Jump
Delay Slot Address of instruction

Extended PC-relative instruction Address of Extend instruction

Non-extended PC-relative instruction in JR or JALR
jump delay slot Address of JR or JALR instruction

Non-extended PC-relative instruction in JAL or
JALX jump delay slot

Address of first JAL or JALX
halfword

Mnemonic Instruction
Extensible

Instruction?
Implemented Only on
MIPS64 Processors?

34 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

3.11 MIPS16e Extensible Instructions

This section explains the purpose of an Extend instruction, how to use it, and which MIPS16e instructions are extensible.

The Extend instruction allows you to enlarge the immediate field of any MIPS16e instruction whose immediate field is
smaller than the immediate field in the equivalent 32-bit MIPS instruction. The Extend instruction is a prefix which
modifies the behavior of the instruction which follows it, and must always immediately precede the instruction whose
immediate field you want to extend. Every extended instruction uses 4 bytes in program memory instead of 2 bytes (2
bytes for Extend and 2 bytes for the instruction being extended), and it can cross a word boundary. The PC value of an
extended instruction is the address of the halfword containing the Extend.

For example, the following MIPS16e instruction contains a five-bit immediate.

LW ry, offset(rx)

The immediate expands to 16 bits (0b000000000 || offset || 0b00) before execution in the pipeline. This allows 32
different offset values of 0, 4, 8, and up through 124, in increments of 4. Once extended, this instruction can hold any of
the 65,536 values in the range -32768 through 32767 that are also available with the 32-bit MIPS version of the LW
instruction.

Shift instructions are extended to unsigned immediates of 5 bits. All other immediate instructions expand to either signed
or unsigned 16-bit immediates. There are only two exceptions which can be extended to a 15-bit signed immediate:

ADDIU ry, rx, immediate
DADDIU ry, rx, immediate

Unlike most other extended instructions, an extended RESTORE or SAVE instruction provides both a larger frame size
adjustment, and the ability to save and restore more registers than the non-extended version.

Once both halves of an extended instruction have been fetched and the instruction starts flowing down the pipeline, the
instruction is treated as a single entity, not as independent instructions. This implies that an exception or interrupt never
reports an EPC value between the EXTEND and the instruction being extended, and that EJTAG single step treats an
instruction step as the execution of the entire extended instruction, not the components.

There is only one restriction on the location of extensible instructions: They may not be placed in jump delay slots. Doing
so causes UNPREDICTABLE results.

Table 3-15 lists the MIPS16e extensible instructions, the size of their immediate, and how much each immediate can be
extended when preceded with an Extend instruction. Executing an instruction which is not extensible (those which are
maked No in the “Extensible Instruction?” column of Table 3-4 through Table 3-12, including the EXTEND instruction
itself) must cause a Reserved Instruction Exception.

Table 3-15 MIPS16e Extensible Instructions

 Mnemonic MIPS16e Instruction MIPS16e Immediate Extended Immediate

ADDIU Add Immediate Unsigned
4 (ADDIU ry, rx, imm)

8

15 (ADDIU ry, rx, imm)

16

B Branch Unconditional 11 16

BEQZ Branch on Equal to Zero 8 16

BNEZ Branch on Not Equal to Zero 8 16

BTEQZ Branch on T Equal to Zero 8 16

BTNEZ Branch on T Not Equal to Zero 8 16

CMPI Compare Immediate 8 16

3.12 MIPS16e Implementation-Definable Macro Instructions

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 35

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

3.12 MIPS16e Implementation-Definable Macro Instructions

Previous revisions of the MIPS16e ASE assumed that most MIPS16e instructions mapped to a single 32-bit MIPS
instruction. However, there are several MIPS16e instructions for which there is no corresponding 32-bit MIPS
instruction equivalent. The addition of the SAVE and RESTORE instructions introduced the possibility that a single
MIPS16e instruction expand to a fixed sequence of multiple 32-bit instructions. The obvious extension to this capability
is the ability to define a Macro capability in which a single extended MIPS16e instruction can be expanded into a
sequence of 32-bit MIPS instructions, with parameter substitution done between fields of the macro instruction and fields
of the expanded instructions. This is the concept behind the addition of Implementation-Definable Macro Instructions
to the MIPS16e ASE.

The term “Implementation-Definable” refers to the fact that the macro definitions are created when the processor is
implemented, rather than via a programmable mechanism that is available to the user of the processor. The macro
definitions, expansions, and parameter substitutions are defined when the processor is implemented, and is therefore
implementation-dependent. The programmer visible representation of this macro capability is provided by the
ASMACRO (for Application Specific Macro) instruction, as defined in the next chapter.

DADDIU Doubleword Add Immediate Unsigned
4 (DADDIU ry, rx, imm)

5 (or 8)

15 (DADDIU ry, rx, imm)

16

DSLL Doubleword Shift Left Logical 3 6

DSRA Doubleword Shift Right Arithmetic 3 6

DSRL Doubleword Shift Right Logical 3 6

LB Load Byte 5 16

LBU Load Byte Unsigned 5 16

LD Load Doubleword 5 16

LH Load Halfword 5 16

LHU Load Halfword Unsigned 5 16

LI Load Immediate 8 16

LW Load Word 5 (or 8) 16

LWU Load Word Unsigned 5 16

RESTORE Restore Registers and Deallocate Stack
Frame 4 8

SAVE Save Registers and Set Up Stack Frame 4 8

SB Store Byte 5 16

SD Store Doubleword 5 (or 8) 16

SH Store Halfword 5 16

SLL Shift Left Logical 3 5

SLTI Set on Less Than Immediate 8 16

SLTIU Set on Less Than Immediate Unsigned 8 16

SRA Shift Right Arithmetic 3 5

SRL Shift Right Logical 3 5

SW Store Word 5 (or 8) 16

 Mnemonic MIPS16e Instruction MIPS16e Immediate Extended Immediate

36 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

3.13 MIPS16e Jump and Branch Instructions

Jump and Branch instructions change the control flow of a program.

The JAL, JALR, JALX, and JR instructions occur with a one-instruction delay. That is, the instruction immediately
following the jump is always executed, whether or not the jump is taken.

Branch instructions and the JALRC and JRC jump instructions do not have a delay slot. If a branch or jump is taken, the
instruction immediately following the branch or jump is never executed. If the branch or jump is not taken, the instruction
following the branch or jump is always executed.

Branch, jump and extended instructions may not be placed in jump delay slots. Doing so causes UNPREDICTABLE
results.

3.14 MIPS16e Instruction Formats

This section defines the format1 for each MIPS16e instruction type and includes formats for both normal and extended
instructions.

Every MIPS16e instruction consists of 16 bits aligned on a halfword boundary. All variable subfields in an instruction
format (such as rx, ry, rz, and immediate) are shown in lowercase letters.

The two instruction subfields op and funct have constant values for specific instructions. These values are given in their
uppercase mnemonic names. For example, op is LB in the Load Byte instruction; op is RRR and function is ADDU
in the Add Unsigned instruction.

Definitions for the fields that appear in the instruction formats are summarized in Table 3-16.

Table 3-16 MIPS16e Instruction Fields

1 As used here, the term format means the layout of the MIPS16e instruction word.

Field Definition

funct or f Function field

immediate
or imm

4-, 5-, 8-, or 11-bit immediate, branch displacement, or
address displacement

op 5-bit major operation code

rx 3-bit source or destination register specifier

ry 3-bit source or destination register specifier

rz 3-bit source or destination register specifier

sa 3- or 5-bit shift amount

3.14 MIPS16e Instruction Formats

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 37

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

3.14.1 I-type instruction format

3.14.2 RI-type instruction format

3.14.3 RR-type instruction format

3.14.4 RRI-type instruction format

3.14.5 RRR-type instruction format

3.14.6 RRI-A type instruction format

3.14.7 Shift instruction format

3.14.8 I8-type instruction format

3.14.9 I8_MOVR32 instruction format (used only by the MOVR32 instruction)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op rx immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RR rx ry1

1. When the funct field is either CNVT or J(AL)R(C), the ry field encodes a sub-function to
be performed rather than a register number

funct

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op rx ry immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RRR rx ry rz f

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RRI-A rx ry f immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SHIFT rx ry sa1

1. The three-bit sa field can encode a shift amount of 0 through 7. 0 bit shifts (NOPs) are
not possible; a 0 value translates to a shift amount of 8.

f

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I8 funct immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I8 funct ry r32[4:0]

38 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

3.14.10 I8_MOV32R instruction format (used only by MOV32R instruction)

3.14.11 I8_SVRS instruction format (used only by the SAVE and RESTORE instructions)

3.14.12 I64-type instruction format

3.14.13 RI64-type instruction format

3.14.14 JAL and JALX instruction format

3.14.15 EXT-I instruction format

3.14.16 ASMACRO instruction format

3.14.17 EXT-RI instruction format

3.14.18 EXT-RRI instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I8 funct r32[2:0,4:3]1

1. The r32 field uses special bit encoding. For example, the encoding for $7
(00111) is 11100 in the r32 field.

rz

15 14 13 12 11 10 9 8 7 6 5 4 3 0

I8 SVRS s ra s0 s1 framesize

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I64 funct immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I64 funct ry immediate

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JAL X1

1. If x=0, instruction is JAL. If x=1, instruction is JALX.

immediate 20:16 immediate 25:21 immediate 15:0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND immediate 10:5 immediate 15:11 op 0 0 0 0 0 0 immediate 4:0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND select p4 p3 RRR p2 p1 p0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND immediate 10:5 immediate 15:11 op rx 0 0 0 immediate 4:0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND immediate 10:5 immediate 15:11 op rx ry immediate 4:0

3.15 Instruction Bit Encoding

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 39

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

3.14.19 EXT-RRI-A instruction format

3.14.20 EXT-SHIFT instruction format

3.14.21 EXT-I8 instruction format

3.14.22 EXT-I8_SVRS instruction format (used only by the SAVE and RESTORE instructions)

3.14.23 EXT-I64 instruction format

3.14.24 EXT-RI64 instruction format

3.14.25 EXT-SHIFT64 instruction format

3.15 Instruction Bit Encoding

Table 3-18 through Table 3-26 describe the encoding used for the MIPS16e ASE. Table 3-17 describes the meaning of
the symbols used in the tables.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND immediate 10:4 imm 14:11 RRI-A rx ry f imm 3:0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND sa 4:0 s51

1. s5 is equivalent to sa5, the most significant bit of the 6-bit shift amount (sa) field. For extended DSLL shifts, this bit may be either 0 or 1. For all 32-bit
extended shifts, s5 must be 0. None of the extended shift instructions perform the 0-to-8 mapping, so 0 bit shifts are possible using the extended format.

0 0 0 0 0 SHIFT rx ry 0 0 0 f

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND immediate 10:5 immediate 15:11 I8 funct 0 0 0 immediate 4:0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND xsregs framesize 7:4 0 aregs I8 SVRS s ra s0 s1 framesize 3:0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND immediate 10:5 immediate 15:11 I64 funct 0 0 0 immediate 4:0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND immediate 10:5 immediate 15:11 I64 funct ry immediate 4:0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND sa 4:0 s51

1. s5 is equivalent to sa5, the most-significant bit of the 6-bit shift amount (sa) field. None of the extended shift instructions perform the 0-to-8 mapping, so
0 bit shifts are possible using the extended format.

0 0 0 0 0 RR 0 0 0 ry function

Table 3-17 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

∗ Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

40 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

δ
(Also italic field name.) Operation or field codes marked with this symbol denotes a field class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

β Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPS ISA level. Executing such an instruction must cause a Reserved Instruction Exception.

⊥

Operation or field codes marked with this symbol represent instructions which are not legal if the
processor is configured to be backward compatible with MIPS32 processors. If the processor is
executing in Kernel Mode, Debug Mode, or 64-bit instructions are enabled, execution proceeds
normally. In other cases, executing such an instruction must cause a Reserved Instruction
Exception (non-coprocessor encodings or coprocessor instruction encodings for a coprocessor to
which access is allowed) or a Coprocessor Unusable Exception (coprocessor instruction
encodings for a coprocessor to which access is not allowed).

θ

Operation or field codes marked with this symbol are available to licensed MIPS partners. To
avoid multiple conflicting instruction definitions, MIPS Technologies will assist the partner in
selecting appropriate encodings if requested by the partner. The partner is not required to consult
with MIPS Technologies when one of these encodings is used. If no instruction is encoded with
this value, executing such an instruction must cause a Reserved Instruction Exception (SPECIAL2
encodings or coprocessor instruction encodings for a coprocessor to which access is allowed) or
a Coprocessor Unusable Exception (coprocessor instruction encodings for a coprocessor to which
access is not allowed).

σ
Field codes marked with this symbol represent an EJTAG support instruction and implementation
of this encoding is optional for each implementation. If the encoding is not implemented,
executing such an instruction must cause a Reserved Instruction Exception. If the encoding is
implemented, it must match the instruction encoding as shown in the table.

ε
Operation or field codes marked with this symbol are reserved for MIPS Application Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

φ Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS64 ISA. Software should avoid using these operation or field codes.

œ
Operation or field codes marked with this symbol are not extensible (see Section 3.11, "MIPS16e
Extensible Instructions" on page 34). Executing such an instruction with an EXTEND prefix must
cause a Reserved Instruction Exception.

Table 3-18 MIPS16e Encoding of the Opcode Field

opcode bits 13..11

0 1 2 3 4 5 6 7

bits 15..14 000 001 010 011 100 101 110 111

0 00 ADDIUSP1

1. The ADDIUSP opcode is used by the ADDIU rx, sp, immediate instruction

ADDIUPC2

2. The ADDIUPC opcode is used by the ADDIU rx, pc, immediate instruction

B JAL(X) δ BEQZ BNEZ SHIFT δ LD ⊥
1 01 RRI-A δ ADDIU83

3. The ADDIU8 opcode is used by the ADDIU rx, immediate instruction

SLTI SLTIU I8 δ LI CMPI SD ⊥
2 10 LB LH LWSP4

4. The LWSP opcode is used by the LW rx, offset(sp) instruction

LW LBU LHU LWPC5

5. The LWPC opcode is used by the LW rx, offset(pc) instruction

LWU ⊥
3 11 SB SH SWSP6

6. The SWSP opcode is used by the SW rx, offset(sp) instruction

SW RRR δ RR δ EXTEND δ∉ I64 δ⊥

Table 3-17 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

3.15 Instruction Bit Encoding

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 41

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Table 3-19 MIPS16e JAL(X) Encoding of the x Field

x bit 26

0 1

JAL ∉ JALX ∉

Table 3-20 MIPS16e SHIFT Encoding of the f Field

f bits 1..0

0 1 2 3

00 01 10 11

SLL DSLL ⊥ SRL SRA

Table 3-21 MIPS16e RRI-A Encoding of the f Field

f bit 4

0 1

ADDIU1

1. The ADDIU function is used by the AD-
DIU ry, rx, immediate instruction

DADDIU2 ⊥

2. The DADDIU function is used by the
DADDIU ry, rx, immediate instruc-
tion

Table 3-22 MIPS16e I8 Encoding of the funct Field

funct bits 10..8

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

BTEQZ BTNEZ SWRASP1

1. The SWRASP function is used by the SW ra, offset(sp) instruction

ADJSP2

2. The ADJSP function is used by the ADDIU sp, immediate instruction

SVRS δ MOV32R3 ∉

3. The MOV32R function is used by the MOVE r32, rz instruction

* MOVR324 ∉

4. The MOVR32 function is used by the MOVE ry, r32 instruction

Table 3-23 MIPS16e RRR Encoding of the f Field

f bits 1..0

0 1 2 3

00 01 10 11

DADDU ⊥∉ ADDU ∉ DSUBU ⊥∉ SUBU ∉

42 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

Table 3-24 MIPS16e RR Encoding of the Funct Field

funct bits 2..0

0 1 2 3 4 5 6 7

bits 4..3 000 001 010 011 100 101 110 111

0 00 J(AL)R(C) δ SDBBP ∉ SLT ∉ SLTU ∉ SLLV ∉ BREAK ∉ SRLV ∉ SRAV ∉
1 01 DSRL ⊥ * CMP ∉ NEG ∉ AND ∉ OR ∉ XOR ∉ NOT ∉
2 10 MFHI ∉ CNVT δ MFLO ∉ DSRA ⊥ DSLLV ⊥∉ * DSRLV ⊥∉ DSRAV ⊥∉
3 11 MULT ∉ MULTU ∉ DIV ∉ DIVU ∉ DMULT ⊥∉ DMULTU ⊥∉ DDIV ⊥∉ DDIVU ⊥∉

Table 3-25 MIPS16e I64 Encoding of the funct Field

funct bits 10..8

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

LDSP1 ⊥

1. The LDSP function is used by the LD ry, offset(sp) instruction

SDSP2 ⊥

2. The SDSP function is used by the SD ry, offset(sp) instruction

SDRASP3 ⊥

3. The SDRASP function is used by the SD ra, offset(sp) instruction

DADJSP4 ⊥

4. The DADJSP function is used by the DADDIU sp, immediate instruction

LDPC5 ⊥

5. The LDPC function is used by the LD ry, offset(pc) instruction

DADDIU56

⊥

6. The DADDIU5 function is used by the DADDIU ry, immediate instruction

DADDIUPC7

⊥

7. The DADDIUPC function is used by the DADDIU ry, pc, immediate instruction

DADDIUSP8

⊥

8. The DADDIUSP function is used by the DADDIU ry, sp, immediate instruction

Table 3-26 MIPS16e I8 Encoding of the s Field when funct=SVRS

s bit 7

0 1

RESTORE SAVE

Table 3-27 MIPS16e RR Encoding of the ry Field when funct=J(AL)R(C)

ry bits 7..5

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

JR rx ∉ JR ra ∉ JALR ∉ JRC rx ∉ JRC ra ∉ JALRC ∉

Table 3-28 MIPS16e RR Encoding of the ry Field when funct=CNVT

ry bits 7..5

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

ZEB ∉ ZEH ∉ ZEW ⊥∉ * SEB ∉ SEH ∉ SEW ⊥∉ *

3.16 MIPS16e Instruction Stream Organization and Endianness

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 43

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

3.16 MIPS16e Instruction Stream Organization and Endianness

The instruction halfword is placed within the 32-bit (or 64-bit) memory element according to system endianness.

• On a 32-bit processor in big-endian mode, the first instruction is read from bits 31..16 and the second instruction is
read from bits 15..0

• On a 32-bit processor in little-endian mode, the first instruction is read from bits 15..0 and the second instruction is
read from bits 31..16

The above rule also applies to all extended instructions, since they consist of two 16-bit halfwords. Similarly, JAL and
JALX instructions should be viewed as consisting of two 16-bit halfwords, which means this rule also applies to them.

For a 16-bit-instruction sequence, instructions are placed in memory so that an LH instruction with the PC as an
argument fetches the instruction independent of system endianness.

3.17 MIPS16e Instruction Fetch Restrictions

When the processor is running in MIPS16e mode and fetch address is in uncacheable memory, certain restrictions apply
to the width of each instruction fetch. Under these circumstances, the processor never fetches more than an aligned word
during each instruction fetch. It is UNPREDICTABLE whether the processor fetches a single aligned word, or two
aligned halfwords during each instruction fetch.

44 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 45

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 4

The MIPS16e™ ASE Instruction Set

4.1 MIPS16e Instruction Descriptions

This chapter provides an alphabetical listing of the instructions listed in Table 3-4 through Table 3-12.

4.1.1 MIPS16e-Specific Pseudocode Functions

This section defines the pseudocode functions that are specific to the MIPS16e ASE. These functions are used in the
Operation section of each MIPS16e instruction description.

4.1.1.1 Xlat

The Xlat function translates the MIPS16e register field index to the correct 32-bit MIPS physical register index. It is used
to assure that a value of 0b000 in a MIPS16e register field maps to GPR 16, and a value of 0b001 maps to GPR 17. All
other values (0b010 through 0b111) map directly.

PhyReg ← Xlat(i)

/* PhyReg: Physical register index, in the range 0..7 */

/* i: Opcode register field index */

if (i < 2) then
Xlat ← i + 16

else
Xlat ← i

endif

endfunction Xlat

Figure 4-1 Xlat Pseudocode Function

46 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

ADDIU (2-Operand)

Format: ADDIU rx, immediate MIPS16e

Purpose:

To add a constant to a 32-bit integer.

Description: GPR[rx] ← GPR[rx] + immediate

The 8-bit immediate is sign-extended and then added to the contents of GPR rx to form a 32-bit result. The result is
sign-extended and placed in GPR rx.

No integer overflow exception occurs under any circumstances.

Restrictions:

If GPR rx does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if (NotWordValue(GPR[Xlat(rx)])) then
UNPREDICTABLE

endif
temp ← GPR[Xlat(rx)] + sign_extend(immediate)
GPR[Xlat(rx)] ← sign_extend(temp31..0)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

15 11 10 8 7 0

ADDIU8

01001
rx immediate

5 3 8

Add Immediate Unsigned Word (2-Operand) ADDIU

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 47

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

ADDIU (2-Operand, Extended)

Format: ADDIU rx, immediate MIPS16e

Purpose:

To add a constant to a 32-bit integer.

Description: GPR[rx] ← GPR[rx] + immediate

The 16-bit immediate is sign-extended and then added to the contents of GPR rx to form a 32-bit result. The result is
sign-extended and placed in GPR rx.

No integer overflow exception occurs under any circumstances.

Restrictions:

If GPR rx does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if (NotWordValue(GPR[Xlat(rx)])) then
UNPREDICTABLE

endif
temp ← GPR[Xlat(rx)] + sign_extend(immediate)
GPR[Xlat(rx)] ← sign_extend(temp31..0)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
imm 10:5 imm 15:11

ADDIU8

01001
rx

0

000
imm 4:0

5 6 5 5 3 3 5

Add Immediate Unsigned Word (2-Operand, Extended) ADDIU

48 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

ADDIU (3-Operand)

Format: ADDIU ry, rx, immediate MIPS16e

Purpose:

To add a constant to a 32-bit integer.

Description: GPR[ry] ← GPR[rx] + immediate

The 4-bit immediate is sign-extended and then added to the contents of GPR rx to form a 32-bit result. The result is
sign-extended and placed into GPR ry.

No integer overflow exception occurs under any circumstances.

Restrictions:

If GPR rx does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if (NotWordValue(GPR[Xlat(rx)])) then
UNPREDICTABLE

endif
temp ← GPR[Xlat(rx)] + sign_extend(immediate)
GPR[Xlat(ry)] ← sign_extend(temp31..0)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

15 11 10 8 7 5 4 3 0

RRI-A

01000
rx ry

ADDIU

0
immediate

5 3 3 1 4

Add Immediate Unsigned Word (3-Operand) ADDIU

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 49

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

ADDIU (3-Operand, Extended)

Format: ADDIU ry, rx, immediate MIPS16e

Purpose:

To add a constant to a 32-bit integer.

Description: GPR[ry] ← GPR[rx] + immediate

The 15-bit immediate is sign-extended and then added to the contents of GPR rx to form a 32-bit result. The result is
sign-extended and placed into GPR ry.

No integer overflow exception occurs under any circumstances.

Restrictions:

If GPR rx does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if (NotWordValue(GPR[Xlat(rx)])) then
UNPREDICTABLE

endif
temp ← GPR[Xlat(rx)] + sign_extend(immediate)
GPR[Xlat(ry)] ← sign_extend(temp31..0)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

31 27 26 20 19 16 15 11 10 8 7 5 4 3 0

EXTEND

11110
imm 10:4

imm

14:11

RRI-A

01000
rx ry

ADDIU

0
imm 3:0

5 7 4 5 3 3 1 4

Add Immediate Unsigned Word (3-Operand, Extended) ADDIU

50 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

ADDIU (3-Operand, PC-Relative)

Format: ADDIU rx, pc, immediate MIPS16e

Purpose:

To add a constant to the program counter.

Description: GPR[rx] ← PC + (immediate << 2)

The 8-bit immediate is shifted left two bits, zero-extended, and added to either the address of the ADDIU instruction
or the address of the jump instruction in whose delay slot the ADDIU is executed. This result (with its two lower bits
cleared) is sign-extended and placed in GPR rx.

No integer overflow exception occurs under any circumstances.

Restrictions:

If the base PC is outside the 32-bit Compatibility Address Space (i.e., bits 63..31 equal), then the result of the opera-
tion is UNPREDICTABLE.

Operation:

I-1: base_pc ← PC
I: if not (JumpDelaySlot(PC)) then

base_pc ← PC
endif
if NotWordValue(base_pc) then

UNPREDICTABLE
endif
temp ← (base_pcGPRLEN-1..2 + zero_extend(immediate)) || 0

2)
GPR[Xlat(rx)] ← sign_extend(temp31..0)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

The use of the ADDIUPC instruction on a MIPS64 processor in which the PC is outside the 32-bit Compatibility
Address Space will not produce the expected result. This is because the final PC value is required to be sign-extended
from the least-significant 32 bits, and such a value will not generate the correct address if PC is not also a
sign-extended value. In such cases, DADDIUPC should be used instead.

Since the 8-bit immediate is shifted left two bits before being added to the PC, the range is 0, 4, 8..1020.

The assembler LA (Load Address) pseudo-instruction is implemented as a PC-relative add (using ADDIUPC for
MIPS32 or DADDIUPC for MIPS64 code).

15 11 10 8 7 0

ADDIUPC

00001
rx immediate

5 3 8

Add Immediate Unsigned Word (3-Operand, PC-Relative) ADDIU

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 51

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

ADDIU (3-Operand, PC-Relative, Extended)

Format: ADDIU rx, pc, immediate MIPS16e

Purpose:

To add a constant to the program counter.

Description: GPR[rx] ← PC + immediate

The 16-bit immediate is sign-extended and added to the address of the ADDIU instruction. Before the addition, the
two lower bits of the instruction address are cleared.

The result of the addition is sign-extended and placed in GPR rx.

No integer overflow exception occurs under any circumstances.

Restrictions:

A PC-relative, extended ADDIU may not be placed in the delay slot of a jump instruction.

If the PC is outside the 32-bit Compatibility Address Space (i.e., bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordValue(PC) then
UNPREDICTABLE

endif
temp ← (PCGPRLEN-1..2 || 0

2) + sign_extend(immediate)
GPR[Xlat(rx)] ← sign_extend(temp31..0)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

The use of the ADDIUPC instruction on a MIPS64 processor in which the PC is outside the 32-bit Compatibility
Address Space will not produce the expected result. This is because the final PC value is required to be sign-extended
from the least-significant 32 bits, and such a value will not generate the correct address if PC is not also a
sign-extended value. In such cases, DADDIUPC should be used instead.

The assembler LA (Load Address) pseudo-instruction is implemented as a PC-relative add (using ADDIUPC for
MIPS32 or DADDIUPC for MIPS64 code).

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
imm 10:5 imm 15:11

ADDIUPC

00001
rx

0

000
imm 4:0

5 6 5 5 3 3 5

Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended) ADDIU

52 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

ADDIU (2-Operand, SP-Relative)

Format: ADDIU sp, immediate MIPS16e

Purpose:

To add a constant to the stack pointer.

Description: GPR[sp] ← GPR[sp] + immediate

The 8-bit immediate is shifted left three bits, sign-extended, and then added to the contents of GPR 29 to form a
32-bit result. The result is sign-extended and placed in GPR 29.

No integer overflow exception occurs under any circumstances.

Restrictions:

If GPR 29 does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if (NotWordValue(GPR[29])) then
UNPREDICTABLE

endif
temp ← GPR[29] + sign_extend(immediate || 03)
GPR[29] ← sign_extend(temp31..0)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

15 11 10 8 7 0

I8

01100

ADJSP

011
immediate

5 3 8

Add Immediate Unsigned Word (2-Operand, SP-Relative) ADDIU

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 53

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

ADDIU (2-Operand, SP-Relative, Extended)

Format: ADDIU sp, immediate MIPS16e

Purpose:

To add a constant to the stack pointer.

Description: GPR[sp] ← GPR[sp] + immediate

The 16-bit immediate is sign-extended, and then added to the contents of GPR 29 to form a 32-bit result. The result is
sign-extended and placed in GPR 29.

No integer overflow exception occurs under any circumstances.

Restrictions:

If GPR 29 does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if (NotWordValue(GPR[29])) then
UNPREDICTABLE

endif
temp ← GPR[29] + sign_extend(immediate)
GPR[29] ← sign_extend(temp31..0)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
imm 10:5 imm 15:11

I8

01100

ADJSP

011

0

000
imm 4:0

5 6 5 5 3 3 5

Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended) ADDIU

54 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

ADDIU (3-Operand, SP-Relative)

Format: ADDIU rx, sp, immediate MIPS16e

Purpose:

To add a constant to the stack pointer.

Description: GPR[rx] ← GPR[sp] + immediate

The 8-bit immediate is shifted left two bits, zero-extended, and then added to the contents of GPR 29 to form a 32-bit
result. The result is sign-extended and placed in GPR rx.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

if (NotWordValue(GPR[29])) then
UNPREDICTABLE

endif
temp ← GPR[29] + zero_extend(immediate || 02)

GPR[Xlat(rx)] ← sign_extend(temp31..0)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

15 11 10 8 7 0

ADDIUSP

00000
rx immediate

5 3 8

Add Immediate Unsigned Word (3-Operand, SP-Relative) ADDIU

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 55

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

ADDIU (3-Operand, SP-Relative, Extended)

Format: ADDIU rx, sp, immediate MIPS16e

Purpose:

To add a constant to the stack pointer.

Description: GPR[rx] ← GPR[sp] + immediate

The 16-bit immediate is sign-extended and then added to the contents of GPR 29 to form a 32-bit result. The result is
sign-extended and placed in GPR rx.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

if (NotWordValue(GPR[29])) then
UNPREDICTABLE

endif
temp ← GPR[29] + sign_extend(immediate
GPR[Xlat(rx)] ← sign_extend(temp31..0)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
imm 10:5 imm 15:11

ADDIUSP

00000
rx

0

000
imm 4:0

5 6 5 5 3 3 5

Add Immediate Unsigned Word (3-Operand, SP-Relative, Extended) ADDIU

56 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

ADDU (3-Operand)

Format: ADDU rz, rx, ry MIPS16e

Purpose:

To add 32-bit integers.

Description: GPR[rz] ← GPR[rx] + GPR[ry]

The contents of GPR rx and GPR ry are added together to form a 32-bit result. The result is sign-extended and
placed into GPR rz.

No integer overflow exception occurs under any circumstances.

Restrictions:

If either GPR rx or GPR ry does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[Xlat(rx)]) or NotWordValue(GPR[Xlat(ry)]) then
UNPREDICTABLE

endif
temp ← GPR[Xlat(rx)] + GPR[Xlat(ry)]
GPR[Xlat(rz)] ← sign_extend(temp31..0)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

15 11 10 8 7 5 4 2 1 0

RRR

11100
rx ry rz

ADDU

01

5 3 3 3 2

Add Unsigned Word (3-Operand) ADDU

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 57

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

AND

Format: AND rx, ry MIPS16e

Purpose:

To do a bitwise logical AND.

Description: GPR[rx] ← GPR[rx] AND GPR[ry]

The contents of GPR ry are combined with the contents of GPR rx in a bitwise logical AND operation. The result is
placed in GPR rx.

Restrictions:

None

Operation:

GPR[Xlat(rx)] ← GPR[Xlat(rx)] and GPR[Xlat(ry)]

Exceptions:

None

15 11 10 8 7 5 4 0

RR

11101
rx ry

AND

01100

5 3 3 5

And AND

58 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

ASMACRO

Format: ASMACRO select,p0,p1,p2,p3,p4 MIPS16e

The format listed is the most generic assembler format and is unlikely to be used for an actual implementation of
application-specific macro instructions. Rather, the assembler format is likely to represent the use of the macro, with
the assembler turning that format into the appropriate bit pattern required by the instruction.

Purpose:

To execute an implementation-definable macro instruction.

Description:

The ASMACRO instruction is the programming interface to the implementation-definable macro instruction facility
that is defined by the MIPS16e architecture.

The select field specifies which of 8 possible macros is expanded. The definition of each macro specifies how the
parameters p0, p1, p2, p3, and p4 are substituted into the 32-bit instructions with which the macro is defined. The
execution of the 32-bit instructions occurs while PC remains unchanged.

It is implementation-dependent whether a processor implements any implementation-definable macro instructions
and, if it does, how many. It is implementation-dependent whether the macro is executed with interrupts disabled.

Restrictions:

The 32-bit instructions with which the macro is defined must by chosen with care. Issues of atomicity, restartability
of the instruction sequence, and similar factors must be considered when using the implementation-definable macro
instruction facility. Failure to do so can cause UNPREDICTABLE behavior.

If implementation-definable macro instructions are not implemented by the processor, or if the select field references
a specific macro which is not implemented by the processor, a Reserved Instruction exception is signaled.

Operation:

ExecuteMacro(sel,p0,p1,p2,p3,p4)

Exceptions:

Reserved Instruction
Others as may be generated by the 32-bit instructions included in each macro expansion.

Programming Notes:

Implementations may impose certain restrictions on 32-bit instructions are supported within an ASMACRO instruc-
tion. For instance, many implementations may not allow loads, stores, branches or jumps within an ASMACRO defi-
nition. Refer to the Users Guide for each processor which implements this capability for a list of macros defined and
implemented by that processor, and for any specific restrictions imposed by that processor.

31 27 26 24 23 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
select p4 p3

RRR

11100
p2 p1 p0

5 3 3 5 5 3 3 5

Application-Specific Macro Instructions ASMACRO

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 59

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

B

Format: B offset MIPS16e

Purpose:

To do an unconditional PC-relative branch.

Description: branch

The 11-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. The program branches to the target address unconditionally.

Restrictions:

None

Operation:

I: PC ← PC + 2 + sign_extend(offset || 0)

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

15 11 10 0

B

00010
offset

5 11

Unconditional Branch B

60 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

B (Extended)

Format: B offset MIPS16e

Purpose:

To do an unconditional PC-relative branch.

Description: branch

The 16-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. The program branches to the target address unconditionally.

Restrictions:

None

Operation:

I: PC ← PC + 4 + sign_extend(offset || 0)

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

31 27 26 21 20 16 15 11 10 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

B

00010

0

000000
offset 4:0

5 6 5 5 6 5

Unconditional Branch (Extended) B

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 61

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

BEQZ

Format: BEQZ rx, offset MIPS16e

Purpose:

To test a GPR then do a PC-relative conditional branch.

Description: if (GPR[rx] = 0) then branch

The 8-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR rx are equal to zero, the program branches to the target address.

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 0)
condition ← (GPR[Xlat(rx)] = 0GPRLEN)
if condition then

PC ← PC + 2 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

15 11 10 8 7 0

BEQZ

00100
rx offset

5 3 8

Branch on Equal to Zero BEQZ

62 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

BEQZ (Extended)

Format: BEQZ rx, offset MIPS16e

Purpose:

To test a GPR then do a PC-relative conditional branch.

Description: if (GPR[rx] = 0) then branch

The 16-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR rx are equal to zero, the program branches to the target address.

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 0)
condition ← (GPR[Xlat(rx)] = 0GPRLEN)
if condition then

PC ← PC + 4 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

BEQZ

00100
rx

0

000
offset 4:0

5 6 5 5 3 3 5

Branch on Equal to Zero (Extended) BEQZ

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 63

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

BNEZ

Format: BNEZ rx, offset MIPS16e

Purpose:

To test a GPR then do a PC-relative conditional branch.

Description: if (GPR[rx] ≠ 0) then branch

The 8-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR rx are not equal to zero, the program branches to the target address.

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 0)
condition ← (GPR[Xlat(rx)] ≠ 0GPRLEN)
if condition then

PC ← PC + 2 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

15 11 10 8 7 0

BNEZ

00101
rx offset

5 3 8

Branch on Not Equal to Zero BNEZ

64 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

BNEZ (Extended)

Format: BNEZ rx, offset MIPS16e

Purpose:

To test a GPR then do a PC-relative conditional branch.

Description: if (GPR[rx] ≠ 0) then branch

The 16-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR rx are not equal to zero, the program branches to the target address.

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 0)
condition ← (GPR[Xlat(rx)] ≠ 0GPRLEN)
if condition then

PC ← PC + 4 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

BNEZ

00101
rx

0

000
offset 4:0

5 6 5 5 3 3 5

Branch on Not Equal to Zero (Extended) BNEZ

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 65

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

BREAK

Format: BREAK immediate MIPS16e

Purpose:

To cause a Breakpoint exception.

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler.

Restrictions:

None

Operation:

SignalException(Breakpoint)

Exceptions:

Breakpoint

Programming Notes:

The code field is available for use as software parameters, but is retrieved by the exception handler only by loading
the contents of the memory halfword containing the instruction.

15 11 10 8 7 5 4 0

RR

11101
code

BREAK

00101

5 6 5

Breakpoint BREAK

66 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

BTEQZ

Format: BTEQZ offset MIPS16e

Purpose:

To test special register T then do a PC-relative conditional branch.

Description: if (T = 0) then branch

The 8-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR 24 are equal to zero, the program branches to the target address.

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 0)
condition ← (GPR[24] = 0GPRLEN)
 if condition then

PC ← PC + 2 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

15 11 10 8 7 0

I8

01100

BTEQZ

000
offset

5 3 8

Branch on T Equal to Zero BTEQZ

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 67

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

BTEQZ (Extended)

Format: BTEQZ offset MIPS16e

Purpose:

To test special register T then do a PC-relative conditional branch.

Description: if (T = 0) then branch

The 16-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR 24 are equal to zero, the program branches to the target address.

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 0)
condition ← (GPR[24] = 0GPRLEN)
if condition then

PC ← PC + 4 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

I8

01100

BTEQZ

000

000

0
offset 4:0

5 6 5 5 3 3 5

Branch on T Equal to Zero (Extended) BTEQZ

68 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

BTNEZ

Format: BTNEZ offset MIPS16e

Purpose:

To test special register T then do a PC-relative conditional branch.

Description: if (T ≠ 0) then branch

The 8-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR 24 are not equal to zero, the program branches to the target address.

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 0)
condition ← (GPR[24] ≠ 0GPRLEN)
if condition then

PC ← PC + 2 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

15 11 10 8 7 0

I8

01100

BTNEZ

001
offset

5 3 8

Branch on T Not Equal to Zero BTNEZ

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 69

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

BTNEZ (Extended)

Format: BTNEZ offset MIPS16e

Purpose:

To test special register T then do a PC-relative conditional branch.

Description: if (T ≠ 0) then branch

The 16-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR 24 are not equal to zero, the program branches to the target address.

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 0)
condition ← (GPR[24] ≠ 0GPRLEN)
if condition then

PC ← PC + 4 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

I8

01100

BTNEZ

001

000

0
offset 4:0

5 6 5 5 3 3 5

Branch on T Not Equal to Zero (Extended) BTNEZ

70 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

CMP

Format: CMP rx, ry MIPS16e

Purpose:

To compare the contents of two GPRs.

Description: T ← GPR[rx] XOR GPR[ry]

The contents of GPR ry are Exclusive-ORed with the contents of GPR rx. The result is placed into GPR 24.

Restrictions:

None

Operation:

GPR[24] ← GPR[Xlat(ry)] xor GPR[Xlat(rx)]

Exceptions:

None

15 11 10 8 7 5 4 0

RR

11101
rx ry

CMP

01010

5 3 3 5

Compare CMP

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 71

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

CMPI

Format: CMPI rx, immediate MIPS16e

Purpose:

To compare a constant with the contents of a GPR.

Description: T ← GPR[rx] XOR immediate

The 8-bit immediate is zero-extended and Exclusive-ORed with the contents of GPR rx. The result is placed into GPR
24.

Restrictions:

None

Operation:

GPR[24] ← GPR[Xlat(rx)] xor zero_extend(immediate)

Exceptions:

None

15 11 10 8 7 0

CMPI

01110
rx immediate

5 3 8

Compare Immediate CMPI

72 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

CMPI (Extended)

Format: CMPI rx, immediate MIPS16e

Purpose:

To compare a constant with the contents of a GPR.

Description: T ← GPR[rx] XOR immediate

The 16-bit immediate is zero-extended and Exclusive-ORed with the contents of GPR rx. The result is placed into
GPR 24.

Restrictions:

None

Operation:

GPR[24] ← GPR[Xlat(rx)] xor zero_extend(immediate)

Exceptions:

None

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
imm 10:5 imm 15:11

CMPI

01110
rx

000

0
imm 4:0

5 6 5 5 3 3 5

Compare Immediate (Extended) CMPI

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 73

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DADDIU

Format: DADDIU ry, immediate MIPS16e (64-bit only)

Purpose:

To add a constant to a 64-bit integer.

Description: GPR[ry] ← GPR[ry] + immediate

The 5-bit immediate is sign-extended to 64 bits and then added to the contents of GPR ry to form a 64-bit result. The
result is placed in GPR ry.

No integer overflow exception occurs under any circumstances.

Restrictions:

Operation:

GPR[Xlat(ry)] ← GPR[Xlat(ry)] + sign_extend(immediate)

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

15 11 10 8 7 5 4 0

I64

11111

DADDIU5

101
ry immediate

5 3 3 5

Doubleword Add Immediate Unsigned (2-Operand) DADDIU

74 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DADDIU (2-Operand, Extended)

Format: DADDIU ry, immediate MIPS16e (64-bit only)

Purpose:

To add a constant to a 64-bit integer.

Description: GPR[ry] ← GPR[ry] + immediate

The 16-bit immediate is sign-extended to 64 bits and then added to the contents of GPR ry to form a 64-bit result. The
result is placed in GPR ry.

No integer overflow exception occurs under any circumstances.

Restrictions:

Operation:

GPR[Xlat(ry)] ← GPR[Xlat(ry)] + sign_extend(immediate)

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
imm 10:5 imm 15:11

I64

11111

DADDIU5

101
ry imm 4:0

5 6 5 5 3 3 5

Doubleword Add Immediate Unsigned (2-Operand, Extended) DADDIU

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 75

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DADDIU (3-Operand)

Format: DADDIU ry, rx, immediate MIPS16e (64-bit only)

Purpose:

To add a constant to a 64-bit integer.

Description: GPR[ry] ← GPR[rx] + immediate

The 4-bit immediate is sign-extended to 64 bits and then added to the contents of GPR rx to form a 64-bit result. The
result is placed in GPR ry.

No integer overflow exception occurs under any circumstances.

Restrictions:

Operation:

GPR[Xlat(ry)] ← GPR[Xlat(rx)] + sign_extend(immediate)

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

15 11 10 8 7 5 4 3 0

RRI-A

01000
rx ry

DADDI
U

1

immediate

5 3 3 1 4

Doubleword Add Immediate Unsigned (3-Operand) DADDIU

76 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DADDIU (3-Operand, Extended)

Format: DADDIU ry, rx, immediate MIPS16e (64-bit only)

Purpose:

To add a constant to a 64-bit integer.

Description: GPR[ry] ← GPR[rx] + immediate

The 15-bit immediate is sign-extended to 64 bits and then added to the contents of GPR rx to form a 64-bit result. The
result is placed in GPR ry.

No integer overflow exception occurs under any circumstances.

Restrictions:

Operation:

GPR[Xlat(ry)] ← GPR[Xlat(rx)] + sign_extend(immediate)

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

31 27 26 20 19 16 15 11 10 8 7 5 4 3 0

EXTEND

11110
imm 10:4 imm 14:11

RRI-A

01000
rx ry

DADDIU

1
imm 3:0

5 7 4 5 3 3 1 4

Doubleword Add Immediate Unsigned (3-Operand, Extended) DADDIU

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 77

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DADDIU (3-Operand, PC-Relative)

Format: DADDIU ry, pc, immediate MIPS16e (64-bit only)

Purpose:

To add a constant to the program counter.

Description: GPR[ry] ← PC + (immediate << 2)

The 5-bit immediate is shifted left 2 bits, zero-extended, and added either to the address of the DADDIU instruction
or to the address of the jump instruction in whose delay slot the DADDIU is executed. This result (with its 2 lower
bits cleared) is placed in GPR ry.

No integer overflow exception occurs under any circumstances.

Restrictions:

Operation:

I-1: base_pc ← PC
I: if not (JumpDelaySlot(PC)) then

base_pc ← PC
endif
GPR[Xlat(ry)] ← (base_pcGPRLEN-1..2 + zero_extend(immediate)) || 0

2

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

15 11 10 8 7 5 4 0

I64

11111

DADDIUPC

110
ry immediate

5 3 3 5

Doubleword Add Immediate Unsigned (3-Operand, PC-Relative) DADDIU

78 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DADDIU (3-Operand, PC-Relative, Extended)

Format: DADDIU ry, pc, immediate MIPS16e (64-bit only)

Purpose:

To add a constant to the program counter.

Description: GPR[ry] ← PC + immediate

The 16-bit immediate is sign-extended and added to the address of the DADDIU instruction. Before the addition, the
two lower bits of the instruction address are cleared. The result of the addition is placed in GPR ry.

No integer overflow exception occurs under any circumstances.

Restrictions:

A PC-relative extended DADDIU may not be placed in the delay slot of a jump instruction.

Operation:

temp ← (PCGPRLEN-1..2 || 0
2) + sign_extend(immediate)

GPR[Xlat(ry)] ← temp63..0

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
imm 10:5 imm 15:11

I64

11111

DADDIUP
C

110

ry imm 4:0

5 6 5 5 3 3 5

Doubleword Add Immediate Unsigned (3-Operand, PC-Relative, Extended) DADDIU

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 79

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DADDIU (2-Operand, SP-Relative)

Format: DADDIU sp, immediate MIPS16e (64-bit only)

Purpose:

To add a constant to the stack pointer.

Description: GPR[sp] ← GPR[sp] + immediate

The 8-bit immediate is shifted left 3 bits, sign-extended to 64 bits, and then added to the contents of GPR 29 to form
a 64-bit result. The result is placed in GPR 29.

No integer overflow exception occurs under any circumstances.

Restrictions:

Operation:

GPR[29] ← GPR[29] + sign_extend(immediate || 03)

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

15 11 10 8 7 0

I64

11111

DADJSP

011
immediate

5 3 8

Doubleword Add Immediate Unsigned (2-Operand, SP-Relative) DADDIU

80 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DADDIU (2-Operand, SP-Relative, Extended)

Format: DADDIU sp, immediate MIPS16e (64-bit only)

Purpose:

To add a constant to the stack pointer.

Description: GPR[sp] ← GPR[sp] + immediate

The 16-bit immediate is sign-extended to 64 bits and then added to the contents of GPR 29 to form a 64-bit result. The
result is placed in GPR 29.

No integer overflow exception occurs under any circumstances.

Restrictions:

Operation:

GPR[29] ← GPR[29] + sign_extend(immediate)

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
imm 10:5 imm 15:11

I64

11111

DADDJSP

011

000

0
imm 4:0

5 6 5 5 3 3 5

Doubleword Add Immediate Unsigned (2-Operand, SP-Relative, Extended) DADDIU

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 81

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DADDIU (3-Operand, SP-Relative)

Format: DADDIU ry, sp, immediate MIPS16e (64-bit only)

Purpose:

To add a constant to the stack pointer.

Description: GPR[ry] ← GPR[sp] + immediate

The 5-bit immediate is shifted left 2 bits, zero-extended to 64 bits, and added to the contents of GPR 29 to form a
64-bit result. The result is placed in GPR ry.

No integer overflow exception occurs under any circumstances.

Restrictions:

Operation:

GPR[Xlat(ry)] ← GPR[29] + zero_extend(immediate || 02)

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

15 11 10 8 7 5 4 0

I64

11111

DADDIUSP

111
ry immediate

5 3 3 5

Doubleword Add Immediate Unsigned (3-Operand, SP-Relative) DADDIU

82 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DADDIU (3-Operand, SP-Relative, Extended)

Format: DADDIU ry, sp, immediate MIPS16e (64-bit only)

Purpose:

To add a constant to the stack pointer.

Description: GPR[ry] ← GPR[sp] + immediate

The 16-bit immediate is sign-extended to 64 bits and added to the contents of GPR 29 to form a 64-bit result. The
result is placed in GPR ry.

No integer overflow exception occurs under any circumstances.

Restrictions:

Operation:

GPR[Xlat(ry)] ← GPR[29] + sign_extend(immediate)

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
imm 10:5 imm 15:11

I64

11111

DADDIUSP

111
ry imm 4:0

5 6 5 5 3 3 5

Doubleword Add Immediate Unsigned (3-Operand, SP-Relative, Extended) DADDIU

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 83

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DADDU (3-Operand)

Format: DADDU rz, rx, ry MIPS16e (64-bit only)

Purpose:

To add 64-bit integers.

Description: GPR[rz] ← GPR[rx] + GPR[ry]

The contents of GPR ry are added to the contents of GPR rx. The 64-bit result is placed into GPR rz.

No integer overflow exception occurs under any circumstances.

Restrictions:

Operation:

GPR[Xlat(rz)] ← GPR[Xlat(rx)] + GPR[Xlat(ry)]

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

15 11 10 8 7 5 4 2 1 0

RRR

11100
rx ry rz

DADDU

00

5 3 3 3 2

Doubleword Add Unsigned (3-Operand) DADDU

84 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DDIV

Format: DDIV rx, ry MIPS16e (64-bit only)

Purpose:

To divide 64-bit signed integers.

Description: (LO, HI) ← GPR[rx] / GPR[ry]

The 64-bit doubleword in GPR rx is divided by the 64-bit doubleword in GPR ry, treating both operands as signed
values. The 64-bit quotient is placed into special register LO and the 64-bit remainder is placed into special register
HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPR ry is zero, the arithmetic result value is UNPREDICTABLE.

Operation:

LO ← GPR[Xlat(rx)] div GPR[Xlat(ry)]
HI ← GPR[Xlat(rx)] mod GPR[Xlat(ry)]

Exceptions:

Reserved Instruction

Programming Notes:

See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of the MFHI or
MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subsequent instruc-
tions that write to them by two or more instructions. This restriction was removed in MIPS IV and MIPS32 and all
subsequent levels of the architecture.

15 11 10 8 7 5 4 0

RR

11101
rx ry

DDIV

11110

5 3 3 5

Doubleword Divide DDIV

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 85

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DDIVU

Format: DDIVU rx, ry MIPS16e (64-bit only)

Purpose:

To divide 64-bit unsigned integers.

Description: (LO, HI) ← GPR[rx] / GPR[ry]

The 64-bit doubleword in GPR rx is divided by the 64-bit doubleword in GPR ry, treating both operands as unsigned
values. The 64-bit quotient is placed into special register LO and the 64-bit remainder is placed into special register
HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPR ry is zero, the arithmetic result value is UNPREDICTABLE.

Operation:

q ← (0 || GPR[Xlat(rx)]) div (0 || GPR[Xlat(ry)])
r ← (0 || GPR[Xlat(rx)]) mod (0 || GPR[Xlat(ry)])
LO ← q63..0
HI ← r63..0

Exceptions:

Reserved Instruction

Programming Notes:

See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of the MFHI or
MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subsequent instructions
that write to them by two or more instructions. This restriction was removed in MIPS IV and MIPS32 and all subse-
quent levels of the architecture.

15 11 10 8 7 5 4 0

RR

11101
rx ry

DDIVU

11111

5 3 3 5

Doubleword Divide Unsigned DDIVU

86 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DIV

Format: DIV rx, ry MIPS16e

Purpose:

To divide 32-bit signed integers.

Description: (LO, HI) ← GPR[rx] / GPR[ry]

The 32-bit word value in GPR rx is divided by the 32-bit value in GPR ry, treating both operands as signed values.
The 32-bit quotient is sign-extended and placed into special register LO, and the 32-bit remainder is sign-extended
and placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If either GPR rx or GPR ry does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

If the divisor in GPR ry is zero, the arithmetic result is UNPREDICTABLE.

Operation:

if (NotWordValue(GPR[Xlat(rx)]) or NotWordValue(GPR[Xlat(ry)])) then
UNPREDICTABLE

endif
q ← GPR[Xlat(rx)] div GPR[Xlat(ry)]
r ← GPR[Xlat(rx)] mod GPR[Xlat(ry)]
LO ← sign_extend(q31..0)
HI ← sign_extend(r31..0)

Exceptions:

None

15 11 10 8 7 5 4 0

RR

11101
rx ry

DIV

11010

5 3 3 5

Divide Word DIV

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 87

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Programming Notes:

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow conditions are detected and
some action taken, then the divide instruction is typically followed by additional instructions to check for a zero divi-
sor and/or for overflow. If the divide is asynchronous then the zero-divisor check can execute in parallel with the
divide. The action taken on either divide-by-zero or overflow is either a convention within the program itself, or more
typically within the system software; one possibility is to take a BREAK exception with a code field value to signal
the problem to the system software.

As an example, the C programming language in a UNIX® environment expects division by zero to either terminate
the program or execute a program-specified signal handler. C does not expect overflow to cause any exceptional con-
dition. If the C compiler uses a divide instruction, it also emits code to test for a zero divisor and execute a BREAK
instruction to inform the operating system if a zero is detected.

Where the size of the operands are known, software should place the shorter operand in GPR ry. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

In some processors the integer divide operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the divide so that other instructions can execute in parallel.

Historical Perspective:

In MIPS 1 through MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
quent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

Divide Word (cont.) DIV

88 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DIVU

Format: DIVU rx, ry MIPS16e

Purpose:

To divide 32-bit unsigned integers.

Description: (LO, HI) ← GPR[rx] / GPR[ry]

The 32-bit word value in GPR rx is divided by the 32-bit value in GPR ry, treating both operands as unsigned values.
The 32-bit quotient is sign-extended and placed into special register LO, and the 32-bit remainder is sign-extended
and placed into special register HI.

Restrictions:

If either GPR rx or GPR ry does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

If the divisor in GPR ry is zero, the arithmetic result is UNPREDICTABLE.

Operation:

if (NotWordValue(GPR[Xlat(rx)]) or NotWordValue(GPR[Xlat(ry)])) then
UNPREDICTABLE

endif
q ← (0 || GPR[Xlat(rx)]) div (0 || GPR[Xlat(ry)])
r ← (0 || GPR[Xlat(rx)]) mod (0 || GPR[Xlat(ry)])
LO ← sign_extend(q31..0)
HI ← sign_extend(r31..0)

Exceptions:

None

Programming Notes:

See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS 1 through MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
quent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

15 11 10 8 7 5 4 0

RR

11101
rx ry

DIVU

11011

5 3 3 5

Divide Unsigned Word DIVU

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 89

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DMULT

Format: DMULT rx, ry MIPS16e (64-bit only)

Purpose:

To multiply 64-bit signed integers.

Description: (LO, HI) ← GPR[rx] × GPR[ry]

The 64-bit doubleword value in GPR rx is multiplied by the 64-bit value in GPR ry, treating both operands as signed
values, to produce a 128-bit result. The low-order 64-bit doubleword of the result is placed into special register LO,
and the high-order 64-bit doubleword is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

Operation:

prod← GPR[Xlat(rx)] × GPR[Xlat(ry)]
LO ← prod63..0
HI ← prod127..64

Exceptions:

Reserved Instruction

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Historical Perspective:

In MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of the MFHI or
MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subsequent instruc-
tions that write to them by two or more instructions. This restriction was removed in MIPS IV and all subsequent lev-
els of the architecture.

15 11 10 8 7 5 4 0

RR

11101
rx ry

DMULT

11100

5 3 3 5

Doubleword Multiply DMULT

90 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DMULTU

Format: DMULTU rx, ry MIPS16e (64-bit only)

Purpose:

To multiply 64-bit unsigned integers.

Description: (LO, HI) ← GPR[rx] × GPR[ry]

The 64-bit doubleword value in GPR rx is multiplied by the 64-bit value in GPR ry, treating both operands as
unsigned values, to produce a 128-bit result. The low-order 64-bit doubleword of the result is placed into special reg-
ister LO, and the high-order 64-bit doubleword is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

Operation:
prod← (0||GPR[Xlat(rx)]) × (0||GPR[Xlat(ry])
LO ← prod63..0
HI ← prod127..64

Exceptions:

Reserved Instruction

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Historical Perspective:

In MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of the MFHI or
MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subsequent instructions
that write to them by two or more instructions. This restriction was removed in MIPS IV and all subsequent levels of
the architecture.

15 11 10 8 7 5 4 0

RR

11101
rx ry

DMULTU

11101

5 3 3 5

Doubleword Multiply Unsigned DMULTU

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 91

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DSLL

Format: DSLL rx, ry, sa MIPS16e (64-bit only)

Purpose:

To execute a left-shift of a doubleword by a fixed amount—1 to 8 bits.

Description: GPR[rx] ← GPR[ry] << sa

The 64-bit doubleword contents of GPR ry are shifted left, and zeros are inserted into the emptied low-order bits. The
3-bit sa field specifies the shift amount. A shift amount of 0 is interpreted as a shift amount of 8. The 64-bit result is
placed into GPR rx.

Restrictions:

Operation: 64-bit processors

if sa = 03 then
s ← 8

else
s ← 03 || sa

endif
GPR[Xlat(rx)] ← GPR[Xlat(ry)](63-s)..0 || 0

s

Exceptions:

Reserved Instruction

15 11 10 8 7 5 4 2 1 0

SHIFT

00110
rx ry sa

DSLL

01

5 3 3 3 2

Doubleword Shift Left Logical DSLL

92 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DSLL (Extended)

Format: DSLL rx, ry, sa MIPS16e (64-bit only)

Purpose:

To execute a left-shift of a doubleword by a fixed amount—0 to 63 bits.

Description: GPR[rx] ← GPR[ry] << sa

The 64-bit doubleword contents of GPR ry are shifted left, and zeros are inserted into the emptied low-order bits. The
s5 bit and the 5-bit sa field specify the effective 6-bit-shift amount. The 64-bit result is placed into GPR rx.

Restrictions:

None

Operation: 64-bit processors

s ← s5 || sa
GPR[Xlat(rx)] ← GPR[Xlat(ry)](63-s)..0 || 0

s

Exceptions:

Reserved Instruction

Programming Notes:

For DSLL only, the s5 bit is the most-significant bit of the 6-bit-shift amount (sa) field. For all 32-bit extended shifts,
s5 must be zero. None of the extended shift instructions perform the zero-to-eight mapping, so zero-bit shifts are pos-
sible using the extended format.

31 27 26 22 21 20 16 15 11 10 8 7 5 4 2 1 0

EXTEND

11110
sa 4:0 s5

0

00000

SHIFT

00110
rx ry

0

000

DSLL

01

5 5 1 5 5 3 3 3 2

Doubleword Shift Left Logical (Extended) DSLL

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 93

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DSLLV

Format: DSLLV ry, rx MIPS16e (64-bit only)

Purpose:

To execute a left-shift of a doubleword by a variable number of bits.

Description: GPR[ry] ← GPR[ry] << GPR[rx]

The 64-bit doubleword contents of GPR ry are shifted left, inserting zeros into the emptied bits; the result is placed
back into GPR ry. The 6 low-order bits of GPR rx specify the shift amount.

Restrictions:

Operation: 64-bit processors

s ← GPR[Xlat(rx)]5..0
GPR[Xlat(ry)] ← GPR[Xlat(ry)](63-s)..0 || 0s

Exceptions:

Reserved Instruction

15 11 10 8 7 5 4 0

RR

11101
rx ry

DSLLV

10100

5 3 3 5

Doubleword Shift Left Logical Variable DSLLV

94 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DSRA

Format: DSRA ry, sa MIPS16e (64-bit only)

Purpose:

To execute an arithmetic right-shift of a doubleword by a fixed amount—1 to 8 bits.

Description: GPR[ry] ← GPR[ry] >> sa (arithmetic)

The 64-bit doubleword contents of GPR ry are shifted right, duplicating the sign bit (63) into the emptied bits; the
result is placed in back in GPR ry. The 3-bit sa field specifies the shift amount. A shift amount of 0 is interpreted as a
shift amount of 8.

Restrictions:

Operation:

if sa = 03 then
s ← 8

else
s ← 03 || sa

endif
GPR[Xlat(ry)] ← (GPR[Xlat(ry)]63)

s || GPR[Xlat(ry)]63..s

Exceptions:

Reserved Instruction

15 11 10 8 7 5 4 0

RR

11101
sa ry

DSRA

10011

5 3 3 5

Doubleword Shift Right Arithmetic DSRA

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 95

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DSRA (Extended)

Format: DSRA ry, sa MIPS16e (64-bit only)

Purpose:

To execute an arithmetic right-shift of a doubleword by a fixed amount—0 to 63 bits.

Description: GPR[ry] ← GPR[ry] >> sa (arithmetic)

The 64-bit doubleword contents of GPR ry are shifted right, duplicating the sign bit (63) into the emptied bits; the
result is placed in back in GPR ry. The s5 bit and the 5-bit sa field specify the effective 6-bit-shift amount.

Restrictions:

Operation:

s ← s5 || sa
GPR[Xlat(ry)] ← (GPR[Xlat(ry)]63)

s || GPR[Xlat(ry)]63..s

Exceptions:

Reserved Instruction

Programming Notes:

The s5 bit is the most-significant bit of the 6-bit-shift amount (sa) field. None of the extended shift instructions per-
form the zero-to-eight mapping, so zero-bit shifts are possible using the extended format.

31 27 26 22 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
sa 4:0 s5

0

00000

RR

11101

0

000
ry

DSRA

10011

5 5 1 5 5 3 3 5

Doubleword Shift Right Arithmetic (Extended) DSRA

96 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DSRAV

Format: DSRAV ry, rx MIPS16e (64-bit only)

Purpose:

To execute an arithmetic right-shift of a doubleword by a variable number of bits.

Description: GPR[ry] ← GPR[ry] >> GPR[rx] (arithmetic)

The doubleword contents of GPR ry are shifted right, duplicating the sign bit (63) into the emptied bits; the result is
placed back in GPR ry. The 6 low-order bits of GPR rx specify the shift amount.

Restrictions:

Operation:

s ← GPR[Xlat(rx)]5..0
GPR[Xlat(ry)] ← (GPR[Xlat(ry)]63)

s || GPR[Xlat(ry)]63..s

Exceptions:

Reserved Instruction

15 11 10 8 7 5 4 0

RR

11101
rx ry

DSRAV

10111

5 3 3 5

Doubleword Shift Right Arithmetic Variable DSRAV

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 97

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DSRL

Format: DSRL ry, sa MIPS16e (64-bit only)

Purpose:

To execute a logical right-shift of a doubleword by a fixed amount—1 to 8 bits.

Description: GPR[ry] ← GPR[ry] >> sa (logical)

The doubleword contents of GPR ry are shifted right, inserting zeros into the emptied bits; the result is placed back in
GPR ry.The 3-bit sa field specifies the shift amount. A shift amount of 0 is interpreted as a shift amount of 8.

Restrictions:

Operation:

if sa = 03 then
s ← 8

else
s ← 03 || sa

endif
GPR[Xlat(ry)] ← 0s || GPR[Xlat(ry)]63..s

Exceptions:

Reserved Instruction

15 11 10 8 7 5 4 0

RR

11101
sa ry

DSRL

01000

5 3 3 5

Doubleword Shift Right Logical DSRL

98 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DSRL (Extended)

Format: DSRL ry, sa MIPS16e (64-bit only)

Purpose:

To execute a logical right-shift of a doubleword by a fixed amount—0 to 63 bits

Description: GPR[ry] ← GPR[ry] >> sa (logical)

The doubleword contents of GPR ry are shifted right, inserting zeros into the emptied bits; the result is placed back in
GPR ry. The s5 bit and the 5-bit sa field specify the effective 6-bit-shift amount.

Restrictions:

Operation: 64-bit processors

s ← s5 || sa
GPR[Xlat(ry)] ← 0s || GPR[Xlat(ry)]63..s

Exceptions:

Reserved Instruction

Programming Notes:

The s5 bit is the most-significant bit of the 6-bit-shift amount (sa) field. None of the extended shift instructions per-
form the zero-to-eight mapping, so zero-bit shifts are possible using the extended format.

31 27 26 22 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
sa4:0 s5

0

00000

RR

11101

0

000
ry

DSRL

01000

5 5 1 5 5 3 3 5

Doubleword Shift Right Logical (Extended) DSRL

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 99

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DSRLV

Format: DSRLV ry, rx MIPS16e (64-bit only)

Purpose:

To execute a logical right-shift of a doubleword by a variable number of bits.

Description: GPR[ry] ← GPR[ry] >> GPR[rx] (logical)

The 64-bit doubleword contents of GPR ry are shifted right, inserting zeros into the emptied bits; the result is placed
back in GPR ry. The 6 low-order bits of GPR rx specify the shift amount.

Restrictions:

Operation: 64-bit processors

s ← GPR[Xlat(rx)]5..0
GPR[Xlat(ry)] ← 0s || GPR[Xlat(ry)]63..s

Exceptions:

Reserved Instruction

15 11 10 8 7 5 4 0

RR

11101
rx ry

DSRLV

10110

5 3 3 5

Doubleword Shift Right Logical Variable DSRLV

100 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DSUBU

Format: DSUBU rz, rx, ry MIPS16e (64-bit only)

Purpose:

To subtract 64-bit integers.

Description: GPR[rz] ← GPR[rx] - GPR[ry]

The 64-bit doubleword value in GPR ry is subtracted from the 64-bit value in GPR rx and the 64-bit arithmetic result
is placed into GPR rz

No integer overflow exception occurs under any circumstances.

Restrictions:

Operation: 64-bit processors

GPR[Xlat(rz)] ← GPR[Xlat(rx)] - GPR[Xlat(ry)]

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

15 11 10 8 7 5 4 2 1 0

RRR

11100
rx ry rz

DSUBU

10

5 3 3 3 2

Doubleword Subtract Unsigned DSUBU

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 101

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

JAL

Format: JAL target MIPS16e

Purpose:

To execute a procedure call within the current 256 MB-aligned region and preserve the current ISA.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call. The value stored in GPR 31 bit 0 reflects the current
value of the ISA Mode bit.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is the target field shifted left 2 bits. The remaining upper bits are the correspond-
ing bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address, preserving the ISA Mode bit. Execute the instruction that follows the jump, in
the branch delay slot, before executing the jump itself.

The opcode field describes a general jump-and-link operation, with the x field as a variable. The individual instruc-
tions, JAL and JALX have specific values for this variables.

Restrictions:

An extended instruction should not be placed in a jump delay slot as it causes one-half of an instruction to be exe-
cuted.

Processor operation is UNPREDICTABLE if a branch or jump instruction is placed in the delay slot of a jump.

Operation:

I: GPR[31] ← (PC + 6)GPRLEN-1..1 || ISAMode
I+1: PC ← PCGPRLEN-1..28 || target || 0

2

Exceptions:

None

Programming Notes:

Forming the jump target address by catenating PC and the 26-bit target address rather than adding a signed offset to
the PC is an advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It
allows a branch from anywhere in the region to anywhere in the region, an action not allowed by a signed relative off-
set.

This definition creates the boundary case where the jump instruction is in the last word of a 256 MB region and can
therefore jump only to the following 256 MB region containing the jump delay slot.

31 27 26 25 21 20 16 15 0

JAL

00011

x

0

target

20:16

target

25:21
target 15:0

5 1 5 5 16

Jump and Link JAL

102 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

JALR

Format: JALR ra, rx MIPS16e

Purpose:

To execute a procedure call to an instruction address in a register.

Description: GPR[ra] ← return_addr, PC ← GPR[rx]

The program unconditionally jumps to the address contained in GPR rx, with a delay of one instruction. The instruc-
tion sets the ISA Mode bit to the value in GPR rx bit 0.

The address of the instruction following the delay slot is placed into GPR 31. The value stored in GPR 31 bit 0
reflects the current value of the ISA Mode bit.

Bit 0 of the target address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

The opcode and function field describe a general jump-thru-register operation, with the nd (no delay slot), l (link),
and ra (source register is ra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have spe-
cific values for these variables.

Restrictions:

The effective target address in GPR rx must be naturally-aligned. If bit 0 is zero and bit 1 is one, an Address Error
exception occurs when the jump target is subsequently fetched as an instruction.

An extended instruction should not be placed in a jump delay slot, because this causes one-half of an instruction to be
executed.

Processor operation is UNPREDICTABLE if a branch or jump instruction is placed in the delay slot of a jump.

Operation:

I: GPR[31] ← (PC + 4)GPRLEN-1..1 || ISAMode
I+1: PC ← GPR[Xlat(rx)]GPRLEN-1..1 || 0

ISAMode ← GPR[Xlat(rx)]0

Exceptions:

None

15 11 10 8 7 6 5 4 0

RR

11101
rx

nd

0

l

1

ra

0

J(AL)R(C)

00000

5 3 1 1 1 5

Jump and Link Register JALR

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 103

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

JALRC

Format: JALRC ra, rx MIPS16e

Purpose:

To execute a procedure call to an instruction address in a register

Description: GPR[ra] ← return_addr, PC ← GPR[rx]

The program unconditionally jumps to the address contained in GPR rx, with no delay slot instruction. The instruc-
tion sets the ISA Mode bit to the value in GPR rx bit 0.

The address of the instruction following the jump is placed into GPR 31. The value stored in GPR 31 bit 0 reflects the
current value of the ISA Mode bit.

Bit 0 of the target address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

The opcode and function field describe a general jump-thru-register operation, with the nd (no delay slot), l (link),
and ra (source register is ra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have spe-
cific values for these variables.

Restrictions:

The effective target address in GPR rx must be naturally-aligned. If bit 0 is zero and bit 1 is one, an Address Error
exception occurs when the jump target is subsequently fetched as an instruction.

Operation:

I: GPR[31] ← (PC + 2)GPRLEN-1..1 || ISAMode
PC ← GPR[Xlat(rx)]GPRLEN-1..1 || 0
ISAMode ← GPR[Xlat(rx)]0

Exceptions:

None.

Programming Notes:

Unlike most MIPS “jump” instructions, JALRC does not have a delay slot.

15 11 10 8 7 6 5 4 0

RR

11101
rx

nd

1

l

1

ra

0

J(AL)R(C)

00000

5 3 1 1 1 5

Jump and Link Register, Compact JALRC

104 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

JALX (MIPS16e Format)

Format: JALX target MIPS16e

Purpose:

To execute a procedure call within the current 256 MB-aligned region and change the ISA Mode from MIPS16e to
32-bit MIPS.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call. The value stored in GPR 31 bit 0 reflects the current
value of the ISA Mode bit.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is the target field shifted left 2 bits. The remaining upper bits are the correspond-
ing bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address, toggling the ISA Mode bit. Execute the instruction that follows the jump, in the
branch delay slot, before executing the jump itself.

The opcode field describes a general jump-and-link operation, with the x field as a variable. The individual instruc-
tions, JAL and JALX have specific values for this variables.

Restrictions:

An extended instruction should not be placed in a jump delay slot, because this causes one-half an instruction to be
executed.

Processor operation is UNPREDICTABLE if a branch or jump instruction is placed in the delay slot of a jump.

Operation:

I: GPR[31] ← (PC + 6)GPRLEN-1..1 || ISAMode
I+1: PC ← PCGPRLEN-1..28 || target || 0

2

ISAMode ← (not ISAMode)

Exceptions:

None

Programming Notes:

Forming the jump target address by catenating PC and the 26-bit target address rather than adding a signed offset to
the PC is an advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It
allows a jump to anywhere in the region from anywhere in the region which a signed relative offset would not allow.

This definition creates the boundary case where the jump instruction is in the last word of a 256 MB region and can
therefore jump only to the following 256 MB region containing the jump delay slot.

31 27 26 25 21 20 16 15 0

JAL

00011

x

1

target

20:16

target

25:21
target 15:0

5 1 5 5 16

Jump and Link Exchange (MIPS16e Format) JALX

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 105

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

JALX (MIPS64 Format)

Format: JALX target MIPS64 with MIPS16e

Purpose:

To execute a procedure call within the current 256 MB-aligned region and change the ISA Mode from 32-bit MIPS to
MIPS16e.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call. The value stored in GPR 31 bit 0 reflects the current
value of the ISA Mode bit.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is the instr_index field shifted left 2 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address, toggling the ISA Mode bit. Execute the instruction that follows the jump, in the
branch delay slot, before executing the jump itself.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: GPR[31]← PC + 8
I+1: PC ← PCGPRLEN..28 || instr_index || 0

2

ISAMode ← (not ISAMode)

Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 256 MB
region, it can branch only to the following 256 MB region containing the branch delay slot.

31 26 25 0

JALX

011101
instr_index

6 26

Jump and Link Exchange (32-bit MIPS Format) JALX

106 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

JR ra

Format: JR ra MIPS16e

Purpose:

To execute a branch to the instruction address in the return address register.

Description: PC ← GPR[ra]

The program unconditionally jumps to the address specified in GPR 31, with a delay of one instruction. The instruc-
tion sets the ISA Mode bit to the value in GPR 31 bit 0.

Bit 0 of the target address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

The opcode and function field describe a general jump-thru-register operation, with the nd (no delay slot), l (link),
and ra (source register is ra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have spe-
cific values for these variables.

Restrictions:

The effective target address in GPR 31 must be naturally-aligned. If bit 0 is zero and bit 1 is one, then an Address
Error exception occurs when the jump target is subsequently fetched as an instruction.

An extended instruction should not be placed in a jump delay slot, because this causes one-half of an instruction to be
executed.

Processor operation is UNPREDICTABLE if a branch or jump instruction is placed in the delay slot of a jump.

Operation:

I+1: PC ← GPR[31]GPRLEN-1..1 || 0
ISAMode ← GPR[31]0

Exceptions:

None

15 11 10 8 7 6 5 4 0

RR

11101
000

nd

0

l

0

ra

1

J(AL)R(C)

00000

5 3 1 1 1 5

Jump Register Through Register ra JR

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 107

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

JR rx

Format: JR rx MIPS16e

Purpose:

To execute a branch to an instruction address in a register.

Description: PC ← GPR[rx]

The program unconditionally jumps to the address specified in GPR rx, with a delay of one instruction. The instruc-
tion sets the ISA Mode bit to the value in GPR rx bit 0.

Bit 0 of the target address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

The opcode and function field describe a general jump-thru-register operation, with the nd (no delay slot), l (link),
and ra (source register is ra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have spe-
cific values for these variables.

Restrictions:

The effective target address in GPR rx must be naturally aligned. If bit 0 is zero and bit 1 is one, then an Address
Error exception occurs when the jump target is subsequently fetched as an instruction.

An extended instruction should not be placed in a jump delay slot, because this causes one-half of an instruction to be
executed.

Processor operation is UNPREDICTABLE if a branch or jump instruction is placed in the delay slot of a jump.

Operation:

I+1: PC ← GPR[Xlat(rx)]GPRLEN-1..1 || 0
ISAMode ← GPR[Xlat(rx)]0

Exceptions:

None

15 11 10 8 7 6 5 4 0

RR

11101
rx

nd

0

l

0

ra

0

J(AL)R(C)

00000

5 3 1 1 1 5

Jump Register Through MIPS16e GPR JR

108 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

JRC ra

Format: JRC ra MIPS16e

Purpose:

To execute a branch to the instruction address in the return address register.

Description: PC ← GPR[ra]

The program unconditionally jumps to the address specified in GPR 31, with no delay slot instruction. The instruction
sets the ISA Mode bit to the value in GPR 31 bit 0.

Bit 0 of the target address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

The opcode and function field describe a general jump-thru-register operation, with the nd (no delay slot), l (link),
and ra (source register is ra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have spe-
cific values for these variables.

Restrictions:

The effective target address in GPR 31 must be naturally-aligned. If bit 0 is zero and bit 1 is one, then an Address
Error exception occurs when the jump target is subsequently fetched as an instruction.

Operation:

I: PC ← GPR[31]GPRLEN-1..1 || 0
ISAMode ← GPR[31]0

Exceptions:

None.

Programming Notes:

Unlike most MIPS “jump” instructions, JRC does not have a delay slot.

15 11 10 8 7 6 5 4 0

RR

11101
000

nd

1

l

0

ra

1

J(AL)R(C)

00000

5 3 1 1 1 5

Jump Register Through Register ra, Compact JRC

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 109

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

JRC rx

Format: JRC rx MIPS16e

Purpose:

To execute a branch to an instruction address in a register

Description: PC ← GPR[rx]

The program unconditionally jumps to the address specified in GPR rx, with no delay slot instruction. The instruction
sets the ISA Mode bit to the value in GPR rx bit 0.

Bit 0 of the target address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

The opcode and function field describe a general jump-thru-register operation, with the nd (no delay slot), l (link),
and ra (source register is ra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have spe-
cific values for these variables.

Restrictions:

The effective target address in GPR rx must be naturally-aligned. If bit 0 is zero and bit 1 is one, then an Address
Error exception occurs when the jump target is subsequently fetched as an instruction.

Operation:

I: PC ← GPR[Xlat(rx)]GPRLEN-1..1 || 0
ISAMode ← GPR[Xlat(rx)]0

Exceptions:

None.

Programming Notes:

Unlike most MIPS “jump” instructions, JRC does not have a delay slot.

15 11 10 8 7 6 5 4 0

RR

11101
rx

nd

1

l

0

ra

0

J(AL)R(C)

00000

5 3 1 1 1 5

Jump Register Through MIPS16e GPR, Compact JRC

110 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LB

Format: LB ry, offset(rx) MIPS16e

Purpose:

To load a byte from memory as a signed value.

Description: GPR[ry] ← memory[GPR[rx] + offset]

The 5-bit offset is zero-extended, then added to the contents of GPR rx to form the effective address. The contents of
the byte at the memory location specified by the effective address are sign-extended and loaded into GPR ry.

Restrictions:

None

Operation:

vAddr ← zero_extend(offset) + GPR[Xlat(rx)]
(pAddr, CCA)← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor ReverseEndian

3)
memdoubleword← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor BigEndianCPU3

GPR[Xlat(ry)]← sign_extend(memdoubleword7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

15 11 10 8 7 5 4 0

LB

10000
rx ry offset

5 3 3 5

Load Byte LB

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 111

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LB (Extended)

Format: LB ry, offset(rx) MIPS16e

Purpose:

To load a byte from memory as a signed value.

Description: GPR[ry] ← memory[GPR[rx] + offset]

The 16-bit offset is sign-extended, then added to the contents of GPR rx to form the effective address. The contents of
the byte at the memory location specified by the effective address are sign-extended and loaded into GPR ry.

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[Xlat(rx)]
(pAddr, CCA)← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor ReverseEndian

3)
memdoubleword← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor BigEndianCPU3

GPR[Xlat(ry)]← sign_extend(memdoubleword7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

LB

10000
rx ry offset 4:0

5 6 5 5 3 3 5

Load Byte (Extended) LB

112 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LBU

Format: LBU ry, offset(rx) MIPS16e

Purpose:

To load a byte from memory as an unsigned value

Description: GPR[ry] ← memory[GPR[rx] + offset]

The 5-bit offset is zero-extended, then added to the contents of GPR rx to form the effective address. The contents of
the byte at the memory location specified by the effective address are zero-extended and loaded into GPR ry.

Restrictions:

None

Operation:

vAddr ← zero_extend(offset) + GPR[Xlat(rx)]
(pAddr, CCA)← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor ReverseEndian

3)
memdoubleword← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor BigEndianCPU3

GPR[Xlat(ry)]← zero_extend(memdoubleword7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

15 11 10 8 7 5 4 0

LBU

10100
rx ry offset

5 3 3 5

Load Byte Unsigned LBU

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 113

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LBU (Extended)

Format: LBU ry, offset(rx) MIPS16e

Purpose:

To load a byte from memory as an unsigned value

Description: GPR[ry] ← memory[GPR[rx] + offset]

The 16-bit offset is sign-extended, then added to the contents of GPR rx to form the effective address. The contents of
the byte at the memory location specified by the effective address are zero-extended and loaded into GPR ry.

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[Xlat(rx)]
(pAddr, CCA)← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor ReverseEndian

3)
memdoubleword← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor BigEndianCPU3

GPR[Xlat(ry)]← zero_extend(memdoubleword7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

LBU

10100
rx ry offset 4:0

5 6 5 5 3 3 5

Load Byte Unsigned (Extended) LBU

114 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LD

Format: LD ry, offset(rx) MIPS16e (64-bit only)

Purpose:

To load a doubleword from memory.

Description: GPR[ry] ← memory[GPR[rx] + offset]

The 5-bit offset is shifted left 3 bits, zero-extended to 64 bits, then added to the contents of GPR rx to form the effec-
tive address. The contents of the 64-bit doubleword at the memory location specified by the effective address are
loaded into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← zero_extend(offset || 03) + GPR[Xlat(rx)]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memdoubleword← LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[Xlat(ry)]← memdoubleword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

15 11 10 8 7 5 4 0

LD

00111
rx ry offset

5 3 3 5

Load Doubleword LD

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 115

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LD (Extended)

Format: LD ry, offset(rx) MIPS16e (64-bit only)

Purpose:

To load a doubleword from memory.

Description: GPR[ry] ← memory[GPR[rx] + offset]

The 16-bit offset is sign-extended to 64 bits and then added to the contents of GPR rx to form the effective address.
The contents of the 64-bit doubleword at the memory location specified by the effective address are loaded into GPR
ry.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[Xlat(rx)]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memdoubleword← LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[Xlat(ry)]← memdoubleword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

LD

00111
rx ry offset 4:0

5 6 5 5 3 3 5

Load Doubleword (Extended) LD

116 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LD (PC-Relative)

Format: LD ry, offset(pc) MIPS16e (64-bit only)

Purpose:

To load a PC-relative doubleword from memory.

Description: GPR[ry] ← memory[PC + offset]

The 5-bit offset is shifted left 3 bits, zero-extended to 64 bits, and added either to the address of the LD instruction or
to the address of the jump instruction in whose delay slot the LD is executed. The 3 lower bits of this result are
cleared to form the effective address. The contents of the 64-bit doubleword at the memory location specified by the
effective address are loaded into GPR ry.

Restrictions:

Operation:

I-1: base_pc ← PC
I: if not (JumpDelaySlot(PC)) then

base_pc ← PC
endif

vAddr ← (base_pcGPRLEN-1..3 + zero_extend(offset)) || 0
3

(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memdoubleword← LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[Xlat(ry)]← memdoubleword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Reserved Instruction

Programming Note

For the purposes of watchpoints (provided by the CP0 WatchHi and WatchLo registers) and EJTAG breakpoints, the
PC-relative reference is considered to be a data, rather than an instruction reference. That is, the watchpoint or break-
point is triggered only if enabled for data references.

15 11 10 8 7 5 4 0

I64

11111

LDPC

100
ry offset

5 3 3 5

Load Doubleword (PC-Relative) LD

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 117

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LD (PC-Relative, Extended)

Format: LD ry, offset(pc) MIPS16e (64-bit only)

Purpose:

To load a PC-relative doubleword from memory.

Description: GPR[ry] ← memory[PC + offset]

The 16-bit offset is sign-extended and added to the address of the LD instruction; this forms the effective address.
Before the addition, the 3 lower bits of the instruction address are cleared. The contents of the 64-bit doubleword at
the memory location specified by the effective address are loaded into GPR ry.

Restrictions:

A PC-relative, extended LD may not be placed in the delay slot of a jump instruction.

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← (PCGPRLEN-1..3 || 0
3) + sign_extend(offset)

if vAddr2..0 ≠ 03 then
SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memdoubleword← LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[Xlat(ry)]← memdoubleword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

Programming Note

For the purposes of watchpoints (provided by the CP0 WatchHi and WatchLo registers) and EJTAG breakpoints, the
PC-relative reference is considered to be a data, rather than an instruction reference. That is, the watchpoint or break-
point is triggered only if enabled for data references.

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

I64

11111

LDPC

100
ry offset 4:0

5 6 5 5 3 3 5

Load Doubleword (PC-Relative, Extended) LD

118 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LD (SP-Relative)

Format: LD ry, offset(sp) MIPS16e (64-bit only)

Purpose:

To load a doubleword from memory.

Description: GPR[ry] ← memory[GPR[sp] + offset]

The 5-bit offset is shifted left 3 bits, zero-extended to 64 bits, then added to the contents of GPR 29 to form the effec-
tive address. The contents of the 64-bit doubleword at the memory location specified by the effective address are
loaded into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← zero_extend(offset || 03) + GPR[29]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memdoubleword← LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[Xlat(ry)]← memdoubleword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

15 11 10 8 7 5 4 0

I64

11111

LDSP

000
ry offset

5 3 3 5

Load Doubleword (SP-Relative) LD

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 119

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LD (SP-Relative, Extended)

Format: LD ry, offset(sp) MIPS16e (64-bit only)

Purpose:

To load an SP-relative doubleword from memory.

Description: GPR[ry] ← memory[GPR[sp] + offset]

The 16-bit offset is sign-extended to 64 bits and then added to the contents of GPR 29 to form the effective address.
The contents of the 64-bit doubleword at the memory location specified by the effective address are loaded into GPR
ry.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[29]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memdoubleword← LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[Xlat(ry)]← memdoubleword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

I64

11111

LDSP

000
ry offset 4:0

5 6 5 5 3 3 5

Load Doubleword (SP-Relative, Extended) LD

120 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LH

Format: LH ry, offset(rx) MIPS16e

Purpose:

To load a halfword from memory as a signed value.

Description: GPR[ry] ← memory[GPR[rx] + offset]

The 5-bit offset is shifted left 1 bit, zero-extended, then added to the contents of GPR rx to form the effective address.
The contents of the halfword at the memory location specified by the effective address are sign-extended and loaded
into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← zero_extend(offset || 0) + GPR[Xlat(rx)]
if vAddr0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE–1..3 || (pAddr2..0 xor (ReverseEndian

2 || 0))
memdoubleword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU

2 || 0)
GPR[Xlat(ry)] ← sign_extend(memdoubleword15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

15 11 10 8 7 5 4 0

LH

10001
rx ry offset

5 3 3 5

Load Halfword LH

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 121

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LH (Extended)

Format: LH ry, offset(rx) MIPS16e

Purpose:

To load a halfword from memory as a signed value.

Description: GPR[ry] ← memory[GPR[rx] + offset]

The 16-bit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The con-
tents of the halfword at the memory location specified by the effective address are sign-extended and loaded into
GPR ry.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[Xlat(rx)]
if vAddr0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE–1..3 || (pAddr2..0 xor (ReverseEndian

2 || 0))
memdoubleword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU

2 || 0)
GPR[Xlat(ry)] ← sign_extend(memdoubleword15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

LH

10001
rx ry offset 4:0

5 6 5 5 3 3 5

Load Halfword (Extended) LH

122 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LHU

Format: LHU ry, offset(rx) MIPS16e

Purpose:

To load a halfword from memory as an unsigned value.

Description: GPR[ry] ← memory[GPR[rx] + offset]

The 5-bit offset is shifted left 1 bit, zero-extended, then added to the contents of GPR rx to form the effective address.
The contents of the halfword at the memory location specified by the effective address are zero-extended and loaded
into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← zero_extend(offset || 0) + GPR[Xlat(rx)]
if vAddr0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE–1..3 || (pAddr2..0 xor (ReverseEndian

2 || 0))
memdoubleword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU

2 || 0)
GPR[Xlat(ry)] ← zero_extend(memdoubleword15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

15 11 10 8 7 5 4 0

LHU

10101
rx ry offset

5 3 3 5

Load Halfword Unsigned LHU

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 123

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LHU (Extended)

Format: LHU ry, offset(rx) MIPS16e

Purpose:

To load a halfword from memory as an unsigned value.

Description: GPR[ry] ← memory[GPR[rx] + offset]

The 16-bit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The con-
tents of the halfword at the memory location specified by the effective address are zero-extended and loaded into
GPR ry.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[Xlat(rx)]
if vAddr0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE–1..3 || (pAddr2..0 xor (ReverseEndian

2 || 0))
memdoubleword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU

2 || 0)
GPR[Xlat(ry)] ← zero_extend(memdoubleword15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

LHU

10101
rx ry offset 4:0

5 6 5 5 3 3 5

Load Halfword Unsigned (Extended) LHU

124 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LI

Format: LI rx, immediate MIPS16e

Purpose:

To load a constant into a GPR.

Description: GPR[rx] ← immediate

The 8-bit immediate is zero-extended and then loaded into GPR rx.

Restrictions:

None

Operation:

GPR[Xlat(rx)] ← zero_extend(immediate)

Exceptions:

None

15 11 10 8 7 0

LI

01101
rx immediate

5 3 8

Load Immediate LI

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 125

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LI (Extended)

Format: LI rx, immediate MIPS16e

Purpose:

To load a constant into a GPR.

Description: GPR[rx] ← immediate

The 16-bit immediate is zero-extended and then loaded into GPR rx.

Restrictions:

None

Operation:

GPR[Xlat(rx)] ← zero_extend(immediate)

Exceptions:

None

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
immediate 10:5 immediate 15:11

LI

01101
rx

0

000
iummediate 4:0

5 6 5 5 3 3 5

Load Immediate (Extended) LI

126 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LW

Format: LW ry, offset(rx) MIPS16e

Purpose:

To load a word from memory as a signed value.

Description: GPR[ry] ← memory[GPR[rx] + offset]

The 5-bit offset is shifted left 2 bits, zero-extended, then added to the contents of GPR rx to form the effective
address. The contents of the word at the memory location specified by the effective address are loaded into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← zero_extend(offset || 02) + GPR[Xlat(rx)]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
memdoubleword← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU || 0

2)
GPR[Xlat(ry)]← sign_extend(memdoubleword31+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

15 11 10 8 7 5 4 0

LW

10011
rx ry offset

5 3 3 5

Load Word LW

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 127

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LW (Extended)

Format: LW ry, offset(rx) MIPS16e

Purpose:

To load a word from memory as a signed value.

Description: GPR[ry] ← memory[GPR[rx] + offset]

The 16-bit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The con-
tents of the word at the memory location specified by the effective address are loaded into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[Xlat(rx)]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
memdoubleword← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU || 0

2)
GPR[Xlat(ry)]← sign_extend(memdoubleword31+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

LW

10011
rx ry offset 4:0

5 6 5 5 3 3 5

Load Word (Extended) LW

128 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LW (PC-Relative)

Format: LW rx, offset(pc) MIPS16e

Purpose:

To load a PC-relative word from memory as a signed value.

Description: GPR[rx] ← memory[PC + offset]

The 8-bit offset is shifted left 2 bits, zero-extended, and added either to the address of the LW instruction or to the
address of the jump instruction in whose delay slot the LW is executed. The 2 lower bits of this result are cleared to
form the effective address. The contents of the 32-bit word at the memory location specified by the effective address
are loaded into GPR rx.

Restrictions:

None

Operation:

I-1: base_pc ← PC
I: if not (JumpDelaySlot(PC)) then

base_pc ← PC
endif
vAddr ← (base_pcGPRLEN-1..2 + zero_extend(offset)) || 0

2

(pAddr, CCA)← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
memdoubleword← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU || 0

2)
GPR[Xlat(rx)]← sign_extend(memdoubleword31+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error

Programming Note

For the purposes of watchpoints (provided by the CP0 WatchHi and WatchLo registers) and EJTAG breakpoints, the
PC-relative reference is considered to be a data, rather than an instruction reference. That is, the watchpoint or break-
point is triggered only if enabled for data references.

15 11 10 8 7 0

LWPC
10110 rx offset

5 3 8

Load Word (PC-Relative) LW

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 129

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LW (PC-Relative, Extended)

Format: LW rx, offset(pc) MIPS16e

Purpose:

To load a PC-relative word from memory as a signed value.

Description: GPR[rx] ← memory[PC + offset]

The 16-bit offset is sign-extended and added to the address of the LW instruction; this forms the effective address.
Before the addition, the 2 lower bits of the instruction address are cleared. The contents of the 32-bit word at the
memory location specified by the effective address are loaded into GPR rx.

Restrictions:

A PC-relative, extended LW may not be placed in the delay slot of a jump instruction.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← (PCGPRLEN-1..2 || 02) + sign_extend(offset)
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
memdoubleword← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU || 0

2)
GPR[Xlat(rx)]← sign_extend(memdoubleword31+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

Programming Note

For the purposes of watchpoints (provided by the CP0 WatchHi and WatchLo registers) and EJTAG breakpoints, the
PC-relative reference is considered to be a data, rather than an instruction reference. That is, the watchpoint or break-
point is triggered only if enabled for data references.

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

LWPC

10110
rx

0

000
offset 4:0

5 6 5 5 3 3 5

Load Word (PC-Relative, Extended) LW

130 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LW (SP-Relative)

Format: LW rx, offset(sp) MIPS16e

Purpose:

To load an SP-relative word from memory as a signed value.

Description: GPR[rx] ← memory[GPR[sp] + offset]

The 8-bit offset is shifted left 2 bits, zero-extended, then added to the contents of GPR 29 to form the effective
address. The contents of the word at the memory location specified by the effective address are loaded into GPR rx.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← zero_extend(offset || 02) + GPR[29]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
memdoubleword← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU || 0

2)
GPR[Xlat(ry)]← sign_extend(memdoubleword31+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

15 11 10 8 7 0

LWSP

10010
rx offset

5 3 8

Load Word (SP-Relative) LW

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 131

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LW (SP-Relative, Extended)

Format: LW rx, offset(sp) MIPS16e

Purpose:

To load an SP-relative word from memory as a signed value.

Description: GPR[rx] ← memory[GPR[sp] + offset]

The 16-bit offset is sign-extended and then added to the contents of GPR 29 to form the effective address. The con-
tents of the word at the memory location specified by the effective address are loaded into GPR rx.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[29]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
memdoubleword← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU || 0

2)
GPR[Xlat(ry)]← sign_extend(memdoubleword31+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

LWSP

10010
rx

0

000
offset 4:0

5 6 5 5 3 3 5

Load Word (SP-Relative, Extended) LW

132 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LWU

Format: LWU ry, offset(rx) MIPS16e (64-bit only)

Purpose:

To load a word from memory as an unsigned value.

Description: GPR[ry] ← memory[GPR[rx] + offset]

The 5-bit offset is shifted left 2 bits, zero-extended to 64 bits, then added to the contents of GPR rx to form the effec-
tive address. The contents of the word at the memory location specified by the effective address are zero-extended
and loaded into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If either of the two least-significant bits of the address are non-zero,
an Address Error exception occurs.

Operation:

vAddr ← zero_extend(offset || 02) + GPR[Xlat(rx)]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
memdoubleword← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU || 0

2)
GPR[Xlat(ry)]← 032 || memdoubleword31+8*byte..8*byte

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

15 11 10 8 7 5 4 0

LWU

10111
rx ry offset

5 3 3 5

Load Word Unsigned LWU

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 133

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

LWU (Extended)

Format: LWU ry, offset(rx) MIPS16e (64-bit only)

Purpose:

To load a word from memory as an unsigned value.

Description: GPR[ry] ← memory[GPR[rx] + offset]

The 16-bit offset is sign-extended to 64 bits and then added to the contents of GPR rx to form the effective address.
The contents of the word at the memory location specified by the effective address are zero-extended and loaded into
GPR ry.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[Xlat(rx)]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
memdoubleword← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU || 0

2)
GPR[Xlat(ry)]← 032 || memdoubleword31+8*byte..8*byte

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

LWU

10111
rx ry offset 4:0

5 6 5 5 3 3 5

Load Word Unsigned (Extended) LWU

134 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

MFHI

Format: MFHI rx MIPS16e

Purpose:

To copy the special purpose HI register to a GPR.

Description: GPR[rx] ← HI

The contents of special register HI are loaded into GPR rx.

Restrictions:

None

Operation:

GPR[Xlat(rx)] ← HI

Exceptions:

None

Historical Information:

In the MIPS I, II, and III architectures, the two instructions which follow the MFHI must not moodify the HI register.
If this restriction is violated, the result of the MFHI is UNPREDICTABLE. This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

15 11 10 8 7 5 4 0

RR

11101
rx

0

000

MFHI

10000

5 3 3 5

Move From HI Register MFHI

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 135

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

MFLO

Format: MFLO rx MIPS16e

Purpose:

To copy the special purpose LO register to a GPR.

Description: GPR[rx] ← LO

The contents of special register LO are loaded into GPR rx.

Restrictions:

None

Operation:

GPR[Xlat(rx)] ← LO

Exceptions:

None

Historical Information:

In the MIPS I, II, and III architectures, the two instructions which follow the MFHI must not moodify the HI register.
If this restriction is violated, the result of the MFHI is UNPREDICTABLE. This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

15 11 10 8 7 5 4 0

RR

11101
rx

0

000

MFLO

10010

5 3 3 5

Move From LO Register MFLO

136 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

MOVE r32, rz

Format: MOVE r32, rz MIPS16e

Purpose:

To move the contents of a GPR to a GPR.

Description: GPR[r32] ← GPR[rz]

The contents of GPR rz are moved into GPR r32, and r32 can specify any one of the 32 GPRs.

Restrictions:

None

Operation:

GPR[r32] ← GPR[Xlat(rz)]

Exceptions:

None

Programming Notes:

move $0, $0, expressed as NOP, is the assembly idiom used to denote no operation.

15 11 10 8 7 5 4 3 2 0

I8

01100

MOV32R

101

r32

2:0

r32

4:3
rz

5 3 3 2 3

Move MOVE

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 137

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

MOVE ry, r32

Format: MOVE ry, r32 MIPS16e

Purpose:

To move the contents of a GPR to a GPR.

Description: GPR[ry] ← GPR[r32]

The contents of GPR r32 are moved into GPR ry, and r32 can specify any one of the 32 GPRs.

Restrictions:

None

Operation:

GPR[Xlat(ry)] ← GPR[r32]

Exceptions:

None

15 11 10 8 7 5 4 0

I8

01100

MOVR32

111
ry r32

5 3 3 5

Move MOVE

138 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

MULT

Format: MULT rx, ry MIPS16e

Purpose:

To multiply 32-bit signed integers.

Description: (LO, HI) ← GPR[rx] × GPR[ry]

The 32-bit word value in GPR rx is multiplied by the 32-bit value in GPR ry, treating both operands as signed values,
to produce a 64-bit result. The low-order 32-bit word of the result is sign-extended and placed into special register
LO, and the high-order 32-bit word is sign-extended and placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then
the result of the operation is UNPREDICTABLE.

Operation:

if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then
UndefinedResult()

endif
prod ← GPR[Xlat(rx)] * GPR[Xlat(ry)]
LO ← sign_extend(prod31..0)
HI ← sign_extend(prod63..32)

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

15 11 10 8 7 5 4 0

RR

11101
rx ry

MULT

11000

5 3 3 5

Multiply Word MULT

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 139

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

MULTU

Format: MULTU rx, ry MIPS16e

Purpose:

To multiply 32-bit unsigned integers.

Description: (LO, HI) ← GPR[rx] × GPR[ry]

The 32-bit word value in GPR rx is multiplied by the 32-bit value in GPR ry, treating both operands as unsigned val-
ues, to produce a 64-bit result. The low-order 32-bit word of the result is sign-extended and placed into special regis-
ter LO, and the high-order 32-bit word is sign-extended and placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then
the result of the operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UndefinedResult()

endif
prod ← (0 || GPR[Xlat(rx)]) * (0 || GPR[Xlat(ry)])
LO ← sign_extend(prod31..0)
HI ← sign_extend(prod63..32)

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

15 11 10 8 7 5 4 0

RR

11101
rx ry

MULTU

11001

5 3 3 5

Multiply Unsigned Word MULTU

140 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

NEG

Format: NEG rx, ry MIPS16e

Purpose:

To negate an integer value.

Description: GPR[rx] ← 0 - GPR[ry]

The contents of GPR ry are subtracted from zero to form a 32-bit result. The result is placed in GPR rx.

Restrictions:

If GPR ry does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if (NotWordValue(GPR[Xlat(ry)])) then
UNPREDICTABLE

endif
temp ← 0 - GPR[Xlat(ry)]
GPR[Xlat(rx)] ← sign_extend(temp31..0)

Exceptions:

None

15 11 10 8 7 5 4 0

RR

11101
rx ry

NEG

01011

5 3 3 5

Negate NEG

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 141

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

NOP

Format: NOP MIPS16e Assembly Idiom

Purpose:

To perform no operation.

Description:

NOP is the assembly idiom used to denote no operation. The actual instruction is interpreted by the hardware as
MOVE $0,$16.

Restrictions:

None

Operation:

None

Exceptions:

None

Programming Notes:

The 0x6500 instruction word, which represents MOVE $0,$16, is the preferred NOP for software to use to fill jump
delay slots and to pad out alignment sequences.

15 11 10 8 7 5 4 3 2 0

I8

01100

MOV32R

101

0

000

0

00

0

000

5 3 3 2 3

No Operation NOP

142 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

NOT

Format: NOT rx, ry MIPS16e

Purpose:

To complement an integer valu

Description: GPR[rx] ← (NOT GPR[ry])

The contents of GPR ry are bitwise-inverted and placed in GPR rx.

Restrictions:

None

Operation:

GPR[Xlat(rx)] ← (not GPR[Xlat(ry)])

Exceptions:

None

15 11 10 8 7 5 4 0

RR

11101
rx ry

NOT

01111

5 3 3 5

Not NOT

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 143

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

OR

Format: OR rx, ry MIPS16e

Purpose:

To do a bitwise logical OR.

Description: GPR[rx] ← GPR[rx] OR GPR[ry]

The contents of GPR ry are combined with the contents of GPR rx in a bitwise logical OR operation. The result is
placed in GPR rx.

Restrictions:

None

Operation:

GPR[Xlat(rx)] ← GPR[Xlat(rx)] or GPR[Xlat(ry)]

Exceptions:

None

15 11 10 8 7 5 4 0

RR

11101
rx ry

OR

01101

5 3 3 5

Or OR

144 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

RESTORE

Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize} (All args are optional) MIPS16e

Purpose:

To deallocate a stack frame before exit from a subroutine, restoring return address and static registers, and adjusting
stack

Description: GPR[ra] ← Stack and/or GPR[17]← Stack and/or GPR[16]← Stack,

sp ← sp + (framesize*8)

Restore the ra and/or GPR 16 and/or GPR 17 (s0 and s1 in the MIPS ABI calling convention) registers from the stack
if the corresponding ra, s0, or s1 bits of the instruction are set, and adjust the stack pointer by 8 times the framesize
value. Registers are loaded from the stack assuming higher numbered registers are stored at higher stack addresses. A
framesize value of 0 is interpreted as a stack adjustment of 128. On a MIPS64 implementation, words are loaded from
the stack, sign-extended and loaded into the corresponding GPR, using the equivalent of load word.

The opcode and function field describe a general save/restore operation, with the s fields as a variables. The individ-
ual instructions, RESTORE and SAVE have specific values for this variable.

Restrictions:

If either of the 2 least-significant bits of the stack pointer are not zero, and any of the ra, s0, or s1 bits are set, then an
Address Error exception will occur.

Operation:

if framesize = 0 then
temp ← GPR[29] + 128

else
temp ← GPR[29] + (0 || (framesize << 3))

endif
temp2 ← temp
if ra = 1 then

temp ← temp − 4
GPR[31] ← LoadStackWord(temp)

endif
if s1 = 1 then

temp ← temp - 4
GPR[17] ← LoadStackWord(temp)

endif
if s0 = 1 then

temp ← temp − 4
GPR[16] ← LoadStackWord(temp)

endif
GPR[29] ← temp2

LoadStackWord(vaddr)
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))

15 11 10 8 7 5 4 0

I8

01100

SVRS

100

s

0
ra s0 s1 framesize

5 3 1 1 1 1 4

Restore Registers and Deallocate Stack Frame RESTORE

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 145

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

memdoubleword← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU || 0

2)
LoadStackWord ← sign_extend(memdoubleword31+8*byte..8*byte)

enfunction LoadStackWord

Exceptions:

TLB refill, TLB invalid, Address error, Bus Error

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of loads from memory. A
full restart of the sequence of operations will be performed on return from any exception taken during execution.

146 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

RESTORE (Extended)

Format: RESTORE {ra,}{xsregs,}{aregs,}{framesize}(All arguments optional) MIPS16e

Purpose:

To deallocate a stack frame before exit from a subroutine, restoring return address and static registers from an
extended static register set, and adjusting the stack

Description: GPR[ra] ← Stack and/or GPR[18-23,30] ← Stack and/or GPR[17] ← Stack
and/or GPR[16] ← Stack and/or GPR[4-7] ← Stack, sp ← sp + (framesize ∗ 8)

Restore the ra register from the stack if the ra bit is set in the instruction. Restore from the stack the number of regis-
ters in the set GPR[18-23,30] indicated by the value of the xsregs field. Restore from the stack GPR 16 and/or GPR
17 (s0 and s1 in the MIPS ABI calling convention) from the stack if the corresponding s0 and s1 bits of the instruc-
tion are set, restore from the stack the number of registers in the range GPR[4-7] indicated by the aregs field, and
adjust the stack pointer by 8 times the 8-bit concatenated framesize value. Registers are loaded from the stack assum-
ing higher numbered registers are stored at higher stack addresses. On a MIPS64 implementation, words are loaded
from the stack, sign-extended and loaded into the corresponding GPR, using the equivalent of load word.

Interpretation of the aregs Field

In the standard MIPS ABIs, GPR[4-7] are designated as argument passing registers, a0-a3. When they are so used,
they must be saved on the stack at locations allocated by the caller of the routine being entered, but need not be
restored on subroutine exit. In other MIPS16e calling sequences, however, it is possible that some of the registers
GPR[4-7] need to be saved as static registers on the local stack instead of on the caller stack, and restored before
return from the subroutine. The encoding used for the aregs field of an extended RESTORE instruction is the same as
that used for the extended SAVE, but since argument registers can be ignored for the purposes of a RESTORE, only
the registers treated as static need be handled. The following table shows the RESTORE encoding of the aregs field

31 27 26 24 23 20 19 16 15 11 10 8 7 6 5 4 3 0

EXTEND

11110
xsregs framesize 7:4 aregs

I8

01100

SVRS

100

s

0
ra s0 s1 framesize 3:0

5 3 4 4 5 3 1 1 1 1 4

Restore Registers and Deallocate Stack Frame (Extended) RESTORE

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 147

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

 .

Restrictions:

If either of the 2 least-significant bits of the stack pointer are not zero, and any of the ra, s0, s1, or xsregs fields are
non-zero or the aregs field contains an encoding that implies a register load, then an Address Error exception will
occur.

aregs
Encoding
(binary)

Registers Restored as Static
Registers

0 0 0 0 None

0 0 0 1 GPR[7]

0 0 1 0 GPR[6], GPR[7]

0 0 1 1 GPR[5], GPR[6], GPR[7]

1 0 1 1 GPR[4], GPR[5], GPR[6]. GPR[7]

0 1 0 0 None

0 1 0 1 GPR[7]

0 1 1 0 GPR[6], GPR[7]

0 1 1 1 GPR[5], GPR[6], GPR[7]

1 0 0 0 None

1 0 0 1 GPR[7]

1 0 1 0 GPR[6], GPR[7]

1 1 0 0 None

1 1 0 1 GPR[7]

1 1 1 0 None

1 1 1 1 Reserved

Restore Registers and Deallocate Stack Frame (Extended, cont.) RESTORE

148 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Operation:

temp ← GPR[29] + (0 || (framesize << 3))
temp2 ← temp
if ra = 1 then

temp ← temp − 4
GPR[31] ← LoadStackWord(temp)

endif
if xsregs > 0 then

if xsregs > 1 then
if xsregs > 2 then

if xsregs > 3 then
if xsregs > 4 then

if xsregs > 5 then
if xsregs > 6 then

temp ← temp − 4
GPR[30] ← LoadStackWord(temp)

endif
temp ← temp − 4
GPR[23] ← LoadStackWord(temp)

endif
temp ← temp − 4
GPR[22] ← LoadStackWord(temp)

endif
temp ← temp - 4
GPR[21] ← LoadStackWord(temp)

endif
temp ← temp − 4
GPR[20] ← LoadStackWord(temp)

endif
temp ← temp − 4
GPR[19] ← LoadStackWord(temp)

endif
temp ← temp − 4
GPR[18] ← LoadStackWord(temp)

endif
if s1 = 1 then

temp ← temp − 4
GPR[17] ← LoadStackWord(temp)

endif
if s0 = 1 then

temp ← temp − 4
GPR[16] ← LoadStackWord(temp)

endif
case aregs of

0b0000 0b0100 0b1000 0b1100 0b1110: astatic ← 0
0b0001 0b0101 0b1001 0b1101: astatic ← 1
0b0010 0b0110 0b1010: astatic ← 2
0b0011 0b0111: astatic ← 3
0b1011: astatic ← 4
otherwise: UNPREDICTABLE

endcase

Restore Registers and Deallocate Stack Frame (Extended, cont.) RESTORE

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 149

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

if astatic > 0 then
temp ← temp − 4
GPR[7] ← LoadStackWord(temp)
if astatic > 1 then

temp ← temp − 4
GPR[6] ← LoadStackWord(temp)
if astatic > 2 then

temp ← temp − 4
GPR[5] ← LoadStackWord(temp)
if astatic > 3 then

temp ← temp − 4
GPR[4] ← LoadStackWord(temp)

endif
endif

endif
endif
GPR[29] ← temp2

LoadStackWord(vaddr)
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
memdoubleword← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU || 0

2)
LoadStackWord ← sign_extend(memdoubleword31+8*byte..8*byte)

enfunction LoadStackWord

Exceptions:

TLB refill, TLB invalid, Address error, Bus Error

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of loads from memory. A
full restart of the sequence of operations will be performed on return from any exception taken during execution.

Behavior of the processor is UNPREDICTABLE for Reserved values of aregs.

Restore Registers and Deallocate Stack Frame (Extended, cont.) RESTORE

150 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SAVE

Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional) MIPS16e

Purpose:

To set up a stack frame on entry to a subroutine, saving return address and static registers, and adjusting stack

Description: Stack← GPR[ra] and/or Stack ← GPR[17] and/or Stack ← GPR[16],

sp ← sp - (framesize * 8)

Save the ra and/or GPR 16 and/or GPR 17 (s0 and s1 in the MIPS ABI calling convention) on the stack if the corre-
sponding ra, s0, and s1 bits of the instruction are set, and adjust the stack pointer by 8 times the framesize value. Reg-
isters are stored with higher numbered registers at higher stack addresses. A framesize value of 0 is interpreted as a
stack adjustment of 128. On a MIPS64 implementation, only the lower 32 bits of each GPR are saved, using the
equivalent of store word.

The opcode and function field describe a general save/restore operation, with the s fields as a variables. The individ-
ual instructions, RESTORE and SAVE have specific values for this variable.

Restrictions:

If either of the 2 least-significant bits of the stack pointer are not zero, and any of the ra, s0, or s1 bits are set, then an
Address Error exception will occur.

Operation:

temp ← GPR[29]
if ra = 1 then

temp ← temp − 4
StoreStackWord(temp, GPR[31])

endif
if s1 = 1 then

temp ← temp − 4
StoreStackWord(temp, GPR[17])

endif
if s0 = 1 then

temp ← temp − 4
StoreStackWord(temp, GPR[16])

endif
if framesize = 0 then

temp ← GPR[29] − 128
else

temp ← GPR[29] − (0 || (framesize << 3))
endif
GPR[29] ← temp

StoreStackWord(vaddr, value)
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
bytesel← vAddr2..0 xor (BigEndianCPU || 0

2)

15 11 10 8 7 5 4 0

I8

01100

SVRS

100

s

1
ra s0 s1 framesize

5 3 1 1 1 1 4

Save Registers and Set Up Stack Frame SAVE

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 151

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

datadoubleword← value63-8*bytesel..0 || 0
8*bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)
endfunction StoreStackWord

Exceptions:

TLB refill, TLB invalid, TLB modified, Address error, Bus Error

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of stores to memory. A full
restart of the sequence of operations will be performed on return from any exception taken during execution.

152 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SAVE (Extended)

Format: SAVE {ra,}{xsregs,}{aregs,}{framesize} (All arguments optional) MIPS16e

Purpose:

To set up a stack frame on entry to a subroutine, saving return address, static, and argument registers, and adjusting
the stack

Description: Stack ← GPR[ra] and/or Stack ← GPR[18-23,30] and/or Stack ← GPR[17] and/or

Stack ← GPR[16] and/or Stack ← GPR[4-7], sp ← sp - (framesize * 8)

Save registers GPR[4-7] specified to be treated as incoming arguments by the aregs field. Save the ra register on the
stack if the ra bit of the instruction is set. Save the number of registers in the set GPR[18-23, 30] indicated by the
value of the xsregs field, and/or GPR 16 and/or GPR 17 (s0 and s1 in the MIPS ABI calling convention) on the stack
if the corresponding s0 and s1 bits of the instruction are set. Save the number of registers in the range GPR[4-7] that
are to be treated as static registers as indicated by the aregs field, and adjust the stack pointer by 8 times the 8-bit con-
catenated framesize value. Registers are stored with higher numbered registers at higher stack addresses. On a
MIPS64 implementation, only the lower 32 bits of each GPR are saved, using the equivalent of store word.

Interpretation of the aregs Field

In the standard MIPS ABIs, GPR[4-7] are designated as argument passing registers, a0-a3. When they are so used,
they must be saved on the stack at locations allocated by the caller of the routine being entered. In other MIPS16e
calling sequences, however, it is possible that some of the registers GPR[4-7] will need to be saved as static registers
on the local stack instead of on the caller stack. The encoding of the aregs field allows for 0-4 arguments, 0-4 statics,
and for mixtures of the two. Registers are bound to arguments in ascending order, a0, a1, a2, and a3, and thus
assigned to static values in the reverse order, GPR[7], GPR[6], GPR[5], and GPR[4]. The following table shows the
encoding of the aregs field.

31 27 26 24 23 20 19 16 15 11 10 8 7 6 5 4 3 0

EXTEND

11110
xsregs framesize 7:4 aregs

I8

01100

SVRS

100

s

1
ra s0 s1 framesize 3:0

5 3 4 4 5 3 1 1 1 1 4

Save Registers and Set Up Stack Frame (Extended) SAVE

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 153

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Restrictions:

If either of the 2 least-significant bits of the stack pointer are not zero, and any of the ra, s0, s1, or xsregs fields are
non-zero or the aregs field contains an value that implies a register store, then an Address Error exception will occur.

aregs
Encoding
(binary)

Registers Saved as
Arguments Registers Saved as Static Registers

0 0 0 0 None None

0 0 0 1 None GPR[7]

0 0 1 0 None GPR[6], GPR[7]

0 0 1 1 None GPR[5], GPR[6], GPR[7]

1 0 1 1 None GPR[4], GPR[5], GPR[6], GPR[7]

0 1 0 0 a0 None

0 1 0 1 a0 GPR[7]

0 1 1 0 a0 GPR[6], GPR[7]

0 1 1 1 a0 GPR[5], GPR[6], GPR[7]

1 0 0 0 a0, a1 None

1 0 0 1 a0, a1 GPR[7]

1 0 1 0 a0, a1 GPR[6], GPR[7]

1 1 0 0 a0, a1, a2 None

1 1 0 1 a0, a1, a2 GPR[7]

1 1 1 0 a0, a1, a2, a3 None

1 1 1 1 Reserved Reserved

Save Registers and Set Up Stack Frame (Extended, cont.) SAVE

154 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Operation:

temp ← GPR[29]
temp2 ← GPR[29]
case aregs of

0b0000 0b0001 0b0010 0b0011 0b1011: args ← 0
0b0100 0b0101 0b0110 0b0111: args ← 1
0b1000 0b1001 0b1010: args ← 2
0b1100 0b1101: args ← 3
0b1110: args ← 4
otherwise: UNPREDICTABLE

endcase
if args > 0 then

StoreStackWord(temp, GPR[4])
if args > 1 then

StoreStackWord(temp + 4, GPR[5])
if args > 2 then

StoreStackWord(temp + 8, GPR[6])
if args > 3 then

StoreStackWord(temp + 12, GPR[7])
endif

endif
endif

endif
if ra = 1 then

temp ← temp − 4
StoreStackWord(temp, GPR[31])

endif
if xsregs > 0 then

if xsregs > 1 then
if xsregs > 2 then

if xsregs > 3 then
if xsregs > 4 then

if xsregs > 5 then
if xsregs > 6 then

temp ← temp − 4
StoreStackWord(temp, GPR[30])

endif
temp ← temp − 4
StoreStackWord(temp, GPR[23])

endif
temp ← temp − 4
StoreStackWord(temp, GPR[22])

endif
temp ← temp − 4
StoreStackWord(temp, GPR[21])

endif
temp ← temp − 4
StoreStackWord(temp, GPR[20])

endif
temp ← temp − 4
StoreStackWord(temp, GPR[19])

endif
temp ← temp − 4
StoreStackWord(temp, GPR[18])

endif

Save Registers and Set Up Stack Frame (Extended, cont.) SAVE

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 155

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

if s1 = 1 then
temp ← temp − 4
StoreStackWord(temp, GPR[17])

endif
if s0 = 1 then

temp ← temp − 4
StoreStackWord(temp, GPR[16])

endif
case aregs of

0b0000 0b0100 0b1000 0b1100 0b1110: astatic ← 0
0b0001 0b0101 0b1001 0b1101: astatic ← 1
0b0010 0b0110 0b1010: astatic ← 2
0b0011 0b0111: astatic ← 3
0b1011: astatic ← 4
otherwise: UNPREDICTABLE

endcase
if astatic > 0 then

temp ← temp − 4
StoreStackWord(temp, GPR[7])
if astatic > 1 then

temp ← temp − 4
StoreStackWord(temp, GPR[6])
if astatic > 2 then

temp ← temp − 4
StoreStackWord(temp, GPR[5])
if astatic > 3 then

temp ← temp − 4
StoreStackWord(temp, GPR[4])

endif
endif

endif
endif
temp ← temp2 − (0 || (framesize << 3))
GPR[29] ← temp

StoreStackWord(vaddr, value)
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
bytesel← vAddr2..0 xor (BigEndianCPU || 0

2)
datadoubleword← value63-8*bytesel..0 || 0

8*bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)
endfunction StoreStackWord

Exceptions:

TLB refill, TLB invalid, TLB modified, Address error, Bus Error

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of stores to memory. A full
restart of the sequence of operations will be performed on return from any exception taken during execution.

Behavior of the processor is UNPREDICTABLE for Reserved values of aregs.

Save Registers and Set Up Stack Frame (Extended, cont.) SAVE

156 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SB

Format: SB ry, offset(rx) MIPS16e

Purpose:

To store a byte to memory.

Description: memory[GPR[rx] + offset] ← GPR[ry]

The 5-bit offset is zero-extended, then added to the contents of GPR rx to form the effective address. The least-signif-
icant byte of GPR ry is stored at the effective address.

Restrictions:

None

Operation:
vAddr ← zero_extend(offset) + GPR[Xlat(rx)]
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor ReverseEndian

3)
bytesel ← vAddr2..0 xor BigEndianCPU3

datadoubleword← GPR[rt]63–8*bytesel..0 || 0
8*bytesel

StoreMemory (CCA, BYTE, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

15 11 10 8 7 5 4 0

SB

11000
rx ry offset

5 3 3 5

Store Byte SB

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 157

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SB (Extended)

Format: SB ry, offset(rx) MIPS16e

Purpose:

To store a byte to memory.

Description: memory[GPR[rx] + offset] ← GPR[ry]

The 16-bit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The
least-significant byte of GPR ry is stored at the effective address.

Restrictions:

None

Operation:
vAddr ← sign_extend(offset) + GPR[Xlat(rx)]
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor ReverseEndian

3)
bytesel ← vAddr2..0 xor BigEndianCPU3

datadoubleword← GPR[rt]63–8*bytesel..0 || 0
8*bytesel

StoreMemory (CCA, BYTE, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

SB

11000
rx ry offset 4:0

5 6 5 5 3 3 5

Store Byte (Extended) SB

158 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SEB

Format: SEB rx MIPS16e

Purpose:

Sign-extend least significant byte in register rx.

Description: GPR[rx] ← sign_extend(GPR[rx]7..0)

The least significant byte of rx is sign-extended and the value written back to rx.

Restrictions:

If GPR rx does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordValue(GPR[Xlat(rx)]) then
UNPREDICTABLE

endif
temp ← GPR[Xlat(rx)]
GPR[Xlat(rx)] ← sign_extend(temp7..0)

Exceptions:

None

Programming Notes:

None.

15 11 10 8 7 5 4 0

RR

11101
rx

SEB

100

CNVT

10001

5 3 3 5

Sign-Extend Byte SEB

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 159

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SEH

Format: SEH rx MIPS16e

Purpose:

Sign-extend least significant word in register rx.

Description: GPR[rx] ← sign_extend(GPR[rx]15..0);

The least significant halfword of rx is sign-extended and the value written back to rx.

Restrictions:

If GPR rx does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordValue(GPR[Xlat(rx)]) then
UNPREDICTABLE

endif
temp ← GPR[Xlat(rx)]
GPR[Xlat(rx)] ← sign_extend(temp15..0)

Exceptions:

None

Programming Notes:

None.

15 11 10 8 7 5 4 0

RR

11101
rx

SEH

101

CNVT

10001

5 3 3 5

Sign-Extend Halfword SEH

160 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SEW

Format: SEW rx MIPS16e (64-bit only)

Purpose:

Sign-extend least significant word in register rx.

Description: GPR[rx] ← sign_extend(GPR[rx]31..0);

The least significant word of rx is sign-extended and the value written back to rx.

Restrictions:

If GPR rx does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordValue(GPR[Xlat(rx)]) then
UNPREDICTABLE

endif
temp ← GPR[Xlat(rx)]
GPR[Xlat(rx)] ← sign_extend(temp31..0)

Exceptions:

Reserved Instruction

Programming Notes:

None.

15 11 10 8 7 5 4 0

RR

11101
rx

SEW

110

CNVT

10001

5 3 3 5

Sign-Extend Word SEW

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 161

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SD

Format: SD ry, offset(rx) MIPS16e (64-bit only)

Purpose:

To store a doubleword to memory.

Description: memory[GPR[rx] + offset] ← GPR[ry]

The 5-bit offset is shifted left 3 bits, zero-extended to 64 bits, and then added to the contents of GPR rx to form the
effective address. The 64-bit contents of GPR ry are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← zero_extend(offset|| 03) + GPR[Xlat(rx)]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
datadoubleword← GPR[Xlat(ry)]
StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Reserved Instruction

15 11 10 8 7 5 4 0

SD

01111
rx ry offset

5 3 3 5

Store Doubleword SD

162 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SD (Extended)

Format: SD ry, offset(rx) MIPS16e (64-bit only)

Purpose:

To store a doubleword to memory.

Description: memory[GPR[rx] + offset] ← GPR[ry]

The 16-bit offset is sign-extended to 64 bits and then added to the contents of GPR rx to form the effective address.
The 64-bit contents of GPR ry are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[Xlat(rx)]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
datadoubleword← GPR[Xlat(ry)]
StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Reserved Instruction

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

SD

01111
rx ry offset 4:0

5 6 5 5 3 3 5

Store Doubleword (Extended) SD

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 163

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SD ry (SP-Relative)

Format: SD ry, offset(sp) MIPS16e (64-bit only)

Purpose:

To store an SP-relative doubleword to memory.

Description: memory[GPR[sp] + offset] ← GPR[ry]

The 5-bit offset is shifted left 3 bits, zero-extended to 64 bits, and then added to the contents of GPR 29 to form the
effective address. The 64-bit contents of GPR ry are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← zero_extend(offset || 03) + GPR[29]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
datadoubleword← GPR[Xlat(ry)]
StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Reserved Instruction

15 11 10 8 7 5 4 0

I64

11111

SDSP

001
ry offset

5 3 3 5

Store Doubleword ry (SP-Relative) SD

164 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SP ry (SP-Relative, Extended)

Format: SD ry, offset(sp) MIPS16e (64-bit only)

Purpose:

To store an SP-relative doubleword to memory

Description: memory[GPR[sp] + offset] ← GPR[ry]

The 16-bit offset is sign-extended to 64 bits and then added to the contents of GPR 29 to form the effective address.
The 64-bit contents of GPR ry are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[29]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
datadoubleword← GPR[Xlat(ry)]
StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Reserved Instruction

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

I64

11111

SDSP

001
ry offset 4:0

5 6 5 5 3 3 5

Store Doubleword ry (SP-Relative, Extended) SD

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 165

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SD ra (SP-Relative)

Format: SD ra, offset(sp) MIPS16e (64-bit only)

Purpose:

To store register ra SP-relative to memory.

Description: memory[sp + offset] ← ra

The 8-bit offset is shifted left 3 bits, zero-extended to 64 bits, and then added to the contents of GPR 29 to form the
effective address. The 64-bit contents of GPR 31 are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation: 64-bit processors

vAddr ← GPR[29] + zero_extend(offset || 03)
if(vAddr2..0) ≠ 03 then

SignalException(AddressError)
endif
(pAddr,uncached) ← AddressTranslation(vAddr,DATA,STORE)
datadouble ← GPR[31]
StoreMemory(uncached,DOUBLEWORD,datadouble,pAddr,vAddr,DATA)

Exceptions:

Address Error, Reserved Instruction

15 11 10 8 7 0

I64
11111

SDRASP
010

offset

5 3 8

Store Doubleword ra (SP-Relative) SD

166 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SD ra (SP-Relative, Extended)

Format: SD ra, offset(sp) MIPS16e (64-bit only)

Purpose:

To store register ra SP-relative to memory.

Description: memory[sp + offset] ← ra

The 16-bit offset is sign-extended to 64 bits and then added to the contents of GPR 29 to form the effective address.
The 64-bit contents of GPR 31 are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation: 64-bit processors

vAddr ← GPR[29] + sign_extend(offset)
if(vAddr2..0) ≠ 03 then

SignalException(AddressError)
endif
(pAddr,uncached) ← AddressTranslation(vAddr,DATA,STORE)
datadouble ← GPR[31]
StoreMemory(uncached,DOUBLEWORD,datadouble,pAddr,vAddr,DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND
11110

offset 10:5 offset 15:11
I64

11111
SDRASP

010
ra offset 4:0

5 6 5 5 3 3 5

Store Doubleword ra (SP-Relative, Extended) SD

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 167

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SDBBP

Format: SDBBP code EJTAG

Purpose:

To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executedthe exception is a Debug Mode Exception, which sets
the DebugDExcCode field to the value 0x9 (Bp). The code field can be used for passing information to the debug
exception handler, and is retrieved by the debug exception handler only by loading the contents of the memory word
containing the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

Operation:

If DebugDM = 0 then
SignalDebugBreakpointException()

else
SignalDebugModeBreakpointException()

endif

Exceptions:

Debug Breakpoint Exception
Debug Mode Breakpoint Exception

15 11 10 5 4 0

RR

11101
code

SDBBP

00001

5 6 5

Software Debug Breakpoint SDBBP

168 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SH

Format: SH ry, offset(rx) MIPS16e

Purpose:

To store a halfword to memory.

Description: memory[GPR[rxGPR[+ offset] ← GPR[ry]

The 5-bit offset is shifted left 1 bit, zero-extended, and then added to the contents of GPR rx to form the effective
address. The least-significant halfword of GPR ry is stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← zero_extend(offset || 0) + GPR[Xlat(rx)]
if vAddr0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr12..0 xor (ReverseEndian

2 || 0))
bytesel← vAddr12..0 xor (BigEndianCPU2 || 0)
datadoubleword← GPR[Xlat(ry)]63–8*bytesel..0 || 0

8*bytesel

StoreMemory (CCA, HALFWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

15 11 10 8 7 5 4 0

SH

11001
rx ry offset

5 3 3 5

Store Halfword SH

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 169

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SH (Extended)

Format: SH ry, offset(rx) MIPS16e

Purpose:

To store a halfword to memory.

Description: memory[GPR[rx] + offset] ← GPR[ry]

The 16-bit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The
least-significant halfword of GPR ry is stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[Xlat(rx)]
if vAddr0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr12..0 xor (ReverseEndian

2 || 0))
bytesel← vAddr12..0 xor (BigEndianCPU2 || 0)
datadoubleword← GPR[Xlat(ry)]63–8*bytesel..0 || 0

8*bytesel

StoreMemory (CCA, HALFWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

SH

11001
rx ry offset 4:0

5 6 5 5 3 3 5

Store Halfword (Extended) SH

170 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SLL

Format: SLL rx, ry, sa MIPS16e

Purpose:

To execute a left-shift of a word by a fixed number of bits—1 to 8 bits.

Description: GPR[rx] ← GPR[ry] << sa

The 32-bit contents of GPR ry are shifted left, and zeros are inserted into the emptied low-order bits. The 3-bit sa
field specifies the shift amount. A shift amount of 0 is interpreted as a shift amount of 8. The result is sign-extended
and placed into GPR rx.

Restrictions:

None

Operation:

if sa = 03 then
s ← 8

else
s ← 02 || sa

endif
temp ← GPR[Xlat(ry)](31-s)..0 || 0s

GPR[Xlat(rx)] ← sign_extend(temp31..0)

Exceptions:

None

Programming Notes:

Unlike nearly all other word operations, the SLL input operand does not have to be a properly sign-extended word
value to produce a valid sign-extended 32-bit result. The result word is always sign-extended into a 64-bit destination
register.

15 11 10 8 7 5 4 2 1 0

SHIFT

00110
rx ry sa

SLL

00

5 3 3 3 2

Shift Word Left Logical SLL

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 171

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SLL (Extended)

Format: SLL rx, ry, sa MIPS16e

Purpose:

To execute a left-shift of a word by a fixed number of bits—0 to 31 bits.

Description: GPR[rx] ← GPR[ry] << sa

The 32-bit contents of GPR ry are shifted left, and zeros are inserted into the emptied low-order bits. The 5-bit sa
field specifies the shift amount. The result is sign-extended and placed into GPR rx.

Restrictions:

None

Operation:

s ← sa
temp ← GPR[Xlat(ry)](31-s)..0 || 0s

GPR[Xlat(rx)] ← sign_extend(temp31..0)

Exceptions:

None

Programming Notes:

Unlike nearly all other word operations, the SLL input operand does not have to be a properly sign-extended word
value to produce a valid sign-extended 32-bit result. The result word is always sign-extended into a 64-bit destination
register.

31 27 26 22 21 16 15 11 10 8 7 5 4 2 1 0

EXTEND

11110
sa4:0

0

000000

SHIFT

00110
rx ry

0

000

SLL

00

5 5 6 5 3 3 3 2

Shift Word Left Logical (Extended) SLL

172 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SLLV

Format: SLLV ry, rx MIPS16e

Purpose:

To execute a left-shift of a word by a variable number of bits.

Description: GPR[ry] ← GPR[ry] << GPR[rx]

The 32-bit contents of GPR ry are shifted left, and zeros are inserted into the emptied low-order bits; the result word
is sign-extended and and placed back in GPR ry. The 5 low-order bits of GPR rx specify the shift amount.

Restrictions:

None

Operation:

s ← GPR[Xlat(rx)]4..0
temp ← GPR[Xlat(ry)](31-s)..0 || 0s

GPR[Xlat(ry)] ← sign_extend(temp31..0)

Exceptions:

None

Programming Notes:

Unlike nearly all other word operations, the input operand does not have to be a properly sign-extended word value to
produce a valid sign-extended 32-bit result. The result word is always sign-extended into a 64-bit destination register;
this instruction with a zero shift amount truncates a 64-bit value to 32 bits and sign-extends it.

15 11 10 8 7 5 4 0

RR

11101
rx ry

SLLV

00100

5 3 3 5

Shift Word Left Logical Variable SLLV

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 173

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SLT

Format: SLT rx, ry MIPS16e

Purpose:

To record the result of a less-than comparison.

Description: T ← (GPR[rx] < GPR[ry])

The contents of GPR ry are subtracted from the contents of GPR rx. Considering both quantities as signed integers, if
the contents of GPR rx are less than the contents of GPR ry, the result is set to 1 (true); otherwise, the result is set to 0
(false). This result is placed into GPR 24.

Restrictions:

None

Operation:

if GPR[Xlat(rx)] < GPR[Xlat(ry)] then
GPR[24] ← 0GPRLEN-1 || 1

else
GPR[24] ← 0GPRLEN

endif

Exceptions:

None

15 11 10 8 7 5 4 0

RR

11101
rx ry

SLT

00010

5 3 3 5

Set on Less Than SLT

174 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SLTI

Format: SLTI rx, immediate MIPS16e

Purpose:

To record the result of a less-than comparison with a constant.

Description: T ← (GPR[rx] < immediate)

The 8-bit immediate is zero-extended and subtracted from the contents of GPR rx. Considering both quantities as
signed integers, if GPR rx is less than the zero-extended immediate, the result is set to 1 (true); otherwise, the result is
set to 0 (false). The result is placed into GPR 24.

Restrictions:

None

Operation:

if GPR[Xlat(rx)] < zero_extend(immediate) then
GPR[24] ← 0GPRLEN-1 || 1

else
GPR[24] ← 0GPRLEN

endif

Exceptions:

None

15 11 10 8 7 0

SLTI

01010
rx immediate

5 3 8

Set on Less Than Immediate SLTI

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 175

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SLTI (Extended)

Format: SLTI rx, immediate MIPS16e

Purpose:

To record the result of a less-than comparison with a constant.

Description: T ← (GPR[rx] < immediate)

The 16-bit immediate is sign-extended and subtracted from the contents of GPR rx. Considering both quantities as
signed integers, if GPR rx is less than the sign-extended immediate, the result is set to 1 (true); otherwise, the result is
set to 0 (false). The result is placed into GPR 24.

Restrictions:

None

Operation:

if GPR[Xlat(rx)] < sign_extend(immediate) then
GPR[24] ← 0GPRLEN-1 || 1

else
GPR[24] ← 0GPRLEN

endif

Exceptions:

None

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
imm 10:5 imm 15:11

SLTI

01010
rx

0

000
imm 4:0

5 6 5 5 3 3 5

Set on Less Than Immediate (Extended) SLTI

176 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SLTIU

Format: SLTIU rx, immediate MIPS16e

Purpose:

To record the result of an unsigned less-than comparison with a constant.

Description: T ← (GPR[rx] < immediate)

The 8-bit immediate is zero-extended and subtracted from the contents of GPR rx. Considering both quantities as
unsigned integers, if GPR rx is less than the zero-extended immediate, the result is set to 1 (true); otherwise, the result
is set to 0 (false). The result is placed into GPR 24.

Restrictions:

None

Operation:

if (0 || GPR[Xlat(rx)]) < (0 || zero_extend(immediate)) then
GPR[24] ← 0GPRLEN-1 || 1

else
GPR[24] ← 0GPRLEN

endif

Exceptions:

None

15 11 10 8 7 0

SLTIU

01011
rx immediate

5 3 8

Set on Less Than Immediate Unsigned SLTIU

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 177

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SLTIU (Extended)

Format: SLTIU rx, immediate MIPS16e

Purpose:

To record the result of an unsigned less-than comparison with a constant.

Description: T ← (GPR[rx] < immediate)

The 16-bit immediate is sign-extended and subtracted from the contents of GPR rx. Considering both quantities as
unsigned integers, if GPR rx is less than the sign-extended immediate, the result is set to 1 (true); otherwise, the result
is set to 0 (false). The result is placed into GPR 24.

Restrictions:

None

Operation:

if (0 || GPR[Xlat(rx)]) < (0 || sign_extend(immediate)) then
GPR[24] ← 0GPRLEN-1 || 1

else
GPR[24] ← 0GPRLEN

endif

Exceptions:

None

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
imm 10:5 imm 15:11

SLTIU

01011
rx

0

000
imm 4:0

5 6 5 5 3 3 5

Set on Less Than Immediate Unsigned (Extended) SLTIU

178 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SLTU

Format: SLTU rx, ry MIPS16e

Purpose:

To record the result of an unsigned less-than comparison.

Description: T ← (GPR[rx] < GPR[ry])

The contents of GPR ry are subtracted from the contents of GPR rx. Considering both quantities as unsigned integers,
if the contents of GPR rx are less than the contents of GPR ry, set the result to 1 (true); otherwise, set the result to 0
(false). The result is placed into GPR 24.

Restrictions:

None

Operation:

if (0 || GPR[Xlat(rx)]) < (0 || GPR[Xlat(ry)]) then
GPR[24] ← 0GPRLEN-1 || 1

else
GPR[24] ← 0GPRLEN

endif

Exceptions:

None

15 11 10 8 7 5 4 0

RR

11101
rx ry

SLTU

00011

5 3 3 5

Set on Less Than Unsigned SLTU

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 179

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SRA

Format: SRA rx, ry, sa MIPS16e

Purpose:

To execute an arithmetic right-shift of a word by a fixed number of bits—1 to 8 bits.

Description: GPR[rx] ← GPR[ry] >> sa (arithmetic)

The 32-bit contents of GPR ry are shifted right, and the sign bit is replicated into the emptied high-order bits. The
3-bit sa field specifies the shift amount. A shift amount of 0 is interpreted as a shift amount of 8. The result is
sign-extended and placed into GPR rx.

Restrictions:

On 64-bit processors, if GPR ry does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of
the operation is UNPREDICTABLE.

Operation:

if (NotWordValue(GPR[Xlat(ry)])) then
UNPREDICTABLE

endif
s ← 02 || sa
if (s = 0) then

s ← 8
endif
temp ← (GPR[Xlat(ry)]31)

s || GPR[Xlat(ry)]31..s
GPR[Xlat(rx)] ← sign_extend(temp31..0)

Exceptions:

None

15 11 10 8 7 5 4 2 1 0

SHIFT

00110
rx ry sa

SRA

11

5 3 3 3 2

Shift Word Right Arithmetic SRA

180 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SRA (Extended)

Format: SRA rx, ry, sa MIPS16e

Purpose:

To execute an arithmetic right-shift of a word by a fixed number of bits—0 to 31bits.

Description: GPR[rx] ← GPR[ry] >> sa (arithmetic)

The 32-bit contents of GPR ry are shifted right, and the sign bit is replicated into the emptied high-order bits. The
5-bit sa field specifies the shift amount. The result is sign-extended and placed into GPR rx.

Restrictions:

On 64-bit processors, if GPR ry does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of
the operation is UNPREDICTABLE.

Operation:

if (NotWordValue(GPR[Xlat(ry)])) then
UNPREDICTABLE

endif
s ← sa
temp ← (GPR[Xlat(ry)]31)

s || GPR[Xlat(ry)]31..s
GPR[Xlat(rx)] ← sign_extend(temp31..0)

Exceptions:

None

31 27 26 22 21 16 15 11 10 8 7 5 4 2 1 0

EXTEND

11110
sa4:0

0

000000

SHIFT

00110
rx ry

0

000

SRA

11

5 5 6 5 3 3 3 2

Shift Word Right Arithmetic (Extended) SRA

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 181

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SRAV

Format: SRAV ry, rx MIPS16e

Purpose:

To execute an arithmetic right-shift of a word by a variable number of bits.

Description: GPR[ry] ← GPR[ry] >> GPR[rx] (arithmetic)

The 32-bit contents of GPR ry are shifted right, and the sign bit is replicated into the emptied high-order bits; the
word result is sign-extended and placed back in GPR ry. The 5 low-order bits of GPR rx specify the shift amount.

Restrictions:

On 64-bit processors, if GPR ry does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of
the operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[ry]) then
UNPREDICTABLE

endif
s ← GPR[Xlat(rx)]4..0
temp ← (GPR[Xlat(ry)]31)

s || GPR[Xlat(ry)]31..s
GPR[Xlat(ry)] ← sign_extend(temp31..0)

Exceptions:

None

15 11 10 8 7 5 4 0

RR

11101
rx ry

SRAV

00111

5 3 3 5

Shift Word Right Arithmetic Variable SRAV

182 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SRL

Format: SRL rx, ry, sa MIPS16e

Purpose:

To execute a logical right-shift of a word by a fixed number of bits—1 to 8 bits.

Description: GPR[rx] ← GPR[ry] >> sa (logical)

The 32-bit contents of GPR ry are shifted right, and zeros are inserted into the emptied high-order bits. The 3-bit sa
field specifies the shift amount. A shift amount of 0 is interpreted as a shift amount of 8. The result is sign-extended
and placed into GPR rx.

Restrictions:

On 64-bit processors, if GPR ry does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of
the operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[ry]) then
UNPREDICTABLE

endif
if sa = 03 then

s ← 8
else

s ← 02 || sa
endif
temp ← 0s || GPR[Xlat(ry)]31..s
GPR[Xlat(rx)] ← sign_extend(temp31..0)

Exceptions:

None

15 11 10 8 7 5 4 2 1 0

SHIFT

00110
rx ry sa

SRL

10

5 3 3 3 2

Shift Word Right Logical SRL

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 183

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SRL (Extended)

Format: SRL rx, ry, sa MIPS16e

Purpose:

To execute a logical right-shift of a word by a fixed number of bits—0 to 31 bits.

Description: GPR[rx] ← GPR[ry] >> sa (logical)

The 32-bit contents of GPR ry are shifted right, and zeros are inserted into the emptied high-order bits. The 5-bit sa
field specifies the shift amount. The result is sign-extended and placed into GPR rx.

Restrictions:

On 64-bit processors, if GPR ry does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of
the operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[ry]) then
UNPREDICTABLE

endif
s ← sa
temp ← 0s || GPR[Xlat(ry)]31..s
GPR[Xlat(rx)] ← sign_extend(temp31..0)

Exceptions:

None

31 27 26 22 21 16 15 11 10 8 7 5 4 2 1 0

EXTEND

11110
sa4:0

0

000000

SHIFT

00110
rx ry

0

000

SRL

10

5 5 6 5 3 3 3 2

Shift Word Right Logical (Extended) SRL

184 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SRLV

Format: SRLV ry, rx MIPS16e

Purpose:

To execute a logical right-shift of a word by a variable number of bits.

Description: GPR[ry] ← GPR[ry] >> GPR[rx] (logical)

The 32-bit contents of GPR ry are shifted right, and zeros are inserted into the emptied high-order bits; the word
result is sign-extended and placed back in GPR ry. The 5 low-order bits of GPR rx specify the shift amount.

Restrictions:

On 64-bit processors, if GPR ry does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of
the operation is UNPREDICTABLE.

Operation:

if (NotWordValue(GPR[Xlat(ry)])) then
UNPREDICTABLE

endif
s ← GPR[Xlat(rx)]4..0
temp ← 0s || GPR[Xlat(ry)]31..s
GPR[Xlat(ry)] ← sign_extend(temp31..0)

Exceptions:

None

15 11 10 8 7 5 4 0

RR

11101
rx ry

SRLV

00110

5 3 3 5

Shift Word Right Logical Variable SRLV

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 185

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SUBU

Format: SUBU rz, rx, ry MIPS16e

Purpose:

To subtract 32-bit integers.

Description: GPR[rz] ← GPR[rx] - GPR[ry]

The 32-bit word value in GPR ry is subtracted from the 32-bit value in GPR rx and the 32-bit arithmetic result is
sign-extended and placed into GPR rz.

No integer overflow exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if GPR rx or GPR ry does not contain sign-extended 32-bit values (bits 63..31 equal), then the
result of the operation is UNPREDICTABLE.

Operation:

if(NotWordValue(GPR[Xlat(rx)])or NotWordValue(GPR[Xlat(ry)]))then
UNPREDICTABLE

endif
temp ← GPR[Xlat(rx)] - GPR[Xlat(ry)]
GPR[Xlat(rz)] ← sign_extend(temp31..0)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

15 11 10 8 7 5 4 2 1 0

RRR

11100
rx ry rz

SUBU

11

5 3 3 3 2

Subtract Unsigned Word SUBU

186 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SW

Format: SW ry, offset(rx) MIPS16e

Purpose:

To store a word to memory.

Description: memory[GPR[rx] + offset] ← GPR[ry]

The 5-bit offset is shifted left 2 bits, zero-extended, and then added to the contents of GPR rx to form the effective
address. The contents of GPR ry are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← zero_extend(offset || 02) + GPR[Xlat(rx)]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
bytesel← vAddr2..0 xor (BigEndianCPU || 0

2)
datadoubleword← GPR[Xlat(ry)]63-8*bytesel..0 || 0

8*bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

15 11 10 8 7 5 4 0

SW

11011
rx ry offset

5 3 3 5

Store Word SW

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 187

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SW (Extended)

Format: SW ry, offset(rx) MIPS16e

Purpose:

To store a word to memory.

Description: memory[GPR[rx] + offset] ← GPR[ry]

The 16-bit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The con-
tents of GPR ry are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[Xlat(rx)]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
bytesel← vAddr2..0 xor (BigEndianCPU || 0

2)
datadoubleword← GPR[Xlat(ry)]63-8*bytesel..0 || 0

8*bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

SW

11011
rx ry offset 4:0

5 6 5 5 3 3 5

Store Word (Extended) SW

188 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SW rx (SP-Relative)

Format: SW rx, offset(sp) MIPS16e

Purpose:

To store an SP-relative word to memory.

Description: memory[GPR[sp] + offset] ← GPR[rx]

The 8-bit offset is shifted left 2 bits, zero-extended, and then added to the contents of GPR 29 to form the effective
address. The contents of GPR rx are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← zero_extend(offset || 02) + GPR[29]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
bytesel← vAddr2..0 xor (BigEndianCPU || 0

2)
datadoubleword← GPR[Xlat(rx)]63-8*bytesel..0 || 0

8*bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

15 11 10 8 7 5 4 0

SWSP

11010
rx offset

5 3 8

Store Word rx (SP-Relative) SW

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 189

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SW rx (SP-Relative, Extended)

Format: SW rx, offset(sp) MIPS16e

Purpose:

To store an SP-relative word to memory.

Description: memory[GPR[sp] + offset] ← GPR[rx]

The 16-bit offset is sign-extended and then added to the contents of GPR 29 to form the effective address. The con-
tents of GPR rx are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the two least-significant bits of the address is non-zero,
an Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[29]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
bytesel← vAddr2..0 xor (BigEndianCPU || 0

2)
datadoubleword← GPR[Xlat(rx)]63-8*bytesel..0 || 0

8*bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

SWSP

11010
rx

0

000
offset 4:0

5 6 5 5 3 3 5

Store Word rx (SP-Relative, Extended) SW

190 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SW ra (SP-Relative)

Format: SW ra, offset(sp) MIPS16e

Purpose:

To store register ra SP-relative to memory.

Description: memory[sp + offset] ← ra

The 8-bit offset is shifted left 2 bits, zero-extended, and then added to the contents of GPR 29 to form the effective
address. The contents of GPR 31 are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← zero_extend(offset || 02) + GPR[29]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
bytesel← vAddr2..0 xor (BigEndianCPU || 0

2)
datadoubleword← GPR[31]63-8*bytesel..0 || 0

8*bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error

15 11 10 8 7 0

I8

01100

SWRASP

010
offset

5 3 8

Store Word ra (SP-Relative) SW

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 191

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

SW ra (SP-Relative, Extended)

Format: SW ra, offset(sp) MIPS16e

Purpose:

To store register ra SP-relative to memory.

Description: memory[sp + offset] ← ra

The 16-bit offset is sign-extended and then added to the contents of GPR 29 to form the effective address. The con-
tents of GPR 31 are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[29]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
bytesel← vAddr2..0 xor (BigEndianCPU || 0

2)
datadoubleword← GPR[31]63-8*bytesel..0 || 0

8*bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

I8

01100

SWRASP

010

0

000
offset 4:0

5 6 5 5 3 3 5

Store Word ra(SP-Relative, Extended) SW

192 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

XOR

Format: XOR rx, ry MIPS16e

Purpose:

To do a bitwise logical Exclusive OR.

Description: GPR[rx] ← GPR[rx] XOR GPR[ry]

The contents of GPR ry are combined with the contents of GPR rx in a bitwise Exclusive OR operation. The result is
placed in GPR rx.

Restrictions:

None

Operation:

GPR[Xlat(rx)] ← GPR[Xlat(rx)] xor GPR[Xlat(ry)]

Exceptions:

None

15 11 10 8 7 5 4 0

RR

11101
rx ry

XOR

01110

5 3 3 5

Exclusive OR XOR

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 193

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

ZEB

Format: ZEB rx MIPS16e

Purpose:

Zero-extend least significant byte in register rx.

Description: GPR[rx] ← zero_extend(GPR[rx]7..0);

The least significant byte of rx is zero-extended and the value written back to rx.

Restrictions:

If GPR rx does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordValue(GPR[Xlat(rx)]) then
UNPREDICTABLE

endif
temp ← GPR[Xlat(rx)]
GPR[Xlat(rx)] ← 0 || temp7..0

Exceptions:

None

Programming Notes:

None.

15 11 10 8 7 5 4 0

RR

11101
rx

ZEB

000

CNVT

10001

5 3 3 5

Zero-Extend Byte ZEB

194 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

ZEH

Format: ZEH rx MIPS16e

Purpose:

Zero-extend least significant halfword in register rx.

Description: GPR[rx] ← zero_extend(GPR[rx]15..0);

The least significant halfword of rx is zero-extended and the value written back to rx.

Restrictions:

If GPR rx does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordValue(GPR[Xlat(rx)]) then
UNPREDICTABLE

endif
temp ← GPR[Xlat(rx)]
GPR[Xlat(rx)] ← 0 || temp15..0

Exceptions:

None

Programming Notes:

None.

15 11 10 8 7 5 4 0

RR

11101
rx

ZEH

001

CNVT

10001

5 3 3 5

Zero-Extend Halfword ZEH

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 195

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

ZEW

Format: ZEW rx MIPS16e (64-bit only)

Purpose:

Zero-extend least significant word in register rx.

Description: GPR[rx] ← Zero_extend(GPR[rx]31..0);

The least significant word of rx is Zero-extended and the value written back to rx.

Restrictions:

If GPR rx does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordValue(GPR[Xlat(rx)]) then
UNPREDICTABLE

endif
temp ← GPR[Xlat(rx)]
GPR[Xlat(rx)] ← 032 || temp31..0

Exceptions:

Reserved Instruction

Programming Notes:

None.

15 11 10 8 7 5 4 0

RR

11101
rx

ZEW

010

CNVT

10001

5 3 3 5

Zero-Extend Word ZEW

196 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 197

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

198 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50 199

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Appendix A

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Change bars
on figure titles are used to denote a potential change in the figure itself.

Revision Date Description

0.90 November 1, 2000 External review copy of reorganized and updated architecture documentation.

0.91 November 15, 2000

Changes in this revision:

• Correct table 3-10 description of branch instructions (branches really are
implemented in the 32-bit architecture and are extensible)

• Correct the pseudo code for all MIPS16 branches - the offset value thould
be added to the address of the instruction following the branch, not the
branch itself.

0.92 December 15, 2000
Changes in this revision:

• Add missing I8_MOVER32 instruction format.

0.93 January 25, 2001

Changes in this revision:

• Correct minor typos in the previous version.

• Add the 32-bit MIPS version of JALX and update the instruction
descriptions of JAL and JALX.

0.95 March 12, 2001 Document cleanup for next external release.

0.96 November 12, 2001

Changes in this revision:

• Declassify the MIPS32 Architecture for Programmers volume.

• Fix PDF bookmarks for the MIPS16 instructions.

• Fix formatting in instruction translation section.

• Correct the description of the shift count for extended SRA and SLL.

• Change all uses of “MIPS16” to “MIPS16e”.

1.00 August 29, 2002

Changes in this revision:

• Update pseudo code for SAVE and RESTORE to be explicit about the
memory operations inherent in the instructions.

• Correct extended PC-relative LW and LD to remove the implication that
they can be executed in the delay slot of a jump.

• Add section defining instruction fetch restrictions when the processor is
running in MIPS16e mode and the fetch address is in uncached memory.

200 MIPS64® Architecture for Programmers Volume IV-a, Revision 2.50

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Appendix A Revision History

2.00 May 15, 2003

Changes in this revision:

• For MIPS64 processors, add a programming note to ADDIUPC to indicate
that this instruction will generate the expected result only when run in the
32-bit Compatibility Address Space.

• For MIPS64 processors, clean up the input operand sign-extension
requirements for ADDIUPC, ADDIUSP, ADDU, NEG, SEB, SEH, SEW,
ZEB, ZEH, and ZEW.

• Add a note to specify that the ISA Mode flag is made available to software
in EPC, ErrorEPC, or DEPC when an exception occurs.

• Clarify that for the purposes of Watchpoints and EJTAG Breakpoints, that
PC-releative load references are consider data, not instruction, references.

2.50 July 1, 2005

Changes in this revision:

• Make it explicit that attempting to execute a non-extensible instruction must
cause a Reserved Instruction exception. This was implied, but not explicitly
stated in the previous revision of the document.

• Update all files to FrameMaker 7.1.

•

Revision Date Description

	MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1 Typographical Conventions
	1.1.1 Italic Text
	1.1.2 Bold Text
	1.1.3 Courier Text

	1.2 UNPREDICTABLE and UNDEFINED
	1.2.1 UNPREDICTABLE
	1.2.2 UNDEFINED
	1.2.3 UNSTABLE

	1.3 Special Symbols in Pseudocode Notation
	1.4 For More Information

	Guide to the Instruction Set
	2.1 Understanding the Instruction Fields
	2.1.1 Instruction Fields
	2.1.2 Instruction Descriptive Name and Mnemonic
	2.1.3 Format Field
	2.1.4 Purpose Field
	2.1.5 Description Field
	2.1.6 Restrictions Field
	2.1.7 Operation Field
	2.1.8 Exceptions Field
	2.1.9 Programming Notes and Implementation Notes Fields

	2.2 Operation Section Notation and Functions
	2.2.1 Instruction Execution Ordering
	2.2.2 Pseudocode Functions
	2.2.2.1 Coprocessor General Register Access Functions
	2.2.2.2 Memory Operation Functions
	2.2.2.3 Floating Point Functions
	2.2.2.4 Miscellaneous Functions

	2.3 Op and Function Subfield Notation
	2.4 FPU Instructions

	The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture
	3.1 Base Architecture Requirements
	3.2 Software Detection of the ASE
	3.3 Compliance and Subsetting
	3.4 MIPS16e Overview
	3.5 MIPS16e ASE Features
	3.6 MIPS16e Register Set
	3.7 MIPS16e ISA Modes
	3.7.1 Modes Available in the MIPS16e Architecture
	3.7.2 Defining the ISA Mode Field
	3.7.3 Switching Between Modes When an Exception Occurs
	3.7.4 Using MIPS16e Jump Instructions to Switch Modes

	3.8 JALX, JR, and JALR Operations in MIPS16e and MIPS32 Mode
	3.9 MIPS16e Instruction Summaries
	3.10 MIPS16e PC-Relative Instructions
	3.11 MIPS16e Extensible Instructions
	3.12 MIPS16e Implementation-Definable Macro Instructions
	3.13 MIPS16e Jump and Branch Instructions
	3.14 MIPS16e Instruction Formats
	3.14.1 I-type instruction format
	3.14.2 RI-type instruction format
	3.14.3 RR-type instruction format
	3.14.4 RRI-type instruction format
	3.14.5 RRR-type instruction format
	3.14.6 RRI-A type instruction format
	3.14.7 Shift instruction format
	3.14.8 I8-type instruction format
	3.14.9 I8_MOVR32 instruction format (used only by the MOVR32 instruction)
	3.14.10 I8_MOV32R instruction format (used only by MOV32R instruction)
	3.14.11 I8_SVRS instruction format (used only by the SAVE and RESTORE instructions)
	3.14.12 I64-type instruction format
	3.14.13 RI64-type instruction format
	3.14.14 JAL and JALX instruction format
	3.14.15 EXT-I instruction format
	3.14.16 ASMACRO instruction format
	3.14.17 EXT-RI instruction format
	3.14.18 EXT-RRI instruction format
	3.14.19 EXT-RRI-A instruction format
	3.14.20 EXT-SHIFT instruction format
	3.14.21 EXT-I8 instruction format
	3.14.22 EXT-I8_SVRS instruction format (used only by the SAVE and RESTORE instructions)
	3.14.23 EXT-I64 instruction format
	3.14.24 EXT-RI64 instruction format
	3.14.25 EXT-SHIFT64 instruction format

	3.15 Instruction Bit Encoding
	3.16 MIPS16e Instruction Stream Organization and Endianness
	3.17 MIPS16e Instruction Fetch Restrictions

	The MIPS16e™ ASE Instruction Set
	4.1 MIPS16e Instruction Descriptions
	4.1.1 MIPS16e-Specific Pseudocode Functions
	4.1.1.1 Xlat

	ADDIU (2-Operand)
	ADDIU (2-Operand, Extended)
	ADDIU (3-Operand)
	ADDIU (3-Operand, Extended)
	ADDIU (3-Operand, PC-Relative)
	ADDIU (3-Operand, PC-Relative, Extended)
	ADDIU (2-Operand, SP-Relative)
	ADDIU (2-Operand, SP-Relative, Extended)
	ADDIU (3-Operand, SP-Relative)
	ADDIU (3-Operand, SP-Relative, Extended)
	ADDU (3-Operand)
	AND
	ASMACRO
	B
	B (Extended)
	BEQZ
	BEQZ (Extended)
	BNEZ
	BNEZ (Extended)
	BREAK
	BTEQZ
	BTEQZ (Extended)
	BTNEZ
	BTNEZ (Extended)
	CMP
	CMPI
	CMPI (Extended)
	DADDIU
	DADDIU (2-Operand, Extended)
	DADDIU (3-Operand)
	DADDIU (3-Operand, Extended)
	DADDIU (3-Operand, PC-Relative)
	DADDIU (3-Operand, PC-Relative, Extended)
	DADDIU (2-Operand, SP-Relative)
	DADDIU (2-Operand, SP-Relative, Extended)
	DADDIU (3-Operand, SP-Relative)
	DADDIU (3-Operand, SP-Relative, Extended)
	DADDU (3-Operand)
	DDIV
	DDIVU
	DIV
	DIVU
	DMULT
	DMULTU
	DSLL
	DSLL (Extended)
	DSLLV
	DSRA
	DSRA (Extended)
	DSRAV
	DSRL
	DSRL (Extended)
	DSRLV
	DSUBU
	JAL
	JALR
	JALRC
	JALX (MIPS16e Format)
	JALX (MIPS64 Format)
	JR ra
	JR rx
	JRC ra
	JRC rx
	LB
	LB (Extended)
	LBU
	LBU (Extended)
	LD
	LD (Extended)
	LD (PC-Relative)
	LD (PC-Relative, Extended)
	LD (SP-Relative)
	LD (SP-Relative, Extended)
	LH
	LH (Extended)
	LHU
	LHU (Extended)
	LI
	LI (Extended)
	LW
	LW (Extended)
	LW (PC-Relative)
	LW (PC-Relative, Extended)
	LW (SP-Relative)
	LW (SP-Relative, Extended)
	LWU
	LWU (Extended)
	MFHI
	MFLO
	MOVE r32, rz
	MOVE ry, r32
	MULT
	MULTU
	NEG
	NOP
	NOT
	OR
	RESTORE
	RESTORE (Extended)
	SAVE
	SAVE (Extended)
	SB
	SB (Extended)
	SEB
	SEH
	SEW
	SD
	SD (Extended)
	SD ry (SP-Relative)
	SP ry (SP-Relative, Extended)
	SD ra (SP-Relative)
	SD ra (SP-Relative, Extended)
	SDBBP
	SH
	SH (Extended)
	SLL
	SLL (Extended)
	SLLV
	SLT
	SLTI
	SLTI (Extended)
	SLTIU
	SLTIU (Extended)
	SLTU
	SRA
	SRA (Extended)
	SRAV
	SRL
	SRL (Extended)
	SRLV
	SUBU
	SW
	SW (Extended)
	SW rx (SP-Relative)
	SW rx (SP-Relative, Extended)
	SW ra (SP-Relative)
	SW ra (SP-Relative, Extended)
	XOR
	ZEB
	ZEH
	ZEW

	Revision History

