

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2000 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published August 2000. Printed in the United States of America.

Print:

 ISBN 0-7381-1940-7 SH94813

PDF:

 ISBN 0-7381-1941-5 SS94813

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

IEEE Std 1003.1j-2000

(Amendment to
IEEE Std 1003.1-1990)

IEEE Standard for Information Technology—
Portable Operating System Interface (POSIX

®

)—
Part 1: System Application Program Interface
(API)—Amendment j: Advanced Realtime
Extensions [C Language]

Sponsor

Portable Application Standards Committee

of the

IEEE Computer Society

Approved 30 January 2000

IEEE-SA Standards Board

Abstract:

 This standard is part of the POSIX series of standards for applications and user interfac-
es to open systems. It defines the applications interface to system services for synchronization,
memory management, time management, and thread management. This standard is stated in
terms of its C language binding.

Keywords:

 API, application portability, C (programming language), data processing, information in-
terchange, open systems, operating system, portable application, POSIX, programming language,
realtime, system configuration computer interface

POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinat-
ing Committees of the IEEE Standards Association (IEEE-SA) Standards Board. Members of the
committees serve voluntarily and without compensation. They are not necessarily members of the
Institute. The standards developed within IEEE represent a consensus of the broad expertise on the
subject within the Institute as well as those activities outside of IEEE that have expressed an
interest in participating in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply
that there are no other ways to produce, test, measure, purchase, market, or provide other goods
and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at
the time a standard is approved and issued is subject to change brought about through develop-
ments in the state of the art and comments received from users of the standard. Every IEEE Stan-
dard is subjected to review at least every five years for revision or reaffirmation. When a document
is more than five years old and has not been reaffirmed, it is reasonable to conclude that its con-
tents, although still of some value, do not wholly reflect the present state of the art. Users are cau-
tioned to check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of
membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a
proposed change of text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards
as they relate to specific applications. When the need for interpretations is brought to the attention
of the IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Stan-
dards represent a consensus of all concerned interests, it is important to ensure that any interpre-
tation has also received the concurrence of a balance of interests. For this reason, the IEEE and the
members of its societies and Standards Coordinating Committees are not able to provide an instant
response to interpretation requests except in those cases where the matter has previously received
formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

__

Note: Attention is called to the possibility that implementation of this standard may require use
of subject matter covered by patent rights. By publication of this standard, no position is taken
with respect to the existence or validity of any patent rights in connection therewith. The IEEE
shall not be responsible for identifying patents for which a license may be required by an IEEE
standard of for conducting inquiries into the legal validity or scope of those patents that are
brought to its attention.__L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

IEEE is the sole entity that may authorize the use of certification marks, trademarks, or other
designations to indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use is
granted by the Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate
fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact
Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; (978)
750-8400. Permission to photocopy portions of any individual standard for educational classroom
use can also be obtained through the Copyright Clearance Center.

Contents

PAGE

Introduction . v

Section 1: General . 1
1.3 Conformance 1

Section 2: Terminology and General Requirements 3
2.2 Definitions . 3

2.2.2 General Terms 3
2.5 Primitive System Data Types 4
2.7 C Language Definitions 5

2.7.3 Headers and Function Prototypes 5
2.8 Numerical Limits 6

2.8.7 Maximum Values 6
2.9 Symbolic Constants 7

2.9.3 Compile-Time Symbolic Constants for Portability
Specifications 7

Section 3: Process Primitives 9
3.1 Process Creation and Execution 9

3.1.2 Execute a File 9
3.2 Process Termination 9

3.2.2 Terminate a Process 9
3.3 Signals . 10

3.3.8 Synchronously Accept a Signal 10

Section 4: Process Environment 11
4.8 Configurable System Variables 11

4.8.1 Get Configurable System Variables 11

Section 5: Files and Directories 13
5.6 File Characteristics 13

5.6.1 File Characteristics: Header and Data Structure 13
5.6.2 Get File Status 13
5.6.4 Change File Modes 13

Section 6: Input and Output Primitives 15
6.3 File Descriptor Deassignment 15

6.3.1 Close a File 15
6.4 Input and Output 15

6.4.1 Read from a File 15
6.4.2 Write to a File 16

6.5 Control Operations on Files 16
6.5.2 File Control 16
6.5.3 Reposition Read/Write File Offset 16

ii

6.7 Asynchronous Input and Output 16
6.7.8 Wait for Asynchronous I/O Request 16

Section 8: Language-Specific Services for the C Programming Language . . 17
8.2 C Language Input/Output Functions 17

8.2.2 Open a Stream on a File Descriptor 17

Section 11: Synchronization 19
11.4 Condition Variables 19

11.4.1 Condition Variable Initialization Attributes 19
11.4.4 Waiting on a Condition 20

11.5 Barriers . 21
11.5.1 Barrier Initialization Attributes 21
11.5.2 Initializing and Destroying a Barrier 23
11.5.3 Synchronizing at a Barrier 24

11.6 Reader/Writer Locks 26
11.6.1 Reader/Writer Lock Initialization Attributes 26
11.6.2 Initializing and Destroying a Reader/Writer Lock 28
11.6.3 Applying a Read Lock 29
11.6.4 Applying a Write Lock 32
11.6.5 Unlocking a Reader/Writer Lock 34

11.7 Spin Locks . 35
11.7.1 Initializing and Destroying a Spin Lock 35
11.7.2 Locking a Spin Lock 37
11.7.3 Unlocking a Spin Lock 38

Section 12: Memory Management 41
12.2 Memory Mapping Functions 42

12.2.1 Map Process Addresses to a Memory Object 42
12.2.2 Unmap Previously Mapped Addresses 43
12.2.4 Memory Object Synchronization 44

12.4 Typed Memory Functions 44
12.4.1 Data Definitions 44
12.4.2 Open a Typed Memory Object 44
12.4.3 Find Offset and Length of a Mapped Typed Memory Block . 47
12.4.4 Query Typed Memory Information 48

Section 14: Clocks and Timers 51
14.1 Data Definitions for Clocks and Timers 51

14.1.4 Manifest Constants 51
14.2 Clock and Timer Functions 52

14.2.1 Clocks 52
14.2.2 Create a Per-Process Timer 53
14.2.6 High Resolution Sleep with Specifiable Clock 53

Section 18: Thread Cancellation 57
18.1 Thread Cancellation Overview 57

Annex A (informative) Bibliography 59
A.4 Other Sources of Information 59

Annex B (informative) Rationale and Notes 61

iii

B.11 Synchronization 61
B.12 Memory Management 66
B.14 Clocks and Timers 73
B.18 Thread Cancellation 76

Annex F (informative) Portability Considerations 79
F.3 Profiling Considerations 79

Identifier Index . 81

Alphabetic Topical Index 83

FIGURES

Figure B-1 −− Example of a system with typed memory 67

TABLES

Table 2-2 −− Optional Primitive System Data Types 5
Table 2-11 −− Versioned Compile-Time Symbolic Constants 7
Table 4-3 −− Optional Configurable System Variables 11

iv

Introduction

(This introduction is not a normative part of IEEE Std 1003.1j-2000, IEEE Standard for Information
Technology—Portable Operating System Interface (POSIX)—Part 1: System Application Program
Interface (API)—Amendment 5: Advanced Realtime Extensions [C Language])

The purpose of this document is to supplement the base standard with interfaces
and functionality for applications having realtime requirements or special
efficiency requirements in tightly coupled multitasking environments.

This standard will not change the base standard that it amends (including any
existing amendments) in such a way that would cause implementations or strictly
conforming applications to no longer conform.

This standard defines systems interfaces to support the source portability of appli-
cations with realtime requirements. The system interfaces are all extensions of or
additions to ISO/IEC 9945-1:1996 [This edition incorporates the base document
and extensions for realtime applications (IEEE Std 1003.1b-1993, IEEE Std
1003.1i-1995) and threads (IEEE Std 1003.1c-1995).], as amended by IEEE Std
1003.1d-1999. Although rooted in the culture defined by ISO/IEC 9945-1: 1990,
they are focused upon the realtime application requirements, and the support of
multiple threads of control within a process, which were beyond the scope of
ISO/IEC 9945-1: 1990. The interfaces included in this standard were the set
required to make ISO/IEC 9945-1: 1990 efficiently usable to realtime applications
or applications running in multiprocessor systems with requirements that were
not covered by the realtime or threads extensions specified in IEEE Std 1003.1b-
1993, IEEE Std 1003.1c-1995, and IEEE Std 1003.1d-1999. The scope is to take
existing realtime or multiprocessor operating system practice and add it to the
base standard.

The definition of realtime used in defining the scope of this standard is as follows:

Realtime in operating systems: the ability of the operating system to pro-
vide a required level of service in a bounded response time.

The key elements of defining the scope are

(1) Defining a sufficient set of functionality to cover the realtime application
program domain in the areas not covered by IEEE Std 1003.1b-1993, IEEE
Std 1003.1c-1995, and IEEE Std 1003.1d-1999;

(2) Defining a sufficient set of functionality to cover efficient synchronization
in multiprocessors that allows applications to achieve the performance
benefits of such architectures;

(3) Defining sufficient performance constraints and performance-related
functions to allow a realtime application to achieve deterministic
response from the system; and

(4) Specifying changes or additions to improve or complete the definition of
the facilities specified in the previous realtime or threads extensions in
IEEE Std 1003.1b-1993, IEEE Std 1003.1c-1995, and IEEE Std 1003.1d-
1999.

Introduction v

Wherever possible, the requirements of other application environments were
included in the interface definition. The specific areas are noted in the scope over-
views of each of the interface areas given below.

The specific functional areas included in this standard and their scope include:

— Synchronization

New synchronization primitives that allow multiprocessor applications to
achieve the performance benefits of their hardware architecture.

— Memory management

Memory management allows programs to allocate or access different kinds
of physical memory that are present in the system and allows separate
application programs to share portions of this memory.

— Clocks and Timers

The Monotonic Clock has been added. The effects of setting the time of a
clock on other timing services have been specified. Functions have been
added to support relative or absolute suspension based upon a clock
specified by the application.

This standard has been defined exclusively at the source code level for the C pro-
gramming language. Although the interfaces will be portable, some of the parame-
ters used by an implementation may have hardware or configuration
dependencies.

vi Introduction

Related Standards Activities

Activities to extend this standard to address additional requirements are in pro-
gress, and similar efforts can be anticipated in the future.

The following areas are under active consideration at this time or are expected to
become active in the near future:1)

(1) Additional system application program interfaces (API) in C language

(2) Ada language bindings to this standard

(3) Shell and utility facilities

(4) Verification testing methods

(5) Tracing facilities

(6) Fault tolerance

(7) Checkpoint/restart facilities

(8) Resource limiting facilities

(9) Network interface facilities

(10) System administration

(11) Profiles describing application- or user-specific combinations of Open Sys-
tems standards

(12) An overall guide to POSIX-based or -related Open Systems standards and
profiles

Extensions are approved as ‘‘amendments’’ or ‘‘revisions’’ to this document, fol-
lowing the IEEE and ISO/IEC procedures.

Approved amendments are published separately until the full document is
reprinted and such amendments are incorporated in their proper positions.

If you have interest in participating in the Portable Application Standards Com-
mittee (PASC) working groups addressing these issues, please send your name,
address, and phone number to the Secretary, IEEE Standards Board, Institute of
Electrical and Electronics Engineers, Inc., P.O. Box 1331, 445 Hoes Lane, Piscata-
way, NJ 08855-1331, and ask to have this information forwarded to the chairper-
son of the appropriate PASC working group. If you have interest in participating
in this work at the international level, contact your ISO/IEC national body.

1) A Standards Status Report that lists all current IEEE Computer Society standards projects is
available from the IEEE Computer Society, 1730 Massachusetts Avenue NW, Washington, DC
20036-1903; Telephone: +1 202 371-0101; FAX: +1 202 728-9614. Working drafts of POSIX
standards under development are also available from this office.

Introduction vii

This standard was prepared by the Realtime System Services Working Group,
sponsored by the PASC of the IEEE Computer Society. At the time this standard
was approved, the membership of the System Services Working Group was as fol-
lows:

Portable Application Standards Committee

Chair: Lowell Johnson
Vice Chair: Joseph M. Gwinn
Functional Vice Chairs: Jay Ashford

Andrew Josey
Curtis Royster Jr.

Secretary: Nick Stoughton

Realtime System Services Working Group: Officials

Chair: Joseph M. Gwinn
Susan Corwin (until 1995)

Editor: Michael González
Secretary: Karen D. Gordon

Franklin C. Prindle (1996)
Lee Schemerhorn (to 1995)

Ballot coordinators

Joseph M. Gwinn James T. Oblinger

Technical reviewers

Michael González Karen D. Gordon Franklin C. Prindle

Working Group

Ray Alderman Bill Gallmeister Kent Long
Larry Anderson Michael González Robert D. Luken
Pierre-Jean Arcos Karen D. Gordon James T. Oblinger
Charles R. Arnold Randy Greene Offer Pazy
V. Raj Avula Rick Greer Franklin C. Prindle
Theodore P. Baker Joseph M. Gwinn François Riche
Robert Barned Steven A. Haaser Gordon W. Ross
Richard M. Bergman Barbara Haleen Curtis Royster, Jr.
Nawaf Bitar Geoffrey R. Hall Webb Scales
Steve Brosky Patrick Hebert Lee Schermerhorn
David Butenhof Mary R. Hermann Lui Sha
Hans Petter Christiansen David Hughes Del Swanson
Susan Corwin Duane Hughes Barry Traylor
Bill Cox Michael B. Jones Stephen R. Wali
Peter Dibble Steve Kleiman Andrew E. Wheeler, Jr.
Christoph Eck Robert Knighten David Wilner
Michael Feustel C. Douglass Locke John Zolnowsky

viii Introduction

The following members of the balloting committee voted on this standard:

Phillip R. Acuff Michael González David G. Mullens
Alejandro Alonso-Muñoz Karen D. Gordon Howard E. Neely, III
Pierre-Jean Arcos Joseph M. Gwinn Peter E. Obermayer
Jay Ashford Steven A. Haaser James T. Oblinger
Theodore P. Baker Chris J. Harding Diane Paul
David Black Barry Hedquist Franklin C. Prindle
Shirley Bockstahler-Brandt Andrew R. Huber Juan Antonio de la Puente
Mark Brown Petr Janecek Helmut Roth
David Butenhof Lowell G. Johnson Curtis Royster
James T. Carlo Michael B. Jones W. Olin Sibert
Donald Cragun Andrew Josey Donn S. Terry
Lee Damico Michael J. Karels Mark-Rene Uchida
John S. Davies Martin J. Kirk Charlotte Wales
Richard P. Draves Steven R. Kleiman Dale G. Wolfe
Philip H. Enslow C. Douglass Locke Oren Yuen
Michel P. Gien Roger J. Martin Ming De Zhou

Jerry A. Moore

The following organizational representatives voted on this standard:

Diane Paul Andrew Josey
SAE X/Open Co. Ltd.

When the IEEE-SA Standards Board approved this standard on 30 January 2000,
it had the following membership:

Richard J. Holleman, Chair
Donald N. Heirman, Vice Chair
Judith Gorman, Secretary

Satish K. Aggarwal James H. Gurney Louis-François Pau
Dennis Bodson Lowell G. Johnson Ronald C. Petersen
Mark D. Bowman Robert Kennelly Gerald H. Peterson
James T. Carlo E.G. ‘‘Al’’ Kiener John B. Posey
Gary R. Engmann Joseph L. Koepfinger∗ Gary S. Robinson
Harold E. Epstein L. Bruce McClung Akio Tojo
Jay Forster∗ Daleep C. Mohla Hans E. Weinrich
Ruben D. Garzon Robert F. Munzner Donald W. Zispe

∗Member emeritus

Also included is the following nonvoting IEEE-SA Standards Board liaison:

Robert E. Hebner

Yvette Ho Sang
IEEE Standards Project Editor

Introduction ix

IEEE Standard for Information Technology—
Portable Operating System Interface (POSIX)—
Part 1: System Application Program Interface
(API)—Amendment 5: Advanced Realtime
Extensions [C Language]

Section 1: General

1.3 Conformance

1.3.1 Implementation Conformance

⇒⇒ 1.3.1.3 Conforming Implementation Options Add (in alphabetical order)
to the table of implementation options that warrant requirement by applica-
tions or in specifications:

Barriers option in (2.9.3){_POSIX_BARRIERS}
Clock Selection option (in 2.9.3){_POSIX_CLOCK_SELECTION}
Monotonic Clock option (in 2.9.3){_POSIX_MONOTONIC_CLOCK}
Reader/Writer Locks option in (2.9.3){_POSIX_READER_WRITER_LOCKS}
Spin Locks option (in 2.9.3){_POSIX_SPIN_LOCKS}
Typed Memory Objects option (in 2.9.3){_POSIX_TYPED_MEMORY_OBJECTS}

1.3 Conformance 1

IEEE Std 1003.1j-2000

Section 2: Terminology and General Requirements

2.2 Definitions

2.2.2 General Terms

⇒⇒ 2.2.2 General Terms Modify the definition of ‘‘memory object ’’ replacing it
with the following text:

2.2.2.63 memory object: Either a file, a shared memory object, or a typed
memory object.

When used in conjunction with mmap(), a memory object will appear in the
address space of the calling process.

⇒⇒ 2.2.2 General Terms Modify the contents of this subclause to add the follow-
ing definitions in the correct sorted order [disregarding the subclause numbers
shown here].

2.2.2.150 barrier: A synchronization object that allows multiple threads to syn-
chronize at a particular point in their execution.

2.2.2.151 clock jump: The difference between two successive distinct values of a
clock, as observed from the application via one of the ‘‘get time’’ operations.

2.2.2.152 monotonic clock: A clock whose value cannot be set via
clock_settime () and that cannot have negative clock jumps.

2.2.2.153 reader/writer lock: A synchronization object that gives a group of
threads, called ‘‘readers,’’ simultaneous read access to a resource and another
group, called ‘‘writers,’’ exclusive write access to the resource. All readers exclude
any writers, and a writer excludes all readers and any other writers.

2.2.2.154 spin lock: A synchronization object used to allow multiple threads to
serialize their access to shared data.

2.2.2.155 typed memory namespace: A systemwide namespace that contains
the names of the typed memory objects present in the system. It is configurable
for a given implementation.

2.2 Definitions 3

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

2.2.2.156 typed memory object: A combination of a typed memory pool and a
typed memory port. The entire contents of the pool shall be accessible from the
port. The typed memory object is identified through a name that belongs to the
typed memory namespace.

2.2.2.157 typed memory pool: An extent of memory with the same operational
characteristics. Typed memory pools may be contained within each other.

2.2.2.158 typed memory port: A hardware access path to one or more typed
memory pools.

2.5 Primitive System Data Types

⇒⇒ 2.5 Primitive System Data Types Add the following text at the end of the
first paragraph, starting ‘‘Some data types used by...’’

Support for some primitive data types is dependent on implementation options
(see Table 2-2). Where an implementation option is not supported, the primi-
tive data types for that option need not be found in the header
<<ssyyss//ttyyppeess..hh>>.

⇒⇒ 2.5 Primitive System Data Types In the second paragraph, replace ‘‘All of
the types listed in Table 2-1 ... ’’ by the following:

‘‘All of the types listed in Table 2-1 and Table 2-2 ...’’

⇒⇒ 2.5 Primitive System Data Types Add the following datatypes to the list of
types for which there are no defined comparison or assignment operators:

pthread_barrier_t, pthread_barrierattr_t, pthread_rwlock_t,
pthread_rwlockattr_t, pthread_spinlock_t.

⇒⇒ 2.5 Primitive System Data Types Add the following paragraphs after the
paragraph starting ‘‘There are no defined comparison... ’’:

An implementation need not provide the types pthread_barrier_t and
pthread_barrierattr_t unless the Barriers option is supported (see 2.9.3).

An implementation need not provide the types pthread_rwlock_t and
pthread_rwlockattr_t unless the Reader/Writer Locks option is supported (see
2.9.3).

An implementation need not provide the type pthread_spinlock_t unless the
Spin Locks option is supported (see 2.9.3).

4 2 Terminology and General Requirements

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

⇒⇒ 2.5 Primitive System Data Types Add the following table, and renumber
subsequent tables in this Section accordingly:

Table 2-2 −− Optional Primitive System Data Types
__

Defined Implementation
Type Description Option__

Used to identify a barrier Barriers optionpptthhrreeaadd__bbaarrrri ieerr__tt

Used to define a barrier attributes
object

Barriers optionpptthhrreeaadd__bbaarrrri ieerraattttrr__tt

Used to identify a reader/writer
lock

Reader/Writer
Locks option

pptthhrreeaadd__rrwwlloocckk__tt

Used to define a reader/writer
lock attributes object

Reader/Writer
Locks option

pptthhrreeaadd__rrwwlloocckkaattttrr__tt

Used to identify a spin lock Spin Locks optionpptthhrreeaadd__ssppiinnlloocckk__tt
__LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

2.7 C Language Definitions

2.7.3 Headers and Function Prototypes

⇒⇒ 2.7.3 Headers and Function Prototypes Add the following text after the
sentence ‘‘For other functions in this part of ISO/IEC 9945, the prototypes or
declarations shall appear in the headers listed below.’’:

Presence of some prototypes or declarations is dependent on implementation
options. Where an implementation option is not supported, the prototype or
declaration need not be found in the header.

⇒⇒ 2.7.3 Headers and Function Prototypes Modify the contents of subclause
2.7.3 to add the following optional functions, at the end of the current list of
headers and functions.

If the Typed Memory Objects option is supported:

<<ssyyss//mmmmaann..hh>> posix_typed_mem_open(), posix_mem_offset (),
posix_typed_mem_get_info()

If the Spin Locks option is supported:

<<pptthhrreeaadd..hh>> pthread_spin_init(), pthread_spin_destroy(),
pthread_spin_lock(), pthread_spin_trylock(),
pthread_spin_unlock()

2.7 C Language Definitions 5

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

If the Barriers option is supported:

<<pptthhrreeaadd..hh>> pthread_barrierattr_init(),
pthread_barrierattr_destroy(),
pthread_barrierattr_getpshared(),
pthread_barrierattr_setpshared(),
pthread_barrier_init(), pthread_barrier_destroy(),
pthread_barrier_wait()

If the Reader/Writer Locks option is supported:

<<pptthhrreeaadd..hh>> pthread_rwlockattr_init(), pthread_rwlockattr_destroy(),
pthread_rwlockattr_getpshared(),
pthread_rwlockattr_setpshared(), pthread_rwlock_init(),
pthread_rwlock_destroy(), pthread_rwlock_rdlock(),
pthread_rwlock_tryrdlock(),
pthread_rwlock_timedrdlock(), pthread_rwlock_wrlock(),
pthread_rwlock_trywrlock(),
pthread_rwlock_timedwrlock(), pthread_rwlock_unlock()

If the Clock Selection option is supported:

<<tti immee..hh>> clock_nanosleep()

<<pptthhrreeaadd..hh>> pthread_condattr_setclock(), pthread_condattr_getclock()

2.8 Numerical Limits

2.8.7 Maximum Values

⇒⇒ 2.8.7 Maximum Values In Table 2-7a, replace the description of {_POSIX_-
CLOCKRES_MIN}, currently reading ‘‘The CLOCK_REALTIME clock resolution,
in nanoseconds’’, with the following:

The resolution of the clocks CLOCK_REALTIME and CLOCK_MONOTONIC (if
supported), in nanoseconds

6 2 Terminology and General Requirements

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

2.9 Symbolic Constants

2.9.3 Compile-Time Symbolic Constants for Portability Specifications

⇒⇒ 2.9.3 Compile-Time Symbolic Constants for Portability Specifications
Change the first words in the first paragraph, currently saying ‘‘The constants
in Table 2-10 may be used... ’’ to the following:

The constants in Table 2-10 and Table 2-11 may be used...

⇒⇒ 2.9.3 Compile-Time Symbolic Constants for Portability Specifications
Add the following sentence at the end of the first paragraph:

If any of the constants in Table 2-11 is defined, it shall be defined with the
value shown in that table. This value represents the version of the associated
option that is supported by the implementation.

⇒⇒ 2.9.3 Compile-Time Symbolic Constants for Portability Specifications
Add Table 2-11, shown below, after Table 2-10 renumbering all subsequent
tables accordingly.

Table 2-11 −− Versioned Compile-Time Symbolic Constants
__

Name Value Description__
{_POSIX_BARRIERS} 200001L If this symbol is defined with the

shown value, the implementation
supports the Barriers option.

{_POSIX_READER_WRITER_LOCKS} 200001L If this symbol is defined with the
shown value, the implementation
supports the Reader/Writer Locks
option.

{_POSIX_SPIN_LOCKS} 200001L If this symbol is defined with the
shown value, the implementation
supports the Spin Locks option.

{_POSIX_TYPED_MEMORY_OBJECTS} 200001L If this symbol is defined with the
shown value, the implementation
supports the Typed Memory Objects
option.

{_POSIX_MONOTONIC_CLOCK} 200001L If this symbol is defined with the
shown value, the implementation
supports the Monotonic Clock option.

{_POSIX_CLOCK_SELECTION} 200001L If this symbol is defined with the
shown value, the implementation
supports the Clock Selection option.

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

2.9 Symbolic Constants 7

IEEE Std 1003.1j-2000

⇒⇒ 2.9.3 Compile-Time Symbolic Constants for Portability Specifications
Add the following paragraphs:

If the symbol {_POSIX_BARRIERS} is defined, then the symbols {_POSIX_-
THREADS} and {_POSIX_THREAD_SAFE_FUNCTIONS} shall also be defined. If
the symbol {_POSIX_READER_WRITER_LOCKS} is defined, then the symbols
{_POSIX_THREADS} and {_POSIX_THREAD_SAFE_FUNCTIONS} shall also be
defined. If the symbol {_POSIX_SPIN_LOCKS} is defined, then the symbols
{_POSIX_THREADS} and {_POSIX_THREAD_SAFE_FUNCTIONS} shall also be
defined.

If the symbol {_POSIX_MONOTONIC_CLOCK} is defined, then the symbol
{_POSIX_TIMERS} shall also be defined.

If the symbol {_POSIX_CLOCK_SELECTION} is defined, then the symbol
{_POSIX_TIMERS} shall also be defined.

8 2 Terminology and General Requirements

IEEE Std 1003.1j-2000

Section 3: Process Primitives

3.1 Process Creation and Execution

3.1.2 Execute a File

⇒⇒ 3.1.2.2 Execute a File—Description Add the following paragraph after the
paragraph starting ‘‘If the Memory Mapped Files or Shared Memory Objects
option ... ’’

If the Typed Memory Objects option is supported, blocks of typed memory that
were mapped in the calling process are unmapped, as if munmap() was impli-
citly called to unmap them.

3.2 Process Termination

3.2.2 Terminate a Process

⇒⇒ 3.2.2.2 Terminate a Process—Description Add the following list item after
item number (11), and renumber the subsequent items accordingly:

(12) If the Typed Memory Objects option is supported, blocks of typed memory
that were mapped in the calling process are unmapped, as if munmap()
was implicitly called to unmap them.

3.2 Process Termination 9

IEEE Std 1003.1j-2000

3.3 Signals

3.3.8 Synchronously Accept a Signal

⇒⇒ 3.3.8.2 Synchronously Accept a Signal—description Add the following
text at the end of the paragraph starting ‘‘The function sigtimedwait() behaves
the same as ... ’’

If the Monotonic Clock option is supported, the CLOCK_MONOTONIC clock
shall be used to measure the time interval specified by the timeout argument.

10 3 Process Primitives

IEEE Std 1003.1j-2000

Section 4: Process Environment

4.8 Configurable System Variables

4.8.1 Get Configurable System Variables

⇒⇒ 4.8.1.2 Get Configurable System Variables— Description Add the follow-
ing text after the sentence ‘‘The implementation shall support all of the vari-
ables listed in Table 4-2 and may support others ’’ in the second paragraph:

Support for some configuration variables is dependent on implementation
options (see Table 4-3). Where an implementation option is not supported, the
variable need not be supported.

⇒⇒ 4.8.1.2 Get Configurable System Variables— Description In the second
paragraph, replace the text ‘‘The variables in Table 4-2 come from ... ’’ by the
following:

‘‘The variables in Table 4-2 and Table 4-3 come from ...’’

⇒⇒ 4.8.1.2 Get Configurable System Variables— Description Add the follow-
ing table:

Table 4-3 −− Optional Configurable System Variables
__

Variable name Value__
{_POSIX_BARRIERS} {_SC_BARRIERS}
{_POSIX_READER_WRITER_LOCKS} {_SC_READER_WRITER_LOCKS}
{_POSIX_SPIN_LOCKS} {_SC_SPIN_LOCKS}
{_POSIX_TYPED_MEMORY_OBJECTS} {_SC_TYPED_MEMORY_OBJECTS}
{_POSIX_MONOTONIC_CLOCK} {_SC_MONOTONIC_CLOCK}
{_POSIX_CLOCK_SELECTION} {_SC_CLOCK_SELECTION}__LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

4.8 Configurable System Variables 11

IEEE Std 1003.1j-2000

Section 5: Files and Directories

5.6 File Characteristics

5.6.1 File Characteristics: Header and Data Structure

⇒⇒ 5.6.1.1 <sys/stat.h> File Types Add the following text and macro after
S_TYPEISSHM:

If the Typed Memory Objects option is supported, the implementation may
implement typed memory objects as distinct file types, and the following macro
shall test whether a file is of the specified type:

S_TYPEISTMO(buf) Test macro for a typed memory object

5.6.2 Get File Status

⇒⇒ 5.6.2.2 Get File Status—Description Replace the text ‘‘If the Shared
Memory Objects option is supported and fildes references a shared memory
object, ’’ by the following:

If the Shared Memory Objects option is supported and fildes references a
shared memory object or the Typed Memory Objects option is supported and
fildes references a typed memory object,

5.6.4 Change File Modes

⇒⇒ 5.6.4.2 Change File Modes—Description Add the following paragraph
before the paragraph starting ‘‘If the calling process does not have appropriate
privileges... ’’:

If {_POSIX_TYPED_MEMORY_OBJECTS} is defined and fildes references a typed
memory object, the behavior of fchmod() is unspecified.

5.6 File Characteristics 13

IEEE Std 1003.1j-2000

Section 6: Input and Output Primitives

6.3 File Descriptor Deassignment

6.3.1 Close a File

⇒⇒ 6.3.1.2 Close a File—Description Replace the paragraph starting ‘‘If a
memory object remains referenced... ’’ by the following:

If a shared memory object or a memory mapped file remains referenced
at the last close (i.e., a process has it mapped), then the entire contents
of the memory object shall persist until the memory object becomes
unreferenced. If this is the last close of a shared memory object or a
memory mapped file and the close results in the memory object becom-
ing unreferenced, and the memory object has been unlinked, then the
memory object shall be removed.

6.4 Input and Output

6.4.1 Read from a File

⇒⇒ 6.4.1.2 Read from a File—Description Add the following text at the end of
the description:

If the Typed Memory Objects option is supported:

If fildes refers to a typed memory object, the result of the read() function
is unspecified.

6.4 Input and Output 15

IEEE Std 1003.1j-2000

6.4.2 Write to a File

⇒⇒ 6.4.2.2 Write to a File—Description Add the following text at the end of the
description:

If the Typed Memory Objects option is supported:

If fildes refers to a typed memory object, the result of the write() func-
tion is unspecified.

6.5 Control Operations on Files

6.5.2 File Control

⇒⇒ 6.5.2.2 File Control—Description Add the following text at the end of the
description:

If the Typed Memory Objects option is supported and fildes refers to a typed
memory object, the result of the fcntl() function is unspecified.

6.5.3 Reposition Read/Write File Offset

⇒⇒ 6.5.3.2 Reposition Read/Write File Offset—Description Add the follow-
ing text at the end of the description:

If the Typed Memory Objects option is supported and fildes refers to a typed
memory object, the result of the lseek() function is unspecified.

6.7 Asynchronous Input and Output

6.7.8 Wait for Asynchronous I/O Request

⇒⇒ 6.7.8.2 Wait for Asynchronous I/O Request—Description Add the follow-
ing text at the end of the paragraph starting ‘‘If the time interval indicated in
... ’’:

If {_POSIX_MONOTONIC_CLOCK} is defined, the clock that shall be used to
measure this time interval shall be the CLOCK_MONOTONIC clock.

16 6 Input and Output Primitives

IEEE Std 1003.1j-2000

Section 8: Language-Specific Services for the C Programming
Language

8.2 C Language Input/Output Functions

8.2.2 Open a Stream on a File Descriptor

⇒⇒ 8.2.2.2 Open a Stream on a File Descriptor—Description Add the follow-
ing text at the end of the description:

If the Typed Memory Objects option is supported and fildes refers to a typed
memory object, the result of the fdopen() function is unspecified.

8.2 C Language Input/Output Functions 17

IEEE Std 1003.1j-2000

Section 11: Synchronization

11.4 Condition Variables

11.4.1 Condition Variable Initialization Attributes

⇒⇒ 11.4.1.1 Condition Variable Initialization Attributes—Synopsis Add
the following function synopses:

iinntt pptthhrreeaadd__ccoonnddaattttrr__ggeettcclloocckk((ccoonnsstt pptthhrreeaadd__ccoonnddaattttrr__tt ∗attr,,
cclloocckkiidd__tt ∗clock_id));;

iinntt pptthhrreeaadd__ccoonnddaattttrr__sseettcclloocckk((pptthhrreeaadd__ccoonnddaattttrr__tt ∗attr,,
cclloocckkiidd__tt clock_id));;

⇒⇒ 11.4.1.2 Condition Variable Initialization Attributes—Description Add
the following text before the ‘‘Otherwise’’ clause:

If {_POSIX_CLOCK_SELECTION} is defined, the implementation shall provide
the cclloocckk attribute and the associated functions pthread_condattr_setclock()
and pthread_condattr_getclock(). The cclloocckk attribute is the clock id of the
clock that shall be used to measure the timeout service of
pthread_cond_timedwait(). The default value of the cclloocckk attribute shall
refer to the system clock.

The pthread_condattr_setclock() function is used to set the cclloocckk attribute in
an initialized attributes object referenced by attr. If
pthread_condattr_setclock() is called with a clock_id argument that refers to a
CPU-time clock, the call shall fail. The pthread_condattr_getclock() function
obtains the value of the cclloocckk attribute from the attributes object referenced
by attr.

⇒⇒ 11.4.1.2 Condition Variable Initialization Attributes—Description Add
the pthread_condattr_getclock() and pthread_condattr_setclock() functions to the
‘‘Otherwise’’ list.

11.4 Condition Variables 19

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

⇒⇒ 11.4.1.3 Condition Variable Initialization Attributes—Returns Add the
pthread_condattr_setclock() function to the list of functions appearing in the first
paragraph. In addition, add the following paragraph at the end of the sub-
clause:

If successful, the pthread_condattr_getclock() function shall return zero and
store the value of the cclloocckk attribute of attr into the object referenced by the
clock_id argument. Otherwise, an error number shall be returned to indicate
the error.

⇒⇒ 11.4.1.4 Condition Variable Initialization Attributes—Errors Add the
pthread_condattr_setclock() and pthread_condattr_getclock() functions to the list of
functions for which the error value [EINVAL] is returned if the implementation
detects that the value specified by attr is invalid. In addition, add the following
text at the end of this subclause:

For each of the following conditions, if the condition is detected, the
pthread_condattr_setclock() function shall return the corresponding error
number:

[EINVAL] The value specified by clock_id does not refer to a known
clock or is a CPU-time clock.

⇒⇒ 11.4.1.5 Condition Variable Initialization Attributes—
Cross-References Add the following cross-reference:

pthread_cond_timedwait(), 11.4.4.

11.4.4 Waiting on a Condition

⇒⇒ 11.4.4.2 Waiting on a Condition—Description Add the following text after
the sentence starting ‘‘The pthread_cond_timedwait function is the same as
... ’’:

If {_POSIX_CLOCK_SELECTION} is defined, the condition variable shall have a
cclloocckk attribute specifying the clock that shall be used to measure the time
specified by the abstime argument.

20 11 Synchronization

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

⇒⇒ 11 Synchronization Add these subclauses:

11.5 Barriers

11.5.1 Barrier Initialization Attributes

Functions: pthread_barrierattr_init(), pthread_barrierattr_destroy(),
pthread_barrierattr_getpshared(), pthread_barrierattr_setpshared()

11.5.1.1 Synopsis

##iinncclluuddee <<ssyyss//ttyyppeess..hh>>
##iinncclluuddee <<pptthhrreeaadd..hh>>

iinntt pptthhrreeaadd__bbaarrrriieerraattttrr__iinniit t((pptthhrreeaadd__bbaarrrriieerraattttrr__tt ∗attr));;

iinntt pptthhrreeaadd__bbaarrrriieerraattttrr__ddeessttrrooyy((pptthhrreeaadd__bbaarrrriieerraattttrr__tt ∗attr));;

iinntt pptthhrreeaadd__bbaarrrriieerraattttrr__ggeettppsshhaarreedd((ccoonnsstt pptthhrreeaadd__bbaarrrriieerraattttrr__tt ∗attr,,
iinntt ∗pshared));;

iinntt pptthhrreeaadd__bbaarrrriieerraattttrr__sseettppsshhaarreedd((pptthhrreeaadd__bbaarrrriieerraattttrr__tt ∗attr,,
iinntt pshared));;

11.5.1.2 Description

If {_POSIX_BARRIERS} is defined:

The function pthread_barrierattr_init() initializes a barrier attributes
object attr with the default value for all of the attributes defined by the
implementation.

The results are undefined if pthread_barrierattr_init() is called specifying
an already initialized barrier attributes object.

After a barrier attributes object has been used to initialize one or more bar-
riers, any function affecting the attributes object (including destruction)
does not affect any previously initialized barrier.

The pthread_barrierattr_destroy() function destroys a barrier attributes
object. The effect of subsequent use of the object is undefined until the
object is reinitialized by another call to pthread_barrierattr_init(). An
implementation may cause pthread_barrierattr_destroy() to set the object
referenced by attr to an invalid value.

If {_POSIX_THREAD_PROCESS_SHARED} is defined, the implementation
shall provide the attribute pprroocceessss--sshhaarreedd and the associated functions
pthread_barrierattr_getpshared() and pthread_barrierattr_setpshared().
The pprroocceessss--sshhaarreedd attribute is set to PTHREAD_PROCESS_SHARED to
permit a barrier to be operated upon by any thread that has access to the
memory where the barrier is allocated. If the pprroocceessss--sshhaarreedd attribute
is PTHREAD_PROCESS_PRIVATE, the barrier shall only be operated upon by
threads created within the same process as the thread that initialized the
barrier. If threads of different processes attempt to operate on such a

11.5 Barriers 21

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

barrier, the behavior is undefined. The default value of the attribute shall
be PTHREAD_PROCESS_PRIVATE. Both constants
PTHREAD_PROCESS_SHARED and PTHREAD_PROCESS_PRIVATE are
defined in <<pptthhrreeaadd..hh>>.

The pthread_barrierattr_setpshared() function is used to set the
pprroocceessss--sshhaarreedd attribute in an initialized attributes object referenced
by attr. The pthread_barrierattr_getpshared() function obtains the value of
the pprroocceessss--sshhaarreedd attribute from the attributes object referenced by
attr.

Additional attributes, their default values, and the names of the associated func-
tions to get and set those attribute values are implementation defined.

11.5.1.3 Returns

If successful, the pthread_barrierattr_init(), pthread_barrierattr_destroy(), and
pthread_barrierattr_setpshared() functions shall return zero. Otherwise, an error
number shall be returned to indicate the error.

If successful, the pthread_barrierattr_getpshared() function shall return zero and
store the value of the pprroocceessss--sshhaarreedd attribute of attr into the object refer-
enced by the pshared parameter. Otherwise, an error number shall be returned to
indicate the error.

11.5.1.4 Errors

If any of the following conditions occur, the pthread_barrierattr_init() function
shall return the corresponding error value:

[ENOMEM] Insufficient memory exists to initialize the barrier attributes
object.

For each of the following conditions, if the condition is detected, the
pthread_barrierattr_destroy(), pthread_barrierattr_getpshared(), and
pthread_barrierattr_setpshared() functions shall return the corresponding error
value:

[EINVAL] The value specified by attr is invalid.

For each of the following conditions, if the condition is detected, the
pthread_barrierattr_setpshared() function shall return the corresponding error
value:

[EINVAL] The new value specified for the pprroocceessss--sshhaarreedd attribute is
not one of the legal values PTHREAD_PROCESS_SHARED or
PTHREAD_PROCESS_PRIVATE.

11.5.1.5 Cross-References

pthread_barrier_init(), 11.5.2.

22 11 Synchronization

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

11.5.2 Initializing and Destroying a Barrier

Functions: pthread_barrier_init(), pthread_barrier_destroy()

11.5.2.1 Synopsis

##iinncclluuddee <<ssyyss//ttyyppeess..hh>>
##iinncclluuddee <<pptthhrreeaadd..hh>>

iinntt pptthhrreeaadd__bbaarrrriieerr__iinniit t((pptthhrreeaadd__bbaarrrriieerr__tt ∗barrier,,
ccoonnsstt pptthhrreeaadd__bbaarrrriieerraattttrr__tt ∗attr,,
uunnssiiggnneedd iinntt count));;

iinntt pptthhrreeaadd__bbaarrrriieerr__ddeessttrrooyy((pptthhrreeaadd__bbaarrrriieerr__tt ∗barrier));;

11.5.2.2 Description

If {_POSIX_BARRIERS} is defined:

The pthread_barrier_init() function shall allocate any resources required to
use the barrier referenced by barrier and initializes the barrier with attri-
butes referenced by attr. If attr is NULL, the default barrier attributes are
used; the effect is the same as passing the address of a default barrier attri-
butes object. The results are undefined if pthread_barrier_init() is called
when any thread is blocked on the barrier (that is, has not returned from
the pthread_barrier_wait() call). The results are undefined if a barrier is
used without first being initialized. The results are undefined if
pthread_barrier_init() is called specifying an already initialized barrier.

The count argument specifies the number of threads that shall call
pthread_barrier_wait() before any of them successfully return from the call.
The value specified by count shall be greater than zero.

If the pthread_barrier_init() function fails, the barrier is not initialized, and
the contents of barrier are undefined.

Only the object referenced by barrier may be used for performing synchron-
ization. The result of referring to copies of that object in calls to
pthread_barrier_destroy() or pthread_barrier_wait() is undefined.

The pthread_barrier_destroy() function destroys the barrier referenced by
barrier and releases any resources used by the barrier. The effect of subse-
quent use of the barrier is undefined until the barrier is reinitialized by
another call to pthread_barrier_init(). An implementation may use this
function to set barrier to an invalid value. The results are undefined if
pthread_barrier_destroy() is called when any thread is blocked on the bar-
rier or if this function is called with an uninitialized barrier.

11.5.2.3 Returns

Upon successful completion, the pthread_barrier_init() and
pthread_barrier_destroy() functions shall return zero. Otherwise, an error
number shall be returned to indicate the error.

11.5 Barriers 23

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

11.5.2.4 Errors

If any of the following conditions occur, the pthread_barrier_init() function shall
return the corresponding value:

[EAGAIN] The system lacks the necessary resources to initialize another
barrier.

[EINVAL] The value specified by count is equal to zero.

[ENOMEM] Insufficient memory exists to initialize the barrier.

For each of the following conditions, if the condition is detected, the
pthread_barrier_init() function shall return the corresponding value:

[EBUSY] The implementation has detected an attempt to reinitialize a
barrier while it is in use (for example, while being used in a
pthread_barrier_wait() call) by another thread.

[EINVAL] The value specified by attr is invalid.

For each of the following conditions, if the condition is detected, the
pthread_barrier_destroy() function shall return the corresponding value:

[EBUSY] The implementation has detected an attempt to destroy a barrier
while it is in use (for example, while being used in a
pthread_barrier_wait() call) by another thread.

[EINVAL] The value specified by barrier is invalid.

11.5.2.5 Cross-References

pthread_barrier_wait(), 11.5.3.

11.5.3 Synchronizing at a Barrier

Function: pthread_barrier_wait()

11.5.3.1 Synopsis

##iinncclluuddee <<ssyyss//ttyyppeess..hh>>
##iinncclluuddee <<pptthhrreeaadd..hh>>

iinntt pptthhrreeaadd__bbaarrrriieerr__wwaaiit t((pptthhrreeaadd__bbaarrrriieerr__tt ∗barrier));;

11.5.3.2 Description

If {_POSIX_BARRIERS} is defined:

The pthread_barrier_wait() function synchronizes participating threads at
the barrier referenced by barrier. The calling thread blocks (that is, does
not return from the pthread_barrier_wait() call) until the required number
of threads have called pthread_barrier_wait() specifying the barrier.

When the required number of threads have called pthread_barrier_wait()
specifying the barrier, the constant PTHREAD_BARRIER_SERIAL_THREAD
is returned to one unspecified thread and zero is returned to each of the

24 11 Synchronization

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

remaining threads. At this point, the barrier is reset to the state it had as a
result of the most recent pthread_barrier_init() function that referenced it.

The constant PTHREAD_BARRIER_SERIAL_THREAD is defined in
<<pptthhrreeaadd..hh>>, and its value is distinct from any other value returned by
pthread_barrier_wait().

The results are undefined if this function is called with an uninitialized
barrier.

If a signal is delivered to a thread blocked on a barrier, upon return from
the signal handler, the thread shall resume waiting at the barrier if the
barrier wait has not completed (that is, if the required number of threads
have not arrived at the barrier during the execution of the signal handler).
Otherwise, the thread shall continue as normally from the completed bar-
rier wait. Until the thread in the signal handler returns from it, it is
unspecified whether other threads may proceed past the barrier once they
have all reached it.

A thread that has blocked on a barrier shall not prevent any unblocked
thread that is eligible to use the same processing resources from eventually
making forward progress in its execution. Eligibility for processing
resources shall be determined by the scheduling policy. See 13.2 for full
details.

11.5.3.3 Returns

Upon successful completion, the pthread_barrier_wait() function shall return
PTHREAD_BARRIER_SERIAL_THREAD for a single (arbitrary) thread synchronized
at the barrier and zero for each of the other threads. Otherwise, an error number
shall be returned to indicate the error.

11.5.3.4 Errors

For each of the following conditions, if the condition is detected, the
pthread_barrier_wait() function shall return the corresponding value:

[EINVAL] The value specified by barrier does not refer to an initialized bar-
rier object.

11.5.3.5 Cross-References

pthread_barrier_init(), 11.5.2; pthread_barrier_destroy(), 11.5.2.

11.5 Barriers 25

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

11.6 Reader/Writer Locks

Some of the synchronization primitives defined in this section provide exclusive
access to a resource. An application may also want to allow a group of threads,
called readers, simultaneous read access to a resource and another group of
threads, called writers, exclusive write access to the resource. To do so, another
synchronization primitive called a multiple reader/single writer, or reader/writer,
lock can be used.

One or more readers acquire read access to the resource by performing a read lock
operation on the associated reader/writer lock. A writer acquires exclusive write
access by performing a write lock operation. Basically, all readers exclude any
writers, and a writer excludes all readers and any other writers.

A thread that has blocked on a reader/writer lock (that is, has not yet returned
from a pthread_rwlock_rdlock() or pthread_rwlock_wrlock() call) shall not prevent
any unblocked thread that is eligible to use the same processing resources from
eventually making forward progress in its execution. Eligibility for processing
resources shall be determined by the scheduling policy. See 13.2 for full details.

11.6.1 Reader/Writer Lock Initialization Attributes

Functions: pthread_rwlockattr_init(), pthread_rwlockattr_destroy(),
pthread_rwlockattr_getpshared(), pthread_rwlockattr_setpshared()

11.6.1.1 Synopsis

##iinncclluuddee <<ssyyss//ttyyppeess..hh>>
##iinncclluuddee <<pptthhrreeaadd..hh>>

iinntt pptthhrreeaadd__rrwwlloocckkaattttrr__iinniit t((pptthhrreeaadd__rrwwlloocckkaattttrr__tt ∗attr));;

iinntt pptthhrreeaadd__rrwwlloocckkaattttrr__ddeessttrrooyy((pptthhrreeaadd__rrwwlloocckkaattttrr__tt ∗attr));;

iinntt pptthhrreeaadd__rrwwlloocckkaattttrr__ggeettppsshhaarreedd((ccoonnsstt pptthhrreeaadd__rrwwlloocckkaattttrr__tt ∗attr,,
iinntt ∗pshared));;

iinntt pptthhrreeaadd__rrwwlloocckkaattttrr__sseettppsshhaarreedd((pptthhrreeaadd__rrwwlloocckkaattttrr__tt ∗attr,,
iinntt pshared));;

11.6.1.2 Description

If {_POSIX_READER_WRITER_LOCKS} is defined:

The function pthread_rwlockattr_init() initializes a reader/writer lock attri-
butes object attr with the default value for all of the attributes defined by
the implementation.

The results are undefined if pthread_rwlockattr_init() is called specifying
an already initialized reader/writer lock attributes object.

After a reader/writer lock attributes object has been used to initialize one or
more reader/writer locks, any function affecting the attributes object
(including destruction) does not affect any previously initialized
reader/writer lock.

26 11 Synchronization

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

The pthread_rwlockattr_destroy() function destroys a reader/writer lock
attributes object. The effect of subsequent use of the object is undefined
until the object is reinitialized by another call to pthread_rwlockattr_init().
An implementation may cause pthread_rwlockattr_destroy() to set the
object referenced by attr to an invalid value.

If {_POSIX_THREAD_PROCESS_SHARED} is defined, the implementation
shall provide the attribute pprroocceessss--sshhaarreedd and the associated functions
pthread_rwlockattr_getpshared() and pthread_rwlockattr_setpshared(). If
this option is not supported, then the pprroocceessss--sshhaarreedd attribute and
these functions are not supported. The pprroocceessss--sshhaarreedd attribute is set
to PTHREAD_PROCESS_SHARED to permit a reader/writer lock to be
operated upon by any thread that has access to the memory where the
reader/writer lock is allocated. If the pprroocceessss--sshhaarreedd attribute is
PTHREAD_PROCESS_PRIVATE, the reader/writer lock shall only be operated
upon by threads created within the same process as the thread that initial-
ized the reader/writer lock. If threads of different processes attempt to
operate on such a reader/writer lock, the behavior is undefined. The default
value of the attribute shall be PTHREAD_PROCESS_PRIVATE.

The pthread_rwlockattr_setpshared() function is used to set the
pprroocceessss--sshhaarreedd attribute in an initialized attributes object referenced
by attr. The pthread_rwlockattr_getpshared() function obtains the value of
the pprroocceessss--sshhaarreedd attribute from the attributes object referenced by
attr.

Additional attributes, their default values, and the names of the associated func-
tions to get and set those attribute values are implementation defined.

11.6.1.3 Returns

If successful, the pthread_rwlockattr_init(), pthread_rwlockattr_destroy(), and
pthread_rwlockattr_setpshared() functions shall return zero. Otherwise, an error
number shall be returned to indicate the error.

If successful, the pthread_rwlockattr_getpshared() function shall return zero and
store the value of the pprroocceessss--sshhaarreedd attribute of attr into the object refer-
enced by the pshared parameter. Otherwise, an error number shall be returned to
indicate the error.

11.6.1.4 Errors

If any of the following conditions occur, the pthread_rwlockattr_init() function
shall return the corresponding error number:

[ENOMEM] Insufficient memory exists to initialize the reader/writer lock
attributes object.

For each of the following conditions, if the condition is detected, the
pthread_rwlockattr_destroy(), pthread_rwlockattr_getpshared(), and
pthread_rwlockattr_setpshared() functions shall return the corresponding error
number:

11.6 Reader/Writer Locks 27

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

[EINVAL] The value specified by attr is invalid.

For each of the following conditions, if the condition is detected, the
pthread_rwlockattr_setpshared() function shall return the corresponding error
number:

[EINVAL] The new value specified for the pprroocceessss--sshhaarreedd attribute is
not one of the legal values PTHREAD_PROCESS_SHARED or
PTHREAD_PROCESS_PRIVATE.

11.6.1.5 Cross-References

pthread_rwlock_init(), 11.6.2.

11.6.2 Initializing and Destroying a Reader/Writer Lock

Functions: pthread_rwlock_init(), pthread_rwlock_destroy()

11.6.2.1 Synopsis

##iinncclluuddee <<ssyyss//ttyyppeess..hh>>
##iinncclluuddee <<pptthhrreeaadd..hh>>

iinntt pptthhrreeaadd__rrwwlloocckk__iinniit t((pptthhrreeaadd__rrwwlloocckk__tt ∗lock,,
ccoonnsstt pptthhrreeaadd__rrwwlloocckkaattttrr__tt ∗attr));;

iinntt pptthhrreeaadd__rrwwlloocckk__ddeessttrrooyy((pptthhrreeaadd__rrwwlloocckk__tt ∗lock));;

11.6.2.2 Description

If {_POSIX_READER_WRITER_LOCKS} is defined:

The pthread_rwlock_init() function shall allocate any resources required to
use the reader/writer lock referenced by lock and initializes the lock to an
unlocked state with attributes referenced by attr. If attr is NULL, the
default reader/writer lock attributes are used; the effect is the same as
passing the address of a default reader/writer lock attributes object. The
results are undefined if pthread_rwlock_init() is called specifying an
already initialized reader/writer lock. The results are undefined if a
reader/writer lock is used without first being initialized.

If the pthread_rwlock_init() function fails, the lock is not initialized, and
the contents of lock are undefined.

Only the object referenced by lock may be used for performing synchroniza-
tion. The result of referring to copies of that object in calls to
pthread_rwlock_destroy(), pthread_rwlock_rdlock(),
pthread_rwlock_timedrdlock(), pthread_rwlock_tryrdlock(),
pthread_rwlock_wrlock(), pthread_rwlock_timedwrlock(),
pthread_rwlock_trywrlock(), or pthread_rwlock_unlock() is undefined.

The pthread_rwlock_destroy() function destroys the reader/writer lock
referenced by lock and releases any resources used by the lock. The effect
of subsequent use of the lock is undefined until the lock is reinitialized by
another call to pthread_rwlock_init(). An implementation may use this

28 11 Synchronization

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

function to set the lock to an invalid value. The results are undefined if
pthread_rwlock_destroy() is called when any thread holds the lock or if this
function is called with an uninitialized reader/writer lock.

11.6.2.3 Returns

Upon successful completion, the pthread_rwlock_init() and
pthread_rwlock_destroy() functions shall return zero. Otherwise, an error
number shall be returned to indicate the error.

11.6.2.4 Errors

If any of the following conditions occur, the pthread_rwlock_init() function shall
return the corresponding value:

[EAGAIN] The system lacks the necessary resources to initialize another
reader/writer lock.

[ENOMEM] Insufficient memory exists to initialize the lock.

For each of the following conditions, if the condition is detected, the
pthread_rwlock_init() function shall return the corresponding value:

[EBUSY] The implementation has detected an attempt to reinitialize a
reader/writer lock while it is in use (for example, while being
used in a pthread_rwlock_rdlock() call) by another thread.

[EINVAL] The value specified by attr is invalid.

For each of the following conditions, if the condition is detected, the
pthread_rwlock_destroy() function shall return the corresponding value:

[EBUSY] The implementation has detected an attempt to destroy a
reader/writer lock while it is in use (for example, while being
used in a pthread_rwlock_rdlock() call) by another thread.

[EINVAL] The value specified by lock is invalid.

11.6.2.5 Cross-References

pthread_rwlock_rdlock(), 11.6.3; pthread_rwlock_timedrdlock(), 11.6.3;
pthread_rwlock_tryrdlock(), 11.6.3; pthread_rwlock_wrlock(), 11.6.4;
pthread_rwlock_timedwrlock(), 11.6.4; pthread_rwlock_trywrlock(), 11.6.4;
pthread_rwlock_unlock(), 11.6.5.

11.6.3 Applying a Read Lock

Functions: pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(),
pthread_rwlock_tryrdlock()

11.6 Reader/Writer Locks 29

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

11.6.3.1 Synopsis

##iinncclluuddee <<ssyyss//ttyyppeess..hh>>
##iinncclluuddee <<tti immee..hh>>
##iinncclluuddee <<pptthhrreeaadd..hh>>

iinntt pptthhrreeaadd__rrwwlloocckk__rrddlloocckk((pptthhrreeaadd__rrwwlloocckk__tt ∗lock));;

iinntt pptthhrreeaadd__rrwwlloocckk__tti immeeddrrddlloocckk((pptthhrreeaadd__rrwwlloocckk__tt ∗lock,,
ccoonnsstt ssttrruucctt tti immeessppeecc ∗abs_timeout));;

iinntt pptthhrreeaadd__rrwwlloocckk__ttrryyrrddlloocckk((pptthhrreeaadd__rrwwlloocckk__tt ∗lock));;

11.6.3.2 Description

If {_POSIX_READER_WRITER_LOCKS} is defined:

The pthread_rwlock_rdlock() function applies a read lock to the
reader/writer lock referenced by lock. The calling thread shall acquire the
read lock if a writer does not hold the lock and there are no writers blocked
on the lock. If {_POSIX_THREAD_PRIORITY_SCHEDULING} is defined and
the threads involved in the lock are executing with the scheduling policies
SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC, the calling thread shall
not acquire the lock if a writer holds the lock or if writers of higher or equal
priority are blocked on the lock. Otherwise the calling thread shall acquire
the lock. If {_POSIX_THREAD_PRIORITY_SCHEDULING} is not defined, it is
implementation defined whether the calling thread acquires the lock when
a writer does not hold the lock and there are writers blocked on the lock. If
a writer holds the lock, the calling thread shall not acquire the read lock. If
the lock is not acquired, the calling thread blocks (that is, does not return
from the pthread_rwlock_rdlock() call) until it can acquire the lock. The
calling thread may deadlock if, at the time the call is made, it holds a write
lock on lock.

The maximum number of simultaneous read locks that an implementation
guarantees can be applied to a reader/writer lock shall be implementation
defined. The pthread_rwlock_rdlock() function may fail if this maximum
would be exceeded.

The pthread_rwlock_tryrdlock() function applies a read lock as in the
pthread_rwlock_rdlock() function, with the exception that the function fails
if the equivalent pthread_rwlock_rdlock() call would have blocked the cal-
ling thread. In no case does the pthread_rwlock_tryrdlock() function ever
block; it always either acquires the lock or fails and returns immediately.

The results are undefined if any of these functions is called with an unini-
tialized reader/writer lock.

If a signal that causes a signal handler to be executed is delivered to a
thread blocked on a reader/writer lock via a call to
pthread_rwlock_rdlock(), upon return from the signal handler the thread
shall resume waiting for the lock as if it had not been interrupted.

30 11 Synchronization

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

If {_POSIX_READER_WRITER_LOCKS} and {_POSIX_TIMEOUTS} are both defined:

The pthread_rwlock_timedrdlock() function applies a read lock to the
reader/writer lock referenced by lock as in the pthread_rwlock_rdlock()
function. However, if the lock cannot be acquired without waiting for other
threads to unlock the lock, this wait shall be terminated when the specified
timeout expires. The timeout expires when the absolute time specified by
abs_timeout passes, as measured by the clock on which timeouts are based
(that is, when the value of that clock equals or exceeds abs_timeout) or if
the absolute time specified by abs_timeout has already been passed at the
time of the call. If {_POSIX_TIMERS} is defined, the timeout is based on the
CLOCK_REALTIME clock; if {_POSIX_TIMERS} is not defined, the timeout is
based on the system clock as returned by the time() function. The resolu-
tion of the timeout is the resolution of the clock on which it is based. The
timespec datatype is defined as a structure in the header <<tti immee..hh>>.
Under no circumstances shall the function fail with a timeout if the lock
can be acquired immediately. The validity of the abs_timeout parameter
need not be checked if the lock can be immediately acquired.

If a signal that causes a signal handler to be executed is delivered to a
thread blocked on a reader/writer lock via a call to
pthread_rwlock_timedrdlock(), upon return from the signal handler the
thread shall resume waiting for the lock as if it had not been interrupted.

The calling thread may deadlock if, at the time the call is made, it holds a
write lock on lock. The results are undefined if this function is called with
an uninitialized reader/writer lock.

11.6.3.3 Returns

Upon successful completion, the pthread_rwlock_rdlock(),
pthread_rwlock_timedrdlock(), and pthread_rwlock_tryrdlock() functions shall
return zero. Otherwise, an error number shall be returned to indicate the error.

11.6.3.4 Errors

If any of the following conditions occur, the pthread_rwlock_tryrdlock() function
shall return the corresponding value:

[EBUSY] A writer holds the lock, or a writer with appropriate priority is
blocked on the lock.

If any of the following conditions occur, the pthread_rwlock_timedrdlock() func-
tion shall return the corresponding value:

[ETIMEDOUT]
The lock could not be acquired before the specified timeout
expired.

For each of the following conditions, if the condition is detected, the
pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(), and
pthread_rwlock_tryrdlock() functions shall return the corresponding value:

11.6 Reader/Writer Locks 31

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

[EINVAL] The value specified by lock does not refer to an initialized
reader/writer lock object, or the abs_timeout nanosecond value is
less than zero or greater than or equal to 1000 million.

For each of the following conditions, if the condition is detected, the
pthread_rwlock_rdlock() and pthread_rwlock_timedrdlock() functions shall return
the corresponding value:

[EDEADLK] The calling thread already holds a write lock on lock.

For each of the following conditions, if the condition is detected, the
pthread_rwlock_rdlock(), pthread_rwlock_tryrdlock(), and
pthread_rwlock_timedrdlock() functions shall return the corresponding value:

[EAGAIN] The read lock could not be acquired because the maximum
number of read locks for lock would be exceeded.

11.6.3.5 Cross-References

pthread_rwlock_init(), 11.6.2; pthread_rwlock_destroy(), 11.6.2;
pthread_rwlock_wrlock(), 11.6.4; pthread_rwlock_timedwrlock(), 11.6.4;
pthread_rwlock_trywrlock(), 11.6.4; pthread_rwlock_unlock(), 11.6.5.

11.6.4 Applying a Write Lock

Functions: pthread_rwlock_wrlock(), pthread_rwlock_timedwrlock(),
pthread_rwlock_trywrlock()

11.6.4.1 Synopsis

##iinncclluuddee <<ssyyss//ttyyppeess..hh>>
##iinncclluuddee <<tti immee..hh>>
##iinncclluuddee <<pptthhrreeaadd..hh>>

iinntt pptthhrreeaadd__rrwwlloocckk__wwrrlloocckk((pptthhrreeaadd__rrwwlloocckk__tt ∗lock));;

iinntt pptthhrreeaadd__rrwwlloocckk__tti immeeddwwrrlloocckk((pptthhrreeaadd__rrwwlloocckk__tt ∗lock,,
ccoonnsstt ssttrruucctt tti immeessppeecc ∗abs_timeout));;

iinntt pptthhrreeaadd__rrwwlloocckk__ttrryywwrrlloocckk((pptthhrreeaadd__rrwwlloocckk__tt ∗lock));;

11.6.4.2 Description

If {_POSIX_READER_WRITER_LOCKS} is defined:

The pthread_rwlock_wrlock() function applies a write lock to the
reader/writer lock referenced by lock. The calling thread acquires the write
lock if no thread (reader or writer) holds the reader/writer lock. Otherwise,
the thread blocks (that is, does not return from the
pthread_rwlock_wrlock() call) until it can acquire the lock. The calling
thread may deadlock if, at the time the call is made, it holds the
reader/writer lock.

The pthread_rwlock_trywrlock() function applies a write lock as in the
pthread_rwlock_wrlock() function, with the exception that the function fails
if the equivalent pthread_rwlock_wrlock() call would have blocked the

32 11 Synchronization

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

calling thread. In no case does the pthread_rwlock_trywrlock() function
ever block; it always either acquires the lock or fails and returns immedi-
ately.

The results are undefined if any of these functions is called with an unini-
tialized reader/writer lock.

If a signal that causes a signal handler to be executed is delivered to a
thread blocked on a reader/writer lock via a call to
pthread_rwlock_wrlock(), upon return from the signal handler the thread
shall resume waiting for the lock as if it had not been interrupted.

If {_POSIX_READER_WRITER_LOCKS} and {_POSIX_TIMEOUTS} are both defined:

The pthread_rwlock_timedwrlock() function applies a write lock to the
reader/writer lock referenced by lock as in the pthread_rwlock_wrlock()
function. However, if the lock cannot be acquired without waiting for other
threads to unlock the lock, this wait shall be terminated when the specified
timeout expires. The timeout expires when the absolute time specified by
abs_timeout passes, as measured by the clock on which timeouts are based
(that is, when the value of that clock equals or exceeds abs_timeout) or if
the absolute time specified by abs_timeout has already been passed at the
time of the call. If {_POSIX_TIMERS} is defined, the timeout is based on the
CLOCK_REALTIME clock; if {_POSIX_TIMERS} is not defined, the timeout is
based on the system clock as returned by the time() function. The resolu-
tion of the timeout is the resolution of the clock on which it is based. The
timespec datatype is defined as a structure in the header <<tti immee..hh>>.
Under no circumstances shall the function fail with a timeout if the lock
can be acquired immediately. The validity of the abs_timeout parameter
need not be checked if the lock can be immediately acquired.

If a signal that causes a signal handler to be executed is delivered to a
thread blocked on a reader/writer lock via a call to
pthread_rwlock_timedwrlock(), upon return from the signal handler the
thread shall resume waiting for the lock as if it had not been interrupted.

The calling thread may deadlock if, at the time the call is made, it holds the
reader/writer lock. The results are undefined if this function is called with
an uninitialized reader/writer lock.

11.6.4.3 Returns

Upon successful completion, the pthread_rwlock_wrlock(),
pthread_rwlock_timedwrlock(), and pthread_rwlock_trywrlock() functions shall
return zero. Otherwise, an error number shall be returned to indicate the error.

11.6.4.4 Errors

If any of the following conditions occur, the pthread_rwlock_trywrlock() function
shall return the corresponding value:

[EBUSY] A reader or writer holds the lock.

If any of the following conditions occur, the pthread_rwlock_timedwrlock() func-
tion shall return the corresponding value:

11.6 Reader/Writer Locks 33

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

[ETIMEDOUT]
The lock could not be acquired before the specified timeout
expired.

For each of the following conditions, if the condition is detected, the
pthread_rwlock_wrlock(), pthread_rwlock_timedwrlock(), and
pthread_rwlock_trywrlock() functions shall return the corresponding value:

[EINVAL] The value specified by lock does not refer to an initialized
reader/writer lock object, or the abs_timeout nanosecond value is
less than zero or greater than or equal to 1000 million.

For each of the following conditions, if the condition is detected, the
pthread_rwlock_wrlock() and pthread_rwlock_timedwrlock() functions shall
return the corresponding value:

[EDEADLK] The calling thread already holds the reader/writer lock.

11.6.4.5 Cross-References

pthread_rwlock_init(), 11.6.2; pthread_rwlock_destroy(), 11.6.2;
pthread_rwlock_rdlock(), 11.6.3; pthread_rwlock_timedrdlock(), 11.6.3;
pthread_rwlock_tryrdlock(), 11.6.3; pthread_rwlock_unlock(), 11.6.5.

11.6.5 Unlocking a Reader/Writer Lock

Function: pthread_rwlock_unlock()

11.6.5.1 Synopsis

##iinncclluuddee <<ssyyss//ttyyppeess..hh>>
##iinncclluuddee <<pptthhrreeaadd..hh>>

iinntt pptthhrreeaadd__rrwwlloocckk__uunnlloocckk((pptthhrreeaadd__rrwwlloocckk__tt ∗lock));;

11.6.5.2 Description

If {_POSIX_READER_WRITER_LOCKS} is defined:

The pthread_rwlock_unlock() function releases the lock on the
reader/writer lock referenced by lock that was locked by the calling thread
via one of the pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(),
pthread_rwlock_tryrdlock(), pthread_rwlock_wrlock(),
pthread_rwlock_timedwrlock(), or pthread_rwlock_trywrlock() functions.
The results are undefined if a lock on lock is not held by the calling thread.
If a read lock is released by this call and, at the time of the call, the
released lock is the last read lock to be held on lock, the reader/writer lock
shall become available. If a write lock is released by this call, the
reader/writer lock shall become available.

If there are threads blocked on the lock when it becomes available, the
scheduling policy is used to determine which thread(s) shall acquire the
lock. If {_POSIX_THREAD_PRIORITY_SCHEDULING} is defined, when
threads executing with the scheduling policies SCHED_FIFO, SCHED_RR, or

34 11 Synchronization

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

SCHED_SPORADIC are waiting on the lock, they will acquire the lock in
priority order when the lock becomes available. For equal priority threads,
write locks take precedence over read locks. If {_POSIX_THREAD_-
PRIORITY_SCHEDULING} is not defined, it is implementation defined
whether write locks take precedence over read locks.

The results are undefined if any of these functions are called with an unini-
tialized reader/writer lock.

11.6.5.3 Returns

Upon successful completion, the pthread_rwlock_unlock() function shall return
zero. Otherwise, an error number shall be returned to indicate the error.

11.6.5.4 Errors

For each of the following conditions, if the condition is detected, the
pthread_rwlock_unlock() function shall return the corresponding value:

[EINVAL] The value specified by lock does not refer to an initialized
reader/writer lock object.

[EPERM] The calling thread does not hold a lock on the reader/writer lock.

11.6.5.5 Cross-References

pthread_rwlock_init(), 11.6.2; pthread_rwlock_destroy(), 11.6.2;
pthread_rwlock_rdlock(), 11.6.3; pthread_rwlock_timedrdlock(), 11.6.3;
pthread_rwlock_tryrdlock(), 11.6.3; pthread_rwlock_wrlock(), 11.6.4;
pthread_rwlock_timedwrlock(), 11.6.4; pthread_rwlock_trywrlock(), 11.6.4.

11.7 Spin Locks

11.7.1 Initializing and Destroying a Spin Lock

Functions: pthread_spin_init(), pthread_spin_destroy()

11.7.1.1 Synopsis

##iinncclluuddee <<ssyyss//ttyyppeess..hh>>
##iinncclluuddee <<pptthhrreeaadd..hh>>

iinntt pptthhrreeaadd__ssppiinn__iinniit t((pptthhrreeaadd__ssppiinnlloocckk__tt ∗lock,, i inntt pshared));;

iinntt pptthhrreeaadd__ssppiinn__ddeessttrrooyy((pptthhrreeaadd__ssppiinnlloocckk__tt ∗lock));;

11.7 Spin Locks 35

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

11.7.1.2 Description

If {_POSIX_SPIN_LOCKS} is defined:

The pthread_spin_init() function allocates any resources required to use
the spin lock referenced by lock and initializes the lock to an unlocked
state.

If {_POSIX_THREAD_PROCESS_SHARED} is defined:

If the value of pshared is PTHREAD_PROCESS_SHARED, the imple-
mentation shall permit the spin lock to be operated upon by any
thread that has access to the memory where the spin lock is allo-
cated, even if it is allocated in memory that is shared by multiple
processes. If the value of pshared is PTHREAD_PROCESS_PRIVATE,
the spin lock shall only be operated upon by threads created within
the same process as the thread that initialized the spin lock. If
threads of differing processes attempt to operate on such a spin lock,
the behavior is undefined.

Otherwise:

The lock may only be operated upon by threads contained in the pro-
cess containing the thread that initialized the lock, independently of
the value of pshared. If threads of different processes attempt to
operate on such a lock, the behavior is undefined.

The results are undefined if pthread_spin_init() is called specifying an
already initialized spin lock. The results are undefined if a spin lock is used
without first being initialized.

If the pthread_spin_init() function fails, the lock is not initialized, and the
contents of lock are undefined.

Only the object referenced by lock may be used for performing synchroniza-
tion. The result of referring to copies of that object in calls to
pthread_spin_destroy(), pthread_spin_lock(), pthread_spin_trylock(), or
pthread_spin_unlock() is undefined.

The pthread_spin_destroy() function destroys the spin lock referenced by
lock and releases any resources used by the lock. The effect of subsequent
use of the lock is undefined until the lock is reinitialized by another call to
pthread_spin_init(). The results are undefined if pthread_spin_destroy() is
called when a thread holds the lock or if this function is called with an
uninitialized thread spin lock.

11.7.1.3 Returns

Upon successful completion, the pthread_spin_init() and pthread_spin_destroy()
functions shall return zero. Otherwise, an error number shall be returned to indi-
cate the error.

36 11 Synchronization

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

11.7.1.4 Errors

If any of the following conditions occur, the pthread_spin_init() function shall
return the corresponding value:

[EAGAIN] The system lacks the necessary resources to initialize another
spin lock.

[ENOMEM] Insufficient memory exists to initialize the lock.

For each of the following conditions, if the condition is detected, the
pthread_spin_init() and pthread_spin_destroy() functions shall return the
corresponding value:

[EBUSY] The implementation has detected an attempt to initialize or des-
troy a spin lock while it is in use (for example, while being used
in a pthread_spin_lock() call) by another thread.

[EINVAL] The value specified by lock is invalid.

11.7.1.5 Cross-References

pthread_spin_lock(), 11.7.2; pthread_spin_trylock(), 11.7.2;
pthread_spin_unlock(), 11.7.3.

11.7.2 Locking a Spin Lock

Functions: pthread_spin_lock(), pthread_spin_trylock()

11.7.2.1 Synopsis

##iinncclluuddee <<ssyyss//ttyyppeess..hh>>
##iinncclluuddee <<pptthhrreeaadd..hh>>

iinntt pptthhrreeaadd__ssppiinn__lloocckk((pptthhrreeaadd__ssppiinnlloocckk__tt ∗lock));;

iinntt pptthhrreeaadd__ssppiinn__ttrryylloocckk((pptthhrreeaadd__ssppiinnlloocckk__tt ∗lock));;

11.7.2.2 Description

If {_POSIX_SPIN_LOCKS} is defined:

The pthread_spin_lock() function locks the spin lock referenced by lock.
The calling thread acquires the lock if it is not held by another thread. Oth-
erwise, the thread spins (that is, does not return from the
pthread_spin_lock() call) until the lock becomes available. The results are
undefined if the calling thread holds the lock at the time the call is made.

The pthread_spin_trylock() function locks the spin lock referenced by lock if
it is not held by any thread. Otherwise, the function fails.

The results are undefined if any of these functions is called with an unini-
tialized spin lock.

11.7 Spin Locks 37

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

11.7.2.3 Returns

Upon successful completion, the pthread_spin_lock() and pthread_spin_trylock()
functions shall return zero. Otherwise, an error number shall be returned to indi-
cate the error.

11.7.2.4 Errors

If any of the following conditions occur, the pthread_spin_trylock() function shall
return the corresponding value:

[EBUSY] A thread currently holds the lock.

For each of the following conditions, if the condition is detected, the
pthread_spin_lock() function shall return the corresponding value:

[EDEADLK] The calling thread already holds the lock.

For each of the following conditions, if the condition is detected, the
pthread_spin_lock() and pthread_spin_trylock() functions shall return the
corresponding value:

[EINVAL] The value specified by lock does not refer to an initialized spin
lock object.

11.7.2.5 Cross-References

pthread_spin_init(), 11.7.1; pthread_spin_destroy(), 11.7.1;
pthread_spin_unlock(), 11.7.3.

11.7.3 Unlocking a Spin Lock

Function: pthread_spin_unlock()

11.7.3.1 Synopsis

##iinncclluuddee <<ssyyss//ttyyppeess..hh>>
##iinncclluuddee <<pptthhrreeaadd..hh>>

iinntt pptthhrreeaadd__ssppiinn__uunnlloocckk((pptthhrreeaadd__ssppiinnlloocckk__tt ∗lock));;

11.7.3.2 Description

If {_POSIX_SPIN_LOCKS} is defined:

The pthread_spin_unlock() function releases the spin lock referenced by
lock, which was locked via the pthread_spin_lock() or
pthread_spin_trylock() functions. The results are undefined if the lock is
not held by the calling thread. If there are threads spinning on the lock
when pthread_spin_unlock() is called, the lock becomes available, and an
unspecified spinning thread shall acquire the lock.

The results are undefined if this function is called with an uninitialized spin
lock.

38 11 Synchronization

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

11.7.3.3 Returns

Upon successful completion, the pthread_spin_unlock() function shall return zero.
Otherwise, an error number shall be returned to indicate the error.

11.7.3.4 Errors

For each of the following conditions, if the condition is detected, the
pthread_spin_unlock() function shall return the corresponding value:

[EINVAL] An invalid argument was specified.

[EPERM] The calling thread does not hold the spin lock.

11.7.3.5 Cross-References

pthread_spin_init(), 11.7.1; pthread_spin_destroy(), 11.7.1; pthread_spin_lock(),
11.7.2; pthread_spin_trylock(), 11.7.2.

11.7 Spin Locks 39

IEEE Std 1003.1j-2000

Section 12: Memory Management

⇒⇒ 12 Memory Management Replace the first paragraph with:

This section describes the process memory locking, memory mapped files,
shared memory facilities, and typed memory facilities available under this part
of ISO/IEC 9945-1.

⇒⇒ 12 Memory Management Add the following new paragraphs after the para-
graph that begins with ‘‘An unlink() of a file... ’’ and ends with ‘‘ ...of the
memory object mapped.’’:

Implementations may support the Typed Memory Objects option without sup-
porting the Memory Mapped Files option or the Shared Memory Objects
option. Typed memory objects are implementation-configurable named storage
pools accessible from one or more processors in a system, each via one or more
ports such as backplane busses, LANs, I/O channels, etc. Each valid combina-
tion of a storage pool and a port is identified through a name that is defined at
system configuration time, in an implementation-defined manner; the name
may be independent of the file system. Using this name, a typed memory
object can be opened and mapped into process address space. For a given
storage pool and port, it is necessary to support both dynamic allocation from
the pool as well as mapping at an application-supplied offset within the pool;
when dynamic allocation has been performed, subsequent deallocation shall be
supported. Lastly, accessing typed memory objects from different ports
requires a method for obtaining the offset and length of contiguous storage of a
region of typed memory (dynamically allocated or not); this feature allows
typed memory to be shared among processes and/or processors while being
accessed from the desired port.

12 Memory Management 41

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

12.2 Memory Mapping Functions

12.2.1 Map Process Addresses to a Memory Object

⇒⇒ 12.2.1.2 Map Process Addresses to a Memory Object—Description
Replace the first paragraph with the following:

If at least one of {_POSIX_MAPPED_FILES}, {_POSIX_SHARED_MEMORY_-
OBJECTS}, or {_POSIX_TYPED_MEMORY_OBJECTS} is defined:

⇒⇒ 12.2.1.2 Map Process Addresses to a Memory Object—Description In
the paragraph beginning with ‘‘The mmap() function establishes... ’’ and ending
‘‘ ...object represented by fildes. ’’, replace the last sentence (beginning ‘‘The
range of bytes starting... ’’) with the following:

The range of bytes starting at off and continuing for len bytes shall be legiti-
mate for the possible (not necessarily current) offsets in the file, shared
memory object, or typed memory object represented by fildes. If fildes
represents a typed memory object opened with either the
POSIX_TYPED_MEM_ALLOCATE flag or the
POSIX_TYPED_MEM_ALLOCATE_CONTIG flag, the memory object to be mapped
shall be the portion of the typed memory object allocated by the implementa-
tion as specified below. In this case, if off is non-zero, the behavior of mmap() is
undefined. If fildes refers to a valid typed memory object that is not accessible
from the calling process, mmap() shall fail.

⇒⇒ 12.2.1.2 Map Process Addresses to a Memory Object—Description Add
the following new paragraph after the paragraph that begins with
‘‘MAP_SHARED and MAP_PRIVATE describe... ’’ and ends with ‘‘ ...is retained
across fork().’’:

When fildes represents a typed memory object opened with either the
POSIX_TYPED_MEM_ALLOCATE flag or the
POSIX_TYPED_MEM_ALLOCATE_CONTIG flag, mmap() shall, if there are
enough resources available, map len bytes allocated from the corresponding
typed memory object that were not previously allocated to any process in any
processor that may access that typed memory object. If there are not enough
resources available, the function shall fail. If fildes represents a typed memory
object opened with the POSIX_TYPED_MEM_ALLOCATE_CONTIG flag, these
allocated bytes shall be contiguous within the typed memory object. If fildes
represents a typed memory object opened with the
POSIX_TYPED_MEM_ALLOCATE flag, these allocated bytes may be composed of
noncontiguous fragments within the typed memory object. If fildes represents
a typed memory object opened with neither the
POSIX_TYPED_MEM_ALLOCATE_CONTIG flag nor the
POSIX_TYPED_MEM_ALLOCATE flag, len bytes starting at offset off within the
typed memory object are mapped, exactly as when mapping a file or shared
memory object. In this case, if two processes map an area of typed memory

42 12 Memory Management

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

using the same off and len values and using file descriptors that refer to the
same memory pool (either from the same port or from a different port), both
processes shall map the same region of storage.

⇒⇒ 12.2.1.4 Map Process Addresses to a Memory Object—Errors Add to the
description of [ENOMEM] the following additional paragraph:

Not enough unallocated memory resources remain in the typed memory object
designated by fildes to allocate len bytes.

⇒⇒ 12.2.1.4 Map Process Addresses to a Memory Object—Errors Add to the
description of [ENXIO] the following additional paragraph:

The fildes argument refers to a typed memory object that is not accessible from
the calling process.

⇒⇒ 12.2.1.5 Map Process Addresses to a Memory Object—
Cross-References Add the following cross-reference:

posix_typed_mem_open(), 12.4.2.

12.2.2 Unmap Previously Mapped Addresses

⇒⇒ 12.2.2.2 Unmap Previously Mapped Addresses—Description Replace
the first paragraph with:

If at least one of {_POSIX_MAPPED_FILES}, {_POSIX_SHARED_MEMORY_-
OBJECTS}, or {_POSIX_TYPED_MEMORY_OBJECTS} is defined:

⇒⇒ 12.2.2.2 Unmap Previously Mapped Addresses—Description Add the
following new paragraphs after the paragraph that begins with ‘‘Any memory
locks... ’’ and ending with ‘‘ ...an appropriate call to munlock().’’:

If a mapping removed from a typed memory object causes the corresponding
address range of the memory pool to be inaccessible by any process in the sys-
tem except through allocatable mappings (i.e., mappings of typed memory
objects opened with the POSIX_TYPED_MEM_MAP_ALLOCATABLE flag), then
that range of the memory pool shall become deallocated and may become avail-
able to satisfy future typed memory allocation requests.

A mapping removed from a typed memory object opened with the
POSIX_TYPED_MEM_MAP_ALLOCATABLE flag shall not affect in any way the
availability of that typed memory for allocation.

12.2 Memory Mapping Functions 43

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

⇒⇒ 12.2.2.5 Unmap Previously Mapped Addresses—Cross-References Add
the following cross-reference:

posix_typed_mem_open(), 12.4.2.

12.2.4 Memory Object Synchronization

⇒⇒ 12.2.4.2 Memory Object synchronization—Description Change the sen-
tence ‘‘The effect of msync() on shared memory objects is unspecified. ’’ to the
following:

The effect of msync () on a shared memory object or a typed memory object is
unspecified.

⇒⇒ 12 Memory Management Add the following clause:

12.4 Typed Memory Functions

12.4.1 Data Definitions

If {_POSIX_TYPED_MEMORY_OBJECTS} is defined, the header <<ssyyss//mmmmaann..hh>>
shall define the memory information structure posix_typed_mem_info, which shall
include at least the following member:

Member Member
Type Name Description

size_t posix_tmi_length Maximum length that may be allocated from a typed memory

object.

12.4.2 Open a Typed Memory Object

Function: posix_typed_mem_open()

12.4.2.1 Synopsis

##iinncclluuddee <<ssyyss//mmmmaann..hh>>

iinntt ppoossiixx__ttyyppeedd__mmeemm__ooppeenn((ccoonnsstt cchhaarr ∗name,, i inntt oflag,, i inntt tflag));;

44 12 Memory Management

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

12.4.2.2 Description

If {_POSIX_TYPED_MEMORY_OBJECTS} is defined:

The posix_typed_mem_open() function establishes a connection between the
typed memory object specified by the string pointed to by name and a file
descriptor. It creates an open file description that refers to the typed
memory object and a file descriptor that refers to that open file description.
The file descriptor is used by other functions to refer to that typed memory
object. It is unspecified whether the name appears in the file system and is
visible to other functions that take pathnames as arguments. The name
argument shall conform to the construction rules for a pathname. If name
begins with the slash character, then processes calling
posix_typed_mem_open() with the same value of name shall refer to the
same typed memory object. If name does not begin with the slash charac-
ter, the effect is implementation defined. The interpretation of slash char-
acters other than the leading slash character in name is implementation
defined.

Each typed memory object supported in a system is identified by a name
that specifies not only its associated typed memory pool, but also the path
or port by which it is accessed. In other words, the same typed memory
pool accessed via several different ports has several different corresponding
names. The binding between names and typed memory objects is esta-
blished in an implementation-defined manner. Unlike shared memory
objects, there is ordinarily no way for a program to create a typed memory
object.

The value of tflag determines how the typed memory object behaves when
subsequently mapped by calls to mmap(). At most one of the following flags
defined in <<ssyyss//mmmmaann..hh>> may be specified:

Symbolic
Constant Description

__
POSIX_TYPED_MEM_ALLOCATE Allocate on mmap().
POSIX_TYPED_MEM_ALLOCATE_CONTIG Allocate contiguously on mmap().
POSIX_TYPED_MEM_MAP_ALLOCATABLE Map on mmap(), without affecting

allocatability.

If tflag has the flag POSIX_TYPED_MEM_ALLOCATE specified, any subse-
quent call to mmap() using the returned file descriptor shall result in allo-
cation and mapping of typed memory from the specified typed memory pool.
The allocated memory may be a contiguous previously unallocated area of
the typed memory pool or several noncontiguous previously unallocated
areas (mapped to a contiguous portion of the process address space). If tflag
has the flag POSIX_TYPED_MEM_ALLOCATE_CONTIG specified, any subse-
quent call to mmap() using the returned file descriptor shall result in allo-
cation and mapping of a single contiguous previously unallocated area of
the typed memory pool (also mapped to a contiguous portion of the process
address space). If tflag has none of the flags
POSIX_TYPED_MEM_ALLOCATE or
POSIX_TYPED_MEM_ALLOCATE_CONTIG specified, any subsequent call to
mmap() using the returned file descriptor shall map an application-chosen
area from the specified typed memory pool so that this mapped area

12.4 Typed Memory Functions 45

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

becomes unavailable for allocation until unmapped by all processes. If tflag
has the flag POSIX_TYPED_MEM_MAP_ALLOCATABLE specified, any subse-
quent call to mmap() using the returned file descriptor shall map an
application-chosen area from the specified typed memory pool without an
effect on the availability of that area for allocation. In other words, mapping
such an object leaves each byte of the mapped area unallocated if it was
unallocated prior to the mapping or allocated if it was allocated prior to the
mapping. The appropriate privilege to specify the
POSIX_TYPED_MEM_MAP_ALLOCATABLE flag is implementation defined.

If successful, posix_typed_mem_open() returns a file descriptor for the
typed memory object that is the lowest numbered file descriptor not
currently open for that process. The open file description is new; therefore,
the file descriptor does not share it with any other processes. It is
unspecified whether the file offset is set. The FD_CLOEXEC file descriptor
flag associated with the new file descriptor shall be cleared.

The behavior of msync (), ftruncate (), and all file operations other than
mmap(), posix_mem_offset (), posix_typed_mem_get_info(), fstat (), dup(),
dup2(), and close () is unspecified when passed a file descriptor connected to
a typed memory object by this function.

The file status flags of the open file description shall be set according to the
value of oflag. Applications shall specify exactly one of the three access
mode values described below and defined in the header <<ffccnnttl l. .hh>>, as the
value of oflag.

O_RDONLY Open for read access only.

O_WRONLY Open for write access only.

O_RDWR Open for read or write access.

Otherwise:

Either the implementation shall support the posix_typed_mem_open() func-
tion as described above, or this function shall not be provided.

12.4.2.3 Returns

Upon successful completion, the posix_typed_mem_open() function shall return a
nonnegative integer representing the lowest numbered unused file descriptor.
Otherwise, it shall return -1 and set errno to indicate the error.

12.4.2.4 Errors

If any of the following conditions occur, the posix_typed_mem_open() function
shall return -1 and set errno to the corresponding value:

[EACCES] The typed memory object exists, and the permissions specified by
oflag are denied.

[EINTR] The posix_typed_mem_open() operation was interrupted by a
signal.

46 12 Memory Management

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

[EINVAL] The flags specified in tflag are invalid (more than one of
POSIX_TYPED_MEM_ALLOCATE,
POSIX_TYPED_MEM_ALLOCATE_CONTIG, or
POSIX_TYPED_MEM_MAP_ALLOCATABLE is specified).

[EMFILE] Too many file descriptors are currently in use by this process.

[ENAMETOOLONG]
The length of the name string exceeds {PATH_MAX}, or a path-
name component is longer than {NAME_MAX} while {_POSIX_-
NO_TRUNC} is in effect.

[ENFILE] Too many file descriptors are currently open in the system.

[ENOENT] The named typed memory object does not exist.

[EPERM] The caller lacks the appropriate privilege to specify the flag
POSIX_TYPED_MEM_MAP_ALLOCATABLE in argument tflag.

12.4.2.5 Cross-References

close (), 6.3.1; dup(), 6.2.1; exec, 3.1.2; fcntl(), 6.5.2; <<ffccnnttl l. .hh>>, 6.5.1; umask(),
5.3.3; mmap(), 12.2.1; <<ssyyss//mmmmaann..hh>>, 12.1.1.2; posix_mem_offset (), 12.4.3.

12.4.3 Find Offset and Length of a Mapped Typed Memory Block

Function: posix_mem_offset ()

12.4.3.1 Synopsis

##iinncclluuddee <<ssyyss//mmmmaann..hh>>

iinntt ppoossiixx__mmeemm__ooffffsseett((ccoonnsstt vvooiidd ∗addr,, ssiizzee__tt len,, ooffff__tt ∗off,,
ssiizzee__tt ∗contig_len,, i inntt ∗fildes));;

12.4.3.2 Description

If {_POSIX_TYPED_MEMORY_OBJECTS} is defined:

The posix_mem_offset () function returns in the variable pointed to by off a
value that identifies the offset (or location), within a memory object, of the
memory block currently mapped at addr. The function shall return in the
variable pointed to by fildes the descriptor used (via mmap()) to establish
the mapping that contains addr. If that descriptor was closed since the
mapping was established, the returned value of fildes shall be -1. The len
argument specifies the length of the block of the memory object the user
wishes the offset for; upon return, the value pointed to by contig_len shall
equal either len or the length of the largest contiguous block of the memory
object that is currently mapped to the calling process starting at addr,
whichever is smaller.

If the memory object mapped at addr is a typed memory object, then if the
off and contig_len values obtained by calling posix_mem_offset () are used in
a call to mmap() with a file descriptor that refers to the same memory pool
as fildes (either through the same port or through a different port) and that

12.4 Typed Memory Functions 47

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

was opened with neither the POSIX_TYPED_MEM_ALLOCATE nor the
POSIX_TYPED_MEM_ALLOCATE_CONTIG flag, the typed memory area that
is mapped shall be exactly the same area that was mapped at addr in the
address space of the process that called posix_mem_offset ().

If the memory object specified by fildes is not a typed memory object, then
the behavior of this function is implementation defined.

Otherwise:

Either the implementation shall support the posix_mem_offset () function as
described above, or this function shall not be provided.

12.4.3.3 Returns

Upon successful completion, the posix_mem_offset () function shall return zero.
Otherwise, the corresponding error status value shall be returned.

12.4.3.4 Errors

If any of the following conditions occur, the posix_mem_offset () function shall
return the corresponding error value:

[EACCES] The process has not mapped a memory object supported by this
function at the given address addr.

12.4.3.5 Cross-References

mmap(), 12.2.1; <<ssyyss//mmmmaann..hh>>, 12.1.1.2; posix_typed_mem_open(), 12.4.2.

12.4.4 Query Typed Memory Information

Function: posix_typed_mem_get_info()

12.4.4.1 Synopsis

##iinncclluuddee <<ssyyss//mmmmaann..hh>>

iinntt ppoossiixx__ttyyppeedd__mmeemm__ggeett__iinnffoo((iinntt fildes,,
ssttrruucctt ppoossiixx__ttyyppeedd__mmeemm__iinnffoo ∗info));;

12.4.4.2 Description

If {_POSIX_TYPED_MEMORY_OBJECTS} is defined:

The posix_typed_mem_get_info() function returns, in the posix_tmi_length
field of the posix_typed_mem_info structure pointed to by info, the max-
imum length that may be successfully allocated by the typed memory object
designated by fildes. This maximum length shall take into account the flag
POSIX_TYPED_MEM_ALLOCATE or
POSIX_TYPED_MEM_ALLOCATE_CONTIG specified when the typed memory
object represented by fildes was opened. The maximum length is dynamic;
therefore, the value returned is valid only while the current mapping of the
corresponding typed memory pool remains unchanged.

48 12 Memory Management

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

If fildes represents a typed memory object opened with neither the
POSIX_TYPED_MEM_ALLOCATE flag nor the
POSIX_TYPED_MEM_ALLOCATE_CONTIG flag specified, the returned value
of info.posix_tmi_length is unspecified.

The posix_typed_mem_get_info() function may return additional
implementation-defined information in other fields of the
posix_typed_mem_info structure pointed to by info.

If the memory object specified by fildes is not a typed memory object, then
the behavior of this function is undefined.

Otherwise:

Either the implementation shall support the posix_typed_mem_get_info()
function as described above, or this function shall not be provided.

12.4.4.3 Returns

Upon successful completion, the posix_typed_mem_get_info() function shall return
zero. Otherwise, the corresponding error status value shall be returned.

12.4.4.4 Errors

If any of the following conditions occur, the posix_typed_mem_get_info() function
shall return the corresponding error value:

[EBADF] The fildes argument is not a valid open file descriptor.

[ENODEV] The fildes argument is not connected to a memory object sup-
ported by this function.

12.4.4.5 Cross-References

mmap(), 12.2,1; posix_typed_mem_open(), 12.4.2; <<ssyyss//mmmmaann..hh>>, 12.1.1.2.

12.4 Typed Memory Functions 49

IEEE Std 1003.1j-2000

Section 14: Clocks and Timers

14.1 Data Definitions for Clocks and Timers

14.1.4 Manifest Constants

⇒⇒ 14.1.4 Manifest Constants Add the following text after the current
definitions of constants:

If the Monotonic Clock option is supported, the following constant shall be
defined in <<tti immee..hh>>:

CLOCK_MONOTONIC
The identifier for the systemwide monotonic clock, which
is defined as a clock whose value cannot be set via
clock_settime () and which cannot have backward clock
jumps. The maximum possible clock jump shall be imple-
mentation defined.

⇒⇒ 14.1.4 Manifest Constants Replace the paragraph starting ‘‘The maximum
allowable resolution for ... ’’ and the following paragraph starting ‘‘The
minimum allowable maximum value ... ’’ by the following text:

The maximum allowable resolution for the CLOCK_REALTIME and the
CLOCK_MONOTONIC clocks and all time services based on these clocks is
represented by {_POSIX_CLOCKRES_MIN} and is defined as 20 ms (1/50 of a
second). Implementations may support smaller values of resolution for these
clocks to provide finer granularity time bases. The actual resolution supported
by an implementation for a specific clock is obtained using functions defined in
this Section. If the actual resolution supported for a time service based on one
of these clocks differs from the resolution supported for that clock, the imple-
mentation shall document this difference.

The minimum allowable maximum value for the CLOCK_REALTIME clock, the
CLOCK_MONOTONIC clock, and all absolute time services based on them is the
same as that defined by the C Standard {2} for the time_t type. If the maximum
value supported by a time service based on one of these clocks differs from the
maximum value supported by that clock, the implementation shall document
this difference.

14.1 Data Definitions for Clocks and Timers 51

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

14.2 Clock and Timer Functions

14.2.1 Clocks

⇒⇒ 14.2.1.2 Clocks—Description Add the following text after the paragraph
starting ‘‘A clock may be systemwide ... ’’:

If {_POSIX_MONOTONIC_CLOCK} is defined:

All implementations shall support a clock_id of CLOCK_MONOTONIC
defined in 14.1.4. This clock represents the monotonic clock for the sys-
tem. For this clock, the value returned by clock_gettime() represents
the amount of time (in seconds and nanoseconds) since an unspecified
point in the past (for example, system start-up time or the Epoch). This
point does not change after system start-up time. The value of the
CLOCK_MONOTONIC clock cannot be set via clock_settime(). This func-
tion shall fail if it is invoked with a clock_id argument of
CLOCK_MONOTONIC.

NOTE: The absolute value of the monotonic clock is meaningless (because its origin is
arbitrary); therefore, there is no need to set it. Furthermore, realtime applications can
rely on the fact that the value of this clock is never set; therefore, time intervals meas-
ured with this clock will not be affected by calls to clock_settime().

⇒⇒ 14.2.1.2 Clocks—Description Add the following text after the pargraph
starting ‘‘The effect of setting a clock via clock_settime()... ’’:

If {_POSIX_CLOCK_SELECTION} is defined and the value of the
CLOCK_REALTIME clock is set via clock_settime(), the new value of the clock
shall be used to determine the time at which the system shall awaken a thread
blocked on an absolute clock_nanosleep() call based upon the
CLOCK_REALTIME clock. If the absolute time requested at the invocation of
such a time service is before the new value of the clock, the call shall return
immediately as if the clock had reached the requested time normally.

If {_POSIX_CLOCK_SELECTION} is defined, setting the value of the
CLOCK_REALTIME clock via clock_settime() shall have no effect on any thread
that is blocked on a relative clock_nanosleep() call. Consequently, the call shall
return when the requested relative interval elapses, independently of the new
or old value of the clock.

⇒⇒ 14.2.1.4 Clocks—Errors Add the following condition to the error conditions
that shall cause the clock_settime() function (only) to fail:

[EINVAL] The value of the clock_id argument is CLOCK_MONOTONIC.

52 14 Clocks and Timers

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

⇒⇒ 14.2.1.5 Clocks—Cross-References Add the following cross-references:

timer_create (), 14.2.2; timer_settime(), 14.2.4; nanosleep(), 14.2.5;
clock_nanosleep(), 14.2.6; sem_timedwait (), 11.2.6;
pthread_mutex_timedlock(), 11.3.3; mq_timedsend (), 15.2.4;
mq_timedreceive(), 15.2.5.

14.2.2 Create a Per-Process Timer

⇒⇒ 14.2.2.2 Create a Per-Process Timer—Description Add the following text
at the end of the paragraph starting ‘‘Each implementation shall define a set of
clocks that ... ’’:

If {_POSIX_CLOCK_SELECTION} is defined, all implementations shall support a
clock_id of CLOCK_MONOTONIC.

⇒⇒ 14.2 Clock and Timer Functions Add the following subclause:

14.2.6 High Resolution Sleep with Specifiable Clock

Function: clock_nanosleep()

14.2.6.1 Synopsis

##iinncclluuddee <<tti immee..hh>>

iinntt cclloocckk__nnaannoosslleeeepp((cclloocckkiidd__tt clock_id,, i inntt flags,,
ccoonnsstt ssttrruucctt tti immeessppeecc ∗rqtp,, ssttrruucctt tti immeessppeecc ∗rmtp));;

14.2.6.2 Description

If {_POSIX_CLOCK_SELECTION} is defined:

If the flag TIMER_ABSTIME is not set in the argument flags, the
clock_nanosleep() function shall cause the current thread to be suspended
from execution until the time interval specified by the rqtp argument has
elapsed, or a signal is delivered to the calling thread and its action is to
invoke a signal-catching function, or the process is terminated. The clock
used to measure the time shall be the clock specified by clock_id.

NOTE: Calling clock_nanosleep() with the value TIMER_ABSTIME not set in the argument
flags and with a clock_id of CLOCK_REALTIME is equivalent to calling nanosleep () with the
same rqtp and rmtp arguments.

If the flag TIMER_ABSTIME is set in the argument flags, the
clock_nanosleep() function shall cause the current thread to be suspended
from execution until the time value of the clock specified by clock_id
reaches the absolute time specified by the rqtp argument, or a signal is
delivered to the calling thread and its action is to invoke a signal-catching
function, or the process is terminated. If at the time of the call the time
value specified by rqtp is less than or equal to the time value of the specified

14.2 Clock and Timer Functions 53

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

clock, then clock_nanosleep() shall return immediately, and the calling pro-
cess shall not be suspended.

The suspension time caused by this function may be longer than requested
because the argument value is rounded up to an integer multiple of the
sleep resolution or because of the scheduling of other activity by the system.
But, except for the case of being interrupted by a signal, the suspension
time for the relative clock_nanosleep() function (i.e., with the
TIMER_ABSTIME flag not set) shall not be less than the time interval
specified by rqtp, as measured by the corresponding clock. The suspension
for the absolute clock_nanosleep() function (i.e., with the TIMER_ABSTIME
flag set) shall be in effect at least until the value of the corresponding clock
reaches the absolute time specified by rqtp, except for the case of being
interrupted by a signal.

The use of the clock_nanosleep() function shall have no effect on the action
or blockage of any signal.

The clock_nanosleep() function shall fail if the clock_id argument refers to
the CPU-time clock of the calling thread. It is unspecified if clock_id values
of other CPU-time clocks are allowed.

14.2.6.3 Returns

If the clock_nanosleep() function returns because the requested time has elapsed,
its return value shall be zero.

If the clock_nanosleep() function returns because it has been interrupted by a sig-
nal, it shall return the corresponding error value. For the relative
clock_nanosleep() function, if the rmtp argument is non-NULL, the timespec struc-
ture referenced by it shall be updated to contain the amount of time remaining in
the interval (i.e., the requested time minus the time actually slept). If the rmtp
argument is NULL, the remaining time is not returned. The absolute
clock_nanosleep() function has no effect on the structure referenced by rmtp.

If clock_nanosleep() fails, it shall return the corresponding error value.

14.2.6.4 Errors

If any of the following conditions occur, the clock_nanosleep() function shall
return the corresponding error value:

[EINTR] The clock_nanosleep() function was interrupted by a signal.

[EINVAL] The rqtp argument specified a nanosecond value less than zero
or greater than or equal to 1000 million.

The TIMER_ABSTIME flag was specified in flags and the rqtp
argument is outside the range for the clock specified by clock_id.
The clock_id argument does not specify a known clock or
specifies the CPU-time clock of the calling thread.

[ENOTSUP] The clock_id argument specifies a clock for which
clock_nanosleep() is not supported, such as a CPU-time clock.

54 14 Clocks and Timers

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

14.2.6.5 Cross-References

sleep(), 3.4.3; nanosleep(), 14.2.5; clock_settime(), 14.2.1.

14.2 Clock and Timer Functions 55

IEEE Std 1003.1j-2000

Section 18: Thread Cancellation

18.1 Thread Cancellation Overview

⇒⇒ 18.1.2 Cancellation Points Add the following function in alphabetical order
to the list of functions for which a cancellation point shall occur:

clock_nanosleep()

⇒⇒ 18.1.2 Cancellation Points Add the following functions in alphabetical
order to the list of functions for which a cancellation point may also occur:

pthread_rwlock_rdlock() pthread_rwlock_timedrdlock()
pthread_rwlock_wrlock() pthread_rwlock_timedwrlock()
posix_typed_mem_open()

18.1 Thread Cancellation Overview 57

IEEE Std 1003.1j-2000

Annex A
(informative)

Bibliography

A.4 Other Sources of Information

⇒⇒ A.4 Other Sources of Information Add the following bibliographic entries,
in the correct sorted order.

{B79} Almasi, George S. and Gottlieb, Allan. Highly Parallel Computing. The
Benjamin/Cummings Publishing Company, Inc., 1989.

{B80} Brawer, Steven. Introduction to Parallel Programming. Academic
Press, 1989.

A.4 Other Sources of Information 59

IEEE Std 1003.1j-2000

Annex B
(informative)

Rationale and Notes

B.11 Synchronization

⇒⇒ B.11 Synchronization Add the following subclauses:

B.11.5 Barriers

Background

Barriers are typically used in parallel DO/FOR loops to ensure that all threads
have reached a particular stage in a parallel computation before allowing any to
proceed to the next stage. Highly efficient implementation is possible on machines
that support a ‘‘Fetch and Add’’ operation as described in Highly Parallel Comput-
ing {B79}.

The use of return value PTHREAD_BARRIER_SERIAL_THREAD is shown in the fol-
lowing example:

iif f ((((ssttaattuuss==pptthhrreeaadd__bbaarrrriieerr__wwaaiit t((&&bbaarrrriieerr)))) ====
PPTTHHRREEAADD__BBAARRRRIIEERR__SSEERRIIAALL__TTHHRREEAADD)) {{

......sseerriiaall sseecctti ioonn
}}
eellssee iif f ((ssttaattuuss !!== 00)) {{

......eerrrroorr pprroocceessssiinngg
}}
ssttaattuuss==pptthhrreeaadd__bbaarrrriieerr__wwaaiit t((&&bbaarrrriieerr));;
......

This behavior allows a serial section of code to be executed by one thread as soon
as all threads reach the first barrier. The second barrier prevents the other
threads from proceeding until the serial section being executed by the one thread
has completed.

Although barriers can be implemented with mutexes and condition variables,
Highly Parallel Computing {B79} provides ample illustration that such implemen-
tations are significantly less efficient than possible. While the relative efficiency of
barriers may well vary by implementation, it is important that they be recognized
in the POSIX standard to facilitate application portability while providing the
necessary freedom to IEEE Std 1003.1c-1995 implementors.

B.11 Synchronization 61

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

Lack of Timeout Feature

Alternate versions of most blocking routines have been provided to support watch-
dog timeouts. No alternate interface of this sort has been provided for barrier
waits for the following reasons:

(1) Multiple threads may use different timeout values, some of which may be
indefinite. It is not clear which threads should break through the barrier
with a timeout error if and when these timeouts expire.

(2) The barrier may become unusable once a thread breaks out of a
pthread_barrier_wait() with a timeout error. There is, in general, no way
to guarantee the consistency of a barrier’s internal data structures once a
thread has timed out of a pthread_barrier_wait(). Even the inclusion of a
special barrier reinitialization function would not help much since it is
not clear how this function would affect the behavior of threads that
reach the barrier between the original timeout and the call to the reini-
tialization function.

B.11.6 Reader/Writer Locks

Background

Reader/writer locks are often used to allow parallel access to data on multiproces-
sors, to avoid context switches on uniprocessors when multiple threads access the
same data, and to protect data structures that are frequently accessed (that is,
read) but rarely updated (that is, written). The in-core representation of a file sys-
tem directory is a good example of such a data structure. One would like to
achieve as much concurrency as possible when searching directories, but limit
concurrent access when adding or deleting files.

Although reader/writer locks can be implemented with mutexes and condition
variables, such implementations are significantly less efficient than possible.
Therefore, this synchronization primitive is included in this standard to allow
more efficient implementations in multiprocessor systems.

Queuing of Waiting Threads

The pthread_rwlock_unlock() function description states that one writer or one or
more readers shall acquire the lock if it is no longer held by any thread as a result
of the call. However, the function does not specify which thread(s) acquire the
lock, unless the Thread Execution Scheduling option is supported.

The Realtime System Services Working Group considered the issue of scheduling
with respect to the queuing of threads blocked on a reader/writer lock. The ques-
tion turned out to be whether this standard should require priority scheduling of
reader/writer locks for threads whose execution scheduling policy is priority-based
(for example, SCHED_FIFO or SCHED_RR). There are tradeoffs between priority
scheduling, the amount of concurrency achievable among readers, and the preven-
tion of writer and/or reader starvation.

For example, suppose one or more readers hold a reader/writer lock and the fol-
lowing threads request the lock in the listed order:

pthread_rwlock_wrlock() - Low-priority thread writer_a
pthread_rwlock_rdlock() - High-priority thread reader_a

62 B Rationale and Notes

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

pthread_rwlock_rdlock() - High-priority thread reader_b
pthread_rwlock_rdlock() - High-priority thread reader_c

When the lock becomes available, should writer_a block the high-priority readers?
Or, suppose a reader/writer lock becomes available and the following are queued:

pthread_rwlock_rdlock() - Low-priority thread reader_a
pthread_rwlock_rdlock() - Low-priority thread reader_b
pthread_rwlock_rdlock() - Low-priority thread reader_c
pthread_rwlock_wrlock() - Medium-priority thread writer_a
pthread_rwlock_rdlock() - High-priority thread reader_d

If priority scheduling is applied, then reader_d would acquire the lock and
writer_a would block the remaining readers. But should the remaining readers
also acquire the lock to increase concurrency? The solution adopted takes into
account that when the Thread Execution Scheduling option is supported, high-
priority threads may in fact starve low-priority threads. (The application
developer is responsible in this case to design the system in such a way that this
starvation is avoided.) Therefore, the standard specifies that high-priority readers
take precedence over lower priority writers. However, to prevent writer starvation
from threads of the same or lower priority, writers take precedence over readers
of the same or lower priority.

Priority inheritance mechanisms are nontrivial in the context of reader/writer
locks. When a high-priority writer is forced to wait for multiple readers, for exam-
ple, it is not clear which subset of the readers should inherit the writer’s priority.
Furthermore, the internal data structures that record the inheritance must be
accessible to all readers, and this requirement implies some sort of serialization
that could negate any gain in parallelism achieved through the use of multiple
readers in the first place. Finally, existing practice does not support the use of
priority inheritance for reader/writer locks. Therefore, no specification of priority
inheritance or priority ceiling is attempted. If reliable priority-scheduled syn-
chronization is absolutely required, it can always be obtained through the use of
mutexes.

Comparison to ISO/IEC 9945-1 fcntl() Locks

The reader/writer locks and the fcntl() locks share a common goal: increasing
concurrency among readers, thus increasing throughput and decreasing delay.

However, the reader/writer locks have two features not present in the fcntl()
locks. First, under priority scheduling, reader/writer locks are granted in priority
order. Second, also under priority scheduling, writer starvation is prevented by
giving writers preference over readers of equal or lower priority.

Also, reader/writer locks can be used in systems lacking a file system, such as sys-
tems conforming to the minimal realtime system profile of the IEEE Std 1003.13-
1998 profile standard.

History of Resolution Issues

Based upon some balloting objections, the draft specified the behavior of threads
waiting on a reader/writer lock during the execution of a signal handler, as if the
thread had not called the lock operation. However, this specified behavior would
require implementations to establish internal signal handlers even though this
situation would be rare or never happen for many programs. This behavior would
introduce an unacceptable performance hit in comparison to the little additional

B.11 Synchronization 63

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

functionality gained. Therefore, the behavior of reader/writer locks and signals
was reverted back to its previous mutex-like specification.

B.11.7 Spin Locks

Background

Spin locks represent an extremely low-level synchronization mechanism suitable
primarily for use on shared memory multiprocessors. It is typically an atomically
modified boolean value that is set to one when the lock is held and to zero when
the lock is freed.

When a caller requests a spin lock that is already held, it typically spins in a loop
testing whether the lock has become available. Such spinning wastes processor
cycles so the lock should only be held for short durations and not across
sleep/block operations. Callers should unlock spin locks before calling sleep
operations.

Spin locks are available on a variety of systems. Section 11.7 is an attempt to
standardize that existing practice.

Lack of Timeout Feature

Alternate versions of most blocking routines have been provided to support watch-
dog timeouts. No alternate interface of this sort has been provided for spin locks
for the following reasons:

(1) It is impossible to determine appropriate timeout intervals for spin locks
in a portable manner. The amount of time one can expect to spend spin-
waiting is inversely proportional to the degree of parallelism provided by
the system. It can vary from a few cycles when each competing thread is
running on its own processor, to an indefinite amount of time when all
threads are multiplexed on a single processor (therefore, spin locking is
not advisable on uniprocessors).

(2) When used properly, the amount of time the calling thread spends wait-
ing on a spin lock should be considerably less than the time required to
set up a corresponding watchdog timer. Because the primary purpose of
spin locks it to provide a low-overhead synchronization mechanism for
multiprocessors, the overhead of a timeout mechanism was deemed unac-
ceptable.

It was also suggested that an additional count argument be provided (on the
pthread_spin_lock() call) in lieu of a true timeout so that a spin lock call could fail
gracefully if it was unable to apply the lock after count attempts. This idea was
rejected because it is not existing practice. Furthermore, the same effect can be
obtained with pthread_spin_trylock() as illustrated below:

64 B Rationale and Notes

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

iinntt nn == MMAAXX__SSPPIINN;;

wwhhiil lee ((----nn >>== 00))
{{

iif f ((!!pptthhrreeaadd__ssppiinn__ttrryy__lloocckk((......))))
bbrreeaakk;;

}}
iif f ((nn >>== 00))
{{

// ∗∗ SSuucccceessssffuulll lyy aaccqquuiirreedd tthhee lloocckk ∗∗//
}}
eellssee
{{

// ∗∗ UUnnaabbllee ttoo aaccqquuiirree tthhee lloocckk ∗∗//
}}

The pprroocceessss--sshhaarreedd Attribute

The initialization functions associated with most POSIX synchronization objects
(e.g., mutexes, barriers, reader/writer locks) take an attributes object with a
pprroocceessss--sshhaarreedd attribute that specifies whether the object is to be shared
across processes. In the draft corresponding to the first balloting round, two
separate initialization functions were provided for spin locks, however: one for
spin locks that were to be shared across processes (spin_init()) and one for locks
that were only used by multiple threads within a single process
(pthread_spin_init()). This duplication was done to keep the overhead associated
with spin waiting to an absolute minimum. However, the balloting group
requested that, because the overhead associated to a bit check was small, spin
locks should be consistent with the rest of the synchronization primitives; thus,
the pprroocceessss--sshhaarreedd attribute was introduced for spin locks.

Spin Locks vs. Mutexes

It has been suggested that mutexes are an adequate synchronization mechanism
and spin locks are not necessary. Locking mechanisms typically must trade off the
processor resources consumed while setting up to block the thread and the proces-
sor resources consumed by the thread while it is blocked. Spin locks require very
little resources to set up the blocking of a thread. Existing practice is to simply
loop, repeating the atomic locking operation until the lock is available. While the
resources consumed to set up blocking of the thread are low, the thread continues
to consume processor resources while it is waiting.

On the other hand, mutexes may be implemented so that the processor resources
consumed to block the thread are large relative to a spin lock. After detecting that
the mutex lock is not available, the thread must alter its scheduling state, add
itself to a set of waiting threads, and, when the lock becomes available again, undo
all of these actions before taking over ownership of the mutex. However, while a
thread is blocked by a mutex, no processor resources are consumed.

Therefore, spin locks and mutexes may be implemented to have different charac-
teristics. Spin locks may have lower overall overhead for very short-term blocking,
and mutexes may have lower overall overhead when a thread will be blocked for
longer periods of time. The presence of both interfaces allows implementations
with these two different characteristics, both of which may be useful to a particu-
lar application.

B.11 Synchronization 65

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

It has also been suggested that applications can build their own spin locks from
the pthread_mutex_trylock() function:

wwhhiil lee ((pptthhrreeaadd__mmuutteexx__ttrryylloocckk((&&mmuutteexx))));;

The apparent simplicity of this construct is somewhat deceiving, however. While
the actual wait is quite efficient, various guarantees on the integrity of mutex
objects (e.g., priority inheritance rules) may add overhead to the successful path
of the trylock operation that is not required of spin locks. One could, of course,
add an attribute to the mutex to bypass such overhead, but the very act of finding
and testing this attribute represents more overhead than found in the typical spin
lock.

The need to hold spin lock overhead to an absolute minimum also makes it impos-
sible to provide guarantees against starvation similar to the guarantees provided
for mutexes or reader/writer locks. The overhead required to implement such
guarantees (e.g, disabling preemption before spinning) may well exceed the over-
head of the spin wait itself by many orders of magnitude. If a ‘‘safe’’ spin wait
seems desirable, it can always be provided (albeit at some performance cost) via
appropriate mutex attributes.

B.12 Memory Management

⇒⇒ B.12 Memory Management Add the following subclause:

B.12.4 Typed Memory Functions

Implementations may support the Typed Memory Objects option without support-
ing either the Shared Memory option or the Memory Mapped Files option. Typed
memory objects are pools of specialized storage, different from the main memory
resource normally used by a processor to hold code and data, that can be mapped
into the address space of one or more processes.

B.12.4.1 Model

Realtime systems conforming to one of the IEEE Std 1003.13-1998 realtime
profiles are expected (and desired) to be supported on systems with more than one
type or pool of memory (e.g., static random access memory (SRAM), dynamic ran-
dom access memory (DRAM), read-only memory (ROM), erasable programmable
ROM (EPROM), electrically-erasable ROM (EEPROM)), where each type or pool of
memory may be accessible by one or more processors via one or more busses
(ports). Memory mapped files, shared memory objects, and the language-specific
storage allocation operators (malloc() for ANSI C, new for ANSI Ada) fail to provide
application program interfaces versatile enough to allow applications to control
their utilization of such diverse memory resources. The typed memory interfaces
posix_typed_mem_open(), posix_mem_offset (), posix_typed_mem_get_info(),
mmap(), and munmap() defined in this standard support the model of typed
memory described below.

66 B Rationale and Notes

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

For this model, a system comprises several processors (e.g., P1, P2), several physi-
cal memory pools (e.g., M1, M2, M2a, M2b, M3, M4, M5), and several busses or
‘‘ports’’ (e.g., B1, B2, B3, B4) interconnecting the various processors and memory
pools in some system-specific way. Some memory pools may be contained in others
(e.g., M2a and M2b are contained in M2). Figure B-1 shows an example of such a
model.

Processor
Memory

P1 M1

Memory

M3

Memory

M4

Memory

M5

Processor

P2

Memory

B2 B2 B2 B2

B1 B1 B1 B3

B4

*

All addresses in pool M2 (comprising pools M2a and M2b) accessible via port B1.
Addresses in pool M2b are also accessible via port B2
Addresses in pool M2a are NOT accessible via port B2

*

Bus

Bus Bus

Bus

M2a

M2b

M2

Figure B-1 −− Example of a system with typed memory

In a system with typed memory, an application should be able to perform the fol-
lowing operations:

— Typed memory allocation. An application should be able to allocate memory
dynamically from the desired pool using the desired bus and map it into a
process’s address space. For example, processor P1 can allocate some por-
tion of memory pool M1 through port B1, treating all unmapped subareas of
M1 as a heap-storage resource from which memory may be allocated. This
portion of memory is mapped into the process’s address space and subse-
quently deallocated when unmapped from all processes.

— Using the same storage region from different busses. An application process
with a mapped region of storage that is accessed from one bus should be
able to map that same storage area at another address (subject to page size
restrictions detailed in 12.2.1.2) to allow it to be accessed from another bus.
For example, processor P1 may wish to access the same region of memory
pool M2b both through ports B1 and B2.

— Sharing typed memory regions. Several application processes running on
the same or different processors may wish to share a particular region of a
typed memory pool. Each process or processor may wish to access this
region through different busses. For example, processor P1 may want to
share a region of memory pool M4 with processor P2, and they may be
required to use busses B2 and B3, respectively, to minimize bus contention.

B.12 Memory Management 67

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

A problem arises here when a process allocates and maps a portion of frag-
mented memory and then wants to share this region of memory with
another process, either in the same processor or different processors. The
solution adopted is to allow the first process to find out the memory map
(offsets and lengths) of all the different fragments of memory that were
mapped into its address space, by repeatedly calling posix_mem_offset ().
Then, this process can pass the offsets and lengths obtained to the second
process, which can then map the same memory fragments into its address
space.

— Contiguous allocation. The problem of finding the memory map of the
different fragments of the memory pool that were mapped into logically con-
tiguous addresses of a given process can be solved by requesting contiguous
allocation. For example, a process in P1 can allocate 10 KB of physically
contiguous memory from M3-B1 and obtain the offset (within pool M3) of
this block of memory. Then, it can pass this offset (and the length) to a pro-
cess in P2 using some interprocess communication mechanism. The second
process can map the same block of memory by using the offset transferred
and specifying M3-B2.

— Unallocated mapping. Any subarea of a memory pool that is mapped to a
process, either as the result of an allocation request or an explicit mapping,
is normally unavailable for allocation. Special processes such as debuggers,
however, may need to map large areas of a typed memory pool, yet leave
those areas available for allocation.

Typed memory allocation and mapping has to coexist with storage allocation
operators like malloc(), but systems are free to choose how to implement this
coexistence. For example, it may be system configuration dependent if all avail-
able system memory is made part of one of the typed memory pools or if some part
will be restricted to conventional allocation operators. Equally system
configuration dependent may be the availability of operators like malloc() to allo-
cate storage from certain typed memory pools. It is not excluded to configure a
system so that a given named pool, P1, is in turn split into nonoverlapping named
sub-pools. For example, M1-B1, M2-B1, and M3-B1 could also be accessed as one
common pool M123-B1. A call to malloc() on P1 could work on such a larger pool
while full optimization of memory usage by P1 would require typed memory allo-
cation at the subpool level.

B.12.4.2 Existing Practice

OS-9 provides for the naming (i.e., numbering) and prioritization of memory types
by a system administrator. It then provides APIs to request memory allocation of
typed (i.e., colored) memory by number and to generate a bus address from a
mapped memory address (i.e., translate). When requesting colored memory, the
user can specify type 0 to signify allocation from the first available type in priority
order.

HP-RT presents interfaces to map different kinds of storage regions that are visi-
ble through a VME bus, although it does not provide allocation operations. It also
provides functions to perform address translation between VME addresses and vir-
tual addresses. It represents a VME-bus unique solution to the general problem.

68 B Rationale and Notes

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

The PSOS approach is similar (i.e., based on a preestablished mapping of bus
address ranges to specific memories) with a concept of segments and regions
(regions dynamically allocated from a heap that is a special segment). Therefore,
PSOS does not fully address the general allocation problem either. PSOS does not
have a ‘‘process’’ model, but more of a ‘‘thread’’ only model of multi-tasking.
Therefore, mapping to a process address space is not an issue.

QNX uses the System V approach of opening specially named devices (i.e., shared
memory segments) and using mmap() to then gain access from the process. They
do not address allocation directly, but once typed shared memory can be mapped,
an ‘‘allocation manager’’ process could be written to handle requests for allocation.

The System V approach also included allocation, implemented by opening yet
other special ‘‘devices’’ that allocate, rather than appearing as a whole memory
object.

The Orkid realtime kernel interface definition has operations to manage memory
‘‘regions’’ and ‘‘pools,’’ which are areas of memory that may reflect the differing
physical nature of the memory. Operations to allocate memory from these regions
and pools are also provided.

B.12.4.3 Requirements

Existing practice in SVID-derived UNIX1) systems relies on functionality similar to
mmap() and its related interfaces to achieve mapping and allocation of typed
memory. However, the issue of sharing typed memory (allocated or mapped) and
the complication of multiple ports are not addressed in any consistent way by
existing UNIX system practice. Part of this functionality is existing practice in spe-
cialized realtime operating systems. In order to solidify the capabilities implied by
the model above, the following requirements are imposed on the interface:

— Identification of typed memory pools and ports. All processes (running in all
processors) in the system shall be able to identify a particular (system-
configured) typed memory pool accessed through a particular (system-
configured) port by a name. That name shall be a member of a namespace
common to all these processes, but need not be the same namespace as that
containing ordinary file names. The association between memory
pools/ports and corresponding names is typically established when the sys-
tem is configured. The ‘‘open’’ operation for typed memory objects should
be distinct from the open() function, for consistency with other similar ser-
vices, but implementable on top of open(). This requirement implies that
the handle for a typed memory object will be a file descriptor.

— Allocation and mapping of typed memory. Once a typed memory object has
been identified by a process, it shall be possible both to map user-selected
subareas of that object into process address space and to map system-
selected (i.e., dynamically allocated) subareas of that object, with user-

1) UNIX is a registered trademark of The Open Group in the US and other countries.

B.12 Memory Management 69

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

specified length, into process address space. It shall also be possible to
determine the maximum length of memory allocation that may be
requested from a given typed memory object.

— Sharing typed memory. Two or more processes shall be able to share por-
tions of typed memory, either user-selected or dynamically allocated. This
requirement applies also to dynamically allocated regions of memory that
are composed of several noncontiguous pieces.

— Contiguous allocation. For dynamic allocation, it shall be the user’s option
whether the system is required to allocate a contiguous subarea within the
typed memory object or whether it is permitted to allocate discontiguous
fragments that appear contiguous in the process mapping. Contiguous allo-
cation simplifies the process of sharing allocated typed memory, while
discontiguous allocation allows for potentially better recovery of deallocated
typed memory.

— Accessing typed memory through different ports. Once a subarea of a typed
memory object has been mapped, it shall be possible to determine the loca-
tion and length corresponding to a user-selected portion of that object
within the memory pool. This location and length can then be used to
remap that portion of memory for access from another port. If the refer-
enced portion of typed memory was allocated discontiguously, the length
thus determined may be shorter than anticipated, and the user code shall
adapt to the returned value.

— Deallocation. When a previously mapped subarea of typed memory is no
longer mapped by any process in the system—as a result of a call or calls to
munmap(), that subarea shall become potentially reusable for dynamic allo-
cation; actual reuse of the subarea is a function of the dynamic typed
memory allocation policy.

— Unallocated mapping. It shall be possible to map user-selected subareas of
a typed memory object without marking that subarea as unavailable for
allocation. This option is not the default behavior and shall require
appropriate privilege.

B.12.4.4 Scenario

The following scenario will serve to clarify the use of the typed memory interfaces.
Process A running on P1 (see Figure B-1) wants to allocate some memory from
memory pool M2, and it wants to share this portion of memory with process B
running on P2. Since P2 only has access to the lower part of M2, both processes
will use the memory pool named M2b, which is the part of M2 that is accessible
both from P1 and P2. The operations that both processes need to perform are
shown below:

— Allocating typed memory. Process A calls posix_typed_mem_open() with the
name //ttyyppeedd..mm22bb--bb11 and a tflag of POSIX_TYPED_MEM_ALLOCATE to
get a file descriptor usable for allocating from pool M2b accessed through
port B1. It then calls mmap() with this file descriptor requesting a length
of 4096 bytes. The system allocates two discontiguous blocks of sizes 1024
and 3072 bytes within M2b. The mmap() function returns a pointer to a
4096 byte array in process A’s logical address space, mapping the allocated

70 B Rationale and Notes

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

blocks contiguously. Process A can then utilize the array and store data in
it.

— Determining the location of the allocated blocks. Process A can determine
the lengths and offsets (relative to M2b) of the two blocks allocated by using
the following procedure: First, process A calls posix_mem_offset () with the
address of the first element of the array and length 4096. Upon return, the
offset and length (1024 bytes) of the first block are returned. A second call
to posix_mem_offset () is then made using the address of the first element of
the array plus 1024 (the length of the first block) and a new length of 4096-
1024. If there were more fragments allocated, this procedure could be con-
tinued within a loop until the offsets and lengths of all the blocks were
obtained. This relatively complex procedure can be avoided if contiguous
allocation is requested (by opening the typed memory object with the tflag
POSIX_TYPED_MEM_ALLOCATE_CONTIG).

— Sharing data across processes . Process A passes the two offset values and
lengths obtained from the posix_mem_offset () calls to process B running on
P2, via some form of interprocess communication. Process B can gain
access to process A’s data by calling posix_typed_mem_open() with the name
//ttyyppeedd..mm22bb--bb22 and a tflag of zero, then using two mmap() calls on the
resulting file descriptor to map the two subareas of that typed memory
object to its own address space.

B.12.4.5 Rationale for posix_typed_mem_get_info()

An application that needs to allocate a block of typed memory with length depen-
dent upon the amount of memory currently available must either query the typed
memory object to obtain the amount available or repeatedly invoke mmap() to
guess an appropriate length. While the latter method is existing practice with
malloc(), it is awkward and imprecise. The posix_typed_mem_get_info() function
allows an application to immediately determine available memory. This feature is
particularly important for typed memory objects that may in some cases be scarce
resources. When a typed memory pool is a shared resource, some form of mutual
exclusion or synchronization may be required while typed memory is being
queried and allocated to prevent race conditions.

The existing fstat () function is not suitable for this purpose. Implementations
may wish to provide other attributes of typed memory objects (e.g., alignment
requirements, page size). The fstat () function returns a structure that is not
extensible and, furthermore, contains substantial information that is inappropri-
ate for typed memory objects.

B.12.4.6 Rationale for No mem_alloc() and mem_free()

The working group had originally proposed a pair of new flags to mmap() that,
when applied to a typed memory object descriptor, would cause mmap() to allocate
dynamically from an unallocated and unmapped area of the typed memory object.
Deallocation was similarly accomplished through the use of munmap(). This pro-
posal was rejected by the ballot group because it excessively complicated the
(already rather complex) mmap() interface and introduced semantics useful only
for typed memory, to a function that must also map shared memory and files.
They felt that a memory allocator should be built on top of mmap() instead of

B.12 Memory Management 71

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

being incorporated within the same interface, much as the ISO C libraries build
malloc() on top of the virtual memory mapping functions brk() and sbrk(). This
allocator would eliminate the complicated semantics involved with unmapping
only part of an allocated block of typed memory.

To attempt to achieve ballot group consensus, typed memory allocation and deallo-
cation were first migrated from mmap() and munmap() to a pair of complemen-
tary functions modeled on ISO C malloc() and free (). The function mem_alloc()
specified explicitly the typed memory object (typed memory pool and access port)
from which allocation takes place, unlike malloc() where the memory pool and
port are unspecified. The mem_free () function handled deallocation. These new
semantics still met all of the requirements detailed above without modifying the
behavior of mmap() except to allow it to map specified areas of typed memory
objects. An implementation would have been free to implement mem_alloc() and
mem_free () over mmap(), through mmap(), or independently but cooperating with
mmap().

The ballot group was queried to see if this alternative was acceptable. While there
was some agreement that it achieved the goal of removing the complicated seman-
tics of allocation from the mmap() interface, several balloters realized that it just
created two additional functions that behaved, in great part, like mmap(). These
balloters proposed an alternative which has been implemented here in place of a
separate mem_alloc() and mem_free (). This alternative is based on four specific
suggestions:

— The function posix_typed_mem_open() should provide a flag that specifies
‘‘allocate on mmap()’’ (otherwise, mmap() just maps the underlying object).
This capability allows things roughly similar to //ddeevv//zzeerroo vs.
//ddeevv//sswwaapp. Two such flags have been implemented; one of them forces
contiguous allocation.

— The function posix_mem_offset () is acceptable because it can be applied use-
fully to mapped objects in general. It should return the file descriptor of
the underlying object.

— The function named mem_get_info () in an earlier draft should be renamed
posix_typed_mem_get_info() because it is not generally applicable to
memory objects. It should probably return the file descriptor’s allocation
attribute. The working group implemented the renaming of the function,
but rejected having it return a piece of information that is readily known by
an application without this function. Its whole purpose is to query the
typed memory object for attributes that are not user specified, but deter-
mined by the implementation.

— There should be no separate mem_alloc() or mem_free () functions. Instead,
using mmap() on a typed memory object opened with an ‘‘allocate on
mmap()’’ flag should be used to force allocation. These precise semantics
are defined in this standard.

B.12.4.7 Rationale for No Typed Memory Access Management

The working group had originally defined an additional interface (and an addi-
tional kind of object: typed memory master) to establish and dissolve mappings to
typed memory on behalf of devices or processors that were independent of the

72 B Rationale and Notes

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

operating system and had no inherent capability to directly establish mappings on
their own. This interface provided functionality similar to device driver interfaces
such as physio() and their underlying bus-specific interfaces (e.g., mballoc()),
which serve to set up and break down direct memory access (DMA) pathways and
derive mapped addresses for use by hardware devices and processor cards.

The ballot group felt that this was beyond the scope of IEEE Std 1003.1, 1996 edi-
tion, and its amendments. Furthermore, the removal of interrupt handling inter-
faces from a preceding amendment (IEEE Std 1003.1d-1999) during its balloting
process renders these typed memory access management interfaces an incomplete
solution to portable device management from a user process; it would be possible
to initiate a device transfer to and from typed memory, but impossible to handle
the transfer-complete interrupt in a portable way.

To achieve ballot group consensus, all references to typed memory access manage-
ment capabilities were removed. The concept of portable interfaces from a device
driver to both operating system and hardware is being addressed by the Uniform
Driver Interface (UDI) industry forum, with formal standardization deferred until
proof of concept and industrywide acceptance and implementation.

B.14 Clocks and Timers

⇒⇒ B.14 Clocks and Timers Add the following subclause after the unnumbered
subclause ‘‘Clocks ’’:

Rationale for the Monotonic Clock

For applications that use time services to achieve realtime behavior, changing
the value of the clock on which these services rely may cause erroneous timing
behavior. For these applications, it is necessary to have a monotonic clock that
cannot run backwards and has a maximum clock jump that is required to be
documented by the implementation. Additionally, it is desirable (but not
required by this standard) that the monotonic clock increases its value uni-
formly. This clock should not be affected by changes to the system time, e.g.,
to synchronize the clock with an external source or to account for leap seconds.
Such changes would cause errors in the measurement of time intervals for
time services that use the absolute value of the clock.

One could argue that by defining the behavior of time services when the value
of a clock is changed, deterministic realtime behavior can be achieved. For
example, one could specify that relative time services should be unaffected by
changes in the value of a clock. However, there are time services that are
based upon an absolute time, but that are essentially intended as relative time
services. For example, pthread_cond_timedwait() uses an absolute time to
allow it to wake up after the required interval despite spurious wakeups.
Although sometimes the pthread_cond_timedwait() timeouts are absolute in
nature, there are many occasions in which they are relative; and their absolute
value is determined from the current time plus a relative time interval. In this
latter case, if the clock changes while the thread is waiting, the wait interval
will not be the expected length. If a pthread_cond_timedwait() function were
created that would take a relative time, it would not solve the problem

B.14 Clocks and Timers 73

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

because, to retain the intended ‘‘deadline’’, a thread would need to compensate
for latency due to the spurious wakeup and preemption between wakeup and
the next wait.

The solution is to create a new monotonic clock, whose value does not change
except for the regular ticking of the clock, to use this clock for implementing
the various relative timeouts that appear in the different POSIX interfaces, and
to allow pthread_cond_timedwait() to choose this new clock for its timeout. A
new clock_nanosleep() function is created to allow an application to take
advantage of this newly defined clock. The monotonic clock may be imple-
mented using the same hardware clock as the system clock.

Relative timeouts for sigtimedwait() and aio_suspend() have been redefined to
use the monotonic clock, if present. The alarm() function has not been
redefined because the same effect, but with better resolution, can be achieved
by creating a timer (for which the appropriate clock may be chosen).

The pthread_cond_timedwait() function has been treated in a different way,
compared to other functions with absolute timeouts, because it is used to wait
for an event and thus may have a deadline. (While the other timeouts are gen-
erally used as an error recovery mechanism, and for them the use of the mono-
tonic clock is not so important.) Since the desired timeout for the
pthread_cond_timedwait() function may be either a relative interval or an
absolute time of day deadline, a new initialization attribute has been created
for condition variables to specify the clock that shall be used for measuring the
timeout in a call to pthread_cond_timedwait(). In this way, if a relative
timeout is desired, the monotonic clock will be used; if an absolute deadline is
required instead, the CLOCK_REALTIME or another appropriate clock may be
used. This capability has not been added to other functions with absolute
timeouts because for those functions the expected use of the timeout is mostly
to prevent errors and not so often to meet precise deadlines. As a consequence,
the complexity of adding this capability is not justified by its perceived applica-
tion usage.

The nanosleep() function has not been modified with the introduction of the
monotonic clock. Instead, a new clock_nanosleep() function has been created,
in which the desired clock may be specified in the function call.

History of Resolution Issues

Due to the shift from relative to absolute timeouts in IEEE Std 1003.1d-1999,
the amendments to the sem_timedwait(), pthread_mutex_timedlock(),
mq_timedreceive(), and mq_timedsend () functions of that standard have been
removed. Those amendments specified that CLOCK_MONOTONIC would be
used for the (relative) timeouts if the Monotonic Clock option was supported.

Having these functions continue to be tied solely to CLOCK_MONOTONIC
would not work. Since the absolute value of a time value obtained from
CLOCK_MONOTONIC is unspecified, under the absolute timeouts interface,
applications would behave differently depending on whether the Monotonic
Clock option was supported (because the absolute value of the clock would have
different meanings in either case).

Two options were considered:

74 B Rationale and Notes

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

(1) Do not change the current behavior, which specifies the
CLOCK_REALTIME clock for these (absolute) timeouts, to allow portability
of applications between implementations regardless of whether they sup-
port the Monotonic Clock option, or

(2) Modify these functions in the way that pthread_cond_timedwait() was
modified to allow a choice of clock so that an application could use
CLOCK_REALTIME when it is trying to achieve an absolute timeout and
CLOCK_MONOTONIC when it is trying to achieve a relative timeout.

It was decided that the features of CLOCK_MONOTONIC are not as critical to
these functions as they are to pthread_cond_timedwait(). When
pthread_cond_timedwait() is given a relative timeout, the timeout may represent
a deadline for an event. When these functions are given relative timeouts, the
timeouts are typically for error recovery purposes and need not be so precise.

Therefore, it was decided that these functions should be tied to CLOCK_REALTIME
and not complicated by being given a choice of clock.

B.14.2 Clock and Timer Functions

⇒⇒ B.14.2 Clock and Timer Functions Add the following subclause:

B.14.2.6 High Resolution Sleep with Specifiable Clock

Rationale for clock_nanosleep()

The nanosleep() function specifies that the systemwide clock CLOCK_REALTIME is
used to measure the elapsed time for this time service. However, with the intro-
duction of the monotonic clock CLOCK_MONOTONIC a new relative sleep function
is needed to allow an application to take advantage of the special characteristics of
this clock.

Rationale for absolute clock_nanosleep()

There are many applications in which a process needs to be suspended and then
activated multiple times in a periodic way, e.g., to poll the status of a noninter-
rupting device or to refresh a display device. For these cases, it is known that pre-
cise periodic activation cannot be achieved with a relative sleep() or nanosleep()
function call. Suppose, for example, a periodic process that is activated at time T 0
executes for a while and then wants to suspend itself until time T 0+T, the period
being T. If this process wants to use the nanosleep() function, it must call
clock_gettime () to get the current time, calculate the difference between the
current time and T 0+T, and call nanosleep() using the computed interval. How-
ever, the process could be preempted by a different process between the two func-
tion calls, and in this case the interval computed would be wrong; the process
would wake up later than desired. This problem would not occur with the absolute
clock_nanosleep() function, because only one function call would be necessary to
suspend the process until the desired time. In other cases, however, a relative
sleep is needed, and that is why both functionalities are required.

Although it is possible to implement periodic processes using the timers interface,
this implementation would require the use of signals and the reservation of some

B.14 Clocks and Timers 75

IEEE Std 1003.1j-2000 INFORMATION TECHNOLOGY—POSIX

signal numbers. In this regard, the reasons for including an absolute version of
the clock_nanosleep() function in the standard are the same as for the inclusion of
the relative nanosleep().

It is also possible to implement precise periodic processes using
pthread_cond_timedwait(), in which an absolute timeout is specified that takes
effect if the condition variable involved is never signaled. However, the use of this
interface is unnatural and involves performing other operations on mutexes and
condition variables that imply an unnecessary overhead. Furthermore,
pthread_cond_timedwait() is not available in implementations that do not support
threads.

Although the interface of the relative and absolute versions of the new high reso-
lution sleep service is the same clock_nanosleep() function, the rmtp argument is
only used in the relative sleep. This argument is needed in the relative
clock_nanosleep() function to reissue the function call if it is interrupted by a sig-
nal, but it is not needed in the absolute clock_nanosleep() function call. If the call
is interrupted by a signal, the absolute clock_nanosleep() function can be invoked
again with the same rqtp argument used in the interrupted call.

B.18 Thread Cancellation

B.18.1 Thread Cancellation Overview

B.18.1.2 Cancellation Points

⇒⇒ B.18.1.2 Cancellation Points Replace the third and fourth paragraphs,
starting with ‘‘There is one important blocking routine... ’’ and ending with ‘‘ ...
be protected with condition variables.’’ with the following:

Several important blocking routines are not cancellation points.

(1) pthread_mutex_lock()

If pthread_mutex_lock() were a cancellation point, every routine that
called it would also become a cancellation point (i.e., any routine that
touched shared state would automatically become a cancellation point).
For example, malloc(), free (), and rand() would become cancellation
points under this scheme. Having too many cancellation points makes
programming very difficult, leading to either much disabling and restor-
ing of cancelability or much difficulty in trying to arrange for reliable
cleanup at every possible place.

Since pthread_mutex_lock() is not a cancellation point, threads could
result in being blocked uninterruptibly for long periods of time if mutexes
were used as a general synchronization mechanism. As this behavior is
normally not acceptable, mutexes should be used only to protect
resources that are held for small fixed lengths of time where not being
cancelable will not be a problem. Resources that need to be held
exclusively for long periods of time should be protected with condition
variables.

76 B Rationale and Notes

PART 1: SYSTEM API—Amd. 5:Advanced Realtime Extensions [C Language] IEEE Std 1003.1j-2000

(2) barrier_wait()

Canceling a barrier wait will render a barrier unusable. Similar to a bar-
rier timeout (which the working group rejected), there is no way to
guarantee the consistency of a barrier’s internal data structures if a bar-
rier wait is canceled.

(3) pthread_spin_lock()

As with mutexes, spin locks should be used only to protect resources that
are held for small fixed lengths of time where not being cancelable will
not be a problem.

B.18 Thread Cancellation 77

IEEE Std 1003.1j-2000

Annex F
(informative)

Portability Considerations

F.3 Profiling Considerations

⇒⇒ F.3.1 Configuration Options Add the following options in order:

{_POSIX_BARRIERS}
The system supports barrier synchronization.

This option was created to allow efficient synchronization of
multiple parallel threads in multiprocessor systems in which
the operation is supported in part by the hardware
architecture.

{_POSIX_CLOCK_SELECTION}
The system supports the Clock Selection option.

This option allows applications to request a high resolution
sleep in order to suspend a thread during a relative time
interval, or until an absolute time value, using the desired
clock. It also allows the application to select the clock used in
a pthread_cond_timedwait() function call.

{_POSIX_MONOTONIC_CLOCK}
The system supports the Monotonic Clock option.

This option allows realtime applications to rely on a monoton-
ically increasing clock that does not jump backwards and
whose value does not change except for the regular ticking of
the clock.

{_POSIX_READER_WRITER_LOCKS}
The system supports reader/writer locks.

This option was created to support efficient synchronization
in shared memory multiprocessors in which multiple simul-
taneous reads are allowed to a shared resource.

F.3 Profiling Considerations 79

IEEE Std 1003.1j-2000

{_POSIX_SPIN_LOCKS}
The system supports spin locks.

This option was created to support a simple and efficient syn-
chronization mechanism for threads executing in multipro-
cessor systems.

{_POSIX_TYPED_MEMORY_OBJECTS}
The system supports typed memory objects.

This option was created to allow realtime applications to
access different kinds of physical memory and allow processes
in these applications to share portions of this memory.

80 F Portability Considerations

IEEE Std 1003.1j-2000

Identifier Index

clock_nanosleep()
High Resolution Sleep with Specifiable Clock {14.2.6} 53

posix_mem_offset ()
Find Offset and Length of a Mapped Typed Memory Block
{12.4.3} ... 47

posix_typed_mem_get_info()
Query Typed Memory Information {12.4.4} 48

posix_typed_mem_open()
Open a Typed Memory Object {12.4.2} .. 44

pthread_barrierattr_destroy()
Barrier Initialization Attributes {11.5.1} .. 21

pthread_barrierattr_getpshared()
Barrier Initialization Attributes {11.5.1} .. 21

pthread_barrierattr_init()
Barrier Initialization Attributes {11.5.1} .. 21

pthread_barrierattr_setpshared()
Barrier Initialization Attributes {11.5.1} .. 21

pthread_barrier_destroy()
Initializing and Destroying a Barrier {11.5.2} 23

pthread_barrier_init()
Initializing and Destroying a Barrier {11.5.2} 23

pthread_barrier_wait()
Synchronizing at a Barrier {11.5.3}... 24

pthread_condattr_getclock()
Condition Variable Initialization Attributes {11.4.1} 19

pthread_condattr_setclock()
Condition Variable Initialization Attributes {11.4.1} 19

pthread_rwlockattr_destroy()
Reader/Writer Lock Initialization Attributes {11.6.1} 26

pthread_rwlockattr_getpshared()
Reader/Writer Lock Initialization Attributes {11.6.1} 26

pthread_rwlockattr_init()
Reader/Writer Lock Initialization Attributes {11.6.1} 26

pthread_rwlockattr_setpshared()
Reader/Writer Lock Initialization Attributes {11.6.1} 26

pthread_rwlock_destroy()
Initializing and Destroying a Reader/Writer Lock {11.6.2} 28

pthread_rwlock_init()
Initializing and Destroying a Reader/Writer Lock {11.6.2} 28

pthread_rwlock_rdlock()
Applying a Read Lock {11.6.3} ... 29

pthread_rwlock_timedrdlock()
Applying a Read Lock {11.6.3} ... 29

pthread_rwlock_timedwrlock()
Applying a Write Lock {11.6.4} .. 32

Identifier Index 81

IEEE Std 1003.1j-2000

pthread_rwlock_tryrdlock()
Applying a Read Lock {11.6.3} ... 29

pthread_rwlock_trywrlock()
Applying a Write Lock {11.6.4} .. 32

pthread_rwlock_unlock()
Unlocking a Reader/Writer Lock {11.6.5} ... 34

pthread_rwlock_wrlock()
Applying a Write Lock {11.6.4} .. 32

pthread_spin_destroy()
Initializing and Destroying a Spin Lock {11.7.1} 35

pthread_spin_init()
Initializing and Destroying a Spin Lock {11.7.1} 35

pthread_spin_lock()
Locking a Spin Lock {11.7.2} ... 37

pthread_spin_trylock()
Locking a Spin Lock {11.7.2} ... 37

pthread_spin_unlock()
Unlocking a Spin Lock {11.7.3} ... 38

S_TYPEISTMO
File Characteristics: Header and Data Structure {5.6.1} 13

82 Identifier Index

IEEE Std 1003.1j-2000

Alphabetic Topical Index

A

aio_suspend () . . . 74
alarm () . . . 74
ANSI . . . 66
Applying a Read Lock . . . 29
Applying a Write Lock . . . 32
appropriate privileges . . . 13, 46-47, 70
Asynchronous Input and Output . . . 16
attributes

ccll oocckk . . . 19-20
attributes

pprr oocceessss-- sshhaarr eedd . . . 21-22, 27-28, 65

B

B-1 . . . 67, 70
background . . . 61-62, 64
barrier

definition of . . . 3
Barrier Initialization Attributes . . . 21
Barriers . . . 21, 61
Barriers option . . . 4, 21, 23-24
barrier_wait () . . . 77
Bibliography . . . 59
brk() . . . 72

C

Cancellation Points . . . 57, 76
Change File Modes—Description . . . 13
Change File Modes . . . 13
C Language Input/Output Functions . . . 17
ccll oocckk

attribute . . . 19-20
Clock and Timer Functions . . . 52-53, 75
clock_gettime () . . . 52, 75
clock jump

definition of . . . 3
CLOCK_MONOTONIC . . . 10, 16, 51-53, 74-75
clock_nanosleep() . . . 52-54, 57, 74-76

function definition . . . 53
CLOCK_REALTIME . . . 31, 33, 51-53, 74-75
Clocks—Cross-References . . . 53

Clocks—Description . . . 52
Clocks—Errors . . . 52
Clocks . . . 52
Clocks and Timers . . . 51, 73
Clock Selection option . . . 19-20, 52-53
clock_settime () . . . 3, 51-52, 55
close () . . . 46-47
Close a File—Description . . . 15
Close a File . . . 15
Condition Variable Initialization Attributes—

Cross....................................References
. . . 20

Condition Variable Initialization Attributes—
Description . . . 19

Condition Variable Initialization Attributes—
Errors . . . 20

Condition Variable Initialization Attributes—
Returns . . . 20

Condition Variable Initialization Attributes—
Synopsis . . . 19

Condition Variable Initialization Attributes
. . . 19

Condition Variables . . . 19
Configurable System Variables . . . 11
Configuration Options . . . 79
conformance . . . 1
Conformance . . . 1
Conforming Implementation Options . . . 1
Control Operations on Files . . . 16
Create a Per-Process Timer—Description

. . . 53
Create a Per-Process Timer . . . 53
Cross-References . . . 22, 24-25, 28-29, 32,

34-35, 37-39, 47-49, 55
C Standard . . . 51, 66

D

Data Definitions . . . 44
Data Definitions for Clocks and Timers

. . . 51
Definitions . . . 3
// ddeevv// sswwaapp . . . 72
// ddeevv// zzeerr oo . . . 72
DMA . . . 73

Alphabetic Topical Index 83

IEEE Std 1003.1j-2000

document . . . 51, 73
DO/FOR . . . 61
DRAM . . . 66
dup() . . . 46-47
dup2 () . . . 46

E

[EACCES] . . . 46, 48
[EAGAIN] . . . 24, 29, 32, 37
[EBADF] . . . 49
[EBUSY] . . . 24, 29, 31, 33, 37-38
[EDEADLK] . . . 32, 34, 38
EEPROM . . . 66
[EINTR] . . . 46, 54
[EINVAL] . . . 20, 22, 24-25, 28-29, 32, 34-35,

37-39, 47, 52, 54
[EMFILE] . . . 47
[ENAMETOOLONG] . . . 47
[ENFILE] . . . 47
[ENODEV] . . . 49
[ENOENT] . . . 47
[ENOMEM] . . . 22, 24, 27, 29, 37, 43
[ENOTSUP] . . . 54
[ENXIO] . . . 43
[EPERM] . . . 35, 39, 47
EPROM . . . 66
[ETIMEDOUT] . . . 31, 34
Example of a system with typed memory

. . . 67
Execute a File—Description . . . 9
Execute a File . . . 9
Existing Practice . . . 68

F

F.3 . . . 79
fchmod () . . . 13
fcntl () . . . 16, 47, 63
<<ffccnnttl l. .hh>> . . . 46-47
FD_CLOEXEC . . . 46
fdopen () . . . 17
File Characteristics . . . 13
File Characteristics: Header and Data Struc-

ture . . . 13
File Control—Description . . . 16
File Control . . . 16
file descriptor . . . 15, 17, 43, 45-47, 49, 69-72
File Descriptor Deassignment . . . 15

Files and Directories . . . 13
file system . . . 41, 45, 62
Find Offset and Length of a Mapped Typed

Memory Block . . . 47
free () . . . 72, 76
fstat () . . . 46, 71
ftruncate () . . . 46
functions

clock_nanosleep() . . . 53
posix_mem_offset () . . . 47
posix_typed_mem_get_info() . . . 48
posix_typed_mem_open() . . . 44
pthread_barrierattr_destroy() . . . 21
pthread_barrierattr_getpshared() . . . 21
pthread_barrierattr_init() . . . 21
pthread_barrierattr_setpshared() . . . 21
pthread_barrier_destroy() . . . 23
pthread_barrier_init() . . . 23
pthread_barrier_wait() . . . 24
pthread_condattr_getclock() . . . 19
pthread_condattr_setclock() . . . 19
pthread_rwlockattr_destroy() . . . 26
pthread_rwlockattr_getpshared() . . . 26
pthread_rwlockattr_init () . . . 26
pthread_rwlockattr_setpshared() . . . 26
pthread_rwlock_destroy() . . . 28
pthread_rwlock_init() . . . 28
pthread_rwlock_rdlock() . . . 29
pthread_rwlock_timedrdlock() . . . 29
pthread_rwlock_timedwrlock() . . . 32
pthread_rwlock_tryrdlock() . . . 29
pthread_rwlock_trywrlock() . . . 32
pthread_rwlock_unlock() . . . 34
pthread_rwlock_wrlock() . . . 32
pthread_spin_destroy() . . . 35
pthread_spin_init() . . . 35
pthread_spin_lock() . . . 37
pthread_spin_trylock() . . . 37
pthread_spin_unlock() . . . 38

G

General . . . 1
General Terms . . . 3
Get Configurable System Variables— Descrip-

tion . . . 11
Get Configurable System Variables . . . 11
Get File Status—Description . . . 13
Get File Status . . . 13

H

High Resolution Sleep with Specifiable Clock
. . . 53, 75

84 Alphabetic Topical Index

IEEE Std 1003.1j-2000

HP-RT . . . 68

I

IEEE Std 1003.13 . . . 63, 66
IEEE Std 1003.1 . . . 73
IEEE Std 1003.1c . . . 61
IEEE Std 1003.1d . . . 73-74
Implementation Conformance . . . 1
implementation defined . . . 22, 27, 30, 35, 41,

45-46, 48-49, 51
Initializing and Destroying a Barrier . . . 23
Initializing and Destroying a Reader/Writer

Lock . . . 28
Initializing and Destroying a Spin Lock

. . . 35
Input and Output . . . 15
Input and Output Primitives . . . 15
ISO/IEC 9899 . . . 51, 66
ISO/IEC 9945-1 . . . 41, 63

L

Language-Specific Services for the C
Programming . . . 17

Locking a Spin Lock . . . 37
lseek () . . . 16

M

malloc () . . . 66, 68, 71-72, 76
Manifest Constants . . . 51
MAP_PRIVATE . . . 42
Map Process Addresses to a Memory Object—

Cross-References . . . 43
Map Process Addresses to a Memory Object—

Description . . . 42
Map Process Addresses to a Memory Object—

Errors . . . 43
Map Process Addresses to a Memory Object

. . . 42
MAP_SHARED . . . 42
MAX_SPIN . . . 65
mballoc () . . . 73
mem_alloc () . . . 72
mem_free () . . . 72
mem_get_info () . . . 72
Memory Management . . . 41, 44, 66
Memory Mapped Files option . . . 41

Memory Mapping Functions . . . 42
memory object

definition of . . . 3
Memory Object synchronization—Description

. . . 44
Memory Object Synchronization . . . 44
mmap() . . . 3, 42, 45-49, 66, 69-72
Model . . . 66
monotonic clock

definition of . . . 3
Monotonic Clock option . . . 10, 16, 51-52, 74
mq_timedreceive() . . . 53, 74
mq_timedsend () . . . 53, 74
msync() . . . 44, 46
munmap() . . . 9, 66, 70-72

N

NAME_MAX . . . 47
nanosleep () . . . 53, 55, 74-76

O

open () . . . 69
Open a Stream on a File Descriptor—

Description . . . 17
Open a Stream on a File Descriptor . . . 17
Open a Typed Memory Object . . . 44
Optional Configurable System Variables

. . . 11
options

Barriers . . . 4, 21, 23-24
Clock Selection . . . 19-20, 52-53
Memory Mapped Files . . . 41
Monotonic Clock . . . 10, 16, 51-52, 74
Reader/Writer Locks . . . 4, 26, 28, 30-34
Shared Memory Objects . . . 41
Spin Locks . . . 4, 36-38
Thread Execution Scheduling . . . 30, 34-

35, 62-63
Timeouts . . . 31, 33
Timers . . . 31, 33
Typed Memory Objects . . . 9, 13, 15-17,

41, 44-45, 47-48
options

Process-Shared Synchronization . . . 21,
27, 36

O_RDONLY . . . 46
O_RDWR . . . 46
OS-9 . . . 68
Other Sources of Information . . . 59

Alphabetic Topical Index 85

IEEE Std 1003.1j-2000

O_WRONLY . . . 46

P

PATH_MAX . . . 47
physio () . . . 73
Portability Considerations . . . 79
_POSIX_BARRIERS . . . 1, 11, 21, 23-24, 79
_POSIX_CLOCKRES_MIN . . . 51
_POSIX_CLOCK_SELECTION . . . 1, 11, 19-20,

52-53, 79
_POSIX_MAPPED_FILES . . . 42-43
posix_mem_offset () . . . 46-48, 66, 68, 71-72

function definition . . . 47
_POSIX_MONOTONIC_CLOCK . . . 1, 11, 16,

52, 79
_POSIX_NO_TRUNC . . . 47
_POSIX_READER_WRITER_LOCKS . . . 1, 11,

26, 28, 30-34, 79
_POSIX_SHARED_MEMORY_OBJECTS . . . 42-

43
_POSIX_SPIN_LOCKS . . . 1, 11, 36-38, 80
_POSIX_THREAD_PRIORITY_SCHEDULING

. . . 30, 34-35
_POSIX_THREAD_PROCESS_SHARED . . . 21,

27, 36
_POSIX_TIMEOUTS . . . 31, 33
_POSIX_TIMERS . . . 31, 33
POSIX_TYPED_MEM_ALLOCATE . . . 42, 45,

47-49, 70
POSIX_TYPED_MEM_ALLOCATE_CONTIG

. . . 42, 45, 47-49, 71
posix_typed_mem_get_info() . . . 46, 48-49,

66, 71-72
function definition . . . 48

POSIX_TYPED_MEM_MAP_ALLOCATABLE
. . . 43, 45-47

posix_typed_mem_open() . . . 43-46, 48-49,
57, 66, 70-72
function definition . . . 44

_POSIX_TYPED_MEMORY_OBJECTS . . . 1, 11,
13, 42-45, 47-48, 80

Primitive System Data Types . . . 4-5
Process Creation and Execution . . . 9
Process Environment . . . 11
Process Primitives . . . 9
pprroocceessss--sshhaarreedd

attribute . . . 21-22, 27-28, 65
Process-Shared Synchronization option

. . . 21, 27, 36
Process Termination . . . 9

Profiling Considerations . . . 79
PSOS . . . 69
pthread_barrierattr_destroy() . . . 21-22

function definition . . . 21
pthread_barrierattr_getpshared() . . . 21-22

function definition . . . 21
pthread_barrierattr_init() . . . 21-22

function definition . . . 21
pthread_barrierattr_setpshared() . . . 21-22

function definition . . . 21
pthread_barrier_destroy() . . . 23-25

function definition . . . 23
pthread_barrier_init() . . . 22-25

function definition . . . 23
PTHREAD_BARRIER_SERIAL_THREAD . . . 24-

25, 61
pthread_barrier_wait() . . . 23-25, 62

function definition . . . 24
pthread_condattr_getclock() . . . 19-20

function definition . . . 19
pthread_condattr_setclock() . . . 19-20

function definition . . . 19
pthread_cond_timedwait () . . . 19-20, 73-76,

79
<<pptthhrreeaadd..hh>> . . . 22, 25
pthread_mutex_lock() . . . 76
pthread_mutex_timedlock() . . . 53, 74
pthread_mutex_trylock() . . . 66
PTHREAD_PROCESS_PRIVATE . . . 21-22, 27-

28, 36
PTHREAD_PROCESS_SHARED . . . 21-22, 27-

28, 36
pthread_rwlockattr_destroy() . . . 26-27

function definition . . . 26
pthread_rwlockattr_getpshared() . . . 26-27

function definition . . . 26
pthread_rwlockattr_init () . . . 26-27

function definition . . . 26
pthread_rwlockattr_setpshared() . . . 26-28

function definition . . . 26
pthread_rwlock_destroy() . . . 28-29, 32,

34-35
function definition . . . 28

pthread_rwlock_init() . . . 28-29, 32, 34-35
function definition . . . 28

pthread_rwlock_rdlock() . . . 26, 28-32, 34-35,
57
function definition . . . 29

pthread_rwlock_timedrdlock() . . . 28-29, 31-
32, 34-35, 57
function definition . . . 29

pthread_rwlock_timedwrlock() . . . 28-29,
32-35, 57
function definition . . . 32

86 Alphabetic Topical Index

IEEE Std 1003.1j-2000

pthread_rwlock_tryrdlock() . . . 28-32, 34-35
function definition . . . 29

pthread_rwlock_trywrlock() . . . 28-29, 32-35
function definition . . . 32

pthread_rwlock_unlock() . . . 28-29, 32, 34-
35, 62
function definition . . . 34

pthread_rwlock_wrlock() . . . 26, 28-29, 32-
35, 57
function definition . . . 32

pthread_spin_destroy() . . . 35-39
function definition . . . 35

pthread_spin_init() . . . 35-39, 65
function definition . . . 35

pthread_spin_lock() . . . 36-39, 64, 77
function definition . . . 37

pthread_spin_trylock() . . . 36-39, 64
function definition . . . 37

pthread_spin_unlock() . . . 36-39
function definition . . . 38

Q

QNX . . . 69
Query Typed Memory Information . . . 48

R

rand () . . . 76
read () . . . 15
reader/writer lock

definition of . . . 3
Reader/Writer Lock Initialization Attributes

. . . 26
Reader/Writer Locks . . . 26, 62
Reader/Writer Locks option . . . 4, 26, 28,

30-34
Read from a File—Description . . . 15
Read from a File . . . 15
Reposition Read/Write File Offset—Description

. . . 16
Reposition Read/Write File Offset . . . 16
Requirements . . . 69
ROM . . . 66

S

sbrk () . . . 72
_SC_BARRIERS . . . 11

limit definition . . . 11

_SC_CLOCK_SELECTION . . . 11
limit definition . . . 11

Scenario . . . 70
SCHED_FIFO . . . 30, 34, 62
SCHED_RR . . . 30, 34, 62
SCHED_SPORADIC . . . 30, 35
_SC_MONOTONIC_CLOCK . . . 11

limit definition . . . 11
_SC_READER_WRITER_LOCKS . . . 11

limit definition . . . 11
_SC_SPIN_LOCKS . . . 11

limit definition . . . 11
_SC_TYPED_MEMORY_OBJECTS . . . 11

limit definition . . . 11
sem_timedwait () . . . 53, 74
Shared Memory Objects option . . . 41
Signals . . . 10
sigtimedwait () . . . 74
sleep () . . . 55, 75
spin_init () . . . 65
spin lock

definition of . . . 3
Spin Locks . . . 35, 64
Spin Locks option . . . 4, 36-38
SRAM . . . 66
S_TYPEISSHM . . . 13
S_TYPEISTMO

definition of . . . 13
S_TYPEISTMO . . . 13
Synchronization . . . 19, 21, 61
Synchronizing at a Barrier . . . 24
Synchronously Accept a Signal—description

. . . 10
Synchronously Accept a Signal . . . 10
<<ssyyss//mmmmaann..hh>> . . . 44-45, 47-49
System V . . . 11, 69
<<ssyyss//ttyyppeess..hh>> . . . 4

T

Terminate a Process—Description . . . 9
Terminate a Process . . . 9
Terminology and General Requirements . . . 3
terms . . . 3
Thread Cancellation . . . 57, 76
Thread Cancellation Overview . . . 57, 76
Thread Execution Scheduling option . . . 30,

34-35, 62-63
time () . . . 31, 33
<<tti immee..hh>> . . . 31, 33, 51

Alphabetic Topical Index 87

IEEE Std 1003.1j-2000

Timeouts option . . . 31, 33
TIMER_ABSTIME . . . 53-54
timer_create () . . . 53
timer_settime () . . . 53
Timers option . . . 31, 33
TOC . . . 1
//t tyyppeedd..mm22bb--bb11 . . . 70
//t tyyppeedd..mm22bb--bb22 . . . 71
Typed Memory Functions . . . 44, 66
typed memory namespace

definition of . . . 3
typed memory object

definition of . . . 4
Typed Memory Objects option . . . 9, 13, 15-

17, 41, 44-45, 47-48
typed memory pool

definition of . . . 4
typed memory port

definition of . . . 4

U

UDI . . . 73
umask() . . . 47
undefined . . . 21-23, 25-31, 33-38, 42, 49
UNIX . . . 69
Unlocking a Reader/Writer Lock . . . 34
Unlocking a Spin Lock . . . 38
Unmap Previously Mapped Addresses—

Cross-References . . . 44
Unmap Previously Mapped Addresses—

Description . . . 43
Unmap Previously Mapped Addresses . . . 43
unspecified . . . 13, 15-17, 24-25, 38, 44-46,

49, 52, 54, 72, 74

V

VME . . . 68

W

Wait for Asynchronous I/O Request—
Description . . . 16

Wait for Asynchronous I/O Request . . . 16
Waiting on a Condition—Description . . . 20
Waiting on a Condition . . . 20
write () . . . 16
Write to a File—Description . . . 16

Write to a File . . . 16

88 Alphabetic Topical Index

	Title Page
	CONTENTS
	Introduction
	Participants
	Section 1: General
	1.3 Conformance

	Section 2: Terminology and General Requirements
	2.2 Definitions
	2.5 Primitive System Data Types
	2.7 C Language Definitions
	2.8 Numerical Limits
	2.9 Symbolic Constants

	Section 3: Process Primitives
	3.1 Process Creation and Execution
	3.2 Process Termination
	3.3 Signals

	Section 4: Process Environment
	4.8 Configurable System Variables

	Section 5: Files and Directories
	5.6 File Characteristics

	Section 6: Input and Output Primitives
	6.3 File Descriptor Deassignment
	6.4 Input and Output
	6.5 Control Operations on Files
	6.7 Asynchronous Input and Output

	Section 8: Language-Specific Services for the C Programming Language
	8.2 C Language Input/Output Functions

	Section 11: Synchronization
	11.4 Condition Variables
	11.5 Barriers
	11.6 Reader/Writer Locks
	11.7 Spin Locks

	Section 12: Memory Management
	12.2 Memory Mapping Functions
	12.4 Typed Memory Functions

	Section 14: Clocks and Timers
	14.1 Data Definitions for Clocks and Timers
	14.2 Clock and Timer Functions

	Section 18: Thread Cancellation
	18.1 Thread Cancellation Overview

	Annex A—Bibliography
	Annex B—Rationale and Notes
	Annex F—Portability Considerations
	Identifier Index
	Alphabetic Topical Index

	amdcorrex: j
	amendj: j
	amendj2: j

