IEEE Std 1003.1d-1999

(Amendment to
IEEE Std 1003.1-1990)

IEEE Standard for

Information Technology—Portable Operating
System Interface (POSIX®)—Part 1: System
Application Program Interface (API)—
Amendment d: Additional Realtime Extensions
[C Language]

Sponsor

Portable Application Standards Committee
of the
IEEE Computer Society

Approved 16 September 1999
IEEE-SA Standards Board

Abstract: This standard is part of the POSIX series of standards for applications and user inter-
faces to open systems. It defines the applications interface to system services for spawning a
process, timeouts for blocking services, sporadic server scheduling, execution time clocks and
timers, and advisory information for file management. This standard is stated in terms of its C
binding.

Keywords: API, application portability, C (programming language), data processing, open sys-
tems, operating system, portable application, POSIX, realtime

POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2000 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 16 June 2000. Printed in the United States of America.

Print: ISBN 0-7381-1815-X SH94790
PDF: ISBN 0-7381-1816-8 SS94790

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

| EEE Standar ds documents are devel oped within the IEEE Societies and the Standards Coordinating Com-
mittees of the IEEE Standards Association (IEEE-SA) Standards Board. Members of the committees serve
voluntarily and without compensation. They are not necessarily members of the Institute. The standards
developed within |EEE represent a consensus of the broad expertise on the subject within the Institute as
well as those activities outside of |EEE that have expressed an interest in participating in the development of
the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there
are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to
the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and
issued is subject to change brought about through developments in the state of the art and comments
received from users of the standard. Every |EEE Standard is subjected to review at least every five years for
revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it isrea-
sonable to conclude that its contents, although still of some value, do not whoally reflect the present state of
the art. Users are cautioned to check to determine that they have the latest edition of any |EEE Standard.

Comments for revision of |EEE Standards are welcome from any interested party, regardless of membership
affiliation with I[EEE. Suggestions for changes in documents should be in the form of a proposed change of
text, together with appropriate supporting comments.

Interpretations. Occasionally questions may arise regarding the meaning of portions of standards as they
relate to specific applications. When the need for interpretations is brought to the attention of 1EEE, the
Institute will initiate action to prepare appropriate responses. Since |EEE Standards represent a consensus of
al concerned interests, it isimportant to ensure that any interpretation has also received the concurrence of a
balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating
Committees are not able to provide an instant response to interpretation requests except in those cases where
the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board
445 Hoes Lane

P.O. Box 1331

Piscataway, NJ 08855-1331

USA

Note: Attention is called to the possibility that implementation of this standard may
require use of subject matter covered by patent rights. By publication of this standard,
no position is taken with respect to the existence or validity of any patent rights in
connection therewith. The IEEE shall not be responsible for identifying patents for
which alicense may be required by an |EEE standard or for conducting inquiries into
the legal validity or scope of those patents that are brought to its attention.

| EEE isthe sole entity that may authorize the use of certification marks, trademarks, or other designations to
indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal useis granted by the
Ingtitute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright
Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Cus-
tomer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; (978) 750-8400. Permission to photocopy
portions of any individual standard for educational classroom use can also be obtained through the Copy-
right Clearance Center.

Contents

Introduction

Section 1: General .
1.1 Scope
1.3 Conformance .

Section 2: Terminology and General Requirements .
2.2 Definitions
2.3 General Concepts
2.7 C Language Definitions
2.8 Numerical Limits
2.9 Symbolic Constants

Section 3: Process Primitives

3.1 Process Creation and Executlon
3.1.1 Process Creation
3.1.2 Execute a File
3.1.4 Spawn File Actions
3.1.5 Spawn Attributes .
3.1.6 Spawn a Process

3.2 Process Termination . .
3.2.1 Wait for Process Termlnatlon .

Section 4: Process Environment . . .
4.8 Configurable System Variables . . . :
4.8.1 Get Configurable System Varlables :

Section 5: Files and Directories :
5.7 Configurable Pathname Varlables Co .
5.7.1 Get Configurable Pathname Varlables :

Section 6: Input and Output Primitives
6.7 Asynchronous Input and Output

6.7.1 Data Definitions for Asynchronous Input and Output

Section 11: Synchronization
11.2 Semaphore Functions .
11.2.6 Lock a Semaphore
11.2.7 Unlock a Semaphore .
11.3 Mutexes . . .
11.3.3 Locking and Unlocklng a Mutex .

Section 13: Execution Scheduling
13.1 Scheduling Parameters

PAGE

13.2 Scheduling Policies .
13.2.3 SCHED_OTHER
13.2.4 SCHED_SPORADIC

13.3 Process Scheduling Functions
13.3.1 Set Scheduling Parameters

13.3.3 Set Scheduling Policy and Schedullng Parameters

13.4 Thread Scheduling . . .
13.4.1 Thread Scheduling Attrlbutes
13.4.3 Scheduling Allocation Domain
13.4.4 Scheduling Documentation
13.5 Thread Scheduling Functions . .
13.5.1 Thread Creation Scheduling Attrlbutes
13.5.2 Dynamic Thread Scheduling Parameters Access

Section 14: Clocks and Timers .

14.2 Clock and Timer Functions
14.2.1 Clocks
14.2.2 Create a Per- Process T|mer

14.3 Execution Time Monitoring
14.3.1 CPU-time Clock Characterlstlcs
14.3.2 Accessing a Process CPU-time Clock
14.3.3 Accessing a Thread CPU-time Clock

Section 15: Message Passing
15.2 Message Passing Functions
15.2.4 Send a Message to a Message Queue
15.2.5 Receive a Message from a Message Queue

Section 16: Thread Management .
16.2 Thread Functions .
16.2.2 Thread Creation

Section 18: Thread Cancellation .
18.1 Thread Cancellation Overview .
18.1.2 Cancellation Points

Section 19: Advisory Information .
19.1 1/O Advisory Information and Space Control
19.1.1 File Advisory Information
19.1.2 File Space Control
19.2 Memory Advisory Information and Allgnment Control
19.2.1 Memory Advisory Information
19.2.2 Aligned Memory Allocation

Annex A (informative) Bibliography
A.2 Other Standards
A.3 Historical Documentation and Introductory Texts

Annex B (informative) Rationale and Notes
B.2 Definitions and General Requirements
B.3 Process Primitives .

B.13 Execution Scheduling

39
39
40
41
41
42
43
43
43
44
44
44
45

47
47
47
48
48
48
49
50

53
53
53
55

59
59
59

61
61
61

63
63
63
64
66
66
67

69
69
69

71
71
71
87

B.14 Clocks and Timers
B.19 Advisory Information

Identifier Index

Alphabetic Topical Index .

FIGURES
Figure B-1 - posix_spawn() Equivalent :

Figure B-2 - 1/O Redirection with posix_spawn()

Figure B-3 — Spawning a new Userid Process

Figure B-4 - Spinlock Implementation

Figure B-5 - Condition Wait Implementation

Figure B-6 — pthread_join) with timeout

TABLES

Table 2-3a - Optional Minimum Values :

Table 2-5a - Optional Run-Time Invariant Values

Table 2-6a - Optional Pathname Variable Values :
Table 2-10a - Versioned Compile-Time Symbolic Constants
Table 4-3 - Optional Configurable System Variables

Table 5-3 - Optional Configurable Pathname Variables

91
102

105

107

86
86
87
97
98
101

10
11
27
29

o O~ WN PR

~

10
11
12
13
14
15
16

17

18
19

20

21
22

23
24
25

26
27
28

29
30
31

32

33
34

35
36

37
38

Introduction

(This introduction is not a normative part of IEEE Std 1003.1d-1999, Information Technology—
Portable Operating System Interface (POSIXO)—Part 1. System Application Program Interface
(API)—Amendment d: Additional Realtime Extensions [C Language])

Editor's Note: This introduction consists of material that will eventually be integrated into the base
POSIX.1Y standard’s introduction (and the portion of Annex B that contains general rationale about
the standard). The introduction contains text that was previously held in either the foreword or
scope. As this portion of the standard is for information only, specific details of the integration
with POSIX.1 are left as an editorial exercise. The section and subclause structure of this document

follows that of POSIX.1. Sections that are not amended by this standard are omitted.

The purpose of this document is to supplement the base standard with interfaces and
functionality for applications having realtime requirements.

This standard defines systems interfaces to support the source portability of applications
with realtime requirements. The system interfaces are all extensions of or additions to
ISO/IEC 9945-1: 1990, Portable Operating System Interface for Computer Environments, as
amended by POSIX.1b and POSIX.1c. Although rooted in the culture defined by ISO/IEC
9945-1: 1990, the interfaces are focused upon the realtime application requirements,
which were beyond the ISO/IEC 9945-1: 1990 scope. The interfaces included in this stan-
dard are additions to the set required to make ISO/IEC 9945-1: 1990 minimally usable to
realtime applications on single processor systems.

The definition of realtime used in defining the scope of this standard is

Realtime in operating systems: the ability of the operating system to provide a
required level of service in a bounded response time.

The key elements of defining the scope are

(1) defining a sufficient set of functionality to cover the realtime application program
domain in the areas not covered by POSIX.1b and POSIX.1c;

(2) defining sufficient performance constraints and performance-related functions to
allow a realtime application to achieve deterministic response from the system;
and

(3) specifying changes or additions to improve or complete the definition of the facili-
ties specified in the previous real-time or threads extensions covered by POSIX.1b
and POSIX.1c.

Wherever possible, the requirements of other application environments were included in
the interface definition. The specific areas are noted in the scope overviews of each of the
interface areas given below.

The specific functional areas included in this standard and their scope include

— Spawn a process: new system services to spawn the execution of a new process in
an efficient manner.

— Timeouts for some blocking services: additional services that provide a timeout
capability to system services already defined in POSIX.1lb and POSIX.1lc, thus

1) See 2.3.3 in this standard for more information about these references.

Introduction \Y,

39

40
41

42
43
44

45
46
47
48

49
50

51
52

53
54

55
56
57

58

59
60

61
62

63

64

65

66

67

68

69

70

71

72

73

allowing the application to include better error detection and recovery capabilities.

— Sporadic server scheduling: the addition of a new scheduling policy appropriate for
scheduling aperiodic processes or threads in hard realtime applications.

— Execution time clocks and timers: the addition of new clocks that measure the exe-
cution times of processes or threads, and the possibility to create timers based upon
these clocks, for runtime detection (and treatment) of execution time overruns.

— Advisory information for file management: addition of services that allow the appli-
cation to specify advisory information that can be used by the system to achieve
better or even deterministic response times in file management or input and output
(1/0O) operations.

There are two other functional areas that were included in the scope of this standard, but
the balloting group considered that they were not ready yet for standardization:

— Device control: a new service to pass control information and commands between
the application and device drivers.

— Interrupt control: new services that allow the application to directly handle
hardware interrupts.

This standard has been defined exclusively at the source code level for the C programming
language. Although the interfaces will be portable, some of the parameters used by an
implementation may have hardware or configuration dependencies.

Related Standards Activities

Activities to extend this standard to address additional requirements are in progress, and
similar efforts can be anticipated in the future.

The following areas are under active consideration at this time or are expected to become
active in the near future:?

(1) Additional system application program interfaces (APIs) in C language
(2) Ada and FORTRAN language bindings to (1)
(3) Shell and utility facilities
(4) Verification testing methods
(5) Realtime facilities
(6) Tracing facilities
(7) Fault tolerance
(8) Checkpoint/restart facilities
(9) Resource limiting facilities
(10) Network interface facilities

(11) System administration

2) A Standards Status Report that lists all current IEEE Computer Society standards projects is available from
the IEEE Computer Society, 1730 Massachusetts Avenue NW, Washington, DC 20036-1903; Telephone:
+1 202 371-0101; FAX: +1 202 728-9614. Working drafts of POSIX standards under development are available
from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ
08855-1331 (http://www.standards.ieee.org/).

Vi Introduction

80
81

82

83
84

85
86

87
88
89

90
91
92
93
94
95

96
97
98
99

(12) Profiles describing application- or user-specific combinations of Open Systems
standards

(13) An overall guide to POSIX-based or -related Open Systems standards and profiles

Extensions are approved as “amendments” or “revisions” to this document, following the
IEEE and ISO/IEC procedures.

Approved amendments are published separately until the full document is reprinted and
such amendments are incorporated in their proper positions.

If you have interest in participating in the Portable Application Standards Committee
(PASC) working groups addressing these issues, please send your name, address, and
phone number to

Secretary, IEEE Standards Board

Institute of Electrical and Electronics Engineers, Inc.
P.O. Box 1331

445 Hoes Lane

Piscataway, NJ 08855-1331

USA

When writing, ask to have your letter forwarded to the chairperson of the appropriate
PASC working group. If you have interest in participating in this work at the interna-
tional level, contact your International Organization for Standardization/International
Electrotechnical Committee (1SO/IEC) national body.

Introduction Vil

100
101
102
103

104

105
106
107
108
109
110

111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

128

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

This standard was prepared by the system services working group—realtime, sponsored
by the Portable Application Standards Committee of the IEEE Computer Society. At the
time this standard was approved, the membership of the system services working group—

realtime was as follows:

Portable Application Standards Committee

Chair:

Vice Chair:
Functional Vice Chairs:

Secretary:

Lowell Johnson

Jay Ashford
Andrew Josey

Curtis Royster Jr.

Nick Stoughton

Joseph M. Gwinn

IEEE System Services Working Group—Realtime

Chair:

Secretary:

Editor:

Technical reviewers:

Ballot coordinators:

Ray Alderman

Larry Anderson
Pierre-Jean Arcos
Charles R. Arnold

V. Raj Avula
Theodore P. Baker
Robert Barned
Richard M. Bergman
Nawaf Bitar

Steve Brosky

David Butenhof
Hans Petter Christiansen
Susan Corwin

Bill Cox

Peter Dibble
Christoph Eck
Michael Feustel

viii

Joseph M. Gwinn

Susan Corwin (to 1995)

Karen D. Gordon

Franklin C. Prindle (1996)
Lee Schemerhorn (to 1995)

Michael Gonzalez

Robert D. Luken (to 1997)

Steve Brosky

Peter Dibble
Christoph Eck
Michael Gonzalez
Karen D. Gordon
Joseph M. Gwinn
Franklin C. Prindle
James T. Oblinger

Duane Hughes (to 1996)

Working Group

Bill Gallmeister
Michael Gonzalez
Karen D. Gordon
Randy Greene
Rick Greer
Joseph M. Gwinn
Steven A. Haaser
Barbara Haleen
Geoffrey R. Hall
Patrick Hebert
Mary R. Hermann
David Hughes
Duane Hughes
Michael B. Jones
Steve Kleiman
Robert Knighten
C. Douglass Locke

Kent Long

Robert D. Luken
James T. Oblinger
Offer Pazy
Franklin C. Prindle
Francois Riche
Gordon W. Ross
Curtis Royster, Jr.
Webb Scales

Lee Schermerhorn
Lui Sha

Del Swanson

Barry Traylor
Stephen R. Wali
Andrew E. Wheeler, Jr.
David Wilner

John Zolnowsky

Introduction

146

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

173

174
175

176
177

178
179
180

181
182
183
184
185
186
187
188

189

The following members of the balloting committee voted on this standard:

Phillip R. Acuff
Alejandro Alonso-Mufioz
Pierre-Jean Arcos

Jay Ashford

Theodore P. Baker
Robert Barned

Barbara K. Beauchamp
Keith Bierman

Nawaf Bitar

David Black

David J. Blackwood
Shirley Bockstahler-Brandt
Mark Brown

Alan Burns

Gregory Bussiere

H. L. Catala

Andrew B. Cheese
Michael W. Condry
Donald Cragun

John S. Davies

Richard P. Draves
Christoph Eck

Philip H. Enslow

W. Douglas Findley, Jr.
Bill Gallmeister

Michel P. Gien

Michael Gonzalez
Karen D. Gordon
Mars J. Gralia
Joseph M. Gwinn
Steven A. Haaser
Chris J. Harding
Barry Hedquist
Karl Heubaum
Andrew R. Huber
Duane Hughes
Petr Janecek
Lowell G. Johnson
Michael B. Jones
Andrew Josey
Michael J. Karels
James J. Keys
Martin J. Kirk
Thomas M. Kurihara
Mark Larsen
Martin Leisner
Bruce Lewis

C. Douglass Locke
Roger J. Martin
Finnbarr P. Murphy
Richard E. Neese
James T. Oblinger

Diane Paul

Charles Pfleeger
John PijanowskKi
Franklin C. Prindle
Juan Antonio de la Puente
Frangois Riche
Chuck Roark
Hyman Rosen
Helmut Roth
Curtis Royster
Richard Scalzo
Richard Seibel
Keith Shillington
W. Olin Sibert
Jacob Slonim
Nicholas M. Stoughton
Gregory Swain
Efstathios D. Sykas
Donn S. Terry
Mark-Rene Uchida
Michael W. Vannier
Charlotte Wales
Frederick N. Webb
Laurence Wolfe
Oren Yuen

Ming De Zhou

The following organizational representatives voted on this standard:

James T. Oblinger
NGCR OSSWG

Diane Paul
SAE

Andrew Josey
X/0pen Co. Ltd.

When the IEEE-SA Standards Board approved this standard on 16 September
1999, it had the following membership:

Richard J. Holleman, Chair
Donald N. Heirman, Vice Chair
Judith Gorman, Secretary

Satish K. Aggarwal
Dennis Bodson
Mark D. Bowman
James T. Carlo
Gary R. Engmann
Harold E. Epstein
Jay Forster
Ruben D. Garzon

James H. Gurney
Lowell G. Johnson
Robert Kennelly

E.G. “Al” Kiener
Joseph L. KoepfingerQ
L. Bruce McClung
Daleep C. Mohla
Robert F. Munzner

Louis-Francois Pau
Ronald C. Petersen
Gerald H. Peterson
John B. Posey
Gary S. Robinson
Akio Tojo

Hans E. Weinrich
Donald W. Zispe

[Member emeritus

Introduction iX

190
191

192
193

Also included is the following nonvoting IEEE-SA Standards Board liaison:
Robert E. Hebner

Yvette Ho Sang
IEEE Standards Project Editor

Introduction

10

11
12

13

14
15

16
17
18

IEEE Standard for

Information Technology—Portable Operating
System Interface (POSIX C?—Part 1: System
Application Program Interface (API)—
Amendment d: Additional Realtime Extensions
[C Language]

Section 1: General

1.1 Scope

This standard defines realtime extensions to a standard operating system inter-
face and environment to support application portability at the source-code level. It
is intended to be used by both application developers and system implementers.

This standard will not change the base standard that it amends (including any
existing amendments) in such a way as to cause implementations or strictly con-
forming applications to no longer conform.

The scope is to take existing realtime operating system practice and add it to the
base standard. The definition of realtime used in defining the scope of this stan-
dard is

Realtime in operating systems: the ability of the operating system to
provide a required level of service in a bounded response time.

The key elements of defining the scope are

(1) defining a sufficient set of functionality to cover a significant part of the
realtime application programming domain, and

(2) defining sufficient performance constraints and performance related func-
tions to allow a realtime application to achieve deterministic response
from the system.

1.1 Scope 1

19
20
21
22
23

24
25

26
27

28
29

30
31
32

33
34

35
36

37
38

39
40
41
42

43
44
45

46

47

48

49
50
51

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

Specifically within the scope is to define interfaces that do not preclude high per-
formance implementations on traditional uniprocessor realtime systems. Wher-
ever possible, the requirements of other application environments were included
in the interface definition. The specific functional areas included in this document
and their scope include

— Spawn: A process creation primitive useful for systems that have difficulty
with fork() and as an efficient replacement for fork()/ exec.

— Timeouts: Alternatives to blocking primitives that provide a timeout
parameter to be specified.

— Execution time monitoring: A set of execution time monitoring primitives
that allow on-line measuring of thread and process execution times.

— Sporadic server: A scheduling policy for threads and processes that reserves
a certain amount of execution capacity for processing aperiodic events at a
given priority level.

— Advisory information: An interface that advises the implementation on
(portable) application behavior so that it can optimize the system.

Two other functional areas were included in the scope of this standard, but the
balloting group considered that they were not ready yet for standardization

— Device control: A portable application interface to nonportable special
devices.

— Interrupt control: An interface that allows a process or thread to capture an
interrupt, to block awaiting the arrival of an interrupt, and to protect criti-
cal sections of code that are contended for by a user-written interrupt ser-
vice routine.

This standard has been defined exclusively at the source code level. Additionally,
although the interfaces will be portable, some of the numeric parameters used by
an implementation may have hardware dependencies.

1.3 Conformance

1.3.1 Implementation Conformance

1.3.1.3 Conforming Implementation Options

0 1.3.1.3 Conforming Implementation Options Add the following to the
table of implementation options that warrant requirement by applications or in
specifications:

2 1 General

52
53
54
55
56
57
58

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

{_POSIX_ADVISORY_INFO}

{ POSIX_CPUTIME}

{_POSIX_SPAWN}
{_POSIX_SPORADIC_SERVER}

{ POSIX_THREAD_CPUTIME}

{ POSIX_THREAD_SPORADIC_SERVER}
{ POSIX_TIMEOUTS}

1.3 Conformance

Advisory Information option (in 2.9.3)
Process CPU-Time Clocks option (in 2.9.3)
Spawn option (in 2.9.3)

Process Sporadic Server option (in 2.9.3)
Thread CcPU-Time Clocks option (in 2.9.3)
Thread Sporadic Server option (in 2.9.3)
Timeouts option (in 2.9.3)

IEEE Std 1003.1d-1999

4 1 General

13
14

15

16

17

18

19
20

21
22
23

IEEE Std 1003.1d-1999

Section 2: Terminology and General Requirements

2.2 Definitions
2.2.2 General Terms

0 2.2.2 General Terms Modify the contents of 2.2.2 to add the following
definitions in the correct sorted order (disregarding the subclause numbers
shown here).

2.2.2.1 CPU time [execution time]: The time spent executing a process or
thread, including the time spent executing system services on behalf of that pro-
cess or thread. If the Threads option is supported, then the value of the CPU-time
clock for a process is implementation defined. With this definition the sum of all
the execution times of all the threads in a process might not equal the process exe-
cution time, even in a single-threaded process, because implementations may
differ in how they account for time during context switches or for other reasons.

2.2.2.2 CPU-time clock: A clock that measures the execution time of a particu-
lar process or thread.

2.2.2.3 CPU-time timer: A timer attached to a CPU-time clock.
2.2.2.4 execution time: See CPU time in 2.2.2.1.

2.2.3 Abbreviations

For this standard, the following abbreviations apply:

2.2.3.1 C Standard: ISO/IEC 9899: 1995, Information technology—Programming
languages—cC.

2.2.3.2 POSIX.1l: ISO/IEC 9945-1: 1996, (IEEE Std 1003.1-1996), Information
Technology—Portable Operating System Interface (POSIXO)—Part 1: System
Application Program Interface (API) [C Language].

2.2 Definitions 5

24
25
26
27
28
29

30
31
32

33

34
35
36
37

38

39
40

41
42
43
44
45

46

47
48

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

2.2.3.3 POSIX.1b: IEEE Std 1003.1b-1993, Information Technology—Portable
Operating System Interface (POSIXO)—Part 1: System Application Program
Interface (API)—Amendment b: Realtime Extensions [C Language], as amended
by IEEE Std 1003.1i-1995, Information Technology—Portable Operating System
Interface (POSIXO)—Part 1. System Application Program Interface (API1)—
Amendment i: Technical Corrigenda to Realtime Extension [C Language].

2.2.3.4 POSIX.1c: IEEE Std 1003.1c-1995, Information Technology—Portable
Operating System Interface (POSIXO)—Part 1: System Application Program
Interface (AP1)—Amendment ¢: Threads Extension [C Language].

2.2.3.5 POSIX.1d: IEEE Std 1003.1d-1999, this standard.

2.2.3.6 POSIX.5 ISO/IEC 14519:1998 {B1}"), POSIXO Ada Language Interfaces—
Binding for System Application Program Interfaces (API) including Realtime
Extensions. (This standard includes IEEE Std 1003.5-1992 and IEEE Std 1003.5b-
1996.)

2.3 General Concepts

0 2.3 General Concepts—measurement of execution time: Add the follow-
ing subclause, in the proper order, to the existing items in 2.3:

2.3.1 measurement of execution time: The mechanism used to measure exe-
cution time shall be implementation defined. The implementation shall also
define to whom will be charged the CPU time that is consumed by interrupt
handlers and system services on behalf of the operating system. Execution or CPU
time is defined in 2.2.2.1.

1) The numbers in curly brackets, when preceded by a “B”, correspond to the numbers of the
bibliography in Annex A.

6 2 Terminology and General Requirements

49

50

51
52
53

54
55
56

57
58
59

60

61

62

63

64

65

66

67

68

69

70

71
72
73
74
75
76
v
78
79
80
81
82
83
84

85

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

2.7 C Language Definitions

2.7.3 Headers and Function Prototypes

0 2.7.3 Headers and Function Prototypes Add the following text after the
sentence “For other functions in this part of ISO/IEC 9945, the prototypes or
declarations shall appear in the headers listed below.":

Presence of some prototypes or declarations is dependent on implementation
options. Where an implementation option is not supported, the prototype or
declaration need not be found in the header.

0 2.7.3 Headers and Function Prototypes Modify the contents of subclause
2.7.3 to add the following optional headers and functions, at the end of the
current list of headers and functions.

If the Advisory Information option is supported:
<fccmtll. .th> posix_fadvise(), posix_madyvise(), posix_fallocate()

If the Message Passing option and the Timeouts option are supported:
<mgueue.rh> mgq_timedsend (), mq_timedreceive()

If the Thread CPU-Time Clocks option is supported:
<pthhreead.ih> pthread_getcpuclockid()

If the Threads option and the Timeouts option are supported:
<pthhreead.th> pthread_mutex_timedlock()

If the Semaphores option and the Timeouts option are supported:
<semaphore.h> sem_timedwait()

If the Spawn option is supported:

<spawn.rh> posix_spawn(), posix_spawnp(),
posix_spawn_file_actions_init(),
posix_spawn_file_actions_destroy(),
posix_spawn_file_actions_addclose(),
posix_spawn_file_actions_adddup2(),
posix_spawn_file_actions_addopen(),
posix_spawnattr_init(), posix_spawnattr_destroy(),
posix_spawnattr_getflags(), posix_spawnattr_setflags(),
posix_spawnattr_getpgroup(),
posix_spawnattr_setpgroup(),
posix_spawnattr_getsigmask(),
posix_spawnattr_setsigmask(),
posix_spawnattr_getsigdefault(),
posix_spawnattr_setsigdefault()

If the Spawn option and the Process Scheduling option are supported:

2.7 C Language Definitions 7

86
87
88
89

90

91

92

93

94

95

96
97

98
99

100

101
102

103
104
105
106
107

108

109
110

111
112
113
114
115
116

117
118

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

<spawn.rh> posix_spawnattr_getschedpolicy(),
posix_spawnattr_setschedpolicy(),
posix_spawnattr_getschedparam(),
posix_spawnattr_setschedparam()

If the Advisory Information option is supported:
<stddli ibb.rh> posix_memalign()
If the Process CPU-Time Clocks option is supported:

<tiinmehh> clock_getcpuclockid()

2.8 Numerical Limits

2.8.2 Minimum Values

0 2.8.2 Minimum Values Add the following text after the sentence starting
“The symbols in Table 2-3 shall be defined in...”

The symbols in Table 2-3a shall be defined in <liinmttss.th> with the values
shown if the associated option is supported.

O 2.8.2 Minimum Values Add Table 2-3a, described below, after Table 2-3.

Table 2-3a - Optional Minimum Values

Name Description Value Option
{_POSIX_SS_REPL_MAX} The number of replenishment 4 Process Sporadic
operations that may be Server or Thread
simultaneously pending for Sporadic Server

a particular sporadic
server scheduler.

2.8.4 Run-Time Invariant Values (Possibly Indeterminate)

0 2.8.4 Run-Time Invariant Values (Possibly Indeterminate) Replace the
whole subclause by the following text:

The symbols that appear in Table 2-5 that have determinate values shall be
defined in <liinmittss.th>. The symbols that appear in Table 2-5a that have
determinate values shall be defined in <liinmitss.th> if the associated option is
supported. If any of the values in Table 2-5 or Table 2-5a has a value that is
greater than or equal to the stated minimum, but is indeterminate, a definition
for that value shall not be defined in <liinmitss.th>.

This indetermination might depend on the amount of available memory space
on a specific instance of a specific implementation. For the values defined in

8 2 Terminology and General Requirements

119
120
121
122

123
124

125
126
127
128
129
130
131
132
133
134

135

136
137

138

139
140
141

142
143
144
145

146
147

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

Table 2-5, the actual value supported by a specific instance shall be provided by
the sysconf() function. For the values defined in Table 2-5a, the actual value
supported by a specific instance shall be provided by the sysconf() function if
the associated option is supported.

2.8.4 Run-Time Invariant Values (Possibly Indeterminate) Add
Table 2-5a, described next, after Table 2-5.

Table 2-5a - Optional Run-Time Invariant Values
(Possibly Indeterminate)

Name Description Minimum Value Option
{SS_REPL_MAX} The maximum number of {_POSIX_SS_- Process Sporadic
replenishment opera- REPL_MAX} Server or Thread
tions that may be Sporadic Server

simultaneously pending
for a particular
sporadic server
scheduler.

2.8.5 Pathname Variable Values

g

g

g

2.8.5 Pathname Variable Values Replace the reference to Table 2-6 in the
first paragraph of this subclause by:

Table 2-6 or Table 2-6a

2.8.5 Pathname Variable Values Replace the sentence “The actual value
supported for a specific pathname shall be provided by the pathconf() function”
with the following text:

For the values defined in Table 2-6, the actual value supported for a specific
pathname shall be provided by the pathconf() function. For the values defined
in Table 2-6a, the actual value supported for a specific pathname shall be pro-
vided by the pathconf() function if the associated option is supported.

2.8.5 Pathname Variable Values Add Table 2-6a, described next, after
Table 2-6.

2.8 Numerical Limits 9

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

148 Table 2-6a - Optional Pathname Variable Values

149 Name Description Minimum Option
150 Values

151 {POSIX_REC_INCR_XFER_SIZE} |Recommended increment for | not Advisory

152 file transfer sizes specified Information
153 between the {POSIX_-

154 REC_MIN_XFER_SIZE}

155 and {POSIX_REC_MAX_-

156 XFER_SIZE} values.

157 {POSIX_ALLOC_SIZE_MIN} Minimum number of bytes of | not Advisory

158 storage actually allocated| specified Information
159 for any portion of a file.

160 {POSIX_REC_MAX_XFER_SIZE} |Maximum recommended file | not Advisory

161 transfer size. specified Information
162 {POSIX_REC_MIN_XFER_SIZE} |Minimum recommended file | not Advisory

163 transfer size. specified Information
164 {POSIX_REC_XFER_ALIGN} Recommended file transfer not Advisory

165 buffer alignment. specified Information

166 2.9 Symbolic Constants

167 2.9.3 Compile-Time Symbolic Constants for Portability Specifications

168 O 2.9.3 Compile-Time Symbolic Constants for Portability Specifications

169 Change the first words in the first paragraph, currently saying “The constants
170 in Table 2-10 may be used...” to the following:
171 The constants in Table 2-10 and Table 2-10a may be used...

172 0O 2.9.3 Compile-Time Symbolic Constants for Portability Specifications

173 Add the following sentence at the end of the first paragraph:

174 If any of the constants in Table 2-10a is defined, it shall be defined with the
175 value shown in that table. This value represents the version of the associated
176 option that is supported by the implementation.

177 0O 2.9.3 Compile-Time Symbolic Constants for Portability Specifications
178 Add Table 2-10a, shown below, after Table 2-10.

10 2 Terminology and General Requirements

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

179 Table 2-10a - Versioned Compile-Time Symbolic Constants
180 Name Value Description

181 {_POSIX_ADVISORY_INFO} 199909L If this symbol is defined, the imple-
182 mentation supports the Advisory
183 Information option.

184 {_POSIX_CPUTIME} 199909L If this symbol is defined, the imple-
185 mentation supports the Process
186 CPU-Time Clocks option.

187 {_POSIX_SPAWN} 199909L If this symbol is defined, the imple-
188 mentation supports the Spawn
189 option.

190 {_POSIX_SPORADIC_SERVER} 199909L If this symbol is defined, the imple-
191 mentation supports the Process
192 Sporadic Server option.

193 {_POSIX_THREAD_CPUTIME} 199909L If this symbol is defined, the imple-
194 mentation supports the Thread
195 CPU-Time Clocks option.

196 {_POSIX_THREAD_SPORADIC_SERVER} | 199909L If this symbol is defined, the imple-
197 mentation supports the Thread
198 Sporadic Server option.

199 {_POSIX_TIMEOUTS} 199909L If this symbol is defined, the imple-
200 mentation supports the Timeouts
201 option.

202 [0 2.9.3 Compile-Time Symbolic Constants for Portability Specifications

203 Add the following paragraphs before the last paragraph in 2.9.3:

204 If the symbol { POSIX_SPORADIC_SERVER} is defined, then the symbol
205 { POSIX_PRIORITY_SCHEDULING} shall also be defined. If the symbol
206 { POSIX_THREAD_SPORADIC_SERVER} is defined, then the symbol { POSIX_-
207 THREAD_PRIORITY_SCHEDULING} shall also be defined.

208 If the symbol { POSIX_CPUTIME} is defined, then the symbol { POSIX_TIMERS}
209 shall also be defined. If the symbol { POSIX_THREAD_CPUTIME} is defined,
210 then the symbol { POSIX_TIMERS} shall also be defined.

2.9 Symbolic Constants 11

IEEE Std 1003.1d-1999

12 2 Terminology and General Requirements

10
11

12

13

14
15

16

17
18
19
20
21

22

23
24

IEEE Std 1003.1d-1999

Section 3: Process Primitives

3.1 Process Creation and Execution

3.1.1 Process Creation

3.1.1.2 Description

0 3.1.1.2 Process Creation—Description Add the following paragraphs to the
description of the fork() function:

If { POSIX_CPUTIME} is defined:

The initial value of the CPU-time clock of the child process shall be set to
zero.

If { POSIX_THREAD_CPUTIME} is defined:

The initial value of the CPU-time clock of the single thread of the child
process shall be set to zero.

3.1.2 Execute a File

3.1.2.2 Description

0 3.1.2.2 Execute a File—Description Add the following paragraph to the
description of the family of exec functions.

If { POSIX_CPUTIME} is defined:

The new process image shall inherit the CPU-time clock of the calling
process image. This inheritance means that the process CPU-time clock
of the process being execed shall not be reinitialized or altered as a
result of the exec function other than to reflect the time spent by the
process executing the exec function itself.

If { POSIX_THREAD_CPUTIME} is defined:

The initial value of the CPU-time clock of the initial thread of the new
process image shall be set to zero.

3.1 Process Creation and Execution 13

25

26

27
28
29

30

31
32

33
34

35
36

37
38
39

40
41
42

43
44
45
46

47

48

49
50
51
52
53
54

55
56
57

58
59

60
61
62
63

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

O 3.1 Process Creation and Execution Add the following subclauses:

3.1.4 Spawn File Actions

Functions: posix_spawn_file_actions_init(), posix_spawn_file_actions_destroy(),
posix_spawn_file_actions_addclose(), posix_spawn_file_actions_adddup2(),
posix_spawn_file_actions_addopen().

3.1.4.1 Synopsis

#imclwde <sys/ttypes.Hh>
#imclwde <spawn.th>

imt posixx_spawn _fiillee_actiicons__imitt((

posiixx_spawn_fiillee_actiioons_t [Tile_actions);;

imt posix<_spawn fiillee_actiioons_destrraoy(

posiixx_spawn_fiillee_actiioons_t [Tile_actions);;

imt posix<_spawn fiillee_actiioons_addclloose(

posiixx_spawn_fiillee_actiioons_t [Tile_actions,
imt fildes);;

imt posix<_spawn fiillee_actiioons_adddup2(

posiixx_spawn_fiillee_actiioons_t [Tile_actions,
imt fildes, iimt newfildes);;

imt posix<_spawn fiillee_actiioons_addopen(

posiixx_spawn_fiillee_actiioons_t [Tile_actions,
imt fildes, cconst cchar [path,
imt oflag, mmde_t mode);;

3.1.4.2 Description

If { POSIX_SPAWN} is defined:

14

A spawn file actions object is of type posix_spawn_file_actions_t (defined in
<spawn.th>) and is used to specify a series of actions to be performed by a
posix_spawn() or posix_spawnp() operation in order to arrive at the set of
open file descriptors for the child process given the set of open file descrip-
tors of the parent. This standard does not define comparison or assignment
operators for the type posix_spawn_file_actions_t.

The posix_spawn_file_actions_init() function initializes the object refer-
enced by file_actions to contain no file actions for posix_spawn() or
posix_spawnp() to perform.

The effect of initializing an already initialized spawn file actions object is
undefined.

The posix_spawn_file_actions_destroy() function destroys the object refer-
enced by file_actions; the object becomes, in effect, uninitialized. An imple-
mentation may cause posix_spawn_file_actions_destroy() to set the object
referenced by file_actions to an invalid value. A destroyed spawn file actions

3 Process Primitives

64
65
66

67
68
69
70

71
72
73
74

75
76
7
78
79
80

81
82
83
84
85
86
87
88
89

90

91
92
93
94
95

96

97
98
99
100
101

102

103
104
105
106

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

object can be reinitialized using posix_spawn_file_actions_init(); the results
of otherwise referencing the object after it has been destroyed are
undefined.

The posix_spawn_file_actions_addclose() function adds a close action to the
object referenced by file_actions that will cause the file descriptor fildes to
be closed [as if close(fildes) had been called] when a new process is spawned
using this file actions object.

The posix_spawn_file_actions_adddup2() function adds a dup2 action to the
object referenced by file_actions that will cause the file descriptor fildes to
be duplicated as newfildes [as if dup2(fildes, newfildes) had been called]
when a new process is spawned using this file actions object.

The posix_spawn_file_actions_addopen() function adds an open action to
the object referenced by file_actions that will cause the file named by path
to be opened [as if open(path, oflag, mode) had been called, and the returned
file descriptor, if not fildes, had been changed to fildes] when a new process
is spawned using this file actions object. If fildes was already an open file
descriptor, it shall be closed before the new file is opened.

A spawn file actions object, when passed to posix_spawn() or
posix_spawnp(), shall specify how the set of open file descriptors in the cal-
ling process is transformed into a set of potentially open file descriptors for
the spawned process. This transformation shall be as if the specified
sequence of actions was performed exactly once, in the context of the
spawned process (prior to execution of the new process image), in the order
in which the actions were added to the object; additionally, when the new
process image is executed, any file descriptor (from this new set) which has
its FD_CLOEXEC flag set will be closed (see 3.1.6).

Otherwise:
Either the implementation shall support the
posix_spawn_file_actions_init(), posix_spawn_file_actions_destroy(),

posix_spawn_file_actions_addclose(), posix_spawn_file_actions_adddup2(),
and posix_spawn_file_actions_addopen() functions as described above, or
these functions shall not be provided.

3.1.4.3 Returns

Upon successful completion, the posix_spawn_file_actions_init(),
posix_spawn_file_actions_destroy(), posix_spawn_file_actions_addclose(),
posix_spawn_file_actions_adddup2(), or posix_spawn_file_actions_addopen()
operation shall return zero. Otherwise, an error number shall be returned to indi-
cate the error.

3.1.4.4 Errors

For each of the following conditions, if the condition is detected, the
posix_spawn_file_actions_init(), posix_spawn_file_actions_addclose(),
posix_spawn_file_actions_adddup2(), or posix_spawn_file_actions_addopen() func-
tion shall return the corresponding error number:

3.1 Process Creation and Execution 15

107
108

109
110
111
112

113

114
115
116

117
118

119
120
121
122
123
124

125

126
127

128

129
130
131
132
133
134
135

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

[ENOMEM] Insufficient memory exists to initialize or add to the spawn file
actions object.

For each of the following conditions, if the condition is detected, the
posix_spawn_file_actions_destroy(), posix_spawn_file_actions_addclose(),
posix_spawn_file_actions_adddup2(), or posix_spawn_file_actions_addopen() func-
tion shall return the corresponding error number:

[EINVAL] The value specified by file_actions is invalid.

For each of the following conditions, the posix_spawn_file_actions_addclose(),
posix_spawn_file_actions_adddup2(), or posix_spawn_file_actions_addopen() func-
tion shall return the corresponding error number:

[EBADF] The value specified by fildes is negative or greater than or equal
to {OPEN_MAX}.

It shall not be considered an error for the fildes argument passed to the
posix_spawn_file_actions_addclose(), posix_spawn_file_actions_adddup2(), or
posix_spawn_file_actions_addopen() functions to specify a file descriptor for which
the specified operation could not be performed at the time of the call. Any such
error will be detected when the associated file actions object is later used during a
posix_spawn() or posix_spawnp() operation.

3.1.4.5 Cross-References

close(), 6.3.1; dup2(), 6.2.1; open(), 5.3.1; posix_spawn(), 3.1.6; posix_spawnp(),
3.1.6;

3.1.5 Spawn Attributes

Functions: posix_spawnattr_init(), posix_spawnattr_destroy(),
posix_spawnattr_getflags(), posix_spawnattr_setflags(),
posix_spawnattr_getpgroup(), posix_spawnattr_setpgroup(),
posix_spawnattr_getschedpolicy(), posix_spawnattr_setschedpolicy(),
posix_spawnattr_getschedparam(), posix_spawnattr_setschedparam(),
posix_spawnattr_getsigmask(), posix_spawnattr_setsigmask(),

posix_spawnattr_getsigdefault(), posix_spawnattr_setsigdefault().

16 3 Process Primitives

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

136 3.1.5.1 Synopsis

137 #imclwde <sys/ttypes.Hh>
138 #imclwde <siggnal..th>
139 #imclwde <spawn.th>

140 imt posiixx_spawnatttrr_imitt ((posixx_spawnatttrr_t [Cattr);;
141 imt posixx_spawnatttrr_destrroy (posixx_spawnatttrr_t [attr);;

142 imt posixx_spawnatttrr_getffllaags (const posix<_spawnatttrr_t Chttr,
143 shortt [flags);;

144 imt posixx_spawnatttrr__setffllaags (posix<_spawnatttrr _t [attr,
145 shortt flags);;

146 imt osixx_spawnatttrr_getpgroup (const posixx_spawnatttrr_t [Cattr,
147 pidd_t [hgroup);;

148 imt posixx_spawnatttrr_setgpgroup (posix<_spawnatttrr_t Chttr,
149 pidd_t pgroup);;

150 imt posiixx_spawnatttrr_getssiggmesk (const posixx_spawnatttrr _t [attr,
151 siggset_t [kigmask);;

152 imt posiixx_spawnatttrr_setssiggmesk (posixx_spawnatttrr_t [attr,
153 const ssiggset t [kigmask);;

154 imt posixx_spawnatttrr__getssiggdefaaultt ((const posix<_spawnatttrr_t [Cattr,
155 siggset_t [sigdefault);;

156 imnt posixx_spawnatttrr_setssiggdefaaultt ((posixx_spawnatttrr _t [attr,
157 const ssiggset t [sigdefault);;

158 #imclwde <sched.th>

159 imt posiixx_spawnatttrr_getsschedpoliiccy (const posixx _spawnatttrr_t Chttr,
160 imt [schedpolicy);;

161 imt posixx_spawnatttrr_setsschedpoliiccy (posix<_spawnatttrr_t Chttr,
162 imt schedpolicy);;

163 imt posixx_spawnatttrr_getsschedparam (Eonst posix<_spawnatttrr_t [attr,
164 strrwct ssched param [schedparam);;

165 imnt posixx_spawnatttrr_setsschedparam (fposixx_spawnatttrr _t [attr,
166 const sstrruct sscihed_param [(kchedparam);;

167 3.1.5.2 Description

168 If { POSIX_SPAWN} is defined:

169 A spawn attributes object is of type posix_spawnattr t (defined in
170 <spawn.th>) and is used to specify the inheritance of process attributes
171 across a spawn operation. This standard does not define comparison or
172 assignment operators for the type posix_spawnattr _t.

173 The function posix_spawnattr_init() initializes a spawn attributes object
174 attr with the default value for all of the individual attributes used by the
175 implementation.

3.1 Process Creation and Execution 17

176
177

178
179
180
181
182
183

184
185
186
187
188

189
190
191
192
193
194
195
196
197

198
199
200
201

202
203
204
205

206
207
208
209

210
211
212
213

214
215
216
217

218
219
220
221

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

18

Each implementation shall document the individual attributes it uses and
their default values unless these values are defined by this standard.

The resulting spawn attributes object (possibly modified by setting indivi-
dual attribute values) is used to modify the behavior of posix_spawn() or
posix_spawnp() (see 3.1.6). After a spawn attributes object has been used to
spawn a process by a call to a posix_spawn() or posix_spawnp(), any func-
tion affecting the attributes object (including destruction) does not affect
any process that has been spawned in this way.

The posix_spawnattr_destroy() function destroys a spawn attributes object.
The effect of subsequent use of the object is undefined until the object is re-
initialized by another call to posix_spawnattr_init(). An implementation
may cause posix_spawnattr_destroy() to set the object referenced by attr to
an invalid value.

The spawn-ffllaags attribute is used to indicate which process attributes
are to be changed in the new process image when invoking posix_spawn()
or posix_spawnp(). It is the inclusive OR of zero or more of the flags
POSIX_SPAWN_SETPGROUP, POSIX_SPAWN_RESETIDS,
POSIX_SPAWN_SETSIGMASK, and POSIX_SPAWN_SETSIGDEF. In addition,
if the Process Scheduling option is supported, the flags
POSIX_SPAWN_SETSCHEDULER and POSIX_SPAWN_SETSCHEDPARAM
shall also be supported. These flags are defined in <spawn.rh>. The
default value of this attribute shall be with no flags set.

The posix_spawnattr_setflags() function is used to set the spawn-ffllaags
attribute in an initialized attributes object referenced by attr. The
posix_spawnattr_getflags() function obtains the value of the spawn-ffllaags
attribute from the attributes object referenced by attr.

The spawn-pgroup attribute represents the process group to be joined by
the new process image in a spawn operation (if POSIX_SPAWN_SETPGROUP
is set in the spawn-ffllaags attribute). The default value of this attribute
shall be zero.

The posix_spawnattr_setpgroup() function is used to set the spawn-
pgroup attribute in an initialized attributes object referenced by attr. The
posix_spawnattr_getpgroup() function obtains the value of the spawn-
pgraoup attribute from the attributes object referenced by attr.

The spawn-ssiggmask attribute represents the signal mask in effect in the
new process image of a spawn operation (if POSIX_SPAWN_SETSIGMASK is
set in the spawn-ffllaags attribute). The default value of this attribute is
unspecified.

The posix_spawnattr_setsigmask() function is used to set the spawn-
siggmask attribute in an initialized attributes object referenced by attr.
The posix_spawnattr_getsigmask() function obtains the value of the
spawn-ssiggmask attribute from the attributes object referenced by attr.

The spawn-siggdefaaultt attribute represents the set of signals to be
forced to default signal handling in the new process image (if
POSIX_SPAWN_SETSIGDEF is set in the spawn-ffllaags attribute). The
default value of this attribute shall be an empty signal set.

3 Process Primitives

222
223
224
225
226

227

228
229
230
231
232
233
234

235

236
237
238
239

240
241
242
243
244

245
246
247
248
249

250
251
252
253
254

255

256
257
258
259

260
261

262

263
264
265

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

The posix_spawnattr_setsigdefault() function is used to set the spawn-
siggdefaaultt attribute in an initialized attributes object referenced by attr.
The posix_spawnattr_getsigdefault() function obtains the value of the
spawn-ssiggdefaaultt attribute from the attributes object referenced by

attr.

Otherwise:
Either the implementation shall support the posix_spawnattr_init(),
posix_spawnattr_destroy(), posix_spawnattr_getflags(),
posix_spawnattr_setflags(), posix_spawnattr_getpgroup(),
posix_spawnattr_setpgroup(), posix_spawnattr_getsigmask(),
posix_spawnattr_setsigmask(), posix_spawnattr_getsigdefault(), and

posix_spawnattr_setsigdefault() functions as described above, or these func-
tions shall not be provided.

If { POSIX_SPAWN} and { POSIX_PRIORITY_SCHEDULING} are both defined:

The spawn-sschedpoliiccy attribute represents the scheduling policy to be
assigned to the new process image in a spawn operation (if
POSIX_SPAWN_SETSCHEDULER is set in the spawn-ffllaags attribute).
The default value of this attribute is unspecified.

The posix_spawnattr_setschedpolicy() function is used to set the spawn-
scihedpoliiccy attribute in an initialized attributes object referenced by
attr. The posix_spawnattr_getschedpolicy() function obtains the value of the
spawn-sscihedpoliiccy attribute from the attributes object referenced by
attr.

The spawn-sschedparam attribute represents the scheduling parameters
to be assigned to the new process image in a spawn operation (if
POSIX_SPAWN_SETSCHEDULER or POSIX_SPAWN_SETSCHEDPARAM is set
in the spawn-ffllaags attribute). The default value of this attribute is
unspecified.

The posix_spawnattr_setschedparam() function is used to set the spawn-
scihhedparamattribute in an initialized attributes object referenced by attr.
The posix_spawnattr_getschedparam() function obtains the value of the
spawn-sscihhedparam attribute from the attributes object referenced by

attr.

Otherwise:
Either the implementation shall support the
posix_spawnattr_getschedpolicy(), posix_spawnattr_setschedpolicy(),

posix_spawnattr_getschedparam(), and posix_spawnattr_setschedparam()
functions as described above, or these functions shall not be provided.

Additional attributes, their default values, and the names of the associated func-
tions to get and set those attribute values are implementation defined.

3.1.5.3 Returns

If successful, the posix_spawnattr_init(), posix_spawnattr_destroy(),
posix_spawnattr_setflags(), posix_spawnattr_setpgroup(),
posix_spawnattr_setschedpolicy(), posix_spawnattr_setschedparam(),

3.1 Process Creation and Execution 19

266
267
268

269
270
271
272
273
274
275
276

277

278
279

280
281

282
283
284
285
286
287
288
289
290

291

292
293
294
295
296

297

298

299

300

301

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

posix_spawnattr_setsigmask(), and posix_spawnattr_setsigdefault() functions
shall return zero. Otherwise, an error number shall be returned to indicate the
error.

If successful, the posix_spawnattr_getflags(), posix_spawnattr_getpgroup(),
posix_spawnattr_getschedpolicy(), posix_spawnattr_getschedparam(),
posix_spawnattr_getsigmask(), and posix_spawnattr_getsigdefault() functions
shall return zero and store the value of the spawn-ffllaags, spawn-pgroup,
spawn-sscihedpoliiccy, spawn-sschedparam spawn-siggmask, or spawn-
siggdefaaultt attribute of attr into the object referenced by the flags, pgroup,
schedpolicy, schedparam, sigmask, or sigdefault parameter, respectively. Other-
wise, an error number shall be returned to indicate the error.

3.1.5.4 Errors

If any of the following conditions occur, the posix_spawnattr_init() function shall
return the corresponding error value:

[ENOMEM] Insufficient memory exists to initialize the spawn attributes

object.
For each of the following conditions, if the condition is detected, the
posix_spawnattr_destroy(), posix_spawnattr_getflags(),
posix_spawnattr_setflags(), posix_spawnattr_getpgroup(),
posix_spawnattr_setpgroup(), posix_spawnattr_getschedpolicy(),
posix_spawnattr_setschedpolicy(), posix_spawnattr_getschedparam(),
posix_spawnattr_setschedparam(), posix_spawnattr_getsigmask(),
posix_spawnattr_setsigmask(), posix_spawnattr_getsigdefault(), and

posix_spawnattr_setsigdefault() functions shall return the corresponding error
value:

[EINVAL] The value specified by attr is invalid.

For each of the following conditions, if the condition is detected, the
posix_spawnattr_setflags(), posix_spawnattr_setpgroup(),
posix_spawnattr_setschedpolicy(), posix_spawnattr_setschedparam(),
posix_spawnattr_setsigmask(), and posix_spawnattr_setsigdefault() functions
shall return the corresponding error value:

[EINVAL] The value of the attribute being set is not valid.

3.1.5.5 Cross-References

posix_spawn(), 3.1.6; posix_spawnp(), 3.1.6.

3.1.6 Spawn a Process

Functions: posix_spawn(), posix_spawnp().

20 3 Process Primitives

302

303
304

305
306
307
308
309
310

311
312
313
314
315
316

317

318

319
320
321

322
323

324

325
326

327

328
329

330
331
332
333
334
335

336
337
338

339
340
341
342
343

344
345

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

3.1.6.1 Synopsis

#imclwde <sys/ttypes.Hh>
#imclwde <spawn.th>

imt posix<_spawn(pid_t [pid,
const cclhar [path,
const pposiixx_spawn_fiillee_actiioons_t [Tile_actions,
const pposiixx_spawnatttrr_t [Cattrp,
char O const argv([]],,
char O const envp[]]);;

imt posix<_spawnp(pidd_t [pid,
const cchar [file,
const pposiixx_spawn_fiillee_actiioons_t [Tile_actions,
const pposiixx_spawnatttrr_t [Cattrp,
char O const argv([]],,
char O const envp[]]);;

3.1.6.2 Description

If { POSIX_SPAWN} is defined:

The posix_spawn() and posix_spawnp() functions shall create a new process
(child process) from the specified process image. The new process image is
constructed from a regular executable file called the new process image file.

When a C program is executed as the result of this call, it shall be entered
as a C language function call as follows:

imt nmam (iimt argc, cchar Cargv(]]);;

where argc is the argument count and argv is an array of character
pointers to the arguments themselves. In addition, the variable

exteerm clhar [Tenviron;

is initialized as a pointer to an array of character pointers to the environ-
ment strings.

The argument argv is an array of character pointers to null-terminated
strings. The last member of this array shall be a NULL pointer and is not
counted in argc. These strings constitute the argument list available to the
new process image. The value in argv[0] should point to a filename that is
associated with the process image being started by the posix_spawn() or
posix_spawnp() function.

The argument envp is an array of character pointers to null-terminated
strings. These strings constitute the environment for the new process
image. The environment array is terminated by a NULL pointer.

The number of bytes available for the child process's combined argument
and environment lists is {ARG_MAX}. The implementation shall specify in
the system documentation (see 1.3.1) whether any list overhead, such as
length words, null terminators, pointers, or alignment bytes, is included in
this total.

The path argument to posix_spawn() is a pathname that identifies the new
process image file to execute.

3.1 Process Creation and Execution 21

346
347
348
349
350
351
352

353
354
355
356
357

358
359
360
361
362

363
364
365
366

367
368
369

370
371
372

373
374

375
376

377
378
379
380

381
382
383
384

385
386
387

388
389
390
391
392

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

22

The file parameter to posix_spawnp() shall be used to construct a pathname
that identifies the new process image file. If the file parameter contains a
slash character, the file parameter shall be used as the pathname for the
new process image file. Otherwise, the path prefix for this file shall be
obtained by a search of the directories passed as the environment variable
PATH (see 2.6). If this environment variable is not defined, the results of
the search are implementation defined.

If file_actions is a NULL pointer, then file descriptors open in the calling
process shall remain open in the child process, except for those whose
close-on-exec flag FD_CLOEXEC is set (see 6.5.2 and 6.5.1). For those file
descriptors that remain open, all attributes of the corresponding open file
descriptions, including file locks (see 6.5.2), shall remain unchanged.

If file_actions is not NULL, then the file descriptors open in the child pro-
cess shall be those open in the calling process as modified by the spawn file
actions object pointed to by file_actions and the FD_CLOEXEC flag of each
remaining open file descriptor after the spawn file actions have been pro-
cessed. The effective order of processing the spawn file actions shall be

1. The set of open file descriptors for the child process shall initially be
the same set as is open for the calling process. All attributes of the
corresponding open file descriptions, including file locks (see 6.5.2),
shall remain unchanged.

2. The signal mask and the effective user and group IDs for the child pro-
cess shall be changed as specified in the attributes object referenced
by attrp.

3. The file actions specified by the spawn file actions object shall be per-
formed in the order in which they were added to the spawn file actions
object.

4. Any file descriptor that has its FD_CLOEXEC flag set (see 6.5.2) shall
be closed.

The posix_spawnattr_t spawn attributes object type is defined in
<spawn.th>. It shall contain at least the attributes described in 3.1.5.

If the POSIX_SPAWN_SETPGROUP flag is set in the spawn-ffllaags attribute
of the object referenced by attrp and the spawn-gpgroup attribute of the
same object is non-zero, then the child’'s process group shall be as specified
in the spawn-pgroup attribute of the object referenced by attrp.

As a special case, if the POSIX_SPAWN_SETPGROUP flag is set in the
sppawn-ffllaags attribute of the object referenced by attrp and the spawn-
pgroup attribute of the same object is set to zero, then the child shall be in
a new process group with a process group ID equal to its process ID.

If the POSIX_SPAWN_SETPGROUP flag is not set in the spawn-ffllaags
attribute of the object referenced by attrp, the new child process shall
inherit the parent’s process group.

If { POSIX_PRIORITY_SCHEDULING} is defined and the
POSIX_SPAWN_SETSCHEDPARAM flag is set in the spawn-ffllaags attribute
of the object referenced by attrp, but POSIX_SPAWN_SETSCHEDULER is not
set, the new process image shall initially have the scheduling policy of the
calling process with the scheduling parameters specified in the spawn-

3 Process Primitives

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

393 scihhedparamattribute of the object referenced by attrp.

394 If { POSIX_PRIORITY_SCHEDULING} is defined and the
395 POSIX_SPAWN_SETSCHEDULER flag is set in spawn-ffllaags attribute of
396 the object referenced by attrp (regardless of the setting of the
397 POSIX_SPAWN_SETSCHEDPARAM flag), the new process image shall ini-
398 tially have the scheduling policy specified in the spawn-sscihedpoliiccy
399 attribute of the object referenced by attrp and the scheduling parameters
400 specified in the spawn-sscihhedparamattribute of the same object.

401 The POSIX_SPAWN_RESETIDS flag in the spawn-ffllaags attribute of the
402 object referenced by attrp governs the effective user ID of the child process.
403 If this flag is not set, the child process inherits the parent process's effective
404 user ID. If this flag is set, the child process's effective user ID is reset to the
405 parent’s real user ID. In either case, if the set-user-ID mode bit of the new
406 process image file is set, the effective user ID of the child process will
407 become that file's owner 1D before the new process image begins execution.
408 The POSIX_SPAWN_RESETIDS flag in the spawn-ffllaags attribute of the
409 object referenced by attrp also governs the effective group ID of the child
410 process. If this flag is not set, the child process inherits the parent process’s
411 effective group ID. If this flag is set, the child process's effective group ID is
412 reset to the parent's real group ID. In either case, if the set-group-1D mode
413 bit of the new process image file is set, the effective group ID of the child
414 process will become that file's group ID before the new process image begins
415 execution.

416 If the POSIX_SPAWN_SETSIGMASK flag is set in the spawn-ffllaags attri-
417 bute of the object referenced by attrp, the child process shall initially have
418 the signal mask specified in the spawn-siggmask attribute of the object
419 referenced by attrp.

420 If the POSIX_SPAWN_SETSIGDEF flag is set in the spawn-ffllaags attribute
421 of the object referenced by attrp, the signals specified in the spawn-
422 siggdefaaultt attribute of the same object shall be set to their default
423 actions in the child process. Signals set to their default actions in the
424 parent process shall be set to their default actions in the child process.

425 Signals set to be caught by the calling process shall be set to their default
426 actions in the child process.

427 Signals set to be ignored by the calling process image shall be set to be
428 ignored by the child process, unless otherwise specified by the
429 POSIX_SPAWN_SETSIGDEF flag being set in the spawn-ffllaags attribute of
430 the object referenced by attrp and the signals being indicated in the
431 spawn-ssiggdefaaultt attribute of the object referenced by attrp.

432 If the value of the attrp pointer is NULL, then the default values are used.
433 All process attributes other than those influenced by the attributes set in
434 the object referenced by attrp as specified above or by the file descriptor
435 manipulations specified in file_actions shall appear in the new process
436 image as though fork() had been called to create a child process and then a
437 member of the exec family of functions had been called by the child process
438 to execute the new process image.

3.1 Process Creation and Execution 23

439
440
441

442

443
444
445

446

447
448
449
450
451
452
453

454

455
456
457
458
459

460

461
462
463
464

465
466
467
468
469

470
471
472
473
474
475
476

477
478
479
480
481
482

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

If the Threads option is supported, then it is implementation defined
whether the fork handlers are run when posix_spawn() or posix_spawnp()
is called.

Otherwise ;

Either the implementation shall support the posix spawn() and
posix_spawnp() functions as described above, or these functions shall not be
provided.

3.1.6.3 Returns

Upon successful completion, the posix_spawn() or posix_spawnp() operation shall
return the process ID of the child process to the parent process, in the variable
pointed to by a non-NULL pid argument, and shall return zero as the function
return value. Otherwise, no child process shall be created, the value stored into
the variable pointed to by a non-NULL pid is unspecified, and the corresponding
error value shall be returned as the function return value. If the pid argument is
the NULL pointer, the process ID of the child is not returned to the caller.

3.1.6.4 Errors

For each of the following conditions, if the condition is detected, the posix_spawn()
or posix_spawnp() function shall fail and post the corresponding status value or, if
the error occurs after the calling process successfully returns from the
posix_spawn() or posix_spawnp() function, shall cause the child process to exit
with exit status 127:

[EINVAL] The value specified by file_actions or attrp is invalid.

If posix_spawn() or posix_spawnp() fails for any of the reasons that would cause
fork() or one of the exec family of functions to fail, an error value shall be returned
as described by fork() and exec, respectively (or, if the error occurs after the cal-
ling process successfully returns, the child process exits with exit status 127).

If POSIX_SPAWN_SETPGROUP is set in the spawn-ffllaags attribute of the object
referenced by attrp and posix_spawn() or posix_spawnp() fails while changing the
child's process group, an error value shall be returned as described by setpgid()
(or, if the error occurs after the calling process successfully returns, the child pro-
cess exits with exit status 127).

If { POSIX_PRIORITY_SCHEDULING} is defined, if
POSIX_SPAWN_SETSCHEDPARAM is set and POSIX_SPAWN_SETSCHEDULER is
not set in the spawn-ffllaags attribute of the object referenced by attrp, and if
posix_spawn() or posix_spawnp() fails for any of the reasons that would cause
sched_setparam() to fail, an error value shall be returned as described by
sched_setparam() (or, if the error occurs after the calling process successfully
returns, the child process exits with exit status 127).

If { POSIX_PRIORITY_SCHEDULING} is defined, if
POSIX_SPAWN_SETSCHEDULER is set in the spawn-ffllaags attribute of the
object referenced by attrp, and if posix_spawn() or posix_spawnp() fails for any of
the reasons that would cause sched_setscheduler() to fail, an error value shall be
returned as described by sched_setscheduler() (or, if the error occurs after the cal-
ling process successfully returns, the child process exits with exit status 127).

24 3 Process Primitives

483
484
485
486
487
488
489

490

491
492
493
494
495
496
497
498
499
500
501
502
503
504

505

506

507

508
509

510
511
512
513
514

515
516
517
518

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

If the file_actions argument is not NULL and specifies any close, dup2, or open
actions to be performed and if posix_spawn() or posix_spawnp() fails for any of the
reasons that would cause close(), dup2(), or open() to fail, an error value shall be
returned as described by close(), dup2(), and open(), respectively (or, if the error
occurs after the calling process successfully returns, the child process exits with
exit status 127). An open file action may, by itself, result in any of the errors
described by close() or dup2(), in addition to those described by open().

3.1.6.5 Cross-References

alarm(), 3.4.1; chmod(), 5.6.4; close(), 6.3.1; dup2(), 6.2.1; exec, 3.1.2; _exit(), 3.2.2;
fentl (), 6.5.2; fork(), 3.1.1; kill(), 3.3.2; open(), 5.3.1;
posix_spawn_file_actions_init(), 3.1.4; posix_spawn_file_actions_destroy(), 3.1.4;
posix_spawn_file_actions_addclose(), 3.1.4; posix_spawn_file_actions_adddup2(),
3.1.4; posix_spawn_file_actions_addopen(), 3.1.4; posix_spawnattr_init(), 3.1.5;
posix_spawnattr_destroy(), 3.1.5; posix_spawnattr_getflags(), 3.1.5;
posix_spawnattr_setflags(), 3.1.5; posix_spawnattr_getpgroup(), 3.1.5;
posix_spawnattr_setpgroup(), 3.1.5; posix_spawnattr_getschedpolicy(), 3.1.5;
posix_spawnattr_setschedpolicy(), 3.1.5; posix_spawnattr_getschedparam(), 3.1.5;
posix_spawnattr_setschedparam(), 3.1.5; posix_spawnattr_getsigmask(), 3.1.5;
posix_spawnattr_setsigmask(), 3.1.5; posix_spawnattr_getsigdefault(), 3.1.5;
posix_spawnattr_setsigdefault(), 3.1.5; sched_setparam(), 13.3.1;
sched_setscheduler(), 13.3.3; setpgid(), 4.3.3; setuid(), 4.2.2; stat(), 5.6.2; times(),
4.5.2; wait, 3.2.1.

3.2 Process Termination

3.2.1 Wait for Process Termination

3.2.1.2 Wait for Process Termination — Description

0 3.2.1.2 Wait for Process Termination — Description Add the following
paragraphs after the definition of the WSTOPSIG(stat_val) macro:

It is unspecified whether the status value returned by calls to wait() or wait-
pid() for processes created by posix_spawn() or posix_spawnp() may indicate a
WIFSTOPPED(stat_val) before subsequent calls to wait() or waitpid() indicate
WIFEXITED(stat_val) as the result of an error detected before the new process
image starts executing.

It is unspecified whether the status value returned by calls to wait() or wait-
pid() for processes created by posix_spawn() or posix_spawnp() may indicate a
WIFSIGNALED(stat_val) if a signal is sent to the parent’'s process group after
posix_spawn() or posix_spawnp() is called.

3.2 Process Termination 25

IEEE Std 1003.1d-1999

26

3 Process Primitives

10
11
12

13

14
15

16

17
18

19
20
21
22
23
24
25

IEEE Std 1003.1d-1999

Section 4: Process Environment

4.8 Configurable System Variables

4.8.1 Get Configurable System Variables

4.8.1.2 Description

0 4.8.1.2 Get Configurable System Variables—Description Add the follow-
ing text after the sentence “The implementation shall support all of the vari-
ables listed in Table 4-2 and may support others”, in the second paragraph:

Support for some configuration variables is dependent on implementation
options (see Table 4-3). Where an implementation option is not supported, the
variable need not be supported.

0 4.8.1.2 Get Configurable System Variables—Description In the second
paragraph, replace the text “The variables in Table 4-2 come from ...” by the
following:

“The variables in Table 4-2 and Table 4-3 come from ...”

0 4.8.1.2 Get Configurable System Variables—Description Add the follow-
ing table:

Table 4-3 — Optional Configurable System Variables

Variable name Value Required Option
{_POSIX_SPAWN} _SC_SPAWN Spawn
{_POSIX_TIMEOUTS} _SC_TIMEOUTS Timeouts
{_POSIX_CPUTIME} _SC_CPUTIME Process CPU-Time Clocks
{_POSIX_THREAD_CPUTIME} _SC_THREAD_CPUTIME Thread CPU-Time Clocks
{_POSIX_SPORADIC_SERVER} _SC_SPORADIC_SERVER Process Sporadic Server
{_POSIX_THREAD_SPORADIC_SERVER}|_SC_THREAD_SPORADIC_SERVER|Thread Sporadic Server
{_POSIX_ADVISORY_INFO} _SC_ADVISORY_INFO Advisory Information

4.8 Configurable System Variables 27

IEEE Std 1003.1d-1999

28

4 Process Environment

N

10
11
12

13

14
15

16

17
18

19
20
21
22
23

IEEE Std 1003.1d-1999

Section 5: Files and Directories

5.7 Configurable Pathname Variables

5.7.1 Get Configurable Pathname Variables

5.7.1.2 Description

0 5.7.1.2 Get Configurable Pathname Variables—Description Add the fol-
lowing text after the sentence “The implementation shall support all of the
variables listed in Table 5-2 and may support others”, in the third paragraph:

Support for some pathname configuration variables is dependent on implemen-
tation options (see Table 5-3). Where an implementation option is not sup-
ported, the variable need not be supported.

0 5.7.1.2 Get Configurable Pathname Variables—Description In the third

paragraph, replace the text “The variables in Table 5-2 come from

following:

“The variables in Table 5-2 and Table 5-3 come from ...”

.."" by the

0 5.7.1.2 Get Configurable Pathname Variables—Description Add the fol-

lowing table:

Table 5-3 — Optional Configurable Pathname Variables

Variable

name Value

Required Option

{POSIX_REC_INCR_XFER_SIZE}
{POSIX_ALLOC_SIZE_MIN}
{POSIX_REC_MAX_XFER_SIZE}
{POSIX_REC_MIN_XFER_SIZE}
{POSIX_REC_XFER_ALIGN}

_PC_REC_INCR_XFER_SIZE
_PC_ALLOC_SIZE_MIN
_PC_REC_MAX_XFER_SIZE
_PC_REC_MIN_XFER_SIZE
_PC_REC_XFER_ALIGN

Advisory Information
Advisory Information
Advisory Information
Advisory Information
Advisory Information

5.7 Configurable Pathname Variables

29

IEEE Std 1003.1d-1999

30

5 Files and Directories

10
11
12

IEEE Std 1003.1d-1999

Section 6: Input and Output Primitives

6.7 Asynchronous Input and Output

6.7.1 Data Definitions for Asynchronous Input and Output

6.7.1.1 Asynchronous I/O Control Block

0 6.7.1.1 Asynchronous 1/O Control Block Change the sentence, in the fifth
paragraph, beginning with “The order of processing of requests submitted by
processes whose schedulers ... " to the following:

Unless both { POSIX_PRIORITIZED_I10} and { POSIX_PRIORITY_SCHEDULING}
are defined, the order of processing asynchronous 1/O requests is unspecified.
When both { POSIX_PRIORITIZED_IO} and { POSIX_PRIORITY_SCHEDULING}
are defined, the order of processing of requests submitted by processes whose
schedulers are not SCHED FIFO, SCHED_RR, or SCHED_SPORADIC is
unspecified.

6.7 Asynchronous Input and Output 31

IEEE Std 1003.1d-1999

32

6 Input and Output Primitives

10
11

12

13
14

15

16
17
18
19
20

21
22
23
24
25
26
27
28

IEEE Std 1003.1d-1999

Section 11: Synchronization

11.2 Semaphore Functions
11.2.6 Lock a Semaphore

0 11.2.6 Lock a Semaphore Add the following function at the end of the list of
functions:

sem_timedwait().

11.2.6.1 Synopsis

0 11.2.6.1 Lock a Semaphore—Synopsis Add the following #include and pro-
totype at the end of the synopsis:

#imclwde <tiinmeh>
imt ssem tiinmedwaitt((ssem t [bem,
const sstrrwct ttiinmespec [Chbs_timeout);;

11.2.6.2 Description

0 11.2.6.2 Lock a Semaphore—Description Add the following text at the end
of the description:

If { POSIX_SEMAPHORES} and { POSIX_TIMEOUTS} are both defined:

The sem_timedwait() function locks the semaphore referenced by sem as
in the sem_wait() function. However, if the semaphore cannot be locked
without waiting for another process or thread to unlock the semaphore
by performing a sem_post() function, this wait shall be terminated when
the specified timeout expires.

The timeout expires when the absolute time specified by abs_timeout
passes, as measured by the clock on which timeouts are based (that is,
when the value of that clock equals or exceeds abs_timeout), or if the
absolute time specified by abs_timeout has already been passed at the
time of the call. If the Timers option is supported, the timeout is based
on the CLOCK_REALTIME clock. If the Timers option is not supported,
the timeout is based on the system clock as returned by the time() func-
tion. The resolution of the timeout is the resolution of the clock on

11.2 Semaphore Functions 33

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

29 which it is based. The timespec datatype is defined as a structure in the
30 header <tiinmehh>.

31 Under no circumstance will the function fail with a timeout if the sema-
32 phore can be locked immediately. The validity of the abs_timeout argu-
33 ment need not be checked if the semaphore can be locked immediately.
34 Otherwise:

35 Either the implementation shall support the sem_timedwait() function
36 as described above, or this function shall not be provided.

37 11.2.6.3 Returns

38 0 11.2.6.3 Lock a Semaphore—Returns Add the following function to the list
39 of functions:

40 sem_timedwait()

41 11.2.6.4 Errors

42 0 11.2.6.4 Lock a Semaphore — Errors Make the following changes to the
43 discussion of error conditions:

44 Add sem_timedwait() to the list of functions for both the standard error condi-
45 tions and the “if detected” error conditions.

46 Add an [ETIMEDOUT] error value with the following reason, to the list of
47 errors that must be detected:

48 The semaphore could not be locked before the specified timeout expired.
49 To the [EINVAL] error description, add the following reason:

50 The thread would have blocked, and the abs_timeout parameter
51 specified a nanoseconds field value less than zero or greater than or
52 equal to 1000 million.

53 11.2.6.5 Cross-References

54 0 11.2.6.5 Lock a Semaphore—Cross-References Add the following items to
55 the cross-references in alphabetical order:

56 time(), 4.5.1; <tiinmerh>, 14.1.

34 11 Synchronization

57

58
59
60

61
62
63
64
65

66

67

68
69

70

71

72
73

74

75
76

7

78
79

80

81
82
83
84
85
86

87
88

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

11.2.7 Unlock a Semaphore

0 11.2.7.2 Unlock a Semaphore—Description (The following change is made
in a context where the Process Scheduling option is supported.) Change the
sentence, beginning with “In the case of the schedulers ... " to the following:

In the case of the schedulers {SCHED_FIFO}, {SCHED _RR}, and {SCHED_-
SPORADIC]}, the highest priority waiting thread shall be unblocked, and if there
is more than one highest-priority thread blocked waiting for the semaphore,
then the highest-priority thread that has been waiting the longest shall be
unblocked.

11.3 Mutexes

11.3.3 Locking and Unlocking a Mutex

0 11.3.3 Locking and Unlocking a Mutex Add the following function at the
end of the list:

pthread_mutex_timedlock().

11.3.3.1 Synopsis

0 11.3.3.1 Locking and Unlocking a Mutex—Synopsis Add the following
#include and prototype at the end of the synopsis:

#imclwde <tiinmet>

imt pthreead _muteex_tiinmedloock(ptthreead _muteex_t Cmutex,
const sstrrwct ttiinmespec [Chbs_timeout);;

11.3.3.2 Description

0 11.3.3.2 Locking and Unlocking a Mutex—Description Add the following
text at the end of the description:

If { POSIX_THREADS} and { POSIX_TIMEOUTS} are both defined:

The pthread_mutex_timedlock() function is called to lock the mutex
object referenced by mutex. If the mutex is already locked, the calling
thread blocks until the mutex becomes available as in the
pthread_mutex_lock() function. If the mutex cannot be locked without
waiting for another thread to unlock the mutex, this wait shall be ter-
minated when the specified timeout expires.

The timeout expires when the absolute time specified by abs_timeout
passes, as measured by the clock on which timeouts are based (that is,

11.3 Mutexes 35

89
90
91
92
93
94
95
96

97
98
99

100
101
102
103
104

105

106
107

108

109
110

111

112

113
114

115
116

117

118
119
120

121
122
123

124
125

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

when the value of that clock equals or exceeds abs_timeout), or if the
absolute time specified by abs_timeout has already been passed at the
time of the call. If the Timers option is supported, the timeout is based
on the CLOCK_REALTIME clock; if the Timers option is not supported,
the timeout is based on the system clock as returned by the time() func-
tion. The resolution of the timeout is the resolution of the clock on
which it is based. The timespec datatype is defined as a structure in the
header <tiinmerh>.

Under no circumstance will the function fail with a timeout if the mutex
can be locked immediately. The validity of the abs_timeout parameter
need not be checked if the mutex can be locked immediately.

As a consequence of the priority inheritance rules (for mutexes initial-
ized with the PRIO_INHERIT protocol), if a timed mutex wait is ter-
minated because its timeout expires, the priority of the owner of the
mutex will be adjusted as necessary to reflect the fact that this thread is
no longer among the threads waiting for the mutex.

Otherwise:

Either the implementation shall support the pthread_mutex_timedlock()
function as described above, or the function shall not be provided.

11.3.3.3 Returns

0 11.3.3.3 Locking and Unlocking a Mutex—Returns Add the following
function to the list of functions:

pthread_mutex_timedlock()

11.3.3.4 Errors

0 11.3.3.4 Locking and Unlocking a Mutex—Errors Make the following
changes to the discussion of error conditions:

Add pthread_mutex_timedlock() to the list of functions for the [EINVAL] and
[EDEADLK] conditions.
To the [EINVAL] error description, add the following reason:

The process or thread would have blocked, and the abs_timeout parame-
ter specified a nanoseconds field value less than zero or greater than or
equal to 1000 million.

New paragraph with one error condition: If the following conditions occur, the
pthread_mutex_timedlock() function shall return the corresponding error
number:

[ETIMEDOUT] The mutex could not be locked before the specified timeout
expired.

36 11 Synchronization

126

127
128

129

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language]

11.3.3.5 Cross-References

IEEE Std 1003.1d-1999

0 11.3.3.5 Locking and Unlocking a Mutex—Cross-References Add the fol-

lowing items to the cross-references in alphabetical order:

time(), 4.5.1; <tiinmerh>, 14.1.

11.3 Mutexes

37

IEEE Std 1003.1d-1999

38

11 Synchronization

w N

[N}

13

14
15

16
17

18
19

20

21
22

23
24
25

IEEE Std 1003.1d-1999

Section 13: Execution Scheduling

13.1 Scheduling Parameters

0 13.1 Scheduling Parameters Add the following paragraph after the first
paragraph and associated table:

In addition, if { POSIX_SPORADIC_SERVER} or { POSIX_THREAD SPORADIC_-
SERVERY} is defined, the sched_param structure defined in <sched.th> shall
contain the following members in addition to those specified above:

Member Member Description
Type Name
int sched_ss_low_priority Low scheduling priority for sporadic server.
timespec sched_ss_repl_period Replenishment period for sporadic server.
timespec sched_ss_init_budget Initial budget for sporadic server.
int sched_ss_max_repl Maximum pending replenishments for sporadic server.

13.2 Scheduling Policies

0 13.2 Scheduling Policies Add the following after the unnumbered table with
the scheduling policies that shall be defined in <sched.rh>:

If { POSIX_SPORADIC_SERVER} or { POSIX_THREAD_SPORADIC_SERVER} is
defined, then the following scheduling policy is provided in <sched.rh>:

Symbol Description
SCHED_SPORADIC Sporadic server scheduling policy.

13.2.3 SCHED_OTHER

0 13.2.3 SCHED_OTHER Change the sentence beginning with “The effect of
scheduling threads with the ... " to the following:

The effect of scheduling threads with the SCHED_OTHER policy in a system in

which other threads are executing under SCHED_FIFO, SCHED_RR, or
SCHED_SPORADIC shall thus be implementation defined.

13.2 Scheduling Policies 39

26

27

28
29
30

31
32
33
34
35
36
37
38

39
40
41
42
43
44
45
46
47
48

49
50
51
52

53
54
55
56
57

58
59
60
61
62

63
64
65
66
67

68
69

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

0 13.2 Scheduling Policies Add the following subclause:

13.2.4 SCHED_SPORADIC

If { POSIX_SPORADIC_SERVER} is defined or { POSIX THREAD SPORADIC -
SERVER} is defined, the implementation shall include a scheduling policy
identified by the value SCHED_SPORADIC.

The sporadic server policy is based primarily on two parameters: the replenish-
ment period and the available execution capacity. The replenishment period is
given by the sched_ss repl _period member of the sched param structure. The
available execution capacity is initialized to the value given by the
sched_ss_init_budget member of the same parameter. The sporadic server policy
is identical to the SCHED_FIFO policy with some additional conditions that cause
the thread’s assigned priority to be switched between the values specified by the
sched_priority and sched_ss_low_priority members of the sched_param structure.

The priority assigned to a thread using the sporadic server scheduling policy is
determined in the following manner: If the available execution capacity is greater
than zero and the number of pending replenishment operations is strictly less
than sched_ss_max_repl, the thread is assigned the priority specified by
sched_priority. Otherwise, the assigned priority shall be sched_ss_low_priority. If
the value of sched priority is less than or equal to the value of
sched_ss_low_priority, the results are undefined. When active, the thread shall
belong to the thread list corresponding to its assigned priority level, according to
the mentioned priority assignment. The modification of the available execution
capacity and, consequently of the assigned priority, is done as follows:

(1) When the thread at the head of the sched_priority list becomes a running
thread, its execution time shall be limited to at most its available execu-
tion capacity, plus the resolution of the execution time clock used for this
scheduling policy. This resolution shall be implementation defined.

(2) Each time the thread is inserted at the tail of the list associated with
sched_priority (because as a blocked thread it became runnable with
priority sched_priority or because a replenishment operation was per-
formed), the time at which this operation is done is posted as the
activation_time.

(3) When the running thread with assigned priority equal to sched_priority
becomes a preempted thread, it becomes the head of the thread list for its
priority; and the execution time consumed is subtracted from the avail-
able execution capacity. If the available execution capacity would become
negative by this operation, it shall be set to zero.

(4) When the running thread with assigned priority equal to sched_priority
becomes a blocked thread, the execution time consumed is subtracted
from the available execution capacity; and a replenishment operation is
scheduled, as described in (6) and (7). If the available execution capacity
would become negative by this operation, it shall be set to zero.

(5) When the running thread with assigned priority equal to sched_priority
reaches the limit imposed on its execution time, it becomes the tail of the

40 13 Execution Scheduling

70
71
72

73
74
75
76
77
78
79
80
81
82
83

84
85
86
87
88
89
90
91

92

93
94

95
96
97
98

99

100

101

102
103

104

105
106
107
108

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

(6)

()

thread list for sched_ss_low_priority; the execution time consumed is sub-
tracted from the available execution capacity (which becomes zero); and a
replenishment operation is scheduled, as described in (6) and (7).

Each time a replenishment operation is scheduled, the amount of execu-
tion capacity to be replenished, replenish_amount, is set equal to the exe-
cution time consumed by the thread since the activation_time. The
replenishment is scheduled to occur at activation_time plus
sched_ss_repl_period. If the scheduled time obtained is before the current
time, the replenishment operation is carried out immediately. Several
replenishment operations may be pending at the same time, each of
which will be serviced at its respective scheduled time. With the above
rules, the number of replenishment operations simultaneously pending
for a given thread that is scheduled under the sporadic server policy shall
not be greater than sched_ss_max_repl.

A replenishment operation consists of adding the corresponding
replenish_amount to the available execution capacity at the scheduled
time. If, as a consequence of this operation, the execution capacity would
become larger than sched_ss_initial_budget, it shall be rounded down to a
value equal to sched_ss initial_budget. Additionally, if the thread was
runnable or running and had an assigned priority equal to
sched_ss_low_priority, then it becomes the tail of the thread list for
sched_priority.

Execution time is defined in 2.2.2.

For this policy, changing the value of a CPU-time clock via clock_settime() shall
have no effect on its behavior.

For this policy, valid priorities shall be within the range returned by the functions
sched_get_priority_min() and sched_get priority_max() when SCHED_SPORADIC
is provided as the parameter. Conforming implementations shall provide a prior-
ity range of at least 32 distinct priorities for this policy.

13.3 Process Scheduling Functions

13.3.1 Set Scheduling Parameters

13.3.1.2 Description

g

13.3.1.2 Set Scheduling Parameters—Description Add the following
paragraphs to the description:

If { POSIX_SPORADIC_SERVERY} is defined:

If the scheduling policy of the target process is SCHED_SPORADIC, the
value specified by the sched_ss_low_priority member of the param argu-
ment shall be any integer within the inclusive priority range for the
sporadic server policy. The sched_ss_repl_period and

13.3 Process Scheduling Functions 41

109
110
111
112
113
114

115
116
117

118
119
120

121
122
123
124
125
126
127

128
129
130

131
132
133

134

135

136
137
138

139

140
141
142
143
144
145
146
147
148

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

g

sched_ss_init_budget members of the param argument shall represent
the time parameters to be used by the sporadic server scheduling policy
for the target process. The sched_ss_max_repl member of the param
argument shall represent the maximum number of replenishments that
are allowed to be pending simultaneously for the process scheduled
under this scheduling policy.

The specified sched_ss_repl_period shall be greater than or equal to the
specified sched_ss_init_budget for the function to succeed; if it is not,
then the function shall fail.

The value of sched_ss_max_repl shall be within the inclusive range [1,
{SS_REPL_MAX]}] for the function to succeed; if not, the function shall
fail.

If the scheduling policy of the target process is either SCHED_FIFO or
SCHED_RR, the sched _ss low priority, sched ss repl period and
sched_ss_init_budget members of the param argument shall have no
effect on the scheduling behavior. If the scheduling policy of this process
is not SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC, including
SCHED_OTHER, the effects of these members shall be implementation
defined.

13.3.1.2 Set Scheduling Parameters—Description Replace the eighth
paragraph, beginning “If the current scheduling policy...,” with the following
new paragraph:

If the current scheduling policy for the process specified by pid is not
SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC, the result is implemen-
tation defined; this case includes the SCHED_OTHER policy.

13.3.3 Set Scheduling Policy and Scheduling Parameters

13.3.3.2 Description

g

42

13.3.3.2 Set Scheduling Policy and Scheduling Parameters—
Description Add the following paragraphs to the description, before the last
paragraph:

If { POSIX_SPORADIC_SERVERY} is defined:

If the scheduling policy specified by policy is SCHED_SPORADIC, the
value specified by the sched_ss_low_priority member of the param argu-
ment shall be any integer within the inclusive priority range for the
sporadic server policy. The sched_ss_repl_period and
sched_ss_init_budget members of the param argument shall represent
the time parameters used by the sporadic server scheduling policy for
the target process. The sched_ss _max_repl member of the param argu-
ment shall represent the maximum number of replenishments that are
allowed to be pending simultaneously for the process scheduled under

13 Execution Scheduling

149

150
151
152

153
154
155

156
157
158
159

160

161

162
163
164

165
166
167
168
169

170

171
172
173
174
175

176
177
178
179

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

this scheduling policy.

The specified sched_ss_repl_period shall be greater than or equal to the
specified sched_ss_init_budget for the function to succeed; if it is not,
then the function shall fail.

The value of sched_ss_max_repl shall be within the inclusive range [1,
{SS_REPL_MAX]}] for the function to succeed; if not, the function shall
fail.

If the scheduling policy specified by policy is either SCHED_FIFO or
SCHED_RR, the sched_ss low priority, sched ss repl _period, and
sched_ss_init_budget members of the param argument shall have no
effect on the scheduling behavior.

13.4 Thread Scheduling

13.4.1 Thread Scheduling Attributes

g

13.4.1 Thread Scheduling Attributes Add the following paragraph after

paragraph that begins with “If the

{_ POSIX_THREAD_PRIORITY_SCHEDULING} option is defined, ...™:

If { POSIX_THREAD_SPORADIC_SERVER} is defined, the scihedparam
attribute supports four new members that are used for the sporadic
server scheduling policy. These members are sched_ss low_priority,
sched_ss_repl_period, sched_ss_init_budget, and sched_ss_max_repl.
The meaning of these attributes is the same as in the definitions in 13.1.

13.4.3 Scheduling Allocation Domain

g

13.4.3 Scheduling Allocation Domain Change the first sentence of the
fourth paragraph, currently reading “For application threads whose scheduling
allocation domain size is greater than one, the rules defined for SCHED_FIFO
and SCHED_RR in 13.2 shall be used in an implementation-defined manner.” to
the following:

For application threads whose scheduling allocation domain size is
greater than one, the rules defined for SCHED_FIFO, SCHED_RR, and
SCHED_SPORADIC in 13.2 shall be used in an implementation-defined
manner.

13.4 Thread Scheduling 43

180
181

182
183
184
185

186

187
188
189

190
191
192
193
194

195

196

197

198
199
200

201
202

203
204
205

206
207
208
209
210
211
212
213

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

g

13.4.3 Scheduling Allocation Domain
Add the following paragraph after the fourth paragraph in 13.4.3:

If { POSIX_THREAD_SPORADIC_SERVER} is defined, the rules defined
for SCHED_SPORADIC in 13.2 shall be used in an implementation-
defined manner for application threads whose scheduling allocation
domain size is greater than one.

13.4.4 Scheduling Documentation

g

13.4.4 Scheduling Documentation Change the first sentence, beginning
with “If { POSIX_PRIORITY_SCHEDULING} is defined, then ..."” and ending
with “... such a policy, are implementation defined.” to the following:

If { POSIX_PRIORITY_SCHEDULING} is defined, then any scheduling policy
beyond SCHED_OTHER, SCHED_FIFO, SCHED_RR, and SCHED_SPORADIC, as
well as the effects of the scheduling policies indicated by these other values,
and the attributes required to support such a policy are implementation
defined.

13.5 Thread Scheduling Functions

13.5.1 Thread Creation Scheduling Attributes

13.5.1.2 Description

g

44

13.5.1.2 Thread Creation Scheduling Attributes—Description Add the
following sentence to the sixth paragraph, beginning “The suported values of

policy ...™:

In addition, if { POSIX_ THREAD_SPORADIC_SERVER} is defined, the
value of policy may be SCHED_SPORADIC.

Also, add the following sentences at the end of the eighth paragraph, which
describes the functions pthread_attr_setschedparam() and
pthread_attr_getschedparam():

For the SCHED_SPORADIC policy, the required members of the param
structure are sched_priority, sched_ss_low_priority,
sched_ss_repl_period, sched_ss_init_budget, and sched_ss_max_repl.
The specified sched_ss_repl_period shall be greater than or equal to the
specified sched_ss_init_budget for the function to succeed; if it is not,
then the function shall fail. The value of sched_ss _max_repl shall be
within the inclusive range [1, {SS_REPL_MAX}] for the function to
succeed; if not, the function shall fail.

13 Execution Scheduling

214

215

216
217

218

219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235

236
237
238

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999
13.5.2 Dynamic Thread Scheduling Parameters Access

13.5.2.2 Description

0 13.5.2.2 Dynamic Thread Scheduling Parameters Access—Description
Add the following paragraph to the description, before the last paragraph:

If { POSIX_THREAD_SPORADIC_SERVER} is defined:

The policy argument may have the value SCHED_SPORADIC, with the
exception for the pthread_setschedparam() function that, if the schedul-
ing policy was not SCHED_SPORADIC at the time of the call, it is imple-
mentation defined whether the function is supported. In other words,
the implementation need not allow the application to dynamically
change the scheduling policy to SCHED_SPORADIC. The sporadic server
scheduling policy has the associated parameters sched_ss_low_priority,
sched_ss_repl_period, sched_ss_init_budget, sched priority, and
sched_ss_max_repl. The specified sched_ss_repl_period shall be greater
than or equal to the specified sched_ss_init_budget for the function to
succeed; if it is not, then the function shall fail. The value of
sched_ss_max_repl shall be within the inclusive range [1, {SS_REPL_-
MAX}] for the function to succeed; if not, the function shall fail.

13.5.2.4 Errors

0 13.5.2.4 Dynamic Thread Scheduling Parameters Access—Errors Add
the following error status value in the “if detected” section of the
pthread_setschedparam() function:

[ENOTSUP] An attempt was made to dynamically change the scheduling
policy to SCHED_SPORADIC, and the implementation does not support
this change.

13.5 Thread Scheduling Functions 45

IEEE Std 1003.1d-1999

46

13 Execution Scheduling

10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26

IEEE Std 1003.1d-1999

Section 14: Clocks and Timers

14.2 Clock and Timer Functions

14.2.1 Clocks

14.2.1.2 Description

g

14.2.1.2 Clock and Timer Functions—Description Add the following
paragraphs to the description, after the paragraph starting “A clock may be
systemwide...":

If { POSIX_CPUTIME} is defined, implementations shall support clock ID values
[obtained by invoking clock getcpuclockid()], which represent the CPU-time
clock of a given process. Implementations shall also support the special
clockid_t value CLOCK_PROCESS CPUTIME_ID, which represents the
CPU-time clock of the calling process when invoking one of the clock or timer
functions. For these clock IDs, the values returned by clock gettime() and
specified by clock_settime() represent the amount of execution time of the pro-
cess associated with the clock. Changing the value of a CPU-time clock via
clock_settime() shall have no effect on the behavior of the sporadic server
scheduling policy (see 13.2.4).

If { POSIX_THREAD_CPUTIME]} is defined, implementations shall support clock
ID values [obtained by invoking pthread_getcpuclockid()], which represent the
CPU-time clock of a given thread. Implementations shall also support the spe-
cial clockid t value CLOCK_THREAD_CPUTIME_ID, which represents the
CPU-time clock of the calling thread when invoking one of the clock or timer
functions. For these clock IDs, the values returned by clock gettime() and
specified by clock settime() represent the amount of execution time of the
thread associated with the clock. Changing the value of a CPU-time clock via
clock_settime() shall have no effect on the behavior of the sporadic server
scheduling policy (see 13.2.4).

14.2 Clock and Timer Functions 47

27

28

29
30
31

32
33

34
35

36
37
38

39

40
41

42
43
44
45
46

47

48

49
50

51

52
53

54
55

56
57

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO
14.2.2 Create a Per-Process Timer

14.2.2.2 Description

0 14.2.2.2 Create a Per-Process Timer—Description Add the following
paragraphs to the description, after the paragraph starting “Each implementa-
tion shall define...”:

If { POSIX_CPUTIME} is defined, implementations shall support clock_id values
representing the CPU-time clock of the calling process.

If { POSIX_THREAD_CPUTIME} is defined, implementations shall support
clock_id values representing the CPU-time clock of the calling thread.

It is implementation defined whether a timer_create () call will succeed if the
value defined by clock id corresponds to the CPU-time clock of a process or
thread different from the process or thread invoking the function.

14.2.2.4 Errors

0 14.2.2.4 Create a Per-Process Timer—Errors Add the following error con-
dition:

[ENOTSUP]
The implementation does not support the creation of a timer attached
to the CPU-time clock that is specified by clock_id and associated with
a process or thread different from the process or thread invoking
timer_create ().

O 14 Clocks and Timers Add the following subclauses:

14.3 Execution Time Monitoring

This subclause describes extensions to system interfaces to support monitoring
and limitation of the execution time of processes and threads.

14.3.1 CcPU-time Clock Characteristics

If { POSIX_CPUTIME} is defined, process CPU-time clocks shall be supported in
addition to the clocks described in 14.1.4.

If { POSIX_THREAD_CPUTIME} is defined, thread CPU-time clocks shall be
supported.

CPU-time clocks measure execution or CPU time, which is defined in 2.2.2. The
mechanism used to measure execution time is described in 2.3.1.

48 14 Clocks and Timers

58
59

60
61
62
63

64
65

66
67
68
69

70

71

72

73
74

75

76

v

78
79
80
81

82
83

84
85

86

87
88

89

90
91

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

If { POSIX_CPUTIME} is defined, the following constant of the type clockid_t shall
be defined in <tiinmeHM>:

CLOCK_PROCESS CPUTIWE ID
When this value of the type clockid_t is used in a clock or timer function
call, it is interpreted as the identifier of the CPU-time clock associated
with the process making the function call.

If { POSIX_THREAD_CPUTIME} is defined, the following constant of the type
clockid_t shall be defined in <tiinmerh>:

CLOCK_THREAD CPUTIWVE ID
When this value of the type clockid_t is used in a clock or timer function
call, it is interpreted as the identifier of the CPU-time clock associated
with the thread making the function call.

14.3.2 Accessing a Process CPU-time Clock

Function: clock_getcpuclockid().

14.3.2.1 Synopsis

#imclwde <sys/ttypes.Hh>
#imclwde <tiinmeh>

imt c«cloock_getacpucloockidd (pidd t pid, acclloockidd_t Ctlock id);;

14.3.2.2 Description

If { POSIX_CPUTIME} is defined:

The clock_getcpuclockid() function shall return the clock 1D of the CPU-time
clock of the process specified by pid. If the process described by pid exists
and the calling process has permission, the clock ID of this clock shall be
returned in clock_id.

If pid is zero, the clock_getcpuclockid() function shall return in clock_id the
clock ID of the CPU-time clock of the process making the call.

The conditions under which one process has permission to obtain the
CPU-time clock ID of other processes are implementation defined.

Otherwise:

Either the implementation shall support the clock _getcpuclockid() function
as described above, or this function shall not be provided.

14.3.2.3 Returns

Upon successful completion, clock _getcpuclockid() shall return zero. Otherwise,
the corresponding error value shall be returned.

14.3 Execution Time Monitoring 49

92

93
94

95
96
97

98
99

100
101

102

103
104

105

106

107

108
109
110

111

112

113

114
115
116

117

118
119

120

121
122

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

14.3.2.4 Errors

If the following conditions occur, the clock getcpuclockid() function shall return
the corresponding error number:

[EPERM]
The requesting process does not have permission to access the CPU-time
clock for the process.

If the following condition is detected, the clock getcpuclockid() function shall
return the corresponding error number:

[ESRCH]
No process can be found corresponding to the value specified by pid.

14.3.2.5 Cross-References

clock_gettime(), 14.2.1; clock settime(), 14.2.1; clock getres(), 14.2.1;
timer_create (), 14.2.2.

14.3.3 Accessing a Thread CPU-time Clock

Function: pthread_getcpuclockid().

14.3.3.1 Synopsis

#imclwde <sys/ttypes.Hh>
#imclwde <tiinmeh>
#imclwde <pthhread.rh>

imt pthreead _getacpuclioockidd (pthhreead_t thread_id, ccloockiidd t Ctlock id);;

14.3.3.2 Description

If { POSIX_THREAD_CPUTIME} is defined:

The pthread_getcpuclockid() function shall return in clock_id the clock ID
of the CPU-time clock of the thread specified by thread_id, if the thread
specified by thread_id exists.

Otherwise:

Either the implementation shall support the pthread_getcpuclockid() func-
tion as described above, or this function shall not be provided.

14.3.3.3 Returns

Upon successful completion, pthread_getcpuclockid() shall return zero. Otherwise
the corresponding error number shall be returned.

50 14 Clocks and Timers

123

124
125

126
127

128

129
130

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

14.3.3.4 Errors

If the following condition is detected, the pthread_getcpuclockid() function shall
return the corresponding error number:

[ESRCH]
The value specified by thread_id does not refer to an existing thread.

14.3.3.5 Cross-References

clock_gettime(), 14.2.1; clock settime(), 14.2.1; clock getres(), 14.2.1;
clock_getcpuclockid(), 14.3.2; timer_create (), 14.2.2;

14.3 Execution Time Monitoring 51

IEEE Std 1003.1d-1999

52

14 Clocks and Timers

10
11
12
13
14

15

16
17

18

19
20
21
22
23
24
25

26
27
28

IEEE Std 1003.1d-1999

Section 15: Message Passing

15.2 Message Passing Functions
15.2.4 Send a Message to a Message Queue

0 15.2.4 Send a Message to a Message Queue Add the following function at
the end of the list and change “Function” to “Functions”:

mq_timedsend ()

15.2.4.1 Synopsis

0 15.2.4.1 Send a Message to a Message Queue—Synopsis
Add the following #include and prototype to the end of the synopsis:

#imclwde <tiinmeh>
imt m_tiinmedsend(mgd_t mqdes,
const cchar Cmnsg ptr,
sizze_t msg_len,
unsiggned imt msg_prio,
const sstrrwct ttiinmespec [Chbs_timeout);;

15.2.4.2 Description

0 15.2.4.2 Send a Message to a Message Queue—Description Add the fol-
lowing text at the end of the description:

If { POSIX_MESSAGE_PASSING} and { POSIX_TIMEOUTS} are both defined:

The mqg_timedsend () function adds a message to the message queue
specified by mgdes in the manner defined for the mq_send() function.
However, if the specified message queue is full and O_NONBLOCK is not
set in the message queue description associated with mqdes, the wait for
sufficient room in the queue shall be terminated when the specified
timeout expires. If O_NONBLOCK is set in the message queue descrip-
tion, this function shall behave identically to mg_send().

The timeout expires when the absolute time specified by abs_timeout
passes, as measured by the clock on which timeouts are based (that is,
when the value of that clock equals or exceeds abs_timeout), or if the

15.2 Message Passing Functions 53

29
30
31
32
33
34
35

36
37
38
39

40

41
42

43

44
45

46

47

48
49

50

51

52
53

54
55
56

57

58
59
60

61

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

absolute time specified by abs_timeout has already been passed at the
time of the call. If the Timers option is supported, the timeout is based
on the CLOCK_REALTIME clock. If the Timers option is not supported,
the timeout is based on the system clock as returned by the time() func-
tion. The resolution of the timeout is the resolution of the clock on
which it is based. The timespec argument is defined as a structure in
the header <tiinmeH>.

Under no circumstance shall the operation fail with a timeout if there is
sufficient room in the queue to add the message immediately. The vali-
dity of the abs_timeout parameter need not be checked when there is
sufficient room in the queue.

Otherwise:

Either the implementation shall support the mq_timedsend() function
as described above, or this function shall not be provided.

15.2.4.3 Returns

g

15.2.4.3 Send a Message to a Message Queue—Returns Add the following
function at the end of the list and change “Function” to “Functions”:

mq_timedsend ()

15.2.4.4 Errors

g

54

15.2.4.4 Send a Message to a Message Queue—Errors Make the following
changes to the discussion of error conditions:

Add mqg_timedsend () at the end of the list of functions to which the error condi-
tions apply.

Add an [ETIMEDOUT] error value (in alphabetical order) with the following
reason:

The O_NONBLOCK flag was not set when the message queue was
opened, but the timeout expired before the message could be added to
the queue.

To the [EINVAL] error description, add the following reason:

The thread would have blocked, and the abs_timeout parameter
specified a nanoseconds field value less than zero or greater than or
equal to 1000 million.

Add mqg_timedsend () to the list of functions returning [EINTR].

15 Message Passing

62

63

64

65

66

67
68

69

70

71
72

73

74
75
76
v
78

79

80
81

82

83
84
85
86
87
88
89
90

91
92
93
94

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

15.2.4.5 Cross-References

0 15.2.4.5 Send a Message to a Message Queue—Cross-References

Add the following cross references to the list, in alphabetical order:
mgq_open(), 15.2.1; time() 4.5.1; <tiinmerh>, 14.1.

15.2.5 Receive a Message from a Message Queue

0 15.2.5 Receive a Message from a Message Queue Add the following func-
tion at the end of the list and change “Function” to “Functions™:

mq_timedreceive()

15.2.5.1 Synopsis

0 15.2.5.1 Receive a Message from a Message Queue—Synopsis
Add the following #include and prototype to the end of the synopsis:

#imclwde <tiinmet>

imt m_tiinmedreeceiwe(mgd_t mqdes,
char COmnsg_ptr,
sizze_t msg_len,
unsiggned imt [msg_prio,
const sstrrwct ttiinmespec [Chbs_timeout);;

15.2.5.2 Description

0 15.2.5.2 Receive a Message from a Message Queue—Description Add
the following text at the end of the description:

If { POSIX_MESSAGE_PASSING} and { POSIX_TIMEOUTS} are both defined:

The mq_timedreceive() function is used to receive the oldest of the
highest priority messages from the message queue specified by mqgdes as
in the mq_receive() function. However, if O_NONBLOCK was not
specified when the message queue was opened via the mg_open() func-
tion and no message exists on the queue to satisfy the receive, the wait
for such a message will be terminated when the specified timeout
expires. If O_NONBLOCK is set, this function shall behave identically to
maq_receive ().

The timeout expires when the absolute time specified by abs_timeout
passes, as measured by the clock on which timeouts are based (that is,
when the value of that clock equals or exceeds abs_timeout), or if the
absolute time specified by abs_timeout has already been passed at the
time of the call. If the Timers option is supported, the timeout is based

15.2 Message Passing Functions 55

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

95 on the CLOCK_REALTIME clock; if the Timers option is not supported,
96 the timeout is based on the system clock as returned by the time() func-
97 tion. The resolution of the timeout is the resolution of the clock on
98 which it is based. The timespec argument is defined as a structure in
99 the header <tiinmeH>.

100 Under no circumstance shall the operation fail with a timeout if a mes-
101 sage can be removed from the message queue immediately. The validity
102 of the abs_timeout parameter need not be checked if a message can be
103 removed from the message queue immediately.

104 Otherwise:

105 Either the implementation shall support the mq_timedreceive() function
106 as described above, or this function shall not be provided.

107 15.2.5.3 Returns

108 [0 15.2.5.3 Receive a Message from a Message Queue—Returns Add the
109 following function to the list of functions:

110 mgq_timedreceive()

111 15.2.5.4 Errors

112 0O 15.2.5.4 Receive a Message from a Message Queue—Errors Make the fol-

113 lowing changes to the discussion of error conditions:

114 Add mqg_timedreceive() at the end of the list of functions for both the “if
115 occurs” error conditions and the “if detected” error conditions.

116 Add an [ETIMEDOUT] error value to the “if occurs” error conditions (in alpha-
117 betical order), with the following reason:

118 The O_NONBLOCK flag was not set when the message queue was
119 opened, but no message arrived on the queue before the specified
120 timeout expired.

121 Add an [EINVAL] error value to the “if occurs” error conditions (in alphabetical
122 order), with the following reason:

123 The thread would have blocked, and the abs_timeout parameter
124 specified a nanoseconds field value less than zero or greater than or
125 equal to 1000 million.

126 Add mq_timedreceive() to the list of functions returning [EINTR].

56 15 Message Passing

127

128
129

130

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language]

15.2.5.5 Cross-References

IEEE Std 1003.1d-1999

0 15.2.5.5 Receive a Message from a Message Queue—Cross-References

Add the following cross-references in alphabetical order:

mgq_open(), 15.2.1; time(), 4.5.1; <tiinmerh>, 14.1.

15.2 Message Passing Functions

57

IEEE Std 1003.1d-1999

58

15 Message Passing

IEEE Std 1003.1d-1999

Section 16: Thread Management

16.2 Thread Functions

16.2.2 Thread Creation

16.2.2.2 Description

0 16.2.2.2 Thread Creation—Description Add the following paragraph to the
description, after the paragraph starting “The signal state of the new
thread...™

If { POSIX_THREAD_CPUTIME]} is defined, the new thread shall have a
CPU-time clock accessible, and the initial value of this clock shall be set
to zero.

16.2 Thread Functions 59

IEEE Std 1003.1d-1999

60

16 Thread Management

IEEE Std 1003.1d-1999

Section 18: Thread Cancellation

18.1 Thread Cancellation Overview

18.1.2 Cancellation Points

0 18.1.2 Cancellation Points Add the following functions (in alphabetical
order) to the list of functions for which a cancellation point shall occur:

mgq_timedsend (), mq_timedreceive(), sem_timedwait().

0 18.1.2 Cancellation Points Add the following functions (in alphabetical
order) to the list of functions for which a cancellation point may also occur:

posix_fadvise(), posix_fallocate(), posix_madvise(), posix_spawn(),
posix_spawnp().

18.1 Thread Cancellation Overview 61

IEEE Std 1003.1d-1999

62

18 Thread Cancellation

10

11

12
13
14
15
16
17
18
19

20
21

22
23
24

25
26
27

Section 19: Advisory Information

O 19 Advisory Information Add the following section:

19.1 1/O Advisory Information and Space Control

19.1.1 File Advisory Information

Function: posix_fadvise().

19.1.1.1 Synopsis

#imclwde <sys/ttypes.Hh>
#imclwde <facmtll. .th>

imt posixx_faadvisse(iimt fd, oofff t offset,
sizze_t len, iimt advice);;

19.1.1.2 Description

If { POSIX_ADVISORY_INFO} is defined:

IEEE Std 1003.1d-1999

The posix_fadvise() function provides advice to the implementation on the
expected behavior of the application with respect to the data in the file asso-
ciated with the open file descriptor, fd, starting at offset and continuing for
len bytes. The specified range need not currently exist in the file. If len is
zero, all data following offset is specified. The implementation may use this
information to optimize handling of the specified data. The posix_fadvise()
function has no effect on the semantics of other operations on the specified
data although it may affect the performance of other operations.

The advice to be applied to the data is specified by the advice parameter

and may be one of the following values:

POSIXK_FADV_NORMAL specifies that the application has no advice to give
on its behavior with respect to the specified data. It is the
default characteristic if no advice is given for an open file.

POSIXX_FADV_SEQUENTIAAL specifies that the application expects to access
the specified data sequentially from lower offsets to higher

offsets.

19.1 1/O Advisory Information and Space Control

63

28
29

30
31

32
33

34
35

36
37

38

39
40

41

42
43

44

45
46

47

48

49

50

51

52

53

54

55
56

57

58

59

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

POSIXX_FADV_RANDOMIspecifies that the application expects to access the
specified data in a random order.

POSIXX_FADV_WILLLNEED specifies that the application expects to access
the specified data in the near future.

POSIXK_FADV_DONINEED specifies that the application expects that it will
not access the specified data in the near future.

POSIXX_FADV_NOREUSE specifies that the application expects to access the
specified data once and then not reuse them thereafter.

These values shall be defined in <facmtll. .th> if the Advisory Information
option is supported.

Otherwise:

Either the implementation shall support the posix_fadvise() function as
described above, or this function shall not be provided.

19.1.1.3 Returns

Upon successful completion, the posix_fadvise() function shall return a value of
zero; otherwise, it shall return an error number to indicate the error.

19.1.1.4 Errors

If any of the following conditions occur, the posix_fadvise() function shall return
the corresponding error number:

[EBADF] The fd argument is not a valid file descriptor.
[ESPIPE] The fd argument is associated with a pipe or FIFO.
[EINVAL] The value in advice is invalid.

19.1.1.5 Cross-References

posix_madvise(), 19.2.1.

19.1.2 File Space Control

Function: posix_fallocate().

19.1.2.1 Synopsis

#imclwde <sys/ttypes.Hh>
#imclwde <facmtll. .th>

imt posixx_fallloocatee(iimt fd, oofff t offset, ssizze t len);;

19.1.2.2 Description

If { POSIX_ADVISORY_INFO} is defined:

64 19 Advisory Information

60
61
62
63
64

65
66
67

68
69

70
71
72
73

74

75
76

v

78
79

80

81
82

83

84
85

86

87

88
89

90
91

92

93
94

95

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

The posix_fallocate() function ensures that any required storage for regular
file data starting at offset and continuing for len bytes is allocated on the file
system storage media. If posix_fallocate() returns successfully, subsequent
writes to the specified file data shall not fail due to the lack of free space on
the file system storage media.

If the offset + len is beyond the current file size, then posix_fallocate() shall
adjust the file size to offset + len. Otherwise, the file size shall not be
changed.

It is implementation defined whether a previous posix fadvise() call
influences allocation strategy.

Space allocated via posix_fallocate() shall be freed by a successful call to
creat() or open() that truncates the size of the file. Space allocated via
posix_fallocate() may be freed by a successful call to ftruncate() that
reduces the file size to a size smaller than offset + len.

Otherwise:

Either the implementation shall support the posix_fallocate() function as
described above, or this function shall not be provided.

19.1.2.3 Returns

Upon successful completion, the posix_fallocate() function shall return a value of
zero; otherwise, it shall return an error number to indicate the error.

19.1.2.4 Errors

If any of the following conditions occur, the posix_fallocate() function shall return
the corresponding error number:

[EBADF] The fd argument is not a valid file descriptor.

[EBADF] The fd argument references a file that was opened without write
permission.

[EFBIG] The value of offset + len is greater than the maximum file size.

[EINTR] A signal was caught during execution.

[EINVAL] The len argument was zero or the offset argument was less than
zero.

[E10] An 1/O error occurred while reading from or writing to a file
system.

[ENODEV] The fd argument does not refer to a regular file.

[ENOSPC] There is insufficient free space remaining on the file system
storage media.

[ESPIPE] The fd argument is associated with a pipe or FIFO.

19.1 1/O Advisory Information and Space Control 65

96

97

98

99

100

101

102
103

104

105

106
107

108
109
110
111
112
113
114

115
116
117

118
119

120
121
122
123

124
125
126

127
128

129
130

131
132

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

19.1.2.5 Cross-References

unlink(), 5.5.1; open(), 5.3.1; creat(), 5.3.2; ftruncate(), 5.6.7.

19.2 Memory Advisory Information and Alignment Control

19.2.1 Memory Advisory Information

Function: posix_madvise().

19.2.1.1 Synopsis

#imclwde <sys/ttypes.Hh>
#imclwde <sys/mmen.th>

imt posix<_medvisse(weoidd Chddr, ssizze t len, iimt advice);;

19.2.1.2 Description

If { POSIX_ADVISORY_INFO} is defined and either { POSIX_MAPPED_FILES} or
{ POSIX_SHARED_MEMORY_OBJECTS} is defined:

66

The posix_madvise() function provides advice to the implementation on the
expected behavior of the application with respect to the data in the memory
starting at address, addr, and continuing for len bytes. The implementa-
tion may use this information to optimize handling of the specified data.
The posix_madvise() function has no effect on the semantics of access to
memory in the specified range although it may affect the performance of
access.

The implementation may require that addr be a multiple of the page size,
which is the value returned by sysconf() when the name value
_SC_PAGESIZE is used.

The advice to be applied to the memory range is specified by the advice
parameter and may be one of the following values:

POSIXK_MRDV_NORMIL specifies that the application has no advice to give
on its behavior with respect to the specified range. It is the
default characteristic if no advice is given for a range of
memory.

POSIXK_MADV_SEQUENTIAAL specifies that the application expects to access
the specified range sequentially from lower addresses to higher
addresses.

POSIXK_MADV_RANDOMIspecifies that the application expects to access the
specified range in a random order.

POSIXK_MADV_WILLLNEED specifies that the application expects to access
the specified range in the near future.

POSIXK_MADV_DONTNEED specifies that the application expects that it will
not access the specified range in the near future.

19 Advisory Information

133
134
135

136

137
138

139

140
141

142

143
144

145

146
147
148

149
150

151
152

153

154

155

156

157

158

159
160

161
162

163

164

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

These values shall be defined in <sys/mman.mh> if the Advisory Informa-
tion option is supported and either the Memory Mapped Files option or the
Shared Memory Objects option is supported.

Otherwise:

Either the implementation shall support the posix_madvise() function as
described above, or this function shall not be provided.

19.2.1.3 Returns

Upon successful completion, the posix_madyvise() function shall return a value of
zero; otherwise, it shall return an error number to indicate the error.

19.2.1.4 Errors

If any of the following conditions occur, the posix_madvise() function shall return
the corresponding error number:

[EINVAL] The value in advice is invalid.

[ENOMEM] Addresses in the range starting at addr and continuing for len
bytes are partly or completely outside the range allowed for the
address space of the calling process.

If any of the following conditions are detected, the posix_madyvise() function shall
return the corresponding error number:

[EINVAL] The value of addr is not a multiple of the value returned by sys-
conf() when the name value _SC_PAGESIZE is used.

[EINVAL] The value of len is zero.

19.2.1.5 Cross-References

posix_fadvise(), 19.1.1; mmap(), 12.2.1; sysconf(), 4.8.1.

19.2.2 Alighed Memory Allocation

Function: posix_memalign().

19.2.2.1 Synopsis

#imclwde <sys/ttypes.Hh>
#imclwde <stdlliibb.rh>

imt posix<_ memai iggn(woidd [Tmemptr, ssize t alignment,
sizze_t size);;

19.2.2.2 Description

If { POSIX_ADVISORY_INFO} is defined:

19.2 Memory Advisory Information and Alignment Control 67

165
166
167
168
169

170
171

172

173
174

175

176
177
178

179

180
181

182
183

184
185

186

187

IEEE Std 1003.1d-1999

The posix_memalign() function allocates size bytes aligned on a boundary
specified by alignment and returns a pointer to the allocated memory in
memptr. The value of alignment shall be a multiple of sizeof(void [) that is
also a power of two. Upon successful completion, the value pointed to by
memptr shall be a multiple of alignment.

The C Standard free() function deallocates memory that has previously
been allocated by posix_memalign().

Otherwise:

Either the implementation shall support the posix_memalign() function as
described above, or this function shall not be provided.

19.2.2.3 Returns

Upon successful completion, the posix_memalign() function returns a value of
zero. Otherwise the posix_memalign() function shall return an error number to
indicate the error.

19.2.2.4 Errors

If any of the following conditions occur, the posix_memalign() function shall
return the corresponding error number:

[EINVAL] The value of the alignment parameter is not a power of two mul-
tiple of sizeof(void).

[ENOMEM] There is insufficient memory available with the requested
alignment.

19.2.2.5 Cross-References

free(), 8.1; malloc(), 8.1.

68 19 Advisory Information

IEEE Std 1003.1d-1999

Annex A
(informative)

Bibliography

1 A.2 Other Standards

N

O A.2 Other Standards Add the following to the end of subclause A.2, with an
appropriate reference number:

w

N

{B1} ISO/IEC 14519:1998, POSIX Ada Language Interfaces—Binding for Sys-
5 tem Application Interfaces (API) including Realtime Extensions.

6 A.3 Historical Documentation and Introductory Texts

~

O A.3 Historical Documentation and Introductory Texts Add the following
to the end of subclause A.3, with an appropriate reference number:

[ee]

9 {B2} Sprunt, B., Sha, L., and Lehoczky, J.P., “Aperiodic Task Scheduling for
10 Hard Real-Time Systems.” The Journal of Real-Time Systems, vol. 1,
11 pp. 27-60, 1989.

A.3 Historical Documentation and Introductory Texts 69

IEEE Std 1003.1d-1999

70

A Bibliography

10
11
12
13

14

15

16

17

18
19
20
21
22
23
24

IEEE Std 1003.1d-1999

Annex B
(informative)

Rationale and Notes

B.2 Definitions and General Requirements
B.2.3 General Concepts

0 B.2.3 General Concepts: Add the following subclause, in the proper order,
to the existing items in B.2.3:

B.2.3.1 measurement of execution time

The methods used to measure the execution time of processes and threads, and
the precision of these measurements, may vary considerably depending on the
software architecture of the implementation and on the underlying hardware.
Implementations can also make tradeoffs between the scheduling overhead and
the precision of the execution time measurements. The standard does not impose
any requirement on the accuracy of the execution time; it instead specifies that
the measurement mechanism and its precision are implementation defined.

B.3 Process Primitives
B.3.1 Process Creation and Execution

0 B.3.1 Process Creation and Execution Add the following subclauses:

B.3.1.4 Spawn File Actions

A spawn file actions object may be initialized to contain an ordered sequence of
close, dup2, and open operations to be used by posix_spawn() or posix_spawnp() to
arrive at the set of open file descriptors inherited by the spawned process from the
set of open file descriptors in the parent at the time of the posix_spawn() or
posix_spawnp() call. It had been suggested that the close and dup2 operations
alone are sufficient to rearrange file descriptors and that files which need be
opened for use by the spawned process can be handled either by having the calling

B.3 Process Primitives 71

25
26
27
28
29
30
31

32
33

34
35
36

37
38

39
40
41
42

43
44
45
46
47

48
49
50
51
52
53
54
55

56

57
58
59
60
61
62
63
64

65
66
67
68
69

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

process open them before the posix_spawn() or posix_spawnp() call (and close
them after) or by passing file names to the spawned process (in argv) so that it
may open them itself. The working group recommends that applications use one of
these two methods when practical since detailed error status on a failed open
operation is always available to the application this way. However, the working
group feels that allowing a spawn file actions object to specify open operations is
still appropriate because

(1) It is consistent with equivalent POSIX.5 functionality (see the discussion
on compatibility with POSIX.5 in B.3.1.6).

(2) It supports the 1/O redirection paradigm commonly employed by POSIX
programs designed to be invoked from a shell. When such a program is
the child process, it may not be designed to open files on its own.

(3) It allows file opens that might otherwise fail or violate file
ownership/access rights if executed by the parent process.

Regarding (2) above, the spawn open file action provides to posix_spawn() and
posix_spawnp() the same capability that the shell redirection operators provide to
system(), only without the intervening execution of a shell (e.g.:
systeem("mypraog <fiilleel 3<fiillee2™));;).

Regarding (3) above, if the calling process needs to open one or more files for
access by the spawned process, but has insufficient spare file descriptors, then the
open action is necessary to allow the open to occur in the context of the child pro-
cess after other file descriptors (that must remain open in the parent) have been
closed.

Additionally, if a parent is executed from a file having a “set-user-id” mode bit set
and the POSIX_SPAWN_RESETIDS flag is set in the spawn attributes, a file created
within the parent process will (possibly incorrectly) have the parent's effective
user id as its owner whereas a file created via an open action during
posix_spawn() or posix_spawnp() will have the parent’s real id as its owner; and
an open by the parent process may successfully open a file to which the real user
should not have access or fail to open a file to which the real user should have
access.

File Descriptor Mapping Rationale

The working group had originally proposed using an array that specified the map-
ping of child file descriptors back to the file descriptors of the parent. It was
pointed out by the ballot group that it is not possible to reshuffle file descriptors
arbitrarily in a library implementation of posix_spawn() or posix_spawnp()
without provision for one or more spare file descriptor entries (which simply may
not be available). Such an array requires that an implementation develop a com-
plex strategy to achieve the desired mapping without inadvertently closing the
wrong file descriptor at the wrong time.

It was noted by a member of the Ada Language Bindings working group that the
approved Ada Language Staartt_ Process family of POSIX process primitives uses a
caller-specified set of file actions to alter the normal fork() / exec semantics for
inheritance of file descriptors in a very flexible way, yet no such problems exist
because the burden of determining how to achieve the final file descriptor map-

72 B Rationale and Notes

70
71
72

73

74
75
76
77
78
79
80
81
82
83
84
85

86

87
88
89
90

91

92
93

94
95

96
97

98
99
100
101
102

103
104
105
106
107
108
109

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

ping is completely on the application. Furthermore, although the file actions inter-
face appears frightening at first glance, it is actually quite simple to implement in
either a library or the kernel.

B.3.1.5 Spawn Attributes

The original spawn interface proposed in this standard defined the attributes that
specify the inheritance of process attributes across a spawn operation as a struc-
ture. For the ability to separate optional individual attributes under their
appropriate options (i.e., the spawn-sschedparam and spawn-sclihedpoliiccy
attributes depending upon the Process scheduling option) and also for extensibility
and consistency with the newer POSIX interfaces, the attributes interface has
been changed to an opaque datatype. This interface now consists of the type
posix_spawnattr_t, representing a spawn attributes object, together with associ-
ated functions to initialize or destroy the attributes object, and to set or get each
individual attribute. Although the new object-oriented interface is more verbose
than the original structure, it is simple to use, more extensible, and easy to
implement.

B.3.1.6 Spawn a Process

The POSIX fork() function is difficult or impossible to implement without swapping
or dynamic address translation. POSIX needs process creation and file execution
primitives that can be efficiently implemented without address translation or
other MMU services, for the following reasons:

— Swapping is generally too slow for a realtime environment.

— Dynamic address translation is not available everywhere POSIX might be
useful.

— Processes are too useful to simply option out of POSIX whenever it must run
without address translation or other MMU services.

This function shall be called posix spawn(). A closely related function,
posix_spawnp(), is included for completeness.

The posix_spawn() function is implementable as a library routine, but both
posix_spawn() and posix_spawnp() are designed as kernel operations. Also,
although they may be an efficient replacement for many fork() / exec pairs, their
goal is to provide useful process creation primitives for systems that have
difficulty with fork(), not to provide drop-in replacements for fork() / exec.

This view of the role of posix_spawn() and posix_spawnp() influenced the design of
their API. It does not attempt to provide the full functionality of fork() / exec in
which arbitrary user-specified operations of any sort are permitted between the
creation of the child process and the execution of the new process image; any
attempt to reach that level would need to provide a programming language as
parameters. Instead, posix_spawn() and posix_spawnp() are process creation
primitives like the Startt Praocess and Staartt Process_Search Ada language

B.3 Process Primitives 73

110
111
112

113
114
115
116

117
118
119
120
121

122
123
124
125

126
127
128
129
130
131
132
133
134
135
136

137
138

139
140
141
142
143
144
145
146
147
148

149
150
151

152

153
154

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

bindings in ISO/IEC 14519:1998 {B1} package POSIX_Praocess_Priimmittiiwes and
also like those in many operating systems that are not UNIXY systems, but with
some POSIX-specific additions.

To achieve their coverage goals, posix_spawn() and posix_spawnp() have control of
six types of inheritance: file descriptors, process group ID, user and group ID, sig-
nal mask, scheduling, and whether each signal ignored in the parent will remain
ignored in the child or be reset to its default action in the child.

Control of file descriptors is required to allow an independently written child pro-
cess image to access data streams opened by and even generated or read by the
parent process without being specifically coded to know which parent files and file
descriptors are to be used. Control of the process group ID is required to control
how the child process'’s job control relates to that of the parent.

Control of the signal mask and signal defaulting is sufficient to support the imple-
mentation of system () suggested in P1003.1a. Although support for system () is not
explicitly one of the goals for posix_spawn() and posix_spawnp(), it is covered
under the “at least 50%" coverage goal.

The intention is that the normal file descriptor inheritance across fork(), the sub-
sequent effect of the specified spawn file actions, and the normal file descriptor
inheritance across one of the exec family of functions should fully specify open file
inheritance. The implementation need make no decisions regarding the set of
open file descriptors when the child process image begins execution. Those deci-
sions have already been made by the caller and expressed as the set of open file
descriptors and their FD_CLOEXEC flags at the time of the call together with the
spawn file actions object specified in the call. In the cases where the POSIX
Staartt__Praocess Ada primitives have been implemented in a library, this method
of controlling file descriptor inheritance may be implemented very easily. See
Figure B-1 for a crude, but workable, C language implementation.

Several problems have been identified with posix_spawn() and posix_spawnp(),
but a solution that introduces fewer problems does not appear to exist.

Environment modification for child process attributes not specifiable via the attrp
or file_actions arguments shall be done in the parent process. Since the parent
generally wants to save its context, it is more costly than similar functionality
with fork() / exec. It is also complicated to modify the environment of a mul-
tithreaded process temporarily since all threads must agree when it is safe for the
environment to be changed. However, this cost is only borne by those invocations
of posix_spawn() and posix_spawnp() that use the additional functionality. Since
extensive modifications are not the usual case and are particularly unlikely in
time-critical code, keeping much of the environment control out of posix_spawn()
and posix_spawnp() is appropriate design.

The posix_spawn() and posix_spawnp() functions do not have all the power of
fork() / exec. The fork() function is a wonderfully powerful operation. Its func-
tionality cannot be duplicated in a simple, fast function with no special hardware

1) UNIX is a registered trademark of The Open Group in the United States of America and other
countries.

74 B Rationale and Notes

155
156
157

158

159

160

161

162

163

164

165
166

167
168

169

170
171
172
173
174

175
176
177

178

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

197
198

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

requirements. The posix_spawn() and posix_spawnp() functions are similar to the
process creation operations on many operating systems that are not UNIX
systems.

Requirements
The requirements for posix_spawn() and posix_spawnp() are as follows:
— They must be implementable without an MMU or unusual hardware.
— They must be compatible with existing POSIX standards.
Additional goals are the following:
— They should be efficiently implementable.
— They should be able to replace at least 50% of typical executions of fork().

— A system with posix_spawn() and posix_spawnp() and without fork() should
be useful, at least for realtime applications.

— A system with fork() and the exec family should be able to implement
posix_spawn() and posix_spawnp() as library routines.

Two-Syntax Rationale

POSIX exec has several calling sequences with approximately the same functional-
ity. These appear to be required for compatibility with existing practice. Since
the existing practice for the posix_spawn functions is otherwise substantially
unlike POSIX, simplicity outweighs compatibility. There are, therefore, only two
names for the posix_spawn functions.

The parameter list does not differ between posix_spawn() and posix_spawnp();
posix_spawnp() interprets the second parameter more elaborately than
posix_spawn().

Compatibility with POSIX.5 POSIX_Praocess_Priinmittiiwes. Staartt_ Process

The Staartt Process and Startt Process_Search procedures from ISO/IEC
14519:1998 {B1}, the Ada Language Binding to POSIX.1, encapsulate fork() and
exec functionality in a manner similar to that of posix spawn() and
posix_spawnp(). Originally, in keeping with its simplicity goal, the working group
had limited the capabilities of posix_spawn() and posix_spawnp() to a subset of
the capabilities of Staartt Praocess and Startt Process_Search; certain nonde-
fault capabilities were not supported. However, based on suggestions by the ballot
group to improve file descriptor mapping or drop it, and on the advice of an Ada
Bindings working group member, the working group decided that posix_spawn()
and posix_spawnp() should be sufficiently powerful to implement Staartt_ Process
and Staartt__Prmcess_Search. The rationale is that if the Ada language binding to
such a primitive had already been approved as an IEEE standard, there can be lit-
tle justification for not approving the functionally equivalent parts of a C binding.
The only three capabilities provided by posix_spawn() and posix_spawnp() that
are not provided by Startt _Process and Staartt_Process_Search are optionally
specifying the child’s process group id, the set of signals to be reset to default sig-
nal handling in the child process, and the child’'s scheduling policy and
parameters.

For the Ada Language Binding for Startt Process to be implemented with
posix_spawn(), that binding would need to explicitly pass an empty signal mask

B.3 Process Primitives 75

199
200
201
202
203

204

205
206
207
208

209

210
211
212
213
214
215
216
217
218
219
220

221
222
223
224
225
226
227

228

229
230
231
232
233

234
235
236
237
238

239
240
241
242
243
244
245

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

and the parent’s environment to posix_spawn() whenever the caller of Staartt_-
Process allowed these arguments to default since posix_spawn() does not provide
such defaults. The ability of Staartt_ Process to mask user-specified signals during
its execution is functionally unique to the Ada Language Binding and shall be
dealt with in the binding separately from the call to posix_spawn().

Process Group

The process group inheritance field can be used to join the child process with an
existing process group. By assigning a value of zero to the spawn-pgraoup attri-
bute of the object referenced by attrp, the setpgid() mechanism will place the child
process in a new process group.

Threads

Without the posix_spawn() and posix_spawnp() functions, systems without
address translation can still use threads to give an abstraction of concurrency. In
many cases, thread creation suffices, but it is not always a good substitute. The
posix_spawn() and posix_spawnp() functions are considerably “heavier” than
thread creation. Processes have several important attributes that threads do not.
Even without address translation, a process may have base-and-bound memory
protection. Each process has a process environment including security attributes,
file capabilities, and powerful scheduling attributes specified by POSIX.1 and
POSIX.1b. Processes abstract the behavior of nonuniform-memory-architecture
multiprocessors better than threads, and they are more convenient to use for
activities that are not closely linked.

The posix_spawn() and posix_spawnp() functions may not bring support for multi-
ple processes to every configuration. Process creation is not the only piece of
operating system support required to support multiple processes. The total cost of
support for multiple processes may be quite high in some circumstances. Existing
practice shows that support for multiple processes is uncommon and threads are
common among “tiny kernels.” There should, therefore, probably continue to be
AEPs for operating systems with only one process.

Asynchronous Error Notification Rationale

A library implementation of posix_spawn() or posix_spawnp() may not be able to
detect all possible errors before it forks the child process. This standard provides
for an error indication returned from a child process, which could not successfully
complete the spawn operation, via a special exit status that may be detected using
the status value returned by wait() and waitpid().

The stat_val interface and the macros used to interpret it are not well-suited to
the purpose of returning API errors, but they are the only path available to a
library implementation. Thus, an implementation may cause the child process to
exit with exit status 127 for any error detected during the spawn process after the
posix_spawn() or posix_spawnp() function has successfully returned.

The working group had proposed using two additional macros to interpret
stat_val: First, WIFSPAWNFAIL would have detected a status that indicated that
the child exited because of an error detected during the posix_spawn() or
posix_spawnp() operations rather than during actual execution of the child pro-
cess image. Second, WSPAWNERRNO would have extracted the error value if
WIFSPAWNFAIL indicated a failure. The balloting group strongly opposed this
approach because it would make a library implementation of posix_spawn() or

76 B Rationale and Notes

246
247

248
249
250
251
252
253
254
255
256
257
258
259
260

261
262
263
264
265
266
267
268
269

270

271

272
273
274

275

276

277

278
279
280

281
282
283
284
285
286

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

posix_spawnp() dependent on kernel modifications to waitpid() to be able to
embed special information in stat_val to indicate a spawn failure.

The 8 bits of child process exit status that are guaranteed by this standard to be
accessible to the waiting parent process are insufficient to disambiguate a spawn
error from any other kind of error that may be returned by an arbitrary process
image. No other bits of the exit status are required to be visible in stat val, so
these macros could not be strictly implemented at the library level. Reserving an
exit status of 127 for such spawn errors is consistent with the use of this value by
system () and popen() to signal failures in these operations that occur after the
function has returned, but before a shell is able to execute. The exit status of 127
does not uniquely identify this class of error, nor does it provide any detailed infor-
mation on the nature of the failure. A kernel implementation of posix_spawn() or
posix_spawnp() is permitted (and encouraged) to return any possible error as the
function value, thus providing more detailed failure information to the parent
process.

Thus, no special macros are available to isolate asynchronous posix_spawn() or
posix_spawnp() errors. Instead, errors detected by the posix spawn() or
posix_spawnp() operations in the context of the child process before the new pro-
cess image executes are reported by setting the child’s exit status to 127. The
calling process may use the WIFEXITED and WEXITSTATUS macros on the
stat_val stored by the wait() or waitpid() functions to detect spawn failures to the
extent that other status values with which the child process image may exit
(before the parent can conclusively determine whether the child process image has
begun execution) are distinct from exit status 127.

Library Implementation of Spawn
The posix_spawn() or posix_spawnp() operation is enough to

— Simply start a process executing a process image. This application is the
simplest for process creation, and it may cover most executions of POSIX
fork().

— Support I/0O redirection, including pipes.
— Run the child under a user and group ID in the domain of the parent.
— Run the child at any priority in the domain of the parent.

The posix_spawn() or posix_spawnp() operation does not cover every possible use
of fork(), but it does span the common applications: typical use by shelll and
loogim.

The cost is that before it calls posix_spawn() or posix_spawnp(), the parent must
adjust to a state that posix_spawn() or posix_spawnp() can map to the desired
state for the child. Environment changes require the parent to save some of its
state and restore it afterwards. The effective behavior of a successful invocation of
posix_spawn() is as if the operation were implemented with POSIX operations as
shown in Figure B-1.

B.3 Process Primitives 77

287
288
289
290
291
292
293
294
295
296
297

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

317

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

#imclwde
#imclwde
#imclwde
#imclwde
#imclwde
#imclwde
#imclwde
#imclwde
#imclwde
#imclwde

<syslttypes.h>
<stdliibb.rh>
<stddioco.rh>
<unisstdd.th>
<sched.rh>
<facmtll. .kh>
<siiggnal..th>
<errrmo.th>
<strriimg.th>
<siiggnal..th>

| Himclwde <spawn.rh>0

J OO T T T T Ty
/ OThimgs thhat ccouldd be defiimed im spawn.thf
J OO T T T Ty
tyypedef sstrrwct

{

shortt posiixx_atttrr_fllaags;
#defiime POSIXX_SPAWN SETPGROUP Ox1
#defiime POSIXX_SPAWWN SETSIGMASK 0x2
#defiime POSIXX_SPAWW SETSIGDEF Ox4
#defiime POSIXX_SPAWIN SETSCHEDULER 0x8
#idefiime POSIXX_SPAWIN SETSCHEDPARAM 0x10
#defiime POSIXX_SPAWSN RESETIDS 0x20

pidd_t posixx_atttrr_pgroup;

siggset_t posiixx_atttrr__siiggmesk;;

siggset_t pposiixx_atttrr_siiggdefaultt;;

imt posiix<_atttrr_schedpoliiccy;

strrwct ssched param posix<_atttrr_sclhedparan;
} mposixx_spawnatttrr_t;;

typedef c«char [posix<_spawn fiillee_actiioons_t;;

imt posixx_spawn _fiillee_actiicons_imitt((

posiixx_spawn_fiillee_actiioons_t [fiillee_actiioons);;

imt posix<_spawn fiillee_actiioons_destrraoy(

posiixx_spawn_fiillee_actiioons_t [fiillee_actiioons);;

imt posix<_spawn fiillee_actiicons_addclloose(

posiixx_spawn_fiillee_actiioons_t [fiillee_actiioons,
imt ffiil lddes);;

imt posix<_spawn _fiillee_actiioons_adddup2(

posiixx_spawn_fiillee_actiioons_t [fiillee_actiioons,
imt ffiillddes, iimt mewfiillddes);;

imt posix<_spawn fiillee_actiioons_addopen(

posiixx_spawn_fiillee_actiioons_t [fiillee_actiioons,
imt ffiillddes, cconst cchar [pathh, iimt oofllaag,
muode t mude);;

imt posix<_spawnatttrr _imitt ((

posiixx_spawnatttrr _t [Chtttrr));;

imt posix<_spawnatttrr _destrraoy (

posiixx_spawnatttrr _t [Chtttrr));;

imt posix<_spawnatttrr__getffllaags (

const pposiixx_spawnatttrr_t Chtttrr,,
shortt [fllaags);;

imt posix<_spawnatttrr_setffllaags (

78

B Rationale and Notes

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

386
387
388
389
390
391
392
393
394

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language]

imt posix<__

imt posix<__

imt posix<__

imt posix<__

imt posix<_

imt posix<_

imt posix<__

imt posix<_

imt posix<_

imt posix<__

imt posix<_

imt posix<_

posiixx_spawnatttrr_t [Chtttrr,,

shortt ffllaags);;
spawnatttrr__getgpgroup (

const pposiixx_spawnatttrr_t Chtttrr,,
pidd_t [pgraoup);;
spawnatttrr__setgpgroup (
posiixx_spawnatttrr_t [Chtttrr,,

pidd_t mpgroup);;
spawnatttrr__getsschedpoliiccy (
const pposiixx_spawnatttrr_t Chtttrr,,
imt [kchedpoliiccy);;
spawnatttrr__setsschedpoliiccy (
posiixx_spawnatttrr_t [Chtttrr,,

imt sschedpoliiccy);;
spawnatttrr__getsschedparam ((
const pposiixx_spawnatttrr_t Chtttrr,,
strrwct ssched param [schedparam);
spawnatttrr_setsschedparam ((
posiixx_spawnatttrr_t [Chtttrr,,

const sstrruct ssched_ param [bchedparam);

spawnatttrr__getssiggmesk (

const pposiixx_spawnatttrr_t Chtttrr,,
siggset_t [Biggmask);;
spawnatttrr_setssiggmesk (
posiixx_spawnatttrr_t [Chtttrr,,

const ssiggset t [kiggmesk);;
spawnatttrr__getssiggdefaaultt ((
const pposiixx_spawnatttrr_t Chtttrr,,
siggset_t [Biggdefaultt));;
spawnatttrr__setssiggdefaaultt ((
posiixx_spawnatttrr_t [Chtttrr,,

const ssiggset t [kiggdefaaultt));;
spawn(

pidd_t [pidd,

const cchar [Cpath,

IEEE Std 1003.1d-1999

const poosixx_spawn_fiillee_actiioons _t [fiillee_actiioons,

const pposiixx_spawnatttrr_t Chtttrrpp,
char O const aargv(]],,

char O const esnvp[]]));;

spawnp(

pidd_t [pidd,

const cclhar [fiillee,

const poosixx_spawn_fiillee_actiioons _t [fiillee_actiioons,

const pposiixx_spawnatttrr_t Chtttrrpp,
char O const aargv(]],,
char O const esnvp[]]));;

[O T T T T Iy

| (Examglee posixx_spawn()) lliitbrary routiimed

[O T T T Ty

imt posix<__

spawn(pidd_t [Cpid,

const cchar [Cpath,

const poosixx_spawn_fiillee_actiioons _t [fiillee_actiioons,

const pposiixx_spawnatttrr_t Chtttrrpp,

char
char

O const aargv(]],,
O const esnvp[]]))

B.3 Process Primitives

79

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

395 {

396 | [Creeatee praocess I

397 iff((((Cpidd=foork()))) == (idd_t))®)

398 {

399 / OThiss iiss thhe chilldd processl

400 /| DNy about process groupd

401 iff((atttrrp—>posixx_atttrr_fllaags & POSIXX_SPAWIN SETPGROUP)
402

403 /| MOwerrriidde imheriitteed process groupld

404 iff((setpgidd(®, atttrrp—>posiixx_atttrr_pgroup) !'= 0)
405 {

406 / [Failleed Y

407 exitt(127);;

408

409 }

410 | DNy about process siggnal nresk O

411 iff((atttrrp—>posixx_atttrr_fllaags & POSIXX_SPAWWN SETSIGMASK)
412 {

413 / [Set ttthe siggnal mesk (can'tt ffaaill)) O

414 siggprocmesk(SIGG_SETMASK, &atttrrp—>posixx_atttrr__siggmesk,
415 NULL);;

416 }

417 /| DNy about rreesetttiimg efffeectiiwe user and group IDsd
418 iff((atttrrp—>posixx_atttrr_fllaags & POSIXX_SPAWWN RESETIDS)
419

420 / (None of ttthese can faill ffoor tthhiss case. [0

421 setwidd(getwidd())));;

422 setgid(agetgidd())));;

423 }

424 /| DNy about ddefaaultteed siggnalss O

425 iff((atttrrp—>posixx_atttrr_fllaags & POSIXX_SPAWW SETSIGDEF)
426

427 strrwct ssiggactiioon deflltt;;

428 siggset_t alll__siggnalss;

429 imt ss;

430 / Constrrwct defaaultt ssiggnal aactiicon

431 deflltt..ssa_handleer = SIG DFL;

432 deflltt..ssa_fllaags = O;

433 / Constrrwct ttthe set oof alll ssiggnalssO

434 siggfiilll Isset((&all|__siggnalss);;

435 / Loop foor alll ssiggnalss

436 foor((ss=0; ssiggissmemter((&alll__siggnalss,ss);; ss++)

437 {

438 / (Siggnal ttw be defaultteed?

439 if f((ssiiggissmemier((&atttrrp—>posiixx_atttrr__siggdefaaultt,,ss)))
440 {

441 /| ¥es - defaaultt tthhiss siggnal O

442 iff((siggactiioon(ss, &deflitt,, NULL) == -1)

443 {

444 / [Failleed Y

80 B Rationale and Notes

445
446
447
448
449

450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

exitt(127);;

}
}
}
| DNy about tthhe fdds iff wwe are too map thhenmi!
iff((ffiil lee_actiioons = NULL)
{

/ Loop foor alll aactiioons im objeect [fiillee actiicons
/ Qiinmpleementaatiicon diwes Ibeneatth abstrractiioon) O
char [p = iillee_actiioons;

whil lee([p = "\\@D))

{
iff((sstrrmem(ip, "'cloose(™,,86) == 0)

{
imt ffdd;
iff((sscanf((p+6," %)™, &fd) !'= 1)

{
exitt(127);;
}
iff((clloose(ffdd) == -1) exiitt((1127);;
}
elsse iff((strrmemp(p, " "dup2(™,, %) == 0)

{
imt ffdd, mewfd;
iff((ssscanf((p+5," %t %a) ™, &fdl,&newfdd) !'= 2)

{
exitt(127);;

}
iff((dup2(ffdd, mewfdl) == -1) exiitt((1127);;

}
elsse iff((strrmcmy(p, " "@®pen(™,, %) == 0)

imt ffdd,oofllaag;

mode t mude;

imt tteempfcd;

char pathh[11000];; // (khouldd be dymamicc¥
char [n;

iff((sscanf((p+5," %", &fd) !'= 1)

{

exitt(127);;

}
p = strrchr((p, ',.))) + 1;
q = strrchr((p, '’ 0));;
iff((qg == NULL) eexiitt((1127);;
strrmepy(path, m, @-p);;

patth[cp—-p] = "\\D;;
iff((sscanf((oq+1," %m %@)",,&ofl laag, &mude)!!'=2)
{
exitt(127);;
}
iff((cloose(ffdd) == -1)
{

iff((eerrrmo !'= EBADF) eexiitt((1127);;
}

B.3 Process Primitives 81

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

521
522
523
524
525
526
527
528
529

530
531
532
533
534
535
536
537

538
539
540
541
542
543
544
545
546
547
548
549

550
551

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

tempfdd = open(pathh, oofllaag, mude);;
iff((tteempfdd == -1) eexiitt((1127);;
iff((tteempfdd 1= fcd)
{
iff((dup2(tteempfdd,ffdd) == -1)
{
exitt(127);;
}
iff((clloose(tteempfdd) == -1)

{
exitt(127);;

}

elsse
{
exitt(127);;
p = strrchr((p,))"7) + 1;
}
}

/| DNy about ssetttiimmg new scheduliimmg poliiccy and paramstecrss [
iff((atttrrp—>posixx_atttrr_fllaags & POSIXX_SPAWWN SETSCHEDULER)

iff((ssched_setsscheduleer((®, atttrrp—>posiixx_atttrr_schedpoliiccy,
&atttrrp—>posixx_ atttrr_schedparam) == -1)

{
exitt(127);;

}

/| DNy about ssetttiimg onlyy mew scheduliimg parameteerss
iff((atttrrp—>posixx_atttrr_fllaags & POSIXX_SPAWIN SETSCHEDPARAM

iff((sched_setmparam(®, &atttrrpp—>posixx_atttrr__schedparam)—==-1)
{
exitt(127);;

}

/ (Now executes tthe program at patmhd

/ Any fidd thhat sstiillll hhas FD_CLOEXEC set willll tbe clloosed
execve(mpath, aargv, envp);;

exitt((1127);; // Cexec faail leedI

}

elsse
{
/ OThiss iiss thhe parent ((callliimg) process Y
iff((((iimt))pidd == -1) rrestwrm errrmo;
retwrm O;
}
}

J OO i
/ 0 Heree iss a crwde but efffeectiiwve inmpeementaatiicon of ttthe O

82 B Rationale and Notes

552
553
554
555
556
557
558
559
560
561
562
563

564
565
566
567
568
569
570
571

572
573
574
575
576
577
578
579
580
581
582

583
584
585
586
587
588
589
590
591

592
593
594
595
596
597
598
599
600

601
602

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

/ O fiillee actiicon objeect coperators whicch stwmree actiicons as O

/ O concateenateed tooken separateed strriimgs. o

J OO T e

| [Creeatee objeect wittth no actiioons. [

imt posixx_spawn _fiillee_actiicons__imitt((
posiixx_spawn_fiillee_actiioons_t [fiillee_actiioons)

{

(iillee_actiioons = mallooc(ssizzeof((char))));;
iff(((fiil lee_actiioons == NULL) rreetwurm ENOMEM
strrcpy(fiil lee_actiicons, "™™));;

reetwrm O;

}

| (Freee objeect sstoorage and meke imvaliidd. OO
imt posix<_spawn fiillee_actiioons_destrraoy(
posiixx_spawn_fiillee_actiioons_t [fiillee_actiioons)

frreee(iil lee_actiioons);;
(fiillee_actiioons = NULL;
reetwrm O;

}

/ Add a new actiioon strriimng tm objeect.. [J
staatiicc imt aadd_too_fiillee_actiioons(
posiixx_spawn_fiillee_actiioons_t [fiillee_actiioons,
char [Chew actiiocon)
{
[(fiil lee_actiioons = reealllooc
(Hiillee_actiicons, sstrrileen(il lee_actiicons)+strrlleen(mew_actiioon)+1);;

iff(((fiil lee_actiioons == NULL) rreetwurm ENOMEM
strrecat(((fiil lee_actiioons, mew_actiioon);;
reetwrm O;

}

/ Add a cloose actiioon tom objeect.. OO
imt posix<_spawn _fiillee_actiicons_addclloose(
posiixx_spawn_fiillee_actiioons_t [fiillee_actiioons,
imt ffiillddes)
{
char tteemy1100];;
spriimtff((tteemp, "'cloose(%d)™,, ffiillddes);;
retwrm add_twm fiillee_actiioons(ffiil lee_actiicons, tteemy);;

}

/ Add a dup2 actiioon tam objeect.. [
imt posix<_spawn fiillee_actiioons_adddup2(
posiixx_spawn_fiillee_actiioons_t [fiillee_actiioons,
imt ffiillddes, iimt mewfiillddes)
{
char tteemy1100];;
spriimtff((tteemp, "'dlup2(%a %)™, ffiillddes, mewfiillddes);;
retwrm add_twm fiillee_actiioons(ffiil lee_actiicons, tteemy);;

}

/ Add an open actiioon tom objeect.. OO
imt posix<_spawn fiillee_actiioons_addopen(

B.3 Process Primitives

83

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

603 posiixx_spawn_fiillee_actiioons_t [fiillee_actiioons,

604 imt ffiillddes, cconst cchar [pathh, iimt oofllaag,

605 mode t mude)

606 {

607 char tteemy1100];;

608 spriimtff((tteemp, "'@pen (% % Ve %a)™,, ffiillddes, mpatth, oofllaag, mude);;
609 retwrm add_twm fiillee_actiioons(ffiil lee_actiicons, tteemy);;

610 }

611 / T T T T T T T T T I T Y

612 /0O Heree iss a crwde but efffeectiiwe inmpeementaatiioon of ttthe O
613 /O spawn atttrriitbutees objeect ffunctiioons whiccihh menippulaates o
614 /O tthe imdiwiddual aatttrriibbutees. o
615 f T T T T T T T T T T T I T Y

616 [Omittiiaaliizze objeect wiittth defaaultt walwes. OO0

617 imt pposixx_spawnatttrr_imitt ((

618 posiixx_spawnatttrr_t [Chtttrr))

619 {

620 atttrr-->posiixx__ atttrr_fllaags=0;

621 atttrr-->posiixx_ atttrr__pgroup=0;

622 / O Defaaultt walwe of ssiggnal mrask iiss ththe pareent'’ss siggnal nresk O
623 / O otther walwes aree alsso allloowed [

624 siggpraocmesk (M, NULL ,&atttrr-->posiixx_ atttrr__siiggmesk));;

625 siggemputyyset((&atttrr-->posix<_atttrr_siggdefaaultt));;

626 / O Defaaultt walwes of sscheduliimg atttrr.. iimheriitteed frrom tthe parent O
627 / O otther walwes are alsso allloowed [

628 atttrr-->posiixx_atttrr__schedpoliiccy=sched_getsscheduleer((®);;

629 sclhed_getparam(@®,&atttrr-->posiixx_ atttrr_schedparam));

630 reetwrm O;

631 }

632 imt pposixx_spawnatttrr_destrraoy (

633 posiixx_spawnatttrr_t [Chtttrr))
634 {

635 / 0 No actiioon needed [0

636 reetwrm O;

637 }

638 imt pposixx_spawnatttrr_getffllaags (

639 const pposiixx_spawnatttrr_t Chtttrr,,
640 shortt [fllaags)

641 {

642 (fllaags=atttrr-->posixx_ atttrr_fllaags;

643 reetwrm O;

644 }

645 imt pposixx_spawnatttrr__setffllaags (

646 posiixx_spawnatttrr_t [Chtttrr,,
647 shortt ffllaags)

648 {

649 atttrr-->posiixx_ atttrr_ fllaags=fllaags;
650 reetwrm O;

651 }

652 imt pposixx_spawnatttrr _getgogroup (
653 const pposiixx_spawnatttrr_t Chtttrr,,

84 B Rationale and Notes

654
655
656
657
658

659
660
661
662
663
664
665

666
667
668
669
670
671
672

673
674
675
676
677
678
679

680
681
682
683
684
685
686

687
688
689
690
691
692
693

694
695
696
697
698
699
700

701
702

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

pidd_t [pgroup)
{
Cpgraoup=atttrr-->posixx_atttrr__pgroup;
reetwrm O;

}

imt posix<_spawnatttrr_setpgroup (
posiixx_spawnatttrr_t [Chtttrr,,
pidd_t pgroup)
{
atttrr-->posiixx_ atttrr__pgroup=pgroup;
reetwrm O;

}

imt posix<_spawnatttrr _getsschedpoliiccy (
const pposiixx_spawnatttrr_t Chtttrr,,
imt [kchedpoliiccy)
{
Ckchedpoliiccy=atttrr-->posiixx_ atttrr_schedpoliiccy;
reetwrm O;

}

imt posix<_spawnatttrr _setsschedpoliiccy (
posiixx_spawnatttrr_t [Chtttrr,,
imt sschedpoliiccy)
{
atttrr-->posiixx_ atttrr__schedpoliiccy=schedpoliiccy;
reetwrm O;

}

imt posix<_spawnatttrr__getsschedparam (
const pposiixx_spawnatttrr_t [Chtttrr,,
strrwct ssched param [schedparam)
{
[schedparam=atttrr-->posiixx_atttrr__schedparaam;
reetwrm O;

}

imt posix<_spawnatttrr_setsschedparam (
posiixx_spawnatttrr_t [Chtttrr,,
const sstrruct ssched_param [schedparam)
{
atttrr-->posiixx_ atttrr__schedparam=schedparam;
reetwrm O;

}

imt posixx_spawnatttrr__getssiggmask (
const pposiixx_spawnatttrr_t Chtttrr,,
siggset_t [Biggmask)
{
Ckiggmesk=atttrr-->posiixx_atttrr__siiggmesk;
reetwrm O;

}

imt posix<_spawnatttrr_setssiggmask (
posiixx_spawnatttrr_t [Chtttrr,,

B.3 Process Primitives 85

703
704
705
706
707

708
709
710
711
712
713
714

715
716
717
718
719
720
721
722

723

724
725
726

727
728
729
730
731
732
733
734
735
736
737
738
739

740

741

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

const ssiggset t [Biggmask)
{
atttrr-->posiixx_ atttrr__siggmesk=_[siiggmask;
reetwrm O;

}

imt posix<_spawnatttrr_getssiggdefaaultt ((
const pposiixx_spawnatttrr_t [Chtttrr,,
siggset_t [Biggdefaultt))
{
(kiggdefaaultt=atttrr-->posiixx_ atttrr_siiggdefaultt;;
reetwrm O;

}

imt posix<_spawnatttrr _setssiggdefaaultt ((
posiixx_spawnatttrr_t [Chtttrr,,
const ssiggset t [kiggdefaaultt))
{
atttrr-->posiixx_atttrr__siggdefaaultt=[5iggdefaaultt;;
reetwrm O;

}

Figure B-1 - posix_spawn() Equivalent

I/0 redirection with posix_spawn() or posix_spawnp() is accomplished by crafting
a file_actions argument to effect the desired redirection. Such a redirection follows
the general outline of the example in Figure B-2.

/0 To reedirreect mew staandardl output ((ffdd 1) ttoo a fiillee, O

/ 0 and reedirreect mew staandardl imput ((ffdd 0) ffrrom my fdd socket pairr[[11],,
/0 and cloose my fdd socket pairr[[@0] iinn tthe new praocess. O
posiixx_spawn_fiillee_actiioons_t ffiillee_actiioons;

posiixx_spawn fiillee_actiioons_imitt ((&fiillee_actiioons);;
posiixx_spawn_fiillee_actiioons_addopen (&fiillee_actiicons, 11, "mewout™,, N;;
posiixx_spawn _fiillee_actiicons_dup2 (&fiillee_actiicons, ssocket pairr[[11],, X0);;

posiixx_spawn_fiillee_actiioons_clloose (&fiillee_actiioons, ssocket pairr[[0]));;
posiixx_spawn_fiillee_actiioons_clloose (&fiillee_actiioons, ssocket pairr[[11]));;
posiixx_spawn(...... ., &fiillee_actiioons,)
posiixx_spawn_fiillee_actiioons_destrroy (&fiillee_actiioons);;

Figure B-2 - 1/0O Redirection with posix_spawn()

Spawning a process under a new userid uses the outline shown in Figure B-3.

86 B Rationale and Notes

742
743
744
745
746
747

748

749

750

751

752
753
754
755
756
757
758
759
760
761
762

763
764
765
766
767
768
769
770
771
772
773
774
775
776
7
778
779

780
781
782

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

Save = getwid());;
setwidd(mewid);;
posiixx_spawn(......))
setwidd(Save);;

Figure B-3 - Spawning a new Userid Process

B.13 Execution Scheduling

0 B.13 Execution Scheduling Add the following subclause:

B.13.3 Sporadic Server Scheduling Policy

The sporadic server is a mechanism defined for scheduling aperiodic activities in
time-critical realtime systems. This mechanism reserves a certain bounded
amount of execution capacity for processing aperiodic events at a high priority
level. Any aperiodic events that cannot be processed within the bounded amount
of execution capacity are executed in the background at a low priority level. Thus,
a certain amount of execution capacity can be guaranteed to be available for pro-
cessing periodic tasks, even under burst conditions in the arrival of aperiodic pro-
cessing requests (i.e., a large number of requests in a short time interval). The
sporadic server also simplifies the schedulability analysis of the realtime system
because it allows aperiodic processes or threads to be treated as if they were
periodic. The sporadic server was first described by Sprunt, et al. {B2}.

The key concept of the sporadic server is to provide and limit a certain amount of
computation capacity for processing aperiodic events at their assigned normal
priority, during a time interval called the replenishment period. Once the entity
controlled by the sporadic server mechanism is initialized with its period and
execution-time budget attributes, it preserves its execution capacity until an
aperiodic request arrives. The request will be serviced (if no higher priority activi-
ties are pending) as long as execution capacity is left. If the request is completed,
the actual execution time used to service it is subtracted from the capacity, and a
replenishment of this amount of execution time is scheduled to happen one replen-
ishment period after the arrival of the aperiodic request. If the request is not
completed, because no execution capacity is left, then the aperiodic process or
thread is assigned a lower background priority. For each portion of consumed exe-
cution capacity, the execution time used is replenished after one replenishment
period. At the time of replenishment, if the sporadic server was executing at a
background priority level, its priority is elevated to the normal level. Other simi-
lar replenishment policies have been defined, but the one presented here
represents a compromise between efficiency and implementation complexity.

The interface that appears in this section defines a new scheduling policy for
threads and processes that behaves according to the rules of the sporadic server
mechanism. Scheduling attributes are defined and functions are provided to allow

B.13 Execution Scheduling 87

783
784
785
786

787

788
789
790
791

792
793

794
795

796
797
798

799
800

801
802
803
804
805
806

807
808
809
810
811
812
813
814
815
816
817
818
819
820
821

822
823
824
825
826
827
828

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

the user to set and get the parameters that control the scheduling behavior of this
mechanism, namely the normal and low priority, the replenishment period, the
maximum number of pending replenishment operations, and the initial
execution-time budget.

B.13.3.1 Scheduling Aperiodic Activities (rationale)

Virtually all realtime applications are required to process aperiodic activities. In
many cases, there are tight timing constraints that the response to the aperiodic
events must meet. Usual timing requirements imposed on the response to these
events are

— The effects of an aperiodic activity on the response time of lower priority
activities must be controllable and predictable.

— The system must provide the fastest possible response time to aperiodic
events.

— It must be possible to take advantage of all the available processing
bandwidth not needed by time-critical activities to enhance average-case
response times to aperiodic events.

Traditional methods for scheduling aperiodic activities are background processing,
polling tasks, and direct event execution:

— Background processing consists of assigning a very low priority to the pro-
cessing of aperiodic events. It utilizes all the available bandwidth in the sys-
tem that has not been consumed by higher priority threads. However, it is
difficult, or impossible, to meet requirements on average-case response time
because the aperiodic entity has to wait for the execution of all other enti-
ties that have higher priority.

— Polling consists of creating a periodic process or thread for servicing
aperiodic requests. At regular intervals, the polling entity is started, and it
services accumulated pending aperiodic requests. If no aperiodic requests
are pending, the polling entity suspends itself until its next period. Polling
allows the aperiodic requests to be processed at a higher priority level.
However, worst and average-case response times of polling entities are a
direct function of the polling period, and there is execution overhead for
each polling period, even if no event has arrived. If the deadline of the
aperiodic activity is short compared to the interarrival time, the polling fre-
guency must be increased to guarantee meeting the deadline. For this case,
the increase in frequency can dramatically reduce the efficiency of the sys-
tem and, therefore, its capacity to meet all deadlines. Yet, polling
represents a good way to handle a large class of practical problems because
it preserves system predictability and because the amortised overhead
drops as load increases.

— Direct event execution consists of executing the aperiodic events at a high
fixed-priority level. Typically, the aperiodic event is processed by an inter-
rupt service routine as soon as it arrives. This technique provides predict-
able response times for aperiodic events, but makes the response times of
all lower priority activities completely unpredictable under burst arrival
conditions. Therefore, if the density of aperiodic event arrivals is
unbounded, it may be a dangerous technique for time-critical systems. Yet,

88 B Rationale and Notes

829
830

831
832
833
834
835
836
837
838
839
840

841

842
843
844
845
846
847

848
849
850
851
852

853

854
855
856
857
858

859
860
861
862
863
864
865
866
867
868
869

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

for cases in which the physics of the system imposes a bound on the event
arrival rate, it is probably the most efficient technique.

The sporadic server scheduling algorithm combines the predictability of the pol-
ling approach with the short response times of the direct event execution. Thus, it
allows systems to meet an important class of application requirements that cannot
be met by using the traditional approaches. Multiple sporadic servers with
different attributes can be applied to the scheduling of multiple classes of
aperiodic events, each with different kinds of timing requirements, e.g., individual
deadlines, average response times. It also has many other interesting applications
for realtime, e.g., scheduling producer/consumer tasks in time-critical systems,
limiting the effects of faults on the estimation of task execution-time
requirements.

B.13.3.2 Existing Practice

The sporadic server has been used in different kinds of applications, e.g., military
avionics, robot control systems, industrial automation systems. There are exam-
ples of many systems that cannot be successfully scheduled using the classic
approaches, such as direct event execution or polling, and are schedulable using a
sporadic server scheduler. The sporadic server algorithm itself can successfully
schedule all systems scheduled with direct event execution or polling.

The sporadic server scheduling policy has been implemented as a commercial pro-
duct in the run-time system of the Verdix Ada compiler. Many applications have
also used a much less efficient application-level sporadic server. These real-time
applications would benefit from a sporadic server scheduler implemented at the
scheduler level.

B.13.3.3 Library-Level vs. Kernel-Level Implementation

The sporadic server interface described in this subclause requires the sporadic
server policy to be implemented at the same level as the scheduler. In other
words, the process sporadic server shall be implemented at the kernel level and
the thread sporadic server policy shall be implemented at the same level as the
thread scheduler, i.e., kernel or library level.

In an earlier interface for the sporadic server, this mechanism was implementable
at a different level than the scheduler. This feature allowed the implementer to
choose between an efficient scheduler-level implementation, or a simpler user or
library-level implementation. However, the working group considered that this
interface made the use of sporadic servers more complex and that library-level
implementations would lack some of the important functionality of the sporadic
server, namely the limitation of the actual execution time of aperiodic activities.
The working group also felt that the interface described in this chapter does not
preclude library-level implementations of threads intended to provide efficient
low-overhead scheduling for threads that are not scheduled under the sporadic
server policy.

B.13 Execution Scheduling 89

870

871
872
873
874
875
876
877
878
879
880
881
882

883

884
885
886
887
888
889
890
891
892
893

894

895
896
897
898
899
900
901
902
903
904
905

906
907
908
909
910
911
912
913
914

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

B.13.3.4 Range of Scheduling Priorities

Each of the scheduling policies supported in POSIX.1b has an associated range of
priorities. The priority ranges for each policy might or might not overlap with the
priority ranges of other policies. For time-critical realtime applications it is usual
for periodic and aperiodic activities to be scheduled together in the same proces-
sor. Periodic activities will usually be scheduled using the SCHED_FIFO scheduling
policy, while aperiodic activities may be scheduled using SCHED_SPORADIC.
Since the application developer will require complete control over the relative
priorities of these activities in order to meet the application’s timing require-
ments, it would be desirable for the priority ranges of SCHED_FIFO and
SCHED_SPORADIC to overlap completely. Therefore, although the standard does
not require any particular relationship between the different priority ranges, it is
recommended that these two ranges should coincide.

B.13.3.5 Dynamically Setting the Sporadic Server Policy

Several members of the working group requested that implementations should not
be required to support dynamically setting the sporadic server scheduling policy
for a thread. The reason is that this policy may have a high overhead for library-
level implementations of threads; and, if threads are allowed to dynamically set
this policy, this overhead can be experienced even if the thread does not use that
policy. By disallowing the dynamic setting of the sporadic server scheduling policy,
these implementations can accomplish efficient scheduling for threads using other
policies. If a strictly conforming application needs to use the sporadic server policy
and is, therefore, willing to pay the overhead, it shall set this policy at the time of
thread creation.

B.13.3.6 Limitation of the Number of Pending Replenishments

The number of simultaneously pending replenishment operations shall be limited
for each sporadic server for two reasons: an unlimited number of replenishment
operations would need an unlimited number of system resources to store all the
pending replenishment operations; on the other hand, in some implementations
each replenishment operation will represent a source of priority inversion (just for
the duration of the replenishment operation) and thus, the maximum amount of
replenishments shall be bounded to guarantee bounded response times. The way
in which the number of replenishments is bounded is by lowering the priority of
the sporadic server to sched_ss_low_priority when the number of pending replen-
ishments has reached its limit. In this way, no new replenishments are scheduled
until the number of pending replenishments decreases.

In the sporadic server scheduling policy defined in this standard, the application
can specify the maximum number of pending replenishment operations for a sin-
gle sporadic server, by setting the value of the sched_ss_max_repl scheduling
parameter. This value shall be between one and {SS_REPL_MAX}, which is a max-
imum limit imposed by the implementation. The limit {SS_REPL_MAX} shall be
greater than or equal to { POSIX_SS_REPL_MAX}, which is defined to be four in
this standard. The minimum limit of four was chosen so that an application can at
least guarantee that four different aperiodic events can be processed during each
interval of length equal to the replenishment period.

a0 B Rationale and Notes

915

916

917

918

919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942

943
944
945
946
947
948
949

950

951
952
953
954
955
956

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

B.14 Clocks and Timers

0 B.14 Clocks and Timers Add the following subclauses:

B.14.3 Execution Time Monitoring

B.14.3.1 Introduction

The main goals of the execution time monitoring facilities defined in this chapter
are to measure the execution time of processes and threads and to allow an appli-
cation to establish CPU time limits for these entities. The analysis phase of
time-critical realtime systems often relies on the measurement of execution times
of individual threads or processes to determine whether the timing requirements
will be met. Also, performance analysis techniques for soft deadline realtime sys-
tems rely heavily on the determination of these execution times. The execution
time monitoring functions provide application developers with the ability to meas-
ure these execution times on line and open the possibility of dynamic
execution-time analysis and system reconfiguration, if required. The second goal
of allowing an application to establish execution time limits for individual
processes or threads and detecting when they overrun allows program robustness
to be increased by enabling on-line checking of the execution times. If errors are
detected (possibly because of erroneous program constructs, the existence of
errors in the analysis phase, or a burst of event arrivals) on-line detection and
recovery are possible in a portable way. This feature can be extremely important
for many time-critical applications. Other applications require trapping CPU-time
errors as a normal way to exit an algorithm; for instance, some realtime artificial
intelligence applications trigger a number of independent inference processes of
varying accuracy and speed, limit how long they can run, and pick the best answer
available when time runs out. In many periodic systems, overrun processes are
simply restarted in the next resource period, after necessary end-of-period actions
have been taken. This behavior allows algorithms that are inherently
data-dependent to be made predictable.

The interface that appears in this chapter defines a new type of clock, the
CPU-time clock, which measures execution time. Each process or thread can
invoke the clock and timer functions defined in POSIX.1b to use them. Functions
are also provided to access the CPU-time clock of other processes or threads to
enable remote monitoring of these clocks. Monitoring of threads of other processes
is not supported since these threads are not visible from outside of their own pro-
cess with the interfaces defined in POSIX.1c.

B.14.3.2 Execution Time Monitoring Interface

The clock and timer interface defined in POSIX.1b (Section 14) only defines one
clock, which measures wall-clock time. The requirements for measuring execution
time of processes and threads, and setting limits to their execution time by detect-
ing when they overrun, can be accomplished with that interface if a new kind of
clock is defined. These new clocks measure execution time, and one is associated
with each process and with each thread. The clock functions currently defined in

B.14 Clocks and Timers 91

957
958
959
960
961

962
963
964
965
966
967
968
969
970
971
972

973
974
975
976
977
978
979
980
981

982

983
984
985
986
987
988
989
990
991
992
993

994

995
996
997
998
999
1000
1001

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

POSIX.1b can be used to read and set these CPU-time clocks, and timers can be
created using these clocks as their timing base. These timers can then be used to
send a signal when some specified execution time has been exceeded. The
CPU-time clocks of each process or thread can be accessed by using the symbols
CLOCK_PROCESS_CPUTIME_ID or CLOCK_THREAD_CPUTIME_ID.

The clock and timer interface defined in POSIX.1b and extended with the new kind
of CPU-time clock would only allow processes or threads to access their own
CPU-time clocks. However, many realtime systems require the possibility of moni-
toring the execution time of processes or threads from independent monitoring
entities. In order to allow applications to construct independent monitoring enti-
ties that do not require cooperation from or modification of the monitored entities,
two functions have been defined in this chapter: clock_getcpuclockid(), for access-
ing CPU-time clocks of other processes, and pthread_getcpuclockid(), for accessing
CPU-time clocks of other threads. These functions return the clock identifier asso-
ciated with the process or thread specified in the call. These clock IDs can then be
used in the rest of the clock function calls.

The clocks accessed through these functions could also be used as a timing base
for the creation of timers, thereby allowing independent monitoring entities to
limit the CPU-time consumed by other entities. However, this possibility would
imply additional complexity and overhead because of the need to maintain a timer
queue for each process or thread to store the different expiration times associated
with timers created by different processes or threads. The working group decided
this additional overhead was not justified by application requirements. Therefore,
creation of timers attached to the CPU-time clocks of other processes or threads
has been specified as implementation defined.

B.14.3.3 Overhead Considerations

The measurement of execution time may introduce additional overhead in the
thread scheduling, because of the need to keep track of the time consumed by each
of these entities. In library-level implementations of threads, the efficiency of
scheduling could be somehow compromised because of the need to make a kernel
call, at each context switch, to read the process CPU-time clock. Consequently, a
thread creation attribute called cpu-cloock-rreequirreement was defined to allow
threads to disconnect their respective CPU-time clocks. However, the balloting
group considered that this attribute itself introduced some overhead and that in
current implementations it was not worth the effort. Therefore, the attribute was
deleted, and thus thread CPU-time clocks are required for all threads if the
Thread CPU-Time Clocks option is supported.

B.14.3.4 Accuracy of CPU-time Clocks

The mechanism used to measure the execution time of processes and threads is
specified in this document as implementation defined. The reason for this
requirement is that both the underlying hardware and the implementation archi-
tecture have a very strong influence on the accuracy achievable for measuring
CPU-time. For some implementations, the specification of strict accuracy require-
ments would represent very large overheads or even the impossibility of being
implemented.

92 B Rationale and Notes

1002
1003
1004
1005
1006
1007
1008

1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020

1021

1022
1023
1024
1025
1026
1027
1028
1029
1030
1031

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042

1043
1044
1045
1046
1047
1048
1049

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

Since the mechanism for measuring execution time is implementation defined,
realtime applications will be able to take advantage of accurate implementations
using a portable interface. Of course, strictly conforming applications cannot rely
on any particular degree of accuracy, in the same way as they cannot rely on a
very accurate measurement of wall clock time. There will always exist applica-
tions whose accuracy or efficiency requirements on the implementation are more
rigid than the values defined in this or any other standard.

In any case, realtime applications would expect a minimum set of characteristics
from most implementations. One such characteristic is that the sum of all the
execution times of all the threads in a process equals the process execution time
when no CPU-time clocks are disabled. This property may not always be true
because implementations may differ in how they account for time during context
switches. Another characteristic is that the sum of the execution times of all
processes in a system equals the number of processors, multiplied by the elapsed
time, assuming that no processor is idle during that elapsed time. However, in
some systems it might not be possible to relate CPU-time to elapsed time. For
example, in a heterogeneous multiprocessor system in which each processor runs
at a different speed, an implementation may choose to define each *“second” of
CPU-time to be a certain number of “cycles” that a CPU has executed.

B.14.3.5 Existing Practice

Measuring and limiting the execution time of each concurrent activity are com-
mon features of most industrial implementations of realtime systems. Almost all
critical realtime systems are currently built upon a cyclic executive. With this
approach, a regular timer interrupt kicks off the next sequence of computations.
It also checks that the current sequence has completed. If it has not, then some
error recovery action can be undertaken (or at least an overrun is avoided).
Current software engineering principles and the increasing complexity of software
are driving application developers to implement these systems on multi-threaded
or multi-process operating systems. Therefore, if a POSIX operating system is to be
used for this type of application, then it must offer the same level of protection.

Execution time clocks are also common in most UNIX implementations, although
these clocks usually have different requirements from those of realtime applica-
tions. The POSIX.1 times() function supports the measurement of the execution
time of the calling process and its terminated child processes. This execution time
is measured in clock ticks and is supplied as two different values with the user
and system execution times, respectively. BSD {B60} supports the function
getrusage(), which allows the calling process to get information about the
resources used by itself and/or all of its terminated child processes. The resource
usage includes user and system CPU time. Some UNIX systems have options to
specify high resolution (up to one microsecond) CPU time clocks using the times()
or the getrusage() functions.

The times() and getrusage() interfaces do not meet important realtime require-
ments such as the possibility of monitoring execution time from a different process
or thread or the possibility of detecting an execution time overrun. The latter
requirement is supported in some UNIX implementations that are able to send a
signal when the execution time of a process has exceeded some specified value. For
example, BSD defines the functions getitimer () and setitimer (), which can operate
either on a realtime clock (wall clock) or on virtual-time or profile-time clocks,

B.14 Clocks and Timers 93

1050
1051
1052
1053

1054
1055

1056
1057
1058
1059
1060

1061

1062
1063
1064
1065
1066
1067
1068
1069
1070
1071

1072

1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

1083

1084
1085
1086
1087
1088
1089
1090
1091

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

which measure CPU time in two different ways. These functions do not support
access to the execution time of other processes. System V supports similar func-
tions after release 4. Some emerging implementations of threads also support
these functions.

IBM’'s MVS operating system supports per-process and per-thread execution time
clocks. It also supports limiting the execution time of a given process.

Given all this existing practice, the working group considered that the POSIX.1b
clocks and timers interface was appropriate to meet most of the requirements that
realtime applications have for execution time clocks. Functions were added to get
the CPU time clock IDs and to allow or disallow the thread CPU time clocks (in
order to preserve the efficiency of some implementations of threads).

B.14.3.6 Clock Constants

The definition of the manifest constants CLOCK_PROCESS CPUTIME_ID and
CLOCK_THREAD_CPUTIME_ID allows processes or threads, respectively, to access
their own execution-time clocks. However, given a process or thread, access to its
own execution-time clock is also possible if the clock ID of this clock is obtained
through a call to clock getcpuclockid() or pthread_getcpuclockid(). Therefore,
these constants are not necessary and could be deleted to make the interface
simpler. Their existence saves one system call in the first access to the CPU-time
clock of each process or thread. The working group considered this issue and
decided to leave the constants in the standard because they are closer to the
POSIX.1b use of clock identifiers.

B.14.3.7 Library Implementations of Threads

In library implementations of threads, kernel entities and library threads can
coexist. In this case, if the CPU-time clocks are supported, most of the clock and
timer functions will need to have two implementations: one in the thread library
and one in the system calls library. The main difference between these two imple-
mentations is that the thread library implementation will have to deal with clocks
and timers that reside in the thread space, while the kernel implementation will
operate on timers and clocks that reside in kernel space. In the library implemen-
tation, if the clock ID refers to a clock that resides in the kernel, a kernel call will
have to be made. The correct version of the function can be chosen by specifying
the appropriate order for the libraries during the link process.

B.14.3.8 History of Resolution Issues: Deletion of the enablee attribute

In the draft corresponding to the first balloting round, CPU-time clocks had an
attribute called enablee. This attribute was introduced by the working group to
allow implementations to avoid the overhead of measuring execution time for
processes or threads for which this measurement was not required. However, the
enablee attribute received several ballot objections. The main objection was that
processes are already required to measure execution time by the POSIX.1 times()
function. Consequently, the enablee attribute was considered unnecessary and
was deleted from this standard.

94 B Rationale and Notes

1092

1093

1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113

1114
1115
1116
1117
1118
1119
1120
1121

1122

1123
1124
1125
1126
1127
1128
1129
1130
1131

1132
1133

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999
B.14.4 Rationale Relating to Timeouts

B.14.4.1 Requirements for Timeouts

Realtime systems that have to operate reliably over extended periods without
human intervention are characteristic in embedded applications such as avionics,
machine control, and space exploration, as well as more mundane applications
such as cable TV, security systems, and plant automation. A multi-tasking para-
digm, in which many independent and/or cooperating software functions relinqu-
ish the processor(s) while waiting for a specific stimulus, resource, condition, or
operation completion, is very useful in producing well-engineered programs for
such systems. For such systems to be robust and fault tolerant, expected
occurrences that are unduly delayed or that never occur must be detected so that
appropriate recovery actions may be taken. This requirement is difficult to
achieve if there is no way for a task to regain control of a processor once it has
relinquished control (blocked) awaiting an occurrence which, perhaps because of
corrupted code, hardware malfunction, or latent software bugs, will not happen
when expected. Therefore, the common practice in realtime operating systems is
to provide a capability to time out such blocking services. Although there are
several methods already defined by POSIX to achieve this timeout capability, none
is as reliable or efficient as initiating a timeout simultaneously with initiating a
blocking service. Timeouts are especially critical in hard-realtime embedded sys-
tems because the processors typically have little time reserve, and allowed fault
recovery times are measured in milliseconds rather than seconds.

The working group largely agreed that such timeouts were necessary and ought to
become part of the standard, particularly vendors of realtime operating systems
whose customers had already expressed a strong need for timeouts. There was
some resistance to inclusion of timeouts in the standard because the desired
effect, fault tolerance, could, in theory, be achieved using existing facilities and
alternative software designs, but there was no compelling evidence that realtime
system designers would embrace such designs at the sacrifice of performance
and/or simplicity.

B.14.4.2 Which Services Should Be Timed Out?

Originally, the working group considered the prospect of providing timeouts on all
blocking services, including those currently existing in POSIX.1, POSIX.1b, and
POSIX.1c, and future interfaces to be defined by other working groups, as a gen-
eral policy. This proposal was rather quickly rejected because of the scope of such
a change, and the fact that many of those services would not normally be used in a
realtime context. More traditional time-sharing solutions to time out would
suffice for most of the POSIX.1 interfaces, while others had asynchronous alterna-
tives that, while more complex to utilize, would be adequate for some realtime and
all nonrealtime applications.

The list of potential candidates for timeouts was narrowed to the following for
further consideration:

B.14 Clocks and Timers 95

1134

1135

1136

1137

1138

1139

1140
1141

1142

1143

1144

1145
1146

1147

1148

1149

1150
1151
1152

1153

1154

1155
1156

1157
1158
1159

1160
1161
1162
1163

1164
1165
1166
1167
1168
1169
1170
1171
1172
1173

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

POSIX.1b
— sem_wait()
— maq_receive()
— maq_send()
— lio_listio()
— aio_suspend()

— sigwait()
timeout already implemented by sigtimedwait()

POSIX.1c
— pthread_mutex_lock()
— pthread_join()

— pthread_cond_wait()
timeout already implemented by pthread_cond_timedwait()

POSIX.1
— read()

— write()

After further review by the working group, the read(), write(), and lio_listio()
functions (all forms of blocking synchronous 1/0) were eliminated from the list
because

(1) Asynchronous alternatives exist,
(2) Timeouts can be implemented, albeit nonportably, in device drivers, and

(3) A strong desire existed not to introduce modifications to POSIX.1 inter-
faces.

The working group ultimately rejected pthread_join() since both that interface
and a timed variant of that interface are nonminimal and may be implemented as
a library function. See B.14.4.3 for a library implementation of pthread_join().

Thus there was a consensus among the working group members to add timeouts
to 4 of the remaining 5 functions (the timeout for aio_suspend() was ultimately
added directly to POSIX.1b, while the others are added here in POSIX.1d). How-
ever, pthread_mutex_lock() remained contentious.

Many balloting group members feel that pthread_mutex_lock() falls into the same
class as the other functions; that is, it is desirable to time out a mutex lock
because a mutex may fail to be unlocked due to errant or corrupted code in a criti-
cal section (looping or branching outside of the unlock code) and, therefore, is
equally in need of a reliable, simple, and efficient timeout. In fact, since mutexes
are intended to guard small critical sections, most pthread_mutex_lock() calls
would be expected to obtain the lock without blocking nor utilizing any kernel ser-
vice, even in implementations of threads with global contention scope; the timeout
alternative need only be considered after it is determined that the thread shall
block.

96 B Rationale and Notes

1174
1175
1176
1177
1178
1179
1180
1181

1182
1183
1184
1185

1186
1187
1188
1189

1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200

1201

1202

1203
1204
1205
1206
1207
1208
1209
1210
1211

1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

Those opposed to timing out mutexes feel that the very simplicity of the mutex is
compromised by adding a timeout semantic and that to do so is senseless. They
claim that if a timed mutex is really deemed useful by a particular application,
then it can be constructed from the facilities already in POSIX.1b and POSIX.1c.
The two C language library implementations of mutex locking with timeout in Fig-
ure B-4 and Figure B-5 represent the solutions offered (in both implementations,
the timeout parameter is specified as absolute time, not relative time as in the
proposed POSIX.1c interfaces):

#imnclwde <pthhreead.h>
#imcllwde <tiinmehh>
#imclwde <errrmo.mh>

imt mpthhreead_muteex_tiinmedloock(pthhreead_muteex_t Chuteex,,
const sstrrwct ttiinmespec [iinmsout))
{

strrwct ttiinmespec tiinmeEnow;
whil lee (pthhreead_muteex _trryylloock(muteex) == EBUSY)

clloock_getttiinme{ CLOCK_REALTIMEE, &&tiinmEnow);;
iff ((ttiinmespec__cmp(&tiinmeEnow,ttiinmsout)) >= 0)

reetwrm ETINVIEDOUT;

}
ptthreead_yiieeldd());;
}

reetwurm O;

}

Figure B-4 - Spinlock Implementation

The spinlock implementation is generally unsuitable for any application using
priority based thread scheduling policies such as {SCHED_FIFO} or {SCHED_RR}.
The reason is that the mutex could currently be held by a thread of lower priority
within the same allocation domain; but, since the waiting thread never blocks,
only threads of equal or higher priority will ever run. Therefore, the mutex can-
not be unlocked. Setting priority inheritance or priority ceiling protocol on the
mutex does not solve this problem, since the priority of a mutex-owning thread is
only boosted if higher priority threads are blocked waiting for the mutex, clearly
not the case for this spinlock.

The condition wait implementation effectively substitutes the
pthread_cond_timedwait() function (which is currently timed out) for the desired
pthread_mutex_timedlock(). Since waits on condition variables currently do not
include protocols that avoid priority inversion, this method is generally unsuitable
for realtime applications because it does not provide the same priority inversion
protection as the untimed pthread_mutex_lock(). Also, for any given implementa-
tions of the current mutex and condition variable primitives, this library imple-
mentation has a performance cost at least 2.5 times that of the untimed
pthread_mutex_lock() even in the case where the timed mutex is readily locked
without blocking. Even in uniprocessors or where assignment is atomic, at least
an additional pthread cond signal() is required. In this case,

B.14 Clocks and Timers 97

1223
1224
1225
1226

1227
1228
1229
1230
1231
1232
1233

1234
1235
1236
1237
1238

1239

1240
1241
1242
1243
1244
1245
1246
1247
1248

1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260

1261
1262
1263
1264
1265
1266
1267

1268

1269

1270
1271
1272

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

#imnclwde <pthhreead.h>
#imcllwde <tiinmehh>
#imclwde <errrmo.mh>

strrwct ttiinmed_muteex

imt lloocked;
pthhreead_muteex_t mmuteex;
pthhreead_cond_t occond;

|5
tyypedef sstrrwet ttiinmed _muteex tiinmed_muteex_t;;

imt ttiinmed_muteex_loock(ttiinmed_muteex_t [Orm,
const sstrrwct ttiinmespec [iinmesout))
{

imt ttiinmedout—FALSE;
imt esrrror_staatws;

pthhreead_muteex_loock(&trm=>muteex));;
whillee (ttrm=>loocked && lttiinmedout))
iff ((((eerrror_staatws=pthhreead_cond__tiinmedwait t((&trm=>cond,
&trm=>muteex,
tiinmzout))))!!'=0)
iff ((eerrroor_staatuus==ETINVIEDOUT) ttiinmedout = TRUE
}
}
if f((ttiinmedout))
{

pthhreead_muteex__unloock(&trm=>muteex));;
retwrm ETINVIEDOUT;

}

elsse
tm>loocked = TRUE
pthhreead_muteex__unloock(&trm=>muteex));;
reetwrm O;
}

}

voidd tiinmed_muteex__unloock(ttiinmed_muteex_t [irm)
{

ptthreead__muteex_ loock(&trms>muteex));; // door case assiggnment mot eatcomice 1
tm=>loocked = FALSE;

pthhreead_muteex__unloock(&trm=>muteex));;

pthhreead_cond_siiggnal((&tm=>cond);;

}

Figure B-5 - Condition Wait Implementation

pthread_mutex_timedlock() could be implemented at effectively no performance
penalty because the timeout parameters need only be considered after it is deter-
mined that the mutex cannot be locked immediately.

98 B Rationale and Notes

1273
1274
1275
1276
1277

1278

1279
1280
1281
1282
1283
1284
1285
1286
1287

1288
1289
1290
1291
1292

1293
1294
1295
1296
1297

1298
1299

1300
1301
1302
1303
1304
1305
1306
1307
1308

1309
1310
1311

1312
1313
1314
1315

1316

1317
1318
1319
1320

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

Thus it has not yet been shown that the full semantics of mutex locking with
timeout can be efficiently and reliably achieved using existing interfaces. Even if
the existence of an acceptable library implementation were proven, it is difficult to
justify why the interface itself should not be made portable, especially considering
approval for the other four timeouts.

B.14.4.3 Rationale for Library Implementation of pthread_timedjoin()

The pthread_join() C Language example shown in Figure B-6 demonstrates that it
is possible, using existing pthread facilities, to construct a variety of thread that
allows for joining such a thread, but allows the join operation to time out. This
behavior is achieved by using a pthread _cond_timedwait() to wait for the thread
to exit. A small timed_thread descriptor structure is used to pass parameters
from the creating thread to the created thread and from the exiting thread to the
joining thread. This implementation is roughly equivalent to what a normal
pthread_join() implementation would do, with the single change being that
pthread _cond_timedwait() is used in place of a simple pthread_cond_wait().

Since it is possible to implement such a facility entirely from existing pthread
interfaces and with roughly equal efficiency and complexity to an implementation
that would be provided directly by a pthreads implementation, it was the con-
sensus of the working group members that any pthread_timedjoin() facility would
be unnecessary and should not be provided.

/1

0 Constrrwct aa thhreead variieetyy entiirrelyy frrom exiisstiimmg fwnctiioons
O wittth whicchh a jooimn can be done, allloowing thhe jooim tom tiinme out..
]

#imnclwde <pthhread.h>
#imnclwde <tiinme >

strrwct ttiinmed_thhreead {

pthhreead_t tt;;

pthhreead_muteex_t mm;

imt eexiittiinng;

pthhreead_cond_t eexiitt_c;

void [Cstaartt__routiime)((woidd Carg);;

voidd [Cargy;

voidd [kteatws;
|
tyypedef sstrrwet ttiinmed_thhreead Oiinmed_thhreead_t;;
staatiicc pthhreead_key_t ttiinmed_thhreead_key;
staatiicc pthhreead_once_t ttiinmed_thhreead_once = PTHREAD_ONCE_INNITT;

staatiicc voidd tiinmed_thhreead_imitt(()
{

}

pthhreead_key_crecatee(&tiinmed_thhreead_key, NULL);;

staatiicc voidd Oiinmed_thhreead_steaartt _rooutiicne(woidd ChArgs)

/a
0 Routiime too estaabliisshh tthreead speciffiicc datea value and rwn thhe actwal
0O thhreead staartt rrooutiime whicch was suppliieed too tiinmed_thhreead_cresates())..
]

B.14 Clocks and Timers 99

1321
1322

1323
1324
1325
1326

1327
1328

1329
1330
1331

1332
1333
1334

1335
1336
1337
1338
1339
1340
1341

1342
1343
1344
1345
1346

1347
1348
1349
1350

1351
1352
1353
1354
1355

1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

{
tiinmed_thhreead_t tttt = (ttiiomed_thhreead_t)) args;
pthhreead_once(&tiinmed_thhreead_once, ttiinmed_thhreead_imitt));;
pthhreead_setsspeciiffiicc(ttiinmed_thhreead_key, ((woidd Dtttt));;
tiinmed_thhreead_exiit t((((tttt-->staartt__routiinne)((tttt-->arg)));;

}

imt ttiinmed_thhreead_crecatee(ttiinmed_thhrecad_t ttttp, cconst pthhreead_atttrr_t Chtttrr,,
voidd O Csteartt__rooutiime)((woidd 0),, woidd Carg)

/a
O Alllcocatee a thhreead whicchh can be used wittth tiinmed_thhreead_jooim())..
]

{
tiinmed_thhreead_t tttt;;
imt rreesuiltt;;
ttt = (ttiinmed_thhreead_t)) mmall looc(ssizzeof((strrwct ttiinmed_thhreead)));;
pthhreead_muteex_imit t((&ttt-->m, NULL);;
ttt-->exiittiilng = FALSE;
pthhreead_cond_imitt((&ttt-->exiitt_c, NULL);;
ttt-->staartt_rooutiimne = steaartt _routiime;
ttt-->arg = arg;
ttt-->staatwus = NULL;
iff (((reeswltt = pthhreead_crecates(&ttt-->t,, atttrr,,
tiinmed_thhreead_staartt__routiime, ((woidd 0Otttt)))) '= 0) {{
frrece(tttt));;
retwrm reesultt;;
}
pthhreead_detaach(tttt-->t));;
titpp = ttt;;
reetwrm O;
}

tiinmed_thhreead _jooim(ttiinmed_thhreead_t tttt,,
strrwct ttiinmespec [iinmsout,,
void [Tktatws)

imt rreesuiltt;;
ptthreead_muteex_ loock(&ttt-->m);

reesultt = O;
/0O

O Watt wntiill ttthe trhreead announces thhat iitt'’ss exiittiinng, cor wntiill ttiinmsout..

o
whillee (rreesultt == 0 && ! tttt-->exiittiimng) {{
reesultt = pthhreead_cond_tiinmedwait t((&ttt-->exiitt_c, &ttt-->m, ttiinmsout));;
}

pthhreead_muteex__unloock(&ttt-->m;

iff ((reswltt == 0 && ttt-->exittiimmg) {{
[Btaatws = ttt-->staatws;
frreee(((woidd Dtttt));;
retwrm reesultt;;

}

reetwrm reesultt;;

100 B Rationale and Notes

1372
1373
1374
1375

1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395

1396

1397

1398

1399
1400
1401
1402
1403
1404
1405

1406
1407
1408

1409
1410
1411
1412
1413
1414
1415
1416
1417
1418

1419
1420

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

tiinmed_thhreead_exiitt((woidd [Cstaatws)
{

tiinmed_thhreead _t tttt;;

voidd [Bpeciffiicc;

iff ((((sspeciffiicc=ptthreead_getsspeciffiicc(ttiinmed_ththreead_key))) == NULL){{
/a
0 Handlee cases whiccihh won’tt thappen wittth corrreect wsage.
o
ptthreead_exiitt((NULL);;
}
ttt = (ttiinmed_thhreead_t)) speciiffiicc;
ptthreead__muteex_ loock(&ttt-->m);
/a
O Telll aa jooimer ttthat wwerree exiittiimng.
o
ttt-->staatws = staatws;
ttt-->exiittiilng = TRUE
pthhreead_cond_siiggnal ((&ttt-->>exiitt__c);;
pthhreead_muteex_unloock(&ttt-->m);
/a
0O Calll ppthhreead exiitt(()) ttoo calll ddestrrwctoors and reealllyy exitt ttthe thhreead.
o
pthhreead_exiitt((NULL);;

Figure B-6 — pthread_join) with timeout

B.14.4.4 Form of the Timeout Interfaces

The working group considered a number of alternative ways to add timeouts to
blocking services. At first, a system interface that would specify a one-shot or per-
sistent timeout to be applied to subsequent blocking services invoked by the cal-
ling process or thread was considered because it allowed all blocking services to be
timed out in a uniform manner with a single additional interface; this interface
was rather quickly rejected because it could easily result in the wrong services
being timed out.

It was suggested that a timeout value might be specified as an attribute of the
object (e.g., semaphore, mutex, message queue), but there was no consensus on
this suggestion, either on a case-by-case basis or for all timeouts.

Looking at the two existing timeouts for blocking services indicates that the work-
ing group members favor a separate interface for the timed version of a function.
However, pthread cond_timedwait() utilizes an absolute timeout value while
sigtimedwait() uses a relative timeout value. The working group members agreed
that relative timeout values are appropriate where the timeout mechanism's pri-
mary use was to deal with an unexpected or error situation, but they are inap-
propriate when the timeout has to expire at a particular time or before a specific
deadline. For the timeouts being introduced in this document, the working group
considered allowing both relative and absolute timeouts as is done with POSIX.1b
timers, but ultimately favored the simpler absolute timeout form.

An absolute time measure can be easily implemented on top of an interface that
specifies relative time by reading the clock, calculating the difference between the

B.14 Clocks and Timers 101

1421
1422
1423
1424
1425

1426
1427
1428
1429
1430
1431

1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450

1451
1452

1453

1454

1455
1456
1457
1458
1459
1460
1461
1462
1463
1464

IEEE Std 1003.1d-1999 INFORMATION TECHNOLOGY—POSIXO

current time and the desired wake up time, and issuing a relative timeout call.
But there is a race condition with this approach because the thread could be
preempted after reading the clock, but before making the timed out call; in this
case, the thread would be awakened later than it should and, thus, if the wake up
time represented a deadline, the thread would miss it.

There is also a race condition when trying to build a relative timeout on top of an
interface that specifies absolute timeouts. In this case, the clock would have to be
read to calculate the absolute wake up time as the sum of the current time plus
the relative timeout interval. In this case, if the thread is preempted after reading
the clock, but before making the timed out call, the thread would be awakened
earlier than desired.

But the race condition with the absolute timeouts interface is not as bad as the
one that happens with the relative timeout interface because there are simple
workarounds. For the absolute timeouts interface, if the timing requirement is a
deadline, it can still be met because the thread woke up earlier than the deadline.
If the timeout is just used as an error recovery mechanism, the precision of timing
is not really important. If the timing requirement is that between actions A and B
a minimum interval of time must elapse, the absolute timeout interface can be
safely used by reading the clock after action A has been started. It could be argued
that, since the call with the absolute timeout is atomic from the application point
of view, it is not possible to read the clock after action A if this action is part of the
timed out call. But for the calls for which timeouts are specified (e.g., locking a
mutex, waiting for a semaphore, waiting for a message, waiting until there is
space in a message queue), the timeouts that an application would build on these
actions would not be triggered by these actions themselves, but by some other
external action. For example, to wait for at least 20 milliseconds for a message to
arrive to a message queue, this time interval would be started by some event that
would trigger both the action that produces the message and the action that waits
for the message to arrive, and not by the wait-for-message operation itself. In this
case, the workaround proposed above could be used.

For these reasons, the absolute timeout is preferred over the relative timeout
interface.

O Annex B Rationale and Notes Add the following subclause.

B.19 Advisory Information

The POSIX.1b standard contains an informative annex with proposed interfaces
for “realtime files.” These interfaces could determine groups of the exact parame-
ters required to do “direct 1/0” or “extents.” These interfaces were objected to by
a a significant portion of the balloting group as too complex. A portable application
had little chance of correctly navigating the large parameter space to match its
desires to the system. In addition, they only applied to a new type of file (realtime
files) and they told the implementation exactly what to do as opposed to advising
the implementation on application behavior and letting it optimize for the system
on which the (portable) application was running. For example, it was not clear
how a system that had a disk array should set its parameters.

102 B Rationale and Notes

1465

1466

1467

1468

1469

1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480

1481
1482
1483
1484
1485

1486
1487

1488
1489

1490
1491

1492
1493
1494
1495

1496
1497
1498

1499
1500
1501

1502
1503
1504

1505

1506

1507

PART 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] |IEEE Std 1003.1d-1999

There seemed to be several overall goals:
— Optimizing Sequential Access
— Optimizing Caching Behavior
— Optimizing /O data transfer
— Preallocation

The advisory interfaces, posix_fadvise() and posix_madvise(), satisfy the first two
goals. The POSIX_FADV_SEQUENTIAL and POSIX_MADV_SEQUENTIAL advice
tells the implementation to expect serial access. Typically the system will prefetch
the next several serial accesses in order to overlap I/O. It may also free previously
accessed serial data if memory is tight. If the application is not doing serial access,
it can use POSIX_FADV_WILLNEED and POSIX_MADV_WILLNEED to accomplish
I/0 overlap, as required. When the application advises POSIX_FADV_RANDOM or
POSIX_MADV_RANDOM behavior, the implementation usually tries to fetch a
minimum amount of data with each request; and it does not expect much locality.
POSIX_FADV_DONTNEED and POSIX_MADV_DONTNEED allow the system to free
up caching resources as the data will not be required in the near future.

POSIX_FADV_NOREUSE tells the system that caching the specified data is not
optimal. For file 1/0, the transfer should go directly to the user buffer instead of
being cached internally by the implementation. To portably perform direct disk
I/0 on all systems, the application shall perform its I/O transfers according to the
following rules:

(1) The user buffer should be aligned according to the {POSIX_REC_XFER_-
ALIGN} pathconf() variable.

(2) The number of bytes transferred in an 1/O operation should be a multiple
of the {POSIX_ALLOC_SIZE_MIN} pathconf() variable.

(3) The offset into the file at the start of an 1/O operation should be a multi-
ple of the {POSIX_ALLOC_SIZE_MIN} pathconf() variable.

(4) The application should ensure that all threads that open a given file
specify POSIX_FADV_NOREUSE to be sure that there is no unexpected
interaction between threads using buffered 1/0 and threads using direct
1/0 to the same file.

In some cases, a user buffer should be properly aligned in order to be transferred
directly to/from the device. The {POSIX_REC _XFER_ALIGN} pathconf() variable
tells the application the proper alignment.

The preallocation goal is met by the space control function, posix_fallocate(). The
application can use posix_fallocate() to guarantee no [ENOSPC] errors and to
improve performance by prepaying any overhead required for block allocation.

Implementations may use information conveyed by a previous posix_fadvise() call
to influence the manner in which allocation is performed. For example, assume
an application does the following calls:

fdd = open(™ file"))
posiixx_faadvisse(fd, offset, len, POSIXX_FADV_SEQUENTIAAL)

posiixx_fallloocatee(fd, len, size)

B.19 Advisory Information 103

1508

1509
1510
1511

1512
1513

1514
1515
1516
1517

1518
1519

1520
1521
1522
1523

IEEE Std 1003.1d-1999

As a result, an implementation might allocate the file contiguously on disk.

Finally, the pathconf() variables {POSIX_REC_MIN_XFER_SIZE}, {POSIX_REC -
MAX_XFER_SIZE} and {POSIX_REC_INCR_XFER_SIZE} tell the application a range
of transfer sizes that are recommended for best I/O performance.

Where bounded response time is required, the vendor can supply the appropriate
settings of the advisories to achieve a guaranteed performance level.

The interfaces meet the goals while allowing applications using regular files to
take advantage of performance optimizations. The interfaces tell the implementa-
tion expected application behavior that the implementation can use to optimize
performance on a particular system with a particular dynamic load.

The posix_memalign() function was added to allow for the allocation of specifically
aligned buffers, e.g. for {POSIX_REC_XFER_ALIGN}.

The working group also considered the alternative of adding a function that would
return an aligned pointer to memory within a user supplied buffer. This method
was not considered to be best because it potentially wastes large amounts of
memory when buffers need to be aligned on large alignment boundaries.

104 B Rationale and Notes

IEEE Std 1003.1d-1999

Identifier Index

clock_getcpuclockid()

Accessing a Process CPU-time Clock {14.3.2}ccccooviiiiiennnnee, 49
mgq_timedreceive()

Receive a Message from a Message Queue {15.2.5} 55
mgq_timedsend () Send a Message to a Message Queue {15.2.4}............ccevvvennns 53
posix_fadvise() File Advisory Information {19.1.1}.......cccccceeeiiiiiiiiniiiien, 63
posix_fallocate() File Space Control {19.1.2}cooiiiiiiiiiiiii e 64
posix_madvise() Memory Advisory Information {19.2.1}...........ccooirvviiiieeeennn. 66
posix_memalign()

Aligned Memory Allocation {19.2.2}.......ccccoeeeviiiiiiiiiiieenn, 67
posix_spawn() Spawn a Process {3.1.6}ccuviiiiiiiiiieiiicee e 20
posix_spawnattr_destroy()

Spawn Attributes {3.1.5} ..o, 16
posix_spawnattr_getflags()

Spawn Attributes {3.1.5} ..o, 16
posix_spawnattr_getpgroup()

Spawn Attributes {3.1.5} ..o, 16
posix_spawnattr_getschedparam()

Spawn Attributes {3.1.5} ..o, 16
posix_spawnattr_getschedpolicy()

Spawn Attributes {3.1.5} ..o, 16
posix_spawnattr_getsigdefault()

Spawn Attributes {3.1.5} ..o, 16
posix_spawnattr_getsigmask()

Spawn Attributes {3.1.5} ..o, 16
posix_spawnattr_init()

Spawn Attributes {3.1.5} ..o, 16
posix_spawnattr_setflags()

Spawn Attributes {3.1.5} ..o, 16
posix_spawnattr_setpgroup()

Spawn Attributes {3.1.5} ..o, 16
posix_spawnattr_setschedparam()

Spawn Attributes {3.1.5} ..o, 16
posix_spawnattr_setschedpolicy()

Spawn Attributes {3.1.5} ..o, 16
posix_spawnattr_setsigdefault()

Spawn Attributes {3.1.5} ..o 16
posix_spawnattr_setsigmask()

Spawn Attributes {3.1.5} ..o 16
posix_spawn_file_actions_addclose()

Spawn File Actions {3.1.4} ..., 14
posix_spawn_file_actions_adddup2()

Spawn File Actions {3.1.4} ..., 14
posix_spawn_file_actions_addopen()

Spawn File Actions {3.1.4} ..., 14

Identifier Index 105

IEEE Std 1003.1d-1999

posix_spawn_file_actions_destroy()

Spawn File Actions {3.1.4} ..o 14
posix_spawn_file_actions_init()

Spawn File Actions {3.1.4} ..o, 14
posix_spawnp() Spawn a Process {3.1.6}ccovviiiiiiiiieiiieee e 20
pthread_getcpuclockid()

Accessing a Thread CPU-time Clock {14.3.3}.........ccovvvivivninnnnn. 50
pthread_mutex_timedlock()

Locking and Unlocking a Mutex {11.3.3}cccooooieiiiiiiiiiiiniiinns 35
sem_timedwait() Lock a Semaphore {11.2.6}..........ccoovriiiiiiiiiiieeeeeeeeee e 33
<spawn.rh> Spawn File Actions {3.1.4} ..o, 14

106 Identifier Index

IEEE Std 1003.1d-1999

Alphabetic Topical Index

A

abbreviations
C Standard ... 5

Abbreviations ... 5
abbreviations

POSIX.1 ... 5

POSIX.1b ... 6

POSIX.1c ... 6

POSIX.1d ... 6

POSIX.5 ... 6
Accessing a Process CPU-time Clock ... 49
Accessing a Thread CPU-time Clock ... 50
Accuracy of CPU-time Clocks ... 92
address space ... 67

Advisory Information ... 63, 102

Advisory Information option ... 7-8, 10, 27,
29, 63-64, 66-67
aio_suspend () ... 96

alarm() ... 25
Aligned Memory Allocation ... 67
ARG_MAX ... 21

Asynchronous Input and Output ... 31
Asynchronous 1/0 Control Block ... 31
attributes
enable ... 94
schedparam ... 43
attributes
cpu-cl ock-requirement ... 92
spawn-default ... 18
spawn-f | ags . 18, 20, 22-24
spawn- pgr oup . 18, 20, 22, 76

spawn- schedparam ... 19-20, 23
spawn- schedpol i cy . 19-20, 23
spawn- si gdef aul t . 19-20, 23
spawn- si gmask . 18, 20, 23

B

B2 ...71

B-4 ... 97

B-5 ... 97

background ... 87-88
background priority ... 87
Bibliography ... 69
blocked thread ... 40

Alphabetic Topical Index

bounded response
BSD ... 93

. 1,90, 104

C

cancellation point ... 61
Cancellation Points ... 61
chmod() ... 25

C Language Definitions ... 7

clock
system ... 33, 36, 54, 56

Clock and Timer Functions—Description

47
Clock and Timer Functions ... 47
clock
CLOCK_REALTIME ... 33, 36, 54, 56
Clock Constants ... 94
clock

CPU-time ... 5,13, 47-50, 59, 91-94

clock_getcpuclockid() ... 8, 47, 49-51, 92, 94
function definition ... 49

clock_getres() ... 50-51
clock_gettime() ... 47,50-51

CLOCK_PROCESS_CPUTIME_ID ... 47,92, 94
CLOCK_REALTIME ... 33, 36, 54, 56, 97
clock resolution ... 33, 36, 54, 56
Clocks ... 47

CPU-time ... 13
Clocks and Timers ... 47-48, 91
clocks

CPU-Time ... 13

CPU-time ... 47
clock_settime() ... 41, 47, 50-51
CLOCK_THREAD_CPUTIME_ID ... 47,92, 94

close() ... 16,25

Compile-Time Symbolic Constants for Porta-
bility Specifications ... 10-11

Condition Wait Implementation ... 98
Configurable Pathname Variables ... 29
Configurable System Variables ... 27
conformance ... 2

implementation ... 2
Conformance ... 2
Conforming Implementation Options ... 2

CPU ... 5-6, 13, 47-50, 91-94

107

IEEE Std 1003.1d-1999

cpu-clioock-rreequirreement
attribute ... 92

CPU-time Clock Characteristics ... 48
CPU-Time clock ... 13
CPU-time clock ... 13, 47

definitionof ... 5

CPU time [execution time]
definitionof ... 5

CPU-time timer
definitionof ... 5

creat() ... 65-66
Create a Per-Process Timer—Description

... 48
Create a Per-Process Timer—Errors ... 48
Create a Per-Process Timer ... 48

Cross-References . 16, 20, 25, 34, 37, 50-
51, 55, 57, 64, 66-68

C Standard ... 5, 68
abbreviation ... 5
definitionof ... 5

D

Data Definitions for Asynchronous Input and
Output ... 31

Definitions ... 5

Definitions and General Requirements ... 71

document ... 2,18, 21, 44, 69, 92, 101
dup2() ... 16,25

Dynamically Setting the Sporadic Server Pol-
icy ... 90

Dynamic Thread Scheduling Parameters

Access—Description ... 45
Dynamic Thread Scheduling Parameters
Access—Errors ... 45

Dynamic Thread Scheduling Parameters
Access ... 45

E

[EBADF] ... 16, 64-65
EBADF ... 81

EBUSY ... 97
[EDEADLK] ... 36
[EFBIG] ... 65
effective group ID ... 23
effective user ID ... 23

[EINTR] ... 54,56, 65

[EINVAL] ... 16, 20, 24, 34, 36, 54, 56, 64-65,

67-68

108

[EI0] ... 65
enablee

attribute ... 94
[ENODEV] ... 65
[ENOMEM] ... 16, 20, 67-68
ENOMEM ... 83
[ENOSPC] ... 65, 103
[ENOTSUP] ... 45,48
[EPERM] ... 50

[ESPIPE] ... 64-65

[ESRCH] ... 50-51

[ETIMEDOUT] ... 34, 36, 54, 56
ETIMEDOUT ... 97-98

exec ... 13,23-24, 72-75
Execute a File—Description ... 13
Execute a File ... 13

Execution Scheduling ... 39, 87
execution time

definitionof ... 5

Execution Time Monitoring ... 48,91
Execution Time Monitoring Interface ... 91
Existing Practice ... 89, 93

_exit() ... 25

FALSE ... 98, 100

fentl() ... 25
<fcmtll..th> ... 8, 64
FD_CLOEXEC ... 15, 22, 74, 82
FIFO ... 64-65
File Advisory Information ... 63
file descriptor . 14-16, 22-23, 63-65, 71-72,
74
Files and Directories ... 29
File Space Control ... 64
file system ... 65
pthread_join()
with timeout ... 101
fork ... 13

fork() ... 2, 23-25, 72-75, 77
fork handlers ... 24

Form of the Timeout Interfaces ... 101
free() ... 68

ftruncate() ... 65-66

functions

clock_getcpuclockid() ... 49
mq_timedreceive() ... 55
mgq_timedsend() ... 53
posix_fadvise() ... 63

posix_fallocate() ... 64
posix_madvise() ... 66
posix_memalign() ... 67

Alphabetic Topical Index

posix_spawn() ... 20
posix_spawnattr_destroy() ... 16
posix_spawnattr_getflags() ... 16
posix_spawnattr_getpgroup() ... 16
posix_spawnattr_getschedparam() ... 16
posix_spawnattr_getschedpolicy() ... 16
posix_spawnattr_getsigdefault() ... 16
posix_spawnattr_getsigmask() ... 16
posix_spawnattr_init() ... 16
posix_spawnattr_setflags() ... 16
posix_spawnattr_setpgroup() ... 16
posix_spawnattr_setschedparam() ... 16
posix_spawnattr_setschedpolicy() ... 16
posix_spawnattr_setsigdefault() ... 16
posix_spawnattr_setsigmask() ... 16
posix_spawn_file_actions_addclose()

... 14
posix_spawn_file_actions_adddup2()

... 14
posix_spawn_file_actions_addopen()

... 14
posix_spawn_file_actions_destroy() ... 14
posix_spawn_file_actions_init() ... 14
posix_spawnp() ... 20
pthread_getcpuclockid() ... 50
pthread_mutex_timedlock() ... 35
sem_timedwait() ... 33

G

General ... 1

General Concepts—measurement of execution
time ... 6

General Concepts ... 6,71
General Terms ... 5
generate a signal ... 92

Get Configurable Pathname Variables—
Description ... 29

Get Configurable Pathname Variables ... 29

Get Configurable System Variables—
Description ... 27

Get Configurable System Variables ... 27
getitimer() ... 93
getrusage() ... 93

H
Headers and Function Prototypes ... 7
Historical Documentation ... 69

Historical Documentation and Introductory
Texts ... 69

History of Resolution Issues: Deletion of the
enablee attribute ... 94

Alphabetic Topical Index

IEEE Std 1003.1d-1999

IBM ... 94

IEEE ... 75

IEEE P1003.1a ... 74

IEEE Std 1003.1 ... 5-6

IEEE Std 1003.1b ... 6

IEEE Std 1003.1c ... 6

IEEE Std 1003.1d ... 6

IEEE Std 10035 ... 6

IEEE Std 1003.5b ... 6
Implementation Conformance ... 2

implementation defined . 5-6, 19, 24, 39-
40, 42-45, 48-49, 65, 71, 92-93

Input and Output Primitives ... 31

Introduction ... 91

1/0 Advisory Information and Space Control
... 63

1/0 Redirection with posix_spawn() ... 86

ISO/IEC 14519 ... 6, 69, 73, 75
ISO/IEC 9899:1995 ... 5
ISO/IEC 9899 ... 5, 68

ISO/IEC 9945-1 ... 5

ISO/IEC 9945 ... 7

J

job control ... 74

K

Kill() ... 25

L

language binding . 72-73, 75-76
Library-Level vs. Kernel-Level Implementa-
tion ... 89

Library Implementations of Threads ... 94

Limitation of the Number of Pending Replen-
ishments ... 90

<liinmittss.th> ... 8

lio_listio() ... 96

Lock a Semaphore—Cross-References ... 34

Lock a Semaphore—Description ... 33

Lock a Semaphore — Errors ... 34

Lock a Semaphore—Returns ... 34

Lock a Semaphore—Synopsis ... 33
Lock a Semaphore ... 33

109

IEEE Std 1003.1d-1999

Locking and Unlocking a Mutex—

Cross-References ... 37
Locking and Unlocking a Mutex—Description
... 35
Locking and Unlocking a Mutex—Errors
... 36
Locking and Unlocking a Mutex—Returns
... 36
Locking and Unlocking a Mutex—Synopsis
... 35

Locking and Unlocking a Mutex ... 35
loogim ... 77

M

malloc() ... 68

measurement of execution time ... 71
definitionof ... 6

Memory Advisory Information ... 66

Memory Advisory Information and Alignment
Control ... 66

Memory Mapped Files option ... 66-67

Message Passing ... 53

Message Passing Functions ... 53
Message Passing option . 7,53,55
message queues ... 53, 55
Minimum Values ... 8

mmap() ... 67

MMU ... 73,75

maq_open() ... 55,57
maq_receive() ... 55, 96
maq_send() ... 53, 96
mq_timedreceive() ... 7, 55-56, 61

function definition ... 55
maq_timedsend() ... 7, 53-54, 61
function definition ... 53
<mgueue.rh> ... 8
mutexes ... 35
Mutexes ... 35
MVS ... 94
N
NULL ... 80-81, 83-84, 99-101
Numerical Limits ... 8
O
O_NONBLOCK ... 53-56
110

open() ... 16, 25, 65-66

OPEN_MAX ... 16
Optional Configurable Pathname Variables
... 29
Optional Configurable System Variables
.27
Optional Minimum Values ... 8
Optional Pathname Variable Values ... 10
Optional Run-Time Invariant Values ... 9
options
Advisory Information . 7-8, 10, 27, 29,
63-64, 66-67

Memory Mapped Files ... 66-67
Message Passing ... 7,53, 55
Prioritized Input and Output ... 31

Process Scheduling . 7,18-19, 22-24,
31, 44

Process Sporadic Server . 10, 27, 39-42

Semaphores ... 33

Shared Memory Objects ... 66-67

Spawn ... 7,10, 14, 17, 19, 21, 27

Threads ... 5,7, 24,35

Thread Sporadic Server
43-45

Timeouts ... 7, 10, 27, 33, 35-36, 53, 55

Timers ... 33, 54-55

. 10, 27, 39-40,

options

Process CPU-Time Clocks ... 8, 10, 13, 27,

47-49, 59
Thread cPU-Time Clocks ... 7, 10, 13, 27,
48-50, 92

Other Standards ... 69
Overhead Considerations ... 92
P
package

POSIX_Proocess_Priinmittiiwes ... 74
PATH

variable ... 22
pathconf() ... 9, 103-104
pathname ... 21
Pathname Variable Values ... 9
_PC_ALLOC_SIZE_ MIN ... 29

limit definition ... 29
_PC_REC_INCR_XFER_SIZE ... 29

limit definition ... 29
_PC_REC_MAX_XFER_SIZE ... 29

limit definition ... 29
_PC_REC_MIN_XFER_SIZE ... 29

limit definition ... 29
_PC_REC_XFER_ALIGN ... 29

limit definition ... 29

Alphabetic Topical Index

pipe ... 64-65, 77
popen() ... 77

POSIX.1 ... 5,8, 39, 47, 59, 75-76, 93-96
abbreviation ... 5
definitionof ... 5
POSIX.1b
abbreviation ... 6
definitionof ... 6
POSIX.1c
abbreviation ... 6
definitionof ... 6
POSIX.1d
abbreviation ... 6
definitionof ... 6
POSIX.1li ... 6
POSIX.5 ... 6,72,75
abbreviation ... 6
definitionof ... 6
_POSIX_ADVISORY_INFO ... 2,10, 27, 63-64,
66-67
POSIX_ALLOC SIZE_MIN ... 9, 29, 103

_POSIX_CPUTIME ... 2,10-11, 13, 27, 47-49

POSIX_FADV_DONTNEED ... 103
posix_fadvise () ... 7, 61, 63-65, 67, 103
function definition ... 63
POSIX_FADV_NOREUSE ... 103
POSIX_FADV_RANDOM ... 103
POSIX_FADV_SEQUENTIAL ... 103
POSIX_FADV_WILLNEED ... 103
posix_fallocate() ... 7, 61, 64-65, 103
function definition ... 64
POSIX_MADV_DONTNEED ... 103
posix_madvise() ... 7, 61, 64, 66-67, 103
function definition ... 66
POSIX_MADV_RANDOM ... 103
POSIX_MADV_SEQUENTIAL ... 103
POSIX_MADV_WILLNEED ... 103
_POSIX_MAPPED_FILES ... 66
posix_memalign() ... 8, 67-68, 104
function definition ... 67
_POSIX_MESSAGE_PASSING ... 53,55
_POSIX_PRIORITIZED_IO ... 31
_POSIX_PRIORITY_SCHEDULING ... 11, 19,
22-24, 31, 44
POSIX_Praoocess_ Priinmittiiwes
package ... 74
POSIX_REC_INCR_XFER_SIZE ... 9,29, 104
POSIX_REC_MAX_XFER_SIZE ... 9,29, 104
POSIX_REC_MIN_XFER_SIZE ... 9, 29, 104
POSIX_REC_XFER_ALIGN ... 9, 29, 103-104
_POSIX_SEMAPHORES ... 33
_POSIX_SHARED_MEMORY_OBJECTS ... 66

Alphabetic Topical Index

IEEE Std 1003.1d-1999

posix_spawn ()

... 7,14-16, 18, 20-21, 24-25,

61, 71-77, 86

Equivalent ... 86

function definition ... 20
_POSIX_SPAWN ... 2,10, 14, 17, 19, 21, 27
posix_spawnattr_destroy() ... 7, 16, 18-20,

25

function definition ... 16
posix_spawnattr_getflags() ... 7, 16, 18-20,

25

function definition ... 16
posix_spawnattr_getpgroup() ... 7, 16, 18-

20, 25

function definition ... 16
posix_spawnattr_getschedparam() . 8,16,

19-20, 25

function definition ... 16
posix_spawnattr_getschedpolicy() . 8, 16,

19-20, 25

function definition ... 16
posix_spawnattr_getsigdefault() . 7,16,

19-20, 25

function definition ... 16
posix_spawnattr_getsigmask() ... 7, 16, 18-

20, 25

function definition ... 16
posix_spawnattr_init() ... 7, 16-20, 25

function definition ... 16
posix_spawnattr_setflags() ... 7, 16, 18-20,

25

function definition ... 16
posix_spawnattr_setpgroup() ... 7, 16, 18-

20, 25

function definition ... 16
posix_spawnattr_setschedparam() . 8, 16,

19-20, 25

function definition ... 16
posix_spawnattr_setschedpolicy() . 8, 16,

19-20, 25

function definition ... 16
posix_spawnattr_setsigdefault() . 7,16,

19-20, 25

function definition ... 16
posix_spawnattr_setsigmask() ... 7, 16, 18-

20, 25

function definition ... 16
posix_spawn_file_actions_addclose() .7,

14-16, 25

function definition ... 14
posix_spawn_file_actions_adddup2() .7,

14-16, 25

function definition ... 14
posix_spawn_file_actions_addopen() .7,

14-16, 25

function definition ... 14

111

IEEE Std 1003.1d-1999

posix_spawn_file_actions_destroy() ... 7,
14-16, 25
function definition ... 14
posix_spawn_file_actions_init() ... 7, 14-15,
25
function definition ... 14

posix_spawnp () ... 7, 14-16, 18, 20-22, 24-
25, 61, 71-77, 86
function definition ... 20

POSIX_SPAWN_RESETIDS . 18, 23,72, 78,
80

POSIX_SPAWN_SETPGROUP
80

POSIX_SPAWN_SETSCHEDPARAM ... 18-19,
22-24, 78, 82

POSIX_SPAWN_SETSCHEDULER ... 18-19,
22-24, 78, 82

POSIX_SPAWN_SETSIGDEF

POSIX_SPAWN_SETSIGMASK
80

_POSIX_SPORADIC_SERVER
39-42

_POSIX_SS_REPL_MAX ... 8-9, 90

_POSIX_THREAD_CPUTIME ... 2, 10-11, 13,
27, 47-50, 59

_POSIX_THREAD_PRIORITY_SCHEDULING
. 11,43

_POSIX_THREADS ... 35

_POSIX_THREAD_SPORADIC_SERVER ... 2,
10-11, 27, 39-40, 43-45

_POSIX_TIMEOUTS ... 2,10, 27, 33, 35, 53,

. 18, 22, 24, 78,

. 18, 23, 78, 80
. 18, 23, 78,

... 2,10-11, 27,

55
_POSIX_TIMERS ... 11
PRIO_INHERIT ... 36
Prioritized Input and Output option ... 31
procedure

Staartt_ Process ... 72-76

Staartt_ Process_Search ... 73,75
Process CPU-Time Clocks option ... 8, 10, 13,
27, 47-49, 59
Process Creation—Description ... 13
Process Creation ... 13
Process Creation and Execution . 13-14,71
Process Environment ... 27

process group . 18, 22, 25, 74, 76
process group ID ... 22,74
processID ... 22,24

Process Primitives ... 13,71
Process Scheduling Attributes ... 43
Process Scheduling Functions ... 41

Process Scheduling option . 7,18-19, 22-24,
31, 44

112

Process Sporadic Server option
39-42

Process Termination ... 25
pthread_cond_signal() ... 97
pthread_cond_timedwait() ... 96-97, 99, 101
pthread_cond_wait() ... 96, 99

pthread_getcpuclockid() ... 7, 47, 50-51, 92,
94
function definition ... 50

<pthhreead.th> ... 8
pthread_join() ... 96, 99
pthread_mutex_lock() ... 35, 96-97
pthread_mutex_timedlock() ... 7, 35-36,
97-98
function definition ... 35
PTHREAD_ONCE_INIT ... 99
pthread_setschedparam() ... 45
pthread_timedjoin() ... 99

. 10, 27,

R

Range of Scheduling Priorities ... 90

read() ... 96

Receive a Message from a Message Queue—
Cross-References ... 57

Receive a Message from a Message Queue—
Description ... 55

Receive a Message from a Message Queue—
Errors ... 56

Receive a Message from a Message Queue—
Returns ... 56

Receive a Message from a Message Queue—
Synopsis ... 55

Receive a Message from a Message Queue
... 55

replenishment operation ... 40-41, 90
replenishment period ... 39-41, 87-88, 90
Requirements for Timeouts ... 95
resolution
clock ... 33, 36, 54, 56
Run-Time Invariant Values (Possibly Indeter-
minate) ... 8-9

running thread ... 40-41
S
_SC_ADVISORY_INFO ... 27
limit definition ... 27
_SC_CPUTIME ... 27
limit definition ... 27
SCHED_FIFO ... 31, 35, 39-40, 42-44, 90, 97

Alphabetic Topical Index

sched_get_priority_max() ... 41
sched_get_priority_min() ... 41
<sched.th> ... 39
SCHED_OTHER ... 39,42, 44

scihedparam
attribute ... 43

SCHED_RR ... 31, 35, 39, 42-44, 97
sched_setparam() ... 24-25
sched_setscheduler() ... 24-25
SCHED_SPORADIC ... 31, 35, 39-45, 90
Scheduling Allocation Domain ... 43-44

Scheduling Aperiodic Activities (rationale)
... 88

Scheduling Documentation ... 44
Scheduling Parameters ... 39

Scheduling Policies ... 39-40

scheduling policy ... 35, 39-43, 45, 89-90, 97

Scope ... 1
_SC_PAGESIZE ... 66-67
_SC_SPAWN ... 27

limit definition ... 27
_SC_SPORADIC_SERVER ... 27

limit definition ... 27
_SC_THREAD_CPUTIME ... 27

limit definition ... 27
_SC_THREAD_SPORADIC_SERVER ... 27

limit definition ... 27
_SC_TIMEOUTS ... 27

limit definition ... 27
Semaphore Functions ... 33
<semgphore.rh> ... 8
semaphores ... 33
Semaphores option ... 33

sem_post() ... 33

sem_timedwait() ... 7, 33-34, 61
function definition ... 33

sem_wait() ... 33, 96

Send a Message to a Message Queue—
Cross-References ... 55

Send a Message to a Message Queue—
Description ... 53

Send a Message to a Message Queue—Errors
... 54

Send a Message to a Message Queue—Returns
... 54

Send a Message to a Message Queue—
Synopsis ... 53

Send a Message to a Message Queue ... 53
setitimer () ... 93
setpgid() ... 24-25,76

Set Scheduling Parameters—Description
.. 41-42

Alphabetic Topical Index

IEEE Std 1003.1d-1999

Set Scheduling Parameters
Set Scheduling Policy and Scheduling

Parameters—Description

.41

42

Set Scheduling Policy and Scheduling Parame-

ters ... 42
setuid() ... 25

Shared Memory Objects option

shell ... 77
shelll ... 77
SIG_DFL ... 23,80
SIG_IGN ... 23
signal

generate ... 92
signal actions ... 23
signal mask ... 23
SIG_SETMASK ... 80

sigtimedwait() ... 96, 101

sigwait() ... 96

Spawn a Process ... 20, 73

Spawn Attributes

spawn-defaultt
attribute ... 18

Spawn File Actions
spawn-ffl laags

. 16,73

.14, 71

attribute ... 18, 20, 22-24
<spawn.th> ... 8, 14, 17-18, 22

header definition

.14

... 66-67

Spawning a new Userid Process

spawn option ... 19

. 87

Spawn option ... 7,10, 14, 17, 21, 27

sjpawn-[pgroup

attribute ... 18, 20, 22, 76
spawn-sscihedparaam
attribute ... 19-20, 23
spawn-sscihedpoliiccy
attribute ... 19-20, 23

spawn-ssiggdefaaultt

attribute ... 19-20, 23

spawn-ssiggmeask

attribute ... 18, 20, 23

Spinlock Implementation
Sporadic Server Scheduling Policy

.97

SS REPL_MAX ... 9, 42-45, 90

Staartt_ Process

procedure ... 72-76

Staartt_ Process_Search

procedure ... 73,75

stat() ... 25
<stdlliibb.rh> ... 8
Symbolic Constants
Synchronization

. 10

. 33

. 87

113

IEEE Std 1003.1d-1999

sysconf() ... 9, 66-67
<sys/mmmen.th> ... 67
system() ... 72,74,77
systemclock ... 33, 36, 54, 56
SystemV ... 27,94

T

Terminology and General Requirements ... 5

terms ... 5

Thread Cancellation ... 61

Thread Cancellation Overview ... 61

Thread cPU-Time Clocks option ... 7, 10, 13,
27, 48-50, 92

Thread Creation—Description ... 59

Thread Creation ... 59

Thread Creation Scheduling Attributes—
Description ... 44

Thread Creation Scheduling Attributes
. 44

Thread Functions ... 59

Thread Management ... 59

Thread Scheduling ... 43

Thread Scheduling Attributes ... 43
Thread Scheduling Functions ... 44
Threads option ... 5,7, 24, 35

Thread Sporadic Server option
39-40, 43-45

time() ... 33-34, 36-37, 54-57

. 10, 27,

<tiinmeth> ... 8, 34, 36-37, 49, 54-57

Timeouts option ... 7, 10, 27, 33, 35-36, 53,
55

timer_create() ... 48, 50-51

Timers option ... 33, 54-55

times() ... 25, 93-94

TOC ... 5

TRUE ... 98,101

U

undefined . 14-15, 18, 40

UNIX ... 74-75, 93

unlink() ... 66

Unlock a Semaphore—Description ... 35
Unlock a Semaphore ... 35

unspecified . 18-19, 24-25, 31

114

\Y

Versioned Compile-Time Symbolic Constants
.11

W

wait() ... 25, 76-77

Wait for Process Termination — Description
... 25

Wait for Process Termination ... 25
waitpid() ... 25, 76-77
WEXITSTATUS ... 77

Which Services Should Be Timed Out?
... 95

WIFEXITED ... 25,77
WIFSIGNALED ... 25
WIFSPAWNFAIL ... 76
WIFSTOPPED ... 25
write() ... 96
WSPAWNERRNO ... 76
WSTOPSIG ... 25

Alphabetic Topical Index

	TM: ®
	Title1: IEEE Standard for
	Title6: [C Language]
	Title5: Amendment d: Additional Realtime Extensions
	Title4: Application Program Interface (API)—
	Title3: System Interface (POSIX)—Part 1: System
	Title2: Information Technology—Portable Operating

