
P C C A R D S TA N D A R D

Volume 5

Card Services Specification

PCMCIA
JEIDA

©1999, PCMCIA/JEIDA
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical,
electronic, photocopying, recording
or otherwise, without prior written
permission of PCMCIA and JEIDA.
Printed in the United States of
America.

PCMCIA (Personal Computer
Memory Card International
Association)
2635 North First Street Suite 209
San Jose, CA 95134 USA
+1-408-720-0107
+1-408-720-9416 (Fax)

JEIDA (Japan Electronic Industry
Development Association)
Kikai Shinko Kaikan, 3-5-8, Shibakoen
Minato-ku, Tokyo 105, JAPAN
+81-3-3433-1923
+81-3-3433-6350 (Fax)

The PC Card logo and PC Card are
trademarks of PCMCIA, registered in
the United States. The PC Card logo
and design are trademarks of JEIDA,
registered in Japan.

PCMCIA HAS BEEN NOTIFIED BY
CERTAIN THIRD PARTIES THAT
THE IMPLEMENTATION OF THE
STANDARD WILL REQUIRE A
LICENSE FROM THOSE THIRD
PARTIES TO AVOID
INFRINGEMENT OF THEIR
RIGHTS. PCMCIA HAS OBTAINED
FROM SOME, BUT NOT ALL , OF
THOSE PARTIES A GRANT OF
IMMUNITY THAT PCMCIA WILL
EXTEND TO YOU, CONTINGENT
UPON YOUR ENTERING INTO
AND DELIVERING TO PCMCIA
THE RECIPROCAL GRANT OF
IMMUNITY AGREEMENT
CONTAINED ELSEWHERE IN
THIS STANDARD.

IMPORTANT:
In order to receive the Grant of
Immunity, the owner of this
Standard must sign and return the
enclosed Registration Card to:
PCMCIA
2635 North First Street Suite 209
San Jose, CA 95134 USA

NEITHER PCMCIA NOR JEIDA
MAKES ANY WARRANTY,
EXPRESS OR IMPLIED, WITH
RESPECT TO THE STANDARD,
INCLUDING AS TO NON-
INFRINGEMENT,
MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.
THIS STANDARD IS PROVIDED TO
YOU ÒAS IS.Ó

Document No. 0299-05-2000

First Printing, February 1999

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA iii

CONTENTS

1. Introduction ___1
1.1 Purpose..1

1.2 Scope..1

1.3 Related Documents ...1

2. Overview __3

3. Functional Description __________________________________5
3.1 Architecture ...5

3.1.1 Hardware Layer (PC Cards, Sockets and Adapters)...5

3.1.2 Socket Services..6

3.1.3 Card Services ..6

3.1.4 Memory Technology Drivers..6

3.1.5 Client Device Drivers ...7

3.2 Programming Interface..7
3.2.1 Calling Conventions ...7

3.2.1.1 Basic Operation...7

3.2.1.2 Argument Packet...8

3.2.1.3 Logical Sockets..8

3.2.1.4 Reserved Fields ...8

3.2.1.5 Multi-Byte Fields..8

3.2.1.6 Multiple Function PC Cards ...9

3.2.2 Presence Detection...9

3.2.3 Initialization of Card Services ...9

3.2.4 Return Codes ...9

3.3 Service Groups...10
3.3.1 Client Services...10

3.3.1.1 Client Registration ...11

3.3.1.2 Basic Card Support..11

3.3.2 Resource Management...11

3.3.3 Bulk Memory Services...12

3.3.4 Client Utilities...13

3.3.5 Advanced Client Services...13

3.4 Callback Interfaces ..14
3.4.1 Insertion..15

3.4.2 Registration Completion...15

3.4.3 Status Change..15

3.4.4 Ejection/Insertion Requests ...16

3.4.5 Exclusive...16

3.4.6 Reset..17

CONTENTS

iv © 1999 PCMCIA/JEIDA

3.4.7 Client Information...17

3.4.8 Erase Completion..17

3.4.9 MTD Request...17

3.4.10 Timer ...17

3.4.11 New or Removed Socket Services ...18

3.5 Events...19
3.5.1 BATTERY_DEAD...20

3.5.2 BATTERY_LOW...21

3.5.3 CARD_INSERTION..22

3.5.4 CARD_LOCK..23

3.5.5 CARD_READY...24

3.5.6 CARD_REMOVAL...25

3.5.7 CARD_RESET..26

3.5.8 CARD_UNLOCK...27

3.5.9 CLIENT_INFO..28

3.5.10 EJECTION_COMPLETE..29

3.5.11 EJECTION_REQUEST..30

3.5.12 ERASE_COMPLETE...31

3.5.13 EXCLUSIVE_COMPLETE..32

3.5.14 EXCLUSIVE_REQUEST..33

3.5.15 INSERTION_COMPLETE...34

3.5.16 INSERTION_REQUEST...35

3.5.17 PM_RESUME...36

3.5.18 PM_SUSPEND...38

3.5.19 REGISTRATION_COMPLETE...40

3.5.20 REQUEST_ATTENTION..41

3.5.21 RESET_COMPLETE...42

3.5.22 RESET_PHYSICAL..43

3.5.23 RESET_REQUEST...44

3.5.24 SS_UPDATED..45

3.5.25 TIMER_EXPIRED...46

3.5.26 WRITE_PROTECT...47

3.6 Memory Technology Drivers ...48
3.6.1 Registration ...48

3.6.2 Card Services/MTD Interface..48

3.6.3 MTD Helper Interface ..51

3.6.4 Erase Queuing...51

3.6.5 Blocking..51

3.6.6 Card Services Request Retries...52

3.6.7 Media Access Table..53

3.6.8 Virtual Memory Partitions/Regions ...54

3.6.9 Tuple Usage...54

4. Assumptions and Constraints __________________________ 57
4.1 Auto Configuration of I/O Cards..57

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA v

4.2 Compression..57

4.3 EDC Generation...57

4.4 BIOS or Device Driver ...57

4.5 Interrupts Per Socket...57

4.6 Mixed Media Memory Cards ..57

4.7 Multiple Partitioned Memory Cards...57

4.8 Use of Socket Services ...57

4.9 Interface Assumptions..58
4.9.1 Range Checking of Arguments..58

4.9.2 Configuration..58

4.9.3 Abnormal Termination...58

4.9.4 Shared Data...58

4.10 Timeouts..58

5. Service Reference______________________________________59
5.1 AccessConfigurationRegister (36H) ..60

5.2 AddSocketServices (32H) ..63

5.3 AdjustResourceInfo (35H)...64

5.4 CheckEraseQueue (26H)..70

5.5 CloseMemory (00H)...71

5.6 ConfigureFunction (3CH) ..72

5.7 CopyMemory (01H)...73

5.8 DeregisterClient (02H) ...75

5.9 DeregisterEraseQueue (25H)...76

5.10 GetCardServicesInfo (0BH)..77

5.11 GetClientInfo (03H)..79

5.12 GetConfigurationInfo (04H) ..82

5.13 GetEventMask (2EH) ...86

5.14 GetFirstClient (0EH)...88

5.15 GetFirstPartition (05H) ..89

5.16 GetFirstRegion (06H)..93

5.17 GetFirstTuple (07H)...94

5.18 GetFirstWindow (37H)...96

5.19 GetMemPage (39H) [16-bit PC Card only]..97

5.20 GetNextClient (2AH) ...98

CONTENTS

vi © 1999 PCMCIA/JEIDA

5.21 GetNextPartition (08H)..99

5.22 GetNextRegion (09H)...101

5.23 GetNextTuple (0AH) ...102

5.24 GetNextWindow (38H)..104

5.25 GetStatus (0CH)...105

5.26 GetTupleData (0DH)...107

5.27 InquireConfiguration (3DH)..109

5.28 MapLogSocket (12H)...120

5.29 MapLogWindow (13H) [16-bit PC Card only]..121

5.30 MapMemPage (14H) [16-bit PC Card only]..122

5.31 MapPhySocket (15H)...123

5.32 MapPhyWindow (16H) [16-bit PC Card only]..124

5.33 ModifyConfiguration (27H)...125

5.34 ModifyWindow (17H)..127

5.35 OpenMemory (18H)...129

5.36 ReadMemory (19H)..131

5.37 RegisterClient (10H)...132

5.38 RegisterEraseQueue (0FH)...134

5.39 RegisterMTD (1AH)...136

5.40 RegisterTimer (28H)...138

5.41 ReleaseConfiguration (1EH) ..139

5.42 ReleaseDMA (3BH) [16-bit PC Card only] ..140

5.43 ReleaseExclusive (2DH)...141

5.44 ReleaseIO (1BH) [16-bit PC Card only] ...142

5.45 ReleaseIRQ (1CH) ..144

5.46 ReleaseSocketMask (2FH)..145

5.47 ReleaseWindow (1DH)...146

5.48 ReplaceSocketServices (33H) ...147

5.49 RequestConfiguration (30H)..149

5.50 RequestDMA (3AH) [16-bit PC Card only]...153

5.51 RequestExclusive (2CH) ..155

5.52 RequestIO (1FH) [16-bit PC Card only]...156

5.53 RequestIRQ (20H)..159

5.54 RequestSocketMask (22H)...164

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA vii

5.55 RequestWindow (21H)...165

5.56 ResetFunction (11H)...168

5.57 ReturnSSEntry (23H)..170

5.58 SetEventMask (31H) ..171

5.59 SetRegion (29H)..173

5.60 ValidateCIS (2BH) ...175

5.61 VendorSpecific (34H)...176

5.62 WriteMemory (24H)...177

6. Service Codes __179

7. Event Codes ___183

8. Return Codes __187

9. Bindings __189
9.1 Overview..189

9.2 Presence Detection...189

9.3 Making Card Services Requests ..189

9.4 Argument Passing...190

9.5 Binding Specific Arguments and Services ..190

9.6 Client Callback Handler ..191

9.7 x86 Architecture Bindings...191
9.7.1 DOS Real Mode Clients..192

9.7.1.1 Presence Detection...192

9.7.1.2 Making Card Services Requests...192

9.7.1.3 Argument Passing ...193

9.7.1.4 Binding Specific Arguments and Services ...193

9.7.1.5 Client Callback Handler ...196

9.7.2 OS/2 16-bit Protect Mode Clients ..196

9.7.2.1 Presence Detection...196

9.7.2.2 Making Card Services Requests...196

9.7.2.3 Argument Passing ...197

9.7.2.4 Binding Specific Arguments and Services ...197

9.7.2.5 Client Callback Handler ...199

9.7.3 Windows 16-bit Protect Mode Clients ...200

9.7.3.1 Presence Detection...200

9.7.3.2 Making Card Services Requests...200

9.7.3.3 Argument Passing ...200

9.7.3.4 Binding Specific Arguments and Services ...201

9.7.3.5 Client Callback Handler ...203

CONTENTS

viii © 1999 PCMCIA/JEIDA

9.7.4 Windows Flat 32-bit Protect Mode VxD Clients..204

9.7.4.1 Presence Detection...204

9.7.4.2 Making Card Services Requests...204

9.7.4.3 Argument Passing ...204

9.7.4.4 Binding Specific Arguments and Services ...205

9.7.4.5 Client Callback Handler ...207

9.7.5 Win32 DLL Clients ..208

9.7.5.1 Presence Detection...208

9.7.5.2 Making Card Services Requests...208

9.7.5.3 Argument Passing ...208

9.7.5.4 Binding Specific Arguments and Services ...208

9.7.5.5 Client Callback Handler ...210

9.7.6 Windows NT 4.0 Kernel Mode Clients ..210

9.7.6.1 Presence Detection...211

9.7.6.2 Making Card Services Requests...211

9.7.6.3 Argument Passing ...211

9.7.6.4 Binding Specific Arguments and Services ...211

9.7.6.5 Client Callback Handler ...214

9.7.6.6 Media Access Table and MTD Helper Access..214

10. MTD Helper Service Reference_______________________ 217
10.1 MTDModifyWindow (00H)...217

10.2 MTDReleaseWindow (01H)...218

10.3 MTDRequestWindow (02H)..218

10.4 MTDSetVpp (03H)...219

10.5 MTDRDYMask (04H) ..219

11. Media Access Services Reference _____________________ 221
11.1 CardSetAddress ..221

11.2 CardSetAutoInc...221

11.3 CardRead(Byte, Word, ByteAI, WordAI) ..222

11.4 CardRead(Words, WordsAI)..222

11.5 CardWrite(Byte, Word, ByteAI, WordAI)..223

11.6 CardWrite(Words, WordsAI) ...223

11.7 CardCompare(Byte, ByteAI) ..223

11.8 CardCompare(Words, WordsAI) ...224

12. Argument Usage Reference __________________________ 225

13. Client Callback Argument Usage _____________________ 227

14. OS Critical Section Handling _________________________ 229

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA ix

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA xi

FIGURES
Figure 3-1: Software Architecture Diagram ...5

Figure 3-2: Card Services Diagram...10

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA xiii

TABLES
Table 6Ð1 Service Codes (by service) ..179

Table 6Ð2 Service Codes (sorted alphabetically) ..180

Table 6Ð3 Service Codes (sorted numerically)..181

Table 7Ð1 Event Codes (sorted alphabetically)..183

Table 7Ð2 Event Codes (sorted numerically)..184

Table 8Ð1 Return Codes (sorted alphabetically) ..187

Table 8Ð2 Return Codes (sorted numerically) ..188

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 1

1 . I N T R O D U C T I O N

1.1 Purpose
This document describes the interface provided by Card Services which allows PC Cards and
sockets to be shared by multiple clients. (See 3.1.1 Hardware Layer (PC Cards, Sockets and
Adapters).) Clients are the programs that access Card Services and may be device drivers,
configuration utilities or application programs. This specification is intended to be independent of
the hardware that actually manipulates PC Cards and sockets.

1.2 Scope
This document is intended to provide enough information for software developers to

a) create a Card Services implementation on a host computer, and

b) create programs that access and use PC Cards and sockets in a host computer.

1.3 Related Documents
This section identifies documents related to the Card Services Interface Specification. Information
available in the following documents is not duplicated within this document.

PC Card Standard Release 7.0 (February 1999), PCMCIA /JEIDA
Volume 1. Overview and Glossary
Volume 2. Electrical Specification
Volume 3. Physical Specification
Volume 4. Metaformat Specification
Volume 5. Card Services Specification
Volume 6. Socket Services Specification
Volume 7. Media Storage Formats Specification
Volume 8. PC Card ATA Specification
Volume 9. XIP Specification
Volume 10. Guidelines
 Volume 11: PC Card Host Systems Specification

IBM-AT Technical Reference Manual, First Edition, March 1984, International Business Machines.

INTRODUCTION

2 © 1999 PCMCIA/JEIDA

This page intentionally left blank.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 3

2 . O V E R V I E W

Card Services has two goals. First, to support the ability of PC Card-aware device drivers,
configuration utilities, and application programs (known as clients) to share PC Cards, sockets, and
system resources. Second, to provide a centralized resource for the common functionality required
by these clients.

The Card Services interface is structured in a client/server model. Application programs, device
drivers, and utility programs are the clients requesting services. Card Services is the server
providing the services requested by clients. The Card Service interface specified in this document
defines how the clients and server communicate.

Note: Throughout the remainder of this document clients may be referred to as
client device drivers without specifically mentioning application and utility
programs. This does not mean that only device drivers can use Card
Services. Card Services may be used by any resident or transient program
that observes the interface protocol defined in this specification.

This document is divided into several sections:

· Chapter 3 is a functional description of the Card Services interface. The overall architecture is
discussed with special focus on the programming interface, service groupings, callback
interfaces, reported events, Memory Technology Drivers, and how Card Services processes the
Card Information Structure.

· Chapter 4 identifies several assumptions and constraints which apply globally to the Card
Services interface. The reader should keep these points in mind while reviewing other sections
of the specification.

· Chapter 5 discusses each of the services provided by Card Services in detail. The purpose of
each service is described with its input and output parameters.

· The appendices contain the following:

¥ Service Codes

¥ Event Codes

¥ Return Codes

¥ Bindings

¥ MTD Helper Services

¥ Media Access Services

¥ Argument Usage Reference

¥ Client Callback Argument Usage

¥ OS Critical Section Handling

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 5

3 . F U N C T I O N A L D E S C R I P T I O N

3.1 Architecture
Safely using PC Cards and sockets in a non-conflicting manner involves the interaction of several
hardware and software architectural layers.

Application

Resource
Management

Table
Memory

Technology
Driver

Card Services

Socket Services

Adapter

PC
Card

PC
Card

Operating System

Client

Figure 3-1: Software Architecture Diagram

3.1.1 Hardware Layer (PC Cards, Sockets and Adapters)
Cards compliant with the PC Card Standard are referred to as PC Cards. Originally the standard
specified data storage or memory cards. Later releases of the standard expanded the definition of PC
Cards to include peripheral expansion or I/O cards, provided for additional tuples, and further
refined the software interface. The latest release specifies 3.3 volt operation, third party DMA
operation, standard multiple function PC Cards and a 32-bit interface for all types of PC Cards.

All PC Cards have the same physical characteristics and compatible electrical characteristics.

PC Cards are plugged into sockets on a host system. Host systems may have one or more sockets
and these sockets may be grouped together on one or more adapters. An example of a host system
with more than one adapter would be one where an adapter was built into the motherboard and
another plugged into the systemÕs expansion bus.

FUNCTIONAL DESCRIPTION

6 © 1999 PCMCIA/JEIDA

Adapters usually generate maskable hardware interrupts when status changes occur in sockets or
on PC Cards. Status changes include:

· card inserted or removed,

· battery low or dead,

· ejection or insertion request,

· card locked or unlocked in socket, and

· a busy to ready transition.

3.1.2 Socket Services
Immediately above the hardware layer the Socket Services software provides a standardized
interface to manipulate PC Cards, sockets, and adapters. (See the Socket Services Specification.)

As noted above, host systems may have more than one PC Card adapter present. Each adapter may
have its own Socket Services handler. All instances of Socket Services are intended to support a
single instance of Card Services. Card Services registers to receive notification of status changes on
PC Cards or in sockets.

By making all accesses to adapters, sockets, and PC Cards through the Socket Services interface,
higher-level software (including Card Services) is unaffected by different implementations of the
hardware. Only a hardware-specific Socket Services implementation must be modified to
accommodate any different hardware implementations.

3.1.3 Card Services
Above the Socket Services software layer is the Card Services layer. Card Services coordinates access
to PC Cards, sockets and system resources among multiple clients. These clients may be resident or
transient device drivers, system utilities, or application programs. There is only one Card Services
implementation in a host system. (Unlike Socket Services where there may be multiple
implementations to accommodate multiple adapters).

Card Services makes all access to the hardware layer through the Socket Services software interface.
The single Card Services implementation is intended to be the sole client of all Socket Services
implementations present. All Socket Services status change reporting is routed to this single Card
Services implementation. Card Services then notifies interested clients when status changes occur.

To prevent conflicts with clients who are unaware of Card Services, direct access to the Socket
Services interface is blocked by Card Services. A method of bypassing the Card Services blockage is
provided for software developers of specialized applications which must access Socket Services.
Programs which bypass Card Services and make direct access to Socket Services must ensure such
access is benign and does not interfere with Card Services usage of Socket Services, PC Cards,
sockets, or adapters.

Card Services preserves for its clients an abstract, socket-hardware-implementation independent
view of a card and its resources. Card Services presents the same tuple organizational and resource
allocation view to all of its clients whether the card is a 16-bit PC Card or a CardBus PC Card.

3.1.4 Memory Technology Drivers
The PC Card Standard supports a wide range of memory devices on PC Cards. While all PC Cards
containing any such memory device may be read as if they contained static-RAM devices, special
programming algorithms may be required to write or erase the memory devices. Card Services

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 7

hides the details of what is required to write or erase memory devices from client device drivers
through byte-oriented write and copy services and a block-oriented erase service.

Within Card Services, Memory Technology Drivers (MTD) implement the specific programming
algorithms required to access memory devices. These drivers may be embedded within Card
Services or may register with a Card Services implementation at run-time. When PC Cards are
installed, MTDs monitoring insertion events register with Card Services to support access to a
memory device region through the Card Services read, write, copy, and erase services.

Card Services provides default MTDs for recognized regions. If Card Services recognizes a region as
being composed of Static RAM devices, it installs a default MTD that supports read and write
requests. Reads and writes are performed as simple memory accesses without any algorithmic
operation. If Card Services recognizes a memory region but not the type of devices in the region, it
installs a default MTD that supports read and write requests and fails erase requests. The reads and
writes are performed as simple memory accesses without any algorithmic operation. Card Services
may include MTD support for other device types that require specific programming algorithms.
(See 3.6 Memory Technology Drivers and see also Appendix-E, 10. MTD Helper Service Reference.)

3.1.5 Client Device Drivers
Client device drivers refers to all users of Card Services. These may be device drivers, utility
programs, or application programs.

3.2 Programming Interface

3.2.1 Calling Conventions
The Card Services interface uses a common set of conventions for all services.

3.2.1.1 Basic Operation

Card Services is invoked in a processor and Operating System dependent manner called a binding.
(See Appendix-D, 9. Bindings.)

All arguments for Card Services requests are passed in binding specific fashions. Card Services
defines six generic arguments:

Service Status

Handle Argument Length

Pointer Argument Pointer

Many Card Services requests pass all data in the Service, Handle and Pointer arguments. For such
services, no argument packet (as referenced by ArgPointer below) is required. If a request requires
more than these generic arguments, an argument packet must be used. Status of the Card Services
request is returned in the Status argument. Using functional notation, a generic Card Services call is
as follows:

status = CardServices(Service, Handle, Pointer, ArgLength, ArgPointer)

All requests pass the service code of the request in the Service argument. Individual services and
their service field values are described in later sections. Many requests require a Card Services
handle to identify some resource. These requests pass the handle in the Handle argument. Some
requests require an additional pointer value which is passed in the Pointer argument.

FUNCTIONAL DESCRIPTION

8 © 1999 PCMCIA/JEIDA

Many Card Services requests have an additional argument packet which is pointed to by
ArgPointer. The length of the argument packet is passed in the ArgLength argument. If the
ArgLength argument is zero, there is no argument packet and the value of the ArgPointer argument
is undefined.

The ArgLength argument may be used by a Card Services implementation to validate that the
argument packet is appropriate for the indicated service. In different releases of this specification,
the appropriate length of the argument packet may vary. Card Services uses this field to determine
which packet length, and by extension, which version of the packet is being used by the client
requesting the service.

See also Appendix-D, 9. Bindings for specific processor bindings for the generic Card Services
arguments.

3.2.1.2 Argument Packet

Most argument packets are a fixed size determined by the particular service as implemented for a
particular publication of this specification. Some argument packets can be variable in length. The
size of these variable packets is determined by the caller. Variable length packets are used to
contain data set by Card Services, for example, the Vendor Name ASCII string used to identify a
particular version of Card Services.

The ArgLength argument indicates the length of the total packet. For variable length argument
packets, there are additional fields in the packet that indicate the maximum length of the variable
portion (set by the caller) and the actual length of the returned data (set by Card Services). Also
some requests have more than one variable length argument. In this case, there is also an offset
field that indicates where each additional variable length field begins.

The specific content of an argument packet is defined for each request that requires an argument
packet.

3.2.1.3 Logical Sockets

The Card Services interface, except for MapPhySocket, uses logical sockets in identifying the socket
a service is intended to address. The first physical socket on the first physical adapter is logical
socket zero (0). The maximum logical socket is the total number of sockets present minus one.

3.2.1.4 Reserved Fields

Reserved fields and undefined bits shall be reset to zero before invoking a service because future
releases of Card Services may define them. Future releases will use the reset value for behavior
compliant with this release of Card Services.

Any reserved fields or undefined bits in fields returned by Card Services are reset to zero by Card
Services so future releases of Card Services will be able to notify clients in a manner compliant with
this release.

3.2.1.5 Multi-Byte Fields

All multi-byte fields are stored in binding specific format. Multi-byte data returned in bulk from a
PC Card is kept in little-endian format with the least significant byte appearing first in memory. For
example, the GetTupleData and Read/Write/CopyMemory requests transfer the data without any
byte swapping processing.

(See also Appendix-D, 9. Bindings.)

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 9

3.2.1.6 Multiple Function PC Cards

Some PC Cards may contain multiple functions. To address a particular function on a PC Card, the
client passes a card function number in the logical socket field of the appropriate request. Card
Functions are numbered from zero to one less than the number of functions on the PC Card.

3.2.2 Presence Detection
The Card Services GetCardServicesInfo service is used to determine the presence of Card Services.
If this request fails, Card Services is not present. If it succeeds, Card Services is present.

3.2.3 Initialization of Card Services
Card Services is designed to be implemented as an Operating System Dependent Device Driver or
OS extension. If a processor supports different modes of operation, Card Services can assume that it
is used in only a single mode. For example, processors in x86 architecture systems can run in Real
Mode or Protect Mode. Card Services can assume that it is only used in one of these modes at any
time.

During initialization, Card Services determines the state of the host environment. This includes
determining available system memory, available I/O ports, DMA Channels, IRQ assignments,
installed PC Cards, and socket states.

Initialization is implementation specific.

After Card Services initializes, all Socket Services requests (080H through 0AEH) are blocked. Card
Services returns an UNSUPPORTED_SERVICE error if any attempt is made to use these services.
This prevents Socket Services clients who are unaware of the Card Services interface from crashing
the system by making direct access to hardware through Socket Services. Such crashes could be
caused by changing hardware state without Card Services being aware of the change. Should a
Card Services aware client still require access to Socket Services, it may do so by using the entry
point returned by the ReturnSSEntry service.

During initialization, Card Services determines all Socket Services implementations present so that
it can manage the status change interrupt handling required for adapters. Socket Services status
events are enabled based on client event masks. If no clients request an event, Card Services does
not need to enable the event. Card Services records the event when it occurs and notifies any clients
who have registered for its status change event and who have unmasked the event specified.

Card Services notifies registered clients and Memory Technology Drivers when events requiring
callback notification have occurred. Notification is delayed until Card Services is in an enterable
state which allows callback handlers registered with Card Services to make requests during event
notification so they may reconfigure immediately to react to the event.

3.2.4 Return Codes
Card Services indicates success or failure of a request with the generic Status argument. If the Status
argument is set to a non-zero value on return from a Card Services request, the request failed and
the value in the Status argument describes why the request failed. If the Status argument is reset to
zero on return from a Card Services request, the request succeeded. (See Appendix-C, 8. Return
Codes and see also Appendix-D, 9. Bindings.)

FUNCTIONAL DESCRIPTION

10 © 1999 PCMCIA/JEIDA

3.3 Service Groups
The Card Services interface may be divided into five functional groups:

Client Services provides for Client initialization and the callback registration of Clients.

Resource Management provides basic access to available system resources, combining
knowledge of the current status of system resources with the underlying
Socket Services adapter control services.

Client Utilities perform common tasks required by clients so that operations such as
basic CIS tuple processing do not need to be duplicated in each of the
client device drivers.

Bulk Memory Services provides read, write, copy and erase memory services for use by file
systems or other generic memory clients that want to be isolated from
memory technology hardware details.

Advanced Client Services provide specific services for clients with special needs.

Client Bulk Memory Client

Client Services Client Utilities

Resource Management

Advanced
Client Services Bulk Memory Services

Resource
Management

Table

Memory
Technology

Driver
Card Services

Socket Services

Adapter

PC
Card

PC
Card

Figure 3-2: Card Services Diagram

3.3.1 Client Services
There are two types of services in the Client Services group:

· those that support client registration with Card Services to allow event notifications, and

· those that provide basic inquiry of PC Cards.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 11

3.3.1.1 Client Registration

Card Services keeps track of the clients that can manipulate PC Cards with Client Services. The
GetCardServicesInfo service is used by a client to determine the presence of Card Services. Clients
invoke the RegisterClient service to inform Card Services of their presence and their interests in
various events. The DeregisterClient service is used when a client is removing itself from the
system.

A client specifies via RegisterClient whether it is a memory or I/O client device driver or a Memory
Technology Driver. It does this by setting the appropriate bits in the Attributes field of the
RegisterClient request.

Clients are notified of events of interest in an order dependent on the type of client and the order of
registration. I/O clients are notified of PC Card insertion events first, and the last I/O client
registered is notified first. This order allows the most up-to-date I/O client, which was the last to
register, to configure the PC Card.

Memory Technology Drivers are notified next in the order of registration. This order allows more
up-to-date MTDs to replace MTDs that previously registered for a region of a PC Card since all
installed MTDs can register. Notifying MTDs after I/O clients allows the I/O client to configure the
PC Card and interface before an MTD starts accessing memory regions. MTDs are assumed to be
unaffected by the selected PC Card configuration.

Finally, memory clients are notified in the order of registration. This allows memory clients to make
use of the PC Card in the appropriate configuration and also to make use of MTDs that are already
in place to provide access to their memory areas.

Clients can use RegisterClient to be notified of events for all sockets in a system.
RequestSocketMask can be used if a client only wants to be informed of events for a particular
socket. Get/SetEventMask are used to change the event mask for the client.

When a client registers for callbacks, one of the fields in the argument packet provided is an event
mask. This mask identifies the events that the client will be notified of by Card Services. The mask
Card Services uses can be modified by a client via SetEventMask at any time to change the events
of interest. When an event occurs, Card Services examines this mask. If enabled, Card Services
notifies the client of this event. If not enabled, the client is not notified of the event.

3.3.1.2 Basic Card Support

The ResetFunction service resets the specified function of the PC Card in the specified socket. A
hardware reset may cause the function to lose client-specific state. Before the hardware reset is
performed, Card Services generates a RESET_PHYSICAL event. After the hardware reset, a
CARD_RESET event is generated by Card Services. This allows clients to restore their specific
function state. The GetStatus service returns information about the current status of a PC Card
function and socket.

3.3.2 Resource Management
Card Services maintains a table of system resources usable by PC Cards and sockets. Resources are
allocated to PC Cards via RequestDMA/IO/IRQ/Window services. These resources include , DMA
Channels, I/O and memory address space and IRQs. For most efficient resource utilization,
resources not needed permanently by a client may be returned to the resource pool by
corresponding ReleaseDMA/IO/IRQ/Window services. For example, a memory window used to
write to a PC CardÕs configuration registers during card initialization can be returned to the resource
pool after card initialization is complete.

FUNCTIONAL DESCRIPTION

12 © 1999 PCMCIA/JEIDA

The ModifyWindow and MapMemPage services allow a client to specify what portions of a PC
CardÕs memory space are mapped into a dedicated memory window. These services also allow
control of various attributes of accessing this memory, including access speed and memory space.

A client uses RequestConfiguration to configure a PC Card and socket for an I/O electrical interface
and a selected configuration entry. RequestDMA/IO/IRQ/Window services must first be used to
allocate any DMA, I/O and IRQ resources to the PC Card. After a suitable configuration is
defined, RequestConfiguration is used to set the PC Card and Socket to the requested configuration.
ModifyConfiguration can be used to make minor adjustments to a socket and PC Card
configuration. The ReleaseConfiguration service reconfigures the PC Card and socket back to their
initial memory only interface.

The RequestSocketMask service indicates that a client wishes to monitor the PC Card in a socket.
This service allows the client to specify the events it is interested in monitoring. The
ReleaseSocketMask service indicates that a client is no longer interested in socket event
notifications.

In CardBus PC Cards, memory and I/O mappings are governed by Base Address Registers which
are referenced when requesting memory and I/O resources for the cards. For CardBus PC Card
mappings, the following additional information for each mapping is required:

· function number (0-7).

· Base Address Register number, a number from 1 to 7. Base Address Register 7 is always used
for expansion ROM mappings. The combination of the socket number, function number and the
Base Address Register number identifies the Base Address Register.

The following rule applies to requested mappingsÑthe attributes of a given mapping indicate
whether the mapping is a 16-bit PC Card or a CardBus PC Card mapping. There is no distinction
made between the window handles resulting from the different kinds of mapping, or how the
handles may be used by the Card Services client.

3.3.3 Bulk Memory Services
Bulk Memory Services provide services that can be used by clients such as file system utilities or
XIP install utilities to avoid dealing with all the details of the various memory technologies that can
be present on PC Cards. These services support a simple Open/CloseMemory and
Read/Write/CopyMemory model of memory access. This model is similar to open, close, read, and
write access to files in most operating systems.

Card Services determines PC Card memory regions during card insertion processing. Clients may
determine areas in PC Card memory they wish to access by parsing the CIS or using the Card
ServicesÕ services GetFirst/NextTuple, GetFirst/NextPartition, or GetFirst/NextRegion. Once a client
determines the area of the PC Card they wish to access, they use the OpenMemory request and
specify the absolute offset on the PC Card where the area begins.

OpenMemory returns a memory handle that is used for all subsequent read, write, copy and erase
operations. These operations specify the location to be accessed relative to the start of the opened
memory area. This allows clients to move data to and from PC Card memory as desired without
concern as to where on the PC Card this particular memory area lies. A client performs a
CloseMemory request to inform Card Services that it will no longer be accessing a memory area.

Performing an erase operation differs from the read, write and copy services. A client that needs to
erase memory must register an erase queue with the RegisterEraseQueue request. The client then
fills an erase queue entry identifying the socket and region of memory to erase. Next, the
CheckEraseQueue request is used to notify Card Services that one or more erase requests have been
made in the erase queue. The actual erase operation is performed asynchronously. When the erase

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 13

operation completes, the client is notified through the callback entry point provided in the erase
queue header. In comparison, the read, write, and copy services return only after the requested
action has been completed.

A client must use DeregisterEraseQueue to request Card Services to relinquish control of an erase
queue. This must be invoked before a client is removed from memory. DeregisterEraseQueue can
only be used when there are no queued erase requests in the erase queue.

Since erase operations return before the erase is complete, the client may be able to access other
services while waiting for the erase completion. The physical construction of some cards (or memory
components) may prevent some services until the erase operation in progress has been completed.
In this event, the other requested operation is blocked (delayed) within Card Services until the erase
is completed. Card Services does not notify the requester of erase completion until the blocked
request is complete.

3.3.4 Client Utilities
Card Services clients may need to process a PC CardÕs Card Information Structure (CIS) to determine
if and how they will interact with a card detected in a socket. (Some clients may receive all the
information they require from the CARD_INSERTION event). The Client Utilities services reduce
the code required for individual clients to perform such processing. GetFirst/NextTuple allow a
client to traverse the CIS without being aware of how tuple links are evaluated. The client may
concentrate on what to do with tuple data without having to duplicate the link traversal code. The
client retrieves the contents of the tuple by using GetTupleData. Since many clients also require
information describing regions and partitions derived from multiple tuples, GetFirst/NextRegion
and GetFirst/NextPartition services are included to provide specific information without a client
having any knowledge of the specific tuples containing the necessary data.

Clients should be aware that tuples may change between calls to any of the tuple processing
services. Tuples could be changed by other clients (such as formatting utilities) that write tuples.
RequestExclusive can be used to prevent other clients from accessing the PC Card during tuple
modification.

3.3.5 Advanced Client Services
Advanced Client Services provides a miscellaneous set of services for use by client device drivers
with special needs. ReturnSSEntry provides direct access to Socket Services. Clients that need direct
Socket Services access can use this service to retrieve a reference to the location containing the Socket
Services entry point. The MapLogSocket/Window and MapPhySocket/Window services have been
provided to use the Socket Services interface on physical adapter hardware that has been allocated
logically to a client by Card Services.

W A R N I N G

Even though direct access to Socket Services is possible, such access may cause
resource management services in Card Services to lose synchronization
resulting in degraded operation, system crashes, or even hardware damage.
Clients directly accessing Socket Services are responsible to ensure their usage
does not interfere with Card Services.

FUNCTIONAL DESCRIPTION

14 © 1999 PCMCIA/JEIDA

Some advanced PC Card utilities may want to browse information present in Card Services to
inform the end user of what is present in the host system. GetFirst/NextClient and GetClientInfo
are provided to return information about clients registered with Card Services.

SetRegion can be used to define a memory region that an MTD can support when Card Services
doesnÕt automatically recognize the region.

RegisterTimer allows a client to be called back after the specified delay. The actual callback is only
performed when Card Services is enterable. This may result in a longer delay than specified.

Request/ReleaseExclusive allow a client to gain exclusive access to a PC Card. This could be used to
allow a utility that writes or updates the CIS to have safe access to a PC Card.

ValidateCIS can be used to check the validity of the tuple chains in the CIS.

AddSocketServices allows additional driver versions of Socket Services to be added to an already
initialized Card Services. ReplaceSocketServices allows a different and potentially newer version of
Socket Services to replace an existing version. In addition, these services are used during dock-
events by socket services handlers that are adding, changing or removing support for added or
removed socket controllers.

3.4 Callback Interfaces
Card Services notifies clients of all events through a single callback interface. A client may be called
back for any of the defined events. Except for CARD_INSERTION events, clients are not
guaranteed to be notified in any particular order for a specific event. A client may be notified of any
event at any time. Some events are sequenced in relation to other events. For example, Card
Services notifies all clients of RESET_REQUEST before any client is notified of RESET_PHYSICAL.
Specific event sequencing is defined in Section 3.5: Events.

Each event passes information to the client callback handler based on the type of event. Each type of
event and the arguments it passes is discussed in the following sections. A client can make Card
Services requests during callback processing.

Generic argument descriptions are used to define the information that is passed to the clientÕs
callback handler. Appendix H defines the processor specific arguments used. The generic
arguments are:

Service Buffer

Socket Misc

Info Status

MTDRequest ClientData

Using functional notation, a Card Services callback is as follows:

Status = Callback(Service, Socket, Info, MTDRequest, Buffer, Misc,
ClientData)

For all events, the Service argument contains a value identifying the event on entry to the clientÕs
callback handler. These event values are defined so that a single callback procedure can handle all
types of events. The ClientData argument passes the information from the RegisterClient serviceÕs
ClientData field.

The Socket argument identifies the socket and function affected by the event. For PC Cards with
independently controllable functions the upper portion of the Socket argument is the function
number (ranging from zero to one less than the number of functions on the card). The Info
argument contains other information specific to the event being reported. The Status argument is

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 15

used by callback handlers to return information to Card Services. The Buffer argument is used to
pass a pointer to a buffer for modification by the client. The Misc argument is used for miscellaneous
information.

The MTDRequest is used specifically by MTDs to support read, write, copy, and erase requests.

A client event handler must preserve all callback entry arguments unless otherwise indicated. This
ensures other callback handlers receive the same information and that Card Services may rely on
the information when all handlers have completed processing so it may perform any additional
processing required.

Card Services sends separate notifications for each function on a multiple function PC Card.

3.4.1 Insertion
The Service, Socket, and ClientData arguments are passed to the client callback handler for a
CARD_INSERTION event.

A client registers for insertion events with the RegisterClient service. Once registered, the client is
notified each time a PC Card is inserted into a socket.

As part of the RegisterClient request, the client specifies interest in artificial insertion events for PC
Cards inserted in sockets before the client registered. These artificial insertion events are intended to
allow a client to establish its initial internal state without having to poll sockets to determine
whether PC Cards are installed. Artificial insertion events are generated only once when a client
first registers. Previously registered clients who have already completed initialization do not receive
these artificial insertion events.

Since not all sockets may contain PC Cards and Card Services only sends artificial insertion events
for occupied sockets, a client needs to determine when all such events have been generated. For this
reason, Card Services generates a special REGISTRATION_COMPLETE event directly to the
requester after all artificial insertion events have been sent.

3.4.2 Registration Completion
The Service and ClientData arguments are passed to the client callback handler for the
REGISTRATION_COMPLETE event.

When a RegisterClient request is made, Card Services saves the client registration information and
immediately returns to the client. Card Services then attempts to perform the registration in the
background. When the registration processing is completed, Card Services notifies the requesting
clientÕs callback handler with a REGISTRATION_COMPLETE event.

3.4.3 Status Change
The Service, Socket and ClientData arguments are passed to the client callback handler for the
following events:

BATTERY_LOW BATTERY_DEAD

CARD_LOCK CARD_UNLOCK

CARD_READY CARD_REMOVAL

PM_SUSPEND PM_RESUME

REQUEST_ATTENTION WRITE_PROTECT

FUNCTIONAL DESCRIPTION

16 © 1999 PCMCIA/JEIDA

A client can receive events for any socket if it has enabled the event in its global event mask which
is initially set by a client call to RegisterClient. The global event mask can also be set by
SetEventMask.

To receive specific event notifications for the socket, a client can also perform an optional
RequestSocketMask call before directly accessing a PC Card in a socket. A RequestSocketMask is
useful since it allows a client to be notified of events for a specific socket. If RequestSocketMask is
successful, the client receives events for the specified socket. Once installed, the clientÕs callback
handler is notified of status change events for the socket or PC Card installed in the socket. Clients
may dynamically specify which status change events they are interested in by using the
SetEventMask service.

If the PC Card in the socket experiencing the status change has multiple functions and the change is
specific to a single function, the function number is placed in the upper half of the Socket argument.

Note: A separate event notification is sent to a client for each function on a PC
Card.

3.4.4 Ejection/Insertion Requests
The Service, Socket, and ClientData arguments are passed to the client callback handler for the
following events:

EJECTION_REQUEST EJECTION_COMPLETE

INSERTION_REQUEST INSERTION_COMPLETE

For the _REQUEST events, the Status argument must be set to SUCCESS on return to Card Services
indicating that the client handled the request. If the Status argument is not set to SUCCESS, the
request is rejected and the ejection or insertion will not be performed.

Note: The EJECTION_REQUEST, EJECTION_COMPLETE,
INSERTION_REQUEST, and INSERTION_COMPLETE events refer to
states related to driving a motor to insert or remove a PC Card and are not
the same as the CARD_INSERTION or CARD_REMOVAL events
described in other sections.

3.4.5 Exclusive
The Service, Socket, and ClientData arguments are passed to the client callback handler for the
following events:

EXCLUSIVE_REQUEST EXCLUSIVE_COMPLETE

When a RequestExclusive request is made to Card Services, it saves any information needed and
immediately returns to the client. Card Services then attempts to make the PC Card available for
exclusive use of the requesting client. For the EXCLUSIVE _REQUEST event, the Status argument
must be set to SUCCESS on return to Card Services to indicate the client approves the request. If the
Status argument is not set to SUCCESS, the request is rejected and the exclusive access will not be
allowed.

When the exclusive processing is completed, Card Services notifies the requesting client at its
callback entry with an EXCLUSIVE_COMPLETE event. If the EXCLUSIVE_REQUEST was
rejected, EXCLUSIVE_COMPLETE is sent to the requesting client and the Info argument is set to
the return code set by the client that rejected the request.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 17

3.4.6 Reset
The Service, Socket, and ClientData arguments are passed to the client callback handler for the
following events:

RESET_REQUEST RESET_PHYSICAL

CARD_RESET RESET_COMPLETE

When a ResetFunction request is made to Card Services, it notes that a reset has been requested
and returns from the request. When the reset processing has been completed, Card Services notifies
the clientÕs callback handler with a RESET_COMPLETE event. If the RESET_REQUEST was
rejected, RESET_COMPLETE is sent to the requesting client and the Info argument is set to the
return code set by the client that rejected the request.

3.4.7 Client Information
The Service and ClientData arguments are passed to the client callback handler for the following
events:

CLIENT_INFO

The Buffer argument is passed for the CLIENT_INFO callback and points to a data buffer to be
filled with information by the client.

See the Service Reference for GetClientInfo for the format of the data buffer when the upper byte of
the Attributes field is zero (0).

3.4.8 Erase Completion
The ERASE_COMPLETE event passes Service, Socket, and ClientData arguments to the client
callback handler. The Info argument contains the erase queue entry number. The Misc argument
contains the QueueHandle.

When an erase operation is requested of Card Services either via RegisterEraseQueue or
CheckEraseQueue, Card Services only notes that there is new information in the erase queue and
returns from the request. When an erase operation completes after having been processed in the
background, the client callback handler specified in the erase queue header is notified of the
ERASE_COMPLETE event.

3.4.9 MTD Request
The MTD_REQUEST event passes Service, Buffer, MTDRequest, Socket and ClientData arguments to
the client callback handler. (See 3.6 Memory Technology Drivers.)

3.4.10 Timer
The TIMER_EXPIRED event passes Service, Misc and ClientData arguments to the client callback
handler. The Misc argument contains the timer handle returned by RegisterTimer.

FUNCTIONAL DESCRIPTION

18 © 1999 PCMCIA/JEIDA

3.4.11 New or Removed Socket Services
The SS_UPDATED event passes the Service, Socket, ClientData, and Info arguments to the client
callback handler. The Socket argument contains the logical socket number of the first socket
supported by the newly installed Socket Services handler.

The Info argument is bit mapped as follows:

Bits 0 áá 7 Number of sockets affected

Bit 8..9 New Sockets (bit mapped)

00 = PreviousReplaced
01 = SocketsAdded
10 = SocketsRemoved
11 = SocketRenumber

Bits 10 áá 15 RESERVED (reset to zero)

The New Sockets field is bit mapped field where the value identifies what event has occurred. The
value of zero (0) signals that the previously installed Socket Services handler was replaced. The
value one (1) signals that additional sockets are present in the system and a new socket services
handler is handling them. The value two (2) signals that sockets were removed from the system
and that the socket services handler is no longer handling them. The value three (3) signals that
the sockets are renumbering.

When the New Sockets field is three (3) then the MISC parameter will contain the new socket
handle/number for the affected socket.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 19

3.5 Events
This section describes the individual events that Card Services reports to clients. The following are
discussed for each event:

· Specific cause(s) of the event,

· Pre-client processing by Card Services before notifying any clients,

· Expected client processing of the event, and

· Post-client processing by Card Services after all clients are notified.

Card Services sends separate notifications for each function on a multiple-function PC Card.

FUNCTIONAL DESCRIPTION

20 © 1999 PCMCIA/JEIDA

3.5.1 BATTERY_DEAD
Callback(BATTERY_DEAD, Socket, 0, null, null, 0, ClientData)

The BATTERY_DEAD event indicates the battery on a PC Card is no longer providing operational
voltage.

Cause The BATTERY_DEAD event occurs when the BVD1 signal on a PC Card is negated. This signal may
be available at the socket interface or in the pin replacement register. The negation of this signal results
in a status change interrupt.

Pre-Client Card Services notes a transition to a BATTERY_DEAD state. When the Card Services interface is
available, Card Services notifies clients who have indicated their interest in BATTERY_DEAD events.

Client A client processing BATTERY_DEAD notifications might warn the end-user that the PC Card is no
longer capable of safely storing data if the PC Card is removed. How the client interacts with the end-
user or what data loss preventive measures are taken is implementation specific.

Post-Client Card Services does not perform any additional processing after notifying clients using the socket of the
BATTERY_DEAD event.

Note: If the battery on a PC Card is dead when it is inserted, no
BATTERY_DEAD event is generated. A BATTERY_DEAD event is only
generated when the BVD1 signal is negated after a PC Card has been
inserted with the BVD1 signal asserted.

See also BATTERY_LOW.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 21

3.5.2 BATTERY_LOW
Callback(BATTERY_LOW, Socket, 0, null, null, 0, ClientData)

The BATTERY_LOW event indicates the battery on a PC Card is weak and is in need of
replacement.

Cause The BATTERY_LOW event occurs when the BVD2 signal on a PC Card is negated. This signal may
be available at the socket interface or in the pin replacement register. The negation of this signal results
in a status change interrupt.

Pre-Client Card Services notes a transition to a BATTERY_LOW state. When the Card Services interface is
available, Card Services notifies clients who have indicated their interest in BATTERY_LOW events.

Client A client processing BATTERY_LOW notifications might warn the end-user that the PC Card battery
needs replacement. How the client interacts with the end-user or what data loss preventive measures
are taken is implementation specific.

Post-Client Card Services does not perform any additional processing after notifying clients using the socket of the
BATTERY_LOW event.

Note: If the battery is weak on a PC Card when it is inserted, no BATTERY_LOW
event is generated. A BATTERY_LOW event is only generated when the
BVD2 signal is negated after a PC Card has been inserted with the BVD2
signal asserted.

See also BATTERY_DEAD.

FUNCTIONAL DESCRIPTION

22 © 1999 PCMCIA/JEIDA

3.5.3 CARD_INSERTION
Callback(CARD_INSERTION, Socket, 0, null, null, ClientHandle,

ClientData)

The CARD_INSERTION event indicates a PC Card has been inserted in a socket or Card Services
is creating artificial insertion events for PC Cards already in sockets. A separate
CARD_INSERTION is generated for each function on a multiple function PC Card.

Cause The CARD_INSERTION event occurs when the Card Detect pins (CD1# and CD2#) are asserted by
the insertion of a PC Card. Card Services issues an AcknowledgeInterrupt request to Socket
Services.

CARD_INSERTION events may also be artificially generated by Card Services after a new client
performs a RegisterClient request. Artificial CARD_INSERTION events are only generated for
sockets containing PC Cards. Registering clients may indicate whether they wish artificial
CARD_INSERTION events for all PC Cards or only those without exclusive clients.

When an exclusive use of a PC Card is requested by RequestExclusive, a CARD_INSERTION event
is generated to the requesting client if exclusive use can be granted. The ReleaseExclusive service also
generates CARD_INSERTION events to all registered clients.

Pre-Client If power was not previously applied to the socket Card Services enables VCC to the socket. If the PC
Card is not already in use, Card Services initiates a hardware reset of the PC Card. Sometime later,
Card Services completes the reset.

Card Services then attempts to read the Card Information Structure (CIS).

Card Services uses device information from the Card Information Structure to create region description
structures in its internal data area. Region description structures are created for all memory spaces on
the PC Card. This information is later used by Card Services when clients request memory access.
Other tuples processed by Card Services include the Function ID, Manufacturer ID, and bridge window
requirements tuples.

Client After the CIS is processed, all clients who have used the RegisterClient service to indicate their
interest in insertion events are notified by Card Services. Clients may have enough information
provided by a GetConfigurationInfo request to determine if they wish to use the PC Card. If they do
not have enough information, clients may use Card Services to further process the CIS. Clients may
process tuples directly using the memory ReadMemory services or use the tuple processing services
GetFirst/NextTuple, GetFirst/NextRegion or GetFirst/NextPartition.

If a client wishes to be notified of events for only a particular socket, it uses the RequestSocketMask
service which enables events for the specified socket. Clients may request exclusive use of a PC Card
with the RequestExclusive service. If a previous client has requested the exclusive use of the PC
Card, an exclusive request is rejected. The service GetConfigurationInfo can be used to determine
whether the PC Card is currently in-use and if it is being exclusively used.

An I/O client can use RequestConfiguration to set the configuration desired for a PC Card and
socket. Before an I/O client uses RequestConfiguration it must use the resource management
services to allocate resources for the PC Card and/or socket as required. These services will not
succeed if a previous client has already configured the PC Card and socket.

A memory client can simply use the memory access services to read, write, copy or erase data on the
PC Card.

Post-Client If no clients indicate they wish to use the socket with a successful OpenMemory, RequestExclusive,
RequestWindow for a memory window, RequestSocketMask, or RequestConfiguration request
after they have been notified of the CARD_INSERTION event, Card Services removes power from the
socket.

See also CARD_REMOVAL.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 23

3.5.4 CARD_LOCK
Callback(CARD_LOCK, Socket, 0, null, null, 0, ClientData)

The CARD_LOCK event indicates a mechanical latch has been manipulated preventing the
removal of the PC Card from the socket.

Cause Some sockets have hardware which can lock a PC Card into a socket to prevent inadvertent removal
during operation. In addition, some sockets can report a change in the status of the locking hardware to
warn that the card may be removed before it is actually removed. If a socket supports this capability,
Card Services generates a CARD_LOCK event when the mechanical latch is locked.

Pre-Client Card Services does not perform any pre-client processing.

Client A client might respond to a CARD_LOCK event notification by setting internal state that it is safe to
perform direct code execution from a PC Card. With the CARD_LOCK event, a client can be assured
that directly executing code cannot be interrupted by the removal of a PC Card. Any client processing is
implementation specific.

Post-Client Card Services does not perform any post-client processing.

See also CARD_UNLOCK.

FUNCTIONAL DESCRIPTION

24 © 1999 PCMCIA/JEIDA

3.5.5 CARD_READY
Callback(CARD_READY, Socket, 0, null, null, 0, ClientData)

The CARD_READY event indicates a PC CardÕs READY line has transitioned from the busy to
ready state.

Cause A PC CardÕs READY line has been asserted.

Pre-Client Card Services does not perform any pre-client processing.

Client A client or MTD might respond to a CARD_READY event by completing an operation that is partially
automated by a PC CardÕs on-board logic. It is expected that most clients will ignore CARD_READY
events, performing polling to determine when PC CardÕs are in the ready state. Processing of this event
is implementation specific.

Post-Client Card Services does not perform any post-client processing.

Note: Most PC CardÕs negate READY whenever data is output to the card. As
soon as the PC Card is ready to receive additional data, the READY line is
asserted. For that reason, CARD_READY events may be extremely
frequent. Clients may completely ignore such events and improve overall
system response by resetting the READY bit in their global and socket
event masks by using SetEventMask as necessary.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 25

3.5.6 CARD_REMOVAL
Callback(CARD_REMOVAL, Socket, 0, null, null, 0, ClientData)

The CARD_REMOVAL event indicates a PC Card has been removed from a socket. A separate
CARD_REMOVAL event is generated for each function of a multiple function PC Card.

Cause The CD1# and CD2# pins in a socket are negated or a client requests a PC Card be reset. The
RequestExclusive service generates CARD_REMOVAL events to clients that were registered for the
socket. The ReleaseExclusive service also generates a CARD_REMOVAL event to the client
exclusively using a PC Card after a RequestExclusive.

Pre-Client Card Services does not perform any pre-client processing.

Client A client must perform corresponding Release_ resource requests for all successfully performed
Request_ resource services. ReleaseConfiguration must be requested first, followed by any
additional Release_ services. For example, if a client has routed the PC CardÕs IREQ# line with
RequestIRQ then a ReleaseIRQ request should be made. This allows Card Services to update its
internal database of system resource allocations and adjust socket hardware appropriately.

Post-Client Card Services removes power from the socket.

Note: Clients should not attempt to make any further access to a socket after the
CARD_REMOVAL event is received. Clients executing code directly from
PC Card memory must pay particular attention to this event.

W A R N I N G :

Should a client fail to perform the appropriate Release_ requests, Card
ServicesÕ internal database of system resource allocations will not correctly
reflect the resource state. Resources will be marked as in-use when they are in
fact available.

See also CARD_INSERTION and CARD_LOCK.

FUNCTIONAL DESCRIPTION

26 © 1999 PCMCIA/JEIDA

3.5.7 CARD_RESET
Callback(CARD_RESET, Socket, ResetStatus, null, null, 0, ClientData)

The CARD_RESET event indicates a hardware reset has occurred on a function of the PC Card in
the specified socket.

Cause A client requested a ResetFunction and the reset has been completed.

Pre-Client Card Services has successfully performed a RESET_REQUEST notification and has physically reset
the PC Card function.

Client This is an opportunity for a client to re-establish any hardware state that existed before the PC Card
function was reset. The Info argument contains SUCCESS if the reset has been successfully
completed. If the reset was rejected, the Info argument contains IN_USE. If the reset was not
successful, Info contains a return code indicating the reason for the failure. Handling of the event is
implementation specific.

Post-Client Card Services sends a RESET_COMPLETE notification directly to the client which requested the
ResetFunction service.

See also RESET_COMPLETE, RESET_PHYSICAL and RESET_REQUEST.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 27

3.5.8 CARD_UNLOCK
Callback(CARD_UNLOCK, Socket, 0, null, null, 0, ClientData)

The CARD_UNLOCK event indicates a mechanical latch has been manipulated allowing the
removal of the PC Card from the socket.

Cause Some sockets have hardware which can lock a PC Card into a socket to prevent inadvertent removal
during operation. In addition, some sockets can report a change in the status of the locking hardware to
warn that the card can be removed before it is actually removed. If a socket supports this capability,
Card Services generates a CARD_UNLOCK event when the mechanical latch is unlocked.

Pre-Client Card Services does not perform any pre-client processing.

Client A client might respond to a CARD_UNLOCK event notification by setting internal state that it is not safe
to perform direct code execution from a PC Card. Processing of the event is implementation specific.

Post-Client Card Services does not perform any post-client processing.

See also CARD_LOCK.

FUNCTIONAL DESCRIPTION

28 © 1999 PCMCIA/JEIDA

3.5.9 CLIENT_INFO
Status = Callback(CLIENT_INFO, 0, 0, null, Buffer, 0, ClientData)

The CLIENT_INFO event requests that the client return its client information data.

Cause A requester used GetClientInfo to ask Card Services to return information about a client.

Pre-Client Card Services calls the client for which information has been requested.

Card Services may not pass the actual ArgPacket provided by the requesting client to the client
specified by ClientHandle argument. Card Services may use an internal buffer for the CLIENT_INFO
event notification. If Card Services does not pass the requesting clientÕs actual ArgPacket, it copies all of
the data in the ArgPacket into its internal buffer before sending it to the receiving client.

Client The client shall copy its client information data into the buffer provided by Card Services.

Post-Client Card Services returns the client information data to the requester.

W A R N I N G

This is one of the events that require a response from the clientÕs callback
handler.

Card services processes a GetClientInfo request to completion, without delay.
The CLIENT_INFO event is transmitted to the target Client during this
processing. The target Client is prohibited from using Card Services during
the processing of the CLIENT_INFO event.

See also GetClientInfo.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 29

3.5.10 EJECTION_COMPLETE
Callback(EJECTION_COMPLETE, Socket, 0, null, null, 0, ClientData)

The EJECTION_COMPLETE event indicates a motor has completed ejecting a PC Card from a
socket.

Cause If a socket has hardware which can eject a PC Card from a socket, this event is generated when the
ejection has been completed.

Pre-Client Card Services does not perform any pre-client processing.

Client A client might maintain an on-screen icon of the state of the socket. When this event is received, the
icon could indicate ejection was complete and the PC Card could be removed from the socket.
Processing of this even is implementation specific.

Post-Client Card Services turns off the ejection motor if this is not performed automatically.

See also EJECTION_REQUEST.

FUNCTIONAL DESCRIPTION

30 © 1999 PCMCIA/JEIDA

3.5.11 EJECTION_REQUEST
Status = Callback(EJECTION_REQUEST, Socket, 0, null, null, 0,

ClientData)

The EJECTION_REQUEST event indicates an end-user is requesting that a PC Card be ejected from
a socket using a motor-driven mechanism.

Cause If a socket has hardware which can eject a PC Card from a socket, this event is generated when an
end-user requests ejection be performed.

Pre-Client Card Services does not perform any pre-client processing.

Client A client may ignore the event by returning with the Status argument set to SUCCESS. Card Services
will then attempt to eject the PC Card from the socket. A client may also choose to prevent the ejection.
In this case, the client should return from its callback handler with the Status argument not set to
SUCCESS.

Post-Client Card Services either starts the ejection motor after all clients are notified or ignores the ejection request
depending on the state of the Status argument on return from the clientÕs callback handler. After the
ejection motor has completed ejecting the PC Card, the EJECTION_COMPLETE event is generated.

W A R N I N G

This is one of the events that require a response from the clientÕs callback
handler.

See also EJECTION_COMPLETE, INSERTION_COMPLETE and INSERTION_REQUEST.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 31

3.5.12 ERASE_COMPLETE
Callback(ERASE_COMPLETE, Socket, EraseQueueEntryNum, null, null,

EraseQueueHandle, ClientData)

The ERASE_COMPLETE event indicates a queued erase request that is processed in the
background has been completed. The client handle specified in the background erase queue data
structure header identifies the client callback handler that is notified of this event.

Cause The processing of a clientÕs queued erase request has been completed by Card Services.

Pre-Client Card Services performs the processing required by the clientÕs queued erase request.

Client The EraseQueueHandle is passed in the Misc argument. The EraseQueueEntryNum of the erase that
was completed is passed in the Info argument. A client will check the EntryState for the affected erase
queue entries to verify that the erase succeeded. The client then may immediately request that Card
Services perform writes to record initial data structures in the newly erased block.

Post-Client Card Services does not perform any post-client processing.

FUNCTIONAL DESCRIPTION

32 © 1999 PCMCIA/JEIDA

3.5.13 EXCLUSIVE_COMPLETE
Callback(EXCLUSIVE_COMPLETE, Socket, ExclusiveStatus, null, null, 0,

ClientData)

The EXCLUSIVE_COMPLETE event indicates whether the client that requested exclusive access to
a PC Card via the RequestExclusive service has received it.

Cause A client uses RequestExclusive to gain exclusive access to a PC Card that may already be in use by
other clients.

Pre-Client Card Services has completed its processing. The Info argument indicates the client now has exclusive
use if set to SUCCESS. If Info is not set to SUCCESS, the RequestExclusive failed and the client does
not have exclusive access to the PC Card and the Info value (return code) indicates the reason for
failure.

Client If the request was successfully handled, the client can now use the PC Card exclusively.

Post-Client Card Services does not perform any post-client processing.

See also EXCLUSIVE_REQUEST.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 33

3.5.14 EXCLUSIVE_REQUEST
Status = Callback(EXCLUSIVE_REQUEST, Socket, 0, null, null, 0,

ClientData)

The EXCLUSIVE_REQUEST event indicates that a client is trying to gain exclusive use of a PC
Card via the RequestExclusive service.

Cause A client uses RequestExclusive to gain exclusive access to a PC Card that may already be in use by
other clients. Card Services sends EXCLUSIVE_REQUEST events to clients registered for the affected
PC Card. The clients use the event return code to indicate whether or not they are willing to relinquish
use of the PC Card.

Pre-Client Card Services has already returned from the RequestExclusive service. This notification is being
made from a background execution thread of Card Services. The Card Services interface is available.

Client If the client is willing to relinquish its use of the PC Card, it returns with the Status argument set to
SUCCESS. If the client is not willing to relinquish its use of the PC Card, the Status argument must not
be set to SUCCESS.

Post-Client If any client rejects the event, Card Services terminates notification processing and notifies the
requesting client that the exclusive request failed. Once all clients have accepted the
EXCLUSIVE_REQUEST event, Card Services sends CARD_REMOVAL events to all clients
registered and then sends a CARD_INSERTION event to the requesting client. Finally, Card Services
sends the EXCLUSIVE_COMPLETE event to the requesting client.

W A R N I N G

This is one of the events that require a response from the clientÕs callback
handler.

See also EXCLUSIVE_COMPLETE.

FUNCTIONAL DESCRIPTION

34 © 1999 PCMCIA/JEIDA

3.5.15 INSERTION_COMPLETE
Callback(INSERTION_COMPLETE, Socket, 0, null, null, 0, ClientData)

The INSERTION_COMPLETE event indicates a motor has completed inserting a PC Card in a
socket.

Cause If a socket has hardware which can insert a PC Card into a socket, this event is generated when the
insertion has been completed.

Pre-Client Card Services does not perform any pre-client processing.

Client A client might maintain an on-screen icon of the state of the socket. When this event is received, the
icon could indicate insertion was complete and the PC Card was in the socket. This functionality is
implementation dependent.

Post-Client Card Services turns off the insertion motor, if this is not performed automatically.

See also INSERTION_REQUEST.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 35

3.5.16 INSERTION_REQUEST
Status = Callback(INSERTION_REQUEST, Socket, 0, null, null, 0,

ClientData)

The INSERTION_REQUEST event indicates an end-user is requesting that a PC Card be inserted
into a socket using a motor-driven mechanism.

Cause If a socket has hardware which can insert a PC Card into a socket, this event is generated when an end-
user requests insertion be performed.

Pre-Client Card Services does not perform any pre-client processing.

Client A client may ignore the event by returning with the Status argument set to SUCCESS. Card Services
will then attempt to insert the PC Card into the socket. A client may also choose to prevent the insertion.
In this case, the client must return from its callback handler with the Status argument not set to
SUCCESS.

Post-Client Card Services starts the insertion motor after all clients are notified or ignores the request depending on
the state of the Status argument on return from the clientÕs callback handler. After the insertion motor
has completed inserting the PC Card, the INSERTION_COMPLETE event is generated

W A R N I N G

This is one of the events that require a response from the clientÕs callback
handler.

See also EJECTION_COMPLETE, EJECTION_REQUEST and INSERTION_COMPLETE.

FUNCTIONAL DESCRIPTION

36 © 1999 PCMCIA/JEIDA

3.5.17 PM_RESUME
Callback(PM_RESUME, 0, ResumeType, null, null, Mode, ClientData)

The PM_RESUME event indicates that Card Services has received a resume notification from the
host system's power management software. There are two types of resume events:
NORMAL_RESUME (01H) and CRITICAL_RESUME (02H). The ResumeType is passed in the Info
argument.

Card Services may or may not be notified before a host system enters suspend mode. Card Services
uses a NORMAL_RESUME when a Card Services PM_SUSPEND event notification was sent to all
power management aware clients before the system entered suspend mode. Card Services uses a
CRITICAL_RESUME when a Card Services PM_SUSPEND event notification was not sent to clients
before the system entered suspend mode. A system might enter suspend mode without notification
when battery power is nearly depleted or the system goes directly to suspend mode when the end-
user presses a button.

During resume processing, Card Services sends two PM_RESUME event notifications to each client
interested in power management events. The first PM_RESUME event notification is sent with the
Misc argument set to BEGIN_RESUME (01H). The second PM_RESUME event notification is sent
with the Misc argument set to END_RESUME (02H).

Card Services sends a series of CARD_REMOVAL and CARD_INSERTION event notifications
between the two PM_RESUME event notifications. If the state of a PC Card was changed while the
system was suspended (for example, power was cycled on a socket), Card Services sends both
CARD_REMOVAL and CARD_INSERTION event notifications.

If a PC Card was removed while the system was suspended, Card Services sends only a
CARD_REMOVAL event notification. If a PC Card was inserted while the system was suspended,
Card Services sends only a CARD_INSERTION event notification.

If the state of a PC Card was not changed during the suspend/resume cycle (see PM_SUSPEND -
CONSERVE_POWER), Card Services only sends BEGIN_RESUME and END_RESUME event
notifications. If a client has placed a PC Card in a reduced power state, the client must make sure
the card is returned to a fully operational mode while processing an END_RESUME event
notification.

All of the CARD_REMOVAL notifications for a socket are sent followed by all of the
CARD_INSERTION notifications for the same socket. Then the next socket is processed. This event
notification order allows Card Services and clients to re-synchronize their internal data state with PC
Card and socket hardware state through normal card removal and insertion processing. It also
minimizes the potential for resource conflicts during re-configuration since only the resources
assigned to a particular PC Card are returned to the resource database at any one time.

Cause Power Management software on the host system sends either a NORMAL_RESUME or
CRITICAL_RESUME notification to Card Services.

Pre-Client

PM_RESUME -
BEGIN_RESUME

Card Services sends a PM_RESUME message with the Info Argument set to either
NORMAL_RESUME or CRITICAL_RESUME and the Misc Argument set to BEGIN_RESUME to each
power management-aware client (Clients indicate they are power management-aware by setting bit 8
of the EventMask during RegisterClient).

Client

PM_RESUME -
BEGIN_RESUME

The client sets an internal flag to note that the following CARD_REMOVAL and CARD_INSERTION
messages are being generated by Card Services as part of resume processing.

Post-Client

PM_RESUME -
BEGIN_RESUME

Card Services sends a series of CARD_REMOVAL and CARD_INSERTION event notifications as
described below for each socket in the host system.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 37

Pre-Client

CARD_REMOVAL

If a card was present in the socket before the system entered suspend mode and the
state of a PC Card was changed while the system was suspended (for example,
power was cycled on the socket), Card Services generates CARD_REMOVAL
messages for the socket for each client interested in such messages. Card Services
also sends a CARD_REMOVAL if a PC Card was removed while the system was
suspended.

Client

CARD_REMOVAL

If the client receiving this event notification configured the PC Card in the socket, the
client releases the configuration and any allocated resources.

Post-Client

CARD_REMOVAL

Card Services does not perform any post-client processing.

Pre-Client

CARD_INSERTION

If a card was present in the socket before the system entered suspend mode and the
state of a PC Card was changed while the system was suspended (for example,
power was cycled on the socket), Card Services insures that the card is powered and
properly reset. Card Services then generates CARD_INSERTION events for the
socket for each client interested in such events . Card Services performs the same
processing for PC Cards inserted while the system was suspended.

Client

CARD_INSERTION

The client performs normal CARD_INSERTION processing. Power management
aware clients may attempt to use the same resources for PC Card configuration and
may additionally restore the PC Card to the card's state before the system entered
suspend mode.

Post-Client

CARD_INSERTION

Card Services does not perform any post-client processing.

Pre-Client

PM_RESUME -
END_RESUME

Card Services sends a PM_RESUME event with the Misc Argument set to END_RESUME to each
power management aware client

Client

PM_RESUME -
END_RESUME

Reset internal state flag to indicate CARD_INSERTION and CARD_REMOVAL event notifications
should again be processed normally. If the client set any PC Card to a reduced power state during a
PM_SUSPEND - CONSERVE_POWER notification, the client must make sure the card is returned to
a fully operational mode at this time.

Post-Client

PM_RESUME -
END_RESUME

Card Services returns from the resume notification.

See also PM_SUSPEND.

FUNCTIONAL DESCRIPTION

38 © 1999 PCMCIA/JEIDA

3.5.18 PM_SUSPEND
Status = Callback(PM_SUSPEND, 0, SuspendType, null, Buffer | null, 0,

ClientData)

The PM_SUSPEND event indicates that Card Services has received a suspend notification from the
host system's power management software. There are four (4) types of suspend events. The suspend
event type is passed in the Info argument. The suspend event types are:

QUERY_REQUEST (01H) - asks the client if it is OK to suspend the system. The client must respond
immediately with either SUSPEND_OK (00H) or SUSPEND_NOT_OK (01H). The system shall
send a CONSERVE_POWER or NO_POWER suspend event notification before actually entering
any normal suspend mode. The client cannot take any action in response to this request that
prevents the PC Card from being used normally. Regardless of the client's response to this
request, the system may choose to suspend or choose not to suspend.

SNAPSHOT_REQUEST (00H) - asks the client if it is OK to suspend the system. If a client is
handling a PC Card that has state information that would be lost if power is reduced or
removed, the client must save the card's state information before returning from this request.
Even though clients must reply with a SUSPEND_OK or SUSPEND_NOT_OK response, the
system may choose to ignore the client's response. The client shall take no action in response to
this request that prevents the PC Card from being used normally. No further notification of
suspend activity is given if the system actually suspends. Regardless of the client response to
this request, the system may choose to suspend or choose not to suspend.

CONSERVE_POWER (02H) - notifies the client that the system is suspending, but that PC Cards and
sockets may remain powered. The Buffer argument points to a bit-mapped array representing
the logical sockets supported by Card Services. The least significant bit in the least significant
byte corresponds to logical socket zero (0). Card Services initializes all of the entries in the array
to zero (0). Card Services removes power from a socket on completion of this notification if the
bit in the array corresponding to the socket is reset to zero (0). If a client does not want power
removed from the PC Card, the client must set the bit in the array corresponding to the socket
to one (1). The client should attempt to reduce power consumption on all PC Cards it is using
before returning from this notification, even if the client indicates Card Services may remove
power. It is possible another client will request that Card Services leave the socket powered. A
client must not reset a bit in the array to zero (0) if the bit is set to one (1) by another client.

Note: Even if a client indicates a PC Card should remain powered, the client
should save any card state information that would be lost if power is
removed. Power management software may elect to remove all power from
the PC Card socket without further notification.

NO_POWER (03H) - notifies the client that the system is removing power from all PC Cards and
sockets. For example, if a client is handling a PC Card that has state information that would be
lost if power is removed, the client must save the card's state information before returning from
this request. Card Services ignores any client response.

Note: Card Services does not send a PM_SUSPEND message for each socket
managed by Card Services. A single PM_SUSPEND message of a given
type is sent to Card Services clients for each equivalent type of Power
Management notification received by Card Services.

Depending on the capabilities of the host system power management software, Card Services
performs one of two processing sequences for PM_SUSPEND events. Which sequence Card Services
uses depends on whether the host system power management software performs one or two pass

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 39

suspend notification. If the host uses a one pass notification, the only event notification the client
receives is SNAPSHOT_REQUEST as described below.

Cause Power Management software on the host system sends a suspend notification to Card Services.

Pre-Client Card Services sends a SUSPEND_SNAPSHOT to all clients.

Client A client saves any state information that would be lost if power is reduced or removed from any PC
Card it is using. The client must not take any action that prevents the PC card from be used normally.
The client returns either SUSPEND_OK or SUSPEND_NOT_OK.

Post-Client Card Services returns SUSPEND_OK if all power management aware clients return SUSPEND_OK,
otherwise Card Services returns SUSPEND_NOT_OK

If the host system power management software uses two pass suspend notification, Card Services
first receives a query asking if the system should enter suspend mode. Before actually entering
suspend mode, the host system power management software sends Card Services a second
notification. The sequence for the first pass is:

Cause Host system power management software sends a suspend query to Card Services.

Pre-Client Card Services sends a QUERY_REQUEST event notification to power management aware clients.

Client The client immediately responds to Card Services with either a SUSPEND_OK or
SUSPEND_NOT_OK.

Post-Client Card Services responds with SUSPEND_OK if all power management aware clients responded to the
QUERY_REQUEST with SUSPEND_OK. Otherwise Card Services responds SUSPEND_NOT_OK.

When the host system power management decides to enter suspend mode (with or without a query
pass), the following sequence is followed:

Cause Host system power management software sends a suspend notification to Card Services.

Pre-Client Card Services sends a CONSERVE_POWER or NO_POWER suspend event notification.

Client The client shall record any PC Card state that may be lost when power is reduced or removed.

If CONSERVE_POWER is received, the client may indicate the PC Card needs to remain powered by
setting the bit in the array pointed to by the Buffer argument corresponding to the logical socket to one
(1). In any case, the client shall place the PC card in a reduced power state, if one exists.

If NO_POWER is received, the client should perform any actions required for an orderly shut-down.

Post-Client For NO_POWER event notifications power is removed from the PC Card and socket.

For CONSERVE_POWER event notifications, power is removed from all sockets whose
corresponding bit in the array pointed to by the Buffer argument are zero (0).

W A R N I N G :

The Card Services interface may be busy during PM_SUSPEND event
notifications. If a client requires the Card Services interface to perform
PM_SUSPEND processing and finds the interface busy, the client should
ignore the PM_SUSPEND notification and handle subsequent
PM_RESUME notifications in the same manner as a CRITICAL_RESUME.

See also PM_RESUME.

FUNCTIONAL DESCRIPTION

40 © 1999 PCMCIA/JEIDA

3.5.19 REGISTRATION_COMPLETE
Callback(REGISTRATION_COMPLETE, 0, 0, null, null, ClientHandle,

ClientData)

The REGISTRATION_COMPLETE event indicates a registration request that is processed in the
background has been completed. The client handle specified in the RegisterClient request indicates
the only client that will be notified of this event.

Cause The processing of a clientÕs RegisterClient request has been completed by Card Services.

Pre-Client Card Services has completed notifying the client of any PC Cards that were already installed when the
RegisterClient service was requested.

Client Clients have probably been waiting for this event to signal they may continue their foreground processes
that generated the original request. In this case, clients will most likely just set a semaphore indicating
the request is complete. Then, when their foreground process again receives control, it will confirm the
semaphore has been set and continue processing. This functionality is implementation specific.

Post-Client Card Services does not perform any post-client processing.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 41

3.5.20 REQUEST_ATTENTION
Callback(REQUEST_ATTENTION, Socket, 0, null, null, 0, ClientData)

The REQUEST_ATTENTION event indicates a PC Card is requesting attention from the host
system.

Cause A PC Card has set the REQ_ATN bit of the Extended Status Configuration register to one (1).

Pre-Client Card Services does not perform any pre-client processing.

Client The actions performed by a client are specific to the client and the PC Card. A PC Card could use this
event to signal the cardÕs client that an external source is requesting attention. For example, a FAX/data
modem PC Card that is in a power down state could signal the client to return the PC card to an
operational state to respond to an incoming telephone call.

Post-Client Card Services does not perform any post-client processing.

FUNCTIONAL DESCRIPTION

42 © 1999 PCMCIA/JEIDA

3.5.21 RESET_COMPLETE
Callback(RESET_COMPLETE, Socket, ResetStatus, null, null, 0, ClientData)

The RESET_COMPLETE event indicates a ResetFunction request that is processed in the
background has been completed. The client handle specified in the ResetFunction request identifies
the client callback handler that is notified of this event. Other clients that may be using the card will
not receive the RESET_COMPLETE event.

Cause The processing of a clientÕs ResetFunction request has been completed by Card Services.

Pre-Client Card Services has completed the reset processing for the specified card.

Client A Client has probably been waiting for this event to signal they may continue their foreground processes
that generated the original request. In this case, clients will most likely just set a semaphore indicating
the request is complete. Then, when their foreground process again receives control, it will confirm the
semaphore has been set and continue processing. The Info argument contains SUCCESS if the reset
has been successfully completed. If the reset was rejected, the Info argument contains IN_USE. If the
reset was not successful, Info contains a return code indicating the reason for the failure. Processing of
this event by the client is implementation specific.

Post-Client Card Services does not perform any post-client processing.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 43

3.5.22 RESET_PHYSICAL
Callback(RESET_PHYSICAL, Socket, 0, null, null, 0, ClientData)

The RESET_PHYSICAL event indicates a reset is about to occur on the specified function and
socket.

Cause A client requested a ResetFunction and no client rejected the previous RESET_REQUEST event.

Pre-Client Card Services has successfully performed a RESET_REQUEST notification.

Client This is an opportunity for a client to save any hardware state that may be lost when the PC Card is
physically reset. Client processing is implementation specific.

Post-Client Card Services sends a CARD_RESET to all clients and a RESET_COMPLETE notification directly to
the client which requested the ResetFunction service.

See also CARD_RESET, RESET_COMPLETE and RESET_REQUEST.

FUNCTIONAL DESCRIPTION

44 © 1999 PCMCIA/JEIDA

3.5.23 RESET_REQUEST
Status = Callback(RESET_REQUEST, Socket, 0, null, null, 0, ClientData)

The RESET_REQUEST event indicates a physical reset has been requested by a client.

Cause A client has requested a ResetFunction service.

Pre-Client Card Services has already returned to the client requesting the ResetFunction service. This
notification is being made from a background execution thread of Card Services. The Card Services
interface is available.

Client This is an opportunity for a client to prevent the reset request from occurring. The Status argument
indicates whether the client will allow the request to complete. If the Status argument is set to
SUCCESS on return from client notification, Card Services continues to notify other clients. If the Status
argument is not set to SUCCESS on return from client notification, Card Services sends a
RESET_COMPLETE event to the requesting client with the Info argument indicating the request was
rejected.

Post-Client Card Services sends a RESET_PHYSICAL notification and hardware reset is performed on the PC
Card. Card Services then sends a CARD_RESET. Finally, Card Services sends a
RESET_COMPLETE notification directly to the client which requested the ResetFunction service.

W A R N I N G

This is one of the events that require a response from the clientÕs callback
handler.

See also CARD_RESET, RESET_COMPLETE and RESET_PHYSICAL.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 45

3.5.24 SS_UPDATED
Callback(SS_UPDATED, Socket, SSInfo, null, null, 0, ClientData)

The SS_UPDATED event indicates that an AddSocketServices or ReplaceSocketServices request
has changed the support provided for sockets.

Cause AddSocketServices or ReplaceSocketServices has been called.

Pre-Client Card Services uses the Socket Services handler to determine what hardware resources are now
available, or have been removed, for the affected sockets.

Client The client may react to the new, changed, or removed socket support. The client reaction depends upon
the notification. For SocketsRemoved the client should perform any necessary internal data cleanup.
For SocketsAdded the client should check if the socket(s) is occupied and whether the card is of
interest (as if this were a CARD_INSERTION event). For a SocketRenumber notification the client
should note the change of socket number for the affected socket.

Post-Client No Post-Client processing is performed.

W A R N I N G : S O M E I M P L E M E N T A T I O N S O F C A R D
S E R V I C E S M A Y B E U N A B L E T O A C C E P T R E Q U E S T S

D U R I N G T H I S C A L L B A C K N O T I F I C A T I O N D U E T O R E -
E N T R A N C Y L I M I T A T I O N S C A U S I N G A B U S Y S T A T E .

FUNCTIONAL DESCRIPTION

46 © 1999 PCMCIA/JEIDA

3.5.25 TIMER_EXPIRED
Callback(TIMER_EXPIRED, 0, 0, null, null, TimerHandle, ClientData)

The TIMER_EXPIRED event indicates a timer registered by a client RegisterTimer request has
expired. The Misc argument contains the timer handle returned by RegisterTimer.

Cause The wait count has expired for a RegisterTimer request.

Pre-Client Card Services has received a timer tick interrupt, noted the Card Services interface is available and the
wait count is or will be decremented to zero (0) by this tick.

Client The client may perform any processing it may have delayed.

Post-Client No Post-Client processing is performed.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 47

3.5.26 WRITE_PROTECT
Callback(WRITE_PROTECT, Socket, WPState, null, null, 0, ClientData)

The WRITE_PROTECT event indicates that the write protect status of the PC Card in the indicated
socket has changed.

Cause The write-protect switch on a PC Card has been moved.

Pre-Client Card Services does not perform any pre-client processing.

Client The client may check the value of the WPState field. If WPState is zero, the PC Card is not write-
protected. If WPState is non-zero, the PC Card is now write-protected.

Post-Client Card Services does not perform any post-client processing.

Note: Not all socket hardware is capable of reporting a change in a PC CardÕs
write protect status. For this reason, a client should not rely on a
WRITE_PROTECT notification as the sole method of determining a PC
CardÕs write protect status.

FUNCTIONAL DESCRIPTION

48 © 1999 PCMCIA/JEIDA

3.6 Memory Technology Drivers
This section describes Memory Technology Drivers also known as MTDs. MTDs implement specific
programming algorithms required to access memory devices on PC Cards. Card Services relies on
MTDs to perform the actual read, write, copy, and erase services as well as internal card paging
schemes necessary to access memory beyond the 64 Mbyte hardware signal limitation. Card
Services uses the MTD Interface described in this section to access the MTDs which, in turn, use the
MTD Helper Routines and the Media Access Table (MAT) Services to access the PC card. Additional
information on the MTD Helper Services can be found in Appendix E.

3.6.1 Registration
MTDs register with Card Services like any other client by using the RegisterClient request. The
data provided as an argument to RegisterClient includes an attribute field to indicate the requester
is an MTD. The MTDÕs client callback handler is the entry point for MTD read, write, copy, and
erase requests.

When an MTD is notified of CARD_INSERTION events, it can use the GetFirst/NextRegion
services to determine if it wishes to handle read, write, copy and erase requests for memory on the
PC Card. If an MTD elects to handle a region, it performs a RegisterMTD request to inform Card
Services to use the MTD for all access to the region. If an MTD elects not to handle a region, the
region is then handled by a previously installed MTD. By default, Card Services installs an MTD
that supports read and write access to SRAM memory regions and non SRAM regions. In general, a
client cannot depend on the state of memory after an erase request for a given MTDÑthe value
read from a memory area that was just erased is undefined.

3.6.2 Card Services/MTD Interface
All requests to MTDs are made via the MTD_REQUEST event with the Service, Socket, ClientData,
Buffer and MTDRequest arguments. The MTDRequest argument points to the following structure

Offset Field Size Type Value Detail/Description

0 Length 2 I N Length of this packet

2 Socket 2 I N Logical Socket

4 SrcCardOffset 4 I N Source Card Offset for request

8 DestCardOffset 4 I N Destination Card Offset for request

12 TransferLength 4 I N Length of Request

Read or Write = Bytes

Erase = Power of Two

16 Service 1 I N MTD request service

17 Access Speed 1 I N Access Speed for Region

18 MTD ID 2 I N MTDÕs token from RegisterMTD for Region

20 MTDStatus 2 I/O N MTD Returned Status

22 Timeout Count 2 I/O N Timeout Count for Timer delayed requests

24 MAT N I N Media Access Table

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 49

When Card Services receives a read, write, or copy request from a client, it builds an MTDRequest
packet and generates the MTD_REQUEST event to the appropriate MTD. Also, when Card
Services finds an erase request in an erase queue, it constructs an erase request packet and passes it
to the MTD for servicing.

Clients make read, write, copy, and erase requests using offsets relative to the beginning of the area
identified in the OpenMemory request. MTDs require the absolute offset from the beginning of the
PC Card. Card Services converts the offset address from relative to absolute in the MTD request
packet before passing the request to the MTD.

Card Services performs some additional processing for a copy request. This processing varies
depending on whether or not the adapter supports direct memory mapping.

If an adapter does not support direct memory mapping, Card Services converts a copy request into
individual MTD read and write requests. An MTD does not receive a copy request in this case.
Card Services breaks the request into a read followed by a write using an internal copy buffer. For
example, if a copy request for 32 KBytes is made and the system only supports accessing through a
16 byte window, Card Services breaks the request into a number of 16 byte reads and writes to the
MTD.

If an adapter supports direct memory mapping, Card Services maps the PC Card source area into a
system address range and indicates this as the system buffer address, it sets the PC Card source
offset, and requests an MTD copy operation. The PC Card source offset is provided to allow the
MTD to manage power to the PC Card. This may be required to read from the PC Card.

If an address is passed to an MTD beyond the PC CardÕs 64 Mbyte hardware address signal limit,
the MTD must point to the correct page within the PC Card. The MTD can change the cardÕs page
by modifying the address extension information in the appropriate Function Configuration
Registers as described in the Electrical Specification. Although the address extension provisions
allow for a maximum of 242 memory locations, this version of Card Services limits the maximum
memory size to 4 GBytes.

SrcCardOffset contains the first memory location on the PC Card to read from for a Read request. For
a copy request, it contains the memory offset on the PC Card that corresponds to the memory
address passed in the Buffer argument. For a copy, this PC Card offset can be used by the MTD to
appropriately manage access to the devices on the PC Card (if required).

DestCardOffset contains the first memory location on the PC Card of the destination for a Write and
Copy request.

TransferLength contains the length in bytes of the request.

Service is a bit-mapped field defined as:

Bit 0 áá 1 Command:
Erase (00H)
Read (01H)
Write (02H)
Copy (03H)

Bit 2 DisableEraseBeforeWrite

Bit 3 VerifyAfterWrite

Bit 4 Ready Continued

Bit 5 Timeout Continued

Bit 6 Last in Sequence

Bit 7 First in Sequence

FUNCTIONAL DESCRIPTION

50 © 1999 PCMCIA/JEIDA

Command identifies the MTD service request.

VerifyAfterWrite and DisableEraseBeforeWrite are only valid for a Write command. VerifyAfterWrite
requires the MTD to verify that the data was written correctly. DisableEraseBeforeWrite requires the
MTD to not erase the memory before writing data. If this bit is reset to zero, the erase is only done
for requests that are erase block aligned and a multiple of erase blocks. UNSUPPORTED_MODE is
returned if an MTD doesnÕt support write verification.

Ready Continued indicates that this request was a continuation of a previous client request and is
being continued by a READY event from the PC Card. Timeout Continued indicates that this request
is being continued by a timeout. If neither of these bits are set to one, this request is an original
request from a client. Both bits can be set to one if both events have occurred before Card Services
was able to make the MTD request.

For a read, write, or copy First in Sequence and Last in Sequence indicate whether the request is part
of a sequence that Card Services has broken up into smaller requests due to buffering or window
allocation limitations. This information will typically be used to allow efficient power management
of the PC Card. If this is the first request of the sequence, First in Sequence is set to one. If this is the
last request, Last in Sequence is set to one. If a request corresponds to a single client request, both
bits are set to one. If this request is neither the first nor last in the sequence, both bits are reset to
zero.

Access Speed indicates the access speed for the memory being accessed. This field is defined the
same way as the field for GetFirst/NextPartition.

MTD ID contains the value the MTD passed to Card Services in RegisterMTD. The MTD can use
this value for its own purposes.

MTDStatus is set by the MTD when it returns a request with a SUCCESS or BUSY return code. This
value is used by Card Services as the return code to the requesting client when SUCCESS is
returned by the MTD. This field tells Card Services what event will trigger a retry of this request
when BUSY is returned by the MTD.

Timeout Count indicates the timeout count when an MTD returns MTD_WAITTIMER or
MTD_WAITRDY MTDStatus with a BUSY return code. A zero value causes the request to be retried
at the next opportunity. The count is specified in 1 ms increments.

W A R N I N G

This timeout value along with the timeout granularity is not guaranteed and
depends on system implementation details (see RegisterTimer).

MAT contains the Media Access Table (NOT a pointer to the table) defined in a later section.

The MTD returns with the Status argument set to SUCCESS if the request has been completed. If an
error occurred, the MTD places the error code in the MTDStatus argument. MTDs return the same
codes to Card Services as are returned by Card Services to the client. If the MTD returns to Card
Services with a return code of BUSY, some of the MTDStatus values inform Card Services of specific
action that it should take for this MTD request.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 51

These values determine the event that will trigger Card Services to retry the request.

MTDStatus MTD State Card Services reaction

MTD_WAITREQ (00H) not currently able to
service request

retries the request when MTD completes background operation

MTD_WAITTIMER (01H) waiting for specified
period before
continuing request
service

calls the MTD after the timeout period expires

timeout count is specified in the Timeout Count field in the request
packet

before notifying MTD of timer expiration, Timout Continued is set to
one in the Service field of the request packet

MTD_WAITRDY (02H) waiting for READY
before continuing
request service

calls the MTD when the PC Card indicates READY

the Timeout Count field is the maximum time Card Services will wait
for READY

the Ready Continued bit of the Service field is set to one to indicate a
READY event continued request

if the request times out, the Timeout Continued bit of the Service field
is set to one

MTD_WAITPOWER(03H) not currently able to
service request due
to lack of power

retries the request after a power change occurs that could affect this
request

3.6.3 MTD Helper Interface
During the processing of a read, write, copy or erase request, MTDs can use the MTD Helper
Services to control low level details of card access. The MTD Helper Services are all accessed via the
entry point at the end of the MAT table included in the MTDRequest packet. MTDs use these
services to perform socket and window management tasks. MTDs are NOT permitted to use the
Card Services interface other than those provided by the Helper Service when processing read,
write, copy, and erase requests.

The complete MTD Helper Service interface is described in Appendix E.

3.6.4 Erase Queuing
Card Services accepts additional erase requests while erase operations are in progress. MTDs may
limit the number of simultaneous erases they can process. If an MTD cannot process an erase
request when received because it has an erase in progress can not obtain sufficient programming
current, it returns BUSY and MTD_WAITREQ or MTD_WAITPOWER to Card Services. Card
Services leaves the erase request in the erase queue. Later, when the MTD notifies Card Services
the erase in progress has been completed via a SUCCESS return code, any queued erase requests
are re-attempted by Card Services.

3.6.5 Blocking
MTDs may not be able to satisfy read or write requests while an erase operation is in progress.
MTDs handle this situation in the same manner as simultaneous erases. The MTD returns BUSY
and MTD_WAITREQ. Unlike simultaneous erase, Card Services does not queue the request
internally and return to the requesting client. In this case, Card Services blocks (delays) the request
waiting for the erase in progress to complete. When notified by the MTD via a SUCCESS return
code that the erase has completed, Card Services saves the erase completion status, and attempts the
blocked request. Card Services notifies the client the blocked request has completed. Then, Card
Services notifies the requesting client that the erase causing the blockage has completed. If the erase

FUNCTIONAL DESCRIPTION

52 © 1999 PCMCIA/JEIDA

request was not the blocking request, the erase request completion status is saved until the blocking
request completes.

3.6.6 Card Services Request Retries
Card Services and MTDs cooperate to service client memory access requests. When an MTD returns
to Card Services after processing a request, it indicates whether the request has been fully or
partially processed. The code returned to Card Services helps determine what action Card Services
takes next. If a request is fully processed, Card Services informs the requesting client. It does this
directly or via a callback for erase requests. If the request is not fully processed, the MTD informs
Card Services when to retry the request via the MTDStatus value in the MTDRequest, and Card
Services saves the request on in an internal list.

The specific implementation details of Card Services are vendor dependent, but from an MTD
perspective there are four logical lists of pending requests:

POWER TIMER

MTD READY

A power change triggers processing retries for all requests pending due to lack of power (the
POWER list). A SUCCESS return code from an MTD triggers processing retries for all requests
pending due to an WAIT_REQ (the MTD list). A timeout triggers a retry of the affected pending
request (the TIMER list). A READY signal triggers processing retries for all requests awaiting a
READY for the socket (the READY list).

Additionally, a request awaiting a READY can timeout. If the timeout happens for such a request
only that request is retried. Finally, if there are requests awaiting a READY event and Card
Services notices that the PC Card is READY, the pending READY requests are retried. Requests
that were returned with a MTD_WAITPOWER or MTD_WAITREQ can also specify a timeout value
to defer retry processing.

The Card Services response to specific MTD return codes and other events are described in the
following table. An MTD will get retry requests from Card Services when the appropriate trigger
events occur. An MTD must check whether it is possible to continue processing the retried request
since the request may have been retried due to an unrelated event. If the request was not serviced,
the MTD simply uses the appropriate return code to request that Card Services retry the request
later.

For example, assume an MTD expects a READY event to allow further servicing for a request. Also
assume there are other READY pending requests. Now when a READY is signaled from the PC
Card, all pending READY requests for the socket will be retried by Card Services. The MTD must
determine whether the READY event applies to each request presented by Card Services.

Card Services may not retry all pending requests at one time. Since MTD request retries are
typically processed while in an interrupt handler, extensive processing may adversely affect host
performance. Therefore, Card Services may process some requests and then wait for some period of
time before continuing processing. However, Card Services ensures a single trigger event causes all
requests waiting for that event to be retried. For example, Card Services ensures that all requests
pending a READY event are processed after each READY is asserted.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 53

Return Code MTDStatus Event Card Services Response

BUSY MTD_WAITPOWER Put request on the power pending list

Power change Retry all power pending requests

BUSY MTD_WAITTIMER Put request on the timer pending list

Timeout Retry the timed-out request

BUSY MTD_WAITRDY Put request on the READY pending list for this socket

READY Retry all READY pending requests for the socket

Timeout Retry timed-out READY request

BUSY MTD_WAITREQ Put request on the MTD pending list

SUCCESS Inform client of return code and, if erase, generate callback
event, Retry all pending MTD requests for this MTD

3.6.7 Media Access Table
The Media Access Table is an array of pointers to the entry points for primitive routines that are
used to access memory on a PC Card. The MAT is either built by using the Socket Services service
GetAccessOffsets for register based sockets or is supported by Card Services itself for sockets with
memory window mapping hardware.

The entry points are ordered as follows:

Service Description

MATData Pointer to the MAT data area.

CardSetAddress Establishes access to a PC Card memory area.

CardSetAutoInc Enables auto-incrementing addresses.

CardReadByte Reads a byte from the memory area.

CardReadWord Reads a word from the memory area.

CardReadWords Reads words from the memory area. For use with AIMS PC Cards.

CardReadByteAI Reads a byte from the memory area and automatically increments the
memory address to the next byte.

CardReadWordAI Reads a word from the memory area and automatically increments the
memory address to the next word.

CardReadWordsAI Reads a block of memory incrementing the memory address.

CardWriteByte Writes a byte to the memory area.

CardWriteWord Writes a word to the memory area.

CardWriteWords Writes words to the memory area. For use with AIMS PC Cards.

CardWriteByteAI Writes a byte to the memory area and automatically increments the
memory address to the next byte.

CardWriteWordAI Writes a word to the memory area and automatically increments the
memory address to the next word.

CardWriteWordsAI Writes a block of memory incrementing the memory address.

CardCompareByte Compares a byte with a byte in PC Card memory.

CardCompareByteAI Compares a byte incrementing the memory address.

CardCompareWords Compares a block of memory against a block of PC Card memory.

CardCompareWordsAI Compares a block of memory incrementing the memory address.

MTDHelperEntry The entry point for MTD helper services of Card Services.

The definition of the Media Access Services are processor dependent and can be found in the
Bindings section of Appendix F.

FUNCTIONAL DESCRIPTION

54 © 1999 PCMCIA/JEIDA

3.6.8 Virtual Memory Partitions/Regions
Some PC Cards have memory that cannot be directly accessed. For example, an Auto Indexing Mass
Storage (AIMS) PC Card has control registers located in common memory that are used to access
memory that is not directly addressable in common memory. Card Services defines such a memory
area as a Virtual Region. Any partitions in such a memory area are defined as Virtual Partitions. A
virtual region or partition is a memory area that is accessed by a client (via an MTD) by using
memory addresses that arenÕt the same as its PC Card physical memory addresses.

MTDs can use special Card Services features to allow clients to use the Open/CloseMemory and
Read/Write/Copy/EraseMemory requests to access such memory. GetFirst/NextRegion/Partition
will return information about such memory areas to requesting clients.

For an MTD to provide access to a virtual region, it first uses SetRegion to inform Card Services of
the existence of the region and its characteristics. This allows GetFirst/NextRegion requests to return
this information to other clients. Next, the MTD uses RegisterMTD to inform Card Services that it
supports access to this region.

A PC Card may have physical regions in addition to virtual regions. Virtual regions are not allowed
to overlap their address ranges with any accessible physical regions. If a physical region would
otherwise overlap its address ranges with a virtual region, the physical region must also be treated
as a virtual region.

In order for an MTD to provide partition information about a partition in a virtual region, it may
need to replace and simulate access to attribute memory tuples. This can be done by first relocating
the attribute memory region as a virtual region to a different attribute memory address range. Then
the MTD can create a simulated virtual attribute region that is located at the original physical
attribute memory location. Whenever a client accesses attribute memory, the MTD can return the
appropriate information.

3.6.9 Tuple Usage
Card Services performs automatic tuple processing in several cases relating to MTDs. The tuples
used by Card Services are listed below along with the situations where they are processed.

Tuple Event/Service Usage

Device Information CARD_INSERTION
GetConfigInfo
GetFirst/NextTuple

Determine access speed and size of region

JEDEC Identifier CARD_INSERTION
GetConfigInfo
GetFirst/NextTuple

Determine JEDEC identifier

Function ID CARD_INSERTION
GetConfigInfo
GetFirst/NextTuple

Determine function type, Determine system init mask

Manufacturer ID CARD_INSERTION
GetConfigInfo
GetFirst/NextTuple

Determine manufacturer code, Determine manufacturer info

Format GetFirst/NextPartition Determine starting offset of partition, Determine partition size

Organization GetFirst/NextPartition Determine partition type

Device Geometry GetFirst/NextRegion Determine device characteristics.

During pre-client processing of CARD_INSERTION events, or during GetConfigInfo and
GetFirst/NextTuple service events, Card Services identifies all of the regions present on a PC Card.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 55

This may require processing multiple Device Information and JEDEC Identifier tuples. (See the
Metaformat Specification.)

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 57

4 . A S S U M P T I O N S A N D C O N S T R A I N T S

4.1 Auto Configuration of I/O Cards
Automatic configuration of I/O cards during a CARD_INSERTION event is implementation
specific.

4.2 Compression
Card Services does not perform any compression or expansion of data presented to the read, write,
or copy requests. Since Card Services has no knowledge of data structure or access patterns it is
unable to perform on-the-fly compression. Compression is better performed by clients or operating
systems.

4.3 EDC Generation
Card Services does not provide any support for Error Detection Code generation or validation. At
present, there is no standard for how EDC should be handled in conjunction with stream I/O on a
PC Card. Clients requiring EDC generation using socket or adapter-based hardware should make
direct access to Socket Services.

4.4 BIOS or Device Driver
Card Services can be ROM-able. Card Services is intended to be an Operating System dependent
loadable device driver or OS extension. During initialization, Card Services allocates its own RAM.
Card Services may be dependent on specific details of the host system.

4.5 Interrupts Per Socket
The number of system interrupts available for routing PC Card IREQ# lines is implementation
specific.

4.6 Mixed Media Memory Cards
Card Services should be implemented to support more than one type of memory on a PC Card.
Card Services describes each homogeneous area of PC Card memory as a region. The number of
regions supported per PC Card is implementation specific.

4.7 Multiple Partitioned Memory Cards
It is recommended that Card Services support more than one partition on a PC Card or within a
region. The number of partitions supported per PC Card is implementation specific.

4.8 Use of Socket Services
Card Services makes all access to socket hardware through the Socket Services interface.

ASSUMPTIONS AND CONSTRAINTS

58 © 1999 PCMCIA/JEIDA

4.9 Interface Assumptions

4.9.1 Range Checking of Arguments
Card Services performs range checking only on items directly managed and numbered. For
instance, Card Services checks that the specified logical socket number is valid or a PC Card is
present in a socket being addressed. Card Services does not check that a specified card offset address
is valid.

4.9.2 Configuration
How Card Services establishes its initial resource table describing the available system resources is
implementation specific. The structure of the resource table is also implementation specific.

4.9.3 Abnormal Termination
Card Services does not perform any explicit processing if the operating system aborts a client
process. It is the responsibility of the client to defend against unexpected termination and gracefully
release any Card Services resources it may be using and deregister with Card Services.

4.9.4 Shared Data
The GetFirst/Next series of services share data between the initial GetFirst and subsequent
invocations of GetNext. The GetFirst service invocation saves internal Card Services data in the
argument packet, for use by subsequent GetNext invocations. The client is expected to preserve this
internal Card Services Data for any subsequent use.

The validity of the shared ClientHandle parameter may be corrupted by any intervening invocation
of RegisterClient or DeregisterClient.

4.10 Timeouts
Card Services does not perform any explicit timeouts. Card Services makes available limited timer
services to MTDs to aid in monitoring the progress of background operations. If an MTD causes the
blocking of a foreground operation, the MTD notifies Card Services when the blocking operation
completes. MTDs are responsible for performing any required deadman timing.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 59

5 . S E R V I C E R E F E R E N C E

The following sections describe the Card Services interface in detail. The services are listed
alphabetically with their calling arguments identified for ease of reference. The functional notation
used for a Card Services call is:

CardServices(Service, Handle, Pointer, ArgLength, ArgPointer)

For example:

CardServices(AddSocketServices, null, SSEntry, ArgLength, ArgPointer)

If an argument has a different value on call versus return, this is indicated by using a slash ("/") to
separate the input versus output values. For example:

CardServices(GetConfigurationInfo, null/ClientHandle, null, ArgLength,
ArgPointer)

If an argument is optional, this is indicated by using a logical or symbol ("|") to separate the
defined parameters. For example:

CardServices(RequestIRQ, ClientHandle, ISRAddress | null, ArgLength,
ArgPointer)

The argument name "null" is used for a pointer argument that is ignored for a particular request.
Descriptive names are used to indicate the values required for other arguments. The name
"ArgLength" indicates that the value for the correct size of the Argument Packet is used. The name
"ArgPointer" indicates that a pointer to the Argument Packet is used.

The behavior, input and output parameters are described for each service. For ease of reference a
parameter summary table is included for each service. For each service parameter this table
specifies: offset in argument packet, name, size (in bytes), type, value, and a brief reference
description.

The following abbreviations are used in the Card Services parameter summary tables. Parameter
offset values in a parameter summary table are always expressed in decimal. Pointer values are in
binding specific format. All other table values are expressed in hexadecimal unless stated otherwise.

Parameter Types

Code Function Description

I Input Parameter written by the Client as an input to the service.

O Output Parameter returned by Card Services as an output of the service. This
parameter is effectively read-only and can not be modified by a Client.

I/O Input and Output Parameter which requires an input value provided by the Client but which
may have been modified by Card Services upon return from the service.

Parameter Values

Code Meaning Description

XXXXH Hexadecimal Data Explicit hex value for the parameter.

ZERO Zero Zero value for the parameter.

N Number Variable data for a parameter.

BCD Binary-Coded Decimal BCD data for a parameter.

SERVICE REFERENCE

60 © 1999 PCMCIA/JEIDA

5.1 AccessConfigurationRegister (36H)
CardServices(AccessConfigurationRegister, null, null, ArgLength,

ArgPointer)

This service allows a client to read or write a PC Card Configuration Register. This service must be
used by Card Services clients to access a CardBus PC CardÕs registers in configuration space. For
CardBus PC Cards these registers are referred to functionally, or by address. In other words, if the
client wished to examine the first Base Address Register in function 2, the client would request Base
Address Register 1 in function 2, or the DWORD at address 10H in configuration space.

This service is also used to access the four CardBus PC Card status registers associated with the
function. The table below describes the arguments for this service.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket. The Socket field identifies the logical socket and the
function for the PC Card to access. The least significant byte is the
logical socket. The most significant byte is the function.
Single function 16-bit PC Cards always use a zero (0) value for the
function. CardBus PC Cards and multiple function 16-bit PC Cards use
a value between zero (0) and one less than the number of functions on
the PC Card

2 Action 1 I N The Action field may be set to READ (00H), WRITE (01H),
READ_BYTE (02H), READ_WORD (04H), READ_DWORD (06H),
WRITE_BYTE (03H), WRITE_WORD (05H), or WRITE_DWORD
(07H). All other values in the Action field are reserved for future use. If
the Action field is set to WRITE, WRITE_BYTE, WRITE_WORD, or
WRITE_DWORD, the Value field is written to the specified
Configuration Register.

READ_BYTE (02H), READ_WORD (04H), READ_DWORD (06H),
WRITE_BYTE (03H), WRITE_WORD (05H) and WRITE_DWORD
(07H) can only be used if Offset field is set to FFH.

Card Services does not read the Configuration Register after a write
operation. For that reason, the Value field is only updated by a read
request.

3 Offset 1 I N Byte offset to status register associated with the function indicated by the
Socket field. This is relative to the PC Card configuration register base
specified in RequestConfiguration. This must be a multiple of four for
CardBus PC Cards.

If the Offset is FFH, then the register to be read or written is a register in
the CardBus PC Card functionÕs configuration space.

4 Value 4 I/O N Value to read or to write. In the case where the register to be read or
written is smaller than four bytes, e.g. for CardBus PC Card
configuration space registers, the value in the least significant byte is
taken first. For example, to set the Bus Master bit field in the Command
register, the value 00000004H would be in this field.

8 Register 1 I N Which configuration space register is referred to. Ignored if Offset is
anything other than FFH.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 61

For registers in the CardBus PC Card functionÕs configuration space, the Register field in the
argument packet must be filled in. The allowable values for READ and WRITE actions are defined
in the table below.

Register Value Corresponding Location in Configuration Space

BASE_ADDR_1 01H First Base Address Register

BASE_ADDR_2 02H Second Base Address Register

BASE_ADDR_3 03H Third Base Address Register

BASE_ADDR_4 04H Fourth Base Address Register

BASE_ADDR_5 05H Fifth Base Address Register

BASE_ADDR_6 06H Sixth Base Address Register

EXPANSION_ROM 07H Expansion ROM Base Register at location 30H

BUS_MASTER 08H Bit field 2 of the Command register at 04H

MEMORY_INVALIDATE 09H Bit field 4 of the Command register at 04H

PALETTE_SNOOP 0AH Bit field 5 of the Command register at 04H

BIST 0BH BIST register at 0FH

CIS_POINTER 0CH CIS Pointer register at 28H

The allowable values for READ_BYTE and WRITE_BYTE actions (CardBus only) are defined in the
table below.

Register Value Corresponding Location in Configuration Space

00H É FFH 00H ... FFH Every configuration space register

The allowable values for READ_WORD and WRITE_WORD actions (CardBus only) are defined in
the table below.

Register Value Corresponding Location in Configuration Space

00H, 02H, 04H É 0FEH 0000H É FFFFH Every WORD aligned configuration space register

The allowable values for READ_DWORD and WRITE_DWORD actions (CardBus only) are defined
in the table below.

Register Value Corresponding Location in Configuration Space

00H, 04H, 08H, 0FCH 00000000H É FFFFFFFFH Every DWORD aligned configuration space register

A client must be very careful when writing to the 16-bit PC Card function configuration register at
offset zero (0), the Configuration Option register. This has the potential to change the type of
interrupt request generated by the PC Card or place the card in the reset state. Either request may
have undefined results. The client should read the register to determine the appropriate setting for
the interrupt mode (Bit 6) before writing the register.

If a client wants to reset a PC Card function, the ResetFunction service should be used. Unlike the
AccessConfigurationRegister service, the ResetFunction service generates a series of event
notifications to all clients using the function, so they can re-establish the appropriate card state after
the reset operation is complete.

SERVICE REFERENCE

62 © 1999 PCMCIA/JEIDA

Return Codes
BAD_ARG_LENGTH ArgLength is invalid. Both 16-bit PC Card and CardBus PC Card argument

lengths are legal.

BAD_ARGS Specified arguments are invalid

BAD_SOCKET Socket or function is invalid (socket/function request only)

UNSUPPORTED_SERVICE This service is not supported

See also the Electrical Specification.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 63

5.2 AddSocketServices (32H)
CardServices(AddSocketServices, null, SSEntry, ArgLength, ArgPointer)

This service allows a new Socket Services handler to be added to those that Card Services is already
using. The Pointer argument contains the Socket Services entry point. Card Services calls Socket
Services at the provided entry point to determine supported hardware.

Offset Field Size Type Value Detail/Description

0 Attributes 2 I N Information about SS entry point

2 DataPointer N I N Pointer for SS Data Area (binding specific)

The Attributes field defines details about the new Socket Services entry point. The definition is
binding specific. See the Bindings Section for specific implementations.

The DataPointer field is used to establish data addressability for the Socket Services handler. This
value is passed to the Socket Services handler in a binding specific way. This field is defined the
same as other (binding specific) pointers.

OUT_OF_RESOURCE is returned if Card Services cannot successfully manage this new Socket
Services.

Note: A Card Services implementation may fail this request and return
UNSUPPORTED_MODE if the provided pointers are for a processor mode
unsupported by Card Services.

Return Codes
BAD_ARG_LENGTH ArgLength value invalid - mode dependent

OUT_OF_RESOURCE Out of internal RAM Space

UNSUPPORTED_MODE Requested processor mode not supported

SERVICE REFERENCE

64 © 1999 PCMCIA/JEIDA

5.3 AdjustResourceInfo (35H)
CardServices(AdjustResourceInfo, null/ClientHandle, null, ArgLength, ArgPointer)

The Card Services internal database of system resources that are available for allocation to clients is
managed by this service. The service is used to adjust or inquire about the system resource
availability.

Offset Field Size Type Value Detail/Description

0 Action 1 I N Add/Remove/Query resource

1 Resource 1 I N The resource type to adjust

The Action field has the following defined values:

0 RemoveManagedResource

1 AddManagedResource

2 GetFirstManagedResource

3 GetNextManagedResource

4 áá 255 RESERVED

RemoveManagedResource is used to remove a system resource from the internal Card Services
database. Once removed, the resource is no longer available for allocation by Card Services. It is
assumed the resource is in use by some other entity in the host system and is not available to Card
Services clients. IN_USE is returned if the resource, or any part of the resource is being used by a
client when a Remove request is made.

AddManagedResource is used to add a system resource to the internal Card Services database.
Once added, the resource is available for allocation to a requesting client. IN_USE is returned if the
resource, or any part of the resource, is already being managed by Card Services.

GetFirst/NextManagedResource is used to return the current state of the internal Card Services
database. These services are intended to be used by system utilities to display Card Services
resource utilization. If a resource is currently allocated to a client, the returned Attributes field
indicates the resource is allocated and the owning clientÕs handle is returned in the Handle
argument. If a resource is not currently allocated to a client, the returned Handle argument is
undefined.

The Resource field identifies the system resource type:

0 Memory Range

1 I/O Range

2 IRQ

3 DMA Channel

4 Socket Name

5 áá 255 RESERVED

The remainder of the argument packet is structured based on the system resource type.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 65

For Memory Range resource types the argument packet has the following fields.

Offset Field Size Type Value Detail/Description

0 Action 1 I N Add/Remove/Query resource

1 Resource 1 I 0 Memory Range resource

2 Attributes 2 I/O N Attributes of the memory range

4 Base 4 I/O N System_Base_Address

8 Size 4 I/O N Memory_Window_Size

The Attributes field is bit-mapped. It is defined as follows:

Bit 0 áá 4 RESERVED (reset to zero)

Bit 5 Shared

Bit 6 Reserve for Specific Request

Bit 7 Allocated (set to one = true, output only)

Bit 8 áá 15 RESERVED (reset to zero)

Shared is set to one if the memory range is being used but is sharable by other clients.

Reserve for Specific Request is only valid for AddManagedResource requests. It informs Card
Services the memory range should only be assigned if it is specifically requested, or if there are no
other resources that satisfy an ambiguous request. If the memory range is typically used by a
standard PC peripheral, setting this bit can avoid having the range assigned to a client that doesnÕt
care where its memory is located. This can improve the chances that the range will be available
when a PC Card that needs the range is installed.

Allocated is only valid for GetFirst/NextManagedResource requests. It is set to one on return, if a
client is currently using the Memory Range.

The Base field is the physical location in system address space where the memory range begins.

The Size field is the size of the memory range in bytes.

Return Codes (for memory adjustments)
BAD_ARG_LENGTH ArgLength is not equal to twelve (12)

BAD_ATTRIBUTE Specified attributes invalid

BAD_BASE Starting system memory address is invalid

BAD_SIZE Size of Memory Range is invalid

IN_USE Memory Range, or part of the range, is already being managed

NO_MORE_ITEMS There are no more Memory Ranges being managed by Card Services. Only
valid for GetFirst/Next requests

OUT_OF_RESOURCE No room in database to store updated information from Add or Remove
request

UNSUPPORTED_SERVICE This service is not supported

SERVICE REFERENCE

66 © 1999 PCMCIA/JEIDA

For I/O Range resource types there are two (2) possible argument packets which have exactly the
same parameter definitions, but potentially a different size, to allow 32-bit addressing for I/O
ranges. Both packets have the following fields:

Offset Field Size Type Value Detail/Description

0 Action 1 I N Add/Remove/Query resource

1 Resource 1 I 1 I/O Range resource

2 Base Port 2 or 4 I/O N Base port address for range

4 or 6 Num Ports 1 or 4 I/O N Number of contiguous ports

5 or 10 Attributes 1 I/O N Bit-mapped

6 or 11 IOAddrLines 1 I/O N Number of I/O address lines decoded

Packet type 1, completely defined by the packet size indicated by sizeof(Base Port)=2 and
sizeof(Num Ports)=1, is retained for backward compatibility purposes. Packet type 2, completely
defined by the packet size indicated by sizeof(Base Port, Num Ports)=4, allow 32-bit addressing.

The Base Port field is the first port address of the I/O Range.

The Num Ports field is the number of contiguous ports in the I/O Range.

The Attributes field is bit-mapped. The following bits are defined:

Bit 0 Shared (set = true)

Bits 1 áá 5 RESERVED (reset to zero)

Bit 6 Reserve for Specific Request

Bit 7 Allocated (set to one = true, output only)

Shared is set if the I/O Range is being used but is shareable by other clients.

Reserve for Specific Request is only valid for AddManagedResource requests. It informs Card
Services the I/O Range should only be assigned if it is specifically requested, or if there are no
other ranges that satisfy an ambiguous request. If the I/O Range is typically used by a standard PC
peripheral, setting this bit can avoid having the range assigned to a client that doesnÕt care where
its I/O ports are located. This can improve the chances that the I/O Range will be available when a
PC Card that needs the range is installed.

Allocated is only valid for GetFirst/NextManagedResource requests. It is set to one on return, if a
client is currently using the I/O Range.

The IOAddrLines field specifies the number of address lines decoded by the device using an I/O
Range. If the device using an I/O Range does not decode all the I/O address lines used in the host
system, Card Services needs to manage each I/O Range that has addresses in common with the
number of address lines decoded. For example, if a device only decodes ten (10) address lines in a
host system which uses sixteen (16) address lines, Card Services must manage all sixty-four (64) I/O
Ranges that have common addresses in the lower ten (10) address lines. If such a device responds to
an I/O range from 2F8H to 2FFH, Card Services must not allocate addresses ranges from 6F8H to
6FFH, EF8H to EFFH, etc.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 67

Return Codes (for I/O Range resource types)
BAD_ARG_LENGTH ArgLength is not equal to seven (7) or to (12)

BAD_ATTRIBUTE Specified attributes invalid

BAD_BASE Starting I/O address is invalid

BAD_SIZE Size of I/O Range invalid

IN_USE I/O Range or part of range is already being managed

NO_MORE_ITEMS There are no more I/O Ranges being managed by Card Services. Only valid
for GetFirst/Next requests.

OUT_OF_RESOURCE No room in database to store updated information from Add or Remove
request

UNSUPPORTED_SERVICE This service is not supported

For IRQ Level resource types the argument packet has the following fields:

Offset Field Size Type Value Detail/Description

0 Action 1 I N Add/Remove/Query resource

1 Resource 1 I 2 IRQ Level resource

2 Attributes 1 I/O N Bit-mapped

3 IRQ 1 I/O N IRQ Level

The Attributes field is bit-mapped. It specifies details about the specified IRQ.

The following bits are defined in the Attributes field:

Bit 0 áá 1 IRQ type:
0 Ð Exclusive
1 Ð Time-Multiplexed Shared
2 Ð Dynamic Shared
3 Ð Reserved

Bit 2 áá 5 RESERVED

Bit 6 Reserve for Specific Request

Bit 7 Allocated (set to one = TRUE, output only)

IRQ Type is set to Time-Multiplexed Shared if the IRQ is in use, but is shareable with other clients
with only one client using the IRQ at a time. IRQ Type is set to Dynamic Shared if the IRQ is being
used but is actively shareable.

Reserve for Specific Request is only valid for AddManagedResource requests. It informs Card
Services the IRQ Level should only be assigned if it is specifically requested, or if there are no other
levels that satisfy an ambiguous request. If the IRQ Level is typically used by a standard PC
peripheral, setting this bit can avoid having the level assigned to a client that doesnÕt care what IRQ
Level it uses. This can improve the chances that the IRQ Level will be available when a PC Card
that needs the level is installed.

Allocated is only valid for GetFirst/NextManagedResource requests. It is set to one on return, if a
client is currently using the IRQ Level.

The IRQ field is a binary value specifying the IRQ Level. It may range from zero (0) to a value one
less than the number of IRQ Levels available in the host system.

SERVICE REFERENCE

68 © 1999 PCMCIA/JEIDA

Return Codes (for IRQ Level resource types)
BAD_ARG_LENGTH ArgLength is not equal to four (4)

BAD_ATTRIBUTE Specified attributes invalid

BAD_IRQ IRQ Level is invalid

IN_USE IRQ Level is already being managed by Card Services

NO_MORE_ITEMS There are no more IRQ Levels being managed by Card Services. Only valid
for GetFirst/Next requests

OUT_OF_RESOURCE No room in database to store updated information from Add or Remove
request

UNSUPPORTED_SERVICE This service is not supported

For DMA Channel resource types the argument packet has the following fields:

Offset Field Size Type Value Detail/Description

0 Action 1 I N Add/Remove/Query resource.

1 Resource 1 I 3 DMA Channel resource.

2 Attributes 1 I/O N Bit-mapped field indicating DMA characteristics.
(See table below.)

3 DMAChannel 1 I/O N Binary value indicating DMA channel. Since DMA
channels range from zero (0) to fifteen (15), only
the lower nibble of this field is significant.

The Attributes field is defined as follows:

Bit 7 6 5 4 3 2 1 0

Value In Use Specific RFU
(0)

16-Bit
Width

8-Bit
Width

RFU
(0)

Share Mode

Share Mode A binary value identifying how the DMA channel is shared

0 Exclusive (not shared)
1 Time-Multiplexed Shared
2 Dynamic-Shared
3 Reserved

RFU The bit is Reserved for Future Use and must be reset to zero (0)

8-Bit Width DMA channel supports 8-bit data transfers

16-Bit Width DMA channel supports 16-bit data transfers

Specific Reserve for assignment to requests for a specific DMA channel

In Use Currently allocated (Set to one = True, output only)

Return Codes (for DMA Channel resource types)
BAD_ARG_LENGTH ArgLength is not equal to four (4)

BAD_ATTRIBUTE Specified attributes invalid

IN_USE DMA Channel is already being managed by Card Services.

OUT_OF_RESOURCE No room in database to store updated information from Add or Remove
request.

UNSUPPORTED_SERVICE This service is not supported

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 69

For the Socket Name resource type the argument packet has the following fields:

Offset Field Size Type Value Detail/Description

0 Action 1 I N Add/Remove/Query Resource

1 Resource 1 I 4 Socket Name resource

2 Socket 2 I/O N Logical Socket Number

4 SocketNameOff 2 I/O N Offset to SocketName in argument packet

6 SocketNameLen 2 I/O N SocketName Length in characters (0=not named)

8 SocketNameCode 2 I/O N Socket Name Code

 1:ISO/IEC 10646 USC-2

 2:ASCII

 3:JIS

 4:S-JIS

 5-FFFF:Reserved

N SocketName N I/O N Socket Name (0 character terminated)

The Socket field is the logical socket number to which the socket name information applies. This is
an input value for Add/RemoveManagedResource requests, and an output for
GetFirst/NextManagedResource requests. The SocketName field is a string which identifies the
physical socket in a way meaningful to the user. It is expected to be used by application and
system software for display purposes. The string is encoded by SocketNameCode. The offset of the
string from the beginning of the argument packet is specified in SocketNameOff. The actual length of
the string (including the terminating 16-bit zero) is returned in the SocketNameLen field. The string
should not include any formatting characters such as carriage returns, linefeeds, or tabs.

For GetFirst/NextManagedResource requests a SocketNameLen field returned with a value of zero (0)
indicates that although the socket name service is supported, no name has been defined for the
specified Socket. For AddManagedResource requests, setting the SocketNameLen field to zero (0) will
force the socket name to be undefined.

Note that this call can succeed for GetFirst/NextManagedResource requests even if the argument
packet is too small to accommodate the entire socket name string. If the buffer is not large enough
to accommodate the name information, Card Services will return as much of the information as the
ArgLength argument permits, even if only to indicate that the socket has not been named by setting
the SocketNameLen field to zero. If the socket name is too long for the buffer, it will be truncated by
Card Services on a valid 16-bit character boundary. In this case, the truncated string is still
guaranteed to be terminated by a 16-bit zero character, but the SocketNameLen will still reflect the
actual length of the string, NOT the length of the truncated string.

For the processing of RemoveManagedResource requests, the SocketName, SocketNameOff, and
SocketNameLen fields are not used, though they must be present to satisfy the minimum argument
length.

Return Codes (for Socket Name resource types)
BAD_ARG_LENGTH ArgLength is less than eight (8)

NO_MORE_ITEMS There are no more Socket Names being managed by Card Services. Only valid for
GetFirst/Next requests.

OUT_OF_RESOURCE No room in database to store updated information from Add or Remove request.

UNSUPPORTED_SERVICE This service is not supported

SERVICE REFERENCE

70 © 1999 PCMCIA/JEIDA

5.4 CheckEraseQueue (26H)
CardServices(CheckEraseQueue, EraseQueueHandle, null, 0, null)

This service notifies Card Services that the client has placed new entries into the queue to be
serviced. Any erase requests contained in the erase queue should be initiated by Card Services. The
EraseQueueHandle for the Erase Queue returned by RegisterEraseQueue is passed in the Handle
argument.

Return Codes
BAD_HANDLE Invalid erase queue handle

See also RegisterEraseQueue and DeregisterEraseQueue.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 71

5.5 CloseMemory (00H)
CardServices(CloseMemory, MemoryHandle/null, null, 0, null)

This service closes an area of a memory card that was opened by a corresponding OpenMemory.
Power may be removed from the socket if there are no other clients using the socket. The
MemoryHandle returned by OpenMemory is passed in the Handle argument.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to zero (0)

BAD_HANDLE Invalid memory area handle

See also OpenMemory, ReadMemory, WriteMemory, CopyMemory, and CheckEraseQueue.

SERVICE REFERENCE

72 © 1999 PCMCIA/JEIDA

5.6 ConfigureFunction (3CH)
CardServices(ConfigureFunction, ClientHandle, ISRAddress/null,

ArgLength, ArgPointer)

This service configures a function in one step. By using the same structure that was created by the
InquireConfiguration service, all resources for the function to be configured are requested in one
ConfigureFunction call.

The Request Type field determines whether the client configuration is requesting or releasing the
specified configuration. This field must be set to REQUEST to set the configuration and RELEASE to
release the configuration. The Request Type field is defined as follows :

Bit 0 Requested Configuration:
0 - REQUEST
1 - RELEASE

Bits 1 áá 7 Reserved (must be reset to zero)

If clients are configuring the card function to use an IRQ resource then the clients specify the address
of a routine to handle interrupt events by providing a binding specific pointer to their routine in the
Pointer argument as the ISRAddress parameter (otherwise the Pointer argument is null). Card
Services installs a First-Level Interrupt Handler (FLIH) on the assigned interrupt vector that initially
receives all interrupt notifications from the PC Card. Control is routed to Client handlers using a
CALL instruction. On entry to the client handler the FLIH has preserved all registers and provided
one hundred twenty-eight (128) words of stack space. A client routine requiring more stack space
than this shall provide its own suitably sized stack space. When function specific interrupt
processing is complete, the Client handler returns control to Card Services using a RET instruction.
The handler shall indicate either that an interrupt condition was serviced by returning with the
CARRY flag set or that the function did not require interrupt service by returning with the CARRY
flag clear.

Please see InquireConfiguration service data structure definitions.

Return Codes
BAD_ARG_LENGTH ArgLength is invalid

BAD_HANDLE ClientHandle is invalid, or
on RELEASE Request Type ClientHandle does not match owning client or no
configuration to release

BAD_TYPE Requested Interface is not supported or requested Miscellaneous Feature
setting is invalid

BAD_SOCKET Socket or function is invalid

CONFIGURATION_LOCKED PC Card function already configured

NO_CARD No PC Card in socket

IN_USE One or more resource requested for this configuration is not supported or is
not currently available

UNSUPPORTED_SERVICE This service is not supported

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 73

5.7 CopyMemory (01H)
CardServices(CopyMemory, MemoryHandle, null, ArgLength, ArgPointer)

This service reads data from a PC Card in the specified logical socket and writes it to another
location in the same region. The MemoryHandle returned by OpenMemory is passed in the Handle
argument.

Offset Field Size Type Value Detail/Description

0 Source Offset 4 I N Card Source Address

4 Dest Offset 4 I N Card Destination Address

8 Count 4 I N Number of Bytes to transfer

12 Attributes 2 I N Bit-Mapped

The Source Offset is the relative starting location on the PC Card where the data to be copied
originates. This offset is relative to the physical offset specified in the OpenMemory request that
returned the Memory Handle used here.

The Dest Offset is the relative starting location on the PC Card where the data is to be placed. This
offset is relative to the physical offset specified in the OpenMemory request that returned the
Memory Handle used here.

Both offsets are relative to the physical offset specified in the OpenMemory request that returned
the Memory Handle. For example, if an offset of 1000H was specified when the Handle was requested,
a Source Offset of 500H would actually address physical offset 1500H in the PC CardÕs memory array.

The Count field is the number of bytes to copy. If the Count is zero, no transfer is made and the
request returns successfully.

This service is not available for memory handles which address attribute memory. BAD_HANDLE
is returned if such a request is made.

This service does not support overlapped copy requests. Attempting such a copy request results in
undefined behavior.

The Attributes field is bit-mapped. The following bits are defined:

Bits 0 áá 1 RESERVED (reset to zero)

Bit 2 DisableEraseBeforeWrite (set to one = true)

Bit 3 VerifyAfterWrite

Bits 4 áá 15 RESERVED (reset to zero)

DisableEraseBeforeWrite is set to one to request that the memory area not be pre-erased before data is
written to the PC Card. This erase is only done for requests that are erase block aligned and a
multiple of erase blocks. VerifyAfterWrite is set to one to request that the data written be verified
after the write. If an MTD doesnÕt support verification, Card Services may provide this support.
GetFirst/NextPartition/Region can be used to determine the erase and verify capabilities of a
memory area.

SERVICE REFERENCE

74 © 1999 PCMCIA/JEIDA

Return Codes
BAD_ARG_LENGTH ArgLength not equal to fourteen (14)

BAD_HANDLE Invalid memory area handle

BAD_OFFSET Invalid offset for source or destination

READ_FAILURE Error reading from source

BAD_SIZE Size of transfer is not valid

WRITE_FAILURE Error writing to destination

NO_CARD No PC Card in socket

WRITE_PROTECTED Media is write-protected

See also OpenMemory, ReadMemory, WriteMemory, CloseMemory, and CheckEraseQueue.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 75

5.8 DeregisterClient (02H)
CardServices(DeregisterClient, ClientHandle/null, null, 0, null)

This service removes a client from the list of registered clients maintained by Card Services. The
ClientHandle returned by RegisterClient is passed in the Handle argument.

The client must have returned all requested resources before this service is called. If any resources
have not been released, such as by any Open or Request call without a subsequent Close or Release
call, IN_USE is returned.

If the client is an MTD, it is removed from handling access to any memory regions, i.e. the MTD
had used RegisterMTD to support access to a region. Card Services notifies remaining MTDs via a
CARD_INSERTION event for the affected sockets that the regions previously handled by this MTD
need access support.

Note: Only MTDs are notified of these CARD_INSERTION events. Card Services
first installs the default MTD for these regions so that if no notified MTD
registers for a region, minimal access to the region is still available.

W A R N I N G :

Clients should be prepared to receive callbacks until Card Services returns
from this request successfully.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to zero (0)

BAD_HANDLE Client handle is invalid

BUSY MTD client has background task in progress

IN_USE Resources not released by this client

See also RegisterClient.

SERVICE REFERENCE

76 © 1999 PCMCIA/JEIDA

5.9 DeregisterEraseQueue (25H)
CardServices(DeregisterEraseQueue, EraseQueueHandle/null, null, 0, null)

This service deregisters the erase queue that the client previously registered with Card Services.

DeregisterEraseQueue will fail if used to deregister an erase queue that has any pending erase
entries. The QueueHandle returned by RegisterEraseQueue is passed in the Handle argument.

A return code of SUCCESS indicates the erase queue will no longer be serviced by Card Services.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to zero (0)

BAD_HANDLE Invalid erase queue handle

BUSY MTD client has background task in progress

See also RegisterEraseQueue.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 77

5.10 GetCardServicesInfo (0BH)
CardServices(GetCardServicesInfo, null, null, ArgLength, ArgPointer)

This service returns the number of logical sockets installed and information about Card Services
presence, vendor revision number, and release compliance information.

Offset Field Size Type Value Detail/Description

0 InfoLen 2 O N Length of data returned by CS

2 Signature [0] 1 I/O ZERO/ÕCÕ ASCII ÔCÕ Returned if CS installed

3 Signature [1] 1 I/O ZERO/ÕSÕ ASCII ÔSÕ Returned if CS installed

4 Count 2 O N Number of Sockets

6 Revision 2 O BCD BCD Value of VendorÕs CS Revision

8 CSLevel 2 O BCD BCD Value of CS Release

10 VStrOff 2 O N Offset to VendorString in argument packet

12 VStrLen 2 O N VendorString length (>=1)

14 FuncsPerSkt 2 O N Maximum number of functions per socket

N VendorString N O N ASCIIZ vendor string buffer area

The InfoLen field returns the length of the Card Services Info that is valid in the argument packet on
return. If InfoLen is greater than ArgLength argument then not all data fit in the supplied argument
packet.

The Signature fields are returned as two ASCII characters, with Signature[0] set to the ASCII character
ÔCÕ (43H) and Signature[1] set to the ASCII character ÔSÕ (53H). The Signature fields should be reset to
zero (0) before this service is invoked to prevent false sensing.

If Card Services is not present, the Status argument may contain the return code
UNSUPPORTED_SERVICE. However, since Card Services may share its entry point with other
service handlers, these other handlers may set the Status argument without a Card Services being
present. In addition, if Card Services is not present, other service handlers may not even set the
Status argument to indicate the service is unsupported. The Signature field should be checked for
the ASCII characters ÔCSÕ to confirm that a Card Services handler is present, if the Status argument is
set to SUCCESS. If the Status argument is set to SUCCESS and the Signature field is set to the ASCII
characters ÔCSÕ on return, it may be assumed that Card Services is installed.

The Count field returns the number of logical sockets managed by Card Services. This value may
be zero (0), if no sockets are present. Logical sockets are numbered from zero (0) to one less than the
value returned in the Count field. Determining which physical adapter and socket correspond to a
logical socket number may be done with the MapLogSocket request. The Count must include both
CardBus PC Card and 16-bit PC Card-only sockets.

The FuncsPerSkt field returns the maximum number of functions managed by Card Services for
each socket in the host system. This field was added to provide support for Multiple Function PC
Cards. This field is not present in the argument packets returned by Card Services implementations
that do not support Multiple Function PC Cards.

The VendorString field is an ASCIIZ string describing the Card Services implementer. It is expected
to be used by system utilities for display purposes. The offset of the string from the beginning of the
argument packet is specified in VStrOff. The actual length of the string (including the terminating
zero) is returned in the VStrLen field. The string may include copyright legends and may be
formatted with carriage return and linefeed characters. If the VStrLen field is zero, the ASCIIZ string

SERVICE REFERENCE

78 © 1999 PCMCIA/JEIDA

describing the implementer is not present. The Revision field is the vendorÕs internal revision
number for this specific implementation of Card Services. It is stored as a BCD value with an
implied decimal point (e.g. Revision 1.99 is 0199H.). The CSLevel field indicates the level of
compliance with a Card Services publication. It is stored as a BCD value with an implied decimal
point.

Publication CSLevel

PC Card Standard, February 1999 (Release 7.0) 0700H (7.00)

PC Card Standard, April 1998 (Release 6.1) 0610H (6.10)

PC Card Standard, March 1997 (Release 6.0) 0600H (6.00)

PC Card Standard, May 1996 (Release 5.2) 0502H (5.02)

PC Card Standard, November 1995 (Release 5.1) 0501H (5.01)

PC Card Standard, February 1995 (Release 5.0) 0500H (5.00)

PCMCIA 2.1 / JEIDA 4.2 0210H (2.10)

PCMCIA 2.0 / JEIDA 4.1 0200H (2.00)

Return Codes
BAD_ARG_LENGTH ArgLength is invalid

UNSUPPORTED_SERVICE Card Services not installed

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 79

5.11 GetClientInfo (03H)
CardServices(GetClientInfo, ClientHandle, null, ArgLength, ArgPointer)

This service returns information describing a client. This information is expected to be used by
browsing utilities. The ClientHandle returned by RegisterClient or GetFirst/NextClient is passed in
the Handle argument.

Offset Field Size Type Value Detail/Description

0 MaxLen 2 I N Length of this packet

2 InfoLen 2 O N Length of Info returned by Client

4 Attributes 2 I/O N Bit-mapped (defined below)

6 ClientInfo N O N Client Information

The InfoLen field is the size of the ClientInfo argument packet the client needs for its ClientInfo data.
If this value is greater than the ArgLength argument, then all of the clientÕs data wasnÕt copied into
the provided buffer. If this value is less than or equal to the ArgLength argument, then all of the
clientÕs data was copied into the provided buffer. MaxLen also contains the maximum length of the
argument packet. This field is used by the client supplying the client info data. This field should
have the same value as the ArgLength argument.

The Attributes field is bit-mapped. The field is defined as follows:

Bit 0 Memory client device driver (set = true)

Bit 1 Memory Technology Driver (set = true)

Bit 2 I/O client device driver (set = true)

Bit 3 CARD_INSERTION events for sharable PC Cards (set = true)

Bit 4 CARD_INSERTION events for cards being exclusively used (set = true)

Bits 5 áá 7 RESERVED (reset to zero)

Bits 8 áá 15 Info Subservice

The first five Attributes bits return the same information passed by the replying client to
RegisterClient when it registered. The Info SubService field provides a mechanism for a requesting
client to request other client specific information from the replying client. If Info SubService is zero,
the ClientInfo field is structured as:

SERVICE REFERENCE

80 © 1999 PCMCIA/JEIDA

Offset Field Size Type Value Detail/Description

0 MaxLen 2 I N Length of this packet

2 InfoLen 2 O N Length of Info returned by Client

4 Attributes 2 I/O N Bit-mapped (defined below)

6 Client Info N O N Client Information

6 Revision 2 O BCD BCD Value of Vendor client Revision

8 CSLevel 2 O BCD BCD Value of CS Release

10 RevDate 2 O N Revision Date

12 NameOff 2 O N Offset to ClientName String

14 NameLen 2 O N Length of ClientNameASCIIZ string

16 VStringOff 2 O N Offset in packet to VendorString buffer

18 VStringLen 2 O N Length of Vendor ASCIIZ string

N NameString N O N Client Name ASCIIZ string

N VendorString N O N Vendor String ASCIIZ string

The Revision field is the vendorÕs internal revision number for this specific implementation of the
client. It is stored as a BCD value with an implied decimal point (e.g. Revision 2.03 would be 203H).
The CSLevel field indicates the compliance level with a Card Services release number. It is stored as
a BCD value with an implied decimal point. (e.g. Release 3.00 would be 300H). The RevDate field
describes the revision date of the client implementation. It is stored packed in the same manner as
dates in an MS-DOS directory entry. This format is:

Bits 0 áá 4 Day. Ranges from 1 to 31

Bits 5 áá 8 Month. Ranges from 1 to 12

Bits 9 áá 15 Year. Relative to 1980. (1980 = 0, 1992 = 12, etc.)

The NameLen field is set by Card Services to the length required for the NameString field. The
NameString field is the area Card Services will copy the ASCIIZ string describing the client. It is
located at offset NameOff in from the beginning of the argument packet. It may be used by system
utilities for display purposes. This string should NOT include carriage returns or linefeed characters.
If InfoLen is greater than MaxLen, the entire client NameString may not have been copied into the
NameString field. If InfoLen is less than or equal to MaxLen, the entire string was copied.

The VStringOff field is the offset from the beginning of the argument packet to the VendorString
area that Card Services will copy the ASCIIZ string describing the clientÕs implementer. The actual
length required for the string is returned by Card Services in the VStringLen field. This string is
expected to be used by system utilities for display purposes. It may include copyright legends and
may be formatted with carriage return and linefeed characters. If InfoLen is greater than MaxLen,
the entire client VendorString may not have been copied into the VendorString field. If InfoLen is less
than or equal to MaxLen, the entire string was copied.

The NameLen and VStringLen fields can be zero to indicate that no strings are present.

If the Info SubService value is 80H - FFH the Client Info field is structured according to that client
specific subservice. The subservice codes 01H - 7FH are reserved for future Card Services extensions.
Card Services only ensures that the data returned by the replying client is returned to the
requesting client and does not interpret or modify any such data.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 81

Card Services may not pass the actual ArgPacket provided by the requesting client to the client
specified by ClientHandle argument. Card Services may use an internal buffer for the
CLIENT_INFO event notification. If Card Services does not pass the requesting client's actual
ArgPacket, it copies all of the data in the ArgPacket into its internal buffer before sending it to the
receiving client.

W A R N I N G :

Card services processes a GetClientInfo request to completion, without delay.
The CLIENT_INFO event is transmitted to the target Client during this
processing. The target Client is prohibited from using Card Services during
the processing of the CLIENT_INFO event.

Return Codes
BAD_ARG_LENGTH ArgLength is less than six (6)

BAD_HANDLE ClientHandle is invalid

SERVICE REFERENCE

82 © 1999 PCMCIA/JEIDA

5.12 GetConfigurationInfo (04H)
CardServices(GetConfigurationInfo, null/ClientHandle, null, ArgLength,

ArgPointer)

This service returns information about the specified socket and PC Card configuration. The
ClientHandle used to request this configuration (via RequestConfiguration) is returned in the Handle
argument.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Attributes 2 O N Bit-mapped

4 VCC 1 O N VCC Setting

5 VPP1 1 O N VPP1 Setting

6 VPP2 1 O N VPP2 Setting

7 IntType 1 O N Memory-only, Memory and I/O Interface, CardBus PC Card,
or Custom Interface

8 ConfigBase 4 O N Card Base address of config registers

12 Status 1 O N Card Status register setting, if present

13 Pin 1 O N Card Pin register setting, if present

14 Copy 1 O N Card Socket/Copy register setting, if present

15 Option 1 O N Card Option register setting, if present

16 Present 1 O N Card Configuration registers present

17 FirstDevType 1 O N From Device ID Tuple

18 FuncCode 1 O N From Function ID Tuple

19 SysInitMask 1 O N From Function ID Tuple

20 ManufCode 2 O N From Manufacturer ID Tuple

22 ManufInfo 2 O N From Manufacturer ID Tuple

24 CardValues 1 O N Valid Card Register Values

25 AssignedIRQ 1 O N IRQ assigned to PC Card

26 IRQAttributes 2 O N Attributes for assigned IRQ

28 Base Port1 2 O N Base port address for range

30 Num Ports1 1 O N Number of contiguous ports

31 Attributes1 1 O N Bit-mapped

32 Base Port2 2 O N Base port address for range

34 Num Ports2 1 O N Number of contiguous ports

35 Attributes2 1 O N Bit-mapped

36 IOAddrLines 1 O N Number of I/O address lines decoded for a 16-bit PC Card.
For CardBus PC Card this is ignored

37 Extended Status 1 O N Extended Status Register setting

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 83

38 DMAAttributes 1 I/O N Bit-mapped field indicating signal used for DMA request and
DMA width. (See table below).

39 AssignedChannel 1 O N Binary value indicating assigned DMA channel. Since DMA
channels range from zero (0) to fifteen (15), only the lower
nibble of this field is significant. If DMA Request Signal bits of
DMAAttributes field are reset to zero (0), this field is
undefined.

40 NumIOWnds 1 O N Number of I/O windows in use on logical socket for this
function

41 NumMemWnds 1 O N Number of memory windows in use on logical socket for this
function

42 Custom Interface
ID Number

4 O N Custom Interface ID Number (if IntType set to Custom
Interface).

This request returns information about the configuration of the specified socket and function on the
PC Card in the socket. The Socket field identifies the logical socket and the function on the PC Card.
The least significant byte is the logical socket. The most significant byte is the function. Single
function PC Cards use a zero (0) value for the function. Multiple function PC Cards use a value
between zero (0) and one less than the number of functions on the PC Card.

The fields from Socket to IntType are the same fields as for the RequestConfiguration. The Attributes
field additionally has the following bits defined:

Bit 0 Exclusively Used (set = true)

Bit 2 CardBus PC Card Indicator
(set = true)

Bit 8 Valid Client (set = true)

Exclusively Used is set to one when this PC Card is being exclusively used as requested by a
successful RequestExclusive request.

If CardBus PC Card Indicator is set, then the card is a CardBus PC Card with a configuration space. If
reset, then the card is a 16-bit PC Card.

If Valid Client is set to one, the client handle returned in the Handle argument is valid and
configuration is in progress or locked. If Valid Client is reset to zero, the client handle returned in
the Handle argument is not valid and configuration is not in progress or locked.

For CardBus PC Cards, ConfigBase has the same format as that of the TPCC_RADR field of the
CISTPL_CONFIG_CB tuple.

The fields Status to Option and Extended Status are the values actually written to the corresponding
16-bit PC Card registers by Card Services during RequestConfiguration and may not reflect the
current values in those registers. The other fields are the values that were passed to
RequestConfiguration.

Note: The Option field has two parts. The lower six bits are the ConfigIndex field
provided by the RequestConfiguration service. Bit 6 is determined by Card
Services based on the interrupt type required by the client and the host
hardware environment. Bit 7 is always reset to zero (0). This is the value
actually written to the 16-bit PC Card Configuration Option Register by
Card Services.

The FirstDevType, FuncCode, SysInitMask, ManufCode, and ManufInfo fields are the values from the
corresponding tuples found in CIS on the PC Card. See the Metaformat Specification for tuple
details. A value of 0FFFFH in any of the above tuple fields indicates that the corresponding tuple is
not in the CIS on the PC Card.

SERVICE REFERENCE

84 © 1999 PCMCIA/JEIDA

The CardValues field indicates which of the Card Configuration register values were written to the
PC Card. If the PC Card was configured during POST by the BIOS, Card Services may not know
what values were written to the PC Card registers. For CardBus PC Cards, this field does not apply
and will always be reset to zero. The field is bit-mapped as follows:

Bit 0 Option Value Valid

Bit 1 Status Value Valid

Bit 2 Pin Replacement Value Valid

Bit 3 Copy Value Valid

Bit 4 Extended Status Value Valid

Bits 5 áá 7 RESERVED (Reset to zero)

The AssignedIRQ and IRQAttributes fields are the same as defined in RequestIRQ. If the socket is
not configured to use an IRQ level (RequestIRQ has not been successfully invoked), the
AssignedIRQ field is set to FFH.

The DMAAttributes field is defined as follows:

Bit 7 6 5 4 3 2 1 0

Value RFU
(0)

RFU
(0)

RFU
(0)

DMA
Width

DMA Request
Signal

Share Mode

Share Mode A binary value identifying how the DMA channel is shared

0 Exclusive (not shared)
1 Time-Multiplexed Shared
2 Dynamic-Shared
3 Reserved

DMA Request Signal A binary value identifying the pin on the interface used to signal a DMA request.

0 Reserved (do not use)
1 DREQ# uses SPKR#
2 DREQ# uses IOIS16#
3 DREQ# uses INPACK#

DMA Width The width of a DMA data transfer. If this field is reset to zero (0), the DMA data width is 8-bits.
If this field is set to one (1), the DMA data width is 16-bits.

RFU The bit is Reserved for Future Use and is reset to zero (0).

The Custom Interface ID Number field is used when the IF_CUSTOM interface type is set in the
IntType field. This Interface Number is a PCMCIA and JEIDA jointly assigned value that identifies a
specific custom interface. (See also the discussion of Custom Interface Subtuples under
CISTPL_CONFIG in the Metaformat Specification.)

When the packet length is 37 and two or less I/O ranges have been allocated and the I/O ranges
can be described using 16-bit fields, the Base Port1, Num Ports1, Base Port2 and Num Ports2, and
IOAddrLines fields will describe the range(s). When more than two I/O ranges have been allocated or the
I/O ranges require more than 16-bit description fields, the Num Ports1 and Num Ports2 fields will
return zero (0).

If the packet length of 42 is used then the number of windows in use on a logical socket for the
specified PC Card function is indicated by the NumIOWnds and NumMemWnds fields and the
fields from Base Ports1 to IOAddrLines are ignored. When the NumIOWnds and NumMemWnds fields
are used, the actual window characteristics are enumerated using the GetFirst/NextWindow
services.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 85

If the packet length of 46 is used then the Custom Interface ID Number field is returned in addition
to the data returned when a packet length of 42 is used. The Custom Interface ID Number is not
returned when packet lengths of 37 or 42 are used.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to thirty-seven (37), forty-two (42), or forty-six (46).

BAD_SOCKET Socket or function is invalid (socket/function request only)

NO_CARD No PC Card in socket

SERVICE REFERENCE

86 © 1999 PCMCIA/JEIDA

5.13 GetEventMask (2EH)
CardServices(GetEventMask, ClientHandle, null, ArgLength, ArgPointer)

This service returns the event mask for the client. The ClientHandle returned by RegisterClient or
GetFirst/NextClient is passed in the Handle argument.

Offset Field Size Type Value Detail/Description

0 Attributes 2 I N Bit-mapped (defined below)

2 EventMask 2 O N Bit-mapped (defined below)

4 Socket 2 I N Logical socket

The Attributes field is bit-mapped. It identifies the type of event mask to be returned. The field is
defined as follows:

Bit 0 Event mask for socket and function
indicated

Bits 1 áá 15 RESERVED (Reset to zero)

If Bit 0 is reset, the global event mask is returned. If Bit 0 is set, the event mask for this socket and
function is returned. RequestSocketMask must have been requested by this client before the socket
event mask can be returned. BAD_SOCKET is returned if the client has not specifically registered
for this socket.

The Event Mask field is bit-mapped. Card Services performs event notification based on this field.
The low-order eight bits specify events noted by Socket Services. The upper eight bits specify
events generated by Card Services. The field is defined as follows:

Bit 0 Write Protect

Bit 1 Card Lock Change

Bit 2 Ejection Request

Bit 3 Insertion Request

Bit 4 Battery Dead

Bit 5 Battery Low

Bit 6 Ready Change

Bit 7 Card Detect Change

Bit 8 PM Change

Bit 9 Reset events

Bit 10 SS Update

Bit 11 Request Attention Change

Bits 12 áá 15 RESERVED (Reset to zero)

The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

See the Insertion callback section for additional information about handling events.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 87

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to six (6)

BAD_HANDLE ClientHandle is invalid

BAD_SOCKET Socket or function is invalid (socket/function request only)

NO_CARD No PC Card in socket

SERVICE REFERENCE

88 © 1999 PCMCIA/JEIDA

5.14 GetFirstClient (0EH)
CardServices(GetFirstClient, null/ClientHandle, null, ArgLength,

ArgPointer)

This service returns the first ClientHandle of the clients that have registered with Card Services. The
ClientHandle is returned in the Handle argument. The Status argument is set to NO_MORE_ITEMS,
if there are no registered clients.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Attributes 2 I N Bit-mapped (defined below)

When the Attributes Bit 0 is set (1), the Socket field is used to qualify the ClientHandles considered.
The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

The Attributes field is bit-mapped. The bits are defined as follows:

Bit 0 0 = consider all registered clients
1 = consider clients for this socket only

Bits 1 áá 15 RESERVED (Reset to zero)

If Bit 0 is set to one (1), only the clients accepting events for this socket and function are returned. If
Bit 0 is reset to zero (0), all clients registered with Card Services are returned.

W A R N I N G

If another client performs a successful RegisterClient or DeregisterClient
request between a GetFirstClient and GetNextClient or between any two
GetNextClient requests, the results are not predictable.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to four (4)

BAD_SOCKET Socket or function is invalid (socket/function request only)

NO_MORE_ITEMS No clients are registered

NO_CARD No PC Card in socket

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 89

5.15 GetFirstPartition (05H)
CardServices(GetFirstPartition, null, null, ArgLength, ArgPointer)

This service returns device information for the first partition on the card in the specified socket
based on the PC CardÕs CIS. If there are no partitions, the Status argument is set to
NO_MORE_ITEMS.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Attributes 2 I/O N Partition Attributes Field

4 TupleMask 1 O N Bit-mapped (defined below)

5 Access Speed 1 O N Window Speed Field

6 Flags 2 O N CS Partition Flags Data

8 Link Offset 4 O N CS Partition Link Data

12 CIS Offset 4 O N CS Partition CIS Data

16 Card Offset 4 O N Card Memory Region Offset

20 Part Size 4 O N Partition Size

24 EffBlockSize 4 O N Erase Block Size

28 PartMultiple 2 O N Partition Multiple (Erase Block units)

30 JEDEC ID 2 O N Partition JEDEC Memory ID Code

32 PartType 2 O N Partition Type Field

For 16-bit PC Cards, the Socket field describes the logical socket containing the desired card.

For CardBus PC Cards, the Socket field identifies the logical socket and function. The least significant
byte is the logical socket. The most significant byte of the Socket field is the function. Allowable
functions are numbered from 0 to 7.

The Attributes field is bit-mapped. The bits are defined as follows:

Bit 0 Memory type (set = attribute, reset = common)

Bit 1 áá2 RESERVED (Reset to zero)

Bit 3 áá4 Prefetchable / Cacheable
0 = neither prefetchable nor cacheable
1 = prefetchable but not cacheable
2 = both prefetchable and cacheable
3 = Reserved value, do not use

Bits 5 áá 7 RESERVED (Reset to zero)

Bit 8 Virtual Partition (set to one = true)

Bits 9 áá 10 Write/Erase interactions:
0 - Write without Erase
1 - Write with Erase
2 - Reserved
3 - Write with Disable-able Erase

Bit 11 Write with Verify

Bit 12 Erase Requests Supported

Bits 13 áá 15 Base Address Register number (1-7).

For CardBus PC Cards Memory Type will always be reset.

SERVICE REFERENCE

90 © 1999 PCMCIA/JEIDA

Prefetchable / Cacheable applies to CardBus PC Cards only and is set by the service. 16-bit PC Cards
shall ignore this field.

Virtual Partition is set to one when the partition can only be accessed via an appropriate MTD, i.e.
the partition is not addressable simply by presenting addresses to the PC Card (e.g. via a memory
window).

Write without Erase indicates no erase is done before a write. Write with Erase indicates writes that are
erase block aligned and multiple erase block sized are erased before being written. Write with
Disable-able Erase indicates the WriteMemory attribute DisableEraseBeforeWrite can be used to control if
an erase before write is not done. Write with Verify is set to one if writes can be verified after
writing. The WriteMemory attribute Verify is used to request a verified write. Erase Requests
Supported indicates that erase requests via an EraseQueue are supported for this partition.

The Base Address Register number indicates the associated Base Address Register on the CardBus PC
Card. Base Address Register number seven (7) always refers to the Expansion ROM Base Address
Register.

The Tuple Mask field is bit-mapped. Some file systems which use the entire common space on PC
Cards and do not have writable attribute space do not have partition-related tuples in the Card
Information Structure. Card Services may be able to recognize partition information without
definition in tuples. This field indicates whether partition information was derived from tuple
information or whether Card Services determined returned values empirically. The following bits
are defined:

Bit 0 Access Speed from tuples (set = true)

Bit 1 Card Offset from tuples (set = true)

Bit 2 Part Size from tuples (set = true)

Bit 3 EffBlockSize from tuples (set = true)

Bit 4 Part Multiple from tuples (set = true)

Bit 5 JEDEC ID from tuples (set = true)

Bit 6 Part Type from tuples (set = true)

Bit 7 Reserved (reset to zero 0).

The Access Speed field is bit-mapped as follows:

Bits 0 áá 2 Device speed code, if speed mantissa is zero

Speed exponent, if speed mantissa is not zero

Bits 3 áá 6 Speed mantissa

Bit 7 Wait (set = use WAIT#, if available)

The above bit definitions use the format of the extended speed byte of the Device ID tuple. If the
mantissa is zero, the lower bits are a binary code representing a speed from the following table:

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 91

Code Speed

0 (Reserved - do not use)

1 250 nsec

2 200 nsec

3 150 nsec

4 100 nsec

5 áá 7 (Reserved - do not use)

The Flags, Link Offset and CIS Offset fields in the argument packet description are for internal use
by Card Services. Card Services initializes them to the appropriate values. The client must preserve
these values for subsequent GetNextPartition requests. The Flags byte is a bit-mapped field used by
Card Services to maintain state information for subsequent GetNextPartition requests. The Link
Offset and CIS Offset fields are used by Card Services to maintain state information for subsequent
GetNextPartition requests.

The Card Offset field is set by Card Services. It is the offset on the card where this partition begins.
For CardBus PC Cards, this offset is relative to the indicated Base Address Register.

The Part Size is the total size of the partition.

The EffBlockSize field is the effective erase block size based on the device erase block size and how
devices satisfy memory card accesses. If one device supplies the odd byte and another even bytes,
the effective erase block size is twice the device erase block size.

The JEDEC ID field is the JEDEC Identifier of the devices in this region. If no JEDEC ID tuple is
present in the CIS, this field is set to zero (0) by Card Services.

The lower fifteen bits of the Part Type field is a constant describing the type of partition. A zero (0)
value means no partition information is available. A value of 7FFFH means the partition type is
defined but unknown. Any other value is provided by the TPLORG_TYPE and TPLORG_DESC
fields of the CISTPL_ORG tuple. (See the Metaformat Specification.) The upper bit of the Part Type
field indicates if the partition has EDC information. It will be set if the error detection code type in
the TPLFMT_EDC field of the CISTPL_FORMAT tuple is non-zero. Clients may ignore the partition
if they are not prepared to deal with EDCs. If a client can handle EDCs, it should use the Card
Information Structure processing services to recover detailed EDC information. The client must first
locate the appropriate format tuple and then process the EDC information.

The PartMultiple is the minimum size that may be used for a partition within the device space. It is
expressed as a number of effective block sizes. For example, if the EffBlockSize field is 128 KBytes
and the PartMultiple field is four (4), the actual minimum partition size is 512 KBytes. In addition,
partition sizes greater than this minimum must be a multiple of this value. PartMultiple for most
regions is related to device sizes rather than erase block sizes, since partitions may not cross devices
which have interblock interactions within a device. As with EffBlockSize, the PartMultiple value
accounts for the interleaving of multiple devices. The PartMultiple field is included for completeness.
It saves the client the overhead of determining which region the partition lies in and obtaining this
information from a GetFirst/NextRegion request.

W A R N I N G :

Partitions which contain more than one type of device may require special
Memory Technology Drivers (MTDs). Clients should use care in creating
partitions which span multiple device types. Partitions that span multiple
device types may not be usable in all systems.

SERVICE REFERENCE

92 © 1999 PCMCIA/JEIDA

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to thirty-four (34)

BAD_SOCKET Socket is invalid

NO_CARD No PC Card in socket

NO_MORE_ITEMS No partitions on PC Card

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 93

5.16 GetFirstRegion (06H)
CardServices(GetFirstRegion, null/MTDHandle, null, ArgLength,

ArgPointer)

This service returns device information for the first region of devices on the card in the specified
socket. Card Services obtains this information by directly accessing the PC CardÕs CIS. If there are
no regions, the Status argument is set to NO_MORE_ITEMS. The ClientHandle for the MTD
supporting access to this region is returned in the Handle argument.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Attributes 2 I/O N Region Attributes Field

4 TupleMask 1 O N Bit-mapped (defined below)

5 Access Speed 1 O N Window Speed Field

6 Flags 2 O N CS Region Flags Data

8 Link Offset 4 O N CS Region Link Data

12 CIS Offset 4 O N CS Region CIS Data

16 Card Offset 4 O N Card Memory Region Offset

20 Region Size 4 O N Region Size

24 EffBlockSize 4 O N Erase Block Size

28 PartMultiple 2 O N Partition Multiple (Erase Block units)

30 JEDEC ID 2 O N Region JEDEC Memory ID Code

The fields in this argument packet are the same as in GetFirstPartition. The Flags, Link Offset and
CIS Offset fields in the argument packet described above are for internal use by Card Services. Card
Services initialized them to the appropriate values. The client must preserve these values for
subsequent GetNextRegion requests. The Virtual Partition attribute bit is interpreted as a virtual
region attribute for regions.

Note: This service requires a PC Card be initialized with a CIS. This service does
NOT interact with MTDs to determine region information.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to thirty-two (32)

BAD_SOCKET Socket is invalid

NO_CARD No PC Card in socket

NO_MORE_ITEMS No regions or CIS on PC Card

SERVICE REFERENCE

94 © 1999 PCMCIA/JEIDA

5.17 GetFirstTuple (07H)
CardServices(GetFirstTuple, null, null, ArgLength, ArgPointer)

The GetFirstTuple service is no longer recommended for use as part of the process of configuring a
function on a PC Card for use. Instead, the InquireConfiguration and ConfigureFunction services
provide a more efficient means of configuration.

This service returns the first tuple of the specified type in the CIS for the specified socket. If there are
no tuples, the Status argument is set to NO_MORE_ITEMS.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Attributes 2 I N Bit-mapped (defined below)

4 Desired Tuple 1 I N Desired Tuple Code Value

5 Reserved 1 I ZERO RESERVED (Reset to zero)

6 Flags 2 O N CS Tuple Flags data

8 Link Offset 4 O N CS Link State Information

12 CIS Offset 4 O N CS CIS State Information

16 Tuple Code 1 O N Tuple found

17 Tuple Link 1 O N Link value for tuple found

The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

The Attributes field is bit-mapped. The following bits are defined:

Bit 0 Return link tuples (set = true)

Bits 1 áá 15 RESERVED (Reset to zero).

The following tuples are link tuples and will not be returned by this service unless Bit 0 of the
Attributes field is set to one:

CISTPL_NULL,

CISTPL_LONGLINK_A,

CISTPL_LONGLINK_C,

CISTPL_LONGLINK_CB,

CISTPL_LONGLINK_MFC,

CISTPL_LINKTARGET,

CISTPL_NO_LINK, and

CISTPL_END

The Desired Tuple field is the tuple value desired. If it is 0FFH (255), the very first tuple of the CIS is
returned (if it exists). If the Desired Tuple field is any other value on entry, the CIS is parsed
attempting to locate a tuple which matches.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 95

The Flags, Link Offset and CIS Offset fields in the above argument packet description are for internal
use by Card Services. Card Services initializes them to the appropriate values. The client should
preserve these values for subsequent GetNextTuple requests. The Flags field is used by Card
Services to maintain state information during CIS processing requests. The Link Offset field and the
CIS Offset field are also used by Card Services to maintain state information during CIS processing
requests.

The Tuple Code and Tuple Link fields are the values returned from the tuple found.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to eighteen (18)

BAD_SOCKET Socket or function is invalid

NO_CARD No PC Card in socket

NO_MORE_ITEMS No Card Information Structure (CIS) or desired tuple not found

See also the Metaformat Specification.

SERVICE REFERENCE

96 © 1999 PCMCIA/JEIDA

5.18 GetFirstWindow (37H)
CardServices(GetFirstWindow, null/WindowHandle, null, ArgLength,

ArgPointer)

This service returns a window handle and associated window information for the first memory or
I/O window of the specified socket and PC Card function. GetNextWindow is used to retrieve any
additional windows for the specified socket. Page information for memory windows is obtained by
GetMemPage. NO_MORE_ITEMS is returned if this socket does not have any allocated windows.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Attributes 2 O N Window Attribute Field

4 Base 4 O N System Base Address

8 Size 4 O N Window Size

12 AccessSpeed or
IOAddrLines

1 O N Window Speed Field or number of I/O address
lines decoded for 16-bit PC Card I/O windows

The Socket, Attributes, Base, Size and AccessSpeed fields are defined the same as in RequestWindow.

GetFirstWindow returns valid window WindowHandles for I/O range resources allocated via
RequestIO.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to thirteen (13).

BAD_SOCKET Socket is invalid.

NO_CARD No PC Card in socket.

NO_MORE_ITEMS No Windows open for this socket.

UNSUPPORTED_SERVICE This service is not supported.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 97

5.19 GetMemPage (39H) [16-bit PC Card only]
CardServices(GetMemPage, WindowHandle, null, ArgLength, ArgPointer)

This service returns the page information for the specified page of the requested memory window.
The WindowHandle returned by GetFirstWindow or GetNextWindow is passed in the Handle
argument.

Offset Field Size Type Value Detail/Description

0 Card Offset 4 O N Card Offset Address

4 Page 1 I N Page Number

The Card Offset and Page fields are defined the same as in MapMemPage.

This service is only used for memory windows. If the WindowHandle identifies an I/O window, this
service returns BAD_HANDLE.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to five (5).

BAD_HANDLE WindowHandle is invalid or specified window is an I/O window.

UNSUPPORTED_SERVICE This service is not supported.

SERVICE REFERENCE

98 © 1999 PCMCIA/JEIDA

5.20 GetNextClient (2AH)
CardServices(GetNextClient, ClientHandle/ClientHandle, null, ArgLength,

ArgPointer)

This service returns the ClientHandle for the next registered client. The ClientHandle previously
returned by GetFirstClient or GetNextClient is passed in the Handle argument. The next
ClientHandle is returned in the Handle argument. If there are no more clients, the Status argument is
set to NO_MORE_ITEMS.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Attributes 2 I N Bit-mapped field (defined below)

When the Attributes Bit 0 is set (1), the Socket field is used to qualify the ClientHandles considered.
The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

The Attributes field is bit-mapped. The bits are defined as follows:

Bit 0 0 = consider all registered clients
1 = consider clients for this socket only

Bits 1 áá 15 RESERVED (Reset to zero)

If Bit 0 is set to one (1), only the clients accepting events for this socket and function are returned. If
Bit 0 is reset to zero (0), all clients registered with Card Services are returned.

W A R N I N G :

If another client performs a successful RegisterClient or DeregisterClient
request between a GetFirstClient and GetNextClient or two GetNextClient
requests, the results are not predictable.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to four (4)

BAD_HANDLE ClientHandle is invalid

BAD_SOCKET Socket or function is invalid (socket/function request only)

NO_CARD No PC Card in socket

NO_MORE_ITEMS No more clients are registered

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 99

5.21 GetNextPartition (08H)
CardServices(GetNextPartition, null, null, ArgLength, ArgPointer)

This service returns device information for the next partition on the card in the specified socket
based on the PC CardÕs CIS. If there are no more partitions, the Status argument is set to
NO_MORE_ITEMS.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Attributes 2 I/O N Partition Attributes Field

4 TupleMask 1 O N Bit-mapped field

5 Access Speed 1 O N Window Speed Field

6 Flags 2 I/O N CS Partition Flags Data

8 Link Offset 4 I/O N CS Partition Link Data

12 CIS Offset 4 I/O N CS Partition CIS Data

16 Card Offset 4 O N Card Memory Region Offset

20 Part Size 4 O N Partition Size

24 EffBlockSize 4 O N Erase Block Size

28 PartMultiple 2 O N Partition Multiple (Erase Block units)

30 JEDEC ID 2 O N Partition JEDEC Memory ID Code

32 PartType 2 O N Partition Type Field

The Flags, Link Offset and CIS Offset fields in the above argument packet description are for internal
use by Card Services. Card Services initializes them during a GetFirstPartition or previous
GetNextPartition request. If necessary, Card Services updates them during this request. The client
must preserve these values between GetNextPartition requests. The Socket field must be the same as
the original GetFirstPartition request. The Flags byte is a bit-mapped field used by Card Services to
maintain state information for subsequent GetNextPartition requests. The Link Offset and CIS Offset
fields are used by Card Services to maintain state information for subsequent GetNextPartition
requests. The Attributes field must be the same as the original GetFirstPartition request.

SUCCESS is returned if there is another partition on the card. Other return codes are the same as
GetNextTuple.

W A R N I N G :

Partitions which contain more than one type of device may require special
Memory Technology Drivers (MTDs). Clients should use care in creating
partitions which span multiple device types. Partitions that span multiple
device types may not be usable in all systems.

SERVICE REFERENCE

100 © 1999 PCMCIA/JEIDA

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to thirty-four (34)

BAD_ARGS Data from prior GetFirst/Next is corrupt

BAD_SOCKET Socket is invalid

NO_CARD No PC Card in socket

NO_MORE_ITEMS No more partitions on PC Card

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 101

5.22 GetNextRegion (09H)
CardServices(GetNextRegion, null/MTDHandle, null, ArgLength, ArgPointer)

This service returns device information for the next region of devices on the card in the specified
socket based on the PC CardÕs CIS. If there are no more regions, the Status argument is set to
NO_MORE_ITEMS. The ClientHandle for the MTD supporting access to this region is returned in the
Handle argument.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Attributes 2 I/O N Region Attributes Field

4 TupleMask 1 O N Bit-mapped field

5 Access Speed 1 O N Window Speed Field

6 Flags 2 I/O N CS Partition Flags Data

8 Link Offset 4 I/O N CS Partition Link Data

12 CIS Offset 4 I/O N CS Partition CIS Data

16 Card Offset 4 O N Card Memory Region Offset

20 Region Size 4 O N Region Size

24 EffBlockSize 4 O N Erase Block Size

28 PartMultiple 2 O N Partition Multiple (Erase Block units)

30 JEDEC ID 2 O N Partition JEDEC Memory ID Code

The Attributes, Flags, Link Offset and CIS Offset fields in the above argument packet description are
for internal use by Card Services. Card Services initializes them during a GetFirstRegion or
previous GetNextRegion request. If necessary, Card Services updates them during this request. The
client must preserve these values between GetNextRegion requests. The Socket field must be the
same as the original GetFirstRegion request. The Flags byte is a bit-mapped field used by Card
Services to maintain state information for subsequent GetNextRegion requests. The Link Offset and
CIS Offset fields are used by Card Services to maintain state information for subsequent
GetNextRegion requests. The Attributes field must be the same as the original GetFirstRegion
request.

SUCCESS is returned if there is another region on the card. Other return codes are the same as
GetNextTuple.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to thirty-two (32)

BAD_ARGS Data from prior GetFirst/Next is corrupt

BAD_SOCKET Socket is invalid

NO_CARD No PC Card in socket

NO_MORE_ITEMS Socket is invalid

SERVICE REFERENCE

102 © 1999 PCMCIA/JEIDA

5.23 GetNextTuple (0AH)
CardServices(GetNextTuple, null, null, ArgLength, ArgPointer)

The GetNextTuple service is no longer recommended for use as part of the process of configuring a
function on a PC Card for use. Instead, the InquireConfiguration and ConfigureFunction services
provide a more efficient means of configuration.

This service returns the next tuple of the specified type in the CIS for the specified socket. If there
are no more tuples, the Status argument is set to NO_MORE_ITEMS.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Attributes 2 I N Bit-mapped

4 Desired Tuple 1 I N Desired Tuple Code Value

5 Reserved 1 I ZERO Reserved (reset to zero)

6 Flags 2 I/O N CS Tuple Flags data

8 Link Offset 4 I/O N CS Link State Information

12 CIS Offset 4 I/O N CS CIS State Information

16 Tuple Code 1 O N Tuple found

17 Tuple Link 1 O N Link value for tuple found

The Flags, Link Offset and CIS Offset fields in the above argument packet description are for internal
use by Card Services. They must be the same values returned by a GetFirstTuple or previous
GetNextTuple request. They will be updated by Card Services. Their exit values should be
preserved by the client for subsequent GetNextTuple requests. The Socket field describes the logical
socket containing the desired card. The Flags field, Link Offset field, and CIS Offset field are used by
Card Services to maintain state information during CIS processing requests.

The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

The Attributes field is bit-mapped. The following bits are defined:

Bit 0 Return link tuples (set = true)

Bits 1 áá 15 RESERVED (Reset to zero).

The following tuples are link tuples and will not be returned by this service unless Bit 0 of the
Attributes field is set to one:

CISTPL_NULL,

CISTPL_LONGLINK_A,

CISTPL_LONGLINK_C,

CISTPL_LONGLINK_CB,

CISTPL_LONGLINK_MFC,

CISTPL_LINKTARGET,

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 103

CISTPL_NO_LINK, and

CISTPL_END

The Desired Tuple field is the tuple value desired. If the field is set to 0FFH (255), the very next tuple
of the CIS is returned (if it exists). If the Desired Tuple field is any other value, the CIS is parsed from
the location returned by the previous GetFirst/NextTuple request attempting to locate a tuple which
matches.

SUCCESS is returned if the specified tuple was found. If a specific tuple type was specified and it
could not be located, NO_MORE_ITEMS is returned. If there was no CIS present, NO_MORE_ITEMS
is returned. If no card is in the socket, NO_CARD is returned. If the entire CIS has been processed,
NO_MORE_ITEMS is returned. Continuing to call GetNextTuple after receiving an
NO_MORE_ITEMS return code results in more NO_MORE_ITEMS return codes.

The Tuple Code and Tuple Link fields are the values returned from the tuple found.

GetTupleData can be used to retrieve the actual tuple data.

Note: GetNextTuple attempts to match the contents of the Desired Tuple field. If
the next physical tuple in the chain is desired, the client should ensure the
Desired Tuple field is 0FFH (255) prior to invoking GetNextTuple. The
Desired Tuple field may be modified between GetFirst/NextTuple requests.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to eighteen (18)

BAD_ARGS Data from prior GetFirst/NextTuple is corrupt

BAD_SOCKET Socket or function is invalid (socket/function request only)

NO_CARD No PC Card in socket

NO_MORE_ITEMS Desired tuple not found

See also GetFirstTuple, GetTupleData.

SERVICE REFERENCE

104 © 1999 PCMCIA/JEIDA

5.24 GetNextWindow (38H)
CardServices(GetNextWindow, WindowHandle/WindowHandle, null, ArgLength,

ArgPointer)

This service returns the window information for the next window configured for this socket and PC
Card function. NO_MORE_ITEMS is returned when no additional window information exists. The
initial call to this service is with the WindowHandle and Socket returned by the GetFirstWindow
service. Subsequent calls to this service must use the WindowHandle and Socket values returned by
the previous call.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Attributes 2 O N Window Attribute Field

4 Base 4 O N System Base Address

8 Size 4 O N Window Size

12 AccessSpeed or
IOAddrLines

1 O N Window Speed Field or number of I/O address
lines decoded for 16-bit PC Card I/O windows

The Socket, Attributes, Base, Size and AccessSpeed fields are defined the same as in RequestWindow.

GetNextWindow returns valid window WindowHandles for I/O range resources allocated via
RequestIO.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to thirteen (13).

BAD_HANDLE WindowHandle is invalid.

BAD_SOCKET Socket is invalid.

NO_CARD No PC Card in socket.

NO_MORE_ITEMS No additional Window information available.

UNSUPPORTED_SERVICE This service is not supported.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 105

5.25 GetStatus (0CH)
CardServices(GetStatus, null, null, ArgLength, ArgPointer)

This service returns the current status of a PC Card and its socket.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 CardState 2 O N Card State Output Data

4 SocketState 2 O N Socket State Output Data

The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

The CardState field is the bit-mapped output data obtained from Socket Services. The bits identify
the current state of the installed PC Card. They are:

Bit 0 Write Protected (set = true)

Bit 1 Card Locked

Bit 2 Ejection Request

Bit 3 Insertion Request

Bit 4 Battery Voltage Detect 1 (set = dead)

Bit 5 Battery Voltage Detect 2 (set = warning)

Bit 6 READY (set = ready asserted)

Bit 7 Card Detected (set = true)

Bit 8 Extended Status ReqAttn (set = true)

Bit 9 Extended Status RsvdEvt1 (set = true)

Bit 10 Extended Status RsvdEvt2 (set = true)

Bit 11 Extended Status RsvdEvt3 (set = true)

Bit 12 áá 13 VCC Level
0 = 5 volts VCC indicated
1 = 3.3 volts VCC indicated
2 = Reserved for X.X volts VCC

3 = Reserved, not used.

Bits 14 áá 15 RESERVED (Reset to zero)

This information is obtained from the Socket Services GetStatus and GetSocket services. The
CardState field is created from the Socket Services CardState, Vcontrol, and State fields. If an I/O card
is installed in the specified socket, card state is returned from the Pin Replacement Register and the
Extended Status register (if present). If certain state bits are not present in the pin replacement or
Extended Status registers (see the Electrical Specification), a simulated state bit value is returned as
defined below:

SERVICE REFERENCE

106 © 1999 PCMCIA/JEIDA

WP (Write Protected) Not write protected

BVD1 (Battery Voltage Detect 1) Power Good

BVD2 (Battery Voltage Detect 2) Power Good

READY Ready

ReqAttn Reset to 0

RsvdEvt1 Reset to 0

RsvdEvt2 Reset to 0

RsvdEvt3 Reset to 0

The SocketState field is the bit-mapped output data returned from Socket Services. These bits identify
the current socket state. They are:

Bit 0 Write Protect Change

Bit 1 Card Lock Change (set = true)

Bit 2 Ejection Request Pending (set = true)

Bit 3 Insertion Request Pending (set = true)

Bit 4 Battery Dead Change (set = true)

Bit 5 Battery Warning Change (set = true)

Bit 6 Ready Change (set = true)

Bit 7 Card Detect Change (set = true)

Bits 8 áá 15 RESERVED (Reset to zero)

This information is obtained from the Socket Services GetSocket service for memory cards. The
SocketState field is created from the Socket Services Socket Attributes.

SUCCESS is returned if the Socket field is valid.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to six (6)

BAD_SOCKET Socket or function is invalid (socket/function request only)

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 107

5.26 GetTupleData (0DH)
CardServices(GetTupleData, null, null, ArgLength, ArgPointer)

The GetTupleData service is no longer recommended for use as part of the process of configuring a
function on a PC Card for use. Instead, the InquireConfiguration and ConfigureFunction services
provide a more efficient means of configuration.

This service returns the content of the last tuple returned by GetFirst/NextTuple. The tuple data
returned is packed so that all tuple data bytes are contiguous and not even byte only (even if the
data came from attribute memory address space). This service only returns data bytes from the
tuple body. The tuple code and link fields are never returned in the Tuple Data field.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Attributes 2 I N Bit-mapped (defined below)

4 Desired Tuple 1 I N Desired Tuple Code Value

5 Tuple Offset 1 I N Offset into tuple from link byte

6 Flags 2 I/O N CS Tuple Flags data

8 Link Offset 4 I/O N CS Link State Information

12 CIS Offset 4 I/O N CS CIS State Information

16 Tuple Data Max 2 I N Maximum size of tuple data area

18 Tuple Data Len 2 O N Number of bytes in tuple body

20 Tuple Data N O N Tuple Data

The argument packet has been structured to use the same fields as GetFirst/NextTuple. This allows
a client to locate a tuple with those services and then retrieve tuple data with this service using the
same argument packet.

The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

The Attributes, Desired Tuple, Flags, Link Offset, and CIS Offset fields are for internal use by Card
Services. They must be the same values returned by a GetFirstTuple or previous GetNextTuple
request. Their exit values should be preserved by the client for subsequent GetNextTuple requests.

The Socket field describes the logical socket containing the desired card. The Flags byte, Link Offset
field, and CIS Offset field are used by Card Services to maintain state information during CIS
processing requests. The Attributes and Desired Tuple fields describe the tuple being processed.

The Tuple Offset field allows partial tuple information to be retrieved starting anywhere within the
tuple. The actual number of tuple bytes in the tuple body is returned in the Tuple Data Len field.
This value will be larger than Tuple Data Max if the tuple body is larger than the space provided in
Tuple Data. Attempting to read beyond the end of a tuple returns with a return code of
NO_MORE_ITEMS.

SERVICE REFERENCE

108 © 1999 PCMCIA/JEIDA

Return Codes
BAD_ARG_LENGTH ArgLength is less than twenty (20)

BAD_ARGS Data from prior GetFirst/NextTuple is corrupt

BAD_SOCKET Socket or function is invalid

NO_CARD No PC Card in socket

NO_MORE_ITEMS No more tuple data on PC Card

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 109

5.27 InquireConfiguration (3DH)
CardServices(InquireConfiguration, null, null, ArgLength, ArgPointer)

This service returns one of a functionÕs possible configurations as defined in the functionÕs CIS by
the CISTPL_CONFIG and CISTPL_CFTABLE_ENTRY tuples. The InquireConfiguration structure
pointed to by the ArgPointer argument is composed of a fixed length header followed by three
variable length sections. The header contains three fields which identify where each of the variable
length sections begin in the data returned in the buffer pointed to by the ArgPointer argument.

Header (multiple fields described below)

Offset of Configuration Register Structure

Offset of Array of Tagged Resource Structures for Default Configuration

Offset of Array of Tagged Resource Structures for Selected Configuration

Request Type

Configuration Register Structure

Array of Tagged Resource Structures for Default Configuration

Array of Tagged Resource Structures for Selected Configuration

Following is a detailed view of the Header portion of the InquireConfiguration service data
structure:

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 áá 17 Reserved 16 I/O N Reserved (Initialized by Card Services during
FIRST requests, must be preserved for
subsequent CURRENT and NEXT requests.
Card Services uses this space when making
GetFirstTuple and GetNextTuple service
requests as needed to support
InquireConfiguration service requests.)

18 Actual Size 2 O N Size of the InquireConfiguration structure. If
this value is greater than the ArgLength
argument, then the buffer provided is too small
to hold the InquireConfiguration structure.

20 Config Offset 2 I/O N Offset of Configuration Registers Structure in
returned data (Initialized by Card Services
during FIRST request processing, must be
preserved for subsequent CURRENT and
NEXT requests)

22 Default Offset 2 I/O N Offset of array of tagged resource structures for
default configuration in returned data (Initialized
by Card Services during FIRST request
processing, must be preserved for subsequent
CURRENT and NEXT requests)

24 Selected Offset 2 I/O N Offset of array of current tagged resource
structures for selected configuration in returned
data (Set by Card Services for all requests)

26 Request Type 1 I N Type of request: FIRST, CURRENT or NEXT

The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

SERVICE REFERENCE

110 © 1999 PCMCIA/JEIDA

The Request Type field determines which configuration description the client is requesting. This field
must be set to FIRST for the initial request by a client to read a functionÕs possible configurations. To
refresh the selected configuration description requested by the last InquireConfiguration request,
the client sets this field to REFRESH. To retrieve the description of the next configuration in
sequence, the client sets the Request Type field to NEXT. To retrieve the current configuration of a
PC Card function and socket, the client sets the Request Type field to CURRENT. The Request Type
field is defined as follows :

Bits 0 áá 1 Requested Configuration:
0 - FIRST
1 - REFRESH
2 - NEXT
3 - CURRENT

Bits 2 áá 7 Reserved (must be reset to zero)

Many of the fields in the header area must be preserved by the client between Card Services
requests. The individual fields are identified in the columns describing those fields.

The Configuration Registers structure describes the functionÕs configuration registers. Much of this
information is common to all of the functionÕs configurations.

Offset Field Size Type Value Detail/Description

n ConfigBase 4 O N Base address for functionÕs configuration
registers

n + 4 Features 1 O N The lower nibble is the number of bytes of
configuration register presence bytes. This
value ranges from 1 to 16 to represent one to
128 configuration registers. The next two
significant bits represent the number of custom
interfaces supported by this function. This value
ranges from zero to four. If this value is non-
zero, the following fields are an array of four-
byte custom interface identifiers, one per
custom interface. The next bit is reserved and
is reset to zero. The most significant bit
indicates whether this is a 16-bit or CardBus
PC Card. If reset, it is a 16-bit PC Card. If set,
the card is a CardBus PC Card.

n + 5 Presence Bytes 1 áá 16 O N Each byte is bit-mapped representing the
presence of defined configuration registers. The
bytes are stored in little endian order with the
first byte representing the first eight possible
configuration registers. If a bit is set the register
is present. If the bit is reset, the register is not
present.

* Array of Custom
Interfaces

0 áá 16 O N Zero to four, four-byte custom interface
identifiers representing the custom interfaces
used by the functionÕs configurations. This field
is ignored for CardBus PC Cards.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 111

The last two sections of the buffer pointed to by the ArgPointer argument contain an array of tagged
resource structures describing the functionÕs default and selected configurations. The tagged
resource structures all use a consistent format with the first byte identifying the resource type and
the second byte the length of the structure. The information in these structures is derived from the
descriptor fields of the functionÕs Configuration tuple.

Offset Field Size Type Value Detail/Description

0 Tag Field 1 I N Tag Field Byte

1 Length 1 I N Length of current Resource
Structure

Within the selected configuration description, each Tag Field is bit-mapped as follows:

Bit 0 áá 7 Tag Field Number (7 bits = 127 possible tags)

Bit 8 Flag Bit :

0 = Explicit : Resource read directly from the current Configuration
tuple in the CIS

1 = Default : A default resource value as specified by CIS

In order to conserve space in the functionÕs Card Information Structure (CIS), resource requirements
from a previous configuration are often used in a current configuration. The default configuration
tracks the current default configuration resource requirements. If these requirements are not
overridden by the selected configuration, they are repeated in the array of tagged resource
structures in the current configuration section of the returned data.

All resource requirements for a returned configuration are completely described by the section
containing the array of tagged resource structures for the selected configuration. The array of tagged
resource structures for the default configuration is only maintained for Card Services use. Client
device drivers are not expected to utilize this information.

Client device drivers can determine if a particular tagged resource structure is included in the
selected configuration by default according to the upper bit of the first byte of the tagged resource
structure. If the structure is being included by default, this bit is set. If the resource is described by
the current configuration tuple, this bit is reset.

The returned data also indicates whether the described resource was available when the structure
was created. How this information is returned depends on the type of tagged resource structure. An
array of tagged resource structures is terminated by a resource type of 7FH. The following resource
types are defined:

SERVICE REFERENCE

112 © 1999 PCMCIA/JEIDA

TAG (HEX) Resource Type

00 16-bit Interface

01 I/O

02 Window

03 IRQ

04 DMA

05 Timing

06 Power

07 Thermal

08 CardBus Interface

09 áá 7E Reserved (do not use)

7F End of array of tagged resources structures

16-bit Interface Tagged Resource Structure
The 16-bit Interface tagged resource structure identifies the values written to the functionÕs
Configuration Option Registers of a 16-bit PC Card to select the configuration, the interface and the
miscellaneous features required to use the function.

Offset Field Size Type Value Detail/Description

0 Resource Type 1 N 00H or 80H Type = 16-bit Interface Resource

1 Length 1 N N Total length of structure

2 Option Value 1 N N Bit-mapped (defined below)

3 Interface 1 N N For 16-bit PC Cards, see the TPCE_IF:
Interface Description Field section of the
Metaformat Specification.

4 Miscellaneous
Features

1 N N Bit-Mapped (defined below)

The Option Value field is defined as follows:

Bit 7 6 5 4 3 2 1 0

Value Option Not
Available
in Host

Value to be written to Configuration Option Register of a 16-bit PC Card to select this
configuration.

The Miscellaneous Features field is defined as follows:

Bit 7 6 5 4 3 2 1 0

Value Audio
Setting

MaxTwins Setting Audio MaxTwins

MaxTwins is the value taken from the TPCE_MI MaxTwins field of the functionÕs CIS. For a
complete description of this field please refer to the Metaformat Specification. This value must be
preserved for a ConfigureFunction request.

Audio is the value taken from the TPCE_MI Audio field of the functionÕs CIS. For a complete
description of this field please refer to the Metaformat Specification. This value must be preserved
for a ConfigureFunction request.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 113

The MaxTwins Setting field is the value of the MaxTwins setting for the functionÕs COR set.

The Audio Setting field is the value of the Audio setting for the functionÕs COR set.

I/O Tagged Resource Structure
The I/O Tagged Resource Structure is used to describe a configurationÕs I/O resource requirements.
The structure is defined as follows:

Offset Field Size Type Value Detail/Description

0 Resource Type 1 N 01 or
81H

Type = I/O Resource

1 Length 1 N N Total length of structure

2 Num Ranges 1 N N 1 .. 16 I/O Address Ranges

3 I/O Ranges * * * Array of I/O Ranges

Each I/O Range within the I/O Tagged Resource structure has the following format. The fields
within each I/O Range use the same encoding as the fields of the RequestWindow ArgPacket
described in Section 5.55 of the Card Services Specification.

n Attributes 2 I/O N Range Attribute field

n + 2 Base 4 I/O N Base address of range in host
system address space

n + 6 Size 4 I/O N Size of Range

n + 10 IOAddrLines 1 I N Number of I/O address lines
decoded for 16-bit PC Card I/O
windows

n + 11 Flags 1 O N Bit-mapped (defined below)

The Flags field is defined as follows:

Bit 7 6 5 4 3 2 1 0

Value RFU (0) RFU (0) RFU (0) RFU (0) RFU (0) RFU (0) RFU (0) I/O Range
Not

Available

SERVICE REFERENCE

114 © 1999 PCMCIA/JEIDA

Window Tagged Resource Structure
The Window Tagged Resource Structure is used to describe a configurationÕs memory and/or I/O
window resource requirements. The structure is defined as follows:

Offset Field Size Type Value Detail/Description

0 Resource Type 1 N 02 or
82H

Type = Window Resource

1 Length 1 N N Total length of structure

2 Num Ranges 1 N N 1 .. 8 Window Address Ranges

3 Memory
Ranges

* * * Array of Window Ranges

Each Window Range within the Window Tagged Resource structure has the following format. The
fields Attributes through Speed within each Window Range use the same encoding as the fields of
the RequestWindow ArgPacket described in Section 5.55 RequestWindow (21h).

n Attributes 2 I/O N Range Attribute field

n + 2 Base 4 I/O N Base address of range in host
system address space

n + 6 Size 4 I/O N Size of Range

n + 10 Speed 1 I N Access speed for range

n + 11 Flags 1 O N Bit-mapped (defined below)

n + 12 CardOffset 4 O N Card Offset

The Flags field is defined as follows:

Bit 7 6 5 4 3 2 1 0

Value RFU (0) RFU (0) RFU (0) RFU (0) RFU (0) RFU (0) RFU (0) Window
Range Not
Available

The CardOffset field describes the address of the card-offset defined for the configuration.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 115

IRQ Tagged Resource Structure
The IRQ Tagged Resource structure is used to describe a configurationÕs interrupt routing
recommendation. The fields within the structure use the same encoding as the fields of the
RequestIRQ ArgPacket described in Section 5.53 of the Card Services Specification.

Offset Field Size Type Value Detail/Description

0 Resource
Type

1 N 03 or
83H

Type = IRQ Resource

1 Length 1 N N Total length of structure

2 Attributes 2 I/O N Bit-mapped (see definition in
RequestIRQ service). When
bit 15 is SET (1), the IRQ or
set of IRQs indicated is not
available.

4 AssignedIRQ 1 O N IRQ Number Assigned by CS
when used with the
ConfigureFunction service.
Ignore for
InquireConfiguration.

5 IRQInfo1 1 I N First TPCE_IR IRQ Byte

6 IRQInfo2 2 I N Optional TPCE_IR IRQ bytes

DMA Tagged Resource Structure
The DMA Tagged Resource structure is used to describe a configurationÕs DMA requirements. The
fields within the structure use the same encoding as the fields of the RequestDMA ArgPacket
described in Section 5.50 of the Card Services Specification.

Offset Field Size Type Value Detail/Description

0 Resource Type 1 N 04 or
84H

Type = DMA Resource

1 Length 1 N N Total length of structure

2 DesiredChannel 2 I N Bit-mapped field indicating the desired DMA channel(s). Bits
D0 through D15 correspond to DMA channels 0 through 15. If
a bit is set to one (1), the channel is acceptable to the
requesting client. A client that can accept any DMA channel
should set all bits in this field to one (1).

4 Attributes 1 I/O N Bit-mapped field indicating signal to use for DMA request and
DMA width. (See definition in RequestDMA service). When
bit 7 is SET (1), the DMA Channel(s) indicated is (are) not
available.)

5 AssignedChannel 1 O N Binary value indicating assigned DMA channel if
ConfigureFunction request is successful. Since DMA
channels range from zero (0) to fifteen (15), only the lower
nibble of this field is significant. This field should be ignored
for InquireConfiguration

SERVICE REFERENCE

116 © 1999 PCMCIA/JEIDA

Timing Tagged Resource Structure
The Timing Tagged Resource structure is used to describe a configurationÕs Timing requirements.

Offset Field Size Type Value Detail/Description

0 Resource
Type

1 N 05 or
85H

Type = Timing Resource

1 Length 1 N N Total length of structure

2 Max WAIT 2 N N Maximum WAIT time in ms

4 Max Busy 2 N N Maximum BUSY time in ms

Power Tagged Resource Structure
The Power Tagged Resource structure is used to describe a configurationÕs Power requirements.

Offset Field Size Type Value Detail/Description

0 Resource
Type

1 N 06 or
86H

Type = Power Resource

1 Length 1 N N Total length of structure

2 Vcc 1 I N Vcc Setting

3 Vpp1 1 I N Vpp1 Setting

4 Vpp2 1 I N Vpp2 Setting

5 Attributes 1 I N Bit-mapped (defined below)

6 ITOT Static 2 I N Total Static Current

8 ITOT Avg 2 I N Total Average Current

10 ITOT Peak 2 I N Total Peak Current

12 ITOT Pdwn 2 I N Total Power Down Current

14 Flags 1 I N Bit-mapped (defined below)

The Vcc, Vpp1, and Vpp2 fields all represent voltages expressed in tenths of volts. Since these fields
are a byte wide, values from 0.0 to 25.5 Volts may be reported.

The Attributes field is defined as follows:

Bit 7 6 5 4 3 2 1 0

Value RFU (0) Assumed
Pdwn I

Assumed
Peak I

Assumed
Avg I

Assumed
Static I

RFU (0) RFU (0) RFU (0)

If an Assumed bit is SET (1), then the corresponding Current (ITOT) value was not specified explicitly
in the functionÕs CIS; therefore, the value is assumed as outlined in the following tables:

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 117

PC Cards with a Card Information Structure compliant with the PC Card Standard February 1995
Release or later (see CISTPL_VERS_1 in the Metaformat Specification) use the following
assumptions:

Voltage Static
(mA)

Average
(mA)

Peak (mA)

3.3V Vcc 70 70 70

5.0V Vcc 100 100 100

3.3V Vpp 60 60 60

5.0V Vpp 60 60 60

12.0V Vpp 60 60 60

PC Cards with a Card Information Structure compliant to versions of the Standard prior to the PC
Card Standard, February 1995, (see CISTPL_VERS_1 in the Metaformat Specification) use the
following assumptions:

Voltage Static
(mA)

Average
(mA)

Peak (mA)

3.3V Vcc 300 500 750

5.0V Vcc 300 500 750

3.3V Vpp 60 60 60

5.0V Vpp 60 60 60

12.0V Vpp 60 60 60

The ITOT fields all represent currents expressed in one hundred microamp (100 mA) increments.
Since these fields are 2 bytes wide, values from 0.0 to 6.5535 Amps may be reported.

The Flags field is defined as follows:

Bit 7 6 5 4 3 2 1 0

Value Power
Down
Setting

Pdwn I
Not

Available

Peak I Not
Available

Avg I Not
Available

Static I
Not

Available

Vpp2 Not
Available

Vpp1 Not
Available

Vcc Not
Available

The Power Down Setting field reflects the Power Down bit in the TPCE_MI field of the funtion's CIS.
This field is only applicable for 16-bit PC Cards. For CardBus PC Cards this field is ignored.

SERVICE REFERENCE

118 © 1999 PCMCIA/JEIDA

Thermal Tagged Resource Structure
The Thermal Tagged Resource structure is used to describe a configurationÕs thermal requirements.

Offset Field Size Type Value Detail/Description

0 Resource Type 1 N 07 or
87H

Type = Thermal Resource

1 Length 1 N N Total length of structure

2 Thermal Static 2 I N Static Power dissipation

4 Thermal Avg 2 I N Average Power Dissipation

6 Thermal Peak 2 I N Peak Power Dissipation

8 Thermal Pdwn 2 I N Power Down Power
Dissipation

9 Attributes 1 O N Bit-mapped (defined below)

10 Flags 1 O N Bit-mapped (defined below)

The Thermal fields all represent power dissipation expressed in one milliwatt (1 mW) increments.
Since these fields are 2 bytes wide, values from 0 to 65.535 Watts are possible.

The Attributes field is defined as follows:

Bit 7 6 5 4 3 2 1 0

Value RFU (0) Assumed
Pdwn

Thermal

Assumed
Peak

Thermal

Assumed
Avg

Thermal

Assumed
Static

Thermal

RFU (0) RFU (0) RFU (0)

If an Assumed bit is SET (1), then the corresponding Thermal value was not specified explicitly in the
functionÕs CIS; therefore, the value is calculated as the product of (Current(I) x Voltage(V)).

The Flags field is defined as follows:

Bit 7 6 5 4 3 2 1 0

Value RFU (0) Pdwn
Thermal

Not
Available

Peak
Thermal

Not
Available

Avg
Thermal

Not
Available

Static
Thermal

Not
Available

RFU (0) RFU (0) RFU (0)

CardBus Interface Tagged Resource Structure
The CardBus Interface Tagged Resource Structure identifies the values written to the functionÕs
Command Register to select the features required to use the function.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 119

Offset Field Size Type Value Detail/Description

0 Resource Type 1 N 08h or 88h Type = CardBus Interface Resource

1 Length 1 N N Total length of structure

2 Misc Features 2 N N Bit-mapped (defined below)

4 Misc Features
Settings

2 N N Bit-mapped (defined below)

The Misc Features field is the value of the TPCE_CBMI field of the functionÕs CIS. For a complete
description of this field please refer to the Metaformat Specification. This value must be preserved
for a ConfigureFunction request.

The Misc Features Settings field is the values of the functionÕs Miscellaneous Features settings in the
Command Register.

Return Codes
BAD_ARG_LENGTH ArgLength is invalid

BAD_SOCKET Socket or function is invalid

CONFIGURATION_LOCKED PC Card function already configured and Request Type not CURRENT

NO_CARD No PC Card in socket

UNSUPPORTED_SERVICE This service is not supported

SERVICE REFERENCE

120 © 1999 PCMCIA/JEIDA

5.28 MapLogSocket (12H)
CardServices(MapLogSocket, null, null, ArgLength, ArgPointer)

This service maps a Card Services logical socket to its Socket Services physical adapter and socket
values.

Offset Field Size Type Value Detail/Description

0 Log Socket 2 I N Logical Socket

2 Phy Adapter 1 O N Physical Adapter Number

3 Phy Socket 1 O N Physical Socket Number

The Log Socket field contains the socket to convert to Socket Services adapter and physical socket
values.

The Phy Adapter field is returned by Card Services, if the Log Socket field is valid. It is the Socket
Services adapter value to address the logical socket. Physical adapters and physical sockets adapters
are numbered starting at zero (0) . The Phy Socket field is returned by Card Services, if the Log Socket
field is valid. It is the Socket Services socket value to address the logical socket.

Note: This service is not expected to be required for most clients of Card Services.
It is intended to provide additional information to system utilities which
may require the ability to map between logical and physical resources.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to four (4)

BAD_SOCKET Socket is invalid

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 121

5.29 MapLogWindow (13H) [16-bit PC Card only]
CardServices(MapLogWindow, WindowHandle, null, ArgLength, ArgPointer)

This service maps a Card Services WindowHandle passed in the Handle argument to its Socket
Services physical adapter and window.

Offset Field Size Type Value Detail/Description

0 Phy Adapter 1 O N Physical Adapter Number.

1 Phy Window 1 O N Physical Window Number. This is the number of
the physical window used to map a 16-bit PC
Card.

The Phy Adapter field is the Socket Services physical adapter number containing the window. The
Phy Window field is the Socket Services physical window number.

Note: This service is not expected to be required for most clients of Card Services.
It is intended to provide additional information to system utilities which
may require the ability to map between logical and physical resources.

W A R N I N G :

Card Services may use more than one physical window as a logical window.
Values returned by this service may only describe a part of the logical window.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to two (2)

BAD_HANDLE WindowHandle is not a valid 16-bit PC Card memory window

SERVICE REFERENCE

122 © 1999 PCMCIA/JEIDA

5.30 MapMemPage (14H) [16-bit PC Card only]
CardServices(MapMemPage, WindowHandle, null, ArgLength, ArgPointer)

This service selects the memory area on a PC Card into a page of a window allocated with the
RequestWindow service. The WindowHandle returned by RequestWindow is passed in the Handle
argument.

Offset Field Size Type Value Detail/Description

0 Card Offset 4 I N Card Offset Address

4 Page 1 I N Page Number

The Card Offset field is the absolute offset from the beginning of the PC Card to map into system
memory.

The Page field is the page number for the window. This page of the window in system memory
address space will be mapped to the requested area of the PC Card. If the Paged bit in the Attributes
field for a window is not set, this value must be zero (indicating the first and only page).

Service not valid for CardBus PC Cards.

This service is only used for memory windows. If the WindowHandle identifies an I/O window, this
service returns BAD_HANDLE.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to five (5)

BAD_HANDLE WindowHandle is invalid or the specified window is an I/O window

BAD_OFFSET Offset is invalid

BAD_PAGE Page is invalid

NO_CARD No card in socket

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 123

5.31 MapPhySocket (15H)
CardServices(MapPhySocket, null, null, ArgLength, ArgPointer)

This service maps Socket Services physical adapter and socket values to a Card Services logical
socket.

Offset Field Size Type Value Detail/Description

0 Log Socket 2 O N Logical Socket

2 Phy Adapter 1 I N Physical Adapter Number

3 Phy Socket 1 I N Physical Socket Number

The Log Socket field is returned by Card Services. It contains the logical socket representing the Phy
Adapter and Phy Socket provided. Physical adapters and physical sockets are numbered starting at
zero (0). The Phy Adapter field and Phy Socket fields, if valid, are converted to a Log Socket value.

SUCCESS is returned if the Phy Adapter and Phy Socket fields are valid.

Note: This service is not expected to be required for most clients of Card Services.
It is intended to provide additional information to system utilities which
may require the ability to map between logical and physical resources.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to four (4)

BAD_ADAPTER Phy Adapter is invalid

BAD_SOCKET Phy Socket is invalid

SERVICE REFERENCE

124 © 1999 PCMCIA/JEIDA

5.32 MapPhyWindow (16H) [16-bit PC Card only]
CardServices(MapPhyWindow, null/WindowHandle, null, ArgLength,

ArgPointer)

This service maps Socket Services physical adapter and window values to a Card Services logical
WindowHandle.

Offset Field Size Type Value Detail/Description

0 Phy Adapter 1 I N Physical Adapter Number

1 Phy Window 1 I N Physical Window Number

SUCCESS is returned if the Phy Adapter and Phy Window fields are valid. BAD_ADAPTER or
BAD_WINDOW is returned if the corresponding value is invalid.

Note: This service is not expected to be required for most clients of Card Services.
It is intended to provide additional information to system utilities which
may require the ability to map between logical and physical resources.

W A R N I N G :

Card Services may use more than one physical window as a logical window.
Values returned by this service may only describe a part of the logical window.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to two (2)

BAD_ADAPTER Adapter is invalid

BAD_WINDOW Window is invalid

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 125

5.33 ModifyConfiguration (27H)
CardServices(ModifyConfiguration, ClientHandle, null, ArgLength,

ArgPointer)

This service allows a socket and PC Card configuration to be modified without a pair of
Release/RequestConfiguration services. The ClientHandle originally passed to
RequestConfiguration is passed in the Handle argument. This service can only modify a
configuration requested via RequestConfiguration.

I/O addresses mapped (either with RequestIO or RequestWindow) and IRQ routing can only be
changed by first using ReleaseConfiguration and then using Release/RequestIO/IRQ/Window
followed by RequestConfiguration.

VCC can not be changed using the ModifyConfiguration service. VCC may be changed by first
invoking ReleaseConfiguration followed by RequestConfiguration with a new VCC value.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Attributes 2 I N Bit-mapped (defined below)

4 Reserved 1 I N Reserved

5 VPP1 1 I N VPP1 Setting

6 VPP2 1 I N VPP2 Setting

The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

The Attributes field is bit-mapped. The following bits are defined:

Bit 0 RESERVED (Reset to zero)

Bit 1 Enable IRQ Steering (set = true)

Bit 2 IRQ change valid (set = true)

Bit 3 ReservedÑvalue ignored

Bit 4 VPP1 change valid (set = true)

Bit 5 VPP2 change valid (set = true)

Bit 6 Enable DMA channel (set = true)

Bit 7 DMA change valid (set = true)

Bit 8 RESERVED (Reset to zero)

Bit 9 VSOVERRIDE (set = override VS pins)

Bits 10 áá 15 RESERVED (Reset to zero)

Enable IRQ Steering is set to one to connect the PC Card IREQ# to a previously selected system
interrupt. IRQ change valid is set to one to request the IRQ steering enable to be changed. The VPP1
change valid and VPP2 change valid bits are set to one to request a change to the corresponding
voltage level for the PC Card.

SERVICE REFERENCE

126 © 1999 PCMCIA/JEIDA

The VPP1 and VPP2 fields both represent voltages expressed in tenths of a volt. Since these fields
are a byte wide, values from zero (0) to 25.5 volts may be set. To be valid, the exact voltage must be
available through the systemÕs Socket Services.

W A R N I N G :

Using this service to set VPP1 or VPP2 to zero (0) volts may result in the loss
of a PC Card's state. Any client setting VPP1 or VPP2 to zero (0) volts is
responsible for ensuring the PC Card's state is restored when power is re-
applied to the card.

The Enable DMA Channel bit is set to one to request a PC Card's DMA signals be connected to the
DMA channel previously selected by the RequestDMA service. The Enable DMA Channel bit is only
valid if the DMA Change Valid is set to one. If the DMA Change Valid bit is reset to zero, the Enable
DMA Channel bit is ignored.

After card insertion and prior to the first RequestConfiguration call for this client the voltage levels
applied to the card will be those specified by the Card Interface Specification. For Low Voltage
keyed cards, if a client desires to apply a voltage inappropriate for this card to any pin then the
VSOVERRIDE bit must be set in the Attribute field otherwise a BAD_VCC or BAD_VPP will be
returned.

W A R N I N G :

The VSOVERRIDE bit is provided for clients that have a need to override the
information provided in the CIS. The Client must exercise caution when
setting this bit as it overrides any voltage level protection provided by Card
Services.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to seven (7)

BAD_ATTRIBUTE IRQ steering cannot be disabled or enabled

BAD_HANDLE ClientHandle doesnÕt match owning client

BAD_SOCKET Socket or function is invalid (socket/function request only)

BAD_VPP Requested VPP1 or VPP2 voltage is not available on socket

NO_CARD No PC Card in socket

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 127

5.34 ModifyWindow (17H)
CardServices(ModifyWindow, WindowHandle, null, ArgLength, ArgPointer)

This service modifies the attributes, or access speed of a window previously allocated with the
RequestWindow service. The WindowHandle returned by RequestWindow is passed in the Handle
argument.

Offset Field Size Type Value Detail/Description

0 Attributes 2 I N Window Attributes Field

2 AccessSpeed 1 I N Window Speed

The Attributes field is bit-mapped. It is defined as follows:

Bit 0 RESERVED (Reset to zero)

Bit 1 Memory type (set = attribute) - Must be reset (0) for CardBus PC
Card

Bit 2 Enable (set = true, reset = disable)

Bit 3 AccessSpeed valid (set = true) - Must be reset (0) for CardBus PC
Card

Bits 4 áá 15 RESERVED (Reset to zero)

Attribute memory is not a valid characteristic of a CardBus PC Card, and thus, bit 1 of the Attributes
field must never be set for these cards.

Note: AccessSpeed valid is set to one by the client when the Access Speed field has a
value that the client wants set for the window. If AccessSpeed valid is reset to
zero, the Access Speed field is ignored and the access speed for the window
is not modified.

The Access Speed field is bit-mapped as follows:

Bits 0 áá 2 Device speed code, if speed mantissa is zero

Speed exponent, if speed mantissa is not zero

Bits 3 áá 6 Speed mantissa

Bit 7 Wait (set = use WAIT#, if available)

The above bit definitions use the format of the extended speed byte of the Device ID tuple. If the
mantissa is zero, the lower bits are a binary code representing a speed from the following table:

Code Speed

0 (Reserved - do not use)

1 250 nsec

2 200 nsec

3 150 nsec

4 100 nsec

5 áá 7 (Reserved - do not use)

SERVICE REFERENCE

128 © 1999 PCMCIA/JEIDA

The WindowHandle identifies the window for this request. It must be the value returned by the
original RequestWindow request.

This service is only used for memory windows. If the WindowHandle identifies an I/O window, this
service returns BAD_HANDLE.

Note: Only some of the 16-bit PC Card window attributes or the access speed field
may be modified by this request. The MapMemPage service is also used to
set the offset into a 16-bit PC Card memory to be mapped into system
memory for paged windows. The Request/ReleaseWindow service must be
used to change the window base or size.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to three (3)

NO_CARD No PC Card in socket

BAD_ATTRIBUTE Attributes are invalid or window cannot enabled/disabled

BAD_HANDLE WindowHandle is invalid or the specified window is an I/O window

BAD_SPEED Speed is invalid

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 129

5.35 OpenMemory (18H)
CardServices(OpenMemory, ClientHandle/MemoryHandle, null, ArgLength,

ArgPointer)

This service opens an area of a memory card to allow use of the Read/Write/CopyMemory and the
erase services. It associates an MTD and an absolute card offset with a MemoryHandle. Card Services
will apply power to the socket if the socket was not being used. The ClientHandle returned by
RegisterClient is passed in the Handle argument. The MemoryHandle returned in the Handle
argument must be used in the Read/Write/CopyMemory and EraseQueue requests.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Attributes 2 I N Attributes of memory area to be accessed

4 Offset 4 I N Card Offset for Area to Open

For 16-bit PC Cards, the Socket field describes the logical socket containing the desired card.

For CardBus PC Cards, the Socket field identifies the logical socket and function. The least significant
byte is the logical socket. The most significant byte of the Socket field is the function. Allowable
functions are numbered from 0 to 7.

The Attributes field is bit-mapped. It indicates the type of memory that is being opened as follows:

Bit 0 Memory type (set = attribute)

Bit 1 Exclusive (set = true)

Bit 2 RESERVED (Reset to zero)

Bit 3 áá4 Prefetchable / Cacheable Memory (set to one = true)
0 = neither prefetchable nor cacheable
1 = prefetchable but not cacheable
2 = both prefetchable and cacheable
3 = Reserved value, do not use

Bits 5 áá 12 RESERVED (Reset to zero)

Bits 13 áá 15 Base Address Register number (1-7).

Bit 0 specifies whether attribute or common memory will be accessed. If attribute memory is being
accessed, the client must explicitly access the memory correctly - this means that only even bytes
can be reliably read and written. Bit 1 allows a client to gain exclusive access to the memory area
beginning at the specified offset. Other clients that attempt to open the memory area beginning at
the same offset will receive an IN_USE return code.

Attribute memory is not a valid characteristic of a CardBus PC Card, and thus, bit 0 of the Attributes
field must never be set for these cards.

Prefetchable / Cacheable applies to CardBus PC Cards only. 16-bit PC Cards shall use zero (0) for this
field.

The Base Address Register number indicates the associated Base Address Register on the CardBus PC
Card. Base Address Register number seven (7) always refers to the Expansion ROM Base Address
Register.

The Offset identifies the byte offset to the beginning of the portion of the card that the client will be
accessing. Card Services uses this information to determine the correct MemoryHandle to return. The

SERVICE REFERENCE

130 © 1999 PCMCIA/JEIDA

offset is also saved by Card Services to adjust relative offsets supplied by the
Read/Write/CopyMemory and the erase services to absolute offsets for MTDs.

The MemoryHandle field is returned by this request. It must be used for all subsequent read, write,
copy and erase requests to the identified memory area. When all accesses have been performed, the
client must perform a CloseMemory request with this Handle. Each OpenMemory increments a use
count maintained for each region and each CloseMemory decrements this counter.

Only one OpenMemory needs to be performed for all accesses to a specific area of a PC Card by a
single client.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to eight (8)

BAD_HANDLE Invalid ClientHandle

BAD_OFFSET Offset is invalid

BAD_SOCKET Socket is invalid

NO_CARD No PC Card in socket

IN_USE Memory area is in-use, exclusively

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 131

5.36 ReadMemory (19H)
CardServices(ReadMemory, MemoryHandle, buffer, ArgLength, ArgPointer)

This service reads data from a PC Card via the specified MemoryHandle. An MTD is used to perform
the actual read. The MemoryHandle returned by OpenMemory is passed in the Handle argument.
The pointer to the system memory buffer that will receive the data read from the PC Card is passed
in the Pointer argument.

Offset Field Size Type Value Detail/Description

0 Card Offset 4 I N Card Source Offset

4 Count 4 I N Number of bytes to transfer

The Card Offset is a relative offset from the physical offset provided to the OpenMemory request
used to obtain the MemoryHandle. It is the first location on the PC Card where the data should be
read.

The Count field is the number of bytes to read from the PC Card.

If the MemoryHandle identifies common memory, all bytes requested are transferred. If the
MemoryHandle identifies attribute memory, the client must recognize that memory locations with
odd addresses may not have valid data. The client is expected to access the attribute memory in an
appropriate way.

When used in a processor mode that supports segmentation (e.g. x86 architecture systems in 286
protected mode operation), all bytes transferred are required to be contained within the segment
referenced by the system memory buffer pointer. This limits the count requested to be less than or
equal to the maximum segment size.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to eight (8)

BAD_HANDLE Invalid MemoryHandle

BAD_OFFSET Invalid source offset

READ_FAILURE Unable to read media

BAD_SIZE Size of area to read is invalid

NO_CARD No PC Card in socket

SERVICE REFERENCE

132 © 1999 PCMCIA/JEIDA

5.37 RegisterClient (10H)
CardServices(RegisterClient, null/ClientHandle, ClientEntry, ArgLength,

ArgPointer)

This service registers a client with Card Services. The ClientHandle returned in the Handle argument
must be passed to DeregisterClient when the client terminates. The Client callback handler entry
point is passed in the Pointer argument.

Offset Field Size Type Value Detail/Description

0 Attributes 2 I N Bit-mapped (defined below)

2 Event Mask 2 I N Events to notify Client

4 Client Data 8 I N Data for the Client (binding specific)

12 Version 2 I BCD the CSLevel this client expects

The Attributes field is bit-mapped. It identifies the type of client registering and what type of
artificial CARD_INSERTION notifications Card Services should generate. The field is defined as
follows:

Bit 0 Memory client device driver (set = true)

Bit 1 Memory Technology Driver (set = true)

Bit 2 I/O client device driver (set = true)

Bit 3 CARD_INSERTION events for sharable PC Cards (set = true)

Bit 4 CARD_INSERTION events for cards being exclusively used (set = true)

Bits 5 áá 15 RESERVED (reset to zero)

Bits 0, 1 and 2 are mutually exclusive, only one bit may be set to one, but one of the bits must be
set to one. If both bits 3 and 4 are reset to zero, the client will not receive artificial
CARD_INSERTION notifications and also will not receive a REGISTRATION_COMPLETE
notification.

Card Services passes the clientÕs handle in the Misc argument of all CARD_INSERTION and
REGISTRATION_COMPLETE event notifications. This eliminates the possibility of a race condition
where Card Services begins making artificial CARD_INSERTION notifications before a client can
record the client handle returned by this request.

I/O client device drivers are notified of card insertions before other clients. I/O clients are notified
in LIFO order (i.e. the last I/O client to register is notified first) to ensure that the most recent, and
presumed up to date, client is the one that sets the interface for the PC Card and socket. Memory
Technology Drivers are notified of card insertions next in FIFO order (i.e. the first MTD to register is
notified first). Finally, memory client device drivers are notified in FIFO order. Memory client
device drivers are clients that use the Open/ Close/ Read/ Write/ Copy/ EraseMemory requests and
so must be notified after the MTDs have associated with the memory regions that they will support.
I/O clients must use the RequestConfiguration service to set the socket and card interface type
before MTDs and memory clients begin accessing the card.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 133

The Event Mask field is bit-mapped. Card Services performs event notification based on this field.
The low-order eight bits specify events noted by Socket Services. The upper eight bits specify
events generated by Card Services. The field is defined as follows:

Bit 0 Write Protect Change

Bit 1 Card Lock Change

Bit 2 Ejection Request

Bit 3 Insertion Request

Bit 4 Battery Dead

Bit 5 Battery Low

Bit 6 Ready Change

Bit 7 Card Detect Change

Bit 8 Power Management Change

Bit 9 Reset

Bit 10 Socket Services Updated

Bit 11 Extended Status Change

Bits 12 áá 15 RESERVED (Reset to zero)

See the CARD_INSERTION callback section for additional information about handling events.

Setting bit 8 of the Event Mask indicates that the client is power management-aware and is able to
handle all of the defined PM_SUSPEND and PM_RESUME events.

The ClientData field contains information that the client wants passed when its callback entry point
is called. The contents of this field are binding specific. (See Appendix-D, 9. Bindings.)

The Version field (in BCD) contains the specific Card Services CSLevel that the client expects to use.
(See 5.10 GetCardServicesInfo (0Bh).) This information can be used by Card Services to provide a
better backward compatibility.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to fourteen (14)

BAD_ATTRIBUTE No client type or more than one client type specified

BAD_VERSION Card Services cannot support this version client

OUT_OF_RESOURCE No space in Card Services to register client

SERVICE REFERENCE

134 © 1999 PCMCIA/JEIDA

5.38 RegisterEraseQueue (0FH)
CardServices(RegisterEraseQueue, ClientHandle/EraseQueueHandle,

EraseQueueHeader, 0, null)
This service registers a client supplied erase queue with Card Services. The pointer to the
EraseQueueHeader is passed in the Pointer argument. The ClientHandle returned by RegisterClient is
passed in the Handle argument. The EraseQueueHandle for the Queue is returned in the Handle
argument.

The EraseQueueHeader has the following structure:

Offset Field Size Type Value Detail/Description

0 QueueEntryLen 2 I N Length in bytes of an erase queue entry.

2 QueueEntryCnt 2 I N Number of entries in the erase queue.

4 QueueEntryArray N I N Array of Erase Queue Entries.

The QueueEntryLen field specifies the size in bytes of each entry in the erase queue. The erase
queue entries start at offset 4 from the beginning of the EraseQueueHeader, i.e. immediately after the
QueueEntryCnt field of the erase queue EraseQueueHeader. The erase queue entries are contiguous
and form an array of entries.

The QueueEntryCnt field specifies the number of entries in the erase queue.

Each QueueEntry has the following structure:

Offset Field Size Type Value Detail/Description

0 Handle 2 I N MemoryHandle

2 EntryState 1 I/O N State of this erase queue entry

3 Size 1 I N Size of area to be erased (power of 2)

4 Offset 4 I N Offset of area to be erased

8 Optional N I N Additional bytes for client use

The Handle field contains the memory handle returned by an OpenMemory request for the
memory area to be erased by this erase request.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 135

The EntryState field indicates the state of this queue entry. The following states are defined:

State Description

IDLE (FFH) The erase queue entry has no valid information and should be ignored by Card
Services. Should only be set when Card Services is not processing the request (as
indicated by a value other than 01H - 7FH).

QUEUED_FOR_ERASE (00H) The client has queued this entry for erasure. The client must not modify this entry
until Card Services indicates that the erase has been processed. Only set by the
Client before a RegisterEraseQueue or CheckEraseQueue request.

ERASE_IN_PROGRESS (01H - 7FH) Card Services has started processing this entry. Only set by Card Services when
the request is being serviced.

ERASE_PASSED (E0H) Card Services has completed processing this entry and the erase was successful.
The client can modify this entry. Only set by Card Services when the request has
been serviced.

ERASE_FAILED (E1H) Card Services has completed processing this entry and the erase was
unsuccessful. The client can modify this entry. This entry code is only set by Card
Services when the indicated block could not be erased after appropriate retries.
The client is expected to treat the block indicated by this entry as unusable. Only
set by Card Services when the request has been serviced.

MEDIA_WRITE_PROTECTED (84H)
MEDIA_NOT_ERASABLE (86H)
MEDIA_MISSING (80H)
MEDIA_NOT_WRITABLE (87H)

Card Services has completed processing this entry and the erase was
unsuccessful. The client can modify this entry. These codes indicate a user
induced failure that can be corrected with appropriate user interaction. Only set by
Card Services when the request cannot be serviced. MEDIA_NOT_ERASABLE is
returned when an erase is attempted on an SRAM card supported by the default
Card Services SRAM MTD.

BAD_SOCKET (C3H)
BAD_TECHNOLOGY (C2H)
BAD_OFFSET (C1H)
BAD_VCC (C4H)
BAD_VPP (C5H)
BAD_SIZE (C6H)

Card Services has completed processing this entry and the erase was not
attempted. The client can modify this entry. These codes indicate an error in the
parameters of the entry. Only set by Card Services when the request cannot be
serviced.

The Size field specifies the size of the memory area to be erased. It must be the exponent for a
power of 2, e.g. a 64 KByte erase block request would specify a size of 16.

The Offset field specifies the offset to the memory area to be erased. It is a relative offset from the
physical offset provided to Open Memory when the MemoryHandle was obtained. The offset must
be the beginning of an erase block.

The Optional field is a byte array that can be used by the client and will not be accessed by Card
Services.

All entries in an erase queue may be idle when registered. A return code of SUCCESS indicates the
erase queue will be serviced by Card Services.

Return Codes
BAD_ARGS QueueEntryCnt less than 1 or QueueEntryLen less than 8

BAD_ARG_LENGTH ArgLength is not equal to zero (0)

BAD_HANDLE ClientHandle is invalid

See also DeregisterEraseQueue.

SERVICE REFERENCE

136 © 1999 PCMCIA/JEIDA

5.39 RegisterMTD (1AH)
CardServices(RegisterMTD, ClientHandle, null, ArgLength, ArgPointer)

This service allows a Memory Technology Driver to register to handle accesses for a region by a
memory service. The ClientHandle returned by RegisterClient is passed in the Handle argument.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Attributes 2 I N Attributes of memory type.

4 Offset 4 I N Card Offset for Region MTD supports

8 MTD Media ID 2 I N Token for MTD use to identify media

The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

The Attributes field is bit-mapped. It indicates the type of memory that is being supported by the
MTD as follows:

Bit 0 Memory type (set = attribute)

Bit 1 DeRegisterMTD

Bit 2 RESERVED (Reset to zero)

Bit 3 áá4 Prefetchable / Cacheable
0 = neither prefetchable nor cacheable
1 = prefetchable but not cacheable
2 = both prefetchable and cacheable
3 = Reserved value, do not use

Bits 5 áá 7 RESERVED (Reset to zero)

Bits 8 RESERVED (Reset to zero)

Bits 9 áá 10 Write/Erase interactions:
0 - Write without Erase
1 - Write with Erase
2 - Reserved
3 - Write with Disableable Erase

Bit 11 Write with Verify

Bit 12 Erase Requests Supported

Bits 13 áá 15 Base Address Register number (1-7).

CardBus PC Cards do not have attribute memory, so Memory Type must always be reset.

DeRegisterMTD is set to one (1) when the MTD wishes to stop handling accesses for the indicated
region.

Prefetchable / Cacheable applies to CardBus PC Cards only. 16-bit PC Cards shall use zero (0) for this
field.

Write without Erase indicates no erase is done before a write. Write with Erase indicates writes that are
erase block aligned and multiple erase block sized are erased before being written. Write with
Disableable Erase indicates the WriteMemory attribute DisableEraseBeforeWrite can be used to control if
an erase before write is not done. Write with Verify is set to one if writes can be verified after

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 137

writing. The WriteMemory attribute Verify is used to request a verified write. Erase Requests
Supported indicates that erase requests via an EraseQueue are supported for this partition.

The Offset field identifies the memory region for which the MTD supports access. This value must
be the beginning address of a region.

The MTD Media ID is a value that Card Services maintains on behalf of an MTD. The MTD uses this
value to indicate the type of memory media for this region. This value is passed to the MTD by
Card Services whenever a read, write, or erase memory access service is requested for this region.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to ten (10)

BAD_HANDLE ClientHandle is invalid

BAD_OFFSET Offset is invalid

BAD_SOCKET Socket or function is invalid (socket/function request only)

NO_CARD No PC Card in socket

SERVICE REFERENCE

138 © 1999 PCMCIA/JEIDA

5.40 RegisterTimer (28H)
CardServices(RegisterTimer, ClientHandle/TimerHandle, null, ArgLength,

ArgPointer)

This service registers a callback structure with Card Services. Based on a tick count provided, Card
Services calls the client back when the time period has elapsed and the Card Services interface is
available. The ClientHandle returned by RegisterClient is passed in the Handle argument. A
TimerHandle is returned in the Handle argument.

Offset Field Size Type Value Detail/Description

0 Wait 2 I N Number of ticks to wait

The Wait field is the number of timer intervals Card Services should wait before notifying the client.
The tick interval is approximately 1 ms. See warning below. If the Wait field is zero (0) on entry,
Card Services notifies the client as soon as the Card Services interface is present.

This service is intended for use by two types of clients. First, those who may be operating in a
background thread of execution. Second, clients who need periodic wakeup calls.

Background thread of execution clients may require Card Services to perform a task when the Card
Services interface is busy with a foreground request. Since this service is always available, even
when the Card Services interface reports BUSY on all other requests, it allows a client to schedule a
later wakeup when Card Services is available to perform the delayed request.

This service may also serve as a method of receiving periodic wakeup notifications without a client
having to intercept the system timer tick. As noted above, a side effect is that when the client
receives notification the timer has expired, the Card Services interface is guaranteed to be available.

When the timer expires and the Card Services interface is available, Card Services notifies the client
at the address specified when the client was registered with RegisterClient. Clients can use the
TimerHandle passed to their callback routine to determine which timer has expired.

A client may have more than one timer pending at a time. Card Services returns
OUT_OF_RESOURCE if it cannot accept the timer request.

W A R N I N G :

When Card Services is operating in some environments, timer intervals may
not be received by Card Services reliably. Many environments (such as
Microsoft Windows or systems running LIM emulators on Virtual-86 capable
processors) may generate timer intervals in bursts. The actual interval
available on a system may not be as little as 1 ms. This interval should only be
viewed as advisory. Other Operating System specific services should be used
for reliable timing.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to two (2)

BAD_HANDLE ClientHandle is invalid

OUT_OF_RESOURCE Timer request invalid

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 139

5.41 ReleaseConfiguration (1EH)
CardServices(ReleaseConfiguration, ClientHandle, null, ArgLength,

ArgPointer)

The ReleaseConfiguration and corresponding RequestConfiguration services are no longer
recommended for use as part of the process of configuring a function on a PC Card for use. Instead,
the InquireConfiguration and ConfigureFunction services provide a more efficient means of
configuration.

This service returns a 16-bit PC Card and its socket to a simple memory only interface and
configuration zero. For CardBus PC Cards this disables I/O accesses to the function.

Card Services may remove power from the socket if no clients have indicated their usage of the
socket by an OpenMemory or RequestWindow. The ClientHandle used in RequestConfiguration is
passed in the Handle argument.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

BAD_HANDLE is returned if the ClientHandle is not the one passed to RequestConfiguration.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to two (2)

BAD_HANDLE ClientHandle does not match owning client or no configuration to release

BAD_SOCKET Socket or function is invalid (socket/function request only)

SERVICE REFERENCE

140 © 1999 PCMCIA/JEIDA

5.42 ReleaseDMA (3BH) [16-bit PC Card only]
CardServices(ReleaseDMA, ClientHandle, null, ArgLength, ArgPointer)

The ReleaseDMA and corresponding RequestDMA services are no longer recommended for use as
part of the process of configuring a function on a PC Card for use. Instead, the InquireConfiguration
and ConfigureFunction services provide a more efficient means of configuration.

This service releases a DMA channel assigned to the configuration of a PC Card in the specified
socket by a prior invocation of RequestDMA. The ClientHandle used for RequestDMA must be
passed in the Handle argument. The argument packet must match the argument packet returned by
the RequestDMA invocation that assigned the DMA channel to the specified socket. (See
RequestDMA for the format of the argument packet).

SUCCESS is returned if the argument packet matches the argument packet used by RequestDMA to
request the currently assigned DMA channel and the PC Card is not currently configured by a
RequestConfiguration invocation without a matching ReleaseConfiguration invocation.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to (6)

BAD_ARGS Argument packet does not match argument packet returned by
RequestDMA

BAD_HANDLE ClientHandle is invalid

BAD_SOCKET Socket is invalid

CONFIGURATION_LOCKED Configuration has not been released

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 141

5.43 ReleaseExclusive (2DH)
CardServices(ReleaseExclusive, ClientHandle, null, ArgLength,

ArgPointer)

This service releases the exclusive use of a card in a socket for a client. The ClientHandle passed to
RequestExclusive is passed in the Handle argument.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Attributes 2 I N Bit Mapped field.

The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

The Attributes field is bit-mapped. The following bits are defined:

Bits 0 áá 15 RESERVED (Reset to zero)

Card Services returns to the client immediately. As soon as the Card Services interface is available,
Card Services sends a CARD_REMOVAL event to the requesting client and then sends a
CARD_INSERTION event to all registered clients that have requested insertion events.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to four (4)

BAD_HANDLE ClientHandle does not match owning client or no client has exclusive use of
the PC Card in the socket

BAD_SOCKET Socket or function is invalid

See also RequestExclusive.

SERVICE REFERENCE

142 © 1999 PCMCIA/JEIDA

5.44 ReleaseIO (1BH) [16-bit PC Card only]
CardServices(ReleaseIO, ClientHandle, null, ArgLength, ArgPointer)

The ReleaseIO and corresponding RequestIO services are no longer recommended for use as part of
the process of configuring a function on a PC Card for use. Instead, the InquireConfiguration and
ConfigureFunction services provide a more efficient means of configuration.

This service releases I/O addresses requested with the RequestIO service. Only the Card Services
database of resources is adjusted by this service. No changes are made to the socket adapter.
ReleaseIO returns error code CONFIGURATION_LOCKED if RequestConfiguration has already
been used for this socket without a matching ReleaseConfiguration. The ClientHandle used in
RequestIO is passed in the Handle argument.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Base Port1 2 I N Base port address for range 1

4 Num Ports1 1 I N Number of contiguous ports

5 Attributes1 1 I N Bit-mapped

6 Base Port2 2 I N Base port address for range 2

8 Num Ports2 1 I N Number of contiguous ports

9 Attributes2 1 I N Bit-mapped

10 IOAddrLines 1 I N Number of I/O address lines decoded by a 16-bit
PC Card. For a CardBus PC Card, this is ignored.

The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

The Base Port fields describe the first port address assigned by a RequestIO request. It must match
the value returned by the RequestIO service exactly.

The Num Ports fields describe the number of contiguous ports assigned by a RequestIO service.

The Attributes fields are defined the same as for RequestIO and must have the same value returned
by RequestIO.

For 16-bit PC Cards the IOAddrLines field is the number of I/O address lines decoded by the PC
Card in the specified socket. It is used by Card Services to determine whether any addresses outside
the ranges specified needed to be marked as in-use because the combination of socket hardware and
lines decoded could result in PC Card accesses outside the specified ranges. For CardBus PC Cards,
this is ignored.

Releasing ports using different Base Port, Num Ports or Attributes values then those used by the
corresponding RequestIO is not supported. Doing so may crash the host system or confuse resource
allocation.

SUCCESS is returned if the specified ports were in use and have been released.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 143

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to eleven (11)

BAD_ARGS I/O description doesnÕt match allocation

BAD_HANDLE ClientHandle does not match owning client or no I/O ports to release.

BAD_SOCKET Socket or function is invalid

CONFIGURATION_LOCKED Configuration has not been released

SERVICE REFERENCE

144 © 1999 PCMCIA/JEIDA

5.45 ReleaseIRQ (1CH)
CardServices(ReleaseIRQ, ClientHandle, null, ArgLength, ArgPointer)

The ReleaseIRQ and corresponding RequestIRQ services are no longer recommended for use as
part of the process of configuring a function on a PC Card for use. Instead, the InquireConfiguration
and ConfigureFunction services provide a more efficient means of configuration.

This service releases a previously requested interrupt request line. Only the Card Services database
of resources is adjusted by this service. No changes are made to the socket adapter. ReleaseIRQ
returns error code CONFIGURATION_LOCKED if RequestConfiguration has already been used for
this socket without a matching ReleaseConfiguration. The ClientHandle used in RequestIRQ is
passed in the Handle argument.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Attributes 2 I N Bit-mapped

4 AssignedIRQ 1 I N IRQ Number Assigned by CS

The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

The Attributes field is bit-mapped and is defined the same as in RequestIRQ. The AssignedIRQ field
identifies the IRQ that was previously established by RequestIRQ.

Note: Most systems have hardware support for interrupt reporting and an
interrupt handler vector (jump) table. This service does not manipulate any
such motherboard specific hardware nor does it manipulate the vector table.
It is up to the client to perform these activities, if the IRQ is not shared
before invoking this service. No adjustment of the interrupt vectors in the
interrupt table is made by this request. It is up to the client to restore the
original interrupt handler after invoking this service.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to five (5)

BAD_ATTRIBUTE Attributes donÕt match allocation

BAD_IRQ AssignedIRQ doesnÕt match allocation

BAD_HANDLE ClientHandle does not match owning client or no IRQ to release.

BAD_SOCKET Socket or function is invalid (socket/function request only)

CONFIGURATION_LOCKED Configuration has not been released

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 145

5.46 ReleaseSocketMask (2FH)
CardServices(ReleaseSocketMask, ClientHandle, null, ArgLength,

ArgPointer)

This service requests that the client no longer be notified of status changes for this socket. A client
will still be notified of status changes for this socket if it has events enabled in its global event mask.
The ClientHandle passed to RequestSocketMask is passed in the Handle argument.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to two (2)

BAD_HANDLE ClientHandle does not match owning client or no socket mask to release

BAD_SOCKET Socket or function is invalid (socket/function request only)

SERVICE REFERENCE

146 © 1999 PCMCIA/JEIDA

5.47 ReleaseWindow (1DH)
CardServices(ReleaseWindow, WindowHandle, null, 0, null)

The ReleaseWindow and corresponding RequestWindow services are no longer recommended for
use as part of the process of configuring a function on a PC Card for use. Instead, the
InquireConfiguration and ConfigureFunction services provide a more efficient means of
configuration.

This service releases a block of system address space which was obtained previously by a
corresponding RequestWindow. The WindowHandle returned by RequestWindow is passed in the
Handle argument.

Card Services assumes only the owning client will make this request. For that reason, the owning
client handle is not provided as an argument. Card Services maintains the owning clientÕs handle in
its internal database to properly manage resources.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to zero (0)

BAD_HANDLE WindowHandle is invalid

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 147

5.48 ReplaceSocketServices (33H)
CardServices(ReplaceSocketServices, null, SSEntry, ArgLength,

ArgPointer)
This service allows a new Socket Services handler to replace an existing one that Card Services is
using or for an existing Socket Services to change the count of sockets that it supports. For the case of
a replacement the new Socket Services implementation must provide functionality that is backward
compatible with the Socket Services handler being replaced. The pointer to the Socket Services entry
point is passed in the Pointer argument. Card Services calls Socket Services at the provided entry
point to determine supported hardware.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Base logical socket number

2 NumSockets 2 I N Number of sockets to replace

4 Attributes 2 I N Information about SS entry point

6 DataPointer N I N Pointer for SS Data Area (binding specific)

The Socket field indicates the logical socket that is the first socket controlled by the Socket Services
handler to be replaced. The NumSockets field indicates the number of sockets that are controlled by
that Socket Services handler. If these values do not describe an installed Socket Services handler,
this service fails.

The Attributes field defines details about the new Socket Services entry point. The definition is
binding specific.

The DataPointer field is used to establish data addressability for the Socket Services handler. This
value is passed to the Socket Services handler in a binding specific way. This field is defined the
same as other (binding specific) pointers.

BAD_SOCKET is returned if a single existing Socket Services handler does not control all of the
indicated sockets.

In the case of a socket count change if a Card Services implementation is utilizing the external
chaining method (e.g. Socket Services GetSetPriorHandler service) for tracking Socket Services
handlers then Card Services needs to remove the requesting handler from the chain before
returning from this request. The method that Card Services removes the handler is by issuing a
series of GetSetPriorHandler requests that effectively remove the requesting handler from the chain
of handlers. At this point Card Services can return from this request and continue processing from a
background thread.

Note: Several methods are possible for a Card Services implementation to track
Socket Services handlers. Depending upon the implementation Card
Services may not issue any GetSetPriorHandler requests. Socket Services
implementations should be able to handle this situation.

In the background thread Card Services will issue SS_UPDATED event callbacks to all clients with
SocketsRemoved as the New Sockets parameter. This will be followed by determining if any socket
renumbering is necessary. If renumbering is determined to be required then Card Services will
issue to all clients SS_UPDATED event callbacks with SocketRenumber as the New Sockets
parameter for any affected sockets. Next Card Services adds the original requesting Socket Services
handler to the end of the ÒchainÓ of handlers. Lastly, Card Services notifies all clients parameter for
any sockets that were added by the requesting Socket Services handler an SS_UPDATED callback
event with SocketsAdded as the New Sockets.

SERVICE REFERENCE

148 © 1999 PCMCIA/JEIDA

Note: Card Services implementations may choose not to renumber sockets in
which case clients will not receive any SS_UPDATED event callbacks with
the New Sockets parameter set to SocketRenumber.

Return Codes
BAD_ARG_LENGTH ArgLength value invalid - mode dependent

BAD_ARGS NumSockets invalid

BAD_SOCKET Socket is invalid

UNSUPPORTED_MODE Requested processor mode not supported

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 149

5.49 RequestConfiguration (30H)
CardServices(RequestConfiguration, ClientHandle, null, ArgLength,

ArgPointer)

The RequestConfiguration and corresponding ReleaseConfiguration services are no longer
recommended for use as part of the process of configuring a function on a PC Card for use. Instead,
the InquireConfiguration and ConfigureFunction services provide a more efficient means of
configuration.

This service configures the PC Card and socket. Card Services applies power to the socket if the
socket was not powered. This service must be used by clients that require DMA channel routing,
I/O windows to be enabled or IREQ# routing. The ClientHandle returned by RegisterClient is
passed in the Handle argument.

All DMA channel routing, I/O windows and IREQ# routing must have been requested before this
service is used. I/O windows are requested using the RequestIO service or the RequestWindow
service. IREQ# routing is requested using the RequestIRQ service. DMA channel routing is
requested using the RequestDMA service. (See 5.50 RequestDMA (3Ah) [16-bit PC Card only],
5.52 RequestIO (1Fh) [16-bit PC Card only] and 5.55 RequestWindow (21h).)

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Attributes 2 I N Bit-mapped (defined below)

4 VCC 1 I N VCC Setting

5 VPP1 1 I N VPP1 Setting

6 VPP2 1 I N VPP2 Setting

7 IntType 1 I N Memory-Only, Memory and I/O Interface, or
Custom Interface

8 ConfigBase 4 I N Card Base address of config registers

12 Status 1 I N Card Status register setting, if present

13 Pin 1 I N Card Pin register setting, if present

14 Copy 1 I N Card Socket/Copy register setting, if present

15 ConfigIndex 1 I N Card Option register setting, if present

16 Present 1 I N Card Configuration registers present

17 Extended Status 1 I N Extended Status Register Setting (if present)

18 Custom Interface
ID Number

4 I N Custom Interface ID Number (if IntType set to
Custom Interface).

The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

The Attributes field is bit-mapped. The routing of the IRQ and DMA signals may be enabled or left
disabled, if these resources were previously acquired with RequestIRQ and/or RequestDMA.
BAD_ATTRIBUTE is returned if an attempt is made to enable IRQ steering or a DMA channel
when these resources were not previously acquired. The following bits are defined:

SERVICE REFERENCE

150 © 1999 PCMCIA/JEIDA

Bit 0 RESERVED (Reset to zero)

Bit 1 Enable IRQ steering (set = true)

Bits 2 áá 5 RESERVED (Reset to zero)

Bit 6 Enable DMA channel (set = true)

Bits 7 áá 8 RESERVED (Reset to zero)

Bit 9 VSOVERRIDE (set = override VS pins)

Bits 10 áá 15 RESERVED (Reset to zero)

After card insertion and prior to the first successful RequestConfiguration, the voltage levels
applied to the card shall be those indicated by the cardÕs physical key and/or the VS[2::1] voltage
sense pins. (See the Electrical Specification.) For Low Voltage capable host systems (hosts which are
capable of VS pin decoding), if a client desires to apply a voltage not indicated by the VS pin
decoding then the VSOVERRIDE bit must be set in the Attribute field otherwise a BAD_VCC shall
be returned. The 5.0 volt level is never a valid VCC setting for CardBus PC Cards.

PC Cards indicate multiple VCC voltage capability in their CIS, see the Metaformat Specification for
details. After card insertion, Card Services processes the CIS, and when multiple VCC voltage
capability is indicated, Card Services will allow the client to apply VCC voltage levels which are
contrary to the VS pin decoding without setting the VSOVERRIDE bit.

W A R N I N G :

The VSOVERRIDE bit is provided for clients that have a need to override the
information provided in the CIS. The Client must exercise caution when
setting this bit as it overrides any voltage level protection provided by Card
Services.

Setting Bit 1 to one enables the IRQ steering as requested by RequestIRQ. Resetting Bit 1 to zero
disables the IRQ steering.

The VCC, VPP1 and VPP2 fields all represent voltages expressed in tenths of a volt. Since these
fields are a byte wide, values from zero (0) to 25.5 volts may be set. To be valid, the exact voltage
must be available through the systemÕs Socket Services.

All functions on a PC Card must support the same voltage or voltages. VCC is set to the highest
VCC voltage requested for any function. VPP[2::1] is set to the highest VPP1 or VPP2 voltage
requested for any function.

For 16-bit PC Cards, the ConfigBase field is the offset in attribute memory of the configuration
registers. For CardBus PC Cards, ConfigBase has the same format as the CIS Pointer in CardBus PC
Card configuration space which is also that of the TPCC_ADDR field of the CISTPL_CONFIG_CB
tuple as well as the for the TPLL_ADDR field in the CISTPL_LONGLINK_CB tuple. The Present
field identifies which, if any, of the configuration registers are present. If present, the corresponding
bit is set. For CardBus PC Cards, all four (4) CardBus PC Card status registers are always present.
However, these registers have different definitions than those for 16-bit PC Cards and so the first
five (5) bits of this field will always be reset to zero (0) for CardBus PC Cards. This field is bit-
mapped as follows:

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 151

Bit 0 Option

Bit 1 Status

Bit 2 Pin Replacement

Bit 3 Copy

Bit 4 Extended Status

Bit 5 I/O Base 0

Bit 6 I/O Base 1

Bit 7 I/O Base 2

If the Present field indicates that any I/O Base registers are present, Card Services writes values
(corresponding to the single I/O range requested via either the Request IO or the Request Window
service) to all I/O Base registers and the I/O Limit register.

The IntType field is a set of mutually exclusive flags. It indicates how the socket should be
configured. The IF_CARDBUS flag shall only be set for CardBus PC Cards. The IF_CUSTOM flag is
set when a custom interface is selected and a Custom Interface ID Number is specified. The
following bits are defined:

Bit 0 Memory (set = true)

Bit 1 Memory and I/O (set = true)

Bit 2 IF_CARDBUS (set = true)

Bit 3 IF_CUSTOM

Bits 4 áá 7 RESERVED (Reset to zero).

The Custom Interface ID Number field is used when the IF_CUSTOM interface type is selected in the
IntType field. This Interface Number is a PCMCIA and JEIDA jointly assigned value that identifies a
specific custom interface. To be valid, the custom interface indicated by the ID Number must be
available through the systemÕs Socket Services. (See also the discussion of Custom Interface
Subtuples under CISTPL_CONFIG in the Metaformat Specification.)

Only one client can be in control of the interface type at any time. Once an interface type other than
Memory has been set, a ReleaseConfiguration must be used to return the socket to a memory only
interface before another I/O or custom interface configuration can be selected.

For 16-bit PC Cards, the Status, Pin, Copy, and Extended Status fields represent the initial values that
should be written to those registers if they are present, as indicated by the Present field. The Pin
field is also used to inform Card Services which pins in the PC CardÕs Pin Replacement Register are
valid, if any. Only those bits which are set are considered valid. This affects how status is returned
by the GetStatus service. If a particular signal is valid in the Pin Replacement Register, both the
mask bit and the change bit must be set in the Pin field.

Multiple Function 16-bit PC Cards Base and Limit registers are set by the RequestConfiguration
service.

The ConfigIndex field is the value written to the Option register for the configuration index required
by the PC Card. Only the least significant six bits are significant, the upper two (2) bits are ignored.
The interrupt type is set by Card Services based on the clientÕs prior RequestIRQ request and the
host hardware environment.

SERVICE REFERENCE

152 © 1999 PCMCIA/JEIDA

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to seventeen (17), eighteen (18), twenty-two (22)

or ArgLength is not equal to twenty-two (22) and IntType field = IF_CUSTOM

BAD_ATTRIBUTE IRQ steering enable conflict

BAD_HANDLE ClientHandle is invalid

BAD_TYPE I/O and memory interface is not supported or the specific custom Interface ID
Number specified is not supported

BAD_SOCKET Socket or function is invalid (socket/function request only)

BAD_VCC Requested voltage is not available on socket or other function has conflict

BAD_VPP Requested voltage is not available on socket or other function has conflict

CONFIGURATION_LOCKED Configuration already set

NO_CARD No PC Card in socket

IN_USE PC Card already being used

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 153

5.50 RequestDMA (3AH) [16-bit PC Card only]
CardServices(RequestDMA, ClientHandle, null, ArgLength, ArgPointer)

The RequestDMA and corresponding ReleaseDMA services are no longer recommended for use as
part of the process of configuring a function on a PC Card for use. Instead, the InquireConfiguration
and ConfigureFunction services provide a more efficient means of configuration.

This service requests a DMA channel be assigned to the configuration of the 16-bit PC Card in the
specified socket. If a PC Card configuration requires a DMA channel, this service must be completed
successfully before RequestConfiguration is performed. If a PC Card configuration does not require
a DMA channel, this service should not be invoked. The ClientHandle assigned to the requesting
client by RegisterClient is passed in the Handle argument.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 DesiredChannel 2 I N Bit-mapped field indicating the desired DMA channel(s). Bits
D0 through D15 correspond to DMA channels 0 through 15. If
a bit is set to one (1), the channel is acceptable to the
requesting client. A client that can accept any DMA channel
should set all bits in this field to one (1).

4 Attributes 1 I N Bit-mapped field indicating signal to use for DMA request and
DMA width. (See table below.)

5 AssignedChannel 1 O N Binary value indicating assigned DMA channel if request is
successful. Since DMA channels range from zero (0) to
fifteen (15), only the lower nibble of this field is significant.

The Attributes field is defined as follows:

Bit 7 6 5 4 3 2 1 0

Value Available RFU
(0)

RFU
(0)

DMA
Width

DMA Request
Signal

Share Mode

Share Mode A binary value identifying how the DMA channel is shared

0 Exclusive (not shared)
1 Time-Multiplexed Shared
2 Dynamic-Shared
3 Reserved

DMA Request Signal A binary value identifying the pin on the interface used to signal a DMA request.

0 Reserved (do not use)
1 DREQ# uses SPKR#
2 DREQ# uses IOIS16#
3 DREQ# uses INPACK#

DMA Width The desired width of a DMA data transfer. If this field is reset to zero (0), the desired DMA data
width is 8-bits. If this field is set to one (1), the desired DMA data width is 16-bits.

RFU The bit is Reserved for Future Use and must be reset to zero (0).

Available This bit is used by the InquireConfiguration and ConfigureFunction services.

SUCCESS is returned if a DMA channel matching one indicated by the DesiredChannel field with
the DMA Width specified in the Attributes field has been assigned to the specified socket.

SERVICE REFERENCE

154 © 1999 PCMCIA/JEIDA

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to (6)

BAD_ARGS No DMA channel matching the channels indicated by the DesiredChannel
field are available with the DMA Width specified in the Attributes field

BAD_HANDLE ClientHandle is invalid

BAD_SOCKET Socket is invalid

CONFIGURATION_LOCKED Configuration already set

IN_USE DMA channel requested is already in-use or service has already been
successfully invoked

NO_CARD No PC Card in socket

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 155

5.51 RequestExclusive (2CH)
CardServices(RequestExclusive, ClientHandle, null, ArgLength,

ArgPointer)

This service requests the exclusive use of a PC Card in a socket for a client. Clients currently using
the PC Card in the socket can reject the request. The ClientHandle returned by RegisterClient is
passed in the Handle argument. This service returns without indicating whether the client received
exclusive access to the PC Card. The client is notified via its callback entry point whether it has
received exclusive access. This notification can happen before or after this service returns.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Attributes 2 I N Bit-mapped field (defined below)

The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

The Attributes field is bit-mapped. The following bits are defined:

Bits 0 áá 15 RESERVED (Reset to zero)

Card Services returns to the client immediately after noting the request . As soon as the Card
Services interface is available, Card Services sends EXCLUSIVE_REQUEST events to registered
clients for this socket. If any client returns failure for the EXCLUSIVE_REQUEST event, Card
Services terminates notification processing. Card Services then notifies the requesting client that the
exclusive request failed via an EXCLUSIVE_COMPLETE event with the Info argument set to the
return code set by the client that rejected the request.

Once all clients have accepted the EXCLUSIVE_REQUEST event, Card Services sends
CARD_REMOVAL events to all clients registered and then sends a CARD_INSERTION event to
the requesting client. Finally, Card Services sends the EXCLUSIVE_COMPLETE event to the
requesting client.

When the client is through using the PC Card in an exclusive fashion, it must use the
ReleaseExclusive service to return the PC Card to normal use.

Return Codes
BAD_ARG_LENGTH ArgLength not equal to four (4)

BAD_HANDLE ClientHandle is invalid

BAD_SOCKET Socket or function is invalid (socket/function request only)

IN_USE PC Card already in-use exclusively or RequestExclusive already in
process

NO_CARD No PC Card in socket

SERVICE REFERENCE

156 © 1999 PCMCIA/JEIDA

5.52 RequestIO (1FH) [16-bit PC Card only]
CardServices(RequestIO, ClientHandle, null, ArgLength, ArgPointer)

The RequestIO and corresponding ReleaseIO services are no longer recommended for use as part of
the process of configuring a function on a PC Card for use. Instead, the InquireConfiguration and
ConfigureFunction services provide a more efficient means of configuration.

With February 1995 publication of the Card Services Specification, I/O address ranges are also
requested using the enhanced RequestWindow service. CardBus PC Cards require the
RequestWindow service to allocate I/O address ranges. 16-bit PC Card I/O address ranges may
also be specified using the enhanced RequestWindow service. (See 5.55 RequestWindow (21h).)

The RequestIO service determines if host system I/O address ranges may be allocated to a 16-bit
PC Card. Card Services confirms that the resource is available and that the socket controller is
capable of performing the routing(s). If this service is successful, the host system I/O address ranges
are reserved. Access is not enabled until the RequestConfiguration service has been invoked
successfully.

When I/O address space is no longer required, it must be released using the ReleaseIO service. If
the RequestConfiguration service has been successfully invoked, the hardware configuration must
first be released using the ReleaseConfiguration service.

The RequestConfiguration service only locks the last unreleased I/O address space(s) specified by a
successful RequestIO service invocation. If a particular combination of I/O range(s) and interrupt
routing is required, RequestIO and ReleaseIO service requests may be interleaved with
RequestIRQ and ReleaseIRQ services until an acceptable combination is achieved. Socket and PC
Card hardware is not programmed for the selected configuration until the RequestConfiguration
service is requested and completes successfully.

The client must provide its assigned ClientHandle in the Handle argument. This is the value
returned when the Client registered with Card Services using the RegisterClient service.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Base Port1 2 I/O N Base port address for range

4 Num Ports1 1 I N Number of contiguous ports

5 Attributes1 1 I N Bit-mapped

6 Base Port2 2 I N Base port address for range

8 Num Ports2 1 I N Number of contiguous ports

9 Attributes2 1 I N Bit-mapped

10 IOAddrLines 1 I N Number of I/O address lines decoded by
a 16-bit PC Card. For a CardBus PC
Card, this is ignored

The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

Two I/O address ranges can be requested by RequestIO. Each I/O address range is specified by
the Base Port, Num Ports, and Attributes fields. If only a single I/O range is being requested, the
Num Ports2 field must be reset to zero.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 157

The Base Port field specifies the base port address requested. If reset to zero (0) Card Services returns
an I/O address based on the available I/O addresses and the number of contiguous ports
requested. Under these circumstances, Card Services aligns the returned range in the host systemÕs
I/O address space on a boundary that is a multiple of the number of contiguous ports requested
rounded up to the nearest power of two. For example, if a client requests two I/O ports, the
returned Base Port value will be two. If a client requests five contiguous I/O ports, the returned Base
Port value will be eight. If multiple ranges are being requested, the Base Port field must be non-zero
for all specified ranges.

The Num Ports field is the number of contiguous ports being requested.

The Attribute fields are bit-mapped. The following bits are defined:

Bit 0 Shared (set = true)

Bit 1 First Shared (set = true)

Bit 2 Force Alias Accessibility

Bit 3 Data Path Width for I/O Range
0 = 8 bit
1 = 16 bit

Bits 4 áá 7 Reserved (must be reset to zero)

Normally, each request dedicates the requested ports to the indicated socket, if they are available.
However, for some applications and/or PC Cards, ports may be shared by cards in two or more
sockets. If the Shared bit is set, the ports requested may be shared with another socket. First Shared is
additionally set when a previously unshared I/O range is required that is intended to be shared
with subsequent clients using this same I/O range. If a previously unshared I/O range is
unavailable, the service fails and IN_USE is returned.

If a shared I/O range is requested, the client is responsible for determining whether the range may
be shared.

A PC Card may decode less than the full set of possible I/O address lines. Doing so creates aliased
addresses for the PC Card address range by using different values for the undecoded upper address
lines. Force Alias Accessibility requests that the aliased address ranges be configured so that they can
also be used to address the PC Card. This is used for compatibility with similar functionality on
existing ISA bus style add-in cards. If Card Services can only satisfy this request by aliasing the
requested I/O addresses with other I/O addresses and Force Alias is not set to one, the
BAD_ATTRIBUTE error will be returned.

Note: This capability may not be available for all systems and clients should not
depend on being able to request an address range with alias accessibility.

The data path width is specified by Bit 3 of the Attributes field.

Shared ports are managed internally by Card Services with share counts. Once internal share counts
reach zero (0), those ports may be reassigned for exclusive use. If share counts for I/O ports are non-
zero, they may only be shared if requested by RequestIO. If socket hardware does not support
shared I/O ports for a shared request or is unable to satisfy a non-shared request, this service
returns failure.

The IOAddrLines field is the number of I/O address lines decoded by the PC Card in the specified
socket. It is used by Card Services to determine whether any addresses outside the ranges specified
needed to be marked as in-use because the combination of socket hardware and lines decoded could
result in PC Card accesses outside the specified ranges.

SUCCESS is returned if the specified ports are available.

SERVICE REFERENCE

158 © 1999 PCMCIA/JEIDA

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to eleven (11)

BAD_ATTRIBUTE Sharing or alias request invalid or CardBus PC Card is inserted in specified
socket

BAD_BASE Base port address is invalid

BAD_HANDLE ClientHandle is invalid

BAD_SOCKET Socket or function is invalid (socket/function request only)

CONFIGURATION_LOCKED Configuration already set

IN_USE I/O ports requested are already in-use or service has already been
successfully invoked

NO_CARD No PC Card in socket

OUT_OF_RESOURCE Internal data space exhausted

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 159

5.53 RequestIRQ (20H)
CardServices(RequestIRQ, ClientHandle, ISRAddress | null, ArgLength,

ArgPointer)

The RequestIRQ and corresponding ReleaseIRQ services are no longer recommended for use as
part of the process of configuring a function on a PC Card for use. Instead, the InquireConfiguration
and ConfigureFunction services provide a more efficient means of configuration.

This service determines if a PC CardÕs interrupt signal may be routed to a host system interrupt
request line. Card Services confirms that the host system interrupt is available for the requested
level of service (exclusive, shared, etceteras) and that the socket controller is capable of performing
the routing. If this service is successful, the host system interrupt request routing is reserved for
later assignment using the RequestConfiguration service. Hardware routing is not performed until
the RequestConfiguration service has been invoked successfully.

When the routing is no longer required, it must be released using the ReleaseIRQ service. If the
RequestConfiguration service has been successfully invoked, the hardware configuration must first
be released using the ReleaseConfiguration service.

The RequestConfiguration service only locks the last unreleased interrupt routing specified by a
successful RequestIRQ service invocation. If a particular combination of I/O range(s) and interrupt
routing is required, RequestIRQ and ReleaseIRQ service requests may be interleaved with
RequestIO and ReleaseIO or RequestWindow and ReleaseWindow services until an acceptable
combination is achieved. Socket and PC Card hardware is not programmed for the selected
configuration until the RequestConfiguration service is requested and completes successfully.

The client must provide its assigned ClientHandle in the Handle argument. This is the value
returned when the Client registered with Card Services using the RegisterClient service.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Attributes 2 I/O N Bit-mapped (defined below)

4 AssignedIRQ 1 O N IRQ Number Assigned by CS

5 IRQInfo1 1 I N First TPCE_IR IRQ Byte

6 IRQInfo2 2 I N Optional TPCE_IR IRQ bytes

The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

SERVICE REFERENCE

160 © 1999 PCMCIA/JEIDA

The Attributes field is bit-mapped. It specifies details about the type of IRQ desired by the client.

The following bits are defined in the Attributes field:

Bits 0 áá 1 IRQ type:
0 - Exclusive
1 - Time-Multiplexed Sharing
2 - Dynamic Sharing
3 - RESERVED

Bit 2 Force Pulse (set = true) (Ignored for CardBus PC
Card)

Bit 3 First Shared (set = true)

Bit 4 ISRAddressProvided (set = Pointer argument
contains binding specific address of interrupt
service routine)

Bit 5 áá 7 RESERVED (Reset to zero)

Bit 8 Pulse IRQ Allocated (set = true on return) (Not
used for CardBus PC Card)

Bits 9 áá 14 RESERVED (Reset to zero)

Bit 15 This bit is used by the InquireConfiguration and
ConfigureFunction services.

The IRQ type field specifies the characteristics of the IRQ requested by the client. Exclusive indicates
that the system IRQ is dedicated to this PC Card.

Time-Multiplexed Sharing indicates the client shares the system IRQ with other PC Cards. This client
coordinates with other clients in using ModifyConfiguration to enable/disable the IRQ from each
socket. This ensures that only one PC Card is connected to the system IRQ line at any time. A time-
multiplexed IRQ is only supported for interrupts that can be enabled and disabled at the socket.

Dynamic Sharing indicates that this PC Card will share the system IRQ simultaneously with other
PC Cards. The clients of the PC Cards use card features to identify the source of the interrupt.
Dynamic sharing is available via PC Card level interrupts in systems that support level mode
interrupts. Dynamic sharing is also available via PC Card pulse interrupts in systems that support
pulse mode interrupts. Level mode interrupts are assigned if possible. Force Pulse is used to force
Card Services to use a pulse mode interrupt.

First Shared is set when a previously unshared IRQ is required that is intended to be shared with
subsequent clients using this same IRQ. If a previously unshared IRQ is unavailable, the service
fails and BAD_IRQ is returned. First Shared is only valid when Time Multiplexed Sharing or Dynamic
Sharing is specified for the IRQ type.

Clients specify the address of a routine to handle interrupt events by setting the ISRAddressProvided
bit in the Attributes field to one and providing a binding specific pointer to their routine in the
Pointer argument. Card Services installs a First-Level Interrupt Handler (FLIH) on the assigned
interrupt vector that initially receives all interrupt notifications from the PC Card. Control is routed
to Client handlers using a CALL instruction. On entry to the client handler the FLIH has preserved
all registers and provided one hundred twenty-eight (128) words of stack space. A client routine
requiring more stack space than this shall provide its own suitably sized stack space. When function
specific interrupt processing is complete, the Client handler returns control to Card Services using a
RET instruction. The handler shall indicate either that an interrupt condition was serviced by
returning with the CARRY flag set or that the function did not require interrupt service by
returning with the CARRY flag clear.

When Clients set the ISRAddressProvided field to one (1), the Card Services FLIH is responsible for
performing End-Of-Interrupt (EOI) processing, acknowledging the completion of interrupt
processing to the PC Card (if required) and returning from the PC CardÕs interrupt notification.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 161

Also, when the ISRAddressProvided field is set to one (1), Card Services ignores those RequestIRQ
parameters that specify details about the type of IRQ desired by the client. These parameters
include the IRQInfo1 and IRQInfo2 fields as well as the IRQ type (bits 0 and 1), Force Pulse (bit 2) and
Pulse IRQ Allocated (bit 8) fields in the Attributes field. When RequestIRQ is successfully invoked
with the ISRAddressProvided field set to one (1), the value returned in the AssignedIRQ field will be
FEH. The AssignedIRQ field value of FEH indicates that a private IRQ has been reserved for or is in
use by a FLIH and that the client has no need to know the actual interrupt level being used.

If the ISRAddressProvided field is reset to zero (0), Card Services does not invoke the ClientÕs
interrupt handler using a CALL instruction. Instead, the Client installs their interrupt handler on
the assigned interrupt vector. In this case, the ClientÕs interrupt handler is responsible for EOI
processing.

Only one client may use the RequestIRQ service for a particular logical socket with the
ISRAddressProvided field reset to zero (0). If there are other clients using interrupt notifications from
other functions on the PC Card, they must provide an ISRAddress for their interrupt handler as
specified above.

When a PC Card with multiple functions has multiple clients requesting interrupt notifications, the
FLIH is responsible for dispatching the hardware notification to the appropriate interrupt handlers.
As noted above, the handlers for Clients which provided an ISRAddress are invoked using a CALL
instruction. If a Client has requested interrupt routing without specifying an ISRAddress (the
ISRAddressProvided field reset to zero), this ClientÕs interrupt handler is invoked by simulating a
hardware interrupt on a different vector than the one actually used to receive hardware interrupt
notifications from the PC Card.

When both types of client interrupt handlers are present, the Card Services FLIH is responsible for
resolving what EOI processing is performed by the handler invoked by the simulated interrupt and
any additional EOI processing required based on the interrupt level simulated and the interrupt
level actually used by the PC Card. The Card Services FLIH is always responsible for signaling the
completion of interrupt handling to a multiple function PC Card.

Card Services FLIH support for EOI processing and signaling the completion of interrupt handling
is only available for PC Cards that follow the PC Card Standard definition of multiple function
cards. This includes 16-bit PC Cards with multiple sets of configuration registers and CardBus PC
Cards with multiple configuration spaces.

PC Cards that provide multiple functions using vendor-specific implementations (for example, 16-bit
PC Cards with a single set of configuration registers) are responsible for distributing the single
interrupt notification from the card to all interested clients, performing EOI processing and notifying
the card the interrupt has been processed. For such cards, a single client typically uses the
RequestIRQ service once with the ISRAddressProvided field reset to zero (0).

Pulse IRQ Allocated is valid only for dynamic shared IRQs. It indicates whether the PC Card will be
configured for pulse or level operation. If a shared IRQ is requested, the ClientHandle of the
requesting client must be used for this request.

Card Services maintains internal share counts for returned IRQ values that indicate sharing. These
counts are incremented as IRQ are assigned and decremented when released. If an IRQ internal
share count is zero, the IRQ may be exclusively assigned to a socket.

The AssignedIRQ field is returned by Card Services if one of the requested IRQ levels is available
and was assigned to the socket. It is a value from zero (0) to nineteen (19) or, when the
ISRAddressProvided field is set to one (1), the value FEH. Zero (0) through fifteen (15) correspond to
IRQ levels 0 through 15, respectively.

SERVICE REFERENCE

162 © 1999 PCMCIA/JEIDA

The IRQInfo1 field is bit-mapped. It indicates the capabilities of the PC Card in the socket. Its
structure is identical to the Configuration Table Entry Tuple TPCE_IR field first Interrupt
Description IRQ byte. The structure is:

if Bit 4 is reset to zero:

Bits 0 áá 3 IRQN if Bit 4 is reset to zero

if Bit 4 is set to one:

Bit 0 NMI

Bit 1 IOCK

Bit 2 BERR

Bit 3 VEND

Bit 4 Mask, if set to one, the
IRQInfo2 bytes are valid

Bit 5 Level

Bit 6 Pulse

Bit 7 Share

The IRQInfo2 field is bit-mapped. These two bytes have identical structure to the Configuration
Table Entry Tuple TPCE_IR field Interrupt Description optional IRQ bytes. The structure is:

Bit 0 IRQ0 Bit 8 IRQ8

Bit 1 IRQ1 Bit 9 IRQ9

Bit 2 IRQ2 Bit 10 IRQ10

Bit 3 IRQ3 Bit 11 IRQ11

Bit 4 IRQ4 Bit 12 IRQ12

Bit 5 IRQ5 Bit 13 IRQ13

Bit 6 IRQ6 Bit 14 IRQ14

Bit 7 IRQ7 Bit 15 IRQ15

Multiple bits may be set in the IRQInfo1 and IRQInfo2 fields. At least one bit must be set in these
fields. How Card Services selects one level over another when more than one level is currently
available is implementation-specific.

Note: Most systems have hardware support for interrupt reporting and an
interrupt handler vector (jump) table. This service does not manipulate any
such motherboard specific hardware nor does it manipulate the vector table
when the ISRAddressProvided field is reset to zero (0). It is up to the client to
perform these activities, if the IRQ is not shared before invoking this
service.

Clients MUST ensure that the PC Card does not generate an interrupt before the interrupt handler
is installed by the client on the appropriate interrupt vector.

SUCCESS is returned if one of the specified IRQs is available with the sharing requested. BAD_IRQ
is returned if no IRQ satisfying the request can be found.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 163

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to eight (8)

BAD_ARGS IRQ Info fields are invalid

BAD_ATTRIBUTE Sharing or pulse request invalid

BAD_HANDLE ClientHandle is invalid

BAD_IRQ IRQ is invalid (returned by Socket Services)

BAD_SOCKET Socket or function is invalid (socket/function request only)

CONFIGURATION_LOCKED The configuration has been locked by the RequestConfiguration service

IN_USE IRQ requested is already in-use or service has already been successfully
invoked

NO_CARD No PC Card in socket

SERVICE REFERENCE

164 © 1999 PCMCIA/JEIDA

5.54 RequestSocketMask (22H)
CardServices(RequestSocketMask, ClientHandle, null, ArgLength,

ArgPointer)

This service requests that the client be notified of status changes for this socket. If the client also has
events enabled in its global event mask, it may be notified more than once for each status change
for this socket. The ClientHandle is passed in the Handle argument. RequestSocketMask must be
used before a Get/SetEventMask request for this socket will succeed.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 EventMask 2 I N Bit-mapped (defined below)

The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

The Event Mask is a bit-mapped field. It represents the status callback events to notify the client of
when they occur on this socket. The bits are defined as follows:

Bit 0 Write Protect

Bit 1 Card Lock Change

Bit 2 Ejection Request

Bit 3 Insertion Request

Bit 4 Battery Dead

Bit 5 Battery Low

Bit 6 Ready Change

Bit 7 Card Detect Change

Bit 8 PM Change

Bit 9 Reset

Bit 10 SS Update

Bit 11 Extended Status Change

Bits 12 áá 15 RESERVED (Reset to zero)

BAD_SOCKET is returned if the Socket field is invalid.

Note: Socket event masks must be released when a CARD_REMOVAL
notification is received.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to four (4)

BAD_HANDLE ClientHandle is invalid

BAD_SOCKET Socket or function is invalid (socket/function request only)

IN_USE PC Card RequestSocketMask already in process

NO_CARD No PC Card in socket

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 165

5.55 RequestWindow (21H)
CardServices(RequestWindow, ClientHandle/WindowHandle, null, ArgLength,

ArgPointer)

This service requests a block of system address space be assigned to a PC Card in a socket. The
ClientHandle of the requesting client is passed in the Handle argument. The WindowHandle is
returned in the Handle argument. This WindowHandle must be passed to ReleaseWindow when the
client is done using the window.

When a request is made for I/O resources, the RequestWindow service determines if the host
system I/O address ranges may be allocated. If this service is successful, the host system I/O
address ranges are reserved. Access to the I/O range is not enabled until the RequestConfiguration
service has been invoked successfully.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Attributes 2 I/O N Memory Window Attribute Field

4 Base 4 I/O N System Base Address

8 Size 4 I/O N Memory Window Size

12 AccessSpeed
or IOAddrLines

1 I N Window Speed Field or number
of I/O address lines decoded for
16-bit PC Card I/O windows

The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

The Attributes field is bit-mapped. It is defined as follows:

Bit 0 Address space (reset = memory, set = I/O)

Bit 1 Memory type (set = attribute) 16-bit PC Card memory windows only

Bit 2 Enabled (set = true, reset = disabled)

Bit 3 Data path width (reset = 8-bit / set = 16-bit) 16-bit PC Card windows only

Bit 4 Paged (set = true) 16-bit PC Card memory windows only

Bit 5 Shared (set = true) Not valid for CardBus PC Card memory windows

Bit 6 First Shared (set = true) Not valid for CardBus PC Card memory windows

Bit 7 Binding Specific Memory windows only

Bit 8 Card offsets are window sized (set = true) 16-bit PC Card memory windows only

Bit 9 Data path width (set = 32 bit / reset = see Bit 3) CardBus PC Card only

Bit 10 RESERVED (Reset to zero)

Bit 11 áá12 Prefetchable / Cacheable
0 = neither prefetchable nor cacheable
1 = prefetchable but not cacheable
2 = both prefetchable and cacheable
3 = Reserved value, do not use.

Bits 13 áá 15 Base Address Register number (1-7). CardBus PC Card only

The AddressSpace field describes the window type. When reset, a memory address space is
requested. When set, an I/O address space is requested. The ability to specify I/O windows was

SERVICE REFERENCE

166 © 1999 PCMCIA/JEIDA

added in this release of the Card Services specification. Prior releases of the specification required
the RequestIO function be used to establish I/O windows. The RequestIO function is still supported
for I/O address ranges within the first 64 KBytes of system I/O address space to promote backward
compatibility. However, the preferred method is to use this service because it allows more flexible
I/O window creation. For example, I/O address ranges may be specified anywhere within a 4
GByte address range, Base Address Registers on a CardBus PC Card may be specified, and
multiple I/O ranges may be specified by calling this function more than once.

CardBus PC Cards do not have attribute memory so the Memory Type bit field shall never be set for
CardBus PC Cards.

The Enabled bit indicates whether the window hardware should be enabled. A client may allocate
multiple windows into the same system space as long as the client time-multiplexes them. Only one
PC Card may respond to accesses into the shared system space at a time or hardware damage may
result. (Note that CardBus PC Cards do not allow windows to share system space.)

If the Data Path Width is either 8 or 16 bits then field 9 is reset. If, however, field 9 is set, this
overrides field 3 which can be ignored. Field 3 states whether the data path width is 8 or 16 bits and
is never used by CardBus PC Cards. If field 9 is set this is a CardBus PC Card with a 32-bit interface
and field 3 is ignored.

If the Paged bit is set to one, the window size must be a multiple of 16 KBytes. The first 16 KBytes of
system memory address space used to map PC Card memory into system memory is referred to as
page zero (0). The next 16 KBytes is page one (1), and so on. A 48 KByte window has three (3) pages
numbered 0, 1, and 2. If the Paged bit is reset to zero, the window size is determined by the Size
field. In both cases, the PC Card memory offset for the window is set by MapMemPage.

Normally, each request dedicates the requested system address range to the indicated socket, if it is
available. However, for some applications and/or PC Cards, system address space may be shared
by cards in two or more sockets. If the Shared bit is set, the range requested may be shared with
another socket. First Shared is additionally set when a previously unshared system range is required
that is intended to be shared with subsequent clients using this same system range. If a previously
unshared system range is unavailable, the service fails and OUT_OF_RESOURCE is returned. The
Shared bit may be used to allocate multiple windows mapping into the same system address space.
This prevents Card Services from failing the request because the system address space has already
been allocated to another window that was requested with Shared set to one. PC Cards must ensure
that multiple cards mapped to the same system address donÕt all respond to accesses.

Card offsets are window sized is set by Card Services when the client must specify card offsets that are
a multiple of the window size.

Prefetchable / Cacheable applies to CardBus PC Cards only. Clients accessing 16-bit PC Cards shall use
zero (0) for this field.

The Base Address Register number indicates the associated Base Address Register on a CardBus PC
Card. Base Address Register number seven (7) always refers to the Expansion ROM Base Address
Register.

The Base field points to the physical location in system address space to map PC Card address space.
If reset to zero (0) on entry, Card Services attempts to locate an available area of system address
space. If successful, Card Services returns the base system address in this field. The Size field is the
byte size of the window requested. Size may be zero to indicate that Card Services should provide
the smallest size available.

Size and Base are in bytes, but must be of a supported granularity and alignment. If a client intends
to map multiple windows into the same system address space, the first request should allow Card
Services to determine the window base. Subsequent requests for windows using the same system

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 167

address space MUST specify the base address returned by the first request. All windows should use
the same size value. Only one request may set the Enabled bit in the Attribute field.

The Access Speed field, which is only used for 16-bit PC Card memory windows, is bit-mapped as
follows:

Bits 0 áá 2 Device speed code, if speed mantissa is zero

Speed exponent, if speed mantissa is not zero

Bits 3 áá 6 Speed mantissa

Bit 7 Wait (set = use WAIT#, if available)

The above bit definitions use the format of the extended speed byte of the Device ID tuple. If the
mantissa is zero (noted as reserved in the PCMCIA 2.1 / JEIDA 4.2 Release), the lower bits are a
binary code representing a speed from the table below:

Code Speed

0 (Reserved - do not use)

1 250 nsec

2 200 nsec

3 150 nsec

4 100 nsec

5 áá 7 (Reserved - do not use)

The IOAddrLines field is the number of I/O address lines decoded by the PC Card in the specified
socket. It is used by Card Services to determine whether any addresses outside the ranges specified
needed to be marked as in-use because the combination of socket hardware and lines decoded could
result in PC Card accesses outside the specified ranges. The IOAddrLines field is only used for 16-bit
PC Card I/O windows.

The MapMemPage and ModifyWindow services use the values returned by this service for some
types of windows.

SUCCESS is returned if a window has been defined.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to thirteen (13)

BAD_ATTRIBUTE Specified attributes are invalid.

BAD_BASE System memory address invalid

BAD_HANDLE ClientHandle is invalid

BAD_SIZE Window size is invalid

BAD_SOCKET Socket or function is invalid (socket/function request only)

BAD_SPEED Speed not supported

NO_CARD No PC Card in socket

OUT_OF_RESOURCE Internal data space is exhausted

IN_USE Window requested is in use

SERVICE REFERENCE

168 © 1999 PCMCIA/JEIDA

5.56 ResetFunction (11H)
CardServices(ResetFunction, ClientHandle, null, ArgLength, ArgPointer)

This service resets the function of the PC Card in the specified socket. The ClientHandle returned by
RegisterClient is passed in the Handle argument. The actual reset processing is done in the
background asynchronously from the execution of this service. The client receives a
RESET_COMPLETE upon completion of this processing.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Attributes 2 I N Bit-mapped

The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

The Attributes field is bit-mapped. The following bits are defined:

Bits 0 áá 15 RESERVED (Reset to zero).

Card Services returns to the client after noting the request. As soon as the Card Services interface is
available, Card Services sends RESET_REQUEST events. If any client rejects the
RESET_REQUEST, Card Services terminates reset processing. Card Services then notifies the
requesting client via a RESET_COMPLETE event with the Info argument set to the return code set
by (any one of) the client(s) that rejected the request.

If no client rejects the reset request, Card Services sends a RESET_PHYSICAL to all clients that have
indicated their interest in Reset events so they may prepare for a reset. When all clients have been
notified, Card Services performs a reset. Card Services observes the appropriate wait after reset
timing including monitoring the READY signal from the PC card and Card Services sends a
CARD_READY notification if Card Services observes a transition to the READY state. Card Services
sends a CARD_RESET notification to all registered clients.

Finally, Card Services notifies the requesting clientÕs callback handler of a RESET_COMPLETE
event. When control is returned from the background thread Card Services has been performing,
the requesting client may continue processing.

When executing function reset events, Card Services must return the function to the same
configuration state it had before the reset. If the function has been configured, then the configuration
must be restored. It is also acceptable that Card Services implementations only perform resets on
functions whose clients have released the configuration.

Those Card Services implementations which allow resets on configured functions must return the
previously assigned resources to the client after the reset is successful. After performing a physical
reset on a configured function, Card Services then returns the function to the last configuration
obtained via a RequestConfiguration call. This will return to the client, for example, the memory,
I/O, and power resources it previously requested. It is the responsibility of the client to perform any
further configuration as required.

It is possible that a Card Services implementation may not allow resets to be performed on
configured functions. In this case, Card Services must reject such ResetFunction requests with an
IN_USE return code. The client may then perform a ReleaseConfiguration and then re-issue the

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 169

ResetFunction request. The function will then be in memory-only mode after the ResetFunction is
complete. All of the resources, however, which the client has previously requested (e.g. memory
windows, I/O windows, IRQs) will still be reserved for the client and if the client should now re-
issue a RequestConfiguration, their original configuration will be returned to them.

The state of the function and socket during the time between the RESET_PHYSICAL and
CARD_RESET events is undefined and may not be relied upon by clients. The client may rely
upon the fact; however, that as part of the reset processing the function's configuration registers shall
be reset.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to four (4)

BAD_HANDLE ClientHandle does not match owning client

BAD_SOCKET Socket or function is invalid (socket/function request only)

IN_USE This Card Services implementation does not permit configured cards to be
reset. The configuration must first be released before resetting the card

NO_CARD No PC Card in socket

SERVICE REFERENCE

170 © 1999 PCMCIA/JEIDA

5.57 ReturnSSEntry (23H)
CardServices(ReturnSSEntry, null, null/SSEntry, ArgLength, ArgPointer)

This service returns a pointer to an entry point that can be used to call Socket Services. The entry
point is returned in the Pointer argument. The entry point references code in Card Services that
calls the correct Socket Services entry point as required based on the physical adapter and socket
numbers provided by the Socket Services client.

Offset Field Size Type Value Detail/Description

0 Attributes 2 I N Information about the SS entry point

The Attributes field specifies details about the Socket Services entry point. It is defined the same as
the Attributes field in Add/ReplaceSocketServices.

W A R N I N G :

Directly accessing services provided by Socket Services which modify hardware
state may cause the host system to crash. Clients should limit their access to
services which only return state information.

Note: Making a request of Socket Services through this service is considered the
same as a request through the Card Services interface. Subsequent Socket
and Card Services requests are blocked until the prior request is complete.
Card Services monitors requests made through this entry point to avoid
performing asynchronous callback notifications when the interfaces are not
available.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to two (2)

UNSUPPORTED_SERVICE Implementation does not support service

UNSUPPORTED_MODE Processor mode not supported

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 171

5.58 SetEventMask (31H)
CardServices(SetEventMask, ClientHandle, null, ArgLength, ArgPointer)

This service changes the event mask for the client. The ClientHandle returned by RegisterClient or
GetFirst/NextClient is passed in the Handle argument.

Offset Field Size Type Value Detail/Description

0 Attributes 2 I N Bit-mapped (defined below)

2 EventMask 2 I N Bit-mapped (defined below)

4 Socket 2 I N Logical socket

The Attributes field is bit-mapped. It identifies the type of event mask to be changed. The field is
defined as follows:

Bit 0 Event mask of this socket only (set = true)

Bits 1 áá 15 RESERVED (Reset to zero)

If Bit 0 is reset, the global event mask is changed. If Bit 0 is set, the event mask for this socket is
changed. RequestSocketMask must have been requested by this client before the event mask for
the socket can be set. BAD_HANDLE is returned if the client has not specifically registered for this
socket.

The Event Mask field is bit-mapped. Card Services performs event notification based on this field.
The low-order eight bits specify events noted by Socket Services. The upper eight bits specify
events generated by Card Services. The field is defined as follows:

Bit 0 Write Protect

Bit 1 Card Lock Change

Bit 2 Ejection Request

Bit 3 Insertion Request

Bit 4 Battery Dead

Bit 5 Battery Low

Bit 6 Ready Change

Bit 7 Card Detect Change

Bit 8 PM Change

Bit 9 Reset

Bit 10 SS Update

Bit 11 Extended Status Change

Bits 12 áá 15 RESERVED (reset to zero)

(See also 3.4 Callback Interfaces.)

The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

SERVICE REFERENCE

172 © 1999 PCMCIA/JEIDA

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to six (6)

BAD_HANDLE ClientHandle is invalid

BAD_SOCKET Socket or function is invalid (socket/function request only) or this socket has
not been requested via RequestSocketMask

NO_CARD No PC Card in socket (socket requests, only)

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 173

5.59 SetRegion (29H)
CardServices(SetRegion, null, null, ArgLength, ArgPointer)

This service allows a client to set a PC Card regionÕs characteristics. It is intended to allow region
characteristics to be set when they are not available in the Card Information Structure.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Attributes 2 I N Bit-mapped (defined below)

4 Card Offset 4 I N Card Memory Region Offset

8 Region Size 4 I N Region Size

12 EffBlockSize 4 I N Erase Block Size

16 PartMultiple 2 I N Partition Multiple (Erase Block units)

18 JEDEC ID 2 I N Partition JEDEC Memory ID Code

20 Bias Offset 4 I N Address Bias for MTD

24 Access Speed 1 I N Window Speed Field

The Socket field identifies the logical socket containing the PC Card which has an undefined or
incorrectly defined region. For 16-bit PC Cards, this field contains only the socket number (since
Multiple Function 16-bit PC Cards provide multiple I/O functions combined with two standard
memory spaces: Attribute and Common memory space). For CardBus PC Cards, the Socket identifies
both the logical socket and function. The least significant byte is the logical socket. The most
significant byte of the Socket field is the function. Allowable functions are numbered from 0 to 7.

The Attributes field is bit-mapped. The following bits are defined:

Bit 0 Memory type (set = attribute)

Bit 1 Delete Region (set = true)

Bit 2 RESERVED (Reset to zero)

Bit 3 á 4 Prefetchable / Cacheable
0 = neither prefetchable nor cacheable
1 = prefetchable but not cacheable
2 = both prefetchable and cacheable
3 = Reserved value, do not use.

Bits 5 áá 7 RESERVED (Reset to zero)

Bit 8 Virtual Region (set = true)

Bits 9 áá 12 RESERVED (Reset to zero)

Bits 13 áá 15 Base Address Register number (1-7).

CardBus PC Cards do not have attribute memory so that the Memory Type bit field must never be
set for CardBus PC Cards.

Delete Region is set to one when Card Services should remove the last region for this PC CardÕs
memory type from its internal region table. If the region specified is not the last region for this PC
CardÕs memory type, BAD_OFFSET is returned. If an MTD is currently registered for this region,
BAD_OFFSET is returned.

Note: If Delete Region is set to one, all fields after Region Size (offset 8) are
ignored.

SERVICE REFERENCE

174 © 1999 PCMCIA/JEIDA

Virtual Region is set to one when the region can only be accessed via an appropriate MTD, i.e. the
region is not addressable simply by presenting addresses to the PC Card (e.g. via a memory
window).

Prefetchable / Cacheable applies to CardBus PC Cards only. 16-bit PC Cards shall use zero (0) for this
field.

The Base Address Register number indicates the associated Base Address Register on the CardBus PC
Card. Base Address Register number seven (7) always refers to the Expansion ROM Base Address
Register.

The Card Offset through JEDEC ID fields are the same as defined in GetFirstPartition.

Once all of the regions on a PC Card requiring modification are successfully updated, the client
should issue a ResetFunction request to notify registered MTDs they should re-evaluate whether
they wish to handle any region on the card.

The Bias Offset field is used by Card Services to compute the address to pass to the supporting MTD.
When a read, write, copy or erase request is made by a client, Card Services subtracts this value
from the (relative) value passed by the client and adds the base offset passed to OpenMemory
before giving the request to the MTD. This field should normally be zero for regions that are not
virtual.

The value in the Card Offset field is used by Card Services during OpenMemory requests to
determine the MTD supporting access to the memory.

A new region may be added by using a region number equal to the current number of regions on
the PC Card.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to twenty-five (25)

BAD_ATTRIBUTE Virtual region cannot be set due to existing physical region

BAD_OFFSET Region offset is invalid

BAD_SIZE Region size is invalid

BAD_SOCKET Socket is invalid

BAD_SPEED Speed is not supported

NO_CARD No PC Card in socket

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 175

5.60 ValidateCIS (2BH)
CardServices(ValidateCIS, null, null, ArgLength, ArgPointer)

This service validates the Card Information Structure on the PC Card in the specified socket.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Logical Socket

2 Chains 2 O N Number of chains validated

The Socket field identifies the logical socket and the function on the PC Card. The least significant
byte is the logical socket. The most significant byte is the function. Single function PC Cards use a
zero (0) value for the function. Multiple function PC Cards use a value between zero (0) and one less
than the number of functions on the PC Card.

The Chains field returns the number of valid tuple chains located in the CIS. If zero (0) is returned,
the CIS is not valid.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to four (4)

BAD_SOCKET Socket is invalid

NO_CARD No PC Card in socket

SERVICE REFERENCE

176 © 1999 PCMCIA/JEIDA

5.61 VendorSpecific (34H)
CardServices(VendorSpecific, null, null, ArgLength, ArgPointer)

This service is used to make vendor specific Card Services requests.

Offset Field Size Type Value Detail/Description

0 InfoLen 2 I/O N Length of returned information in packet

2 Vendor Data N I/O N Vendor Specific Data

The InfoLen specifies the length of the valid portion of the Vendor Data passed and returned.

The Vendor Data is a vendor specific structure.

Return Codes
BAD_ARG_LENGTH ArgLength is less than two (2)

ÇVendor specificÈ ÇVendor specifies valid return codesÈ

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 177

5.62 WriteMemory (24H)
CardServices(WriteMemory, MemoryHandle, buffer, ArgLength, ArgPointer)

This service writes data to a PC Card via the specified MemoryHandle. The MemoryHandle returned
by OpenMemory is passed in the Handle argument. The pointer to the data buffer that contains the
data to be written to the PC Card is passed in the Pointer argument.

Offset Field Size Type Value Detail/Description

0 Card Offset 4 I N Card Destination Address

4 Count 4 I N Number of bytes to transfer

8 Attributes 2 I N Bit-Mapped

The Card Offset is a relative offset from the physical offset provided to the OpenMemory request
used to obtain the MemoryHandle. It is the location on the PC Card where the data should be written.

The Count field is the number of bytes to write to the PC Card.

The Attributes field is bit-mapped. The following bits are defined:

Bits 0 áá 1 RESERVED (reset to zero)

Bit 2 Disable Erase (set to one = true)

Bit 3 Verify

Bits 4 áá 15 RESERVED (reset to zero)

Disable Erase is set to one to request that the memory area not be erased before data is written to the
PC Card. This erase is only done for requests that are erase block aligned and a multiple of erase
blocks. Verify is set to one to request that the data written be verified after the write. If an MTD
doesnÕt support verification, Card Services provides this support. GetFirst/NextPartition/Region can
be used to determine the erase and verify capabilities of a memory area.

If the MemoryHandle identifies attribute memory, the client must access the attribute memory in an
appropriate way. No special processing is done, i.e. all bytes requested are transferred, not just
even bytes. This will typically mean that only single bytes on even address can be successfully
written.

When used in a processor mode that supports segmentation (e.g. x86 architecture systems in 286
protected mode operation), all bytes transferred are required to be contained within the segment
referenced by the pointer argument. This limits the count requested to be less than or equal to the
maximum segment size.

Return Codes
BAD_ARG_LENGTH ArgLength is not equal to ten (10)

BAD_HANDLE Invalid memory area handle

BAD_OFFSET Invalid destination offset

BAD_SIZE Size of area to write is invalid

NO_CARD No PC Card in socket

WRITE_FAILURE Unable to write media

WRITE_PROTECTED Media is write-protected

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 179

A P P E N D I X - A

6 . S E R V I C E C O D E S

Table 6Ð1 Service Codes (by service)

Resource Management Services Client Services Advanced Client Services

 GetConfigurationInfo 04H DeregisterClient 02H AccessConfigurationRegister 36H

 GetFirstWindow 37H GetCardServicesInfo 0BH AddSocketServices 32H

 GetMemPage 39H GetEventMask 2EH AdjustResourceInfo 35H

 GetNextWindow 38H GetStatus 0CH GetClientInfo 03H

 MapMemPage 14H RegisterClient 10H GetFirstClient 0EH

 ModifyConfiguration 27H ResetFunction 11H GetNextClient 2AH

 ModifyWindow 17H SetEventMask 31H MapLogSocket 12H

 ReleaseConfiguration 1EH MapLogWindow 13H

 ReleaseDMA 3BH Client Utilities MapPhySocket 15H

 ReleaseIO 1BH GetFirstPartition 05H MapPhyWindow 16H

 ReleaseIRQ 1CH GetFirstRegion 06H RegisterMTD 1AH

 ReleaseSocketMask 2FH GetFirstTuple 07H RegisterTimer 28H

 ReleaseWindow 1DH GetNextPartition 08H ReleaseExclusive 2DH

 RequestConfiguration 30H GetNextRegion 09H ReplaceSocketServices 33H

 RequestDMA 3AH GetNextTuple 0AH RequestExclusive 2CH

 RequestIO 1FH GetTupleData 0DH ReturnSSEntry 23H

 RequestIRQ 20H SetRegion 29H

 RequestSocketMask 22H Bulk Memory Services ValidateCIS 2BH

 RequestWindow 21H CheckEraseQueue 26H VendorSpecific 34H

 CloseMemory 00H

 CopyMemory 01H

 DeregisterEraseQueue 25H

 OpenMemory 18H

 ReadMemory 19H

 RegisterEraseQueue 0FH

 WriteMemory 24H

SERVICE CODES

180 © 1999 PCMCIA/JEIDA

Table 6Ð2 Service Codes (sorted alphabetically)

Service Code Service Code

 AccessConfigurationRegister 36H MapPhyWindow 16H

 AddSocketServices 32H ModifyConfiguration 27H

 AdjustResourceInfo 35H ModifyWindow 17H

 CheckEraseQueue 26H OpenMemory 18H

 CloseMemory 00H ReadMemory 19H

 ConfigureFunction 3CH RegisterClient 10H

 CopyMemory 01H RegisterEraseQueue 0FH

 DeregisterClient 02H RegisterMTD 1AH

 DeregisterEraseQueue 25H RegisterTimer 28H

 GetCardServicesInfo 0BH ReleaseConfiguration 1EH

 GetClientInfo 03H ReleaseDMA 3BH

 GetConfigurationInfo 04H ReleaseExclusive 2DH

 GetEventMask 2EH ReleaseIO 1BH

 GetFirstClient 0EH ReleaseIRQ 1CH

 GetFirstPartition 05H ReleaseSocketMask 2FH

 GetFirstRegion 06H ReleaseWindow 1DH

 GetFirstTuple 07H ReplaceSocketServices 33H

 GetFirstWindow 37H RequestConfiguration 30H

 GetMemPage 39H RequestDMA 3AH

 GetNextClient 2AH RequestExclusive 2CH

 GetNextPartition 08H RequestIO 1FH

 GetNextRegion 09H RequestIRQ 20H

 GetNextTuple 0AH RequestSocketMask 22H

 GetNextWindow 38H RequestWindow 21H

 GetStatus 0CH ResetFunction 11H

 GetTupleData 0DH ReturnSSEntry 23H

 InquireConfiguration 3DH SetEventMask 31H

 MapLogSocket 12H SetRegion 29H

 MapLogWindow 13H ValidateCIS 2BH

 MapMemPage 14H VendorSpecific 34H

 MapPhySocket 15H WriteMemory 24H

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 181

Table 6Ð3 Service Codes (sorted numerically)

Service Code Service Code

 CloseMemory 00H RequestIO 1FH

 CopyMemory 01H RequestIRQ 20H

 DeregisterClient 02H RequestWindow 21H

 GetClientInfo 03H RequestSocketMask 22H

 GetConfigurationInfo 04H ReturnSSEntry 23H

 GetFirstPartition 05H WriteMemory 24H

 GetFirstRegion 06H DeregisterEraseQueue 25H

 GetFirstTuple 07H CheckEraseQueue 26H

 GetNextPartition 08H ModifyConfiguration 27H

 GetNextRegion 09H RegisterTimer 28H

 GetNextTuple 0AH SetRegion 29H

 GetCardServicesInfo 0BH GetNextClient 2AH

 GetStatus 0CH ValidateCIS 2BH

 GetTupleData 0DH RequestExclusive 2CH

 GetFirstClient 0EH ReleaseExclusive 2DH

 RegisterEraseQueue 0FH GetEventMask 2EH

 RegisterClient 10H ReleaseSocketMask 2FH

 ResetFunction 11H RequestConfiguration 30H

 MapLogSocket 12H SetEventMask 31H

 MapLogWindow 13H AddSocketServices 32H

 MapMemPage 14H ReplaceSocketServices 33H

 MapPhySocket 15H VendorSpecific 34H

 MapPhyWindow 16H AdjustResourceInfo 35H

 ModifyWindow 17H AccessConfigurationRegister 36H

 OpenMemory 18H GetFirstWindow 37H

 ReadMemory 19H GetNextWindow 38H

 RegisterMTD 1AH GetMemPage 39H

 ReleaseIO 1BH RequestDMA 3AH

 ReleaseIRQ 1CH ReleaseDMA 3BH

 ReleaseWindow 1DH ConfigureFunction 3CH

 ReleaseConfiguration 1EH InquireConfiguration 3DH

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 183

A P P E N D I X - B

7 . E V E N T C O D E S

Table 7Ð1 Event Codes (sorted alphabetically)

Event Code Source Client(s) Registered By

BATTERY_DEAD 01H Hardware Socket RequestSocketMask

BATTERY_LOW 02H Hardware Socket RequestSocketMask

CARD_INSERTION 40H Hardware All RegisterClient

CARD_INSERTION [A] 40H DeregisterMTD MTDs RegisterClient

CARD_INSERTION [A] 40H RegisterClient Requester RegisterClient

CARD_INSERTION [A] 40H ReleaseExclusive All RegisterClient

CARD_INSERTION [A] 40H RequestExclusive Requester RequestExclusive

CARD_INSERTION [A] 40H RequestExclusive All RegisterClient

CARD_LOCK 03H Hardware Socket RequestSocketMask

CARD_READY 04H Hardware Socket RequestSocketMask

CARD_REMOVAL 05H Hardware Socket RequestSocketMask

CARD_REMOVAL [A] 05H ReleaseExclusive Socket RequestSocketMask

CARD_REMOVAL [A] 05H RequestExclusive All RegisterClient

CARD_RESET 11H ResetFunction Socket RequestSocketMask

CARD_UNLOCK 06H Hardware Socket RequestSocketMask

CLIENT_INFO 14H GetClientInfo Provider RegisterClient

EJECTION_COMPLETE 07H Hardware Socket RequestSocketMask

EJECTION_REQUEST 08H Hardware Socket RequestSocketMask

ERASE_COMPLETE 81H Queued Erase Requester RegisterEraseQueue

EXCLUSIVE_COMPLETE 0DH RequestExclusive Requester RequestExclusive

EXCLUSIVE_REQUEST 0EH RequestExclusive Socket RequestSocketMask

INSERTION_COMPLETE 09H Hardware Socket RequestSocketMask

INSERTION_REQUEST 0AH Hardware Socket RequestSocketMask

MTD_REQUEST 12H Card Services MTD RegisterClient

PM_RESUME 0BH Card Services Socket RequestSocketMask

PM_SUSPEND 0CH Card Services Socket RequestSocketMask

REGISTRATION_COMPLETE 82H RegisterClient Requester RegisterClient

REQUEST_ATTENTION 18H Hardware All RegisterClient

RESET_COMPLETE 80H ResetFunction Requester ResetFunction

RESET_PHYSICAL 0FH ResetFunction Socket RegisterClient

RESET_REQUEST 10H ResetFunction Socket RegisterClient

SS_UPDATED 16H Card Services All RegisterClient

TIMER_EXPIRED 15H Hardware Requester RegisterTimer

WRITE_PROTECT 17H Hardware All RegisterClient

See the description of the table columns following the next page.

EVENT CODES

184 © 1999 PCMCIA/JEIDA

Table 7Ð2 Event Codes (sorted numerically)

Event Code Source Client(s) Registered By

BATTERY_DEAD 01H Hardware Socket RequestSocketMask

BATTERY_LOW 02H Hardware Socket RequestSocketMask

CARD_LOCK 03H Hardware Socket RequestSocketMask

CARD_READY 04H Hardware Socket RequestSocketMask

CARD_REMOVAL 05H Hardware Socket RequestSocketMask

CARD_REMOVAL [A] 05H ReleaseExclusive Socket RequestSocketMask

CARD_REMOVAL [A] 05H RequestExclusive All RegisterClient

CARD_UNLOCK 06H Hardware Socket RequestSocketMask

EJECTION_COMPLETE 07H Hardware Socket RequestSocketMask

EJECTION_REQUEST 08H Hardware Socket RequestSocketMask

INSERTION_COMPLETE 09H Hardware Socket RequestSocketMask

INSERTION_REQUEST 0AH Hardware Socket RequestSocketMask

PM_RESUME 0BH Card Services Socket RequestSocketMask

PM_SUSPEND 0CH Card Services Socket RequestSocketMask

EXCLUSIVE_COMPLETE 0DH RequestExclusive Requester RequestExclusive

EXCLUSIVE_REQUEST 0EH RequestExclusive Socket RequestSocketMask

RESET_PHYSICAL 0FH ResetFunction Socket RegisterClient

RESET_REQUEST 10H ResetFunction Socket RegisterClient

CARD_RESET 11H ResetFunction Socket RequestSocketMask

MTD_REQUEST 12H Card Services MTD RegisterClient

CLIENT_INFO 14H GetClientInfo Provider RegisterClient

TIMER_EXPIRED 15H Hardware Requester RegisterTimer

SS_UPDATED 16H Card Services All RegisterClient

WRITE_PROTECT 17H Hardware All RegisterClient

REQUEST_ATTENTION 18H Hardware All RegisterClient

CARD_INSERTION [A] 40H DeregisterMTD MTDs RegisterClient

CARD_INSERTION 40H Hardware All RegisterClient

CARD_INSERTION [A] 40H RegisterClient Requester RegisterClient

CARD_INSERTION [A] 40H ReleaseExclusive All RegisterClient

CARD_INSERTION [A] 40H RequestExclusive Requester RequestExclusive

CARD_INSERTION [A] 40H RequestExclusive All RegisterClient

RESET_COMPLETE 80H ResetFunction Requester ResetFunction

ERASE_COMPLETE 81H Queued Erase Requester RegisterEraseQueue

REGISTRATION_COMPLETE 82H RegisterClient Requester RegisterClient

See the description of the table columns on the next page.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 185

Event Code Table column descriptions

Event [A] indicates an artificial event.

Code refers to the value present in the Status argument when the client's callback handler is invoked.

Source is what causes the event to occur:

¥ Hardware means a hardware causes the event.

¥ Card Services means Card Services generates the event after performing a request.

¥ Card Services service means using that service causes the event to be generated.

Client(s) refers to who is notified that the event has occurred:

¥ All means that all clients who have registered with Card Services using the RegisterClient service
will receive notification of the event.

¥ MTDs means that all clients who have registered with Card Services using the RegisterClient
service with the MTD bit set, will receive notification of the event.

¥ Requester means that clients who have requested an erase background service will receive
notification of completion at the address they specified in the erase queue header. Clients that
requested a RegisterClient will receive notification of completion at the address specified in the
request packet.

¥ Provider means that the client providing the client information is notified of the event.

¥ Socket means that clients who have registered with Card Services to use a PC Card in a specific
socket with the RequestSocketMask service will receive notification of the event when it occurs on
the specified socket. Clients that have used RegisterClient and enabled the socket events will also
be notified.

Registered By identifies the Card Services service that registers a client to receive the event notification. Notification
for most events can be enabled/disabled on a client and socket basis. This column indicates the
expected usage, however, SetEventMask can be used to change whether a client gets notified for all
sockets or just particular sockets.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 187

A P P E N D I X - C

8 . R E T U R N C O D E S

Table 8Ð1 Return Codes (sorted alphabetically)

Return Code Value Description

ÇReservedÈ 05H, 0CH,
10H, 13H

ÇReserved for historical purposesÈ

BAD_ADAPTER 01H Specified adapter is invalid

BAD_ARG_LENGTH 1BH ArgLength argument is invalid

BAD_ARGS 1CH Values in Argument Packet are invalid

BAD_ATTRIBUTE 02H Value specified for attributes field is invalid

BAD_BASE 03H Specified base system memory address is invalid

BAD_EDC 04H Specified EDC generator is invalid

BAD_HANDLE 21H ClientHandle is invalid

BAD_IRQ 06H Specified IRQ level is invalid

BAD_OFFSET 07H Specified PC Card memory array offset is invalid

BAD_PAGE 08H Specified page is invalid

BAD_SIZE 0AH Specified size is invalid

BAD_SOCKET 0BH Specified socket is invalid (logical or physical)

BAD_SPEED 17H Specified speed is unavailable

BAD_TYPE 0DH Window or interface type specified is invalid

BAD_VCC 0EH Specified VCC power level index is invalid

BAD_VERSION 22H Client version is unsupported

BAD_VPP 0FH Specified VPP1 or VPP2 power level index is invalid

BAD_WINDOW 11H Specified window is invalid

BUSY 18H Unable to process request at this time - retry later

CONFIGURATION_LOCKED 1DH A configuration has already been locked

GENERAL_FAILURE 19H An undefined error has occurred

IN_USE 1EH Requested resource is being used by a client

NO_CARD 14H No PC Card in socket

NO_MORE_ITEMS 1FH There are no more of the requested item

OUT_OF_RESOURCE 20H Card Services has exhausted resource

READ_FAILURE 09H Unable to complete read request

SUCCESS 00H The request succeeded.

UNSUPPORTED_MODE 16H Processor mode is not supported

UNSUPPORTED_SERVICE 15H Implementation does not support service

WRITE_FAILURE 12H Unable to complete write request

WRITE_PROTECTED 1AH Media is write-protected

Return Codes common to Socket Services use the same values. Italicized entries are reserved for
historical purposes and should not be used. Return codes above 19H are unique to Card Services.

RETURN CODES

188 © 1999 PCMCIA/JEIDA

Table 8Ð2 Return Codes (sorted numerically)

Return Code Value Description

SUCCESS 00H The request succeeded.

BAD_ADAPTER 01H Specified adapter is invalid

BAD_ATTRIBUTE 02H Value specified for attributes field is invalid

BAD_BASE 03H Specified base system memory address is invalid

BAD_EDC 04H Specified EDC generator is invalid

ÇReservedÈ 05H ÇReserved for historical purposesÈ

BAD_IRQ 06H Specified IRQ level is invalid

BAD_OFFSET 07H Specified PC Card memory array offset is invalid

BAD_PAGE 08H Specified page is invalid

READ_FAILURE 09H Unable to complete read request

BAD_SIZE 0AH Specified size is invalid

BAD_SOCKET 0BH Specified socket is invalid (logical or physical)

ÇReservedÈ 0CH ÇReserved for historical purposesÈ

BAD_TYPE 0DH Window or interface type specified is invalid

BAD_VCC 0EH Specified VCC power level index is invalid

BAD_VPP 0FH Specified VPP1 or VPP2 power level index is invalid

ÇReservedÈ 10H ÇReserved for historical purposesÈ

BAD_WINDOW 11H Specified window is invalid

WRITE_FAILURE 12H Unable to complete write request

ÇReservedÈ 13H ÇReserved for historical purposesÈ

NO_CARD 14H No PC Card in socket

UNSUPPORTED_SERVICE 15H Implementation does not support service

UNSUPPORTED_MODE 16H Processor mode is not supported

BAD_SPEED 17H Specified speed is unavailable

BUSY 18H Unable to process request at this time - retry later

GENERAL_FAILURE 19H An undefined error has occurred

WRITE_PROTECTED 1AH Media is write-protected

BAD_ARG_LENGTH 1BH ArgLength argument is invalid

BAD_ARGS 1CH Values in Argument Packet are invalid

CONFIGURATION_LOCKED 1DH A configuration has already been locked

IN_USE 1EH Requested resource is being used by a client

NO_MORE_ITEMS 1FH There are no more of the requested item

OUT_OF_RESOURCE 20H Card Services has exhausted resource

BAD_HANDLE 21H ClientHandle is invalid

BAD_VERSION 22H Client version is unsupported

Return Codes common to Socket Services use the same values. Italicized entries are reserved for
historical purposes and should not be used. Return codes above 19H are unique to Card Services.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 189

A P P E N D I X - D

9 . B I N D I N G S

9.1 Overview
A Card Services binding answers the following five questions for a specific host environment:

How is the presence of Card Services determined?

How are Card Services requests made?

How are arguments passed to and from Card Services?

How are binding-specific arguments and services defined?

How are arguments passed to and from client callback handlers?

A specific host environment for a Card Services client is defined by the operating system in use and
the host platform's architecture. Multi-mode processors may require separate bindings for each
mode used by an operating system. Operating systems that emulate other operating systems may
also implement more than one Card Services binding.

9.2 Presence Detection
A client determines whether Card Services is available in the host environment through a binding
specific presence detection mechanism. All bindings specify a method of determining the presence
of Card Services using operations that have well-defined responses whether Card Services is
actually installed or not. A Card Services client may use the Card Services request mechanism for
presence detection if the binding guarantees a negative response is returned if Card Services is not
installed.

9.3 Making Card Services Requests
Card Services requests are made in a binding-specific manner. Software interrupts, far or near calls,
operating system device driver interfaces and other methods of making requests of Card Services
may be appropriate depending on the host environment. Environments which emulate other
environments may actually provide more than one method of making a Card Services request. If a
Card Services implementation is not able to satisfy a request from a client in an emulated
environment, it must insure the request is failed.

BINDINGS

190 © 1999 PCMCIA/JEIDA

9.4 Argument Passing
A Card Services binding defines how arguments are passed to and from Card Services. Depending
on the host environment, arguments may be passed in registers, in stack-based packets or even in
global data areas. There are six possible input arguments to a Card Services request.

Service The service Card Services is being requested to perform.
Handle An implementation specific value identifying a Card Services object

(Client, Window, etc.).
Pointer A binding specific pointer.
ArgLength The length of the ArgPacket.
ArgPointer A binding specific pointer to an ArgPacket.
ArgPacket A request specific data packet.

Many services provided by the Card Services interface do not use all of the arguments. If an input
argument is not used for a service, it is ignored.

Services provided by the Card Services interface may modify the ArgPacket to return information.
Services may also use the Handle and Pointer arguments to return information.

If a services provided by the Card Services interface does not use an argument to return
information, it is returned unmodified.

All services provided by the Card Services interface return Status. This is a Return Code as defined
by Appendix C. A binding may use the same or overlapping representations for the Service input
argument and Status.

9.5 Binding Specific Arguments and Services
The Pointer and ArgPointer arguments are binding specific. They may be far or near pointers or
even an index, if global data areas are being used by the binding.

Four (4) services provided by the Card Services interface have different definitions depending on
the client's environment. They are:

AddSocketServices (32H) Attributes

RegisterClient (10H) Client Data

ReplaceSocketServices (33H) Attributes

RequestWindow (21H) Attributes

Clients use the binding specific data areas as described in the sections that follow. Only the
unshaded areas of tables are binding specific. Shaded areas are the same in all environments.
Included text indicates binding specific changes from the original service definition. An ellipse (É)
is used to indicate text from the original service definition is unchanged and is not repeated in the
binding specific section.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 191

9.6 Client Callback Handler
Card Services performs asynchronous event notifications to registered clients. A binding specifies
how arguments are passed to and from a client callback handler. As with Card Services request
arguments, client callback arguments may be passed in registers, in stack-based packets or even in
global data areas. There are seven possible input arguments to a client callback handler:

Event The type of event notification being made to the client.

Socket/Function The socket and function experiencing the event.

Info An event specific value.

MTDRequest A binding specific pointer to an MTD request packet.

Buffer A binding specific pointer to an event specific buffer.

Misc An event specific value.

Client Data Data provided previously to Card Services in the arguments of the client's RegisterClient
request.

Many event notifications do not use all of the arguments. If an input argument is not used by Card
Services for an event notification, it must be ignored by the client.

An event notification never uses both the Buffer and Misc arguments. A binding may use the same
or overlapping representations for these arguments. Client callback handlers may modify the
Buffer to return information from a CLIENT_INFO event notification.

If an argument is not used to return information, the client callback handler must preserve the
argument and return it unmodified to Card Services. Some event notifications require Status to be
returned by the client callback handler. This is a Return Code as defined by Appendix C.

9.7 x86 Architecture Bindings
This section describes the Card Services bindings for x86 architecture systems.

There are a number of members of the x86 processor family offering up to three modes of
operations: real, protect and virtual (also known as V86). The x86 family also varies in addressable
memory space (1, 16 or 4096 megabytes), register size (16 or 32-bit) and memory management
capabilities (paging).

Processor Register Size Address Space Real Protect Virtual Paging

x86 16 1 MB Yes No No No

286 16 16 MB Yes Yes No No

386 and above 32 4096 MB Yes Yes Yes Yes

A real mode client is limited to one megabyte of address space and 16-bit registers. In protect mode,
clients can address much larger amounts of memory with 16 or, on some processors, 32-bit registers.

In V86 mode, multiple real mode clients operate independently as if they were the only real mode
client. A control program running in protect mode remaps memory space so each client believes it
is operating in the first megabyte of address space, addressing physical memory.

Different operating systems exploit different features of these processors. Due to the differences
between the capabilities of x86 processors and the manner that x86 operating systems use the
processor, this section actually defines four separate bindings.

BINDINGS

192 © 1999 PCMCIA/JEIDA

The different bindings are based on the type of client requiring Card Services support. An
environment must provide a binding for each type of client it supports. The six types of clients
defined by this section are:

DOS real mode clients Windows 16-bit protect mode clients

OS/2 16-bit protect mode clients Windows 32-bit protect mode VxD clients

Windows NT 4.0 Kernel Mode clients Win32 DLL Clients

9.7.1 DOS Real Mode Clients
This binding is used by DOS real mode clients, DOS clients using 'extender' technology to operate
in protect mode and DOS clients running in a virtual machine under OS/2 and Windows as a V86
task.

DOS real mode clients typically believe they are the only process in the host platform. They expect
to address physical memory by using segment addresses in the segment registers. They also use 16-
bit wide registers and assume there is no memory management or paging being performed by the
processor.

Some DOS real mode clients use extenders to operate in protect-mode. Performing most of their
activities in protect mode with larger address spaces and possibly larger registers, they shift down
to real-mode or V86 mode to access DOS, ROM BIOS or DOS-based device drivers and Terminate
and Stay Resident (TSR) programs. Even though these clients are actually operating in protect
mode, their interaction with Card Services (and other DOS-based services) is as a real mode or V86
client using 16-bit registers and what they believe to be physical memory addressing.

Environments which emulate the DOS environment must translate requests from DOS clients into
the appropriate format for the native environment of Card Services.

9.7.1.1 Presence Detection

DOS real mode clients detect the presence of Card Services by performing a Card Services
GetCardServicesInfo request. If this request returns SUCCESS, the presence of Card Services is
validated by confirming the Signature field of the ArgPacket contains the proper values. If the
request returns with other than SUCCESS or the Signature field does not contain the proper values,
the client must assume Card Services is not present.

9.7.1.2 Making Card Services Requests

DOS real mode clients make Card Services requests by placing the appropriate values in the
registers indicated below, placing the value AFH in the [AH] register and performing an INT 1AH.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 193

9.7.1.3 Argument Passing

DOS real mode clients pass all input arguments for Card Services requests in the following
registers:

[AH] CS ID AFH (as described above)

[AL] Service See Appendix A, Service Codes

[DX] Handle

[DI]:[SI] Pointer [DI] is the 16-bit segment, [SI] is the 16-bit offset

[CX] ArgLength

[ES]:[BX] ArgPointer

Card Services returns the following registers:

[CF] Success/Fail If [CF] reset
request succeeded,

If [CF] set
request failed

[AX] Status See Appendix C, Return Codes

[DX] Handle

[DI]:[SI] Pointer [DI] is the 16-bit segment, [SI] is the 16-bit offset

[CX] ArgLength (Unchanged from input)

[ES]:[BX] ArgPointer (Unchanged from input)

9.7.1.4 Binding Specific Arguments and Services

All Pointer and ArgPointer services arguments are far pointers. DOS real mode clients use
segment:offset addresses to point to what they believe is physical memory. As noted above, DOS
real mode clients operating in V86 mode may have their memory space re-mapped by a protect
mode control program. A Card Services implementation is responsible for transparently performing
any address translation that may be required.

AddSocketServices (32H)
CardServices(AddSocketServices, null, SSEntry, ArgLength, ArgPointer)

This service allows a new Socket Services handler to be added to those that Card Services is already
using. The Pointer argument contains the Socket Services real mode entry point. Card Services makes a
FAR CALL to Socket Services at the provided entry point to determine supported hardware.

Offset Field Size Type Value Detail/Description

0 Attributes 2 I ZERO Zero (0) indicating the SSEntry and DataPointer
arguments are real mode segment:offset pointers.

2 DataPointer 4 I N Pointer to Socket Services data area.
Segment:offset, stored in little-endian format
(offset first)

The Attributes field must be reset to zero (0) to indicate the Socket Services entry point in the Pointer
argument and the DataPointer fields are real mode segment:offset pointers.

The DataPointer field is used to establish data addressability for the Socket Services handler. This
value is passed to the Socket Services handler in the [DS] and [SI] registers when Card Services calls
the handler.

É

BINDINGS

194 © 1999 PCMCIA/JEIDA

Return Codes
BAD_ARG_LENGTH ArgLength not equal to six (6).

É

RegisterClient (10H)

É

Offset Field Size Type Value Detail/Description

0 Attributes 2 I N Bit-mapped (defined elsewhere).

2 Event Mask 2 I N Events to notify client.

4 Client Data 2 I N Reference data returned to client in [DI] for event
notification.

6 Client Data
Segment

2 I N Segment of client's data area. Placed in [DS]
before calling client callback handler for event
notification.

8 Client Data Offset 2 I N Reference data returned to client in [SI] for event
notification.

10 Reserved 2 I ZERO Reserved (must be reset to zero).

12 Version 2 I BCD the CSLevel this client expects.

É

ReplaceSocketServices (33H)
CardServices(ReplaceSocketServices, null, SSEntry, ArgLength,

ArgPointer)

This service allows a new Socket Services handler to replace an existing one that Card Services is
already using. The new Socket Services implementation must provide functionality that is backward
compatible with the Socket Services handler being replaced. The Pointer argument contains the
Socket Services real mode entry point. Card Services makes a FAR CALL to Socket Services at the
provided entry point to determine supported hardware.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Base logical socket number

2 NumSockets 2 I N Number of sockets to replace

4 Attributes 2 I ZERO Zero (0) indicating the SSEntry and DataPointer
arguments are real mode segment:offset pointers.

6 DataPointer 4 I N Pointer to Socket Services data area.
Segment:offset, stored in little-endian format
(offset first).

É

The Attributes field must be reset to zero (0) to indicate the Socket Services entry point in the Pointer
argument and the DataPointer fields are real mode segment:offset pointers.

The DataPointer field is used to establish data addressability for the Socket Services handler. This
value is passed to the Socket Services handler in the [DS] and [SI] registers when Card Services calls
the handler.

É

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 195

Return Codes
BAD_ARG_LENGTH ArgLength not equal to ten (10).

É

RequestWindow (21H)

É

The Attributes field is bit-mapped. It is defined as follows:

Bit 0 RESERVED (Reset to 0)

Bit 1 Memory type (set = attribute)

Bit 2 Enabled (set = true, reset = disabled)

Bit 3 Data path width (reset = 8-bit / set = 16-bit)

Bit 4 Paged (set = true)

Bit 5 Shared (set = true)

Bit 6 First Shared (set = true)

Bit 7 Window below one megabyte (set = true)

Bit 8 Card offsets are window sized (set = true)

Bit 9 Data path width (set = 32 bit / reset = see Bit 3)

Bit 10 Address register (set = expansion ROM / reset = memory
Base Address Register)

Bit 11 áá 12 Prefetchable / Cacheable
0 = neither prefetchable nor cacheable
1 = prefetchable but not cacheable
2 = both prefetchable and cacheable
3 = Reserved value, do not use.

Bits 13 áá 15 Base Address Register number (1-7). CardBus PC Card
only

The Window below one megabyte bit indicates that Card Services shall locate the window within the
first one megabyte of system address space. This bit is only significant when the Base field is reset to
zero (0) on entry.

É

BINDINGS

196 © 1999 PCMCIA/JEIDA

9.7.1.5 Client Callback Handler

DOS real mode clients pass all event notification arguments for client callback handlers in the
following registers:

[AH] Reserved Reserved (reset to zero)

[AL] Event See Appendix B, Event Codes

[BX] Misc An event specific value (when Buffer not used)

[ES]:[BX] Buffer Far pointer to event specific buffer (when Misc not used)

[CX] Socket/Function Socket and function experiencing the event, if applicable

[DX] Info An event specific value

[SI] Client Data From RegisterClient ArgPacket (see above)

[DI] Client Data From RegisterClient ArgPacket (see above)

[DS] Client Data From RegisterClient ArgPacket (see above)

The client callback handler returns the following registers:

[CF] Success/Fail If [CF] reset
event notification succeeded,

If [CF] set
event notification failed

[AX] Status See Appendix C, Return Codes

9.7.2 OS/2 16-bit Protect Mode Clients
This binding is used by OS/2 16-bit protect mode clients.

9.7.2.1 Presence Detection

OS/2 16-bit protect mode clients detect the presence of Card Services by performing an OS/2
AttachDD DevHlp function with the device driver name "PCMCIA$ ". (PCMCIA$ followed by a
single blank). If successful, this request returns the inter-device driver communication (IDC) entry
point for Card Services. If unsuccessful, the client must assume that Card Services is not present.

9.7.2.2 Making Card Services Requests

OS/2 16-bit protect mode clients make Card Services requests by placing the appropriate values in
the registers indicated below and making a FAR CALL to the entry point returned by the
AttachDD request described for presence detection above.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 197

9.7.2.3 Argument Passing

OS/2 16-bit protect mode clients pass all input arguments for Card Services requests in the
following registers:

[AH] CS ID AFH (as described above)

[AL] Service See Appendix A, Service Codes

[DX] Handle

[DI]:[SI] Pointer [DI] is the 16-bit selector, [SI] is the 16-bit offset

[CX] ArgLength

[ES]:[BX] ArgPointer In selector:offset form

Card Services returns the following registers:

[CF] Success/Fail If [CF] reset
request succeeded,

If [CF] set
request failed

[AX] Status See Appendix C, Return Codes

[DX] Handle

[DI]:[SI] Pointer [DI] is the 16-bit selector, [SI] is the 16-bit offset

[CX] ArgLength (Unchanged from input)

[ES]:[BX] ArgPointer (Unchanged from input)

9.7.2.4 Binding Specific Arguments and Services

All Pointer and ArgPointer services arguments are far pointers. OS/2 16-bit protect mode clients use
selector:offset addresses. A Card Services implementation is responsible for transparently
performing any address translation that may be required.

AddSocketServices (32H)
CardServices(AddSocketServices, null, SSEntry, ArgLength, ArgPointer)

This service allows a new Socket Services handler to be added to those that Card Services is already
using. The Pointer argument contains the Socket Services 16-bit protect mode entry point. Card
Services makes a FAR CALL to Socket Services at the provided entry point to determine supported
hardware.

Offset Field Size Type Value Detail/Description

0 Attributes 2 I 1 One (1) indicating the SSEntry and DataPointer
arguments are far 16-bit selector:offset pointers.

2 DataPointer 4 I N Pointer to Socket Services data area.
Selector:offset, stored in little-endian format
(offset first).

The Attributes field must be set to one (1) to indicate the Socket Services entry point in the Pointer
argument and the DataPointer field are far 16-bit selector:offset pointers.

The DataPointer field is used to establish data addressability for the Socket Services handler. This
value is passed to the Socket Services handler in the [DS] and [SI] registers when Card Services calls
the handler.

É

BINDINGS

198 © 1999 PCMCIA/JEIDA

Return Codes
BAD_ARG_LENGTH ArgLength not equal to six (6).

É

RegisterClient (10H)

É

Offset Field Size Type Value Detail/Description

0 Attributes 2 I N Bit-mapped (defined elsewhere).

2 Event Mask 2 I N Events to notify client.

4 Client Data 2 I N Reference data returned to client in [DI] for event
notification.

6 Client Data
Selector

2 I N Selector for client's data area. Placed in [DS]
before calling client callback handler for event
notification.

8 Client Data Offset 2 I N Reference data returned to client in [SI] for event
notification.

10 Reserved 2 I ZERO Reserved (must be reset to zero).

12 Version 2 I BCD The CSLevel this client expects.

É

ReplaceSocketServices (33H)
CardServices(ReplaceSocketServices, null, SSEntry, ArgLength, ArgPointer)

This service allows a new Socket Services handler to replace an existing one that Card Services is
already using. The new Socket Services implementation must provide functionality that is backward
compatible with the Socket Services handler being replaced. The Pointer argument contains the
Socket Services 16-bit protect mode entry point. Card Services makes a FAR CALL to Socket Services at
the provided entry point to determine supported hardware.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Base logical socket number

2 NumSockets 2 I N Number of sockets to replace

4 Attributes 2 I 1 One (1) indicating the SSEntry and DataPointer
arguments are far 16-bit selector:offset pointers.

6 DataPointer 4 I N Pointer to Socket Services data area.
Selector:offset, stored in little-endian format
(offset first).

É

The Attributes field must be set to one (1) to indicate the Socket Services entry point in the Pointer
argument and the DataPointer field are far 16-bit protect mode selector:offset pointers.

The DataPointer field is used to establish data addressability for the Socket Services handler. This
value is passed to the Socket Services handler in the [DS] and [SI] registers when Card Services calls
the handler.

É

Return Codes
BAD_ARG_LENGTH ArgLength not equal to ten (10).

É

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 199

RequestWindow (21H)

É

The Attributes field is bit-mapped. It is defined as follows:

Bit 0 RESERVED (Reset to 0)

Bit 1 Memory type (set = attribute)

Bit 2 Enabled (set = true, reset = disabled)

Bit 3 Data path width (reset = 8-bit / set = 16-bit)

Bit 4 Paged (set = true)

Bit 5 Shared (set = true)

Bit 6 First Shared (set = true)

Bit 7 Window below one megabyte (set = true)

Bit 8 Card offsets are window sized (set = true)

Bit 9 Data path width (set = 32 bit / reset = see Bit 3)

Bit 10 Address register (set = expansion ROM / reset = memory
Base Address Register)

Bit 11 Pre-fetch (set = prefetchable)

Bit 12 Cache (set = cacheable)

Bits 13 áá 15 Base Address Register number (1-7). CardBus PC Card
only

The Window below one megabyte bit indicates that Card Services shall locate the window within the
first one megabyte of system address space. This bit is only significant when the Base field is reset to
zero (0) on entry.

É

9.7.2.5 Client Callback Handler

OS/2 16-bit protect mode clients pass all event notification arguments for client callback handlers in
the following registers:

[AH] Reserved Reserved (reset to zero)

[AL] Event See Appendix B, Event Codes

[BX] Misc An event specific value (when Buffer not used)

[ES]:[BX] Buffer Far 16-bit protect mode selector:offset pointer to an event specific buffer
(when Misc not used)

[CX] Socket/Function Socket and function experiencing the event, if applicable

[DX] Info An event specific value

[SI] Client Data From RegisterClient ArgPacket (see above)

[DI] Client Data From RegisterClient ArgPacket (see above)

[DS] Client Data From RegisterClient ArgPacket (see above)

BINDINGS

200 © 1999 PCMCIA/JEIDA

The client callback handler returns the following registers:

[CF] Success/Fail If [CF] reset
event notification succeeded,

If [CF] set
event notification failed

[AX] Status See Appendix C, Return Codes

9.7.3 Windows 16-bit Protect Mode Clients
This binding is used by Windows 16-bit protect mode clients. It is an extension of the DOS real
mode client binding to support protect mode addressing. It may also be used by DOS 16-bit protect
mode clients running in a Windows virtual machine that do not switch to V86 mode to make DOS
real mode compatible use of Card Services.

It should also be noted that Windows operates on two modes: Standard and Enhanced. This binding
is intended to define the Card Services Windows 16-bit protect mode client interface for both
Standard and Enhanced mode Windows.

Environments which emulate the Windows environment must translate requests from Windows 16-
bit protect mode clients into the appropriate format for the native environment of Card Services.

9.7.3.1 Presence Detection

Windows 16-bit protect mode clients detect the presence of Card Services by performing a Card
Services GetCardServicesInfo request. If this request returns SUCCESS, the presence of Card
Services is validated by confirming the Signature field of the ArgPacket contains the proper values. If
the request returns with other than SUCCESS or the Signature field does not contain the proper
values, the client must assume Card Services is not present.

9.7.3.2 Making Card Services Requests

Windows 16-bit protect mode clients make Card Services requests by placing the appropriate values
in the registers indicated below, placing the value AFH in the [AH] register and performing an INT
1AH.

9.7.3.3 Argument Passing

Windows 16-bit protect mode clients pass all input arguments for Card Services requests in the
following registers:

[AH] CS ID AFH (as described above)

[AL] Service See Appendix A, Service Codes

[DX] Handle

[DI]:[SI] Pointer [DI] is the 16-bit selector, [SI] is the 16-bit offset

[CX] ArgLength

[ES]:[BX] ArgPointer In selector:offset format

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 201

Card Services returns the following registers:

[CF] Success/Fail If [CF] reset
request succeeded,

If [CF] set
request failed

[AX] Status See Appendix C, Return Codes

[DX] Handle

[DI]:[SI] Pointer [DI] is the 16-bit segment, [SI] is the 16-bit offset

[CX] ArgLength (Unchanged from input)

[ES]:[BX] ArgPointer (Unchanged from input)

9.7.3.4 Binding Specific Arguments and Services

All Pointer and ArgPointer services arguments are far pointers. Windows 16-bit protect mode clients
use selector:offset addresses. A Card Services implementation is responsible for transparently
performing any address translation that may be required.

AddSocketServices (32H)
CardServices(AddSocketServices, null, SSEntry, ArgLength, ArgPointer)

This service allows a new Socket Services handler to be added to those that Card Services is already
using. The Pointer argument contains the Socket Services 16-bit protect mode entry point. Card
Services makes a FAR CALL to Socket Services at the provided entry point to determine supported
hardware.

Offset Field Size Type Value Detail/Description

0 Attributes 2 I 1 One (1) indicating the SSEntry and DataPointer
arguments are far 16-bit protect mode pointers.

2 DataPointer 4 I N Pointer to Socket Services data area.
Selector:offset, stored in little-endian format
(offset first)

The Attributes field must be set to one (1) to indicate the Socket Services entry point in the Pointer
argument and the DataPointer field are far 16-bit protect mode selector:offset pointers.

The DataPointer field is used to establish data addressability for the Socket Services handler. This
value is passed to the Socket Services handler in the [DS] and [SI] registers when Card Services calls
the handler.

É

Return Codes
BAD_ARG_LENGTH ArgLength not equal to six (6).

É

BINDINGS

202 © 1999 PCMCIA/JEIDA

RegisterClient (10H)

É

Offset Field Size Type Value Detail/Description

0 Attributes 2 I N Bit-mapped.

2 Event Mask 2 I N Events to notify client.

4 Client Data 2 I N Reference data returned to client in [DI] for event
notification.

6 Client Data
Segment

2 I N Selector for client's data area. Placed in [DS]
before calling client callback handler for event
notification.

8 Client Data Offset 2 I N Reference data returned to client in [SI] for event
notification.

10 Reserved 2 I ZERO Reserved (must be reset to zero).

12 Version 2 I BCD The CSLevel this client expects.

É

ReplaceSocketServices (33H)
CardServices(ReplaceSocketServices, null, SSEntry, ArgLength, ArgPointer)

This service allows a new Socket Services handler to replace an existing one that Card Services is
already using. The new Socket Services implementation must provide functionality that is backward
compatible with the Socket Services handler being replaced. The Pointer argument contains the
Socket Services 16-bit protect mode entry point. Card Services makes a FAR CALL to Socket Services at
the provided entry point to determine supported hardware.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Base logical socket number

2 NumSockets 2 I N Number of sockets to replace

4 Attributes 2 I 1 One (1) indicating the SSEntry and DataPointer
arguments are far 16-bit protect mode pointers.

6 DataPointer 4 I N Pointer to Socket Services data area.
Selector:offset, stored in little-endian format
(offset first)

É

The Attributes field must be reset to one (1) to indicate the Socket Services entry point in the Pointer
argument and the DataPointer fields are far 16-bit protect mode selector:offset pointers.

The DataPointer field is used to establish data addressability for the Socket Services handler. This
value is passed to the Socket Services handler in the [DS] and [SI] registers when Card Services calls
the handler.

É

Return Codes
BAD_ARG_LENGTH ArgLength not equal to ten (10).

É

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 203

RequestWindow (21H)

É

The Attributes field is bit-mapped. It is defined as follows:

Bit 0 RESERVED (Reset to 0)

Bit 1 Memory type (set = attribute)

Bit 2 Enabled (set = true, reset = disabled)

Bit 3 Data path width (reset = 8-bit / set = 16-bit)

Bit 4 Paged (set = true)

Bit 5 Shared (set = true)

Bit 6 First Shared (set = true)

Bit 7 Window below one megabyte (set = true)

Bit 8 Card offsets are window sized (set = true)

Bit 9 Data path width (set = 32 bit / reset = see Bit 3)

Bit 10 Address register (set = expansion ROM / reset = memory
Base Address Register)

Bit 11 Pre-fetch (set = prefetchable)

Bit 12 Cache (set = cacheable)

Bits 13 áá 15 Base Address Register number (1-7). CardBus PC Card
only

The Window below one megabyte bit indicates that Card Services shall locate the window within the
first one megabyte of system address space. This bit is only significant when the Base field is reset to
zero (0) on entry.

É

9.7.3.5 Client Callback Handler

DOS real mode clients pass all event notification arguments for client callback handlers in the
following registers:

[AH] Reserved Reserved (reset to zero)

[AL] Event See Appendix B, Event Codes

[BX] Misc An event specific value (when Buffer not used)

[ES]:[BX] Buffer Far 16-bit protect mode selector:offset pointer to an event specific buffer
(when Misc not used)

[CX] Socket/Function Socket and function experiencing the event, if applicable

[DX] Info An event specific value

[SI] Client Data From RegisterClient ArgPacket (see above)

[DI] Client Data From RegisterClient ArgPacket (see above)

[DS] Client Data From RegisterClient ArgPacket (see above)

BINDINGS

204 © 1999 PCMCIA/JEIDA

The client callback handler returns the following registers:

[CF] Success/Fail If [CF] reset
event notification succeeded,

If [CF] set
event notification failed

[AX] Status See Appendix C, Return Codes

9.7.4 Windows Flat 32-bit Protect Mode VxD Clients
This binding is used by Virtual Device Driver (VxD) clients supporting Windows Enhanced mode.
Windows VxDs operate in 32-bit protect mode using a flat memory model. In the flat memory
model, all of the x86 segments registers contain selectors describing the same four gigabyte address
range.

A Windows VxD client must include the following service table:

Begin_Service_Table PCCARD

PCCARD_Service PCCARD_Get_Version

PCCARD_Service PCCARD_DoRequest

End_Service_Table PCCARD

9.7.4.1 Presence Detection

Windows VxD clients detect the presence of Card Services by using the VxD service interface and
performing a Get_Version request. If the request returns with the [CF] set, the client must assume
Card Services is not present. If the request returns with the [CF] reset, the version of Card Services
present is returned in the [AX] register.

9.7.4.2 Making Card Services Requests

Windows VxD clients make Card Services requests using the VxD service interface through the
VxDcall macro. Card Services requests are made by placing the required values in the registers
described below and using the following instruction:

VxDcall PCCARD_DoRequest

9.7.4.3 Argument Passing

Windows VxD clients pass all input arguments for Card Services requests in the following registers:

[AH] CS ID AFH (as described above)

[AL] Service See Appendix A, Service Codes

[DX] Handle

[ESI] Pointer 32-bit flat offset

[CX] ArgLength

[EBX] ArgPointer 32-bit flat offset

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 205

Card Services returns the following registers:

[CF] Success/Fail If [CF] reset
request succeeded,

If [CF] set
request failed

[AX] Status See Appendix C, Return Codes

[DX] Handle

[ESI] Pointer 32-bit flat offset

[CX] ArgLength (Unchanged from input)

[EBX] ArgPointer (Unchanged from input)

9.7.4.4 Binding Specific Arguments and Services

All Pointer and ArgPointer services arguments are 32-bit offsets.

AddSocketServices (32H)
CardServices(AddSocketServices, null, SSEntry, ArgLength, ArgPointer)

This service allows a new Socket Services handler to be added to those that Card Services is already
using. The Pointer argument contains the Socket Services 32-bit flat protect mode entry point. Card
Services makes a NEAR CALL to Socket Services at the provided entry point to determine supported
hardware.

Offset Field Size Type Value Detail/Description

0 Attributes 2 I 3 Three (3) indicating the SSEntry and DataPointer
arguments are 32-bit flat protect mode offsets.

2 DataPointer 4 I N 32-bit flat protect mode offset of the Socket
Services data area, stored in little-endian format.

The Attributes field must be set to three (3) to indicate the Socket Services entry point in the Pointer
argument and the DataPointer fields are 32-bit flat protect mode offsets.

The DataPointer field is used to establish data addressability for the Socket Services handler. This
value is passed to the Socket Services handler in the [ESI] register when Card Services calls the
handler.

É

Return Codes
BAD_ARG_LENGTH ArgLength not equal to six (6).

É

BINDINGS

206 © 1999 PCMCIA/JEIDA

RegisterClient (10H)

É

Offset Field Size Type Value Detail/Description

0 Attributes 2 I N Bit-mapped.

2 Event Mask 2 I N Events to notify client.

4 Client Data 2 I N Reference data returned to client in [DI] for event
notification.

6 Reserved 2 I ZERO Reserved (must be reset to zero).

8 Client Data Offset 4 I N 32-bit flat protect mode offset of client's data area.
Placed in [ESI] before calling client callback
handler for event notification.

12 Version 2 I BCD The CSLevel this client expects.

É

ReplaceSocketServices (33H)
CardServices(ReplaceSocketServices, null, SSEntry, ArgLength, ArgPointer)

This service allows a new Socket Services handler to replace an existing one that Card Services is
already using. The new Socket Services implementation must provide functionality that is backward
compatible with the Socket Services handler being replaced. The Pointer argument contains the
Socket Services 32-bit flat protect mode entry point. Card Services makes a NEAR CALL to Socket
Services at the provided entry point to determine supported hardware.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Base logical socket number

2 NumSockets 2 I N Number of sockets to replace

4 Attributes 2 I 3 Three (3) indicating the SSEntry and DataPointer
arguments are 32-bit flat protect mode offsets.

6 DataPointer 4 I N 32-bit flat protect mode offset of Socket Services
data area, stored in little-endian format.

É

The Attributes field must be set to three (3) to indicate the Socket Services entry point in the Pointer
argument and the DataPointer fields are 32-bit flat protect mode offsets.

The DataPointer field is used to establish data addressability for the Socket Services handler. This
value is passed to the Socket Services handler in the [ESI] register when Card Services calls the
handler.

É

Return Codes
BAD_ARG_LENGTH ArgLength not equal to ten (10).

É

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 207

RequestWindow (21H)

É

The Attributes field is bit-mapped. It is defined as follows:

Bit 0 RESERVED (Reset to 0)

Bit 1 Memory type (set = attribute)

Bit 2 Enabled (set = true, reset = disabled)

Bit 3 Data path width (reset = 8-bit / set = 16-bit)

Bit 4 Paged (set = true)

Bit 5 Shared (set = true)

Bit 6 First Shared (set = true)

Bit 7 Window below one megabyte (set = true)

Bit 8 Card offsets are window sized (set = true)

Bit 9 Data path width (set = 32 bit / reset = see Bit 3)

Bit 10 Address register (set = expansion ROM / reset = memory
Base Address Register)

Bit 11 Pre-fetch (set = prefetchable)

Bit 12 Cache (set = cacheable)

Bits 13 áá 15 RESERVED (reset to zero)

The Window below one megabyte bit indicates that Card Services shall locate the window within the
first one megabyte of system address space. This bit is only significant when the Base field is reset to
zero (0) on entry.

É

9.7.4.5 Client Callback Handler

DOS real mode clients pass all event notification arguments for client callback handlers in the
following registers:

[AH] Reserved Reserved (reset to zero)

[AL] Event See Appendix B, Event Codes

[BX] Misc An event specific value (when Buffer not used)

[EBX] Buffer 32-bit flat protect mode offset of an event specific buffer (when Misc not used)

[CX] Socket/Function Socket and function experiencing the event, if applicable

[DX] Info An event specific value

[ESI] Client Data From RegisterClient ArgPacket (see above)

[DI] Client Data From RegisterClient ArgPacket (see above)

The client callback handler returns the following registers:

[CF] Success/Fail If [CF] reset
event notification succeeded,

If [CF] set
event notification failed

[AX] Status See Appendix C, Return Codes

BINDINGS

208 © 1999 PCMCIA/JEIDA

9.7.5 Win32 DLL Clients
This binding is used by Win32 DLL clients.

9.7.5.1 Presence Detection

Win32 DLL clients detect the presence of Card Services by attaching to the Card Services DLL and
either using the OpenCS entry point to the DLL or by simply issuing a GetCardServicesInfo request
via the DoCardServices entry point.

W A R N I N G : A N Y C L I E N T S T H A T U T I L I Z E T H E
O P E N C A R D S E R V I C E S R E Q U E S T M U S T A L S O U S E T H E
C L O S E C A R D S E R V I C E S R E Q U E S T W H E N C O M P L E T E !

9.7.5.2 Making Card Services Requests

Win32 DLL clients make Card Services requests by properly filling in the parameters for the
argument packet and then invoking the DoCardServices entry point of the DLL.

9.7.5.3 Argument Passing

Win32 DLL clients pass all input arguments for Card Services requests using a C-style call that
exactly matches the definition of the Card Services request descriptions:

enum RetCode _cdecl
DoCardServices (enum CS_SUBFUNC, WORD & handle, FPTR & Far
Pointer, uint ArgLength, FPTR ArgBuffer) ;

Win32 DLL MTD clients that need to make MTDHelper requests of Card Services do so using a C-
style call:

enum RetCode cdecl DoMTD (MTD_REGS *);

9.7.5.4 Binding Specific Arguments and Services

All Pointer and ArgPointer services arguments are C-style Far Pointers (32-bit offsets).

AddSocketServices (32H)

É

The AddSocketServices request is not expected to be used by Win32 DLL clients. The only valid
return code is UNSUPPORTED_FUNCTION.

Return Codes
UNSUPPORTED_FUNCTION This service is not available for Win32 DLL Clients.

É

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 209

RegisterClient (10H)

É

Offset Field Size Type Value Detail/Description

0 Attributes 2 I N Bit-mapped.

2 Event Mask 2 I N Events to notify client.

4 Client Data 2 I N Reference data returned to client in ClientData for
event notification.

6 Reserved 2 I ZERO Reserved (must be reset to zero).

8 Client Data Offset 4 I N 32-bit offset of client's data area. Placed in
ClientOffset before calling client callback handler
for event notification.

12 Version 2 I BCD The CSLevel this client expects.

É

ReplaceSocketServices (33H)

É

The ReplaceSocketServices request is not expected to be used by Win32 DLL clients. The only valid
return code is UNSUPPORTED_FUNCTION.

Return Codes
UNSUPPORTED_FUNCTION This service is not available for Win32 DLL Clients.

RequestWindow (21H)

É

The Attributes field is bit-mapped. It is defined as follows:

Bit 0 RESERVED (Reset to 0)

Bit 1 Memory type (set = attribute)

Bit 2 Enabled (set = true, reset = disabled)

Bit 3 Data path width (reset = 8-bit / set = 16-bit)

Bit 4 Paged (set = true)

Bit 5 Shared (set = true)

Bit 6 First Shared (set = true)

Bit 7 Window below one megabyte (set = true)

Bit 8 Card offsets are window sized (set = true)

Bit 9 Data path width (set = 32 bit / reset = see Bit 3)

Bit 10 Address register (set = expansion ROM / reset = memory
Base Address Register)

Bit 11 Pre-fetch (set = prefetchable)

Bit 12 Cache (set = cacheable)

Bits 13 áá 15 RESERVED (reset to zero)

The Window below one megabyte bit indicates that Card Services shall locate the window within the
first one megabyte of system address space. This bit is only significant when the Base field is reset to
zero (0) on entry.

BINDINGS

210 © 1999 PCMCIA/JEIDA

É

9.7.5.5 Client Callback Handler

Win32 DLL clients pass all event notification arguments for client callback handlers in the following
structure:

typedef struct tagCallBackRegs // Call back register structure
{

DWORD dwReserved1; // Reserved, not used
union
{

DWORD dwReserved2; // Reserved, not used
WORD wClientData;

}
DWORD dwClientOff;
DWORD dwMTDRegOff;
DWORD dwReserved3; // Reserved, not used
union
{

WORD wMisc; // Misc
void *pBuffer; // Buffer (EBX)

};
union
{

DWORD dwReserved4; // Reserved, not used
WORD wInfo; // Info

};
union
{

DWORD dwReserved5; // Reserved, not used
union
{

WORD hLogSkt; // Logical socket
struct
{

BYTE bLogSkt; // Logical socket number
BYTE bSktFunction; // Logical function number

}
}

};
union
{

DWORD dwReserved6; // Reserved, not used
WORD wEvent; // CS Event
enum RETCODE wStatus; // CS Status

};
} CB_REGS;

9.7.6 Windows NT 4.0 Kernel Mode Clients
This binding is used by Kernel Mode clients supporting Windows NT 4.0. Windows NT Kernel
Mode device drivers operate in 32-bit protect mode using a flat memory model. In the flat memory

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 211

model, all of the x86 segments registers contain selectors describing the same four gigabyte address
range.

9.7.6.1 Presence Detection

Windows NT 4.0 Kernel Mode clients detect the presence of Card Services by using the service
IoGetDeviceObjectPointer to look for a device named Ò\\Device\\PCMCIA$Ó. If successful then
this service returns a pointer to the Card Services Device object. If the request is not sucessful then
Card Services is not present.

9.7.6.2 Making Card Services Requests

Windows NT 4.0 Kernel Mode clients make Card Services requests using by placing appropriate
values in the parameters and argument packet fields as described below and using the IOCTL
instructions:

#define FILE_DEVICE_PCCARD 0xc353
#define CS_REQUEST 0x800
#define IOCTL_PCMCIA_CardServices \

CTL_CODE(FILE_DEVICE_PCCARD, CS_REQUEST, \
 METHOD_BUFFERED, FILE_ANY_ACCESS)

9.7.6.3 Argument Passing

Windows NT 4.0 Kernel Mode clients pass all parameters for Card Services using the following data
table:

Offset Size (8-bit bytes) Title (input/output)

0 4 Service /retcode (Card Services return code)

4 2 Handle

6 2 Reserved

8 4 Pointer

12 4 ArgLength

16 n (value of ArgLength) ArgBuffer

9.7.6.4 Binding Specific Arguments and Services

All Pointer and ArgPointer service arguments are 32-bit pointers.

AddSocketServices (32H)
CardServices(AddSocketServices, null, SSEntry, ArgLength, ArgPointer)

This service allows a new Socket Services handler to be added to those that Card Services is already
using. The Pointer argument contains the Socket Services 32-bit entry point. Card Services makes a
CALL to Socket Services at the provided entry point to determine supported hardware.

Offset Field Size Type Value Detail/Description

0 Attributes 2 I 3 Three (3) indicating the SSEntry and DataPointer
arguments are 32-bit offsets.

2 DataPointer 4 I N 32-bit offset of the Socket Services data area,
stored in little-endian format.

BINDINGS

212 © 1999 PCMCIA/JEIDA

The Attributes field must be set to three (3) to indicate the Socket Services entry point in the Pointer
argument and the DataPointer fields are 32-bit offsets.

The DataPointer field is used to establish data addressability for the Socket Services handler. This
value is passed to the Socket Services handler in the [ESI] register when Card Services calls the
handler.

É

Return Codes
BAD_ARG_LENGTH ArgLength not equal to six (6).

É

RegisterClient (10H)

É

Offset Field Size Type Value Detail/Description

0 Attributes 2 I N Bit-mapped.

2 Event Mask 2 I N Events to notify client.

4 Client Data 2 I N Reference data returned to client in for event
notification.

6 Reserved 2 I ZERO Reserved (must be reset to zero).

8 Client Data Offset 4 I N 32-bit offset of client's data area. Placed in [ESI]
before calling client callback handler for event
notification.

12 Version 2 I BCD The CSLevel this client expects.

É

ReplaceSocketServices (33H)
CardServices(ReplaceSocketServices, null, SSEntry, ArgLength, ArgPointer)

This service allows a new Socket Services handler to replace an existing one that Card Services is
already using. The new Socket Services implementation must provide functionality that is backward
compatible with the Socket Services handler being replaced. The Pointer argument contains the
Socket Services 32-bit entry point. Card Services makes a CALL to Socket Services at the provided
entry point to determine supported hardware.

Offset Field Size Type Value Detail/Description

0 Socket 2 I N Base logical socket number

2 NumSockets 2 I N Number of sockets to replace

4 Attributes 2 I 3 Three (3) indicating the SSEntry and DataPointer
arguments are 32-bit offsets.

6 DataPointer 4 I N 32-bit offset of Socket Services data area, stored
in little-endian format.

É

The Attributes field must be set to three (3) to indicate the Socket Services entry point in the Pointer
argument and the DataPointer fields are 32-bit offsets.

The DataPointer field is used to establish data addressability for the Socket Services handler. This
value is passed to the Socket Services handler in the [ESI] register when Card Services calls the
handler.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 213

É

Return Codes
BAD_ARG_LENGTH ArgLength not equal to ten (10).

É

RequestWindow (21H)

É

The Attributes field is bit-mapped. It is defined as follows:

Bit 0 RESERVED (Reset to 0)

Bit 1 Memory type (set = attribute)

Bit 2 Enabled (set = true, reset = disabled)

Bit 3 Data path width (reset = 8-bit / set = 16-bit)

Bit 4 Paged (set = true)

Bit 5 Shared (set = true)

Bit 6 First Shared (set = true)

Bit 7 Window below one megabyte (set = true)

Bit 8 Card offsets are window sized (set = true)

Bit 9 Data path width (set = 32 bit / reset = see Bit 3)

Bit 10 Address register (set = expansion ROM / reset = memory
Base Address Register)

Bit 11 Pre-fetch (set = prefetchable)

Bit 12 Cache (set = cacheable)

Bits 13 áá 15 RESERVED (reset to zero)

The Window below one megabyte bit indicates that Card Services shall locate the window within the
first one megabyte of system address space. This bit is only significant when the Base field is reset to
zero (0) on entry.

É

BINDINGS

214 © 1999 PCMCIA/JEIDA

9.7.6.5 Client Callback Handler

Windows NT 4.0 Kernel Mode Card Services pass all event notification arguments for client callback
handlers at IRQL PASSIVE_LEVEL using the following notification method and data packet:

#define CS_CALLBACK 0x802
#define IOCTL_PCMCIA_CallBack \

CTL_CODE(FILE_DEVICE_PCCARD, CS_CALLBACK, \
 METHOD_BUFFERED, FILE_ANY_ACCESS)

Offset Size Description

0 4 Reserved, reset to zero

4 2 ClientData

6 2 Reserved, reset to zero

8 4 ClientOffset

12 4 MTDRegOff

16 4 Reserved

20 2 Misc | Buffer Lo 16-bits

22 2 Buffer Hi 16-bits

24 2 Info

26 2 Reserved, reset to zero

28 1 Socket

29 1 Function

30 2 Reserved, reset to zero

32 2 Event / Status

34 2 Reserved, reset to zero

Note: All Card Services Callback events occur at IRQL PASSIVE_LEVEL. If the
client needs to process the event at a higher level then the client is expected
to follow the appropriate steps to raise its IRQL.

9.7.6.6 Media Access Table and MTD Helper Access

The Media Access Table is defined to provide a pointer to the MTDHelper routines of Card Services.
In Windows NT 4.0 this pointer is not used, instead an IOCTL is defined below for Kernel Mode
MTD Clients use to access the MTD helper routines of Card Services. The placeholder for the
MTDHelper pointer has a null value. Kernel Mode Windows NT 4.0 MTD clients use the data
packet below to pass parameters to the MTDHelper routines.

#define CS_MTDHELPER 0x803
#define IOCTL_PCMCIA_MTD_HELPER \

CTL_CODE(FILE_DEVICE_PCCARD, CS_MTDHELPER, \
 METHOD_BUFFERED, FILE_ANY_ACCESS)

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 215

Offset Size Description

0 4 Reserved, reset to zero

4 2 CardOffsetHi (high 16 bits) | WndHostLo (lo 16 bits)

6 2 WndHostHi (high 16 bits)

8 2 CardOffsetLo (lo 16 bits)

10 10 Reserved

20 1 AccessSpeed | Vpp1 | MTDReadyEnabled

21 1 Attributes | Vpp2

22 2 Reserved

24 2 WindowHandle | Logical Socket

26 2 Reserved

28 2 WindowSize

30 2 Reserved

32 2 MTDHelperSubfunction / RetCode

34 2 Reserved

36 4 Reserved

40 2 ErrorFlag

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 217

A P P E N D I X - E

1 0 . M T D H E L P E R S E R V I C E R E F E R E N C E

These services are defined for x86 architecture system DOS and OS/2 environments. Address
include SEGMENT16 values for x86 architecture system DOS environments and SELECTOR16
values for x86 architecture system 286 protected mode OS/2 environments.

These services are requested via the Pointer in the Media Access Table passed to MTDs. These
services should only be used by an MTD during its processing of a read, write, or erase request.

All MTD Helper services pass information in the following registers:

[AX] = MTD Helper Entry Value

All MTD Helper services return [CF] reset to zero if the request was successfully processed. [CF] is
set to one if the request was not completed for some reason. [AH] is returned with a value that
indicates more detailed information of the request success/failure. This release of the Card Services
Interface Specification does not define the values of the return codes.

10.1 MTDModifyWindow (00H)
This service changes the mapping for the window descriptor to the currently specified values. The
values in the request packet for socket, window, system base address, and window size must not be
changed from the values originally passed to the MTD by MTDRequestWindow.

Entry:

[AX] = 00H Ñ MTDModifyWindow

[DX] = WindowHandle (returned by RequestWindow)

[BH] = Attributes

Bit 0 Reserved by Card Services (ignored by MTD)

Bit 1 Type of Memory (set = attribute, reset = common)

Bit 2 Reserved (reset to zero)

Bit 3 áá 4 Prefetchable / Cacheable

0 = neither prefetchable nor cacheable

1 = prefetchable but not cacheable

2 = both prefetchable and cacheable

3 = Reserved value, do not use

Bit 5 áá 7 Reserved (reset to zero)

[BL] = Access Speed

Bit 0 áá 2 Device Speed Code, if Speed Mantissa is zero

Bit 0 áá 2 Speed Exponent, if Speed Mantissa is non-zero

Bit 3 áá 6 Speed Mantissa

Bit 7 Use WAIT, if available

[DI]:[SI] = Card Offset

MTD HELPER SERVICE REFERENCE

218 © 1999 PCMCIA/JEIDA

Exit:

Returns [CF] reset to zero if service completed successfully. [CF] is set to one if the changes to the window
mapping could not be made.

The window must be released before the MTD returns from Card Services.

10.2 MTDReleaseWindow (01H)
This service returns to Card Services a window descriptor that an MTD had requested.

Entry:

[AX] = 01H Ñ MTDReleaseWindow

[DX] = WindowHandle (returned by RequestWindow)

Exit:

Returns [CF] reset to zero if service completed successfully. [CF] is set to one if this window had not been
previously requested.

The window descriptor is the same as for MTDModifyWindow.

10.3 MTDRequestWindow (02H)
This service returns a window descriptor that an MTD can use to control direct access to memory.

Entry:

[AX] = 02H Ñ MTDRequestWindow

[BH] = Attributes

Bit 0 Reserved by Card Services (ignored by MTD)

Bit 1 Type of Memory (set = attribute, reset = common)

Bit 2 Card offset alignment on size boundary (output only)

Bit 3 áá 4 Prefetchable / Cacheable

0 = neither prefetchable nor cacheable

1 = prefetchable but not cacheable

2 = both prefetchable and cacheable

3 = Reserved value, do not use

Bit 5 áá 7 Reserved (reset to zero)

[BL] = Access Speed

Bit 0 áá 2 Device Speed Code, if Speed Mantissa is zero

Bit 0 áá 2 Speed Exponent, if Speed Mantissa is non-zero

Bit 3 áá 6 Speed Mantissa

Bit 7 WAIT required

[CX] = Window size (in 4 KByte units), if zero, largest size available will be returned

[DX] = Logical socket

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 219

Exit:

[DX] = WindowHandle (returned by RequestWindow)

[ES]:[DI] = System address for Window

[CX] = Window size

[BH] = Bit 2 indicates the PC Card offset alignment requirements for PC Card mapping. If
reset to zero, the PC Card offset can be any 4 KByte boundary. If set to one, the
PC Card offset must be a window size multiple.

Returns [CF] reset to zero if service completed successfully. [CF] is set to one if no windows are available.

The window descriptor is the same as for MTDModifyWindow.

10.4 MTDSetVpp (03H)
This service sets the VPP1 and VPP2 levels for the socket to the requested values.

Entry:

[AX] = 03H Ñ MTDSetVpp

[BL] = VPP1 Voltage to set in 0.1V increments (0.0 V - 25.5 V)

[BH] = VPP2 Voltage to set in 0.1V increments (0.0 V - 25.5 V)

[DX] = Logical Socket

Exit:

An MTD must set VPP1 and VPP2 back to VCC after completing its request. Returns [CF] reset to zero if the service
completed successfully and the voltage is stable. [CF] is set to one if the voltage could not be set.

10.5 MTDRDYMask (04H)
This service enables and disables the READY event mask to allow an MTD to avoid generating
extraneous READY events in the system.

Entry:

[AX] = 04H Ñ MTDRDYMask

[BL] = set to one to enable, reset to zero to disable

Exit:

No exit parameters.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 221

A P P E N D I X - F

1 1 . M E D I A A C C E S S S E R V I C E S R E F E R E N C E

11.1 CardSetAddress
These services are defined for x86 architecture system compatible DOS and OS/2 environments.
Address include SEGMENT16 values for x86 architecture system DOS environments and
SELECTOR16 values for x86 architecture system 286 protected mode OS/2 environments.

Entry:

[AX]:[DX] = PC Card absolute address

[BH] = bit mapped attributes

Bit 0 = attribute memory (set to 1)
common memory (reset to 0)

Bit 1 = read requests (reset to 0)
write requests (set to 1)

Bit 2 = reserved (reset to 0)

Bit 3 áá 4 Prefetchable / Cacheable
0 = neither prefetchable nor cacheable
1 = prefetchable but not cacheable
2 = both prefetchable and cacheable
3 = Reserved value, do not use

Bit 5 áá 7 = reserved (reset to 0)

[BL] = access speed

[CX] = logical socket

Exit:

[DX] = MAT transfer token value for use by read/write requests

[DS]:[SI] = MAT transfer token value for use by read requests

Ñ or Ñ

[ES]:[DI] = MAT transfer token value for use by write requests

[CX] = maximum number of bytes that can be transferred when using auto-increment addressing before
another CardSetAddress is required

The processor direction flag is cleared which causes string instructions to increment system addresses.

Auto-increment PC Card memory addressing is turned on.

CardSetAddress must be called before performing any PC Card memory access with the other
media access requests. CardSetAddress controls the adapter to allow access to PC Card memory via
the other media access requests.

11.2 CardSetAutoInc
Entry:

[AX] = reset to 0 turns off auto-increment, set to 1 turns on auto-increment

MEDIA ACCESS SERVICES REFERENCE

222 © 1999 PCMCIA/JEIDA

Exit:

The processor direction flag is cleared which causes string instructions to increment system addresses.

CardSetAutoInc controls the adapter to turn on or off auto-incrementing. If auto-incrementing is
turned on, the Card requests with AI at the end requests must be used (see below). If auto-
incrementing is turned off, the non Card requests without the AI at the end must be used.

11.3 CardRead(Byte, Word, ByteAI, WordAI)
Entry:

[DX] = MAT transfer token value

[DS]:[SI] = MAT transfer token value

Exit:

[AX] = data read for ReadWord

Ñ or Ñ

[AL] = data read for ReadByte

[DX] = new MAT transfer token value

[DS]:[SI] = new MAT transfer token value

These routines read a byte or word from PC Card memory. The CardRead routines with AI at the
end must be used if auto-incrementing is turned on, and the CardRead routines without AI at the
end must be used if auto-incrementing is turned off.

11.4 CardRead(Words, WordsAI)
Entry:

[CX] = number of words to transfer

[DX] = MAT transfer token value

[DS]:[SI] = MAT transfer token value

[ES]:[DI] = pointer to buffer for data read

Exit:

[ES] = unchanged

[DI] = input [DI] + input [CX]

[CX] = number of bytes remaining

[DX] = new MAT transfer token value

[DS]:[SI] = new MAT transfer token value

CardReadWords and CardReadWordsAI read words from PC Card memory into the supplied
buffer. The current PC Card memory address must be word aligned. CardReadWordsAI can only
be used if auto-incrementing is turned on.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 223

11.5 CardWrite(Byte, Word, ByteAI, WordAI)
Entry:

[AX] = data to write for WriteWord

Ñ or Ñ

[AL] = data to write for WriteByte

[DX] = MAT transfer token value

[ES]:[DI] = MAT transfer token value

Exit:

[DX] = new MAT transfer token value

[ES]:[DI] = new MAT transfer token value

These routines write a byte or word to PC Card memory. The CardWrite routines followed by AI
must be used if auto-incrementing is turned on, and the CardWrite without AI at the end must be
used if auto-incrementing is turned off.

11.6 CardWrite(Words, WordsAI)
Entry:

[CX] = number of words to write

[DX] = MAT transfer token value

[ES]:[DI] = MAT transfer token value

[DS]:[SI] = pointer to buffer for data to write

Exit:

[DS] = unchanged

[SI] = input [SI] + input [CX]

[CX] = number of bytes remaining

[DX] = new MAT transfer token value

[ES]:[DI] = new MAT transfer token value

CardWriteWords and CardWriteWordsAI writes words to PC Card memory. The current PC Card
memory address must be word aligned. CardWriteWordsAI can only be used if auto-incrementing
is turned on.

11.7 CardCompare(Byte, ByteAI)
Entry:

[AL] = byte to compare

[DX] = magic value

[ES]:[DI] = magic value

MEDIA ACCESS SERVICES REFERENCE

224 © 1999 PCMCIA/JEIDA

Exit:

[DX] = new magic value

[ES]:[DI] = new magic value

CF = reset to zero (0) if compare was successful

11.8 CardCompare(Words, WordsAI)
Entry:

[CX] = number of words to compare

[DX] = magic value

[ES]:[DI] = magic value

[DS]:[SI] = pointer to buffer for data to compare

Exit:

[DS] = unchanged

[SI] = input [SI] + input [CX]

[CX] = number of bytes remaining

[DX] = new magic value

[ES]:[DI] = new magic value

CF = reset to zero (0) if compare was successful

CardCompareWords and CardCompareWordsAI compare words on the PC Card with words in the
supplied buffer. The current PC Card memory address must be word aligned.
CardCompareWordsAI can only be used if auto-incrementing is turned on.

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 225

A P P E N D I X - G

1 2 . A R G U M E N T U S A G E R E F E R E N C E

This table indicates which arguments are used for each Card Services request. The Handle
argument indicates input value followed by output value (Input/Output). If both values are the
same, one value is listed. A ü indicates that the argument is used for the listed request. No entry
for an argument indicates that the request does not use that argument. The value of the Status
argument is returned by Card Services to the requesting client.

Request Service Handle Pointer ArgLen ArgPtr Status

AccessConfigurationRegister ü ü ü ü

AddSocketServices ü entry ü ü ü

AdjustResourceInfo ü ü ü ü

CheckEraseQueue ü Queue ü ü

CloseMemory ü Memory/Ð ü

CopyMemory ü Memory ü ü ü

DeregisterClient ü Client/Ð ü

DeregisterEraseQueue ü Queue/Ð ü

GetCardServicesInfo ü ü ü ü

GetClientInfo ü Client ü ü ü

GetConfigurationInfo ü Ð/Client ü ü ü

GetEventMask ü Client ü ü ü

GetFirstClient ü Ð/Client ü ü ü

GetFirstPartition ü ü ü ü

GetFirstRegion ü Ð/Client ü ü ü

GetFirstTuple ü ü ü ü

GetNextClient ü Client/Client ü ü ü

GetNextPartition ü ü ü ü

GetNextRegion ü Ð/Client ü ü ü

GetNextTuple ü ü ü ü

GetStatus ü ü ü ü

GetTupleData ü ü ü ü

MapLogSocket ü ü ü ü

MapLogWindow ü Window ü ü ü

MapMemPage ü Window ü ü ü

MapPhySocket ü ü ü ü

MapPhyWindow ü Ð/Window ü ü ü

ModifyConfiguration ü Client ü ü ü

ModifyWindow ü Window ü ü ü

OpenMemory ü Client/Memory ü ü ü

ARGUMENT USAGE REFERENCE

226 © 1999 PCMCIA/JEIDA

Request Service Handle Pointer ArgLen ArgPtr Status

ReadMemory ü Memory buffer ü ü ü

RegisterClient ü Ð/Client entry ü ü ü

RegisterEraseQueue ü Client/Queue queuehead ü

RegisterMTD ü Client ü ü ü

RegisterTimer ü Client/Timer ü ü ü

ReleaseConfiguration ü Client ü ü ü

ReleaseExclusive ü Client ü ü ü

ReleaseIO ü Client ü ü ü

ReleaseIRQ ü Client ü ü ü

ReleaseSocketMask ü Client ü ü ü

ReleaseWindow ü Window/Ð ü

ReplaceSocketServices ü entry ü ü ü

RequestConfiguration ü Client ü ü ü

RequestExclusive ü Client ü ü ü

RequestIO ü Client ü ü ü

RequestIRQ ü Client ISREntry/- ü ü ü

RequestSocketMask ü Client ü ü ü

RequestWindow ü Client/Window ü ü ü

ResetFunction ü Client ü ü ü

ReturnSSEntry ü Ð/entry ü ü ü

SetEventMask ü Client ü ü ü

SetRegion ü ü ü ü

WriteMemory ü Memory buffer ü ü ü

ValidateCIS ü ü ü ü

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 227

A P P E N D I X - H

1 3 . C L I E N T C A L L B A C K A R G U M E N T U S A G E

This table indicates which arguments are used for each Card Services callback procedure. If both
values are the same, one value is listed. A ü indicates that the argument is used for the listed
request. No entry for an argument indicates that the request does not use that argument. The value
of the Status argument is returned by a client to Card Services.

Callback Status Service Socket Info MTD
Request

Buffer Misc Client
Data

Insertion

CARD_INSERTION ü ü Client
Handle

ü

Registration Completion

REGISTRATION_COMPLETE ü Client
Handle

ü

Status Change

BATTERY_DEAD ü ü ü

BATTERY_LOW ü ü ü

CARD_LOCK ü ü ü

CARD_UNLOCK ü ü ü

CARD_READY ü ü ü

CARD_REMOVAL ü ü ü

PM_SUSPEND ü ü ü ü ü

PM_RESUME ü ü Mode ü

WRITE_PROTECT ü ü ü ü

REQUEST_ATTENTION ü ü ü

Ejection/Insertion Requests

EJECTION_REQUEST ü ü ü ü

EJECTION_COMPLETE ü ü ü

INSERTION_REQUEST ü ü ü ü

INSERTION_COMPLETE ü ü ü

Exclusive

EXCLUSIVE_REQUEST ü ü ü ü

EXCLUSIVE_COMPLETE ü ü ü ü

RESET

RESET_REQUEST ü ü ü ü

RESET_PHYSICAL ü ü ü

CARD_RESET ü ü ü ü

RESET_COMPLETE ü ü ü ü

CLIENT CALLBACK ARGUMENT USAGE

228 © 1999 PCMCIA/JEIDA

Callback Status Service Socket Info MTD
Request

Buffer Misc Client
Data

Client Information

CLIENT_INFO ü ü ü ü

Erase Completion

ERASE_COMPLETE ü ü ü Erase
Que

Handle

ü

MTD Request

MTD_REQUEST ü ü ü ü ü ü

Timer

TIMER_EXPIRED ü Timer
Handle

ü

New Socket Services

SS_UPDATED ü ü ü ü

CARD SERVICES SPECIFICATION

© 1999 PCMCIA/JEIDA 229

A P P E N D I X - I

1 4 . O S C R I T I C A L S E C T I O N H A N D L I N G

Card Services is designed with the intention that a client should never find a situation in which a
Card Services call is failed because Card Services is not enterable. However, in a DOS system a TSR
or application which performs Card Services calls can be in the middle of a Card Services call and
the system can switch to another task because it is running under Windows, Task Swapper,
DesqView or a similar environment. The new task can then attempt to use the file system client
which in turn uses Card Services. This causes a critical error (Abort, Retry, Ignore, Fail) or other
catastrophic error to be returned because the file system will find Card Services cannot be entered,
since the previous task is still in Card Services.

For clients such as file systems (block/character device drivers, etc.), this is not a problem because
access to Card Services is synchronized through MS-DOS's own critical section handling, and the
task-switching environments have all been designed to not switch away from a task during the
middle of an MS-DOS function call. However, TSR's and generalized applications do not have the
same synchronization, and it is therefore necessary for any TSR or application which makes Card
Services calls to encapsulate ALL such calls within the Enter/Leave Critical Section APIs appropriate
to the detected task switching environment.

Clients in task-switching environments should use the Critical Section handler APIs appropriate to
such environments around EVERY call to Card Services. Information about these APIs can be found
in following:

Windows: The Windows Device Development Kit (DDK), Virtual Device
Adaptation Guide, Appendix D Ñ Windows INT 2F API.

MS-DOS Task Switcher: The MS-DOS 5.0 Programmer's Reference, Section 7.10, Task
Swapper Reference, and INT 2F Function 4BXXH.

DesqView: The DesqView User's Manual, Appendix J contains assembly code
fragments to allow the creation of DesqView aware applications,
including the necessary API calls.

230 © 1999 PCMCIA/JEIDA

