

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2000 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 16 June 2000. Printed in the United States of America.

Print:

 ISBN 0-7381-1815-X SH94790

PDF:

 ISBN 0-7381-1816-8 SS94790

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

IEEE Std 1003.1d-1999

(Amendment to
IEEE Std 1003.1-1990)

IEEE Standard for
Information Technology—Portable Operating
System Interface (POSIX

®

)—Part 1: System
Application Program Interface (API)—
Amendment d: Additional Realtime Extensions
[C Language]

Sponsor

Portable Application Standards Committee
of the
IEEE Computer Society

Approved 16 September 1999

IEEE-SA Standards Board

Abstract:

 This standard is part of the POSIX series of standards for applications and user inter-
faces to open systems. It defines the applications interface to system services for spawning a
process, timeouts for blocking services, sporadic server scheduling, execution time clocks and
timers, and advisory information for file management. This standard is stated in terms of its C
binding.

Keywords:

 API, application portability, C (programming language), data processing, open sys-
tems, operating system, portable application, POSIX, realtime

POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

IEEE Standards

 documents are developed within the IEEE Societies and the Standards Coordinating Com-
mittees of the IEEE Standards Association (IEEE-SA) Standards Board. Members of the committees serve
voluntarily and without compensation. They are not necessarily members of the Institute. The standards
developed within IEEE represent a consensus of the broad expertise on the subject within the Institute as
well as those activities outside of IEEE that have expressed an interest in participating in the development of
the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there
are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to
the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and
issued is subject to change brought about through developments in the state of the art and comments
received from users of the standard. Every IEEE Standard is subjected to review at least every five years for
revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is rea-
sonable to conclude that its contents, although still of some value, do not wholly reflect the present state of
the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership
affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of
text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they
relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the
Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of
all concerned interests, it is important to ensure that any interpretation has also received the concurrence of a
balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating
Committees are not able to provide an instant response to interpretation requests except in those cases where
the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

IEEE is the sole entity that may authorize the use of certification marks, trademarks, or other designations to
indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the
Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright
Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Cus-
tomer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; (978) 750-8400. Permission to photocopy
portions of any individual standard for educational classroom use can also be obtained through the Copy-
right Clearance Center.

Note: Attention is called to the possibility that implementation of this standard may
require use of subject matter covered by patent rights. By publication of this standard,
no position is taken with respect to the existence or validity of any patent rights in
connection therewith. The IEEE shall not be responsible for identifying patents for
which a license may be required by an IEEE standard or for conducting inquiries into
the legal validity or scope of those patents that are brought to its attention.

Contents

PAGE

Introduction . v

Section 1: General . 1
1.1 Scope . 1
1.3 Conformance 2

Section 2: Terminology and General Requirements 5
2.2 Definitions 5
2.3 General Concepts 6
2.7 C Language Definitions 7
2.8 Numerical Limits 8
2.9 Symbolic Constants 10

Section 3: Process Primitives 13
3.1 Process Creation and Execution 13

3.1.1 Process Creation 13
3.1.2 Execute a File 13
3.1.4 Spawn File Actions 14
3.1.5 Spawn Attributes 16
3.1.6 Spawn a Process 20

3.2 Process Termination 25
3.2.1 Wait for Process Termination 25

Section 4: Process Environment 27
4.8 Configurable System Variables 27

4.8.1 Get Configurable System Variables 27

Section 5: Files and Directories 29
5.7 Configurable Pathname Variables 29

5.7.1 Get Configurable Pathname Variables 29

Section 6: Input and Output Primitives 31
6.7 Asynchronous Input and Output 31

6.7.1 Data Definitions for Asynchronous Input and Output . . 31

Section 11: Synchronization 33
11.2 Semaphore Functions 33

11.2.6 Lock a Semaphore 33
11.2.7 Unlock a Semaphore 35

11.3 Mutexes . 35
11.3.3 Locking and Unlocking a Mutex 35

Section 13: Execution Scheduling 39
13.1 Scheduling Parameters 39

ii

13.2 Scheduling Policies 39
13.2.3 SCHED_OTHER 39
13.2.4 SCHED_SPORADIC 40

13.3 Process Scheduling Functions 41
13.3.1 Set Scheduling Parameters 41
13.3.3 Set Scheduling Policy and Scheduling Parameters . . . 42

13.4 Thread Scheduling 43
13.4.1 Thread Scheduling Attributes 43
13.4.3 Scheduling Allocation Domain 43
13.4.4 Scheduling Documentation 44

13.5 Thread Scheduling Functions 44
13.5.1 Thread Creation Scheduling Attributes 44
13.5.2 Dynamic Thread Scheduling Parameters Access 45

Section 14: Clocks and Timers 47
14.2 Clock and Timer Functions 47

14.2.1 Clocks 47
14.2.2 Create a Per-Process Timer 48

14.3 Execution Time Monitoring 48
14.3.1 CPU-time Clock Characteristics 48
14.3.2 Accessing a Process CPU-time Clock 49
14.3.3 Accessing a Thread CPU-time Clock 50

Section 15: Message Passing 53
15.2 Message Passing Functions 53

15.2.4 Send a Message to a Message Queue 53
15.2.5 Receive a Message from a Message Queue 55

Section 16: Thread Management 59
16.2 Thread Functions 59

16.2.2 Thread Creation 59

Section 18: Thread Cancellation 61
18.1 Thread Cancellation Overview 61

18.1.2 Cancellation Points 61

Section 19: Advisory Information 63
19.1 I/O Advisory Information and Space Control 63

19.1.1 File Advisory Information 63
19.1.2 File Space Control 64

19.2 Memory Advisory Information and Alignment Control 66
19.2.1 Memory Advisory Information 66
19.2.2 Aligned Memory Allocation 67

Annex A (informative) Bibliography 69
A.2 Other Standards 69
A.3 Historical Documentation and Introductory Texts 69

Annex B (informative) Rationale and Notes 71
B.2 Definitions and General Requirements 71
B.3 Process Primitives 71
B.13 Execution Scheduling 87

iii

B.14 Clocks and Timers 91
B.19 Advisory Information 102

Identifier Index . 105

Alphabetic Topical Index 107

FIGURES

Figure B-1 −− posix_spawn() Equivalent 86
Figure B-2 −− I/O Redirection with posix_spawn() 86
Figure B-3 −− Spawning a new Userid Process 87
Figure B-4 −− Spinlock Implementation 97
Figure B-5 −− Condition Wait Implementation 98
Figure B-6 −− pthread_join() with timeout 101

TABLES

Table 2-3a −− Optional Minimum Values 8
Table 2-5a −− Optional Run-Time Invariant Values 9
Table 2-6a −− Optional Pathname Variable Values 10
Table 2-10a −− Versioned Compile-Time Symbolic Constants 11
Table 4-3 −− Optional Configurable System Variables 27
Table 5-3 −− Optional Configurable Pathname Variables 29

iv

Introduction

(This introduction is not a normative part of IEEE Std 1003.1d-1999, Information Technology—
Portable Operating System Interface (POSIX)—Part 1: System Application Program Interface
(API)—Amendment d: Additional Realtime Extensions [C Language])

1 Editor’s Note: This introduction consists of material that will eventually be integrated into the base
2 POSIX.11) standard’s introduction (and the portion of Annex B that contains general rationale about

the3 standard). The introduction contains text that was previously held in either the foreword or
scope.4 As this portion of the standard is for information only, specific details of the integration
with5 POSIX.1 are left as an editorial exercise. The section and subclause structure of this document
follows6 that of POSIX.1. Sections that are not amended by this standard are omitted.

7 The purpose of this document is to supplement the base standard with interfaces and
functionality8 for applications having realtime requirements.

This9 standard defines systems interfaces to support the source portability of applications
with10 realtime requirements. The system interfaces are all extensions of or additions to

11 ISO/IEC 9945-1: 1990, Portable Operating System Interface for Computer Environments, as
amended12 by POSIX.1b and POSIX.1c. Although rooted in the culture defined by ISO/IEC

13 9945-1: 1990, the interfaces are focused upon the realtime application requirements,
which14 were beyond the ISO/IEC 9945-1: 1990 scope. The interfaces included in this stan-
dard15 are additions to the set required to make ISO/IEC 9945-1: 1990 minimally usable to
realtime16 applications on single processor systems.

The17 definition of realtime used in defining the scope of this standard is

18 Realtime in operating systems: the ability of the operating system to provide a
19 required level of service in a bounded response time.

The20 key elements of defining the scope are

21 (1) defining a sufficient set of functionality to cover the realtime application program
22 domain in the areas not covered by POSIX.1b and POSIX.1c;

23 (2) defining sufficient performance constraints and performance-related functions to
24 allow a realtime application to achieve deterministic response from the system;
25 and

26 (3) specifying changes or additions to improve or complete the definition of the facili-
27 ties specified in the previous real-time or threads extensions covered by POSIX.1b
28 and POSIX.1c.

Wherever29 possible, the requirements of other application environments were included in
the30 interface definition. The specific areas are noted in the scope overviews of each of the
interface31 areas given below.

The32 specific functional areas included in this standard and their scope include

33 — Spawn a process: new system services to spawn the execution of a new process in
34 an efficient manner.

35 — Timeouts for some blocking services: additional services that provide a timeout
36 capability to system services already defined in POSIX.1b and POSIX.1c, thus

37 __________________

38 1) See 2.3.3 in this standard for more information about these references.

Introduction v

39 allowing the application to include better error detection and recovery capabilities.

40 — Sporadic server scheduling: the addition of a new scheduling policy appropriate for
41 scheduling aperiodic processes or threads in hard realtime applications.

42 — Execution time clocks and timers: the addition of new clocks that measure the exe-
43 cution times of processes or threads, and the possibility to create timers based upon
44 these clocks, for runtime detection (and treatment) of execution time overruns.

45 — Advisory information for file management: addition of services that allow the appli-
46 cation to specify advisory information that can be used by the system to achieve
47 better or even deterministic response times in file management or input and output
48 (I/O) operations.

There49 are two other functional areas that were included in the scope of this standard, but
the50 balloting group considered that they were not ready yet for standardization:

51 — Device control: a new service to pass control information and commands between
52 the application and device drivers.

53 — Interrupt control: new services that allow the application to directly handle
54 hardware interrupts.

This55 standard has been defined exclusively at the source code level for the C programming
language.56 Although the interfaces will be portable, some of the parameters used by an
i57 mplementation may have hardware or configuration dependencies.

58 Related Standards Activities

59 Activities to extend this standard to address additional requirements are in progress, and
similar60 efforts can be anticipated in the future.

The61 following areas are under active consideration at this time or are expected to become
active62 in the near future:2)

63 (1) Additional system application program interfaces (APIs) in C language

64 (2) Ada and FORTRAN language bindings to (1)

65 (3) Shell and utility facilities

66 (4) Verification testing methods

67 (5) Realtime facilities

68 (6) Tracing facilities

69 (7) Fault tolerance

70 (8) Checkpoint/restart facilities

71 (9) Resource limiting facilities

72 (10) Network interface facilities

73 (11) System administration

74 __________________

2)75 A Standards Status Report that lists all current IEEE Computer Society standards projects is available from
76 the IEEE Computer Society, 1730 Massachusetts Avenue NW, Washington, DC 20036-1903; Telephone:
77 +1 202 371-0101; FAX: +1 202 728-9614. Working drafts of POSIX standards under development are available
78 from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ
79 08855-1331 (http://www.standards.ieee.org/).

vi Introduction

80 (12) Profiles describing application- or user-specific combinations of Open Systems
81 standards

82 (13) An overall guide to POSIX-based or -related Open Systems standards and profiles

Extensions83 are approved as ‘‘amendments’’ or ‘‘revisions’’ to this document, following the
84 IEEE and ISO/IEC procedures.

Approved85 amendments are published separately until the full document is reprinted and
such86 amendments are incorporated in their proper positions.

If87 you have interest in participating in the Portable Application Standards Committee
(88 PASC) working groups addressing these issues, please send your name, address, and
phone89 number to

90 Secretary, IEEE Standards Board
91 Institute of Electrical and Electronics Engineers, Inc.
92 P.O. Box 1331
93 445 Hoes Lane
94 Piscataway, NJ 08855-1331
95 USA

96 When writing, ask to have your letter forwarded to the chairperson of the appropriate
97 PASC working group. If you have interest in participating in this work at the interna-

tional98 level, contact your International Organization for Standardization/International
E99 lectrotechnical Committee (ISO/IEC) national body.

Introduction vii

100 This standard was prepared by the system services working group—realtime, sponsored
by101 the Portable Application Standards Committee of the IEEE Computer Society. At the
time102 this standard was approved, the membership of the system services working group—
realtime103 was as follows:

104 Portable Application Standards Committee

105 Chair: Lowell Johnson
106 Vice Chair: Joseph M. Gwinn
107 Functional Vice Chairs: Jay Ashford
108 Andrew Josey
109 Curtis Royster Jr.
110 Secretary: Nick Stoughton

111 IEEE System Services Working Group—Realtime

112 Chair: Joseph M. Gwinn
113 Susan Corwin (to 1995)
114 Secretary: Karen D. Gordon
115 Franklin C. Prindle (1996)
116 Lee Schemerhorn (to 1995)
117 Editor: Michael González
118 Robert D. Luken (to 1997)
119 Technical reviewers: Steve Brosky
120 Peter Dibble
121 Christoph Eck
122 Michael González
123 Karen D. Gordon
124 Joseph M. Gwinn
125 Franklin C. Prindle
126 Ballot coordinators: James T. Oblinger
127 Duane Hughes (to 1996)

128 Working Group

129 Ray Alderman Bill Gallmeister Kent Long
Larry130 Anderson Michael González Robert D. Luken
Pierre-Jean131 Arcos Karen D. Gordon James T. Oblinger
Charles132 R. Arnold Randy Greene Offer Pazy
V133 . Raj Avula Rick Greer Franklin C. Prindle
Theodore134 P. Baker Joseph M. Gwinn François Riche
Robert135 Barned Steven A. Haaser Gordon W. Ross
Richard136 M. Bergman Barbara Haleen Curtis Royster, Jr.
Nawaf137 Bitar Geoffrey R. Hall Webb Scales
Steve138 Brosky Patrick Hebert Lee Schermerhorn
David139 Butenhof Mary R. Hermann Lui Sha
Hans140 Petter Christiansen David Hughes Del Swanson
Susan141 Corwin Duane Hughes Barry Traylor
Bill142 Cox Michael B. Jones Stephen R. Wali
P143 eter Dibble Steve Kleiman Andrew E. Wheeler, Jr.
Christoph144 Eck Robert Knighten David Wilner
Michael145 Feustel C. Douglass Locke John Zolnowsky

viii Introduction

146 The following members of the balloting committee voted on this standard:

147 Phillip R. Acuff Michael González Diane Paul
Alejandro148 Alonso-Muñoz Karen D. Gordon Charles Pfleeger
Pierre-Jean149 Arcos Mars J. Gralia John Pijanowski
Jay150 Ashford Joseph M. Gwinn Franklin C. Prindle
Theodore151 P. Baker Steven A. Haaser Juan Antonio de la Puente
Robert152 Barned Chris J. Harding François Riche
Barbara153 K. Beauchamp Barry Hedquist Chuck Roark
Keith154 Bierman Karl Heubaum Hyman Rosen
Nawaf155 Bitar Andrew R. Huber Helmut Roth
David156 Black Duane Hughes Curtis Royster
David157 J. Blackwood Petr Janecek Richard Scalzo
Shirley158 Bockstahler-Brandt Lowell G. Johnson Richard Seibel
Mark159 Brown Michael B. Jones Keith Shillington
Alan160 Burns Andrew Josey W. Olin Sibert
Gregory161 Bussiere Michael J. Karels Jacob Slonim
H.162 L. Catala James J. Keys Nicholas M. Stoughton
Andrew163 B. Cheese Martin J. Kirk Gregory Swain
Michael164 W. Condry Thomas M. Kurihara Efstathios D. Sykas
Donald165 Cragun Mark Larsen Donn S. Terry
John166 S. Davies Martin Leisner Mark-Rene Uchida
Richard167 P. Draves Bruce Lewis Michael W. Vannier
Christoph168 Eck C. Douglass Locke Charlotte Wales
Philip169 H. Enslow Roger J. Martin Frederick N. Webb
W170 . Douglas Findley, Jr. Finnbarr P. Murphy Laurence Wolfe
Bill171 Gallmeister Richard E. Neese Oren Yuen
Michel172 P. Gien James T. Oblinger Ming De Zhou

173 The following organizational representatives voted on this standard:

174 James T. Oblinger Diane Paul Andrew Josey
175 NGCR OSSWG SAE X/Open Co. Ltd.

176 When the IEEE-SA Standards Board approved this standard on 16 September
1999,177 it had the following membership:

178 Richard J. Holleman, Chair
179 Donald N. Heirman, Vice Chair
180 Judith Gorman, Secretary

181 Satish K. Aggarwal James H. Gurney Louis-François Pau
Dennis182 Bodson Lowell G. Johnson Ronald C. Petersen
Mark183 D. Bowman Robert Kennelly Gerald H. Peterson
James184 T. Carlo E.G. ‘‘Al’’ Kiener John B. Posey
Gary185 R. Engmann Joseph L. Koepfinger∗ Gary S. Robinson
Harold186 E. Epstein L. Bruce McClung Akio Tojo
Jay187 Forster∗ Daleep C. Mohla Hans E. Weinrich
Ruben188 D. Garzon Robert F. Munzner Donald W. Zispe

189 ∗Member emeritus

Introduction ix

190 Also included is the following nonvoting IEEE-SA Standards Board liaison:

191 Robert E. Hebner

192 Yvette Ho Sang
193 IEEE Standards Project Editor

x Introduction

Information Technology—Portable Operating
System Interface (POSIX)—Part 1: System
Application Program Interface (API)—
Amendment d: Additional Realtime Extensions
[C Language]

Section 1: General

1 1.1 Scope

2 This standard defines realtime extensions to a standard operating system inter-
face3 and environment to support application portability at the source-code level. It
is4 intended to be used by both application developers and system implementers.

This5 standard will not change the base standard that it amends (including any
existing6 amendments) in such a way as to cause implementations or strictly con-
forming7 applications to no longer conform.

The8 scope is to take existing realtime operating system practice and add it to the
base9 standard. The definition of realtime used in defining the scope of this stan-
dard10 is

11 Realtime in operating systems: the ability of the operating system to
12 provide a required level of service in a bounded response time.

The13 key elements of defining the scope are

14 (1) defining a sufficient set of functionality to cover a significant part of the
15 realtime application programming domain, and

16 (2) defining sufficient performance constraints and performance related func-
17 tions to allow a realtime application to achieve deterministic response
18 from the system.

1.1 Scope 1

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

19 Specifically within the scope is to define interfaces that do not preclude high per-
formance20 implementations on traditional uniprocessor realtime systems. Wher-
ever21 possible, the requirements of other application environments were included
in22 the interface definition. The specific functional areas included in this document
and23 their scope include

24 — Spawn: A process creation primitive useful for systems that have difficulty
25 with fork() and as an efficient replacement for fork()/ exec.

26 — Timeouts: Alternatives to blocking primitives that provide a timeout
27 parameter to be specified.

28 — Execution time monitoring: A set of execution time monitoring primitives
29 that allow on-line measuring of thread and process execution times.

30 — Sporadic server: A scheduling policy for threads and processes that reserves
31 a certain amount of execution capacity for processing aperiodic events at a
32 given priority level.

33 — Advisory information: An interface that advises the implementation on
34 (portable) application behavior so that it can optimize the system.

T35 wo other functional areas were included in the scope of this standard, but the
balloting36 group considered that they were not ready yet for standardization

37 — Device control: A portable application interface to nonportable special
38 devices.

39 — Interrupt control: An interface that allows a process or thread to capture an
40 interrupt, to block awaiting the arrival of an interrupt, and to protect criti-
41 cal sections of code that are contended for by a user-written interrupt ser-
42 vice routine.

This43 standard has been defined exclusively at the source code level. Additionally,
although44 the interfaces will be portable, some of the numeric parameters used by
an45 implementation may have hardware dependencies.

46 1.3 Conformance

47 1.3.1 Implementation Conformance

148 .3.1.3 Conforming Implementation Options

49 ⇒⇒ 1.3.1.3 Conforming Implementation Options Add the following to the
50 table of implementation options that warrant requirement by applications or in
51 specifications:

2 1 General

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

52 {_POSIX_ADVISORY_INFO} Advisory Information option (in 2.9.3)
53 {_POSIX_CPUTIME} Process CPU-Time Clocks option (in 2.9.3)
54 {_POSIX_SPAWN} Spawn option (in 2.9.3)
55 {_POSIX_SPORADIC_SERVER} Process Sporadic Server option (in 2.9.3)
56 {_POSIX_THREAD_CPUTIME} Thread CPU-Time Clocks option (in 2.9.3)
57 {_POSIX_THREAD_SPORADIC_SERVER} Thread Sporadic Server option (in 2.9.3)
58 {_POSIX_TIMEOUTS} Timeouts option (in 2.9.3)

1.3 Conformance 3

IEEE Std 1003.1d-1999

4 1 General

IEEE Std 1003.1d-1999

Section 2: Terminology and General Requirements

1 2.2 Definitions

2 2.2.2 General Terms

3 ⇒⇒ 2.2.2 General Terms Modify the contents of 2.2.2 to add the following
4 definitions in the correct sorted order (disregarding the subclause numbers
5 shown here).

6 2.2.2.1 CPU time [execution time]: The time spent executing a process or
thread,7 including the time spent executing system services on behalf of that pro-
cess8 or thread. If the Threads option is supported, then the value of the CPU-time
clock9 for a process is implementation defined. With this definition the sum of all
the10 execution times of all the threads in a process might not equal the process exe-
cution11 time, even in a single-threaded process, because implementations may
di12 ffer in how they account for time during context switches or for other reasons.

13 2.2.2.2 CPU-time clock: A clock that measures the execution time of a particu-
lar14 process or thread.

15 2.2.2.3 CPU-time timer: A timer attached to a CPU-time clock.

16 2.2.2.4 execution time: See CPU time in 2.2.2.1.

17 2.2.3 Abbreviations

18 For this standard, the following abbreviations apply:

19 2.2.3.1 C Standard: ISO/IEC 9899: 1995, Information technology—Programming
languages20 —C.

21 2.2.3.2 POSIX.1: ISO/IEC 9945-1: 1996, (IEEE Std 1003.1-1996), Information
T22 echnology—Portable Operating System Interface (POSIX)—Part 1: System
Application23 Program Interface (API) [C Language].

2.2 Definitions 5

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

24 2.2.3.3 POSIX.1b: IEEE Std 1003.1b-1993, Information Technology—Portable
Operating25 System Interface (POSIX)—Part 1: System Application Program
Interface26 (API)—Amendment b: Realtime Extensions [C Language], as amended
by27 IEEE Std 1003.1i-1995, Information Technology—Portable Operating System
Interface28 (POSIX)—Part 1: System Application Program Interface (API)—
Amendment29 i: Technical Corrigenda to Realtime Extension [C Language].

30 2.2.3.4 POSIX.1c: IEEE Std 1003.1c-1995, Information Technology—Portable
Operating31 System Interface (POSIX)—Part 1: System Application Program
Interface32 (API)—Amendment c: Threads Extension [C Language].

33 2.2.3.5 POSIX.1d: IEEE Std 1003.1d-1999, this standard.

34 2.2.3.6 POSIX.5 ISO/IEC 14519:1998 {B1}1), POSIX Ada Language Interfaces—
Binding35 for System Application Program Interfaces (API) including Realtime
Extensions.36 (This standard includes IEEE Std 1003.5-1992 and IEEE Std 1003.5b-
1996.)37

38 2.3 General Concepts

39 ⇒⇒ 2.3 General Concepts—measurement of execution time: Add the follow-
40 ing subclause, in the proper order, to the existing items in 2.3:

41 2.3.1 measurement of execution time: The mechanism used to measure exe-
cution42 time shall be implementation defined. The implementation shall also
de43 fine to whom will be charged the CPU time that is consumed by interrupt
handlers44 and system services on behalf of the operating system. Execution or CPU

45 time is defined in 2.2.2.1.

46 ________________

1)47 The numbers in curly brackets, when preceded by a ‘‘B’’, correspond to the numbers of the
48 bibliography in Annex A.

6 2 Terminology and General Requirements

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

49 2.7 C Language Definitions

50 2.7.3 Headers and Function Prototypes

51 ⇒⇒ 2.7.3 Headers and Function Prototypes Add the following text after the
52 sentence ‘‘For other functions in this part of ISO/IEC 9945, the prototypes or
53 declarations shall appear in the headers listed below.’’:

54 Presence of some prototypes or declarations is dependent on implementation
55 options. Where an implementation option is not supported, the prototype or
56 declaration need not be found in the header.

57 ⇒⇒ 2.7.3 Headers and Function Prototypes Modify the contents of subclause
58 2.7.3 to add the following optional headers and functions, at the end of the
59 current list of headers and functions.

60 If the Advisory Information option is supported:

61 <<ffccnnttl l. .hh>> posix_fadvise(), posix_madvise(), posix_fallocate()

62 If the Message Passing option and the Timeouts option are supported:

63 <<mmqquueeuuee..hh>> mq_timedsend (), mq_timedreceive()

64 If the Thread CPU-Time Clocks option is supported:

65 <<pptthhrreeaadd..hh>> pthread_getcpuclockid()

66 If the Threads option and the Timeouts option are supported:

67 <<pptthhrreeaadd..hh>> pthread_mutex_timedlock()

68 If the Semaphores option and the Timeouts option are supported:

69 <<sseemmaapphhoorree..hh>> sem_timedwait()

70 If the Spawn option is supported:

71 <<ssppaawwnn..hh>> posix_spawn(), posix_spawnp(),
72 posix_spawn_file_actions_init(),
73 posix_spawn_file_actions_destroy(),
74 posix_spawn_file_actions_addclose(),
75 posix_spawn_file_actions_adddup2(),
76 posix_spawn_file_actions_addopen(),
77 posix_spawnattr_init(), posix_spawnattr_destroy(),
78 posix_spawnattr_getflags(), posix_spawnattr_setflags(),
79 posix_spawnattr_getpgroup(),
80 posix_spawnattr_setpgroup(),
81 posix_spawnattr_getsigmask(),
82 posix_spawnattr_setsigmask(),
83 posix_spawnattr_getsigdefault(),
84 posix_spawnattr_setsigdefault()

85 If the Spawn option and the Process Scheduling option are supported:

2.7 C Language Definitions 7

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

86 <<ssppaawwnn..hh>> posix_spawnattr_getschedpolicy(),
87 posix_spawnattr_setschedpolicy(),
88 posix_spawnattr_getschedparam(),
89 posix_spawnattr_setschedparam()

90 If the Advisory Information option is supported:

91 <<ssttddlli ibb..hh>> posix_memalign()

92 If the Process CPU-Time Clocks option is supported:

93 <<tti immee..hh>> clock_getcpuclockid()

94 2.8 Numerical Limits

95 2.8.2 Minimum Values

96 ⇒⇒ 2.8.2 Minimum Values Add the following text after the sentence starting
97 ‘‘The symbols in Table 2-3 shall be defined in... ’’

98 The symbols in Table 2-3a shall be defined in <<lli immiit tss..hh>> with the values
99 shown if the associated option is supported.

100 ⇒⇒ 2.8.2 Minimum Values Add Table 2-3a, described below, after Table 2-3.

101 Table 2-3a −− Optional Minimum Values__
102 Name Description Value Option__
103 {_POSIX_SS_REPL_MAX} The number of replenishment
104 operations that may be
105 simultaneously pending for
106 a particular sporadic
107 server scheduler.

4 Process Sporadic
Server or Thread
Sporadic Server

__LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

108 2.8.4 Run-Time Invariant Values (Possibly Indeterminate)

109 ⇒⇒ 2.8.4 Run-Time Invariant Values (Possibly Indeterminate) Replace the
110 whole subclause by the following text:

111 The symbols that appear in Table 2-5 that have determinate values shall be
112 defined in <<lli immiit tss..hh>>. The symbols that appear in Table 2-5a that have
113 determinate values shall be defined in <<lli immiit tss..hh>> if the associated option is
114 supported. If any of the values in Table 2-5 or Table 2-5a has a value that is
115 greater than or equal to the stated minimum, but is indeterminate, a definition
116 for that value shall not be defined in <<lli immiit tss..hh>>.

117 This indetermination might depend on the amount of available memory space
118 on a specific instance of a specific implementation. For the values defined in

8 2 Terminology and General Requirements

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

119 Table 2-5, the actual value supported by a specific instance shall be provided by
120 the sysconf () function. For the values defined in Table 2-5a, the actual value
121 supported by a specific instance shall be provided by the sysconf () function if
122 the associated option is supported.

123 ⇒⇒ 2.8.4 Run-Time Invariant Values (Possibly Indeterminate) Add
124 Table 2-5a, described next, after Table 2-5.

125 Table 2-5a −− Optional Run-Time Invariant Values
126 (Possibly Indeterminate)___
127 Name Description Minimum Value Option___
128 {SS_REPL_MAX} The maximum number of
129 replenishment opera-
130 tions that may be
131 simultaneously pending
132 for a particular
133 sporadic server
134 scheduler.

{_POSIX_SS_-
REPL_MAX}

Process Sporadic
Server or Thread
Sporadic Server

___LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

135 2.8.5 Pathname Variable Values

136 ⇒⇒ 2.8.5 Pathname Variable Values Replace the reference to Table 2-6 in the
137 first paragraph of this subclause by:

138 Table 2-6 or Table 2-6a

139 ⇒⇒ 2.8.5 Pathname Variable Values Replace the sentence ‘‘The actual value
140 supported for a specific pathname shall be provided by the pathconf() function ’’
141 with the following text:

142 For the values defined in Table 2-6, the actual value supported for a specific
143 pathname shall be provided by the pathconf() function. For the values defined
144 in Table 2-6a, the actual value supported for a specific pathname shall be pro-
145 vided by the pathconf() function if the associated option is supported.

146 ⇒⇒ 2.8.5 Pathname Variable Values Add Table 2-6a, described next, after
147 Table 2-6.

2.8 Numerical Limits 9

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

148 Table 2-6a −− Optional Pathname Variable Values___
149 Name Description Minimum Option
150 Values___
151 {POSIX_REC_INCR_XFER_SIZE} Recommended increment for
152 file transfer sizes
153 between the {POSIX_-
154 REC_MIN_XFER_SIZE}
155 and {POSIX_REC_MAX_-
156 XFER_SIZE} values.

not
specified

Advisory
Information

157 {POSIX_ALLOC_SIZE_MIN} Minimum number of bytes of
158 storage actually allocated
159 for any portion of a file.

not
specified

Advisory
Information

160 {POSIX_REC_MAX_XFER_SIZE} Maximum recommended file
161 transfer size.

not
specified

Advisory
Information

162 {POSIX_REC_MIN_XFER_SIZE} Minimum recommended file
163 transfer size.

not
specified

Advisory
Information

164 {POSIX_REC_XFER_ALIGN} Recommended file transfer
165 buffer alignment.

not
specified

Advisory
Information

___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

166 2.9 Symbolic Constants

167 2.9.3 Compile-Time Symbolic Constants for Portability Specifications

168 ⇒⇒ 2.9.3 Compile-Time Symbolic Constants for Portability Specifications
169 Change the first words in the first paragraph, currently saying ‘‘The constants
170 in Table 2-10 may be used... ’’ to the following:

171 The constants in Table 2-10 and Table 2-10a may be used...

172 ⇒⇒ 2.9.3 Compile-Time Symbolic Constants for Portability Specifications
173 Add the following sentence at the end of the first paragraph:

174 If any of the constants in Table 2-10a is defined, it shall be defined with the
175 value shown in that table. This value represents the version of the associated
176 option that is supported by the implementation.

177 ⇒⇒ 2.9.3 Compile-Time Symbolic Constants for Portability Specifications
178 Add Table 2-10a, shown below, after Table 2-10.

10 2 Terminology and General Requirements

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

179 Table 2-10a −− Versioned Compile-Time Symbolic Constants___
180 Name Value Description___
181 {_POSIX_ADVISORY_INFO} 199909L If this symbol is defined, the imple-
182 mentation supports the Advisory
183 Information option.

184 {_POSIX_CPUTIME} 199909L If this symbol is defined, the imple-
185 mentation supports the Process
186 CPU-Time Clocks option.

187 {_POSIX_SPAWN} 199909L If this symbol is defined, the imple-
188 mentation supports the Spawn
189 option.

190 {_POSIX_SPORADIC_SERVER} 199909L If this symbol is defined, the imple-
191 mentation supports the Process
192 Sporadic Server option.

193 {_POSIX_THREAD_CPUTIME} 199909L If this symbol is defined, the imple-
194 mentation supports the Thread
195 CPU-Time Clocks option.

196 {_POSIX_THREAD_SPORADIC_SERVER} 199909L If this symbol is defined, the imple-
197 mentation supports the Thread
198 Sporadic Server option.

199 {_POSIX_TIMEOUTS} 199909L If this symbol is defined, the imple-
200 mentation supports the Timeouts
201 option.

___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

202 ⇒⇒ 2.9.3 Compile-Time Symbolic Constants for Portability Specifications
203 Add the following paragraphs before the last paragraph in 2.9.3:

204 If the symbol {_POSIX_SPORADIC_SERVER} is defined, then the symbol
205 {_POSIX_PRIORITY_SCHEDULING} shall also be defined. If the symbol
206 {_POSIX_THREAD_SPORADIC_SERVER} is defined, then the symbol {_POSIX_-
207 THREAD_PRIORITY_SCHEDULING} shall also be defined.

208 If the symbol {_POSIX_CPUTIME} is defined, then the symbol {_POSIX_TIMERS}
209 shall also be defined. If the symbol {_POSIX_THREAD_CPUTIME} is defined,
210 then the symbol {_POSIX_TIMERS} shall also be defined.

2.9 Symbolic Constants 11

IEEE Std 1003.1d-1999

12 2 Terminology and General Requirements

IEEE Std 1003.1d-1999

Section 3: Process Primitives

1 3.1 Process Creation and Execution

2 3.1.1 Process Creation

33 .1.1.2 Description

4 ⇒⇒ 3.1.1.2 Process Creation—Description Add the following paragraphs to the
5 description of the fork() function:

6 If {_POSIX_CPUTIME} is defined:

7 The initial value of the CPU-time clock of the child process shall be set to
8 zero.

9 If {_POSIX_THREAD_CPUTIME} is defined:

10 The initial value of the CPU-time clock of the single thread of the child
11 process shall be set to zero.

12 3.1.2 Execute a File

313 .1.2.2 Description

14 ⇒⇒ 3.1.2.2 Execute a File—Description Add the following paragraph to the
15 description of the family of exec functions.

16 If {_POSIX_CPUTIME} is defined:

17 The new process image shall inherit the CPU-time clock of the calling
18 process image. This inheritance means that the process CPU-time clock
19 of the process being execed shall not be reinitialized or altered as a
20 result of the exec function other than to reflect the time spent by the
21 process executing the exec function itself.

22 If {_POSIX_THREAD_CPUTIME} is defined:

23 The initial value of the CPU-time clock of the initial thread of the new
24 process image shall be set to zero.

3.1 Process Creation and Execution 13

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

25 ⇒⇒ 3.1 Process Creation and Execution Add the following subclauses:

26 3.1.4 Spawn File Actions

27 Functions: posix_spawn_file_actions_init(), posix_spawn_file_actions_destroy(),
28 posix_spawn_file_actions_addclose(), posix_spawn_file_actions_adddup2(),
29 posix_spawn_file_actions_addopen().

30 3.1.4.1 Synopsis

31 ##iinncclluuddee <<ssyyss//ttyyppeess..hh>>
#32 #iinncclluuddee <<ssppaawwnn..hh>>

i33 inntt ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__iinniit t((
34 ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__tt ∗file_actions));;

i35 inntt ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__ddeessttrrooyy((
36 ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__tt ∗file_actions));;

i37 inntt ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__aaddddcclloossee((
38 ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__tt ∗file_actions,,
39 iinntt fildes));;

i40 inntt ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__aadddddduupp22((
41 ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__tt ∗file_actions,,
42 iinntt fildes,, i inntt newfildes));;

i43 inntt ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__aaddddooppeenn((
44 ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__tt ∗file_actions,,
45 iinntt fildes,, ccoonnsstt cchhaarr ∗path,,
46 iinntt oflag,, mmooddee__tt mode));;

47 3.1.4.2 Description

48 If {_POSIX_SPAWN} is defined:

49 A spawn file actions object is of type posix_spawn_file_actions_t (defined in
50 <<ssppaawwnn..hh>>) and is used to specify a series of actions to be performed by a
51 posix_spawn() or posix_spawnp() operation in order to arrive at the set of
52 open file descriptors for the child process given the set of open file descrip-
53 tors of the parent. This standard does not define comparison or assignment
54 operators for the type posix_spawn_file_actions_t.

55 The posix_spawn_file_actions_init() function initializes the object refer-
56 enced by file_actions to contain no file actions for posix_spawn() or
57 posix_spawnp() to perform.

58 The effect of initializing an already initialized spawn file actions object is
59 undefined.

60 The posix_spawn_file_actions_destroy() function destroys the object refer-
61 enced by file_actions; the object becomes, in effect, uninitialized. An imple-
62 mentation may cause posix_spawn_file_actions_destroy() to set the object
63 referenced by file_actions to an invalid value. A destroyed spawn file actions

14 3 Process Primitives

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

64 object can be reinitialized using posix_spawn_file_actions_init(); the results
65 of otherwise referencing the object after it has been destroyed are
66 undefined.

67 The posix_spawn_file_actions_addclose() function adds a close action to the
68 object referenced by file_actions that will cause the file descriptor fildes to
69 be closed [as if close(fildes) had been called] when a new process is spawned
70 using this file actions object.

71 The posix_spawn_file_actions_adddup2() function adds a dup2 action to the
72 object referenced by file_actions that will cause the file descriptor fildes to
73 be duplicated as newfildes [as if dup2(fildes, newfildes) had been called]
74 when a new process is spawned using this file actions object.

75 The posix_spawn_file_actions_addopen() function adds an open action to
76 the object referenced by file_actions that will cause the file named by path
77 to be opened [as if open(path, oflag, mode) had been called, and the returned
78 file descriptor, if not fildes, had been changed to fildes] when a new process
79 is spawned using this file actions object. If fildes was already an open file
80 descriptor, it shall be closed before the new file is opened.

81 A spawn file actions object, when passed to posix_spawn() or
82 posix_spawnp(), shall specify how the set of open file descriptors in the cal-
83 ling process is transformed into a set of potentially open file descriptors for
84 the spawned process. This transformation shall be as if the specified
85 sequence of actions was performed exactly once, in the context of the
86 spawned process (prior to execution of the new process image), in the order
87 in which the actions were added to the object; additionally, when the new
88 process image is executed, any file descriptor (from this new set) which has
89 its FD_CLOEXEC flag set will be closed (see 3.1.6).

O90 therwise:

91 Either the implementation shall support the
92 posix_spawn_file_actions_init(), posix_spawn_file_actions_destroy(),
93 posix_spawn_file_actions_addclose(), posix_spawn_file_actions_adddup2(),
94 and posix_spawn_file_actions_addopen() functions as described above, or
95 these functions shall not be provided.

96 3.1.4.3 Returns

97 Upon successful completion, the posix_spawn_file_actions_init(),
98 posix_spawn_file_actions_destroy(), posix_spawn_file_actions_addclose(),
99 posix_spawn_file_actions_adddup2(), or posix_spawn_file_actions_addopen()

operation100 shall return zero. Otherwise, an error number shall be returned to indi-
cate101 the error.

102 3.1.4.4 Errors

103 For each of the following conditions, if the condition is detected, the
104 posix_spawn_file_actions_init(), posix_spawn_file_actions_addclose(),
105 posix_spawn_file_actions_adddup2(), or posix_spawn_file_actions_addopen() func-

tion106 shall return the corresponding error number:

3.1 Process Creation and Execution 15

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

107 [ENOMEM] Insufficient memory exists to initialize or add to the spawn file
108 actions object.

F109 or each of the following conditions, if the condition is detected, the
110 posix_spawn_file_actions_destroy(), posix_spawn_file_actions_addclose(),
111 posix_spawn_file_actions_adddup2(), or posix_spawn_file_actions_addopen() func-

tion112 shall return the corresponding error number:

113 [EINVAL] The value specified by file_actions is invalid.

F114 or each of the following conditions, the posix_spawn_file_actions_addclose(),
115 posix_spawn_file_actions_adddup2(), or posix_spawn_file_actions_addopen() func-

tion116 shall return the corresponding error number:

117 [EBADF] The value specified by fildes is negative or greater than or equal
118 to {OPEN_MAX}.

It119 shall not be considered an error for the fildes argument passed to the
120 posix_spawn_file_actions_addclose(), posix_spawn_file_actions_adddup2(), or
121 posix_spawn_file_actions_addopen() functions to specify a file descriptor for which

the122 specified operation could not be performed at the time of the call. Any such
error123 will be detected when the associated file actions object is later used during a

124 posix_spawn() or posix_spawnp() operation.

125 3.1.4.5 Cross-References

126 close (), 6.3.1; dup2(), 6.2.1; open(), 5.3.1; posix_spawn(), 3.1.6; posix_spawnp(),
3.1.6;127

128 3.1.5 Spawn Attributes

129 Functions: posix_spawnattr_init(), posix_spawnattr_destroy(),
130 posix_spawnattr_getflags(), posix_spawnattr_setflags(),
131 posix_spawnattr_getpgroup(), posix_spawnattr_setpgroup(),
132 posix_spawnattr_getschedpolicy(), posix_spawnattr_setschedpolicy(),
133 posix_spawnattr_getschedparam(), posix_spawnattr_setschedparam(),
134 posix_spawnattr_getsigmask(), posix_spawnattr_setsigmask(),
135 posix_spawnattr_getsigdefault(), posix_spawnattr_setsigdefault().

16 3 Process Primitives

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

136 3.1.5.1 Synopsis

137 ##iinncclluuddee <<ssyyss//ttyyppeess..hh>>
#138 #iinncclluuddee <<ssiiggnnaall. .hh>>
#139 #iinncclluuddee <<ssppaawwnn..hh>>

i140 inntt ppoossiixx__ssppaawwnnaattttrr__iinniit t ((ppoossiixx__ssppaawwnnaattttrr__tt ∗attr));;

i141 inntt ppoossiixx__ssppaawwnnaattttrr__ddeessttrrooyy ((ppoossiixx__ssppaawwnnaattttrr__tt ∗attr));;

i142 inntt ppoossiixx__ssppaawwnnaattttrr__ggeettffl laaggss ((ccoonnsstt ppoossiixx__ssppaawwnnaattttrr__tt ∗attr,,
143 sshhoorrtt ∗flags));;

i144 inntt ppoossiixx__ssppaawwnnaattttrr__sseettffl laaggss ((ppoossiixx__ssppaawwnnaattttrr__tt ∗attr,,
145 sshhoorrtt flags));;

i146 inntt ppoossiixx__ssppaawwnnaattttrr__ggeettppggrroouupp ((ccoonnsstt ppoossiixx__ssppaawwnnaattttrr__tt ∗attr,,
147 ppiidd__tt ∗pgroup));;

i148 inntt ppoossiixx__ssppaawwnnaattttrr__sseettppggrroouupp ((ppoossiixx__ssppaawwnnaattttrr__tt ∗attr,,
149 ppiidd__tt pgroup));;

i150 inntt ppoossiixx__ssppaawwnnaattttrr__ggeettssiiggmmaasskk ((ccoonnsstt ppoossiixx__ssppaawwnnaattttrr__tt ∗attr,,
151 ssiiggsseett__tt ∗sigmask));;

i152 inntt ppoossiixx__ssppaawwnnaattttrr__sseettssiiggmmaasskk ((ppoossiixx__ssppaawwnnaattttrr__tt ∗attr,,
153 ccoonnsstt ssiiggsseett__tt ∗sigmask));;

i154 inntt ppoossiixx__ssppaawwnnaattttrr__ggeettssiiggddeeffaauullt t ((ccoonnsstt ppoossiixx__ssppaawwnnaattttrr__tt ∗attr,,
155 ssiiggsseett__tt ∗sigdefault));;

i156 inntt ppoossiixx__ssppaawwnnaattttrr__sseettssiiggddeeffaauullt t ((ppoossiixx__ssppaawwnnaattttrr__tt ∗attr,,
157 ccoonnsstt ssiiggsseett__tt ∗sigdefault));;

#158 #iinncclluuddee <<sscchheedd..hh>>

i159 inntt ppoossiixx__ssppaawwnnaattttrr__ggeettsscchheeddppoolli iccyy ((ccoonnsstt ppoossiixx__ssppaawwnnaattttrr__tt ∗attr,,
160 iinntt ∗schedpolicy));;

i161 inntt ppoossiixx__ssppaawwnnaattttrr__sseettsscchheeddppoolli iccyy ((ppoossiixx__ssppaawwnnaattttrr__tt ∗attr,,
162 iinntt schedpolicy));;

i163 inntt ppoossiixx__ssppaawwnnaattttrr__ggeettsscchheeddppaarraamm ((ccoonnsstt ppoossiixx__ssppaawwnnaattttrr__tt ∗attr,,
164 ssttrruucctt sscchheedd__ppaarraamm ∗schedparam));;

i165 inntt ppoossiixx__ssppaawwnnaattttrr__sseettsscchheeddppaarraamm ((ppoossiixx__ssppaawwnnaattttrr__tt ∗attr,,
166 ccoonnsstt ssttrruucctt sscchheedd__ppaarraamm ∗schedparam));;

167 3.1.5.2 Description

168 If {_POSIX_SPAWN} is defined:

169 A spawn attributes object is of type posix_spawnattr_t (defined in
170 <<ssppaawwnn..hh>>) and is used to specify the inheritance of process attributes
171 across a spawn operation. This standard does not define comparison or
172 assignment operators for the type posix_spawnattr_t.

173 The function posix_spawnattr_init() initializes a spawn attributes object
174 attr with the default value for all of the individual attributes used by the
175 implementation.

3.1 Process Creation and Execution 17

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

176 Each implementation shall document the individual attributes it uses and
177 their default values unless these values are defined by this standard.

178 The resulting spawn attributes object (possibly modified by setting indivi-
179 dual attribute values) is used to modify the behavior of posix_spawn() or
180 posix_spawnp() (see 3.1.6). After a spawn attributes object has been used to
181 spawn a process by a call to a posix_spawn() or posix_spawnp(), any func-
182 tion affecting the attributes object (including destruction) does not affect
183 any process that has been spawned in this way.

184 The posix_spawnattr_destroy() function destroys a spawn attributes object.
185 The effect of subsequent use of the object is undefined until the object is re-
186 initialized by another call to posix_spawnattr_init(). An implementation
187 may cause posix_spawnattr_destroy() to set the object referenced by attr to
188 an invalid value.

189 The ssppaawwnn--ffl laaggss attribute is used to indicate which process attributes
190 are to be changed in the new process image when invoking posix_spawn()
191 or posix_spawnp(). It is the inclusive OR of zero or more of the flags
192 POSIX_SPAWN_SETPGROUP, POSIX_SPAWN_RESETIDS,
193 POSIX_SPAWN_SETSIGMASK, and POSIX_SPAWN_SETSIGDEF. In addition,
194 if the Process Scheduling option is supported, the flags
195 POSIX_SPAWN_SETSCHEDULER and POSIX_SPAWN_SETSCHEDPARAM
196 shall also be supported. These flags are defined in <<ssppaawwnn..hh>>. The
197 default value of this attribute shall be with no flags set.

198 The posix_spawnattr_setflags() function is used to set the ssppaawwnn--ffl laaggss
199 attribute in an initialized attributes object referenced by attr. The
200 posix_spawnattr_getflags() function obtains the value of the ssppaawwnn--ffl laaggss
201 attribute from the attributes object referenced by attr.

202 The ssppaawwnn--ppggrroouupp attribute represents the process group to be joined by
203 the new process image in a spawn operation (if POSIX_SPAWN_SETPGROUP
204 is set in the ssppaawwnn--ffl laaggss attribute). The default value of this attribute
205 shall be zero.

206 The posix_spawnattr_setpgroup() function is used to set the ssppaawwnn--
207 ppggrroouupp attribute in an initialized attributes object referenced by attr. The
208 posix_spawnattr_getpgroup() function obtains the value of the ssppaawwnn--
209 ppggrroouupp attribute from the attributes object referenced by attr.

210 The ssppaawwnn--ssiiggmmaasskk attribute represents the signal mask in effect in the
211 new process image of a spawn operation (if POSIX_SPAWN_SETSIGMASK is
212 set in the ssppaawwnn--ffl laaggss attribute). The default value of this attribute is
213 unspecified.

214 The posix_spawnattr_setsigmask() function is used to set the ssppaawwnn--
215 ssiiggmmaasskk attribute in an initialized attributes object referenced by attr.
216 The posix_spawnattr_getsigmask() function obtains the value of the
217 ssppaawwnn--ssiiggmmaasskk attribute from the attributes object referenced by attr.

218 The ssppaawwnn--ssiiggddeeffaauullt t attribute represents the set of signals to be
219 forced to default signal handling in the new process image (if
220 POSIX_SPAWN_SETSIGDEF is set in the ssppaawwnn--ffl laaggss attribute). The
221 default value of this attribute shall be an empty signal set.

18 3 Process Primitives

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

222 The posix_spawnattr_setsigdefault() function is used to set the ssppaawwnn--
223 ssiiggddeeffaauullt t attribute in an initialized attributes object referenced by attr.
224 The posix_spawnattr_getsigdefault() function obtains the value of the
225 ssppaawwnn--ssiiggddeeffaauullt t attribute from the attributes object referenced by
226 attr.

O227 therwise:

228 Either the implementation shall support the posix_spawnattr_init(),
229 posix_spawnattr_destroy(), posix_spawnattr_getflags(),
230 posix_spawnattr_setflags(), posix_spawnattr_getpgroup(),
231 posix_spawnattr_setpgroup(), posix_spawnattr_getsigmask(),
232 posix_spawnattr_setsigmask(), posix_spawnattr_getsigdefault(), and
233 posix_spawnattr_setsigdefault() functions as described above, or these func-
234 tions shall not be provided.

If235 {_POSIX_SPAWN} and {_POSIX_PRIORITY_SCHEDULING} are both defined:

236 The ssppaawwnn--sscchheeddppoolli iccyy attribute represents the scheduling policy to be
237 assigned to the new process image in a spawn operation (if
238 POSIX_SPAWN_SETSCHEDULER is set in the ssppaawwnn--ffl laaggss attribute).
239 The default value of this attribute is unspecified.

240 The posix_spawnattr_setschedpolicy() function is used to set the ssppaawwnn--
241 sscchheeddppoolli iccyy attribute in an initialized attributes object referenced by
242 attr. The posix_spawnattr_getschedpolicy() function obtains the value of the
243 ssppaawwnn--sscchheeddppoolli iccyy attribute from the attributes object referenced by
244 attr.

245 The ssppaawwnn--sscchheeddppaarraamm attribute represents the scheduling parameters
246 to be assigned to the new process image in a spawn operation (if
247 POSIX_SPAWN_SETSCHEDULER or POSIX_SPAWN_SETSCHEDPARAM is set
248 in the ssppaawwnn--ffl laaggss attribute). The default value of this attribute is
249 unspecified.

250 The posix_spawnattr_setschedparam() function is used to set the ssppaawwnn--
251 sscchheeddppaarraammattribute in an initialized attributes object referenced by attr.
252 The posix_spawnattr_getschedparam() function obtains the value of the
253 ssppaawwnn--sscchheeddppaarraamm attribute from the attributes object referenced by
254 attr.

O255 therwise:

256 Either the implementation shall support the
257 posix_spawnattr_getschedpolicy(), posix_spawnattr_setschedpolicy(),
258 posix_spawnattr_getschedparam(), and posix_spawnattr_setschedparam()
259 functions as described above, or these functions shall not be provided.

Additional260 attributes, their default values, and the names of the associated func-
tions261 to get and set those attribute values are implementation defined.

262 3.1.5.3 Returns

263 If successful, the posix_spawnattr_init(), posix_spawnattr_destroy(),
264 posix_spawnattr_setflags(), posix_spawnattr_setpgroup(),
265 posix_spawnattr_setschedpolicy(), posix_spawnattr_setschedparam(),

3.1 Process Creation and Execution 19

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

266 posix_spawnattr_setsigmask(), and posix_spawnattr_setsigdefault() functions
shall267 return zero. Otherwise, an error number shall be returned to indicate the
error.268

If269 successful, the posix_spawnattr_getflags(), posix_spawnattr_getpgroup(),
270 posix_spawnattr_getschedpolicy(), posix_spawnattr_getschedparam(),
271 posix_spawnattr_getsigmask(), and posix_spawnattr_getsigdefault() functions

shall272 return zero and store the value of the ssppaawwnn--ffl laaggss , ssppaawwnn--ppggrroouupp,
273 ssppaawwnn--sscchheeddppoolli iccyy , ssppaawwnn--sscchheeddppaarraamm, ssppaawwnn--ssiiggmmaasskk , or ssppaawwnn--

s274 siiggddeeffaauullt t attribute of attr into the object referenced by the flags, pgroup,
275 schedpolicy, schedparam, sigmask, or sigdefault parameter, respectively. Other-

wise,276 an error number shall be returned to indicate the error.

277 3.1.5.4 Errors

278 If any of the following conditions occur, the posix_spawnattr_init() function shall
return279 the corresponding error value:

280 [ENOMEM] Insufficient memory exists to initialize the spawn attributes
281 object.

F282 or each of the following conditions, if the condition is detected, the
283 posix_spawnattr_destroy(), posix_spawnattr_getflags(),
284 posix_spawnattr_setflags(), posix_spawnattr_getpgroup(),
285 posix_spawnattr_setpgroup(), posix_spawnattr_getschedpolicy(),
286 posix_spawnattr_setschedpolicy(), posix_spawnattr_getschedparam(),
287 posix_spawnattr_setschedparam(), posix_spawnattr_getsigmask(),
288 posix_spawnattr_setsigmask(), posix_spawnattr_getsigdefault(), and
289 posix_spawnattr_setsigdefault() functions shall return the corresponding error

value:290

291 [EINVAL] The value specified by attr is invalid.

F292 or each of the following conditions, if the condition is detected, the
293 posix_spawnattr_setflags(), posix_spawnattr_setpgroup(),
294 posix_spawnattr_setschedpolicy(), posix_spawnattr_setschedparam(),
295 posix_spawnattr_setsigmask(), and posix_spawnattr_setsigdefault() functions

shall296 return the corresponding error value:

297 [EINVAL] The value of the attribute being set is not valid.

298 3.1.5.5 Cross-References

299 posix_spawn(), 3.1.6; posix_spawnp(), 3.1.6.

300 3.1.6 Spawn a Process

301 Functions: posix_spawn(), posix_spawnp().

20 3 Process Primitives

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

302 3.1.6.1 Synopsis

303 ##iinncclluuddee <<ssyyss//ttyyppeess..hh>>
#304 #iinncclluuddee <<ssppaawwnn..hh>>

i305 inntt ppoossiixx__ssppaawwnn((ppiidd__tt ∗pid,,
306 ccoonnsstt cchhaarr ∗path,,
307 ccoonnsstt ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__tt ∗file_actions,,
308 ccoonnsstt ppoossiixx__ssppaawwnnaattttrr__tt ∗attrp,,
309 cchhaarr ∗∗ ccoonnsstt argv[[]],,
310 cchhaarr ∗∗ ccoonnsstt envp[[]]));;

i311 inntt ppoossiixx__ssppaawwnnpp((ppiidd__tt ∗pid,,
312 ccoonnsstt cchhaarr ∗file,,
313 ccoonnsstt ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__tt ∗file_actions,,
314 ccoonnsstt ppoossiixx__ssppaawwnnaattttrr__tt ∗attrp,,
315 cchhaarr ∗∗ ccoonnsstt argv[[]],,
316 cchhaarr ∗∗ ccoonnsstt envp[[]]));;

317 3.1.6.2 Description

318 If {_POSIX_SPAWN} is defined:

319 The posix_spawn() and posix_spawnp() functions shall create a new process
320 (child process) from the specified process image. The new process image is
321 constructed from a regular executable file called the new process image file.

322 When a C program is executed as the result of this call, it shall be entered
323 as a C language function call as follows:

324 iinntt mmaaiinn ((iinntt argc,, cchhaarr ∗argv[[]]));;

325 where argc is the argument count and argv is an array of character
326 pointers to the arguments themselves. In addition, the variable

327 eexxtteerrnn cchhaarr ∗∗environ;;

328 is initialized as a pointer to an array of character pointers to the environ-
329 ment strings.

330 The argument argv is an array of character pointers to null-terminated
331 strings. The last member of this array shall be a NULL pointer and is not
332 counted in argc. These strings constitute the argument list available to the
333 new process image. The value in argv[0] should point to a filename that is
334 associated with the process image being started by the posix_spawn() or
335 posix_spawnp() function.

336 The argument envp is an array of character pointers to null-terminated
337 strings. These strings constitute the environment for the new process
338 image. The environment array is terminated by a NULL pointer.

339 The number of bytes available for the child process’s combined argument
340 and environment lists is {ARG_MAX}. The implementation shall specify in
341 the system documentation (see 1.3.1) whether any list overhead, such as
342 length words, null terminators, pointers, or alignment bytes, is included in
343 this total.

344 The path argument to posix_spawn() is a pathname that identifies the new
345 process image file to execute.

3.1 Process Creation and Execution 21

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

346 The file parameter to posix_spawnp() shall be used to construct a pathname
347 that identifies the new process image file. If the file parameter contains a
348 slash character, the file parameter shall be used as the pathname for the
349 new process image file. Otherwise, the path prefix for this file shall be
350 obtained by a search of the directories passed as the environment variable
351 PATH (see 2.6). If this environment variable is not defined, the results of
352 the search are implementation defined.

353 If file_actions is a NULL pointer, then file descriptors open in the calling
354 process shall remain open in the child process, except for those whose
355 close-on-exec flag FD_CLOEXEC is set (see 6.5.2 and 6.5.1). For those file
356 descriptors that remain open, all attributes of the corresponding open file
357 descriptions, including file locks (see 6.5.2), shall remain unchanged.

358 If file_actions is not NULL, then the file descriptors open in the child pro-
359 cess shall be those open in the calling process as modified by the spawn file
360 actions object pointed to by file_actions and the FD_CLOEXEC flag of each
361 remaining open file descriptor after the spawn file actions have been pro-
362 cessed. The effective order of processing the spawn file actions shall be

363 1. The set of open file descriptors for the child process shall initially be
364 the same set as is open for the calling process. All attributes of the
365 corresponding open file descriptions, including file locks (see 6.5.2),
366 shall remain unchanged.

367 2. The signal mask and the effective user and group IDs for the child pro-
368 cess shall be changed as specified in the attributes object referenced
369 by attrp.

370 3. The file actions specified by the spawn file actions object shall be per-
371 formed in the order in which they were added to the spawn file actions
372 object.

373 4. Any file descriptor that has its FD_CLOEXEC flag set (see 6.5.2) shall
374 be closed.

375 The posix_spawnattr_t spawn attributes object type is defined in
376 <<ssppaawwnn..hh>>. It shall contain at least the attributes described in 3.1.5.

377 If the POSIX_SPAWN_SETPGROUP flag is set in the ssppaawwnn--ffl laaggss attribute
378 of the object referenced by attrp and the ssppaawwnn--ppggrroouupp attribute of the
379 same object is non-zero, then the child’s process group shall be as specified
380 in the ssppaawwnn--ppggrroouupp attribute of the object referenced by attrp.

381 As a special case, if the POSIX_SPAWN_SETPGROUP flag is set in the
382 ssppaawwnn--ffl laaggss attribute of the object referenced by attrp and the ssppaawwnn--
383 ppggrroouupp attribute of the same object is set to zero, then the child shall be in
384 a new process group with a process group ID equal to its process ID.

385 If the POSIX_SPAWN_SETPGROUP flag is not set in the ssppaawwnn--ffl laaggss
386 attribute of the object referenced by attrp, the new child process shall
387 inherit the parent’s process group.

388 If {_POSIX_PRIORITY_SCHEDULING} is defined and the
389 POSIX_SPAWN_SETSCHEDPARAM flag is set in the ssppaawwnn--ffl laaggss attribute
390 of the object referenced by attrp, but POSIX_SPAWN_SETSCHEDULER is not
391 set, the new process image shall initially have the scheduling policy of the
392 calling process with the scheduling parameters specified in the ssppaawwnn--

22 3 Process Primitives

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

393 sscchheeddppaarraammattribute of the object referenced by attrp.

394 If {_POSIX_PRIORITY_SCHEDULING} is defined and the
395 POSIX_SPAWN_SETSCHEDULER flag is set in ssppaawwnn--ffl laaggss attribute of
396 the object referenced by attrp (regardless of the setting of the
397 POSIX_SPAWN_SETSCHEDPARAM flag), the new process image shall ini-
398 tially have the scheduling policy specified in the ssppaawwnn--sscchheeddppoolli iccyy
399 attribute of the object referenced by attrp and the scheduling parameters
400 specified in the ssppaawwnn--sscchheeddppaarraammattribute of the same object.

401 The POSIX_SPAWN_RESETIDS flag in the ssppaawwnn--ffl laaggss attribute of the
402 object referenced by attrp governs the effective user ID of the child process.
403 If this flag is not set, the child process inherits the parent process’s effective
404 user ID. If this flag is set, the child process’s effective user ID is reset to the
405 parent’s real user ID. In either case, if the set-user-ID mode bit of the new
406 process image file is set, the effective user ID of the child process will
407 become that file’s owner ID before the new process image begins execution.

408 The POSIX_SPAWN_RESETIDS flag in the ssppaawwnn--ffl laaggss attribute of the
409 object referenced by attrp also governs the effective group ID of the child
410 process. If this flag is not set, the child process inherits the parent process’s
411 effective group ID. If this flag is set, the child process’s effective group ID is
412 reset to the parent’s real group ID. In either case, if the set-group-ID mode
413 bit of the new process image file is set, the effective group ID of the child
414 process will become that file’s group ID before the new process image begins
415 execution.

416 If the POSIX_SPAWN_SETSIGMASK flag is set in the ssppaawwnn--ffl laaggss attri-
417 bute of the object referenced by attrp, the child process shall initially have
418 the signal mask specified in the ssppaawwnn--ssiiggmmaasskk attribute of the object
419 referenced by attrp.

420 If the POSIX_SPAWN_SETSIGDEF flag is set in the ssppaawwnn--ffl laaggss attribute
421 of the object referenced by attrp, the signals specified in the ssppaawwnn--
422 ssiiggddeeffaauullt t attribute of the same object shall be set to their default
423 actions in the child process. Signals set to their default actions in the
424 parent process shall be set to their default actions in the child process.

425 Signals set to be caught by the calling process shall be set to their default
426 actions in the child process.

427 Signals set to be ignored by the calling process image shall be set to be
428 ignored by the child process, unless otherwise specified by the
429 POSIX_SPAWN_SETSIGDEF flag being set in the ssppaawwnn--ffl laaggss attribute of
430 the object referenced by attrp and the signals being indicated in the
431 ssppaawwnn--ssiiggddeeffaauullt t attribute of the object referenced by attrp.

432 If the value of the attrp pointer is NULL, then the default values are used.

433 All process attributes other than those influenced by the attributes set in
434 the object referenced by attrp as specified above or by the file descriptor
435 manipulations specified in file_actions shall appear in the new process
436 image as though fork() had been called to create a child process and then a
437 member of the exec family of functions had been called by the child process
438 to execute the new process image.

3.1 Process Creation and Execution 23

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

439 If the Threads option is supported, then it is implementation defined
440 whether the fork handlers are run when posix_spawn() or posix_spawnp()
441 is called.

Otherwise442 :

443 Either the implementation shall support the posix_spawn() and
444 posix_spawnp() functions as described above, or these functions shall not be
445 provided.

446 3.1.6.3 Returns

447 Upon successful completion, the posix_spawn() or posix_spawnp() operation shall
return448 the process ID of the child process to the parent process, in the variable
pointed449 to by a non-NULL pid argument, and shall return zero as the function
return450 value. Otherwise, no child process shall be created, the value stored into
the451 variable pointed to by a non-NULL pid is unspecified, and the corresponding
error452 value shall be returned as the function return value. If the pid argument is
the453 NULL pointer, the process ID of the child is not returned to the caller.

454 3.1.6.4 Errors

455 For each of the following conditions, if the condition is detected, the posix_spawn()
or456 posix_spawnp() function shall fail and post the corresponding status value or, if
the457 error occurs after the calling process successfully returns from the

458 posix_spawn() or posix_spawnp() function, shall cause the child process to exit
with459 exit status 127:

460 [EINVAL] The value specified by file_actions or attrp is invalid.

If461 posix_spawn() or posix_spawnp() fails for any of the reasons that would cause
462 fork() or one of the exec family of functions to fail, an error value shall be returned

as463 described by fork() and exec, respectively (or, if the error occurs after the cal-
ling464 process successfully returns, the child process exits with exit status 127).

If465 POSIX_SPAWN_SETPGROUP is set in the ssppaawwnn--ffl laaggss attribute of the object
referenced466 by attrp and posix_spawn() or posix_spawnp() fails while changing the
c467 hild’s process group, an error value shall be returned as described by setpgid()
(or,468 if the error occurs after the calling process successfully returns, the child pro-
cess469 exits with exit status 127).

If470 {_POSIX_PRIORITY_SCHEDULING} is defined, if
471 POSIX_SPAWN_SETSCHEDPARAM is set and POSIX_SPAWN_SETSCHEDULER is

not472 set in the ssppaawwnn--ffl laaggss attribute of the object referenced by attrp, and if
473 posix_spawn() or posix_spawnp() fails for any of the reasons that would cause
474 sched_setparam() to fail, an error value shall be returned as described by
475 sched_setparam() (or, if the error occurs after the calling process successfully

returns,476 the child process exits with exit status 127).

If477 {_POSIX_PRIORITY_SCHEDULING} is defined, if
478 POSIX_SPAWN_SETSCHEDULER is set in the ssppaawwnn--ffl laaggss attribute of the

object479 referenced by attrp, and if posix_spawn() or posix_spawnp() fails for any of
the480 reasons that would cause sched_setscheduler() to fail, an error value shall be
returned481 as described by sched_setscheduler() (or, if the error occurs after the cal-
ling482 process successfully returns, the child process exits with exit status 127).

24 3 Process Primitives

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

483 If the file_actions argument is not NULL and specifies any close, dup2, or open
actions484 to be performed and if posix_spawn() or posix_spawnp() fails for any of the
reasons485 that would cause close (), dup2(), or open() to fail, an error value shall be
returned486 as described by close (), dup2(), and open(), respectively (or, if the error
occurs487 after the calling process successfully returns, the child process exits with
exit488 status 127). An open file action may, by itself, result in any of the errors
described489 by close () or dup2(), in addition to those described by open().

490 3.1.6.5 Cross-References

491 alarm(), 3.4.1; chmod(), 5.6.4; close (), 6.3.1; dup2(), 6.2.1; exec, 3.1.2; _exit(), 3.2.2;
492 fcntl(), 6.5.2; fork(), 3.1.1; kill(), 3.3.2; open(), 5.3.1;
493 posix_spawn_file_actions_init(), 3.1.4; posix_spawn_file_actions_destroy(), 3.1.4;
494 posix_spawn_file_actions_addclose(), 3.1.4; posix_spawn_file_actions_adddup2(),

3.1.4;495 posix_spawn_file_actions_addopen(), 3.1.4; posix_spawnattr_init(), 3.1.5;
496 posix_spawnattr_destroy(), 3.1.5; posix_spawnattr_getflags(), 3.1.5;
497 posix_spawnattr_setflags(), 3.1.5; posix_spawnattr_getpgroup(), 3.1.5;
498 posix_spawnattr_setpgroup(), 3.1.5; posix_spawnattr_getschedpolicy(), 3.1.5;
499 posix_spawnattr_setschedpolicy(), 3.1.5; posix_spawnattr_getschedparam(), 3.1.5;
500 posix_spawnattr_setschedparam(), 3.1.5; posix_spawnattr_getsigmask(), 3.1.5;
501 posix_spawnattr_setsigmask(), 3.1.5; posix_spawnattr_getsigdefault(), 3.1.5;
502 posix_spawnattr_setsigdefault(), 3.1.5; sched_setparam(), 13.3.1;
503 sched_setscheduler(), 13.3.3; setpgid(), 4.3.3; setuid (), 4.2.2; stat (), 5.6.2; times (),

4.5.2;504 wait, 3.2.1.

505 3.2 Process Termination

506 3.2.1 Wait for Process Termination

3507 .2.1.2 Wait for Process Termination — Description

508 ⇒⇒ 3.2.1.2 Wait for Process Termination — Description Add the following
509 paragraphs after the definition of the WSTOPSIG(stat_val) macro:

510 It is unspecified whether the status value returned by calls to wait() or wait-
511 pid() for processes created by posix_spawn() or posix_spawnp() may indicate a
512 WIFSTOPPED(stat_val) before subsequent calls to wait() or waitpid() indicate
513 WIFEXITED(stat_val) as the result of an error detected before the new process
514 image starts executing.

515 It is unspecified whether the status value returned by calls to wait() or wait-
516 pid() for processes created by posix_spawn() or posix_spawnp() may indicate a
517 WIFSIGNALED(stat_val) if a signal is sent to the parent’s process group after
518 posix_spawn() or posix_spawnp() is called.

3.2 Process Termination 25

IEEE Std 1003.1d-1999

26 3 Process Primitives

IEEE Std 1003.1d-1999

Section 4: Process Environment

1 4.8 Configurable System Variables

2 4.8.1 Get Configurable System Variables

43 .8.1.2 Description

4 ⇒⇒ 4.8.1.2 Get Configurable System Variables—Description Add the follow-
5 ing text after the sentence ‘‘The implementation shall support all of the vari-
6 ables listed in Table 4-2 and may support others ’’, in the second paragraph:

7 Support for some configuration variables is dependent on implementation
8 options (see Table 4-3). Where an implementation option is not supported, the
9 variable need not be supported.

10 ⇒⇒ 4.8.1.2 Get Configurable System Variables—Description In the second
11 paragraph, replace the text ‘‘The variables in Table 4-2 come from ... ’’ by the
12 following:

13 ‘‘The variables in Table 4-2 and Table 4-3 come from ...’’

14 ⇒⇒ 4.8.1.2 Get Configurable System Variables—Description Add the follow-
15 ing table:

16 Table 4-3 −− Optional Configurable System Variables
17 __
18 Variable name Value Required Option__
19 {_POSIX_SPAWN} _SC_SPAWN Spawn
20 {_POSIX_TIMEOUTS} _SC_TIMEOUTS Timeouts
21 {_POSIX_CPUTIME} _SC_CPUTIME Process CPU-Time Clocks
22 {_POSIX_THREAD_CPUTIME} _SC_THREAD_CPUTIME Thread CPU-Time Clocks
23 {_POSIX_SPORADIC_SERVER} _SC_SPORADIC_SERVER Process Sporadic Server
24 {_POSIX_THREAD_SPORADIC_SERVER} _SC_THREAD_SPORADIC_SERVER Thread Sporadic Server
25 {_POSIX_ADVISORY_INFO} _SC_ADVISORY_INFO Advisory Information__LL

L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

4.8 Configurable System Variables 27

IEEE Std 1003.1d-1999

28 4 Process Environment

IEEE Std 1003.1d-1999

Section 5: Files and Directories

1 5.7 Configurable Pathname Variables

2 5.7.1 Get Configurable Pathname Variables

53 .7.1.2 Description

4 ⇒⇒ 5.7.1.2 Get Configurable Pathname Variables—Description Add the fol-
5 lowing text after the sentence ‘‘The implementation shall support all of the
6 variables listed in Table 5-2 and may support others ’’, in the third paragraph:

7 Support for some pathname configuration variables is dependent on implemen-
8 tation options (see Table 5-3). Where an implementation option is not sup-
9 ported, the variable need not be supported.

10 ⇒⇒ 5.7.1.2 Get Configurable Pathname Variables—Description In the third
11 paragraph, replace the text ‘‘The variables in Table 5-2 come from ... ’’ by the
12 following:

13 ‘‘The variables in Table 5-2 and Table 5-3 come from ...’’

14 ⇒⇒ 5.7.1.2 Get Configurable Pathname Variables—Description Add the fol-
15 lowing table:

16 Table 5-3 −− Optional Configurable Pathname Variables
17 __
18 Variable name Value Required Option__
19 {POSIX_REC_INCR_XFER_SIZE} _PC_REC_INCR_XFER_SIZE Advisory Information
20 {POSIX_ALLOC_SIZE_MIN} _PC_ALLOC_SIZE_MIN Advisory Information
21 {POSIX_REC_MAX_XFER_SIZE} _PC_REC_MAX_XFER_SIZE Advisory Information
22 {POSIX_REC_MIN_XFER_SIZE} _PC_REC_MIN_XFER_SIZE Advisory Information
23 {POSIX_REC_XFER_ALIGN} _PC_REC_XFER_ALIGN Advisory Information__LL

L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

5.7 Configurable Pathname Variables 29

IEEE Std 1003.1d-1999

30 5 Files and Directories

IEEE Std 1003.1d-1999

Section 6: Input and Output Primitives

1 6.7 Asynchronous Input and Output

2 6.7.1 Data Definitions for Asynchronous Input and Output

63 .7.1.1 Asynchronous I/O Control Block

4 ⇒⇒ 6.7.1.1 Asynchronous I/O Control Block Change the sentence, in the fifth
5 paragraph, beginning with ‘‘The order of processing of requests submitted by
6 processes whose schedulers . . . ’’ to the following:

7 Unless both {_POSIX_PRIORITIZED_IO} and {_POSIX_PRIORITY_SCHEDULING}
8 are defined, the order of processing asynchronous I/O requests is unspecified.
9 When both {_POSIX_PRIORITIZED_IO} and {_POSIX_PRIORITY_SCHEDULING}
10 are defined, the order of processing of requests submitted by processes whose
11 schedulers are not SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC is
12 unspecified.

6.7 Asynchronous Input and Output 31

IEEE Std 1003.1d-1999

32 6 Input and Output Primitives

IEEE Std 1003.1d-1999

Section 11: Synchronization

1 11.2 Semaphore Functions

2 11.2.6 Lock a Semaphore

3 ⇒⇒ 11.2.6 Lock a Semaphore Add the following function at the end of the list of
4 functions:

5 sem_timedwait().

6 11.2.6.1 Synopsis

7 ⇒⇒ 11.2.6.1 Lock a Semaphore—Synopsis Add the following #include and pro-
8 totype at the end of the synopsis:

9 ##iinncclluuddee <<tti immee..hh>>

10 iinntt sseemm__tti immeeddwwaaiit t((sseemm__tt ∗∗sem,,
11 ccoonnsstt ssttrruucctt tti immeessppeecc ∗∗abs_timeout));;

12 11.2.6.2 Description

13 ⇒⇒ 11.2.6.2 Lock a Semaphore—Description Add the following text at the end
14 of the description:

15 If {_POSIX_SEMAPHORES} and {_POSIX_TIMEOUTS} are both defined:

16 The sem_timedwait() function locks the semaphore referenced by sem as
17 in the sem_wait() function. However, if the semaphore cannot be locked
18 without waiting for another process or thread to unlock the semaphore
19 by performing a sem_post () function, this wait shall be terminated when
20 the specified timeout expires.

21 The timeout expires when the absolute time specified by abs_timeout
22 passes, as measured by the clock on which timeouts are based (that is,
23 when the value of that clock equals or exceeds abs_timeout), or if the
24 absolute time specified by abs_timeout has already been passed at the
25 time of the call. If the Timers option is supported, the timeout is based
26 on the CLOCK_REALTIME clock. If the Timers option is not supported,
27 the timeout is based on the system clock as returned by the time() func-
28 tion. The resolution of the timeout is the resolution of the clock on

11.2 Semaphore Functions 33

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

29 which it is based. The timespec datatype is defined as a structure in the
30 header <<tti immee..hh>>.

31 Under no circumstance will the function fail with a timeout if the sema-
32 phore can be locked immediately. The validity of the abs_timeout argu-
33 ment need not be checked if the semaphore can be locked immediately.

34 Otherwise:

35 Either the implementation shall support the sem_timedwait() function
36 as described above, or this function shall not be provided.

37 11.2.6.3 Returns

38 ⇒⇒ 11.2.6.3 Lock a Semaphore—Returns Add the following function to the list
39 of functions:

40 sem_timedwait()

41 11.2.6.4 Errors

42 ⇒⇒ 11.2.6.4 Lock a Semaphore — Errors Make the following changes to the
43 discussion of error conditions:

44 Add sem_timedwait() to the list of functions for both the standard error condi-
45 tions and the ‘‘if detected’’ error conditions.

46 Add an [ETIMEDOUT] error value with the following reason, to the list of
47 errors that must be detected:

48 The semaphore could not be locked before the specified timeout expired.

49 To the [EINVAL] error description, add the following reason:

50 The thread would have blocked, and the abs_timeout parameter
51 specified a nanoseconds field value less than zero or greater than or
52 equal to 1000 million.

53 11.2.6.5 Cross-References

54 ⇒⇒ 11.2.6.5 Lock a Semaphore—Cross-References Add the following items to
55 the cross-references in alphabetical order:

56 time(), 4.5.1; <<tti immee..hh>>, 14.1.

34 11 Synchronization

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

57 11.2.7 Unlock a Semaphore

58 ⇒⇒ 11.2.7.2 Unlock a Semaphore—Description (The following change is made
59 in a context where the Process Scheduling option is supported.) Change the
60 sentence, beginning with ‘‘In the case of the schedulers . . . ’’ to the following:

61 In the case of the schedulers {SCHED_FIFO}, {SCHED_RR}, and {SCHED_-
62 SPORADIC}, the highest priority waiting thread shall be unblocked, and if there
63 is more than one highest-priority thread blocked waiting for the semaphore,
64 then the highest-priority thread that has been waiting the longest shall be
65 unblocked.

66 11.3 Mutexes

67 11.3.3 Locking and Unlocking a Mutex

68 ⇒⇒ 11.3.3 Locking and Unlocking a Mutex Add the following function at the
69 end of the list:

70 pthread_mutex_timedlock().

71 11.3.3.1 Synopsis

72 ⇒⇒ 11.3.3.1 Locking and Unlocking a Mutex—Synopsis Add the following
73 #include and prototype at the end of the synopsis:

74 ##iinncclluuddee <<tti immee..hh>>

75 iinntt pptthhrreeaadd__mmuutteexx__tti immeeddlloocckk((pptthhrreeaadd__mmuutteexx__tt ∗∗mutex,,
76 ccoonnsstt ssttrruucctt tti immeessppeecc ∗∗abs_timeout));;

77 11.3.3.2 Description

78 ⇒⇒ 11.3.3.2 Locking and Unlocking a Mutex—Description Add the following
79 text at the end of the description:

80 If {_POSIX_THREADS} and {_POSIX_TIMEOUTS} are both defined:

81 The pthread_mutex_timedlock() function is called to lock the mutex
82 object referenced by mutex. If the mutex is already locked, the calling
83 thread blocks until the mutex becomes available as in the
84 pthread_mutex_lock() function. If the mutex cannot be locked without
85 waiting for another thread to unlock the mutex, this wait shall be ter-
86 minated when the specified timeout expires.

87 The timeout expires when the absolute time specified by abs_timeout
88 passes, as measured by the clock on which timeouts are based (that is,

11.3 Mutexes 35

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

89 when the value of that clock equals or exceeds abs_timeout), or if the
90 absolute time specified by abs_timeout has already been passed at the
91 time of the call. If the Timers option is supported, the timeout is based
92 on the CLOCK_REALTIME clock; if the Timers option is not supported,
93 the timeout is based on the system clock as returned by the time() func-
94 tion. The resolution of the timeout is the resolution of the clock on
95 which it is based. The timespec datatype is defined as a structure in the
96 header <<tti immee..hh>>.

97 Under no circumstance will the function fail with a timeout if the mutex
98 can be locked immediately. The validity of the abs_timeout parameter
99 need not be checked if the mutex can be locked immediately.

100 As a consequence of the priority inheritance rules (for mutexes initial-
101 ized with the PRIO_INHERIT protocol), if a timed mutex wait is ter-
102 minated because its timeout expires, the priority of the owner of the
103 mutex will be adjusted as necessary to reflect the fact that this thread is
104 no longer among the threads waiting for the mutex.

105 Otherwise:

106 Either the implementation shall support the pthread_mutex_timedlock()
107 function as described above, or the function shall not be provided.

108 11.3.3.3 Returns

109 ⇒⇒ 11.3.3.3 Locking and Unlocking a Mutex—Returns Add the following
110 function to the list of functions:

111 pthread_mutex_timedlock()

112 11.3.3.4 Errors

113 ⇒⇒ 11.3.3.4 Locking and Unlocking a Mutex—Errors Make the following
114 changes to the discussion of error conditions:

115 Add pthread_mutex_timedlock() to the list of functions for the [EINVAL] and
116 [EDEADLK] conditions.

117 To the [EINVAL] error description, add the following reason:

118 The process or thread would have blocked, and the abs_timeout parame-
119 ter specified a nanoseconds field value less than zero or greater than or
120 equal to 1000 million.

121 New paragraph with one error condition: If the following conditions occur, the
122 pthread_mutex_timedlock() function shall return the corresponding error
123 number:

124 [ETIMEDOUT] The mutex could not be locked before the specified timeout
125 expired.

36 11 Synchronization

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

126 11.3.3.5 Cross-References

127 ⇒⇒ 11.3.3.5 Locking and Unlocking a Mutex—Cross-References Add the fol-
128 lowing items to the cross-references in alphabetical order:

129 time(), 4.5.1; <<tti immee..hh>>, 14.1.

11.3 Mutexes 37

IEEE Std 1003.1d-1999

38 11 Synchronization

IEEE Std 1003.1d-1999

Section 13: Execution Scheduling

1 13.1 Scheduling Parameters

2 ⇒⇒ 13.1 Scheduling Parameters Add the following paragraph after the first
3 paragraph and associated table:

4 In addition, if {_POSIX_SPORADIC_SERVER} or {_POSIX_THREAD_SPORADIC_-
5 SERVER} is defined, the sched_param structure defined in <<sscchheedd..hh>> shall
6 contain the following members in addition to those specified above:

7 Member Member
8 Type Name Description

__
9 int sched_ss_low_priority Low scheduling priority for sporadic server.
10 timespec sched_ss_repl_period Replenishment period for sporadic server.
11 timespec sched_ss_init_budget Initial budget for sporadic server.
12 int sched_ss_max_repl Maximum pending replenishments for sporadic server.

13 13.2 Scheduling Policies

14 ⇒⇒ 13.2 Scheduling Policies Add the following after the unnumbered table with
15 the scheduling policies that shall be defined in <<sscchheedd..hh>>:

16 If {_POSIX_SPORADIC_SERVER} or {_POSIX_THREAD_SPORADIC_SERVER} is
17 defined, then the following scheduling policy is provided in <<sscchheedd..hh>>:

18 Symbol Description__
19 SCHED_SPORADIC Sporadic server scheduling policy.

20 13.2.3 SCHED_OTHER

21 ⇒⇒ 13.2.3 SCHED_OTHER Change the sentence beginning with ‘‘The effect of
22 scheduling threads with the . . . ’’ to the following:

23 The effect of scheduling threads with the SCHED_OTHER policy in a system in
24 which other threads are executing under SCHED_FIFO, SCHED_RR, or
25 SCHED_SPORADIC shall thus be implementation defined.

13.2 Scheduling Policies 39

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

26 ⇒⇒ 13.2 Scheduling Policies Add the following subclause:

27 13.2.4 SCHED_SPORADIC

28 If {_POSIX_SPORADIC_SERVER} is defined or {_POSIX_THREAD_SPORADIC_-
SERVER29 } is defined, the implementation shall include a scheduling policy
identi30 fied by the value SCHED_SPORADIC.

31 The sporadic server policy is based primarily on two parameters: the replenish-
ment32 period and the available execution capacity. The replenishment period is
given33 by the sched_ss_repl_period member of the sched_param structure. The
available34 execution capacity is initialized to the value given by the

35 sched_ss_init_budget member of the same parameter. The sporadic server policy
is36 identical to the SCHED_FIFO policy with some additional conditions that cause
the37 thread’s assigned priority to be switched between the values specified by the

38 sched_priority and sched_ss_low_priority members of the sched_param structure.

The39 priority assigned to a thread using the sporadic server scheduling policy is
determined40 in the following manner: If the available execution capacity is greater
than41 zero and the number of pending replenishment operations is strictly less
than42 sched_ss_max_repl, the thread is assigned the priority specified by

43 sched_priority. Otherwise, the assigned priority shall be sched_ss_low_priority. If
the44 value of sched_priority is less than or equal to the value of

45 sched_ss_low_priority, the results are undefined. When active, the thread shall
belong46 to the thread list corresponding to its assigned priority level, according to
the47 mentioned priority assignment. The modification of the available execution
capacity48 and, consequently of the assigned priority, is done as follows:

49 (1) When the thread at the head of the sched_priority list becomes a running
50 thread, its execution time shall be limited to at most its available execu-
51 tion capacity, plus the resolution of the execution time clock used for this
52 scheduling policy. This resolution shall be implementation defined.

53 (2) Each time the thread is inserted at the tail of the list associated with
54 sched_priority (because as a blocked thread it became runnable with
55 priority sched_priority or because a replenishment operation was per-
56 formed), the time at which this operation is done is posted as the
57 activation_time.

58 (3) When the running thread with assigned priority equal to sched_priority
59 becomes a preempted thread, it becomes the head of the thread list for its
60 priority; and the execution time consumed is subtracted from the avail-
61 able execution capacity. If the available execution capacity would become
62 negative by this operation, it shall be set to zero.

63 (4) When the running thread with assigned priority equal to sched_priority
64 becomes a blocked thread, the execution time consumed is subtracted
65 from the available execution capacity; and a replenishment operation is
66 scheduled, as described in (6) and (7). If the available execution capacity
67 would become negative by this operation, it shall be set to zero.

68 (5) When the running thread with assigned priority equal to sched_priority
69 reaches the limit imposed on its execution time, it becomes the tail of the

40 13 Execution Scheduling

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

70 thread list for sched_ss_low_priority; the execution time consumed is sub-
71 tracted from the available execution capacity (which becomes zero); and a
72 replenishment operation is scheduled, as described in (6) and (7).

73 (6) Each time a replenishment operation is scheduled, the amount of execu-
74 tion capacity to be replenished, replenish_amount, is set equal to the exe-
75 cution time consumed by the thread since the activation_time. The
76 replenishment is scheduled to occur at activation_time plus
77 sched_ss_repl_period. If the scheduled time obtained is before the current
78 time, the replenishment operation is carried out immediately. Several
79 replenishment operations may be pending at the same time, each of
80 which will be serviced at its respective scheduled time. With the above
81 rules, the number of replenishment operations simultaneously pending
82 for a given thread that is scheduled under the sporadic server policy shall
83 not be greater than sched_ss_max_repl.

84 (7) A replenishment operation consists of adding the corresponding
85 replenish_amount to the available execution capacity at the scheduled
86 time. If, as a consequence of this operation, the execution capacity would
87 become larger than sched_ss_initial_budget, it shall be rounded down to a
88 value equal to sched_ss_initial_budget. Additionally, if the thread was
89 runnable or running and had an assigned priority equal to
90 sched_ss_low_priority, then it becomes the tail of the thread list for
91 sched_priority.

Execution92 time is defined in 2.2.2.

F93 or this policy, changing the value of a CPU-time clock via clock_settime() shall
have94 no effect on its behavior.

F95 or this policy, valid priorities shall be within the range returned by the functions
96 sched_get_priority_min() and sched_get_priority_max() when SCHED_SPORADIC
97 is provided as the parameter. Conforming implementations shall provide a prior-

ity98 range of at least 32 distinct priorities for this policy.

99 13.3 Process Scheduling Functions

100 13.3.1 Set Scheduling Parameters

1101 3.3.1.2 Description

102 ⇒⇒ 13.3.1.2 Set Scheduling Parameters—Description Add the following
103 paragraphs to the description:

104 If {_POSIX_SPORADIC_SERVER} is defined:

105 If the scheduling policy of the target process is SCHED_SPORADIC, the
106 value specified by the sched_ss_low_priority member of the param argu-
107 ment shall be any integer within the inclusive priority range for the
108 sporadic server policy. The sched_ss_repl_period and

13.3 Process Scheduling Functions 41

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

109 sched_ss_init_budget members of the param argument shall represent
110 the time parameters to be used by the sporadic server scheduling policy
111 for the target process. The sched_ss_max_repl member of the param
112 argument shall represent the maximum number of replenishments that
113 are allowed to be pending simultaneously for the process scheduled
114 under this scheduling policy.

115 The specified sched_ss_repl_period shall be greater than or equal to the
116 specified sched_ss_init_budget for the function to succeed; if it is not,
117 then the function shall fail.

118 The value of sched_ss_max_repl shall be within the inclusive range [1,
119 {SS_REPL_MAX}] for the function to succeed; if not, the function shall
120 fail.

121 If the scheduling policy of the target process is either SCHED_FIFO or
122 SCHED_RR, the sched_ss_low_priority, sched_ss_repl_period and
123 sched_ss_init_budget members of the param argument shall have no
124 effect on the scheduling behavior. If the scheduling policy of this process
125 is not SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC, including
126 SCHED_OTHER, the effects of these members shall be implementation
127 defined.

128 ⇒⇒ 13.3.1.2 Set Scheduling Parameters—Description Replace the eighth
129 paragraph, beginning ‘‘If the current scheduling policy..., ’’ with the following
130 new paragraph:

131 If the current scheduling policy for the process specified by pid is not
132 SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC, the result is implemen-
133 tation defined; this case includes the SCHED_OTHER policy.

134 13.3.3 Set Scheduling Policy and Scheduling Parameters

1135 3.3.3.2 Description

136 ⇒⇒ 13.3.3.2 Set Scheduling Policy and Scheduling Parameters—
137 Description Add the following paragraphs to the description, before the last
138 paragraph:

139 If {_POSIX_SPORADIC_SERVER} is defined:

140 If the scheduling policy specified by policy is SCHED_SPORADIC, the
141 value specified by the sched_ss_low_priority member of the param argu-
142 ment shall be any integer within the inclusive priority range for the
143 sporadic server policy. The sched_ss_repl_period and
144 sched_ss_init_budget members of the param argument shall represent
145 the time parameters used by the sporadic server scheduling policy for
146 the target process. The sched_ss_max_repl member of the param argu-
147 ment shall represent the maximum number of replenishments that are
148 allowed to be pending simultaneously for the process scheduled under

42 13 Execution Scheduling

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

149 this scheduling policy.

150 The specified sched_ss_repl_period shall be greater than or equal to the
151 specified sched_ss_init_budget for the function to succeed; if it is not,
152 then the function shall fail.

153 The value of sched_ss_max_repl shall be within the inclusive range [1,
154 {SS_REPL_MAX}] for the function to succeed; if not, the function shall
155 fail.

156 If the scheduling policy specified by policy is either SCHED_FIFO or
157 SCHED_RR, the sched_ss_low_priority, sched_ss_repl_period, and
158 sched_ss_init_budget members of the param argument shall have no
159 effect on the scheduling behavior.

160 13.4 Thread Scheduling

161 13.4.1 Thread Scheduling Attributes

162 ⇒⇒ 13.4.1 Thread Scheduling Attributes Add the following paragraph after
163 the paragraph that begins with ‘‘If the
164 {_POSIX_THREAD_PRIORITY_SCHEDULING} option is defined, ... ’’:

165 If {_POSIX_THREAD_SPORADIC_SERVER} is defined, the sscchheeddppaarraamm
166 attribute supports four new members that are used for the sporadic
167 server scheduling policy. These members are sched_ss_low_priority,
168 sched_ss_repl_period, sched_ss_init_budget, and sched_ss_max_repl.
169 The meaning of these attributes is the same as in the definitions in 13.1.

170 13.4.3 Scheduling Allocation Domain

171 ⇒⇒ 13.4.3 Scheduling Allocation Domain Change the first sentence of the
172 fourth paragraph, currently reading ‘‘For application threads whose scheduling
173 allocation domain size is greater than one, the rules defined for SCHED_FIFO
174 and SCHED_RR in 13.2 shall be used in an implementation-defined manner. ’’ to
175 the following:

176 For application threads whose scheduling allocation domain size is
177 greater than one, the rules defined for SCHED_FIFO, SCHED_RR, and
178 SCHED_SPORADIC in 13.2 shall be used in an implementation-defined
179 manner.

13.4 Thread Scheduling 43

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

180 ⇒⇒ 13.4.3 Scheduling Allocation Domain
181 Add the following paragraph after the fourth paragraph in 13.4.3:

182 If {_POSIX_THREAD_SPORADIC_SERVER} is defined, the rules defined
183 for SCHED_SPORADIC in 13.2 shall be used in an implementation-
184 defined manner for application threads whose scheduling allocation
185 domain size is greater than one.

186 13.4.4 Scheduling Documentation

187 ⇒⇒ 13.4.4 Scheduling Documentation Change the first sentence, beginning
188 with ‘‘If {_POSIX_PRIORITY_SCHEDULING} is defined, then . . . ’’ and ending
189 with ‘‘ . . . such a policy, are implementation defined.’’ to the following:

190 If {_POSIX_PRIORITY_SCHEDULING} is defined, then any scheduling policy
191 beyond SCHED_OTHER, SCHED_FIFO, SCHED_RR, and SCHED_SPORADIC, as
192 well as the effects of the scheduling policies indicated by these other values,
193 and the attributes required to support such a policy are implementation
194 defined.

195 13.5 Thread Scheduling Functions

196 13.5.1 Thread Creation Scheduling Attributes

1197 3.5.1.2 Description

198 ⇒⇒ 13.5.1.2 Thread Creation Scheduling Attributes—Description Add the
199 following sentence to the sixth paragraph, beginning ‘‘The suported values of
200 policy ... ’’:

201 In addition, if {_POSIX_THREAD_SPORADIC_SERVER} is defined, the
202 value of policy may be SCHED_SPORADIC.

203 Also, add the following sentences at the end of the eighth paragraph, which
204 describes the functions pthread_attr_setschedparam() and
205 pthread_attr_getschedparam():

206 For the SCHED_SPORADIC policy, the required members of the param
207 structure are sched_priority, sched_ss_low_priority,
208 sched_ss_repl_period, sched_ss_init_budget, and sched_ss_max_repl.
209 The specified sched_ss_repl_period shall be greater than or equal to the
210 specified sched_ss_init_budget for the function to succeed; if it is not,
211 then the function shall fail. The value of sched_ss_max_repl shall be
212 within the inclusive range [1, {SS_REPL_MAX}] for the function to
213 succeed; if not, the function shall fail.

44 13 Execution Scheduling

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

214 13.5.2 Dynamic Thread Scheduling Parameters Access

1215 3.5.2.2 Description

216 ⇒⇒ 13.5.2.2 Dynamic Thread Scheduling Parameters Access—Description
217 Add the following paragraph to the description, before the last paragraph:

218 If {_POSIX_THREAD_SPORADIC_SERVER} is defined:

219 The policy argument may have the value SCHED_SPORADIC, with the
220 exception for the pthread_setschedparam() function that, if the schedul-
221 ing policy was not SCHED_SPORADIC at the time of the call, it is imple-
222 mentation defined whether the function is supported. In other words,
223 the implementation need not allow the application to dynamically
224 change the scheduling policy to SCHED_SPORADIC. The sporadic server
225 scheduling policy has the associated parameters sched_ss_low_priority,
226 sched_ss_repl_period, sched_ss_init_budget, sched_priority, and
227 sched_ss_max_repl. The specified sched_ss_repl_period shall be greater
228 than or equal to the specified sched_ss_init_budget for the function to
229 succeed; if it is not, then the function shall fail. The value of
230 sched_ss_max_repl shall be within the inclusive range [1, {SS_REPL_-
231 MAX}] for the function to succeed; if not, the function shall fail.

232 13.5.2.4 Errors

233 ⇒⇒ 13.5.2.4 Dynamic Thread Scheduling Parameters Access—Errors Add
234 the following error status value in the ‘‘if detected ’’ section of the
235 pthread_setschedparam() function:

236 [ENOTSUP] An attempt was made to dynamically change the scheduling
237 policy to SCHED_SPORADIC, and the implementation does not support
238 this change.

13.5 Thread Scheduling Functions 45

IEEE Std 1003.1d-1999

46 13 Execution Scheduling

IEEE Std 1003.1d-1999

Section 14: Clocks and Timers

1 14.2 Clock and Timer Functions

2 14.2.1 Clocks

13 4.2.1.2 Description

4 ⇒⇒ 14.2.1.2 Clock and Timer Functions—Description Add the following
5 paragraphs to the description, after the paragraph starting ‘‘A clock may be
6 systemwide... ’’:

7 If {_POSIX_CPUTIME} is defined, implementations shall support clock ID values
8 [obtained by invoking clock_getcpuclockid()], which represent the CPU-time
9 clock of a given process. Implementations shall also support the special
10 clockid_t value CLOCK_PROCESS_CPUTIME_ID, which represents the
11 CPU-time clock of the calling process when invoking one of the clock or timer
12 functions. For these clock IDs, the values returned by clock_gettime() and
13 specified by clock_settime() represent the amount of execution time of the pro-
14 cess associated with the clock. Changing the value of a CPU-time clock via
15 clock_settime() shall have no effect on the behavior of the sporadic server
16 scheduling policy (see 13.2.4).

17 If {_POSIX_THREAD_CPUTIME} is defined, implementations shall support clock
18 ID values [obtained by invoking pthread_getcpuclockid()], which represent the
19 CPU-time clock of a given thread. Implementations shall also support the spe-
20 cial clockid_t value CLOCK_THREAD_CPUTIME_ID, which represents the
21 CPU-time clock of the calling thread when invoking one of the clock or timer
22 functions. For these clock IDs, the values returned by clock_gettime() and
23 specified by clock_settime() represent the amount of execution time of the
24 thread associated with the clock. Changing the value of a CPU-time clock via
25 clock_settime() shall have no effect on the behavior of the sporadic server
26 scheduling policy (see 13.2.4).

14.2 Clock and Timer Functions 47

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

27 14.2.2 Create a Per-Process Timer

128 4.2.2.2 Description

29 ⇒⇒ 14.2.2.2 Create a Per-Process Timer—Description Add the following
30 paragraphs to the description, after the paragraph starting ‘‘Each implementa-
31 tion shall define... ’’:

32 If {_POSIX_CPUTIME} is defined, implementations shall support clock_id values
33 representing the CPU-time clock of the calling process.

34 If {_POSIX_THREAD_CPUTIME} is defined, implementations shall support
35 clock_id values representing the CPU-time clock of the calling thread.

36 It is implementation defined whether a timer_create () call will succeed if the
37 value defined by clock_id corresponds to the CPU-time clock of a process or
38 thread different from the process or thread invoking the function.

39 14.2.2.4 Errors

40 ⇒⇒ 14.2.2.4 Create a Per-Process Timer—Errors Add the following error con-
41 dition:

42 [ENOTSUP]
43 The implementation does not support the creation of a timer attached
44 to the CPU-time clock that is specified by clock_id and associated with
45 a process or thread different from the process or thread invoking
46 timer_create ().

47 ⇒⇒ 14 Clocks and Timers Add the following subclauses:

48 14.3 Execution Time Monitoring

49 This subclause describes extensions to system interfaces to support monitoring
and50 limitation of the execution time of processes and threads.

51 14.3.1 CPU-time Clock Characteristics

52 If {_POSIX_CPUTIME} is defined, process CPU-time clocks shall be supported in
addition53 to the clocks described in 14.1.4.

If54 {_POSIX_THREAD_CPUTIME} is defined, thread CPU-time clocks shall be
s55 upported.

56 CPU-time clocks measure execution or CPU time, which is defined in 2.2.2. The
mechanism57 used to measure execution time is described in 2.3.1.

48 14 Clocks and Timers

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

58 If {_POSIX_CPUTIME} is defined, the following constant of the type clockid_t shall
be59 defined in <<tti immee..hh>>:

60 CCLLOOCCKK__PPRROOCCEESSSS__CCPPUUTTIIMMEE__IIDD
61 When this value of the type clockid_t is used in a clock or timer function
62 call, it is interpreted as the identifier of the CPU-time clock associated
63 with the process making the function call.

If64 {_POSIX_THREAD_CPUTIME} is defined, the following constant of the type
65 clockid_t shall be defined in <<tti immee..hh>>:

66 CCLLOOCCKK__TTHHRREEAADD__CCPPUUTTIIMMEE__IIDD
67 When this value of the type clockid_t is used in a clock or timer function
68 call, it is interpreted as the identifier of the CPU-time clock associated
69 with the thread making the function call.

70 14.3.2 Accessing a Process CPU-time Clock

71 Function: clock_getcpuclockid().

72 14.3.2.1 Synopsis

73 ##iinncclluuddee <<ssyyss//ttyyppeess..hh>>
#74 #iinncclluuddee <<tti immee..hh>>

i75 inntt cclloocckk__ggeettccppuucclloocckkiidd ((ppiidd__tt pid,, cclloocckkiidd__tt ∗clock_id));;

76 14.3.2.2 Description

77 If {_POSIX_CPUTIME} is defined:

78 The clock_getcpuclockid() function shall return the clock ID of the CPU-time
79 clock of the process specified by pid. If the process described by pid exists
80 and the calling process has permission, the clock ID of this clock shall be
81 returned in clock_id.

82 If pid is zero, the clock_getcpuclockid() function shall return in clock_id the
83 clock ID of the CPU-time clock of the process making the call.

84 The conditions under which one process has permission to obtain the
85 CPU-time clock ID of other processes are implementation defined.

O86 therwise:

87 Either the implementation shall support the clock_getcpuclockid() function
88 as described above, or this function shall not be provided.

89 14.3.2.3 Returns

90 Upon successful completion, clock_getcpuclockid() shall return zero. Otherwise,
the91 corresponding error value shall be returned.

14.3 Execution Time Monitoring 49

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

92 14.3.2.4 Errors

93 If the following conditions occur, the clock_getcpuclockid() function shall return
the94 corresponding error number:

95 [EPERM]
96 The requesting process does not have permission to access the CPU-time
97 clock for the process.

If98 the following condition is detected, the clock_getcpuclockid() function shall
return99 the corresponding error number:

100 [ESRCH]
101 No process can be found corresponding to the value specified by pid.

102 14.3.2.5 Cross-References

103 clock_gettime (), 14.2.1; clock_settime(), 14.2.1; clock_getres (), 14.2.1;
104 timer_create (), 14.2.2.

105 14.3.3 Accessing a Thread CPU-time Clock

106 Function: pthread_getcpuclockid().

107 14.3.3.1 Synopsis

108 ##iinncclluuddee <<ssyyss//ttyyppeess..hh>>
#109 #iinncclluuddee <<tti immee..hh>>
#110 #iinncclluuddee <<pptthhrreeaadd..hh>>

i111 inntt pptthhrreeaadd__ggeettccppuucclloocckkiidd ((pptthhrreeaadd__tt thread_id,, cclloocckkiidd__tt ∗clock_id));;

112 14.3.3.2 Description

113 If {_POSIX_THREAD_CPUTIME} is defined:

114 The pthread_getcpuclockid() function shall return in clock_id the clock ID
115 of the CPU-time clock of the thread specified by thread_id, if the thread
116 specified by thread_id exists.

O117 therwise:

118 Either the implementation shall support the pthread_getcpuclockid() func-
119 tion as described above, or this function shall not be provided.

120 14.3.3.3 Returns

121 Upon successful completion, pthread_getcpuclockid() shall return zero. Otherwise
the122 corresponding error number shall be returned.

50 14 Clocks and Timers

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

123 14.3.3.4 Errors

124 If the following condition is detected, the pthread_getcpuclockid() function shall
return125 the corresponding error number:

126 [ESRCH]
127 The value specified by thread_id does not refer to an existing thread.

128 14.3.3.5 Cross-References

129 clock_gettime (), 14.2.1; clock_settime(), 14.2.1; clock_getres (), 14.2.1;
130 clock_getcpuclockid(), 14.3.2; timer_create (), 14.2.2;

14.3 Execution Time Monitoring 51

IEEE Std 1003.1d-1999

52 14 Clocks and Timers

IEEE Std 1003.1d-1999

Section 15: Message Passing

1 15.2 Message Passing Functions

2 15.2.4 Send a Message to a Message Queue

3 ⇒⇒ 15.2.4 Send a Message to a Message Queue Add the following function at
4 the end of the list and change ‘‘Function ’’ to ‘‘Functions’’:

5 mq_timedsend ()

6 15.2.4.1 Synopsis

7 ⇒⇒ 15.2.4.1 Send a Message to a Message Queue—Synopsis
8 Add the following #include and prototype to the end of the synopsis:

9 ##iinncclluuddee <<tti immee..hh>>

10 iinntt mmqq__tti immeeddsseenndd((mmqqdd__tt mqdes,,
11 ccoonnsstt cchhaarr ∗∗msg_ptr,,
12 ssiizzee__tt msg_len,,
13 uunnssiiggnneedd iinntt msg_prio,,
14 ccoonnsstt ssttrruucctt tti immeessppeecc ∗∗abs_timeout));;

15 15.2.4.2 Description

16 ⇒⇒ 15.2.4.2 Send a Message to a Message Queue—Description Add the fol-
17 lowing text at the end of the description:

18 If {_POSIX_MESSAGE_PASSING} and {_POSIX_TIMEOUTS} are both defined:

19 The mq_timedsend () function adds a message to the message queue
20 specified by mqdes in the manner defined for the mq_send() function.
21 However, if the specified message queue is full and O_NONBLOCK is not
22 set in the message queue description associated with mqdes, the wait for
23 sufficient room in the queue shall be terminated when the specified
24 timeout expires. If O_NONBLOCK is set in the message queue descrip-
25 tion, this function shall behave identically to mq_send().

26 The timeout expires when the absolute time specified by abs_timeout
27 passes, as measured by the clock on which timeouts are based (that is,
28 when the value of that clock equals or exceeds abs_timeout), or if the

15.2 Message Passing Functions 53

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

29 absolute time specified by abs_timeout has already been passed at the
30 time of the call. If the Timers option is supported, the timeout is based
31 on the CLOCK_REALTIME clock. If the Timers option is not supported,
32 the timeout is based on the system clock as returned by the time() func-
33 tion. The resolution of the timeout is the resolution of the clock on
34 which it is based. The timespec argument is defined as a structure in
35 the header <<tti immee..hh>>.

36 Under no circumstance shall the operation fail with a timeout if there is
37 sufficient room in the queue to add the message immediately. The vali-
38 dity of the abs_timeout parameter need not be checked when there is
39 sufficient room in the queue.

40 Otherwise:

41 Either the implementation shall support the mq_timedsend () function
42 as described above, or this function shall not be provided.

43 15.2.4.3 Returns

44 ⇒⇒ 15.2.4.3 Send a Message to a Message Queue—Returns Add the following
45 function at the end of the list and change ‘‘Function ’’ to ‘‘Functions’’:

46 mq_timedsend ()

47 15.2.4.4 Errors

48 ⇒⇒ 15.2.4.4 Send a Message to a Message Queue—Errors Make the following
49 changes to the discussion of error conditions:

50 Add mq_timedsend () at the end of the list of functions to which the error condi-
51 tions apply.

52 Add an [ETIMEDOUT] error value (in alphabetical order) with the following
53 reason:

54 The O_NONBLOCK flag was not set when the message queue was
55 opened, but the timeout expired before the message could be added to
56 the queue.

57 To the [EINVAL] error description, add the following reason:

58 The thread would have blocked, and the abs_timeout parameter
59 specified a nanoseconds field value less than zero or greater than or
60 equal to 1000 million.

61 Add mq_timedsend () to the list of functions returning [EINTR].

54 15 Message Passing

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

62 15.2.4.5 Cross-References

63 ⇒⇒ 15.2.4.5 Send a Message to a Message Queue—Cross-References

64 Add the following cross references to the list, in alphabetical order:

65 mq_open(), 15.2.1; time() 4.5.1; <<tti immee..hh>>, 14.1.

66 15.2.5 Receive a Message from a Message Queue

67 ⇒⇒ 15.2.5 Receive a Message from a Message Queue Add the following func-
68 tion at the end of the list and change ‘‘Function ’’ to ‘‘Functions’’:

69 mq_timedreceive()

70 15.2.5.1 Synopsis

71 ⇒⇒ 15.2.5.1 Receive a Message from a Message Queue—Synopsis
72 Add the following #include and prototype to the end of the synopsis:

73 ##iinncclluuddee <<tti immee..hh>>

74 iinntt mmqq__tti immeeddrreecceeiivvee((mmqqdd__tt mqdes,,
75 cchhaarr ∗∗msg_ptr,,
76 ssiizzee__tt msg_len,,
77 uunnssiiggnneedd iinntt ∗∗msg_prio,,
78 ccoonnsstt ssttrruucctt tti immeessppeecc ∗∗abs_timeout));;

79 15.2.5.2 Description

80 ⇒⇒ 15.2.5.2 Receive a Message from a Message Queue—Description Add
81 the following text at the end of the description:

82 If {_POSIX_MESSAGE_PASSING} and {_POSIX_TIMEOUTS} are both defined:

83 The mq_timedreceive() function is used to receive the oldest of the
84 highest priority messages from the message queue specified by mqdes as
85 in the mq_receive () function. However, if O_NONBLOCK was not
86 specified when the message queue was opened via the mq_open() func-
87 tion and no message exists on the queue to satisfy the receive, the wait
88 for such a message will be terminated when the specified timeout
89 expires. If O_NONBLOCK is set, this function shall behave identically to
90 mq_receive ().

91 The timeout expires when the absolute time specified by abs_timeout
92 passes, as measured by the clock on which timeouts are based (that is,
93 when the value of that clock equals or exceeds abs_timeout), or if the
94 absolute time specified by abs_timeout has already been passed at the

time of the call. If the Timers option is supported, the timeout is based

15.2 Message Passing Functions 55

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

95 on the CLOCK_REALTIME clock; if the Timers option is not supported,
96 the timeout is based on the system clock as returned by the time() func-
97 tion. The resolution of the timeout is the resolution of the clock on
98 which it is based. The timespec argument is defined as a structure in
99 the header <<tti immee..hh>>.

100 Under no circumstance shall the operation fail with a timeout if a mes-
101 sage can be removed from the message queue immediately. The validity
102 of the abs_timeout parameter need not be checked if a message can be
103 removed from the message queue immediately.

104 Otherwise:

105 Either the implementation shall support the mq_timedreceive() function
106 as described above, or this function shall not be provided.

107 15.2.5.3 Returns

108 ⇒⇒ 15.2.5.3 Receive a Message from a Message Queue—Returns Add the
109 following function to the list of functions:

110 mq_timedreceive()

111 15.2.5.4 Errors

112 ⇒⇒ 15.2.5.4 Receive a Message from a Message Queue—Errors Make the fol-
113 lowing changes to the discussion of error conditions:

114 Add mq_timedreceive() at the end of the list of functions for both the ‘‘if
115 occurs’’ error conditions and the ‘‘if detected’’ error conditions.

116 Add an [ETIMEDOUT] error value to the ‘‘if occurs’’ error conditions (in alpha-
117 betical order), with the following reason:

118 The O_NONBLOCK flag was not set when the message queue was
119 opened, but no message arrived on the queue before the specified
120 timeout expired.

121 Add an [EINVAL] error value to the ‘‘if occurs’’ error conditions (in alphabetical
122 order), with the following reason:

123 The thread would have blocked, and the abs_timeout parameter
124 specified a nanoseconds field value less than zero or greater than or
125 equal to 1000 million.

126 Add mq_timedreceive() to the list of functions returning [EINTR].

56 15 Message Passing

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

127 15.2.5.5 Cross-References

128 ⇒⇒ 15.2.5.5 Receive a Message from a Message Queue—Cross-References
129 Add the following cross-references in alphabetical order:

130 mq_open(), 15.2.1; time(), 4.5.1; <<tti immee..hh>>, 14.1.

15.2 Message Passing Functions 57

IEEE Std 1003.1d-1999

58 15 Message Passing

IEEE Std 1003.1d-1999

Section 16: Thread Management

1 16.2 Thread Functions

2 16.2.2 Thread Creation

13 6.2.2.2 Description

4 ⇒⇒ 16.2.2.2 Thread Creation—Description Add the following paragraph to the
5 description, after the paragraph starting ‘‘The signal state of the new
6 thread... ’’:

7 If {_POSIX_THREAD_CPUTIME} is defined, the new thread shall have a
8 CPU-time clock accessible, and the initial value of this clock shall be set
9 to zero.

16.2 Thread Functions 59

IEEE Std 1003.1d-1999

60 16 Thread Management

IEEE Std 1003.1d-1999

Section 18: Thread Cancellation

1 18.1 Thread Cancellation Overview

2 18.1.2 Cancellation Points

3 ⇒⇒ 18.1.2 Cancellation Points Add the following functions (in alphabetical
4 order) to the list of functions for which a cancellation point shall occur:

5 mq_timedsend (), mq_timedreceive(), sem_timedwait().

6 ⇒⇒ 18.1.2 Cancellation Points Add the following functions (in alphabetical
7 order) to the list of functions for which a cancellation point may also occur:

8 posix_fadvise(), posix_fallocate(), posix_madvise(), posix_spawn(),
9 posix_spawnp().

18.1 Thread Cancellation Overview 61

IEEE Std 1003.1d-1999

62 18 Thread Cancellation

IEEE Std 1003.1d-1999

Section 19: Advisory Information

1 ⇒⇒ 19 Advisory Information Add the following section:

2 19.1 I/O Advisory Information and Space Control

3 19.1.1 File Advisory Information

4 Function: posix_fadvise().

5 19.1.1.1 Synopsis

6 ##iinncclluuddee <<ssyyss//ttyyppeess..hh>>
#7 #iinncclluuddee <<ffccnnttl l. .hh>>

i8 inntt ppoossiixx__ffaaddvviissee((iinntt fd,, ooffff__tt offset,,
9 ssiizzee__tt len,, i inntt advice));;

10 19.1.1.2 Description

11 If {_POSIX_ADVISORY_INFO} is defined:

12 The posix_fadvise() function provides advice to the implementation on the
13 expected behavior of the application with respect to the data in the file asso-
14 ciated with the open file descriptor, fd, starting at offset and continuing for
15 len bytes. The specified range need not currently exist in the file. If len is
16 zero, all data following offset is specified. The implementation may use this
17 information to optimize handling of the specified data. The posix_fadvise()
18 function has no effect on the semantics of other operations on the specified
19 data although it may affect the performance of other operations.

20 The advice to be applied to the data is specified by the advice parameter
21 and may be one of the following values:

22 PPOOSSIIXX__FFAADDVV__NNOORRMMAALL specifies that the application has no advice to give
23 on its behavior with respect to the specified data. It is the
24 default characteristic if no advice is given for an open file.

25 PPOOSSIIXX__FFAADDVV__SSEEQQUUEENNTTIIAALL specifies that the application expects to access
26 the specified data sequentially from lower offsets to higher
27 offsets.

19.1 I/O Advisory Information and Space Control 63

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

28 PPOOSSIIXX__FFAADDVV__RRAANNDDOOMMspecifies that the application expects to access the
29 specified data in a random order.

30 PPOOSSIIXX__FFAADDVV__WWIILLLLNNEEEEDD specifies that the application expects to access
31 the specified data in the near future.

32 PPOOSSIIXX__FFAADDVV__DDOONNTTNNEEEEDD specifies that the application expects that it will
33 not access the specified data in the near future.

34 PPOOSSIIXX__FFAADDVV__NNOORREEUUSSEE specifies that the application expects to access the
35 specified data once and then not reuse them thereafter.

36 These values shall be defined in <<ffccnnttl l. .hh>> if the Advisory Information
37 option is supported.

O38 therwise:

39 Either the implementation shall support the posix_fadvise() function as
40 described above, or this function shall not be provided.

41 19.1.1.3 Returns

42 Upon successful completion, the posix_fadvise() function shall return a value of
zero;43 otherwise, it shall return an error number to indicate the error.

44 19.1.1.4 Errors

45 If any of the following conditions occur, the posix_fadvise() function shall return
the46 corresponding error number:

47 [EBADF] The fd argument is not a valid file descriptor.

48 [ESPIPE] The fd argument is associated with a pipe or FIFO.

49 [EINVAL] The value in advice is invalid.

50 19.1.1.5 Cross-References

51 posix_madvise(), 19.2.1.

52 19.1.2 File Space Control

53 Function: posix_fallocate().

54 19.1.2.1 Synopsis

55 ##iinncclluuddee <<ssyyss//ttyyppeess..hh>>
#56 #iinncclluuddee <<ffccnnttl l. .hh>>

i57 inntt ppoossiixx__ffaalll looccaattee((iinntt fd,, ooffff__tt offset,, ssiizzee__tt len));;

58 19.1.2.2 Description

59 If {_POSIX_ADVISORY_INFO} is defined:

64 19 Advisory Information

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

60 The posix_fallocate() function ensures that any required storage for regular
61 file data starting at offset and continuing for len bytes is allocated on the file
62 system storage media. If posix_fallocate() returns successfully, subsequent
63 writes to the specified file data shall not fail due to the lack of free space on
64 the file system storage media.

65 If the offset + len is beyond the current file size, then posix_fallocate() shall
66 adjust the file size to offset + len. Otherwise, the file size shall not be
67 changed.

68 It is implementation defined whether a previous posix_fadvise() call
69 influences allocation strategy.

70 Space allocated via posix_fallocate() shall be freed by a successful call to
71 creat () or open() that truncates the size of the file. Space allocated via
72 posix_fallocate() may be freed by a successful call to ftruncate () that
73 reduces the file size to a size smaller than offset + len.

O74 therwise:

75 Either the implementation shall support the posix_fallocate() function as
76 described above, or this function shall not be provided.

77 19.1.2.3 Returns

78 Upon successful completion, the posix_fallocate() function shall return a value of
zero;79 otherwise, it shall return an error number to indicate the error.

80 19.1.2.4 Errors

81 If any of the following conditions occur, the posix_fallocate() function shall return
the82 corresponding error number:

83 [EBADF] The fd argument is not a valid file descriptor.

84 [EBADF] The fd argument references a file that was opened without write
85 permission.

86 [EFBIG] The value of offset + len is greater than the maximum file size.

87 [EINTR] A signal was caught during execution.

88 [EINVAL] The len argument was zero or the offset argument was less than
89 zero.

90 [EIO] An I/O error occurred while reading from or writing to a file
91 system.

92 [ENODEV] The fd argument does not refer to a regular file.

93 [ENOSPC] There is insufficient free space remaining on the file system
94 storage media.

95 [ESPIPE] The fd argument is associated with a pipe or FIFO.

19.1 I/O Advisory Information and Space Control 65

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

96 19.1.2.5 Cross-References

97 unlink(), 5.5.1; open(), 5.3.1; creat (), 5.3.2; ftruncate (), 5.6.7.

98 19.2 Memory Advisory Information and Alignment Control

99 19.2.1 Memory Advisory Information

100 Function: posix_madvise().

101 19.2.1.1 Synopsis

102 ##iinncclluuddee <<ssyyss//ttyyppeess..hh>>
#103 #iinncclluuddee <<ssyyss//mmmmaann..hh>>

i104 inntt ppoossiixx__mmaaddvviissee((vvooiidd ∗∗addr,, ssiizzee__tt len,, i inntt advice));;

105 19.2.1.2 Description

106 If {_POSIX_ADVISORY_INFO} is defined and either {_POSIX_MAPPED_FILES} or
{_107 POSIX_SHARED_MEMORY_OBJECTS} is defined:

108 The posix_madvise() function provides advice to the implementation on the
109 expected behavior of the application with respect to the data in the memory
110 starting at address, addr, and continuing for len bytes. The implementa-
111 tion may use this information to optimize handling of the specified data.
112 The posix_madvise() function has no effect on the semantics of access to
113 memory in the specified range although it may affect the performance of
114 access.

115 The implementation may require that addr be a multiple of the page size,
116 which is the value returned by sysconf () when the name value
117 _SC_PAGESIZE is used.

118 The advice to be applied to the memory range is specified by the advice
119 parameter and may be one of the following values:

120 PPOOSSIIXX__MMAADDVV__NNOORRMMAALL specifies that the application has no advice to give
121 on its behavior with respect to the specified range. It is the
122 default characteristic if no advice is given for a range of
123 memory.

124 PPOOSSIIXX__MMAADDVV__SSEEQQUUEENNTTIIAALL specifies that the application expects to access
125 the specified range sequentially from lower addresses to higher
126 addresses.

127 PPOOSSIIXX__MMAADDVV__RRAANNDDOOMMspecifies that the application expects to access the
128 specified range in a random order.

129 PPOOSSIIXX__MMAADDVV__WWIILLLLNNEEEEDD specifies that the application expects to access
130 the specified range in the near future.

131 PPOOSSIIXX__MMAADDVV__DDOONNTTNNEEEEDD specifies that the application expects that it will
132 not access the specified range in the near future.

66 19 Advisory Information

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

133 These values shall be defined in <<ssyyss//mmmmaann..hh>> if the Advisory Informa-
134 tion option is supported and either the Memory Mapped Files option or the
135 Shared Memory Objects option is supported.

O136 therwise:

137 Either the implementation shall support the posix_madvise() function as
138 described above, or this function shall not be provided.

139 19.2.1.3 Returns

140 Upon successful completion, the posix_madvise() function shall return a value of
zero;141 otherwise, it shall return an error number to indicate the error.

142 19.2.1.4 Errors

143 If any of the following conditions occur, the posix_madvise() function shall return
the144 corresponding error number:

145 [EINVAL] The value in advice is invalid.

146 [ENOMEM] Addresses in the range starting at addr and continuing for len
147 bytes are partly or completely outside the range allowed for the
148 address space of the calling process.

If149 any of the following conditions are detected, the posix_madvise() function shall
return150 the corresponding error number:

151 [EINVAL] The value of addr is not a multiple of the value returned by sys-
152 conf() when the name value _SC_PAGESIZE is used.

153 [EINVAL] The value of len is zero.

154 19.2.1.5 Cross-References

155 posix_fadvise(), 19.1.1; mmap(), 12.2.1; sysconf (), 4.8.1.

156 19.2.2 Aligned Memory Allocation

157 Function: posix_memalign().

158 19.2.2.1 Synopsis

159 ##iinncclluuddee <<ssyyss//ttyyppeess..hh>>
#160 #iinncclluuddee <<ssttddlli ibb..hh>>

i161 inntt ppoossiixx__mmeemmaalli iggnn((vvooiidd ∗∗memptr,, ssiizzee__tt alignment,,
162 ssiizzee__tt size));;

163 19.2.2.2 Description

164 If {_POSIX_ADVISORY_INFO} is defined:

19.2 Memory Advisory Information and Alignment Control 67

IEEE Std 1003.1d-1999

165 The posix_memalign() function allocates size bytes aligned on a boundary
166 specified by alignment and returns a pointer to the allocated memory in
167 memptr. The value of alignment shall be a multiple of sizeof(void ∗) that is
168 also a power of two. Upon successful completion, the value pointed to by
169 memptr shall be a multiple of alignment.

170 The C Standard free () function deallocates memory that has previously
171 been allocated by posix_memalign().

O172 therwise:

173 Either the implementation shall support the posix_memalign() function as
174 described above, or this function shall not be provided.

175 19.2.2.3 Returns

176 Upon successful completion, the posix_memalign() function returns a value of
zero.177 Otherwise the posix_memalign() function shall return an error number to
indicate178 the error.

179 19.2.2.4 Errors

180 If any of the following conditions occur, the posix_memalign() function shall
return181 the corresponding error number:

182 [EINVAL] The value of the alignment parameter is not a power of two mul-
183 tiple of sizeof(void ∗).

184 [ENOMEM] There is insufficient memory available with the requested
185 alignment.

186 19.2.2.5 Cross-References

187 free (), 8.1; malloc(), 8.1.

68 19 Advisory Information

IEEE Std 1003.1d-1999

Annex A
(informative)

Bibliography

1 A.2 Other Standards

2 ⇒⇒ A.2 Other Standards Add the following to the end of subclause A.2, with an
3 appropriate reference number:

4 {B1} ISO/IEC 14519:1998, POSIX Ada Language Interfaces—Binding for Sys-
5 tem Application Interfaces (API) including Realtime Extensions.

6 A.3 Historical Documentation and Introductory Texts

7 ⇒⇒ A.3 Historical Documentation and Introductory Texts Add the following
8 to the end of subclause A.3, with an appropriate reference number:

9 {B2} Sprunt, B., Sha, L., and Lehoczky, J.P., ‘‘Aperiodic Task Scheduling for
10 Hard Real-Time Systems.’’ The Journal of Real-Time Systems, vol. 1,
11 pp. 27-60, 1989.

A.3 Historical Documentation and Introductory Texts 69

IEEE Std 1003.1d-1999

70 A Bibliography

IEEE Std 1003.1d-1999

Annex B
(informative)

Rationale and Notes1

2 B.2 Definitions and General Requirements

3 B.2.3 General Concepts

4 ⇒⇒ B.2.3 General Concepts: Add the following subclause, in the proper order,
5 to the existing items in B.2.3:

6 B.2.3.1 measurement of execution time

7 The methods used to measure the execution time of processes and threads, and
the8 precision of these measurements, may vary considerably depending on the
software9 architecture of the implementation and on the underlying hardware.
I10 mplementations can also make tradeoffs between the scheduling overhead and
the11 precision of the execution time measurements. The standard does not impose
any12 requirement on the accuracy of the execution time; it instead specifies that
the13 measurement mechanism and its precision are implementation defined.

14 B.3 Process Primitives

15 B.3.1 Process Creation and Execution

16 ⇒⇒ B.3.1 Process Creation and Execution Add the following subclauses:

17 B.3.1.4 Spawn File Actions

18 A spawn file actions object may be initialized to contain an ordered sequence of
close,19 dup2, and open operations to be used by posix_spawn() or posix_spawnp() to
arrive20 at the set of open file descriptors inherited by the spawned process from the
set21 of open file descriptors in the parent at the time of the posix_spawn() or

22 posix_spawnp() call. It had been suggested that the close and dup2 operations
alone23 are sufficient to rearrange file descriptors and that files which need be
opened24 for use by the spawned process can be handled either by having the calling

B.3 Process Primitives 71

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

25 process open them before the posix_spawn() or posix_spawnp() call (and close
them26 after) or by passing file names to the spawned process (in argv) so that it
may27 open them itself. The working group recommends that applications use one of
these28 two methods when practical since detailed error status on a failed open
operation29 is always available to the application this way. However, the working
group30 feels that allowing a spawn file actions object to specify open operations is
still31 appropriate because

32 (1) It is consistent with equivalent POSIX.5 functionality (see the discussion
33 on compatibility with POSIX.5 in B.3.1.6).

34 (2) It supports the I/O redirection paradigm commonly employed by POSIX
35 programs designed to be invoked from a shell. When such a program is
36 the child process, it may not be designed to open files on its own.

37 (3) It allows file opens that might otherwise fail or violate file
38 ownership/access rights if executed by the parent process.

Regarding39 (2) above, the spawn open file action provides to posix_spawn() and
40 posix_spawnp() the same capability that the shell redirection operators provide to
41 system (), only without the intervening execution of a shell (e.g.:
42 ssyysstteemm((""mmyypprroogg <<ffi il lee11 33<<ffi il lee22""));;).

Regarding43 (3) above, if the calling process needs to open one or more files for
access44 by the spawned process, but has insufficient spare file descriptors, then the
open45 action is necessary to allow the open to occur in the context of the child pro-
cess46 after other file descriptors (that must remain open in the parent) have been
c47 losed.

Additionally,48 if a parent is executed from a file having a ‘‘set-user-id’’ mode bit set
and49 the POSIX_SPAWN_RESETIDS flag is set in the spawn attributes, a file created
within50 the parent process will (possibly incorrectly) have the parent’s effective
user51 id as its owner whereas a file created via an open action during

52 posix_spawn() or posix_spawnp() will have the parent’s real id as its owner; and
an53 open by the parent process may successfully open a file to which the real user
should54 not have access or fail to open a file to which the real user should have
a55 ccess.

56 File Descriptor Mapping Rationale

57 The working group had originally proposed using an array that specified the map-
ping58 of child file descriptors back to the file descriptors of the parent. It was
pointed59 out by the ballot group that it is not possible to reshuffle file descriptors
arbitrarily60 in a library implementation of posix_spawn() or posix_spawnp()
without61 provision for one or more spare file descriptor entries (which simply may
not62 be available). Such an array requires that an implementation develop a com-
plex63 strategy to achieve the desired mapping without inadvertently closing the
wrong64 file descriptor at the wrong time.

It65 was noted by a member of the Ada Language Bindings working group that the
approved66 Ada Language SSttaarrtt__PPrroocceessss family of POSIX process primitives uses a
caller67 -specified set of file actions to alter the normal fork() / exec semantics for
inheritance68 of file descriptors in a very flexible way, yet no such problems exist
because69 the burden of determining how to achieve the final file descriptor map-

72 B Rationale and Notes

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

70 ping is completely on the application. Furthermore, although the file actions inter-
face71 appears frightening at first glance, it is actually quite simple to implement in
either72 a library or the kernel.

73 B.3.1.5 Spawn Attributes

74 The original spawn interface proposed in this standard defined the attributes that
specify75 the inheritance of process attributes across a spawn operation as a struc-
ture.76 For the ability to separate optional individual attributes under their
appropriate77 options (i.e., the ssppaawwnn--sscchheeddppaarraamm and ssppaawwnn--sscchheeddppoolli iccyy

78 attributes depending upon the Process scheduling option) and also for extensibility
and79 consistency with the newer POSIX interfaces, the attributes interface has
been80 changed to an opaque datatype. This interface now consists of the type

81 posix_spawnattr_t, representing a spawn attributes object, together with associ-
ated82 functions to initialize or destroy the attributes object, and to set or get each
individual83 attribute. Although the new object-oriented interface is more verbose
than84 the original structure, it is simple to use, more extensible, and easy to
i85 mplement.

86 B.3.1.6 Spawn a Process

87 The POSIX fork() function is difficult or impossible to implement without swapping
or88 dynamic address translation. POSIX needs process creation and file execution
primitives89 that can be efficiently implemented without address translation or
other90 MMU services, for the following reasons:

91 — Swapping is generally too slow for a realtime environment.

92 — Dynamic address translation is not available everywhere POSIX might be
93 useful.

94 — Processes are too useful to simply option out of POSIX whenever it must run
95 without address translation or other MMU services.

This96 function shall be called posix_spawn(). A closely related function,
97 posix_spawnp(), is included for completeness.

The98 posix_spawn() function is implementable as a library routine, but both
99 posix_spawn() and posix_spawnp() are designed as kernel operations. Also,

although100 they may be an efficient replacement for many fork() / exec pairs, their
goal101 is to provide useful process creation primitives for systems that have
di102 fficulty with fork(), not to provide drop-in replacements for fork() / exec.

This103 view of the role of posix_spawn() and posix_spawnp() influenced the design of
their104 API. It does not attempt to provide the full functionality of fork() / exec in
which105 arbitrary user-specified operations of any sort are permitted between the
creation106 of the child process and the execution of the new process image; any
attempt107 to reach that level would need to provide a programming language as
parameters.108 Instead, posix_spawn() and posix_spawnp() are process creation
primitives109 like the SSttaarrtt__PPrroocceessss and SSttaarrtt__PPrroocceessss__SSeeaarrcchh Ada language

B.3 Process Primitives 73

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

110 bindings in ISO/IEC 14519:1998 {B1} package PPOOSSIIXX__PPrroocceessss__PPrriimmiit ti ivveess and
also111 like those in many operating systems that are not UNIX1) systems, but with
some112 POSIX-specific additions.

T113 o achieve their coverage goals, posix_spawn() and posix_spawnp() have control of
six114 types of inheritance: file descriptors, process group ID, user and group ID, sig-
nal115 mask, scheduling, and whether each signal ignored in the parent will remain
ignored116 in the child or be reset to its default action in the child.

Control117 of file descriptors is required to allow an independently written child pro-
cess118 image to access data streams opened by and even generated or read by the
parent119 process without being specifically coded to know which parent files and file
descriptors120 are to be used. Control of the process group ID is required to control
how121 the child process’s job control relates to that of the parent.

Control122 of the signal mask and signal defaulting is sufficient to support the imple-
mentation123 of system () suggested in P1003.1a. Although support for system () is not
explicitly124 one of the goals for posix_spawn() and posix_spawnp(), it is covered
under125 the ‘‘at least 50%’’ coverage goal.

The126 intention is that the normal file descriptor inheritance across fork(), the sub-
sequent127 effect of the specified spawn file actions, and the normal file descriptor
inheritance128 across one of the exec family of functions should fully specify open file
inheritance.129 The implementation need make no decisions regarding the set of
open130 file descriptors when the child process image begins execution. Those deci-
sions131 have already been made by the caller and expressed as the set of open file
descriptors132 and their FD_CLOEXEC flags at the time of the call together with the
spawn133 file actions object specified in the call. In the cases where the POSIX

134 SSttaarrtt__PPrroocceessss Ada primitives have been implemented in a library, this method
of135 controlling file descriptor inheritance may be implemented very easily. See
Figure B-1136 for a crude, but workable, C language implementation.

Several137 problems have been identified with posix_spawn() and posix_spawnp(),
but138 a solution that introduces fewer problems does not appear to exist.

Environment139 modification for child process attributes not specifiable via the attrp
140 or file_actions arguments shall be done in the parent process. Since the parent

generally141 wants to save its context, it is more costly than similar functionality
with142 fork() / exec. It is also complicated to modify the environment of a mul-
tithreaded143 process temporarily since all threads must agree when it is safe for the
environment144 to be changed. However, this cost is only borne by those invocations
of145 posix_spawn() and posix_spawnp() that use the additional functionality. Since
extensive146 modifications are not the usual case and are particularly unlikely in
time147 -critical code, keeping much of the environment control out of posix_spawn()
and148 posix_spawnp() is appropriate design.

The149 posix_spawn() and posix_spawnp() functions do not have all the power of
150 fork() / exec. The fork() function is a wonderfully powerful operation. Its func-

tionality151 cannot be duplicated in a simple, fast function with no special hardware

152 ________________

1)153 UNIX is a registered trademark of The Open Group in the United States of America and other
154 countries.

74 B Rationale and Notes

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

155 requirements. The posix_spawn() and posix_spawnp() functions are similar to the
process156 creation operations on many operating systems that are not UNIX

157 systems.

158 Requirements

159 The requirements for posix_spawn() and posix_spawnp() are as follows:

160 — They must be implementable without an MMU or unusual hardware.

161 — They must be compatible with existing POSIX standards.

Additional162 goals are the following:

163 — They should be efficiently implementable.

164 — They should be able to replace at least 50% of typical executions of fork().

165 — A system with posix_spawn() and posix_spawnp() and without fork() should
166 be useful, at least for realtime applications.

167 — A system with fork() and the exec family should be able to implement
168 posix_spawn() and posix_spawnp() as library routines.

169 Two-Syntax Rationale

170 POSIX exec has several calling sequences with approximately the same functional-
ity.171 These appear to be required for compatibility with existing practice. Since
the172 existing practice for the posix_spawn functions is otherwise substantially
unlike173 POSIX, simplicity outweighs compatibility. There are, therefore, only two
names174 for the posix_spawn functions.

The175 parameter list does not differ between posix_spawn() and posix_spawnp();
176 posix_spawnp() interprets the second parameter more elaborately than
177 posix_spawn().

178 Compatibility with POSIX.5 PPOOSSIIXX__PPrroocceessss__PPrriimmiit ti ivveess..SSttaarrtt__PPrroocceessss

179 The SSttaarrtt__PPrroocceessss and SSttaarrtt__PPrroocceessss__SSeeaarrcchh procedures from ISO/IEC
180 14519:1998 {B1}, the Ada Language Binding to POSIX.1, encapsulate fork() and
181 exec functionality in a manner similar to that of posix_spawn() and
182 posix_spawnp(). Originally, in keeping with its simplicity goal, the working group

had183 limited the capabilities of posix_spawn() and posix_spawnp() to a subset of
the184 capabilities of SSttaarrtt__PPrroocceessss and SSttaarrtt__PPrroocceessss__SSeeaarrcchh; certain nonde-
fault185 capabilities were not supported. However, based on suggestions by the ballot
group186 to improve file descriptor mapping or drop it, and on the advice of an Ada
Bindings187 working group member, the working group decided that posix_spawn()
and188 posix_spawnp() should be sufficiently powerful to implement SSttaarrtt__PPrroocceessss

189 and SSttaarrtt__PPrroocceessss__SSeeaarrcchh. The rationale is that if the Ada language binding to
such190 a primitive had already been approved as an IEEE standard, there can be lit-
tle191 justification for not approving the functionally equivalent parts of a C binding.
The192 only three capabilities provided by posix_spawn() and posix_spawnp() that
are193 not provided by SSttaarrtt__PPrroocceessss and SSttaarrtt__PPrroocceessss__SSeeaarrcchh are optionally
specifying194 the child’s process group id, the set of signals to be reset to default sig-
nal195 handling in the child process, and the child’s scheduling policy and
p196 arameters.

F197 or the Ada Language Binding for SSttaarrtt__PPrroocceessss to be implemented with
198 posix_spawn(), that binding would need to explicitly pass an empty signal mask

B.3 Process Primitives 75

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

199 and the parent’s environment to posix_spawn() whenever the caller of SSttaarrtt__--
P200 Prroocceessss allowed these arguments to default since posix_spawn() does not provide
such201 defaults. The ability of SSttaarrtt__PPrroocceessss to mask user-specified signals during
its202 execution is functionally unique to the Ada Language Binding and shall be
dealt203 with in the binding separately from the call to posix_spawn().

204 Process Group

205 The process group inheritance field can be used to join the child process with an
existing206 process group. By assigning a value of zero to the ssppaawwnn--ppggrroouupp attri-
bute207 of the object referenced by attrp, the setpgid() mechanism will place the child
process208 in a new process group.

209 Threads

210 Without the posix_spawn() and posix_spawnp() functions, systems without
address211 translation can still use threads to give an abstraction of concurrency. In
many212 cases, thread creation suffices, but it is not always a good substitute. The

213 posix_spawn() and posix_spawnp() functions are considerably ‘‘heavier’’ than
thread214 creation. Processes have several important attributes that threads do not.
Even215 without address translation, a process may have base-and-bound memory
protection.216 Each process has a process environment including security attributes,

217 file capabilities, and powerful scheduling attributes specified by POSIX.1 and
218 POSIX.1b. Processes abstract the behavior of nonuniform-memory-architecture

m219 ultiprocessors better than threads, and they are more convenient to use for
activities220 that are not closely linked.

The221 posix_spawn() and posix_spawnp() functions may not bring support for multi-
ple222 processes to every configuration. Process creation is not the only piece of
operating223 system support required to support multiple processes. The total cost of
support224 for multiple processes may be quite high in some circumstances. Existing
practice225 shows that support for multiple processes is uncommon and threads are
common226 among ‘‘tiny kernels.’’ There should, therefore, probably continue to be

227 AEPs for operating systems with only one process.

228 Asynchronous Error Notification Rationale

229 A library implementation of posix_spawn() or posix_spawnp() may not be able to
detect230 all possible errors before it forks the child process. This standard provides
for231 an error indication returned from a child process, which could not successfully
complete232 the spawn operation, via a special exit status that may be detected using
the233 status value returned by wait() and waitpid().

The234 stat_val interface and the macros used to interpret it are not well-suited to
the235 purpose of returning API errors, but they are the only path available to a
library236 implementation. Thus, an implementation may cause the child process to
exit237 with exit status 127 for any error detected during the spawn process after the

238 posix_spawn() or posix_spawnp() function has successfully returned.

The239 working group had proposed using two additional macros to interpret
240 stat_val: First, WIFSPAWNFAIL would have detected a status that indicated that

the241 child exited because of an error detected during the posix_spawn() or
242 posix_spawnp() operations rather than during actual execution of the child pro-

cess243 image. Second, WSPAWNERRNO would have extracted the error value if
244 WIFSPAWNFAIL indicated a failure. The balloting group strongly opposed this

approach245 because it would make a library implementation of posix_spawn() or

76 B Rationale and Notes

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

246 posix_spawnp() dependent on kernel modifications to waitpid() to be able to
embed247 special information in stat_val to indicate a spawn failure.

The248 8 bits of child process exit status that are guaranteed by this standard to be
accessible249 to the waiting parent process are insufficient to disambiguate a spawn
error250 from any other kind of error that may be returned by an arbitrary process
image.251 No other bits of the exit status are required to be visible in stat_val, so
these252 macros could not be strictly implemented at the library level. Reserving an
exit253 status of 127 for such spawn errors is consistent with the use of this value by

254 system () and popen() to signal failures in these operations that occur after the
function255 has returned, but before a shell is able to execute. The exit status of 127
does256 not uniquely identify this class of error, nor does it provide any detailed infor-
mation257 on the nature of the failure. A kernel implementation of posix_spawn() or

258 posix_spawnp() is permitted (and encouraged) to return any possible error as the
function259 value, thus providing more detailed failure information to the parent
p260 rocess.

Thus,261 no special macros are available to isolate asynchronous posix_spawn() or
262 posix_spawnp() errors. Instead, errors detected by the posix_spawn() or
263 posix_spawnp() operations in the context of the child process before the new pro-

cess264 image executes are reported by setting the child’s exit status to 127. The
calling265 process may use the WIFEXITED and WEXITSTATUS macros on the

266 stat_val stored by the wait() or waitpid() functions to detect spawn failures to the
extent267 that other status values with which the child process image may exit
(before268 the parent can conclusively determine whether the child process image has
begun269 execution) are distinct from exit status 127.

270 Library Implementation of Spawn

271 The posix_spawn() or posix_spawnp() operation is enough to

272 — Simply start a process executing a process image. This application is the
273 simplest for process creation, and it may cover most executions of POSIX
274 fork().

275 — Support I/O redirection, including pipes.

276 — Run the child under a user and group ID in the domain of the parent.

277 — Run the child at any priority in the domain of the parent.

The278 posix_spawn() or posix_spawnp() operation does not cover every possible use
of279 fork(), but it does span the common applications: typical use by sshheelll l and

280 llooggiinn.

The281 cost is that before it calls posix_spawn() or posix_spawnp(), the parent must
adjust282 to a state that posix_spawn() or posix_spawnp() can map to the desired
state283 for the child. Environment changes require the parent to save some of its
state284 and restore it afterwards. The effective behavior of a successful invocation of

285 posix_spawn() is as if the operation were implemented with POSIX operations as
shown286 in Figure B-1.

B.3 Process Primitives 77

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

287 ___
288 ##iinncclluuddee <<ssyyss//ttyyppeess..hh>>

#289 #iinncclluuddee <<ssttddlli ibb..hh>>
#290 #iinncclluuddee <<ssttddiioo..hh>>
#291 #iinncclluuddee <<uunniissttdd..hh>>
#292 #iinncclluuddee <<sscchheedd..hh>>
#293 #iinncclluuddee <<ffccnnttl l. .hh>>
#294 #iinncclluuddee <<ssiiggnnaall. .hh>>
#295 #iinncclluuddee <<eerrrrnnoo..hh>>
#296 #iinncclluuddee <<ssttrriinngg..hh>>
#297 #iinncclluuddee <<ssiiggnnaall. .hh>>

/298 / ∗∗##iinncclluuddee <<ssppaawwnn..hh>>∗∗//
/299 / ∗∗//
/300 / ∗∗TThhiinnggss tthhaatt ccoouulldd bbee ddeeffi inneedd iinn ssppaawwnn..hh∗∗//
/301 / ∗∗//
t302 tyyppeeddeeff ssttrruucctt

303 {{
304 sshhoorrtt ppoossiixx__aattttrr__ffl laaggss;;

#305 #ddeeffi innee PPOOSSIIXX__SSPPAAWWNN__SSEETTPPGGRROOUUPP 00xx11
#306 #ddeeffi innee PPOOSSIIXX__SSPPAAWWNN__SSEETTSSIIGGMMAASSKK 00xx22
#307 #ddeeffi innee PPOOSSIIXX__SSPPAAWWNN__SSEETTSSIIGGDDEEFF 00xx44
#308 #ddeeffi innee PPOOSSIIXX__SSPPAAWWNN__SSEETTSSCCHHEEDDUULLEERR 00xx88
#309 #ddeeffi innee PPOOSSIIXX__SSPPAAWWNN__SSEETTSSCCHHEEDDPPAARRAAMM 00xx1100
#310 #ddeeffi innee PPOOSSIIXX__SSPPAAWWNN__RREESSEETTIIDDSS 00xx2200

311 ppiidd__tt ppoossiixx__aattttrr__ppggrroouupp;;
312 ssiiggsseett__tt ppoossiixx__aattttrr__ssiiggmmaasskk;;
313 ssiiggsseett__tt ppoossiixx__aattttrr__ssiiggddeeffaauullt t;;
314 iinntt ppoossiixx__aattttrr__sscchheeddppoolli iccyy;;
315 ssttrruucctt sscchheedd__ppaarraamm ppoossiixx__aattttrr__sscchheeddppaarraamm;;
316 }} ppoossiixx__ssppaawwnnaattttrr__tt;;

t317 tyyppeeddeeff cchhaarr ∗∗ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__tt;;

i318 inntt ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__iinniit t((
319 ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__tt ∗∗ffi il lee__aacctti ioonnss));;

i320 inntt ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__ddeessttrrooyy((
321 ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__tt ∗∗ffi il lee__aacctti ioonnss));;

i322 inntt ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__aaddddcclloossee((
323 ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__tt ∗∗ffi il lee__aacctti ioonnss,,
324 iinntt ffi il lddeess));;

i325 inntt ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__aadddddduupp22((
326 ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__tt ∗∗ffi il lee__aacctti ioonnss,,
327 iinntt ffi il lddeess,, i inntt nneewwffi il lddeess));;

i328 inntt ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__aaddddooppeenn((
329 ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__tt ∗∗ffi il lee__aacctti ioonnss,,
330 iinntt ffi il lddeess,, ccoonnsstt cchhaarr ∗∗ppaatthh,, i inntt ooffl laagg,,
331 mmooddee__tt mmooddee));;

i332 inntt ppoossiixx__ssppaawwnnaattttrr__iinniit t ((
333 ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr));;

i334 inntt ppoossiixx__ssppaawwnnaattttrr__ddeessttrrooyy ((
335 ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr));;

i336 inntt ppoossiixx__ssppaawwnnaattttrr__ggeettffl laaggss ((
337 ccoonnsstt ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,
338 sshhoorrtt ∗∗ffl laaggss));;

i339 inntt ppoossiixx__ssppaawwnnaattttrr__sseettffl laaggss ((

78 B Rationale and Notes

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

340 ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,
341 sshhoorrtt ffl laaggss));;

i342 inntt ppoossiixx__ssppaawwnnaattttrr__ggeettppggrroouupp ((
343 ccoonnsstt ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,
344 ppiidd__tt ∗∗ppggrroouupp));;

i345 inntt ppoossiixx__ssppaawwnnaattttrr__sseettppggrroouupp ((
346 ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,
347 ppiidd__tt ppggrroouupp));;

i348 inntt ppoossiixx__ssppaawwnnaattttrr__ggeettsscchheeddppoolli iccyy ((
349 ccoonnsstt ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,
350 iinntt ∗∗sscchheeddppoolli iccyy));;

i351 inntt ppoossiixx__ssppaawwnnaattttrr__sseettsscchheeddppoolli iccyy ((
352 ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,
353 iinntt sscchheeddppoolli iccyy));;

i354 inntt ppoossiixx__ssppaawwnnaattttrr__ggeettsscchheeddppaarraamm ((
355 ccoonnsstt ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,
356 ssttrruucctt sscchheedd__ppaarraamm ∗∗sscchheeddppaarraamm));;

i357 inntt ppoossiixx__ssppaawwnnaattttrr__sseettsscchheeddppaarraamm ((
358 ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,
359 ccoonnsstt ssttrruucctt sscchheedd__ppaarraamm ∗∗sscchheeddppaarraamm));;

i360 inntt ppoossiixx__ssppaawwnnaattttrr__ggeettssiiggmmaasskk ((
361 ccoonnsstt ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,
362 ssiiggsseett__tt ∗∗ssiiggmmaasskk));;

i363 inntt ppoossiixx__ssppaawwnnaattttrr__sseettssiiggmmaasskk ((
364 ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,
365 ccoonnsstt ssiiggsseett__tt ∗∗ssiiggmmaasskk));;

i366 inntt ppoossiixx__ssppaawwnnaattttrr__ggeettssiiggddeeffaauullt t ((
367 ccoonnsstt ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,
368 ssiiggsseett__tt ∗∗ssiiggddeeffaauullt t));;

i369 inntt ppoossiixx__ssppaawwnnaattttrr__sseettssiiggddeeffaauullt t ((
370 ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,
371 ccoonnsstt ssiiggsseett__tt ∗∗ssiiggddeeffaauullt t));;

i372 inntt ppoossiixx__ssppaawwnn((
373 ppiidd__tt ∗∗ppiidd,,
374 ccoonnsstt cchhaarr ∗∗ppaatthh,,
375 ccoonnsstt ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__tt ∗∗ffi il lee__aacctti ioonnss,,
376 ccoonnsstt ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrrpp,,
377 cchhaarr ∗∗ ccoonnsstt aarrggvv[[]],,
378 cchhaarr ∗∗ ccoonnsstt eennvvpp[[]]));;

i379 inntt ppoossiixx__ssppaawwnnpp((
380 ppiidd__tt ∗∗ppiidd,,
381 ccoonnsstt cchhaarr ∗∗ffi il lee,,
382 ccoonnsstt ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__tt ∗∗ffi il lee__aacctti ioonnss,,
383 ccoonnsstt ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrrpp,,
384 cchhaarr ∗∗ ccoonnsstt aarrggvv[[]],,
385 cchhaarr ∗∗ ccoonnsstt eennvvpp[[]]));;

/386 / ∗∗//
/387 / ∗∗EExxaammppllee ppoossiixx__ssppaawwnn(()) lli ibbrraarryy rroouutti innee∗∗//
/388 / ∗∗//
i389 inntt ppoossiixx__ssppaawwnn((ppiidd__tt ∗∗ppiidd,,

390 ccoonnsstt cchhaarr ∗∗ppaatthh,,
391 ccoonnsstt ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__tt ∗∗ffi il lee__aacctti ioonnss,,
392 ccoonnsstt ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrrpp,,
393 cchhaarr ∗∗ ccoonnsstt aarrggvv[[]],,
394 cchhaarr ∗∗ ccoonnsstt eennvvpp[[]]))

B.3 Process Primitives 79

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

395 {{
396 // ∗∗CCrreeaattee pprroocceessss∗∗//
397 iif f((((∗∗ppiidd==ffoorrkk(()))) ==== ((ppiidd__tt))00))
398 {{
399 // ∗∗TThhiiss iiss tthhee cchhiil ldd pprroocceessss∗∗//
400 // ∗∗WWoorrrryy aabboouutt pprroocceessss ggrroouupp∗∗//
401 iif f((aattttrrpp−−>>ppoossiixx__aattttrr__ffl laaggss && PPOOSSIIXX__SSPPAAWWNN__SSEETTPPGGRROOUUPP))
402 {{
403 // ∗∗OOvveerrrriiddee iinnhheerriit teedd pprroocceessss ggrroouupp∗∗//
404 iif f((sseettppggiidd((00,, aattttrrpp−−>>ppoossiixx__aattttrr__ppggrroouupp)) !!== 00))
405 {{
406 // ∗∗FFaaiil leedd∗∗//
407 eexxiit t((112277));;
408 }}
409 }}

410 // ∗∗WWoorrrryy aabboouutt pprroocceessss ssiiggnnaall mmaasskk∗∗//
411 iif f((aattttrrpp−−>>ppoossiixx__aattttrr__ffl laaggss && PPOOSSIIXX__SSPPAAWWNN__SSEETTSSIIGGMMAASSKK))
412 {{
413 // ∗∗SSeett tthhee ssiiggnnaall mmaasskk ((ccaann’’t t ffaaiil l)) ∗∗//
414 ssiiggpprrooccmmaasskk((SSIIGG__SSEETTMMAASSKK,, &&aattttrrpp−−>>ppoossiixx__aattttrr__ssiiggmmaasskk,,
415 NNUULLLL));;
416 }}

417 // ∗∗WWoorrrryy aabboouutt rreesseetttti inngg eeffffeecctti ivvee uusseerr aanndd ggrroouupp IIDDss∗∗//
418 iif f((aattttrrpp−−>>ppoossiixx__aattttrr__ffl laaggss && PPOOSSIIXX__SSPPAAWWNN__RREESSEETTIIDDSS))
419 {{
420 // ∗∗NNoonnee ooff tthheessee ccaann ffaaiil l f foorr tthhiiss ccaassee.. ∗∗//
421 sseettuuiidd((ggeettuuiidd(())));;
422 sseettggiidd((ggeettggiidd(())));;
423 }}

424 // ∗∗WWoorrrryy aabboouutt ddeeffaauullt teedd ssiiggnnaallss∗∗//
425 iif f((aattttrrpp−−>>ppoossiixx__aattttrr__ffl laaggss && PPOOSSIIXX__SSPPAAWWNN__SSEETTSSIIGGDDEEFF))
426 {{
427 ssttrruucctt ssiiggaacctti ioonn ddeeffl lt t;;
428 ssiiggsseett__tt aalll l__ssiiggnnaallss;;
429 iinntt ss;;

430 // ∗∗CCoonnssttrruucctt ddeeffaauullt t ssiiggnnaall aacctti ioonn∗∗//
431 ddeeffl lt t..ssaa__hhaannddlleerr == SSIIGG__DDFFLL;;
432 ddeeffl lt t..ssaa__ffl laaggss == 00;;

433 // ∗∗CCoonnssttrruucctt tthhee sseett ooff aalll l ssiiggnnaallss∗∗//
434 ssiiggffi il ll lsseett((&&aalll l__ssiiggnnaallss));;

435 // ∗∗LLoooopp ffoorr aalll l ssiiggnnaallss∗∗//
436 ffoorr((ss==00;; ssiiggiissmmeemmbbeerr((&&aalll l__ssiiggnnaallss,,ss));; ss++++))
437 {{
438 // ∗∗SSiiggnnaall t too bbee ddeeffaauullt teedd??∗∗//
439 iif f((ssiiggiissmmeemmbbeerr((&&aattttrrpp−−>>ppoossiixx__aattttrr__ssiiggddeeffaauullt t,,ss))))
440 {{
441 // ∗∗YYeess −− ddeeffaauullt t tthhiiss ssiiggnnaall ∗∗//
442 iif f((ssiiggaacctti ioonn((ss,, &&ddeeffl lt t,, NNUULLLL)) ==== −−11))
443 {{
444 // ∗∗FFaaiil leedd∗∗//

80 B Rationale and Notes

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

445 eexxiit t((112277));;
446 }}
447 }}
448 }}
449 }}

450 // ∗∗WWoorrrryy aabboouutt tthhee ffddss iif f wwee aarree ttoo mmaapp tthheemm∗∗//
451 iif f((ffi il lee__aacctti ioonnss !!== NNUULLLL))
452 {{
453 // ∗∗LLoooopp ffoorr aalll l aacctti ioonnss iinn oobbjjeecctt ∗∗ffi il lee__aacctti ioonnss∗∗//
454 // ∗∗((iimmpplleemmeennttaatti ioonn ddiivveess bbeenneeaatthh aabbssttrraacctti ioonn)) ∗∗//
455 cchhaarr ∗∗pp == ∗∗ffi il lee__aacctti ioonnss;;
456 wwhhiil lee((∗∗pp !!== ’’\ \00’’))
457 {{
458 iif f((ssttrrnnccmmpp((pp,,""cclloossee(("",,66)) ==== 00))
459 {{
460 iinntt ffdd;;
461 iif f((ssssccaannff((pp++66,,""%%dd))"",,&&ffdd)) !!== 11))
462 {{
463 eexxiit t((112277));;
464 }}
465 iif f((cclloossee((ffdd)) ==== −−11)) eexxiit t((112277));;
466 }}
467 eellssee iif f((ssttrrnnccmmpp((pp,,""dduupp22(("",,55)) ==== 00))
468 {{
469 iinntt ffdd,,nneewwffdd;;
470 iif f((ssssccaannff((pp++55,,""%%dd,,%%dd))"",,&&ffdd,,&&nneewwffdd)) !!== 22))
471 {{
472 eexxiit t((112277));;
473 }}
474 iif f((dduupp22((ffdd,, nneewwffdd)) ==== −−11)) eexxiit t((112277));;
475 }}
476 eellssee iif f((ssttrrnnccmmpp((pp,,""ooppeenn(("",,55)) ==== 00))
477 {{
478 iinntt ffdd,,ooffl laagg;;
479 mmooddee__tt mmooddee;;
480 iinntt tteemmppffdd;;
481 cchhaarr ppaatthh[[11000000]];; // ∗∗sshhoouulldd bbee ddyynnaammiicc∗∗//
482 cchhaarr ∗∗qq;;
483 iif f((ssssccaannff((pp++55,,""%%dd,,"",,&&ffdd)) !!== 11))
484 {{
485 eexxiit t((112277));;
486 }}
487 pp == ssttrrcchhrr((pp,, ’ ’, ,’ ’)) ++ 11;;
488 qq == ssttrrcchhrr((pp,, ’ ’ ∗∗’’));;
489 iif f((qq ==== NNUULLLL)) eexxiit t((112277));;
490 ssttrrnnccppyy((ppaatthh,, pp,, qq−−pp));;
491 ppaatthh[[qq−−pp]] == ’’\ \00’’; ;
492 iif f((ssssccaannff((qq++11,,""%%oo,,%%oo))"",,&&ooffl laagg,,&&mmooddee))!!==22))
493 {{
494 eexxiit t((112277));;
495 }}
496 iif f((cclloossee((ffdd)) ==== −−11))
497 {{
498 iif f((eerrrrnnoo !!== EEBBAADDFF)) eexxiit t((112277));;
499 }}

B.3 Process Primitives 81

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

500 tteemmppffdd == ooppeenn((ppaatthh,, ooffl laagg,, mmooddee));;
501 iif f((tteemmppffdd ==== −−11)) eexxiit t((112277));;
502 iif f((tteemmppffdd !!== ffdd))
503 {{
504 iif f((dduupp22((tteemmppffdd,,ffdd)) ==== −−11))
505 {{
506 eexxiit t((112277));;
507 }}
508 iif f((cclloossee((tteemmppffdd)) ==== −−11))
509 {{
510 eexxiit t((112277));;
511 }}
512 }}
513 }}
514 eellssee
515 {{
516 eexxiit t((112277));;
517 }}
518 pp == ssttrrcchhrr((pp,, ’ ’))’’)) ++ 11;;
519 }}
520 }}

521 // ∗∗WWoorrrryy aabboouutt sseetttti inngg nneeww sscchheedduulli inngg ppoolli iccyy aanndd ppaarraammeetteerrss∗∗//
522 iif f((aattttrrpp−−>>ppoossiixx__aattttrr__ffl laaggss && PPOOSSIIXX__SSPPAAWWNN__SSEETTSSCCHHEEDDUULLEERR))
523 {{
524 iif f((sscchheedd__sseettsscchheedduulleerr((00,, aattttrrpp−−>>ppoossiixx__aattttrr__sscchheeddppoolli iccyy,,
525 &&aattttrrpp−−>>ppoossiixx__aattttrr__sscchheeddppaarraamm)) ==== −−11))
526 {{
527 eexxiit t((112277));;
528 }}
529 }}

530 // ∗∗WWoorrrryy aabboouutt sseetttti inngg oonnllyy nneeww sscchheedduulli inngg ppaarraammeetteerrss∗∗//
531 iif f((aattttrrpp−−>>ppoossiixx__aattttrr__ffl laaggss && PPOOSSIIXX__SSPPAAWWNN__SSEETTSSCCHHEEDDPPAARRAAMM))
532 {{
533 iif f((sscchheedd__sseettppaarraamm((00,, &&aattttrrpp−−>>ppoossiixx__aattttrr__sscchheeddppaarraamm))====−−11))
534 {{
535 eexxiit t((112277));;
536 }}
537 }}

538 // ∗∗NNooww eexxeeccuuttee tthhee pprrooggrraamm aatt ppaatthh∗∗//
539 // ∗∗AAnnyy ffdd tthhaatt sstti il ll l hhaass FFDD__CCLLOOEEXXEECC sseett wwiil ll l bbee cclloosseedd∗∗//
540 eexxeeccvvee((ppaatthh,, aarrggvv,, eennvvpp));;
541 eexxiit t((112277));; // ∗∗eexxeecc ffaaiil leedd∗∗//
542 }}
543 eellssee
544 {{
545 // ∗∗TThhiiss iiss tthhee ppaarreenntt ((ccaalll li inngg)) pprroocceessss∗∗//
546 iif f((((iinntt))ppiidd ==== −−11)) rreettuurrnn eerrrrnnoo;;
547 rreettuurrnn 00;;
548 }}
549 }}

/550 / ∗∗//
/551 / ∗∗ HHeerree iiss aa ccrruuddee bbuutt eeffffeecctti ivvee iimmpplleemmeennttaatti ioonn ooff tthhee ∗∗//

82 B Rationale and Notes

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

552 // ∗∗ ffi il lee aacctti ioonn oobbjjeecctt ooppeerraattoorrss wwhhiicchh ssttoorree aacctti ioonnss aass ∗∗//
/553 / ∗∗ ccoonnccaatteennaatteedd ttookkeenn sseeppaarraatteedd ssttrriinnggss.. ∗∗//
/554 / ∗∗//
/555 / ∗∗CCrreeaattee oobbjjeecctt wwiit thh nnoo aacctti ioonnss.. ∗∗//
i556 inntt ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__iinniit t((

557 ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__tt ∗∗ffi il lee__aacctti ioonnss))
558 {{
559 ∗∗ffi il lee__aacctti ioonnss == mmaalll loocc((ssiizzeeooff((cchhaarr))));;
560 iif f((∗∗ffi il lee__aacctti ioonnss ==== NNUULLLL)) rreettuurrnn EENNOOMMEEMM;;
561 ssttrrccppyy((∗∗ffi il lee__aacctti ioonnss,, """"));;
562 rreettuurrnn 00;;
563 }}

/564 / ∗∗FFrreeee oobbjjeecctt ssttoorraaggee aanndd mmaakkee iinnvvaalli idd.. ∗∗//
i565 inntt ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__ddeessttrrooyy((

566 ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__tt ∗∗ffi il lee__aacctti ioonnss))
567 {{
568 ffrreeee((∗∗ffi il lee__aacctti ioonnss));;
569 ∗∗ffi il lee__aacctti ioonnss == NNUULLLL;;
570 rreettuurrnn 00;;
571 }}

/572 / ∗∗AAdddd aa nneeww aacctti ioonn ssttrriinngg ttoo oobbjjeecctt.. ∗∗//
s573 sttaatti icc iinntt aadddd__ttoo__ffi il lee__aacctti ioonnss((

574 ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__tt ∗∗ffi il lee__aacctti ioonnss,,
575 cchhaarr ∗∗nneeww__aacctti ioonn))
576 {{
577 ∗∗ffi il lee__aacctti ioonnss == rreeaalll loocc
578 ((∗∗ffi il lee__aacctti ioonnss,, ssttrrlleenn((∗∗ffi il lee__aacctti ioonnss))++ssttrrlleenn((nneeww__aacctti ioonn))++11));;
579 iif f((∗∗ffi il lee__aacctti ioonnss ==== NNUULLLL)) rreettuurrnn EENNOOMMEEMM;;
580 ssttrrccaatt((∗∗ffi il lee__aacctti ioonnss,, nneeww__aacctti ioonn));;
581 rreettuurrnn 00;;
582 }}

/583 / ∗∗AAdddd aa cclloossee aacctti ioonn ttoo oobbjjeecctt.. ∗∗//
i584 inntt ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__aaddddcclloossee((

585 ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__tt ∗∗ffi il lee__aacctti ioonnss,,
586 iinntt ffi il lddeess))
587 {{
588 cchhaarr tteemmpp[[110000]];;
589 sspprriinnttff((tteemmpp,, ""cclloossee((%%dd))"",, ffi il lddeess));;
590 rreettuurrnn aadddd__ttoo__ffi il lee__aacctti ioonnss((ffi il lee__aacctti ioonnss,, tteemmpp));;
591 }}

/592 / ∗∗AAdddd aa dduupp22 aacctti ioonn ttoo oobbjjeecctt.. ∗∗//
i593 inntt ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__aadddddduupp22((

594 ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__tt ∗∗ffi il lee__aacctti ioonnss,,
595 iinntt ffi il lddeess,, i inntt nneewwffi il lddeess))
596 {{
597 cchhaarr tteemmpp[[110000]];;
598 sspprriinnttff((tteemmpp,, ""dduupp22((%%dd,,%%dd))"",, ffi il lddeess,, nneewwffi il lddeess));;
599 rreettuurrnn aadddd__ttoo__ffi il lee__aacctti ioonnss((ffi il lee__aacctti ioonnss,, tteemmpp));;
600 }}

/601 / ∗∗AAdddd aann ooppeenn aacctti ioonn ttoo oobbjjeecctt.. ∗∗//
i602 inntt ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__aaddddooppeenn((

B.3 Process Primitives 83

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

603 ppoossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__tt ∗∗ffi il lee__aacctti ioonnss,,
604 iinntt ffi il lddeess,, ccoonnsstt cchhaarr ∗∗ppaatthh,, i inntt ooffl laagg,,
605 mmooddee__tt mmooddee))
606 {{
607 cchhaarr tteemmpp[[110000]];;
608 sspprriinnttff((tteemmpp,, ""ooppeenn((%%dd,,%%ss∗∗%%oo,,%%oo))"",, ffi il lddeess,, ppaatthh,, ooffl laagg,, mmooddee));;
609 rreettuurrnn aadddd__ttoo__ffi il lee__aacctti ioonnss((ffi il lee__aacctti ioonnss,, tteemmpp));;
610 }}

/611 / ∗∗//
/612 / ∗∗ HHeerree iiss aa ccrruuddee bbuutt eeffffeecctti ivvee iimmpplleemmeennttaatti ioonn ooff tthhee ∗∗//
/613 / ∗∗ ssppaawwnn aattttrriibbuutteess oobbjjeecctt ffuunncctti ioonnss wwhhiicchh mmaanniippuullaattee ∗∗//
/614 / ∗∗ tthhee iinnddiivviidduuaall aattttrriibbuutteess.. ∗∗//
/615 / ∗∗//
/616 / ∗∗IInniit ti iaalli izzee oobbjjeecctt wwiit thh ddeeffaauullt t vvaalluueess.. ∗∗//
i617 inntt ppoossiixx__ssppaawwnnaattttrr__iinniit t ((

618 ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr))
619 {{
620 aattttrr-->>ppoossiixx__aattttrr__ffl laaggss==00;;
621 aattttrr-->>ppoossiixx__aattttrr__ppggrroouupp==00;;
622 // ∗∗ DDeeffaauullt t vvaalluuee ooff ssiiggnnaall mmaasskk iiss tthhee ppaarreenntt’ ’ss ssiiggnnaall mmaasskk ∗∗//
623 // ∗∗ ootthheerr vvaalluueess aarree aallssoo aalll loowweedd ∗∗//
624 ssiiggpprrooccmmaasskk((00,, NNUULLLL,,&&aattttrr-->>ppoossiixx__aattttrr__ssiiggmmaasskk));;
625 ssiiggeemmppttyysseett((&&aattttrr-->>ppoossiixx__aattttrr__ssiiggddeeffaauullt t));;
626 // ∗∗ DDeeffaauullt t vvaalluueess ooff sscchheedduulli inngg aattttrr.. i innhheerriit teedd ffrroomm tthhee ppaarreenntt ∗∗//
627 // ∗∗ ootthheerr vvaalluueess aarree aallssoo aalll loowweedd ∗∗//
628 aattttrr-->>ppoossiixx__aattttrr__sscchheeddppoolli iccyy==sscchheedd__ggeettsscchheedduulleerr((00));;
629 sscchheedd__ggeettppaarraamm((00,,&&aattttrr-->>ppoossiixx__aattttrr__sscchheeddppaarraamm));;
630 rreettuurrnn 00;;
631 }}

i632 inntt ppoossiixx__ssppaawwnnaattttrr__ddeessttrrooyy ((
633 ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr))
634 {{
635 // ∗∗ NNoo aacctti ioonn nneeeeddeedd ∗∗//
636 rreettuurrnn 00;;
637 }}

i638 inntt ppoossiixx__ssppaawwnnaattttrr__ggeettffl laaggss ((
639 ccoonnsstt ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,
640 sshhoorrtt ∗∗ffl laaggss))
641 {{
642 ∗∗ffl laaggss==aattttrr-->>ppoossiixx__aattttrr__ffl laaggss;;
643 rreettuurrnn 00;;
644 }}

i645 inntt ppoossiixx__ssppaawwnnaattttrr__sseettffl laaggss ((
646 ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,
647 sshhoorrtt ffl laaggss))
648 {{
649 aattttrr-->>ppoossiixx__aattttrr__ffl laaggss==ffl laaggss;;
650 rreettuurrnn 00;;
651 }}

i652 inntt ppoossiixx__ssppaawwnnaattttrr__ggeettppggrroouupp ((
653 ccoonnsstt ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,

84 B Rationale and Notes

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

654 ppiidd__tt ∗∗ppggrroouupp))
655 {{
656 ∗∗ppggrroouupp==aattttrr-->>ppoossiixx__aattttrr__ppggrroouupp;;
657 rreettuurrnn 00;;
658 }}

i659 inntt ppoossiixx__ssppaawwnnaattttrr__sseettppggrroouupp ((
660 ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,
661 ppiidd__tt ppggrroouupp))
662 {{
663 aattttrr-->>ppoossiixx__aattttrr__ppggrroouupp==ppggrroouupp;;
664 rreettuurrnn 00;;
665 }}

i666 inntt ppoossiixx__ssppaawwnnaattttrr__ggeettsscchheeddppoolli iccyy ((
667 ccoonnsstt ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,
668 iinntt ∗∗sscchheeddppoolli iccyy))
669 {{
670 ∗∗sscchheeddppoolli iccyy==aattttrr-->>ppoossiixx__aattttrr__sscchheeddppoolli iccyy;;
671 rreettuurrnn 00;;
672 }}

i673 inntt ppoossiixx__ssppaawwnnaattttrr__sseettsscchheeddppoolli iccyy ((
674 ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,
675 iinntt sscchheeddppoolli iccyy))
676 {{
677 aattttrr-->>ppoossiixx__aattttrr__sscchheeddppoolli iccyy==sscchheeddppoolli iccyy;;
678 rreettuurrnn 00;;
679 }}

i680 inntt ppoossiixx__ssppaawwnnaattttrr__ggeettsscchheeddppaarraamm ((
681 ccoonnsstt ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,
682 ssttrruucctt sscchheedd__ppaarraamm ∗∗sscchheeddppaarraamm))
683 {{
684 ∗∗sscchheeddppaarraamm==aattttrr-->>ppoossiixx__aattttrr__sscchheeddppaarraamm;;
685 rreettuurrnn 00;;
686 }}

i687 inntt ppoossiixx__ssppaawwnnaattttrr__sseettsscchheeddppaarraamm ((
688 ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,
689 ccoonnsstt ssttrruucctt sscchheedd__ppaarraamm ∗∗sscchheeddppaarraamm))
690 {{
691 aattttrr-->>ppoossiixx__aattttrr__sscchheeddppaarraamm==∗∗sscchheeddppaarraamm;;
692 rreettuurrnn 00;;
693 }}

i694 inntt ppoossiixx__ssppaawwnnaattttrr__ggeettssiiggmmaasskk ((
695 ccoonnsstt ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,
696 ssiiggsseett__tt ∗∗ssiiggmmaasskk))
697 {{
698 ∗∗ssiiggmmaasskk==aattttrr-->>ppoossiixx__aattttrr__ssiiggmmaasskk;;
699 rreettuurrnn 00;;
700 }}

i701 inntt ppoossiixx__ssppaawwnnaattttrr__sseettssiiggmmaasskk ((
702 ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,

B.3 Process Primitives 85

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

703 ccoonnsstt ssiiggsseett__tt ∗∗ssiiggmmaasskk))
704 {{
705 aattttrr-->>ppoossiixx__aattttrr__ssiiggmmaasskk==∗∗ssiiggmmaasskk;;
706 rreettuurrnn 00;;
707 }}

i708 inntt ppoossiixx__ssppaawwnnaattttrr__ggeettssiiggddeeffaauullt t ((
709 ccoonnsstt ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,
710 ssiiggsseett__tt ∗∗ssiiggddeeffaauullt t))
711 {{
712 ∗∗ssiiggddeeffaauullt t==aattttrr-->>ppoossiixx__aattttrr__ssiiggddeeffaauullt t;;
713 rreettuurrnn 00;;
714 }}

i715 inntt ppoossiixx__ssppaawwnnaattttrr__sseettssiiggddeeffaauullt t ((
716 ppoossiixx__ssppaawwnnaattttrr__tt ∗∗aattttrr,,
717 ccoonnsstt ssiiggsseett__tt ∗∗ssiiggddeeffaauullt t))
718 {{
719 aattttrr-->>ppoossiixx__aattttrr__ssiiggddeeffaauullt t==∗∗ssiiggddeeffaauullt t;;
720 rreettuurrnn 00;;
721 }}
722 ___

723 Figure B-1 −− posix_spawn() Equivalent

724 I/O redirection with posix_spawn() or posix_spawnp() is accomplished by crafting
a725 file_actions argument to effect the desired redirection. Such a redirection follows
the726 general outline of the example in Figure B-2.

727 ___
728 // ∗∗ TToo rreeddiirreecctt nneeww ssttaannddaarrdd oouuttppuutt ((ffdd 11)) ttoo aa ffi il lee,, ∗∗//

/729 / ∗∗ aanndd rreeddiirreecctt nneeww ssttaannddaarrdd iinnppuutt ((ffdd 00)) ffrroomm mmyy ffdd ssoocckkeett__ppaaiirr[[11]],, ∗∗//
/730 / ∗∗ aanndd cclloossee mmyy ffdd ssoocckkeett__ppaaiirr[[00]] i inn tthhee nneeww pprroocceessss.. ∗∗//
p731 poossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__tt ffi il lee__aacctti ioonnss;;
p732 poossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__iinniit t ((&&ffi il lee__aacctti ioonnss));;
p733 poossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__aaddddooppeenn ((&&ffi il lee__aacctti ioonnss,, 11,, ""nneewwoouutt"",,));;
p734 poossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__dduupp22 ((&&ffi il lee__aacctti ioonnss,, ssoocckkeett__ppaaiirr[[11]],, 00));;
p735 poossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__cclloossee ((&&ffi il lee__aacctti ioonnss,, ssoocckkeett__ppaaiirr[[00]]));;
p736 poossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__cclloossee ((&&ffi il lee__aacctti ioonnss,, ssoocckkeett__ppaaiirr[[11]]));;
p737 poossiixx__ssppaawwnn((......,, &&ffi il lee__aacctti ioonnss,,))
p738 poossiixx__ssppaawwnn__ffi il lee__aacctti ioonnss__ddeessttrrooyy ((&&ffi il lee__aacctti ioonnss));;

739 ___

740 Figure B-2 −− I/O Redirection with posix_spawn()

741 Spawning a process under a new userid uses the outline shown in Figure B-3.

86 B Rationale and Notes

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

742 ___
743 SSaavvee == ggeettuuiidd(());;

s744 seettuuiidd((nneewwiidd));;
p745 poossiixx__ssppaawwnn((......))
s746 seettuuiidd((SSaavvee));;

747 ___

748 Figure B-3 −− Spawning a new Userid Process

749 B.13 Execution Scheduling

750 ⇒⇒ B.13 Execution Scheduling Add the following subclause:

751 B.13.3 Sporadic Server Scheduling Policy

752 The sporadic server is a mechanism defined for scheduling aperiodic activities in
time753 -critical realtime systems. This mechanism reserves a certain bounded
amount754 of execution capacity for processing aperiodic events at a high priority
level.755 Any aperiodic events that cannot be processed within the bounded amount
of756 execution capacity are executed in the background at a low priority level. Thus,
a757 certain amount of execution capacity can be guaranteed to be available for pro-
cessing758 periodic tasks, even under burst conditions in the arrival of aperiodic pro-
cessing759 requests (i.e., a large number of requests in a short time interval). The
sporadic760 server also simplifies the schedulability analysis of the realtime system
because761 it allows aperiodic processes or threads to be treated as if they were
periodic.762 The sporadic server was first described by Sprunt, et al. {B2}.

The763 key concept of the sporadic server is to provide and limit a certain amount of
computation764 capacity for processing aperiodic events at their assigned normal
priority,765 during a time interval called the replenishment period. Once the entity
controlled766 by the sporadic server mechanism is initialized with its period and
execution767 -time budget attributes, it preserves its execution capacity until an
aperiodic768 request arrives. The request will be serviced (if no higher priority activi-
ties769 are pending) as long as execution capacity is left. If the request is completed,
the770 actual execution time used to service it is subtracted from the capacity, and a
replenishment771 of this amount of execution time is scheduled to happen one replen-
ishment772 period after the arrival of the aperiodic request. If the request is not
completed,773 because no execution capacity is left, then the aperiodic process or
thread774 is assigned a lower background priority. For each portion of consumed exe-
cution775 capacity, the execution time used is replenished after one replenishment
period.776 At the time of replenishment, if the sporadic server was executing at a
background777 priority level, its priority is elevated to the normal level. Other simi-
lar778 replenishment policies have been defined, but the one presented here
represents779 a compromise between efficiency and implementation complexity.

The780 interface that appears in this section defines a new scheduling policy for
threads781 and processes that behaves according to the rules of the sporadic server
mechanism.782 Scheduling attributes are defined and functions are provided to allow

B.13 Execution Scheduling 87

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

783 the user to set and get the parameters that control the scheduling behavior of this
mechanism,784 namely the normal and low priority, the replenishment period, the
maximum785 number of pending replenishment operations, and the initial
execution786 -time budget.

787 B.13.3.1 Scheduling Aperiodic Activities (rationale)

788 Virtually all realtime applications are required to process aperiodic activities. In
many789 cases, there are tight timing constraints that the response to the aperiodic
events790 must meet. Usual timing requirements imposed on the response to these
events791 are

792 — The effects of an aperiodic activity on the response time of lower priority
793 activities must be controllable and predictable.

794 — The system must provide the fastest possible response time to aperiodic
795 events.

796 — It must be possible to take advantage of all the available processing
797 bandwidth not needed by time-critical activities to enhance average-case
798 response times to aperiodic events.

T799 raditional methods for scheduling aperiodic activities are background processing,
polling800 tasks, and direct event execution:

801 — Background processing consists of assigning a very low priority to the pro-
802 cessing of aperiodic events. It utilizes all the available bandwidth in the sys-
803 tem that has not been consumed by higher priority threads. However, it is
804 difficult, or impossible, to meet requirements on average-case response time
805 because the aperiodic entity has to wait for the execution of all other enti-
806 ties that have higher priority.

807 — Polling consists of creating a periodic process or thread for servicing
808 aperiodic requests. At regular intervals, the polling entity is started, and it
809 services accumulated pending aperiodic requests. If no aperiodic requests
810 are pending, the polling entity suspends itself until its next period. Polling
811 allows the aperiodic requests to be processed at a higher priority level.
812 However, worst and average-case response times of polling entities are a
813 direct function of the polling period, and there is execution overhead for
814 each polling period, even if no event has arrived. If the deadline of the
815 aperiodic activity is short compared to the interarrival time, the polling fre-
816 quency must be increased to guarantee meeting the deadline. For this case,
817 the increase in frequency can dramatically reduce the efficiency of the sys-
818 tem and, therefore, its capacity to meet all deadlines. Yet, polling
819 represents a good way to handle a large class of practical problems because
820 it preserves system predictability and because the amortised overhead
821 drops as load increases.

822 — Direct event execution consists of executing the aperiodic events at a high
823 fixed-priority level. Typically, the aperiodic event is processed by an inter-
824 rupt service routine as soon as it arrives. This technique provides predict-
825 able response times for aperiodic events, but makes the response times of
826 all lower priority activities completely unpredictable under burst arrival
827 conditions. Therefore, if the density of aperiodic event arrivals is
828 unbounded, it may be a dangerous technique for time-critical systems. Yet,

88 B Rationale and Notes

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

829 for cases in which the physics of the system imposes a bound on the event
830 arrival rate, it is probably the most efficient technique.

The831 sporadic server scheduling algorithm combines the predictability of the pol-
ling832 approach with the short response times of the direct event execution. Thus, it
allows833 systems to meet an important class of application requirements that cannot
be834 met by using the traditional approaches. Multiple sporadic servers with
di835 fferent attributes can be applied to the scheduling of multiple classes of
aperiodic836 events, each with different kinds of timing requirements, e.g., individual
deadlines,837 average response times. It also has many other interesting applications
for838 realtime, e.g., scheduling producer/consumer tasks in time-critical systems,
limiting839 the effects of faults on the estimation of task execution-time
r840 equirements.

841 B.13.3.2 Existing Practice

842 The sporadic server has been used in different kinds of applications, e.g., military
avionics,843 robot control systems, industrial automation systems. There are exam-
ples844 of many systems that cannot be successfully scheduled using the classic
approaches,845 such as direct event execution or polling, and are schedulable using a
sporadic846 server scheduler. The sporadic server algorithm itself can successfully
schedule847 all systems scheduled with direct event execution or polling.

The848 sporadic server scheduling policy has been implemented as a commercial pro-
duct849 in the run-time system of the Verdix Ada compiler. Many applications have
also850 used a much less efficient application-level sporadic server. These real-time
applications851 would benefit from a sporadic server scheduler implemented at the
scheduler852 level.

853 B.13.3.3 Library-Level vs. Kernel-Level Implementation

854 The sporadic server interface described in this subclause requires the sporadic
server855 policy to be implemented at the same level as the scheduler. In other
words,856 the process sporadic server shall be implemented at the kernel level and
the857 thread sporadic server policy shall be implemented at the same level as the
thread858 scheduler, i.e., kernel or library level.

In859 an earlier interface for the sporadic server, this mechanism was implementable
at860 a different level than the scheduler. This feature allowed the implementer to
choose861 between an efficient scheduler-level implementation, or a simpler user or
library862 -level implementation. However, the working group considered that this
interface863 made the use of sporadic servers more complex and that library-level
i864 mplementations would lack some of the important functionality of the sporadic
server,865 namely the limitation of the actual execution time of aperiodic activities.
The866 working group also felt that the interface described in this chapter does not
preclude867 library-level implementations of threads intended to provide efficient
low868 -overhead scheduling for threads that are not scheduled under the sporadic
server869 policy.

B.13 Execution Scheduling 89

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

870 B.13.3.4 Range of Scheduling Priorities

871 Each of the scheduling policies supported in POSIX.1b has an associated range of
priorities.872 The priority ranges for each policy might or might not overlap with the
priority873 ranges of other policies. For time-critical realtime applications it is usual
for874 periodic and aperiodic activities to be scheduled together in the same proces-
sor.875 Periodic activities will usually be scheduled using the SCHED_FIFO scheduling
policy,876 while aperiodic activities may be scheduled using SCHED_SPORADIC.

877 Since the application developer will require complete control over the relative
priorities878 of these activities in order to meet the application’s timing require-
ments,879 it would be desirable for the priority ranges of SCHED_FIFO and

880 SCHED_SPORADIC to overlap completely. Therefore, although the standard does
not881 require any particular relationship between the different priority ranges, it is
recommended882 that these two ranges should coincide.

883 B.13.3.5 Dynamically Setting the Sporadic Server Policy

884 Several members of the working group requested that implementations should not
be885 required to support dynamically setting the sporadic server scheduling policy
for886 a thread. The reason is that this policy may have a high overhead for library-
level887 implementations of threads; and, if threads are allowed to dynamically set
this888 policy, this overhead can be experienced even if the thread does not use that
policy.889 By disallowing the dynamic setting of the sporadic server scheduling policy,
these890 implementations can accomplish efficient scheduling for threads using other
policies.891 If a strictly conforming application needs to use the sporadic server policy
and892 is, therefore, willing to pay the overhead, it shall set this policy at the time of
thread893 creation.

894 B.13.3.6 Limitation of the Number of Pending Replenishments

895 The number of simultaneously pending replenishment operations shall be limited
for896 each sporadic server for two reasons: an unlimited number of replenishment
operations897 would need an unlimited number of system resources to store all the
pending898 replenishment operations; on the other hand, in some implementations
each899 replenishment operation will represent a source of priority inversion (just for
the900 duration of the replenishment operation) and thus, the maximum amount of
r901 eplenishments shall be bounded to guarantee bounded response times. The way
in902 which the number of replenishments is bounded is by lowering the priority of
the903 sporadic server to sched_ss_low_priority when the number of pending replen-
ishments904 has reached its limit. In this way, no new replenishments are scheduled
until905 the number of pending replenishments decreases.

In906 the sporadic server scheduling policy defined in this standard, the application
can907 specify the maximum number of pending replenishment operations for a sin-
gle908 sporadic server, by setting the value of the sched_ss_max_repl scheduling
parameter.909 This value shall be between one and {SS_REPL_MAX}, which is a max-
imum910 limit imposed by the implementation. The limit {SS_REPL_MAX} shall be
greater911 than or equal to {_POSIX_SS_REPL_MAX}, which is defined to be four in
this912 standard. The minimum limit of four was chosen so that an application can at
least913 guarantee that four different aperiodic events can be processed during each
interval914 of length equal to the replenishment period.

90 B Rationale and Notes

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

915 B.14 Clocks and Timers

916 ⇒⇒ B.14 Clocks and Timers Add the following subclauses:

917 B.14.3 Execution Time Monitoring

B918 .14.3.1 Introduction

919 The main goals of the execution time monitoring facilities defined in this chapter
are920 to measure the execution time of processes and threads and to allow an appli-
cation921 to establish CPU time limits for these entities. The analysis phase of
time922 -critical realtime systems often relies on the measurement of execution times
of923 individual threads or processes to determine whether the timing requirements
will924 be met. Also, performance analysis techniques for soft deadline realtime sys-
tems925 rely heavily on the determination of these execution times. The execution
time926 monitoring functions provide application developers with the ability to meas-
ure927 these execution times on line and open the possibility of dynamic
execution928 -time analysis and system reconfiguration, if required. The second goal
of929 allowing an application to establish execution time limits for individual
processes930 or threads and detecting when they overrun allows program robustness
to931 be increased by enabling on-line checking of the execution times. If errors are
detected932 (possibly because of erroneous program constructs, the existence of
errors933 in the analysis phase, or a burst of event arrivals) on-line detection and
recovery934 are possible in a portable way. This feature can be extremely important
for935 many time-critical applications. Other applications require trapping CPU-time
errors936 as a normal way to exit an algorithm; for instance, some realtime artificial
intelligence937 applications trigger a number of independent inference processes of
varying938 accuracy and speed, limit how long they can run, and pick the best answer
available939 when time runs out. In many periodic systems, overrun processes are
simply940 restarted in the next resource period, after necessary end-of-period actions
have941 been taken. This behavior allows algorithms that are inherently
data942 -dependent to be made predictable.

The943 interface that appears in this chapter defines a new type of clock, the
944 CPU-time clock, which measures execution time. Each process or thread can

invoke945 the clock and timer functions defined in POSIX.1b to use them. Functions
are946 also provided to access the CPU-time clock of other processes or threads to
enable947 remote monitoring of these clocks. Monitoring of threads of other processes
is948 not supported since these threads are not visible from outside of their own pro-
cess949 with the interfaces defined in POSIX.1c.

950 B.14.3.2 Execution Time Monitoring Interface

951 The clock and timer interface defined in POSIX.1b (Section 14) only defines one
clock,952 which measures wall-clock time. The requirements for measuring execution
time953 of processes and threads, and setting limits to their execution time by detect-
ing954 when they overrun, can be accomplished with that interface if a new kind of
clock955 is defined. These new clocks measure execution time, and one is associated
with956 each process and with each thread. The clock functions currently defined in

B.14 Clocks and Timers 91

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

957 POSIX.1b can be used to read and set these CPU-time clocks, and timers can be
created958 using these clocks as their timing base. These timers can then be used to
send959 a signal when some specified execution time has been exceeded. The

960 CPU-time clocks of each process or thread can be accessed by using the symbols
961 CLOCK_PROCESS_CPUTIME_ID or CLOCK_THREAD_CPUTIME_ID.

962 The clock and timer interface defined in POSIX.1b and extended with the new kind
of963 CPU-time clock would only allow processes or threads to access their own

964 CPU-time clocks. However, many realtime systems require the possibility of moni-
toring965 the execution time of processes or threads from independent monitoring
entities.966 In order to allow applications to construct independent monitoring enti-
ties967 that do not require cooperation from or modification of the monitored entities,
two968 functions have been defined in this chapter: clock_getcpuclockid(), for access-
ing969 CPU-time clocks of other processes, and pthread_getcpuclockid(), for accessing

970 CPU-time clocks of other threads. These functions return the clock identifier asso-
ciated971 with the process or thread specified in the call. These clock IDs can then be
used972 in the rest of the clock function calls.

The973 clocks accessed through these functions could also be used as a timing base
for974 the creation of timers, thereby allowing independent monitoring entities to
limit975 the CPU-time consumed by other entities. However, this possibility would
imply976 additional complexity and overhead because of the need to maintain a timer
queue977 for each process or thread to store the different expiration times associated
with978 timers created by different processes or threads. The working group decided
this979 additional overhead was not justified by application requirements. Therefore,
creation980 of timers attached to the CPU-time clocks of other processes or threads
has981 been specified as implementation defined.

982 B.14.3.3 Overhead Considerations

983 The measurement of execution time may introduce additional overhead in the
thread984 scheduling, because of the need to keep track of the time consumed by each
of985 these entities. In library-level implementations of threads, the efficiency of
scheduling986 could be somehow compromised because of the need to make a kernel
call,987 at each context switch, to read the process CPU-time clock. Consequently, a
thread988 creation attribute called ccppuu--cclloocckk--rreeqquuiirreemmeenntt was defined to allow
threads989 to disconnect their respective CPU-time clocks. However, the balloting
group990 considered that this attribute itself introduced some overhead and that in
current991 implementations it was not worth the effort. Therefore, the attribute was
deleted,992 and thus thread CPU-time clocks are required for all threads if the
Thread993 CPU-Time Clocks option is supported.

994 B.14.3.4 Accuracy of CPU-time Clocks

995 The mechanism used to measure the execution time of processes and threads is
speci996 fied in this document as implementation defined. The reason for this
requirement997 is that both the underlying hardware and the implementation archi-
tecture998 have a very strong influence on the accuracy achievable for measuring

999 CPU-time. For some implementations, the specification of strict accuracy require-
ments1000 would represent very large overheads or even the impossibility of being
i1001 mplemented.

92 B Rationale and Notes

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

1002 Since the mechanism for measuring execution time is implementation defined,
realtime1003 applications will be able to take advantage of accurate implementations
using1004 a portable interface. Of course, strictly conforming applications cannot rely
on1005 any particular degree of accuracy, in the same way as they cannot rely on a
very1006 accurate measurement of wall clock time. There will always exist applica-
tions1007 whose accuracy or efficiency requirements on the implementation are more
rigid1008 than the values defined in this or any other standard.

In1009 any case, realtime applications would expect a minimum set of characteristics
from1010 most implementations. One such characteristic is that the sum of all the
execution1011 times of all the threads in a process equals the process execution time
when1012 no CPU-time clocks are disabled. This property may not always be true
because1013 implementations may differ in how they account for time during context
switches.1014 Another characteristic is that the sum of the execution times of all
processes1015 in a system equals the number of processors, multiplied by the elapsed
time,1016 assuming that no processor is idle during that elapsed time. However, in
some1017 systems it might not be possible to relate CPU-time to elapsed time. For
example,1018 in a heterogeneous multiprocessor system in which each processor runs
at1019 a different speed, an implementation may choose to define each ‘‘second’’ of

1020 CPU-time to be a certain number of ‘‘cycles’’ that a CPU has executed.

1021 B.14.3.5 Existing Practice

1022 Measuring and limiting the execution time of each concurrent activity are com-
mon1023 features of most industrial implementations of realtime systems. Almost all
critical1024 realtime systems are currently built upon a cyclic executive. With this
approach,1025 a regular timer interrupt kicks off the next sequence of computations.
It1026 also checks that the current sequence has completed. If it has not, then some
error1027 recovery action can be undertaken (or at least an overrun is avoided).
Current1028 software engineering principles and the increasing complexity of software
are1029 driving application developers to implement these systems on multi-threaded
or1030 multi-process operating systems. Therefore, if a POSIX operating system is to be
used1031 for this type of application, then it must offer the same level of protection.

Execution1032 time clocks are also common in most UNIX implementations, although
these1033 clocks usually have different requirements from those of realtime applica-
tions.1034 The POSIX.1 times () function supports the measurement of the execution
time1035 of the calling process and its terminated child processes. This execution time
is1036 measured in clock ticks and is supplied as two different values with the user
and1037 system execution times, respectively. BSD {B60} supports the function

1038 getrusage (), which allows the calling process to get information about the
resources1039 used by itself and/or all of its terminated child processes. The resource
usage1040 includes user and system CPU time. Some UNIX systems have options to
specify1041 high resolution (up to one microsecond) CPU time clocks using the times ()
or1042 the getrusage () functions.

The1043 times () and getrusage () interfaces do not meet important realtime require-
ments1044 such as the possibility of monitoring execution time from a different process
or1045 thread or the possibility of detecting an execution time overrun. The latter
requirement1046 is supported in some UNIX implementations that are able to send a
signal1047 when the execution time of a process has exceeded some specified value. For
example,1048 BSD defines the functions getitimer () and setitimer (), which can operate
either1049 on a realtime clock (wall clock) or on virtual-time or profile-time clocks,

B.14 Clocks and Timers 93

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

1050 which measure CPU time in two different ways. These functions do not support
access1051 to the execution time of other processes. System V supports similar func-
tions1052 after release 4. Some emerging implementations of threads also support
these1053 functions.

1054 IBM’s MVS operating system supports per-process and per-thread execution time
clocks.1055 It also supports limiting the execution time of a given process.

Given1056 all this existing practice, the working group considered that the POSIX.1b
clocks1057 and timers interface was appropriate to meet most of the requirements that
realtime1058 applications have for execution time clocks. Functions were added to get
the1059 CPU time clock IDs and to allow or disallow the thread CPU time clocks (in
order1060 to preserve the efficiency of some implementations of threads).

1061 B.14.3.6 Clock Constants

1062 The definition of the manifest constants CLOCK_PROCESS_CPUTIME_ID and
1063 CLOCK_THREAD_CPUTIME_ID allows processes or threads, respectively, to access

their1064 own execution-time clocks. However, given a process or thread, access to its
own1065 execution-time clock is also possible if the clock ID of this clock is obtained
through1066 a call to clock_getcpuclockid() or pthread_getcpuclockid(). Therefore,
these1067 constants are not necessary and could be deleted to make the interface
simpler.1068 Their existence saves one system call in the first access to the CPU-time
clock1069 of each process or thread. The working group considered this issue and
decided1070 to leave the constants in the standard because they are closer to the

1071 POSIX.1b use of clock identifiers.

1072 B.14.3.7 Library Implementations of Threads

1073 In library implementations of threads, kernel entities and library threads can
coexist.1074 In this case, if the CPU-time clocks are supported, most of the clock and
timer1075 functions will need to have two implementations: one in the thread library
and1076 one in the system calls library. The main difference between these two imple-
mentations1077 is that the thread library implementation will have to deal with clocks
and1078 timers that reside in the thread space, while the kernel implementation will
operate1079 on timers and clocks that reside in kernel space. In the library implemen-
tation,1080 if the clock ID refers to a clock that resides in the kernel, a kernel call will
have1081 to be made. The correct version of the function can be chosen by specifying
the1082 appropriate order for the libraries during the link process.

1083 B.14.3.8 History of Resolution Issues: Deletion of the eennaabbllee attribute

1084 In the draft corresponding to the first balloting round, CPU-time clocks had an
attribute1085 called eennaabbllee. This attribute was introduced by the working group to
allow1086 implementations to avoid the overhead of measuring execution time for
processes1087 or threads for which this measurement was not required. However, the

1088 eennaabbllee attribute received several ballot objections. The main objection was that
processes1089 are already required to measure execution time by the POSIX.1 times ()
function.1090 Consequently, the eennaabbllee attribute was considered unnecessary and
was1091 deleted from this standard.

94 B Rationale and Notes

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

1092 B.14.4 Rationale Relating to Timeouts

B1093 .14.4.1 Requirements for Timeouts

1094 Realtime systems that have to operate reliably over extended periods without
human1095 intervention are characteristic in embedded applications such as avionics,
machine1096 control, and space exploration, as well as more mundane applications
such1097 as cable TV, security systems, and plant automation. A multi-tasking para-
digm,1098 in which many independent and/or cooperating software functions relinqu-
ish1099 the processor(s) while waiting for a specific stimulus, resource, condition, or
operation1100 completion, is very useful in producing well-engineered programs for
such1101 systems. For such systems to be robust and fault tolerant, expected
occurrences1102 that are unduly delayed or that never occur must be detected so that
appropriate1103 recovery actions may be taken. This requirement is difficult to
achieve1104 if there is no way for a task to regain control of a processor once it has
relinquished1105 control (blocked) awaiting an occurrence which, perhaps because of
corrupted1106 code, hardware malfunction, or latent software bugs, will not happen
when1107 expected. Therefore, the common practice in realtime operating systems is
to1108 provide a capability to time out such blocking services. Although there are
several1109 methods already defined by POSIX to achieve this timeout capability, none
is1110 as reliable or efficient as initiating a timeout simultaneously with initiating a
blocking1111 service. Timeouts are especially critical in hard-realtime embedded sys-
tems1112 because the processors typically have little time reserve, and allowed fault
recovery1113 times are measured in milliseconds rather than seconds.

The1114 working group largely agreed that such timeouts were necessary and ought to
become1115 part of the standard, particularly vendors of realtime operating systems
whose1116 customers had already expressed a strong need for timeouts. There was
some1117 resistance to inclusion of timeouts in the standard because the desired
e1118 ffect, fault tolerance, could, in theory, be achieved using existing facilities and
alternative1119 software designs, but there was no compelling evidence that realtime
system1120 designers would embrace such designs at the sacrifice of performance
and1121 /or simplicity.

1122 B.14.4.2 Which Services Should Be Timed Out?

1123 Originally, the working group considered the prospect of providing timeouts on all
1124 blocking services, including those currently existing in POSIX.1, POSIX.1b, and
1125 POSIX.1c, and future interfaces to be defined by other working groups, as a gen-

eral1126 policy. This proposal was rather quickly rejected because of the scope of such
a1127 change, and the fact that many of those services would not normally be used in a
realtime1128 context. More traditional time-sharing solutions to time out would
su1129 ffice for most of the POSIX.1 interfaces, while others had asynchronous alterna-
tives1130 that, while more complex to utilize, would be adequate for some realtime and
all1131 nonrealtime applications.

The1132 list of potential candidates for timeouts was narrowed to the following for
further1133 consideration:

B.14 Clocks and Timers 95

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

1134 POSIX.1b

1135 — sem_wait()

1136 — mq_receive ()

1137 — mq_send()

1138 — lio_listio()

1139 — aio_suspend()

1140 — sigwait()
1141 timeout already implemented by sigtimedwait()

1142 POSIX.1c

1143 — pthread_mutex_lock()

1144 — pthread_join()

1145 — pthread_cond_wait()
1146 timeout already implemented by pthread_cond_timedwait()

1147 POSIX.1

1148 — read()

1149 — write()

After1150 further review by the working group, the read(), write(), and lio_listio()
functions1151 (all forms of blocking synchronous I/O) were eliminated from the list
b1152 ecause

1153 (1) Asynchronous alternatives exist,

1154 (2) Timeouts can be implemented, albeit nonportably, in device drivers, and

1155 (3) A strong desire existed not to introduce modifications to POSIX.1 inter-
1156 faces.

The1157 working group ultimately rejected pthread_join() since both that interface
and1158 a timed variant of that interface are nonminimal and may be implemented as
a1159 library function. See B.14.4.3 for a library implementation of pthread_join().

Thus1160 there was a consensus among the working group members to add timeouts
to1161 4 of the remaining 5 functions (the timeout for aio_suspend() was ultimately
added1162 directly to POSIX.1b, while the others are added here in POSIX.1d). How-
ever,1163 pthread_mutex_lock() remained contentious.

Many1164 balloting group members feel that pthread_mutex_lock() falls into the same
class1165 as the other functions; that is, it is desirable to time out a mutex lock
because1166 a mutex may fail to be unlocked due to errant or corrupted code in a criti-
cal1167 section (looping or branching outside of the unlock code) and, therefore, is
equally1168 in need of a reliable, simple, and efficient timeout. In fact, since mutexes
are1169 intended to guard small critical sections, most pthread_mutex_lock() calls
would1170 be expected to obtain the lock without blocking nor utilizing any kernel ser-
vice,1171 even in implementations of threads with global contention scope; the timeout
alternative1172 need only be considered after it is determined that the thread shall
block.1173

96 B Rationale and Notes

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

1174 Those opposed to timing out mutexes feel that the very simplicity of the mutex is
compromised1175 by adding a timeout semantic and that to do so is senseless. They
claim1176 that if a timed mutex is really deemed useful by a particular application,
then1177 it can be constructed from the facilities already in POSIX.1b and POSIX.1c.
The1178 two C language library implementations of mutex locking with timeout in Fig-
ure1179 B-4 and Figure B-5 represent the solutions offered (in both implementations,
the1180 timeout parameter is specified as absolute time, not relative time as in the
proposed1181 POSIX.1c interfaces):

1182 ___
1183 ##iinncclluuddee <<pptthhrreeaadd..hh>>

#1184 #iinncclluuddee <<tti immee..hh>>
#1185 #iinncclluuddee <<eerrrrnnoo..hh>>

i1186 inntt pptthhrreeaadd__mmuutteexx__tti immeeddlloocckk((pptthhrreeaadd__mmuutteexx__tt ∗∗mmuutteexx,,
1187 ccoonnsstt ssttrruucctt tti immeessppeecc ∗∗tti immeeoouutt))
1188 {{
1189 ssttrruucctt tti immeessppeecc tti immeennooww;;

1190 wwhhiil lee ((pptthhrreeaadd__mmuutteexx__ttrryylloocckk((mmuutteexx)) ==== EEBBUUSSYY))
1191 {{
1192 cclloocckk__ggeetttti immee((CCLLOOCCKK__RREEAALLTTIIMMEE,, &&tti immeennooww));;
1193 iif f ((tti immeessppeecc__ccmmpp((&&tti immeennooww,,tti immeeoouutt)) >>== 00))
1194 {{
1195 rreettuurrnn EETTIIMMEEDDOOUUTT;;
1196 }}
1197 pptthhrreeaadd__yyiieelldd(());;
1198 }}
1199 rreettuurrnn 00;;
1200 }}

1201 ___

1202 Figure B-4 −− Spinlock Implementation

1203 The spinlock implementation is generally unsuitable for any application using
priority1204 based thread scheduling policies such as {SCHED_FIFO} or {SCHED_RR}.
The1205 reason is that the mutex could currently be held by a thread of lower priority
within1206 the same allocation domain; but, since the waiting thread never blocks,
only1207 threads of equal or higher priority will ever run. Therefore, the mutex can-
not1208 be unlocked. Setting priority inheritance or priority ceiling protocol on the
mutex1209 does not solve this problem, since the priority of a mutex-owning thread is
only1210 boosted if higher priority threads are blocked waiting for the mutex, clearly
not1211 the case for this spinlock.

The1212 condition wait implementation effectively substitutes the
1213 pthread_cond_timedwait() function (which is currently timed out) for the desired
1214 pthread_mutex_timedlock(). Since waits on condition variables currently do not

include1215 protocols that avoid priority inversion, this method is generally unsuitable
for1216 realtime applications because it does not provide the same priority inversion
protection1217 as the untimed pthread_mutex_lock(). Also, for any given implementa-
tions1218 of the current mutex and condition variable primitives, this library imple-
mentation1219 has a performance cost at least 2.5 times that of the untimed

1220 pthread_mutex_lock() even in the case where the timed mutex is readily locked
without1221 blocking. Even in uniprocessors or where assignment is atomic, at least
an1222 additional pthread_cond_signal() is required. In this case,

B.14 Clocks and Timers 97

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

1223 ___
1224 ##iinncclluuddee <<pptthhrreeaadd..hh>>

#1225 #iinncclluuddee <<tti immee..hh>>
#1226 #iinncclluuddee <<eerrrrnnoo..hh>>

s1227 sttrruucctt tti immeedd__mmuutteexx
1228 {{
1229 iinntt l loocckkeedd;;
1230 pptthhrreeaadd__mmuutteexx__tt mmuutteexx;;
1231 pptthhrreeaadd__ccoonndd__tt ccoonndd;;
1232 }};;

t1233 tyyppeeddeeff ssttrruucctt tti immeedd__mmuutteexx tti immeedd__mmuutteexx__tt;;

i1234 inntt tti immeedd__mmuutteexx__lloocckk((tti immeedd__mmuutteexx__tt ∗∗ttmm,,
1235 ccoonnsstt ssttrruucctt tti immeessppeecc ∗∗tti immeeoouutt))
1236 {{
1237 iinntt tti immeeddoouutt==FFAALLSSEE;;
1238 iinntt eerrrroorr__ssttaattuuss;;

1239 pptthhrreeaadd__mmuutteexx__lloocckk((&&ttmm-->>mmuutteexx));;

1240 wwhhiil lee ((ttmm-->>lloocckkeedd &&&& !!tti immeeddoouutt))
1241 {{
1242 iif f ((((eerrrroorr__ssttaattuuss==pptthhrreeaadd__ccoonndd__tti immeeddwwaaiit t((&&ttmm-->>ccoonndd,,
1243 &&ttmm-->>mmuutteexx,,
1244 tti immeeoouutt))))!!==00))
1245 {{
1246 iif f ((eerrrroorr__ssttaattuuss====EETTIIMMEEDDOOUUTT)) tti immeeddoouutt == TTRRUUEE;;
1247 }}
1248 }}

1249 iif f((tti immeeddoouutt))
1250 {{
1251 pptthhrreeaadd__mmuutteexx__uunnlloocckk((&&ttmm-->>mmuutteexx));;
1252 rreettuurrnn EETTIIMMEEDDOOUUTT;;
1253 }}
1254 eellssee
1255 {{
1256 ttmm-->>lloocckkeedd == TTRRUUEE;;
1257 pptthhrreeaadd__mmuutteexx__uunnlloocckk((&&ttmm-->>mmuutteexx));;
1258 rreettuurrnn 00;;
1259 }}
1260 }}

v1261 vooiidd tti immeedd__mmuutteexx__uunnlloocckk((tti immeedd__mmuutteexx__tt ∗∗ttmm))
1262 {{
1263 pptthhrreeaadd__mmuutteexx__lloocckk((&&ttmm-->>mmuutteexx));; // ∗∗ffoorr ccaassee aassssiiggnnmmeenntt nnoott aattoommiicc∗∗//
1264 ttmm-->>lloocckkeedd == FFAALLSSEE;;
1265 pptthhrreeaadd__mmuutteexx__uunnlloocckk((&&ttmm-->>mmuutteexx));;
1266 pptthhrreeaadd__ccoonndd__ssiiggnnaall((&&ttmm-->>ccoonndd));;
1267 }}

1268 ___

1269 Figure B-5 −− Condition Wait Implementation

1270 pthread_mutex_timedlock() could be implemented at effectively no performance
penalty1271 because the timeout parameters need only be considered after it is deter-
mined1272 that the mutex cannot be locked immediately.

98 B Rationale and Notes

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

1273 Thus it has not yet been shown that the full semantics of mutex locking with
timeout1274 can be efficiently and reliably achieved using existing interfaces. Even if
the1275 existence of an acceptable library implementation were proven, it is difficult to
justify1276 why the interface itself should not be made portable, especially considering
approval1277 for the other four timeouts.

1278 B.14.4.3 Rationale for Library Implementation of pthread_timedjoin()

1279 The pthread_join() C Language example shown in Figure B-6 demonstrates that it
is1280 possible, using existing pthread facilities, to construct a variety of thread that
allows1281 for joining such a thread, but allows the join operation to time out. This
behavior1282 is achieved by using a pthread_cond_timedwait() to wait for the thread
to1283 exit. A small timed_thread descriptor structure is used to pass parameters
from1284 the creating thread to the created thread and from the exiting thread to the
joining1285 thread. This implementation is roughly equivalent to what a normal

1286 pthread_join() implementation would do, with the single change being that
1287 pthread_cond_timedwait() is used in place of a simple pthread_cond_wait().

Since1288 it is possible to implement such a facility entirely from existing pthread
1289 interfaces and with roughly equal efficiency and complexity to an implementation

that1290 would be provided directly by a pthreads implementation, it was the con-
sensus1291 of the working group members that any pthread_timedjoin() facility would
be1292 unnecessary and should not be provided.

1293 ___
1294 // ∗∗
1295 ∗∗ CCoonnssttrruucctt aa tthhrreeaadd vvaarri ieettyy eenntti irreellyy ffrroomm eexxiisstti inngg ffuunncctti ioonnss
1296 ∗∗ wwiit thh wwhhiicchh aa jjooiinn ccaann bbee ddoonnee,, aalll loowwiinngg tthhee jjooiinn ttoo tti immee oouutt..
1297 ∗∗//

#1298 #iinncclluuddee <<pptthhrreeaadd..hh>>
#1299 #iinncclluuddee <<tti immee..hh>>

s1300 sttrruucctt tti immeedd__tthhrreeaadd {{
1301 pptthhrreeaadd__tt tt;;
1302 pptthhrreeaadd__mmuutteexx__tt mm;;
1303 iinntt eexxiit ti inngg;;
1304 pptthhrreeaadd__ccoonndd__tt eexxiit t__cc;;
1305 vvooiidd ∗∗((∗∗ssttaarrtt__rroouutti innee))((vvooiidd ∗∗aarrgg));;
1306 vvooiidd ∗∗aarrgg;;
1307 vvooiidd ∗∗ssttaattuuss;;

}1308 };;

t1309 tyyppeeddeeff ssttrruucctt tti immeedd__tthhrreeaadd ∗∗tti immeedd__tthhrreeaadd__tt;;
s1310 sttaatti icc pptthhrreeaadd__kkeeyy__tt tti immeedd__tthhrreeaadd__kkeeyy;;
s1311 sttaatti icc pptthhrreeaadd__oonnccee__tt tti immeedd__tthhrreeaadd__oonnccee == PPTTHHRREEAADD__OONNCCEE__IINNIITT;;

s1312 sttaatti icc vvooiidd tti immeedd__tthhrreeaadd__iinniit t(())
{1313 {

1314 pptthhrreeaadd__kkeeyy__ccrreeaattee((&&tti immeedd__tthhrreeaadd__kkeeyy,, NNUULLLL));;
}1315 }

s1316 sttaatti icc vvooiidd ∗∗tti immeedd__tthhrreeaadd__ssttaarrtt__rroouutti innee((vvooiidd ∗∗aarrggss))

/1317 / ∗∗
1318 ∗∗ RRoouutti innee ttoo eessttaabblli isshh tthhrreeaadd ssppeecciif fi icc ddaattaa vvaalluuee aanndd rruunn tthhee aaccttuuaall
1319 ∗∗ tthhrreeaadd ssttaarrtt rroouutti innee wwhhiicchh wwaass ssuupppplli ieedd ttoo tti immeedd__tthhrreeaadd__ccrreeaattee(())..
1320 ∗∗//

B.14 Clocks and Timers 99

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

1321 {{
1322 tti immeedd__tthhrreeaadd__tt tttt == ((tti immeedd__tthhrreeaadd__tt)) aarrggss;;

1323 pptthhrreeaadd__oonnccee((&&tti immeedd__tthhrreeaadd__oonnccee,, tti immeedd__tthhrreeaadd__iinniit t));;
1324 pptthhrreeaadd__sseettssppeecciif fi icc((tti immeedd__tthhrreeaadd__kkeeyy,, ((vvooiidd ∗∗))tttt));;
1325 tti immeedd__tthhrreeaadd__eexxiit t((((ttt t-->>ssttaarrtt__rroouutti innee))((tttt-->>aarrgg))));;

}1326 }

i1327 inntt tti immeedd__tthhrreeaadd__ccrreeaattee((tti immeedd__tthhrreeaadd__tt ttttpp,, ccoonnsstt pptthhrreeaadd__aattttrr__tt ∗∗aattttrr,,
1328 vvooiidd ∗∗((∗∗ssttaarrtt__rroouutti innee))((vvooiidd ∗∗)),, vvooiidd ∗∗aarrgg))

/1329 / ∗∗
1330 ∗∗ AAlll looccaattee aa tthhrreeaadd wwhhiicchh ccaann bbee uusseedd wwiit thh tti immeedd__tthhrreeaadd__jjooiinn(())..
1331 ∗∗//

{1332 {
1333 tti immeedd__tthhrreeaadd__tt tttt; ;
1334 iinntt rreessuullt t; ;

1335 ttt t == ((tti immeedd__tthhrreeaadd__tt)) mmaalll loocc((ssiizzeeooff((ssttrruucctt tti immeedd__tthhrreeaadd))));;
1336 pptthhrreeaadd__mmuutteexx__iinniit t((&&tttt-->>mm,, NNUULLLL));;
1337 ttt t-->>eexxiit ti inngg == FFAALLSSEE;;
1338 pptthhrreeaadd__ccoonndd__iinniit t((&&tttt-->>eexxiit t__cc,, NNUULLLL));;
1339 ttt t-->>ssttaarrtt__rroouutti innee == ssttaarrtt__rroouutti innee;;
1340 ttt t-->>aarrgg == aarrgg;;
1341 ttt t-->>ssttaattuuss == NNUULLLL;;

1342 iif f ((((rreessuullt t == pptthhrreeaadd__ccrreeaattee((&&tttt-->>tt,, aattttrr,,
1343 tti immeedd__tthhrreeaadd__ssttaarrtt__rroouutti innee,, ((vvooiidd ∗∗))tttt)))) !!== 00)) {{
1344 ffrreeee((tttt));;
1345 rreettuurrnn rreessuullt t; ;
1346 }}

1347 pptthhrreeaadd__ddeettaacchh((tttt-->>tt));;
1348 ttt tpp == tttt;;
1349 rreettuurrnn 00;;

}1350 }

t1351 ti immeedd__tthhrreeaadd__jjooiinn((tti immeedd__tthhrreeaadd__tt tttt, ,
1352 ssttrruucctt tti immeessppeecc ∗∗tti immeeoouutt,,
1353 vvooiidd ∗∗∗∗ssttaattuuss))

{1354 {
1355 iinntt rreessuullt t; ;

1356 pptthhrreeaadd__mmuutteexx__lloocckk((&&tttt-->>mm));;
1357 rreessuullt t == 00;;
1358 // ∗∗
1359 ∗∗ WWaaiit t uunntti il l t thhee tthhrreeaadd aannnnoouunncceess tthhaatt i it t’ ’ss eexxiit ti inngg,, oorr uunntti il l t ti immeeoouutt..
1360 ∗∗//
1361 wwhhiil lee ((rreessuullt t ==== 00 &&&& !! tttt-->>eexxiit ti inngg)) {{
1362 rreessuullt t == pptthhrreeaadd__ccoonndd__tti immeeddwwaaiit t((&&tttt-->>eexxiit t__cc,, &&tttt-->>mm,, tti immeeoouutt));;
1363 }}
1364 pptthhrreeaadd__mmuutteexx__uunnlloocckk((&&tttt-->>mm));;
1365 iif f ((rreessuullt t ==== 00 &&&& tttt-->>eexxiit ti inngg)) {{
1366 ∗∗ssttaattuuss == tttt-->>ssttaattuuss;;
1367 ffrreeee((((vvooiidd ∗∗))tttt));;
1368 rreettuurrnn rreessuullt t; ;
1369 }}
1370 rreettuurrnn rreessuullt t; ;

}1371 }

100 B Rationale and Notes

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

1372 tti immeedd__tthhrreeaadd__eexxiit t((vvooiidd ∗∗ssttaattuuss))
{1373 {

1374 tti immeedd__tthhrreeaadd__tt tttt; ;
1375 vvooiidd ∗∗ssppeecciif fi icc;;

1376 iif f ((((ssppeecciif fi icc==pptthhrreeaadd__ggeettssppeecciif fi icc((tti immeedd__tthhrreeaadd__kkeeyy)))) ==== NNUULLLL)){{
1377 // ∗∗
1378 ∗∗ HHaannddllee ccaasseess wwhhiicchh wwoonn’’t t hhaappppeenn wwiit thh ccoorrrreecctt uussaaggee..
1379 ∗∗//
1380 pptthhrreeaadd__eexxiit t((NNUULLLL));;
1381 }}
1382 ttt t == ((tti immeedd__tthhrreeaadd__tt)) ssppeecciif fi icc;;
1383 pptthhrreeaadd__mmuutteexx__lloocckk((&&tttt-->>mm));;
1384 // ∗∗
1385 ∗∗ TTeelll l aa jjooiinneerr tthhaatt wwee’’rree eexxiit ti inngg..
1386 ∗∗//
1387 ttt t-->>ssttaattuuss == ssttaattuuss;;
1388 ttt t-->>eexxiit ti inngg == TTRRUUEE;;
1389 pptthhrreeaadd__ccoonndd__ssiiggnnaall((&&tttt-->>eexxiit t__cc));;
1390 pptthhrreeaadd__mmuutteexx__uunnlloocckk((&&tttt-->>mm));;
1391 // ∗∗
1392 ∗∗ CCaalll l pptthhrreeaadd eexxiit t(()) ttoo ccaalll l ddeessttrruuccttoorrss aanndd rreeaalll lyy eexxiit t tthhee tthhrreeaadd..
1393 ∗∗//
1394 pptthhrreeaadd__eexxiit t((NNUULLLL));;

}1395 }

1396 ___

1397 Figure B-6 −− pthread_join() with timeout

B1398 .14.4.4 Form of the Timeout Interfaces

1399 The working group considered a number of alternative ways to add timeouts to
blocking1400 services. At first, a system interface that would specify a one-shot or per-
sistent1401 timeout to be applied to subsequent blocking services invoked by the cal-
ling1402 process or thread was considered because it allowed all blocking services to be
timed1403 out in a uniform manner with a single additional interface; this interface
was1404 rather quickly rejected because it could easily result in the wrong services
being1405 timed out.

It1406 was suggested that a timeout value might be specified as an attribute of the
object1407 (e.g., semaphore, mutex, message queue), but there was no consensus on
this1408 suggestion, either on a case-by-case basis or for all timeouts.

Looking1409 at the two existing timeouts for blocking services indicates that the work-
ing1410 group members favor a separate interface for the timed version of a function.
However,1411 pthread_cond_timedwait() utilizes an absolute timeout value while

1412 sigtimedwait() uses a relative timeout value. The working group members agreed
that1413 relative timeout values are appropriate where the timeout mechanism’s pri-
mary1414 use was to deal with an unexpected or error situation, but they are inap-
propriate1415 when the timeout has to expire at a particular time or before a specific
deadline.1416 For the timeouts being introduced in this document, the working group
considered1417 allowing both relative and absolute timeouts as is done with POSIX.1b
timers,1418 but ultimately favored the simpler absolute timeout form.

An1419 absolute time measure can be easily implemented on top of an interface that
speci1420 fies relative time by reading the clock, calculating the difference between the

B.14 Clocks and Timers 101

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIX

1421 current time and the desired wake up time, and issuing a relative timeout call.
But1422 there is a race condition with this approach because the thread could be
preempted1423 after reading the clock, but before making the timed out call; in this
case,1424 the thread would be awakened later than it should and, thus, if the wake up
time1425 represented a deadline, the thread would miss it.

There1426 is also a race condition when trying to build a relative timeout on top of an
interface1427 that specifies absolute timeouts. In this case, the clock would have to be
read1428 to calculate the absolute wake up time as the sum of the current time plus
the1429 relative timeout interval. In this case, if the thread is preempted after reading
the1430 clock, but before making the timed out call, the thread would be awakened
earlier1431 than desired.

But1432 the race condition with the absolute timeouts interface is not as bad as the
one1433 that happens with the relative timeout interface because there are simple
workarounds.1434 For the absolute timeouts interface, if the timing requirement is a
deadline,1435 it can still be met because the thread woke up earlier than the deadline.
If1436 the timeout is just used as an error recovery mechanism, the precision of timing
is1437 not really important. If the timing requirement is that between actions A and B
a1438 minimum interval of time must elapse, the absolute timeout interface can be
safely1439 used by reading the clock after action A has been started. It could be argued
that,1440 since the call with the absolute timeout is atomic from the application point
of1441 view, it is not possible to read the clock after action A if this action is part of the
timed1442 out call. But for the calls for which timeouts are specified (e.g., locking a
mutex,1443 waiting for a semaphore, waiting for a message, waiting until there is
space1444 in a message queue), the timeouts that an application would build on these
actions1445 would not be triggered by these actions themselves, but by some other
external1446 action. For example, to wait for at least 20 milliseconds for a message to
arrive1447 to a message queue, this time interval would be started by some event that
would1448 trigger both the action that produces the message and the action that waits
for1449 the message to arrive, and not by the wait-for-message operation itself. In this
case,1450 the workaround proposed above could be used.

F1451 or these reasons, the absolute timeout is preferred over the relative timeout
i1452 nterface.

1453 ⇒⇒ Annex B Rationale and Notes Add the following subclause.

1454 B.19 Advisory Information

1455 The POSIX.1b standard contains an informative annex with proposed interfaces
for1456 ‘‘realtime files.’’ These interfaces could determine groups of the exact parame-
ters1457 required to do ‘‘direct I/O’’ or ‘‘extents.’’ These interfaces were objected to by
a1458 a significant portion of the balloting group as too complex. A portable application
had1459 little chance of correctly navigating the large parameter space to match its
desires1460 to the system. In addition, they only applied to a new type of file (realtime

1461 files) and they told the implementation exactly what to do as opposed to advising
the1462 implementation on application behavior and letting it optimize for the system
on1463 which the (portable) application was running. For example, it was not clear
how1464 a system that had a disk array should set its parameters.

102 B Rationale and Notes

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] IEEE Std 1003.1d-1999

1465 There seemed to be several overall goals:

1466 — Optimizing Sequential Access

1467 — Optimizing Caching Behavior

1468 — Optimizing I/O data transfer

1469 — Preallocation

The1470 advisory interfaces, posix_fadvise() and posix_madvise(), satisfy the first two
goals.1471 The POSIX_FADV_SEQUENTIAL and POSIX_MADV_SEQUENTIAL advice

1472 tells the implementation to expect serial access. Typically the system will prefetch
the1473 next several serial accesses in order to overlap I/O. It may also free previously
accessed1474 serial data if memory is tight. If the application is not doing serial access,
it1475 can use POSIX_FADV_WILLNEED and POSIX_MADV_WILLNEED to accomplish
I/O1476 overlap, as required. When the application advises POSIX_FADV_RANDOM or

1477 POSIX_MADV_RANDOM behavior, the implementation usually tries to fetch a
minimum1478 amount of data with each request; and it does not expect much locality.

1479 POSIX_FADV_DONTNEED and POSIX_MADV_DONTNEED allow the system to free
up1480 caching resources as the data will not be required in the near future.

1481 POSIX_FADV_NOREUSE tells the system that caching the specified data is not
optimal.1482 For file I/O, the transfer should go directly to the user buffer instead of
being1483 cached internally by the implementation. To portably perform direct disk
I/O1484 on all systems, the application shall perform its I/O transfers according to the
following1485 rules:

1486 (1) The user buffer should be aligned according to the {POSIX_REC_XFER_-
1487 ALIGN} pathconf() variable.

1488 (2) The number of bytes transferred in an I/O operation should be a multiple
1489 of the {POSIX_ALLOC_SIZE_MIN} pathconf() variable.

1490 (3) The offset into the file at the start of an I/O operation should be a multi-
1491 ple of the {POSIX_ALLOC_SIZE_MIN} pathconf() variable.

1492 (4) The application should ensure that all threads that open a given file
1493 specify POSIX_FADV_NOREUSE to be sure that there is no unexpected
1494 interaction between threads using buffered I/O and threads using direct
1495 I/O to the same file.

In1496 some cases, a user buffer should be properly aligned in order to be transferred
directly1497 to/from the device. The {POSIX_REC_XFER_ALIGN} pathconf() variable
tells1498 the application the proper alignment.

The1499 preallocation goal is met by the space control function, posix_fallocate(). The
application1500 can use posix_fallocate() to guarantee no [ENOSPC] errors and to
improve1501 performance by prepaying any overhead required for block allocation.

I1502 mplementations may use information conveyed by a previous posix_fadvise() call
to1503 influence the manner in which allocation is performed. For example, assume
an1504 application does the following calls:

1505 ffdd == ooppeenn(("" file""))

1506 ppoossiixx__ffaaddvviissee((fd,, offset,, len,, PPOOSSIIXX__FFAADDVV__SSEEQQUUEENNTTIIAALL))

1507 ppoossiixx__ffaalll looccaattee((fd,, len,, size))

B.19 Advisory Information 103

IEEE Std 1003.1d-1999

1508 As a result, an implementation might allocate the file contiguously on disk.

Finally,1509 the pathconf() variables {POSIX_REC_MIN_XFER_SIZE}, {POSIX_REC_-
MAX_XFER_SIZE1510 } and {POSIX_REC_INCR_XFER_SIZE} tell the application a range
of1511 transfer sizes that are recommended for best I/O performance.

Where1512 bounded response time is required, the vendor can supply the appropriate
settings1513 of the advisories to achieve a guaranteed performance level.

The1514 interfaces meet the goals while allowing applications using regular files to
take1515 advantage of performance optimizations. The interfaces tell the implementa-
tion1516 expected application behavior that the implementation can use to optimize
performance1517 on a particular system with a particular dynamic load.

The1518 posix_memalign() function was added to allow for the allocation of specifically
aligned1519 buffers, e.g. for {POSIX_REC_XFER_ALIGN}.

The1520 working group also considered the alternative of adding a function that would
return1521 an aligned pointer to memory within a user supplied buffer. This method
was1522 not considered to be best because it potentially wastes large amounts of
memory1523 when buffers need to be aligned on large alignment boundaries.

104 B Rationale and Notes

IEEE Std 1003.1d-1999

Identifier Index

clock_getcpuclockid()
Accessing a Process CPU-time Clock {14.3.2} 49

mq_timedreceive()
Receive a Message from a Message Queue {15.2.5} 55

mq_timedsend () Send a Message to a Message Queue {15.2.4} 53
posix_fadvise() File Advisory Information {19.1.1} ... 63
posix_fallocate() File Space Control {19.1.2} ... 64
posix_madvise() Memory Advisory Information {19.2.1} 66
posix_memalign()

Aligned Memory Allocation {19.2.2} ... 67
posix_spawn() Spawn a Process {3.1.6} .. 20
posix_spawnattr_destroy()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_getflags()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_getpgroup()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_getschedparam()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_getschedpolicy()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_getsigdefault()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_getsigmask()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_init()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_setflags()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_setpgroup()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_setschedparam()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_setschedpolicy()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_setsigdefault()

Spawn Attributes {3.1.5} .. 16
posix_spawnattr_setsigmask()

Spawn Attributes {3.1.5} .. 16
posix_spawn_file_actions_addclose()

Spawn File Actions {3.1.4}.. 14
posix_spawn_file_actions_adddup2()

Spawn File Actions {3.1.4}.. 14
posix_spawn_file_actions_addopen()

Spawn File Actions {3.1.4}.. 14

Identifier Index 105

IEEE Std 1003.1d-1999

posix_spawn_file_actions_destroy()
Spawn File Actions {3.1.4}.. 14

posix_spawn_file_actions_init()
Spawn File Actions {3.1.4}.. 14

posix_spawnp() Spawn a Process {3.1.6} .. 20
pthread_getcpuclockid()

Accessing a Thread CPU-time Clock {14.3.3} 50
pthread_mutex_timedlock()

Locking and Unlocking a Mutex {11.3.3} 35
sem_timedwait () Lock a Semaphore {11.2.6} ... 33
<<ssppaawwnn..hh>> Spawn File Actions {3.1.4}.. 14

106 Identifier Index

IEEE Std 1003.1d-1999

Alphabetic Topical Index

A

abbreviations
C Standard . . . 5

Abbreviations . . . 5
abbreviations

POSIX.1 . . . 5
POSIX.1b . . . 6
POSIX.1c . . . 6
POSIX.1d . . . 6
POSIX.5 . . . 6

Accessing a Process CPU-time Clock . . . 49
Accessing a Thread CPU-time Clock . . . 50
Accuracy of CPU-time Clocks . . . 92
address space . . . 67
Advisory Information . . . 63, 102
Advisory Information option . . . 7-8, 10, 27,

29, 63-64, 66-67
aio_suspend () . . . 96
alarm () . . . 25
Aligned Memory Allocation . . . 67
ARG_MAX . . . 21
Asynchronous Input and Output . . . 31
Asynchronous I/O Control Block . . . 31
attributes

eennaabbll ee . . . 94
sscchheeddppaarr aamm . . . 43

attributes
ccppuu-- ccll oocckk-- rr eeqquuii rr eemmeenntt . . . 92
ssppaawwnn-- ddeeff aauull tt . . . 18
ssppaawwnn-- ff ll aaggss . . . 18, 20, 22-24
ssppaawwnn-- ppggrr oouupp . . . 18, 20, 22, 76
ssppaawwnn-- sscchheeddppaarr aamm . . . 19-20, 23
ssppaawwnn-- sscchheeddppooll ii ccyy . . . 19-20, 23
ssppaawwnn-- ssii ggddeeff aauull tt . . . 19-20, 23
ssppaawwnn-- ssii ggmmaasskk . . . 18, 20, 23

B

B.2 . . . 71
B-4 . . . 97
B-5 . . . 97
background . . . 87-88
background priority . . . 87
Bibliography . . . 69
blocked thread . . . 40

bounded response . . . 1, 90, 104
BSD . . . 93

C

cancellation point . . . 61
Cancellation Points . . . 61
chmod() . . . 25
C Language Definitions . . . 7
clock

system . . . 33, 36, 54, 56
Clock and Timer Functions—Description

. . . 47
Clock and Timer Functions . . . 47
clock

CLOCK_REALTIME . . . 33, 36, 54, 56
Clock Constants . . . 94
clock

CPU-time . . . 5, 13, 47-50, 59, 91-94
clock_getcpuclockid() . . . 8, 47, 49-51, 92, 94

function definition . . . 49
clock_getres () . . . 50-51
clock_gettime () . . . 47, 50-51
CLOCK_PROCESS_CPUTIME_ID . . . 47, 92, 94
CLOCK_REALTIME . . . 33, 36, 54, 56, 97
clock resolution . . . 33, 36, 54, 56
Clocks . . . 47

CPU-time . . . 13
Clocks and Timers . . . 47-48, 91
clocks

CPU-Time . . . 13
CPU-time . . . 47

clock_settime () . . . 41, 47, 50-51
CLOCK_THREAD_CPUTIME_ID . . . 47, 92, 94
close () . . . 16, 25
Compile-Time Symbolic Constants for Porta-

bility Specifications . . . 10-11
Condition Wait Implementation . . . 98
Configurable Pathname Variables . . . 29
Configurable System Variables . . . 27
conformance . . . 2

implementation . . . 2
Conformance . . . 2
Conforming Implementation Options . . . 2
CPU . . . 5-6, 13, 47-50, 91-94

Alphabetic Topical Index 107

IEEE Std 1003.1d-1999

ccppuu--cclloocckk--rreeqquuiirreemmeenntt
attribute . . . 92

CPU-time Clock Characteristics . . . 48
CPU-Time clock . . . 13
CPU-time clock . . . 13, 47

definition of . . . 5
CPU time [execution time]

definition of . . . 5
CPU-time timer

definition of . . . 5
creat () . . . 65-66
Create a Per-Process Timer—Description

. . . 48
Create a Per-Process Timer—Errors . . . 48
Create a Per-Process Timer . . . 48
Cross-References . . . 16, 20, 25, 34, 37, 50-

51, 55, 57, 64, 66-68
C Standard . . . 5, 68

abbreviation . . . 5
definition of . . . 5

D

Data Definitions for Asynchronous Input and
Output . . . 31

Definitions . . . 5
Definitions and General Requirements . . . 71
document . . . 2, 18, 21, 44, 69, 92, 101
dup2 () . . . 16, 25
Dynamically Setting the Sporadic Server Pol-

icy . . . 90
Dynamic Thread Scheduling Parameters

Access—Description . . . 45
Dynamic Thread Scheduling Parameters

Access—Errors . . . 45
Dynamic Thread Scheduling Parameters

Access . . . 45

E

[EBADF] . . . 16, 64-65
EBADF . . . 81
EBUSY . . . 97
[EDEADLK] . . . 36
[EFBIG] . . . 65
effective group ID . . . 23
effective user ID . . . 23
[EINTR] . . . 54, 56, 65
[EINVAL] . . . 16, 20, 24, 34, 36, 54, 56, 64-65,

67-68

[EIO] . . . 65
eennaabbllee

attribute . . . 94
[ENODEV] . . . 65
[ENOMEM] . . . 16, 20, 67-68
ENOMEM . . . 83
[ENOSPC] . . . 65, 103
[ENOTSUP] . . . 45, 48
[EPERM] . . . 50
[ESPIPE] . . . 64-65
[ESRCH] . . . 50-51
[ETIMEDOUT] . . . 34, 36, 54, 56
ETIMEDOUT . . . 97-98
exec . . . 13, 23-24, 72-75
Execute a File—Description . . . 13
Execute a File . . . 13
Execution Scheduling . . . 39, 87
execution time

definition of . . . 5
Execution Time Monitoring . . . 48, 91
Execution Time Monitoring Interface . . . 91
Existing Practice . . . 89, 93
_exit () . . . 25

F

FALSE . . . 98, 100
fcntl () . . . 25
<<ffccnnttl l. .hh>> . . . 8, 64
FD_CLOEXEC . . . 15, 22, 74, 82
FIFO . . . 64-65
File Advisory Information . . . 63
file descriptor . . . 14-16, 22-23, 63-65, 71-72,

74
Files and Directories . . . 29
File Space Control . . . 64
file system . . . 65
pthread_join()

with timeout . . . 101
fork . . . 13
fork () . . . 2, 23-25, 72-75, 77
fork handlers . . . 24
Form of the Timeout Interfaces . . . 101
free () . . . 68
ftruncate () . . . 65-66
functions

clock_getcpuclockid() . . . 49
mq_timedreceive() . . . 55
mq_timedsend () . . . 53
posix_fadvise() . . . 63
posix_fallocate() . . . 64
posix_madvise() . . . 66
posix_memalign() . . . 67

108 Alphabetic Topical Index

IEEE Std 1003.1d-1999

posix_spawn () . . . 20
posix_spawnattr_destroy() . . . 16
posix_spawnattr_getflags() . . . 16
posix_spawnattr_getpgroup() . . . 16
posix_spawnattr_getschedparam() . . . 16
posix_spawnattr_getschedpolicy() . . . 16
posix_spawnattr_getsigdefault() . . . 16
posix_spawnattr_getsigmask() . . . 16
posix_spawnattr_init() . . . 16
posix_spawnattr_setflags() . . . 16
posix_spawnattr_setpgroup() . . . 16
posix_spawnattr_setschedparam() . . . 16
posix_spawnattr_setschedpolicy() . . . 16
posix_spawnattr_setsigdefault() . . . 16
posix_spawnattr_setsigmask() . . . 16
posix_spawn_file_actions_addclose()

. . . 14
posix_spawn_file_actions_adddup2()

. . . 14
posix_spawn_file_actions_addopen()

. . . 14
posix_spawn_file_actions_destroy() . . . 14
posix_spawn_file_actions_init () . . . 14
posix_spawnp () . . . 20
pthread_getcpuclockid() . . . 50
pthread_mutex_timedlock() . . . 35
sem_timedwait () . . . 33

G

General . . . 1
General Concepts—measurement of execution

time . . . 6
General Concepts . . . 6, 71
General Terms . . . 5
generate a signal . . . 92
Get Configurable Pathname Variables—

Description . . . 29
Get Configurable Pathname Variables . . . 29
Get Configurable System Variables—

Description . . . 27
Get Configurable System Variables . . . 27
getitimer () . . . 93
getrusage () . . . 93

H

Headers and Function Prototypes . . . 7
Historical Documentation . . . 69
Historical Documentation and Introductory

Texts . . . 69
History of Resolution Issues: Deletion of the

eennaabbllee attribute . . . 94

I

IBM . . . 94
IEEE . . . 75
IEEE P1003.1a . . . 74
IEEE Std 1003.1 . . . 5-6
IEEE Std 1003.1b . . . 6
IEEE Std 1003.1c . . . 6
IEEE Std 1003.1d . . . 6
IEEE Std 1003.5 . . . 6
IEEE Std 1003.5b . . . 6
Implementation Conformance . . . 2
implementation defined . . . 5-6, 19, 24, 39-

40, 42-45, 48-49, 65, 71, 92-93
Input and Output Primitives . . . 31
Introduction . . . 91
I/O Advisory Information and Space Control

. . . 63
I/O Redirection with posix_spawn() . . . 86
ISO/IEC 14519 . . . 6, 69, 73, 75
ISO/IEC 9899:1995 . . . 5
ISO/IEC 9899 . . . 5, 68
ISO/IEC 9945-1 . . . 5
ISO/IEC 9945 . . . 7

J

job control . . . 74

K

kill () . . . 25

L

language binding . . . 72-73, 75-76
Library-Level vs. Kernel-Level Implementa-

tion . . . 89
Library Implementations of Threads . . . 94
Limitation of the Number of Pending Replen-

ishments . . . 90
<<lli immiit tss..hh>> . . . 8
lio_listio () . . . 96
Lock a Semaphore—Cross-References . . . 34
Lock a Semaphore—Description . . . 33
Lock a Semaphore — Errors . . . 34
Lock a Semaphore—Returns . . . 34
Lock a Semaphore—Synopsis . . . 33
Lock a Semaphore . . . 33

Alphabetic Topical Index 109

IEEE Std 1003.1d-1999

Locking and Unlocking a Mutex—
Cross-References . . . 37

Locking and Unlocking a Mutex—Description
. . . 35

Locking and Unlocking a Mutex—Errors
. . . 36

Locking and Unlocking a Mutex—Returns
. . . 36

Locking and Unlocking a Mutex—Synopsis
. . . 35

Locking and Unlocking a Mutex . . . 35
llooggiinn . . . 77

M

malloc () . . . 68
measurement of execution time . . . 71

definition of . . . 6
Memory Advisory Information . . . 66
Memory Advisory Information and Alignment

Control . . . 66
Memory Mapped Files option . . . 66-67
Message Passing . . . 53
Message Passing Functions . . . 53
Message Passing option . . . 7, 53, 55
message queues . . . 53, 55
Minimum Values . . . 8
mmap() . . . 67
MMU . . . 73, 75
mq_open () . . . 55, 57
mq_receive () . . . 55, 96
mq_send () . . . 53, 96
mq_timedreceive() . . . 7, 55-56, 61

function definition . . . 55
mq_timedsend () . . . 7, 53-54, 61

function definition . . . 53
<<mmqquueeuuee..hh>> . . . 8
mutexes . . . 35
Mutexes . . . 35
MVS . . . 94

N

NULL . . . 80-81, 83-84, 99-101
Numerical Limits . . . 8

O

O_NONBLOCK . . . 53-56

open () . . . 16, 25, 65-66
OPEN_MAX . . . 16
Optional Configurable Pathname Variables

. . . 29
Optional Configurable System Variables

. . . 27
Optional Minimum Values . . . 8
Optional Pathname Variable Values . . . 10
Optional Run-Time Invariant Values . . . 9
options

Advisory Information . . . 7-8, 10, 27, 29,
63-64, 66-67

Memory Mapped Files . . . 66-67
Message Passing . . . 7, 53, 55
Prioritized Input and Output . . . 31
Process Scheduling . . . 7, 18-19, 22-24,

31, 44
Process Sporadic Server . . . 10, 27, 39-42
Semaphores . . . 33
Shared Memory Objects . . . 66-67
Spawn . . . 7, 10, 14, 17, 19, 21, 27
Threads . . . 5, 7, 24, 35
Thread Sporadic Server . . . 10, 27, 39-40,

43-45
Timeouts . . . 7, 10, 27, 33, 35-36, 53, 55
Timers . . . 33, 54-55

options
Process CPU-Time Clocks . . . 8, 10, 13, 27,

47-49, 59
Thread CPU-Time Clocks . . . 7, 10, 13, 27,

48-50, 92
Other Standards . . . 69
Overhead Considerations . . . 92

P

package
PPOOSSIIXX__PPrroocceessss__PPrri immiit ti ivveess . . . 74

PATH
variable . . . 22

pathconf () . . . 9, 103-104
pathname . . . 21
Pathname Variable Values . . . 9
_PC_ALLOC_SIZE_MIN . . . 29

limit definition . . . 29
_PC_REC_INCR_XFER_SIZE . . . 29

limit definition . . . 29
_PC_REC_MAX_XFER_SIZE . . . 29

limit definition . . . 29
_PC_REC_MIN_XFER_SIZE . . . 29

limit definition . . . 29
_PC_REC_XFER_ALIGN . . . 29

limit definition . . . 29

110 Alphabetic Topical Index

IEEE Std 1003.1d-1999

pipe . . . 64-65, 77
popen () . . . 77
POSIX.1 . . . 5, 8, 39, 47, 59, 75-76, 93-96

abbreviation . . . 5
definition of . . . 5

POSIX.1b
abbreviation . . . 6
definition of . . . 6

POSIX.1c
abbreviation . . . 6
definition of . . . 6

POSIX.1d
abbreviation . . . 6
definition of . . . 6

POSIX.1i . . . 6
POSIX.5 . . . 6, 72, 75

abbreviation . . . 6
definition of . . . 6

_POSIX_ADVISORY_INFO . . . 2, 10, 27, 63-64,
66-67

POSIX_ALLOC_SIZE_MIN . . . 9, 29, 103
_POSIX_CPUTIME . . . 2, 10-11, 13, 27, 47-49
POSIX_FADV_DONTNEED . . . 103
posix_fadvise () . . . 7, 61, 63-65, 67, 103

function definition . . . 63
POSIX_FADV_NOREUSE . . . 103
POSIX_FADV_RANDOM . . . 103
POSIX_FADV_SEQUENTIAL . . . 103
POSIX_FADV_WILLNEED . . . 103
posix_fallocate() . . . 7, 61, 64-65, 103

function definition . . . 64
POSIX_MADV_DONTNEED . . . 103
posix_madvise () . . . 7, 61, 64, 66-67, 103

function definition . . . 66
POSIX_MADV_RANDOM . . . 103
POSIX_MADV_SEQUENTIAL . . . 103
POSIX_MADV_WILLNEED . . . 103
_POSIX_MAPPED_FILES . . . 66
posix_memalign() . . . 8, 67-68, 104

function definition . . . 67
_POSIX_MESSAGE_PASSING . . . 53, 55
_POSIX_PRIORITIZED_IO . . . 31
_POSIX_PRIORITY_SCHEDULING . . . 11, 19,

22-24, 31, 44
PPOOSSIIXX__PPrroocceessss__PPrri immiit ti ivveess

package . . . 74
POSIX_REC_INCR_XFER_SIZE . . . 9, 29, 104
POSIX_REC_MAX_XFER_SIZE . . . 9, 29, 104
POSIX_REC_MIN_XFER_SIZE . . . 9, 29, 104
POSIX_REC_XFER_ALIGN . . . 9, 29, 103-104
_POSIX_SEMAPHORES . . . 33
_POSIX_SHARED_MEMORY_OBJECTS . . . 66

posix_spawn () . . . 7, 14-16, 18, 20-21, 24-25,
61, 71-77, 86
Equivalent . . . 86
function definition . . . 20

_POSIX_SPAWN . . . 2, 10, 14, 17, 19, 21, 27
posix_spawnattr_destroy() . . . 7, 16, 18-20,

25
function definition . . . 16

posix_spawnattr_getflags() . . . 7, 16, 18-20,
25
function definition . . . 16

posix_spawnattr_getpgroup() . . . 7, 16, 18-
20, 25
function definition . . . 16

posix_spawnattr_getschedparam() . . . 8, 16,
19-20, 25
function definition . . . 16

posix_spawnattr_getschedpolicy() . . . 8, 16,
19-20, 25
function definition . . . 16

posix_spawnattr_getsigdefault() . . . 7, 16,
19-20, 25
function definition . . . 16

posix_spawnattr_getsigmask() . . . 7, 16, 18-
20, 25
function definition . . . 16

posix_spawnattr_init() . . . 7, 16-20, 25
function definition . . . 16

posix_spawnattr_setflags() . . . 7, 16, 18-20,
25
function definition . . . 16

posix_spawnattr_setpgroup() . . . 7, 16, 18-
20, 25
function definition . . . 16

posix_spawnattr_setschedparam() . . . 8, 16,
19-20, 25
function definition . . . 16

posix_spawnattr_setschedpolicy() . . . 8, 16,
19-20, 25
function definition . . . 16

posix_spawnattr_setsigdefault() . . . 7, 16,
19-20, 25
function definition . . . 16

posix_spawnattr_setsigmask() . . . 7, 16, 18-
20, 25
function definition . . . 16

posix_spawn_file_actions_addclose() . . . 7,
14-16, 25
function definition . . . 14

posix_spawn_file_actions_adddup2() . . . 7,
14-16, 25
function definition . . . 14

posix_spawn_file_actions_addopen() . . . 7,
14-16, 25
function definition . . . 14

Alphabetic Topical Index 111

IEEE Std 1003.1d-1999

posix_spawn_file_actions_destroy() . . . 7,
14-16, 25
function definition . . . 14

posix_spawn_file_actions_init () . . . 7, 14-15,
25
function definition . . . 14

posix_spawnp () . . . 7, 14-16, 18, 20-22, 24-
25, 61, 71-77, 86
function definition . . . 20

POSIX_SPAWN_RESETIDS . . . 18, 23, 72, 78,
80

POSIX_SPAWN_SETPGROUP . . . 18, 22, 24, 78,
80

POSIX_SPAWN_SETSCHEDPARAM . . . 18-19,
22-24, 78, 82

POSIX_SPAWN_SETSCHEDULER . . . 18-19,
22-24, 78, 82

POSIX_SPAWN_SETSIGDEF . . . 18, 23, 78, 80
POSIX_SPAWN_SETSIGMASK . . . 18, 23, 78,

80
_POSIX_SPORADIC_SERVER . . . 2, 10-11, 27,

39-42
_POSIX_SS_REPL_MAX . . . 8-9, 90
_POSIX_THREAD_CPUTIME . . . 2, 10-11, 13,

27, 47-50, 59
_POSIX_THREAD_PRIORITY_SCHEDULING

. . . 11, 43
_POSIX_THREADS . . . 35
_POSIX_THREAD_SPORADIC_SERVER . . . 2,

10-11, 27, 39-40, 43-45
_POSIX_TIMEOUTS . . . 2, 10, 27, 33, 35, 53,

55
_POSIX_TIMERS . . . 11
PRIO_INHERIT . . . 36
Prioritized Input and Output option . . . 31
procedure

SSttaarrtt__PPrroocceessss . . . 72-76
SSttaarrtt__PPrroocceessss__SSeeaarrcchh . . . 73, 75

Process CPU-Time Clocks option . . . 8, 10, 13,
27, 47-49, 59

Process Creation—Description . . . 13
Process Creation . . . 13
Process Creation and Execution . . . 13-14, 71
Process Environment . . . 27
process group . . . 18, 22, 25, 74, 76
process group ID . . . 22, 74
process ID . . . 22, 24
Process Primitives . . . 13, 71
Process Scheduling Attributes . . . 43
Process Scheduling Functions . . . 41
Process Scheduling option . . . 7, 18-19, 22-24,

31, 44

Process Sporadic Server option . . . 10, 27,
39-42

Process Termination . . . 25
pthread_cond_signal() . . . 97
pthread_cond_timedwait () . . . 96-97, 99, 101
pthread_cond_wait () . . . 96, 99
pthread_getcpuclockid() . . . 7, 47, 50-51, 92,

94
function definition . . . 50

<<pptthhrreeaadd..hh>> . . . 8
pthread_join () . . . 96, 99
pthread_mutex_lock() . . . 35, 96-97
pthread_mutex_timedlock() . . . 7, 35-36,

97-98
function definition . . . 35

PTHREAD_ONCE_INIT . . . 99
pthread_setschedparam() . . . 45
pthread_timedjoin() . . . 99

R

Range of Scheduling Priorities . . . 90
read () . . . 96
Receive a Message from a Message Queue—

Cross-References . . . 57
Receive a Message from a Message Queue—

Description . . . 55
Receive a Message from a Message Queue—

Errors . . . 56
Receive a Message from a Message Queue—

Returns . . . 56
Receive a Message from a Message Queue—

Synopsis . . . 55
Receive a Message from a Message Queue

. . . 55
replenishment operation . . . 40-41, 90
replenishment period . . . 39-41, 87-88, 90
Requirements for Timeouts . . . 95
resolution

clock . . . 33, 36, 54, 56
Run-Time Invariant Values (Possibly Indeter-

minate) . . . 8-9
running thread . . . 40-41

S

_SC_ADVISORY_INFO . . . 27
limit definition . . . 27

_SC_CPUTIME . . . 27
limit definition . . . 27

SCHED_FIFO . . . 31, 35, 39-40, 42-44, 90, 97

112 Alphabetic Topical Index

IEEE Std 1003.1d-1999

sched_get_priority_max() . . . 41
sched_get_priority_min() . . . 41
<<sscchheedd..hh>> . . . 39
SCHED_OTHER . . . 39, 42, 44
sscchheeddppaarraamm

attribute . . . 43
SCHED_RR . . . 31, 35, 39, 42-44, 97
sched_setparam() . . . 24-25
sched_setscheduler() . . . 24-25
SCHED_SPORADIC . . . 31, 35, 39-45, 90
Scheduling Allocation Domain . . . 43-44
Scheduling Aperiodic Activities (rationale)

. . . 88
Scheduling Documentation . . . 44
Scheduling Parameters . . . 39
Scheduling Policies . . . 39-40
scheduling policy . . . 35, 39-43, 45, 89-90, 97
Scope . . . 1
_SC_PAGESIZE . . . 66-67
_SC_SPAWN . . . 27

limit definition . . . 27
_SC_SPORADIC_SERVER . . . 27

limit definition . . . 27
_SC_THREAD_CPUTIME . . . 27

limit definition . . . 27
_SC_THREAD_SPORADIC_SERVER . . . 27

limit definition . . . 27
_SC_TIMEOUTS . . . 27

limit definition . . . 27
Semaphore Functions . . . 33
<<sseemmaapphhoorree..hh>> . . . 8
semaphores . . . 33
Semaphores option . . . 33
sem_post () . . . 33
sem_timedwait () . . . 7, 33-34, 61

function definition . . . 33
sem_wait () . . . 33, 96
Send a Message to a Message Queue—

Cross-References . . . 55
Send a Message to a Message Queue—

Description . . . 53
Send a Message to a Message Queue—Errors

. . . 54
Send a Message to a Message Queue—Returns

. . . 54
Send a Message to a Message Queue—

Synopsis . . . 53
Send a Message to a Message Queue . . . 53
setitimer () . . . 93
setpgid () . . . 24-25, 76
Set Scheduling Parameters—Description

. . . 41-42

Set Scheduling Parameters . . . 41
Set Scheduling Policy and Scheduling

Parameters—Description . . . 42
Set Scheduling Policy and Scheduling Parame-

ters . . . 42
setuid () . . . 25
Shared Memory Objects option . . . 66-67
shell . . . 77
sshheelll l . . . 77
SIG_DFL . . . 23, 80
SIG_IGN . . . 23
signal

generate . . . 92
signal actions . . . 23
signal mask . . . 23
SIG_SETMASK . . . 80
sigtimedwait () . . . 96, 101
sigwait () . . . 96
Spawn a Process . . . 20, 73
Spawn Attributes . . . 16, 73
ssppaawwnn--ddeeffaauullt t

attribute . . . 18
Spawn File Actions . . . 14, 71
ssppaawwnn--ffl laaggss

attribute . . . 18, 20, 22-24
<<ssppaawwnn..hh>> . . . 8, 14, 17-18, 22

header definition . . . 14
Spawning a new Userid Process . . . 87
spawn option . . . 19
Spawn option . . . 7, 10, 14, 17, 21, 27
ssppaawwnn--ppggrroouupp

attribute . . . 18, 20, 22, 76
ssppaawwnn--sscchheeddppaarraamm

attribute . . . 19-20, 23
ssppaawwnn--sscchheeddppoolli iccyy

attribute . . . 19-20, 23
ssppaawwnn--ssiiggddeeffaauullt t

attribute . . . 19-20, 23
ssppaawwnn--ssiiggmmaasskk

attribute . . . 18, 20, 23
Spinlock Implementation . . . 97
Sporadic Server Scheduling Policy . . . 87
SS_REPL_MAX . . . 9, 42-45, 90
SSttaarrtt__PPrroocceessss

procedure . . . 72-76
SSttaarrtt__PPrroocceessss__SSeeaarrcchh

procedure . . . 73, 75
stat () . . . 25
<<ssttddlli ibb..hh>> . . . 8
Symbolic Constants . . . 10
Synchronization . . . 33

Alphabetic Topical Index 113

IEEE Std 1003.1d-1999

sysconf () . . . 9, 66-67
<<ssyyss//mmmmaann..hh>> . . . 67
system () . . . 72, 74, 77
system clock . . . 33, 36, 54, 56
System V . . . 27, 94

T

Terminology and General Requirements . . . 5
terms . . . 5
Thread Cancellation . . . 61
Thread Cancellation Overview . . . 61
Thread CPU-Time Clocks option . . . 7, 10, 13,

27, 48-50, 92
Thread Creation—Description . . . 59
Thread Creation . . . 59
Thread Creation Scheduling Attributes—

Description . . . 44
Thread Creation Scheduling Attributes

. . . 44
Thread Functions . . . 59
Thread Management . . . 59
Thread Scheduling . . . 43
Thread Scheduling Attributes . . . 43
Thread Scheduling Functions . . . 44
Threads option . . . 5, 7, 24, 35
Thread Sporadic Server option . . . 10, 27,

39-40, 43-45
time () . . . 33-34, 36-37, 54-57
<<tti immee..hh>> . . . 8, 34, 36-37, 49, 54-57
Timeouts option . . . 7, 10, 27, 33, 35-36, 53,

55
timer_create () . . . 48, 50-51
Timers option . . . 33, 54-55
times () . . . 25, 93-94
TOC . . . 5
TRUE . . . 98, 101

U

undefined . . . 14-15, 18, 40
UNIX . . . 74-75, 93
unlink () . . . 66
Unlock a Semaphore—Description . . . 35
Unlock a Semaphore . . . 35
unspecified . . . 18-19, 24-25, 31

V

Versioned Compile-Time Symbolic Constants
. . . 11

W

wait () . . . 25, 76-77
Wait for Process Termination — Description

. . . 25
Wait for Process Termination . . . 25
waitpid () . . . 25, 76-77
WEXITSTATUS . . . 77
Which Services Should Be Timed Out?

. . . 95
WIFEXITED . . . 25, 77
WIFSIGNALED . . . 25
WIFSPAWNFAIL . . . 76
WIFSTOPPED . . . 25
write () . . . 96
WSPAWNERRNO . . . 76
WSTOPSIG . . . 25

114 Alphabetic Topical Index

	TM: ®
	Title1: IEEE Standard for
	Title6: [C Language]
	Title5: Amendment d: Additional Realtime Extensions
	Title4: Application Program Interface (API)—
	Title3: System Interface (POSIX)—Part 1: System
	Title2: Information Technology—Portable Operating

