
Document Number: MD00099
Revision 2.50
July 1, 2005

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

MIPS64® Architecture for Programmers Volume
IV-c: The MIPS-3D® Application-Specific
Extension to the MIPS64® Architecture



Copyright © 2002-2003,2005 MIPS Technologies, Inc.  All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies").  Any copying,
reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies
or an authorized third party is strictly prohibited. At a minimum, this information is protected under unfair competition and copyright
laws.  Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to
use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions.  UNDER NO
CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN
SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise.
MIPS Technologies does not assume any liability arising out of the application or use of this information, or of any error or omission
in such information.  Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied
warranties of merchantability or fitness for a particular purpose, are excluded.  Except as expressly provided in any written license
agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not give recipient any license
to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or supplements
thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in this document, the
laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial
computer software documentation or other commercial items.  If the user of this information, or any related documentation of any
kind, including related technical data or manuals, is an agency, department, or other entity of the United States government
("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this information, or any related
documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense
Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this
information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim,
MIPSpro, MIPS Technologies logo, MIPS RISC CERTIFIED POWER logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS,
4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 20Kc, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 25Kf, 34K, R3000, R4000, R5000, ASMACRO,
Atlas, "At the core of the user experience.", BusBridge, CorExtend, CoreFPGA, CoreLV, EC, FastMIPS, JALGO, Malta, MDMX,
MGB, PDtrace, the Pipeline, Pro Series, QuickMIPS, SEAD, SEAD-2, SmartMIPS, SOC-it, and YAMON are trademarks or
registered trademarks of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Template: B1.14, Built with tags: 2B ARCH FPU_PS FPU_PSandARCH MIPS64



MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 i

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1 About This Book ................................................................................................................................................. 1
1.1 Typographical Conventions ................................................................................................................................... 1

1.1.1 Italic Text ..................................................................................................................................................... 1
1.1.2 Bold Text ..................................................................................................................................................... 1
1.1.3 Courier Text ................................................................................................................................................. 1

1.2 UNPREDICTABLE and UNDEFINED ................................................................................................................ 2
1.2.1 UNPREDICTABLE ..................................................................................................................................... 2
1.2.2 UNDEFINED ............................................................................................................................................... 2
1.2.3 UNSTABLE ................................................................................................................................................. 2

1.3 Special Symbols in Pseudocode Notation .............................................................................................................. 3
1.4 For More Information ............................................................................................................................................ 5

Chapter 2 Guide to the Instruction Set ................................................................................................................................. 7
2.1 Understanding the Instruction Fields ..................................................................................................................... 7

2.1.1 Instruction Fields ......................................................................................................................................... 8
2.1.2 Instruction Descriptive Name and Mnemonic ............................................................................................. 9
2.1.3 Format Field ................................................................................................................................................. 9
2.1.4 Purpose Field ............................................................................................................................................. 10
2.1.5 Description Field ........................................................................................................................................ 10
2.1.6 Restrictions Field ....................................................................................................................................... 10
2.1.7 Operation Field .......................................................................................................................................... 11
2.1.8 Exceptions Field ......................................................................................................................................... 11
2.1.9 Programming Notes and Implementation Notes Fields ............................................................................. 11

2.2 Operation Section Notation and Functions .......................................................................................................... 12
2.2.1 Instruction Execution Ordering .................................................................................................................. 12
2.2.2 Pseudocode Functions ................................................................................................................................ 12

2.3 Op and Function Subfield Notation ..................................................................................................................... 22
2.4 FPU Instructions .................................................................................................................................................. 23

Chapter 3 MIPS-3D® Application-Specific Extension to the MIPS64® Architecture ..................................................... 25
3.1 Base Architecture Requirements .......................................................................................................................... 25
3.2 Software Detection of the ASE ............................................................................................................................ 25
3.3 Compliance and Subsetting .................................................................................................................................. 25
3.4 MIPS-3D Overview ............................................................................................................................................. 25
3.5 Instruction Bit Encoding ...................................................................................................................................... 26

Chapter 4 The MIPS-3D® ASE Instruction Set ................................................................................................................ 29
4.1 MIPS-3D Instruction Descriptions ....................................................................................................................... 29

Appendix A Revision History ............................................................................................................................................ 53



ii MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 2-1: Example of Instruction Description.................................................................................................................. 8
Figure 2-2: Example of Instruction Fields........................................................................................................................... 9
Figure 2-3: Example of Instruction Descriptive Name and Mnemonic .............................................................................. 9
Figure 2-4: Example of Instruction Format......................................................................................................................... 9
Figure 2-5: Example of Instruction Purpose ..................................................................................................................... 10
Figure 2-6: Example of Instruction Description................................................................................................................ 10
Figure 2-7: Example of Instruction Restrictions ............................................................................................................... 11
Figure 2-8: Example of Instruction Operation .................................................................................................................. 11
Figure 2-9: Example of Instruction Exception .................................................................................................................. 11
Figure 2-10: Example of Instruction Programming Notes ................................................................................................ 12
Figure 2-11: COP_LW Pseudocode Function ................................................................................................................... 13
Figure 2-12: COP_LD Pseudocode Function.................................................................................................................... 13
Figure 2-13: COP_SW Pseudocode Function ................................................................................................................... 13
Figure 2-14: COP_SD Pseudocode Function .................................................................................................................... 14
Figure 2-15: CoprocessorOperation Pseudocode Function ............................................................................................... 14
Figure 2-16: AddressTranslation Pseudocode Function.................................................................................................... 15
Figure 2-17: LoadMemory Pseudocode Function ............................................................................................................. 15
Figure 2-18: StoreMemory Pseudocode Function............................................................................................................. 16
Figure 2-19: Prefetch Pseudocode Function...................................................................................................................... 16
Figure 2-20: SyncOperation Pseudocode Function ........................................................................................................... 17
Figure 2-21: ValueFPR Pseudocode Function .................................................................................................................. 18
Figure 2-22: StoreFPR Pseudocode Function ................................................................................................................... 19
Figure 2-23: CheckFPException Pseudocode Function .................................................................................................... 20
Figure 2-24: FPConditionCode Pseudocode Function ...................................................................................................... 20
Figure 2-25: SetFPConditionCode Pseudocode Function................................................................................................. 20
Figure 2-26: SignalException Pseudocode Function ........................................................................................................ 21
Figure 2-27: SignalDebugBreakpointException Pseudocode Function ............................................................................ 21
Figure 2-28: SignalDebugModeBreakpointException Pseudocode Function................................................................... 21
Figure 2-29: NullifyCurrentInstruction PseudoCode Function ......................................................................................... 21
Figure 2-30: JumpDelaySlot Pseudocode Function .......................................................................................................... 22
Figure 2-31: NotWordValue Pseudocode Function .......................................................................................................... 22
Figure 2-32: PolyMult Pseudocode Function.................................................................................................................... 22



MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 iii

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 1-1: Symbols Used in Instruction Operation Statements .......................................................................................... 3
Table 2-1: AccessLength Specifications for Loads/Stores................................................................................................ 16
Table 3-1: Instructions in the MIPS-3D® ASE................................................................................................................. 26
Table 3-2: Symbols Used in the Instruction Encoding Tables .......................................................................................... 26
Table 3-3: MIPS-3D COP1 Encoding of rs Field ............................................................................................................. 27
Table 3-4: MIPS-3D COP1 Encoding of Function Field When rs=S ............................................................................... 27
Table 3-5: MIPS-3D COP1 Encoding of Function Field When rs=D............................................................................... 27
Table 3-6: MIPS-3D COP1 Encoding of Function Field When rs=W or L...................................................................... 27
Table 3-7: MIPS-3D COP1 Encoding of Function Field When rs=PS ............................................................................. 28



iv MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.



MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 1

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 1

About This Book

The MIPS64® Architecture for Programmers Volume IV-c comes as a multi-volume set.

• Volume I describes conventions used throughout the document set, and provides an introduction to the MIPS64®
Architecture

• Volume II provides detailed descriptions of each instruction in the MIPS64® instruction set

• Volume III describes the MIPS64® Privileged Resource Architecture which defines and governs the behavior of the
privileged resources included in a MIPS64® processor implementation

• Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

• Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS64® Architecture

• Volume IV-c describes the MIPS-3D® Application-Specific Extension to the MIPS64® Architecture

• Volume IV-d describes the SmartMIPS®Application-Specific Extension to the MIPS32® Architecture and is not
applicable to the MIPS64® document set

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.

1.1.1 Italic Text

• is used for emphasis

• is used for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and various floating point instruction formats, such as S, D, and PS

• is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

• represents a term that is being defined

• is used for bits and fields that are important from a hardware perspective (for instance, register bits, which are not
programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers 5 through 1

• is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.



2 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the
processor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions
in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register).
Unprivileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction, or
as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is generated,
it is UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generating UNPREDICTABLE results must not depend on any data source (memory
or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which is
inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user mode
must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in another process

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED operations
or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which there is
no exit other than powering down the processor). The assertion of any of the reset signals must restore the processor
to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABLE values, software may depend on the fact that a sampling of an UNSTABLE value results in a legal
transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

• Implementations of operations generating UNSTABLE results must not depend on any data source (memory or
internal state) which is inaccessible in the current processor mode



1.3 Special Symbols in Pseudocode Notation

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 3

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1-1.

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol  Meaning

← Assignment

=, ≠ Tests for equality and inequality

|| Bit string concatenation

xy A y-bit string formed by y copies of the single-bit value x

b#n
A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the binary
value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" prefix is
omitted, the default base is 10.

0bn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).

0xn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).

xy..z
Selection of bits y through z of bit string x. Little-endian bit notation (rightmost bit is 0) is used. If y is less than
z, this expression is an empty (zero length) bit string.

+, − 2’s complement or floating point arithmetic: addition, subtraction

∗, × 2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

/ Floating point division

< 2’s complement less-than comparison

> 2’s complement greater-than comparison

≤ 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture, GPR[x]
is a short-hand notation for SGPR[ SRSCtlCSS, x].

SGPR[s,x] In Release 2 of the Architecture, multiple copies of the CPU general-purpose registers may be implemented.
SGPR[s,x] refers to GPR set s, register x.

FPR[x] Floating Point operand register x

FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].

FPR[x] Floating Point (Coprocessor unit 1), general register x



4 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

CPR[z,x,s] Coprocessor unit z, general register x, select s

CP2CPR[x] Coprocessor unit 2, general register x

CCR[z,x] Coprocessor unit z, control register x

CP2CCR[x] Coprocessor unit 2, control register x

COC[z] Coprocessor unit z condition signal

Xlat[x] Translation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

BigEndianMem
Endian mode as configured at chip reset (0 →Little-Endian, 1 → Big-Endian). Specifies the endianness of the
memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endianness
of Kernel and Supervisor mode execution.

BigEndianCPU
The endianness for load and store instructions (0 → Little-Endian, 1 → Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be computed
as (BigEndianMem XOR ReverseEndian).

ReverseEndian
Signal to reverse the endianness of load and store instructions. This feature is available in User mode only, and
is implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as (SRRE and
User mode).

LLbit
Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is set
when a linked load occurs and is tested by the conditional store. It is cleared, during other CPU operation, when
a store to the location would no longer be atomic. In particular, it is cleared by exception return instructions.

I:,
I+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as a label. It indicates the instruction time
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a time
label of I. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections labeled
with the instruction time, relative to the current instruction I, in which the effect of that pseudocode appears to
occur. For example, an instruction may have a result that is not available until after the next instruction. Such an
instruction has the portion of the instruction operation description that writes the result register in a section
labeled I+1.

The effect of pseudocode statements for the current instruction labelled I+1 appears to occur “at the same time”
as the effect of pseudocode statements labeled I for the following instruction. Within one pseudocode sequence,
the effects of the statements take place in order. However, between sequences of statements for different
instructions that occur “at the same time,” there is no defined order. Programs must not depend on a particular
order of evaluation between such sections.

PC

The Program Counter value. During the instruction time of an instruction, this is the address of the instruction
word. The address of the instruction that occurs during the next instruction time is determined by assigning a
value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruction)
or 4 before the next instruction time. A taken branch assigns the target address to the PC during the instruction
time of the instruction in the branch delay slot.

In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the restart
address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register on an
exception. The PC value contains a full 64-bit address all of which are significant during a memory reference.

ISA Mode

In processors that implement the MIPS16e Application Specific Extension, the ISA Mode is a single-bit register
that determines in which mode the processor is executing, as follows:

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol  Meaning

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing MIIPS16e instructions



1.4 For More Information

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 5

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS URL:

http://www.mips.com

Comments or questions on the MIPS64® Architecture or this document should be directed to

MIPS Architecture Group
MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043

or via E-mail to architecture@mips.com.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 physical
address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

SEGBITS
The number of virtual address bits implemented in a segment of the address space is represented by the symbol
SEGBITS. As such, if 40 virtual address bits are implemented in a segment, the size of the segment is 2SEGBITS

= 240 bytes.

FP32RegistersMode

Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32, the FPU has 32 32-bit
FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, the FPU has 32 64-bit FPRs
in which 64-bit data types are stored in any FPR.

In MIPS32 implementations, FP32RegistersMode is always a 0. MIPS64 implementations have a compatibility
mode in which the processor references the FPRs as if it were a MIPS32 implementation. In such a case
FP32RegisterMode is computed from the FR bit in the Status register. If this bit is a 0, the processor operates
as if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.

The value of FP32RegistersMode is computed from the FR bit in the Status register.

InstructionInBranchD
elaySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch or
jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is false
if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which is not
executed in the delay slot of a branch or jump.

SignalException(exce
ption, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
parameter as an exception-specific argument). Control does not return from this pseudocode function - the
exception is signaled at the point of the call.

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol  Meaning



6 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book



MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 7

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2-1 shows an example instruction. Following the figure are descriptions of the fields listed below:

• “Instruction Fields” on page 8

• “Instruction Descriptive Name and Mnemonic” on page 9

• “Format Field” on page 9

• “Purpose Field” on page 10

• “Description Field” on page 10

• “Restrictions Field” on page 10

• “Operation Field” on page 11

• “Exceptions Field” on page 11

• “Programming Notes and Implementation Notes Fields” on page 11



8 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

Figure 2-1 Example of Instruction Description

2.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The following
rules are followed:

 0

Example Instruction Name EXAMPLE

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 EXAMPLE

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Format: EXAMPLE rd, rs,rt MIPS32

Purpose: to execute an EXAMPLE op

Description: GPR[rd] ← GPR[r]s exampleop GPR[rt]
This section describes the operation of the instruction in text, tables, and
illustrations. It includes information that would be difficult to encode in the
Operation section.

Restrictions:
This section lists any restrictions for the instruction. This can include values of the
instruction encoding fields such as register specifiers, operand values, operand
formats, address alignment, instruction scheduling hazards, and type of memory
access for addressed locations.

Operation:
/* This section describes the operation of an instruction in a */
/* high-level pseudo-language. It is precise in ways that the */
/* Description section is not, but is also missing information */
/* that is hard to express in pseudocode.*/

temp ← GPR[rs] exampleop GPR[rt]
GPR[rd]← sign_extend(temp31..0)

Exceptions:
A list of exceptions taken by the instruction

Programming Notes:
Information useful to programmers, but not necessary to describe the operation of
the instruction

Implementation Notes:
Like Programming Notes, except for processor implementors

Instruction Mnemonic
and Descriptive Name

Instruction encoding
constant and variable
field names and values

Architecture level at
which instruction was
defined/redefined and
assembler format(s) for
each definition

Short description

Symbolic description

Full description of
instruction operation

Restrictions on
instruction and
operands

High-level language
description of instruction
operation

Exceptions that
instruction can cause

Notes for programmers

Notes for implementors



2.1 Understanding the Instruction Fields

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 9

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

• The values of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 2-2).
Constant values in a field are shown in binary below the symbolic or hexadecimal value.

• All variable fields are listed with the lowercase names used in the instruction description (rs, rt and rd in Figure 2-2).

• Fields that contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 2-2). If
such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

Figure 2-2 Example of Instruction Fields

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
2-3.

Figure 2-3 Example of Instruction Descriptive Name and Mnemonic

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in the Format field. If the instruction definition was later extended, the architecture levels at which it was extended
and the assembler formats for the extended definition are shown in their order of extension (for an example, see
C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in previous
levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the extended
architecture.

Format: ADD rd, rs, rt MIPS32

Figure 2-4 Example of Instruction Format

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectural level at which
the instruction was first defined, for example “MIPS32” is shown at the right side of the page.

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the
ADD.fmt instruction lists both ADD.S and ADD.D.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

ADD

100000

6 5 5 5 5 6

Add Word ADD



10 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Purpose:

To add 32-bit integers. If an overflow occurs, then trap.

Figure 2-5 Example of Instruction Purpose

2.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Description: GPR[rd] ← GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs

• If the addition does not overflow, the 32-bit result is signed-extended and placed into GPR rd

Figure 2-6 Example of Instruction Description

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs” is the floating point operand register specified by the instruction field fs. “CP1 register fd”
is the coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control /Status
register.

2.1.6 Restrictions Field

The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictions fall into one
of the following six categories:

• Valid values for instruction fields (for example, see floating point ADD.fmt)

• ALIGNMENT requirements for memory addresses (for example, see LW)

• Valid values of operands (for example, see DADD)

• Valid operand formats (for example, see floating point ADD.fmt)

• Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards for
which some processors do not have hardware interlocks (for example, see MUL).

• Valid memory access types (for example, see LL/SC)



2.1 Understanding the Instruction Fields

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 11

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Restrictions:

If either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Figure 2-7 Example of Instruction Restrictions

2.1.7 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation
resembling Pascal. This formal description complements the Description section; it is not complete in itself because
many of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← (GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0)
if temp32 ≠ temp31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← sign_extend(temp31..0)
endif

Figure 2-8 Example of Instruction Operation

See Section 2.2, "Operation Section Notation and Functions" on page 12 for more information on the formal notation
used here.

2.1.8 Exceptions Field

The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that can
be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by
asynchronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the
implementation.

Exceptions:

Integer Overflow

Figure 2-9 Example of Instruction Exception

An instruction may cause implementation-dependent exceptions that are not present in the Exceptions section.

2.1.9 Programming Notes and Implementation Notes Fields



12 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not
necessary to describe the instruction and does not belong in the description sections.

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

Figure 2-10 Example of Instruction Programming Notes

2.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level language notation to describe the operation
performed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described below.

This section presents information about the following topics:

• “Instruction Execution Ordering” on page 12

• “Pseudocode Functions” on page 12

2.2.1 Instruction Execution Ordering

Each of the high-level language statements in the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and include
the following:

• “Coprocessor General Register Access Functions” on page 12

• “Memory Operation Functions” on page 14

• “Floating Point Functions” on page 17

• “Miscellaneous Functions” on page 20

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
general registers and the rest of the system. What a coprocessor does with a word or doubleword supplied to it and how
a coprocessor supplies a word or doubleword is defined by the coprocessor itself. This behavior is abstracted into the
functions described in this section.



2.2 Operation Section Notation and Functions

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 13

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with a word from memory during a load
word operation. The action is coprocessor-specific. The typical action would be to store the contents of memword in
coprocessor general register rt.

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */

endfunction COP_LW

Figure 2-11 COP_LW Pseudocode Function

COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory during
a load doubleword operation. The action is coprocessor-specific. The typical action would be to store the contents of
memdouble in coprocessor general register rt.

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble:  64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */

endfunction COP_LD

Figure 2-12 COP_LD Pseudocode Function

COP_SW

The COP_SW function defines the action taken by coprocessor z to supply a word of data during a store word operation.
The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in
coprocessor general register rt.

dataword ← COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word value

/* Coprocessor-dependent action */

endfunction COP_SW

Figure 2-13 COP_SW Pseudocode Function



14 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store
doubleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the
low-order doubleword in coprocessor general register rt.

datadouble ← COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
datadouble: 64-bit doubleword value

/* Coprocessor-dependent action */

endfunction COP_SD

Figure 2-14 COP_SD Pseudocode Function

CoprocessorOperation

The CoprocessorOperation function performs the specified Coprocessor operation.

CoprocessorOperation (z, cop_fun)

/* z: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */

endfunction CoprocessorOperation

Figure 2-15 CoprocessorOperation Pseudocode Function

2.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-endian
ordering this is the least-significant byte.

In the Operation pseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in the
AccessLength field. The valid constant names and values are shown in Table 2-1. The bytes within the addressed unit of
memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly from
the AccessLength and the two or three low-order bits of the address.

AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cache coherence algorithm,
describing the mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the reference is to Instructions or Data (IorD), find the corresponding
physical address (pAddr) and the cache coherence algorithm (CCA) used to resolve the reference. If the virtual address
is in one of the unmapped address spaces, the physical address and CCA are determined directly by the virtual address.
If the virtual address is in one of the mapped address spaces then the TLB or fixed mapping MMU determines the



2.2 Operation Section Notation and Functions

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 15

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

physical address and access type; if the required translation is not present in the TLB or the desired access is not
permitted, the function fails and an exception is taken.

(pAddr, CCA) ← AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cache Coherence Algorithm, the method used to access caches*/
/* and memory and resolve the reference */

/* vAddr: virtual address */
/* IorD: Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

Figure 2-16 AddressTranslation Pseudocode Function

LoadMemory

The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cache Coherence Algorithm (CCA) and the access
(IorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The data is returned in a
fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address and the
AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory access type
of the reference is uncached, only the referenced bytes are read from memory and marked as valid within the memory
element. If the access type is cached but the data is not present in cache, an implementation-specific size and alignment
block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this block is the entire
memory element.

MemElem ← LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */
/* width is the same size as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */
/* respectively. */
/* CCA: Cache Coherence Algorithm, the method used to access caches */
/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */
/* pAddr: physical address */
/* vAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

Figure 2-17 LoadMemory Pseudocode Function

StoreMemory

The StoreMemory function stores a value to memory.

The specified data is stored into the physical location pAddr using the memory hierarchy (data caches and main memory)
as specified by the Cache Coherence Algorithm (CCA). The MemElem contains the data for an aligned, fixed-width
memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the bytes that are



16 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLength field indicate
which of the bytes within the MemElem data should be stored; only these bytes in memory will actually be changed.

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* CCA: Cache Coherence Algorithm, the method used to access */
/* caches and memory and resolve the reference. */
/* AccessLength: Length, in bytes, of access */
/* MemElem: Data in the width and alignment of a memory element. */
/* The width is the same size as the CPU general */
/* purpose register, either 4 or 8 bytes, */
/* aligned on a 4- or 8-byte boundary. For a */
/* partial-memory-element store, only the bytes that will be*/
/* stored must be valid.*/
/* pAddr: physical address */
/* vAddr: virtual address */

endfunction StoreMemory

Figure 2-18 StoreMemory Pseudocode Function

Prefetch

The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may increase
performance but must not change the meaning of the program or alter architecturally visible state.

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA: Cache Coherence Algorithm, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr: physical address */
/* vAddr: virtual address */
/* DATA: Indicates that access is for DATA */
/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Figure 2-19 Prefetch Pseudocode Function

Table 2-1 lists the data access lengths and their labels for loads and stores.

Table 2-1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning

DOUBLEWORD 7 8 bytes (64 bits)

SEPTIBYTE 6 7 bytes (56 bits)

SEXTIBYTE 5 6 bytes (48 bits)

QUINTIBYTE 4 5 bytes (40 bits)

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)



2.2 Operation Section Notation and Functions

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 17

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

SyncOperation

The SyncOperation function orders loads and stores to synchronize shared memory.

This action makes the effects of the synchronizable loads and stores indicated by stype occur in the same order for all
processors.

SyncOperation(stype)

/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

Figure 2-20 SyncOperation Pseudocode Function

2.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are
interpreted to form a formatted value. If an FPR contains a value in some format, rather than unformatted contents from
a load (uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).



18 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

value ← ValueFPR(fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1 and SDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

valueFPR ← UNPREDICTABLE32 || FPR[fpr]31..0

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)

if (fpr0 ≠ 0) then
valueFPR ← UNPREDICTABLE

else
valueFPR ← FPR[fpr+1]31..0 || FPR[fpr]31..0

endif
else

valueFPR ← FPR[fpr]
endif

L, PS, OB, QH:
if (FP32RegistersMode = 0) then

valueFPR ← UNPREDICTABLE
else

valueFPR ← FPR[fpr]
endif

DEFAULT:
valueFPR ← UNPREDICTABLE

endcase
endfunction ValueFPR

Figure 2-21 ValueFPR Pseudocode Function

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instructions.
Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a different
format.



2.2 Operation Section Notation and Functions

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 19

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

StoreFPR

StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

FPR[fpr] ← UNPREDICTABLE32 || value31..0

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)

if (fpr0 ≠ 0) then
UNPREDICTABLE

else
FPR[fpr] ← UNPREDICTABLE32 || value31..0
FPR[fpr+1] ← UNPREDICTABLE32 || value63..32

endif
else

FPR[fpr] ← value
endif

L, PS, OB, QH:
if (FP32RegistersMode = 0) then

UNPREDICTABLE
else

FPR[fpr] ← value
endif

endcase

endfunction StoreFPR

Figure 2-22 StoreFPR Pseudocode Function

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.



20 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

CheckFPException

CheckFPException()

/* A floating point exception is signaled if the E bit of the Cause field is a 1 */
/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if ( (FCSR17 = 1) or
((FCSR16..12 and FCSR11..7) ≠ 0)) ) then

SignalException(FloatingPointException)
endif

endfunction CheckFPException

Figure 2-23 CheckFPException Pseudocode Function

FPConditionCode

The FPConditionCode function returns the value of a specific floating point condition code.

tf ←FPConditionCode(cc)

/* tf: The value of the specified condition code */

/* cc: The Condition code number in the range 0..7 */

if cc = 0 then
FPConditionCode ← FCSR23

else
FPConditionCode ← FCSR24+cc

endif

endfunction FPConditionCode

Figure 2-24 FPConditionCode Pseudocode Function

SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.

SetFPConditionCode(cc)
if cc = 0 then

FCSR ← FCSR31..24 || tf || FCSR22..0
else

FCSR ← FCSR31..25+cc || tf || FCSR23+cc..0
endif

endfunction SetFPConditionCode

Figure 2-25 SetFPConditionCode Pseudocode Function

2.2.2.4 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

SignalException

The SignalException function signals an exception condition.



2.2 Operation Section Notation and Functions

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 21

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a return
from this function call.

SignalException(Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

Figure 2-26 SignalException Pseudocode Function

SignalDebugBreakpointException

The SignalDebugBreakpointException function signals a condition that causes entry into Debug Mode from non-Debug
Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a return
from this function call.

SignalDebugBreakpointException()

endfunction SignalDebugBreakpointException

Figure 2-27 SignalDebugBreakpointException Pseudocode Function

SignalDebugModeBreakpointException

The SignalDebugModeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a return
from this function call.

SignalDebugModeBreakpointException()

endfunction SignalDebugModeBreakpointException

Figure 2-28 SignalDebugModeBreakpointException Pseudocode Function

NullifyCurrentInstruction

The NullifyCurrentInstruction function nullifies the current instruction.

The instruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
kills the instruction in the delay slot of the branch likely instruction.

NullifyCurrentInstruction()

endfunction NullifyCurrentInstruction

Figure 2-29 NullifyCurrentInstruction PseudoCode Function



22 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the PC-relative instructions in the MIPS16e ASE. The
function returns TRUE if the instruction at vAddr is executed in a jump delay slot. A jump delay slot always immediately
follows a JR, JAL, JALR, or JALX instruction.

JumpDelaySlot(vAddr)

/* vAddr:Virtual address */

endfunction JumpDelaySlot

Figure 2-30 JumpDelaySlot Pseudocode Function

NotWordValue

The NotWordValue function returns a boolean value that determines whether the 64-bit value contains a valid word
(32-bit) value. Such a value has bits 63..32 equal to bit 31.

result ← NotWordValue(value)

/* result: True if the value is not a correct sign-extended word value; */
/* False otherwise */

/* value: A 64-bit register value to be checked */

NotWordValue ← value63..32 ≠ (value31)32

endfunction NotWordValue

Figure 2-31 NotWordValue Pseudocode Function

PolyMult

The PolyMult function multiplies two binary polynomial coefficients.

PolyMult(x, y)
temp ← 0
for i in 0 .. 31

if xi = 1 then
temp ← temp xor (y(31-i)..0 || 0

i)
endif

endfor

PolyMult ← temp

endfunction PolyMult

Figure 2-32 PolyMult Pseudocode Function

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When reference is
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, a single field has both fixed and variable subfields, so the name contains
both upper- and lowercase characters.



2.4 FPU Instructions

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 23

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfields in an instruction format (such as fs, ft,
immediate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in
uppercase.

For the sake of clarity, an alias is sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an alias is always lowercase since it refers to a
variable subfield.

Bit encodings for mnemonics are given in Volume I, in the chapters describing the CPU, FPU, MDMX, and MIPS16e
instructions.

See Section 2.3, "Op and Function Subfield Notation" on page 22 for a description of the op and function subfields.



24 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set



MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 25

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 3

MIPS-3D® Application-Specific Extension to the MIPS64® Architecture

This chapter describes the purpose and key features of the MIPS-3D® Application-Specific Extension (ASE) to the
MIPS64® Architecture.

3.1 Base Architecture Requirements

The MIPS-3D ASE requires the following base architecture support:

• A 64-bit floating point unit with all data types implemented: The MIPS-3D ASE requires a floating point
implementation that includes the single (S), double (D), word (W), long (L), and paired single (PS) datatypes.

In Release 1 of the Architecture, the MIPS-3D ASE was supported only on MIPS64 implementations. In Release 2 of
the Architecture, MIPS-3D is supported with a 64-bit floating point unit (as denoted by FIRF64), whether on a MIPS32
or MIPS64 processor.

3.2 Software Detection of the ASE

Software may determine if the MIPS-3D ASE is implemented by checking the state of the FP bit in the Config1 CP0
register to determine if floating is implemented. If this bit is set, software should then enable access to Coprocessor 1 by
setting the CU1 bit in the Status register and checking the state of the 3D bit in the FIR CP1 control register.

3.3 Compliance and Subsetting

There are no instruction subsets of the MIPS-3D ASE — all MIPS-3D instructions and data types must be implemented.

3.4 MIPS-3D Overview

The MIPS-3D ASE comprises thirteen instructions added to the floating-point instruction set. These instructions are
designed to improve the performance of graphics geometry code (triangle transform and lighting code) executed on the
MIPS processor. Table 3-1 lists these thirteen instructions by function. Chapter 4, “The MIPS-3D® ASE Instruction
Set,” on page 29, describes these instructions in greater detail.

The table and instruction descriptions use the following notations for data formats:

•  S for single data format (32 bits)

• D for double data format (64 bits)

• PS for paired-single data format (two singles in a 64-bit register)

• PL for paired-lower, the single value in bits 0-31 of the paired-single value in the 64-bit register

• PU for paired-upper, the single value in bits 32-63 of the paired-single value in the 64-bit register

• PW for paired-word data format (two words in a 64-bit register)



26 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 MIPS-3D® Application-Specific Extension to the MIPS64® Architecture

3.5 Instruction Bit Encoding

Table 3-3 through Table 3-7 describe the encoding used for the MIPS-3D ASE. Table 3-2 describes the meaning of the
symbols used in the tables. These tables only list the instruction encodings for the MIPS-3D instructions. See Volume I
of this multi-volume set for a full encoding of all instructions.

Table 3-1 Instructions in the MIPS-3D® ASE

Type Mnemonic Valid Formats Instruction

Arithmetic

ADDR PS Floating point reduction add

MULR PS Floating point reduction multiply

RECIP1 S, D, PS Reciprocal first step with a reduced precision result

RECIP2 S, D, PS Reciprocal second step (enroute to the full precision result)

RSQRT1 S, D, PS Reciprocal square-root with a reduced precision result

RSQRT2 S, D, PS
Reciprocal square-root second step (enroute to the full precision
result)

Format
conversions

CVT.PS.PW PW
Converts a pair of 32-bit fixed point integers to paired-single FP
format

CVT.PW.PS PS
Converts a paired-single FP format to a pair of 32-bit fixed point
integers

Compare CABS S, D, PS Magnitude compare of floating point numbers

Branch

BC1ANY2F
Branch if either one of the two specified (consecutive) condition
codes is False

BC1ANY2T
Branch if either one of the two specified (consecutive) condition
codes is True

BC1ANY4F
Branch if any one of the four specified (consecutive) condition
codes is False

BC1ANY4T
Branch if any one of the four specified (consecutive) condition
codes is True

Table 3-2 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

δ
(Also italic field name.) Operation or field codes marked with this symbol denotes a field class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

ε
Operation or field codes marked with this symbol are reserved for MIPS Application Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

∇

Operation or field codes marked with this symbol represent instructions which were only legal if
64-bit operations were enabled on implementations of Release 1 of the Architecture. In Release 2
of the architecture, operation or field codes marked with this symbol represent instructions which
are legal if 64-bit floating point operations are enabled. In other cases, executing such an
instruction must cause a Reserved Instruction Exception (non-coprocessor encodings or
coprocessor instruction encodings for a coprocessor to which access is allowed) or a Coprocessor
Unusable Exception (coprocessor instruction encodings for a coprocessor to which access is not
allowed).



3.5 Instruction Bit Encoding

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 27

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Table 3-3 MIPS-3D COP1 Encoding of rs Field

rs  bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00

1 01 BC1ANY2 δε∇BC1ANY4 δε∇
2 10

3 11

Table 3-4 MIPS-3D COP1 Encoding of Function Field When rs=S

function  bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000

1 001

2 010

3 011 RECIP2 ε∇ RECIP1 ε∇ RSQRT1 ε∇ RSQRT2 ε∇
4 100

5 101

6 110 CABS.F ε∇ CABS.UN ε∇ CABS.EQ ε∇ CABS.UEQ ε∇CABS.OLT ε∇ CABS.ULT ε∇CABS.OLE ε∇CABS.ULE ε∇
7 111 CABS.SF ε∇ CABS.NGLE ε∇CABS.SEQ ε∇CABS.NGL ε∇ CABS.LT ε∇ CABS.NGE ε∇ CABS.LE ε∇ CABS.NGT ε∇

Table 3-5 MIPS-3D COP1 Encoding of Function Field When rs=D

function  bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000

1 001

2 010

3 011 RECIP2 ε∇ RECIP1 ε∇ RSQRT1 ε∇ RSQRT2 ε∇
4 100

5 101

6 110 CABS.F ε∇ CABS.UN ε∇ CABS.EQ ε∇ CABS.UEQ ε∇CABS.OLT ε∇ CABS.ULT ε∇CABS.OLE ε∇CABS.ULE ε∇
7 111 CABS.SF ε∇ CABS.NGLE ε∇CABS.SEQ ε∇CABS.NGL ε∇ CABS.LT ε∇ CABS.NGE ε∇ CABS.LE ε∇ CABS.NGT ε∇

Table 3-6 MIPS-3D COP1 Encoding of Function Field When rs=W or L

function  bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000

1 001

2 010

3 011

4 100 CVT.PS.PW ε∇
5 101

6 110

7 111



28 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 MIPS-3D® Application-Specific Extension to the MIPS64® Architecture

Table 3-7 MIPS-3D COP1 Encoding of Function Field When rs=PS

function  bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000

1 001

2 010

3 011 ADDR ε∇ MULR ε∇ RECIP2 ε∇ RECIP1 ε∇ RSQRT1 ε∇ RSQRT2 ε∇
4 100 CVT.PW.PS ε∇
5 101 PLL.PS ε∇ PLU.PS ε∇ PUL.PS ε∇ PUU.PS ε∇
6 110 CABS.F ε∇ CABS.UN ε∇ CABS.EQ ε∇ CABS.UEQ ε∇ CABS.OLT ε∇ CABS.ULT ε∇CABS.OLE ε∇CABS.ULE ε∇
7 111 CABS.SF ε∇ CABS.NGLE ε∇CABS.SEQ ε∇CABS.NGL ε∇ CABS.LT ε∇ CABS.NGE ε∇ CABS.LE ε∇ CABS.NGT ε∇

+_



MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 29

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4

The MIPS-3D® ASE Instruction Set

4.1 MIPS-3D Instruction Descriptions

This chapter provides an alphabetic listing of the instructions listed in Table 3-1.



30 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 The MIPS-3D® ASE Instruction Set

ADDR.PS

Format: ADDR.PS fd, fs, ft MIPS-3D

Purpose:

To perform a reduction add on two paired-single floating point values

Description: FPR[fd].PL ← FPR[ft].PU + FPR[ft].PL; FPR[fd].PU ← FPR[fs].PU + FPR[fs].PL

The paired-single values in FPR ft are added together and the result put in the lower paired-single position of FPR fd.
Similarly, the paired-single values in FPR fs are added together and the result put in the upper paired-single position
of FPR fd. The two results are calculated to infinite precision and rounded by using the current rounding mode in
FCSR.  The operands and result are values in format PS.

Any generated exceptions in the two independent adds are OR’ed together. Cause bits are ORed into the Flag bits if
no exception is taken.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format PS. If they are not, the result is UNPREDICTABLE and the values in the
operand FPRs become UNPREDICTABLE.

The result of ADDR.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

lower ← ValueFPR(ft, PS)31..0 + ValueFPR(ft, PS)63..32
upper ← ValueFPR(fs, PS)31..0 + ValueFPR(fs, PS)63..32
StoreFPR (fd, PS, upper || lower)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Overflow, Inexact, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt

10110
ft fs fd

ADDR.PS

011000

6 5 5 5 5 6

Floating Point Reduction Add ADDR.fmt



4.1 MIPS-3D Instruction Descriptions

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 31

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

BC1ANY2F

Format: BC1ANY2F cc,offset MIPS-3D

Purpose:

To test two consecutive floating point condition codes and do a PC-relative conditonal branch

Description: If FPConditionCode(CCn+1) = 0 or FPConditionCode(CCn) = 0, then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If either one of
the two FP condition code bits CC is false (0), the program branches to the effective target address after the instruc-
tion in the delay slot is executed.

The CC specified must align to 2, so bit 18 must always be zero. For example, specifying a value of 4 will check if
either one of CC5 or CC4 is 0 and branch accordingly. Specifying an illegally aligned CC will result in UNPRE-
DICTABLE behavior.

An FP condition code is set by an FP compare instruction, C.cond.fmt and the MIPS-3D compare absolute instruction
CABS.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Any Two Condition operation with the tf (true/false) as a
variables. The individual instructions BC1ANY2F and BC1ANY2T have a specific values for tf.

I: condition ← (FPConditionCode(cc)   = 0) or
(FPConditionCode(cc+1) = 0)

target_offset ← (offset15)
GPRLEN-(16+2) || offset || 02

I+1: if condition then
PC ← PC + target_offset

endif

31 26 25 21 20 18 17 16 15 0

COP1

010001

BC1ANY2

01001

cc

xx0
0

tf

0
offset

6 5 3 1 1 16

Branch on Any of Two Floating Point Condition Codes False BC1ANY2F



32 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 The MIPS-3D® ASE Instruction Set

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Branch on Any of Two Floating Point Condition Codes False, cont. BC1ANY2F



4.1 MIPS-3D Instruction Descriptions

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 33

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

BC1ANY2T

Format: BC1ANY2T cc,offset MIPS-3D

Purpose:

To test two consecutive FP condition codes and do a PC-relative conditonal branch

Description: If FPConditionCode(CCn+1) = 1 or FPConditionCode(CCn) = 1, then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If either one of
the two FP condition code bits CC is true (1), the program branches to the effective target address after the instruction
in the delay slot is executed.

The CC specified must align to 2, so bit 18 must always be zero. For example, specifying a value of 2 will check if
either one of CC3 or CC2 is 1 and branch accordingly. Specifying an illegally aligned CC will result in UNPRE-
DICTABLE behavior.

An FP condition code is set by an FP compare instruction, C.cond.fmt and the MIPS-3D compare absolute instruction
CABS.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Any Two Condition operation with the tf (true/false) as a
variables. The individual instructions BC1ANY2F and BC1ANY2T have a specific values for tf.

I: condition ← (FPConditionCode(cc)   = 1) or
(FPConditionCode(cc+1) = 1)

target_offset ← (offset15)
GPRLEN-(16+2) || offset || 02

I+1: if condition then
PC ← PC + target_offset

endif

31 26 25 21 20 18 17 16 15 0

COP1

010001

BC1ANY2

01001

cc

xx0

nd

0

tf

1
offset

6 5 3 1 1 16

Branch on Any of Two Floating Point Condition Codes True BC1ANY2T



34 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 The MIPS-3D® ASE Instruction Set

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Branch on Any of Two Floating Point Condition Codes True, cont. BC1ANY2T



4.1 MIPS-3D Instruction Descriptions

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 35

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

BC1ANY4F

Format: BC1ANY4F cc,offset MIPS-3D

Purpose:

To test four consecutive FP condition codes and do a PC-relative conditonal branch

Description: If FPConditionCode(CCn+3) = 0 or FPConditionCode(CCn+2) = 0  or FPCondition-
Code(CCn+1) = 0 or FPConditionCode(CCn) = 0, then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If any of the
four FP condition code bits CC is false (0), the program branches to the effective target address after the instruction in
the delay slot is executed.

The CC specified must align to 4, so bits 18 and 19 must always be zero. For example, specifying a value of 0 will
check if any one of CC3..0 is 0 and branch accordingly. Specifying an illegally aligned CC will result in UNPRE-
DICTABLE behavior.

An FP condition code is set by an FP compare instruction, C.cond.fmt and the MIPS-3D compare absolute instruction
CABS.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Any Four Condition operation with the tf (true/false) as a
variables. The individual instructions BC1ANY4F and BC1ANY4T have a specific values for tf.

I: condition ← (FPConditionCode(cc)   = 0) or
(FPConditionCode(cc+1) = 0) or
(FPConditionCode(cc+2) = 0) or
(FPConditionCode(cc+3) = 0)

target_offset ← (offset15)
GPRLEN-(16+2) || offset || 02

I+1: if condition then
PC ← PC + target_offset

endif

31 26 25 21 20 18 17 16 15 0

COP1

010001

BC1ANY4

01010

cc

xx0

nd

0

tf

0
offset

6 5 3 1 1 16

Branch on Any of Four Floating Point Condition Codes False BC1ANY4F



36 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 The MIPS-3D® ASE Instruction Set

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Branch on Any of Four Floating Point Condition Codes False, cont. BC1ANY4F



4.1 MIPS-3D Instruction Descriptions

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 37

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

BC1ANY4T

Format: BC1ANY4T cc,offset MIPS-3D

Purpose:

To test four consecutive FP condition codes and do a PC-relative conditonal branch

Description: If FPConditionCode(CCn+3) = 1 or FPConditionCode(CCn+2) = 1  or FPCondition-
code(CCn+1) = 1 or FPConditionCode(CCn) = 1, then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If any of four
FP condition code bits CC is true (1), the program branches to the effective target address after the instruction in the
delay slot is executed.

The CC specified must align to 4, so bits 18 and 19 must always be zero. For example, specifying a value of 4 will
check if any of the bits CC7..4 is 1 and branch accordingly. Specifying an illegally aligned CC will result in UNPRE-
DICTABLE behavior.

An FP condition code is set by an FP compare instruction, C.cond.fmt and the MIPS-3D compare absolute instruction
CABS.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Any Four Condition operation with the tf (true/false) as a
variables. The individual instructions BC1ANY4F and BC1ANY4T have a specific values for tf.

I: condition ← (FPConditionCode(cc)   = 1) or
(FPConditionCode(cc+1) = 1) or
(FPConditionCode(cc+2) = 1) or
(FPConditionCode(cc+3) = 1)

target_offset ← (offset15)
GPRLEN-(16+2) || offset || 02

I+1: if condition then
PC ← PC + target_offset

endif

31 26 25 21 20 18 17 16 15 0

COP1

010001

BC1ANY4

01010

cc

xx0

nd

0

tf

1
offset

6 5 3 1 1 16

Branch on Any of Four Floating Point Condition Codes True BC1ANY4T



38 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 The MIPS-3D® ASE Instruction Set

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Branch on Any of Four Floating Point Condition Codes True, cont. BC1ANY4T



4.1 MIPS-3D Instruction Descriptions

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 39

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

CABS.cond.fmt

Format: CABS.cond.S cc,fs,ft MIPS-3D
CABS.cond.D cc,fs,ft MIPS-3D
CABS.cond.PS cc,fs,ft MIPS-3D

Purpose:

To compare FP values and record the boolean result in one or more condition codes

Description: FPConditionCode(cc) ← FPR[fs] compare_absolute_cond FPR[ft]

The absolute value in FPR fs is compared to the absolute value in FPR ft; the values are in format fmt. The compari-
son is exact and neither overflows nor underflows.

If the comparison specified by cond2..1 is true for the operand values, the result is true; otherwise, the result is false. If
no exception is taken, the result is written into condition code CC; true is 1 and false is 0.

CABS.cond.PS compares the upper and lower halves of FPR fs and FPR ft independently and writes the results into
condition codes CC +1 and CC respectively. The CC number must be even. If the number is not even the operation of
the instruction is UNPREDICTABLE.

See the description of the C.cond.fmt instruction in Volume II of this multi-volume set for a complete description of
the cond value and the behavior of the compare instruction.

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPREDICT-
ABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of CABS.cond.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode, or if the
condition code number is odd.

31 26 25 21 20 16 15 11 10 8 7 6 5 4 3 0

COP1

010001
fmt ft fs cc 0

A

1

FC

11
cond

6 5 5 5 3 1 1 2 4

Floating Point Absolute Compare CABS.cond.fmt



40 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 The MIPS-3D® ASE Instruction Set

Operation:
if SNaN(ValueFPR(fs, fmt)) or SNaN(ValueFPR(ft, fmt)) or

QNaN(ValueFPR(fs, fmt)) or QNaN(ValueFPR(ft, fmt)) then
less ← false
equal ← false
unordered ← true
if (SNaN(ValueFPR(fs,fmt)) or SNaN(ValueFPR(ft,fmt))) or
(cond3 and (QNaN(ValueFPR(fs,fmt)) or QNaN(ValueFPR(ft,fmt)))) then

SignalException(InvalidOperation)
endif

else
less ← AbsoluteValue(ValueFPR(fs, fmt)) <fmt

AbsoluteValue(ValueFPR(ft, fmt))
equal ← AbsoluteValue(ValueFPR(fs, fmt)) =fmt

AbsoluteValue(ValueFPR(ft, fmt))
unordered ← false

endif
condition ← (cond2 and less) or (cond1 and equal)

or (cond0 and unordered)
SetFPConditionCode(cc, condition)

For CABS.cond.PS, the pseudo code above is repeated for both halves of the operand registers, treating each half as
an independent single-precision values. Exceptions on the two halves are logically ORed and reported together. The
results of the lower half comparison are written to condition code CC; the results of the upper half comparison are
written to condition code CC+1.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

Floating Point Absolute Compare, cont. CABS.cond.fmt



4.1 MIPS-3D Instruction Descriptions

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 41

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

CVT.PW.PS

Format: CVT.PW.PS fd,fs MIPS-3D

Purpose:

To convert a FP paired-single value to a pair of 32-bit fixed point words

Description: FPR[fd].PU ← convert_and_round(FPR[fs].PU); FPR[fd].PL ←
convert_and_round(FPR[fs].PL)

The values in FPR fs, in format PS, are converted to a pair of values in 32-bit word fixed point format and rounded
according to the current rounding mode in FCSR. The result is placed in FPR fd. The conversions of the two halves
are done independently.

When either source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 231–1, is written to the correspond half of FPR fd which caused the
exception.

Restrictions:

The fields fs and fd must specify valid FPRs---fs for type PS and fd for type PW. If they are not valid, the result is
UNPREDICTABLE. The format of the data in the specified operand register fs must be a value in format PS; if it is
not, the result is UNPREDICTABLE and the value in the operand FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PW,
ConvertFmt(ValueFPR(fs, PS)63..32, S, W) ||
ConvertFmt(ValueFPR(fs, PS)31..0, S, W)

)

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
10110

0
00000

fs fd
CVT.PW.PS

100100

6 5 5 5 5 6

Floating Point Convert Paired Single to Paired Word CVT.PW.PS



42 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 The MIPS-3D® ASE Instruction Set

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions

Unimplemented Operation, Invalid Operation, Overflow, Inexact

Floating Point Convert Paired Single to Paired Word (cont.) CVT.PW.PS



4.1 MIPS-3D Instruction Descriptions

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 43

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

CVT.PS.PW

Format: CVT.PS.PW fd,fs MIPS-3D

Purpose:

To convert a pair of 32-bit fixed point words to FP paired-single value

Description: FPR[fd] ← (convert_and_round(FPR[fs]63..32) || convert_and_round(FPR[f]s31..0)

The value in FPR fs, in format PW, is converted to a value in paired-single floating point format and rounded accord-
ing to the current rounding mode in FCSR. The result is placed in FPR fd.

Restrictions:

The fields fs and fd must specify valid FPRs---fs for type PW and fd for type PS. If they are not valid, the result is
UNPREDICTABLE. The operand in register fs must be a value in format type PW; if it is not, the result is UNPRE-
DICTABLE and the value in the operand FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS,
ConvertFmt(ValueFPR(fs, PW)63..32, W, S) ||
ConvertFmt(ValueFPR(fs, PW)31..0, W, S)

)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
10100

0
00000

fs fd
CVT.PS.PW

100110

6 5 5 5 5 6

Floating Point Convert Paired Word to Paired Single CVT.PS.PW



44 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 The MIPS-3D® ASE Instruction Set

MULR.PS

Format: MULR.PS fd, fs, ft MIPS-3D

Purpose:

To perform a reduction multiply on two paired-single floating point values

Description: FPR[fd].PL ← FPR[ft].PU * FPR[ft].PL; FPR[fd].PU ← FPR[fs].PU * FPR[fs].PL

The paired-single values in FPR ft are multiplied together and the result put in the lower paired-single position of FPR
fd. Similarly, the paired-single values in FPR fs are multiplied together and the result put in the upper paired-single
position of FPR fd. The two results are calculated to infinite precision and rounded by using the current rounding
mode in FCSR.  The operands and result are values in format PS.

Any generated exceptions in the two independent adds are OR’ed together. Cause bits are ORed into the Flag bits if
no exception is taken.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format PS. If they are not, the result is UNPREDICTABLE and the values in the
operand FPRs become UNPREDICTABLE.

The result of ADDR.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

lower ← ValueFPR(ft, PS)31..0 × ValueFPR(ft, PS)63..32
upper ← ValueFPR(fs, PS)31..0 × ValueFPR(fs, PS)63..32
StoreFPR (fd, PS, upper || lower)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Overflow, Inexact, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt

10110
ft fs fd

MULR.PS

011010

6 5 5 5 5 6

Floating Point Reduction Multiply MULR.PS



4.1 MIPS-3D Instruction Descriptions

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 45

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

RECIP1.fmt

Format: RECIP1.S fd,fs MIPS-3D
RECIP1.D fd,fs MIPS_3D
RECIP1.PS fd,fs MIPS_3D

Purpose:

Generate a reduced-precision reciprocal of one or two FP values

Description: FPR[fd] ← 1.0 / FPR[fs]

The reciprocal of the value in FPR fs is approximated and placed in FPR fd. The operand and result are values in for-
mat S, D, or PS.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
IEEE 754 Floating Point standard. A minimum accuracy of 14 bits is recommended for both the S and D input data
formats.

It is implementation dependent whether the result is affected by the current rounding mode in FCSR. This instruction
is meant to operate in RN (round to nearest) mode for the best accuracy. It is also meant to operate in the Flush to
Zero (FS=0) mode. In this mode, if the incoming data is in the denormalized range, it is assumed to be zero, and if the
output is in the denormalized range, it is forced to zero.

In addition, if the input to this instruction is zero, the output is not infinity, but the maximum normalized value. This
property is useful for 3D graphics applications. If the input is infinity, the output is zero.

This instruction is used as the first step of an instruction sequence that can be used to produce a full precision recipro-
cal value. See the description of RECIP2.fmt for an example of how to use this instruction in a code sequence to pro-
duce a full precision reciprocal result.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-
DICTABLE. The format of the data in the specified operand register fs must be a value in format fmt; if it is not, the
result is UNPREDICTABLE and the value of the operand FPR becomes UNPREDICTABLE.

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

RECIP1

011101

6 5 5 5 5 6

Floating Point Reduced Precision Reciprocal (Sequence Step 1) RECIP1.fmt



46 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 The MIPS-3D® ASE Instruction Set

Operation:

StoreFPR(fd, fmt, (1.0 / ValueFPR(fs, fmt))ReducedPrecision)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Overflow, Inexact, Underflow, Division-by-zero

Floating Point Reduced Precision Reciprocal (Sequence Step 1, cont.) RECIP1.fmt



4.1 MIPS-3D Instruction Descriptions

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 47

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

RECIP2.fmt

Format: RECIP2.S fd,fs,ft MIPS-3D
RECIP2.D fd,fs,ft MIPS-3D
RECIP2.PS fd,fs,ft MIPS-3D

Purpose:

Take the result of RECIP1.fmt and iterate towards obtaining a full precision reciprocal FP value

Description: FPR[fd] ← iterate with FPR[fs] and FPR[ft]

This is the second step in the instruction sequence used to generate a full precision reciprocal result. (RECIP1.fmt
instruction is the first step). The operand and result are values in format S, D, or PS.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
IEEE 754 Floating Point standard.

It is implementation dependent whether the result is affected by the current rounding mode in FCSR. This instruction
is meant to operate in RN (round to nearest) mode for the best accuracy. It is also meant to operate in the Flush to
Zero (FS=0) mode. In this mode, if the incoming data is in the denormalized range, it is assumed to be zero, and if the
output is in the denormalized range, it is forced to zero.

The example below shows how a full precision reciprocal result can be obtained using the RECIP1 and RECIP2
instructions. Assume that a value b is in register f0 in format S. Assume that RECIP1.fmt produces a 16-bit result. At
the end of the three-instruction sequence shown below, register f3 contains the full precision 24-bit reciprocal 1/b.

RECIP1.S f1, f0 /* reduced precision 16-bit 1/b */
RECIP2.S f2, f1, f0 /* -(b * f1 - 1.0) */
MADD.S f3, f1, f1, f2 /* 24-bit 1/b */

The instruction sequence to produce a double, 52-bit result is as follows:

RECIP1.D f1, f0 /* reduced precision 16-bit 1/b */
RECIP2.D f2, f1, f0 /* -(b * f1 - 1.0) */
MADD.D f3, f1, f1, f2 /* 32-bit 1/b */
RECIP2.D f4, f3, f0 /* -(b * f3 - 1.0) */
MADD.D f5, f3, f3, f4 /* 53-bit 1/b */

The instruction sequence to take a paired single value and produce a paired single result is as follows. Assume that
register f0 holds two single values a and b in a paired single format, i.e., f0 ← a | b.

RECIP1.PS f1, f0 /* ( reduced precision 16-bit 1/a and 1/b ) */
RECIP2.PS f2, f1, f0 /* ( -(a*f1-1.0) and -(b*f1-1.0) ) */
MADD.PS f3, f1, f1, f2 /* ( 24-bit 1/a and 1/b ) */

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

RECIP2

011100

6 5 5 5 5 6

Floating Point Reduced Precision Reciprocal (Sequence Step 2) RECIP2.fmt



48 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 The MIPS-3D® ASE Instruction Set

If the hardware does not implement the RECIP1.PS instruction, it is still possible to obtain a paired single result, but
this takes three more instructions in the required sequence. Assume that register f0 holds a single value a and register
f1 holds a single value b.

RECIP1.S f2, f0 /* ( f2 gets reduced precision 1/a ) */
RECIP1.S f3, f1 /* ( f3 gets reduced precision 1/b ) */
CVT.PS.S f4, f1, f0 /* ( f4 now holds the PS values b | a ) */
CVT.PS.S f5, f3, f2 /* ( f5 holds PS seed 1/b | 1/a ) */
RECIP2.PS f6, f5, f4 /* ( f6 holds intermediate 1/b | 1/a ) */
MADD.PS f7, f5, f5, f6 /* ( f7 holds full precision PS 1/b | 1/a ) */

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-
DICTABLE. The format of the data in the specified operand register fs must be a value in format fmt; if it is not, the
result is UNPREDICTABLE and the value in the operand FPR becomes UNPREDICTABLE.

The result of RECIP2.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

  Operation:

StoreFPR(fd, fmt, RECIP_iteration(ValueFPR(fs, fmt), ValueFPR(ft, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Inexact, Invalid Operation, Overflow, Underflow

Floating Point Reduced Precision Reciprocal (Sequence Step 2, cont.) RECIP2.fmt



4.1 MIPS-3D Instruction Descriptions

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 49

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

RSQRT1.fmt

Format: RSQRT1.S     fd, fs MIPS-3D
RSQRT1.D     fd, fs MIPS-3D
RSQRT1.PS    fd, fs MIPS-3D

Purpose:

To produce a reduced-precision reciprocal of the square root of one or two FP values

Description: FPR[fd] ← 1.0 / sqrt (FPR[fs])

The reciprocal of the positive square root of the value in FPR fs is approximated and placed in FPR fd. The operand
and result are values in format S, D, or PS.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
IEEE 754 Floating Point standard. A minimum accuracy of 14 bits is recommended for the S input data format, and
23 bits for the D data format.

It is implementation dependent whether the result is affected by the current rounding mode in FCSR.

In addition, if the input to this instruction is zero, the output is not infinity, but the maximum normalized value. This
property is useful for 3D graphics applications. If the input is infinity, the output is zero.

This instruction is used as the first step of an instruction sequence that can be used to produce a full precision recipro-
cal square root value. See the description of RSQRT2.fmt for an example of how to use this instruction in a code
sequence to produce a full precision reciprocal square root result.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-
DICTABLE. The format of the data in the specified operand register fs must be a value in format fmt; if it is not, the
result is UNPREDICTABLE and the value in the operand FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, fmt, (1.0 / SquareRoot(ValueFPR(fs, fmt)))ReducedPrecision)

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

RSQRT1

011110

6 5 5 5 5 6

Floating Point Reduced Precision Reciprocal Square Root (Sequence Step 1) RSQRT1.fmt



50 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 The MIPS-3D® ASE Instruction Set

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Overflow, Inexact, Underflow, Division-by-zero

Floating Point Reduced Precision Reciprocal Square Root (Sequence Step 1, cont.) RSQRT1.fmt



4.1 MIPS-3D Instruction Descriptions

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 51

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

RSQRT2.fmt

Format: RSQRT2.S   fd, fs, ft MIPS-3D
RSQRT2.D   fd, fs, ft MIPS-3D
RSQRT2.PS   fd, fs, ft MIPS-3D

Purpose:

Iterate towards obtaining a full precision reciprocal square root FP value

Description: FPR[fd] ← iterate with FPR[fs] and FPR[ft]

This is a step of iteration towards generating the full precision reciprocal square root value. The operand and result
are values in format S, D, or PS.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
IEEE 754 Floating Point standard.

It is implementation dependent whether the result is affected by the current rounding mode in FCSR.

A full precision reciprocal square root result is obtained by using the instruction sequence shown below. Assume that
a value b is in register f0 in format S. Assume that RSQRT1.fmt has a 16-bit precision in the example implementa-
tion. At the end of the four-instruction sequence shown below, register f4 contains the full precision 24-bit reciprocal
square root 1/(sqrt)b.

RSQRT1.S f1, f0 /* 16-bit 1/sqrt(b) */
MUL.S f2, f1, f0 /* b * f0 */
RSQRT2.S f3, f2, f1 /* -(f1 * f2 - 1.0)/2 */
MADD.S f4, f1, f1, f3 /* 24-bit 1/sqrt(b) */

The instruction sequence to produce a 52-bit result is as follows:

RSQRT1.D f1, f0 /* 16-bit 1/sqrt(b) */
MUL.D f2, f1, f0 /* b * f0 */
RSQRT2.D f3, f2, f1 /* -(f1 * f2 - 1.0)/2 */
MADD.D f4, f1, f1, f3 /* 31-bit 1/sqrt(b) */
MUL.D f5, f0, f4 /* b * f0 */
RSQRT2.D f6, f5, f4 /* -(f4 * f5 - 1.0)/2 */
MADD.D f7, f4, f4, f6 /* 53-bit 1/sqrt(b) */

The instruction sequence to take a paired single value and produce a paired single result is as follows. Assume that
register f0 holds two single values a and b in a paired single format, i.e., f0 ← a | b.

RSQRT1.PS f1, f0 /* ( 16-bit 1/sqrt(a) and 1/sqrt(b) ) */
MUL.PS f2, f1, f0 /* ( a * f0 and b * f1 ) */
RSQRT2.PS f3, f2, f1 /* ( -(f1*f2-1.0)/2 ) */
MADD.PS f4, f1, f1, f3 /* ( 24-bit 1/sqrt(a) and 1/sqrt(b) ) */

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

RSQRT2

011111

6 5 5 5 5 6

Floating Point Reduced Precision Reciprocal Square Root (Sequence Step 2) RSQRT2.fmt



52 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 The MIPS-3D® ASE Instruction Set

If the hardware does not implement the RSQRT1.PS instruction, it is still possible to obtain a paired single result, but
this takes three more instructions in the required sequence. Assume that register f0 holds a single value a and register
f1 holds a single value b.

RSQRT1.S f2, f0 /* ( f2 gets reduced precision 1/sqrt(a) ) */
RSQRT1.S f3, f1 /* ( f3 gets reduced precision 1/sqrt(b) ) */
CVT.PS.S f4, f1, f0 /* ( f4 now holds the PS values b | a ) */
CVT.PS.S f5, f3, f2 /* ( f5 holds PS seed 1/sqrt(b) | 1/sqrt(a) ) */
MUL.PS f6, f5, f4 /* ( f6 holds intermediate1 results ) */
RSQRT2.PS f7, f6, f5 /* ( f7 holds intermediate2 results ) */
MADD.PS f8, f5, f5, f7 /* ( f8 holds full precision PS 1/sqrt(b) | */

/*  1/sqrt(a) ) */

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-
DICTABLE. The format of the data in the specified operand register fs must be a value in format fmt; if it is not, the
result is UNPREDICTABLE and the value of the operand FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, fmt, RSQRT_iteration(ValueFPR(fs, fmt), ValueFPR(ft, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Overflow, Inexact, Underflow

Floating Point Reduced Precision Reciprocal Square Root (Sequence Step 2, cont.) RSQRT2.fmt



MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 53

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Appendix A

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Change bars
on figure titles are used to denote a potential change in the figure itself.

Revision Date Description

1.00 August 6, 1999 First external release

1.10 November 1, 2000 Convert format and include document in document set

1.11 March 12, 2001 Add architecture requirements and subsetting rules for next external review
release.

1.12 August 29, 2002 Update template to synchronize with latest documentation set release.

2.00 May 15, 2003

Changes in this revision:

• Update instruction descriptions to allow MIPS-3D to be implemented on a
64-bit FPU (as denoted by FIRF64), whether on a MIPS32 or MIPS64
processor. This reflects changes introduced with Release 2 of the MIPS
Architecture.

2.50 July 1, 2005

Changes in this revision:

• Modify the recommendation for minimum bits of accuracy in the
RECIP1.D instruction from 23 to 14 bits.

• Update to FrameMaker 7.1

• Correct copyright year in Architecture for Programmers version


	MIPS64® Architecture for Programmers Volume IV-c: The MIPS-3D® Application-Specific Extension to the MIPS64® Architecture
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1 Typographical Conventions
	1.1.1 Italic Text
	1.1.2 Bold Text
	1.1.3 Courier Text

	1.2 UNPREDICTABLE and UNDEFINED
	1.2.1 UNPREDICTABLE
	1.2.2 UNDEFINED
	1.2.3 UNSTABLE

	1.3 Special Symbols in Pseudocode Notation
	1.4 For More Information

	Guide to the Instruction Set
	2.1 Understanding the Instruction Fields
	2.1.1 Instruction Fields
	2.1.2 Instruction Descriptive Name and Mnemonic
	2.1.3 Format Field
	2.1.4 Purpose Field
	2.1.5 Description Field
	2.1.6 Restrictions Field
	2.1.7 Operation Field
	2.1.8 Exceptions Field
	2.1.9 Programming Notes and Implementation Notes Fields

	2.2 Operation Section Notation and Functions
	2.2.1 Instruction Execution Ordering
	2.2.2 Pseudocode Functions
	2.2.2.1 Coprocessor General Register Access Functions
	2.2.2.2 Memory Operation Functions
	2.2.2.3 Floating Point Functions
	2.2.2.4 Miscellaneous Functions


	2.3 Op and Function Subfield Notation
	2.4 FPU Instructions

	MIPS-3D® Application-Specific Extension to the MIPS64® Architecture
	3.1 Base Architecture Requirements
	3.2 Software Detection of the ASE
	3.3 Compliance and Subsetting
	3.4 MIPS-3D Overview
	3.5 Instruction Bit Encoding

	The MIPS-3D® ASE Instruction Set
	4.1 MIPS-3D Instruction Descriptions
	ADDR.PS
	BC1ANY2F
	BC1ANY2T
	BC1ANY4F
	BC1ANY4T
	CABS.cond.fmt
	CVT.PW.PS
	CVT.PS.PW
	MULR.PS
	RECIP1.fmt
	RECIP2.fmt
	RSQRT1.fmt
	RSQRT2.fmt

	Revision History


