
Document Number: MD00378
Revision 1.00

September 28, 2005

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

MIPS32® Architecture for Programmers

VolumeIV-f: The MIPS® MT

Application-Specific Extension to the MIPS32®

Architecture

Copyright © 2005 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying,
reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies
or an authorized third party is strictly prohibited. At a minimum, this information is protected under unfair competition and copyright
laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to
use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO
CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN
SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise.
MIPS Technologies does not assume any liability arising out of the application or use of this information, or of any error or omission
in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied
warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any written license
agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not give recipient any license
to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or supplements
thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in this document, the
laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial
computer software documentation or other commercial items. If the user of this information, or any related documentation of any
kind, including related technical data or manuals, is an agency, department, or other entity of the United States government
("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this information, or any related
documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense
Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this
information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim,
MIPSpro, MIPS Technologies logo, MIPS RISC CERTIFIED POWER logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS,
4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 20Kc, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 25Kf, 34K, R3000, R4000, R5000, ASMACRO,
Atlas, "At the core of the user experience.", BusBridge, CorExtend, CoreFPGA, CoreLV, EC, FastMIPS, JALGO, Malta, MDMX,
MGB, PDtrace, the Pipeline, Pro Series, QuickMIPS, SEAD, SEAD-2, SmartMIPS, SOC-it, and YAMON are trademarks or
registered trademarks of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Template: B1.14, Built with tags: 2B ARCH MIPS32

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 i

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Table of Contents

1.1 Background .. 1
1.2 Definitions and General Description.. 1
2.1 Multithreaded Execution.. 3
2.2 MIPS MT Exception Model... 3
2.3 New Exception Conditions .. 3
2.4 New Exception Priority.. 4
2.5 Interrupts .. 5
2.6 Bus Error Exceptions ... 6
2.7 Cache Error Exceptions ... 6
2.8 EJTAG Debug Exceptions ... 6
2.9 Shadow Register Sets... 6
3.1 New Instructions .. 7

DMT... 8
DVPE ... 10
EMT ... 12
EVPE.. 14
FORK... 16
MFTR... 18
MTTR .. 21
YIELD.. 24

4.1 Privileged Resource Architecture for MIPS MT ... 27
4.2 MVPControl Register (CP0 Register 0, Select 1).. 29
4.3 MVPConf0 Register (CP0 Register 0, Select 2) .. 31
4.4 MVPConf1 Register (CP0 Register 0, Select 3) .. 32
4.5 VPEControl Register (CP0 Register 1, Select 1) ... 33
4.6 VPEConf0 Register(CP0 Register 1, Select 2) .. 35
4.7 VPEConf1 Register(CP0 Register 1, Select 3) .. 37
4.8 YQMask Register (CP0 Register 1, Select 4) .. 38
4.9 VPESchedule Register (CP0 Register 1, Select 5) .. 39
4.10 VPEScheFBack Register (CP0 Register 1, Select 6) ... 40
4.11 VPEOpt Register(CP0 Register 1, Select 7) .. 41
4.12 TCStatus Register (CP0 Register 2, Select 1).. 43
4.13 TCBind Register (CP0 Register 2, Select 2).. 45
4.14 TCRestart Register (CP0 Register 2, Select 3) .. 46

4.14.1 Special Handling of the TCRestart Register in Processors that Implement the MIPS16e ASE...................... 46
4.15 TCHalt Register (CP0 Register 2, Select 4)... 48
4.16 TCContext Register (CP0 Register 2, Select 5) ... 49
4.17 TCSchedule Register (CP0 Register 2, Select 6) ... 50
4.18 TCScheFBack Register (CP0 Register 2, Select 7) ... 51
4.19 SRSConf0 (CP0 Register 6, Select 1) .. 52
4.20 SRSConf1 (CP0 Register 6, Select 2) .. 54
4.21 SRSConf2 (CP0 Register 6, Select 3) .. 55
4.22 SRSConf3 (CP0 Register 6, Select 4) .. 56
4.23 SRSConf4 (CP0 Register 6, Select 5) .. 57
4.24 Modifications to Existing MIPS Privileged Resource Architecture .. 59

4.24.1 SRSCtl Register ... 59
4.24.2 Cause Register ... 59
4.24.3 Machine Check Exceptions.. 59
4.24.4 Debug Register... 59
4.24.5 EBase ... 59

ii MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.24.6 Config1 Register .. 59
4.24.7 Config3 Register .. 59

4.25 Thread State as a Function of Privileged Resource State .. 60
4.26 Thread Allocation and Initialization Without FORK .. 60
4.27 Thread Termination and Deallocation without YIELD ... 61
4.28 Multithreading and Coprocessors .. 61
5.1 WAIT Instructions ... 63
5.2 SC Instructions ... 63
6.1 Multi-VPE Processors.. 65
6.2 Reset and Virtual Processor Configuration.. 65
6.3 MIPS MT and Cache Configuration .. 67
7.1 Gating Storage... 69
8.1 EJTAG Debug Resources .. 71
8.2 Debug Exception Handling .. 71

Appendix A Inter-Thread Communication Storage .. 73
A.1 Basic Concepts .. 73
A.2 An ITC Storage Reference Model... 73
A.3 Multiprocessor/Multicore ITC .. 75
A.4 Interaction with EJTAG Debug Facilities... 75

Appendix B Revision History ... 77

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 iii

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 4-1: MVPControl Register Format ...29
Figure 4-2: MVPConf0 Register Format..31
Figure 4-3: MVPConf1 Register Format..32
Figure 4-4: VPEControl Register Format...33
Figure 4-5: VPEConf0 Register Format...35
Figure 4-6: VPEConf1 Register Format...37
Figure 4-7: YQMask Register Format..38
Figure 4-8: VPESchedule Register Format ..39
Figure 4-9: VPEScheFBack Register Format...40
Figure 4-10: VPEOpt Register Format...41
Figure 4-11: TCStatus Register Format ...43
Figure 4-12: TCBind Register Format ...45
Figure 4-13: TCRestart Register Format ..46
Figure 4-14: TCHalt Register Format ..48
Figure 4-15: TCContext Register Format...49
Figure 4-16: TCSchedule Register Format...50
Figure 4-17: TCScheFBack Register Format ...51
Figure 4-18: SRSConf0 Register Format ...52
Figure 4-19: SRSConf1 Register Format ...54
Figure 4-20: SRSConf2 Register Format ...55
Figure 4-21: SRSConf3 Register Format ...56
Figure 4-22: SRSConf4 Register Format ...57

iv MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 2-1: Priority of Exceptions in MIPS MT..4
Table 3-1: MFTR Source Decode ..18
Table 3-2: MTTR Destination Decode...21
Table 4-1: MIPS MT PRA ...27
Table 4-2: MVPControl Register Field Descriptions ...29
Table 4-3: MVPConf0 Register Field Descriptions ...31
Table 4-4: MVPConf1 Register Field Descriptions ...32
Table 4-5: VPEControl Register Field Descriptions ..33
Table 4-6: VPEConf0 Register Field Descriptions ..35
Table 4-7: VPEConf1 Register Field Descriptions ..37
Table 4-8: YQMask Register Field Descriptions ...38
Table 4-9: VPEOpt Register Field Descriptions ..41
Table 4-10: TCStatus Register Field Descriptions ...43
Table 4-11: TCBind Register Field Descriptions ...45
Table 4-12: TCRestart Register Field Descriptions ...46
Table 4-13: TCHalt Register Field Descriptions..48
Table 4-14: SRSConf0 Register Field Descriptions...52
Table 4-15: SRSConf1 Register Field Descriptions...54
Table 4-16: SRSConf2 Register Field Descriptions...55
Table 4-17: SRSConf3 Register Field Descriptions...56
Table 4-18: SRSConf4 Register Field Descriptions...57
Table 4-19: MIPS MT Thread Exception...59
Table 4-20: New Config3 Fields for MIPS MT ...60
Table 4-21: TC State as Function of MIPS MT PRA State ...60
Table 6-1: Dynamic Virtual Processor Configuration Options ..66
Table A-1: ITC Reference Cell Views ...73

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 1

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 1

Introduction to the MIPS MT Architecture Extension

1.1 Background

Multithreading, or the concurrent presence of multiple active threads or contexts of execution on the same CPU, is an
increasingly widely-used technique for tolerating memory and execution latency and for getting higher utilization out of
processor functional units. The MIPS MT ASE is an extension to Release 2 of the MIPS32 Architecture which provides
a framework for multithreading the MIPS processor architecture.

1.2 Definitions and General Description

A thread context, for the purposes of this document, is a collection of processor state necessary to describe the state of
execution of an instruction stream in the MIPS32 Instruction Set Architecture. It includes a set of general purpose
registers (GPRs), the MIPS Hi/Lo multiplier result registers, some internal representation of a program counter, and
some associated MIPS32 privileged system coprocessor (CP0) state, specifically:

• The CU3..CU0, MX, and KSU fields of the CP0 Status register

• The ASID field of the CP0 EntryHi register.

• The SSt and OffLine fields of the EJTAG Debug register.

A thread context also contains some new privileged resource state, to allow software to manage the new multithreading
capabilities. Thread Context will be abbreviated as TC, both in the interests of brevity, and to minimize the confusion
between a TC as state/storage and a thread of execution as a sequence of instructions.

A processor context is a larger collection of processor state, which includes at least one TC, but also the CP0 and system
state necessary to describe an instantiation of the full MIPS32 Privileged Resource Architecture.

The MIPS Multithreading ASE (MT ASE) allows two distinct, but not mutually-exclusive, multithreading capabilities.
A single MIPS processor or core can contain some number of Virtual Processing Elements (VPEs), each of which
supports at least one thread context. To software, an N VPE processor looks like an N-way symmetric multiprocessor.
All legacy MIPS32 read-write CP0 state must be implemented per-VPE. This allows existing SMP-capable operating
systems to manage the set of VPEs, which transparently share the processor’s execution units and other resources. A
processor or core implementing multiple MIPS MT VPEs is referred to as a Virtual Multiprocessor, or VMP.

Each VPE can also contain some number of TCs beyond the single TC implicitly required by the base architecture.
Multi-threaded VPEs require explicit operating system support, but with such support they provide a lightweight,
fine-grained multithreaded programming model wherein threads can be created and destroyed, without operating system
intervention in the typical cases, using new FORK and YIELD instructions, and where system service threads can be
scheduled in response to external events with zero interrupt latency.

A TC may be in one of two allocation states, free or activated. A free TC has no valid content and cannot be scheduled
to issue instructions. An activated TC will be scheduled according to the implemented policies to fetch and issue
instructions from its program counter. Only activated TCs may be scheduled. Only free TCs may be allocated to create
new threads. Allocation and deallocation of TCs may be done explicitly by privileged software, or automatically via
FORK and YIELD instructions which can be executed in user mode. Only TCs which have been explicitly designated
as Dynamically Allocatable (DA) may be allocated or deallocated by FORK and YIELD.

2 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 Introduction to the MIPS MT Architecture Extension

An activated TC may be running or blocked. A running TC will fetch and issue instructions according to the thread
scheduling policy in effect for the processor. Any or all running TCs may have instructions in the pipeline of a processor
at a given point of time, but it is not knowable to software precisely which ones. A blocked TC is one which has issued
an instruction which performs an explicit synchronization that has not yet been satisfied. While a running, activated TC
may be stalled momentarily due to functional unit delays, memory load dependencies, or scheduling rules, its instruction
stream will advance on its own within the limitations of the pipeline implementation. The instruction stream of a blocked
TC cannot advance without some change in system state being effected by another thread or by external hardware, and
as such it may remain blocked for an unbounded period of time.

Independently of whether it is free or activated, a TC may be halted. A halted TC is inhibited from being allocated by
a FORK instruction, even if free, and inhibited from fetching and issuing instructions, even if activated. Only a TC in a
halted state is guaranteed to be stable as seen by other TCs. Multithreaded execution may be temporarily inhibited on a
VPE due to exceptions or explicit software interventions, but the activated threads that are inhibited in such cases are
considered to be suspended, rather than implicitly halted. A suspended thread is inhibited from any action which might
cause exceptions or otherwise change global VPE privileged resource state, but, unlike a halted thread, it may still have
instructions active in the pipeline, and its internal TC state, including GPR values, may still be unstable.

And independently of whether an activated TC is halted, it will not be scheduled to fetch or issue if it has been set offline
by code executing in EJTAG Debug mode, via the OffLine bit of the Debug register (see the EJTAG specification).

If executing in a sufficiently privileged mode, one TC can access another TC’s register state, via new instructions to move
to/from the registers of a “target” TC.

To allow for fine-grain synchronization of cooperating threads, an inter-thread communication (ITC) memory space can
be created in virtual memory, with gating storage semantics to allow threads to be blocked on loads or stores until data
has been produced or consumed by other threads. These gating storage semantics can also be applied to I/O devices such
as FIFOs to provide a data-driven execution model.

The thread creation/destruction, and synchronization capabilities function without operating system intervention in the
general case, but the resources they manipulate are all virtualizable via an operating system. This allows the execution
of multithreaded programs with more “virtual” threads than there are TCs on a VPE, and for the migration of threads to
balance load in multiprocessor systems. At any particular point in its execution, a thread is bound to a particular TC on
a particular VPE. The number of that TC provides a unique identifier at that point in time. But context switching and
migration can cause a single sequential thread of execution to have a series of different TCs, possibly on a series of
different VPEs.

Dynamic binding of TCs, TLB entries, and other resources to multiple VPEs on the same processor can be performed
in a special processor configuration state. By default, oneVPE of each processor enters its reset vector as if it were a
standard MIPS32 core.

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 3

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2

MIPS MT Multithreaded Execution and Exception Model

2.1 Multithreaded Execution

The MIPS Multithreading ASE does not impose any particular implementation or scheduling model on the execution of
parallel threads and VPEs. Scheduling may be round-robin, time-sliced to an arbitrary granularity, or simultaneous. An
implementation must not, however, allow a thread which is blocked or suspended by an external or software dependency
to monopolize any shared processor resource which could produce a hardware deadlock.

2.2 MIPS MT Exception Model

Multiple threads executing on a single VPE all share the same system coprocessor, the same TLB and the same virtual
address space. Each TC has an independent Kernel/Supervisor/User state and ASID for the purposes of instruction
decode and memory access. When an exception of any kind is taken, all TCs of the affected VPE other than the one
taking the exception are stopped and suspended until the EXL and ERL bits of the Status word are cleared, or, in the case
of an EJTAG Debug exception, the Debug state is exited. Debug exceptions have the broader effect of suspending the
TCs of other VPEs of the processor as well. See section 8.2. All sources of additional synchronous exceptions must be
quiesced before the exception handler begins execution. If simultaneous exception conditions occur across multiple
threads, only a single exception, one with the highest relative priority, will be dispatched to a handler. The others will be
deferred until EXL/ERL or the Debug state are cleared, and the associated instructions replayed.

Exception handlers for synchronous exceptions caused by the execution of an instruction stream, such as TLB miss and
floating-point exceptions, are executed using the GPRs of the TC associated with the instruction stream, unless they are
configured to be executed using a Shadow Register Set. When an unmasked asynchronous exception, such as an
interrupt, is raised to a VPE, it is implementation dependent which eligible TC is used to execute the exception handler,
but TCs can be selectively exempted from use by asynchronous exception handlers.

Imprecise, synchronous exceptions are not permitted on a MIPS MT processor. All exceptions are either precise and
synchronous, or asynchronous.

Each exception is associated with an activated TC, even if shadow register sets are used to run the exception handler.
This associated TC is referenced whenever a SRSCtl PSS value of 0 is used by RDPGPR and WRPGPR instructions
executed by the exception handler.

2.3 New Exception Conditions

The Multithreading ASE introduces 6 new exception conditions.

• A Thread Overflow condition, where a TC allocation request cannot be satisfied.

• A Thread Underflow condition, where the termination and deallocation of a thread leaves no dynamically allocatable
TCs activated on a VPE.

• An Invalid Qualifier condition, where a YIELD instruction specifies an invalid condition for resuming execution.

• A Gating Storage exception condition, where implementation-dependent logic associated with gating or inter-thread
communication (ITC) storage requires software intervention.

4 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 MIPS MT Multithreaded Execution and Exception Model

• A YIELD Scheduler exception condition, where a valid YIELD instruction would have caused a rescheduling of a
TC, and the YIELD Intercept bit is set.

• A GS Scheduler exception, where a Gating Storage load or store would have blocked and caused a rescheduling of a
TC, and the GS Intercept bit is set.

These exception conditions are mapped to a single new Thread exception. They can be distinguished based on the CP0
VPEControl EXCPT field value when the exception is raised.

2.4 New Exception Priority

The Thread exception groups together a number of possible exception conditions which can be detected at different
stages of a processor pipeline. Thus, different Thread exception conditions may have different priorities relative to other
MIPS32 exceptions. The following table describes where Thread exceptions fit in to the MIPS32 priority scheme.

Table 2-1 Priority of Exceptions in MIPS MT

Exception Description Type

Reset The Cold Reset signal was asserted to the processor Asynchronous
ResetSoft Reset The Reset signal was asserted to the processor

Debug Single Step
An EJTAG Single Step occurred. Prioritized above other
exceptions, including asynchronous exceptions, so that one can
single-step into interrupt (or other asynchronous) handlers.

Synchronous
Debug

Debug Interrupt An EJTAG interrupt (EjtagBrk or DINT) was asserted. Asynchronous
DebugImprecise Debug Data Break An imprecise EJTAG data break condition was asserted.

Nonmaskable Interrupt (NMI) The NMI signal was asserted to the processor.

Asynchronous

Machine Check An internal inconsistency was detected by the processor.

Interrupt An enabled interrupt occurred.

Deferred Watch A watch exception, deferred because EXL was one when the
exception was detected, was asserted after EXL went to zero.

Debug Instruction Break
An EJTAG instruction break condition was asserted. Prioritized
above instruction fetch exceptions to allow break on illegal
instruction addresses.

Synchronous
Debug

Watch - Instruction fetch
A watch address match was detected on an instruction fetch.
Prioritized above instruction fetch exceptions to allow watch on
illegal instruction addresses.

Synchronous

Address Error - Instruction fetch A non-word-aligned address was loaded into PC.

TLB Refill - Instruction fetch A TLB miss occurred on an instruction fetch.

TLB Invalid - Instruction fetch The valid bit was zero in the TLB entry mapping the address
referenced by an instruction fetch.

Cache Error - Instruction fetch A cache error occurred on an instruction fetch.

Bus Error - Instruction fetch A bus error occurred on an instruction fetch.

SDBBP An EJTAG SDBBP instruction was executed. Synchronous
Debug

2.5 Interrupts

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 5

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

2.5 Interrupts

In general, the binding of hardware interrupts to VPEs is implementation dependent. Interrupt inputs to a processor may
be presented in common to all VPEs, leaving it up to software whether any or all VPEs enable and service a given
interrupt. A processor may also provide distinct interrupt signals per supported VPE, and/or extend the External Interrupt
Controller (EIC) interface to express a VPE identifier in addition to the Exception Vector Offset and Shadow Set
Number.

The exception to the above is the hardware interrupt generated by the Count/Compare registers. This logic must be
replicated per-VPE, and interrupt events associated with the Count/Compare values of a specific VPE result in interrupt
requests only to that VPE.

Depending on the implementation, Performance Counter interrupts may be local to a VPE or “broadcast” to all VPEs of
a processor.

Instruction Validity Exceptions

An instruction could not be completed because it was not allowed
access to the required resources, or was illegal: Coprocessor
Unusable, Reserved Instruction. If both exceptions occur on the
same instruction, the Coprocessor Unusable Exception takes
priority over the Reserved Instruction Exception.

Synchronous

Execution Exception

An instruction-based exception occurred: Integer overflow, trap,
system call, breakpoint, floating point, coprocessor 2 exception.
The Overflow, Underflow, Invalid Qualifier, and YIELD
Scheduler cases of Thread Exceptions are all Execution
Exceptions

Precise Debug Data Break

A precise EJTAG data break on load/store (address match only) or
a data break on store (address+data match) condition was asserted.
Prioritized above data fetch exceptions to allow break on illegal
data addresses.

Synchronous
Debug

Watch - Data access
A watch address match was detected on the address referenced by
a load or store. Prioritized above data fetch exceptions to allow
watch on illegal data addresses.

Synchronous

Address error - Data access
An unaligned address, or an address that was inaccessible in the
current processor mode was referenced, by a load or store
instruction

TLB Refill - Data access A TLB miss occurred on a data access

TLB Invalid - Data access The valid bit was zero in the TLB entry mapping the address
referenced by a load or store instruction

TLB Modified - Data access The dirty bit was zero in the TLB entry mapping the address
referenced by a store instruction

Cache Error - Data access A cache error occurred on a load or store data reference Synchronous
or

AsynchronousBus Error - Data access A bus error occurred on a load or store data reference

Thread - GS Scheduler A blocking access to Gating Storage was detected with GS
Scheduler Intercept enabled Synchronous

Thread - Gating Storage Gating Storage has indicated an exception condition Synchronous

Precise Debug Data Break
A precise EJTAG data break on load (address+data match only)
condition was asserted. Prioritized last because all aspects of the
data fetch must complete in order to do data match.

Synchronous
Debug

Table 2-1 Priority of Exceptions in MIPS MT

Exception Description Type

6 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 MIPS MT Multithreaded Execution and Exception Model

Software interrupts IP1 and IP0 must by default be local to a VPE.

2.6 Bus Error Exceptions

Bus error exceptions on instruction fetch (IBE) in a MIPS MT processor are synchronous and must be precise as per
section 2.2. Bus errors on load/store operations (DBE) are considered to be imprecise and are therefore non-maskable
asynchronous exceptions delivered to the VPE where the operation was issued. A DBE exception may thus be taken by
a TC other than the one which issued the failing operation. A per-TC TBE bit is defined to allow exception handlers to
determine which TC(s) were associated with the failed bus transaction (see section 4.13).

If a DBE results from an operation that was combined across VPEs, a DBE exception must be delivered to all VPEs
affected. Where the origin of the failure cannot be determined, all VPEs in a processor must take a DBE exception.

Implementations may provide additional bus error diagnostic information in implementation-dependent CP0 register
fields. The DBE state, including the per-TC TBE state, should be analyzed in the context of this information.

2.7 Cache Error Exceptions

Cache memories may be shared between multiple VPEs on a virtual multiprocessor. In the event of a cache parity or
other data integrity error, all VPEs sharing the cache may be affected, and all must take a Cache Error exception. It is
the responsibility of software to coordinate any diagnostics or re-initialization of the shared cache, communicating by
means other than cached storage.

2.8 EJTAG Debug Exceptions

EJTAG Debug exceptions override MIPS MT scheduling and TC management. See section 8.2.

2.9 Shadow Register Sets

MIPS MT optionally allows TCs to be assigned for use as Shadow Register Set (SRS) storage. This is accomplished by
writing the TC number into a programmable field of one of the SRSConf registers (see section 4.19). A TC assigned for
use as SRS storage must never be Activated, nor may it be programmed to be Dynamically Allocatable. Because SRS
management and control is performed on a per-VPE basis, with only a single SRSCtl register per VPE, multithreading
should never be explicitly re-enabled in an exception handler which executes using an SRS.

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 7

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 3

MIPS MT Instructions

3.1 New Instructions

The MIPS MT ASE contains 8 new instructions.

FORK and YIELD control thread allocation, deallocation, and scheduling, and are available in all execution modes if
implemented and enabled.

MFTR and MTTR are system coprocessor (Cop0) instructions available to privileged system software for managing
thread state.

EMT and DMT are privileged Cop0 instructions for enabling and disabling multithreaded operation of a VPE.

EVPE and DVPE are privileged Cop0 instructions for enabling and disabling multi-VPE operation of a processor.

These instructions will cause a Reserved Instruction exception if executed by a processor not implementing the MIPS
MT ASE.

8 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DMT

Format: DMT MIPS MT
DMT rt

Purpose:

To return the previous value of the VPEControl register (see section 4.5) and disable multi-threaded execution. If
DMT is specified without an argument, GPR r0 is implied, which discards the previous value of the VPEControl reg-
ister.

Description: GPR[rt] ← VPEControl; VPEControlTE ← 0

The current value of the VPEControl register is loaded into general register rt. The Threads Enable (TE) bit in the
VPEControl register is then cleared, suspending concurrent execution of instruction streams other than that which
issues the DMT. This is independent of any per-TC halted state.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations that do not implement the MT ASE, this instruction results in a Reserved Instruction Exception.

Operation:

This operation specification is for the general multi-threading enable/disable operation, with the sc (set/clear) field as
a variable. The individual instructions EMT and DMT have a specific value for the sc field.

data ← VPEControl
GPR[rt] ← data
VPEControlTE ← sc

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0

COP0
0 1 0 0 0 0

MFMC0
0 1 0 1 1 rt 1

0 0 0 0 1
15

0 1 1 1 1
sc
0

0
0 0

1
0 0 1

6 5 5 5 5 1 2 3

Disable Multi-Threaded Execution DMT

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 9

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable
Reserved Instruction (Implementations that do not include the MT ASE)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading VPEControl into a GPR,
clearing the TE bit to create a temporary value in a second GPR, and writing that value back to VPEControl. Unlike
the multiple instruction sequence, however, the DMT instruction does not consume a temporary register, and can not
be aborted in the middle by an interrupt or exception.

The effect of a DMT instruction may not be instantaneous. An instruction hazard barrier, e.g. JR.HB, is required to
guarantee that all other threads have been suspended. If a DMT instruction is followed in the same instruction stream
by a MFC0 or MFTR from the VPEControl register, a JALR.HB, JR.HB, EHB, or ERET instruction must be issued
between the DMT and the read of VPEControl to guarantee that the new state of TE will be picked up by the read.

Disable Multi-Threaded Execution (Continued) DMT

10 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

DVPE

Format: DVPE MIPS MT
DVPE rt

Purpose:

To return the previous value of the MVPControl register (see section 4.2) and disable multi-VPE execution. If DVPE
is specified without an argument, GPR r0 is implied, which discards the previous value of the MVPControl register.

Description: GPR[rt] ← MVPControl; MVPControlEVP ← 0

The current value of the MVPControl register is loaded into general register rt. The Enable Virtual Processors (EVP)
bit in the MVPControl register is then cleared, suspending concurrent execution of instruction streams other than that
which issues the DVPE.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

If the VPE executing the instruction is not a Master VPE, with the MVP bit of the VPEConf0 register set, the EVP bit
is unchanged by the instruction.

In implementations that do not implement the MT ASE, this instruction results in a Reserved Instruction Exception.

Operation:

This operation specification is for the general VPE enable/disable operation, with the sc (set/clear) field as a variable.
The individual instructions EVPE and DVPE have a specific value for the sc field.

data ← MVPControl
GPR[rt] ← data
if(VPEConf0MVP = 1) then

MVPControlEVP ← sc
endif

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0

COP0
0 1 0 0 0 0

MFMC0
0 1 0 1 1 rt 0

0 0 0 0 0
0

0 0 0 0 0
sc
0

0
0 0

1
0 0 1

6 5 5 5 5 1 2 3

Disable Virtual Processor Execution DVPE

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 11

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable
Reserved Instruction (Implementations that do not include the MT ASE)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading MVPControl into a
GPR, clearing the EVP bit to create a temporary value in a second GPR, and writing that value back to MVPControl.
Unlike the multiple instruction sequence, however, the DVPE instruction does not consume a temporary register, and
can not be aborted in the middle by an interrupt or exception, nor by the scheduling of a different instruction stream.

The effect of a DVPE instruction may not be instantaneous. An instruction hazard barrier, e.g. JR.HB, is required to
guarantee that all other TCs have been suspended.

If a DVPE instruction is followed in the same instruction stream by a MFC0 or MFTR from the MVPControl register,
a JALR.HB, JR.HB, EHB, or ERET instruction must be issued between the DVPE and the read of MVPControl to
guarantee that the new state of EVP will be picked up by the read.

Disable Virtual Processor Execution (Continued) DVPE

12 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

EMT

Format: EMT MIPS MT
EMT rt

Purpose:

To return the previous value of the VPEControl register (see section 4.5) and enable multi-threaded execution. If
EMT is specified without an argument, GPR r0 is implied, which discards the previous value of the VPEControl reg-
ister.

Description: GPR[rt] ← VPEControl; VPEControlTE ← 1

The current value of the VPEControl register is loaded into general register rt. The Threads Enable (TE) bit in the
VPEControl register is then set, allowing multiple instruction streams to execute concurrently.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations that do not implement the MT ASE, this instruction results in a Reserved Instruction Exception.

Operation:

This operation specification is for the general multi-threading enable/disable operation, with the sc (set/clear) field as
a variable. The individual instructions EMT and DMT have a specific value for the sc field.

data ← VPEControl
GPR[rt] ← data
VPEControlTE ← sc

Exceptions:

Coprocessor Unusable
Reserved Instruction (Implementations that do not include the MT ASE)

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0

COP0
0 1 0 0 0 0

MFMC0
0 1 0 1 1 rt 1

0 0 0 0 1
15

0 1 1 1 1
sc
1

0
0 0

1
0 0 1

6 5 5 5 5 1 2 3

Enable Multi-Threaded Execution EMT

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 13

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading VPEControl into a GPR,
setting the TE bit to create a temporary value in a second GPR, and writing that value back to VPEControl. Unlike the
multiple instruction sequence, however, the EMT instruction does not consume a temporary register, and can not be
aborted in the middle by an interrupt or exception.

If an EMT instruction is followed in the same instruction stream by a MFC0 or MFTR from the VPEControl register,
a JALR.HB, JR.HB, EHB, or ERET instruction must be issued between the EMT and the read of VPEControl to guar-
antee that the new state of TE will be picked up by the read.

Enable Multi-Threaded Execution (Continued) EMT

14 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

EVPE

Format: EVPE MIPS MT
EVPE rt

Purpose:

To return the previous value of the MVPControl register (see section 4.2) and enable multi-VPE execution. If EVPE is
specified without an argument, GPR r0 is implied, which discards the previous value of the MVPControl register.

Description: GPR[rt] ← MVPControl; MVPControlEVP ← 1

The current value of the MVPControl register is loaded into general register rt. The Enable Virtual Processors (EVP)
bit in the MVPControl register is then set, enabling concurrent execution of instruction streams on all non-inhibited
Virtual Processing Elements (VPEs) on a processor.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

If the VPE executing the instruction is not a Master VPE, with the MVP bit of the VPEConf0 register set, the EVP bit
is unchanged by the instruction.

In implementations that do not implement the MT ASE, this instruction results in a Reserved Instruction Exception.

Operation:

This operation specification is for the general VPE enable/disable operation, with the sc (set/clear) field as a variable.
The individual instructions EVPE and DVPE have a specific value for the sc field.

data ← MVPControl
GPR[rt] ← data
if(VPEConf0MVP = 1) then

MVPControlEVP ← sc
endif

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0

COP0
0 1 0 0 0 0

MFMC0
0 1 0 1 1 rt 0

0 0 0 0 0
0

0 0 0 0 0
sc
1

0
0 0

1
0 0 1

6 5 5 5 5 1 2 3

Enable Virtual Processor Execution EVPE

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 15

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable
Reserved Instruction (Implementations that do not include the MT ASE)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading MVPControl into a
GPR, setting the EVP bit to create a temporary value in a second GPR, and writing that value back to MVPControl.
Unlike the multiple instruction sequence, however, the EVPE instruction does not consume a temporary register, and
can not be aborted in the middle by an interrupt or exception, nor by the scheduling of a different instruction stream.

If an EVPE instruction is followed in the same instruction stream by a MFC0 or MFTR from the MVPControl regis-
ter, a JALR.HB, JR.HB, EHB, or ERET instruction must be issued between the EVPE and the read of MVPControl to
guarantee that the new state of EVP will be picked up by the read.

Enable Virtual Processor Execution (Continued) EVPE

16 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

FORK

Format: fork rd, rs, rt MIPS MT

Purpose:

To cause a thread context to be allocated and associated with a new instruction stream.

Description: NewThread’s GPR[rd] ← GPR[rt], NewThread’s TCRestart ← GPR[rs]

The FORK instruction causes a free dynamically allocatable thread context (TC) to be allocated and activated on the
issuing VPE. It takes two operand values from GPRs. The rs value is used as the starting fetch address and execution
mode for the new thread. The rt value is copied into GPR rd of the new TC. The TCStatus register of the new TC is
set up as a function of the FORKing TC as described in section 4.12. The newly allocated TC will begin executing
instructions according to the implemented scheduling policy if and when multi-threaded execution is otherwise
enabled.

Restrictions:

If no free, non-halted, dynamically allocatable TC is available for the fork, a Thread Exception is raised for the FORK
instruction, with the VPEControl.EXCPT CP0 register field set to 1 to indicate the Thread Overflow case.

Processors which implement only a single TC per VPE may implement FORK by simply raising the Thread Excep-
tion and indicating the Overflow.

Any exceptions associated with the virtual address passed in rs will be taken by the new thread of execution.

Operation:

success ← 0
for t in 0...MVPConf0PTC

if TC[t].TCBindCurVPE = TCBindCurVPE then
if (TC[t].TCStatusDA = 1)

and (TC[t].TCHaltH = 0)
and (TC[t].TCStatusA = 0)
and (success = 0) then

TC[t].TCRestart ← GPR[rs]
TC[t].GPR[rd] ← GPR[rt]
activated ← 1
priorcu ← TC[t].TCStatusTCU3..TCU0

priormx ← TC[t].TCStatusTMX
priorixmt ← TC[t].TCStatusIXMT
TC[t].TCStatus = priorcu || priormx || 06 || 1 || ImpDep4

|| 1 || 0 || activated|| StatusKSU || priorixmt
|| 02 || TCStatusTASID

success ← 1
endif
endif

endfor
if success = 0

VPEControlEXCPT ← 1
SignalException(Thread)

endif

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3

011111
rs rt rd

0

0 0 0 0 0

FORK

0 0 1 0 0 0

6 5 5 5 5 6

Allocate and Schedule a New Thread FORK

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 17

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Exceptions:

Reserved Instruction
Thread

Allocate and Schedule a New Thread (Continued) FORK

18 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

MFTR

Format: MFTR rd, rt, u, sel, h MIPS MT
See also the Idiom column of Table 3-1.

Purpose:

To move the contents of a register within a targeted thread context or VPE into a general register of the current thread.

Description: GPR[rd] ← TC[VPEControlTargTC][u,rt,sel,h]

The contents of the register specified are loaded into general register rd. The target context to be read is determined
by the value of the TargTC field of the CP0 VPEControl register (see section 4.5). The register to be read within the
selected context is determined by the value in the rt operand register, in conjunction with the u and sel bits of the
MFTR instruction, according to table Table 3-1. If the register to be read is instantiated per-processor or per-VPE,
rather than per-TC, the register selected is that of the processor within which the target TC is instantiated, or the VPE
to which the target TC is bound (see section 4.13), respectively. The encoding is the same as for MTTR, except that it
is rt and not rd that is used to identify the target in the move-from case.

Coprocessor 1 and 2 registers and DSP accumulators referenced by the MFTR instruction are those bound to the tar-
get TC. The TCUx bits and TMX bit of the target TC’s TCStatus register are ignored.

If the selected register is not implemented on the processor, or otherwise not accessible to the TC that issued the
MFTR, as in the case of references to TCs and coprocessor resources bound to other VPEs when the VPE executing
the MFTR does not have MVP set in VPConfig0, the resulting rd value is -1.

The Idiom(s) column in Table 3-1 specifies the assembler idiom that is used to express an access to the particular
register.

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0

COP0

0 1 0 0 0 0

MFTR

0 1 0 0 0
rt rd rx u h

0

0
sel

6 5 5 5 8 3

Table 3-1 MFTR Source Decode

u Value sel Value Register Selected Idiom(s)

0 n Coprocessor 0 Register number rt, sel = sel
MFTC0 rd, rt

MFTC0 rd, rt, sel

1 0 GPR[rt] MFTGPR rd, rt

Move from Thread Context MFTR

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 19

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

The selected value is written into the target register rd. If the precision of the source register is less than the precision
of the target GPR, the value is sign-extended.

The h bit of the instruction word selects the high-order half of the source register in instances where the source is a
register of greater precision than the target GPR.

Restrictions:

An MFTR instruction where the target TC is not in a Halted state (i.e. TCHalt.H is not set), or where a TC other than
the one issuing the MFTR is active in the target VPE on a reference to a per-VPE CP0 register, may result in an
UNSTABLE value.

1 1

rt Value Selection

0 Lo Register / Lo component of DSP Accumulator 0
MFTLO rd

MFTLO rd, ac0

1 Hi Register / Hi component of DSP Accumulator 0
MFTHI rd

MFTHI rd, ac0

2 ACX Register / ACX component of Accumulator 0
MFTACX rd

MFTACX rd, ac0

4 Lo component of DSP Accumulator 1 MFTLO rd, ac1

5 Hi component of DSP Accumulator 1 MFTHI rd, ac1

6 Reserved for ACX of DSP Accumulator 1 MFTACX rd, ac1

8 Lo component of DSP Accumulator 2 MFTLO rd, ac2

9 Hi component of DSP Accumulator 2 MFTHI rd, ac2

10 Reserved for ACX of DSP Accumulator 2 MFTACX rd, ac2

12 Lo component of DSP Accumulator 3 MFTLO rd, ac3

13 Hi component of DSP Accumulator 3 MFTHI rd, ac3

14 Reserved for ACX of DSP Accumulator 3 MFTACX rd, ac3

16 DSPControl register MFTDSP rd

Other Values of rt, Reserved, Unpredictable

1 2 FPR[rt]
MFTC1 rd, ft

MFTHC1 rd, ft

1 3 FPCR[rt] CFTC1 rd, ft

1 4 Cop2 Data[n], where n is composed by concatenating rx with rt, with rx
providing the most significant bits.

1 5 Cop2 Control[n], where n is composed by concatenating rx with rt, with
rx providing the most significant bits.

1 >5 Reserved, Unpredictable

Table 3-1 MFTR Source Decode

u Value sel Value Register Selected Idiom(s)

20 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Operation:

if VPEConf0MVP = 0 and (TC[VPEControlTargTC].TCBindCurVPE ≠ TCBindCurVPE) then
data ← -1

else if VPEControlTargTC > MVPConf0PTC then
data ← -1

else if u = 0 then
data ← TC[VPEControlTargTC].CPR[0,rt,sel]

else
case sel

0: data ← TC[VPEControlTargTC].GPR[rt]
1: case rt

0: data ← TC[VPEControlTargTC].Lo
1: data ← TC[VPEControlTargTC].Hi
2: data ← TC[VPEControlTargTC].ACX
4: data ← TC[VPEControlTargTC].DSPLo[1]
5: data ← TC[VPEControlTargTC].DSPHi[1]
6: data ← TC[VPEControlTargTC].DSPACX[1]
8: data ← TC[VPEControlTargTC].DSPLo[2]
9: data ← TC[VPEControlTargTC].DSPHI[2]
10:data ← TC[VPEControlTargTC].DSPACX[2]
12 data ← TC[VPEControlTargTC].DSPLo[3]
13:data ← TC[VPEControlTargTC].DSPHi[3]
14:data ← TC[VPEControlTargTC].DSPACX[3]
16:data ← TC[VPEControlTargTC].DSPControl
otherwise: data ← UNPREDICTABLE

2: data ← TC[VPEControlTargTC].FPR[rt]
3: data ← TC[VPEControlTargTC].FPCR[rt]
4: data ← TC[VPEControlTargTC].CP2CPR[rx||rt]
5: data ← TC[VPEControlTargTC].CP2CCR[rx||rt]
otherwise: data ← UNPREDICTABLE

endif
if h = 1 then

data ← data63..32
endif
GPR[rd] ← data31..0

Exceptions:

Coprocessor Unusable
Reserved Instruction

Move from Thread Context (Continued) MFTR

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 21

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

MTTR

Format: MTTR rt, rd, u, sel, h MIPS MT
See also Idiom(s) column of Table 3-2.

Purpose:

To move the contents of a general register of the current thread into a register within a targeted thread context.

Description: TC[VPEControlTargTC][u,rd,sel,h] ← GPR[rt]

The contents of the rt register specified are written into a register of an arbitrary thread context (TC) or virtual proces-
sor (VPE).

The target context to be written is determined by the value of the TargTC field of the CP0 VPEControl register (see
section 4.5). The register to be written within the selected context is determined by the value in the rd operand
register, in conjunction with the u and sel bits of the MTTR instruction, according to Table 3-2 If the register to be
written is instantiated per-processor or per-VPE, rather than per-TC, the register selected is that of the processor
within which the target TC is instantiated, or the VPE to which the target TC is bound (see section 4.13), respectively.
The encoding is the same as for MFTR, except that it is rd and not rt that is used to identify the target in the move-to
case.

Coprocessor 1 and 2 registers and DSP accumulators referenced by the MTTR instruction are those bound to the tar-
get TC. The TCUx bits and TMX bit of the target TC’s TCStatus register are ignored.

If the selected register is not implemented on the processor, or otherwise not accessible to the TC issuing the MTTR,
as in the case of references to TCs and coprocessor resources bound to other VPEs when the VPE executing the
MTTR does not have MVP set in VPConfig0, MTTR has no effect.

The Idiom(s) column in Table 3-2 specifies the assembler idiom that is used to express an access to the particular
register.

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0

COP0

0 1 0 0 0 0

MTTR

0 1 10 0
rt rd rx u h

0

0
sel

6 5 5 5 8 3

Table 3-2 MTTR Destination Decode

u Value sel Value Register Selected Idiom(s)

0 n
Coprocessor 0 Register number rd, sel = sel

MTTC0 rt, rd

MTTC0 rt, rd, sel

1 0 GPR[rd] MTTGPR rt, rd

Move to Thread Context MTTR

22 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

The h bit of the instruction word selects the high-order half of the target register in instances where the target is a reg-
ister of greater precision than the source GPR. The source value is not sign-extended on an MTTR operation.

Restrictions:

The effect on a TC that is not in a Halted state (i.e. TCHalt.H is 0) of an MTTR instruction targeting that TC may be
transient and unstable, but MTTRs setting a TCHalt H bit are always effective until overridden by another MTTR.

Processor state following an MTTR instruction modifying a per-VPE CP0 register is UNPREDICTABLE if a TC
other than the one issuing the MTTR is concurrently active on the targeted VPE.

Operation:

if VPEConf0MVP = 0 and (TC[VPEControlTargTC].TCBindCurVPE ≠ TCBindCurVPE) then

1 1

rd Value Selection

0 Lo Register / Lo component of DSP Accumulator 0
MTTLO rt

MTTLO rt, ac0

1 Hi Register / Hi component of DSP Accumulator 0
MTTHI rt

MTTHI rt, ac0

2 ACX Register / ACX component of Accumulator 0
MTTACX rt

MTTACX rt ac0

4 Lo component of DSP Accumulator 1 MTTLO rt, ac1

5 Hi component of DSP Accumulator 1 MTTHI rt, ac1

6 Reserved for ACX of DSP Accumulator 1 MTTACX rt, ac1

8 Lo component of DSP Accumulator 2 MTTLO rt, ac2

9 Hi component of DSP Accumulator 2 MTTHI rt, ac2

10 Reserved for ACX of DSP Accumulator 2 MTTACX rt, ac2

12 Lo component of DSP Accumulator 3 MTTLO rt, ac3

13 Hi component of DSP Accumulator 3 MTTHI rt, ac3

14 Reserved for ACX of DSP Accumulator 3 MTTACX rt, ac3

16 DSPControl register MTTDSP rt

Other Values of rd, Reserved

1 2
FPR[rd]

MTTC1 rt, ft

MTTHC1 rt, ft

1 3 FPCR[rd] CTTC1 rt, ft

1 4 Cop2 Data[n], where n is composed by concatenating rx with rd, with
rx providing the most significant bits.

1 5 Cop2 Control[n], where n is composed by concatenating rx with rd,
with rx providing the most significant bits.

1 >5 Reserved,

Table 3-2 MTTR Destination Decode

u Value sel Value Register Selected Idiom(s)

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 23

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

NOOP
else if VPEControlTargTC > MVPConf0PTC then

NOOP
else
if h = 1 then

topbit ← 63
bottombit ← 32

else
topbit ← 31
bottombit ← 0

endif
if u = 0 then

TC[VPEControlTargTC].CPR[0,rd,sel]topbit..bottombit ← GPR[rt]
else

case sel
0: TC[VPEControlTargTC].GPR[rd] ← GPR[rt]
1: case rd

0: TC[VPEControlTargTC].Lo ← GPR[rt]
1: TC[VPEControlTargTC].Hi ← GPR[rt]
2: TC[VPEControlTargTC].ACX ← GPR[rt]
4: TC[VPEControlTargTC].DSPLo[1] ← GPR[rt]
5: TC[VPEControlTargTC].DSPHi[1] ← GPR[rt]
6: TC[VPEControlTargTC].DSPACX[1] ← GPR[rt]
8: TC[VPEControlTargTC].DSPLo[2] ← GPR[rt]
9: TC[VPEControlTargTC].DSPHi[2] ← GPR[rt]
10:TC[VPEControlTargTC].DSPACX[2] ← GPR[rt]
12:TC[VPEControlTargTC].DSPLo[3] ← GPR[rt]
13:TC[VPEControlTargTC].DSPHi[3] ← GPR[rt]
14:TC[VPEControlTargTC].DSPACX[3] ← GPR[rt]
16:TC[VPEControlTargTC].DSPControl ← GPR[rt]
otherwise: UNPREDICTABLE

2: TC[VPEControlTargTC].FPR[rd]topbit..bottombit ← GPR[rt]
3: TC[VPEControlTargTC].FPCR[rd]topbit..bottombit ← GPR[rt]
4: TC[VPEControlTargTC].CP2CPR[rx||rd]topbit..bottombit ← GPR[rt]
5: TC[VPEControlTargTC].CP2CCR[rx||rd]topbit..bottombit ← GPR[rt]
otherwise: UNPREDICTABLE

endif
endif

Exceptions:

Coprocessor Unusable
Reserved Instruction

Move to Thread Context (Continued) MTTR

24 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

YIELD

Format: yield rd, rs MIPS MT
yield rs

Purpose:

To suspend the current thread of execution, and conditionally deallocate the associated thread context.

Description:

The YIELD instruction takes a single input operand value from a GPR rs. This value is a descriptor of the circum-
stances under which the issuing thread should be rescheduled.

If GPR rs is zero, the thread is not to be rescheduled at all, and it is instead deallocated and its associated TC storage
freed for allocation by a subsequent FORK issued by some other thread.

If GPR rs is negative one (-1), the thread remains eligible for scheduling at the next opportunity, but invokes the pro-
cessor’s scheduling logic and relinquishes the CPU for any other threads which ought to execute first according to the
implemented scheduling policy.

If GPR rs is negative two (-2), the processor’s scheduling logic is not invoked, and the only effect of the instruction is
to retrieve the rd value (see below).

All other negative values of the rs register are reserved for future architectural definition by MIPS.

Positive values of rs are treated as a vector of YIELD qualifier (YQ) bits which describe an implementation-depen-
dent set of external or internal core signal conditions under which the YIELDing thread is to be rescheduled. Up to 31
bits of YIELD qualifier state may be supported by a processor, but implementations may provide fewer. To be usable,
a YIELD qualifier bit must be enabled in the YQMask register (see Section 4.8).

If no set bit of rs matches with a set, enabled YQ bit, the TC is blocked until one or more active bits of enabled YQ
input match corresponding rs bits. If and when one or more bits match, the TC resumes a running state, and may be
rescheduled for execution in accordance with the thread scheduling policy in effect.

The rd output operand specifies a GPR which is to receive a result value. This result contains the bit vector of YQ
inputs values enabled by the YQMask register at the time the YIELD completes. Thus, any YQ state that can be
waited upon by a YIELD with a positive rs value can also be polled via a YIELD with an rs value of -1 or -2. The
value of any rd bits which do not correspond to set bits in the YQMask register is implementation-dependent, typi-
cally 0. A zero value of the rd operand field, selecting GPR 0, indicates that no result value is desired.

Restrictions:

If a positive rs value includes a set bit that is not also set in the YQMask register, a Thread exception is raised for the
YIELD instruction, with the EXCPT field of the VPEControl register set to 2 to indicate the Invalid Qualifier case.

If no non-halted dynamically allocatable TC would be activated after a YIELD whose rs value is 0, a Thread excep-
tion is raised for the YIELD instruction, with the EXCPT field of the VPEControl register set to 0 to indicate the
Thread Underflow case.

If the processor’s scheduling logic would be invoked as a consequence of an otherwise unexceptional YIELD, one
whose rs value is 0 (excluding the Underflow case), -1, or positive (excluding the Invalid Qualifier case), and both the
YSI bit of VPEControl and the DT bit of TCStatus are set, a Thread exception is raised for the YIELD instruction,
with the VPEControl EXCPT field set to 4 to indicate the YIELD Scheduler case.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3

011111
rs

0

0 0 0 0 0
rd

0

0 0 0 0 0

YIELD

0 0 1 0 0 1

6 5 5 5 5 6

Conditionally Deschedule or Deallocate the Current Thread YIELD

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 25

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

If multithreaded operation is unsupported, a Reserved Instruction Exception is raised for the YIELD instruction.

Processor behavior is UNPREDICTABLE if a YIELD instruction is placed in a branch or jump delay slot.

Operation:

if GPR[rs] = 0 then
ok ← 0

for t in 0...MVPConf0PTC
if (TC[t].TCBindCurVPE = TCBindCurVPE)

 and (TC[t].TCBindCurTC ≠ TCBindCurTC)
 and (TC[t].TCStatusDA = 1)

 and (TC[t].TCHaltH = 0)
 and (TC[t].TCStatusA = 1) then
ok ← 1

endif
endfor
if ok = 1 then

TCStatusA ← 0
else

VPEControlEXCPT ← 0
SignalException(Thread)

endif
else if GPR[rs] > 0 then

if (GPR[rs] and (not YQMask)) ≠ 0 then
VPEControlEXCPT ← 2
SignalException(Thread)

else
SetThreadRescheduleCondition(GPR[rs] and YQMask)

endif
endif

if GPR[rs] ≠ -2 then
if (VPEControlYSI = 1) and (TCStatusDT = 1) then

VPEControlEXCPT ← 4
SignalException(Thread)

else
ScheduleOtherThreads()
endif

endif
if rd ≠ 0 then

GPR[rd]← GetThreadRescheduleCondition()
endif

Exceptions:

Reserved Instruction
Thread

Deschedule and Conditionally Deallocate the Current Thread YIELD

26 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 27

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 4

MIPS MT Privileged Resource Architecture

4.1 Privileged Resource Architecture for MIPS MT

Table 4-1 outlines the system coprocessor privileged resources associated with the MIPS MT ASE.

Table 4-1 MIPS MT PRA

Register Name
New or

Modified

CP0
Register
Number

Register
Select

Number Description

MVPControl New 0 1 Per-Processor register containing global MIPS MT
configuration data. See Section 4.2.

MVPConf0 New 0 2 Per-Processor multi-VPE dynamic configuration
information. See Section 4.3.

MVPConf1 New 0 3 Optional Per-Processor multi-VPE dynamic
configuration information. See Section 4.4

VPEControl New 1 1 Per-VPE register containing relatively volatile thread
configuration data. See Section 4.5.

VPEConf0 New 1 2 Per-VPE multi-thread configuration information. See
Section 4.6.

VPEConf1 New 1 3 Per-VPE multi-thread configuration information. See
Section 4.7.

YQMask New 1 4
Per-VPE register defining which YIELD qualifier bits
may be used without generating an exception. See
Section 4.8

VPESchedule New 1 5 Optional Per-VPE register to manage scheduling of a
VPE within a processor. See Section 4.9.

VPEScheFBack New 1 6 Optional Per-VPE register to provide scheduling
feedback to software. See Section 4.10.

VPEOpt New 1 7
Optional Per-VPE register to provide control over
optional features, such as cache partitioning control. See
Section 4.11

TCStatus New 2 1
Per-TC status information, includes copies of
thread-specific bits of Status and EntryHi registers. See
Section 4.12

TCBind New 2 2 Per-TC information about TC ID and VPE binding. See
Section 4.13

TCRestart New 2 3 Per-TC value of restart instruction address for the
associated thread of execution. See Section 4.14

TCHalt New 2 4 Per-TC register controlling Halt state of TC. See section
4.15.

TCContext New 2 5 Per-TC Read/Write Storage for OS use. See Section
4.16.

28 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 MIPS MT Privileged Resource Architecture

TCSchedule New 2 6 Optional Per-TC register to manage scheduling of a TC.
See Section 4.17.

TCScheFBack New 2 7 Optional Per-TC register to provide scheduling feedback
to software. See Section 4.18.

SRSConf0 New 6 1 Per-VPE register indicating and optionally controlling
shadow register set configuration. See Section 4.19.

SRSConf1 New 6 2
Optional Per-VPE register indicating and optionally
controlling shadow register set configuration. See Section
4.20.

SRSConf2 New 6 3
Optional Per-VPE register indicating and optionally
controlling shadow register set configuration. See Section
4.21.

SRSConf3 New 6 4
Optional Per-VPE register indicating and optionally
controlling shadow register set configuration. See Section
4.22.

SRSConf4 New 6 5
Optional Per-VPE register indicating and optionally
controlling shadow register set configuration. See Section
4.23.

SRSCtl Modified 12 2 Previously hard-wired field now optionally “soft”, and a
function of the SRSConf registers. See Section 4.19.

Cause Modified 13 0 New Cause code. See Section 4.24.2.

EBase Modified 15 1 Distinct CPUNum value required per VPE. See Section
4.24.5.

Config3 Modified 16 3 Fields added to describe and control MT ASE
configuration. See Section 4.24.7.

Debug Modified 23 0
Register accessed by MFTR/MTTR as being per-TC,
with distinct SSt and OffLine values. See Sections 4.24.4
and 8.1.

Table 4-1 MIPS MT PRA

Register Name
New or

Modified

CP0
Register
Number

Register
Select

Number Description

4.2 MVPControl Register (CP0 Register 0, Select 1)

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 29

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.2 MVPControl Register (CP0 Register 0, Select 1)

Compliance Level: Required for MIPS MT.

The MVPControl register is instantiated per-processor, and provides an interface for global control and configuration of
a multi-VPE MIPS MT core.

Figure 4-1 shows the format of the MVPControl register; Table 4-2 describes the MVPControl register fields.

Figure 4-1 MVPControl Register Format

31 4 3 2 1 0

0 CPA STLB VPC EVP

Table 4-2 MVPControl Register Field Descriptions

Fields

Description

Read/Write
Reset
State

Compliance
Name Bits

MVP
=0

MVP
=1

CPA 3

Cache Partitioning Active. If set, the IWX and DWX fields
of the VPEOpt register control the allocation of cache lines
as described in section 4.11. If clear, IWX and DWX are
ignored.

R R/W 0 Optional

STLB 2

Share TLBs. Modifiable only if the VPC bit was set prior to
the write to the register of a new value. When set, the full
complement of TLBs of a processor is shared by all VPEs
on the processor having access to the TLB, regardless of the
programming of the Config1.MMU_Size register fields.

When STLB is set:
• The virtual address and ASID spaces are unified across

all VPEs sharing the TLB.

• The TLB logic must ensure that a TLBWR instruction
can never write to a TLB entry which corresponds to the
valid Index register value of any VPE sharing the TLB.

• TLBWRs may have UNPREDICTABLE results if there
are fewer total unwired TLB entries than there are
operational VPEs sharing the TLB.

• TLBWRs may have UNPREDICTABLE results if the
Wired register values are not identical across all VPEs
sharing the TLB.

When not in use for TLB maintenance, software should
leave the Index register set to an invalid value, with the P bit
set, for all VPEs having TLB access.

R if VPC = 0,
R/W if VPC = 1 0 Optional

VPC 1

Indicates that Processor is in a VPE Configuration State.
When VPC is set, some normally “Preset” configuration
register fields become writable, to allow for dynamic
configuration of processor resources (See section 6.2).

Writable by software only if the VPEConf0.MVP bit is set
for the VPE issuing the modifying instruction.

Processor behavior is UNDEFINED if VPC and EVP are
both in a set state at the same time.

R R/W 0

Required if
run-time VPE
configuration

supported

30 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

So long as the EVP bit is zero, no thread scheduling will be performed by the processor. On a processor reset, only the
reset thread, TC 0, will execute. If EVP is cleared by software, only the thread which issued the DVPE or MTC0
instruction which cleared the bit will issue further instructions. All other TCs of the processor are suspended (see section
1.2).

The effect of clearing EVP in software may not be instantaneous. An instruction hazard barrier, e.g. JR.HB, is required
to guarantee that all other VPEs have been quiesced.

The STLB bit affects only VPEs using a TLB MMU. The operation of VPEs using FMT MMUs is unaffected.

For MIPS32-compatible software operation, all MMU_Size fields must indicate the size of the shared TLB when STLB
is set. This may either be done automatically by hardware, or, on processors implementing configurable MMU_Size, by
software rewriting the MMU_Size fields of the Config1 registers of the affected VPEs to the correct value while the
processor has the VPC bit set. When STLB is set, the restriction that the sum of Config1 MMU_Size fields not exceed
the total number of configurable TLB entry pairs as indicated by the PTLBE field of the MVPConf0 register no longer
applies. If TLB entries are not otherwise dynamically configurable, i.e. PTLBE is zero, hardware must automatically
maintain the correct MMU_Size values according to the value of STLB.

Programming Notes

The TLB should always be flushed of valid entries between any setting or clearing of STLB and the first subsequent
TLB-mapped memory reference.

EVP 0

Enable Virtual Processors. Modifiable only if the
VPEConf0.MVP bit is set for the VPE issuing the
modifying instruction. Set by EVPE instruction and cleared
by DVPE instruction. If set, all activated (see section 4.6)
VPEs on a processor fetch and execute independently. If
cleared, only a single instruction stream on a single VPE
can run.

R R/W 0 Required

0 31:4 Must be written as zero; return zero on read. 0 0 Reserved

Table 4-2 MVPControl Register Field Descriptions

Fields

Description

Read/Write
Reset
State

Compliance
Name Bits

MVP
=0

MVP
=1

4.3 MVPConf0 Register (CP0 Register 0, Select 2)

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 31

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.3 MVPConf0 Register (CP0 Register 0, Select 2)

Compliance Level: Required.

The MVPConf0 Register is instantiated per-processor. It contains configuration information for dynamic multi-VPE
processor configuration. All fields in the MVPConf0 register are read-only.

Figure 4-2 shows the format of the MVPConf0 register; Table 4-3 describes the MVPConf0 register fields.

Figure 4-2 MVPConf0 Register Format

31 30 29 28 27 26 25 16 15 14 13 10 9 8 7 0

M 0 TLBS GS PCP 0 PTLBE TCA 0 PVPE 0 PTC

Table 4-3 MVPConf0 Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

M 31

This bit indicates that a MVPConf1 register (see section
4.4) is present. If the MVPConf1 register is not
implemented, this bit should read as a 0. If the
MVPConf1 register is implemented, this bit should read
as a 1.

R Preset Required

TLBS 29

TLB Sharable. If set, indicates that TLB sharing
amongst all VPEs of a VMP is possible. TLB sharing is
enabled by the STLB bit of the MVPControl register.
See section 4.2.

R Preset Required

GS 28
Gating Storage Support present. If set, indicates that the
processor is configured to support gating storage
operations. See section 7.1.

R Preset Required

PCP 27

Programmable Cache Partitioning. If set, indicates that
the allocation behavior of the “ways” of the primary
instruction and data caches can be controlled via the
VPEOpt register’s IWX and DWX fields. See section
4.11.

R Preset Required

PTLBE 25:16
Total processor complement of allocatable TLB entry
pairs. See Section 6.2. If TLB configuration is fixed,
PTLBE is zero.

R Preset Required

TCA 15

TCs Allocatable. If set, TCs may be assigned to VPEs
by writing the CurVPE field of each TC’s TCBind
register while the VPC bit of MVPControl is set. See
section 4.13.

R Preset Required

PVPE 13:10 Total processor complement of VPE contexts - 1. Valid
VPE numbers are from 0 to PVPE, inclusive. R Preset Required

PTC 7:0 Total processor complement of TCs - 1. Valid TC
numbers are from zero to PTC, inclusive. R Preset Required

0 30, 26,
14, 9:8 Reserved. Reads as zero, must be written as zero. R 0 Reserved

32 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.4 MVPConf1 Register (CP0 Register 0, Select 3)

Compliance Level: Optional.

The MVPConf1 register is optionally instantiated per processor. It indicates the coprocessor and UDI resources available
for dynamic allocation to VPEs. All fields in the MVPConf1 register are read-only.

Figure 4-3 shows the format of the MVPConf1 register; Table 4-4 describes the MVPConf1 register fields.

Allocatable resources can be bound to specific VPEs as described in section 6.2.

Figure 4-3 MVPConf1 Register Format

31 30 29 28 27 20 19 18 17 10 9 8 7 0

C1M C1F 0 PCX 0 PCP2 0 PCP1

Table 4-4 MVPConf1 Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

C1M 31 Allocatable CP1 coprocessors are media-extension
capable R Preset Required

C1F 30 Allocatable CP1 coprocessors are floating-point
capable R Preset Required

PCX 27:20
Total processor complement of CorExtend™ UDI state
instantiations available, for UDI blocks with persistent
state.

R Preset Required

PCP2 17:10 Total processor complement of integrated and
allocatable Coprocessor 2 contexts R Preset Required

PCP1 7:0 Total processor complement of integrated and
allocatable FP/MDMX Coprocessors contexts R Preset Required

0
29:28,
19:18,

9:8
Reserved. Reads as zero, must be written as zero. R 0 Reserved

4.5 VPEControl Register (CP0 Register 1, Select 1)

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 33

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.5 VPEControl Register (CP0 Register 1, Select 1)

Compliance Level: Required for MIPS MT.

The VPEControl register is instantiated per VPE as part of the system coprocessor.

Figure 4-4 shows the format of the VPEControl register; Table 4-5 describes the VPEControl register fields.

Figure 4-4 VPEControl Register Format

31 22 21 20 19 18 16 15 14 8 7 0

0 YSI GSI 0 EXCPT TE 0 TargTC

Table 4-5 VPEControl Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

YSI 21

YIELD Scheduler Intercept. If set, and the TCStatus
DT bit is also set, valid YIELD instructions that
could otherwise cause a rescheduling cause a Thread
exception with a YIELD Scheduler Exception
sub-code (see below).

R/W 0 Required

GSI 20

Gating Storage Scheduler Intercept. If set, and the
TCStatus DT bit is also set, Gating Storage load and
store operations that would otherwise block the
issuing TC cause a Thread exception with a GS
Scheduler Exception sub-code (see below).

R/W 0 Required

EXCPT 18:16
Exception sub-code of
most recently dispatched
Thread exception

Value Meaning

R Undefined Required

0 Thread
Underflow

1 Thread
Overflow

2
Invalid
YIELD
Qualifier

3
Gating
Storage
Exception

4
YIELD
Scheduler
Exception

5
GS
Scheduler
Exception

6-7 Reserved

TE 15

Threads Enabled. Set by EMT instruction, cleared
by DMT instruction. If set, multiple TCs may be
simultaneously active. If cleared, only one thread
may execute on the VPE.

R/W 0 Required

TargTC 7:0 TC number to be used on MTTR and MFTR
instructions. R/W Undefined Required

34 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

So long as the TE bit is zero, no thread scheduling will be performed by the VPE. On a processor reset, only the reset
thread, TC 0, will execute. If TE is cleared by software, only the thread which issued the DMT or MTC0 instruction
which cleared the bit will issue further instructions. All other TCs of the VPE are suspended (see section 1.2).

The effect of clearing TE in software may not be instantaneous. An instruction hazard barrier, e.g. JR.HB, is required to
guarantee that all other threads have been quiesced.

0 31:22,
19,14:8 Must be written as zero; return zero on read. 0 0 Reserved

Table 4-5 VPEControl Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

4.6 VPEConf0 Register(CP0 Register 1, Select 2)

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 35

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.6 VPEConf0 Register(CP0 Register 1, Select 2)

Compliance Level: Required for MIPS MT.

The VPEConf0 register is instantiated per VPE. It indicates the activation state and privilege level of the VPE. All fields
in the VPEConf0 register are read-only in normal execution, but the MVP and VPA fields are writable while the MVP
bit is set for the VPE performing the modification.

Figure 4-5 shows the format of the VPEConf0 register; Table 4-6 describes the VPEConf0 register fields.

Figure 4-5 VPEConf0 Register Format

31 30 29 28 21 20 19 18 17 16 15 2 1 0

M 0 XTC 0 TCS SCS DCS ICS 0 MVP VPA

Table 4-6 VPEConf0 Register Field Descriptions

Fields

Description

Read/Write
Reset
State

Compliance

Name Bits
MVP

=0
MVP

=1

M 31

This bit is reserved to indicate that a VPEConf1
register is present. If the VPEConf1 register is not
implemented, this bit should read as a 0. If the
VPEConf1 register is implemented, this bit should read
as a 1.

R Preset Required

XTC 28:21

Exclusive TC. Set by hardware when execution is
restricted within a VPE to a single TC, due to
EXL/ERL being set in the Status register, or TE being
cleared in the VPEControl register, this field contains
the TC number of the TC eligible to run. Read by
hardware when the VPA bit is written set by software.
For cross-VPE initialization, XTC is writable by
MTTR if the issuing VPE has MVP set and the target
VPE has VPA clear.

R

R/W
(if

VPA
not set

for
target)

0 for VPE 0,
Undefined

for all others
Required

TCS 19
Tertiary Cache Shared. Indicates that the tertiary cache
described in the Config2 register is shared with at least
one other VPE.

R Preset Required

SCS 18
Secondary Cache Shared. Indicates that the secondary
cache described in the Config2 register is shared with at
least one other VPE.

R Preset Required

DCS 17
Data Cache Shared. Indicates that the primary data
cache described in the Config1 register is shared with at
least one other VPE.

R Preset Required

ICS 16
Instruction Cache Shared. Indicates that the primary
instruction cache described in the Config1 register is
shared with at least one other VPE.

R Preset Required

MVP 1

Master Virtual Processor. If set, the VPE can access the
registers of other VPEs of the same VMP, using
MTTR/MFTR, and can modify the contents of the
MVPControl and VPEConf0 registers, thus acquiring
the capability to manipulate and configure other VPEs
sharing the same processor (see section 6.2).

R R/W
1 for VPE 0,

0 for all
others

Required

VPA 0

Virtual Processor Activated. If set, the VPE will
schedule threads and execute instructions so long as the
EVP bit of the MVPControl register enables multi-VPE
execution.

R R/W
1 for VPE 0,

0 for all
others

Required

36 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

The XTC field is set by hardware on an exception setting EXL or ERL of the Status register, or on an MTC0 or DMT
instruction clearing the TE bit of VPEControl. It may be set by software if and only if both MVP of the writing VPE is
set and VPA of the written VPE is clear, which implies a cross-VPE MTTR operation. It is read by hardware when VPA
is set, and if the initial state of the VPE is such that only one activated TC may issue, i.e. if EXL or ERL are set, or TE
is clear, the TC designated by the XTC field will be the TC selected for exclusive execution on the VPE. This allows
initialization of one VPE by another, such that the initialized VPE can begin execution in an exception or single-threaded
state, and the full context save/restore of one VPE by another, even if the target VPE is in an exception or single-threaded
state.

0 30:29,
20, 15:2 Reserved. Reads as zero, must be written as zero. R 0 Reserved

Table 4-6 VPEConf0 Register Field Descriptions

Fields

Description

Read/Write
Reset
State

Compliance

Name Bits
MVP

=0
MVP

=1

4.7 VPEConf1 Register(CP0 Register 1, Select 3)

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 37

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.7 VPEConf1 Register(CP0 Register 1, Select 3)

Compliance Level: Optional.

The VPEConf1 register is instantiated per VPE. It indicates the coprocessor and UDI resources available to the VPE. All
fields in the VPEConf1 register are read-only in normal operation, but may be writable while the MVPControl VPC bit
is set. See section 6.2.

Figure 4-6 shows the format of the VPEConf1 register; Table 4-7 describes the VPEConf1 register fields.

Figure 4-6 VPEConf1 Register Format

31 28 27 20 19 18 17 10 9 8 7 0

0 NCX 0 NCP2 0 NCP1

Table 4-7 VPEConf1 Register Field Descriptions

Fields

Description

Read/Write
Reset
State

Compliance
Name Bits

VPC
=0

VPC
=1

NCX 27:20 Number of CorExtend™ UDI state instantiations
available, for UDI blocks with persistent state. R R/W Preset Required

NCP2 17:10 Number of Coprocessor 2 contexts available. R R/W Preset Required

NCP1 7:0 Number of Coprocessor 1 contexts available. R R/W Preset Required

0
31:28,
19:18,

9:8
Reserved. Reads as zero, must be written as zero. R 0 Reserved

38 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.8 YQMask Register (CP0 Register 1, Select 4)

Compliance Level: Required for MIPS MT.

The YQMask register is instantiated per VPE.

Figure 4-7 shows the format of the YQMask register; Table 4-8 describes the YQMask register fields.

The YQMask register allows software control over values used to select external qualifier states for YIELD instructions.
If a YIELD instruction has a positive value of its rs parameter, and any bit that is set in rs is not also set in YQMask, a
Thread exception is raised on the YIELD instruction, with the VPEControl EXCPT field set to 3 to indicate the illegal
qualifier condition.

If a processor implementation supports fewer than 31 qualifier state inputs, the YQMask bits corresponding to
unimplemented inputs should be hard-wired to zero, so that attempts to suspend pending an impossible state are certain
to cause an exception to be raised.

Figure 4-7 YQMask Register Format

31 30 0

0 Mask

Table 4-8 YQMask Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Mask 30:0 Bit vector which determines which values may be used
as external state qualifiers by YIELD instructions. R/W 0 Required

0 31 Must be written as zero; return zero on read. 0 0 Reserved

4.9 VPESchedule Register (CP0 Register 1, Select 5)

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 39

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.9 VPESchedule Register (CP0 Register 1, Select 5)

Compliance Level: Optional.

The VPESchedule register is optional, and is instantiated per-VPE.

Figure 4-8 shows the format of the VPESchedule register.

The Scheduler Hint is a per-VPE value whose interpretation is scheduler implementation-dependent. For example, it
could encode a description of the overall requested issue bandwidth for the associated VPE, or it could encode a priority
level.

A VPESchedule register value of zero is the default, and should result in a well-behaved default scheduling of the
associated VPE.

The VPESchedule register and the TCSchedule register create a hierarchy of issue bandwidth allocation. The set of
VPESchedule registers assigns bandwidth to VPEs as a proportion of the total available on a processor or core, while the
TCSchedule register can only assign bandwidth to threads as a function of that which is available to the VPE containing
the thread.

Figure 4-8 VPESchedule Register Format

31 0

Scheduler Hint

40 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.10 VPEScheFBack Register (CP0 Register 1, Select 6)

Compliance Level: Optional.

The VPEScheFBack register is an optional, per-VPE register.

Figure 4-9 shows the format of the VPEScheFBack register.

The Scheduler Feedback is a per-VPE feedback value from scheduler hardware to software, whose interpretation is
scheduler implementation-dependent. For example, it might encode the total number of instructions retired in the
instruction streams on the associated VPE since the last time the value was cleared by software.

Figure 4-9 VPEScheFBack Register Format

31 0

Scheduler Feedback

4.11 VPEOpt Register(CP0 Register 1, Select 7)

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 41

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.11 VPEOpt Register(CP0 Register 1, Select 7)

Compliance Level: Optional.

The VPEOpt register is instantiated per VPE. It provides control over optional per-VPE capabilities, such as cache “way”
allocation management.

Figure 4-10 shows the format of the VPEOpt register; Table 4-9 describes the VPEOpt register fields.

Figure 4-10 VPEOpt Register Format

31 16 15 8 7 0

0 IWX7..IWX0 DWX7..DWX0

Table 4-9 VPEOpt Register Field Descriptions

Fields
Description

Reset
State

Compliance
Name Bits

IWX7..IWX0 15:8

Instruction cache way exclusion mask. If programmable cache partitioning
is supported by the processor (see section 4.3) and enabled in the
MVPControl register (see section 4.2), a VPE can exclude an arbitrary subset
of the first 8 ways of the primary instruction cache from allocation by the
cache controller on behalf of the VPE.

0 Optional

Bit Name Meaning

15 IWX7 If set, I-cache way 7 will not be allocated for the VPE

14 IWX6 If set, I-cache way 6 will not be allocated for the VPE

13 IWX5 If set, I-cache way 5 will not be allocated for the VPE

12 IWX4 If set, I-cache way 4 will not be allocated for the VPE

11 IWX3 If set, I-cache way 3 will not be allocated for the VPE

10 IWX2 If set, I-cache way 2 will not be allocated for the VPE

9 IWX1 If set, I-cache way 1 will not be allocated for the VPE

8 IWX0 If set, I-cache way 0 will not be allocated for the VPE

42 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

The IWX and DWX bits inhibit allocation of cache lines in the specified way. They do not prevent fetches and loads by
the VPE from hitting in those lines if the requested physical address is present, nor do they prevent stores from modifying
the contents of a line already present in the cache.

If fewer than 8 ways are implemented by a processor’s instruction or data cache, the IWX and DWX bits corresponding
to unimplemented cache ways may be implemented as read-only (RO) zero bits.

Behavior of the processor is UNDEFINED if references are made to cached address spaces by a VPE which has
excluded all implemented cache ways from allocation.

Whether or not a cache line in a way that is excluded from allocation by a VPE can be locked by a CACHE instruction
issued by that VPE is implementation dependent.

DWX7..DWX0 7:0

Data cache way exclusion mask.If programmable cache partitioning is
supported by the processor (see section 4.3) and enabled in the MVPControl
register (see section 4.2), a VPE can exclude an arbitrary subset of the first 8
ways of the primary data cache from allocation by the cache controller on
behalf of the VPE.

0 Optional

Bit Name Meaning

7 IWX7 If set, D-cache way 7 will not be allocated for the VPE

6 IWX6 If set, D-cache way 6 will not be allocated for the VPE

5 IWX5 If set, D-cache way 5 will not be allocated for the VPE

4 IWX4 If set, D-cache way 4 will not be allocated for the VPE

3 IWX3 If set, D-cache way 3 will not be allocated for the VPE

2 IWX2 If set, D-cache way 2 will not be allocated for the VPE

1 IWX1 If set, D-cache way 1 will not be allocated for the VPE

0 IWX0 If set, D-cache way 0 will not be allocated for the VPE

0 31:16 Reserved. Reads as zero, must be written as zero. 0 Reserved

Table 4-9 VPEOpt Register Field Descriptions

Fields
Description

Reset
State

Compliance
Name Bits

4.12 TCStatus Register (CP0 Register 2, Select 1)

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 43

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.12 TCStatus Register (CP0 Register 2, Select 1)

Compliance Level: Required for MIPS MT.

The TCStatus register is instantiated per TC as part of the system coprocessor.

Figure 4-11 shows the format of the TCStatus register; Table 4-10 describes the TCStatus register fields.

Figure 4-11 TCStatus Register Format

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

TCU3..TCU0 TMX 0 RNST 0 TDS DT Impl DA 0 A TKSU IXMT 0 TASID

Table 4-10 TCStatus Register Field Descriptions

Fields

Description
Read/
Write

Reset
State

Fork
State ComplianceName Bits

TCU
(TCU3..
TCU0)

31:28

Controls access of a TC to coprocessors 3,2,1, and 0
respectively. Status bits CU3..CU0 are identical to
TCStatus bits TCU3..TCU0 of the thread
referencing that Status with an MFC0 operation. The
modification of either must be visible in both.

R/W Undefined Unchanged
by FORK Required

TMX 27

Controls access of a TC to extended media
processing state, such as MDMX and DSP ASE
accumulators. Status bit MX is identical to TCStatus
bit TMX of the thread referencing that Status with an
MFC0 operation. The modification of either must be
visible in both.

R/W 0 Unchanged
by FORK

Required for
MDMX and
DSP ASEs

RNST 24:23

Run State of TC.
Indicates the Running
vs. Blocked state of the
TC (see Section 1.2)
and the reason for
blockage. Value is
stable only if TC is
Halted and examined
by another TC using an
MFTR operation.

Value Meaning

R 0 0 Required

0 Running

1 Blocked on
WAIT

2 Blocked on
YIELD

3 Blocked on
Gating Storage

TDS 21

Thread stopped in branch Delay Slot. If a TC is
Halted such that the next instruction to issue would
be an instruction in a branch delay slot, the
TCRestart register will contain the address of the
branch instruction, and the TDS bit will be set.
Otherwise TDS is cleared on a Halt, or on a software
write to the TCRestart register.

R 0 0 Required

DT 20

Dirty TC. This bit is set by hardware whenever an
instruction is retired using the associated TC, and on
successful dispatch of the TC via a FORK
instruction. The setting of DT by the retirement of
instructions is inhibited if the instructions are issued
with the EXL or ERL bits of Status set, or with the
processor in Debug mode.

R/W 0 1 Required

Impl 19:16

These bits are implementation dependent and are not
defined by the architecture. If they are not
implemented, they must be ignored on write and
read as zero

Impl.
Dep. Impl. Dep. Impl. Dep. Optional

44 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

The (T)CUx, (T)MX, and (T)KSU fields of the TCStatus and Status registers always display the correct state. That is, if
the field is written via TCStatus, the new value may be read via Status, and vice-versa. Similarly, the (T)ASID field of
the TCStatus and EntryHi always display the same current value for the TC.

DA 15
Dynamic Allocation enable. If set, TC may be
allocated/deallocated/scheduled by the FORK and
YIELD instructions.

R/W 0

FORK
allocate

only
possibleif

DA = 1

Required

A 13

Thread Activated. Set automatically when a FORK
instruction allocates the TC, and cleared
automatically when a YIELD $0 instruction
deallocates it.

R/W
1 for TC 0,

0 for all
others.

1 Required

TKSU 12:11

Defined as per the Status register KSU field. This is
the per-TC Kernel/Supervisor/User state. The Status
KSU field is identical to the TCStatus TKSU field of
the thread referencing Status. The modification of
either must be visible in both.

R/W Undefined

Copied
from

forking
thread

Required

IXMT 10
Interrupt Exempt. If set, the associated TC will not
be used by asynchronous exception handlers such as
interrupts.

R/W 0 Unchanged
by FORK Required

TASID 7:0

Defined as per the EntryHi register ASID field. This
is the per-TC ASID value. The EntryHi ASID is
identical to the TCStatus TASID of the thread
referencing EntryHi with an MFC0 operation. The
modification of either must be visible in both.

R/W Undefined

Copied
from

forking
thread

Required

0
26:25,
22, 14,

9:8
Must be written as zero; return zero on read. 0 0 0 Reserved

Table 4-10 TCStatus Register Field Descriptions

Fields

Description
Read/
Write

Reset
State

Fork
State ComplianceName Bits

4.13 TCBind Register (CP0 Register 2, Select 2)

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 45

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.13 TCBind Register (CP0 Register 2, Select 2)

Compliance Level: Required for MIPS MT.

The TCBind register is instantiated per TC as part of the system coprocessor.

Figure 4-12 shows the format of the TCBind register; Table 4-11 describes the TCBind register fields.

In reconfigurable MIPS MT processors, the binding of TCs to VPEs is managed via the CurVPE field of TCBind. If TC
assignment to VPEs is configurable, the CurVPE fields of all TCs in the processor are writable if the VPC bit of the
MVPControl register is set. At all other times, CurVPE is a read-only indication of which VPE contains the TC. Software
can thus determine on which VPE it is running by executing an MFC0 instruction from TCBind and inspecting CurVPE.
While implementations may allow for it under well-defined circumstances, behavior of a processor may be
UNPREDICTABLE if software executing on a given TC changes its own VPE binding “on the fly”.

Figure 4-12 TCBind Register Format

31 29 28 21 20 18 17 16 4 3 0

0 CurTC A0 TBE 0 CurVPE

Table 4-11 TCBind Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

CurTC 28:21 Indicates the number (index) of the TC. R TC # Required

A0 20:18

Architecturally zero-valued field providing
least-significant bits when a TCBind value is shifted
right to be used as a scaled index into arrays of 32 or
64-bit values.

R 0 Required

TBE 17

TC Bus Error. Set by hardware when a transaction
causing a bus error is identified as resulting from a
load or store issued by the TC. Implementations may
set the TBE bits of multiple TCs on a single DBE
exception if multiple memory requests to the same
memory location or cache line from the different
TCs were merged. Implementations may generate
bus error exceptions without setting a TBE bit if it is
not possible to associate the failing transaction with
a particular TC.

R/W 0 Required

CurVPE 3:0
Indicates and controls the binding of the TC to a
VPE. Field is optionally Read/Write only when the
VPC bit of the MVPControl register is set.

R or
R/W

0 for TC 0,
preset for all

others
Required

0 31:29,
16:4 Must be written as zero; return zero on read. 0 0 Reserved

46 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.14 TCRestart Register (CP0 Register 2, Select 3)

Compliance Level: Required for MIPS MT.

The TCRestart register is instantiated per-TC, with the same width as the processor GPRs.

Figure 4-13 shows the format of the TCRestart register. Table 4-12 describes the TCRestart register fields.

When a TC is in a Halted state, a read of the TCRestart register returns the instruction address at which the TC will start
execution when it is restarted. The TCRestart register can be written while the associated TC is in a Halted state to
change the address at which the TC will restart.

Reading the TCRestart register of a non-Halted TC will return the UNSTABLE address of some instruction that the TC
was executing in the past, but which may no longer be valid. Writing the TCRestart register of a non-Halted TC will
result in an UNDEFINED TC state.

In the case of branch and jump instructions with architectural delay slots, the restart address will advance beyond the
address of the branch or jump instruction only after the instruction in the delay slot has been retired. If halted between
the execution of a branch and the associated delay slot instruction, the branch delay slot is indicated by the TDS bit of
the TCStatus register (see section 4.12).

Software writes to the TCRestart register cause the TDS bit of the TCStatus register to be cleared. If a software write of
the TCRestart register of a TC intervenes between the execution of an LL instruction and an SC instruction on the target
TC, the SC operation must fail.

4.14.1 Special Handling of the TCRestart Register in Processors that Implement the MIPS16e ASE

In processors that implement the MIPS16e ASE, the TCRestart register requires special handling.

When the processor writes the TCRestart register, it combines the address at which the TC will resume execution with
the value of the ISA Mode register:

TCRestart ← resumePC31..1 || ISAMode0

“resumePC” is the address at which the TC will resume execution, as described above.

When the processor reads the TCRestart register, it distributes the bits to the PC and ISAMode registers:

PC ← TCRestart31..1 || 0
ISAMode ← TCRestart0

Figure 4-13 TCRestart Register Format

31 0

Restart Address

Table 4-12 TCRestart Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Restart
Address 31..0 Address at which execution of the TC is restarted. R/W Undefined Required

4.14 TCRestart Register (CP0 Register 2, Select 3)

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 47

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Software reads of the TCRestart register simply return to a GPR the last value written with no interpretation.Software
writes to the TCRestart register store a new value which is interpreted by the processor as described above.

48 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.15 TCHalt Register (CP0 Register 2, Select 4)

Compliance Level: Required for MIPS MT.

The TCHalt register is instantiated per TC as part of the system coprocessor.

Figure 4-14 shows the format of the TCHalt register; Table 4-13 describes the TCHalt register fields.

Writing a one to the Halted bit of an activated TC causes the associated thread to cease fetching instructions and to set
its Restart Address in the TCRestart register (see section 4.14) to the address of the next instruction to be issued. If the
instruction stream associated with the TC is blocked waiting on a response from Gating Storage (see Chapter 7), the load
or store is aborted, and the TC resolves to a state where the TCRestart register and TDS field of the TCStatus register
(see section 4.12) reflect a restart at the blocked load or store. If the TC is blocked on a WAIT or YIELD instruction, it
resolves to a stable restart state. If the TC was blocked at the time it is Halted, the RNST field of TCStatus indicates the
blocked state, and the reason for blocking, even if that reason was an operation aborted by the Halt. Writing a zero to the
Halted bit of an activated TC allows the associated thread of execution to be scheduled, fetching and executing as
indicated by TCRestart. A one in the Halted bit (TCHalt.H) of a TC prevents that TC from being allocated and activated
by a FORK instruction.

The effect of writing a one to the Halted bit of a TC may not be instantaneous. An instruction hazard barrier, e.g. JR.HB,
is required to guarantee that the target thread has been fully halted.

Figure 4-14 TCHalt Register Format

31 1 0

0 H

Table 4-13 TCHalt Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

H 0
Thread Halted. When set, the associated thread has
been halted and cannot be allocated, activated, or
scheduled.

R/W
0 for TC 0,

1 for all
others

Required

0 31:1 Must be written as zero; return zero on read. 0 0 Reserved

4.16 TCContext Register (CP0 Register 2, Select 5)

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 49

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.16 TCContext Register (CP0 Register 2, Select 5)

Compliance Level: Required for MIPS MT.

The TCContext register is instantiated per-TC, with the same width as the processor GPRs.

Figure 4-15 shows the format of the TCContext register.

TCContext is purely a software read/write register, usable by the operating system as a pointer to thread-specific storage,
e.g. a thread context save area.

Figure 4-15 TCContext Register Format

31 0

Thread Context Value

50 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.17 TCSchedule Register (CP0 Register 2, Select 6)

Compliance Level: Optional.

The TCSchedule register is optional, but when implemented must be implemented per-TC.

Figure 4-16 shows the format of the TCSchedule register.

The Scheduler Hint is a per-TC value whose interpretation is scheduler implementation-dependent. For example, it could
encode a description of the requested issue bandwidth for the associated thread, as in the VPESchedule register, or it
could encode a priority level.

A TCSchedule register value of zero is the default, and should result in a well-behaved default scheduling of the
associated thread.

The VPESchedule register and the TCSchedule register create a hierarchy of issue bandwidth allocation. The set of
VPESchedule registers assigns bandwidth to VPEs as a proportion of the total available on a processor or core, while the
TCSchedule register can only assign bandwidth to threads as a function of that which is available to the VPE containing
the thread.

Figure 4-16 TCSchedule Register Format

31 0

Scheduler Hint

4.18 TCScheFBack Register (CP0 Register 2, Select 7)

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 51

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.18 TCScheFBack Register (CP0 Register 2, Select 7)

Compliance Level: Optional.

The TCScheFBack register is optional, but when implemented must be implemented per-TC.

Figure 4-17 shows the format of the TCScheFBack register.

The Scheduler Feedback is a per-TC feedback value from scheduler hardware to software, whose interpretation is
scheduler implementation-dependent. For example, it might encode the number of instructions retired in the instruction
stream corresponding to the TC since the last time the value was cleared by software.

Figure 4-17 TCScheFBack Register Format

31 0

Scheduler Feedback

52 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.19 SRSConf0 (CP0 Register 6, Select 1)

Compliance Level: Required for MIPS MT.

The SRSConf0 register is instantiated per VPE. It indicates the binding of TCs or other GPR resources to Shadow
Register Sets 1 through 3.

Figure 4-18 shows the format of the SRSConf0 register; Table 4-14 describes the SRSConf0 register fields.

Each SRSx field of the SRSConf0 register identifies which GPR will be used for references to Shadow Register Set x.
There is no field for SRS0, as “Shadow Set 0” is taken in MIPS MT to mean the GPR set of the TC associated with entry
into an exception handler. An SRSx field value may be hard-wired to all-ones (0x3ff) to indicate that the processor logic
does not support the associated SRS number. If any SRS numbers are uninstantiated, they should be in a contiguous
range starting from the highest number, i.e. SRS3 may be uninstantiated while SRS2 and SRS1 are instantiated, but SRS1
must be instantiated if SRS2 is instantiated. The M bit should only be set, and the SRSConf1 register should only be
implemented, if all three SRSx fields of SRSConf0 are instantiated.

Instantiated SRSx fields may be hard-wired or programmable. Hard wired fields represent dedicated shadow sets that are
statically configured into the VPE, and contain distinct unsigned values greater than the total complement of TCs on a
processor, but less than 0x3fe. Programmable SRSx fields have a reset value of 0x3fe. A value of 0x3ff or 0x3fe in an
SRSx field means that SRS x is invalid. The HSS field of the SRSCtl register always indicates the number of the highest
numbered valid SRS, i.e. one less than x for the lowest numbered invalid SRSx field. A programmable entry may be made
valid by writing a value less than 0x3fe into it. A TC is assigned for its GPRs to be used as a Shadow Register set by
writing the number of the TC, zero extended, into the SRSx field corresponding to the shadow set number for which the
TC is to be used. Only a TC bound to a VPE may be used as an SRS on that VPE. If the CurVPE field of the TCBind
register of a TC being assigned to an SRS is does not contain the number of the VPE associated with the SRSConf0...4
register being programmed, the SRSx field is not updated. The effect of writing an SRSx value greater than the number
of the highest numbered TC on a processor is implementation-dependent.

Behavior of the processor is UNDEFINED in the face of exceptions and FORK instructions if a TC is assigned to
Shadow Register use when the DA bit is set in its TCStatus register.

Behavior of the processor is UNDEFINED if writing an invalid SRSx field value causes the SRSCtl HSS field to take on
a value that is less than the current value of the SRSCtl CSS or PSS fields. Behavior of the processor is UNDEFINED
under exceptions if the SRSCtl HSS field takes on a value less than the SRSCtl ESS field. Behavior of the processor is

Figure 4-18 SRSConf0 Register Format

31 30 29 20 19 10 9 0

M 0 SRS3 SRS2 SRS1

Table 4-14 SRSConf0 Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

M 31 If set, SRSConf1 register is implemented. If clear, no
more than 3 shadow sets may be configured. R Preset Required

SRS3 29:20 GPR set to be used if CSS = 3. See below for encoding. RW or R Preset Required

SRS2 19:10 GPR set to be used if CSS = 2. See below for encoding. RW or R Preset Required

SRS1 9:0 GPR set to be used if CSS = 1. See below for encoding. RW or R Preset Required

0 30 Reserved. Reads as zero, must be written as zero. R 0 Reserved

4.19 SRSConf0 (CP0 Register 6, Select 1)

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 53

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

UNDEFINED under EIC interrupts if the SRSCtl HSS field takes on a value less than the SRSCtl EICSS field. Software
must thus take care to modify the ESS and EISS fields as necessary prior to de-allocating a TC from SRS service.

A TC may be reclaimed from use as a shadow set by writing some other value, possibly 0x3fe, into the SRSx field which
had contained the TC’s number.

At no time should the same value, other than the values 0x3ff and 0x3fe, be present more than one distinct SRSx field.

The sequence of shadow set numbers to be used by software is a monotonically increasing sequence starting with zero.
To assure correct and backward-compatible software operation, there must be no invalid (0x3ff/0x3fe) SRSx field at a
lower x index than that of a valid SRSx field.

54 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.20 SRSConf1 (CP0 Register 6, Select 2)

Compliance Level: Optional.

The SRSConf1 register is instantiated per VPE. It indicates the binding of TCs or other GPR resources to Shadow
Register Sets 4 through 6.

Figure 4-19 shows the format of the SRSConf1 register; Table 4-15 describes the SRSConf1 register fields.

Each SRSx field of the SRSConf1 register identifies which GPR will be used for references to Shadow Register Set x. An
SRSx field value may be hard-wired to all-ones (0x3ff) to indicate that the processor logic does not support the associated
SRS number. If any SRS numbers are uninstantiated, they should be in a contiguous range starting from the highest
number, i.e. SRS6 may be uninstantiated while SRS5 and SRS4 are instantiated, but SRS4 must be instantiated if SRS5 is
instantiated. The M bit should only be set, and the SRSConf2 register should only be implemented, if all three SRSx fields
of SRSConf1 are instantiated.

The semantics and encodings of the SRSx fields of the SRSConf1 register are the same as those of the SRSConf0 register,
except in that they are applied to Shadow Register Sets 4 through 6. See section 4.19.

Figure 4-19 SRSConf1 Register Format

31 30 29 20 19 10 9 0

M 0 SRS6 SRS5 SRS4

Table 4-15 SRSConf1 Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

M 31 If set, SRSConf2 register is implemented. If clear, no
more than 6 shadow sets may be configured. R Preset Required

SRS6 29:20 GPR set to be used if CSS = 6. See below for encoding. RW or R Preset Required

SRS5 19:10 GPR set to be used if CSS = 5. See below for encoding. RW or R Preset Required

SRS4 9:0 GPR set to be used if CSS = 4. See below for encoding. RW or R Preset Required

0 30 Reserved. Reads as zero, must be written as zero. R 0 Reserved

4.21 SRSConf2 (CP0 Register 6, Select 3)

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 55

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.21 SRSConf2 (CP0 Register 6, Select 3)

Compliance Level: Optional.

The SRSConf2 register is instantiated per VPE. It indicates the binding of TCs or other GPR resources to Shadow
Register Sets 7 through 9.

Figure 4-20 shows the format of the SRSConf2 register; Table 4-16 describes the SRSConf2 register fields.

Each SRSx field of the SRSConf2 register identifies which GPR will be used for references to Shadow Register Set x. An
SRSx field value may be hard-wired to all-ones (0x3ff) to indicate that the processor logic does not support the associated
SRS number. If any SRS numbers are uninstantiated, they should be in a contiguous range starting from the highest
number, i.e. SRS9 may be uninstantiated while SRS8 and SRS7 are instantiated, but SRS7 must be instantiated if SRS8 is
instantiated. The M bit should only be set, and the SRSConf3 register should only be implemented, if all three SRSx fields
of SRSConf2 are instantiated.

The semantics and encodings of the SRSx fields of the SRSConf2 register are the same as those of the SRSConf0 register,
except in that they are applied to Shadow Register Sets 7 through 9. See section 4.19.

Figure 4-20 SRSConf2 Register Format

31 30 29 20 19 10 9 0

M 0 SRS9 SRS8 SRS7

Table 4-16 SRSConf2 Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

M 31 If set, SRSConf3 register is implemented. If clear, no
more than 9 shadow sets may be configured. R Preset Required

SRS9 29:20 GPR set to be used if CSS = 9. See below for encoding. RW or R Preset Required

SRS8 19:10 GPR set to be used if CSS = 8. See below for encoding. RW or R Preset Required

SRS7 9:0 GPR set to be used if CSS = 7. See below for encoding. RW or R Preset Required

0 30 Reserved. Reads as zero, must be written as zero. R 0 Reserved

56 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.22 SRSConf3 (CP0 Register 6, Select 4)

Compliance Level: Optional.

The SRSConf3 register is instantiated per VPE. It indicates the binding of TCs or other GPR resources to Shadow
Register Sets 10 through 12.

Figure 4-21 shows the format of the SRSConf3 register; Table 4-17 describes the SRSConf3 register fields.

Each SRSx field of the SRSConf3 register identifies which GPR will be used for references to Shadow Register Set x. An
SRSx field value may be hard-wired to all-ones (0x3ff) to indicate that the processor logic does not support the associated
SRS number. If any SRS numbers are uninstantiated, they should be in a contiguous range starting from the highest
number, i.e. SRS12 may be uninstantiated while SRS11 and SRS10 are instantiated, but SRS10 must be instantiated if
SRS11 is instantiated. The M bit should only be set, and the SRSConf4 register should only be implemented, if all three
SRSx fields of SRSConf3 are instantiated.

The semantics and encodings of the SRSx fields of the SRSConf3 register are the same as those of the SRSConf0 register,
except in that they are applied to Shadow Register Sets 10 through 12. See section 4.19.

Figure 4-21 SRSConf3 Register Format

31 30 29 20 19 10 9 0

M 0 SRS12 SRS11 SRS10

Table 4-17 SRSConf3 Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

M 31 If set, SRSConf4 register is implemented. If clear, no
more than 9 shadow sets may be configured. R Preset Required

SRS12 29:20 GPR set to be used if CSS = 12. See below for encoding. RW or R Preset Required

SRS11 19:10 GPR set to be used if CSS = 11. See below for encoding. RW or R Preset Required

SRS10 9:0 GPR set to be used if CSS = 10. See below for encoding. RW or R Preset Required

0 30 Reserved. Reads as zero, must be written as zero. R 0 Reserved

4.23 SRSConf4 (CP0 Register 6, Select 5)

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 57

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.23 SRSConf4 (CP0 Register 6, Select 5)

Compliance Level: Optional.

The SRSConf4 register is instantiated per VPE. It indicates the binding of TCs or other GPR resources to Shadow
Register Sets 13 through 15.

Figure 4-22 shows the format of the SRSConf4 register; Table 4-18 describes the SRSConf4 register fields.

Each SRSx field of the SRSConf4 register identifies which GPR will be used for references to Shadow Register Set x. An
SRSx field value may be hard-wired to all-ones (0x3ff) to indicate that the processor logic does not support the associated
SRS number. If any SRS numbers are uninstantiated, they should be in a contiguous range starting from the highest
number, i.e. SRS15 may be uninstantiated while SRS14 and SRS13 are instantiated, but SRS13 must be instantiated if
SRS14 is instantiated.

The semantics and encodings of the SRSx fields of the SRSConf4 register are the same as those of the SRSConf0 register,
except in that they are applied to Shadow Register Sets 13 through 15. See section 4.19.

Figure 4-22 SRSConf4 Register Format

31 30 29 20 19 10 9 0

0 SRS15 SRS14 SRS13

Table 4-18 SRSConf4 Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

SRS15 29:20 GPR set to be used if CSS = 15. See below for
encoding. RW or R Preset Required

SRS14 19:10 GPR set to be used if CSS = 14. See below for
encoding. RW or R Preset Required

SRS13 9:0 GPR set to be used if CSS = 13. See below for
encoding. RW or R Preset Required

0 31,30 Reserved. Reads as zero, must be written as zero. R 0 Reserved

58 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.24 Modifications to Existing MIPS Privileged Resource Architecture

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 59

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.24 Modifications to Existing MIPS Privileged Resource Architecture

The Multithreading ASE modifies some elements of the existing MIPS32 PRA

4.24.1 SRSCtl Register

The HSS field value can change at run-time if an implementation allows TCs to be assigned to SRSs via the
SRSConf0-SRSConf4 registers. The HSS value tracks the highest valid SRSx field of an SRSConf register. Software must
ensure that the HSS field does not take on a value that makes the value of any of the PSS, CSS, ESS, or EISS fields of the
SRSCtl register illegal (see section 4.19).

A zero value in the PSS or CSS field of the SRSCtl register indicates that the previous or current “shadow set” is not a
built-in SRS or a TC register file allocated to a Shadow Set, but is in fact the register set belonging to the TC servicing
the exception, whose number can be found in the CurTC field of the TCBind register, as read with an MFC0 instruction
by the exception handler.

4.24.2 Cause Register

There is a new Cause register ExcCode value required for the Thread exceptions

4.24.3 Machine Check Exceptions

A MIPS MT processor does not generate Machine Check exceptions on duplicate TLB entries. Duplicate entries must
be detected and suppressed on TLB writes, without causing an exception.

4.24.4 Debug Register

On a MIPS MT processor, the SSt and OffLine fields of the EJTAG Debug register are instantiated per-TC. All other
read/write fields are implemented per-VPE. See section 8.1.

4.24.5 EBase

Each VPE sees a distinct value in the CPUNum field of the EBase register.

4.24.6 Config1 Register

The normally read-only MMU_Size, C2, MD, and FP fields of the Config1 register may be modifiable by software while
a processor is in a configuration state, as defined by the VPC bit of the MVPControl register (see section 6.2).

4.24.7 Config3 Register

A new Config3 register field is defined to express and control the availability of the MIPS MT ASE.

Table 4-19 MIPS MT Thread Exception

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

25 16#19 Thread Thread Allocation, Deallocation, or Scheduling Exceptions

60 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

4.25 Thread State as a Function of Privileged Resource State

The following table summarizes the TC state definitions of section 1.2 in terms of the associated ASE privileged resource
state.

4.26 Thread Allocation and Initialization Without FORK

The procedure for an operating system to create a thread “by hand” would be:

1. Execute a DMT to stop other threads from executing and possibly FORKing or Halting threads.

2. Execute a JR.HB to ensure that other threads have quiesced.

3. Identify an available TC by setting the TargTC field of the VPEControl register to successive values from 0 to
PTC, reading the TCBind registers with an MFTR instruction to identify those belonging to the same VPE (those
having the same value in the TCBind CurVPE field as the current “parent” thread), and reading their TCStatus and
TCHalt registers with MFTR instructions. A free TC will have neither the H bit of TCHalt nor the Activated bit of
TCStatus set, as per Table 4-21. TCs that have been assigned for use as shadow register storage must be skipped in
this search.

4. Perform an MTTR of a value of 1 to the selected TC’s TCHalt register to prevent it being allocated by another
thread.

5. Execute an EMT instruction to re-enable multithreading.

6. Copy any desired GPRs or other program state into the selected TC using MTTR instructions.

7. Write the desired starting execution address into the thread’s restart address register using an MTTR instruction to
the selected TC’s TCRestart register.

8. Write a value with a 1 in the Activated bit position to the selected TCStatus register using an MTTR instruction.

9. Write a value of zero into the selected TCHalt register using an MTTR instruction.

Table 4-20 New Config3 Fields for MIPS MT

Field

Description
Read/
Write

Reset
StateName Bit

MT 2 Indicates that the MT ASE is implemented on the
processor. R Preset

Table 4-21 TC State as Function of MIPS MT PRA State

TCHalt.H TCStatus.A TCStatus.RNST TC State

1 x x Halted

0 0 x Free

0 1 0
Activated

Running

0 1 >0 Blocked

4.27 Thread Termination and Deallocation without YIELD

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 61

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

The newly allocated thread will then be schedulable. The steps of executing DMT and EMT can be skipped if EXL or
ERL are known to be set during the procedure, as they implicitly inhibit multithreaded execution.

4.27 Thread Termination and Deallocation without YIELD

The procedure for an operating system to terminate the current thread would be:

1. Write a value with EXL = 0, ERL = 0, and KSU = 0 to the Status register using MTC0, setting Kernel mode for the
retiring TC and removing the inhibition of multithreaded execution due to EXL/ERL.

2. Write a value with zero in the Activated bit position to the TCStatus register, using a standard MTC0 instruction.

One thread, running in a privileged mode, could also terminate another, using MTTR instructions, but it would present
an additional problem to the OS to determine which TC should be deallocated and at what point the state of the thread’s
computation is stable.

4.28 Multithreading and Coprocessors

Coprocessors attached to a multithreaded VPE may have a single context, which must be shared among processor
threads, or it may have multiple contexts, such that distinct instruction streams executing concurrently from multiple TCs
can likewise have concurrent use of coprocessor resources. A “multithreaded” coprocessor, with multiple coprocessor
contexts, need not have the same number of contexts as the VPE to which it is attached has TCs. For VPE to use a
coprocessor, some mapping, which may or may not be dynamic, must exist between a TC and an associated coprocessor
context. This could be an implicit 1:1 or many-to-one mapping, an even/odd or other hash mapping, or a programmable
mapping. A coprocessor context is bound to a TC if a mapping exists from the TC to the coprocessor context, and access
to the coprocessor context by the TC’s instruction stream is mediated by the CU bit of the TC. Coprocessor instructions
in the instruction stream associated with the TC reference the bound coprocessor context.

The mechanisms by which coprocessor contexts are bound to TCs are implementation dependent. It is possible for a
coprocessor context to be bound to multiple TCs, as in the case where a single coprocessor context is implemented with
a many-to-one mapping from all TCs of a VPE. In such configurations, it is the responsibility of software to coordinate
the use of the shared resource by managing the state of CU bits.

The Coprocessor Usable bits CU3..0 are instantiated per TC, and are also visible as the TCU3..0 bits of the TCStatus
register (see section 4.12) of each TC. Access to the coprocessor context bound to a TC is granted to instructions
executing on that TC only if the CU/TCU bit corresponding to the coprocessor is set, otherwise a Coprocessor Unusable
exception is delivered to the TC. The FORK operation preserves the CUx values of each TC, so that bindings between
coprocessor contexts and TCs can be preserved across FORK/YIELD 0 thread instantiations.

Coprocessor context state is accessible via MFTR and MTTR instructions which target the TC to which the coprocessor
context is bound (see MFTR, MTTR). MFTR and MTTR access is unaffected by the state of CU bits, neither those of
the TC issuing the MFTR/MTTR (which control access to coprocessors bound to that TC only), nor those of the target
TC. Any exceptions enabled, unmasked, or created by MTTR operations on a coprocessor context must be serviced at
some appropriate point by the TC to which the coprocessor context is bound, not the TC issuing the MTTR.

While the means of binding coprocessor contexts to thread contexts are coprocessor-specific, a multithreaded
coprocessor must provide sufficient means for diagnostic and operating system software to access selectively any context
instantiated on the coprocessor.

62 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 63

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 5

MIPS MT Restrictions on MIPS32 Implementation

5.1 WAIT Instructions

The MIPS32 ISA allows for implementation dependent semantics of the WAIT instruction. MIPS MT adds the
restriction that a WAIT issued by one TC does not shut down the processor or VPE if other TCs are still in a Running
state.

5.2 SC Instructions

MIPS32 SC instruction semantics may be extended by MIPS MT gating storage implementations to support “try”
operations. See section A.2 for an example. Gating storage is not cacheable, so LL/SC sequences to gating storage would
normally have UNPREDICTABLE results in the MIPS32 architecture. MIPS MT gating storage extensions may
overload the normal LL/SC semantics, such that the reported success or failure of a conditional store operation is
completely independent of any prior LL instructions and/or stores to coherent cacheable (or otherwise “synchronizable”)
memory.

64 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 MIPS MT Restrictions on MIPS32 Implementation

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 65

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 6

Multiple Virtual Processors in MIPS MT

6.1 Multi-VPE Processors

A core or processor may implement multiple VPEs sharing resources such as functional units. Each VPE sees its own
instantiation of the MIPS32 instruction and privileged resource architecture. Each sees its own register file or TC array,
each sees its own CP0 system coprocessor and its own set of TLB entries. Two VPEs on the same processor can be
operated by the same systems software as for a 2-CPU cache-coherent SMP multiprocessor. While each VPE on a
processor has a distinct set of CP0 resources, these sets of resources need not be identical. Each must have a minimum
complement as defined by those privileged resources which are required by the architecture, but some may have more.
The privileged resources of at least one VPE per processor (VPE 0) reset to a sane reset state as per the MIPS32
privileged resource architecture specification.

Each VPE on a processor sees a distinct value in the EBase.CPUNum CP0 register field, as if it were a distinct core in a
multi-core SoC.

Processor architectural resources such as TC and TLB storage and coprocessors may be statically bound to VPEs in a
hard-wired configuration, or they may be configured dynamically in a processor supporting the necessary configuration
capability.

6.2 Reset and Virtual Processor Configuration

To be backward compatible with the MIPS32 PRA, a configurably multithreaded//multi-VPE processor must have a sane
and MIPS32-compatible default TC/VPE configuration at reset, that of a single active VPE with a single activated TC.

A VPE has the ability to access and directly manipulate another VPEs processor resources, or to enable or disable
another VPE’s execution, only if it is a “Master” VPE, designated by having the VPEConf0.MVP bit set (see section 4.6).
At reset, only one VPE may have the MVP bit set, though implementations may allow it to be set for other VPEs as part
of post-reset software configuration. If its MVP bit is set, a VPE may:

• Read and write per-TC registers of TCs bound to other VPEs by using MFTR/MTTR instructions with appropriate
values in the TargTC field of VPEControl (see section 4.5).

• Read and write per-VPE registers of other VPEs by using MFTR/MTTR instructions with values in TargTC that
correspond to TCs bound to the target VPE (see section 4.13).

• Set or clear the EVP bit of the global MVPControl register (see section 4.2) using MTC0 or DVPE/EVPE
instructions.

• Set or clear the VPA bit of the per-VPE VPEConf0 registers using MTTR instructions to put VPEs on or off-line.

• Set or clear the MVP bit of other VPEs using MTTR instructions, or clear the local VPE’s MVP bit using MTC0.

• Set the VPC bit of MVPControl, if it is implemented, allowing reconfiguration of processor hardware resources and
capabilities.

• Set the XTC field of VPEConf0 of other VPEs (see section 4.6) using MTTR instructions.

If this capability is ignored, as by legacy software, the processor will behave as per specification for the default
configuration.

66 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 Multiple Virtual Processors in MIPS MT

Modification of one VPE’s state by another is only guaranteed safe if the EVP bit has been cleared and a hazard barrier
executed. This applies to both per-VPE state, and per-TC state of TCs outside the scope of the modifying TC.

Setting the MVPControl.VPC (Virtual Processor Configuration) bit puts the processor into a configuration state in which
the contents of certain normally read-only “preset” fields of Config and other registers become writable.
Implementations may impose restrictions on configuration-state instruction streams, e.g. they may be forbidden to use
cached or TLB-mapped memory addresses.

The total number of VPEs is encoded in the MVPConf0.PVPE field. VPEs are numbered from 0 to MVPConf0.PVPE.
A “Master” VPE may select another VPE as a target of an MFTR or MTTR operation by selecting (or setting up) a TC
bound to the target VPE, and using that TC as the target of the MFTR/MTTR. If VPC is set, the normally read-only
register fields outlined in Table 6-1 can potentially be modified by writing to them with MTTR instructions.

Not all of the above configuration parameters need be configurable. For example, the number of TLB entries per VPE
may be fixed, FPUs may be pre-allocated and hard-wired per VPE, etc. Statically assigned resources are reflected in the
reset-time values in the Config, Config1, VPEConf, and TCBind registers. The existence of dynamically assignable
resources is indicated in the MVPConf0 and MVPConf1 registers, and these resources are assigned to VPEs by writing
new values to the Config and VPConf registers that reflect the allocation of resources. In the event that an
implementation cannot provide the resource allocation or configuration implied by a write to one of the per-VPE
configurable fields, e.g. if TLB entries are assignable only in blocks of 4, and an attempt is made to allocate 18 entry
pairs to a VPE, a subsequent read will reflect the actual resource configuration. If a field containing a quantitative value
is written to an implementation which cannot support that value, the implementation will set and subsequently return a
supported value.

A VPE is enabled for execution by setting the VPEConf0.VPA activation bit with a MTTR to that register.

The configuration state is exited by clearing MVPControl.VPC, which makes the configuration register fields read-only
with their new values. Multi-VPE execution is enabled by setting MVPControl.EVP, either explicitly or via an EVPE
instruction. This causes all Activated VPEs to begin fetching and executing concurrently. If a VPE’s MVP bit is cleared,
the VPC and EVP bits can no longer be manipulated by that VPE. If MVP is cleared for all VPEs, the processor
configuration is effectively frozen until the next processor reset. If MVP remains set, an operating system may re-enter
the configuration mode by clearing EVP (to stop other VPEs from running concurrently) and again setting the VPC bit.

Table 6-1 Dynamic Virtual Processor Configuration Options

Register Field Meaning Indicator of Configurability

Config1 MMU_Size Number of TLB Entry Pairs MVPConf0 PTLBE > 0

Config1 C2 Coprocessor 2 Present MVPConf1 PCP2 > 0

Config1 MD Media Accelerator Present MVPConf1 PCP1 > 0 and MVPConf1 C1M = 1

Config1 FP FPU Present MVPConf1 PCP1 > 0 and MVPConf1 C1F = 1

MVPControl STLB TLB Shared across VPES MVPConf0 TLBS = 1

VPEConf1 NCP1 Number of FP/Media Coprocessor
contexts available MVPConf1 PCP1 > 0

VPEConf1 NCP2 Number of Coprocessor 2 Contexts
available MVPConf1 PCP2 > 0

VPEConf1 NCX Number of CorExtend Contexts
available MVPConf1 PCx > 0

TCBind CurVPE VPE binding of TC MVPConf0 TCA = 1

6.3 MIPS MT and Cache Configuration

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 67

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

6.3 MIPS MT and Cache Configuration

Whether or not cache tags and data can be shared between VPEs is implementation dependent. Simultaneous
line-locking by multiple VPEs sharing a cache may result in undesirable behavior. Sharing of virtually tagged caches by
multiple VPEs implies that a VPE number or other unique VPE tag must be concatenated with the ASID in the cache
tags. Cache errors in shared caches must be signalled to all VPEs sharing the cache (see section 2.7).

CACHE instruction operations in MIPS MT processors must be atomic with respect to concurrent threads of execution,
e.g. a load from one TC must not be allowed to reference a memory location between its invalidation in the cache and
its write-back to memory due to a writeback-invalidate CACHE instruction from another TC.

68 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 Multiple Virtual Processors in MIPS MT

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 69

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 7

Data-Driven Scheduling of MIPS MT Threads

Multithreaded execution models lend themselves to data-driven algorithms, where the availability or absence of data in
a storage or I/O location determines whether or not an instruction stream can advance. This paradigm requires some
architectural and microarchitectural support.

7.1 Gating Storage

Gating Storage is an attribute of memory which may optionally be supported by processors implementing the MT ASE.
The user-mode load/store semantics of gating storage are identical with those of normal memory, except that completion
of the operation may be blocked for unbounded periods of time. The distinguishing feature of gating storage is that
outstanding load or store operations can be aborted and restarted. It is a TLB-mediated property of a virtual page whether
or not a location is treated as gating storage. Gating storage support may be restricted to certain ranges of physical
addresses, and may require special page attributes in some implementations, but any mapped virtual page may resolve
to gating storage.

When a load or store operation is performed on gating storage, no instructions beyond the load/store in program order
are allowed to alter the software-visible state of the system until a load result, a store confirmation, or an exception is
returned from storage. An exception returned by gating storage logic in response to a load or store is delivered as a
Thread exception on the load or store, with a value of 3 in the EXCPT field of the VPEControl register to indicate the
Gating Storage exception (see section 2.3). In the event that an exception is taken using the TC of an instruction stream
which is blocked on a load/store to gating storage, whether or not that exception originates from the gating storage logic,
or in the event where such a thread is halted by setting the H bit of the TCHalt register of the associated TC, the pending
load/store operation is aborted.

If both the GSI bit of the VPEControl register and the DT bit of the TCStatus register are set when a load or store
operation from the associated VPE is determined to be blocked by gating storage, a Thread exception is delivered on the
load/store, preempting the memory operation, with a value of 5 in the EXCPT field of VPEControl to indicate a GS
Scheduler exception, which allows a software scheduler to take control of the VPE and override the default hardware
scheduling logic. The conditioning of GSI by the DT bit allows software to explicitly allow a blocking gating storage
reference to be resumed without causing an exception, by clearing DT before restarting the TC.

When a load or store is aborted, the abort is signalled to the storage subsystem, such that the operation can
unambiguously either complete or be abandoned without any side-effects. If a load operation is abandoned, any hardware
interlocks on the load dependence are released, so that the destination register can be used as an operand source, with its
pre-load value.

On an exception resulting in an aborted and abandoned load/store, the program counter as seen by the EPC register and
the branch delay state as seen by the Cause.BD bit are set so as that the execution of an ERET by the instruction stream
associated by the TC, or a clearing of the TC halted state, will cause a re-issue of the gating load/store.

Gating storage accesses are never cached, and multiple stores to a gating storage address are never merged by a processor.

70 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 7 Data-Driven Scheduling of MIPS MT Threads

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 71

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 8

EJTAG and MIPS MT

8.1 EJTAG Debug Resources

The MIPS EJTAG resources are instantiated per VPE, with the exception of the Debug register. The SSt and OffLine bits
of the Debug register are instantiated per TC. MFC0s and MTC0s of the Debug register reference the SSt and OffLine
bit values corresponding to the bits of the TC issuing the MFC0, with the rest of the register field values being those of
the VPE to which the issuing TC is bound. MFTRs and MTTRs of the Debug register of the target TC reference the
Debug register as seen by the target TC: the SSt and OffLine bits are those of the target TC, and the rest of the register
field values are those of the VPE to which the target TC is bound at the time the MFTR/MTTR is issued.

The SSt bit state is unaffected by a FORK instruction.

It is implementation dependent whether EJTAG hardware breakpoint facilities are instantiated per-VPE or shared. If they
are shared, however, the associated Debug exceptions must be delivered to the VPE containing the TC which triggered
the breakpoint.

8.2 Debug Exception Handling

EJTAG Debug exception handling overrides the basic thread scheduling mechanisms of MIPS MT. When a Debug
exception occurs, all thread scheduling is suspended across all VPEs of a processor until Debug mode is cleared. The
XTC fields of the VPEConf0 registers are not affected. If a TC is executing in Debug mode, its Activated and Halted
states are ignored, as are the effects of any DMT or DVPE instruction issued by another TC which may have caused it
to be suspended. This concerns mostly asynchronous Debug exceptions (see below), but it also resolves any races
between a TC being Halted or de-Activated by the action of another TC and the dispatch of a synchronous Debug
exception. A DERET by an otherwise Halted TC is an implicit instruction hazard barrier, so that even if the first
instruction dispatched by the multithreading scheduler is an MFTR access to the Halted TC, the per-TC state is stable.

So long as any VPE is running in Debug mode, asynchronous Debug exception requests, e.g. DINT, are ignored by all
VPEs of a processor.

If the SSt bit of a TC is set, a Debug exception will be taken by that TC after any non-Debug mode instruction is executed.
Other TCs with SSt cleared are scheduled and issue instructions normally according to the scheduling policy in force.
Global single-step operation of a VPE can be achieved by setting SSt for all TCs.

Debug exceptions from data-value EJTAG hardware breakpoints are treated as asynchronous exceptions by a MIPS MT
processor, as imprecise synchronous exceptions are not permitted.

Asynchronous Debug exceptions such as DINT and data-value breakpoints may be serviced by any TC that is bound to
the VPE taking the exception, as the hardware implementation sees fit. This includes TCs that are otherwise Halted,
non-Activated, off-line via the Debug register OffLine bit or bound for use as shadow register sets. This allows an EJTAG
debugger to get control of VPEs that are otherwise locked-up due to programming errors that result in no schedulable
TCs on the VPE.

While entry into Debug mode does not affect any software-visible MIPS MT state, execution in Debug mode confers
privilege equivalent to the MVP bit being set in the VPEConf0 register.

72 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 8 EJTAG and MIPS MT

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 73

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Appendix A

Inter-Thread Communication Storage

Inter-Thread Communication (ITC) Storage is a Gating Storage capability which provides an alternative to
Load-Linked/Store-Conditional synchronization for fine-grained multi-threading. It is invisible to the instruction set
architecture, as it is manipulated by loads and stores, but it is visible to the Privileged Resource Architecture.

A.1 Basic Concepts

As described in section 7.1 of the MIPS MT ASE specification, the fundamental property of Gating Storage is that it
synchronizes execution streams. Loads and stores to/from gating storage may block unless and until the state of the
storage location corresponds to some set of required conditions for completion. A blocked load or store can be precisely
aborted if necessary, and restarted by the controlling operating system if appropriate.

The MT ASE specification goes no further in defining Gating Storage semantics. This appendix describes a reference
ITC storage model, an instance of Gating Storage which provides lightweight support for a number of standard
interprocessor and interprocess communication and synchronization primitives.

References to memory pages which map to ITC storage resolve not to main memory, but to a gating store with special
attributes. Each page maps a set of 1 to 32 64-bit storage locations, called cells, each of which can be accessed in one of
16 ways, called views, using standard load and store instructions. The view is encoded in the low order (and untranslated)
bits 6:3 of the generated memory address, such that the successive views of a cell correspond to successive 64-bit-aligned
addresses.

A.2 An ITC Storage Reference Model

In the MIPS MT ITC reference model, each cell of the ITC store has Empty and Full boolean states associated with it in
addition to the data value of the cell. The cell views are then defined by Table A-1

Table A-1 ITC Reference Cell Views

Address Bits
6:3 Value ITC Storage Behavior

2#0000 Bypass. Loads and stores do not block, and do not affect Empty/Full states.

2#0001

Control. Read or Write of Status/Control Information:

Data Bit(s) Meaning

0 If set, cell is Empty and will block on an attempt to load as synchronized
storage.

1 If set, cell is Full and will block on an attempt to store as synchronized
storage.

15:2 Reserved for future architectural definition

63:16 Implementation Dependent State

74 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Appendix A Inter-Thread Communication Storage

Each storage cell could thus be described by the C structure:

struct {
uint64 bypass_cell;
uint64 ctl_cell;
uint64 ef_sync_cell;
uint64 ef_try_cell;
uint64 pv_sync_cell;
uint64 pv_try_cell;
uint64 res_arch[10];

} ITC_cell;

2#0010

Empty/Full Synchronized view. Loads will cause the issuing thread to block if cell is Empty,
and set the Empty state on returning the last available load value. Stores will block if the cell
is Full, and set the Full state on the cell accepting the last possible store value. Minimally, a
cell can contain a single value.

2#0011

Empty/Full “Try” view. Loads will return a value of zero if cell is Empty, regardless of the
actual data contained. Otherwise load behavior is same as in Empty/Full Synchronized view.
Normal stores to Full locations through the E/F Try view fail silently to update the contents
of the cell, rather than block the thread of execution. SC (Store Conditional) instructions
referencing the E/F Try view will indicate success or failure based solely upon whether the
ITC store succeeds or fails due to the Full state. Otherwise store behavior is same as in
Empty/Full Synchronized view.

2#0100

P/V Synchronized view. Loads return the current cell data value if the value is non-zero, and
cause an atomic post-decrement of the cell value. If the cell value is zero, loads block until the
cell takes a non-zero value. Stores cause an atomic increment of the cell value, up to a
maximal value at which they saturate, regardless of the register value stored. P/V loads and
stores do not modify the Empty and Full bits, both of which should be cleared as part of cell
initialization for P/V semaphore use.

The width of the incremented/decremented field within the ITC cell need not be the full 32 or
64-bit width of the cell. It must, however, implement at least 15 bits of unsigned value. Bits
more significant than the width of the incremented/decremented field are ignored for the
purposes of computing zero/non-zero values in P/V operations.

2#0101

P/V “Try” view. Loads return the current cell data value, even if zero. If the load value is
non-zero, an atomic post-decrement is performed on the cell value. Stores cause a saturating
atomic increment of the cell value, as described for the P/V Synchronized view, and cannot
fail. Loads and stores do not modify the Empty and Full bits, both of which should be cleared
as part of cell initialization for P/V semaphore use.

2#0110 Architecturally Reserved View 0

2#0111 Architecturally Reserved View 1

2#1000 Architecturally Reserved View 2

2#1001 Architecturally Reserved View 3

2#1010 Architecturally Reserved View 4

2#1011 Architecturally Reserved View 5

2#1100 Architecturally Reserved View 6

2#1101 Architecturally Reserved View 7

2#1110 Architecturally Reserved View 8

2#1111 Architecturally Reserved View 9

Table A-1 ITC Reference Cell Views

Address Bits
6:3 Value ITC Storage Behavior

A.3 Multiprocessor/Multicore ITC

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 75

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Where all of the defined elements except ctl_cell reference the same underlying storage. Implementation dependent
views may reference additional per-cell state. References to the cell storage may have access types of less than the cell
data width (e.g. LW, LH, LB), with the same Empty/Full and semaphore protocols being enforced on a per-access basis.
Store/Load pairs of the same data type to a given ITC address will always reference the same data, but the byte and
halfword ordering within words, and the word ordering within 64-bit doublewords, may be implementation and
endianness-dependent, i.e. a SW followed by a LB from the same ITC address is not guaranteed to be portable. The effect
of writing less than the implemented width of the control view of an ITC cell is implementation dependent, and such
stores may have UNPREDICTABLE results.

While the design of ITC storage allows references to be expressed in terms of C language constructs, compiler
optimizations may generate sequences that break ITC protocols, and great care must be taken if ITC is directly
referenced as “memory” in a high-level language.

Systems which do not support 64-bit loads and stores need not implement all 64 bits of each ITC cell as storage. If only
32 bits of storage are instantiated per cell, it must be visible in the least significant 32-bit word of each view, regardless
of the endinanness of the processor. The results of referencing the most significant 32 bits of such a cell view are
implementation-dependent. These requirements can be satisfied by ignoring the 22 bit of the address on each access. In
this way a C language cast from a uint64 to a uint32 reference will acquire the data in both big-endian and little-endian
CPU configurations.

Empty and Full bits are distinct so that decoupled multi-entry data buffers, such as FIFOs can be mapped into ITC
storage.

ITC storage can be saved and restored by copying the {bypass_cell, ctl_cell} pair to and from general storage. In the
case of multi-entry FIFO data buffers, each cell must be read using and Empty/Full view until the Control view shows
the cell to be Empty to drain the buffer on a copy. The FIFI state can then be restored by performing a series of
Empty/Full stores to an equivalent FIFO cell, starting in an Empty state. Implementations may provide depth counters
in the implementation-specific bits of the Control view to optimize this process.

The “Try” view exploits the ability of the standard MIPS32 SC instructions to indicate failure of a store operation. The
behavior of conditional stores to non-Try ITC views is implementation dependent.

A.3 Multiprocessor/Multicore ITC

ITC storage may be strictly local to a processor/core or it may be shared across multiple processors. The “physical
address space” of shared ITC storage should be consistent across all processors sharing the storage. Processors or cores
designed for uniprocessor applications need not export a physical interface to the ITC storage, and can treat it as a
processor-internal resource.

A.4 Interaction with EJTAG Debug Facilities

The Debug state of a processor is not visible to ITC storage logic, and no exceptions are made for Debug mode execution.
If a load or store is issued by a processor in Debug mode to an ITC cell view which stalls, the processor is effectively
halted until an exception of sufficiently high priority is delivered to the processor.

76 MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Appendix A Inter-Thread Communication Storage

MIPS32® Architecture for Programmers VolumeIV-f, Revision 1.00 77

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Appendix B

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Change bars
on figure titles are used to denote a potential change in the figure itself. Certain parts of this document (Instruction set
descriptions, EJTAG register definitions) are references to Architecture specifications, and the change bars within these
sections indicate alterations since the previous version of the relevant Architecture document.

Revision Date Description

1.00 September 28,2005 First official release

	MIPS32® Architecture for Programmers VolumeIV-f: The MIPS® MT Application-Specific Extension to the MIPS32® Architecture
	Table of Contents
	List of Figures
	List of Tables
	Introduction to the MIPS MT Architecture Extension
	1.1 Background
	1.2 Definitions and General Description

	MIPS MT Multithreaded Execution and Exception Model
	2.1 Multithreaded Execution
	2.2 MIPS MT Exception Model
	2.3 New Exception Conditions
	2.4 New Exception Priority
	2.5 Interrupts
	2.6 Bus Error Exceptions
	2.7 Cache Error Exceptions
	2.8 EJTAG Debug Exceptions
	2.9 Shadow Register Sets

	MIPS MT Instructions
	3.1 New Instructions
	DMT
	DVPE
	EMT
	EVPE
	FORK
	MFTR
	MTTR
	YIELD

	MIPS MT Privileged Resource Architecture
	4.1 Privileged Resource Architecture for MIPS MT
	4.2 MVPControl Register (CP0 Register 0, Select 1)
	4.3 MVPConf0 Register (CP0 Register 0, Select 2)
	4.4 MVPConf1 Register (CP0 Register 0, Select 3)
	4.5 VPEControl Register (CP0 Register 1, Select 1)
	4.6 VPEConf0 Register(CP0 Register 1, Select 2)
	4.7 VPEConf1 Register(CP0 Register 1, Select 3)
	4.8 YQMask Register (CP0 Register 1, Select 4)
	4.9 VPESchedule Register (CP0 Register 1, Select 5)
	4.10 VPEScheFBack Register (CP0 Register 1, Select 6)
	4.11 VPEOpt Register(CP0 Register 1, Select 7)
	4.12 TCStatus Register (CP0 Register 2, Select 1)
	4.13 TCBind Register (CP0 Register 2, Select 2)
	4.14 TCRestart Register (CP0 Register 2, Select 3)
	4.14.1 Special Handling of the TCRestart Register in Processors that Implement the MIPS16e ASE

	4.15 TCHalt Register (CP0 Register 2, Select 4)
	4.16 TCContext Register (CP0 Register 2, Select 5)
	4.17 TCSchedule Register (CP0 Register 2, Select 6)
	4.18 TCScheFBack Register (CP0 Register 2, Select 7)
	4.19 SRSConf0 (CP0 Register 6, Select 1)
	4.20 SRSConf1 (CP0 Register 6, Select 2)
	4.21 SRSConf2 (CP0 Register 6, Select 3)
	4.22 SRSConf3 (CP0 Register 6, Select 4)
	4.23 SRSConf4 (CP0 Register 6, Select 5)
	4.24 Modifications to Existing MIPS Privileged Resource Architecture
	4.24.1 SRSCtl Register
	4.24.2 Cause Register
	4.24.3 Machine Check Exceptions
	4.24.4 Debug Register
	4.24.5 EBase
	4.24.6 Config1 Register
	4.24.7 Config3 Register

	4.25 Thread State as a Function of Privileged Resource State
	4.26 Thread Allocation and Initialization Without FORK
	4.27 Thread Termination and Deallocation without YIELD
	4.28 Multithreading and Coprocessors

	MIPS MT Restrictions on MIPS32 Implementation
	5.1 WAIT Instructions
	5.2 SC Instructions

	Multiple Virtual Processors in MIPS MT
	6.1 Multi-VPE Processors
	6.2 Reset and Virtual Processor Configuration
	6.3 MIPS MT and Cache Configuration

	Data-Driven Scheduling of MIPS MT Threads
	7.1 Gating Storage

	EJTAG and MIPS MT
	8.1 EJTAG Debug Resources
	8.2 Debug Exception Handling

	Inter-Thread Communication Storage
	A.1 Basic Concepts
	A.2 An ITC Storage Reference Model
	A.3 Multiprocessor/Multicore ITC
	A.4 Interaction with EJTAG Debug Facilities

	Revision History

