PC CARD STANDARD

Volume 7

Media Storage Formats Specification

PCMCIA
JEIDA

©1999, PCMCIA/JEIDA
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical,

electronic, photocopying, recording
or otherwise, without prior written
permission of PCMCIA and JEIDA.
Printed in the United States of
America.

PCMCIA (Personal Computer
Memory Card International
Association)

2635 North First Street, Suite 209
San Jose, CA 95134 USA
+1-408-433-2273
+1-408-433-9558 (Fax)

JEIDA (Japan Electronic Industry
Development Association)

Kikai Shinko Kaikan, 3-5-8, Shibakoen
Minato-ku, Tokyo 105, JAPAN
+81-3-3433-1923

+81-3-3433-6350 (Fax)

The PC Card logo and PC Card are
trademarks of PCMCIA, registered in
the United States. The PC Card logo
and design are trademarks of JEIDA,
registered in Japan.

PCMCIA HAS BEEN NOTIFIED BY
CERTAIN THIRD PARTIES THAT
THE IMPLEMENTATION OF THE
STANDARD WILL REQUIRE A
LICENSE FROM THOSE THIRD
PARTIES TO AVOID
INFRINGEMENT OF THEIR
RIGHTS. PCMCIA HAS OBTAINED
FROM SOME, BUT NOT ALL, OF
THOSE PARTIES A GRANT OF
IMMUNITY THAT PCMCIA WILL
EXTEND TO YOU, CONTINGENT
UPON YOUR ENTERING INTO
AND DELIVERING TO PCMCIA
THE RECIPROCAL GRANT OF
IMMUNITY AGREEMENT
CONTAINED ELSEWHERE IN
THIS STANDARD.

IMPORTANT:

In order to receive the Grant of
Immunity, the owner of this
Standard must sign and return the
enclosed Registration Card to:
PCMCIA

2635 North First Street, Suite 209
San Jose, CA 95134 USA

NEITHER PCMCIA NOR JEIDA
MAKES ANY WARRANTY,
EXPRESS OR IMPLIED, WITH
RESPECT TO THE STANDARD,
INCLUDING AS TO NON-
INFRINGEMENT,
MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.
THIS STANDARD IS PROVIDED TO
YOU “AS1S.”

Document No. 0299-07-2000
First Printing, February 1999

MEDIA STORAGE FORMATS SPECIFICATION

CONTENTS

1. Introduction 1
LT PUTPOSE i 1
L2 SCOP .. ittt st e e 1
1.3 Related DOCUIMENESoooviviiiieee et e e e et e e e e e e e e e et e eeeeeeeens 1

2. Overview 3
2.1 Storing Data.........occoiiiiiiiiiiiiii 3
A o=V i 0 s (o) o 1= TSRS 3
2.3 Files and File Systems............ccccciviiiiiiiiiiiiiiiiiiiicciccc e 3
2.4 StOTage Media.....coviiiiiiiiiiiici e e 3
2.5 IN SUMIMATY ..ot s s s 4

3. Partitions 5
3.1 Card Information Structure (CIS) Partitioningcccccecveviiiiiiiniiiiiiiiiiiicceee 6

31T OVEIVIEW ..ttt b et st s s s s e b s st e b a s s bebs s ee s e b s as s e s b s s e e b e b b asbes et s s seebesssassebesasansebssassesesasenses 6
3.1.2 Partition OPEIAtiONS.........occiiiumiiciiciiecis s sasss s sas s sas s ss s ss s sasss s s as s ssnes 6
31201 CTOAIOMN ..ottt sttt sttt b st s b et s s e st esss et et s asaesesasseasantesasasassesasasaesasasassesasantenes 6
3.1.2.2 DIELEHION ..ttt st s bbb b a b e b ae bbb a bbb bbb bbb b n e s e st s e s s s aenantnn 6
3.1.2.3 EXEOIISION ..ttt sttt ettt b b s s s s s e e bbb e bt b as et seetessasassesasastesnanaetenerantenes 7
3.1.2.4 EVAIUATION OTAET ..ottt ae st s st st s et et sas st s assssssssasassesetesasassesssasassasans 7
3.1.3 Initial Program Load...... PN 7
3.1.4 DAt SEIUCLUTES.veeecvveeeeeeteeeteteeete ettt s st e s s s s s s s as s b besas bbb as st sasae bt b asaesesesesasassessassesesasassessastesenasantenes 7
3.2 Master Boot Record (MBR)........cccciiiiiiiiiiiii e 8
3.2 1 OVEIVIEW ..ttt s s as s s s s st et e s et et et e sesesesebesebeseseseses sebebasesasasesasasasasasasasasasasasasasans
3.2.2 Partition OPerationsS........occuiuiuevenirereiiiesiiensessssessessessessssssssssssesssssssssessssssssesssssssssssssessssesss 8
3.2.2. 1 CTOALIOMN. ...ttt sttt sttt ss s ae s s ae s s s as st s ssas bbb asaesesas seasantessasassesasastessasaesesnsantenes 8
3.2.2.2 DICLEION ..ottt sttt sttt ettt a et et ae e et et s s et s sttt ae st sanaesarane 9
3.2.2.3 EXEOIISION ..ttt sttt s ae b b e e b es e b b a bbb e et s et s b as e s s sastesnasaesenerantenes 9
3.2.2.4 EVAIUATION OFAETuveeiecereecteeete ettt et sttt s bt s st s as s s sasaesesasans sassesesasassesssasaenes 9
3.2.3 Initial Program Load........ s ees 10
3.2.4 DAt SEIUCKUTES......oeeevevreeiereeeeeteteee ettt sses s esas s s s s s b s s s b sasaebesssessesesasessesssassessnses L1
3.2.4.1 MaASter BOOTt RECOIU......oeoeveieceeeecteteeecte ettt ae s s ae st ae s s st s s ansessetesnsassessasans 11
3.2.4.2 Partition BNETY ...ttt ss s e srn 11

4. File Formats 13

4.1 MS-DOS BPB/FAT FOIMAtcccoiiiiiiiiiiiiiee ettt et e e e e e e e e eetaaneeas 13
AT.] OVEIVIEW .ttt ettt ettt se st se st st s st et a st s s st e b sas s st asasass e s sasa et basaesesas st sasassesasant et sassetesasantesasastetesnsassesaes 13
4.1.2 Versions OF REVISIONSccccueuieueiriiereieeiesseeiesessessessssessssseesessassessssssssessssssesssssssssssssesessssssesssassesesssssans 14

© 1999 PCMCIA/JEIDA iii

CONTENTS

4.1.2.1 12-Bit FATs....

4.1.2.2 16-Bit FATS...crricrercrcceicsiicsissssssss s ssssssssssnens
4.1.2.3 Huge Partitions........cccceiienccnieneinseecissinecinecosecsesessessssecsnns

4.1.3 Partition Recognition...

4.1.4 Partition FOrmatting ...

4.1.5 FIle OPETALIONSouceereeiercinriieciecei it asse s asse s as s e s bbb 15
4.1.5.1 File Creation.. OO 15
4.1.5.2 File DIEIEHION.cooreeerceeeietceeeceeesseeseseass st s sessessesesesssesosse s ess s as et sessesees 15
4.1.5.3 Read and WIite OPEIations...........crueceieemeiuesmesesesse s sassessssassesssssassessasssssessasssssessesssssssasesssssses 15

4.1.6 Initial Program Load... e 16

4.1.7 Data STIUCTUTES........oouiiecicin st sss s ss s bs s s bbb 16
4.1.7.1 Partition Boot RecOTd (PBR).......cccciiiiieiiiineiiciie e ssssasessssassessssssssessasssssessssssssssssesssssse 16
4.1.7.2 BIOS Parameter Block (BPB). et 17
4.1.7.3 DITeCtOTY ENEIY ..ot sas s sss s ssss s sass s sass s s sas s s s sasse 18

4.2 Linear File StOTeccccciiiiiiiiiiiiiiici s 19

4.2.1 OVerView ... e R R R 19

5. Translation Layers 23

5.1 Virtual Block Device Flash Translation Layer - FTLccccccooiiiiiniiiiiiniiiieccceeen 24
5.1.1 Versions OF REVISIONS ... sssssssssssssssssssssssssssssssssssssens 24
5.1.2 Overview .. et e 24

5.1.2.1 Emulating Traditional Block Devices - Virtual Block Device.........cccccooueeunreunercnscrienncces 24
5.1.2.2 Flash CharacteristicCs........cciiiniencrinriecisiesecsssessesseesssessssecenne 24
5.1.2.3 Erase Zones and Erase Units... e aen 26
5.1.2.4 Erase Unit Header and Block Allocation Information..............coecreenercerneneen. 27
5.1.2.5 Block Allocation Information and the Block Allocation Map (BAM)........ccccinrvnecncrunecenecunecenn. 28
5.1.2.6 Virtual Block Map - Mapping Virtual Blocks to Logical Addresses.. 30
5.1.2.7 Virtual Page Map - Locating the Pages of the Virtual Block Map........cccccouureomrencrcnnccunnccns 32
5.1.2.8 RePlaCcement PaAGES.........c.ocviuruiieiiieiiciieceesee s sasse s sassessss s ssssssssessssssssessasesssssssessssssssssssssesssssssne 33
5.1.2.9 Mapping Logical Addresses to Physical Addresses... .34
5.1.3 Data SLIUCLUTES......ucoeueeeciicii i sss s s s s bbb sas s 34
5.1.3.1 Erase Unit Header (EUH).........ccccouiiicieieciie e sassessse s s sassesssssassessssssssessasssssessssesssssssessesssnen 34
5.1.3.2 Flags.. e AR AR 37
5.1.4 Partition RECOGNITION ... sas s s s as s as s sasson 37
5.1.5 Partition FOIrmMatting ... ss s sas s s sassaen 38
5.1.6 Logical Block Operations. PN 39
51601 REAG....coeceeceeceecceeceieeceei st sesse s cssse s es e et et 39
511602 W ...t sssessssssssosssssessss s sasss s bR s s 39
5.1.6.3 Unit Recovery OO 40
5.1.7 Initial Program LOA.coiiceiiereeieceeeecesesiassesssssesesssessssessssesssssesesssesesssesessssssssesssssesssssesssesesssesssssessssessssesess 40

6. Storage Devices 43
6.1 Static RAM Cards.........cccocoiiiiiiiiiiiiiiiiciccc 43
6.2 Flash MemoOry Cardscccooouiiiiiiiiiiiiiiiciicie e 43

iv © 1999 PCMCIA/JEIDA

MEDIA STORAGE FORMATS SPECIFICATION

0.3 PC Cald ATA DIIVES .o e e e eeeeaanaees 43

© 1999 PCMCIA/JEIDA v

MEDIA STORAGE FORMATS SPECIFICATION

FIGURES

Figure 5-1: Erase ZONEScccciiiiiiiiiiiiiiiiiiiicciiic s 26
Figure 5-2: Read/Write BIOCKS........cccoiiiiiiiiiiiiiiiiii e 27
Figure 5-3: Erase Unit Layout.........ccccoiiiiiiiiiiiiiiiiiii i 28
Figure 5-4: Block AIIOCAtioN MAP ...c.eeeiiiiiiiiiieiiieiieeeeie e 30
Figure 5-5: Virtual Block Map.........ccccouiiiiiiiiiiiiiiiiiicic e 32
Figure 5-6: Page MappPing.........ccooviiiiiiiiiiiiiiiiic e 33

© 1999 PCMCIA/JEIDA vii

MEDIA STORAGE FORMATS SPECIFICATION

1. INTRODUCTION

1.1 Purpose

This document describes how data is formatted on PC Cards used as storage devices to promote the
exchange of these cards among different host systems. These include memory cards using various
types of volatile and non-volatile devices and ATA disk drives, both silicon and rotating media.
Each of these storage technologies have unique characteristics which may benefit from different
storage techniques and handling. This has resulted in the development of different storage formats
and/or partitioning for PC Cards using these devices.

NOTE: The inclusion of a partition, file format, or media type information in this
document does not constitute an endorsement by PCMCIA or JEIDA.
PCMCIA and JEIDA are only acknowledging this information has been
used to record data on a PC Card and, in some cases, that PCMCIA /JEIDA
members have agreed that using the documented implementation may
reduce problems encountered when attempting to interchange data
between host systems.

1.2 Scope

This document is intended to provide enough information to allow software developers to use data
stored on PC Cards by other host systems using potentially different operating and file systems.
Unless required to understand the data structures used on the PC Card, algorithms for updating the
data on the PC Card are not specified, only the storage format.

1.3 Related Documents

The following documents which comprise the PC Card Standard.:

PC Card Standard Release 7.0 (February 1999), PCMCIA /JEIDA
Volume 1. Overview and Glossary
Volume 2. Electrical Specification
Volume 3. Physical Specification
Volume 4. Metaformat Specification
Volume 5. Card Services Specification
Volume 6. Socket Services Specification
Volume 7. Media Storage Formats Specification
Volume 8. PC Card ATA Specification
Volume 9. XIP Specification
Volume 10. Guidelines
Volume 11. PC Card Host System Specification

Microsoft Corporation, Microsoft MS-DOS Programmer's Reference, 2nd edition: version 6.0, 1993,
Microsoft Press.

© 1999 PCMCIA/JEIDA 1

MEDIA STORAGE FORMATS SPECIFICATION

2. OVERVIEW

2.1 Storing Data

Most computer programs need to store and retrieve information. While running, a program may
use system memory for limited amounts of information, but often more information is required than
may fit in memory. In addition, when a program terminates, the system memory it was using is re-
used by other programs and information may be overwritten and lost.

To accommodate large and long-term storage needs, information is stored on disks and other types
of external media. Several types of PC Cards are used to store information including static RAM
(SRAM) and flash memory cards and silicon and rotating media PC Card ATA drives.

2.2 Partitions

Storage media may be divided into separately addressable areas known as partitions. Each partition
is addressed by a file system as if it were a separate storage device with its own directory and
allocation information.

To minimize the number of storage formats a file system needs to be able to recognize to avoid
erroneously assuming a partition or PC Card is unformatted, the Card Services Specification
provides two services which return partition information. They are GetFirstPartition and
GetNextPartition. A Card Services implementation determines partition information using the CIS
or by performing searches for file system specific data structures.

2.3 Files and File Systems

Information is usually stored in units called files. Files are managed by a file system, usually a part
of or an extension to an operating system. The file system records the structure used to store files in
a system file or area known as a directory. Each file typically has a record in the directory known as
a directory entry.

A file system also keeps track of where files are stored on the media and what areas are available.
A file system keeps track of storage space in units known as blocks or clusters. Block devices are
usually limited to reading or writing information in units known as sectors. A block or cluster may
be one sector or may be two or more contiguous sectors. By making blocks or clusters more than one
sector, a file system reduces the amount of storage required to track whether or not space on the
media is allocated.

2.4 Storage Media

PC Cards provide several technologies for storing information, each with its own unique
requirements. Static RAM (SRAM) devices are the most flexible allowing any byte to be separately
read or written.

Flash memory devices may allow byte or block accesses for reads, but require special write
algorithms and pre-erased bytes before most write operations. In addition, flash device require
erase operations to be performed on a block of contiguous bytes as a single unit.

© 1999 PCMCIA/JEIDA 3

OVERVIEW

PC Card ATA drives are accessed in the same manner as traditional block devices requiring an
entire sector be read or written at one time. The actual storage media may be silicon or magnetic
oxide on a rotating disk.

2.5 In Summary

To access data on storage media requires a complete understanding of how the media is partitioned,
the file format used and whether a translation layer is used. Client device drivers first check the
Card Information Structure (CIS) to determine if a PC Card is partitioned. If the card is partitioned,
the tuples used to describe the partition also describe the storage format used on the media.

4 © 1999 PCMCIA/JEIDA

MEDIA STORAGE FORMATS SPECIFICATION

3. PARTITIONS

PCMCIA/]JEIDA recognize two methods for partitioning PC Cards. First, linear memory PC Cards
such as flash and S-RAM cards use tuples in the Card Information Structure (CIS) to describe how a
PC Card is partitioned. Second, PC Card ATA drives are partitioned using a Master Boot Record
with a partition table.

Each recognized partitioning method is described separately in the following sections. The following
information is provided about each recognized method:

Overview An overview of the partitioning method and where it is
used.

Partition Operations How partition operations are performed.

Initial Program Load How a host system boots using the partitioning method.

Data Structures The data structures used by the partitioning method.

All PC Cards used for data storage must provide partition information as described in this section.
PC Cards used for data storage that do not contain partition information described in this section
may be assumed to be unformatted.

© 1999 PCMCIA/JEIDA 5

PARTITIONS

3.1 Card Information Structure (CIS) Partitioning

3.1.1 Overview
The PC Card's CIS describes partitions using the following tuples:

Tuple Name Tuple Constant Tuple Value
Format CISTPL_FORMAT 411
Organization CISTPL_ORG 46H

Both tuples must be present. The Format Tuple describes where that partition is located on the
media and the Organization Tuple identifies the data storage format used within the partition. Data
storage within a partition is also affected by the following tuples, if they are present:

Tuple Name Tuple Constant Tuple Value
Geometry CISTPL_GEOMETRY 424
Byte-Order CISTPL_BYTEORDER 43H
Software Interleave CISTPL_SWIL 231

3.1.2 Partition Operations

3.1.2.1 Creation

A partition is created by adding the tuples described above to a PC Card's Card Information
Structure (CIS). The ability to write to a PC Card's CIS is dependent on the card and potentially
installed device drivers. A PC Card may require that the entire CIS be erased and then re-written to
modify the CIS.

Some PC Cards use multiple tuple chains to describe physical characteristics of the card separately
from how the card is used. For example, a primary tuple chain in a PC Card's attribute memory
space might describe the physical characteristics of the card, such as the type and size of the
memory device used on the card. A secondary tuple chain, in the PC Card's common memory
space, might be used to describe the logical characteristics of the card, such as the partitioning. In
this manner, the PC Card might be manufactured with the physical information hard-coded into
read-only memory in attribute memory space and logical partitioning information would be added
by using writable memory in common memory space. (See the Metaformat Specification for more
information about how tuple chains are linked together within the CIS.)

3.1.2.2 Deletion

To delete a partition, all of the tuples describing the partition must be deleted from the Card
Information Structure (CIS). Depending on the PC Card, the CIS may have to be erased and then re-
written without the tuples that describe the partition.

6 © 1999 PCMCIA/JEIDA

MEDIA STORAGE FORMATS SPECIFICATION

3.1.2.3 Extension

Some PC Cards allow the Card Information Structure to be extended without erasing existing tuples.
These cards permit additional partitions to be defined by adding tuples to the end of the last tuple
chain on the PC Card.

3.1.2.4 Evaluation Order

Host software evaluates partition information as it is encountered in the Card Information Structure
(CIS). If host software recognizes a partition type, the next available drive specifier is assigned to the
partition. If there are multiple partitions of different types on a PC Card, each partition type may be
recognized by a separate host device driver. For this reason, the order host drive specifiers are
assigned to partitions is host system specific.

3.1.3 Initial Program Load

The PC Card Standard does not currently define a method for booting from a PC Card using
partition definitions in the CIS.

3.1.4 Data Structures

See the Metaformat Specification for a complete definition of the tuples used to describe partitions.

© 1999 PCMCIA/JEIDA 7

PARTITIONS

3.2 Master Boot Record (MBR)

3.2.1 Overview

PC Card ATA drives are partitioned using a Master Boot Record (MBR) with a Partition Table in the
first physical sector of the media.. Partition Table Entries describe the size, location and type of data
within a partition. A Partition Table Entry may also describe an Extended Partition which is further
divided into one or more partitions.

The MBR contains a word of 55AAH at offset 1FEH. The sector contains operating system
independent code to perform Initial Program Load on x86 architecture host systems. For system and
PC Card interoperability, all systems, including those that do not use the IPL code for booting, must
include such information when formatting the MBR. The MBR also contains a Partition Table with
four (4) Partition Table Entries at offset 1BEH. When booting from a device with an MBR on an x86
architecture system, code within the MBR evaluates the Partition Table for a partition marked as the
default boot partition. Only one partition may be marked as the default boot partition.

If the x86 bootstrap code locates a default boot partition in the MBR's Partition Table, the Partition
Boot Record (PBR), the first sector of the partition, is loaded into memory. If the word at offset 1FEH
of the PBR is 55AAH, control is passed to the next stage bootstrap loader in the PBR image in
memory.

During operating system initialization, MBRs on all fixed disk devices are evaluated by the file
system for partition definitions in reverse order starting with the entry at offset 1IEEH. The host
system assigns unit designations (drive letters under MS-DOS), to each partition matching a type
supported by the file system.

3.2.2 Partition Operations

3.2.2.1 Creation

A partition is created by setting the fields of a partition entry in the partition table of the Master
Boot Record (MBR) to describe the desired partition. A partitioning utility first reads the MBR into
host system memory. If the word at offset 1FEH of the MBR is not 55AAH, the device is not
formatted and the utility must create an initial MBR with an empty partition table before preceding.

If the word at offset 1FEH of the MBR is 55AAH, the partitioning utility searches the partition table
for an empty entry. An entry is considered empty if the NumSectors field is zero (0). If there are no
empty entries in the partition table, a partition cannot be created.

If there is an empty partition entry, the partitioning utility creates a new partition using contiguous
unallocated space on the media. The utility determines if there is any available space on the media
by subtracting the space allocated to other partitions from the total size of the media. The total size
of the media is determined in a host system dependent manner. For example, on x86 systems with
a PC-compatible ROM BIOS the Get Drive Parameters function (Int 13H Function 8) is typically
used.

If there is unallocated space on the media, the partitioning utility must also determine where the
space is located by comparing the Start and End of each allocated partition. How a partitioning
utility decides which space to use when multiple unallocated spaces are available is implementation
specific.

After a partition entry is created the partitioning utility needs to notify the host system of the
change to the MBR.

8 © 1999 PCMCIA/JEIDA

MEDIA STORAGE FORMATS SPECIFICATION

A partition table entry uses Cylinder, Head and Sector (CHS) addressing to describe the starting
and ending boundaries of a partition. Some PC Card ATA drives translate their physical CHS
information to logical values that are compliant with limits imposed by some host systems that are
unable to address cylinder, head or sector values that exceed system-specific limits. Once a partition
table entry has been created, all subsequent accesses to the media must use the same logical CHS
addressing.

The PC Card Standard requires that all partitions described in the partition table within the MBR
end on a logical cylinder boundary based on the logical CHS addressing in use when the first
partition was created. This allows a host system to validate the logical CHS addressing in use is
correct by confirming the maximum head and sector values used for media access are the same as
those used to indicate the ending head or sector of all partitions on the media.

3.2.2.2 Deletion

A partition is deleted by resetting all of the fields of a partition entry in the partition table of the
Master Boot Record to zero (0). After a partition entry is deleted the partitioning utility needs to
notify the host system of the change to the MBR.

3.2.2.3 Extension

Some partition types extend the partition table in a system-specific manner. For example, MS-DOS
defines a special partition type called the Extended MS-DOS partition. The space allocated to an
Extended MS-DOS partition is sub-divided into logical drives. The first sector of an Extended MS-
DOS Partition contains a partition table formatted in the same manner as the partition table in a
Master Boot Record (MBR). The extended partition table typically contains two entries, an MS-DOS
partition and another Extended MS-DOS partition entry.

The MS-DOS partition entry in an extended MS-DOS partition describes a logical drive. If an
Extended MS-DOS partition entry is also present in the partition table, another potential logical
drive may exist within the area described by the Extended MS-DOS partition entry. Extended MS-
DOS partition entries create a forward-linked list of logical drives within the Extended MS-DOS
partition in the MBR.

The one difference between partition entries in an MBR and partition entries in the partition table in
an Extended MS-DOS partition is the StartSector field of the partition entries. In the MBR this field is
relative to the beginning of the media. In an Extended MS-DOS partition this field is relative to the
beginning of the Extended MS-DOS partition described in the MBR.

3.2.2.4 Evaluation Order

The order partition entries are evaluated in the partition table of the Master Boot Record (MBR) is
dependent on the operating system. For example, MS-DOS evaluates primary partition types on the
first two physical fixed drives on x86 systems addressed by the ROM BIOS Int 13H Disk I/O
handler as drives 80H and 81H. Primary partition types are 01H, 04H and 06H.

If the first physical fixed drive has a primary partition, MS-DOS assigns the next available logical
drive letter to the partition. If there is a second physical fixed drive and it has a primary partition,
MS-DOS assign the next available logical drive letter to this partition. After MS-DOS assigns the
primary partition types on the first two physical fixed drives as logical drives, Extended MS-DOS
partitions are evaluated.

If the first physical fixed drive has an Extended MS-DOS partition, each logical drive described in
the chain of Extended MS-DOS partitions is added as a logical drive letter. If there is a second

© 1999 PCMCIA/JEIDA 9

PARTITIONS

physical fixed drive and it has an Extended MS-DOS partition, each logical drive described in the
chain of Extended MS-DOS partitions is added as a logical drive letter.

3.2.3 Initial Program Load

10

The PC Card Standard does not describe a system independent method for booting from a device
with a Master Boot Record (MBR). However, x86 systems use the MBR as the first stage of a multi-
stage program loader. The host system reads the MBR of the first physical drive into host system
memory at 0000H:7COOH. If the word at offset 1FEH of the MBR is not 55AAH, the media is not
bootable and the system continues the boot process with another device or displays an error
message.

If the word at offset 1FEH of the MBR is 55AAH, the host system transfers control to the code at
0000H:7C00H. No arguments are provided to the code by the host system. No stack is established
and no indication of which device the MBR was read from is provided.

The boot code in the MBR evaluates the partition table from the last entry at offset 1EEH to the first
entry at 1BEH. If an entry is found with the default x86 boot partition field set to 80H, the first sector
of the partition described by the partition entry, known as the Partition Boot Record (PBR), is loaded
into host system memory. If the word at offset 1FEH of the PBR is 55AAH, control is transferred to
offset zero of the PBR and the boot process continues. If the word at offset 1IFEH of the PBR is not
55AAH, the code in the MBR displays an error message and halts.

© 1999 PCMCIA/JEIDA

MEDIA STORAGE FORMATS SPECIFICATION

3.2.4 Data Structures

3.2.4.1 Master Boot Record

The Master Boot Record contains the following fields:

Offset Size (Bytes) | Description

000H 446 Boot code

1BEH 16 Partition Entry (See below)
1CEH 16 Partition Entry (See below)
1DEH 16 Partition Entry (See below)
1EEH 16 Partition Entry (See below)
1FEH 2 Signature Word (0x55AA)

3.2.4.2 Partition Entry

Each of the four Partition Entries in the Master Boot Record have the following format:

Offset Size (Bytes) | Description

OO0H 1 x86 default boot partition
00H = Not default boot partition

80H = Default boot partition

01H 1 StartHead - Zero-based (0) head number where partition starts on media.

02+ 1 StartSector - Bits 0 .. 5 are one-based (1) sector number where partition
starts on media. Bits 6 and 7 are high bits of zero-based (0) cylinder
number where partition starts on media.

03H 1 StartCylinder - Least significant eight bits of zero-based (0) cylinder
number where partition starts on media. Upper two bits of starting cylinder
number are in StartSector field.

041 1 Partition Type

00H: Unknown or deleted if NumSectors is zero
01H: MS-DOS 12-bit BPB/FAT < 16 MB

04H: MS-DOS 16-bit BPB/FAT < 32 MB

05H: Extended MS-DOS Partition

06H: MS-DOS 16-bit BPB/FAT >= 32 MB

05H 1 EndHead - Zero-based (0) head number where partition ends on media.

06H 1 EndSector - Bits 0 .. 5 are one-based (1) sector number where partition
ends on media. Bits 6 and 7 are high bits of zero-based (0) cylinder
number where partition ends on media.

07H 1 EndCylinder - Least significant eight bits of zero-based (0) cylinder
number where partition ends on media. Upper two bits of ending cylinder
number are in StartSector field.

08H 4 StartSector (relative to beginning of media or Extended MS-DOS Partition)

0CH 4 NumSectors

© 1999 PCMCIA/JEIDA 11

MEDIA STORAGE FORMATS SPECIFICATION

4. FILE FORMATS

To achieve backward compatibility and speed acceptance of PC Card technology, the formats used
by file systems for traditional storage devices are often used for PC Cards. This section describes the
data structures used by specific formats and how file operations using those structures are
performed. Each subsection provides the following information about a file format:

Overview An overview of the format and where it is used.

Versions or Revisions Variations of the file format in common use.

File Operations How common file operations are performed using the
defined data structures.

Initial Program Load How a host system boots using the file format.

Data Structures The data structures used by the file format.

4.1 MS-DOS BPB/FAT Format

4.1.1 Overview

In the MS-DOS environment, the native file system stores information in what is known as the
BPB/FAT format. Static RAM (SRAM) cards and PC Card ATA drives commonly use this format on
x86 architecture systems. Flash memory cards may also use this format if they are read-only or are
accessed using a Flash Translation Layer (FTL).

BPB/FAT media is accessed in blocks known as sectors. The number of bytes in a sector is described
in the BIOS Parameter Block (BPB) BytesPerSector field. The total number of sectors on the media is
described by the BPB 0 field if there are less than 65,536 sectors. If there are more than 65,535
sectors, the TotalSectors field is zero (0) and the number of sectors on the media is described by the
HugeSectors field.

BPB/FAT media may have hidden sectors. Hidden sectors are usually associated with partitioned
media. The BPB HiddenSectors field describes the number of hidden sectors on the media.

BPB/FAT media have one or more reserved sectors. The BPB ReservedSectors field describes the
number of reserved sectors on the media. The first reserved sector is known as the Boot Sector. This
sector contains the BIOS Parameter Block (BPB) describing the size and format of the media.

After any hidden and reserved sectors, BPB/FAT media have one or more File Allocation Tables
(FATSs). If there is more than one FAT, the additional copies are maintained to allow data recovery
in case the first FAT is damaged. Most BPB/FAT media is formatted with two (2) FATs. The
number of FATs is described by the BPB NumFATs field.

The FAT tracks the allocation of the media's data space. Space on BPB/FAT media is allocated in
units of one or more contiguous sectors called clusters. If a cluster has more than one sector, the
number of sectors in the cluster must be a power of two (for example, two, four, eight, etceteras).
The BPB SectorsPerCluster field describes the number of sectors per cluster.

FAT entries may be 12 or 16-bits depending on the number of clusters on the media. Media with
more than 4085 clusters use 16-bit entries. Media with 4085 or less clusters use 12-bit entries. Each
entry in the FAT represents the allocation status of a cluster. The first two entries are reserved for
FAT ID information. The first data area tracked by the FAT is cluster number two (2).

© 1999 PCMCIA/JEIDA 13

FILE FORMATS

A FAT entry has the following meanings. The digit in parentheses represents the upper four bits
associated with 16-bit FAT entries.

Value Meaning

(0)000H Available or unallocated cluster

(0)001H Reserved, do not use this value

(0)002H - (F)FF6H Next cluster in file or directory

(F)FF7H Bad cluster, do not store data in this cluster
(F)FF8H - (F)FFFH Last cluster of file or directory

The number of sectors used to store each FAT is described in the BPB NumFATSectors field. The
next area on the media after the FAT(s) is the Root Directory. The Root Directory is an array of
Directory Entries. The number of directory entries in the Root Directory is described by the BPB
RootDirEntries field. The Directory Entry StartCluster field describes the first cluster used to store
data for the file or directory identified by the entry.

The space on the media immediately following the Root Directory is used for file and subdirectory
data storage. The Directory Entry Attributes field identify an entry as a subdirectory of a file.
Subdirectories are special file entries containing additional directory entries for files and further
subdirectories in the data area of the media.

4.1.2 Versions or Revisions

4.1.2.1 12-Bit FATs

BPB/FAT media formatted with less than 4086 clusters uses 12-bit File Allocation Table (FAT)
entries. Each FAT entry requires 1.5 bytes.

4.1.2.2 16-Bit FATs

BPB/FAT media formatted with more than 4085 clusters uses 16-bit File Allocation Table (FAT)
entries. Each FAT entry requires two (2) bytes.

4.1.2.3 Huge Partitions

BPB/FAT media with more than 65,535 sectors indicates the number of sectors in the BPB
HugeSectors field and sets the TotalSectors field to zero (0). All huge partitions use 16-bit FAT
entries requiring two (2) bytes for each entry.

4.1.3 Partition Recognition

All BPB/FAT partitions begin with a Partition Boot Record (PBR). All PBRs start with a byte of E9H
or EBH. If the PBR begins with a byte of EBH, the byte at offset two (2) must also be 90H. If the
previous bytes are present, the byte at offset 26H of the PBR must be 29H indicating an Extended
BPB is present.

If the PBR does not contain the above bytes, the partition is not BPB/FAT format.

Further consistency checks may be performed on an implementation specific basis. The BIOS
Parameter Block (BPB) fields may be checked for valid values. For example, the BytesPerSector
field must be a power of two and at least 128 bytes. The SectorsPerCluster field must be one or any

14 © 1999 PCMCIA/JEIDA

MEDIA STORAGE FORMATS SPECIFICATION

other power of two. The ReservedSectors field must be at least one (1). The NumFATSs field must be
one (1) or two (2).

4.1.4 Partition Formatting

The first step in formatting a BPB/FAT partition is to write a Partition Boot Record (PBR) with a
BIOS Parameter Block (BPB) to the first reserved sector of the partition. The next step is to initialize
the number of File Allocation Tables (FATs) indicated by the BPB NumFATs field. The first byte of
each FAT is the partition's FAT ID byte followed by two bytes of FFH. If the FAT uses 16-bit entries,
the next byte is also FFH. All of the remaining bytes of the FAT are zero (00H).

The sectors for the Root Directory are then initialized. All bytes of the Root Directory sectors are
written as zeroes (00H). Optionally, a scan of the media may be performed to determine if any of
the data clusters are defective. How or if this scan is performed is implementation specific. However,
if bad sectors are located, the clusters containing the bad sectors are marked as bad in all FATs.

4.1.5 File Operations

4.1.5.1 File Creation

A file is created by filling in the fields in a directory entry. The directory may be in the Root
Directory or a subdirectory. A directory entry may be created with the StartCluster field set to zero
(0) if the file or subdirectory does not contain any data. The first write to the file or subdirectory will
allocate a cluster if there is one available on the media.

4.1.5.2 File Deletion

A file or subdirectory is deleted by overwriting the first byte of the Name field with the value E5H.
In addition, any clusters allocated to the directory entry must be freed by writing a zero (0) to the
corresponding cluster entries in all the File Allocation Tables on the media.

A directory entry for a subdirectory may not be deleted until all entries in the subdirectory are
deleted as described above.

4.1.5.3 Read and Write Operations

The first step in performing a read or write is to determine where on the media the operation
should begin. Such operations typically specify an offset within the file or directory. The BIOS
Parameter Block (BPB) BytesPerSector and SectorsPerCluster fields are used to determine the
relative cluster where the operation is to begin.

The desired offset is divided first by the BytePerSector field. The result is further divided by the
SectorsPerCluster field. The result of the second divide is the relative cluster where the operation
begins. The remainder of the second divide is the relative sector within the cluster where the
operation begins. If the remainder of the first divide is non-zero, the operation begins in the middle
of a sector and must be buffered by host software.

For example, if the media is formatted for 512 bytes per sector and there are two sectors per cluster,
a read from offset 1024 of a file would begin at the start of the second cluster. A read from offset 1536
begins at the start of the second sector of the second cluster. A read from offset 1792 begins in the
middle of the second sector of the second cluster and requires host system buffering.

Once the appropriate relative cluster is determined, the File Allocation Table (FAT) is used to
convert the relative cluster to an absolute cluster on the media. The Directory Entry's StartCluster

© 1999 PCMCIA/JEIDA 15

FILE FORMATS

field determines the first cluster. The value in that entry of the FAT is the next cluster in the chain.
When a FAT entry is FF8H to FFFH, the end of the cluster chain has been reached. Attempts to read
past the end of the cluster chain are failed.

If an operation continues beyond the end of a cluster, the location of the next cluster is determined
from the contents of the current FAT entry. Write operations that continue past the end of the cluster
chain need to extend the chain.

A cluster chain is extended by overwriting the current FAT entry with the number of an
unallocated cluster. The unallocated cluster entry in the FAT is then marked as the end of the chain.
Attempts to extend cluster chains on full media are failed.

When a directory entry is extended, the FileSize field of the entry is increased. The FileSize field
represents the actual size of the file or directory, in bytes, and may be less than the space allocated.
This is due to the fact the file or directory may not fill the last cluster allocated.

4.1.6 Initial Program Load

The Partition Boot Record (PBR), in addition to containing the BIOS Parameter Block (BPB), also
contains code to continue Initial Program Load (IPL). Host system software loads the PBR into system
memory at 0000H:7COOH. If the word at offset 1FEH of the PBR is 55AAH, the host systems transfers
control to the PBR code at 0000H:7CO0H. No arguments are provided to the code by the host system.
No stack is established and no indication of which device the PBR was read from is provided.

If the PBR contains an MS-DOS bootstrap loader, the information in the BPB within the PBR is used
to locate systems files in the Root Directory of the media. If these files are located, they are loaded
into host system memory and control is transferred to them to complete IPL.

4.1.7 Data Structures

4.1.7.1 Partition Boot Record (PBR)

16

The Partition Boot Record contains the following fields:

Offset Size (Bytes) Description

000H 3 JMP instruction to PBR boot code

003H 8 OEMName and version

00BH 25 BIOS Parameter Block (BPB)

024+ 1 DriveNumber (00H = Floppy, 80H = Fixed)

025+ 1 Reserved, do not use

026H 1 ExtBootSignature - 29H

027H 4 VolumelD or Serial Number

02BH 1 VolumelLabel - ASCII characters, padded with blanks if less than eleven
(11) characters

036H 8 FileSysType - ASCII characters identifying file system type. Padded
with blanks if less than eight (8) characters. One of the following values:
Value Meaning
FAT12 12-bit File Allocation Table (FAT)
FAT16 16-bit FAT

03EH 448 Boot code

1FEH 2 Signature word - 55AAH

© 1999 PCMCIA/JEIDA

MEDIA STORAGE FORMATS SPECIFICATION

4.1.7.2 BIOS Parameter Block (BPB)
The BIOS Parameter Block (BPB) contains the following fields:

Offset Size (Bytes) Description
000H 2 BytesPerSector - Number of bytes per sector
002+ 1 SectorsPerCluster - Number of sectors in a cluster
003H 2 ReservedSectors - Number of reserved sectors at the beginning of the media.
Must be at least one (1) to accommodate the Partition Boot Record (PBR)
005H 1 NumFATSs - Number of File Allocation Tables (FATs) on the media.
006H RootDirEntries - Number of Root Directory entries
008H TotalSectors - Number of sectors on media. If media has more than 65,535
sectors, this field is zero and the actual number of sectors is in the HugeSectors
field.
00AH 1 MedialDByte - Used to quickly identify how the media is formatted
Value Meaning
FOH Various types of media
F8H Hard disk, any size
FOH 720K 3.5" or 1.2M 5.25"
FAH 320K 5.25"
FBH 640K 3.5"
FCH 180K 5.25"
FDH 360K 5.25"
FEH 160K 5.25"
FFH 320K 5.25"
00BH 2 NumFATSectors - Number of sectors in each FAT
00DH 2 SectorsPerTrack - Number of sectors on a track
00FH 2 NumHeads - Number of heads
011H 4 HiddenSectors - Number of hidden sectors in front of reserved sectors
015H 4 HugeSectors - Number of sectors on media if TotalSectors is zero (0).

© 1999 PCMCIA/JEIDA

17

FILE FORMATS

4.1.7.3 Directory Entry

Each directory entry contains the following fields:

18

Offset Size (Bytes) Description

000H 8 Name —File or directory name. If less than eight (8) characters, padded with
blanks.

008H 3 Extension —File or directory extension. If less than three (3) characters, padded
with blanks

00BH 1 Attributes — Bit-mapped field using following values:
Value Meaning
XXXXXXX1B Read-only
XXXXXX1XB Hidden
XXXXX1XXB System
XXXXTXXXB Volume label (root directory only)
XXXTXXXXB Subdirectory
XXTXXXXXB Archive (new or modified entry)

00CH 10 Reserved, do not use

016H 2 Time — Bit-mapped field describing time file or subdirectory created or modified:
Bits Meaning
0.4 Two-second interval (O .. 29)
5..10 Minute (0 .. 59)
11..15 Hour (0 .. 23)

© 1999 PCMCIA/JEIDA

MEDIA STORAGE FORMATS SPECIFICATION

4.2 Linear File Store

4.2.1 Overview

Define a partition type for storing files formatted in a PCMCIA /JEIDA-prescribed manner within
contiguous sections of PC Card memory. This Linear File Store (LFS) uses a well-defined header
record to allow directory functions and file access to be performed across a wide variety of operating
environments and host platforms.

Partitions on PC Cards are defined using the Data Recording Format Tuples in Layer 2 of
Metaformat Specification. A memory-like format tuple is used to describe the PC Card Standard'’s
LFS partition. (See the Metaformat Specification for more information about format tuples.)

Byte 7 6 5 4 3 2 1 0
0 TPL_CODE Format tuple code (CISTPL_FORMAT, 41H) or (CISTPL_FORMAT_A, 47H).
1 TPL_LINK Link to next tuple (OBH)
2 TPLFMT_TYPE Format type code (TPLFMTTYPE_ MEM, 01H)
3 TPLFMT_EDC Error Detection Method (TPLFMTEDC_NONE)
RFU 0008 00008
4.7 TPLFMT_OFFSET Byte address of the first data byte in this partition.
8.1 TPLFMT_NBYTES Number of data bytes in this partition.
12 TPLFMT_FLAGS Various Flags (0O0H - Flags not used)
(Reserved) 0 0

The above tuple definition describes a partition which is formatted as a memory-like region with no
error detection and no requirement for direct mapping into a specific area of host system address
space. For the example an election has been made to shorten the tuple by omitting optional fields
which are not used.

The data organization of the PC Card Standard’s LFS partition is defined by an Organization Tuple.
(See the Metaformat Specification for more information about data organization tuples.)

Byte 7 6 5 4 3 2 1 0
0 TPL_CODE Organization tuple code (CISTPL_ORG, 46H).
1 TPL_LINK Link to next tuple (OBH)
2 TPLORG_TYPE Data organization code (TPLORGTYPE_FS, 00H)
3.12 TPLORG_DESC Linear File Store specified by the PC Card Standard ("LFS100")
(Note: Text description of this organization, terminated by 00H)

Within the partition, each file is preceded by a PC Card Standard-defined entry record. This
structure provides enough information for a simple bootstrap loader to select an appropriate file. If a
specific environment requires information beyond that defined by the PC Card Standard, the
organization responsible for that environment defines any additional fields required immediately
after the PC Card Standard-defined fields creating an extended header record.

For XIP files, a header record is also defined to provide information about the length of the root
segment of the file, whether the file uses paging and the entry point for execution within the file.
Because the header record is part of the file, the data in the record is available during file execution.

© 1999 PCMCIA/JEIDA 19

FILE FORMATS

20

The PC Card Standard-defined entry record is located at the base of the window that maps the root
section into host system address space.

Note:

XIP definition to be developed by XIP Working Group.

Files are stored consecutively within the partition using a forward-linked list managed by a field
which points to the next header record. If the file is the last in a partition, the pointer to the next
header record is set to all ones (-1 or FFFFFFFFH). This value allows files stored in partitions using
flash memory devices to be extended if sufficient space remains within the partition.

Each entry in the PC Card Standard’s LFS Partition has the following structure:

typedef struct {

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
BYTE

BYTE

} ENTRY;

NextEntry;
EntrySize;
EntryType;
OffsetToHeader;
Flags;
OffsetToString;
UniquelD;
Reserved[4];
EntryInfol];

© 1999 PCMCIA/JEIDA

MEDIA STORAGE FORMATS SPECIFICATION

Member

Description

NextEntry

This field points to the next entry within the partition, relative to the start of this entry on the
PC Card. The actual location of the next entry is determined by adding the value in this field
to the offset of this field on the PC Card. If all of the bits in this field match Bit DO of the
Flags field, this is the last entry in the partition.

EntrySize

This field contains the actual size of the entry, i.e. the number of bytes in this instance of the
ENTRY structure. EntrySize is less than the NextEntry when padding is added to align the
next entry on a boundary.

EntryType

This field contains a PCMCIA assigned value that defines the interpretation of the data in
the Entrylnfo byte array. EntryType values are assigned by PCMCIA. The definition of any
header structure within the Entryinfo area for a particular EntryType value must be
provided at the time the EntryType is assigned. If all of the bits in this field match Bit DO of
the Flags field, this entry is not defined. For this reason, the EntryType values zero and
minus one are reserved.

OffsetToHeader

This field contains the offset from the beginning of the ENTRY structure where additional
EntryType specific information is stored. The actual location of the specific information is
determined by adding the value in this field to the offset of the NextEntry field on the PC
Card. If this field is zero, there is no specific information and this field is ignored.

Flags

This field is bit-mapped. The bytes of this field are stored in little-endian order. Bit D1
indicates the current state of the entry. If Bit D1 matches DO, this entry is active. If Bit D1
does not match Bit DO, this entry has been deleted. All of the remaining bits are reserved
and must be set to the value of Bit DO. Bit DO is used in this manner to accommodate the
unique erase and write characteristics of some types of storage media such as flash
memory devices. Bit DO is typically maintained in the natural erase state of the media.

OffsetToString

The field contains the offset from the beginning of the ENTRY structure where an ASCIIZ
string describing the entry is stored. The actual location of the string is determined by
adding the value in this field to the offset of the NextEntry field on the PC Card. If this field is
zero, there is no ASCIIZ string and this field is ignored.

UniquelD

This field contains a value that is unique for each file stored in the partition. It is intended to
be used to uniquely identify a file even if it is relocated within the partition. Formatting
software should attempt to prevent the reuse of UniquelD values previously assigned to
deleted entries. How this is accomplished is implementation specific.

Reserved

These bytes are reserved for future use. They shall be set to match the value of bit DO of
the Flags field.

EntryInfo

The data for this entry.

© 1999 PCMCIA/JEIDA

21

MEDIA STORAGE FORMATS SPECIFICATION

5. TRANSLATION LAYERS

When sector remapping is performed by a translation layer, two storage formats are used. From the
host system perspective, the same block storage format used for other media is being recorded. With
the translation layer in place, the host system believes it is using traditionally formatted media.

However, the translation layer requires sector mapping information to be stored on the media and
what the host feels are contiguous sectors are actually placed on the media out of sequence. To allow
another system to recover the data stored on the media requires an understanding of how the
translation layer remaps sectors and the native storage format intended by the original file system.

Any file format used for block data storage may be used on top of a Flash Translation Layer (FTL).
To boot from a Flash Translation Layer (FTL) partition requires the FTL to translate host requests for
virtual blocks.

© 1999 PCMCIA/JEIDA 23

TRANSLATION LAYERS

5.1 Virtual Block Device Flash Translation Layer - FTL

5.1.1 Versions or Revisions

Release FTL Version
PC Card Standard Release 7.0 (February 1999) 12
PC Card Standard April 1998 (Release 6.1) 11
PC Card Standard May 1996 (Release 5.2) 1.0

5.1.2 Overview

Traditional block storage devices read and write data in small blocks sized in power-of-two
multiples beginning at 256 (i.e. 256, 512, 1024, 2048, etc. byte blocks). File systems and the data
structures they use are optimized for read/write units of this size. While flash media storage devices
may be able to perform read and write operations on similar size blocks, they usually require a
data area be erased before it may be written.

Adding an erase operation immediately before a write would appear to solve the problem and for
some flash devices, this is all that is required. Unfortunately, for many flash devices, erase
operations must often be applied to a contiguous area of the media known as an Erase Zone that is
larger (in some cases, much larger) than traditional storage devices use for read and write access.
This can make flash devices difficult to use with traditional file systems unprepared to relocate
adjacent data areas to prepare for erase operations.

Two approaches have been taken to deal with the unique characteristics of flash storage devices: the
development of new file systems customized for flash device characteristics and the introduction of a
translation layer between the file system and the storage media to mask any differences between
flash storage devices and traditional block storage devices. This section describes the later method,
known as a Flash Translation Layer (FTL).

5.1.2.1 Emulating Traditional Block Devices - Virtual Block Device

An FTL masks the characteristics of flash devices from higher level software layers such as file
systems by emulating a traditional block device. From the perspective of such higher level layers, a
block storage device is a contiguous array of blocks numbered from zero (0) to one less than the
number of available blocks. These higher level software layers expect to be able to write these
blocks at will, without any regard for the need to first erase the media and certainly without any
need to erase an area that exceeds the size of the block being written.

The FTL delivers this capability to the higher level software layers by remapping requests to write
blocks to unallocated or free areas of the media and invalidating the area on the media previously
containing the block's data. The FTL also records where the remapped block is placed on the media
to allow subsequent read accesses to return the data written. In effect, the FTL presents a virtual
block storage device to the higher level software layers. The size of these virtual blocks is
determined when the storage media is formatted.

5.1.2.2 Flash Characteristics

24

A unique characteristic of flash media is its data content after erasure. If erased, flash media data
bytes are either set to all ones (FFH) or all zeroes (00H). In addition, once a flash data bit has been
set to a value other than its erase state, an entire Erase Zone must be erased to return the bit to its

© 1999 PCMCIA/JEIDA

MEDIA STORAGE FORMATS SPECIFICATION

erased state. However, single bits within a byte may be transitioned from the erased state to the
non-erased state without an erase operation. FTLs use this ability to modify updatable fields in
control structures. See the description of the ReversePolarityFlash bit of the Flags field in the Erase
Unit Header.

© 1999 PCMCIA/JEIDA 25

TRANSLATION LAYERS

5.1.2.3 Erase Zones and Erase Units

26

Depending on its technology, each flash IC on a PC Card may be divided into one or more Erase
Zones of equal size. Each Erase Zone is the minimum contiguous area that can be erased in a single
operation. If eight-bit devices are interleaved to provide sixteen-bit storage, the corresponding
physical zones on two adjacent devices are combined together as a single Erase Zone. One device
provides even addresses and the other device provides odd addresses.

An Erase Unit is a multiple of one or more contiguous Erase Zones. The size of an Erase Unit is set
when the media is formatted. See Figure 5-1: Erase Zones.

Flash Memory Card Interleaved Flash Devices

Even Odd
I s I e B s 11 Addresses Addresses
Flash IC Flash IC '
Flash IC Flash IC Erase Zone
1 1 1 L1 1 1 1 L1
S — i e B B == Erase Zone
Flash IC Flash IC
T T T J | NN [NNy i | Erase Zone
e B s B e O | 1 1 1
Flash IC Flash IC Erase Zone
Flash IC Flash IC ~
1 1 1 L1 1 1 1 L1

When a flash IC does not require the entire device to be erased as a single unit, a single flash IC cont:

multiple Erase Zones. When eight-bit flash devices are used, an Erase Zone spans two flash ICs.

Figure 5-1: Erase Zones

© 1999 PCMCIA/JEIDA

MEDIA STORAGE FORMATS SPECIFICATION

5.1.2.4 Erase Unit Header and Block Allocation Information

For allocation purposes, an Erase Unit is evenly divided into one or more Read/Write Blocks of
equal size. For example, a 128 KByte Erase Unit might be divided into 256 Read/Write Blocks, each
512 Bytes in size. Each of these Read/Write Blocks is the same size as the Virtual Blocks presented
to the higher level software layers by the FTL. See Figure 5-2: Read/Write Blocks.

Flash Memory Card Erase Unit
Subdivided into Erase Units Subdivided into Read/Write Blocks
/[
Read/Write Block
Erase Unit Read/Write Block
Read/Write Block
Erase Unit Read/Write Block
Read/Write Block
Erase Unit _< Read/Write Block
Read/Write Block
Erase Unit Read/Write Block
Read/Write Block
Erase Unit Read/Write Block
Read/Write Block
Erase Unit _ Read/Write Block
Erase Unit

An Erase Unit is evenly divided into read/write blocks for allocation purposes. Each of these
read/write blocks is the same size as the virtual blocks presented to the higher level software
layers by the FTL.

Figure 5-2: Read/Write Blocks

Within each Erase Unit is an Erase Unit Header (EUH). The EUH includes specific information
about the Erase Unit and global information about the format of the FTL partition. Each Erase Unit
also contains allocation information for all of the Read/Write Blocks within the unit.

Some flash devices have a small number of bytes of storage adjacent to each Read/Write Block
which are not addressed through the linear address space of the media. Erase Units with these
"hidden" areas may place block allocation information for a Read/Write Block in the hidden area
adjacent to the block. If the Erase Unit does not have hidden areas or an FTL partition is not
formatted to use the hidden areas, block allocation information is stored in an array known as the
Block Allocation Map or BAM in the Erase Unit's linear address space. The Flags field of the EUH
indicates whether block allocation information is stored in hidden areas or a BAM.

© 1999 PCMCIA/JEIDA 27

TRANSLATION LAYERS

For data integrity purposes, two copies of the block allocation information may be stored in the
Erase Unit. The Flags field of the EUH indicates the number of copies of the block allocation
information that are present on the media. When BAMs are used to store block allocation
information, the second copy is stored in a separate BAM immediately following the first BAM in
the Erase Unit.

Optional Checksums, CRCs or ECCs may also be present for each Read/Write Block. If present,
these codes are stored immediately following the block allocation information, in either the BAM or
the media's hidden areas as indicated by the Flags field of the EUH. The length of these codes
varies depending on the type of code being used. See Figure 5-3: Erase Unit Layout.

Flash Memory Card Erase Unit with Erase Unit without
Subdivided into Erase Units Hidden Areas Hidden Areas
('
Erase Unit Header Erase Unit Header
Erase Unit Block Allocation Map
(BAM)
Erase Unit Read/Write Blocks
used for .

. Virtual Map Pages, Read/erjte]c Blocks

Erase Unit < Replacement Pages used for

Virtual Map Pages,

and Virtual Blocks Replacement Pages

Erase Unit and Virtual Blocks

Erase Unit

Block Allocation ¢

Information In‘H|dden Areas

Erase Unit -

[}
Erase Unit One or more Erase Zones

Erase Units with hidden areas may place Block Allocation Information in those areas rather than in the
linear address space of the media. Optional Checksums, CRCs or ECCs are not shown. If present, these
codes are stored immediately following the Block Allocation Information in either the Block Allocation Map

(BAM) or the media's hidden areas.

Figure 5-3: Erase Unit Layout

5.1.2.5 Block Allocation Information and the Block Allocation Map (BAM)

28

Each Erase Unit on the media contains allocation information for the Read/Write Blocks within the
unit. For each Read/Write Block, a four-byte value tracks the block's current state. At any point in
time, a Read/Write Block in an Erase Unit is free, deleted, bad, reserved for bad area management,
or allocated. For each Read/Write Block, a four (4) byte value tracks the block's current state. The
following table identifies the corresponding block allocation entry values for the state of a
Read/Write Block:

© 1999 PCMCIA/JEIDA

MEDIA STORAGE FORMATS SPECIFICATION

BAI Meaning Description

FFFFFFFFH Free Read/Write Block is available, erased and ready to be written.
FFFFFFFEH Deleted Data in block is not valid. Read/Write Block must be erased before it
OR can be re-used.

00000000 The value FFFFFFFEH indicates write operations were started on the
Read/Write Block, but were interrupted before they were completed.

The value 00000000+ indicates the data in the Read/VWrite Block was
superseded by normal update operations.

00000070+ Bad Block is unusable.

Xxxxx10H Bad Area Block allocated for storing information about bad areas in the flash
Management device.

Any Other Value Allocated Block is allocated. The actual BAI value describes the type of data

stored in the Read/Write Block. Other values could be valid and should
not cause operation errors. If a value is unrecognized, the block should
be marked by software as "deleted" at initialization.

When allocated, Read/Write Blocks are used to store four types of data: FTL control structures,
Virtual Block data for higher level software layers, Virtual Block Map Pages and Replacement
Pages. When a Read/Write Block is allocated to an FIL control structure, the block's allocation
information entry is set to the following:

00000030H Control Read/Write Block contains one or more FTL control structures: an
Erase Unit Header, a Block Allocation Map (BAM), or an array of
Checksums, CRCs or ECCs.

The block allocation entries for Virtual Block data, Virtual Block Map Pages and Replacement Pages
have two parts. The least significant eight (8) bits indicate whether the Read/Write Block contains
Virtual Block data, a Virtual Block Map Page or a Replacement Page as indicated by the following
table:

XXXXXX40H Data or Map Page | Read/Write Block contains Virtual Block data or a Virtual Map Page.
XXXXXX60H Replacement Read/Write Block contains a Replacement Page for a Virtual Map Page.
Page

The most significant twenty-four (24) bits of the block allocation entry for a Read/Write Block
containing Virtual Block data, a Virtual Block Map Page or a Replacement Page are the most
significant bits of the virtual address of the data. The least significant eight (8) bits of the virtual
address for these entries are assumed to be zero (0). To determine if the block is Data, Map, or
Replacement page, compare the least significant 8 bits to 40H and/or 60H.

The FTL assigns a virtual address to each Virtual Block in the contiguous array of blocks presented
to higher level software layers. The virtual address is computed by multiplying a Virtual Block's
sequence number (zero to n - 1) by the size of a Virtual Block. The first Virtual Block is always at
virtual address zero (0) as indicated by a block allocation entry of 00000040H. If the Virtual Block
size is 512 bytes, the second block's virtual address is 00000200H and its block allocation entry is
00000240H. The third block's virtual address is 00000400H and its block allocation entry is
00000440H. See Figure 5-4: Block Allocation Map.

The Virtual Block Map (VBM) is built from the virtual addresses of Read/Write Blocks used to store
Virtual Block data. Read/Write Blocks containing Virtual Block data use positive virtual addresses.
If the VBM is maintained on the media, the Read/Write Blocks containing VBM Pages or
Replacements Pages use negative virtual addresses. The use of negative addresses is discussed
further in the sections that follow.

© 1999 PCMCIA/JEIDA 29

TRANSLATION LAYERS

Allocation information is maintained in one of two ways. First, allocation information for all of the
Read/Write Blocks in the Erase Unit may be stored together in an array in the unit known as the
Block Allocation Map (BAM). Second, allocation information may be stored in hidden areas next to
or related to the Read/Write Block to which it refers. The Flags field in the Erase Unit Header
describes how allocation information is stored on the media.

NOTE: For reverse polarity flash the block allocation information stored on the
media is inverted (for example, BAI entry 00000070H is FFFFFFS8FH, etc.
when a reverse polarity flash device is used). See the ReversePolarityFlash
bit of the Flags field in the Erase Unit Header.

i) T Contents of Read/Write Block
o 0 FTL control structure
- BAM Index
1 FTL control structure
2 Virtual Block 2
' 3 Superseded Data
4 Page -1 of Virtual Block Map
5 Virtual Block 338 (152h)
h,oo 6 Free
7 Page -3 of Virtual Block Map
Erase A portion of the Block Allocation Map
i Free Blocks, . .
Unit Superseded Blocks Notes on the Block Allocation Map: Each entry in the Block
Virtual Blocks, Allocation map describes the contents of a corresponding
Virtual Block Map Pages, Read/Write Block in the Erase Unit. This example uses a
and Replacement Pages block size of 512 bytes and the FTL partition does not store

checksums, CRCs or ECCs for Virtual Block data. All blocks
are numberd starting from 0.

The first two Read/Write Blocks of this Erase Unit store FTL
control structures: the Erase Unit header and the Block
Allocation Map. The third Read/Write Block (bytes 1024-1535
of the Erase Unit) contains data for the third Virtual Block used
by higher level software layers. The next Read/Write Block
(bytes 1536-2047) contains superceded data, while the block
y following it contains data for Virtual Block Map Page #338.

Figure 5-4: Block Allocation Map

5.1.2.6 Virtual Block Map - Mapping Virtual Blocks to Logical Addresses

The FTL uses a data structure known as the Virtual Block Map (VBM) to map requests for virtual
blocks from higher level software layers to logical addresses on the media. The VBM is an array of
32-bit entries, each of which represents a logical address on the media where a Virtual Block's data
is stored. The virtual block number requested by higher level software layers is used as an index
into this array. See Figure 5-5: Virtual Block Map.

The VBM is subdivided into Pages. Each Page of the VBM is the same size as the Virtual Blocks
presented to the host system by the FTL.

The size of the VBM (in bytes) is determined by dividing the FormattedSize of the media by the
BlockSize and multiplying the result by the size of a VBM entry (32-bits or four bytes). The number
of Pages required for the VBM (NumVMPages) is the previous result divided by BlockSize and
rounded up to the nearest Page.

30 © 1999 PCMCIA/JEIDA

MEDIA STORAGE FORMATS SPECIFICATION

For example, if FormattedSize is 12 megabytes and BlockSize is 512 bytes, the media contains 24K
blocks. Each block has a four (4) byte entry in the VBM requiring 96 KBytes of the storage media to
store the VBM. Dividing the size of the VBM by the block size indicates NumVMPages is 192. Each
page of the VBM, in the example, is capable of recording the logical addresses used for 128 virtual
blocks or 64 KBytes of data storage.

Space is always reserved on the media to store a VBM large enough to track the allocation of all the
Virtual Blocks presented to higher level software layers by the FTL. However, when the media is
formatted, the FTL may indicate only a portion of the VBM is maintained on the media. The
FirstVMAddress field of the Erase Unit Header identifies the first virtual address on the media that
has an entry in the VBM maintained by the FTL.

If the FirstVMAddress is reset to zero (0), the FTL must maintain all of the VBM entries on the
media. If the FirstVMAddress exceeds the FormattedSize, none of the VBM entries are maintained
on the media by the FTL. If the FirstVMAddress is greater than zero (0), but less than the
FormattedSize, the FTL maintains VBM entries on the media for all virtual addresses greater than
or equal to the FirstVMAddress. The system should determine if it has adequate resources to mount
the media prior to mounting. All VBM entries stored on the media are in little-endian order.

When all or a portion of the VBM is not maintained on the media, the FTL must map requests for
Virtual Blocks in some other way. An FTL might create and maintain a VBM in host system RAM.
An FTL could also scan the media's block allocation information when each virtual block is
requested. The choice to maintain the VBM on the media is typically based on the availability of
system RAM and desired performance. Maintaining virtual to logical mapping information in
system RAM relieves the FTL of the overhead of updating the VBM on the media for frequently
updated Virtual Blocks.

If a VBM entry is all ones (FFFFFFFFH), the Virtual Block does not exist on the media. When asked
to read data from this Virtual Block, the FTL may return any combination of bytes, such as binary
0's, as long as this combination is consistently returned until the Virtual Block is written.

There are two possibilities if a VBM entry is all zeroes (00000000H). First, the logical address of the
Virtual Block is described on a Replacement Page. In this case, the FTL uses the logical address from
the Replacement Page to locate the block. Second, if there is no Replacement Page, the block does
not exist on the media. In the later case, when asked to read data from this Virtual Block, the FTL
may return any combination of bytes, such as binary 0's, as long as this combination is consistently
returned until the Virtual Block is written.

NOTE: For reverse polarity flash, the VBM entries stored on the media are inverted
(for example, VBM entry FFFFFFFFH is 00000000H, etc. when a reverse
polarity flash device is used). See the ReversePolarityFlash bit of the Flags
field in the Erase Unit Header.

© 1999 PCMCIA/JEIDA 31

TRANSLATION LAYERS

N

Notes on Virtual Block Map Pages: Each entry in a Virtual
Block Map (VBM) corresponds to a Virtual Block in the
emulated block device the FTL provides to higher level
software layers. This example shows the portion of the Page
of the VBM that maps Virtual Blocks 128 through 131.

The 128th entry of the VBM contains the value A0600h. This
indicates the data corresponding to the 128th Virtual Block is
stored at offset AO600h of the media when the Erase Units are
accessed in logical order. This example assumes each Erase
Unit is 64 Kbytes, so this logical address further breaks down
to offset 0600h of LogicalEUN 10.

Elj?]iste Free Blocks, The entry for Virtual Block 130 has been updated and is stored
Superseded Blocks, in a Replacement Page. To locate the data for this block, the
Virtual Blocks, FTL must refer to the corresponding entry (in this case, the
Virtual Block Map Pages, third entry) on the Replacement Page for this Virtual Block Map
and Replacement Pages Page. If the Replacement Page entry for this block is also 0,

then the data no longer exists.
Logical Address of Virtual Block

Offset 0600h of Logical EUN 10
Offset 0800h of Logical EUN 12
Use Replacement Page Entry

Offset CCOOh of Logical EUN 0

128
129
130
. 131

“'VBM Index

A portion of a Virtual Block Map Page

Figure 5-5: Virtual Block Map

5.1.2.7 Virtual Page Map - Locating the Pages of the Virtual Block Map

32

When the Virtual Block Map (VBM) is maintained on the media, the FTL must track the storage of
the Pages of the VBM. In the same manner that VBM entries indicate the logical address of a Virtual
Block, the entries of the Virtual Page Map (VPM) indicate the logical address on the media where
the Pages of the VBM are stored. Unlike the VBM, the VPM is never stored on the media. Where
the FTL stores the VPM is implementation dependent. See Figure 5-6: Page Mapping.

The block allocation information entries describing Virtual Block Map Pages use negative values to
distinguish them from the Read/Write Blocks used to store Virtual Block data which use positive
values. In the example used in the previous section, the VBM requires 192 Pages. If the entire VBM
is maintained on the media (see the previous section), each page of the VBM requires a Read/Write
Block to store the VBM entries found on the page.

Virtual Block Map Pages are numbered using negative values, therefore their virtual addresses are
negative. As with Virtual Blocks, the virtual address stored as the block allocation information for
these pages is computed by multiplying the page number by the size of a Virtual Block (which is
the same size as the Read/Write Block used to store the page's data). Returning to the previous
example, the first page of the VBM (used to store the logical addresses of the first 128 Virtual Blocks)
is number -192. The second page of the VBM is number -191 and the last page of the VBM is -1.
With a block size of 512 bytes, the first VBM Page in the example is virtual address FFFES8000H. The
virtual address of the second VBM Page is FFFE8200H, and the last VBM Page would be virtual
address FFFFFEQOH. To locate an address within a VBM Page, take the sector requested modulo
128. Multiply this result but the Virtual Block entry width and this yields the correct offset within
the VBM Page.

© 1999 PCMCIA/JEIDA

MEDIA STORAGE FORMATS SPECIFICATION

Virtual Page Map VBM Pages Data Sectors

|(Virtual Blocks)
0

VBM 1 - Page Map Logical Address

VBM 2 - Page Map Logical Address

VBM n-1 - Page Map Logical Addres;

Logical to Physical Logical to Physical
address translation address translation

Figure 5-6: Page Mapping

5.1.2.8 Replacement Pages

Each page of the Virtual Block Map (VBM) may have a Replacement Page. Replacement pages may
be used to improve performance of a system. Values in a Replacement Page override entries in the
original VBM page as follows:

If an entry in an original VBM page is zero (0), the logical address of the Virtual Block is retrieved
from the corresponding entry on the Replacement Page. If there is no Replacement Page, or the
corresponding entry on the Replacement Page is zero (0), the Virtual Block does not exist on the
media.

Replacement Pages are used to improve performance by minimizing the need to supersede Pages
in the VBM when logical addresses on a Page are updated. To ensure compatibility with other host
systems, when reading, the system must be able to handle usage of one Replacement Page and
when writing is allowed to use up to one (1) at any one time.

Replacement Pages are allocated from Free Read/Write Blocks in any Erase Unit. The FTL locates
allocated Replacement Pages by scanning the block allocation information on the media. This scan

© 1999 PCMCIA/JEIDA 33

TRANSLATION LAYERS

may be performed when the media is inserted in the host system or when a VBM entry of zero (0) is
encountered. Replacement Pages may NOT be replaced.

The block allocation information entry for a Replacement Page uses the same virtual address as the
original VBM Page. The FTL distinguishes between the two using the least significant eight (8) bits
of the block allocation information. VBM Pages have a value of 40H in the these bits while
Replacement Pages have a value of 60H.

5.1.2.9 Mapping Logical Addresses to Physical Addresses

The addresses stored in the Virtual Block Map and Virtual Page Map arrays are logical addresses. A
logical address represents a location in the media described when the Erase Units are ordered in
LogicalEUN sequence. The FTL determines the relationship between LogicalEUN and Physical EUN
by scanning the media. As each Physical Erase Unit is encountered, its LogicalEUN is noted. Later,
the FTL uses this information to map the logical address in the VBM or VPM to a physical address
on the media where the data for the Read/Write Block is stored.

Since Erase Units are always sized as a power of two (2), the logical address may be considered to
contain a LogicalEUN in the most significant bits and an offset into the Erase Unit in the least
significant bits. Which bits represent the offset address and which bits represent the Logical EUN
depend on the size of an Erase Unit.

As an example, if Erase Units were 64 KBytes, the low word of the logical address would be the
offset within the Erase Unit and the upper word of the logical address would be the Logical EUN. If
the FTL maintains an array of PhysicalEUNs in LogicalEUN order, translating the LogicalEUN to a
PhysicalEUN is a simple matter of indexing into the array using the LogicalEUN from the upper
word of the logical address. Continuing with the example, the offset of the Read/Write Block storing
the data being mapped is the double word created by placing the PhysicalEUN in the upper word
and the offset into the Erase Unit into the lower word.

5.1.3 Data Structures

This section describes the data structures used on media formatted for the Flash Translation Layer
(FTL). Unless otherwise noted, all values stored in FTL data structure fields are in little-endian
format.

The FTL stores persistent allocation information on the media for each Virtual Block. This allocation
information is stored in the same Erase Unit as the Virtual Block. A Virtual Block Map (VBM) is
maintained by the FTL based on this allocation information that reorganizes the information into an
array of four byte entries that describe the logical location of a Virtual Block on the media.

The VBM may reside on the media or in a non-persistent space available to the host system such as
system memory. The portions of the VBM that are not stored on the media are built during FTL
initialization when new media is inserted based on the block allocation information stored in each
Erase Unit.

5.1.3.1 Erase Unit Header (EUH)

34

Each Erase Unit on the media contains an Erase Unit Header (EUH). The EUH is located at offset
zero (0) of the Erase Unit or at the location specified by the AIKREUHOffset field of an EUH at offset
zero (0) of another Erase Unit. The Erase Unit Header contains information specific to the Erase Unit
and global information about the entire FTL partition.

© 1999 PCMCIA/JEIDA

MEDIA STORAGE FORMATS SPECIFICATION

Offset

Field

Size

Detail/Description

LinkTargetTuple

This field contains a Link Target Tuple (see the Metaformat
Specification). The contents of this field are the same for all
Erase Units.

TPL_CODE
TPL_LINK3
TPLTG_TAG 'CL I, 'S

CISTPL_LINKTARGET (13H)

DataOrganizationTuple

10

This field contains a CISTPL_ORG tuple (see the Metaformat
Specification). The contents of this tuple are the same for all
Erase Units. The value used for the TPL_LINK field is the number
of remaining bytes in the Erase Unit Header. The next tuple (after
the Erase Unit Header) may be an End-Of-List Tuple to terminate
the chain, or the tuple chain may continue with additional tuples.

TPL_CODE CISTPL_ORG (46H)
TPL_LINK At least fifty-seven (57), including the size of
the remaining fields in the Erase Unit Header.

TPLORG_TYPE TPLORGTYPE_FS (0)
TPLORG_DESC "FTL100", 0

15

NumTransferUnits

Number of Transfer Units in the partition. All FTL partitions have
at least one (1) Transfer Unit.

16

Reserved

This field shall be ignored when read and shall be set to the
device’s erased state when written.

LogicalEUN

The Logical Erase Unit Number currently assigned to this unit.
The LogicalEUN of a formatted Transfer Unit is the media's
erased state (for most flash devices this is all ones or FFFFH).

BlockSize

The size of all Virtual and Read/Write Blocks. This field is
expressed as a log2 value. For example, for a block size of 512
bytes this field is set to nine (9). This field must be at least eight
(8) to represent the minimum block size of 256 bytes.

EraseUnitSize

The size of an Erase Unit. This field is expressed as a log2 value.
For example, for a unit size of 128 KBytes this field is seventeen
(17). Erase Units are always a multiple of the flash device's erase
zone size.

24

FirstPhysicalEUN

The Physical Erase Unit Number where the FTL partition begins.
If the partition starts at physical address zero (0), this value is zero

(0).

NumEraseUnits

Total number of Erase Units in the FTL partition. This field
includes Erase Units used to store data, block allocation
information, checksums (if present), transfer units, replacement
pages, spare blocks and the Virtual Block Map. The total number
of Erase Units also includes bad units.

FormattedSize

The formatted size of the partition. This is the total space available
to the host system for data storage. This field does not include
space marked as format blocks or used to for transfer units,
replacement pages and the Virtual Map. Formatting utilities should
also exclude a few additional blocks to use as spares. Without
spare blocks, a Unit Recovery Procedure is required anytime a
Virtual Block is updated after all the Virtual Blocks have been
written once. This field is expressed in bytes. This field must be a
multiple of BlockSize.

FirstVMAddress

The first virtual address for which Virtual Block Map (VBM)
entries are maintained by the FTL on the media. If this field is zero
(0), the entire VBM is maintained on the storage media. If this field
exceeds the FormattedSize field, none of the VBM is maintained
on the media. However, space for the entire VBM must be
available on the media at all times.

NumVMPages

Number of Pages in the Virtual Block Map (VBM). If the
FirstYMAddress field is greater than the FormattedSize field, the
FTL does not maintain the VBM on the media, even though space
is reserved on the media. If the FirstVMAddress field is less than
the FormattedSize field, some or all of the VBM stored on the
media is maintained by the FTL.

© 1999 PCMCIA/JEIDA

35

TRANSLATION LAYERS

38 Flags 1 Bit-mapped field describing how checksum and block allocation
information are stored on the media and the polarity of the media.
See 5.1.3.2 Flags below.

39 Code 1 Binary value describing the type of Checksum, CRC or ECC

information maintained for Virtual Block data. If this value is the
erase state of the media, no such information is present. If this
value is the non-erase state of the media, such information was
present at one time, but is no longer being maintained. Any other
value indicates the type of information being maintained.

If this value is set to one (1), a two (2) byte checksum is computed
and maintained for each Virtual Block. These two (2) byte
checksums are computed by adding each byte of the Virtual Block
to a 16-bit value initially set to zero (0) and ignoring overflow. The
checksum is stored in little-endian format. Where the checksum is
stored depends on the setting of the HiddenAreaFlag of the Flags
field.

Any other value than those described above is reserved for future
expansion.

40 SerialNumber 4 Partition serial number. May be used to distinguish between
partitions and/or PC Cards.

4 AtEUHOffset 4 Offset of an alternate Erase Unit Header. Used when it is not
possible to write an Erase Unit Header at offset zero (0) of the
Erase Unit. If used, the value in this field is the same for all Erase
Units in the partition. However, the FTL always attempts to place
the EUH at offset zero (0). For each Erase Unit the FTL is able to
place the EUH at offset zero (0), the alternate location is not used.

When all Erase Unit Headers are at offset zero (0) and there is no
Alternate Erase Unit Header in use, this field shall be in the erase
state of the media. This allows an Alternate EUH to be assigned at
run-time, if the beginning of an Erase Unit should go bad during
use.

Should an Alternate EUH be assigned at run-time, all EUHs must
be updated to reflect the AREUHOffset.

The FTL first searches for the EUH at offset zero (0) of the Erase
Unit. Only if the EUH is not found there does the FTL search at the
location specified by this field. This presumes the FTL has
successfully read an EUH at offset zero (0) of another Erase Unit
to determine the location used for Alternate EUHS. If an EUH
cannot be found at either location, the FTL assumes the Erase Unit
is unformatted.

The AIREUHOffset should be an integer multiple of 4 Kbytes.

48 BAMOffset 4 The offset from the start of the Erase Unit Header to the Block
Allocation Map (BAM) contained in the Erase Unit. This field is
expressed in bytes. This field is only valid if the Flags -
HiddenAreaFlag is reset to zero (0). The Block Allocation Map is
not required to be aligned on a virtual block boundary. It may
immediately follow the tuple chain encapsulating the Erase Unit
Header.

If the Flags - DoubleBAl is set to one (1), two copies of the BAM
are present on the media. The second copy follows the first copy
and precedes any Checksum, CRC or ECC information.

If an Erase Unit is using Checksums, CRCs or ECCs as indicated
by the Code field, these codes shall follow the block allocation
information. If the allocation information is stored in the BAM, an
array of codes follow the array of allocation information in the
BAM.

52 Reserved 12 Reserved for future use. This field shall be left in the media's
erased state. For most flash devices this is all ones (FFH).

36 © 1999 PCMCIA/JEIDA

MEDIA STORAGE FORMATS SPECIFICATION

FTLRevisionTuple 114 This optional field contains an FTL Revision Tuple. The contents of
this field are the same for all Erase Units.

TPL_CODE vendor unique (80H)

TPL_LINK10

FTL-VER 'FTL VER x.x"' where x.x is the ASCI|
equivalent version number of the FTL specification that the
software is compliant to. For example, FTL version 1.1 would
have entries 46H, 54H, 4CH, 20H, 56H, 45H, 52H, 31H, 2EH, 31H.

5.1.3.2 Flags

The bit-mapped Flags field of the Erase Unit Header describes how checksum and block allocation
information is stored on the media and identifies the media's erase state.

Bit

Description

0

HiddenAreaFlag - This flag indicates whether checksum and allocation information are stored in the Block
Allocation Map (BAM) or the media has hidden, alternate storage areas for such information that do not appear in
the media's normal address space.

If this bit is set to one (1), checksum and/or allocation information are stored in hidden areas outside of the media's
normal address space.

If this bit is reset to zero (0), any checksum and/or allocation information are stored in the media's normal address
space. The Block Allocation Map (BAM), an array of all of the block allocation information, precedes an array of
the checksum information.

ReversePolarityFlash - This flag indicates whether the media's flash memory devices erase to all ones or to all
zeroes.

If this bit is set to one (1), the flash memory devices erase to all zeroes (0) and may be written to one. When this
bit is set, all block allocation information, Virtual Map entries and LogicalEUNs must be inverted before they are
written to the media and after they are read from the media.

If this bit is reset to zero (0), the flash memory devices erase to all ones (1) and may be written to zero. When this
bit is reset, all block allocation information, Virtual Map entries and LogicalEUNs are read and written without
inversion.

DoubleBAl - This flag indicates whether there are one or two copies of the block allocation information stored on
the media.

If this bit is set to one (1), two copies of the block allocation information are present on the media. If this
information is stored in BAMs, there are two complete BAMs on the media. In this case, the first BAM begins at
the location specified by the BAMOffset field and the second BAM begins immediately after the first. If the block
allocation information in stored in hidden areas, as indicated by the HiddenAreaFlag, the second entry for a
Read/Write Block follows the first. Both copies of the block allocation information precede any Checksum, CRC
or ECC codes.

If this bit is reset to zero (0), only one copy of the block allocation information is stored on the media.

Reserved for future use. All of these bits must be reset to zero (0).

5.1.4 Partition Recognition

Flash Translation Layers (FTLs) may be identified in two ways. They may be explicitly identified in
a PC Card's Card Information Structure (CIS) or they may be recognized by searching the storage
media for FTL data structures.

If the CIS contains partition information, an FTL partition is identified by the Data Organization
Tuple (CISTPL_ORG, 46H). (See the Metaformat Specification for details on describing partitions in
the CIS.) An FTL Data Organization Tuple is formatted as follows:

Byte D7 | b6 | s | Da | b3 [b2 | D1 | bo
0 Tuple Code CISTPL_ORG, 46H

1 Tuple Link Link to next tuple (at least 07H)

2 TPLORG_TYPE TPLORGTYPE_FS, 00H

3.9 TPLORG_DESC "FTL100\0" Null terminated string identifying FTL partition

© 1999 PCMCIA/JEIDA 37

TRANSLATION LAYERS

If the entire storage media is used by an FTL, the CIS is not required to contain partition
information. In this case, an FTL partition is recognized if an FTL Erase Unit Header (see 5.1.3 Data
Structures, above) is found in the first megabyte of the storage media and the information in the
Unit Header is valid. The procedure for recognizing and validating an FTL Erase Unit Header is
described in the following paragraphs.

The first step in recognizing an FTL partition is confirming the presence of the FTL Data
Organization Tuple described above at offset five (5) of the Erase Unit Header. Since Erase Unit
Headers always begin at offset zero (0) of an Erase Unit and an Erase Unit is always a multiple of a
flash device's erase zone size, the search is limited to the first fifteen bytes of each flash erase zone
in the first megabyte of the storage media. If the flash erase zone size is not known, the search for
an Erase Unit Header is made in four (4) KByte increments.

If the FTL Data Organization Tuple is not found within the first megabyte of the partition area, the
media is not an FTL data store. If the tuple is found, the rest of the Erase Unit Header must be
validated. All Erase Units should have identical EUHs with the exception of the Logical EUN and
reserved fields. One level of validation would be to check to see that all EUHs are the same. Further
validation could include verifying that the FormattedSize is a multiple of the BlockSize, that the
BlockSize is smaller than the EraseUnitSize, and that there is at least a 30H ID at the address that the
BAMOffset points to. The validation process may also be used to build a dynamic map of the logical
to physical translation performed by the FTL.

The FTL then reads every Erase Unit Header on the media, starting with the unit described by the
FirstPhysicalEUN field. If not found at offset zero, the FTL looks for the Erase Unit Header at the
location specified by the AIREUHOffset field of other Erase Units. If an Erase Unit Header is not
found at either location, the Erase Unit is considered an unformatted Transfer Unit. If two units are
found with the same value in the LogicalEUN field, either of the units may be assumed to be a
Transfer Unit. After all Erase Unit Headers have been read, the number of units with non-negative
and distinct LogicalEUN fields must equal the NumEraseUnits field less the NumTransferUnits
field.

The number of Virtual Blocks used to store the Virtual Block Map (VBM) on the media is indicated
by the NumVMPages field in the Erase Unit Header. During the block allocation scan, the FTL
locates VBM Pages and Replacement Pages. The number of VBM Pages located must match the
value in the NumVMPages field. If a VBM Page is missing and a Replacement Page exists, the
Replacement Page is used in place of the original VBM Page. If a VBM Page is missing and a
Replacement Page does not exist, implementation dependent recovery operations are required. If
duplicate VBM Pages are found, all but one is ignored.

The assignment of Replacement Pages is implementation specific. A Replacement Page is indicated
by allocation information having the same virtual address as an original VBM Page with the least
significant eight (8) bits set to 60H.

5.1.5 Partition Formatting

38

A Flash Translation Layer (FTL) partition is prepared for use as follows:
Determine the appropriate values for global fields in the Erase Unit Header:

DataOrganizationTuple
BlockSize
EraseUnitSize
FirstPhysicalEUN
NumEraseUnits
NumTransferUnits
FormattedSize

© 1999 PCMCIA/JEIDA

MEDIA STORAGE FORMATS SPECIFICATION

FirstVMAddress
NumVMPages
Flags
SerialNumber
AIEUHO(ffset
BAMOffset

For each Erase Unit on the media: Erase the unit and write out an Erase Unit Header with unit
specific data. Unit specific data includes the following field:

Logical EUN

LogicalEUNs range from zero (0) to one less than the NumEraseUnits field less the
NumTransferUnits field. The order LogicalEUNSs are assigned is not significant as long as each is
unique in the above range. The LogicalEUN of Transfer Units is left in the media's erased state (for
most flash devices this is all ones or FFFFH). See the ReversePolarityFlash bit of the Flags field.

For each Read/Write Block used to store Erase Unit Headers and the Block Allocation Map (if used)
set the allocation information to 30H to indicate the blocks contain formatting data.

Once the FTL has prepared the media, any block-oriented file system may store its data formats on
the media using the FTL to translate Virtual Block requests to the appropriate locations on the
media.

5.1.6 Logical Block Operations

This section describes how the FTL performs accesses to Virtual Blocks on the media.

5.1.6.1 Read

Higher level software layers request a Virtual Block from the FTL. The FTL uses the number of the
Virtual Block as an index into the Virtual Block Map (VBM). The entry in the VBM is the logical
address where the Virtual Block data is stored. The FTL converts the logical address to a physical
address. The conversion from logical to physical is based on the relationship of the Logical EUN
containing the logical address to the physical Erase Unit used for the logical Erase Unit. The FTL
transfers the data block at this location into the buffer provided by the host file system.

If an entry in the VBM is all ones (FFFFFFFFH), the block does not exist on the media. The FTL
may return any combination of bytes, such as binary 0's, as long as this combination is consistently
returned until the Virtual Block is written.

There are two possibilities if a VBM entry is all zeroes (00000000H). First, the logical address of the
Virtual Block is described on a Replacement Page. In this case, the FTL uses the logical address from
the Replacement Page to locate the block. Second, if there is no Replacement Page or the entry on
the Replacement Page is all zeroes or Fs (00000000H or FFFFFFFFH), the block does not exist on the
media. In the later case, when asked to read data from this Virtual Block, the FTL may return any
combination of bytes, such as binary 0's, as long as this combination is consistently returned until
the Virtual Block is written.

Some mechanism should be employed to ensure proper handling if a power cycle is received while
accessing the flash device.

5.1.6.2 Write

When writing Virtual Block data to the media, the FTL must first locate a free Read/Write Block. If
a free block is not available, one is created using the Unit Recovery Procedure described below.

© 1999 PCMCIA/JEIDA 39

TRANSLATION LAYERS

Once a free block is located, block allocation information for the area is marked to indicate a write
operation is beginning by resetting the least significant bit (FFFFFFFEH). Once the write has been
successfully completed, the block allocation information in the Erase Unit is updated to reflect the
Virtual Block's virtual address.

Next, the Virtual Block Map is updated to reflect the new area assigned to the Virtual Block. Finally,
if the new block replaces an existing block, the Read/Write Block used to store the superseded data
is marked as deleted by resetting its block allocation information to zero (00000000H).

If the write process is interrupted at any point, the FTL is able to recover with minimal effort. If the
interruption occurs before the data write completes, the block allocation information (FFFFFFFEH)
indicates the block shall be treated as deleted and normal activity will recover the space when
required.

If an interruption occurs after the block allocation information is updated, but before the VBM is
updated, both Read/Write Blocks have the same block allocation information. This can also occur if
the update of the VBM entry completes, but the superseded Read/Write Block's allocation
information is not marked as deleted. In either case, the FTL selects the block pointed to by the
VBM and treats the other block as superseded. The system is allowed to use up to one (1)
Replacement Page during writes.

Some mechanism should be employed to ensure proper handling if a power cycle is received while
accessing the flash device.

5.1.6.3 Unit Recovery

Deleted and/or superseded Read/Write Blocks may only be re-used after they are erased. All of
the Read/Write Blocks in an Erase Unit must be erased at the same time. Rarely are all of the
Read/Write Blocks within an Erase Unit deleted and/or superseded. The Unit Recovery Procedure
performs the necessary processing to safely preserve data in allocated Read/Write Blocks and
recover deleted and/or superseded blocks.

The first step is to locate a properly prepared Transfer Unit. To be properly prepared, the area used
to store Virtual Block data, Virtual Block Map Pages, Replacement Pages and block allocation
information must be erased and the global fields of the Transfer Unit's Erase Unit Header must be
initialized. A formatted Transfer Unit contains the EUH and BAM. The BAM contains only Control
(30H) entries for the FTL structures for that Transfer Unit.

Before Read/Write Block data from the Erase Unit being recovered is copied to the Transfer Unit,
the LogicalEUN of the Transfer Unit is set to 7FFFH. After allocated Read/Write Blocks have been
successfully transferred, the Transfer Unit's Logical EUN is set to the Logical EUN of the Erase Unit
being recovered. If the Unit Recovery Procedure is interrupted, the Transfer Unit's LogicalEUN
remains 7FFFH, and the FTL can determine the Transfer Unit is not properly prepared.

After all allocated Read/Write Blocks have been successfully moved to the Transfer Unit and the
LogicalEUN updated, the original Erase Unit is erased and formatted as a Transfer Unit. If the Unit
Recovery procedure is interrupted before the original Erase Unit is erased, the FTL will find two
Erase Units with the same data. The FTL may use either Erase Unit as the specified Logical Erase
Unit and the other Erase Unit becomes a Transfer Unit.

5.1.7 Initial Program Load

Any file format used for block data storage may be used on top of a Flash Translation Layer (FTL).
To boot from a Flash Translation Layer (FTL) partition requires the FTL to translate host requests for
virtual blocks.

40 © 1999 PCMCIA/JEIDA

MEDIA STORAGE FORMATS SPECIFICATION

© 1999 PCMCIA/JEIDA 41

MEDIA STORAGE FORMATS SPECIFICATION

6. STORAGE DEVICES

PC Cards use a number of storage technologies with various read, write, erase and access
characteristics. The relative performance of a technology is often affected by the data storage format
used to record information on a PC Card. The characteristics of some technologies may dictate a
particular access method or may prohibit or severely limit the ability to use a particular file format.

6.1 Static RAM Cards

S-RAM device allow byte-oriented read and write access and do not require the media to be erased
before it may be written. This allows S-RAM PC Cards to store data without requiring a translation
layer. S-RAM memory devices on a PC Card may be mapped into host system memory and
directly accessed.

6.2 Flash Memory Cards

Flash memory devices may allow byte-oriented read and write access or may require block-oriented
access. Flash memory devices typically require the media to be erased before it may be written and
usually require an erase operations to be performed in blocks of contiguous bytes. The size of an
erase block varies among flash devices, ranging from small blocks of 256 or 512 bytes to blocks of 64
KBytes or more. Most linear flash memory PC Card may be mapped into host system memory and
directly accessed.

Unless access will be read-only, using traditional file systems with flash media is problematic due to
the unique characteristics of flash devices. Two methods are used to deal with flash media.

First, custom file systems designed especially for data storage on flash devices may be developed.
These file systems use a byte-oriented access to the media as opposed to the traditional block access.
In addition, file allocation is typically handled using linked lists which allow file updates to be
routed to erased areas of the media and the previously allocated areas marked as available for
recovery. When all erased space has been used, a recovery routine creates, clears and erases a
contiguous block of marked areas to allow them to be reused.

The second method for using flash media adds an additional translation layer between the
traditional file system and the flash media. The file system continues to read and write sector-sized
blocks, but instead of mapping directly to physical sectors, the translation layer tracks media use,
remaps sector write requests to erased areas and marks the previously used sector(s) as available for
recovery. Subsequent read requests are translated to access the appropriate remapped sectors.

6.3 PC Card ATA Drives

PC Card ATA drives use block-oriented read and write access and do not require the media to be
erased before it is written. PC Card ATA drives are typically used with traditional block-oriented
file systems and do not require a translation layer. The data storage area of a PC Card ATA drive is
usually accessed indirectly. Information is transferred between a PC Card ATA drive and the host
system by placing request parameters into task file registers located on the card.

© 1999 PCMCIA/JEIDA 43

MEDIA STORAGE FORMATS SPECIFICATION

© 1999 PCMCIA/JEIDA 45

