MII—P S

TECHNOLOGIES

MIPS32® Architecture for Programmers
Volumel V-f: TheMIPS® MT

Application-Specific Extension to the M 1PS32®
Architecture

Document Number: M DO00378
Revision 1.00
September 28, 2005

MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043-1353

Copyright © 2005 M1PS Technologies Inc. All rights reserved.

Copyright © 2005 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies®). Any copying,
reproducing, modifying or use of thisinformation (inwholeor in part) that is not expressly permitted in writing by M1PS Technologies
or an authorized third party isstrictly prohibited. Ataminimum, thisinformation is protected under unfair competition and copyright
laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in amodifiable form such asin FrameMaker or Microsoft Word format) is subject to
use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO
CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN
SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technol ogiesreservesthe right to change the information contained in this document to improve function, design or otherwise.
MIPS Technol ogies does not assume any liability arising out of the application or use of thisinformation, or of any error or omission
in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied
warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any written license
agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not give recipient any license
to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or supplements
thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in this document, the
laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial
computer software documentation or other commercial items. If the user of thisinformation, or any related documentation of any
kind, including related technical data or manuals, is an agency, department, or other entity of the United States government
("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of thisinformation, or any related
documentation of any kind, isrestricted in accordance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense
Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of thisinformation by the Government isfurther
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this
information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS 11, MIPSI1I, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim,
MIPSpro, MIPS Technologies logo, MIPS RISC CERTIFIED POWER logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS,
4K Sc, 4K Sd, M4K, 5K, 5K ¢, 5Kf, 20K ¢, 24K, 24K ¢, 24Kf, 24K E, 24K Ec, 24K Ef, 25K f, 34K, R3000, R4000, R5000, ASMACRO,
Atlas, "At the core of the user experience.", BusBridge, CorExtend, CoreFPGA, CorelV, EC, FastMIPS, JALGO, Malta, MDMX,
MGB, PDtrace, the Pipeline, Pro Series, QuickMIPS, SEAD, SEAD-2, SmartMIPS, SOC-it, and YAMON are trademarks or
registered trademarks of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

Template: B1.14, Built with tags: 2B ARCH MIPS32

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Table of Contents

ORI = ot 1o T o S 1
1.2 Definitions and GENEral DESCIIPLION.ciuitiieeeieeieieee ettt ettt b e bbb sbesb e se e b e b e st e e e se et e seesesbesnesaens 1
2.1 MUItItNIEAdEO EXECULION.......ccuiieiitiie ettt et ettt h e b bt s bt eb e be s e e se et e b e e e e e s e et eaeebeebenaeebenees 3
2.2 MIPSMT EXCEPLION IMOUE ...ttt ettt b bt bbb b st et e e e e e e e et e aeebeebeeneebeneas 3
2.3 NEW EXCEPLION CONAITIONSevitiieieeieeeee ettt ettt sttt e e e e e e e et aeeb e e bt sheeb e s be s eese et e aeneeseeneeneeneebeebesaeereneas 3
2.4 NEW EXCEPLION PrIOMTTY . .cviitiiteiteitee sttt sttt b et e e e e e et heeb e bt s heeh e be s ee e e m b e e e e e neene et eneebeebesaeebentas 4
2.5 INEEITUPLS ...ttt ettt sttt bttt h et h et e b e e bt e b e e e e eh e e et S ae e eR e e ae e SR e e e e AR e ea e e e R e e a R e eb e e a R e eb e e s e eRe e st eneenneennenneennas 5
2.6 BUS EITON EXCEPIIONSeviiteiteitisteie ettt ettt ae bt ae b b e e e e e e e e st e s e e st eheeh e s bt sheeh e be s Eeeeem b e be e e neeneeneeneebenbesaeebenbis 6
2.7 CaChE EITON EXCEPIIONScoviteieiiteie sttt b ettt b et e e e e e et et e s e e st eheeb e e bt s bt eh e s Ee s Eeeeen b e be e e neeneeneeneebenbesaeebeneas 6
2.8 EJTAG DEDUG EXCEPLIONS....c.eiititiierieieeeee ettt sttt st s b et e st e e e e e st eaeeh e s bt sheeb e s be s be e et e be e eneeseeneeneebenbesaeerentes 6
2.9 ShalOW REJISIEN SELS......ccuiciiiei ettt e et e e te et e eaeesaeeaeesseeaeesaeeneesaeentesseenseaseenteeseenseeseanseennensesnnesneeneas 6
3.1 NEW INSIIUCLIONS ...ttt ettt sttt ae b b et b b e e e se e e e e e e e R e e h e e st e Rt eh e e Rt sheeh e Ee s A e eeem b e e e e e neeneeneeneebenbenaeerenbes 7
5]V OO USSP URURURUPIN 8

DV PE ... ettt etttk h Rt Rt Rt Rt R e Ao R oA e A e E oA £ e £ e REeR £ SR e e ReeRe SR e ARt SRt eEe bt eE e b e be e et ene et et eneebenae e 10
LY USSR 12

BV PE.... ettt ettt h e b bRt Rt R e R e R e £ e Ao Ao E oA £ e £ e AE R £ SR e e Re SR e eE e ARt SR e Ee A eE oAb e be e et ent et et eneehenae e 14
FFORK ..ttt et ettt h e b bt e H e e h oS E e SH e o8 exE e £ e e e a e e R £ e e e aEeR £ SR e e Re SR £ eh e Rt SR e AR e R AR e b e b et et eneene et e Rt ehenae e 16

L I S USSR 18
I 1 USSR 21

R 1 = TSP PT SRRSO 24

4.1 Privileged Resource ArchiteCture fOr MIPS IMT ...ttt et e e e ne e sne e 27
4.2 MVPControl Register (CPO RegiSter O, SEIECE 1)ueouiiiieiice ettt e e esre e e sre e 29
4.3 MVPConfO Register (CPO RegIStEr O, SEIECE 2)ccveeee ettt sttt saa et e esaeenesneennas 31
4.4 MVPConfl Register (CPO RegIiStEr O, SEIECE 3)ooiiieeiiiie ettt st e st era et e e sne e e e sneennas 32
4.5 VPEControl Register (CPO ReQISIEr 1, SEIECE 1)ociieiiiee ettt st e e s esae e e e sne e 33
4.6 VPECONfO Register(CPO ReQISLEr 1, SEIECE 2)oiieeeee ettt sttt e e esne e e sne e 35
4.7 VPECoNf1l Register(CPO RegiSter 1, SEIECE 3) ...oueiieie ettt sttt e e e e ae e sne e 37
4.8 YQMask Register (CPO REQISIEr 1, SEIECE 4)oouiiiiiieieiete ettt et et sne s 38
4.9 VPESchedule Register (CPO ReGISIEr 1, SEIECE 5) ...oouiiuiiiiiiiie et e 39
4.10 VPEScheFBack Register (CPO RegiSter 1, SEIECE B6)c.eiiiiiiirieiereeieee ettt e 40
4.11 VPEOpt Register(CPO REJISIEN 1, SEIECE 7)eouiiuirieieitirie ettt s e b e e sne e 41
4.12 TCStatus Register (CPO REQISIEr 2, SEIECE 1)c.eiuiiiiiiieierie ettt e sae s 43
4.13 TCBind Register (CPO REQISLEN 2, SEIECL 2)ocee ettt ettt st s ae e te e et e sae e teenaesaeennesneennas 45
4.14 TCRestart Register (CPO RegISter 2, SEIECE 3)ooiiiiiiicie ettt st s te et saa et s e sne e e e sneennas 46
4.14.1 Special Handling of the TCRestart Register in Processors that Implement the MIPS16e ASE..................... 46
4.15 TCHalt Register (CPO REGISIEr 2, SEIECE 4) ..ottt e e e e sae e 43
4.16 TCContext Register (CPO ReQISIEr 2, SEIECE D)ciuiiieiiee et st e e e esae e e sne e 49
4.17 TCSchedule Register (CPO REQISEr 2, SEIECE B)ecueiueeieiieeiestieieeeeste et ete e sae e te e te et saa et saaesreeneesneennas 50
4.18 TCScheFBack Register (CPO REGISLEr 2, SEIECE 7) ..oui ittt e 51
4.19 SRSCONFO (CPO REJISIEr B, SEIECE 1)eeuieuiririietirieie ettt sttt sb e bbbt e e e e e e e e e neeneenesaeneis 52
4.20 SRSCONfL (CPO REJISLEr 6, SEIECE 2)eeiiceeecie ettt e e et e s e st e e ra et e sae e tesaaeeteeneeaneennas 54
4.21 SRSCONF2 (CPO REGISIEr 6, SEIECE 3)ueiuieiiriiiierteeiere sttt sttt b e bt s e et b e e e e e e e ne e e eaeeae e 55
4.22 SRSCONF3 (CPO REJISIEr 6, SEIECE 4)eeuieeieieeieeteete sttt a e bbbt b b e e e e e e e neese e e eaesne e 56
4.23 SRSCONf4 (CPO REJISIEr 6, SEIECE D)ueiuieuiriieieeterie sttt b e bbbt e se et e et ne e eaeeae e 57
4.24 Modifications to Existing MIPS Privileged Resource ArchiteCture............covecvieeveieece e 59
A.24.1 SRSCU REQISEN .. .ooueitiriiitietere ittt ettt st a et be b et e bese e e e e et et eheehe e Rt eheebesbesEeebe b se e s enbe e e e enenneenennens 59
A O TN <Y (= o 1 = 59
4.24.3 MaChing CheCK EXCEPIIONS......c..iiuiieieeeeieiee ettt sttt sttt b bt s ae b s b e et et se e e e e e e e e eneeneenennens 59
A.24.4 DEDUG REJISIES ..ottt ettt ettt h et ae b be e e b e e se e e e a e e e et ek e eh e e Rt eheebesbesE e b e b se e e ente e e e enenneenennen 59
245 EBASE....ceeeeeeeeee etttk ek bbbt A e R £ 1A e A oA e e e e e eR e e R e e Rt eReeR e AR eE e b e b se et et et et eneeneeaenren 59
MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 i

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

I o) 10} R (= o = 59

N A ©a) 10 1 (= o = O 59

4.25 Thread State as a Function of Privileged RESOUICE SLALEccveiiiiieiiciice et 60
4.26 Thread Allocation and Initialization Without FORKooiiiiiiieene e 60
4.27 Thread Termination and Deallocation WIithOUt YTELDcooiiiiiiiieeeene e 61
4.28 Multithreading aNd COPIOCESSOIScuveeeueeuerierieetertesitatesteseeseesseeeseeseesee e et eseesesaeabeebesbeseesbesbeseessensense e eneeneeneeneenenses 61

5.1 WAIT TNSEIUCTIONS ...ttt sttt ettt ettt b s bt bbb e e ss e e e e e e e e s e e aeeaeeb e e heehe eheebesb e sh et e bene e e ens et et eneebennennens 63

5.2 SC INSIIUCLIONS. ...ttt ettt sttt ettt a e e ae b bt et eb e be s e e sE et e e e ae e s e e s e e aeeaeeheeheebeeh e e b e sb e sh et e bene e s ens et eneenenaeenennens 63

6.1 IMUILI-V PE PrOCESSOIS.....c.ueitiitiitiitiie sttt ettt h s bt st b e bbb et e e e se e e e s e e st eaeeh e e Rt e heeheebesb e sh et e bene e s en s et et eneeaenaennens 65

6.2 Reset and Virtual Processor CONfIQUIBLION...........eiiiiueieeieeeeteseesteseesteseestesae s e eeesteessesseensesseensesseessesneessesnsessesnenns 65

6.3 MIPSMT and Cache CONfiQUIALiONcceiueeiiiiesieeies ettt s e e s te e te e e teentesteensesreensesneessesaeeseesneeseennenns 67

8 R €7 1] 00 R o= o (SRS 69

8.1 EJTAG DEDUYG RESOUICESceeeiiieieie ettt stte st et e te et et ee s teestesaeestesaeesaeesaesteeseesteentesteenseaseensesneensesaeeseesneessennenns 71

8.2 Debug EXCEPLION HANAIINGcouitiieiteeeiee ettt sttt h et sbe b b sb e sb et et se e e e b et et enenaeenenbens 71
Appendix A Inter-Thread COMMUNICELION SOTBGE.......c.uertrterertereeiereetere ettt sttt sttt b et se b e b e b e ss s e sesae e nnene 73
AL BSIC COMOEPES ... cveeetereetertetesteie sttt ettt eb e st et se bt saebesees e sees e shes e eb e s e e b e e eb e e eb e sEeb e 4Eeb e A e eb e eEeb e AEebeeEes e e b eneebene e b e e ebeneebennebe e 73
A.2 ANITC Storage REFErENCE MOUEL.........ciiiiiiitireet ettt b e bbbt bt b e b e b b e 73

A.3 MUItIProCESSOI/MUITICOIE ITC ...ttt ettt b e e b e st eb e bbb bt s e e bt s b e st s b e st s b et eb e e e b e neebennebe e 75

A.4 Interaction With EJTAG DebUQG FACHlITIES.......c.oiieiiiieeiiieie ettt 75
APPENAIX B REVISION HISLOMYeiviieiiiiieiiesiiesieseeee e e et s e te st stesee e st e e esae e e e eseeseeseeseesessesaestenbeseesenseneenennanneeneesensenneans 77

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 4-1: MVPCONtrol REQISLEr FOMMIELccuiiieiiieiecie ettt te e rte et ea e e e e be e e e ssesanesreennesaeeneesreennens 29
Figure 4-2: MV PCONFO REQISLEr FOMMIBL........cceeiiiiieiieiesie e eree st ste st s e e st e e saa e e e se e beeseesseeaeesseeneesaeenaesreennens 31
Figure 4-3: MVPCONFL REQISLEr FOMMIBL........cceeiiiiieiiecieeie ettt eree st rte st s e e e e s e e e se e beeaeessesanesreeneesneeneesreennens 32
Figure 4-4: VPECONIrol REQISLEr FOMMIEL...........ccuiiieiiiiieie ettt ettt e sa e e s e beeaeesseeaeesreeneesaeenaesreennens 33
Figure 4-5: VPECONFO REGISLEr FOMMIEL.........cceeiiiiieiieciesie et te e ste st e st e e sa e e sa e beeseasseeanesreeneesaeeneesreennens 35
Figure 4-6: VPECONFL REGISIEr FOMMIEL.........cccueiiiiieiieciete ettt st te st e st e s e e se e beeaeessesanesreeneesaeenaesreennens 37
Figure 4-7: YQMask REQISIEr FOMMIEL.........cccoiviiiiiieiie ettt st te s ste s e e st e e ss e e ese e beeaeesseeasesreeneesaeeneesreensens 38
Figure 4-8: VPESChedule REQISIEr FOIMALc.oiiecieeieticieste et ete e ste et e st eea e e e be e e esseeaeesreennesneeneesseennens 39
Figure 4-9: VPESCheFBack REQiSIEr FOMMEL.........cccciiiiiii ettt et e esae e e s reeneesaeenaesneennens 40
Figure 4-10: VPEOPL REQISIEN FOMMEL........cceeeeiieieeeieetesiesie ettt sttt sttt h e bbbt sbesbese e b et e se e e e e e e et eneenenais 41
Figure 4-11: TCStatuUS REQISIEr FOMMELocueiiicieieciete ettt e e s aa e e e s e besaeesaesanesreeneesaeeneesneennens 43
Figure 4-12: TCBIiNG REQISLEr FOIMAELcciieeiieiieiieeieste et e ste e st e te e e stesae e e ssa e e ssaenbeeseenseeaeassesnsesseensesaeeneessennsess 45
Figure 4-13: TCReStart REQISIEN FOMMELociiieiiecieee ettt st te e rte e e st e e saa e e e se e beeaeasseeanesreeneesaeeneesreensens 46
Figure 4-14: TCHalt REQISIEr FOMMELcciiiieiiiiiecteeie ettt te et e s e e st e e s s e e e eae e teeaeesseeanesseeneesaeeneesreennens 48
Figure 4-15: TCCoNteXt REGISLEr FOMMIEL...........cciiieiiecieeie ettt rte e e st sa e e e e e beeaeessesanesreeneesaeeneesseennens 49
Figure 4-16: TCSChedule REQISEr FOMMEL.........ccviieiiieieeie ettt sttt st e e sa e e e e ae e beeaeesseeanesreeneesneenaesseennens 50
Figure 4-17: TCScheFBack REQISIEr FOMMEL...........c.ccviiiciiciece ettt e et e s e e s reeneesneenaesreennens 51
Figure 4-18: SRSCONfO REQISIEr FOMMELc.eoiiiiieciicieste ettt te st e st e a e e e ae e beeaeesseeaeesreeneesaeenaesreennens 52
Figure 4-19: SRSCONFL REQISIEr FOMMELceoiiiiiecieciec ettt sttt e s e e e ae e beeaeesseeaeesreeneesaeeneesseennens 54
Figure 4-20: SRSCONF2 REQISIEr FOMMELc.eoiiiiieiieciete ettt eree st te st rte e e st besa e e e ae e beeaeessesanesreeneesaeenaesseennens 55
Figure 4-21: SRSCONF3 REQISIEr FOMMELc.eoiiiiieciecete ettt st a e e s e beeaeesseeaeesreeneesaeeneesreennens 56
Figure 4-22: SRSCONfA REQISIEr FOMMELcc.eoiiiiieiiecieie ettt sttt s e st e e e a e e e se e beeaeassesaeesreeneesaeeneesreennens 57

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 2-1: Priority of EXCEPIONS TN IMIPS MT ...ttt bbb e e e nne s 4
Table 3-1: MFTR SOUICE DECOUEccueeciiieierteist ettt ettt s e bbb e bt e bt e st ne st e e e nn e n s 18
Table3-2: MTTR DeStiNation DECOUE.........coueerrierriietiietire ettt b e bt sa st n s s e s nn e nn e s s 21
TaADIE 4-1: MIPSIMT PRA ..ottt b st e bt £ b bRt e 8 h b e e b bt e bbb e b b et e e b bt e e 27
Table 4-2: MV PControl Register FIeld DESCIiPLIONS........cccoiriririeere st b st se e e b e 29
Table 4-3: MVPCoNfO Register Field DESCIIPLIONS.......cccoiiiririeieeiere sttt b st se s b b e s se e e ne e 31
Table 4-4: MVPConf1 Register Field DESCIIPLIONS.......cccoiiiririeieeiere sttt sb st se s b b se b se e e 32
Table 4-5: VPEControl Register Field DESCIiPLIONS.ccceiiirieeiere sttt sb s st e 33
Table 4-6: VPECONTO Register Field DESCIIPLIONSccucoiiirireeieetesie sttt sttt b e e bbb se e e se e 35
Table 4-7: VPECONf1 Register Field DESCIIPLIONSccueiririreeieetesie sttt ettt b st se e s se e e 37
Table 4-8: YQMask Register Field DESCIIPLIONScouieeieieriire ettt ettt b et sb e s bt e b e ne e 38
Table 4-9: VPEOpPt Register Field DESCIIPLIONSccceieeeeeieeiire ettt sttt ettt bbb e b se e e 41
Table 4-10: TCStatus Register Field DESCIIPLIONS.c..couiieirireeieetere ettt b et sb s bt e b e e e 43
Table 4-11: TCBiNd Register Field DESCIIPLIONS........ccuoiieieirire ettt ettt sb et se e bt e b b ne e 45
Table 4-12: TCRestart Register Field DESCIIPLIONSooviieirireeieetere sttt b et sa et e s se e e 46
Table 4-13: TCHalt Register Field DESCIIPIIONS.couiieieirire ettt sttt b et s b et e bt 48
Table 4-14: SRSConfO Register Field DESCIIPLIONS.......ccccoiririreeeeiere st ettt b e sb e bbb ne e se e 52
Table 4-15: SRSConfl Register Field DESCIIPLIONS.......ccccoiiirireeeeere ettt b et sa e b b e b se e e 54
Table 4-16: SRSConf2 Register Field DESCIIPLIONS.......ccccoiirirerieierie ettt b e se e bbb se e e se e 55
Table 4-17: SRSConf3 Register Field DESCIIPLIONS........ccoiiiririeeeere ettt b st se et b e b se e e 56
Table 4-18: SRSConf4 Register Field DESCIIPLIONS.......cccoiiiiiirieeeiere ettt b st sb e b b e b b se e e se e 57
Table 4-19: MIPS MT THread EXCEDEION.coiieeeeeie ettt sttt ettt ae bbb b b e e b e b e e e e e e ne e e 59
Table 4-20: New Config3 FIeldSTOr MIPS MTocooecece ettt e ettt sae e et e sae e tesna e peenne s 60
Table 4-21: TC State as FUNCtion Of MIPS MT PRA SELEcovveirieireereeeniesee s 60
Table 6-1: Dynamic Virtual Processor Configuration OPLIONS..........couiiiererierierierie et s 66
Table A-1: ITC REFEIENCE Call VIBWSceiiiiriiiitieet ettt n s 73

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 1

E—— |

Introduction to the MIPS M T Architecture Extension

1.1 Background

Multithreading, or the concurrent presence of multiple active threads or contexts of execution on the same CPU, isan
increasingly widely-used technique for tol erating memory and execution latency and for getting higher utilization out of
processor functional units. The MIPSMT ASE isan extension to Release 2 of the MIPS32 Architecture which provides
aframework for multithreading the MIPS processor architecture.

1.2 Definitionsand General Description

A thread context, for the purposes of this document, is a collection of processor state necessary to describe the state of
execution of an instruction stream in the MIPS32 Instruction Set Architecture. It includes a set of general purpose
registers (GPRs), the MIPS Hi/Lo multiplier result registers, some internal representation of a program counter, and
some associated MIPS32 privileged system coprocessor (CPO) state, specifically:

» The CU3..CUO, MX, and KSU fields of the CPO Status register
» The ASID field of the CPO EntryHi register.
» The SSt and OffLine fields of the EJTAG Debug register.

A thread context also contains some new privileged resource state, to allow software to manage the new multithreading
capabilities. Thread Context will be abbreviated as TC, both in the interests of brevity, and to minimize the confusion
between a TC as state/storage and a thread of execution as a sequence of instructions.

A processor context isalarger collection of processor state, which includesat least one TC, but also the CPO and system
state necessary to describe an instantiation of the full MIPS32 Privileged Resource Architecture.

The MIPS Multithreading ASE (MT ASE) allows two distinct, but not mutually-exclusive, multithreading capabilities.
A single MIPS processor or core can contain some number of Virtual Processing Elements (VPES), each of which
supports at least one thread context. To software, an N VPE processor |ooks like an N-way symmetric multiprocessor.
All legacy MIPS32 read-write CPO state must be implemented per-V PE. This allows existing SM P-capable operating
systems to manage the set of VPEs, which transparently share the processor’s execution units and other resources. A
processor or core implementing multiple MIPSMT VPEsisreferred to asa Virtual Multiprocessor, or VMP.

Each VPE can also contain some number of TCs beyond the single TC implicitly required by the base architecture.
Multi-threaded V PEs require explicit operating system support, but with such support they provide alightweight,
fine-grained multithreaded programming model wherein threads can be created and destroyed, without operating system
intervention in the typical cases, using new FORK and YIELD instructions, and where system service threads can be
scheduled in response to external events with zero interrupt latency.

A TC may bein one of two allocation states, free or activated. A free TC has no valid content and cannot be scheduled
to issue instructions. An activated TC will be scheduled according to the implemented policies to fetch and issue
instructions from its program counter. Only activated TCs may be scheduled. Only free TCs may be allocated to create
new threads. Allocation and deallocation of TCs may be done explicitly by privileged software, or automatically via
FORK and YIELD instructions which can be executed in user mode. Only TCs which have been explicitly designated
as Dynamically Allocatable (DA) may be allocated or deallocated by FORK and YIELD.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 1

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 Introduction to the MIPS MT Architecture Extension

An activated TC may be running or blocked. A running TC will fetch and issue instructions according to the thread
scheduling policy in effect for the processor. Any or al running TCs may have instructionsin the pipeline of aprocessor
at agiven point of time, but it is not knowable to software precisely which ones. A blocked TC isone which hasissued
an instruction which performs an explicit synchronization that has not yet been satisfied. While arunning, activated TC
may be stalled momentarily dueto functional unit delays, memory load dependencies, or scheduling rules, itsinstruction
stream will advance on its own within thelimitations of the pipelineimplementation. Theinstruction stream of ablocked
TC cannot advance without some change in system state being effected by another thread or by external hardware, and
as such it may remain blocked for an unbounded period of time.

Independently of whether it isfree or activated, a TC may be halted. A halted TC isinhibited from being allocated by
aFORK instruction, even if free, and inhibited from fetching and issuing instructions, even if activated. Only aTCina
halted state is guaranteed to be stable as seen by other TCs. Multithreaded execution may be temporarily inhibited on a
VPE due to exceptions or explicit software interventions, but the activated threads that are inhibited in such cases are
considered to be suspended, rather than implicitly halted. A suspended thread isinhibited from any action which might
cause exceptions or otherwise change global VPE privileged resource state, but, unlike a halted thread, it may still have
instructions active in the pipeline, and itsinternal TC state, including GPR values, may still be unstable.

And independently of whether an activated TC ishalted, it will not be scheduled to fetch or issueif it has been set offline
by code executing in EJTAG Debug mode, viathe OffLine bit of the Debug register (see the EJTAG specification).

If executing in asufficiently privileged mode, one TC can access another TC'sregister state, vianew instructionsto move
to/from the registers of a“target” TC.

To allow for fine-grain synchronization of cooperating threads, an inter-thread communication (ITC) memory space can
be created in virtual memory, with gating storage semantics to allow threads to be blocked on loads or stores until data
has been produced or consumed by other threads. These gating storage semantics can also be applied to 1/0 devices such
as FIFOs to provide a data-driven execution model.

The thread creation/destruction, and synchronization capabilities function without operating system intervention in the
genera case, but the resources they manipulate are all virtualizable via an operating system. This allows the execution
of multithreaded programs with more “virtual” threads than there are TCs on a VPE, and for the migration of threadsto
balance load in multiprocessor systems. At any particular point in its execution, athread is bound to a particular TC on
aparticular VPE. The number of that TC provides a unique identifier at that point in time. But context switching and
migration can cause a single sequential thread of execution to have a series of different TCs, possibly on a series of
different VPEs.

Dynamic binding of TCs, TLB entries, and other resources to multiple VVPEs on the same processor can be performed
in aspecial processor configuration state. By default, oneV PE of each processor entersits reset vector asif it were a
standard MIPS32 core.

2 MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2

MIPS MT Multithreaded Execution and Exception Model

2.1 Multithreaded Execution

The MIPS Multithreading A SE does not impose any particular implementation or scheduling model on the execution of
parallel threads and V PEs. Scheduling may be round-robin, time-sliced to an arbitrary granularity, or ssmultaneous. An
implementation must not, however, allow athread which isblocked or suspended by an external or software dependency
to monopolize any shared processor resource which could produce a hardware deadlock.

2.2 MIPSMT Exception Model

Multiple threads executing on asingle VPE all share the same system coprocessor, the same TLB and the same virtual
address space. Each TC has an independent Kernel/Supervisor/User state and ASID for the purposes of instruction
decode and memory access. When an exception of any kind istaken, all TCs of the affected VPE other than the one
taking the exception are stopped and suspended until the EXL and ERL bits of the Statusword are cleared, or, in the case
of an EJTAG Debug exception, the Debug state is exited. Debug exceptions have the broader effect of suspending the
TCsof other VPES of the processor as well. See section 8.2. All sources of additional synchronous exceptions must be
quiesced before the exception handler begins execution. If simultaneous exception conditions occur across multiple
threads, only a single exception, one with the highest relative priority, will be dispatched to ahandler. The otherswill be
deferred until EXL/ERL or the Debug state are cleared, and the associated instructions replayed.

Exception handlers for synchronous exceptions caused by the execution of an instruction stream, such as TLB missand
floating-point exceptions, are executed using the GPRs of the TC associated with the instruction stream, unlessthey are
configured to be executed using a Shadow Register Set. When an unmasked asynchronous exception, such as an
interrupt, israised to aVVPE, it isimplementation dependent which eligible TC is used to execute the exception handler,
but TCs can be selectively exempted from use by asynchronous exception handlers.

Imprecise, synchronous exceptions are not permitted on aMIPS MT processor. All exceptions are either precise and
synchronous, or asynchronous.

Each exception is associated with an activated TC, even if shadow register sets are used to run the exception handler.
This associated TC is referenced whenever a SRSCtl PSS value of 0 is used by RDPGPR and WRPGPR instructions
executed by the exception handler.

2.3 New Exception Conditions

The Multithreading ASE introduces 6 new exception conditions.
» A Thread Overflow condition, where a TC allocation request cannot be satisfied.

» A Thread Underflow condition, where the termination and deallocation of athread leaves no dynamically allocatable
TCs activated on a V PE.

» Anlnvalid Qualifier condition, where a YIELD instruction specifies an invalid condition for resuming execution.

* A Gating Storage exception condition, where implementation-dependent logic associated with gating or inter-thread
communication (ITC) storage requires software intervention.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 3

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 MIPS MT Multithreaded Execution and Exception Model

* A YIELD Scheduler exception condition, where avalid YIELD instruction would have caused a rescheduling of a
TC, and the YIELD Intercept bit is set.

» A GS Scheduler exception, where a Gating Storage load or store would have blocked and caused a rescheduling of a
TC, and the GS Intercept bit is set.

These exception conditions are mapped to asingle new Thread exception. They can be distinguished based on the CPO
VPEControl EXCPT field value when the exception is raised.
2.4 New Exception Priority

The Thread exception groups together a number of possible exception conditions which can be detected at different
stages of aprocessor pipeline. Thus, different Thread exception conditions may have different prioritiesrelative to other
MIPS32 exceptions. The following table describes where Thread exceptionsfit in to the M1PS32 priority scheme.

Table 2-1 Priority of Exceptionsin MIPSMT

Exception Description Type
Reset The Cold Reset signal was asserted to the processor Asynchronous
Soft Reset The Reset signal was asserted to the processor Reset
An EJTAG Single Step occurred. Prioritized above other Synchronous
Debug Single Step exceptions, including asynchronous exceptions, so that one can Debu
single-step into interrupt (or other asynchronous) handlers. 9
Debug Interrupt An EJTAG interrupt (EjtagBrk or DINT) was asserted. Asynchronous
Imprecise Debug Data Break An imprecise EJTAG data break condition was asserted. Debug
Nonmaskable Interrupt (NMI) The NMI signal was asserted to the processor.
Machine Check An internal inconsistency was detected by the processor.
Interrupt An enabled interrupt occurred. Asynchronous
A watch exception, deferred because EXL was one when the
Deferred Watch exception was detected, was asserted after EXL went to zero.
An EJTAG instruction break condition was asserted. Prioritized Synchronous
Debug Instruction Break above instruction fetch exceptions to allow break on illegal Debu
instruction addresses. 9
A watch address match was detected on an instruction fetch.
Watch - Instruction fetch Prioritized above instruction fetch exceptions to allow watch on
illegal instruction addresses.
Address Error - Instruction fetch A non-word-aligned address was loaded into PC.
TLB Réfill - Instruction fetch A TLB miss occurred on an instruction fetch. Synchronous
: : The valid bit was zero in the TLB entry mapping the address
TLB Invalid - Instruction fetch referenced by an instruction fetch.
Cache Error - Instruction fetch A cache error occurred on an instruction fetch.
Bus Error - Instruction fetch A bus error occurred on an instruction fetch.
SDBBP An EJTAG SDBBP instruction was executed. S ”52{)330“5

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

2.5 Interrupts

Table 2-1 Priority of Exceptionsin MIPSMT

Exception

Description

Type

Instruction Validity Exceptions

An instruction could not be completed because it was not allowed
access to the required resources, or wasillegal: Coprocessor
Unusable, Reserved Instruction. If both exceptions occur on the
same instruction, the Coprocessor Unusable Exception takes
priority over the Reserved Instruction Exception.

Execution Exception

An instruction-based exception occurred: Integer overflow, trap,
system call, breakpoint, floating point, coprocessor 2 exception.
The Overflow, Underflow, Invalid Qualifier, and YIELD
Scheduler cases of Thread Exceptions are all Execution
Exceptions

Synchronous

Precise Debug Data Break

A precise EJTAG data break on load/store (address match only) or
adata break on store (address+data match) condition was asserted.
Prioritized above data fetch exceptions to allow break on illegal
data addresses.

Synchronous
Debug

Watch - Data access

A watch address match was detected on the address referenced by
aload or store. Prioritized above data fetch exceptionsto allow
watch on illegal data addresses.

Address error - Data access

An unaligned address, or an address that was inaccessible in the
current processor mode was referenced, by aload or store
instruction

TLB Refill - Data access

A TLB miss occurred on a data access

TLB Invalid - Data access

The valid bit was zero in the TLB entry mapping the address
referenced by aload or store instruction

TLB Modified - Data access

The dirty bit was zero in the TLB entry mapping the address
referenced by a store instruction

Synchronous

Cache Error - Data access

A cache error occurred on aload or store data reference

Bus Error - Data access

A bus error occurred on aload or store data reference

Synchronous
or
Asynchronous

Thread - GS Scheduler

A blocking accessto Gating Storage was detected with GS
Scheduler Intercept enabled

Synchronous

Thread - Gating Storage

Gating Storage hasindicated an exception condition

Synchronous

Precise Debug Data Break

A precise EJTAG data break on load (address+data match only)
condition was asserted. Prioritized last because all aspects of the
data fetch must complete in order to do data match.

Synchronous
Debug

2.5 Interrupts

In general, the binding of hardware interruptsto VPEsis implementation dependent. Interrupt inputs to a processor may
be presented in common to al VPEs, leaving it up to software whether any or all VPESs enable and service a given
interrupt. A processor may also provide distinct interrupt signal s per supported V PE, and/or extend the External Interrupt
Controller (EIC) interface to express a V PE identifier in addition to the Exception Vector Offset and Shadow Set

Number.

The exception to the above is the hardware interrupt generated by the Count/Compare registers. Thislogic must be
replicated per-VPE, and interrupt events associated with the Count/Compare values of a specific VPE result in interrupt

requests only to that VPE.

Depending on the implementation, Performance Counter interrupts may belocal to aVPE or “broadcast” to all V PES of

a processor.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 MIPS MT Multithreaded Execution and Exception Model

Software interrupts IP1 and 1PO must by default be local to a VPE.

2.6 BusError Exceptions

Bus error exceptions on instruction fetch (IBE) inaMIPS MT processor are synchronous and must be precise as per
section 2.2. Bus errors on load/store operations (DBE) are considered to be imprecise and are therefore non-maskable
asynchronous exceptions delivered to the VPE where the operation wasissued. A DBE exception may thus be taken by
a TC other than the one which issued the failing operation. A per-TC TBE bit is defined to allow exception handlersto
determine which TC(s) were associated with the failed bus transaction (see section 4.13).

If a DBE results from an operation that was combined across VPESs, a DBE exception must be delivered to all VPEs
affected. Where the origin of the failure cannot be determined, all VPEsin a processor must take a DBE exception.

Implementations may provide additional bus error diagnostic information in implementation-dependent CPO register
fields. The DBE state, including the per-TC TBE state, should be analyzed in the context of this information.

2.7 CacheError Exceptions

Cache memories may be shared between multiple VPEs on avirtual multiprocessor. In the event of a cache parity or
other dataintegrity error, all VPEs sharing the cache may be affected, and al must take a Cache Error exception. It is
the responsibility of software to coordinate any diagnostics or re-initialization of the shared cache, communicating by
means other than cached storage.

2.8 EJTAG Debug Exceptions

EJTAG Debug exceptions override MIPS MT scheduling and TC management. See section 8.2.

2.9 Shadow Register Sets

MIPS MT optionally allows TCsto be assigned for use as Shadow Register Set (SRS) storage. Thisis accomplished by
writing the TC number into a programmable field of one of the SRSConf registers (see section 4.19). A TC assigned for
use as SRS storage must never be Activated, nor may it be programmed to be Dynamically Allocatable. Because SRS
management and control is performed on a per-VPE basis, with only a single SRSCtl register per VPE, multithreading
should never be explicitly re-enabled in an exception handler which executes using an SRS

6 MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 3

MIPS MT Instructions

3.1 New Instructions

The MIPS MT ASE contains 8 new instructions.

FORK and YIELD control thread allocation, deallocation, and scheduling, and are available in al execution modes if
implemented and enabled.

MFTR and MTTR are system coprocessor (Cop0) instructions available to privileged system software for managing
thread state.

EMT and DMT are privileged Cop0 instructions for enabling and disabling multithreaded operation of a VPE.
EVPE and DVPE are privileged Cop0 instructions for enabling and disabling multi-V PE operation of a processor.

These instructions will cause a Reserved | nstruction exception if executed by a processor not implementing the MIPS
MT ASE.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 7

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Disable M ulti-Threaded Execution DMT

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0
COPO MFMCO " 1 15 sc| O 1
010000 01011 00001 01111 0| 00 001
6 5 5 5 5 1 2
Format: bpwMT MIPS MT
DMT rt

Purpose:

To return the previous value of the VPEControl register (see section 4.5) and disable multi-threaded execution. If
DMT is specified without an argument, GPR r0 isimplied, which discards the previous value of the VPEControl reg-
ister.

Description: GPR[rt] « VPEControl; VPEControlgpg ¢ 0

The current value of the VPEControl register is loaded into general register rt. The Threads Enable (TE) bit in the
VPEControl register is then cleared, suspending concurrent execution of instruction streams other than that which
issuesthe DMT. Thisisindependent of any per-TC halted state.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations that do not implement the MT ASE, thisinstruction results in a Reserved Instruction Exception.
Operation:

This operation specification is for the general multi-threading enable/disable operation, with the sc (set/clear) field as
avariable. The individual instructions EMT and DMT have a specific value for the sc field.

data <« VPEControl
GPR[rt] ¢« data
VPEControlqy ¢ sc

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Disable Multi-Threaded Execution (Continued) DMT

Exceptions:

Coprocessor Unusable
Reserved Instruction (Implementations that do not includethe MT ASE)

Programming Notes:

The effects of thisinstruction areidentical to those accomplished by the sequence of reading VPEControl into a GPR,
clearing the TE bit to create a temporary value in a second GPR, and writing that value back to VPEControl. Unlike
the multiple instruction sequence, however, the DMT instruction does not consume a temporary register, and can not
be aborted in the middle by an interrupt or exception.

The effect of a DMT instruction may not be instantaneous. An instruction hazard barrier, e.g. JR.HB, is required to
guarantee that all other threads have been suspended. If aDMT instruction is followed in the same instruction stream
by a MFCO or MFTR from the VPEControl register, aJALR.HB, JR.HB, EHB, or ERET instruction must be issued
between the DMT and the read of VPEControl to guarantee that the new state of TE will be picked up by the read.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 9

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Disable Virtual Processor Execution DVPE

10

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0
COPO MFMCO " 0 0 sc| O 1
010000 01011 00000 00000 0| 00 001
6 5 5 5 5 1 2
Format: DVPE MIPS MT
DVPE rt
Purpose:

To return the previous value of the MVPControl register (see section 4.2) and disable multi-VPE execution. If DV PE
is specified without an argument, GPR r0 isimplied, which discards the previous value of the MVPControl register.
Description: GPR[rt] « MVPControl; MVPControlgyp < O

The current value of the MVPControl register is loaded into general register rt. The Enable Virtual Processors (EVP)
bit in the MVVPControl register isthen cleared, suspending concurrent execution of instruction streams other than that
which issues the DV PE.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

If the VPE executing the instruction is not a Master VPE, with the MVP hit of the VPEConfO register set, the EVP bit
is unchanged by the instruction.

In implementations that do not implement the MT ASE, this instruction results in a Reserved Instruction Exception.
Operation:

This operation specification is for the general V PE enable/disable operation, with the sc (set/clear) field asavariable.
Theindividual instructions EV PE and DV PE have a specific value for the sc field.

data <« MVPControl

GPR[rt] ¢« data

if (VPEConfOyyp = 1) then
MVPControlgyp ¢ sc

endif

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Disable Virtual Processor Execution (Continued) DVPE

Exceptions:

Coprocessor Unusable
Reserved Instruction (Implementations that do not includethe MT ASE)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading MVPControl into a
GPR, clearing the EVP bit to create atemporary value in a second GPR, and writing that value back to MVPControl.
Unlike the multiple instruction sequence, however, the DV PE instruction does not consume a temporary register, and
can not be aborted in the middle by an interrupt or exception, nor by the scheduling of a different instruction stream.

The effect of a DVPE instruction may not be instantaneous. An instruction hazard barrier, e.g. JR.HB, is required to
guarantee that all other TCs have been suspended.

If aDVPE instruction is followed in the same instruction stream by a MFCO or MFTR from the MVVPControl register,
aJALR.HB, JR.HB, EHB, or ERET instruction must be issued between the DVPE and the read of MVPControl to
guarantee that the new state of EVP will be picked up by the read.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 11

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Enable M ulti-Threaded Execution EMT

12

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0
COPO MFMCO " 1 15 sc| O 1
010000 01011 00001 01111 1| 00 001
6 5 5 5 5 1 2
Format: EMT MIPS MT
EMT rt
Purpose:

To return the previous value of the VPEControl register (see section 4.5) and enable multi-threaded execution. If
EMT is specified without an argument, GPR r0 isimplied, which discards the previous value of the VPEControl reg-
ister.

Description: GPR[rt] ¢« VPEControl; VPEControlqy ¢ 1

The current value of the VPEControl register is loaded into general register rt. The Threads Enable (TE) bit in the
VPEControl register isthen set, allowing multiple instruction streams to execute concurrently.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations that do not implement the MT ASE, thisinstruction results in a Reserved Instruction Exception.
Operation:

This operation specification is for the general multi-threading enable/disable operation, with the sc (set/clear) field as
avariable. The individual instructions EMT and DMT have a specific value for the sc field.

data <« VPEControl
GPR[rt] ¢« data
VPEControlqy ¢ sc

Exceptions:

Coprocessor Unusable
Reserved Instruction (Implementations that do not include the MT ASE)

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Enable M ulti-Threaded Execution (Continued) EMT

Programming Notes:

The effects of thisinstruction areidentical to those accomplished by the sequence of reading VPEControl into aGPR,
setting the TE hit to create atemporary value in asecond GPR, and writing that value back to VPEControl. Unlike the
multiple instruction sequence, however, the EMT instruction does not consume a temporary register, and can not be
aborted in the middle by an interrupt or exception.

If an EMT instruction is followed in the same instruction stream by aMFCO or MFTR from the VPEControl register,
aJALR.HB, JR.HB, EHB, or ERET instruction must be issued between the EMT and the read of VPEControl to guar-
antee that the new state of TE will be picked up by the read.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 13

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Enable Virtual Processor Execution EVPE

14

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0
COPO MFMCO " 0 0 sc| O 1
010000 01011 00000 00000 1| 00 001
6 5 5 5 5 1 2
Format: EVPE MIPS MT
EVPE rt
Purpose:

To return the previous value of the MVPControl register (see section 4.2) and enable multi-V PE execution. If EVPE is
specified without an argument, GPR r0 isimplied, which discards the previous value of the MVPControl register.
Description: GPR[rt] ¢« MVPControl; MVPControlgyp ¢ 1

The current value of the MVPControl register is loaded into general register rt. The Enable Virtual Processors (EVP)
bit in the MVVPControl register is then set, enabling concurrent execution of instruction streams on all non-inhibited
Virtual Processing Elements (V PES) on a processor.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

If the VPE executing the instruction is not a Master VPE, with the MVP hit of the VPEConfO register set, the EVP bit
is unchanged by the instruction.

In implementations that do not implement the MT ASE, this instruction results in a Reserved Instruction Exception.
Operation:

This operation specification is for the general V PE enable/disable operation, with the sc (set/clear) field asavariable.
Theindividual instructions EV PE and DV PE have a specific value for the sc field.

data ¢« MVPControl

GPR[rt] ¢« data

if (VPEConfOyyp = 1) then
MVPControlgyp ¢ sc

endif

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Enable Virtual Processor Execution (Continued) EVPE

Exceptions:

Coprocessor Unusable
Reserved Instruction (Implementations that do not includethe MT ASE)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading MVPControl into a
GPR, setting the EVP bit to create atemporary value in a second GPR, and writing that value back to MVPControl.
Unlike the multiple instruction sequence, however, the EV PE instruction does not consume a temporary register, and
can not be aborted in the middle by an interrupt or exception, nor by the scheduling of a different instruction stream.

If an EVPE ingtruction is followed in the same instruction stream by a MFCO or MFTR from the MVPControl regis-
ter, aJALR.HB, JR.HB, EHB, or ERET instruction must be issued between the EVPE and the read of MVPControl to
guarantee that the new state of EVP will be picked up by the read.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 15

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Allocate and Schedule a New Thread FORK

16

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 0 FORK
rs rt rd
011111 00000 001000
6 5 5 5 5 6
Format: fork rd, rs, rt MIPS MT
Purpose:

To cause athread context to be allocated and associated with a new instruction stream.
Description: NewThread’s GPR[rd] <« GPR[rt], NewThread’'s TCRestart ¢« GPR[rs]

The FORK instruction causes a free dynamically allocatable thread context (TC) to be allocated and activated on the
issuing VPE. It takes two operand values from GPRs. Thersvalue is used as the starting fetch address and execution
mode for the new thread. The rt value is copied into GPR rd of the new TC. The TCStatus register of the new TC is
set up as a function of the FORKing TC as described in section 4.12. The newly alocated TC will begin executing
instructions according to the implemented scheduling policy if and when multi-threaded execution is otherwise
enabled.

Restrictions:

If no free, non-halted, dynamically allocatable TC isavailable for the fork, a Thread Exception israised for the FORK
instruction, with the VPEControl. EXCPT CPO register field set to 1 to indicate the Thread Overflow case.

Processors which implement only a single TC per VPE may implement FORK by simply raising the Thread Excep-
tion and indicating the Overflow.

Any exceptions associated with the virtual address passed in rswill be taken by the new thread of execution.

Operation:

success « 0
for t in 0...MVPConfOppc
if TC[t].TCBindcyyypg = TCBindq,,vpg then
if (TC[t].TCStatusp, = 1)
and (TC[t].TCHalty = 0)
and (TC[t].TCStatus, = 0)
and (success = 0) then
TC[t] .TCRestart <« GPR[rs]
TC[t] .GPR[rd] <« GPR[rt]
activated «1
priorcu « TC[t].TCStatusqcys. . rcuo
priormx « TC[t].TCStatusqyy
priorixmt « TC[t].TCStatusrxur

TC[t].TCStatus = priorcu || priormx || 0% || 1 || ImpDep*
|| 1 |] 0 || activated|| Statusggy || priorixmt
I 0° || TCStatusragrp
success « 1
endif
endif
endfor
if success = 0

VPEControlgycpp <1
SignalException (Thread)
endif

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Allocate and Schedule a New Thread (Continued)

Exceptions:

Reserved Instruction
Thread

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

FORK

17

Move from Thread Context MFTR

31

26 25 21 20 16 15 11 10 6 5 4 3 2 0

COPO MFTR 0
rt rd rx ulh sel
010000 01000 0

6 5 5 5 8 3

Format: MFTR rd, rt, u, sel, h MIPS MT
See also the Idiom column of Table 3-1.

Purpose:
To move the contents of aregister within atargeted thread context or VPE into ageneral register of the current thread.

Description: GPR[rd] ¢« TC[VPEControly,,grcl [u, rt,sel, h]

The contents of the register specified are loaded into general register rd. The target context to be read is determined
by the value of the TargTC field of the CPO VPEControl register (see section 4.5). The register to be read within the
selected context is determined by the value in the rt operand register, in conjunction with the u and sel bits of the
MFTR instruction, according to table Table 3-1. If the register to be read is instantiated per-processor or per-V PE,
rather than per-TC, the register selected isthat of the processor within which the target TC is instantiated, or the VPE
to which the target TC isbound (see section 4.13), respectively. The encoding isthe sasme asfor MTTR, except that it
isrt and not rd that is used to identify the target in the move-from case.

Coprocessor 1 and 2 registers and DSP accumulators referenced by the MFTR instruction are those bound to the tar-
get TC. The TCUx bits and TMX bit of the target TC's TCSatus register are ignored.

If the selected register is not implemented on the processor, or otherwise not accessible to the TC that issued the
MFTR, asin the case of references to TCs and coprocessor resources bound to other VPES when the VPE executing
the MFTR does not have MV P set in VPConfig0, the resulting rd value is-1.

The Idiom(s) column in Table 3-1 specifies the assembler idiom that is used to express an access to the particular
register.

Table 3-1 MFTR Source Decode

u Value sel Value Register Selected Idiom(s)

MFTCOrd, rt

n Coprocessor 0 Register number rt, sel = sel
MFTCOrd, rt, sel

0 GPR[rt] MFTGPR rd, rt

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Table 3-1 MFTR Source Decode

u Value sel Value Register Selected Idiom(s)
rt Value Selection
MFTLO rd
0 Lo Register / Lo component of DSP Accumulator O
MFTLO rd, acO
MFTHI rd
1 Hi Register / Hi component of DSP Accumulator O
MFTHI rd, acO
MFTACX rd
2 ACX Register / ACX component of Accumulator O
MFTACX rd, acO
4 Lo component of DSP Accumulator 1 MFTLO rd, acl
5 Hi component of DSP Accumulator 1 MFTHI rd, acl
1 1
6 Reserved for ACX of DSP Accumulator 1 MFTACX rd, acl
8 Lo component of DSP Accumulator 2 MFTLO rd, ac2
9 Hi component of DSP Accumulator 2 MFTHI rd, ac2
10 Reserved for ACX of DSP Accumulator 2 MFTACX rd, ac2
12 Lo component of DSP Accumulator 3 MFTLO rd, ac3
13 Hi component of DSP Accumulator 3 MFTHI rd, ac3
14 Reserved for ACX of DSP Accumulator 3 MFTACX rd, ac3
16 DSPControl register MFTDSP rd
Other Values of rt, Reserved, Unpredictable
MFTC1 rd, ft
1 2 FPRIrt]
MFTHC1 rd, ft
1 3 FPCRJrt] CFTC1rd, ft
1 4 Cop2 Data[n], wheren is composed by concatenating rx with rt, with rx
providing the most significant bits.
1 5 Cop2 Control[n], whereniscomposed by concatenating rx with rt, with
rx providing the most significant bits.
1 >5 Reserved, Unpredictable

The selected value is written into the target register rd. If the precision of the source register isless than the precision
of the target GPR, the value is sign-extended.

The h bit of the instruction word selects the high-order half of the source register in instances where the source is a
register of greater precision than the target GPR.

Restrictions:

An MFTR instruction where the target TC is not in a Halted state (i.e. TCHalt.H is not set), or where a TC other than
the one issuing the MFTR is active in the target VPE on a reference to a per-VPE CPO register, may result in an

UNSTABLE vaue.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

19

Move from Thread Context (Continued) MFTR

Operation:

if VPEConfOyyp = 0 and (TC[VPEControlmgygrcl - TCBindeyyypr # TCBindeyreypr) then
data « -1
else if VPEControlp,rgpc > MVPConfOppe: then
data « -1
else if u = 0 then
data « TC[VPEControlp,,ygrc] .CPR[O,rt,sel]
else
case sel
0: data « TC[VPEControle@TC].GPR[rt]
1: case rt

0: data ¢« TC[VPEControlp, grcl.Lo

1: data ¢« TC[VPEControlp,, grcl -Hi

2: data <« TC[VPEControlp,,grcl .ACX

4. data « TC[VPEControle@TC].DSPLo[l]
5: data « TC[VPEControle@TC].DSPHi[l]
6: data ¢« TC[VPEControlry,,gpcl .DSPACX[1]
8: data ¢« TC[VPEControlry, grcl .DSPLO[2]
9: data ¢« TC[VPEControlp,,gpcl] -DSPHI[2]
10:data ¢« TC[VPEControlp,, gpcl] -DSPACX[2]
12 data « TC[VPEControle@TC].DSPL0[3]
13:data « TC[VPEControle@TC].DSPHi[3]
l4:data « TC[VPEControlry,,gpcl .DSPACX([3]
l6:data « TC[VPEControlrp,, grcl .DSPControl

otherwise: data < UNPREDICTABLE

data ¢« TC[VPEControlp,, gpcl] .FPR[rt]

data ¢« TC[VPEControlp, gpcl .FPCR[rt]

data < TC[VPEControlp,,gpc] -CP2CPR[rx||rt]
: data ¢ TC[VPECONtrolp,ygrel -CP2CCR[rx||rt]
otherwise: data <« UNPREDICTABLE

U W N

endif
if h = 1 then
data <« datags .3;
endif
GPR[rd] <« datasz; g

Exceptions:

Coprocessor Unusable
Reserved Instruction

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Moveto Thread Context MTTR

31

26 25 21 20 16 15 11 10 6 5 4 3 2 0

COPO MTTR 0
rt rd rx ulh sel
010000 01100 0

6 5 5 5 8 3

Format: MTTR rt, rd, u, sel, h MIPS MT
See also Idiom(s) column of Table 3-2.

Purpose:
To move the contents of a general register of the current thread into aregister within atargeted thread context.

Description: TC [VPEControlp,,grel [u, rd, sel, h]l < GPR[rt]

The contents of the rt register specified are written into aregister of an arbitrary thread context (TC) or virtual proces-
sor (VPE).

The target context to be written is determined by the value of the TargTC field of the CPO VPEControl register (see
section 4.5). The register to be written within the selected context is determined by the value in the rd operand
register, in conjunction with the u and sel bits of the MTTR instruction, according to Table 3-2 If the register to be
written is instantiated per-processor or per-VPE, rather than per-TC, the register selected is that of the processor
within which the target TC isinstantiated, or the V PE to which the target TC is bound (see section 4.13), respectively.
The encoding is the same as for MFTR, except that it isrd and not rt that is used to identify the target in the move-to
case.

Coprocessor 1 and 2 registers and DSP accumulators referenced by the MTTR instruction are those bound to the tar-
get TC. The TCUx bits and TMX bit of the target TC's TCSatus register are ignored.

If the selected register is not implemented on the processor, or otherwise not accessible to the TC issuing the MTTR,
as in the case of references to TCs and coprocessor resources bound to other VPES when the VPE executing the
MTTR does not have MV P set in VPConfig0, MTTR has no effect.

The Idiom(s) column in Table 3-2 specifies the assembler idiom that is used to express an access to the particular
register.

Table 3-2 MTTR Destination Decode

u Value sel Value Register Selected Idiom(s)

n MTTCO t, rd

Coprocessor 0 Register number rd, sel = sel
MTTCO rt, rd, sel

0 GPR[rd] MTTGPR t, rd

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 21

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Table3-2 MTTR Destination Decode

u Value sel Value Register Selected Idiom(s)
rd Value Selection
MTTLO rt
0 Lo Register / Lo component of DSP Accumulator O
MTTLO rt, acO
MTTHI rt
1 Hi Register / Hi component of DSP Accumulator O
MTTHI rt, acO
MTTACX rt
2 ACX Register / ACX component of Accumulator O
MTTACX rt acO
4 Lo component of DSP Accumulator 1 MTTLOt, acl
5 Hi component of DSP Accumulator 1 MTTHI rt, acl
1 1
6 Reserved for ACX of DSP Accumulator 1 MTTACKX rt, acl
8 Lo component of DSP Accumulator 2 MTTLO rt, ac2
9 Hi component of DSP Accumulator 2 MTTHI rt, ac2
10 Reserved for ACX of DSP Accumulator 2 MTTACX rt, ac2
12 Lo component of DSP Accumulator 3 MTTLO rt, ac3
13 Hi component of DSP Accumulator 3 MTTHI rt, ac3
14 Reserved for ACX of DSP Accumulator 3 MTTACX rt, ac3
16 DSPControl register MTTDSP rt
Other Values of rd, Reserved
1 2 MTTC1rt, ft
FPR[rd]
MTTHC1 rt, ft
1 3 FPCR]rd] CTTC1rt, ft
1 4 Cop2 Data[n], where nis composed by concatenating rx with rd, with
rx providing the most significant bits.
1 5 Cop2 Control[n], where n is composed by concatenating rx with rd,
with rx providing the most significant hits.
1 >5 Reserved,

22

The h bit of theinstruction word selects the high-order half of the target register in instances where the target isareg-
ister of greater precision than the source GPR. The source value is not sign-extended on an MTTR operation.

Restrictions:

The effect on a TC that is not in a Halted state (i.e. TCHalt.H is 0) of an MTTR instruction targeting that TC may be
transient and unstable, but MTTRs setting a TCHalt H bit are aways effective until overridden by another MTTR.

Processor state following an MTTR instruction modifying a per-VPE CPO register is UNPREDICTABLE if a TC
other than the oneissuing the MTTR is concurrently active on the targeted VPE.

Operation:

if VPEConflOyyp = 0 and (TC[VPEControlr,rgpcl.TCBindeyyypr # TCBindeyyypr) then

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Moveto Thread Context (Continued)

NOOP
else if VPEControlp,rgpe > MVPConfOpp. then
NOOP
else
if h = 1 then
topbit « 63
bottombit « 32
else
topbit « 31
bottombit « 0
endif
if u = 0 then
TC[VPECONntrolq,rgre]l -CPRIO0, rd, selloppit. .bottombic ¢ GPRIrt]

else
case sel

0: TC[VPEControlp, grcl .GPR[rd] « GPR[rt]

1: case rd
0: TC[VPEControle@TC].Lo «— GPRI[rt]
1: TC[VPECOontrolp,rgpc].-Hi < GPR[rt]
2: TCIVPEControlq,,gpcl -ACX = GPR[rt]
4: TC[VPEControlqsrgrc] .DSPLO[1] < GPR[rt]
5: TC[VPEControlp,,gpc] .DSPHi[1l] « GPR[rt]
6: TC[VPEControle@TC].DSPACX[l] « GPR[rt]
8: TC[VPEControle@TC].DSPLo[2] «— GPRI[rt]
9: TC[VPEControlp,,gpcl -DSPHi[2] ¢« GPR[rt]
10:TC[VPECONtroly,ygrc) -DSPACX[2] ¢ GPR[rt]
12:TC[VPECONtrolp, gpcl -DSPLO[3] ¢ GPR[rt]
13:TC[VPEControlep,rgpc] .DSPHL[3] « GPR[rt]
l4:TC[VPEControle@TC].DSPACX[B] « GPR[rt]
l6:TC[VPEControle@TC].DSPControl «— GPR[rt]
otherwise: UNPREDICTABLE

2: TCIVPECONntrolys,grcl -FPRIXA] toppit. . bottombit ¢ GPRIrt]

3: TC[VPEControlpsygrel . FPCRIXd] coppit. .bottompbic ¢~ GPRITrt]

4: TC[VPEControlpsygrel -CP2CPRIrx| | 1Al toppit. .bottombit < GPRITt]

5: TC[VPECONtrolq,ygrcl -CP2CCRIrx| |[rd] toppit . .bottompit < GPRITt]

otherwise: UNPREDICTABLE

endif
endif
Exceptions:

Coprocessor Unusable
Reserved Instruction

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

MTTR

23

Conditionally Deschedule or Deallocate the Current Thread YIELD

24

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 0 0 YIELD
rs rd
011111 00000 00000 001001
6 5 5 5 5 6
Format: vyield rd, rs MIPS MT
yield rs

Purpose:
To suspend the current thread of execution, and conditionally deallocate the associated thread context.
Description:

The YIELD instruction takes a single input operand value from a GPR rs. This value is a descriptor of the circum-
stances under which the issuing thread should be reschedul ed.

If GPR rsis zero, the thread is not to be rescheduled at al, and it isinstead deallocated and its associated TC storage
freed for allocation by a subsequent FORK issued by some other thread.

If GPR rsis negative one (-1), the thread remains eligible for scheduling at the next opportunity, but invokes the pro-
cessor’s scheduling logic and relinquishes the CPU for any other threads which ought to execute first according to the
implemented scheduling policy.

If GPR rsis negative two (-2), the processor’s scheduling logic is not invoked, and the only effect of the instruction is
to retrieve the rd value (see below).

All other negative values of the rsregister are reserved for future architectural definition by MIPS.

Positive values of rs are treated as a vector of YIELD qualifier (Y Q) bits which describe an implementati on-depen-
dent set of external or internal core signal conditions under which the YIELDing thread isto be rescheduled. Up to 31
bitsof YIELD qualifier state may be supported by a processor, but implementations may provide fewer. To be usable,
aYIELD quadlifier bit must be enabled in the YQMask register (see Section 4.8).

If no set hit of rs matches with a set, enabled Y Q hit, the TC is blocked until one or more active bits of enabled YQ
input match corresponding rs bits. If and when one or more bits match, the TC resumes a running state, and may be
rescheduled for execution in accordance with the thread scheduling policy in effect.

The rd output operand specifies a GPR which is to receive a result value. This result contains the bit vector of YQ
inputs values enabled by the YQMask register at the time the YIELD completes. Thus, any YQ state that can be
waited upon by a YIELD with a positive rs value can also be polled viaa YIELD with an rsvalue of -1 or -2. The
value of any rd bits which do not correspond to set bits in the YQMask register is implementation-dependent, typi-
caly 0. A zero value of the rd operand field, selecting GPR 0, indicates that no result valueis desired.

Restrictions:

If apositive rs value includes a set bit that is not also set in the YQMask register, a Thread exception is raised for the
YIELD instruction, with the EXCPT field of the VPEControl register set to 2 to indicate the Invalid Qualifier case.

If no non-halted dynamically allocatable TC would be activated after a YIELD whose rsvalueis 0, a Thread excep-
tion is raised for the YIELD instruction, with the EXCPT field of the VPEControl register set to O to indicate the
Thread Underflow case.

If the processor’s scheduling logic would be invoked as a consequence of an otherwise unexceptional YIELD, one
whose rsvalueis 0 (excluding the Underflow case), -1, or positive (excluding the Invalid Qualifier case), and both the
YSI bit of VPEControl and the DT hit of TCStatus are set, a Thread exception is raised for the YIELD instruction,
with the VPEControl EXCPT field set to 4 to indicate the YIELD Scheduler case.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Deschedule and Conditionally Deallocate the Current Thread

If multithreaded operation is unsupported, a Reserved Instruction Exception israised for the YIELD instruction.
Processor behavior is UNPREDICTABLE if aYIELD instruction is placed in a branch or jump delay slot.

Operation:

if GPR[rs] = 0 then
ok <0
for t in 0...MVPConfOppc
if (TC[t].TCBindcypypr = TCBindeyyyes)

and (TC[t].TCBindgyyre # TCBindeyyre)

and (TC[t].TCStatusp, = 1)
and (TC[t].TCHalty = 0)
and (TC[t].TCStatus, = 1) then
ok «1
endif
endfor
if ok = 1 then
TCStatus, « 0
else
VPEControlgycpp ¢ 0
SignalException (Thread)
endif
else if GPR[rs] > 0 then
if (GPR[rs] and (not YQMask)) #0 then
VPEControlgycpp ¢ 2
SignalException (Thread)
else

SetThreadRescheduleCondition (GPR[rs] and YQMask)

endif
endif
if GPR[rs] # -2 then

if (VPEControlygy = 1) and (TCStatuspp = 1)

VPEControlgycpy < 4
SignalException (Thread)
else
ScheduleOtherThreads ()
endif
endif
if rd #0 then
GPR[rd] « GetThreadRescheduleCondition()
endif

Exceptions:

Reserved Instruction
Thread

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

YIELD

25

26

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 4

MIPS MT Privileged Resource Architecture

4.1 Privileged Resource Architecturefor MIPSMT

Table 4-1 outlines the system coprocessor privileged resources associated with the MIPSMT ASE.

Table4-1 MIPSMT PRA

CPO Register
New or Register Select
Register Name M odified Number | Number Description
Per-Processor register containing global MIPSMT
MVPControl New 0 1 configuration data. See Section 4.2.
Per-Processor multi-VPE dynamic configuration
MVPConfQ New 0 2 information. See Section 4.3.
Optional Per-Processor multi-VPE dynamic
MVPConf1 New 0 3 configuration information. See Section 4.4
Per-VPE register containing relatively volatile thread
VPEConirol New 1 1 configuration data. See Section 4.5.
Per-VPE multi-thread configuration information. See
VPEConf0 New 1 2 Section 4.6.
Per-VPE multi-thread configuration information. See
VPEConf1 New 1 3 Section 4.7.
Per-VPE register defining which YIELD qualifier bits
Y QMask New 1 4 may be used without generating an exception. See
Section 4.8
Optional Per-VPE register to manage scheduling of a
VPESchedule New 1 5 VPE within a processor. See Section 4.9.
Optiona Per-VPE register to provide scheduling
VPEScheFBack New 1 6 feedback to software. See Section 4.10.
Optional Per-VPE register to provide control over
VPEOpt New 1 7 optional features, such as cache partitioning control. See
Section 4.11
Per-TC status information, includes copies of
TCStatus New 2 1 thread-specific bits of Status and EntryHi registers. See
Section 4.12
: Per-T C information about TC ID and VPE binding. See
TCBind New 2 2 Section 4.13
Per-TC value of restart instruction address for the
TCRestart New 2 3 associated thread of execution. See Section 4.14
TCHalt New 2 4 Z’elréTC register controlling Halt state of TC. See section
TCContext New 2 5 ZelréTC Read/Write Storage for OS use. See Section

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

27

Chapter 4 MIPS MT Privileged Resource Architecture

Table4-1 MIPSMT PRA

CPO Register
New or Register Select
Register Name Modified Number | Number Description
Optional Per-TC register to manage scheduling of aTC.
TCSchedule New 2 6 See Section 4.17.
Optional Per-TC register to provide scheduling feedback
TCScheFBack New 2 7 to software. See Section 4.18.
Per-VPE register indicating and optionally controlling
SRSConf0 New 6 : shadow register set configuration. See Section 4.19.
Optional Per-VPE register indicating and optionally
SRSConf1l New 6 2 controlling shadow register set configuration. See Section
4.20.
Optional Per-VPE register indicating and optionally
SRSConf2 New 6 3 controlling shadow register set configuration. See Section
4.21.
Optional Per-VPE register indicating and optionally
SRSConf3 New 6 4 controlling shadow register set configuration. See Section
4.22.
Optiona Per-VPE register indicating and optionally
SRSConf4 New 6 5 controlling shadow register set configuration. See Section
4.23.
- Previously hard-wired field now optionally “soft”, and a
SRSCH Modified 12 2 function of the SRSConf registers. See Section 4.19.
Cause Modified 13 0 New Cause code. See Section 4.24.2.
EBase Modified 15 1 El)lg; gct CPUNum value required per VPE. See Section
. - Fields added to describe and control MT ASE
Config3 Modified 16 3 configuration. See Section 4.24.7.
Register accessed by MFTR/MTTR as being per-TC,
Debug Modified 23 0 with distinct SX and OffLine values. See Sections 4.24.4
and 8.1.

28

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.2 MVPControl Register (CPO Register 0, Select 1)

4.2 MVPControl Register (CPO Register 0, Select 1)

Compliance Level: Required for MIPSMT.

The MVPControl register isinstantiated per-processor, and provides an interface for global control and configuration of
amulti-VPE MIPSMT core.

Figure 4-1 shows the format of the MVPControl register; Table 4-2 describes the MVPControl register fields.

Figure 4-1 MVPControl Register Format
31 4 3 2 1 0
0 |cPa|sTLB|vPC|EVH

Table 4-2 MVPControl Register Field Descriptions

Fields Read/Write
Reset

Description MVP MVP State Compliance

Name | Bits -0 1

Cache Partitioning Active. If set, the IWX and DWX fields

of the VPEOpt register control the allocation of cachelines .
CPA 3 as described in section 4.11. If clear, IWX and DWX are R RIW 0 Optional
ignored.

Share TLBs. Modifiable only if the VPC hit was set prior to
the write to the register of a new value. When set, the full
complement of TLBs of a processor is shared by all VPEs
on the processor having accessto the TLB, regardless of the
programming of the Configl. MMU_Size register fields.

When STLB is set:
e Thevirtual address and ASID spaces are unified across

al VPEs sharing the TLB.

e TheTLB logic must ensure that a TLBWR instruction
can never writeto a TLB entry which correspondsto the .

STLB 2 valid Index register value of any VPE sharing the TLB. RIW i

¢ TLBWRsmay have UNPREDICTABLE resultsif there
are fewer total unwired TLB entries than there are
operational V PEs sharing the TLB.

¢ TLBWRs may have UNPREDICTABLE resultsif the
Wired register values are not identical acrossall VPEs
sharing the TLB.

0 Optional

When not in use for TLB maintenance, software should
leavethe Index register set to aninvalid value, with the P bit
set, for all VPES having TLB access.

Indicates that Processor isin aVPE Configuration State.
When VPC is set, some normally “Preset” configuration
register fields become writable, to allow for dynamic o
configuration of processor resources (See section 6.2). Required if

R RIW 0 run-timeVPE
Writable by software only if the VPEConfO.MVP bit is set configuration

for the VPE issuing the modifying instruction. supported

VPC 1

Processor behavior is UNDEFINED if VPC and EVP are
both in a set state at the same time.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 29

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Table 4-2 MVPControl Register Field Descriptions

Fields Read/Write
Description Reset Compliance
Name | Bits M_VP M_VP State
=0 =1
Enable Virtual Processors. Modifiable only if the
VPEConf0.MVP bit is set for the VPE issuing the
modifying instruction. Set by EV PE instruction and cleared
EVP 0 by DVPE instruction. If set, all activated (see section 4.6) R R/W 0 Required
VPEs on a processor fetch and execute independently. I
cleared, only asingle instruction stream on asingle VPE
can run.
31:4 | Must bewritten as zero; return zero on read. 0 0 Reserved

30

So long as the EVP hit is zero, no thread scheduling will be performed by the processor. On a processor reset, only the
reset thread, TC 0, will execute. If EVPis cleared by software, only the thread which issued the DVPE or MTCO
instruction which cleared the bit will issue further instructions. All other TCs of the processor are suspended (see section
1.2).

The effect of clearing EV P in software may not be instantaneous. An instruction hazard barrier, e.g. JR.HB, isrequired
to guarantee that all other VPES have been quiesced.

The STLB hit affectsonly VPEs using a TLB MMU. The operation of VPEsusing FMT MMUs is unaffected.

For M1PS32-compatibl e software operation, all MMU_Size fields must indicate the size of the shared TLB when STLB
isset. This may either be done automatically by hardware, or, on processorsimplementing configurable MMU_Size, by
software rewriting the MMU_Size fields of the Configl registers of the affected VPEs to the correct value while the
processor has the VPC hit set. When STLB is set, the restriction that the sum of Configl MMU_Size fields not exceed
the total number of configurable TLB entry pairs asindicated by the PTLBE field of the MVVPConfO register no longer
applies. If TLB entries are not otherwise dynamically configurable, i.e. PTLBE is zero, hardware must automatically
maintain the correct MMU_Size values according to the value of STLB.

Programming Notes

The TLB should always be flushed of valid entries between any setting or clearing of STLB and the first subsequent
TLB-mapped memory reference.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.3 MVPConf0 Register (CPO Register 0, Select 2)

4.3 MVPConfO Register (CPO Register 0, Select 2)
Compliance Level: Required.

The MVPConf0 Register isinstantiated per-processor. It contains configuration information for dynamic multi-V PE
processor configuration. All fields in the MVPConfO register are read-only.

Figure 4-2 shows the format of the MVPConfO register; Table 4-3 describes the MVPConfO register fields.

Figure 4-2 MVPConf0O Register Format
31 30 29 28 27 26 25 16 15 14 13 109 8 7 0
| M| o|reg Gs|pcp| o] PTLBE [Tcalo| PvPE | 0 | PTC

Table 4-3 MVPConfO Register Field Descriptions

Fields

Read/
Name Bits Description Write | Reset State | Compliance

Thisbit indicatesthat aMVPConf1 register (see section
4.4) is present. If the MVPConf1 register is not

M 31 implemented, this bit should read asa . If the R Preset Required
MVPConf1 register isimplemented, thisbit should read
asal

TLB Sharable. If set, indicates that TLB sharing
TLBS 29 amongst all VPEsof aVMPispossible. TLB sharingis R

enabled by the STLB bit of the MVPControl register.
See section 4.2.

Preset Required

Gating Storage Support present. If set, indicatesthat the
GS 28 processor is configured to support gating storage R Preset Required
operations. See section 7.1.

Programmable Cache Partitioning. If set, indicates that
the alocation behavior of the “ways’ of the primary
PCP 27 instruction and data caches can be controlled via the R Preset Required
VPEOpt register’s IWX and DWX fields. See section
411

Total processor complement of allocatable TLB entry
PTLBE 25:16 pairs. See Section 6.2. If TLB configuration is fixed, R Preset Required
PTLBE is zero.

TCsAllocatable. If set, TCs may be assigned to VPEs
by writing the CurVPE field of each TC's TCBind

TCA 15 register while the VPC bit of MVPControl is set. See R Preset Required
section 4.13.
Ppe | 1m0 | [poscomlenen dVPEenat 1VAIG | R | e | Requred
Pre | 7o | JodpoesorcmpereroICs LVAMTC | g | pes | R
0 ?2 S% Reserved. Reads as zero, must be written as zero. R 0 Reserved
MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 31

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.4 MVPConfl Register (CPO Register 0, Select 3)

32

Compliance Level: Optional.

The MVPConf1 register isoptionally instantiated per processor. It indicatesthe coprocessor and UDI resources available
for dynamic allocation to VPEs. All fieldsin the MVPConf1 register are read-only.

Figure 4-3 shows the format of the MVPConf1 register; Table 4-4 describes the MVPConf1 register fields.

Figure 4-3 MVPConfl Register Format
31 30 292827 20 19 18 17 10 9 8 7 0

|cim[caF| o | PCX | o | PCP2 | o | PCP1

Table 4-4 MVPConfl Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
CIM 31 Allocatable CP1 coprocessors are media-extension R Preset Required
capable
CIF 30 Allocatable CP1 coprocessors are floating-point R Preset Required
capable
Total processor complement of CorExtend™ UDI state
PCX 27:20 instantiations available, for UDI blocks with persistent R Preset Required
state.
) Total processor complement of integrated and :
PCP2 17:10 allocatable Coprocessor 2 contexts R Preset Reguired
. Total processor complement of integrated and .
S 70 alocatable FRIMDMX Coprocessors contexts R Preset Required
29:28,
0 19:18, Reserved. Reads as zero, must be written as zero. R 0 Reserved
9:8

Allocatable resources can be bound to specific VPES as described in section 6.2.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.5 VPEControl Register (CPO Register 1, Select 1)

4.5 VPEControl Register (CPO Register 1, Select 1)
Compliance Level: Required for MIPSMT.
The VPEControl register isinstantiated per VPE as part of the system coprocessor.

Figure 4-4 shows the format of the VPEControl register; Table 4-5 describes the VPEControl register fields.

Figure 4-4 VPEControl Register Format
31 22 21 20 1918 16 15 14 8 7 0
0 |vsi|Gsi| o] Excpr |TE| 0 TargTC

Table 4-5 VPEControl Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

YIELD Scheduler Intercept. If set, and the TCStatus
DT bitisalso set, valid YIELD instructions that
YS 21 could otherwise cause arescheduling causea Thread R/W 0 Required
exception with a YIELD Scheduler Exception
sub-code (see below).

Gating Storage Scheduler Intercept. If set, and the
TCStatus DT hit isalso set, Gating Storage load and
GSl 20 store operations that would otherwise block the R/W 0 Required
issuing TC cause a Thread exception with aGS
Scheduler Exception sub-code (see below).

Value Meaning

Thread

0 Underflow

Thread
Overflow

Invalid
2 | YIELD
Qualifier

Exception sub-code of
EXCPT 18:16 most recently dispatched Gating R Undefined Required
Thread exception 3 Storage

Exception

YIELD
4 Scheduler
Exception

GS
5 Scheduler
Exception

6-7 Reserved

Threads Enabled. Set by EMT instruction, cleared

by DMT instruction. If set, multiple TCs may be .
TE 15 simultaneously active. If cleared, only one thread RIW 0 Required
may execute on the VPE.
. TC number to be used on MTTR and MFTR . .
TargTC 7:0 instructions. R/W Undefined Required
MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 33

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Table 4-5 VPEControl Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
0 139112428 Must be written as zero; return zero on read. 0 0 Reserved

So long as the TE hit is zero, no thread scheduling will be performed by the VPE. On a processor reset, only the reset
thread, TC 0, will execute. If TE is cleared by software, only the thread which issued the DMT or MTCO instruction
which cleared the bit will issue further instructions. All other TCs of the VPE are suspended (see section 1.2).

The effect of clearing TE in software may not be instantaneous. An instruction hazard barrier, e.g. JR.HB, isrequired to
guarantee that all other threads have been quiesced.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.6 VPEConf0 Register(CPO Register 1, Select 2)

4.6 VPEConfO Register (CPO Register 1, Select 2)

Compliance Level: Required for MIPSMT.

The VPEConfO register isinstantiated per VPE. It indicates the activation state and privilege level of the VPE. All fields
in the VPEConfO register are read-only in normal execution, but the MV P and VVPA fields are writable while the MVP
bit is set for the VPE performing the modification.

Figure 4-5 shows the format of the VPEConfO register; Table 4-6 describes the VPEConfO register fields.

31 30 2928

Figure 4-5 VPEConf0O Register Format

2120 19 18 17 16 15

2 1 0

[M] o

XTC | o|Tcs|scsped ics|

0 | MVP| VPA|

Table 4-6 VPEConfO Register Field Descriptions

Fields

Name

Bits

Description

Read/Write
Reset

State

MVP Compliance

=0

MVP
=1

31

This bit is reserved to indicate that a VPEConf1
register is present. If the VPEConf1 register is not
implemented, this bit should read asa 0. If the
VPEConfl register isimplemented, thisbit should read
asal.

Required

XTC

28:21

Exclusive TC. Set by hardware when execution is
restricted within aVPE to asingle TC, due to
EXL/ERL being set in the Status register, or TE being
cleared in the VPEControl register, thisfield contains
the TC number of the TC eligible to run. Read by
hardware when the VPA bit iswritten set by software.
For cross-VPE initialization, XTC iswritable by
MTTR if theissuing VPE has MV P set and the target
VPE has VPA clear.

Ofor VPEO,
Undefined
for al others

(if
VPA
not set
for
target)

Required

TCS

19

Tertiary Cache Shared. Indicatesthat the tertiary cache
described in the Config2 register is shared with at least
one other VPE.

Required

SCS

18

Secondary Cache Shared. Indicates that the secondary
cache described in the Config2 register isshared with at
least one other VPE.

Required

DCS

17

Data Cache Shared. Indicates that the primary data
cache described in the Configl register isshared with at
least one other VPE.

Required

ICS

16

Instruction Cache Shared. Indicates that the primary
instruction cache described in the Configl register is
shared with at least one other VPE.

Required

MVP

Master Virtual Processor. If set, the VPE can accessthe
registers of other VPEs of the same VMP, using
MTTR/MFTR, and can modify the contents of the
MVPControl and VPEConfO registers, thus acquiring
the capability to manipulate and configure other VPES
sharing the same processor (see section 6.2).

1for VPEDO,
Ofor al
others

Required

VPA

Virtual Processor Activated. If set, the VPE will
schedul ethreads and executeinstructions so long asthe
EVP hit of the MVPControl register enables multi-VPE
execution.

1for VPEO,
Ofor all
others

Required

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

35

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Table 4-6 VPEConfO Register Field Descriptions

Fields Read/Write
Description MVP | MVP I;gii Compliance
Name Bits =0 =1
0 2360:1259:’2 Reserved. Reads as zero, must be written as zero. R 0 Reserved

The XTC field is set by hardware on an exception setting EXL or ERL of the Satus register, or onan MTCO or DMT
instruction clearing the TE bit of VPEControal. It may be set by software if and only if both MV P of the writing VPE is
set and VPA of thewritten VPE isclear, which impliesacross-VPE MTTR operation. It isread by hardware when VPA
isset, and if theinitial state of the VPE is such that only one activated TC may issue, i.e. if EXL or ERL are set, or TE
isclear, the TC designated by the X TC field will be the TC selected for exclusive execution on the VPE. This alows
initialization of one V PE by another, such that theinitialized V PE can begin execution in an exception or single-threaded
state, and the full context save/restore of one V PE by another, even if thetarget VPE isin an exception or single-threaded
state.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.7 VPEConfl Register(CPO Register 1, Select 3)

4.7 VPEConfl Register (CPO Register 1, Select 3)
Compliance Level: Optional.

The VPEConf1 register isinstantiated per VPE. It indicates the coprocessor and UDI resources available to the VPE. All
fieldsin the VPEConf1 register are read-only in normal operation, but may be writable while the MVPControl VPC bit
is set. See section 6.2.

Figure 4-6 shows the format of the VPEConf1 register; Table 4-7 describes the VPEConf1 register fields.

Figure 4-6 VPEConfl Register Format
31 28 27 20 19 18 17 10 9 8 7 0
0 NCX | o | NCP2 | o | NCP1

Table 4-7 VPEConfl Register Field Descriptions

Fields Read/Write
Description Reset Compliance
Name Bits V_PC V_PC State
=0 =1
. Number of CorExtend™ UDI state instantiations ;
NCX 2120 available, for UDI blocks with persistent state. R RIW Preset Required
NCP2 17:10 Number of Coprocessor 2 contexts available. R R/W Preset Required
NCP1 7:0 Number of Coprocessor 1 contexts available. R R/W Preset Required
31:28,
0 19:18, Reserved. Reads as zero, must be written as zero. R 0 Reserved
9:8
MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 37

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.8 YQMask Register (CPO Register 1, Select 4)
Compliance Level: Required for MIPSMT.
The YQMask register isinstantiated per VVPE.

Figure 4-7 shows the format of the YQMask register; Table 4-8 describes the YQMask register fields.

Figure4-7 YQMask Register Format
31 30 0
lo] Mask

Table 4-8 YQMask Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
. Bit vector which determines which values may be used .
Mask 30:0 as external state qualifiersby YIELD instructions. RIW 0 Reguired
0 31 Must be written as zero; return zero on read. 0 0 Reserved

The YQMask register allows software control over values used to select external qualifier statesfor YIELD instructions.
If aYIELD instruction has a positive value of itsrs parameter, and any bit that is set in rsis not also set in YQMask, a
Thread exception israised on the YIELD instruction, with the VPEControl EXCPT field set to 3 to indicate theillegal
qualifier condition.

If a processor implementation supports fewer than 31 qualifier state inputs, the YQMask bits corresponding to
unimplemented inputs should be hard-wired to zero, so that attempts to suspend pending an impossible state are certain
to cause an exception to be raised.

38 MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.9 VPESchedule Register (CPO Register 1, Select 5)

4.9 VPESchedule Register (CPO Register 1, Select 5)

Compliance Level: Optional.
The VPESchedule register is optional, and is instantiated per-V PE.

Figure 4-8 shows the format of the VPESchedule register.

Figure 4-8 VPESchedule Register Format
31 0
Scheduler Hint

The Scheduler Hint is a per-V PE value whose interpretation is scheduler implementation-dependent. For example, it
could encode a description of the overall requested i ssue bandwidth for the associated V PE, or it could encode apriority
level.

A VPEhedul e register value of zero is the default, and should result in a well-behaved default scheduling of the
associated V PE.

The VPESchedule register and the TCSchedule register create a hierarchy of issue bandwidth allocation. The set of
VPESchedule registers assigns bandwidth to VPEs as a proportion of the total available on aprocessor or core, whilethe
TC<chedule register can only assign bandwidth to threads as a function of that which is available to the VPE containing
the thread.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 39

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.10 VPEScheFBack Register (CPO Register 1, Select 6)

40

Compliance Level: Optional.
The VPEScheFBack register is an optional, per-V PE register.

Figure 4-9 shows the format of the VPEScheFBack register.

Figure 4-9 VPEScheFBack Register Format
31 0
Scheduler Feedback

The Scheduler Feedback is a per-V PE feedback value from scheduler hardware to software, whose interpretation is
scheduler implementation-dependent. For example, it might encode the total number of instructions retired in the
instruction streams on the associated V PE since the last time the value was cleared by software.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.11 VPEOpt Register(CPO Register 1, Select 7)

4.11 VPEOpt Register (CPO Register 1, Select 7)

Compliance Level: Optional.

The VPEOpt register isinstantiated per V PE. It provides control over optional per-V PE capabilities, such as cache“way”
allocation management.

Figure 4-10 shows the format of the VPEOpt register; Table 4-9 describes the VPEOpt register fields.

Figure 4-10 VPEOpt Register Format
31 16 15 8 7 0
0 IWX7..1WXO0 DWX7..DWXO0

Table 4-9 VPEOpt Register Field Descriptions

Fields Reset
Description Stat Compliance
Name Bits ae
Instruction cache way exclusion mask. If programmable cache partitioning
is supported by the processor (see section 4.3) and enabled in the
MVPControl register (see section 4.2), aV PE can exclude an arbitrary subset
of thefirst 8 ways of the primary instruction cache from alocation by the
cache controller on behalf of the VPE.
Bit Name Meaning
15 IWX7 | If set, |-cache way 7 will not be allocated for the VPE
14 IWX6 | If set, I-cache way 6 will not be allocated for the VPE
IWX7..IWX0 15:8 0 Optional
13 IWX5 | If set, I-cache way 5 will not be allocated for the VPE
12 IWX4 | If set, I-cache way 4 will not be allocated for the VPE
11 IWX3 | If set, I-cache way 3 will not be allocated for the VPE
10 IWX2 | If set, I-cache way 2 will not be allocated for the VPE
9 IWX1 | If set, I-cache way 1 will not be alocated for the VPE
8 IWXO0 | If set, I-cache way O will not be allocated for the VPE
MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 41

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Table 4-9 VPEOpt Register Field Descriptions

Fields
Description I;t&etet Compliance
Name Bits ae
Data cache way exclusion mask.If programmable cache partitioning is
supported by the processor (see section 4.3) and enabled in the MVPControl
register (see section 4.2), aV PE can exclude an arbitrary subset of thefirst 8
ways of the primary data cache from allocation by the cache controller on
behalf of the VPE.
Bit Name Meaning
7 IWX7 | If set, D-cacheway 7 will not be allocated for the VPE
6 IWX6 | If set, D-cacheway 6 will not be allocated for the VPE
DWX7..DWXO0 7:0 0 Optional
5 IWX5 | If set, D-cacheway 5 will not be allocated for the VPE
4 IWX4 | If set, D-cacheway 4 will not be allocated for the VPE
3 IWX3 | If set, D-cacheway 3 will not be allocated for the VPE
2 IWX2 | If set, D-cacheway 2 will not be allocated for the VPE
1 IWX1 | If set, D-cacheway 1 will not be allocated for the VPE
0 IWXO0 | If set, D-cacheway O will not be allocated for the VPE
0 31:16 Reserved. Reads as zero, must be written as zero. 0 Reserved

The WX and DWX bitsinhibit allocation of cache linesin the specified way. They do not prevent fetches and loads by
theVVPE from hitting in those linesif the requested physical addressis present, nor do they prevent storesfrom modifying
the contents of aline already present in the cache.

If fewer than 8 ways are implemented by a processor’sinstruction or data cache, the WX and DWX bits corresponding
to unimplemented cache ways may be implemented as read-only (RO) zero bits.

Behavior of the processor is UNDEFINED if references are made to cached address spaces by a VVPE which has
excluded all implemented cache ways from allocation.

Whether or not a cache line in away that is excluded from allocation by a VPE can be locked by a CACHE instruction
issued by that V PE isimplementation dependent.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.12 TCsStatus Register (CPO Register 2, Select 1)

4.12 TCStatus Register (CPO Register 2, Select 1)

Compliance Level: Required for MIPSMT.
The TCSatus register isinstantiated per TC as part of the system coprocessor.

Figure 4-11 shows the format of the TCSatus register; Table 4-10 describes the TCSatus register fields.

Figure4-11 TCStatus Register Format
31 28 27 262524 23 22 21 2019 16 15 14131211 10 9 8 7 0
TCU3.TCUO[TMX| 0 |RNST| 0 [TDSDT Impl |DA|O|A[TKSU[IXxMT 0 | TASID

Table 4-10 TCStatus Register Field Descriptions

Fields
Read/ Reset Fork
Name Bits Description Write State State Compliance
Controls access of aTC to coprocessors 3,2,1, and 0
TCU respectively. Status bits CU3..CUO are identical to Unchanaed
(TCU3.. 31:28 | TCSatus bits TCU3..TCUO of the thread R/W Undefined b FOIgK Required
TCUOQ) referencing that Statuswith an MFCO operation. The Y

modification of either must be visible in both.

Controls access of a TC to extended media
processing state, suchasMDMX and DSP ASE

. VA S Required for

accumulators. Statusbit MX isidentical to TCSatus Unchanged
TMX 21| bt TMX of thethread referencing that Statuswithan | R/W 0 by ForK | MBMXand

MFCO operation. The modification of either must be

visiblein both.

Value | Meaning

Run State of TC. -

Indicates the Running 0 Running

vs. Blocked state of the

TC (see Section 1.2) 1 Blocked on

. and the reason for WAIT ;

RNST 24:23 blockage. Value is R 0 0 Required

stableonly if TCis 5 Blocked on

Halted and examined YIELD

by another TC using an

MFTR operation. 3 Blocked on

Gating Storage

Thread stopped in branch Delay Slot. If aTC is
Halted such that the next instruction to issue would
be an instruction in abranch delay dot, the

TDS 21 TCRestart register will contain the address of the R 0 0 Required
branch instruction, and the TDS bit will be set.
Otherwise TDSiscleared on aHalt, or on asoftware
write to the TCRestart register.

Dirty TC. Thishit is set by hardware whenever an
instruction isretired using the associated TC, and on
successful dispatch of the TC viaa FORK

DT 20 instruction. The setting of DT by the retirement of R/W 0 1 Required
instructionsisinhibited if theinstructions areissued
with the EXL or ERL bits of Status set, or with the
processor in Debug mode.

These bitsareimplementation dependent and are not

. defined by the architecture. If they are not Impl. ;
Impl 19.16 implemented, they must be ignored on write and Dep. Impl. Dep. | Impl. Dep. Optiond
read as zero
MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 43

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Table 4-10 TCStatus Register Field Descriptions

Fields
Read/ Reset Fork
Name Bits Description Write State State Compliance
FORK
Dynamic Allocation enable. If set, TC may be alocate
DA 15 allocated/deall ocated/scheduled by the FORK and R/W 0 only Required
YIELD instructions. possibleif
DA=1
Thread Activated. Set automatically when a FORK 1for TCO
instruction allocates the TC, and cleared ! .
A . automatically when a YIELD $0 instruction RIW %{ﬁ;";” 1 Required
deallocates it.
Defined as per the Status register KSU field. Thisis Copied
the per-TC Kernel/Supervisor/User state. The Satus frgm
TKSU 12:11 KSU fieldisidentical to the TCStatus TKSU field of R/W Undefined forkin Required
the thread referencing Satus. The modification of threao?
either must be visiblein both.
Interrupt Exempt. If set, the associated TC will not Unchanaed
IXMT 10 be used by asynchronous exception handlers such as R/W 0 b FOIgK Required
interrupts. Y
Defined as per the EntryHi register ASID field. This Copied
isthe per-TC ASID value. The EntryHi ASID is fr(F))m
TASID 7.0 identical to the TCSatus TASID of the thread R/W Undefined forkin Required
referencing EntryHi with an MFCO operation. The threadg
modification of either must be visible in both.
26:25,
0 22,14, | Must be written as zero; return zero on read. 0 0 0 Reserved
9:8

44

The (T)CUX, (T)MX, and (T)KSU fields of the TCSatus and Status registers always display the correct state. That is, if
the field is written via TCStatus, the new value may be read via Status, and vice-versa. Similarly, the (T)ASID field of
the TCSatus and EntryHi always display the same current value for the TC.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4,13 TCBind Register (CPO Register 2, Select 2)

4.13 TCBind Register (CPO Register 2, Select 2)

Compliance Level: Required for MIPSMT.

The TCBind register isinstantiated per TC as part of the system coprocessor.

Figure 4-12 shows the format of the TCBind register; Table 4-11 describes the TCBind register fields.

31 29 28

Figure 4-12 TCBind Register Format

2120 18 17 16

curTC | A0 |TBE|

CurVPE

Table 4-11 TCBind Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

CurTC

28:21

Indicates the number (index) of the TC.

R

TC#

Required

A0

20:18

Architecturally zero-valued field providing
least-significant bitswhen a TCBind valueis shifted
right to be used as a scaled index into arrays of 32 or
64-bit values.

Required

TBE

17

TC Bus Error. Set by hardware when atransaction
causing abus error isidentified as resulting from a
load or storeissued by the TC. Implementations may
set the TBE bits of multiple TCson asingle DBE
exception if multiple memory requests to the same
memory location or cache line from the different
TCs were merged. Implementations may generate
bus error exceptionswithout setting a TBE bit if itis
not possible to associate the failing transaction with
aparticular TC.

Required

CurVPE

3.0

Indicates and controls the binding of the TC to a
VPE. Field is optionally Read/Write only when the
VPC bit of the MVPControl register is set.

Ror

0for TCO,
preset for all
others

Required

31:29,
16:4

Must be written as zero; return zero on read.

0

Reserved

In reconfigurable MIPSMT processors, the binding of TCsto VPESismanaged viathe CurVPE field of TCBind. If TC

assignment to VPEs s configurable, the CurV PE fields of al TCsin the processor are writable if the VPC bit of the

MVPControl register isset. At all other times, CurV PE isaread-only indication of which VPE containsthe TC. Software
can thus determine on which VPE it isrunning by executing an MFCO instruction from TCBind and inspecting CurV PE.
While implementations may allow for it under well-defined circumstances, behavior of a processor may be
UNPREDICTABLE if software executing on agiven TC changes its own VPE binding “on the fly”.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

45

4.14 TCRestart Register (CPO Register 2, Select 3)

46

Compliance Level: Required for MIPSMT.
The TCRestart register isinstantiated per-TC, with the same width as the processor GPRs.

Figure 4-13 shows the format of the TCRestart register. Table 4-12 describes the TCRestart register fields.

Figure 4-13 TCRestart Register Format
31 0
Restart Address

Table 4-12 TCRestart Register Field Descriptions

Fidds
Read/
Name Bits Description Write | Reset State | Compliance
Eg‘g‘r"i‘gs 31.0 | Addressat which execution of the TC is restarted. RIW Undefined Required

When aTC isin aHalted state, aread of the TCRestart register returns the instruction address at which the TC will start
execution when it isrestarted. The TCRestart register can be written while the associated TC isin a Halted state to
change the address at which the TC will restart.

Reading the TCRestart register of anon-Halted TC will return the UNSTABL E address of some instruction that the TC
was executing in the past, but which may no longer be valid. Writing the TCRestart register of anon-Halted TC will
resultin an UNDEFINED TC state.

In the case of branch and jump instructions with architectural delay slots, the restart address will advance beyond the
address of the branch or jump instruction only after the instruction in the delay slot has been retired. If halted between
the execution of a branch and the associated delay slot instruction, the branch delay dot isindicated by the TDSbit of
the TCSatus register (see section 4.12).

Software writes to the TCRestart register cause the TDS bit of the TCSatus register to be cleared. If a software write of
the TCRestart register of a TC intervenes between the execution of an LL instruction and an SC instruction on the target
TC, the SC operation must fail.

4.14.1 Special Handling of the TCRestart Register in Processor sthat | mplement the M1 PS16e ASE

In processors that implement the MIPS16e ASE, the TCRestart register requires specia handling.

When the processor writes the TCRestart register, it combines the address at which the TC will resume execution with
the value of the |SA Mode register:

TCRestart <« resumePCy; ; || ISAModeq
“resumePC” isthe address at which the TC will resume execution, as described above.

When the processor reads the TCRestart register, it distributes the bits to the PC and |1SAMode registers:

PC « TCRestarts; 4 || O
ISAMode ¢« TCRestart,

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.14 TCRestart Register (CPO Register 2, Select 3)

Software reads of the TCRestart register simply return to a GPR the last value written with no interpretation.Software
writes to the TCRestart register store anew value which isinterpreted by the processor as described above.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 a7

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.15 TCHalt Register (CPO Register 2, Select 4)

48

Compliance Level: Required for MIPSMT.

The TCHalt register isinstantiated per TC as part of the system coprocessor.

Figure 4-14 shows the format of the TCHalt register; Table 4-13 describes the TCHalt register fields.

Figure 4-14 TCHalt Register Format

31 10
0 [H]
Table 4-13 TCHalt Register Field Descriptions
Fields
Read/
Name Bits Description Write | Reset State | Compliance
Thread Halted. When set, the associated thread has Ofor TCO,
H 0 been halted and cannot be allocated, activated, or RIW 1foral Required
scheduled. others
0 31:1 Must be written as zero; return zero on read. 0 0 Reserved

Writing a one to the Halted bit of an activated TC causes the associated thread to cease fetching instructions and to set
its Restart Address in the TCRestart register (see section 4.14) to the address of the next instruction to be issued. If the
instruction stream associated with the TC isblocked waiting on aresponse from Gating Storage (see Chapter 7), theload
or store is aborted, and the TC resolves to a state where the TCRestart register and TDSfield of the TCSatus register

(see section 4.12) reflect arestart at the blocked load or store. If the TC is blocked on aWAIT or YIELD instruction, it
resolves to a stable restart state. If the TC was blocked at the timeiit is Halted, the RNST field of TCSatus indicates the
blocked state, and the reason for blocking, even if that reason was an operation aborted by the Halt. Writing azero to the

Halted bit of an activated TC allows the associated thread of execution to be scheduled, fetching and executing as

indicated by TCRestart. A onein the Halted bit (TCHalt.H) of a TC preventsthat TC from being allocated and activated

by a FORK instruction.

The effect of writing aoneto the Halted bit of a TC may not be instantaneous. An instruction hazard barrier, e.g. JR.HB,

isrequired to guarantee that the target thread has been fully halted.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.16 TCContext Register (CPO Register 2, Select 5)

4.16 TCContext Register (CPO Register 2, Select 5)
Compliance Level: Required for MIPSMT.
The TCContext register isinstantiated per-TC, with the same width as the processor GPRs.
Figure 4-15 shows the format of the TCContext register.

Figure 4-15 TCContext Register Format
31

Thread Context Value

TCContext is purely a software read/write register, usabl e by the operating system as a pointer to thread-specific storage,
e.g. athread context save area.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 49

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.17 TCSchedule Register (CPO Register 2, Select 6)

50

Compliance Level: Optional.
The TCSchedule register is optional, but when implemented must be implemented per-TC.

Figure 4-16 shows the format of the TCSchedule register.

Figure 4-16 TCSchedule Register Format
31 0
Scheduler Hint

The Scheduler Hint isaper-TC value whoseinterpretation is schedul er implementati on-dependent. For example, it could
encode a description of the requested issue bandwidth for the associated thread, as in the VPESchedule register, or it
could encode a priority level.

A TCSchedule register value of zero is the default, and should result in awell-behaved default scheduling of the
associated thread.

The VPESchedule register and the TCSchedule register create a hierarchy of issue bandwidth allocation. The set of
VPESchedule registers assigns bandwidth to VPEs as a proportion of the total available on aprocessor or core, whilethe
TC<chedule register can only assign bandwidth to threads as afunction of that which is available to the VPE containing
the thread.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.18 TCScheFBack Register (CPO Register 2, Select 7)

4.18 TCScheFBack Register (CPO Register 2, Select 7)
Compliance Level: Optional.
The TCScheFBack register is optional, but when implemented must be implemented per-TC.
Figure 4-17 shows the format of the TCScheFBack register.

Figure4-17 TCScheFBack Register Format
31

Scheduler Feedback

The Scheduler Feedback is a per-TC feedback value from scheduler hardware to software, whose interpretation is

scheduler implementation-dependent. For example, it might encode the number of instructionsretired in the instruction
stream corresponding to the TC since the last time the value was cleared by software.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 51

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.19 SRSConf0 (CPO Register 6, Select 1)

Compliance Level: Required for MIPSMT.

The SRSConf0 register isinstantiated per VPE. It indicates the binding of TCs or other GPR resources to Shadow
Register Sets 1 through 3.

Figure 4-18 shows the format of the SRSConf0 register; Table 4-14 describes the SRSConf0 register fields.

Figure 4-18 SRSConf0 Register Format
31 30 29 20 19 10 9 0
M| 0| SRS3 SRS? SRS1

Table 4-14 SRSConf0 Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
If set, SRSConf1 register isimplemented. If clear, no .

M 31 more than 3 shadow sets may be configured. R Preset Required
SRS3 29:20 GPR setto be used if CSS= 3. Seebelow for encoding. | RWor R Preset Required
SRS2 19:10 GPR set to beused if CSS= 2. See below for encoding. | RW or R Preset Required
SRS1 9:0 GPR setto beused if CSS=1. Seebelow for encoding. | RWor R Preset Required

0 30 Reserved. Reads as zero, must be written as zero. R 0 Reserved

Each SRS« field of the SRSConfO register identifies which GPR will be used for references to Shadow Register Set x.
Thereisnofield for SRSO, as“ Shadow Set 0" istakenin MIPSMT to mean the GPR set of the TC associated with entry
into an exception handler. An SR field value may be hard-wired to all-ones (0x3ff) to indicate that the processor logic

does not support the associated SRS number. If any SRS numbers are uninstantiated, they should be in a contiguous

range starting from the highest number, i.e. SRS3 may be uninstantiated while SRS2 and SRS1 are instantiated, but SRSL

must be instantiated if SRS2 isinstantiated. The M bit should only be set, and the SRSConf1 register should only be
implemented, if all three SRS fields of SRSConf0 are instantiated.

Instantiated SRS fields may be hard-wired or programmable. Hard wired fiel ds represent dedicated shadow setsthat are
statically configured into the VPE, and contain distinct unsigned values greater than the total complement of TCson a
processor, but less than 0x3fe. Programmable SRSx fields have areset value of Ox3fe. A value of Ox3ff or Ox3fein an

R field means that SRS x isinvalid. The HSSfield of the SRSCHI register aways indicates the number of the highest
numbered valid SRS, i.e. onelessthan x for the lowest numbered invalid SRSk field. A programmable entry may be made
valid by writing avalue less than Ox3fe into it. A TC is assigned for its GPRs to be used as a Shadow Register set by

writing the number of the TC, zero extended, into the SRS field corresponding to the shadow set number for which the
TCisto beused. Only aTC bound to a VPE may be used as an SRS on that VPE. If the CurVPE field of the TCBind

register of a TC being assigned to an SRS is does not contain the number of the VPE associated with the SRSConf0...4
register being programmed, the SRSx field is not updated. The effect of writing an SRSk value grester than the number

of the highest numbered TC on a processor is implementation-dependent.

Behavior of the processor is UNDEFINED in the face of exceptions and FORK instructionsif aTC is assigned to
Shadow Register use when the DA bit is set in its TCStatus register.

Behavior of the processor is UNDEFINED if writing an invalid SRS field value causes the SRSCtl HSSfield to take on
avalue that isless than the current value of the SRSCtl CSSor PSSfields. Behavior of the processor is UNDEFINED
under exceptions if the SRSCtl HSSfield takes on a value less than the SRSCtl ESSfield. Behavior of the processor is

52 MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.19 SRSConf0 (CPO Register 6, Select 1)

UNDEFINED under EIC interrupts if the SRSCtl HSSfield takes on a value less than the SRSCtl EICSSfield. Software
must thus take care to modify the ESS and EISSfields as necessary prior to de-allocating a TC from SRS service.

A TC may be reclaimed from use as a shadow set by writing some other value, possibly 0x3fe, into the SRS field which
had contained the TC’'s number.

At no time should the same value, other than the values Ox3ff and 0x3fe, be present more than one distinct SRS field.
The segquence of shadow set numbers to be used by software is amonotonically increasing sequence starting with zero.

To assure correct and backward-compatible software operation, there must be no invalid (0x3ff/0x3fe) SRS« field at a
lower x index than that of avalid SRS field.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 53
Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.20 SRSConfl (CPO Register 6, Select 2)

Compliance Level: Optional.

The SRSConf1 register is instantiated per VPE. It indicates the binding of TCs or other GPR resources to Shadow
Register Sets 4 through 6.

Figure 4-19 shows the format of the SRSConf1 register; Table 4-15 describes the SRSConf1 register fields.

Figure 4-19 SRSConfl Register Format
31 30 29 20 19 10 9 0
M| 0| SRS6 SRS5 SR4

Table 4-15 SRSConfl Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
If set, SRSConf2 register isimplemented. If clear, no .

M 31 more than 6 shadow sets may be configured. R Preset Required
SRS6 29:20 GPR set to be used if CSS= 6. Seebelow for encoding. | RWor R Preset Required
SRS5 19:10 GPR set to beused if CSS= 5. See below for encoding. | RW or R Preset Required
SRA 9:0 GPR set to be used if CSS = 4. Seebelow for encoding. | RWor R Preset Required

0 30 Reserved. Reads as zero, must be written as zero. R 0 Reserved

Each SRS« field of the SRSConf1 register identifies which GPR will be used for referencesto Shadow Register Set x. An
SRS« field value may be hard-wired to al-ones (0x3ff) to indicate that the processor |ogic does not support the associated
SRS number. If any SRS numbers are uninstantiated, they should be in a contiguous range starting from the highest
number, i.e. SRS6 may be uninstantiated while SRS5 and SRHA are instantiated, but SRS must be instantiated if SRS is
instantiated. The M bit should only be set, and the SRSConf2 register should only beimplemented, if all three SRS« fields
of SRConfl areinstantiated.

The semantics and encodings of the SRSx fiel ds of the SRSConf1 register are the same as those of the SRSConf0 register,
except in that they are applied to Shadow Register Sets 4 through 6. See section 4.19.

54 MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.21 SRSConf2 (CPO Register 6, Select 3)

4.21 SRSConf2 (CPO Register 6, Select 3)

Compliance Level: Optional.

The SRSConf2 register is instantiated per VPE. It indicates the binding of TCs or other GPR resources to Shadow
Register Sets 7 through 9.

Figure 4-20 shows the format of the SRSConf2 register; Table 4-16 describes the SRSConf2 register fields.

Figure 4-20 SRSConf2 Register Format

31 30 29 20 19 10 9 0
[m]|o] SRS9 SRS8 SRS7
Table 4-16 SRSConf2 Register Field Descriptions
Fields
Read/
Name Bits Description Write | Reset State | Compliance
If set, SRSConf3 register isimplemented. If clear, no .

M 31 more than 9 shadow sets may be configured. R Preset Required
SRS9 29:20 GPR setto be used if CSS=9. Seebelow for encoding. | RWor R Preset Required
SRS8 19:10 GPR set to beused if CSS= 8. See below for encoding. | RW or R Preset Required
SRS7 9:0 GPR setto beused if CSS=7. Seebelow for encoding. | RW or R Preset Required

0 30 Reserved. Reads as zero, must be written as zero. R 0 Reserved

Each SRS« field of the SRSConf2 register identifies which GPR will be used for referencesto Shadow Register Set x. An
SRS« field value may be hard-wired to al-ones (0x3ff) to indicate that the processor |ogic does not support the associated

SRS number. If any SRS numbers are uninstantiated, they should be in a contiguous range starting from the highest

number, i.e. SRSO may be uninstantiated while SRS8 and SRS7 are instantiated, but SRS7 must be instantiated if SRSBis
instantiated. The M bit should only be set, and the SRSConf3 register should only beimplemented, if all three SRS« fields
of SRConf2 are instantiated.

The semantics and encodings of the SRSx fiel ds of the SRSConf?2 register are the same as those of the SRSConf0 register,
except in that they are applied to Shadow Register Sets 7 through 9. See section 4.19.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

55

4.22 SRSConf3 (CPO Register 6, Select 4)
Compliance Level: Optional.

The SRSConf3 register is instantiated per VPE. It indicates the binding of TCs or other GPR resources to Shadow
Register Sets 10 through 12.

Figure 4-21 shows the format of the SRSConf3 register; Table 4-17 describes the SRSConf3 register fields.

Figure 4-21 SRSConf3 Register Format
31 30 29 20 19 10 9 0
[m]|o] SRS12 SRS11 SRS10

Table 4-17 SRSConf3 Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
If set, SRSConf4 register isimplemented. If clear, no .

M 3l more than 9 shadow sets may be configured. R Preset Required
SRS12 29:20 GPR settobeused if CSS=12. Seebelow for encoding. | RW or R Preset Required
SRS11 19:10 GPR settobeused if CSS= 11. Seebelow for encoding. | RW or R Preset Required
SRS10 9:0 GPR set to beused if CSS=10. Seebelow for encoding. | RW or R Preset Required

0 30 Reserved. Reads as zero, must be written as zero. R 0 Reserved

Each SRS« field of the SRSConf3 register identifies which GPR will be used for referencesto Shadow Register Set x. An
SRS« field value may be hard-wired to al-ones (0x3ff) to indicate that the processor |ogic does not support the associated
SRS number. If any SRS numbers are uninstantiated, they should be in a contiguous range starting from the highest
number, i.e. SRS12 may be uninstantiated while SRS11 and SRS10 are instantiated, but SRS10 must be instantiated if
SRSllisinstantiated. The M bit should only be set, and the SRSConf4 register should only beimplemented, if al three
SR fields of SRSConf3 are instantiated.

The semantics and encodings of the SRSx fiel ds of the SRSConf3 register are the same as those of the SRSConf0 register,
except in that they are applied to Shadow Register Sets 10 through 12. See section 4.19.

56 MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.23 SRSConf4 (CPO Register 6, Select 5)

4.23 SRSConf4 (CPO Register 6, Select 5)

Compliance Level: Optional.

The SRSConf4 register is instantiated per VPE. It indicates the binding of TCs or other GPR resources to Shadow
Register Sets 13 through 15.

Figure 4-22 shows the format of the SRSConf4 register; Table 4-18 describes the SRSConf4 register fields.

Figure 4-22 SRSConf4 Register Format
31 30 29 20 19 10 9 0

0 | SRS15 SRS14 SRS13

Table 4-18 SRSConf4 Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
SRS15 29:20 GPR set to be used if CSS = 15. See below for RW or R Preset Required
encoding.
SRS14 19:10 GPR set to be used if CSS = 14. See below for RWorR Preset Required
encoding.
. GPR set to be used if CSS = 13. See below for .
SRS13 9:0 encoding. RWorR Preset Required
0 31,30 Reserved. Reads as zero, must be written as zero. R 0 Reserved

Each SRS« field of the SRSConf4 register identifies which GPR will be used for referencesto Shadow Register Set x. An
R field value may be hard-wired to all-ones (0x3ff) to indicate that the processor logic does not support the associated
SRS number. If any SRS numbers are uninstantiated, they should be in a contiguous range starting from the highest
number, i.e. SRS15 may be uninstantiated while SRS14 and SRS13 are instantiated, but SRS13 must be instantiated if
SRS14 isinstantiated.

The semantics and encodings of the SRSx fiel ds of the SRSConf4 register are the same as those of the SRSConf0 register,
except in that they are applied to Shadow Register Sets 13 through 15. See section 4.19.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 57

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

58

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.24 Madifications to Existing MIPS Privileged Resource Architecture

4.24 Modificationsto Existing MIPS Privileged Resource Architecture

The Multithreading ASE modifies some elements of the existing MIPS32 PRA

4.24.1 SRSCtl Register

The HSSfield value can change at run-time if an implementation allows TCs to be assigned to SRSs viathe
SRLonf0-SRSConf4 registers. The HSSvalue tracks the highest valid SRSk field of an SRSConf register. Software must
ensure that the HSSfield does not take on avalue that makes the value of any of the PSS, CSS, ESS, or EISSfields of the
SRSCHl register illegal (see section 4.19).

A zero valuein the PSSor CSSfield of the SRSCHI register indicates that the previous or current “ shadow set” isnot a

built-in SRS or a TC register file allocated to a Shadow Set, but isin fact the register set belonging to the TC servicing
the exception, whose number can be found in the Cur TC field of the TCBind register, as read with an MFCO instruction
by the exception handler.

4.24.2 Cause Register

Thereis anew Cause register ExcCode value required for the Thread exceptions
Table4-19 MIPSMT Thread Exception

Exception Code Value

Decimal Hexadecimal | Mnemonic Description

25 16#19 Thread Thread Allocation, Deallocation, or Scheduling Exceptions

4.24.3 Machine Check Exceptions

A MIPS MT processor does hot generate Machine Check exceptions on duplicate TLB entries. Duplicate entries must
be detected and suppressed on TLB writes, without causing an exception.

4.24.4 Debug Register

OnaMIPS MT processor, the S3 and OffLine fields of the EJTAG Debug register are instantiated per-TC. All other
read/write fields are implemented per-V PE. See section 8.1.

4.245 EBase

Each VPE sees adistinct value in the CPUNum field of the EBase register.

4.24.6 Configl Register

Thenormally read-only MMU_Size, C2, MD, and FP fields of the Configl register may be modifiable by softwarewhile
aprocessor isin aconfiguration state, as defined by the VPC bit of the MVPControl register (see section 6.2).

4.24.7 Config3 Register

A new Config3 register field is defined to express and control the availability of the MIPSMT ASE.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 59

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Table 4-20 New Config3 Fieldsfor MIPSMT

Field
Read/ Reset
Name Bit Description Write | State
Indicatesthat the MT ASE isimplemented on the
MT 2 DrOCESSOr, R Preset

4.25 Thread State as a Function of Privileged Resource State

Thefollowing table summarizesthe TC state definitions of section 1.2 in terms of the associated A SE privileged resource

State.
Table 4-21 TC State as Function of MIPSMT PRA State
TCHalt.H TCStatus.A TCStatus.RNST TC State

1 X X Halted

0 0 X Free

0 1 0 Running

Activated
0 1 >0 Blocked

4.26 Thread Allocation and Initialization Without FORK

60

The procedure for an operating system to create a thread “by hand” would be:

1
2.
3.

Execute aDMT to stop other threads from executing and possibly FORKing or Halting threads.
Execute a JR.HB to ensure that other threads have quiesced.

Identify an available TC by setting the TargTC field of the VPEControl register to successive values from 0 to
PTC, reading the TCBind registers with an MFTR instruction to identify those belonging to the same VPE (those
having the same value in the TCBind CurV PE field as the current “ parent” thread), and reading their TCStatus and
TCHalt registers with MFTR instructions. A free TC will have neither the H bit of TCHalt nor the Activated bit of
TCStatus set, as per Table 4-21. TCsthat have been assigned for use as shadow register storage must be skipped in
this search.

Perform an MTTR of avalue of 1 to the selected TC's TCHalt register to prevent it being allocated by another
thread.

Execute an EMT instruction to re-enable multithreading.
Copy any desired GPRs or other program state into the selected TC using MTTR instructions.

Write the desired starting execution address into the thread’s restart address register using an MTTR instruction to
the selected TC's TCRestart register.

Write avalue with a1 in the Activated bit position to the selected TCStatus register using an MTTR instruction.
Write avalue of zero into the selected TCHalt register using an MTTR instruction.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.27 Thread Termination and Deallocation without YIELD

The newly allocated thread will then be schedulable. The steps of executing DMT and EMT can be skipped if EXL or
ERL are known to be set during the procedure, as they implicitly inhibit multithreaded execution.

4.27 Thread Termination and Deallocation without YIELD

The procedure for an operating system to terminate the current thread would be:

1. Writeavaluewith EXL =0, ERL =0, and KSU = 0 to the Statusregister using MTCO, setting Kernel mode for the
retiring TC and removing the inhibition of multithreaded execution due to EXL/ERL.

2. Write avalue with zero in the Activated bit position to the TCStatus register, using a standard MTCO instruction.

One thread, running in a privileged mode, could also terminate another, using MTTR instructions, but it would present
an additional problem to the OS to determine which TC should be deallocated and at what point the state of the thread's
computation is stable.

4.28 Multithreading and Coprocessor s

Coprocessors attached to a multithreaded VVPE may have a single context, which must be shared among processor
threads, or it may have multiple contexts, such that distinct instruction streams executing concurrently frommultiple TCs
can likewise have concurrent use of coprocessor resources. A “multithreaded” coprocessor, with multiple coprocessor
contexts, need not have the same number of contexts as the VPE to which it is attached has TCs. For VPE to use a
coprocessor, some mapping, which may or may not be dynamic, must exist between a TC and an associated coprocessor
context. This could be an implicit 1:1 or many-to-one mapping, an even/odd or other hash mapping, or a programmable
mapping. A coprocessor context isbound to aTC if amapping existsfrom the TC to the coprocessor context, and access
to the coprocessor context by the TC'sinstruction stream is mediated by the CU bit of the TC. Coprocessor instructions
in the instruction stream associated with the TC reference the bound coprocessor context.

The mechanisms by which coprocessor contexts are bound to TCs are implementation dependent. It is possible for a
coprocessor context to be bound to multiple TCs, asin the case where asingle coprocessor context isimplemented with
amany-to-one mapping from all TCsof aVPE. In such configurations, it isthe responsibility of software to coordinate
the use of the shared resource by managing the state of CU bits.

The Coprocessor Usable bits CU5 g are instantiated per TC, and are also visible as the TCU3 ¢ bits of the TCStatus
register (see section 4.12) of each TC. Access to the coprocessor context bound to a TC is granted to instructions
executing onthat TC only if the CU/TCU bit corresponding to the coprocessor is set, otherwise a Coprocessor Unusable
exception is delivered to the TC. The FORK operation preserves the CU, values of each TC, so that bindings between
coprocessor contexts and TCs can be preserved across FORK/Y IELD 0 thread instantiations.

Coprocessor context stateis accessibleviaMFTR and MTTR instructions which target the TC to which the coprocessor
context isbound (see MFTR, MTTR). MFTR and MTTR access is unaffected by the state of CU bits, neither those of

the TC issuing the MFTR/MTTR (which control access to coprocessors bound to that TC only), nor those of the target
TC. Any exceptions enabled, unmasked, or created by MTTR operations on a coprocessor context must be serviced at
some appropriate point by the TC to which the coprocessor context is bound, not the TC issuing the MTTR.

While the means of binding coprocessor contexts to thread contexts are coprocessor-specific, a multithreaded
coprocessor must provide sufficient meansfor diagnostic and operating system software to access sel ectively any context
instantiated on the coprocessor.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 61

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

62

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 5
MIPS MT Restrictions on MIPS32 Implementation

5.1 WAIT Instructions

The MIPS32 I SA allows for implementation dependent semantics of the WAIT instruction. MIPS MT adds the
restriction that a WAIT issued by one TC does not shut down the processor or VPE if other TCsare till in a Running
state.

5.2 SC Instructions

MIPS32 SC instruction semantics may be extended by MIPS MT gating storage implementations to support “try”
operations. See section A.2 for an example. Gating storage is not cacheable, so LL/SC sequencesto gating storage would
normally have UNPREDICTABLE resultsin the MIPS32 architecture. MIPS MT gating storage extensions may
overload the normal LL/SC semantics, such that the reported success or failure of a conditional store operationis
completely independent of any prior LL instructionsand/or storesto coherent cacheable (or otherwise“ synchronizable”)
memory.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 63

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 MIPS MT Restrictions on MIPS32 Implementation

64 MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 6

Multiple Virtual Processorsin MIPSMT

6.1 Multi-VPE Processors

A core or processor may implement multiple VPEs sharing resources such as functional units. Each VPE seesitsown
instantiation of the MIPS32 instruction and privileged resource architecture. Each seesits own register fileor TC array,
each seesits own CPO system coprocessor and its own set of TLB entries. Two VPESs on the same processor can be
operated by the same systems software as for a 2-CPU cache-coherent SM P multiprocessor. While each VPE on a
processor has a distinct set of CPO resources, these sets of resources need not be identical. Each must have a minimum
complement as defined by those privileged resources which are required by the architecture, but some may have more.
The privileged resources of at least one VPE per processor (VPE 0) reset to a sane reset state as per the MIPS32
privileged resource architecture specification.

Each VPE on a processor sees adistinct value in the EBase. CPUNum CPO register field, asif it were adistinct coreina
multi-core SoC.

Processor architectural resources such as TC and TLB storage and coprocessors may be statically bound to VPEsin a
hard-wired configuration, or they may be configured dynamically in a processor supporting the necessary configuration

capability.

6.2 Reset and Virtual Processor Configuration

To be backward compatiblewith the MIPS32 PRA, aconfigurably multithreaded//multi-V PE processor must have asane
and MIPS32-compatible default TC/VPE configuration at reset, that of asingle active VPE with asingle activated TC.

A VPE hasthe ability to access and directly manipulate another VVPES processor resources, or to enable or disable
another VPE’'sexecution, only if itisa“Master” VPE, designated by having the VPEConf0.MVP bit set (see section 4.6).
At reset, only one VPE may have the MVP bit set, though implementations may allow it to be set for other VPEs as part
of post-reset software configuration. If its MVP bit is set, a VPE may:

» Read and write per-TC registers of TCs bound to other VPEs by using MFTR/MTTR instructions with appropriate
valuesin the TargTC field of VPEControl (see section 4.5).

* Read and write per-VPE registers of other VPEs by using MFTR/MTTR instructions with valuesin TargTC that
correspond to TCs bound to the target V PE (see section 4.13).

» Set or clear the EVP bit of the global MVPControl register (see section 4.2) using MTCO or DVPE/EVPE
instructions.

 Set or clear the VPA bit of the per-VPE VPEConfO registers using MTTR instructions to put VPES on or off-line.
 Set or clear the MVP bit of other VPEsusing MTTR instructions, or clear the local VPE's MVP bit using MTCO.

» Set the VPC bit of MVVPContral, if it isimplemented, allowing reconfiguration of processor hardware resources and
capabilities.

* Set the XTC field of VPEConfO of other VPEs (see section 4.6) using MTTR instructions.

If this capability isignored, as by legacy software, the processor will behave as per specification for the default
configuration.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 65

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 Multiple Virtual Processors in MIPS MT

Modification of one VPE's state by another is only guaranteed safe if the EVP bit has been cleared and a hazard barrier
executed. This applies to both per-VPE state, and per-TC state of TCs outside the scope of the modifying TC.

Setting the MVPControl.VPC (Virtual Processor Configuration) bit putsthe processor into aconfiguration statein which
the contents of certain normally read-only “preset” fields of Config and other registers become writable.
Implementations may impose restrictions on configuration-state instruction streams, e.g. they may be forbidden to use
cached or TLB-mapped memory addresses.

The total number of VPESis encoded in the MVPConf0.PVPE field. VPEs are numbered from 0 to MVPConf0.PVPE.
A “Master” VPE may select another VPE as atarget of an MFTR or MTTR operation by selecting (or setting up) aTC
bound to the target VPE, and using that TC as the target of the MFTR/MTTR. If VPC is set, the normally read-only
register fields outlined in Table 6-1 can potentially be modified by writing to them with MTTR instructions.

Table 6-1 Dynamic Virtual Processor Configuration Options

Register Field Meaning Indicator of Configurability
Configl MMU_Size Number of TLB Entry Pairs MVPConfO PTLBE > 0
Configl Cc2 Coprocessor 2 Present MVPConfl PCP2 > 0
Configl MD Media Accelerator Present MVPConfl PCP1 > 0 and MVPConfl C1IM =1
Configl FP FPU Present MVPConf1 PCP1 > 0 and MVPConfl C1IF =1
MV PControl STLB TLB Shared across VPES MVPConfO TLBS=1
Number of FP/Media Coprocessor
VPEConfl NCP1 contexts available MVPConfl PCP1 >0
VPEConf1 NCP2 Number of Coprocessor 2 Contexts MV PConfl PCP2 > 0
available
Number of CorExtend Contexts
VPEConfl NCX available MVPConfl PCx > 0
TCBind CurVPE VPE hinding of TC MVPConfO TCA =1

66

Not all of the above configuration parameters need be configurable. For example, the number of TLB entries per VPE
may be fixed, FPUs may be pre-allocated and hard-wired per VPE, etc. Statically assigned resources are reflected in the
reset-time values in the Config, Configl, VPEConf, and TCBind registers. The existence of dynamically assignable
resourcesisindicated in the MV PConf0 and MV PConf1 registers, and these resources are assigned to VPES by writing
new values to the Config and VPConf registers that reflect the allocation of resources. In the event that an
implementation cannot provide the resource allocation or configuration implied by awrite to one of the per-VPE
configurable fields, e.g. if TLB entries are assignable only in blocks of 4, and an attempt is made to allocate 18 entry
pairsto aVPE, a subsequent read will reflect the actual resource configuration. If afield containing a quantitative value
iswritten to an implementation which cannot support that value, the implementation will set and subsequently return a
supported value.

A VPE is enabled for execution by setting the VPEConf0.VPA activation bit withaMTTR to that register.

The configuration state is exited by clearing MV PControl.V PC, which makes the configuration register fields read-only
with their new values. Multi-V PE execution is enabled by setting MVPControl.EVP, either explicitly or viaan EVPE
instruction. This causes all Activated VPESs to begin fetching and executing concurrently. If aVPE'sMVP bit is cleared,
the VPC and EVP bits can no longer be manipulated by that VPE. If MVP is cleared for all VPES, the processor
configuration is effectively frozen until the next processor reset. If MVP remains set, an operating system may re-enter
the configuration mode by clearing EVP (to stop other VVPEs from running concurrently) and again setting the VPC bit.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

6.3 MIPS MT and Cache Configuration

6.3 MIPSMT and Cache Configuration

Whether or not cache tags and data can be shared between VPEs isimplementation dependent. Simultaneous
line-locking by multiple V PEs sharing a cache may result in undesirable behavior. Sharing of virtually tagged caches by
multiple VPEsimplies that a VVPE number or other unique V PE tag must be concatenated with the ASID in the cache
tags. Cache errorsin shared caches must be signalled to all V PEs sharing the cache (see section 2.7).

CACHE instruction operationsin MIPS MT processors must be atomic with respect to concurrent threads of execution,
e.g. aload from one TC must not be allowed to reference amemory location between its invalidation in the cache and
its write-back to memory due to awriteback-invalidate CACHE instruction from another TC.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 67

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 Multiple Virtual Processors in MIPS MT

68 MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 7

Data-Driven Scheduling of MIPS MT Threads

Multithreaded execution modelslend themselves to data-driven algorithms, where the availability or absence of datain
astorage or 1/O location determines whether or not an instruction stream can advance. This paradigm requires some
architectural and microarchitectural support.

7.1 Gating Storage

Gating Storage is an attribute of memory which may optionally be supported by processorsimplementing theMT ASE.
The user-mode |oad/store semantics of gating storage areidentical with those of normal memory, except that completion
of the operation may be blocked for unbounded periods of time. The distinguishing feature of gating storage is that
outstanding load or store operations can be aborted and restarted. It isaTL B-mediated property of avirtual page whether
or not alocation is treated as gating storage. Gating storage support may be restricted to certain ranges of physical
addresses, and may require special page attributes in some implementations, but any mapped virtual page may resolve
to gating storage.

When aload or store operation is performed on gating storage, no instructions beyond the load/store in program order
are allowed to dter the software-visible state of the system until aload result, a store confirmation, or an exception is
returned from storage. An exception returned by gating storage logic in response to aload or storeis delivered as a
Thread exception on the load or store, with avalue of 3 in the EXCPT field of the VPEControl register to indicate the
Gating Storage exception (see section 2.3). In the event that an exception istaken using the TC of an instruction stream
which isblocked on aload/store to gating storage, whether or not that exception originates from the gating storagelogic,
or in the event where such athread is halted by setting the H bit of the TCHalt register of the associated TC, the pending
load/store operation is aborted.

If both the GSI bit of the VPEControl register and the DT bit of the TCSatus register are set when aload or store
operation from the associated VPE is determined to be blocked by gating storage, a Thread exception is delivered on the
load/store, preempting the memory operation, with avalue of 5 in the EXCPT field of VPEControl to indicate a GS
Scheduler exception, which allows a software scheduler to take control of the VPE and override the default hardware
scheduling logic. The conditioning of GSI by the DT hit allows software to explicitly allow ablocking gating storage
reference to be resumed without causing an exception, by clearing DT before restarting the TC.

When aload or store is aborted, the abort is signalled to the storage subsystem, such that the operation can
unambiguously either complete or be abandoned without any side-effects. If aload operation is abandoned, any hardware
interlocks on the load dependence are rel eased, so that the destination register can be used as an operand source, with its
pre-load value.

On an exception resulting in an aborted and abandoned |oad/store, the program counter as seen by the EPC register and
the branch delay state as seen by the Cause.BD bit are set so as that the execution of an ERET by the instruction stream
associated by the TC, or aclearing of the TC halted state, will cause are-issue of the gating load/store.

Gating storage accesses are never cached, and multiple storesto agating storage address are never merged by a processor.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 69

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 7 Data-Driven Scheduling of MIPS MT Threads

70 MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 8

EJTAG and MIPSMT

8.1 EJTAG Debug Resources

The MIPS EJTAG resources are instantiated per V PE, with the exception of the Debug register. The S and OffLine bits
of the Debug register are instantiated per TC. MFCOs and MTCOs of the Debug register reference the S and OffLine
bit values corresponding to the bits of the TC issuing the MFCO, with the rest of the register field values being those of
the VPE to which theissuing TC is bound. MFTRs and MTTRs of the Debug register of the target TC reference the
Debug register as seen by the target TC: the S3 and OffLine bits are those of the target TC, and the rest of the register
field values are those of the VPE to which the target TC is bound at the time the MFTR/MTTR isissued.

The SSt hit state is unaffected by a FORK instruction.

It isimplementation dependent whether EJTAG hardware breakpoint facilitiesareinstantiated per-V PE or shared. If they
are shared, however, the associated Debug exceptions must be delivered to the VPE containing the TC which triggered
the breakpoint.

8.2 Debug Exception Handling

EJTAG Debug exception handling overrides the basic thread scheduling mechanisms of MIPS MT. When a Debug
exception occurs, all thread scheduling is suspended across all VPEs of a processor until Debug mode is cleared. The
XTC fields of the VPEConfO registers are not affected. If aTC is executing in Debug mode, its Activated and Halted
states are ignored, as are the effects of any DM T or DV PE instruction issued by another TC which may have caused it
to be suspended. This concerns mostly asynchronous Debug exceptions (see below), but it also resolves any races
between a TC being Halted or de-Activated by the action of another TC and the dispatch of a synchronous Debug
exception. A DERET by an otherwise Halted TC is an implicit instruction hazard barrier, so that even if the first
instruction dispatched by the multithreading scheduler is an MFTR access to the Halted TC, the per-TC state is stable.

So long as any VPE is running in Debug mode, asynchronous Debug exception requests, e.g. DINT, areignored by all
VPEs of a processor.

If the St bit of aTCisset, aDebug exception will be taken by that TC after any non-Debug modeinstruction is executed.
Other TCswith SX cleared are scheduled and issue instructions normally according to the scheduling policy in force.
Global single-step operation of aVPE can be achieved by setting S for all TCs.

Debug exceptions from data-value EJTAG hardware breakpoints are treated as asynchronous exceptionsby aMIPSMT
processor, as imprecise synchronous exceptions are not permitted.

Asynchronous Debug exceptions such as DINT and data-val ue breakpoints may be serviced by any TC that is bound to
the VPE taking the exception, as the hardware implementation sees fit. Thisincludes TCs that are otherwise Halted,
non-Activated, off-line viathe Debug register OffLine bit or bound for use as shadow register sets. Thisallowsan EJTAG
debugger to get control of VPEs that are otherwise locked-up due to programming errors that result in no schedulable
TCson the VPE.

While entry into Debug mode does not affect any software-visible MIPS MT state, execution in Debug mode confers
privilege equivalent to the MVP bit being set in the VPECon(fO register.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 71

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 8 EJTAG and MIPS MT

72 MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Appendix A

Inter-Thread Communication Storage

Inter-Thread Communication (ITC) Storage is a Gating Storage capability which provides an aternative to
Load-Linked/Store-Conditional synchronization for fine-grained multi-threading. It isinvisible to the instruction set
architecture, asit is manipulated by loads and stores, but it is visible to the Privileged Resource Architecture.

A.1 Basic Concepts

Asdescribed in section 7.1 of the MIPS MT A SE specification, the fundamental property of Gating Storage isthat it
synchronizes execution streams. L oads and stores to/from gating storage may block unless and until the state of the
storage location corresponds to some set of required conditions for completion. A blocked load or store can be precisely
aborted if necessary, and restarted by the controlling operating system if appropriate.

The MT ASE specification goes no further in defining Gating Storage semantics. This appendix describes areference
ITC storage model, an instance of Gating Storage which provides lightweight support for a number of standard
interprocessor and interprocess communication and synchronization primitives.

References to memory pages which map to I TC storage resolve not to main memory, but to a gating store with special
attributes. Each page maps a set of 1 to 32 64-hit storage locations, called cells, each of which can be accessed in one of
16 ways, called views, using standard |oad and store instructions. The view isencoded in the low order (and untrangl ated)
bits6:3 of the generated memory address, such that the successive views of acell correspond to successive 64-bit-aligned
addresses.

A.2 AnITC Storage Reference Model

Inthe MIPSMT ITC reference model, each cell of the ITC store has Empty and Full boolean states associated withitin
addition to the data value of the cell. The cell views are then defined by Table A-1

Table A-11TC Reference Cell Views

AddressBits
6:3 Value ITC Storage Behavior
2#0000 Bypass. Loads and stores do not block, and do not affect Empty/Full states.
Control. Read or Write of Status/Control Information:
Data Bit(s) Meaning
0 If set, cell is Empty and will block on an attempt to load as synchronized
storage.
2#0001
1 If set, cell isFull and will block on an attempt to store as synchronized
storage.
15:2 Reserved for future architectural definition
63:16 Implementation Dependent State
MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 73

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Appendix A Inter-Thread Communication Storage

Table A-11TC Reference Cell Views

AddressBits
6:3 Value ITC Storage Behavior

Empty/Full Synchronized view. Loadswill causetheissuing thread to block if cell isEmpty,

240010 and set the Empty state on returning the last available load value. Stores will block if the cell
is Full, and set the Full state on the cell accepting the last possible store value. Minimally, a
cell can contain asingle value.
Empty/Full “Try” view. Loads will return avalue of zero if cell is Empty, regardless of the
actual data contained. Otherwise load behavior is same as in Empty/Full Synchronized view.
Normal storesto Full locations through the E/F Try view fail silently to update the contents

2#0011 of the cell, rather than block the thread of execution. SC (Store Conditional) instructions
referencing the E/F Try view will indicate success or failure based solely upon whether the
ITC store succeeds or fails due to the Full state. Otherwise store behavior issame asin
Empty/Full Synchronized view.
P/V Synchronized view. Loadsreturn the current cell datavalueif the value is non-zero, and
cause an atomi ¢ post-decrement of the cell value. If the cell valueis zero, loads block until the
cell takes a non-zero value. Stores cause an atomic increment of the cell value, upto a
maximal value at which they saturate, regardless of the register value stored. P/V loads and
stores do not modify the Empty and Full bits, both of which should be cleared as part of cell

2#0100 initialization for P/V semaphore use.
The width of the incremented/decremented field within the I TC cell need not be the full 32 or
64-bit width of the cell. It must, however, implement at least 15 bits of unsigned value. Bits
more significant than the width of the incremented/decremented field are ignored for the
purposes of computing zero/non-zero valuesin P/V operations.
P/V “Try” view. Loads return the current cell datavalue, even if zero. If the load valueis
non-zero, an atomic post-decrement is performed on the cell value. Stores cause a saturating

2#0101 atomic increment of the cell value, as described for the P/V Synchronized view, and cannot
fail. Loads and stores do not modify the Empty and Full bits, both of which should be cleared
as part of cell initialization for P/V semaphore use.

2#0110 Architecturally Reserved View 0

2#0111 Architecturally Reserved View 1

2#1000 Architecturally Reserved View 2

2#1001 Architecturally Reserved View 3

2#1010 Architecturally Reserved View 4

2#1011 Architecturally Reserved View 5

2#1100 Architecturally Reserved View 6

2#1101 Architecturally Reserved View 7

2#1110 Architecturally Reserved View 8

2#1111 Architecturally Reserved View 9

Each storage cell could thus be described by the C structure:

struct {
uinte64
uinté64
uinté64
uint64
uint64
uint64
uinté64

} ITC_cell

74

bypass_cell;
ctl_cell;

ef_sync_cell;
ef_try cell;
pv_sync_cell;
pv_try_cell;
res_arch([10];

7

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

A.3 Multiprocessor/Multicore ITC

Where al of the defined elements except ctl_cell reference the same underlying storage. |mplementation dependent
views may reference additional per-cell state. References to the cell storage may have access types of |ess than the cell
datawidth (e.g. LW, LH, LB), with the same Empty/Full and semaphore protocol s being enforced on a per-access basis.
Store/Load pairs of the same data type to agiven ITC address will always reference the same data, but the byte and
halfword ordering within words, and the word ordering within 64-bit doublewords, may be implementation and
endianness-dependent, i.e. aSW followed by aL B from the same | TC addressis not guaranteed to be portable. The effect
of writing less than the implemented width of the control view of an ITC cell isimplementation dependent, and such
stores may have UNPREDICTABLE results.

While the design of ITC storage allows references to be expressed in terms of C language constructs, compiler
optimizations may generate sequences that break I TC protocols, and great care must be taken if ITC isdirectly
referenced as* memory” in a high-level language.

Systems which do not support 64-bit loads and stores need not implement all 64 bits of each ITC cell as storage. If only
32 hits of storage are instantiated per cell, it must be visiblein the least significant 32-bit word of each view, regardless
of the endinanness of the processor. The results of referencing the most significant 32 bits of such a cell view are
implementation-dependent. These requirements can be satisfied by ignoring the 22 bit of the address on each access. In
thisway a C language cast from a uint64 to a uint32 reference will acquire the data in both big-endian and little-endian
CPU configurations.

Empty and Full bits are distinct so that decoupled multi-entry data buffers, such as FIFOs can be mapped into ITC
storage.

ITC storage can be saved and restored by copying the { bypass cell, ctl_cell} pair to and from general storage. In the
case of multi-entry FIFO data buffers, each cell must be read using and Empty/Full view until the Control view shows
the cell to be Empty to drain the buffer on a copy. The FIFI state can then be restored by performing a series of
Empty/Full stores to an equivalent FIFO cell, starting in an Empty state. Implementations may provide depth counters
in the implementation-specific bits of the Control view to optimize this process.

The“Try” view exploits the ability of the standard M1PS32 SC instructions to indicate failure of a store operation. The
behavior of conditional storesto non-Try ITC views isimplementation dependent.

A.3 Multiprocessor/Multicore I TC

ITC storage may be strictly local to a processor/core or it may be shared across multiple processors. The “physical
address space” of shared I TC storage should be consistent across all processors sharing the storage. Processors or cores
designed for uniprocessor applications need not export a physical interface to the ITC storage, and can treat it asa
processor-internal resource.

A.4 Interaction with EJTAG Debug Facilities

The Debug state of aprocessor isnot visibleto I TC storagelogic, and no exceptions are made for Debug mode execution.
If aload or storeisissued by a processor in Debug modeto an ITC cell view which stalls, the processor is effectively
halted until an exception of sufficiently high priority is delivered to the processor.

MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 75

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Appendix A Inter-Thread Communication Storage

76 MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Appendix B
Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changesto figures. Change bars
on figuretitles are used to denote a potential change in the figure itself. Certain parts of this document (Instruction set
descriptions, EJTAG register definitions) are references to Architecture specifications, and the change bars within these
sections indicate alterations since the previous version of the relevant Architecture document.

Revision Date Description
1.00 September 28,2005 First official release
MIPS32® Architecture for Programmers VolumelV-f, Revision 1.00 77

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

	MIPS32® Architecture for Programmers VolumeIV-f: The MIPS® MT Application-Specific Extension to the MIPS32® Architecture
	Table of Contents
	List of Figures
	List of Tables
	Introduction to the MIPS MT Architecture Extension
	1.1 Background
	1.2 Definitions and General Description

	MIPS MT Multithreaded Execution and Exception Model
	2.1 Multithreaded Execution
	2.2 MIPS MT Exception Model
	2.3 New Exception Conditions
	2.4 New Exception Priority
	2.5 Interrupts
	2.6 Bus Error Exceptions
	2.7 Cache Error Exceptions
	2.8 EJTAG Debug Exceptions
	2.9 Shadow Register Sets

	MIPS MT Instructions
	3.1 New Instructions
	DMT
	DVPE
	EMT
	EVPE
	FORK
	MFTR
	MTTR
	YIELD

	MIPS MT Privileged Resource Architecture
	4.1 Privileged Resource Architecture for MIPS MT
	4.2 MVPControl Register (CP0 Register 0, Select 1)
	4.3 MVPConf0 Register (CP0 Register 0, Select 2)
	4.4 MVPConf1 Register (CP0 Register 0, Select 3)
	4.5 VPEControl Register (CP0 Register 1, Select 1)
	4.6 VPEConf0 Register(CP0 Register 1, Select 2)
	4.7 VPEConf1 Register(CP0 Register 1, Select 3)
	4.8 YQMask Register (CP0 Register 1, Select 4)
	4.9 VPESchedule Register (CP0 Register 1, Select 5)
	4.10 VPEScheFBack Register (CP0 Register 1, Select 6)
	4.11 VPEOpt Register(CP0 Register 1, Select 7)
	4.12 TCStatus Register (CP0 Register 2, Select 1)
	4.13 TCBind Register (CP0 Register 2, Select 2)
	4.14 TCRestart Register (CP0 Register 2, Select 3)
	4.14.1 Special Handling of the TCRestart Register in Processors that Implement the MIPS16e ASE

	4.15 TCHalt Register (CP0 Register 2, Select 4)
	4.16 TCContext Register (CP0 Register 2, Select 5)
	4.17 TCSchedule Register (CP0 Register 2, Select 6)
	4.18 TCScheFBack Register (CP0 Register 2, Select 7)
	4.19 SRSConf0 (CP0 Register 6, Select 1)
	4.20 SRSConf1 (CP0 Register 6, Select 2)
	4.21 SRSConf2 (CP0 Register 6, Select 3)
	4.22 SRSConf3 (CP0 Register 6, Select 4)
	4.23 SRSConf4 (CP0 Register 6, Select 5)
	4.24 Modifications to Existing MIPS Privileged Resource Architecture
	4.24.1 SRSCtl Register
	4.24.2 Cause Register
	4.24.3 Machine Check Exceptions
	4.24.4 Debug Register
	4.24.5 EBase
	4.24.6 Config1 Register
	4.24.7 Config3 Register

	4.25 Thread State as a Function of Privileged Resource State
	4.26 Thread Allocation and Initialization Without FORK
	4.27 Thread Termination and Deallocation without YIELD
	4.28 Multithreading and Coprocessors

	MIPS MT Restrictions on MIPS32 Implementation
	5.1 WAIT Instructions
	5.2 SC Instructions

	Multiple Virtual Processors in MIPS MT
	6.1 Multi-VPE Processors
	6.2 Reset and Virtual Processor Configuration
	6.3 MIPS MT and Cache Configuration

	Data-Driven Scheduling of MIPS MT Threads
	7.1 Gating Storage

	EJTAG and MIPS MT
	8.1 EJTAG Debug Resources
	8.2 Debug Exception Handling

	Inter-Thread Communication Storage
	A.1 Basic Concepts
	A.2 An ITC Storage Reference Model
	A.3 Multiprocessor/Multicore ITC
	A.4 Interaction with EJTAG Debug Facilities

	Revision History

