
P C C A R D S TA N D A R D

Volume 9

XIP Specification

PCMCIA
JEIDA

©1999, PCMCIA/JEIDA
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical,
electronic, photocopying, recording
or otherwise, without prior written
permission of PCMCIA and JEIDA.
Printed in the United States of
America.

PCMCIA (Personal Computer
Memory Card International
Association)
2635 North First Street, Suite 209
San Jose, CA 95134 USA
+1-408-433-2273
+1-408-433-9558 (Fax)

JEIDA (Japan Electronic Industry
Development Association)
Kikai Shinko Kaikan, 3-5-8, Shibakoen
Minato-ku, Tokyo 105, JAPAN
+81-3-3433-1923
+81-3-3433-6350 (Fax)

The PC Card logo and PC Card are
trademarks of PCMCIA, registered in
the United States. The PC Card logo
and design are trademarks of JEIDA,
registered in Japan.

PCMCIA HAS BEEN NOTIFIED BY
CERTAIN THIRD PARTIES THAT
THE IMPLEMENTATION OF THE
STANDARD WILL REQUIRE A
LICENSE FROM THOSE THIRD
PARTIES TO AVOID
INFRINGEMENT OF THEIR
RIGHTS. PCMCIA HAS OBTAINED
FROM SOME, BUT NOT ALL , OF
THOSE PARTIES A GRANT OF
IMMUNITY THAT PCMCIA WILL
EXTEND TO YOU, CONTINGENT
UPON YOUR ENTERING INTO
AND DELIVERING TO PCMCIA
THE RECIPROCAL GRANT OF
IMMUNITY AGREEMENT
CONTAINED ELSEWHERE IN
THIS STANDARD.

IMPORTANT:
In order to receive the Grant of
Immunity, the owner of this
Standard must sign and return the
enclosed Registration Card to:
PCMCIA
2635 North First Street, Suite 209
San Jose, CA 95134 USA

NEITHER PCMCIA NOR JEIDA
MAKES ANY WARRANTY,
EXPRESS OR IMPLIED, WITH
RESPECT TO THE STANDARD,
INCLUDING AS TO NON-
INFRINGEMENT,
MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.
THIS STANDARD IS PROVIDED TO
YOU ÒAS IS.Ó

Document No. 0297-09-2000

First Printing, February 1997

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA iii

CONTENTS

1. Introduction ___1
1.1 Purpose..1

1.2 Scope..1

1.3 Related Documents ...1

1.4 Data Sizes..2

2. Overview __3
2.1 SXIP, LXIP and EXIP...3

2.1.1 Hardware support for EXIP ..3

2.1.2 Hardware support for LXIP ..3

2.1.3 Hardware support for SXIP...3

3. XIP Partitions __5
3.1 XIP Partition Identification ...5

3.2 XIP Partition Structure..5
3.2.1 XIP Partition Header Structure...5

3.2.2 XIP Directory Structure ...6

4. XIP Device Driver Architecture__________________________ 11
4.1 Migration Path of Drivers..11

4.2 Sharing the Hardware Interface Between Device Drivers...11
4.2.1 Device Driver Load Order...11

4.3 XIP Loader...12

4.4 XIP IOCTL References...12

4.5 XIP Driver Chain..12

5. XIP Applications Programming Interface_________________13
5.1 XIP API Calling Interface..13

5.1.1 Initializing the XIP Interface..13

5.1.2 Calling the XIP API..13

5.2 XIP API Functions...13
5.2.1 Get XIP Version (Common)..15

5.2.2 Get XIP Mappable Segments (SXIP, LXIP) ..16

5.2.3 Get XIP Partition IDs (Common)..17

5.2.4 Get XIP Handle Range (Common) ...18

5.2.5 Map/Unmap an XIP Handle's Pages (SXIP, LXIP) ..19

5.2.6 Get XIP Mapping Context Size (Common) ...21

CONTENTS

iv © 1999 PCMCIA/JEIDA

5.2.7 Get XIP Mapping Context (Common)...22

5.2.8 Set XIP Mapping Context (Common)..23

5.2.9 Search for XIP Directory Entry (Common) ..24

5.2.10 Search for full XIP Directory (Common) ..25

5.2.11 Get First XIP Directory Entry (Common)...26

5.2.12 Get Next XIP Directory Entry (Common)...27

5.2.13 Add XIP Directory Entry (Write)..28

5.2.14 Copy XIP Page (Write) ...29

5.2.15 Delete XIP Directory Entry (Write)...30

5.2.16 Erase XIP Partition (Write)..31

5.2.17 Close XIP Directory Entry (Write) ..32

5.2.18 Execute XIP Application (Common)...33

5.2.19 Map Extended Segment (EXIP)..34

5.2.20 Unmap Extended Segment (EXIP)..35

5.2.21 Get Partition ID from Address (Common)..36

5.2.22 Get Slot Number (Common)..37

5.2.23 Disable Partition ID (Common)...38

6. Appendices __ 39
6.1 XIP Equate Values...39

6.1.1 Summary of XIP Function Codes...39

6.1.2 Summary of XIP Status Codes ..40

6.2 DOS Operating System Binding ...41
6.2.1 Introduction...41

6.2.1.1 Related Documents..41

6.2.1.2 Data Sizes..41

6.2.1.3 Included Code..41

6.2.2 XIP Loader and Execution...41

6.2.2.1 Termination of XIP Execution..4 1

6.2.2.2 SXIP Execution...42

6.2.2.3 SXIP Image Format ..42

6.2.2.4 LXIP Execution..42

6.2.2.5 LXIP Image format...42

6.2.3 XIP API Details ...43

6.2.3.1 Get XIP Version (Common)...43

6.2.3.2 Get XIP Mappable Segments (LXIP)...43

6.2.3.3 Get XIP Partition IDs (Common)...43

6.2.3.4 Get XIP Handle Range (Common) ..43

6.2.3.5 Map/Unmap an XIP Handle's Pages (LXIP)...44

6.2.3.6 Get XIP Mapping Context Size (Common) ..44

6.2.3.7 Get XIP Mapping Context (Common)..44

6.2.3.8 Set XIP Mapping Context (Common)...44

6.2.3.9 Search for XIP Directory Entry (Common) ...44

6.2.3.10 Get First XIP Directory Entry (Common)..45

6.2.3.11 Get Next XIP Directory Entry (Common)..45

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA v

6.2.3.12 Add XIP Directory Entry (Write)...45

6.2.3.13 Copy XIP Page (Write) ..45

6.2.3.14 char_buffer DS:SI Delete XIP Directory Entry (Write) ...46

6.2.3.15 Erase XIP Partition (Write)...46

6.2.3.16 Close XIP Directory Entry (Write) ...46

6.2.3.17 Map Extended Segment (EXIP)...46

6.2.3.18 Unmap Extended Segment (EXIP) ...46

6.2.3.19 Get Partition ID from Address (Common)...47

6.2.3.20 Get Slot Number (Common)...47

6.2.3.21 Disable Partition ID (Common)..47

6.2.3.22 Execute XIP Application (Common)..47

6.2.3.23 Search for full XIP Directory Entry (Common)...47

6.2.3.24 Secondary Map/Unmap an XIP Handle's Pages (LXIP)..48

6.2.3.25 Secondary Set XIP Mapping Context (Common)..48

6.2.3.26 Secondary Search for XIP Directory Entry (Common) ..48

6.2.3.27 Secondary Add XIP Directory Entry (Write) ..48

6.2.3.28 Secondary Copy XIP Page (Write)..49

6.2.3.29 Delete XIP Directory Entry (Write)..49

6.2.4 XIP Applications Programming Interface ..50

6.2.4.1 Initializing the XIP API...50

6.2.5 IOCTL Read (Get Current XIP API Entry Point)...53

6.2.6 IOCTL Write (Set New XIP API Entry Point)...55

6.2.7 Chaining into the XIP API ...57

6.2.8 Example of XIP API Use ..59

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA vii

TABLES
Table 6-1: XIP API Functions..39

Table 6-2: XIP Status Codes ...40

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 1

1 . I N T R O D U C T I O N

1.1 Purpose
In order to achieve savings of both RAM and ROM1, it is beneficial to directly execute applications
from ROM, without loading the image of the application into RAM prior to execution. A number of
machines currently offer this capability; however, there is no application-level portability between
these machines. This specification outlines a standard method, hereinafter referred to as eXecute In
Place, or XIP, of achieving this.

This document shall describe the Metaformat tuples, data structures, driver architecture, and the
Application Programming Interface (API) for eXecute In Place (XIP), as well as the architecture and
load format of an XIP-compliant application.

1.2 Scope
This document is intended to provide enough information for software developers to design and
implement XIP applications. It is also intended to provide sufficient information to allow an
implementor to create an XIP implementation.

1.3 Related Documents
This section identifies documents related to the eXecute In Place Interface Specification. Information
available in the following documents is generally not duplicated within this document.

The following documents which comprise the PC Card Standard:

PC Card Standard Release 7.0 (February 1999), PCMCIA /JEIDA
Volume 1. Overview and Glossary
Volume 2. Electrical Specification
Volume 3. Physical Specification
Volume 4. Metaformat Specification
Volume 5. Card Services Specification
Volume 6. Socket Services Specification
Volume 7. Media Storage Formats Specification
Volume 8. PC Card ATA Specification
Volume 9. XIP Specification
Volume 10. Guidelines
Volume 11: PC Card Host Systems Specification

PCMCIA Card Services Interface Specification, Release 2.00, November 1992, PCMCIA

PCMCIA Socket Services Interface Specification, Release 1.01, September 1991, PCMCIA

PCMCIA Socket Services Interface Specification, Release 2.00, November 1992, PCMCIA

Ê1 It will be seen that the physical media an XIP application is built into generally has little impact upon the application.

Thus, for the purposes of this document, unless otherwise noted, the term ROM will apply also to Flash memory, EEPROM,
etc.

INTRODUCTION

2 © 1999 PCMCIA/JEIDA

1.4 Data Sizes
The Version 1.0 XIP Specification was oriented primarily towards X86 architectures. The data
structures in this document are an evolution of those specified in that earlier document. As such, the
data sizes in the table below hold true within data structures. Data organization is "Little Endian."

Data type Bits

char 8

short int 8

int 16

long int 32

Data sizes for passed parameters within API calls are functions of the particular Operating System
Binding. In general, they tend to follow those in the above table.

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 3

2 . O V E R V I E W

Unlike other sections of the PC Card Standard, this specification is, to a very large extent
dependent upon the host processor class, and upon the host operating system. Thus, much of the
detail to be expected in a document such as this must be relegated to application notes within
appendices, each specific to a particular operating system and processor chip class.

2.1 SXIP, LXIP and EXIP
Three types of XIP support are defined in order to support three real-world architectures: LXIP,
SXIP, and EXIP.

LXIP is for systems where demand-paging is required (i.e., pages not in memory must be explicitly
paged in by software at some level). LXIP Applications are structured to operate in a 16KB paged-
execution environment.

SXIP (Simple XIP) is for those systems which have only very limited paging mechanisms. SXIP
applications are comprised of an execution image of at most 64K of code and/or read-only data, and
are monolithic in nature. These applications do no overlaying of any sort. The SXIP concept has
been added to this revision to allow execution of XIP on as wide a variety of systems as possible.

EXIP is for those systems with very large address spaces or with implicit paging (i.e., pages not in
memory when accessed are placed into memory without intervention at a software level). EXIP
applications are structured to operate in an environment where no paging is necessary, similar to an
Intel 80386 extended-addressing-mode-execution environment.

These differences have no effect on the Metaformat, XIP data structures, or driver architecture. They
are noticeable in the API described later in this document. There is significant difference in the
hardware support required, and in the way applications are structured in the respective
environments. There may also be a significant impact within particular Operating System Bindings.

2.1.1 Hardware support for EXIP
Hardware support for Card Services in protected mode is necessary and sufficient for EXIP support.

2.1.2 Hardware support for LXIP
Hardware support for Card Services in real mode is necessary and sufficient for LXIP support.In
addition to support for real mode Card Services, an XIP-compliant platform must provide, at
minimum, one contiguous window of at least 64K. This window must be capable of partitioning into
4 16K pages, each of which must be independently mappable. Additional windows and pages may
be utilized if provided.

2.1.3 Hardware support for SXIP
Hardware support for Card Services in real mode is necessary and sufficient for SXIP support.

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 5

3 . X I P P A R T I T I O N S

XIP applications are stored, by definition, on XIP partitions. XIP partitions are used only to store XIP
applications, and are entirely distinct from any other partitions, such as FAT or Flash file-system
partitions. In order to ensure that XIP applications may be properly mapped into system memory,
any XIP partition must begin on a 16K boundary, relative to the start of the card. An XIP partition is
required to be an integral number of pages long, and each page of an XIP partition is also required
to be 16K in length. If an XIP partition is not aligned on erase block or device boundaries, data
outside of the XIP partition may be destroyed if the XIP_ERASE_PARTITION function is invoked.

3.1 XIP Partition Identification
There are two tuples relevant to XIP. The "Format Tuple (CISTPL_FORMAT)" defines the data-
recording format for a card as well as the location and size of the associated memory region on the
card. The "Organization Tuple (CISTPL_ORG)" defines the organization of the data in a specific
partition. This tuple must follow a format tuple to be associated with it.

The Format Tuple for an XIP partition should have a TPLFMT_TYPE field value of
TPLFMTTYPE_MEM. An error detection method may be specified. The TPLFMT_OFFSET and
TPLFMT_NBYTES fields define the location and size of the XIP partition. The TPLFMT_FLAGS
should be set to 0. The TPLFMT_ADDRESS field is not used, and should be set to 0.

The Organization Tuple for an XIP partition should have a TPLORG_TYPE field value of
TPLORGTYPE_ROMCODE. This is somewhat misleading, as it suggests that the XIP partition is
read-only; however, writing to areas of the partition is allowed when the card technology supports
write access. The TPLORG_DESC field should have an appropriate value; the only value currently
defined is "DOS_XIP" for DOS-compatible XIP partitions.

3.2 XIP Partition Structure
Within the XIP partition, a format for the XIP application images needs to be defined in order that
the XIP manager can locate the XIP images it is to manage and map. This format is comprised of an
XIP header and an XIP Directory. Based on the size of the data structure used to describe each entry
of the XIP directory, and its offset within the first 16K block of the partition, up to 511 XIP
applications could reside within a single XIP partition. The XIP directory is not required to be 16K
in size, but it must be located wholly within the first 16K block.

3.2.1 XIP Partition Header Structure
An XIP header is located at the beginning of the XIP partition. The header is structured as:

struct XIP_partition_header {
 int max_directory_entries;
 long int xip_serial_number;
 int data_structure_version_number;
 char xip_header_reserved[24];
}

The max_directory_entries field contains the maximum number of possible entries within the XIP
directory. The size of the directory structure may be inferred from this.

XIP PARTITIONS

6 © 1999 PCMCIA/JEIDA

The XIP_serial_number shall be set on creation of an XIP partition only. It is analogous to a DOS
volume serial number.

The data_structure_version_number field shall be set to 0002H for this release.

All bytes within the xip_header_reserved array shall be set to 0FFH.

The total length of the directory for an XIP partition can be determined by:

directory length = (max_directory_entries) * 32 bytes.

The XIP partition is divided into an integer multiple of 16K fixed-length pages, where each 16K
page is aligned on 16K boundaries. Each 16K region is assigned a page number. The relationship
between page n and the byte offsets, relative to the beginning of an n-byte-long XIP partition, is
illustrated below.

16K Page
Number

Byte Offset relative to the
Beginning of an XIP
partition

Page Usage

0 00000h...03FFFh XIP Header and Directory
Structure

1

2

3

4

.

.

.

((n/4000h)-1)

04000h...07FFFh

08000h...0BFFFh

0C000h...0FFFFh

10000h...13FFFh

.

.

.

(n-4000h)...(n-1)

XIP Applications

 " "

 " "

 " "

 " "

 " "

 " "

 " "

3.2.2 XIP Directory Structure
XIP directory entries are stored as an array of fixed-length structures. The layout of an XIP directory
entry is similar to that of a DOS FAT-file-system-directory entry.

The XIP driver uses the XIP directory to determine the number of applications which are present,
their names and extensions, time and date of creation, and their locations within the partition. The
XIP directory starts immediately after the XIP header.

An XIP application occupies some number of contiguous 16KB pages. All XIP application entries are
allocated from the beginning of the XIP directory, i.e., all directory entries are allocated
contiguously and all XIP pages are allocated from the beginning of the available XIP memory pages
in the partition.

An XIP driver can determine the next unallocated memory page and directory entry by
sequentially searching the XIP directory and finding the first entry that has never been allocated
(i.e., XIP_STATUS = 0xxxxx111b). This directory entry is available for allocation, and the previous
directory entry contains the information necessary to determine the next available XIP memory
page.

The XIP driver may need to read the directory at driver initialization time and whenever a card
with an XIP partition is installed in a slot in order to determine any information it needs to operate
properly. The XIP driver will also read the "directory" at driver run time in order to support XIP
functions that access the XIP directory. If the type of memory making up the XIP partition permits
it, the XIP driver may be able to add new XIP applications into the partition. ROM XIP partitions

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 7

cannot support adding new XIP applications; Flash or EEPROM XIP partitions could support this
functionality.

Byte Name

0...7 XIP_NAME

8...10 XIP_EXT

11 XIP_STATUS

12...13 XIP_APP_BEGIN

14...15 XIP_APP_OFFSET

16 XIP_APP_TYPE

17 XIP_VERSION_REQD

18..20 XIP_RESERVED

21 XIP_HEADER_CKSUM

22...23 XIP_CREATION_TIME

24...25 XIP_CREATION_DATE

26...27 XIP_FIRST_APP_PAGE

28...31 XIP_SIZE

Bytes 0-7 (XIP_NAME):

Specifies an ASCII string that is the primary name of this XIP application. The format of this name,
in combination with the next field, XIP_EXT, is the same as the DOS primary-file name: 8 characters
followed by three characters. If the name is less than eight (8) characters, it must be padded on the
right with blanks (20h).

Bytes 8-10 (XIP_EXT):

Specifies an ASCII string that is the name extension of this XIP application. The format of this name
is the same as the DOS file-name extension: 0 to 3 characters. If the extension is less than three (3)
characters it must be padded on the right with blanks (20h).

Byte 11 (XIP_STATUS):

Specifies the status of this XIP directory entry (see table below). Values for the status bits are chosen
so that an XIP directory may be updated in media like flash memory, without first erasing and then
re-recording it. Flash memory has unique constraints placed on how bit values in it may change.

If XIP_STATUS has a value of 0FFh, the previous XIP directory entry was the last one in the XIP
partition. New entries in the XIP directory may be made at this point in the directory. If the first
byte in the first directory entry has a value of 0FFh, the XIP directory is completely empty. If the
XIP directory is completely empty, the first page occupied by the directory may be partially
available, the last page may be partially available, and all remaining pages of the partition are
available for allocation. Whether there are any partially-available pages is determined by the total
size and location of the partition, and the size of the XIP directory. The size and physical location of
the XIP partition within the card's physical-address space, is determined by the tuple data
structures.

If XIP_STATUS indicates a deleted entry, the XIP_FIRST_APP_PAGE and XIP_SIZE are still
necessary for managing which pages may be allocated to new XIP applications that are being
copied into this partition. Also note that the XIP pages that have been deleted are not reusable
because they have not been erased. When an entry is marked deleted, the name and extension
fields of the directory entry must be ignored, since they are not required to be cleared.

XIP PARTITIONS

8 © 1999 PCMCIA/JEIDA

If bits 0...2 of the XIP_STATUS are set to 001, than bits 3 and 4 will indicate the structure of the
application. A value of 10 within bits 3 and 4 is invalid.

Bit Definition

0...2 XIP Allocation Status:

 111 XIP Directory entry is free to be used to store the next XIP directory entry. The previous XIP
directory entry is the last valid entry in they XIP directory.

 011 XIP directory entry and the contents of its associated XIP application are in the process of being
created. Since this XIP directory entry has not yet been completely processed, the application may not
be loaded, as the XIP application code has not been completely copied. However, the
XIP_FIRST_APP_PAGE and XIP_SIZE fields are valid for this directory entry. An XIP utility program
must "close" the XIP directory entry before the application may be loaded.

 001 XIP directory entry is allocated and contains a valid XIP application.

 000 XIP directory entry had been allocated, but is now deleted. It no longer contains a valid XIP
application. The fields XIP_FIRST_APP_PAGE and XIP_SIZE contain valid data that must be sued when
searching for the next free page within the XIP partition.

3...4 LXIP/EXIP Application

 00 The application is structured for LXIP

 01 The application is structured for EXIP

 11 The application is structured for SXIP

5...7 Reserved for future use. Must be all ones.

Bytes 12-13 (XIP_APP_BEGIN):

Specifies the offset in the first page for the application's entry point. The offset shall be located on a
16-byte boundary.

Bytes 14-15 (XIP_APP_OFFSET):

Specifies the offset in the first page of the application for the application's first byte. The offset shall
be located on a 16-byte boundary.

Byte 16 (XIP_APP_TYPE):

Specifies the XIP application type. A list of application types are to be found in the table below;
however, future operating system bindings will cause this list to expand.

XIP_APP_TYPE Name Description

0 XIP_TYPE_NON_EXEC Non-executable. Examples of XIP Type 0 include pseudo-
volume labels, XIP V1.00 applications, etc.

1 XIP_TYPE_SXIP_DOS Simple executable image for execution under DOS. An XIP
Type 1 application does no overlaying, and can run under
an SXIP driver.

2 XIP_TYPE_V2_OVERLAY_D
OS

Overlaid executable image for execution under DOS. An
XIP Type 2 application is suitable for overlaid execution
under DOS. Executable image formats are specified in the
appropriate Operating System Binding Appendix.

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 9

Byte 17 (XIP_VERSION_REQD):

Specifies the version of XIP API Services required for execution.

Bytes 18-20 (XIP_RESERVED):

These bytes are reserved for future use. All reserved bytes must be set to a value of 0FFh.

Byte 21 (XIP_DIREC_CKSUM):

Specifies an 8-bit additive checksum of the 32 bytes of this XIP directory entry, exclusive of this
byte. Note that, in order to maintain compatibility with XIP Version 1.0, especially in cases where
bytes 16 or 17 are 0FFh, 0FFh must be considered a valid entry, even when a different value is
reached via calculation.

Bytes 22-23 (XIP_CREATION_TIME):

Specifies the time that this XIP directory entry was created, or added, to the XIP partition. For media
such as flash memory, it is not possible to "update" an XIP directory entry without first erasing the
entire XIP partition. Therefore, the time only refers to the time that the XIP application was added to
the XIP directory. The format of the create time is DOS compatible and is described in the following
table.

Bytes 24-25 (XIP_CREATION_DATE):

Specifies the date that this XIP directory entry was created, or added, to the XIP partition. For media
such as flash memory, it is not possible to "update" an XIP directory entry without first erasing the
entire XIP partition. Therefore, the date only refers to the time that the XIP application was added to
the XIP directory. The format of the create date is DOS compatible and is described in the following
table.

Bits Definition

0...4 Day of month (1-31)

5...8 Month (1-12)

9...15 Year (relative to 1980)

Bytes 26-27 (XIP_FIRST_APP_PAGE):

Specifies the first 16K page within an XIP partition that is allocated to this XIP application. Pages are
allocated contiguously within an XIP partition. There is nothing which precludes the possibility of
having multiple XIP applications within a single page.

Bytes 28-31 (XIP_SIZE):

Specifies the size, in bytes, of this XIP application. This size must include any padding required to
achieve any application-specific alignment. The size may be zero to allow an entry to simply be a
"label."

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 11

4 . X I P D E V I C E D R I V E R A R C H I T E C T U R E

XIP functions are to be provided by a high-level device driver. The intent of this specification is that
this driver be reliant upon Card Services for lower level functionality. Card Services is in turn
dependent upon Socket Services. The XIP device driver simply manages the data in the XIP
partition, and provides the required services. Hardware-related services, such as those needed to
manipulate mapping hardware, are intended to be provided by Card Services. However, especially
for systems with limited resources, there is no intent to prohibit an XIP driver which does not rest
upon any underlying level of software.

XIP Device Drivers must be able to provide all functionality listed below as Common, and are
assured of being able to execute SXIP applications. Additionally, they may provide services listed
below as elements of the Write, LXIP, or EXIP functionality sets.

4.1 Migration Path of Drivers
Implementations of this architecture are expected to tend to migrate into BIOS functions over time.
The layered architecture will initially be implemented as loadable drivers. Some manufacturers
may initially provide all three drivers (XIP, Card Services, and Socket Services), or combinations of
two of the three, as a single unit. In any case, the location and partitioning of the drivers should
have no impact on XIP applications, as the applications should be unable to determine the location
and/or type (loaded or BIOS-resident) of the drivers, nor will the applications be able to distinguish
between a joint driver and completely separate drivers.

4.2 Sharing the Hardware Interface Between Device Drivers
It is possible that other device drivers or embedded software, distinct from the XIP driver, will need
to access the memory-mapping-interface hardware that maps memory on the card into the system's
address space. It should be obvious that such a memory-mapping interface is required for XIP.
However, a memory-mapping interface would be perfectly acceptable for a disk device-driver as
well. The same hardware interface could be used for XIP driver, a DOS FAT-file-system driver, and
a DOS Flash-file-system driver.

Consequently, it is very important for system designers to provide the ability to read, as well as
write, the state of their memory-mapping hardware. Write-only memory-mapping-hardware
registers are not acceptable. The reason for this requirement is that a disk-device driver, for
instance, would necessarily have to save and restore the state of the memory-mapping hardware,
before and after a disk access, as the mapping hardware may be in use by an XIP driver and XIP
application, as well as other drivers using the memory-mapping resource.

Note: An XIP driver shall not do saves/restores of its mapping hardware between
XIP function calls!

The virtualization that Card Services provides should alleviate much of the concern that multiple
and separate device drivers accessing the same hardware might cause.

4.2.1 Device Driver Load Order
The XIP and Card Services device drivers are to be loaded like any other device driver during
initial start-up processing.

XIP DEVICE DRIVER ARCHITECTURE

12 © 1999 PCMCIA/JEIDA

For the XIP drivers, any Socket Services and Card Services drivers are to be loaded before the XIP
driver. During initialization of the XIP device driver, information about the system's mapping
capabilities, which can only be provided by these drivers, is required. There is no requirement that
Memory Technology Drivers be loaded before the XIP driver.

4.3 XIP Loader
The XIP loader is responsible for preparing the system for the execution of an XIP application. The
function of the XIP loader is to look up, map, and start the XIP application execution. Naturally, the
XIP loader will perform different functions based on the XIP_APPLICATION_TYPE of the
application, as well as the operating system environment.

4.4 XIP IOCTL References
The XIP device driver requires that applications use general I/O Control calls (IOCTL) to get and/or
set the entry point for the XIP device driver. This allows an arbitrary chain of applications to
monitor or patch the device driver. The entry point of the XIP device driver is actually the
procedure that an application calls whenever it needs to call the XIP API (Application Programming
Interface). This being the case, it is required that all XIP device drivers support IOCTL open, read,
and write, and close calls, if the operating system supports such. No other IOCTL calls should be
assumed.

4.5 XIP Driver Chain
In the case that the XIP Device Driver does not supply a particular functionality set, additional
device drivers may chain in to provide such sets. An application should not be required to
differentiate in any way which driver provides which services; in fact, the combination of XIP
device drivers should appear monolithic to the application.

For a device driver to chain in, it must first determine the existing entry point in the same manner
as any client. Having saved the current XIP entry point, it may perform an IOCTL write to set up
the new entry point.

When a chained device driver is called, it should inspect the function parameters to determine if it
needs to handle the call. If not, it should pass control to the older XIP device driver.

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 13

5 . X I P A P P L I C A T I O N S P R O G R A M M I N G

I N T E R F A C E

In order for an application to use the XIP device driver, the device driver must obviously be present
and installed, and the XIP application must be able to determine both the presence and entry point
of the driver. Furthermore, additional device drivers should be allowed to chain into the current
driver to provide functionality not granted by the original driver. The specific mechanics of
interacting with the XIP device driver are, of course, dependent on the Operating System Binding;
however, the following generalities should be observed.

5.1 XIP API Calling Interface
The XIP device driver uses a procedure-call interface rather than a software-interrupt interface. The
callback interface, being private, means that other software, not directly related to the operation of
the XIP device, will not be chained into the execution path. The benefit of this interface is that there
are no software interrupt-chaining-compatibility problems.

Whether passed arguments are register-based or stack-based is a detail of the Operating System
Binding.

5.1.1 Initializing the XIP Interface
In order for an XIP client to use the XIP device driver, the client needs to know the entry point for
XIP services within the device driver. Generally, a client should request that the operating system
open a device with the name "XIP$$$$$.Ó The client should then request that the operating system
read the XIP entry point from that device, and then close that device. If any errors occur in the
course of the above steps, it will probably be necessary to install or re-install the XIP device driver
before further processing.

5.1.2 Calling the XIP API
Having read the entry point of the XIP device driver, calling the XIP API from a client involves a
simple two-step process. First, load the entry point previously read from the XIP device. Second, call
the address pointed to by that address. This secondarily indirect address is the XIP API entry point.
Operating System Bindings should probably contain examples to make this process clear.

The second level of indirection adds flexibility in being able to both chain into and unchain from an
XIP device driver. Furthermore, all future clients are immediately affected by changes in the device
chain, with no special effort on their part.

5.2 XIP API Functions
The following functions comprise the entire set of XIP functions that are required to be present
within a fully compliant XIP version 1.10 driver.

Each function is listed below in the following form:

XIP (*FUNCTION, parameters)

XIP APPLICATIONS PROGRAMMING INTERFACE

14 © 1999 PCMCIA/JEIDA

The details of how the parameters map to the calling sequence (i.e., parameter order, register based
parameters, et. al.) is an Operating System Binding and implementation issue.

Each function implicitly returns it's result as a binary success(true)/fail(false) indicator. Other return
values, and the meanings thereof, hinge on the function result. If the function fails (returns FALSE),
the FUNCTION returns a status code, and the other variables are undefined, unless otherwise
noted. If the function is successful (return TRUE), the FUNCTION variable is undefined.

Also note that variables may "overlay" one another; i.e., a variable with one meaning on input may
have another meaning on output, or a variable may have different meanings or structure
dependent upon the contents of other variables.

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 15

5.2.1 Get XIP Version (Common)
XIP (*function, *version, *functionality)

Purpose:
This function returns the version of the XIP driver installed in the system, as well as a bit flag
indicating the capabilities of the system. An application uses this function to determine if the set of
XIP functions it requires are supported by this XIP driver.

Calling Parameters:
function XIP_GET_VERSION

Results if successful:
version Contains the XIP driver's version number in binary coded decimal (BCD)

format. The upper four bits contain the integer digit of the version number.
The lower four bits contain the fractional digit of version number. For
example, version 1.10 is represented as 010Ah.

When checking for a version number, an application should check for a
version number or greater. Vendors may use the fractional digit to indicate
enhancements or corrections to their XIP drivers. Therefore, to allow for
future versions of XIP drivers, an application shall not depend on an exact
version number.

functionality A bitfield indicating which XIP functionality set(s) are supported by this driver.
Values are as in the table below.

Bits Description

7...3 Reserved (Set to 0)

2 Supports Write functionality set (if 1)

1 Supports EXIP functionality set (if 1)

0 Supports LXIP functionality set (if 1)

Status Codes:
XIP_STAT_UNKNOWN_ERROR

XIP APPLICATIONS PROGRAMMING INTERFACE

16 © 1999 PCMCIA/JEIDA

5.2.2 Get XIP Mappable Segments (SXIP, LXIP)
XIP (*function, *XIP_mappable_array, *mappable_array_length)

Purpose:
This function returns an array of addresses for each mappable XIP page in a system. The array is
sorted in ascending segment order.

Calling Parameters:
function XIP_GET_MAP_SEGS

XIP_mappable_array An un-initialized array. The first element of the array gives the acceptable
length of the array, not including the first element (thus a first word of 0,
although legal, would cause no change to the contents of this array). The
remainder of the array will be filled in by the function.

Results if successful:
XIP_mappable_array The array will have been filled in with the segment address of each mappable

page in the system, up to the number of entries allowed in the array. The
array will be sorted in ascending order, with the length of the array first, the
lowest-valued page first, etc. SXIP environments will have only one entry in
the array.

mappable_array_length Actual number of mappable pages in the system. If an application wished to
be precise, it could call this function with *XIP_mappable_array set to 0,
allocate mappable_array_length+1 words of memory, then call this function
again with XIP_mappable_array set to the newly allocated memory, and
*XIP_mappable_array set to mappable_array_length.

Status codes
XIP_STAT_UNKNOWN_ERROR

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 17

5.2.3 Get XIP Partition IDs (Common)
XIP (*function, partition_ids_array, *partition_array_length)

Purpose:
This function returns an array of XIP partition IDs currently accessible in the system. XIP partition
IDs are tokens used to uniquely identify each XIP partition. Token values are implementation
specific, and are valid only after this function is called.

Partition IDs are assigned at initialization time by the XIP driver. These IDs are valid only during a
given system boot. Thus, the ID for a specific partition may change from boot to boot. Normally, IDs
will not be reassigned to a different partition once they have been assigned to a specific partition,
however, the Disable Partition ID function can be used to allow a partition ID to be reassigned.

This function will not return a partition ID that has been disabled. However, it may return new
partition IDs that correspond to XIP partitions on a newly inserted card.

Calling Parameters:
function XIP_GET_PARTITIONS

partition_ids_array An un-initialized array. The first element of the array gives the acceptable
length of the array, not including the first element (thus a first word of 0,
although legal, would cause no change to the contents of this array). The
remainder of the array will be filled in by the function.

Results if successful:
partition_ids_array The array will have been filled in with the partition IDs of each XIP partition

present in the system. No order to the resulting array may be assumed, other
than that the length of the array will be first.

partition_array_length Actual number of partitions in the system. If an application wished to be
precise, it could determine the length of the full array, and then allocate and fill
the array, analogous to the method given in Get XIP Mappable Segments.

Status codes
XIP_STAT_UNKNOWN_ERROR

XIP APPLICATIONS PROGRAMMING INTERFACE

18 © 1999 PCMCIA/JEIDA

5.2.4 Get XIP Handle Range (Common)
XIP (*function, *XIP_first_handle, *XIP_last_handle, *total_handles)

Purpose:
This function returns the range of handle values that the XIP driver manages. The maximum range
of handle values is a detail of any particular XIP Operating System Binding.

The XIP driver assigns a unique handle value, in the specified range, to every XIP application
present in the XIP directory. An XIP application uses a handle as a parameter whenever it calls the
XIP driver to perform a map, unmap, or copy function.

Calling Parameters:
function XIP_GET_HANDLE_RANGE

Results if successful:
XIP_first_handle This is the value of the first handle managed by the XIP driver. Shall be in the

range 8000H through 8FFFh, inclusive.

XIP_last_handle This is the value of the last handle managed by the XIP driver. This value
must obviously be greater than that value returned as XIP_first_handle. Shall
be in the range 8000H through 8FFFH, inclusive.

total_handles The maximum number of handles that this XIP driver is capable of
supporting.

Status Codes:
XIP_STAT_UNKNOWN_ERROR

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 19

5.2.5 Map/Unmap an XIP Handle's Pages (SXIP, LXIP)
XIP (*function, handle, partition, *map_count, seg_map_array)

Purpose:
This function maps or unmaps one, several, all, or none of the logical pages associated with a
handle into as many mappable segments as the system supports. Both mapping and unmapping
pages may be done in the same invocation. Mapping or unmapping no pages is not considered an
error. If a request to map or unmap zero pages is made, nothing is done and no error is returned.
The segment map array passed to this function does not have to have any special order with respect
to mappable_segment elements.

The function should allow mapping a specific logical page at more than one mappable segment
address, provided that the hardware supports this. This same "feature" is also a part of the LIM
specification.

Calling Parameters:
function XIP_MAP_HANDLE

handle Handle of the XIP application owning the pages to be mapped in. This handle
is obtained through any of the search functions listed below.

partition Contains the ID of the partition containing the indicated XIP application

map_count Contains the number of entries in the seg_map_array. This argument is
ignored and assumed 1 in SXIP environments.

seg_map_array An array of seg_map structures, defined as:

struct seg_map_struct {
 int log_page_number ;
 int mappable_segment ;
};

log_page_number contains the number of the logical page to be mapped.
Logical pages are numbered zero relative with respect to the beginning of the
XIP application with which they are associated. Therefore, the number for a
logical page can range from zero to one less than the number of logical pages
allocated to the handle.

If the logical page number is set to -1, the associated mappable_segment is
unmapped. Unmapping a page makes it inaccessible.

mappable_segment contains the segment address within the system
memory address space at which the logical page is to be mapped. This
segment address must correspond exactly to a mappable segment address,
as returned via the XIP_GET_MAP_SEGS function.

Results:
map_count Contains the number of entries actually mapped, regardless of the function

status return. If the function fails, this number of pages has been mapped, and
may need to be unmapped by the application. The XIP driver will map the
pages sequentially, so if only n pages have been mapped, it may be assumed
that the first n pages have been mapped.

XIP APPLICATIONS PROGRAMMING INTERFACE

20 © 1999 PCMCIA/JEIDA

Status Codes:
XIP_STAT_HANDLE_NFOUND The specified XIP handle could not be found, and is probably corrupt. No

pages have been mapped.

XIP_STAT_BAD_PAGE One or more of the logical pages to be mapped is out of the range of logical
pages allocated to the given XIP handle.

XIP_STAT_BAD_SEGMENT One or more of the segment addresses is invalid, or, the map_count specified
exceeds the number of mappable segments in the system.

XIP_STAT_BAD_PARTITION The partition specified does not exist.

XIP_STAT_PAGE_MAPPED One or more of the logical pages specified is already mapped at a mappable
segment. The new logical page specified is not mapped.

XIP_STAT_CARD_CHANGED

XIP_STAT_UNKNOWN_ERROR

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 21

5.2.6 Get XIP Mapping Context Size (Common)
XIP (*function, *map_context_size)

Purpose:
The Get XIP Mapping Context Size function returns the storage requirements for the array passed to
the XIP_GET_CONTEXT and XIP_SET_CONTEXT functions. The size returned is implementation-
dependent, but it is explicitly fixed (i.e., the return value of this function will never change).
Clearly, this implies that supplemental XIP device drivers should not intercept this function, or the
XIP_GET_CONTEXT and XIP_SET_CONTEXT functions.

Calling Parameters:
function XIP_GET_CONTEXT_SIZE

Results if Successful:
map_context_size Contains the size of the block that will be transferred to or from the memory

area which an application will supply to the XIP_SET_CONTEXT or
XIP_GET_CONTEXT functions.

Status Codes:
XIP_STAT_UNKNOWN_ERROR

XIP APPLICATIONS PROGRAMMING INTERFACE

22 © 1999 PCMCIA/JEIDA

5.2.7 Get XIP Mapping Context (Common)
XIP (*function, *xip_context)

Purpose:
This function saves the mapping context to the specified buffer. The format and content of the
resultant buffer is strictly implementation dependent.

Calling Parameters:
function XIP_GET_CONTEXT

xip_context A buffer of at least the size given by the XIP_GET_CONTEXT_SIZE function.

Results if successful:
xip_context The buffer contains the state of the XIP mapping hardware. It also contains

any additional information necessary to restore the XIP mapping hardware to
the current state when this function is invoked. The content and size of this
information is vendor specific.

Status Codes:
XIP_STAT_CARD_CHANGED

XIP_STAT_UNKNOWN_ERROR

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 23

5.2.8 Set XIP Mapping Context (Common)
XIP (*function, *xip_context)

Purpose:
This function restores the physical and logical mapping context for all XIP mappable regions to the
state it was in when the specified buffer was filled in via the XIP_GET_CONTEXT function. The
format and content of the buffer is strictly implementation dependent.

Calling Parameters:
function XIP_SET_CONTEXT

xip_context A buffer that has previously been passed to the XIP_GET_CONTEXT
function. The buffer is of at least the size given by the
XIP_GET_CONTEXT_SIZE function.

Results if successful:
none

Status Codes:
XIP_STAT_BAD_MAP_ARRAY The contents of the xip_context buffer have been corrupted, or an invalid

pointer has been passed to the function.

XIP_STAT_CARD_CHANGED

XIP_STAT_UNKNOWN_ERROR

XIP APPLICATIONS PROGRAMMING INTERFACE

24 © 1999 PCMCIA/JEIDA

5.2.9 Search for XIP Directory Entry (Common)
XIP (*function, partition, *application_name, *handle, *page_count)

Purpose:
This function searches the XIP directory for a specific XIP application. If the name is found, the
function returns only the handle associated with the name and the number of logical pages allocated
to it.

The XIP handle returned by the XIP driver always specifies the same XIP application within the XIP
partition. For example, if you searched the XIP directory six times for an existing XIP application
named "WORDPROC.XIP", the XIP driver would return the same handle value each time because
the position of the XIP application within the XIP directory structure had not changed.

An XIP handle is somewhat analogous to an index into an array of fixed length structures. The
handle returned may be used by as many processes as need access to the XIP application.

Calling Parameters:
function XIP_SEARCH

partition The partition ID of the XIP directory to be searched

application_name The name of the application to be searched for. The name must be in 8.3
format, i.e., an 8-letter name, followed by the 3 letter extension. If either the
name is shorter than 8 characters, or the extension is shorter than 3
characters, they must be padded with spaces on the right to the appropriate
size.

Results if successful:
handle The value of the handle assigned to the specified XIP application.

page_count The number of logical pages allocated to the XIP application. This value can
be zero.

Status Codes:
XIP_STAT_APP_NOT_FOUND

XIP_STAT_BAD_APP_NAME

XIP_STAT_BAD_PARTITION

XIP_STAT_CARD_CHANGED

XIP_STAT_UNKNOWN_ERROR

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 25

5.2.10 Search for full XIP Directory (Common)
XIP (*function, partition, *XIP_dir_entry, *handle, *page_count)

Purpose:
This function searches the XIP directory for a specific XIP application. If the name is found, the
function returns the full XIP directory information associated with the name, as well as the handle
and number of logical pages allocated to the application.

This function is very similar to the XIP_SEARCH function, save that it fills in the entire XIP
directory entry if the specified application is found.

Calling Parameters:
function XIP_SEARCH_FULL

partition The partition ID of the XIP directory to be searched

XIP_dir_entry A structure of the form:

struct xip_dir_entry_struct {
 char xip_name[8];
 char xip_ext[3];
 short int xip_status;
 int xip_app_begin;
 int xip_app_offset;
 short int xip_app_type;
 short int xip_version_reqd;
 char xip_reserved[3];
 short int xip_header_cksum;
 int xip_creation_time;
 int xip_creation_date;
 int xip_first_app_page;
 long int xip_size;
}

The xip_name and xip_ext field must be filled in, and padded on the right with
spaces. All other fields will be ignored.

Results if successful:
XIP_dir_entry The entire structure will be filled in with the appropriate values, copied from

the XIP directory.

handle The value of the handle assigned to the specified XIP application.

page_count The number of logical pages allocated to the XIP application. This value may
be zero.

Status Codes:
XIP_STAT_APP_NOT_FOUND

XIP_STAT_BAD_PARTITION

XIP_STAT_CARD_CHANGED

XIP_STAT_UNKNOWN_ERRO
R

XIP APPLICATIONS PROGRAMMING INTERFACE

26 © 1999 PCMCIA/JEIDA

5.2.11 Get First XIP Directory Entry (Common)
XIP (*function, partition, *XIP_dir_entry, *handle, *page_count)

Purpose:
This function returns the full XIP directory information associated with the first active entry in the
XIP directory in the specified partition, as well as the handle and number of logical pages for that
XIP application.

Calling Parameters
function XIP_SEARCH_FIRST

partition Contains the ID of the partition containing the XIP directory

XIP_dir_entry An XIP_dir_entry_struct structure. The structure need not be initialized

Results if successful:
XIP_dir_entry The entire structure will be filled in with the appropriate values, copied from

the XIP directory.

handle The value of the handle assigned to the specified XIP application.

page_count The number of logical pages allocated to the XIP application. This value may
be zero.

Status Codes:
XIP_STAT_APP_NOT_FOUND

XIP_STAT_BAD_PARTITION

XIP_STAT_CARD_CHANGED

XIP_STAT_UNKNOWN_ERROR

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 27

5.2.12 Get Next XIP Directory Entry (Common)
XIP (*function, partition, *XIP_dir_entry, *handle, *page_count)

Purpose:
This function returns the full XIP directory information associated with the next (relative to the
given handle) active entry in the XIP directory in the specified partition, as well as the handle and
number of logical pages for that XIP application.

Calling Parameters
function XIP_SEARCH_NEXT

partition Contains the ID of the partition containing the XIP directory.

XIP_dir_entry An XIP_dir_entry_struct structure. The structure need not be initialized.

handle Contains the value of the handle returned from a XIP_SEARCH_FIRST or
XIP_SEARCH_NEXT function call. The XIP driver uses this handle value to
begin the search for the next active entry in the XIP directory.

Results if successful:
XIP_dir_entry The entire structure will be filled in with the appropriate values, copied from

the XIP directory.

handle The value of the handle assigned to the specified XIP application

page_count The number of logical pages allocated to the XIP application. This value may
be zero.

Status Codes:
XIP_STAT_HANDLE_NFOUND The handle passed to the function is invalid. The application has probably

corrupted the XIP handle previously obtained.

XIP_STAT_APP_NOT_FOUND No more active entries were found in the XIP directory.

XIP_STAT_BAD_PARTITION

XIP_STAT_CARD_CHANGED

XIP_STAT_UNKNOWN_ERROR

XIP APPLICATIONS PROGRAMMING INTERFACE

28 © 1999 PCMCIA/JEIDA

5.2.13 Add XIP Directory Entry (Write)
XIP(*function, partition, *XIP_dir_entry, *handle)

Purpose:
This function allows one to create a new XIP directory entry, most probably in the process of adding
a new XIP application to the XIP partition. One would use this function to name the XIP application,
and allocate space for it within the XIP partition. One would subsequently map the allocated pages
into memory, and then copy the new XIP application into them.

Calling Parameters:
function XIP_ADD_ENTRY

partition Contains the ID of the partition containing the XIP directory.

XIP_dir_entry An XIP_dir_entry_struct structure. The structure must be initialized, with the
exception of the XIP_status field.

Results if successful:
handle The value of the handle assigned to the newly added XIP application.

Status:
XIP_STAT_NO_HANDLES

XIP_STAT_NO_PAGES

XIP_STAT_NO_FREE_PAGES

XIP_STAT_NAME_EXISTS

XIP_STAT_BAD_APP_NAME

XIP_STAT_NO_WRITE

XIP_STAT_BAD_PARTITION

XIP_STAT_NO_DIR_SPACE

XIP_STAT_CARD_CHANGED

XIP_STAT_COPY_ERROR

XIP_STAT_NO_WRITE_MEDIA

XIP_STAT_UNKNOWN_ERROR

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 29

5.2.14 Copy XIP Page (Write)
XIP (*function, partition, logical_page_number, write_count, handle,

*char_buffer)

Purpose:
This function allows an application to copy data from a buffer into one page allocated to an XIP
application. The XIP driver should do the copying because the type of programmable memory
which the XIP application is being copied into may not respond to simple memory writes issued by
an application program.

Updates to existing memory pages may be made if the card technology and system supports write
access.

Calling Parameters:
XIP (*function, partition, logical_page_number, write_count, handle,

*char_buffer)

function XIP_COPY_PAGE

partition Contains the ID of the partition which is to have a page copied into it.

logical_page_number The logical page number of the given XIP application to write. If logical page
zero is specified, the buffer is copied to the offset in the XIP page specified in
the XIP_OFFSET field of the directory entry for this application.

write_count Number of bytes to write to the XIP page.

handle The value of the handle assigned to the newly added XIP application. This is
the handle value returned by the "Add XIP Directory Entry" function.

char_buffer Contains a far pointer to an area of RAM memory which contains the XIP
application code or data to be copied into the logical page specified.

Results:
None

Status Codes:
XIP_STAT_HANDLE_NFOUND

XIP_STAT_BAD_PAGE

XIP_STAT_NO_WRITE

XIP_STAT_BAD_PARTITION

XIP_STAT_TOO_MANY_BYTES

XIP_STAT_CARD_CHANGED

XIP_STAT_COPY_ERROR The function failed due to an error in copying. The media supports this
function but the logical page to which the buffer is being copied to is not blank,
and the data cannot be correctly copied.

XIP_STAT_NO_WRITE_MEDIA

XIP_STAT_UNKNOWN_ERROR

XIP APPLICATIONS PROGRAMMING INTERFACE

30 © 1999 PCMCIA/JEIDA

5.2.15 Delete XIP Directory Entry (Write)
XIP (*function, partition, *application_name)

Purpose:
This function deletes an XIP application from the XIP directory.

Calling Parameters:
function XIP_DELETE_ENTRY

partition Contains the ID of the partition containing the XIP application to be deleted.

application_name The name of the application to be searched for. The name must be in 8.3
format, i.e., an 8-letter name, followed by the 3 letter extension. If either the
name is shorter than 8 characters, or the extension is shorter than 3
characters, they must be padded on the right with spaces to the appropriate
size.

Results:
None

Status Codes:
XIP_STAT_APP_NOT_FOUND

XIP_STAT_BAD_APP_NAME

XIP_STAT_NO_WRITE

XIP_STAT_BAD_PARTITION

XIP_STAT_CARD_CHANGED

XIP_STAT_NO_WRITE_MEDIA

XIP_STAT_UNKNOWN_ERROR

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 31

5.2.16 Erase XIP Partition (Write)
XIP (*function, partition)

Purpose:
This function allows an XIP utility to erase the entire contents of an XIP partition in preparation for
reuse. The entire XIP partition must be aligned on erase block or device boundaries for this function
to erase only the XIP partition, and nothing else.

Calling Parameters:
function XIP_ERASE_PARTITION

partition Contains the ID of the partition to be erased.

Results:
None

Status Codes:
XIP_NO_WRITE

XIP_STAT_BAD_PARTITION

XIP_STAT_CARD_CHANGED

XIP_STAT_NO_WRITE_MEDIA

XIP_STAT_UNKNOWN_ERROR

XIP APPLICATIONS PROGRAMMING INTERFACE

32 © 1999 PCMCIA/JEIDA

5.2.17 Close XIP Directory Entry (Write)
XIP (*function, partition, handle)

Purpose:
This function ends the process of creating a new XIP entry. Until this function is executed, a newly-
created XIP application cannot be executed. The function "activates" the newly added XIP
application by setting the status bits of the corresponding XIP directory entry to a value indicating
that it may be loaded and executed.

Calling Parameters:
function XIP_CLOSE_ENTRY

partition Contains the ID of the partition containing the XIP directory entry which is to
be closed.

handle The value of the handle assigned to the newly created XIP application.

Results:
None

Status Codes:
XIP_STAT_HANDLE_NFOUND

XIP_STAT_NO_WRITE

XIP_STAT_BAD_PARTITION

XIP_STAT_CARD_CHANGED

XIP_STAT_NO_WRITE_MEDIA

XIP_STAT_UNKNOWN_ERROR

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 33

5.2.18 Execute XIP Application (Common)
XIP (*function, partition, app_name, *return_code)

Purpose:
This function causes the specified XIP application to be mapped in and executed.

Calling Parameters:
function XIP_EXEC

partition Contains the ID of the partition containing the XIP directory entry which is to
be mapped.

app_name The ASCIIZ name of the application to be executed.

Results if successful:
return_code Exit code set by the specified application.

Status Codes:
XIP_STAT_APP_NOT_EXEC

XIP_STAT_APP_NOT_FOUND

XIP_STAT_MAP_HWARE_BUSY

XIP_STAT_BAD_PARTITION

XIP_STAT_CARD_CHANGED

XIP_STAT_UNKNOWN_ERROR

XIP APPLICATIONS PROGRAMMING INTERFACE

34 © 1999 PCMCIA/JEIDA

5.2.19 Map Extended Segment (EXIP)
XIP (*function, partition, handle, *system_address, *map_count)

Purpose:
This function maps memory PC Cards into the system's extended address space. The specified
application on the memory PC Card will appear at the address range returned by this function. A
system may support simultaneous mapping of multiple segments.

Calling Parameters:
function XIP_MAP_EXTENDED

partition Contains the ID of the partition containing the XIP directory entry which is to
be mapped.

handle The value of the handle assigned to the XIP application.

Results if successful:
system_address System memory address corresponding to the specified application.

map_count The size, in bytes, of the block mapped system memory.

Status Codes:
XIP_STAT_MAP_HWARE_BUSY

XIP_STAT_NO_EXIP_DRIVER

XIP_STAT_NO_EXIP

XIP_STAT_BAD_PARTITION

XIP_STAT_CARD_CHANGED

XIP_STAT_UNKNOWN_ERROR

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 35

5.2.20 Unmap Extended Segment (EXIP)
XIP(*function, partition, handle)

Purpose:
This function removes the mapping of the specified application. The specified application will no
longer appear in the address space.

Calling Parameters:
function XIP_UNMAP_EXTENDED

partition Contains the ID of the partition containing the XIP directory entry which is to
be mapped.

handle The value of the handle assigned to the XIP application.

Results:
None

Status Codes:
XIP_STAT_HANDLE_NFOUND

XIP_STAT_NO_EXIP_DRIVER

XIP_STAT_NO_EXIP

XIP_STAT_BAD_PARTITION

XIP_STAT_CARD_CHANGED

XIP_STAT_UNKNOWN_ERROR

XIP APPLICATIONS PROGRAMMING INTERFACE

36 © 1999 PCMCIA/JEIDA

5.2.21 Get Partition ID from Address (Common)
XIP(*function, *partition, system_address)

Purpose:
This function returns the ID of the partition onto which the specified system address is currently
mapped.

Calling Parameters:
function XIP_XLATE_PARTITION

system_address The system address to be translated to a partition ID.

Results if successful:
partition partition which is mapped to the specified system address.

Status Codes:
XIP_STAT_ADDR_NOT_MAPPED

XIP_STAT_CARD_CHANGED

XIP_STAT_UNKNOWN_ERROR

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 37

5.2.22 Get Slot Number (Common)
XIP (*function, partition, *slot)

Purpose:
This function returns the number of the slot that contains the specified partition.

Calling Parameters:
function XIP_GET_SLOT

partition The ID of the partition to be investigated.

Results if successful:
slot The slot number that holds the specified partition. Note that the slot number is

vendor specific.

Status Codes:
XIP_STAT_BAD_PARTITION

XIP_STAT_CARD_CHANGED

XIP_STAT_UNKNOWN_ERROR

XIP APPLICATIONS PROGRAMMING INTERFACE

38 © 1999 PCMCIA/JEIDA

5.2.23 Disable Partition ID (Common)
XIP (*function, partition)

Purpose:
This function marks a partition ID as invalid and frees it for future reassignment to an XIP partition.

Calling Parameters:
function XIP_DISABLE_PARTITION

partition Partition ID of the partition to be disabled.

Results:
None

Status Codes:
XIP_STAT_BAD_PARTITION

XIP_STAT_UNKNOWN_ERROR

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 39

6 . A P P E N D I C E S

6.1 XIP Equate Values

6.1.1 Summary of XIP Function Codes
The following functions are provided by a compliant XIP driver.

Table 6-1: XIP API Functions

Name Description Attributes

XIP_GET_VERSION Get XIP Version Common

XIP_GET_MAP_SEGS Get XIP Mappable Segments LXIP

XIP_GET_PARTITIONS Get XIP Partition IDs Common

XIP_GET_HANDLE_RANGE Get XIP Handle Range Common

XIP_MAP_HANDLE Map/Unmap an XIP Handle's Pages LXIP

XIP_GET_CONTEXT_SIZE Get XIP Mapping Context Size Common

XIP_GET_CONTEXT Get XIP Mapping Context Common

XIP_SET_CONTEXT Set XIP Mapping Context Common

XIP_SEARCH Search for XIP Directory Entry Common

XIP_SEARCH_FIRST Get First XIP Directory Entry Common

XIP_SEARCH_NEXT Get Next Directory Entry Common

XIP_ADD_ENTRY Add XIP Directory Entry Write

XIP_COPY_PAGE Copy XIP Page Write

XIP_DELETE_ENTRY Delete XIP Directory Entry Write

XIP_ERASE_PARTITION Erase XIP Partition Write

XIP_CLOSE_ENTRY Close XIP Directory Entry Write

XIP_MAP_EXTENDED Map Extended Segment EXIP

XIP_UNMAP_EXTENDED Unmap Extended Segment EXIP

XIP_XLATE_PARTITION Get Partition ID from Address Common

XIP_GET_SLOT Get Slot Number Common

XIP_DISABLE_PARTITION Disable Partition ID Common

XIP_EXEC Execute XIP Application Common

XIP_SEARCH_FULL Search for specific XIP Directory Entry Common

APPENDICES

40 © 1999 PCMCIA/JEIDA

6.1.2 Summary of XIP Status Codes
The following status codes are returned by a compliant XIP driver.

Table 6-2: XIP Status Codes

Number Name Description

082h XIP_STAT_APP_NOT_EXEC XIP Application is marked as non-executable, or is of a type not
executable by this driver.

083h XIP_STAT_HANDLE_NFOUND XIP handle not found.

085h XIP_STAT_NO_HANDLES Insufficient XIP handles to complete the operation.

087h XIP_STAT_NO_PAGES Insufficient total logical pages within the XIP partition to complete the
operation.

088h XIP_STAT_NO_FREE_PAGES Insufficient unallocated logical pages within the XIP directory to
complete the operation.

08Ah XIP_STAT_BAD_PAGE Logical XIP page out of the range of logical pages allocated to the XIP
application.

08Bh XIP_STAT_BAD_SEGMENT Mappable segment address is not mappable by the XIP driver.

0A0h XIP_STAT_APP_NOT_FOUND XIP application not found in the XIP directory, or there are no more
XIP applications present in this XIP directory.

0A1h XIP_STAT_NAME_EXISTS XIP application name already exists.

0A2h XIP_STAT_BAD_APP_NAME XIP application name is invalid.

0A3h XIP_STAT_BAD_MAP_ARRAY XIP mapping array contents are invalid.

0F3h XIP_STAT_ADDR_NOT_MAPPED Address not currently mapped.

0F4h XIP_STAT_MAP_HWARE_BUSY All mapping hardware currently in use.

0F5h XIP_STAT_NO_EXIP_DRIVER Function not available. Hardware extended memory mapping not
available.

0F6h XIP_STAT_NO_EXIP Function not available. Processor does not support extended memory
addressing.

0F7h XIP_STAT_NO_WRITE The driver or system does not support Write functionality. The media
may or may not support Write functionality.

0F8h XIP_STAT_BAD_PARTITION The specified partition does not exist.

0F9h XIP_STAT_NO_DIR_SPACE Insufficient space in the XIP directory to complete the operation.

0FAh XIP_STAT_TOO_MANY_BYTES The number of bytes requested is too large to write.

0FBh XIP_STAT_PAGE_MAPPED Page already mapped into system.

0FCh XIP_STAT_CARD_CHANGED The card containing the XIP partition has changed since the last XIP
API call.

0FDh XIP_STAT_COPY_ERROR An error occurred in copying the XIP application into the XIP partition.

0FEh XIP_STAT_NO_WRITE_MEDIA This media does not support write functionality (ROM).

0FFh XIP_STAT_UNKNOWN_ERROR The function failed. Cause unknown.

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 41

6.2 DOS Operating System Binding

6.2.1 Introduction
This appendix gives details for implementation and utilization of a XIP Operating System Binding
(OSB) for DOS. The scope of this implementation is limited to SXIP and LXIP only.

In general, the XIP Operating System Binding for DOS is quite straightforward. One point of
confusion may arise with parameter passing; as the XIP OSB for DOS is a register-based API,
distinctions between passing by value and passing by reference may become somewhat blurred,
and there is naturally some overlaying of parameters within API functional definitions (i.e., a
particular register is used as one variable on entry to the API function, and another on exit). Context
should resolve the confusion.

6.2.1.1 Related Documents

This section identifies documents related to the XIP DOS Operating System Binding Specification.
Information available in the following documents, or in documents listed in the Related documents
section of the XIP Specification, is not duplicated within this document.

DR DOS 6.0 System and Programmer's Guide, Second Edition, August 1991, Novell, Inc.

IBM-AT Technical Reference Manual, First Edition, March 1984, International Business Machines.

Schulman, Andrew, et al Undocumented DOS, First Edition, October 1990, Addison-Wesley
Publishing Company, Inc.

6.2.1.2 Data Sizes

Data sizes are as defined within the main specification for all data structures. For API parameters,
pointers and long ints are 32-bits, ints are sixteen bits, and chars and short ints are 8 bits.

6.2.1.3 Included Code

All code fragments included within this document presuppose the availability of previously defined
entry points and routines (i.e., definition of a routine in one fragment allows calling that routine in
later fragments with no further explanation).

6.2.2 XIP Loader and Execution
The DOS XIP Device driver includes a loader. SXIP device drivers support only XIP Type 1
applications. LXIP device drivers accept both type 1 and 2 applications.

6.2.2.1 Termination of XIP Execution

It is important to note that XIP applications must terminate with either an IntÊ21H, Service 4CH
(EXIT) request, or an Int 21H, Service 31H (KEEP) request. None of Int 20H, IntÊ21H, Service 0, or Int
27H are acceptable, as all require that CS be equal to the segment of the active PSP, which, when an
XIP terminates, is not the case.

APPENDICES

42 © 1999 PCMCIA/JEIDA

6.2.2.2 SXIP Execution

SXIP (Type 1) applications are similar in form to .COM programs. The executable image is less than
64K in size, and is not overlaid. These programs are loaded in the following way:

1. The entire image of the program is mapped into memory.

2. A block of memory large enough to hold the environment and program name is allocated, and
the current environment is copied to that block.

3. The name of the XIP image (including an ascii number representing the partition number) is
appended to the new environment.

4. The rest of memory is allocated, and a PSP created at the beginning of the newly allocated
memory.

5. The newly created environment is marked as belonging to the newly created PSP.

6. DS, ES, and SS are set to the segment of PSP. SP and all other registers are set to 0.

7. The entry point specified in the first page of the application is jumped to.

As an example, if the XIP application WORDPROC.XIP were to be executed from partition 10, the
ASCIIZ string appended to the end of the environment would be "10:WORDPROC.XIP.Ó

Note that, in contrast to the Version 1.0 specification, the above method of loading is not a suggested
method; it is now specified, and any other loading methods must be compatible.

6.2.2.3 SXIP Image Format

SXIP applications are direct execution images. No header of any type is used. No code or data is
relocated into RAM at startup.

6.2.2.4 LXIP Execution

LXIP (Type 2) applications are, in general, much more complex than SXIP applications. However,
the majority of the loading sequence is identical. The primary difference in the load sequence is that
only the first 16K page of the application is mapped into memory. Steps 2 through 7, above, are
identical.

Note again that, in contrast to the Version 1.0 specification, the above method of loading is not a
suggested method; it is now specified, and any other loading methods must be compatible.

6.2.2.5 LXIP Image format

LXIP (Type 2) applications are responsible for managing their own overlays, as well as data
initialization. Thus, the Image format of an LXIP application is strictly the responsibility of the
developer.

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 43

6.2.3 XIP API Details
The details of each API entry calling format are listed below. One should refer to the XIP
specification for additional information. In all cases, the return values are based upon the
assumption that the operation succeeded, and thus, that the carry flag is clear. If such is not the case,
AH will return with the appropriate error code.

6.2.3.1 Get XIP Version (Common)
XIP (*function, *version, *functionality)

function AH XIP_GET_VERSION 80h

version AL

functionality AH

6.2.3.2 Get XIP Mappable Segments (LXIP)
XIP (*function, *XIP_mappable_array, *mappable_array_length)

function AH XIP_GET_MAP_SEGS 81h

XIP_mappable_array ES:DI

mappable_array_length CX

6.2.3.3 Get XIP Partition IDs (Common)
XIP (*function, partition_ids_array, *partition_array_length)

function AH XIP_GET_PARTITIONS 82h

partition_ids_array ES:DI

partition_array_length CX

6.2.3.4 Get XIP Handle Range (Common)
XIP (*function, *XIP_first_handle, *XIP_last_handle, *total_handles)

function AH XIP_GET_HANDLE_RANGE 83h

XIP_first_handle BX

XIP_last_handle DX

total_handles CX

APPENDICES

44 © 1999 PCMCIA/JEIDA

6.2.3.5 Map/Unmap an XIP Handle's Pages (LXIP)
XIP (*function, handle, partition, *map_count, seg_map_array)

function AH XIP_MAP_HANDLE 84h

handle DX

partition AL

map_count CX

seg_map_array DS:SI

6.2.3.6 Get XIP Mapping Context Size (Common)
XIP (*function, *map_context_size)

function AH XIP_GET_CONTEXT_SIZE 85h

map_context_size AL

6.2.3.7 Get XIP Mapping Context (Common)
XIP (*function, *xip_context)

function AH XIP_GET_CONTEXT 86h

xip_context ES:DI

6.2.3.8 Set XIP Mapping Context (Common)
XIP (*function, *xip_context)

function AH XIP_SET_CONTEXT 87h

xip_context DS:SI

6.2.3.9 Search for XIP Directory Entry (Common)
XIP (*function, partition, *application_name, *handle, *page_count)

function AH XIP_SEARCH 88h

partition AL

application_name DS:SI

handle DX

page_count CX

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 45

6.2.3.10 Get First XIP Directory Entry (Common)
XIP (*function, partition, *XIP_dir_entry, *handle, *page_count)

function AH XIP_SEARCH_FIRST 89h

partition AL

XIP_dir_entry ES:DI

handle DX

page_count CX

6.2.3.11 Get Next XIP Directory Entry (Common)
XIP (*function, partition, *XIP_dir_entry, *handle, *page_count)

function AH XIP_SEARCH_NEXT 8Ah

partition AL

XIP_dir_entry ES:DI

handle DX

page_count CX

6.2.3.12 Add XIP Directory Entry (Write)
XIP(*function, partition, *XIP_dir_entry, *handle)

function AH XIP_ADD_ENTRY 8Bh

partition AL

XIP_dir_entry DS:SI

handle DX

6.2.3.13 Copy XIP Page (Write)
XIP (*function, partition, logical_page_number, write_count, handle,

*char_buffer)

function AH XIP_COPY_PAGE 8Ch

partition AL

logical_page_number BX

write_count CX

handle DX

APPENDICES

46 © 1999 PCMCIA/JEIDA

6.2.3.14 char_buffer DS:SI Delete XIP Directory Entry (Write)
XIP (*function, partition, *application_name)

function AH XIP_DELETE_ENTRY 8Dh

partition AL

application_name DS:SI

6.2.3.15 Erase XIP Partition (Write)
XIP (*function, partition)

function AH XIP_ERASE_PARTITION 8Eh

partition AL

6.2.3.16 Close XIP Directory Entry (Write)
XIP (*function, partition, handle)

function AH XIP_CLOSE_ENTRY 8Fh

partition AL

handle DX

6.2.3.17 Map Extended Segment (EXIP)
XIP (*function, partition, handle, *system_address, *map_count)

function AH XIP_MAP_EXTENDED 90h

partition AL

handle DX

system_address EDX

map_count ECX

6.2.3.18 Unmap Extended Segment (EXIP)
XIP(*function, partition, handle)

function AH XIP_UNMAP_EXTENDED 91h

partition AL

handle DX

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 47

6.2.3.19 Get Partition ID from Address (Common)
XIP(*function, *partition, system_address)

function AH XIP_XLATE_PARTITION 92h

system_address ES:DI

partition AL

6.2.3.20 Get Slot Number (Common)
XIP (*function, partition, *slot)

function AH XIP_GET_SLOT 93h

partition AL

slot AL

6.2.3.21 Disable Partition ID (Common)
XIP (*function, partition)

function AH XIP_DISABLE_PARTITION 94h

partition AL

6.2.3.22 Execute XIP Application (Common)
XIP (*function, partition, app_name, *return_code)

function AH XIP_EXEC 95h

partition AL

app_name ES:DI

6.2.3.23 Search for full XIP Directory Entry (Common)
XIP (*function, partition, *XIP_dir_entry, *handle, *page_count)

function AH XIP_SEARCH_FULL 96h

partition AL

XIP_dir_entry ES:DI

APPENDICES

48 © 1999 PCMCIA/JEIDA

6.2.3.24 Secondary Map/Unmap an XIP Handle's Pages (LXIP)
XIP (*function, handle, partition, *map_count, seg_map_array)

function AH SECOND_XIP_MAP_HANDLE 97h

handle DX

partition AL

map_count CX

seg_map_array ES:DI

6.2.3.25 Secondary Set XIP Mapping Context (Common)
XIP (*function, *xip_context)

function AH SECOND_XIP_SET_CONTEXT 98h

xip_context ES:DI

6.2.3.26 Secondary Search for XIP Directory Entry (Common)
XIP (*function, partition, *application_name, *handle, *page_count)

function AH SECOND_XIP_SEARCH 99h

partition AL

application_name ES:DI

handle DX

page_count CX

6.2.3.27 Secondary Add XIP Directory Entry (Write)
XIP(*function, partition, *XIP_dir_entry, *handle)

function AH SECOND_XIP_ADD_ENTRY 9Ah

partition AL

XIP_dir_entry ES:DI

handle DX

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 49

6.2.3.28 Secondary Copy XIP Page (Write)
XIP (*function, partition, logical_page_number, write_count, handle,

*char_buffer)

function AH SECOND_XIP_COPY_PAGE 9Bh

partition AL

logical_page_number BX

write_count CX

handle DX

char_buffer ES:DI

6.2.3.29 Delete XIP Directory Entry (Write)
XIP (*function, partition, *application_name)

function AH SECOND_XIP_DELETE_ENTRY 9Ch

partition AL

application_name ES:DI

APPENDICES

50 © 1999 PCMCIA/JEIDA

6.2.4 XIP Applications Programming Interface

6.2.4.1 Initializing the XIP API

1. Issue a DOS "open read-only mode" request (INT 21h, Service 3D00h). This function requires a
far pointer to the ASCIIZ string containing the device name to open. In this case, the device
name is actually the internal name found in the XIP device driver's header. The pointed-to
ASCIIZ string should have the following format:

XIP_device_name DB "XIP$$$$$", 0

If DOS does not return an error status, one can assume that either a device with the name
"XIP$$$$$" is installed, or a file with this name is on the current disk drive. Proceed to step 4.1.4,
otherwise, proceed to the next step.

1. If DOS returned a "too many open files" status, one can modify one's application so that it opens
the XIP device before it opens any other files. The XIP handle is not used after the entry point is
obtained. If this was not the error one's application received, proceed to the next step.

2. If DOS returned a "file/path not found", the XIP-device driver is not installed. If one's
application requires the XIP-device driver, there is only one way to correct the problem. The
user must install the XIP-device driver, modify the CONFIG.SYS file to reflect the installation,
and reboot the system before proceeding. One's application cannot proceed further.

3. Issue a DOS IOCTL "get device data" using the handle obtained in step 1. This function returns
device data that allows one to determine whether XIP is a device or a file.

4. If DOS returns any error status, one may assume that the XIP device driver is not installed. The
user will have to follow the procedure outlined in step 3 to correct the problem.

5. Check that "XIP$$$$$" is a device and not a file with the same name. The device data returned
by the previous DOS function contains the ISDEV bit (DX bit 7). If the ISDEV bit is a 1 then
"XIP$$$$$" is a character device and not a file. If ISDEV is bit is a 0 then "XIP$$$$$" is a file and
there is no XIP-device driver installed. The user will have to follow the procedure outlined in
step 3 to correct the problem. Also, the file named XIP shall be renamed so that the user may
access it after the XIP driver is installed. This should be an extremely rare situation.

6. Issue a DOS "IOCTL read" using the handle obtained in step 1 for a maximum of 4 bytes.

7. If DOS returns any error status, or the driver does not transfer the specified number of bytes,
one may assume that the XIP-device driver is not a compliant driver. The user will have to
follow the procedure outlined in step 3 to correct this problem.

8. Save the device driver entry-point address returned by the Òread.Ó

9. Issue a DOS "close" command using the handle obtained in step 1. Doing so frees up the handle
allocated by the original "open.Ó The handle is not used again.

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 51

The following procedure is an example of the technique outlined in this section.

;--;
; open_XIP_driver ;
; The procedure verifies that the XIP driver is installed in the ;
; system and returns a handle so that driver IOCTLs may be done ;
; if it is present. ;
; If XIP driver is installed ;
; CARRY CLEAR ;
; (bx) = handle for XIP device driver get/set calls ;
; else ;
; CARRY SET ;
;--;

open_XIP_driver proc
;--;
; Open the XIP device. ;
;--;

mov dx, offset XIP_device_name
; (ds:dx) = far ptr to
; device name string

mov ax, 3D00h ; (ax) = open read-only function
int 21h ; issue device read-only open
jc oXd_02 ; error during device open

;--;
; Get the info flags for the XIP handle.

;
;--;

mov bx, ax ; (bx) = handle returned by open
mov ax, 4400h ; (ax) = IOCTL get device data function
int 21h ; issue get device data IOCTL
jc oXd_01 ; error during IOCTL get device info

;--;
; Test the ISDEV bit in the device info flags. ;
;--;

test dx, 0080h ; (dx) = file or device data
jz oXd_01 ; XIP is a file, NOT a device

;--;
; XIP driver is installed in this system. ;
; Return: ;
; (bx) = XIP driver handle. ;
; (CARRY CLEAR) to indicate that the XIP device is ;
; installed. ;
;--;

clc
ret

;--;
; XIP driver is not installed in this system. ;
; Close the file named XIP$$$$$. ;

APPENDICES

52 © 1999 PCMCIA/JEIDA

; (bx) = handle returned by open call ;
;--;
oxd_01: mov ah, 3Eh ; (ah) = close function

int 21h ; close XIP$$$$$ file/driver

;--;
; XIP driver is not installed in this system. ;
; Return: ;
; (CARRY SET) to indicate that the XIP device is not ;
; installed. ;
;--;
oXd_02: stc

ret

open_XIP_driver endp

;--;
; XIP driver name. ;
;--;
XIP_device_name db "XIP$$$$$", 0

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 53

6.2.5 IOCTL Read (Get Current XIP API Entry Point)
The DOS "IOCTL read" function (INT 21h, function 4402h) is used to obtain the XIP API entry point.
This function will read, into a buffer supplied by the application, a dword pointer supplied by the
XIP driver. The dword pointer in the buffer is a far pointer to a far pointer to the XIP API. All
applications needing to use the XIP API must obtain this entry point before they can make an XIP
API call.

The following example builds on the previous example and demonstrates how an application
obtains the XIP API entry point.

;--;
; Get the current XIP API entry point. ;
; If XIP API services are available ;
; CARRY CLEAR ;
; (bx) = handle for future XIP device driver get/set calls ;
; (XIP_callback) = far pointer to far pointer to the XIP API ;
; else ;
; CARRY SET ;
;--;
get_XIP_callback proc

call open_XIP_driver ; check for the XIP driver & open it
jc gXc_02 ; XIP driver not installed

;--;
; Get the XIP API entry point. ;
; (bx) = XIP driver handle returned by open ;
;--;

mov dx, offset XIP_callback; (ds:dx) = far ptr to XIP callback
buffer

mov cx, 4 ; (cx) = # bytes to transfer (dword size)
mov ax, 4402h ; (ax) = IOCTL read device data
int 21h ; issue IOCTL read device data
jc gXc_01 ; error during IOCTL read device data

;--;
; Verify that only the XIP API entry point was transferred. ;
;--;

cmp ax, 4 ; (ax) = # bytes actually transferred
jne gXc_01 ; driver did not transfer the

specified
; # of bytes

;--;
; XIP API services are available. ;
; Return: ;
; (XIP_callback) = far pointer to far pointer to the XIP API. ;
; (CARRY CLEAR) to indicate that the XIP API services ;
; are available. ;
;--;

clc
ret

;--;

APPENDICES

54 © 1999 PCMCIA/JEIDA

; Close the XIP device. ;
; (bx) = handle returned by open_XIP_driver call ;
;--;
gXc_01: mov ah, 3Eh ; (ah) = close function

int 21h ; close XIP device

;--;
; XIP API services are not available. ;
; Return: ;
; (CARRY SET) to indicate that the XIP API services are ;
; are not available. ;
; ;
;--;
gXc_02: stc

ret
get_XIP_callback endp

;--;
; XIP callback storage. ;
;--;
XIP_callback dd ?

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 55

6.2.6 IOCTL Write (Set New XIP API Entry Point)
The DOS "IOCTL write" function (INT 21h, function 4403h) is used to set a new XIP API entry point.
This function will write a dword pointer, supplied by the application, to the XIP driver. This dword
pointer is a far pointer to the new XIP entry procedure. The function provides an XIP utility, or
another device driver that needs to trap XIP API accesses, with the ability to chain into the XIP API's
path of execution.

If one is creating an XIP utility that absolutely must chain into the XIP API, remember to restore the
original XIP entry point before one's utility exits back to DOS. If one does not, and one's code exits,
the next application that attempts to use the XIP API will probably hang the users system.

The following example builds on the previous examples and demonstrates how an application sets a
new XIP API entry point.

;--;
; Get the current XIP API entry point and set a new XIP ;
; API entry point. ;
; If XIP API services are available ;
; CARRY CLEAR ;
; (bx) = handle for XIP device driver get/set calls;
; (XIP_callback) = far pointer to far pointer to the XIP API ;
; (old_XIP_ent_pt) = address of the current XIP API entry point.

;
; (new_XIP_ent_pt) = address of the new XIP API entry point. ;
; else ;
; CARRY SET ;
;--;

set_XIP_callback proc
;--;
; Open the XIP driver and get the XIP callback. ;
;--;

call get_XIP_callback ; get XIP callback
jc sXc_01 ; could not get the XIP callback

;--;
; Save the address of the current XIP API entry point so that ;
; it can be restored later. The example assumes that the old ;
; XIP entry point is accessible via the example code segment. ;
;--;

les di, XIP_callback ; (es:di) = far ptr to far ptr
; to XIP API entry point

les di, dword ptr es:[di] ; (es:di) = far ptr XIP entry
; point address

mov word ptr cs:old_XIP_ent_pt[0], di
mov word ptr cs:old_XIP_ent_pt[2], es
; (old_XIP_ent_pt) = current XIP entry point address

;--;
; Initialize a far pointer in a buffer so that it points to ;
; the new XIP API entry point. ;

APPENDICES

56 © 1999 PCMCIA/JEIDA

;--;
mov word ptr new_XIP_ent_pt[0], offset XIP_trap
mov word ptr new_XIP_ent_pt[2], cs
; (new_XIP_ent_pt) = new XIP entry point address

;--;
; Send the new XIP API entry point to the XIP driver. ;
; (bx) = handle returned by get_XIP_callback ;
;--;

mov dx, offset new_XIP_ent_pt
; (ds:dx) = far ptr to new XIP entry point buffer
mov cx, 4 ; (cx) = # bytes to transfer (dword size)
mov ax, 4403h ; (ax) = IOCTL write device data
int 21h ; issue IOCTL write device data
jc gXc_01 ; error during IOCTL read device data

;--;
; New XIP entry point has been set. ;
; Return: ;
; (bx) = handle for future XIP device driver get/set calls ;
; (CARRY CLEAR) to indicate that the XIP API services are ;
; available. ;
;--;

clc
ret

;--;
; XIP API services are not available. ;
; Return: ;
; (CARRY SET) to indicate that the XIP API services are ;
; not available. ;
;--;
sXc_01: stc

ret
set_XIP_callback endp

;--;
; New XIP entry point storage. ;
;--;
new_XIP_ent_pt dd ?

;--;
; Old XIP entry point storage. This example assumes that this ;
; pointer resides in the same CODE segment as do the ;
; set_XIP_callback and XIP_trap procedures. ;
;--;
old_XIP_ent_pt dd ?

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 57

6.2.7 Chaining into the XIP API
The following example builds on the previous examples and demonstrates how an XIP utility would
properly chain into the XIP API. The hypothetical example provided assumes that the original XIP
driver cannot either write or erase the special devices the XIP_trap code supports. However, the
original driver is capable of doing all other functions. Therefore, the example inspects the function
codes passed to the XIP API and traps only erase and write functions rather than permitting the
original XIP driver to do them. All other function will be passed on through.

The example also assumes that set_XIP_callback has been called and has completed successfully.

;--;
;This example code simply checks to see if the XIP API code passed;
;to the XIP driver performs writes or erases. If it does, it ;
;services the erase or write. If it doesn't, it chains through ;
;to the original XIP API entry point. ;
;--;

XIP_trap proc far
;--;
;Trap the three XIP functions that perform writes or erases. ;
;--;

cmp ah, XIP_Add ; (ah) = XIP function code
je Xt_Add_XIP_Dir ; trap Add XIP Directory Entry

cmp ah, XIP_Copy
je Xt_Copy_XIP_Dir ; trap Copy XIP Directory Entry

cmp ah, XIP_Erase
je Xt_Erase_Partn ; trap Erase XIP Partition

;--;
;Chain into the original XIP API entry point. ;
;--;

jmp dword ptr cs:old_XIP_ent_pt

;--;
;Your special trap code continues here. ;
;--;
Xt_Add_XIP_Dir: .

.
Xt_Copy_XIP_Dir: .

.
Xt_Erase_Partn: .

.

;--;
;Your trap code has finished its work. ;
;--;
XIP_trap_OK:

clc
ret ; CARRY CLEAR indicates operation passed

APPENDICES

58 © 1999 PCMCIA/JEIDA

XIP_trap_err:
; (ah) = error status of operation
stc ; CARRY SET indicates operation failed
ret

XIP_trap endp

XIP SPECIFICATION

© 1999 PCMCIA/JEIDA 59

6.2.8 Example of XIP API Use
An example is included to illustrate some of the more complex processes involved in using an XIP
driver and the companion XIP directory structure managed by the driver.

Suppose one wishes to install a new XIP application named "WORDPROC.XIP" to an XIP partition
within a user's PC Memory Card. Further assume that the new XIP application is 109 Kbytes long.
Assume further that the XIP partition on this hypothetical PC Memory Card already has some XIP
applications in it, but absolute-page 17 through absolute-page n within this partition are free. The
following steps illustrate how one might copy this new XIP application into the partition. This
example assumes an XIP installation tool that adds applications on page boundaries.

1. An XIP-copy-utility would search the existing XIP directory structure, using the "Search for XIP
Directory Entry" function, for an existing XIP application with the same name.

2. If an XIP application with the same name already existed in the XIP directory, the XIP-copy-
utility might inform the user of this condition and, if instructed to do so by the user, delete the
old XIP application by using the "Delete XIP Directory Entry" function.

3. The XIP-copy-utility, knowing the size of the new XIP application, and that no XIP application is
in the current XIP directory with the same name as the new one being added, would create for
the new application using the "Add XIP Directory Entry" function.

 The data structure for adding this XIP application would look like:

XIP_dir_struct STRUC
name DB "WORDPROC"
ext DB "XIP" ; if necessary
status DB 8h ; this is an EXIP application
begin DW xxxxh ; entry point offset
offset DW 0 ; beginning of page
reserved DW 0,0,0 ; reserved words
creation_time DW xxxxh ; DOS formatting of time bits
creation_date DW xxxxh ; DOS formatting of date bits
first_page DW xxxxh ; based on previous entry
size DD (109*1024) ; size in Kbytes
XIP_dir_struct ENDS

4. After this structure is written into the XIP partition, pages 17, 18, 19...23 are now used by the
XIP application named "WORDPROC.XIP.Ó

5. The XIP-copy-utility would then copy the first 16-Kbyte portion of the new XIP application, from
whatever media it was contained on, into a RAM buffer . The XIP-copy-utility then copies this
buffer into the first logical page allocated to the new XIP application by using the "Copy XIP
Page" function. Realize that the type of memory that XIP applications are stored will typically
not be normal RAM. It is necessary to have the XIP driver do the copying because it is aware of
the nature of the memory on the card. The call may even fail if the memory type happens to be
ROM, which is not writable. The call may also fail if a defect is discovered in the memory in the
XIP partition. The important point to remember is that the status of every operation must
always be checked.

6. The process begun in step 4 is repeated for logical pages 1, 2, 3, 4, 5, and 6.

7. The last step required is to use the "Close XIP Directory Entry" function. This essentially makes
the XIP directory entry and its corresponding application "active" so that it can be loaded and
executed.

APPENDICES

60 © 1999 PCMCIA/JEIDA

8. Once all logical pages of the new XIP application have been initialized and the entry has been
closed, the process of adding a new XIP application to the partition is complete. At this point,
the XIP-copy-utility is done and the user would have a new XIP application in their XIP
partition.

