
International Standard ISO/IEC 9945-1: 1996 (E)
IEEE Std 1003.1, 1996 Edition

(Incorporating ANSI/IEEE Stds 1003.1-1990, 1003.1b-1993,

1003.1c-1995, and 1003.1i-1995)

Information technology—Portable
Operating System Interface (POSIX ®)—
Part 1: System Application Program
Interface (API) [C Language]

Sponsor
Portable Applications Standards Committee
of the
IEEE Computer Society

Adopted as an International Standard by the International Organization for Standardization and by the
International Electrotechnical Commission

Published by The Institute of Electrical and Electronics Engineers, Inc.

ational

SA

 1996.

ut the
Abstract: This standard is part of the POSIX series of standards for applications and user interfaces to
open systems. It defines the applications interface to basic system services for input/output, file system
access, and process management. It also defines a format for data interchange. When options specified in
the Realtime Extension are included, the standard also defines interfaces appropriate for realtime
applications. When options specified in the Threads Extension are included, the standard also defines
interfaces appropriate for multithreaded applications. This standard is stated in terms of its C language
binding.
Keywords: API, application portability, C (programming language), data processing, information
interchange, open systems, operating system, portable application, POSIX, programming language,
realtime, system configuration computer interface, threads

POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

Quote in 8.1.2.3 on Returns is taken from ANSI X3.159-1989, developed under the auspices of the American N
Standards Accredited Committee X3 Technical Committee X3J11.

The Institute of Electrical and Electronics Engineers, Inc. 345 East 47th Street, New York, NY 10017-2394, U

Copyright © 1996 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved. Published
Printed in the United States of America.

ISBN 1-55937-573-6

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, witho
prior written permission of the publisher.

12 July 1996

SH94352

ndards
without
resent a

that have

no other
f the IEEE
to change
rd. Every
 is more
of some

 have the

ffiliation
her with

relate to
nitiate
erests, it is
is reason
 requests

stitute
 Center.
osewood
rd for

atter
ce or
nts

y or
IEEE Standards documents are developed within the Technical Committees of the IEEE Societies and the Sta
Coordinating Committees of the IEEE Standards Board. Members of the committees serve voluntarily and
compensation. They are not necessarily members of the Institute. The standards developed within IEEE rep
consensus of the broad expertise on the subject within the Institute as well as those activities outside of IEEE
expressed an interest in participating in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there are
ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope o
Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject
brought about through developments in the state of the art and comments received from users of the standa
IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document
than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still
value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they
latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership a
with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, toget
appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they
specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will i
action to prepare appropriate responses. Since IEEE Standards represent a consensus of all concerned int
important to ensure that any interpretation has also received the concurrence of a balance of interests. For th
IEEE and the members of its technical committees are not able to provide an instant response to interpretation
except in those cases where the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the In
of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance
To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 R
Drive, Danvers, MA 01923 USA; (508) 750-8400. Permission to photocopy portions of any individual standa
educational classroom use can also be obtained through the Copyright Clearance Center.

Note: Attention is called to the possibility that implementation of this standard may require use of subject m
covered by patent rights. By publication of this standard, no position is taken with respect to the existen
validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying all pate
for which a license may be required by an IEEE standard or for conducting inquiries into the legal validit
scope of those patents that are brought to its attention.
iii

ission)
or IEC
spective
 fields
nd IEC,

TC 1.
 voting.
te.

TC 1,
 been
SO/IEC
Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Comm
form the specialized system for worldwide standardization. National bodies that are members of ISO
participate in the development of International Standards through technical committees established by the re
organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in
of mutual interest. Other international organizations, governmental and nongovernmental, in liaison with ISO a
also take part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC J
Draft International Standards adopted by the joint technical committee are circulated to national bodies for
Publication as an International Standard requires approval by at least 75% of the national bodies casting a vo

International Standard ISO/IEC 9945-1 :1996 was prepared by Joint Technical Committee ISO/IEC J
Information technology. This edition cancels and replaces the first edition (ISO/IEC 9945-1 :1990), which has
technically revised. This edition also consolidates Amendments 1 and 2 and Technical Corrigendum 1 to I
9945-1 :1990.

ISO/IEC 9945 consists of the following parts, under the general title Information technology—Portable operating
system interface (POSIX):

 Part 1.: System application program interface (API) [C language]
 Part 2.: Shell and utilities
 Part 3.: System administration (under development)

Annexes A to H of ISO/IEC 9945-1 are provided for information only.
iv

terface

based on
ed for

. Future
is will be
ments

t can be
 in terms
gs will

 the core
C 9945.
iming

ons of

 given in
ed by the
e are also
 direct the
e found
ade by

terfaces

x called
nexes in

arious
re
 this part
Introduction

(This introduction is not a normative part of ISO/IEC 9945-1, Information technology—Portable Operating System In
(POSIX)—Part 1.: System Application Programming Interface (API) [C Language])

The purpose of this part of ISO/IEC 9945 is to define a standard operating system interface and environment
the UNIX1 Operating System documentation to support application portability at the source level. This is intend
systems implementors and applications software developers.

Initially,2 the focus of this part of ISO/IEC 9945 is to provide standardized services via a C language interface
revisions are expected to contain bindings for other programming languages as well as for the C language. Th
accomplished by breaking this part of ISO/IEC 9945 into multiple portions—one defining core require
independent of any programming language, and others composed of programming language bindings.

The core requirements portion will define a set of required services common to any programming language tha
reasonably expected to form a language binding to this part of ISO/IEC 9945. These services will be described
of functional requirements and will not define programming language-dependent interfaces. Language bindin
consist of two major parts. One will contain the programming language's standardized interface for accessing
services defined in the programming language-independent core requirements section of this part of ISO/IE
The other will contain a standardized interface for language-specific services. Any implementation cla
conformance to this part of ISO/IEC 9945 with any language binding will be required to comply with both secti
the language binding.

Within this document, the term “POSIX.1” refers to this part of ISO/IEC 9945 itself.

Organization of This Part of ISO/IEC 9945

This part of ISO/IEC 9945 is divided into four elements:

1) Statement of scope and list of normative references (Section 1.)
2) Definitions and global concepts (Section 2.)
3) The various interface facilities (Sections 3. through 9. and 11. through 18.)
4) Data interchange format (Section 10.)

Most of the sections describe a single service interface. The C Language binding for the service interface is
the subclause labeled Synopsis. The Description subclause provides a specification of the operation perform
service interface. Some examples may be provided to illustrate the interfaces described. In most cases ther
Returns and Errors subclauses specifying return values and possible error conditions. References are used to
reader to other related sections. Additional material to complement sections in this part of ISO/IEC 9945 may b
in the Rationale and Notes, Annex B. This annex provides historical perspectives into the technical choices m
the developers of this part of ISO/IEC 9945. It also provides information to emphasize consequences of the in
described in the corresponding section of this part of ISO/IEC 9945.

Informative annexes are not part of the standard and are provided for information only. (There is a type of anne
“normative” that is part of a standard and imposes requirements, but there are currently no such normative an
this part of ISO/IEC 9945.) They are provided for guidance and to help understanding.

In publishing this part of ISO/IEC 9945, its developers simply intend to provide a yardstick against which v
operating system implementations can be measured for conformance. It is not the intent of the developers to measu
or rate any products, to reward or sanction any vendors of products for conformance or lack of conformance to

1UNIX is a registered trademark in the USA and other countries licensed exclusively through X/Open.
2The vertical rules in the right margin depict technical or significant non-editorial changes from ISO/IEC 9945 :1-1990. A vertical rule beside an
empty line indicates deleted text.
v

nsibility
ith the

BSD
m, or

tems and
mers, and
rds, both

lication
anguage,
portable

EEE
merged.
OSIX

 system

nts by
ortable
of ISO/IEC 9945, or to attempt to enforce this part of ISO/IEC 9945 by these or any other means. The respo
for determining the degree of conformance or lack thereof with this part of ISO/IEC 9945 rests solely w
individual who is evaluating the product claiming to be in conformance with this part of ISO/IEC 9945 .

Base Documents

The various interface facilities described herein are based on the 1984 /usr/group Standard derived and published by
the UniForum (formerly/usr/group) Standards Committee. The 1984 /usr/group Standard and this part of ISO/IEC
9945 are largely based on UNIX Seventh Edition, UNIX System III, UNIX System V, 4.2BSD, and 4.3
documentation,3 but wherever possible, compatibility with other systems derived from the UNIX operating syste
systems compatible with that system, has been maintained.

Background

The developers of POSIX.1 represent a cross-section of hardware manufacturers, vendors of operating sys
other software development tools, software designers, consultants, academics, authors, applications program
others. In the course of their deliberations, the developers reviewed related American and international standa
published and in progress.

Conceptually, POSIX.1 describes a set of fundamental services needed for the efficient construction of app
programs. Access to these services has been provided by defining an interface, using the C programming l
that establishes standard semantics and syntax. Since this interface enables application writers to write
applications—it was developed with that goal in mind—it has been designated POSIX,4 an acronym for Portable
Operating System Interface.

Although originated to refer to IEEE Std 1003.1-1988, the name POSIX more correctly refers to a family of related
standards: IEEE 1003 .n and the parts of International Standard ISO/IEC 9945. In earlier editions of the I
standard, the term POSIX was used as a synonym for IEEE Std 1003.1-1988. A preferred term, POSIX.1, e
This maintained the advantages of readability of the symbol “POSIX” without being ambiguous with the P
family of standards.

Audience

The intended audience for ISO/IEC 9945 is all persons concerned with an industry-wide standard operating
based on the UNIX system. This includes at least four groups of people:

1) Persons buying hardware and software systems;
2) Persons managing companies that are deciding on future corporate computing directions;
3) Persons implementing operating systems, and especially
4) Persons developing applications where portability is an objective.

Purpose

Several principles guided the development of this part of ISO/IEC 9945:

Application Oriented

The basic goal was to promote portability of application programs across UNIX system environme
developing a clear, consistent, and unambiguous standard for the interface specification of a p

3The standard developers are grateful to both AT&T and UniForum for permission to use their materials.
4The name POSIX was suggested by Richard Stallman. It is expected to be pronounced pahz-icks, as in positive, not poh-six, or other variations. The
pronunciation has been published in an attempt to promulgate a standardized way of referring to a standard operating system interface.
vi

s the
ce.

tween
 of any
es are

on one
tation.
nder a
are is
rks on

rd {2}.

es and
cluded.
plement
d with

e. For
ade in

f

range of

code
operating system based on the UNIX system documentation. This part of ISO/IEC 9945 codifie
common, existing definition of the UNIX system. There was no attempt to define a new system interfa

Interface, Not Implementation

This part of ISO/IEC 9945 defines an interface, not an implementation. No distinction is made be
library functions and system calls: both are referred to as functions. No details of the implementation
function are given (although historical practice is sometimes indicated in Annex B). Symbolic nam
given for constants (such as signals and error numbers) rather than numbers.

Source, Not Object, Portability

This part of ISO/IEC 9945 has been written so that a program written and translated for execution
conforming implementation may also be translated for execution on another conforming implemen
This part of ISO/IEC 9945 does not guarantee that executable (object or binary) code will execute u
different conforming implementation than that for which it was translated, even if the underlying hardw
identical. However, few impediments were placed in the way of binary compatibility, and some rema
this are found in Annex B. See B.1.3.1.1 and B.4.8.

The C Language

This part of ISO/IEC 9945 is written in terms of the standard C language as specified in the C Standa5

See B.1.3 and B.1.1.1.

No Super-User, No System Administration

There was no intention to specify all aspects of an operating system. System administration faciliti
functions are excluded from POSIX.1, and functions usable only by the super-user have not been in
Annex B notes several such instances. Still, an implementation of the standard interface may also im
features not in this part of ISO/IEC 9945; see 1.3.1.1. This part of ISO/IEC 9945 is also not concerne
hardware constraints or system maintenance.

Minimal Interface, Minimally Defined

In keeping with the historical design principles of the UNIX system, POSIX.1 is as minimal as possibl
example, it usually specifies only one set of functions to implement a capability. Exceptions were m
some cases where long tradition and many existing applications included certain functions, such as creat(). In
such cases, as throughout POSIX.1, redundant definitions were avoided: creat() is defined as a special case o
open(). Redundant functions or implementations with less tradition were excluded.

Broadly Implementable

The developers of POSIX.1 endeavored to make all specified functions implementable across a wide
existing and potential systems, including:
1) All of the current major systems that are ultimately derived from the original UNIX system

(Version 7 or later)
2) Compatible systems that are not derived from the original UNIX system code
3) Emulations hosted on entirely different operating systems
4) Networked systems
5) Distributed systems
6) Systems running on a broad range of hardware

5The number in braces corresponds to those of the references in 1.2 (or the bibliographic entry in Annex A if the number is preceded by the letter B).
vii

oned in

 to this
ce (for

 types,
SIX.1
sensus,

 with,

, like

 Annex

tem,

orical
sidered
nctions

 to future
.

cause
ations

source
he set
e scope

ervice

ram

ltime

tations

erface
low. It is
No direct references to this goal appear in this part of ISO/IEC 9945 , but some results of it are menti
Annex B.

Minimal Changes to Historical Implementations

There are no known historical implementations that will not have to change in some area to conform
part of ISO/IEC 9945, and in a few areas POSIX.1 does not exactly match any existing system interfa
example, see the discussion of O_NONBLOCK in B.6). Nonetheless, there is a set of functions,
definitions, and concepts that form an interface that is common to most historical implementations. PO
specifies that common interface and extends it in areas where there has historically been no con
preferably
1) By standardizing an interface like one in an historical implementation; e.g., directories, or;
2) By specifying an interface that is readily implementable in terms of, and backwards compatible

historical implementations, such as the extended tar format in 10.1.1, or;
3) By specifying an interface that, when added to an historical implementation, will not conflict with it

B.6.
Required changes to historical implementations have been kept to a minimum, but they do exist, and
B points out some of them.
POSIX.1 is specifically not a codification of a particular vendor's product. It is similar to the UNIX sys
but it is not identical to it.
It should be noted that implementations will have different kinds of extensions. Some will reflect “hist
usage” and will be preserved for execution of pre-existing applications. These functions should be con
“obsolescent” and the standard functions used for new applications. Some extensions will represent fu
beyond the scope of POSIX.1. These need to be used with careful management to be able to adapt
POSIX.1 extensions and/or port to implementations that provide these services in a different manner

Minimal Changes to Existing Application Code

A goal of POSIX.1 was to minimize additional work for the developers of applications. However, be
every known historical implementation will have to change at least slightly to conform, some applic
will have to change. Annex B points out the major places where POSIX.1 implies such changes.

Realtime Extension

This portion of this part of ISO/IEC 9945 defines optional sets of systems interfaces to support the
portability of applications with realtime requirements. The interfaces included in this standard were t
required to make POSIX.1 minimally usable to realtime applications on single processor systems. Th
is to take existing realtime operating system practice and add it to the base standard.
The definition of realtime used in defining the scope of this standard is:

“Realtime in operating systems: the ability of the operating system to provide a required level of s
in a bounded response time.”

The key elements of defining the scope are
1) Defining a sufficient set of functionality to cover a significant part of the realtime application prog

domain, and
2) Defining sufficient performance constraints and performance-related functions to allow a rea

application to achieve deterministic response from the system.
Specifically within the scope is to define interfaces that do not preclude high-performance implemen
on traditional uniprocessor realtime systems.
Wherever possible, the requirements of other application environments were included in this int
definition. The specific areas are noted in the scope overviews of each of the interface areas given be
beyond the scope of these interfaces to support networking or multiprocessor functionality.
The specific functional areas included in this standard and their scope includes:
viii

lex

the
tencies
ced on

o
 of their

 to
sources.
m of
ueued

ilities

stic
d the

e the
lated is

eue
es in

lity to
all
ce for

ltime

terface
sking

me

a

r efforts
 Semaphores: A minimum synchronization primitive to serve as a basis for more comp
synchronization mechanisms to be defined by the application program.

 Process memory locking: A performance improvement facility to bind application programs into
high-performance random access memory of a computer system. This avoids potential la
introduced by the operating system in storing parts of a program that were not recently referen
secondary memory devices.

 Memory mapped files and shared memory: A performance improvement facility to allow for programs t
access files as part of the program images and for separate application programs to have portions
program image commonly accessible.

 Priority scheduling: A performance and determinism improvement facility to allow applications
determine the order in which processes that are ready to run are granted access to processor re

 Realtime signal extension: A determinism improvement facility that augments the signals mechanis
historical implementations to enable asynchronous signal notifications to an application to be q
without impacting compatibility with the existing signals interface.

 Timers: A functionality and determinism improvement facility to increase the resolution and capab
of the time-base interface.

 Interprocess communication: A functionality enhancement to add a high-performance, determini
interprocess communication facility for local communication. Network transparency is beyon
scope of this interface.

 Synchronized input and output: A determinism and robustness improvement mechanism to enhanc
data input and output mechanisms so that an application can insure that the data being manipu
physically present on secondary mass storage devices.

 Asynchronous input and output: A functionality enhancement to allow an application process to qu
data input and output commands with asynchronous notification of completion. This facility includ
its scope the requirements of supercomputer applications.

Threads Extension

This portion of this part of ISO/IEC 9945 provides the base standard with interfaces and functiona
support multiple flows of control, called threads, within a process. The facilities provided represent a sm
set of syntactic and semantic extensions to POSIX.1 in order to support a convenient interfa
multithreading functions.
The key elements defining the scope are
 Defining a sufficient set of functionality to support multiple threads of control within a process
 Defining a sufficient set of functionality to support the realtime application domain
 Defining sufficient performance constraints and performance-related functions to allow a rea

application to achieve deterministic response from the system
Wherever possible, the requirements of other application environments were included in the in
definition. The interfaces in this standard are specifically targeted at supporting tightly coupled multita
environments, including multiprocessors and advanced language constructs.
The specific functional areas covered by this standard and their scopes include
 Thread management (the creation, control, and termination of multiple flows of control in the sa

process under the assumption of a common shared address space)
 Synchronization primitives: optimized for tightly coupled operation of multiple control flows in

common shared address space.
 Harmonization: with the existing POSIX.1 interfaces.

Related Standards Activities

Activities to extend this part of ISO/IEC 9945 to address additional requirements are in progress, and simila
can be anticipated in the future.
ix

future:

 for:
s; and

ures.

ents are

ur name,
ngineers,
ir of the
ontact

ittee on
rd was

, 1730
The following areas are under active consideration at this time, or are expected to become active in the near 6

1) Language-independent service descriptions of this part of ISO/IEC 9945
2) C, Ada, and FORTRAN language bindings to (1)
3) Shell and utility facilities
4) Verification testing methods
5) Secure/Trusted system considerations
6) Network interface facilities
7) System administration
8) Graphical user interfaces
9) Profiles describing application- or user-specific combinations of open systems standards

supercomputing, multiprocessor, and batch extensions; transaction processing; realtime system
multiuser systems based on historical models

10) An overall guide to POSIX-based or related open systems standards and profiles

Extensions are approved as “amendments” or “revisions” to this document, following IEEE Standards proced

Approved amendments are published separately until the full document is reprinted and such amendm
incorporated in their proper positions.

If you have an interest in participating in the PASC working groups addressing these issues, please send yo
address, and phone number to the Secretary, IEEE Standards Board, Institute of Electrical and Electronics E
Inc., P.O. Box 1331, 445 Hoes Lane, Piscataway, NJ 08855-1331, and ask to have this forwarded to the cha
appropriate PASC working group. If you have an interest in participating in this work at the international level, c
your ISO/IEC national body.

IEEE Std 1003.1-1990 was prepared by the IEEE P1003.1 working group, sponsored by the Technical Comm
Operating Systems and Application Environments of the IEEE Computer Society. At the time this standa
approved, the membership of the IEEE P1003.1 working group was as follows:

6A Standards Status Report that lists all current IEEE Computer Society standards projects is available from the IEEE Computer Society
Massachusetts Avenue NW, Washington, DC 20036-1903; Telephone: +1 202 371-0101; FAX: +1 202 728-9614.

Technical Committee on Operating Systems
and Application Environments (TCOS)

Chair: Luis-Felipe Cabrera

Standards Subcommittee for TCOS

Chair: Jim Isaak

Treasurer: Quin Hahn

Secretary: Shane McCarron
x

Working Group

Steve Bartels
Robert Bismuth
James Bohem
Kathy Bohrer
Keith Bostic
Jonathan Brown
Tim Carter
Myles Connors
Landon Curt Noll
Dave Decot
Mark Doran
Glenn Fowler

Greg Goddard
Andrew Griffith
Rand Hoven
Randall Howard
Mike Karels
Jeff Kimmel
David Korn
Bob Lenk
Shane McCarron
John Meyer
Martha Nalebuff
Neguine Navab

Paul Rabin
Seth Rosenthal
Lorne Schachter
Steve Schwarm
Paul Shaughnessy
Steve Sommars
Ravi Tavakley
Jeff Tofano
David Willcox
John Wu

The following persons were members of the balloting group for IEEE Std 1003.1-1990:

Helene Armitage
David Athersych
Timothy Baker
Geoff Baldwin
Steven E. Barber
Robert Barned
John Barr
James Bohem
Kathryn Bohrer
Robert Borochoff
Keith Bostic
James P. Bound
Joseph Boykin
Kevin Brady
Phyllis Eve Bregman

Fred Lee Brown, Jr.
A. Winsor Brown
Luis-Felipe Cabrera
Nicholas A. Camillone
Clyde Camp
John Carson
Steven Carter
Jerry Cashin
Kilnam Chon
Anthony Cincotta
Mark Colburn
Donald W. Cragun
Ana Maria DeAlvare
Dave Decot
Steven Deller

Terence Dowling
Stephen A. Dum
John D. Earls
Ron Elliott
David Emery
Philip H. Enslow
Ken Faubel
Kester Fong
Kenneth R. Gibb
Michel Gien
Gregory W. Goddard
Dave Grindeland
Judy Guist
James Hall
Charles Hammons

1003.1 Working Group Officials

Chair: Donn Terry

Vice Chair: Keith Stuck

Editor: Hal Jespersen

Secretary: Keith Stuck

David Chinn Open Software Foundation Institutional Representative

Michael Lambert X/Open Institutional Representative

Heinz Lycklama UniForum Institutional Representative

Shane McCarron UNIX International Institutional Representative
xi

llowing
Allen Hankinson
Steve Head
Barry Hedquist
William Henderson
Lee A. Hollaar
Terrence Holm
Randall Howard
Irene Hu
Andrew Huber
Richard Hughes-Rowlands
Judith Hurwitz
Jim Isaak
Dan Iuster
Richard James
Hal Jespersen
Michael J. Karels
Sol Kavy
Lorraine C. Kevra
Jeffrey S. Kimmel
M. J. Kirk
Dale Kirkland
John T. Kline
Kenneth Klingman
Joshua Knight
Andrew R. Knipp
David Korn
Don Kretsch
Takahiko Kuki
Thomas Kwan
Robin B. Lake
Mark Lamonds
Doris Lebovits
Maggie Lee

Greger Leijonhufvud
Robert Lenk
David Lennert
Donald Lewine
Kevin Lewis
F. C. Lim
James Lonjers
Warren E. Loper
Roger Martin
Martin J. McGowan
Marshall McKusick
Robert McWhirter
Paul Merry
Doug Michels
Gary W. Miller
James Moe
James W. Moore
Martha Nalebuff
Barry Needham
Alan F. Nugent
Jim Oldroyd
Craig Partridge
John Peace
John C. Penney
P. Plauger
Gerald Powell
Scott E. Preece
Joseph Ramus
Wendy Rauch
Carol Raye
Wayne B. Reed
Christopher J. Riddick
Andrew K. Roach

Robert Sarr
Lorne H. Schachter
Norman Schneidewind
Stephen Schwarm
Richard Scott
Leonard Seagren
Glen Seeds
Karen Sheaffer
Charles Smith
Steven Sommars
Douglas H. Steves
James Tanner
Ravi Tavakley
Marc Teitelbaum
Donn S. Terry
Gary F. Tom
Andrew Twigger
Mark-Rene Uchida
L. David Umbaugh
Michael W. Vannier
David John Wallace
Stephen Walli
Larry Wehr
Bruce Weiner
Robert Weissensee
P. J. Weyman
Andrew Wheeler, Jr.
David Willcox
Randall F. Wright
Oren Yuen
Jason Zions

When the IEEE Standards Board approved IEEE Std 1003.1-1990 on September 28, 1990, it had the fo
membership:

Marco W. Migliaro , Chair
James M. Daly, Vice Chair

Andrew G. Salem, Secretary

Dennis Bodson
Paul L. Borrill
Fletcher J. Buckley
Allen L. Clapp
Stephen R. Dillon
Donald C. Fleckenstein
Jay Forster*
Thomas L. Hannan

Kenneth D. Hendrix
John W. Horch
Joseph L. Koepfinger*
Irving Kolodny
Michael A. Lawler
Donald J. Loughry
John E. May, Jr.
Lawrence V. McCall

L. Bruce McClung
Donald T. Michael*
Stig Nilsson
Roy T. Oishi
Gary S. Robinson
Terrance R. Whittemore
Donald W. Zipse

*Member Emeritus
xii

lications
ip of the
IEEE Std 1003.1b-1993 was prepared by the IEEE P1003.4 working group, sponsored by the Portable App
Standards Committee of the IEEE Computer Society. At the time this standard was approved, the membersh
IEEE P1003.4 working group was as follows:

Technical Reviewers

Bill Corwin
Bill Gallmeister
Alan Kiecker

Steve Kleiman
Doug Locke
Brian McCarthy

Lee Schermerhorn
John Zolnowsky

Working Group

Miguel Abdo
Bill Allen
Ted Baker
John Barr
Greg Batti
Pascal Beyls
Andrew Bishop
Nawaf Bitar
Peter Bixby
Ed Blackmond
Jim Blondeau
Kathy Bohrer
Bill Bone

Keith Bostic
Jim Bound
Elliot Brebner
Sven Brehmer
Giovanni Brignolo
Steve Brodeur
Mark Brown
Mitchell Bunnell
L. W. Burns III
Steve Buroff
Paul Cantrell
James Capps
John Carmichael

Stephean Carpenter
Christine Carroll
John Carson
Tim Carter
Cheng-Chung Chen
Philip Christopher
Richard Clark
Jeff Cleveland
Dave Cline
David Cohen
Bob Conti
Bill Corwin
Mike Cossey

Portable Applications Standards Committee

Chair: Jim Isaak

Vice Chairs: Hal Jespersen

Lorraine Kevra

Barry Needham

Treasurer: Peter Smith

Secretary: Charles Severance

1003.4 Working Group Officials

Chair: Bill Corwin

Vice Chairs: Mike Cossey (1985–1991)

Bill Gallmeister (1991–1993)

Editors: Ed Blackmond (1987–1988)

John Zolnowsky (1988–1993)

Secretary: Lee Schermerhorn
xiii

Bernard Cox
Denise Cully
Charles Curley
Ajit Dandapani
David Dodge
Mark Doran
Terence Dowling
Larry Dwyer
Ron Elliott
Philip Erickson
Lemeul Eubanks
Fran Fadden
Allen Farris
Kester Fong
Martin Fouts
Dan Frank
Art Fritzson
Mitchell Fuchs
Bill Gallmeister
Bob Gambrel
John Gertwagen
Greg Goddard
W. E. Goebel
Andrew Gollan
Rup Grafendorfer
David Greenstein
Rick Greer
Jerry Gross
Dan Grostick
Mesut Gunduc
Bob Hairfield
John Hanley
Richard Hart
Terry Hayes
Stephen Head
Mats Hellstrom
Morris Herbert
Russ Holt
Ian Hopper
Jim Houston
John Howard
Bill Hullsiek
James Isaak
Doug Jewett
Mike Jones
Christopher Juillet
Vassilios Kalfakakos
Peter Kao
Tom Kapish
Lars Karlsson
Sol Kavy

Gregg Kellogg
Doug Kevorkian
Sandeep Khanna
Alan Kiecker
Jeff Kimmel
Dale Kirlkand
Y. K. Kiu
Bob Kleinschumidf
John Kline
Robert Knighten
Joseph Korty
K. Kothari
Eva Kristensson
Peter Krupp
Jeff Lee
Bob Lenk
Kin Leung
Doug Locke
Juliam Lomberg
Michel Lortie
Brian Lucas
Robert Luken
Dave Lunger
Ron Mabe
Rod MacDonald
Sukan Makmuri
Mark Manasse
Mike Manley
Steve Marcie
Mike Marciniszyn
Michael McBride
Brian McCarthy
Dora Merris
John Meyer
Laura Micks
Stephen Miller
Cliff Moore
Jim Moseman
Naren Nachiappan
Martha Nalebuff
Bret Needle
Mark Nudelman
Greg Nuss
Bob Nystrom
Robin O'Neal
Hagai Ohel
John Parker
Robert Parlock
Simon Patience
Offer Pazy
Donald Peterson

Prayoon Phathayakorn
Gilbert Pile Jr
Dave Plauger
Wendy Rauch-Hindin
Dave Rorke
Barry Ruzek
Doris Ryan
Ashok Saxena
Rich Schaaf
Norm Scherer
Lee Schermerhorn
Curt Schimmel
Mike Schultz
Ed Schwartz
Tom Scott
Karen Sheaffer
Thomas Shonk
Bruce Sigmon
Inder Singh
Roger Sippl
Val Skalabrin
Carl Smith
James Soddy
K. Y. Srinivasan
Daniel Steinberg
Audrey Strathmeyer
Keith Stuck
Garret Swart
Ravi Tavakley
Marc Teller
Jack Test
Dan Tiernan
Barry Traylor
Michael Turner
David Uhrlaub
Peter vanderLinden
Luis Varges
Joel Wagner
Alan Weaver
Perry Weller
Andrew Wheeler, Jr.
Gary Whisenhunt
Jack White
Dwight Wilcox
John Williams
John Wu
Margaret Yang
Tohru Yoneda
Steve Zanoni
Fred Zlotnick
John Zolnowsky
xiv

The following persons were members of the balloting group for IEEE Std 1003.1b-1993 :

Miguel Abdo
Steven Albert
Bill Allen
Helene Armitage
David Athersych
Theodore P. Baker
Steven E. Barber
Robert Barned
John Barr
Edward Benson
Robert Bismuth
Nawaf Bitar
Jim Blondeau
James Bohem
Kathryn Bohrer
William Bone
Robert Borochoff
Keith Bostic
James P. Bound
Kevin Brady
Sven Brehmer
Charles Brooks
David Brower
Gretchen Brown
Ray Bryant
Luis-Felipe Cabrera
Nicholas A. Camillone
Clyde Camp
George S. Carson
Steven Carter
Jerry Cashin
John Caywood
Kilnam Chon
Philip Christopher
Anthony Cincotta
Robert L. Claeson
Mark Colburn
R. Cornelius
William M. Corwin
Mike Cossey
William Cox
Donald Cragun
Russell Davis
Ana Maria De Alvare
Virgil Decker
Dave Decot
Larry Diegel

David Dodge
Terence Dowling
Stephen A. Dum
John D. Earls
Ron Elliott
Richard W. Elwood
David Emery
Philip H. Enslow
Philip Erickson
Catherine Fitzpatrick
Kester Fong
Daniel M. Frank
Bill Gallmeister
Michel Gien
Jean Gilmore
Richard Greer
Tom Griest
Dave Grindeland
Robert C. Groman
Judy Guist
Carl Hall
Charles Hammons
Allen L. Hankinson
Michael J. Hannah
Carol J. Harkness
Craig Harmer
Steve Head
Myron Hecht
Barry Hedquist
William Hefley
Hans H. Heilborn
Ralph Henkaus
Karl Heubaum
Jim Hightower
David F. Hinnant
John Hogan
Terrence Holm
Rand Hoven
Randall Howard
Irene Hu
Andrew R. Huber
Richard Hughes-Rowlands
William Hullsiek
Judith Hurwitz
Jim Isaak
Dan Iuster
Hal Jespersen

Michael Jones
Greg Jones
James E. Jordan
Mike Kamrad
Michael J. Karels
Sol Kavy
Michael Kearney
Joseph Keenan
Jerry Keselman
Lorraine C. Kevra
Sandeep Khanna
Alan W. Kiecker
Jeffrey S. Kimmel
Martin J. Kirk
Dale Kirkland
Steve Kleiman
Philip Klimbal
John T. Kline
Kenneth Klingman
Robert Knighten
Takashi Kojo
David Korn
D. Richard Kuhn
Takahiko Kuki
Joan Kundig
Thomas Kwan
Robin B. Lake
Mike Lambert
Mark Lamonds
Sue Le Grand
Doris Lebovits
Maggie Lee
Greger Leijonhufvud
Robert Lenk
David Lennert
Donald Lewine
Kevin Lewis
Kin Fun Li
F. C. Lim
John Litke
C. Douglass Locke
James P. Lonjers
Warren E. Loper
Joseph F. P. Luhukay
Robert D. Luken
Dave Lunger
Heinz Lycklama

Shane McCarron Unix International Organizational Representative
xv

ollowing
Wafa Makhlouf
Robert Makowski
William Mar
Roger Martin
Joberto S. B. Martins
Yoshihiro Matsumoto
Martin J. McGowan
Marshall McKusick
Robert McWhirter
Doug Michels
Gary W. Miller
David Mitchell
James Moe
Martha Nalebuff
Barry Needham
Landon Curt Noll
Fred Noz
Mark Nudelman
Dennis O'Neill
Jim Oldroyd
Offer Pazy
John Peace
Prayoon Phathayakorn
Dave Plauger
P. Plauger
Gerald Powell
Scott E. Preece
John S. Quarterman
Roger Racine
Joseph Ramus
Wendy Rauch
Carol Raye
Michael Ressler

Christopher J. Riddick
Arnold Robbins
David Rorke
Harry Rowe
Arthur Sabsevitz
Peter Salus
Robert Sarr
Richard Schaaf
Lorne H. Schachter
Norman Schneidewind
Mike Schultz
Wolfgang Schwabl
Stephen C. Schwarn
Thomas Scott
Richard L. Scott
Leonard W. Seagren
Glen Seeds
Richard Seibel
Karen L. Sheaffer
Dan Shia
Lee Silverthorn
Inder Singh
Rajiv Sinha
Jacob Slonim
Charles Smith
Warren Smith
Steven Sommars
Rob Spake
K. Srinivasaiv
Dennis Steinauer
Daniel Stock
Brian Sullivan
Scott Sutter

James G. Tanner
Ravi Tavakley
Donn S. Terry
Gary F. Tom
Andrew T. Twigger
Mark-Rene Uchida
L. David Umbaugh
Michael W. Vannier
Dalibor F. Vrsalovic
David John Wallace
Stephen R. Walli
Neal Walters
Tom Watson
Alan Weaver
Larry A. Wehr
Bruce Weiner
Brian Weis
Robert Weissensee
Andrew E. Wheeler, Jr.
Alex White
Nicholas Ray Wilkes
David Willcox
John R. Williams
Randall F. Wright
Tohru Yoneda
Oren Yuen
Janusz Zalewski
Alaa Zeineldine
Jason Zions
John Zolnowsky
Glen Zorn

When the IEEE Standards Board approved IEEE Std 1003.1b-1993 on September 15, 1993, it had the f
membership:

Wallace S. Read, Chair
Donald C. Loughry, Vice Chair

Andrew G. Salem, Secretary

Gilles A. Baril
Jose A. Berrios de la Paz
Clyde R. Camp
Donald C. Fleckenstein
Jay Forster*
David F. Franklin
Ramiro Garcia
Donald N. Heirman

Jim Isaak
Ben C. Johnson
Walter J. Karplus
Lorraine C. Kevra
E. G. “Al” Kiener
Ivor N. Knight
Joseph L. Koepfinger*
D. N. “Jim” Logothetis

Don T. Michael*
Marco W. Migliaro
L. John Rankine
Arthur K. Reilly
Ronald H. Reimer
Gary S. Robinson
Leonard L. Tripp
Donald W. Zipse

*Member Emeritus
xvi

lications
ip of the
Also included are the following nonvoting IEEE Standards Board liaisons:

Satish K. Aggarwal
James Beall

Richard B. Engelman
David E. Soffrin

Stanley I. Warshaw

IEEE Std 1003.1c-1995 was prepared by the IEEE P1003.4 working group, sponsored by the Portable App
Standards Committee of the IEEE Computer Society. At the time this standard was approved, the membersh
IEEE P1003.4 working group was as follows:

Technical Reviewers

Nawaf Bitar
Rober A. Conti
William Corwin

William Cox
Michael B. Jones
C. Douglass Locke

Simon Patience
John Zolnowsky

Working Group

Miguel Abdo
Bill Allen
Theodore P. Baker
Bob Barned
John Barr
Richard M. Bergman
Tom Bishop

Nawaf Bitar
Jim Blondeau
Win Bo
Kathryn Bohrer
Paul Borman
Keith Bostic
Sven L. Brehmer

Steve Brosky
Robert A. Brown
Peter Buhr
L. W. Burns III
Mitchell Bunnell
David Butenhof
John Carmichael

Portable Applications Standards Committee

Chair: Lowell Johnson

Vice Chairs: Jay Ashford

Andrew Josey

Barry Needham

Charles Severance

Jon Spencer

Secretary: Charles Severance

Treasurer: Peter Smith

1003.4 Working Group Officials

Chair: William Corwin

Vice Chair: Joe Gwinn

Editor: John Zolnowsky

Secretary: Karen D. Gordon
xvii

Tim Carter
Philip Christopher
Jeff Cline
Robert A. Conti
William Corwin
Mike R. Cossey
Bernard Cox
William Cox
Charles Curley
Denise Cully
Ajit Dandapani
Dave Decot
Steven R. Deller
Mark Doran
Dennis Dougherty
Terence S. Dowling
Maryland R. Edwards
David Emery
Philip J. Erickson
Lemeul Eubanks
Fran Fadden
Jesse Fang
Bengt Farre
Kester Fong
Martin Fouts
Daniel M. Frank
Bill Gallmeister
John A. Gertwagen
James Gibson
Greg Goddard
W. E. Goebel
Karen D. Gorden
Benny M. Gothard
Howard Green
Richard Greer
Jerry Gross
Joe Gwinn
Barbara Haleen
Geoff Hall
Stephen Head
Rick Holland
William Hullsiek
Michael B. Jones

Dan Juttelstad
Vassilios Kalfakakos
Peter Kao
Glenn Kasten
Sol Kavy
Sandeep Khanna
Alan W. Kiecker
Steven Kleiman
John T. Kline
Robert Knighten
Keith A. Kohout
Joseph A. Korty
K. Kothari
Eva Kristensson
Bernard Ku
Frank Lawlor
Michael Lazar
Eugene Leache
C. Douglass Locke
Robert D. Luken
Dave Lunger
Mark S. Manasse
Brian S. McCarthy
Roy McKean
Steve McPolin
John Meyer
Laura Micks
Hehdell Miller
Stephen Miller
Robert E. Murphy
Narendran Nachiappan
Martha Nalebuff
Bret Needle
Mei Ng
Mark Nudelman
Tricia Oberndorf
Jack O'Quin
Robert Parlock
Simon Patience
Offer Pazy
Prayoon Phathayakorn
Chris Phillips
Aiko Pinkoski

Dave Plauger
Igor Podboj
Charlas Prass
Franklin C. Prindle
Chris Quenelle
Wendy Rauch
Dave Rorke
Helmut Roth
Barry Ruzek
John Sauter
Richard Schaaf
Lee Schermerhorn
Mike Schultz
Tom Scott
Lui Sha
Devang K. Shah
Bruce Sigmon
Inder Singh
Charles R. Smith
Peter H. Smith
James Soddy
K. Y. Srinivasan
Audrey Strathmeyer
R. Stroobosscher
Keith Stuck
Del Swanson
Garret Swart
Ravi Tavakley
Stephen Thompson
Dan Tiernan
Barry Traylor
David R. Uhrlaub
Marl VandenBrink
Dave Vogel
Stephen R. Walli
Mary Weeks
Andrew E. Wheeler, Jr.
David Willcox
Dave Winchell
Tohru Yoneda
George Zerdian
Fred Zlotnick
John Zolnowsky

The following persons were members of the balloting group for IEEE Std 1003.1c-1995:

Paul Rabin Open Software Foundation Organizational Representative

Richard Alexander Share, Incorporated Organizational Representative

Robert Boucher Uniforum Organizational Representative
xviii

Gary M. Allen
Helen Armitage
Charles R. Arnold
Bengt Asker
David Athersych
Randall Atkinson
Timothy Baker
Theodore P. Baker
Ralph Barker
John Barr
Edward Benson
Richard M. Bergman
Andy R. Bihain
Robert Bismuth
Nawaf Bitar
George Bittner
Win Bo
James Bohem
Kathryn Bohrer
Keith Bostic
Sven L. Brehmer
Dale Brouhard
David Brower
Gretchen Brown
David Butenhof
Steven Carter
Jerry Cashin
John Caywood
Siddhartha Chatterjee
Andy B. Cheese
Janice Chelini
James Chelini
Kilnam Chon
Robert L. Claeson
Robert A. Conti
Eric Cooper
William Corwin
Mike R. Cossey
William Cox
Donald Cragun
Ana Maria DeAlvare
Virgil Decker
Steven R. Deller
David Dodge
Terence S. Dowling
Richard P. Draves
Stephen A. Dum
John D. Earls
David A. Eckhardt
Edna B. Edelman
Ron Elliott
Philip H. Enslow
Philip J. Erickson
Kester Fong

Daniel M. Frank
Bill Gallmeister
Mitchell Gart
John A. Gertwagen
James Gibson
Michel Gien
Karen D. Gordon
Richard Greer
Tom Griest
Dave Grindeland
Judy Guist
Gregory Guthrie
Mark D. Guzzi
Joe Gwinn
Barbara Haleen
Charles E. Hammons
Charles Harkey
Carol J. Harkness
Myron Hecht
Hans H. Heilborn
Karl Heubaum
David F. Hinnant
Rand Hoven
Steven Howell
Irene Hu
Hai Huang
Andrew R. Huber
Richard Hughes-Rowlands
William Hullsiek
Aron K. Insinga
Jim Isaak
Richard E. James
Hal Jespersen
Lowell Johnson
Michael B. Jones
James E. Jordan
Daniel P. Julin
Mike Kamrad
Michael J. Karels
Michael Kearney
Lawrence J. Kenah
Judy Kerner
Lorraine C. Kevra
Sandeep Khanna
Jeffrey S. Kimmel
Paul J. King
Martin J. Kirk
David Kirshen
Richard J. C. Kissel
Steven Kleiman
Philip Klimbal
John T. Kline
Kenneth Klingman
Robert Knighten

Jens Kolind
Ronnie Kon
D. Richard Kuhn
Doris Lebovits
Robert Lenk
David Lennert
Donald Lewine
Kevin Lewis
Fang Ching Lira
John Litke
C. Douglass Locke
Warren E. Loper
Robert D. Luken
Robert Makowski
William Mar
Roger Martin
Joberto S. B. Martins
Marshall Kirk McKusick
Robert McWhirter
Gary W. Miller
James Moe
James W. Moore
Narendran Nachiappan
Martha Nalebuff
Barry Needham
Daniel Nissen
Landon Curt Noll
Fred Noz
Simon Patience
Offer Pazy
Crispin Perdue
Pat Philip
Chris Phillips
Dave Plauger
Michael L. Powell
Scott E. Preece
Franklin C. Prindle
John S. Quarterman
Carol Raye
Paul E. Renaud
Christopher J. Riddick
Andrew K. Roach
David Rorke
Seth Rosenthal
Helmut Roth
Paul Roy
John Sauter
Richard Schaaf
Lorne H. Schachter
Carl Schmiedekamp
Richard L. Scott
Leonard W. Seagren
Glen Seeds
Richard Seibel
xix

llowing

ications
ip of the
Devang K. Shah
Edward J. Sharpe
Dan Shia
Eric R. Shienbrood
Rajiv Sinha
Jacob Slonim
Charles R. Smith
Richard Stallman
Jacqueline Stewart
Peter D. Stout
Keith Stuck
Scott Sutter
Del Swanson

Ravi Tavakley
Donn S. Terry
Gary F. Tom
Barry Traylor
Mark-Rene Uchida
Steven M. Valentine
James Van Sciver
Michael W. Vannier
Dalibor F. Vrsalovic
Stephen R. Walli
Tom Watson
Alan Weaver
Mary Weeks

Larry A. Wehr
Bruce Weiner
Andrew E. Wheeler, Jr.
Nicholos Ray Wilkes
David Willcox
John R. Williams
David Wong
Tohru Yoneda
Oren Yuen
Janusz Zalewski
Jason Zions
John Zolnowsky

When the IEEE Standards Board approved IEEE Std 1003.1c-1995 on June 14, 1995, it had the fo
membership:

E. G. “Al” Kiener , Chair
Donald C. Loughry, Vice Chair

Andrew G. Salem, Secretary

Gilles A. Baril
Clyde R. Camp
Joseph A. Cannatelli
Stephen L. Diamond
Harold E. Epstein
Donald C. Fleckenstein
Jay Forster*
Donald N. Heirman
Richard J. Holleman

Jim Isaak
Ben C. Johnson
Sonny Kasturi
Lorraine C. Kevra
Ivor N. Knight
Joseph L. Koepfinger*
D. N. “Jim” Logothetis
L. Bruce McClung
Marco W. Migliaro

Mary Lou Padgett
John W. Pope
Arthur K. Reilly
Gary S. Robinson
Ingo Rusch
Chee Kiow Tan
Leonard L. Tripp

*Member Emeritus

Also included are the following nonvoting IEEE Standards Board liaisons:

Satish K. Aggarwal Richard B. Engelman
Robert E. Hebner

Chester C. Taylor

IEEE Std 1003.1i-1995 was prepared by the IEEE P1003.4 working group, sponsored by the Portable Appl
Standards Committee of the IEEE Computer Society. At the time this standard was approved, the membersh
IEEE P1003.4 working group was as follows:
xx

Technical Reviewer

John Zolnowsky

Working Group

Pierre Jean Arco
Charles R. Arnold
V. Raj Avula
Todd Bargorek
Steve Brosky
David Butenhof
Dave Cooper
William M. Corwin
June Curtis
Christoph Eck

Bill Gallmeister
Michael Gonzalez
Karen D. Gordon
Richard Greer
Joe Gwinn
Patrick Hebert
Duane Hughes
Robert Knighten
C. Douglass Locke
Kent Long

Robert D. Luken
James T. Oblinger
Franklin C. Prindle
Francois Riche
Barry Ruzek
Webb Scales
Lee Schermerhorn
Andrew E. Wheeler, Jr
John Zolnowsky

The following persons were members of the balloting group for IEEE Std 1003.1i-1995:

Theodore P. Baker
Andy R. Bihain
Dawn Burnett
William M. Corwin
Charles DeBaun
Richard P. Draves
Philip H. Enslow

Donna K. Fisher
Michael Gonzalez
Karen D. Gordon
S. N. P. Gupta
Geoffrey R. Hall
Patrick Hebert
Barry Hedquist

Andrew R. Huber
Duane Hughes
Michael B. Jones
Joe Kelsey
Martin J. Kirk
Donald Lewine
C. Douglass Locke

Portable Applications Standards Committee

Chair: Lowell Johnson

Vice Chairs: Jay Ashford

Andrew Josey

Barry Needham

Charles Severance

Jon Spencer

Secretary: Charles Severance

Treasurer: Peter Smith

1003.4 Working Group Officials

Chair: William M. Corwin

Vice Chair: Joe Gwinn

Editor: John Zolnowsky

Secretary: Karen D. Gordon
xxi

bership:

. IEEE
on June
Lee W. Lucas
Scott Norton
James T. Oblinger
Offer Pazy
Dave Plauger
Arlan Pool

Franklin C. Prindle
Wendy Rauch
Henry H. Robbins
Leonard W. Seagren
Glen Seeds
Thomas Shem

Dennis C. Stewart
Mark-Rene Uchida
Oren Yuen
John Zolnowsky

When the IEEE Standards Board approved IEEE Std 1003.1i-1995 on June 14, 1995, it had the following mem

E. G. “Al” Kiener , Chair
Donald C. Loughry, Vice Chair

Andrew G. Salem, Secretary

Gilles A. Baril
Clyde R. Camp
Joseph A. Cannatelli
Stephen L. Diamond
Harold E. Epstein
Donald C. Fleckenstein
Jay Forster*
Donald N. Heirman
Richard J. Holleman

Jim Isaak
Ben C. Johnson
Sonny Kasturi
Lorraine C. Kevra
Ivor N. Knight
Joseph L. Koepfinger*
D. N. “Jim” Logothetis
L. Bruce McClung
Marco W. Migliaro

Mary Lou Padgett
John W. Pope
Arthur K. Reilly
Gary S. Robinson
Ingo Rusch
Chee Kiow Tan
Leonard L. Tripp

*Member Emeritus

Also included are the following nonvoting IEEE Standards Board liaisons:

Satish K. Aggarwal Richard B. Engelman
Robert E. Hebner

Chester C. Taylor

Mary Lynne Nielsen
IEEE Standards Project Editor

IEEE Std 1003.1-1990 was approved by the American National Standards Institute (ANSI) on April 15, 1991
Std 1003.1b-1993 was approved by ANSI on April 14, 1994. IEEE Std 1003.1c-1995 was approved by ANSI
7, 1996. IEEE Std 1003.1i-1995 was approved by ANSI on January 12, 1996.
xxii

CLAUSE PAGE
1. General ..1

1.1 Scope.. 1
1.2 Normative References.. 2
1.3 Conformance.. 2

2. Terminology and General Requirements ..7

2.1 Conventions ... 7
2.2 Definitions.. 7
2.3 General Concepts ... 18
2.4 Error Numbers.. 20
2.5 Primitive System Data Types... 24
2.6 Environment Description ... 25
2.7 C Language Definitions ... 26
2.8 Numerical Limits ... 33
2.9 Symbolic Constants.. 37

3. Process Primitives ...41

3.1 Process Creation and Execution... 41
3.2 Process Termination... 47
3.3 Signals.. 51
3.4 Timer Operations ... 69

4. Process Environment...71

4.1 Process Identification ... 71
4.2 User Identification.. 72
4.3 Process Groups... 75
4.4 System Identification ... 78
4.5 Time ... 79
4.6 Environment Variables .. 80
4.7 Terminal Identification .. 81
4.8 Configurable System Variables ... 83

5. Files and Directories ...85

5.1 Directories .. 85
5.2 Working Directory ... 88
5.3 General File Creation ... 89
5.4 Special File Creation.. 94
5.5 File Removal .. 96
5.6 File Characteristics... 100
5.7 Configurable Pathname Variables ... 109

6. Input and Output Primitives..111

6.1 Pipes ... 111
6.2 File Descriptor Manipulation ... 112
6.3 File Descriptor Deassignment .. 113
6.4 Input and Output .. 115
xxiii

CLAUSE PAGE

.....
6.5 Control Operations on Files ... 119
6.6 File Synchronization .. 125
6.7 Asynchronous Input and Output .. 127

7. Device- and Class-Specific Functions ..139

7.1 General Terminal Interface .. 139
7.2 General Terminal Interface Control Functions .. 151

8. Language-Specific Services for the C Programming Language..156

8.1 Referenced C Language Routines.. 156
8.2 C Language Input/Output Functions.. 160
8.3 Other C Language Functions ... 167

9. System Databases..172

9.1 System Databases... 172
9.2 Database Access... 172

10. Data Interchange Format...175

10.1 Archive/Interchange File Format ... 175

11. Synchronization ..182

11.1 Semaphore Characteristics.. 182
11.2 Semaphore Functions .. 182
11.3 Mutexes... 190
11.4 Condition Variables .. 195

12. Memory Management ...201

12.1 Memory Locking Functions.. 202
12.2 Memory Mapping Functions... 205
12.3 Shared Memory Functions .. 212

13. Execution Scheduling ...215

13.1 Scheduling Parameters .. 215
13.2 Scheduling Policies ... 215
13.3 Process Scheduling Functions... 217
13.4 Thread Scheduling .. 223
13.5 Thread Scheduling Functions.. 225
13.6 Synchronization Scheduling ... 229

14. Clocks and Timers ..232

14.1 Data Definitions for Clocks and Timers ... 232
14.2 Clock and Timer Functions... 233
xxiv

CLAUSE PAGE

..
15. Message Passing ...239

15.1 Data Definitions for Message Queues .. 239
15.2 Message Passing Functions... 241

16. Thread Management ...250

16.1 Threads.. 250
16.2 Thread Functions... 250

17. Thread-Specific Data ..257

17.1 Thread-Specific Data Functions.. 258

18. Thread Cancellation ..261

18.1 Thread Cancellation Overview ... 261
18.2 Thread Cancellation Functions ... 263
18.3 Language-Independent Cancellation Functionality .. 265

Annex A (Informative) Bibliography ...267

Annex B (Informative) Rationale and Notes ..272

Annex C (Informative) Header Contents Samples ...442

Annex D (Informative) Profiles ..457

Annex E (Informative) Sample National Profile ..460

Annex F (Informative) Portability Considerations ...463

Annex G (Informative) Performance Metrics...475

Annex H (Informative) Realtime Files ...488
xxv

1

Information technology—Portable
Operating System Interface (POSIX®)—
Part 1: System Application Program
Interface (API) [C Language]

1. General

1.1 Scope

This part of ISO/IEC 9945 defines a standard operating system interface and environment to support application
portability at the source-code level. It is intended to be used by both application developers and system implementors.

This part of ISO/IEC 9945 comprises four major components:

1) Terminology, concepts, and definitions and specifications that govern structures, headers, environment
variables, and related requirements

2) Definitions for system service interfaces and subroutines
3) Language-specific system services for the C programming language
4) Interface issues, including portability, error handling, and error recovery

The following areas are outside of the scope of this part of ISO/IEC 9945:

1) User interface (shell) and associated commands
2) Networking protocols and system call interfaces to those protocols
3) Graphics interfaces
4) Database management system interfaces
5) Record I/O considerations
6) Object or binary code portability
7) System configuration and resource availability

This part of ISO/IEC 9945 describes the external characteristics and facilities that are of importance to applications
developers, rather than the internal construction techniques employed to achieve these capabilities.

2 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Special emphasis is placed on those functions and facilities that are needed in a wide variety of commercial
applications and applications with realtime requirements. The interfaces included were the set required to make this
part of ISO/IEC 9945 minimally usable to realtime applications on single processor systems. The definition of
realtime used in defining the scope of this standard is:

“Realtime in operating systems: the ability of the operating system to provide a required level of service in a
bounded response time.”

This standard includes system interfaces to support applications with requirements for multiple flows of control, called
threads, within a process. The facilities provided support a convenient interface for writing multithreaded applications.

The key elements defining the scope are

1) Defining a sufficient set of functionality to cover a significant part of the realtime application program
domain

2) Defining sufficient performance constraints and performance-related functions to allow a realtime
application to achieve deterministic response from the system

3) Defining a sufficient set of functionality to support multiple threads of control within a process

Specifically within the scope is to define interfaces that do not preclude high-performance implementations on
traditional uniprocessor realtime systems. The interfaces in this standard are specifically targeted at supporting tightly
coupled multitasking environments, including multiprocessors and advanced language constructs. Wherever possible,
the requirements of other application environments are included in this interface definition. It is beyond the scope of
these interfaces to support networking functionality.

This part of ISO/IEC 9945 has been defined exclusively at the source-code level. The objective is that a Strictly
Conforming POSIX.1 Application source program can be translated to execute on a conforming implementation.
Additionally, although the interfaces will be portable, some of the numeric parameters used by an implementation may
have hardware dependencies.

1.2 Normative References

The following standards contain provisions which, through references in this text, constitute provisions of this part of
ISO/IEC 9945. At the time of publication, the editions indicated were valid. All standards are subject to revision, and
parties to agreements based on this part of ISO/IEC 9945 are encouraged to investigate the possibility of applying the
most recent editions of the standards listed below. Members of IEC and ISO maintain registers of currently valid
International Standards.

{1} ISO/IEC 646 : 1991,1 Information processing—ISO 7-bit coded character set for information interchange.

{2} ISO/IEC 9899 : 1990, Programming languages—C.

1.3 Conformance

1.3.1 Implementation Conformance

1.3.1.1 Requirements

A conforming implementation shall meet all of the following criteria:

1ISO/IEC documents can be obtained from the ISO office, 1, rue de Varembé, Case Postale 56, CH-1211, Genève 20, Switzerland/Suisse.

Copyright © 1996 IEEE All Rights Reserved 3

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

1) The system shall support all required interfaces defined within this part of ISO/IEC 9945 that are not
described under the {_POSIX_THREADS} option. If {_POSIX_THREADS} is defined, then the system
shall also support all required interfaces described under the {_POSIX_THREADS} option. All supported
interfaces shall support the functional behavior described herein.

2) The system may provide additional functions or facilities not required by this part of ISO/IEC 9945.
Nonstandard extensions of the functions or facilities specified in this part of ISO/IEC 9945 should be
identified as such in the system documentation. Nonstandard extensions, when used, may change the
behavior of functions or facilities defined by this part of ISO/IEC 9945. The conformance document shall
define an environment in which an application can be run with the behavior specified by the standard. In no
case shall such an environment require modification of a Strictly Conforming POSIX.1 Application.

1.3.1.2 Documentation

A conformance document with the following information shall be available for an implementation claiming
conformance to this part of ISO/IEC 9945. The conformance document shall have the same structure as this part of
ISO/IEC 9945, with the information presented in the appropriately numbered sections, clauses, and subclauses. The
conformance document shall not contain information about extended facilities or capabilities outside the scope of this
part of ISO/IEC 9945.

The conformance document shall contain a statement that indicates the full name, number, and date of the standard
that applies. The conformance document may also list international software standards that are available for use by a
Conforming POSIX.1 Application. Applicable characteristics where documentation is required by one of these
standards, or by standards of government bodies, may also be included.

The conformance document shall describe the limit values found in the <limits.h> and <unistd.h> headers,
stating values, the conditions under which those values may change, and the limits of such variations, if any.

The conformance document shall describe the behavior of the implementation for all implementation-defined features
defined in this part of ISO/IEC 9945. This requirement shall be met by listing these features and providing either a
specific reference to the system documentation or providing full syntax and semantics of these features. The
conformance document may specify the behavior of the implementation for those features where this part of ISO/IEC
9945 states that implementations may vary or where features are identified as undefined or unspecified.

No specifications other than those described in this part of ISO/IEC 9945 shall be present in the conformance
document.

The phrases “shall document” or “shall be documented” in this part of ISO/IEC 9945 mean that documentation of the
feature shall appear in the conformance document, as described previously, unless the system documentation is
explicitly mentioned.

The system documentation should also contain the information found in the conformance document.

1.3.1.3 Conforming Implementation Options

The following symbolic constants, described in the subclauses indicated, reflect implementation options for this part
of ISO/IEC 9945 that could warrant requirement by Conforming POSIX.1 Applications, or in specifications of
conforming systems, or both:

{NGROUPS_MAX} Supplementary Groups option (in 2.8.3)

{_POSIX_ASYNCHRONOUS_IO} Asynchronous Input and Output option (in 2.9.3)

{_POSIX_CHOWN_RESTRICTED} Change File Owner Restriction (in 2.9.4)

{_POSIX_FSYNC} File Synchronization option (in 2.9.3)

4 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

{_POSIX_JOB_CONTROL} Job Control option (in 2.9.3)

{_POSIX_MAPPED_FILES} Memory Mapped Files option (in 2.9.3)

{_POSIX_MEMLOCK} Process Memory Locking option (in 2.9.3)

{_POSIX_MEMLOCK_RANGE} Range Memory Locking option (in 2.9.3)

{_POSIX_MEMORY_PROTECTION}

Memory Protection option (in 2.9.3)

{_POSIX_MESSAGE_PASSING} Message Passing option (in 2.9.3)

{_POSIX_PRIORITIZED_IO} Prioritized Input and Output option (in 2.9.3)

{_POSIX_PRIORITY_SCHEDULING}

Process Scheduling option (in 2.9.3)

{_POSIX_REALTIME_SIGNALS} Realtime Signals Extension (in 2.9.3)

{_POSIX_SEMAPHORES} Semaphores option (in 2.9.3)

{_POSIX_SHARED_MEMORY_OBJECTS}

Shared Memory Objects option (in 2.9.3)

{_POSIX_SYNCHRONIZED_IO} Synchronized Input and Output option (in 2.9.3)

{_POSIX_TIMERS} Timers option (in 2.9.3)

{_POSIX_THREAD_PRIO_INHERIT}

Priority Inheritance option (in 2.9.3)

{_POSIX_THREAD_PRIORITY_SCHEDULING}

Thread Execution Scheduling option (in 2.9.3)

{_POSIX_THREADS} Threads option (in 2.9.3)

{_POSIX_THREAD_SAFE_FUNCTIONS}

Thread-Safe Functions option (in 2.9.3)

The remaining symbolic constants in 2.9.3 and 2.9.4 are useful for testing purposes and as a guide to applications on
the types of behaviors they need to be able to accommodate. They do not reflect sufficient functional difference to
warrant requirement by Conforming POSIX. 1 Applications or to distinguish between conforming implementations.

In the cases where omission of an option would cause functions described by this part of ISO/IEC 9945 to not be
defined, an implementation shall provide a function that is callable with the syntax defined in this part of ISO/IEC
9945, even though in an instance of the implementation the function may always do nothing but return an error.

1.3.2 Application Conformance

All applications claiming conformance to this part of ISO/IEC 9945 shall use only language-dependent services for
the C programming language described in 1.3.3 and shall fall within one of the following categories:

1.3.2.1 Strictly Conforming POSIX.1 Application

A Strictly Conforming POSIX.1 Application is an application that requires only the facilities described in this part of
ISO/IEC 9945 and the applicable language standards. Such an application shall accept any behavior described in this
part of ISO/IEC 9945 as unspecified or implementation-defined, and for symbolic constants, shall accept any value in

Copyright © 1996 IEEE All Rights Reserved 5

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

the range permitted by this part of ISO/IEC 9945. Such applications are permitted to adapt to the availability of
facilities whose availability is indicated by the constants in 2.8.2 and 2.9.

1.3.2.2 Conforming POSIX.1 Application

1.3.2.2.1 ISO/IEC Conforming POSIX.1 Application

An ISO/IEC Conforming POSIX.1 Application is an application that uses only the facilities described in this part of
ISO/IEC 9945 and approved Conforming Language bindings for any ISO or IEC standard. Such an application shall
include a statement of conformance that documents all options and limit dependencies, and all other ISO or IEC
standards used.

1.3.2.2.2 <National Body> Conforming POSIX.1 Application

A <National Body> Conforming POSIX.1 Application differs from an ISO/IEC Conforming POSIX.1 Application in
that it also may use specific standards of a single ISO/IEC member body referred to here as “<National Body>.” Such
an application shall include a statement of conformance that documents all options and limit dependencies, and all
other <National Body> standards used.

1.3.2.3 Conforming POSIX.1 Application Using Extensions

A Conforming POSIX.1 Application Using Extensions is an application that differs from a Conforming POSIX.1
Application only in that it uses nonstandard facilities that are consistent with this part of ISO/IEC 9945. Such an
application shall fully document its requirements for these extended facilities, in addition to the documentation
required of a Conforming POSIX.1 Application. A Conforming POSIX.1 Application Using Extensions shall be either
an ISO/IEC Conforming POSIX.1 Application Using Extensions or a <National Body> Conforming POSIX.1
Application Using Extensions (see 1.3.2.2.1 and 1.3.2.2.2).

1.3.3 Language-Dependent Services for the C Programming Language

Parts of ISO/IEC 9899 {2} (hereinafter referred to as the “C Standard {2}”) will be referenced to describe
requirements also mandated by this part of ISO/IEC 9945. The sections of the C Standard {2} referenced to describe
requirements for this part of ISO/IEC 9945 are specified in Section 8 Section 8 also sets forth additions and
amplifications to the referenced sections of the C Standard {2}. Any implementation claiming conformance to this part
of ISO/IEC 9945 with the C Language Binding shall provide the facilities referenced in Section 8, along with any
additions and amplifications Section 8 requires.

Although this part of ISO/IEC 9945 references parts of the C Standard {2} to describe some of its own requirements,
conformance to the C Standard {2} is unnecessary for conformance to this part of ISO/IEC 9945. Any C language
implementation providing the facilities stipulated in Section 8 may claim conformance; however, it shall clearly state
that its C language does not conform to the C Standard {2}.

1.3.3.1 Types of Conformance

Implementations claiming conformance to this part of ISO/IEC 9945 with the C Language Binding shall claim one of
two types of conformance—conformance to POSIX.1, C Language Binding (C Standard Language-Dependent
System Support), or to POSIX.1, C Language Binding (Common-Usage C Language-Dependent System Support).

1.3.3.2 C Standard Language-Dependent System Support

Implementors shall meet the requirements of Section 8 using for reference the C Standard {2}. Implementors shall
clearly document the version of the C Standard {2} referenced in fulfilling the requirements of Section 8

6 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Implementors seeking to claim conformance using the C Standard {2} shall claim conformance to POSIX.1, C
Language Binding (C Standard Language-Dependent System Support).

1.3.3.3 Common-Usage C Language-Dependent System Support

Implementors, instead of referencing the C Standard {2}, shall provide the tines and support required in Section 8
using common usage as guidance. Implementors shall meet all the requirements of Section 8 except where references
are made to the C Standard {2}. In places where the C Standard {2} is referenced, implementors shall provide
equivalent support in a manner consistent with common usage of the C programming language. Implementors shall
document, in Section 8 of the conformance document, all differences between the interface provided and the interface
that would have been provided had the C Standard {2} been implemented instead of common usage. Implementors
shall clearly document the version of the C Standard {2} referenced in documenting interface differences and should
issue updates on differences for all new versions of the C Standard {2}.

Where a function has been introduced by the C Standard {2}, and thus there is no common-usage referent for it, if the
function is implemented, it shall be implemented as described in the C Standard {2}. If the function is not
implemented, it shall be documented as a difference from the C Standard {2} as required above.

1.3.4 Other C Language-Related Specifications

The following rules apply to the usage of C language library functions; each of the statements in this subclause applies
to the detailed function descriptions in Sections 3 through 9 and 11 through 18, unless explicitly stated otherwise:

1) If an argument to a function has an invalid value (such as a value outside the domain of the function, or a
pointer outside the address space of the program, or a NULL pointer when that is not explicitly permitted),
the behavior is undefined.

2) Any function may also be implemented as a macro in a header. Applications should use #undef to remove any
macro definition and ensure that an actual function is referenced. Applications should also use #undef prior
to declaring any function in this part of ISO/IEC 9945.

3) Any invocation of a library function that is implemented as a macro shall expand to code that evaluates each
of its arguments only once, fully protected by parentheses where necessary, so it is generally safe to use
arbitrary expressions as arguments.

4) Provided that a library function can be declared without reference to any type defined in a header, it is also
permissible to declare the function, either explicitly or implicitly, and use it without including its associated
header.

5) If a function that accepts a variable number of arguments is not declared (explicitly or by including its
associated header), the behavior is undefined.

1.3.5 Other Language-Related Specifications

This part of ISO/IEC 9945 is currently specified in terms of the language defined by the C Standard {2}. Bindings to
other programming languages are being developed.

If conformance to this part of ISO/IEC 9945 is claimed for implementation of any programming language, the
implementation of that language shall support the use of external symbols distinct to at least 31 bytes in length in the
source program text. (That is, identifiers that differ at or before the thirty-first byte shall be distinct.) If a national or
international standard governing a language defines a maximum length that is less than this value, the language-
defined maximum shall be supported. External symbols that differ only by case shall be distinct when the character set
in use distinguishes upper- and lowercase characters and the language permits (or requires) upper- and lowercase
characters to be distinct in external symbols.

Subsequent sections of this part of ISO/IEC 9945 refer only to the C Language.

Copyright © 1996 IEEE All Rights Reserved 7

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

2. Terminology and General Requirements

2.1 Conventions

This part of ISO/IEC 9945 uses the following typographic conventions:

1) The italic font is used for:
 Cross references to defined terms within 1.3, 2.2.1, and 2.2.2; symbolic parameters that are generally

substituted with real values by the application
 C language data types and function names (except in function Synopsis subclauses)
 Global external variable names
 Function families; references to groups of closely related functions (such as directory, exec, sigsetops,

sigwait, stdio, and wait)
2) The bold font is used with a word in all capital letters, such as

PATH
to represent an environment variable, as described in 2.6. It is also used for the term “NULL pointer.”

3) The constant-width (Courier) font is used:
 For C language data types and function names within function Synopsis subclauses
 To illustrate examples of system input or output where exact usage is depicted
 For references to utility names and C language headers
 For names of attributes in attributes objects

4) Symbolic constants returned by many functions as error numbers are represented as:
[ERRNO]

See 2.4.
5) Symbolic constants or limits defined in certain headers are represented as:

{LIMIT}
See 2.8 and 2.9.

In some cases tabular information is presented “inline”; in others it is presented in a separately labeled table. This
arrangement was employed purely for ease of typesetting and there is no normative difference between these two
cases.

The conventions listed previously are for ease of reading only. Editorial inconsistencies in the use of typography are
unintentional and have no normative meaning in this part of ISO/IEC 9945.

NOTEs provided as parts of labeled tables and figures are integral parts of this part of ISO/IEC 9945 (normative).
Footnotes and notes within the body of the text are for information only (informative).

Numerical quantities are presented in international style: comma is used as a decimal sign and units are from the
International System (SI).

2.2 Definitions

2.2.1 Terminology

For the purposes of this part of ISO/IEC 9945, the following definitions apply:

2.2.1.1 conformance document: A document provided by an implementor that contains implementation details as
described in 1.3.1.2.

2.2.1.2 implementation defined: An indication that the implementation shall define and document the requirements
for correct program constructs and correct data of a value or behavior.

8 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

2.2.1.3 may: An indication of an optional feature.

With respect to implementations, the word may is to be interpreted as an optional feature that is not required in this part
of ISO/IEC 9945, but can be provided. With respect to Strictly Conforming POSIX.1 Applications, the word may
means that the optional feature shall not be used.

2.2.1.4 obsolescent: An indication that a certain feature may be considered for withdrawal in future revisions of this
part of ISO/IEC 9945.

Obsolescent features are retained in this version because of their widespread use. Their use in new applications is
discouraged.

2.2.1.5 shall: An indication of a requirement on the implementation or on Strictly Conforming POSIX.1 Applications,
where appropriate.

2.2.1.6 should:
1) With respect to implementations, an indication of an implementation recommendation, but not a requirement.
2) With respect to applications, an indication of a recommended programming practice for applications and a

requirement for Strictly Conforming POSIX.1 Applications.

2.2.1.7 supported: A condition regarding optional functionality.

Certain functionality in this part of ISO/IEC 9945 is optional, but the interfaces to that functionality are always
required. If the functionality is supported, the interfaces work as specified by this part of ISO/IEC 9945 (except that
they do not return the error condition indicated for the unsupported case). If the functionality is not supported, the
interface shall always return the indication specified for this situation.

2.2.1.8 system documentation: All documentation provided with an implementation, except the conformance
document.

Electronically distributed documents for an implementation are considered part of the system documentation.

2.2.1.9 undefined: An indication that this part of ISO/IEC 9945 imposes no portability requirements on an
application's use of an indeterminate value or its behavior with erroneous program constructs or erroneous data.

Implementations (or other standards) may specify the result of using that value or causing that behavior. An
application using such behaviors is using extensions, as defined in 1.3.2.3.

2.2.1.10 unspecified: An indication that this part of ISO/IEC 9945 imposes no portability requirements on
applications for correct program constructs or correct data regarding a value or behavior.

Implementations (or other standards) may specify the result of using that value or causing that behavior. An
application requiring a specific behavior, rather than tolerating any behavior when using that functionality, is using
extensions, as defined in 1.3.2.3.

2.2.2 General Terms

For the purposes of this part of ISO/IEC 9945 , the following definitions apply:

2.2.2.1 absolute pathname: See pathname resolution in 2.3.6.

2.2.2.2 access mode: A form of access permitted to a file.

2.2.2.3 address space: The memory locations that can be referenced by the threads of a process.

2.2.2.4 appropriate privileges: An implementation-defined means of associating privileges with a implementation
defined process with regard to the function calls and function call options defined in this part of ISO/IEC 9945 that
need special privileges.

There may be zero or more such means.

2.2.2.5 arm (a timer): To start a timer measuring the passage of time, enabling notifying a process when the specified
time or time interval has passed.

Copyright © 1996 IEEE All Rights Reserved 9

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

2.2.2.6 async-cancel-safe function: A function that may be safely invoked by an application while the asynchronous
form of cancellation is enabled.

No function in this standard is async-cancel safe unless explicitly described as such.

NOTE — See Section 18 for further clarifications of the meaning of this term.

2.2.2.7 async-signal-safe function: A function that may be invoked, without restriction, from signal-catching
functions. (See 3.3.1.3.)

No function in this standard is async-signal safe unless explicitly described as such.

2.2.2.8 asynchronous I/O operation: An I/O operation that does not of itself cause the thread requesting the I/O to be
blocked from further use of the processor.

This implies that the thread and the I/O operation may be running concurrently.

2.2.2.9 asynchronous I/O completion: For an asynchronous read or write operation, when a corresponding
synchronous read or write would have completed and when any associated status fields have been updated.

2.2.2.10 asynchronously generated signal: A signal that is not attributable to a specific thread.

NOTE — Examples are: signals sent via kill(), signals sent from the keyboard, and signals delivered to process groups. Being
asynchronous is a property of how the signal was generated and not a property of the signal number. All signals may be
generated asynchronously.

2.2.2.11 background process: A process that is a member of a background process group.

2.2.2.12 background process group: Any process group, other than a foreground process group, that is a member of
a session that has established a connection with a controlling terminal.

2.2.2.13 block special file: A file that refers to a device.

A block special file is normally distinguished from a character special file by providing access to the device in a
manner such that the hardware characteristics of the device are not visible.

2.2.2.14 blocked thread: A thread that is waiting for some condition (other than the availability of a processor) to be
satisfied before it can continue execution.

2.2.2.15 character: A sequence of one or more bytes representing a single graphic symbol.

NOTE — This term corresponds in the C Standard {2} to the term multibyte character, noting that a single-byte character is a
special case of multibyte character. Unlike the usage in the C Standard {2}, character here has no necessary relationship
with storage space, and byte is used when storage space is discussed.

2.2.2.16 character special file: A file that refers to a device.

One specific type of character special file is a terminal device file, whose access is defined in 7.1. Other character
special files have no structure defined by this part of ISO/IEC 9945, and their use is unspecified by this part of ISO/IEC
9945.

2.2.2.17 child process: See process in 2.2.2.88.

2.2.2.18 clock: An object that measures the passage of time.

The current value of the time measured by a clock can be queried and, possibly, set to a value within the legal range of
the clock.

2.2.2.19 clock tick: An interval of time.

A number of these occur each second. Clock ticks are one of the units that may be used to express a value found in type
clock_t.

2.2.2.20 condition variable: A synchronization object that allows a thread to suspend execution, repeatedly, until
some associated predicate becomes true.

A thread whose execution is suspended on a condition variable is said to be blocked on the condition variable.

10 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

2.2.2.21 controlling process: The session leader that established the connection to the controlling terminal.

Should the terminal subsequently cease to be a controlling terminal for this session, the session leader shall cease to be
the controlling process.

2.2.2.22 controlling terminal: A terminal that is associated with a session.

Each session may have at most one controlling terminal associated with it, and a controlling terminal is associated with
exactly one session. Certain input sequences from the controlling terminal (see 7.1) cause signals to be sent to all
processes in the process group associated with the controlling terminal.

2.2.2.23 current working directory: See working directory in 2.2.2.145.

2.2.2.24 device: A computer peripheral or an object that appears to the application as such.

2.2.2.25 directory: A file that contains directory entries.

No two directory entries in the same directory shall have the same name.

2.2.2.26 directory entry [link]: An object that associates a filename with a file. Several directory entries can associate
names with the same file.

2.2.2.27 direct I/O: An operation that attempts to circumvent a system performance optimization for the optimization
of the individual I/O operation.

2.2.2.28 disarm (a timer): To stop a timer from measuring the passage of time, disabling any future process
notifications (until the timer is armed again).

2.2.2.29 drift rate (of a clock): The rate at which the time measured by a clock deviates from the actual passage of real
time.

A positive drift rate causes a clock to gain time with respect to real time; a negative drift rate causes a clock to lose time
with respect to real time.

2.2.2.30 dot: The filename consisting of a single dot character (.).

See pathname resolution in 2.3.6.

2.2.2.31 dot-dot: The filename consisting solely of two dot characters (..).

See pathname resolution in 2.3.6.

2.2.2.32 effective group ID: An attribute of a process that is used in determining various permissions, including file
access permissions, described in B.2.3.2.

See group ID. This value is subject to change during the process lifetime, as described in 3.1.2 and 4.2.2.

2.2.2.33 effective user ID: An attribute of a process that is used in determining various permissions, including file
access permissions.

See user ID. This value is subject to change during the process lifetime, as described in 3.1.2 and 4.2.2.

2.2.2.34 empty directory: A directory that contains, at most, directory entries for dot and dot-dot.

2.2.2.35 empty string [null string]: A character array whose first element is a null character.

2.2.2.36 Epoch: The time 0 hours, 0 minutes, 0 seconds, January 1, 1970, Coordinated Universal Time.

See seconds since the Epoch.

2.2.2.37 feature test macro: A #defined symbol used to determine whether a particular set of features will be included
from a header.

See 2.7.1.

2.2.2.38 FIFO special file [FIFO]: A type of file with the property that data written to such a file is read on a first-in-
first-out basis.

Copyright © 1996 IEEE All Rights Reserved 11

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Other characteristics of FIFOs are described in 5.3.1, 6.4.1, 6.4.2, and 6.5.3.

2.2.2.39 file: An object that can be written to, or read from, or both.

A file has certain attributes, including access permissions and type. File types include regular file, character special
file, block special file, FIFO special file, and directory. Other types of files may be defined by the implementation.

2.2.2.40 file description: See open file description in 2.2.2.71.

2.2.2.41 file descriptor: A per-process unique, nonnegative integer used to identify an open file for the purpose of file
access.

2.2.2.42 file group class: The property of a file indicating access permissions for a process related to the process's
group identification.

A process is in the file group class of a file if the process is not in the file owner class and if the effective group ID or
one of the supplementary groups of the process matches the group ID associated with the file. Other members of the
class may be implementation defined.

2.2.2.43 file mode: An object containing the file permission bits and other characteristics of a file, as described in
5.6.1.

2.2.2.44 filename: A name consisting of 1 to {NAME_MAX} bytes used to name a file.

The characters composing the name may be selected from the set of all character values excluding the slash character
and the null character. The filenames dot and dot-dot have special meaning; see pathname resolution in 2.3.6. A
filename is sometimes referred to as a pathname component.

2.2.2.45 file offset: The byte position in the file where the next I/O operation begins.

Each open file description associated with a regular file, block special file, or directory has a file offset. A character
special file that does not refer to a terminal device may have a file offset. There is no file offset specified for a pipe or
FIFO.

2.2.2.46 file other class: The property of a file indicating access permissions for a process related to the process's user
and group identification.

A process is in the file other class of a file if the process is not in the file owner class or file group class.

2.2.2.47 file owner class: The property of a file indicating access permissions for a process related to the process's user
identification.

A process is in the file owner class of a file if the effective user ID of the process matches the user ID of the file.

2.2.2.48 file permission bits: Information about a file that is used, along with other information, to determine if a
process has read, write, or execute/search permission to a file.

The bits are divided into three parts: owner, group, and other. Each part is used with the corresponding file class of
processes. These bits are contained in the file mode, as described in 5.6.1. The detailed usage of the file permission bits
in access decisions is described in file access permissions in B.2.3.2.

2.2.2.49 file serial number: A per-file system unique identifier for a file.

File serial numbers are unique throughout a file system.

2.2.2.50 file system: A collection of files and certain of their attributes.

It provides a name space for file serial numbers referring to those files.

2.2.2.51 first open (of a file): When a process opens a file that is not currently an open file within any process.

2.2.2.52 foreground process: A process that is a member of a foreground process group.

2.2.2.53 foreground process group: A process group whose member processes have certain privileges, denied to
processes in background process groups, when accessing their controlling terminal.

12 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Each session that has established a connection with a controlling terminal has exactly one process group of the session
as the foreground process group of that controlling terminal. See 7.1.1.4.

2.2.2.54 foreground process group ID: The process group ID of the foreground process group.

2.2.2.55 group ID: A nonnegative integer, which can be contained in an object of type gid_t, that is used to identify a
group of system users.

Each system user is a member of at least one group. When the identity of a group is associated with a process, a group
ID value is referred to as a real group ID, an effective group ID, one of the (optional) supplementary group IDs, or an
(optional) saved set-group-ID.

2.2.2.56 job control: A facility that allows users to selectively stop (suspend) the execution of processes and continue
(resume) their execution at a later point.

The user typically employs this facility via the interactive interface jointly supplied by the terminal I/O driver and a
command interpreter. Conforming implementations may optionally support job control facilities; the presence of this
option is indicated to the application at compile time or run time by the definition of the {_POSIX_JOB_CONTROL}
symbol; see 2.9.

2.2.2.57 last close (of a file): When a process closes a file, resulting in the file not being an open file within any
process.

2.2.2.58 link: See directory entry in 2.2.2.26.

2.2.2.59 link count: The number of directory entries that refer to a particular file.

2.2.2.60 login: The unspecified activity by which a user gains access to the system.

Each login shall be associated with exactly one login name.

2.2.2.61 login name: A user name that is associated with a login.

2.2.2.62 map: To create an association between a page-aligned range of the address space of a process and a range of
physical memory or some memory object, such that a reference to an address in that range of the address space results
in a reference to the associated physical memory or memory object.

The mapped memory or memory object is not necessarily memory-resident.

2.2.2.63 memory object: Either a file or shared memory object.

When used in conjunction with mmap(), a memory object will appear in the address space of the calling process.

2.2.2.64 memory-resident: Managed by the implementation in such a way as to provide an upper bound on memory
access times.

2.2.2.65 message: Information that can be transferred among processes or threads by being added to and removed
from a message queue.

A message consists of a fixed-size message buffer.

2.2.2.66 message queue: An object to which messages can be added and removed.

Messages may be removed in the order in which they were added or in priority order. Characteristics and interfaces
associated with message queues are defined in Section 15

2.2.2.67 mode: A collection of attributes that specifies a file's type and its access permissions.

See file access permissions in B.2.3.2.

2.2.2.68 mutex: A synchronization object used to allow multiple threads to serialize their access to shared data.

This term is derived from the capability it provides, namely, mutual exclusion. The thread that has locked a mutex
becomes its owner and remains the owner until that same thread unlocks the mutex.

2.2.2.69 null string: See empty string in 2.2.2.35.

Copyright © 1996 IEEE All Rights Reserved 13

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

2.2.2.70 open file: A file that is currently associated with a file descriptor.

2.2.2.71 open file description: A record of how a process or group of processes are accessing a file.

Each file descriptor shall refer to exactly one open file description, but an open file description may be referred to by
more than one file descriptor. A file offset, file status (see Table 6.5), and file access modes (see Table 6.6) are
attributes of an open file description.

2.2.2.72 orphaned process group: A process group in which the parent of every member is either itself a member of
the group or is not a member of the group's session.

2.2.2.73 page: The granularity of process memory mapping or locking.

Physical memory and memory objects can be mapped into the address space of a process on page boundaries and in
integral multiples of pages. Process address space can be locked into memory—made memory-resident—on page
boundaries and in integral multiples of pages.

2.2.2.74 parent directory:
1) When discussing a given directory, the directory that both contains a directory entry for the given directory

and is represented by the pathname dot-dot in the given directory.
2) When discussing other types of files, a directory containing a directory entry for the file under discussion.

This concept does not apply to dot and dot-dot.

2.2.2.75 parent process: See process in 2.2.2.88.

2.2.2.76 parent process ID: An attribute of a new process after it is created by a currently active process.

The parent process ID of a process is the process ID of its creator, for the lifetime of the creator. After the creator's
lifetime has ended, the parent process ID is the process ID of an implementation-defined system process.

2.2.2.77 path prefix: A pathname, with an optional ending slash, that refers to a directory.

2.2.2.78 pathname: A string that is used to identify a file.

A pathname consists of, at most, {PATH_MAX} bytes, including the terminating null character. It has an optional
beginning slash, followed by zero or more filenames separated by slashes. If the pathname refers to a directory, it may
also have one or more trailing slashes. Multiple successive slashes are considered to be the same as one slash. A
pathname that begins with two successive slashes may be interpreted in an implementation-defined manner, although
more than two leading slashes shall be treated as a single slash. The interpretation of the pathname is described in
2.3.6.

2.2.2.79 pathname component: See filename in 2.2.2.44.

2.2.2.80 persistence: A mode for semaphores, shared memory, and message queues requiring that the object and its
state (including data, if any) are preserved after the object is no longer referenced by any process.

Persistence of an object does not imply that the state of the object is maintained across a system crash or a system
reboot.

2.2.2.81 pipe: An object accessed by one of the pair of file descriptors created by the pipe() function.

Once created, the file descriptors can be used to manipulate it, and it behaves identically to a FIFO special file when
accessed in this way. It has no name in the file hierarchy.

2.2.2.82 portable filename character set: The set of characters from which portable filenames are constructed.

For a filename to be portable across conforming implementations of this part of ISO/IEC 9945 , it shall consist only of
the following characters:
 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
 a b c d e f g h i j k l m n o p q r s t u v w x y z
 0 1 2 3 4 5 6 7 8 9 . _ -

14 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

The last three characters are the period, underscore, and hyphen characters, respectively. The hyphen shall not be used
as the first character of a portable filename. Upper- and lowercase letters shall retain their unique identities between
conforming implementations. In the case of a portable pathname, the slash character may also be used.

2.2.2.83 preallocation: The reservation of resources in a system for a particular use.

Preallocation does not imply that the resources are immediately allocated to that use, but merely indicates that they are
guaranteed to be available in bounded time when needed.

2.2.2.84 preempted thread: A running thread whose execution is suspended due to another thread becoming runnable
at a higher priority.

2.2.2.85 priority: A nonnegative integer associated with processes or threads, whose value is constrained to a range
defined by the applicable scheduling policy.

Numerically higher values represent higher priorities.

2.2.2.86 priority-based scheduling: Scheduling in which the selection of a running thread is determined by the
priority of the runnable threads.

2.2.2.87 privilege: See appropriate privileges in 2.2.2.4.

2.2.2.88 process: An address space with one or more threads executing within that address space, and the required
system resources for those threads.

A process is created by another process issuing the fork() function. The process that issues fork() is known as the parent
process, and the new process created by the fork() is known as the child process.

Many of the system resources defined by this part of ISO/IEC 9945 are shared among all of the threads within a
process. These include the process ID; the parent process ID; the process group ID; the session membership; the real,
effective and saved-set user ID; the real, effective and saved-set group ID; the supplementary group IDs; the current
working directory; the root directory; the file mode creation mask; and file descriptors.

2.2.2.89 process group: A collection of processes that permits the signaling of related processes.

Each process in the system is a member of a process group that is identified by a process group ID. A newly created
process joins the process group of its creator.

2.2.2.90 process group ID: The unique identifier representing a process group during its lifetime.

A process group ID is a positive integer that can be contained in a pid_t. It shall not be reused by the system until the
process group lifetime ends.

2.2.2.91 process group leader: A process whose process ID is the same as its process group ID.

2.2.2.92 process group lifetime: A period of time that begins when a process group is created and ends when the last
remaining process in the group leaves the group, due either to the end of the last process's process lifetime or to the last
remaining process calling the setsid() or setpgid() functions.

2.2.2.93 process ID: The unique identifier representing a process.

A process ID is a positive integer that can be contained in a pid_t. A process ID shall not be reused by the system until
the process lifetime ends. In addition, if there exists a process group whose process group ID is equal to that process
ID, the process ID shall not be reused by the system until the process group lifetime ends. A process that is not a
system process shall not have a process ID of 1.

2.2.2.94 process lifetime: The period of time that begins when a process is created and ends when its process ID is
returned to the system.

After a process is created with a fork() function, it is considered active. At least one thread of control and the address
space exist until it terminates. It then enters an inactive state where certain resources may be returned to the system,
although some resources, such as the process ID, are still in use. When another process executes a wait() or waitpid()
function for an inactive process, the remaining resources are returned to the system. The last resource to be returned to
the system is the process ID. At this time, the lifetime of the process ends.

Copyright © 1996 IEEE All Rights Reserved 15

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

2.2.2.95 read-only file system: A file system that has implementation-defined characteristics restricting
modifications.

2.2.2.96 real group ID: The attribute of a process that, at the time of process creation, identifies the group of the user
who created the process.

See group ID in 2.2.2.55. This value is subject to change during the process lifetime, as described in 4.2.2.

2.2.2.97 real user ID: The attribute of a process that, at the time of process creation, identifies the user who created the
process.

See user ID in 2.2.2.143. This value is subject to change during the process lifetime, as described in 4.2.2.

2.2.2.98 reentrant function: A function whose effect, when called by two or more threads, is guaranteed to be as if the
threads each executed the function one after another in an undefined order, even if the actual execution is interleaved.

2.2.2.99 referenced shared memory object: A shared memory object that is open or has one or more mappings
defined on it.

2.2.2.100 region:
1) As relates to the address space of a process, a sequence of addresses.
2) As relates to a file, a sequence of offsets.

2.2.2.101 regular file: A file that is a randomly accessible sequence of bytes, with no further structure imposed by the
system.

2.2.2.102 relative pathname: See pathname resolution in 2.3.6.

2.2.2.103 (time) resolution: The minimum time interval that a clock can measure or whose passage a timer can detect.

2.2.2.104 root directory: A directory, associated with a process, that is used in pathname resolution for pathnames
that begin with a slash.

2.2.2.105 runnable thread: A thread that is capable of being a running thread, but for which no processor is available.

2.2.2.106 running thread: A thread currently executing on a processor.

There may be more than one such thread in a system at a time in a system with multiple processors.

2.2.2.107 saved set-group-ID: An attribute of a process that allows some flexibility in the assignment of the effective
group ID attribute, when the saved set-user-ID option is implemented, as described in 3.1.2 and 4.2.2.

2.2.2.108 saved set-user-ID: An attribute of a process that allows some flexibility in the assignment of the effective
user ID attribute, when the saved set-user-ID option is implemented, as described in 3.1.2 and 4.2.2.

2.2.2.109 scheduling: The application of a policy to select a runnable thread to become a running thread, or to alter
one or more of the thread lists.

2.2.2.110 scheduling allocation domain: The set of processors on which an individual thread can be scheduled at any
given time.

2.2.2.111 scheduling contention scope: A property of a thread that defines the set of threads against which that thread
competes for resources.

For example, in a scheduling decision, threads sharing scheduling contention scope compete for processor resources.
In this standard, a thread has a scheduling contention scope of either PTHREAD_SCOPE_SYSTEM or
PTHREAD_SCOPE_PROCESS.

2.2.2.112 scheduling policy: A set of rules that is used to determine the order of execution of threads to achieve some
goal.

In the context of this standard, a scheduling policy affects thread ordering
1) When a thread is a running thread and it becomes a blocked thread
2) When a thread is a running thread and it becomes a preempted thread
3) When a thread is a blocked thread and it becomes a runnable thread

16 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

4) When a running thread calls a function that can change the priority or scheduling policy of a thread
5) In other scheduling-policy-defined circumstances

Conforming implementations shall define the manner in which each of the scheduling policies may modify the
priorities or otherwise affect the ordering of threads at each of the occurrences listed above. Additionally, conforming
implementations shall define at what other circumstances and in what manner each scheduling policy may modify the
priorities or affect the ordering of threads.

2.2.2.113 seconds since the Epoch: A value to be interpreted as the number of seconds between a specified time and
the Epoch.

A Coordinated Universal Time name (specified in terms of seconds (tm_sec), minutes (tm_min), hours (tm_hour), days
since January 1 of the year (tm_yday), and calendar year minus 1900 (tm_year) is related to a time represented as
seconds since the Epoch, according to the expression below.

If the year < 1970 or the value is negative, the relationship is undefined. If the year ≥ 1970 and the value is nonnegative,
the value is related to a Coordinated Universal Time name according to the expression:

 tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86 400 +
 (tm_year-70)*31 536 000 + ((tm_year-69)/4)*86 400

2.2.2.114 semaphore: A shareable resource that has a nonnegative integral value.

When the value is zero, there is a (possibly empty) set of threads awaiting the availability of the semaphore.

2.2.2.115 semaphore lock operation: An operation that is applied to a semaphore.

If, prior to the operation, the value of the semaphore is zero, the semaphore lock operation shall cause the calling
thread to be blocked and added to the set of threads awaiting the semaphore. Otherwise, the value is decremented. See
2.2.2.116.

2.2.2.116 semaphore unlock operation: An operation that is applied to a semaphore.

If, prior to the operation, there are any threads in the set of threads awaiting the semaphore, then some thread from that
set shall be removed from the set and become unblocked. Otherwise, the semaphore value is incremented. See
2.2.2.115.

2.2.2.117 session: A collection of process groups established for job control purposes.

Each process group is a member of a session. A process is considered to be a member of the session of which its
process group is a member. A newly created process joins the session of its creator. A process can alter its session
membership (see 4.3.2). Implementations that support the setpgid() function (see 4.3.3) can have multiple process
groups in the same session.

2.2.2.118 session leader: A process that has created a session (see 4.3.2).

2.2.2.119 session lifetime: The period between when a session is created and the end of the lifetime of all the process
groups that remain as members of the session.

2.2.2.120 shared memory object: An object that represents memory that can be mapped concurrently into the address
space of more than one process.

2.2.2.121 signal: A mechanism by which a process may be notified of, or affected by, an event occurring in the system.

Examples of such events include hardware exceptions and specific actions by processes or threads. The term signal is
also used to refer to the event itself.

2.2.2.122 slash: The literal character "/".

This character is also known as solidus in ISO 8859-1 {B34} .

2.2.2.123 supplementary group ID: An attribute of a process used in determining file access permissions.

A process has up to {NGROUPS_MAX} supplementary group IDs in addition to the effective group ID. The
supplementary group IDs of a process are set to the supplementary group IDs of the parent process when the process

Copyright © 1996 IEEE All Rights Reserved 17

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

is created. Whether a process's effective group ID is included in or omitted from its list of supplementary group IDs is
unspecified.

2.2.2.124 successfully transferred: For a write operation to a regular file, when the system ensures that all data
written is readable on any subsequent open of the file (even one that follows a system or power failure) in the absence
of a failure of the physical storage medium.

For a read operation, when an image of the data on the physical storage medium is available to the requesting process.

2.2.2.125 synchronized I/O completion: The state of an I/O operation that has either been successfully transferred or
diagnosed as unsuccessful.

2.2.2.126 synchronized I/O data integrity completion:
1) For read, when the operation has been completed or diagnosed if unsuccessful. The read is complete only

when an image of the data has been successfully transferred to the requesting process. If there were any
pending write requests affecting the data to be read at the time that the synchronized read operation was
requested, these write requests shall be successfully transferred prior to reading the data.

2) For write, when the operation has been completed or diagnosed if unsuccessful. The write is complete only
when the data specified in the write request is successfully transferred and all file system information
required to retrieve the data is successfully transferred.

File attributes that are not necessary for data retrieval (access time, modification time, status change time) need not be
successfully transferred prior to returning to the calling process.

2.2.2.127 synchronized I/O file integrity completion: Identical to a synchronized I/O data integrity completion with
the addition that all file attributes relative to the I/O operation (including access time, modification time, status change
time) shall be successfully transferred prior to returning to the calling process.

2.2.2.128 synchronized I/O operation: An I/O operation performed on a file that provides the application assurance
of the integrity of its data and files.

2.2.2.129 synchronous I/O operation: An I/O operation that causes the process requesting the I/O to be blocked from
further use of the processor until that I/O operation completes.

NOTE — A synchronous I/O operation does not perforce imply synchronized I/O data integrity completion or synchronized I/O
file integrity completion.

2.2.2.130 synchronously generated signal: A signal that is attributable to a specific thread.

For example, a thread executing an illegal instruction or touching invalid memory causes a synchronously generated
signal. Being synchronous is a property of how the signal was generated and not a property of the signal number.

2.2.2.131 system: An implementation of this part of ISO/IEC 9945 .

2.2.2.132 system crash: An interval initiated by an unspecified circumstance that causes all processes (possibly other
than special system processes) to be terminated in an undefined manner, after which any changes to the state and
contents of files created or written to by a Conforming POSIX.1 Application prior to the interval are undefined, except
as required elsewhere in this standard.

2.2.2.133 system process: An object, other than a process executing an application, that is defined by the system and
has a process ID.

2.2.2.134 system reboot: An implementation defined sequence of events that may result in the loss of transitory data,
i.e., data that is not saved in permanent storage.

This includes message queues, shared memory, semaphores, and processes.

2.2.2.135 terminal [terminal device]: A character special file that obeys the specifications of 7.1.

2.2.2.136 thread: A single flow of control within a process.

Each thread has its own thread ID, scheduling priority and policy, errno value, thread-specific key/value bindings, and
the required system resources to support a flow of control. Anything whose address may be determined by a thread,
including but not limited to static variables, storage obtained via malloc(), directly addressable storage obtained

18 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

through implementation-supplied functions, and automatic variables shall be accessible to all threads in the same
process.

2.2.2.137 thread ID: A unique value of type pthread_t that identifies each thread during its lifetime in a process.

2.2.2.138 thread list: An ordered set of runnable threads that all have the same ordinal value for their priority.

The ordering of threads on the list is determined by a scheduling policy or policies. The set of thread lists includes all
runnable threads in the system.

2.2.2.139 thread-safe: A function that may be safely invoked concurrently by multiple threads.

Each function defined by this standard is thread-safe unless explicitly stated otherwise. An example is any “pure”
function (a function that holds a mutex locked while it is accessing static storage or objects shared among threads).

2.2.2.140 thread-specific data key: A process global handle of type pthread_key_t that is used for naming thread-
specific data.

Although the same key value may be used by different threads, the values bound to the key by pthread_setspecific()
and accessed by pthread_getspecific() are maintained on a per-thread basis and persist for the life of the calling thread.

2.2.2.141 timer: An object that can notify a process when the time as measured by a particular clock has reached or
passed a specified value, or when a specified amount of time, as measured by a particular clock, has passed.

2.2.2.142 timer overrun: A condition that occurs each time a timer, for which there is already an expiration signal
queued to the process, expires.

2.2.2.143 user ID: A nonnegative integer, which can be contained in an object of type uid_t, that is used to identify a
system user.

When the identity of a user is associated with a process, a user ID value is referred to as a real user ID, an effective user
ID, or an (optional) saved set-user-ID.

2.2.2.144 user name: A string that is used to identify a user, as described in 9

2.2.2.145 working directory [current working directory]: A directory, associated with a process, that is used in
pathname resolution for pathnames that do not begin with a slash.

2.2.3 Abbreviations

For the purposes of this part of ISO/IEC 9945, the following abbreviations apply:

2.2.3.1 C Standard: ISO/IEC 9899, Programming languages—C {2}.

2.2.3.2 IRV: The International Reference Version coded character set described in ISO/IEC 646 {1}.

2.2.3.3 POSIX.1: This part of ISO/IEC 9945.

2.3 General Concepts

NOTE — As new concepts are added to this clause, they are appended rather than inserted in English alphabetical order. This
ensures that external uses of the subclause numbers (such as in standards conformance documents and test method
standards) are not invalidated by extensions to this standard.

2.3.1 extended security controls: The access control (see file access permissions) and privilege (see appropriate
privileges in 2.2.2.4) mechanisms have been defined to allow implementation-defined extended security controls.
These permit an implementation to provide security mechanisms to implement different security policies than
described in this part of ISO/IEC 9945. These mechanisms shall not alter or override the defined semantics of any of
the functions in this part of ISO/IEC 9945.

Copyright © 1996 IEEE All Rights Reserved 19

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

2.3.2 file access permissions: The standard file access control mechanism uses the file permission bits, as described
below. These bits are set at file creation by open(), creat(), mkdir() and mkfifo() and are changed by chmod(). These bits
are read by stat() or fstat().

Implementations may provide additional or alternate file access control mechanisms, or both. An additional access
control mechanism shall only further restrict the access permissions defined by the file permission bits. An alternate
access control mechanism shall:

1) Specify file permission bits for the file owner class, file group class, and file other class of the file,
corresponding to the access permissions, to be returned by stat() or fstat().

2) Be enabled only by explicit user action, on a per-file basis by the file owner or a user with the appropriate
privilege.

3) Be disabled for a file after the file permission bits are changed for that file with chmod(). The disabling of the
alternate mechanism need not disable any additional mechanisms defined by an implementation.

Whenever a process requests file access permission for read, write, or execute/search, if no additional mechanism
denies access, access is determined as follows:

1) If a process has the appropriate privilege:
a) If read, write, or directory search permission is requested, access is granted.
b) If execute permission is requested, access is granted if execute permission is granted to at least one user

by the file permission bits or by an alternate access control mechanism; otherwise, access is denied.
2) Otherwise:

a) The file permission bits of a file contain read, write, and execute/search permissions for the file owner
class, file group class, and file other class.

b) Access is granted if an alternate access control mechanism is not enabled and the requested access
permission bit is set for the class (file owner class, file group class, or file other class) to which the
process belongs, or if an alternate access control mechanism is enabled and it allows the requested
access; otherwise, access is denied.

2.3.3 file hierarchy: Files in the system are organized in a hierarchical structure in which all of the nonterminal nodes
are directories and all of the terminal nodes are any other type of file. Because multiple directory entries may refer to
the same file, the hierarchy is properly described as a “directed graph.”

2.3.4 filename portability: Filenames should be constructed from the portable filename character set because the use
of other characters can be confusing or ambiguous in certain contexts.

2.3.5 file times update: Each file has three distinct associated time values: st_atime, st_mtime, and st_ctime. The
st_atime field is associated with the times that the file data is accessed; st_mtime is associated with the times that the
file data is modified; and st_ctime is associated with the times that file status is changed. These values are returned in
the file characteristics structure, as described in 5.6.1.

Any function in this part of ISO/IEC 9945 that is required to read or write file data or change the file status indicates
which of the appropriate time-related fields are to be “marked for update.” If an implementation of such a function
marks for update a time-related field not specified by this part of ISO/IEC 9945, this shall be documented, except that
any changes caused by pathname resolution need not be documented. For the other functions in this part of ISO/IEC
9945 (those that are not explicitly required to read or write file data or change file status, but that in some
implementations happen to do so), the effect is unspecified.

An implementation may update fields that are marked for update immediately, or it may update such fields
periodically. When the fields are updated, they are set to the current time and the update marks are cleared. All fields
that are marked for update shall be updated when the file is no longer open by any process, or when a stat() or fstat()
is performed on the file. Other times at which updates are done are unspecified. Updates are not done for files on read-
only file systems.

2.3.6 pathname resolution: Pathname resolution is performed for a process to resolve a pathname to a particular file
in a file hierarchy. There may be multiple pathnames that resolve to the same file.

Each filename in the pathname is located in the directory specified by its predecessor (for example, in the pathname
fragment “a/b”, file “b” is located in directory “a”). Pathname resolution fails if this cannot be accomplished. If the

20 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

pathname begins with a slash, the predecessor of the first filename in the pathname is taken to be the root directory of
the process (such pathnames are referred to as absolute pathnames). If the pathname does not begin with a slash, the
predecessor of the first filename of the pathname is taken to be the current working directory of the process (such
pathnames are referred to as “relative pathnames”).

The interpretation of a pathname component is dependent on the values of {NAME_MAX} and
{_POSIX_NO_TRUNC} associated with the path prefix of that component. If any pathname component is longer than
{NAME_MAX}, and {_POSIX_NO_TRUNC} is in effect for the path prefix of that component (see 5.7.1), the
implementation shall consider this an error condition. Otherwise, the implementation shall use the first
{NAME_MAX} bytes of the pathname component.

The special filename, dot, refers to the directory specified by its predecessor. The special filename, dot-dot, refers to
the parent directory of its predecessor directory. As a special case, in the root directory, dot-dot may refer to the root
directory itself.

A pathname consisting of a single slash resolves to the root directory of the process. A null pathname is invalid.

2.3.7 concurrent execution: Functions that suspend the execution of the calling thread shall not cause the execution
of other threads to be indefinitely suspended.

2.3.8 memory synchronization: Applications shall ensure that access to any memory location by more than one
thread of control (threads or processes) is restricted such that no thread of control can read or modify a memory
location while another thread of control may be modifying it. Such access is restricted using functions that synchronize
thread execution and also synchronize memory with respect to other threads. The following functions synchronize
memory with respect to other threads:
 fork() pthread_mutex_unlock() sem_post()
 pthread_create() pthread_cond_wait() sem_trywait()
 pthread_join() pthread_cond_timedwait() sem_wait()
 pthread_mutex_lock() pthread_cond_signal() wait()
 pthread_mutex_trylock() pthread_cond_broadcast() waitpid()

Unless explicitly stated otherwise, if one of the above functions returns an error, it is unspecified whether the
invocation causes memory to be synchronized.

Applications may allow more than one thread of control to read a memory location simultaneously.

2.3.9 thread-safety: All functions defined by POSIX.1 and the C Standard {2} shall be thread-safe, except that the
following functions need not be thread-safe: asctime(), ctime(), getc_unlocked(), getchar_unlocked(), getgrgid(),
getgrnam(), getlogin(), getpwnam(), getpwuid(), gmtime(), localtime(), putc_unlocked(), putchar_unlocked(), rand(),
readdir(), strtok(), and ttyname(). The functions ctermid() and tmpnam() need not be thread-safe if a NULL argument
is passed to the function. Implementations shall provide internal synchronization as necessary in order to satisfy this
requirement.

2.4 Error Numbers

Most functions can provide an error number. The means by which each function provides its error numbers is specified
in its description.

Some functions may provide the error number in a variable accessed through the symbol errno. The symbol errno is
defined by including the header <errno.h>, as specified by the C Standard {2}.

The value of errno should only be examined when it is indicated to be valid by the return value of a function. No
function defined in this standard shall set errno to zero to indicate an error. For each thread of a process, the value of
errno shall not be affected by function calls or assignments to errno by other threads.

Some functions return an error number directly as the function value. These functions return a value of zero to indicate
success.

Copyright © 1996 IEEE All Rights Reserved 21

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

If more than one error occurs in processing a function call, this part of ISO/IEC 9945 does not define in what order the
errors are detected; therefore, any one of the possible errors may be returned.

Implementations may support additional errors not included in this clause, may generate errors included in this clause
under circumstances other than those described in this clause, or may contain extensions or limitations that prevent
some errors from occurring. The Errors subclause in each function description specifies which error conditions shall
be detected by all implementations and which may be optionally detected by an implementation. Each implementation
shall document, in the conformance document, situations in which each of the optional conditions are detected. If no
error condition is detected, the action requested shall be successful. Implementations may contain extensions or
limitations that prevent some specified errors from occurring.

Implementations may generate error numbers listed in this clause under circumstances other than those described, if
and only if all those error conditions can always be treated identically to the error conditions as described in this part
of ISO/IEC 9945. Implementations may support additional errors not listed in this clause, but shall not generate a
different error number from one required by this part of ISO/IEC 9945 for an error condition described in this part of
ISO/IEC 9945. For interfaces under the {POSIX_THREADS} option for which [EINTR] is not listed as a possible
error return in this; standard, an implementation shall not return an error code of [EINTR].

The following symbolic names identify the possible error numbers, in the context of functions specifically defined in
this part of ISO/IEC 9945; these general descriptions are more precisely defined in the Errors subclauses of functions
that return them. Only these symbolic names should be used in programs, since the actual value of an error number is
unspecified. All values listed in this clause shall be unique. The values for these names shall be found in the header
<errno.h>. The actual values are unspecified by this part of ISO/IEC 9945.

[E2BIG] Arg list too long

The sum of the number of bytes used by the new process image's argument list and environment list
was greater than the system-imposed limit of {ARG_MAX} bytes.

[EACCES] Permission denied

An attempt was made to access a file in a way forbidden by its file access permissions.

[EAGAIN] Resource temporarily unavailable

This is a temporary condition, and later calls to the same routine may complete normally.

[EBADF] Bad file descriptor

A file descriptor argument was out of range,referred to no open file, or a read (write) request was
made to a file that was only open for writing (reading).

[EBADMSG]

Bad message

The implementation has detected a corrupted message.

[EBUSY] Resource busy

An attempt was made to use a system resource that was not available at the time because it was being
used by a process in a manner that would have conflicted with the request being made by this
process.

[ECANCELED]

Operation canceled

The associated asynchronous operation was canceled before completion.

22 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

[ECHILD] No child processes

A wait() or waitpid() function was executed by a process that had no existing or unwaited-for child
processes.

[EDEADLK]

Resource deadlock avoided

An attempt was made to lock a system resource that would have resulted in a deadlock situation.

[EDOM] Domain error

Defined in the C Standard {2}; an input argument was outside the defined domain of the
mathematical function.

[EEXIST] File exists

An existing file was specified in an inappropriate context; for instance, as the new link name in a
link() function.

[EFAULT] Bad address

The system detected an invalid address in attempting to use an argument of a call. The reliable
detection of this error is implementation defined; however, implementations that do detect this
condition shall use this value.

[EFBIG] File too large

The size of a file would exceed an implementation-define maximum file size.

[EINPROGRESS]

Operation in progress

An asynchronous operation has not yet completed.

[EINTR] Interrupted function call

An asynchronous signal (such as SIGINT or SIGQUIT; see the description of header <signal.h>
in 3.3.1.1) was caught by the process during the execution of an interruptible function. If the signal
handler performs a normal return, the interrupted function call may return this error condition.

[EINVAL] Invalid argument

Some invalid argument was supplied. [For example, specifying an undefined signal to a signal() or
kill() function].

[EIO] Input/output error

Some physical input or output error occurred. This error may be reported on a subsequent operation
on the same file descriptor. Any other error-causing operation on the same file descriptor may cause
the [EIO] error indication to be lost.

[EISDIR] Is a directory

An attempt was made to open a directory with write mode specified.

[EMFILE] Too many open files

An attempt was made to open more than the maximum number of {OPEN_MAX} file descriptors
allowed in this process.

[EMLINK] Too many links

An attempt was made to have the link count of a single file exceed {LINK_MAX}.

Copyright © 1996 IEEE All Rights Reserved 23

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

[EMSGSIZE]

Inappropriate message buffer length

[ENAMETOOLONG]

Filename too long

The size of a pathname string exceeded {PATH_MAX}, or a pathname component was longer than
{NAME_MAX} and {_POSIX_NO_TRUNC} was in effect for that file.

[ENFILE] Too many open files in system

Too many files are currently open in the system. The system reached its predefined limit for
simultaneously open files and temporarily could not accept requests to open another one.

[ENODEV] No such device

An attempt was made to apply an inappropriate function to a device; for example, trying to read a
write-only device such as a printer.

[ENOENT] No such file or directory

A component of a specified pathname did not exist, or the pathname was an empty string.

[ENOEXEC]

Exec format error

A request was made to execute a file that, although it had the appropriate permissions, was not in the
format required by the implementation for executable files.

[ENOLCK] No locks available

A system-imposed limit on the number of simultaneous file and record locks was reached, and no
more were available at that time.

[ENOMEM]

Not enough space

The new process image required more memory than was allowed by the hardware or by system-
imposed memory management constraints.

[ENOSPC] No space left on device

During a write() function on a regular file, or when extending a directory, there was no free space left
on the device.

[ENOSYS] Function not implemented

An attempt was made to use a function that is not available in this implementation.

[ENOTDIR]

Not a directory

A component of the specified pathname existed, but it was not a directory, when a directory was
expected.

[ENOTEMPTY]

Directory not empty

A directory with entries other than dot and dot-dot was supplied when an empty directory was
expected.

24 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

[ENOTSUP]

Not supported

The implementation does not support this feature of the standard.

[ENOTTY] Inappropriate I/O control operation

A control function was attempted for a file or a special file for which the operation was
inappropriate.

[ENXIO] No such device or address

Input or output on a special file referred to a device that did not exist, or made a request beyond the
limits of the device. This error may also occur when, for example, a tape drive is not online or a disk
pack is not loaded on a drive.

[EPERM] Operation not permitted

An attempt was made to perform an operation limited to processes with appropriate privileges or to
the owner of a file or other resource.

[EPIPE] Broken pipe

A write was attempted on a pipe or FIFO for which there was no process to read the data.

[ERANGE] Result too large

Defined in the C Standard {2}; the result of the function was too large to fit in the available space.

[EROFS] Read-only file system

An attempt was made to modify a file or directory on a file system that was read-only at that time.

[ESPIPE] Invalid seek

An lseek() function was issued on a pipe or FIFO.

[ESRCH] No such process

No process could be found corresponding to that specified by the given process ID.

[ETIMEDOUT]

Operation timed out

The time limit associated with the operation was exceeded before the operation completed.

[EXDEV] Improper link

A link to a file on another file system was attempted.

2.5 Primitive System Data Types

Some data types used by the various system functions are not defined as part of this part of ISO/IEC 9945, but are
defined by the implementation. These types are then defined in the header <sys/types.h>, which contains
definitions for at least the types shown in Table 2.1.

All of the types listed in Table 2.1 shall be arithmetic types; pid_t, ssize_t, and off_t shall be signed arithmetic types.
The type ssize_t shall be capable of storing values in the range from −1 to {SSlZE_MAX}, inclusive. The types size_t
and ssize_t shall also be defined in the header <unistd.h>.

Additional unspecified type symbols ending in _t may be defined in any header specified by POSIX.1. The visibility
of such symbols need not be controlled by any feature test macro other than _POSIX_C_SOURCE.

Copyright © 1996 IEEE All Rights Reserved 25

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

There are no defined comparison or assignment operators for the types pthread_attr_t, pthread_cond_t,
pthread_condattr_t, pthread_mutex_t, and pthread_mutexattr_t.

Table 2.1—Primitive System Data Types

2.6 Environment Description

An array of strings called the environment is made available when a process begins. This array is pointed to by the
external variable environ, which is defined as:

 extern char **environ;

These strings have the form “name=value”; names shall not contain the character '='. There is no meaning associated
with the order of the strings in the environment. If more than one string in a process's environment has the same name,
the consequences are undefined. The following names may be defined and have the indicated meaning if they are
defined:

HOME The name of the initial working directory of the user from the user database (see the
description of the header <pwd.h> in 9.2.2.1).

LANG The name of the locale to use for locale categories when both LC_ALL and the
corresponding environment variable ('beginning with “LC_”) do not specify a locale.

Defined
Type Description

dev_t Used for device numbers.

gid_t Used for group IDs.

ino_t Used for file serial numbers.

mode_t Used for some file attributes, for example file type, file access permissions.

nlink_t Used for link counts.

off_t Used for file sizes.

pid_t Used for process IDs and process group IDs.

pthread_t Used to identify a thread.

pthread_attr_t Used to identify a thread attributes object.

pthread_mutex_t Used for mutexes.

pthread_mutexattr_t Used to identify a mutex attributes object.

pthread_cond_t Used for condition variables.

pthread_condattr_t Used to identify a condition attributes object.

pthread_key_t Used for thread-specific data keys.

pthread_once_t Used for dynamic package initialization.

size_t As defined in the C Standard {2}.

ssize_t Used by functions that return a count of bytes (memory space) or an error indication.

uid_t Used for user IDs.

26 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

LC_ALL The name of the locale to be used to override any values for locale categories specified by
the setting of LANG or any environment variables beginning with “LC_”.

LC_COLLATE The name of the locale for collation information.

LC_CTYPE The name of the locale for character classification.

LC_MONETARY The name of the locale containing monetary-related numeric editing information.

LC_NUMERIC The name of the locale containing numeric editing (i.e., radix character) information.

LC_TIME The name of the locale for date/time formatting information.

LOGNAME The login name associated with the current process. The value shall be composed of
characters from the portable filename character set.

NOTE — An application that requires, or an installation that actually uses, characters outside the
portable filename character set would not strictly conform to this part of ISO/IEC 9945 .
However, it is reasonable to expect that such characters would be used in many countries
(recognizing the reduced level of interchange implied by this), and applications or
installations should permit such usage where possible. No error is defined by this part of
ISO/IEC 9945 for violation of this condition.

PATH The sequence of path prefixes that certain functions apply in searching for an executable
file known only by a filename (a pathname that does not contain a slash). The prefixes are
separated by a colon (:). When a nonzero-length prefix is applied to this filename, a slash is
inserted between the prefix and the filename. A zero-length prefix is a special prefix that
indicates the current working directory. It appears as two adjacent colons (::), as an initial
colon preceding the rest of the list, or as a trailing colon following the rest of the list. The
list is searched from beginning to end until an executable program by the specified name is
found. If the pathname being sought contains a slash, the search through the path prefixes
is not performed.

TERM The terminal type for which output is to be prepared. This information is used by
commands and application programs wishing to exploit special capabilities specific to a
terminal.

TZ Time zone information. The format of this string is defined in 8.1.1.

Environment variable names used or created by an application should consist solely of characters from the portable
filename character set. Other characters may be permitted by an implementation; applications shall tolerate the
presence of such names. Upper- and lowercase letters retain their unique identities and are not folded together. System-
defined environment variable names should begin with a capital letter or underscore and be composed of only capital
letters, underscores, and numbers.

The values that the environment variables may be assigned are not restricted except that they are considered to end
with a null byte, and the total space used to store the environment and the arguments to the process is limited to
{ARG_MAX} bytes.

Other name=value pairs may be placed in the environment by manipulating the environ variable subject to the
restrictions specified in 3.1.2 or by using envp arguments when creating a process (see 3.1.2).

2.7 C Language Definitions

2.7.1 Symbols From the C Standard

The following terms and symbols used in this part of ISO/IEC 9945 are defined in the C Standard {2}: NULL, byte,
array of char, clock_t, header, null character, string, time_t. The type clock_t shall be capable of representing all
integer values from zero to the number of clock ticks in 24 h.

Copyright © 1996 IEEE All Rights Reserved 27

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The term NULL pointer in this part of ISO/IEC 9945 is equivalent to the term null pointer used in the C Standard {2}.
The symbol NULL shall be declared in <unistd.h> with the same value as required by the C Standard {2}, in
addition to several headers already required by the C Standard {2}.

Additionally, the reservation of symbols that begin with an underscore applies:

1) All external identifiers that begin with an underscore are reserved.
2) All other identifiers that begin with an underscore and either an uppercase letter or another underscore are

reserved.
3) If the program defines an external identifier with the same name as a reserved external identifier, even in a

semantically equivalent form, the behavior is undefined.

Certain other namespaces are reserved by the C Standard {2}. These reservations apply to this part of ISO/IEC 9945
as well. Additionally, the C Standard {2} requires that it be possible to include a header more than once and that a
symbol may be defined in more than one header. This requirement is also made of headers for this part of ISO/IEC
9945.

2.7.2 POSIX.1 Symbols

Certain symbols in this part of ISO/IEC 9945 are defined in headers. Some of those headers could also define other
symbols than those defined by this part of ISO/IEC 9945, potentially conflicting with symbols used by the application.
Also, this part of ISO/IEC 9945 defines symbols that are not permitted by other standards to appear in those headers
without some control on the visibility of those symbols.

Symbols called feature test macros are used to control the visibility of symbols that might be included in a header.
Implementations, future versions of this part of ISO/IEC 9945, and other standards may define additional feature test
macros. Feature test macros shall be defined in the compilation of an application before an #include of any header
where a symbol should be visible to some, but not all, applications. If the definition of the macro does not precede the
#include, the result is undefined.

Feature test macros shall begin with the underscore character (_).

Implementations may add symbols to the headers shown in Table 2.2, provided the identifiers for those symbols begin
with the corresponding reserved prefixes in Table 2.2. Similarly, implementations may add symbols to the headers in
Table 2.2 that end in the string indicated as a reserved suffix as long as the reserved suffix is in that part of the name
considered significant by the implementation. This shall be in addition to any reservations made in the C Standard {2}.

If any header defined by this part of ISO/IEC 9945 is included, all symbols with the suffix_t are reserved for use by the
implementation, both before and after the #include directive.

After the last inclusion of a given header, an application may use any of the symbol classes reserved in Table 2.2 for
its own purposes, as long as the requirements in the note to Table 2.2 are satisfied, noting that the symbol declared in
the header may become inaccessible.

Future revisions of this part of ISO/IEC 9945, and other POSIX standards, are likely to use symbols in these same
reserved spaces.

28 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Table 2.2—Reserved Header Symbols

Header Key
Reserved

Prefix
Reserved

Suffix

<aio.h> 1 aio_

1 lio_

2 AIO_

2 LIO_

<dirent.h> 1 d_

<fcntl.h> 1 l_

2 F_

2 O_

2 S_

<grp.h> 1 gr_

<limits.h> 1 _MAX

<locale.h> 2 LC_[A–Z]

<mqueue.h> 1 mq_

2 MQ_

<pthread.h> 1 pthread_

2 PTHREAD_

<pwd.h> 1 pw_

<sched.h> 1 sched_

2 SCHED_

<semaphore.h> 1 sem_

2 SEM_

<signal.h> 1 sa_

2 SIG_

2 SA_

1 si_

2 SI_

1 sigev_

2 SIGEV_

1 sival_

Copyright © 1996 IEEE All Rights Reserved 29

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

NOTE — The notation “[0–9]” indicates any digit and “[A–Z]” any uppercase character in the portable filename character set. The
Key values, are:

1) Prefixes and suffixes of symbols that shall not be declared or #defined by the application.
2) Prefixes and suffixes of symbols that shall be preceded in the application with a #undef of that symbol before

any other use.

In addition, implementations may add members to a structure or union without controlling the visibility of those
members with a feature test macro, as long as a user-defined macro with the same name cannot interfere with the
correct interpretation of the program.

The header <fcntl.h> may contain the following symbols in addition to those specifically required elsewhere in
POSIX.1:

 SEEK_CUR S_IRUSR S_ISCHR S_ISREG S_IWUSR
 SEEK_END S_IRWXG S_ISDIR S_ISUID S_IXGRP
 SEEK_SET S_IRWXO S_ISFIFO S_IWGRP S_IXOTH

<sys/mman.h> 1 shm_

2 MAP_

2 MCL_

2 MS_

2 PROT_

<sys/stat.h> 1 st_

2 S_

<sys/times.h> 1 tms_

<termios.h> 1 c_

2 V

2 I

2 O

2 TC

2 B [0–9]

<time.h> 1 clock_

1 timer_

1 it_

1 tv_

2 CLOCK_

2 TIMER_

any POSIX.1 header included 1 _t

Table 2.2—Reserved Header Symbols (Continued)

Header Key
Reserved

Prefix
Reserved

Suffix

30 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

 S_IRGRP S_IRWXU S_ISGID S_IWOTH S_IXUSR
 S_IROTH S_ISBLK

In addition, an implementation may define the symbols “cuserid” in <unistd.h> and “L_cuserid” in <stdio.h>.

The following feature test macro is defined:

The exact meaning of feature test macros depends on the type of C language support chosen: C Standard Language-
Dependent Support and Common-Usage-Dependent Support, described in the following two subclauses.

2.7.2.1 C Standard Language-Dependent Support

If there are no feature test macros present in a program, the implementation shall make visible only those identifiers
specified as reserved identifiers in the C Standard {2}, permitting the reservations of the symbols and namespace
defined in 2.7.1. For each feature test macro present, only the symbols specified by that feature test macro plus those
of the C Standard {2} shall be defined when a header is included.

2.7.2.2 Common-Usage-Dependent Support

If the feature test macro _POISIX_C_SOURCE is not defined in a program, the set of symbols defined in each header
that are beyond the requirements of this part of ISO/IEC 9945 is unspecified.

If _POSIX_C_SOURCE is defined before any header is included, no symbols other than those from the C Standard
{2} and those made visible by feature test macros defined for the program (including _POSIX_C_SOURCE) will be
visible. Symbols from the namespace reserved for the implementation, as defined by the C Standard {2}, are also
pemitted. The symbols beginning with two underscores are examples of this.

If _POSIX_C_SOURCE is not defined before any header is included, the behavior is undefined.

2.7.3 Headers and Function Prototypes

Implementations claiming C Standard {2} Language-Dependent Support shall declare function prototypes for all
functions.

Implementations claiming Common-Usage C Language-Dependent Support shall declare the result type for all
funcitons not returning a “plain” int.

Name Description

_POSIX_C_SOURCE When an application includes a header described by this part of ISO/IEC 9945, and
when this feature test macro is defined to have at least the value 199506L:

1) All symbols required by this part of ISO/IEC 9945 to appear when the
header is included shall be made visible.

2) Symbols that are explicitly permitted, but not required, by this part of ISO/
IEC 9945 to appear in that header (including those in reserved name
spaces) may be made visible.

3) Additional symbols not required or explicitly permitted by this part of ISO/
IEC 9945 to be in that header shall not be made visible, except when
enabled by another feature test macro or by having defined
_POSIX_C_SOURCE with a value larger than 199506L.

Copyright © 1996 IEEE All Rights Reserved 31

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

For functions described in the C Standard {2} and included by refenrence in Section 8 (whether or not they are further
described in htis part of ISO/IEC 9945), these prototypes or declarations (if declared) shall appear in the headers
defined for then in the C Standard {2}. For other functons in htis part of ISO/IEC 9945, the prototypes or declarations
shall appear in the headers listed below. If a functon is defined by this part ISO/IEC 9945, is not declared in the C
Standard {2}, and is not listed below, it shall have its prototype or declaration (if required) appear in <unistd.h>,
which shall be #include-ed by the application before using any funciton. The requirements about the visibility of
symbols in 2.7.2 shall be honored.

<aio.h> aio_read(), aio_write(), aio_error(),

aio_return(), aio_cancel(), aio_suspend, aio_fsync()

<dirent.h> opendir(), readdir(), readdir_r(), rewinddir(), closedir()

<fcntl.h> open(), creat(), fcntl

<grp.h> getgrgid(), getgrnam()

<mqueue.h> mq_open(), mq_close(), mq_unlink(), mq_send()

mq_recieve(), mq_notify(), mq_getattr(), mq_setattr()

<pthread.h> pthread_attr_init(), pthread_attr_destroy(),

pthread_attr_setdetachstate(),

pthread_attr_setinheritsched(),

pthread_attr_setschedparam(),

pthread_attr_setschedpolicy(), pthread_attr_setscope(),

pthread_attr_setstacksize(),

pthread_attr_setstackaddr(),

pthread_attr_getdetachstate(),

pthread_attr_getinheritsched(),

pthread_attr_getschedparam(),

pthread_attr_getschedpolicy(), pthread_attr_getscope(),

pthread_attr_getstacksize(),

pthread_attr_getstackaddr(), pthread_create(),

pthread_detach(), pthread_equal(), pthread_exit(),

pthread_join(), pthread_kill(), pthread_sigmask(),

pthread_once(), pthread_self(),

pthread_mutexattr_init(), pthread_mutexattr_destroy(),

pthread_mutexattr_getprioceiling(),

pthread_mutexattr_getprotocol(),

pthread_mutexattr_setprioceiling(),

pthread_mutexattr_setprotocol(),

pthread_mutex_destroy(),

pthread_mutex_getprioceiling(), pthread_mutex_init(),

pthread_mutex_lock(), pthread_mutex_setprioceiling(),

32 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

pthread_mutex_trylock(), pthread_mutex_unlock(),

pthread_condattr_init(), pthread_condattr_destroy(),

pthread_cond_broadcast(), pthread_cond_destroy(),

pthread_cond_init(), pthread_cond_signal(),

pthread_cond_timedwait(), pthread_cond_wait(),

pthread_key_create(), pthread_key_delete(),

pthread_setspecific(), pthread_getspecific(),

pthread_setcancelstate(), pthread_setcanceltype(),

pthread_testcancel(), pthread_cleanup_pop(),

pthread_cleanup_push()

<pwd.h> getpwuid(), getpwnam()

<sched.h> sched_setparam(), sched_getparam(),

sched_setscheduler(), sched_getscheduler(),

sched_yield(), sched_get_priority_max(),

sched_get_priority_min(), sched_get_rr_interval()

<semaphore.h> sem_init(), sem_destroy(), sem_open(), sem_close(),

sem_unlink(), sem_wait(), sem_trywait(), sero_post(),

sem_getvalue()

<setjmp.h> sigsetjmp(), siglongjmp()

<signal.h> kill(), sigemptyset(), sigfillset(), sigaddset(), sigdelset(),

sigismember(), sigaction(), sigprocmask(), sigpending(),

sigsuspend(), sigqueue(), sigtimedwait(), sigwait()

sigwaitinfo()

<stdio.h> ctermid(), fileno(), fdopen(), flockfile(), funlockfile(),

getc_unlocked(), getchar_unlocked(), putc_unlocked(),

putchar_unlocked()

<sys/mman.h> mlockall(), munlockall(), mlock(), munlock(), mmap(),

munmap(), mprotect(), msync(), shm_open(),

shm_unlink()

<sys/stat.h> umask(), mkdir(), mkfifo(), stat(), fstat(), chmod(),

fchmod()

<stdlib.h> rand_r()

<string.h> strtok_r()

<sys/times.h> times()

<sys/utsname.h>uname()

<sys/wait.h> wait(), waitpid()

Copyright © 1996 IEEE All Rights Reserved 33

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

<termios.h> cfgetospeed(), cfsetospeed(), cfgetispeed(), cfsetispeed(),

tcgetattr(), tcsetattr(), tcsendbreak(), tcdrain(),

tcflush(), tcflow()

<time.h> tzset(), time(), ctime_r(), gmtime_r(), localtime_r(),

clock_settime(), clock_gettime(), clock_getres(),

timer_create(), timer_delete(), timer_settime(),

timer_gettime(), timer_getoverrun(), nanosleep()

<utime.h> utime()

The declarations in the headers shall follow the proper form for the C language option chosen by the implementation.
Additionally, pointer arguments that refer to objects not modified by the function being described are declared with
const qualifying the type to which it points. Implementations claiming Common-Usage C conformance to this part
of ISO/IEC 9945 may ignore the presence of this keyword and need not include it in any function declarations.
Implementations claiming conformance using the C Standard {2} shall use the const modifier as indicated in the
prototypes they provide.

Implementations claiming conformance using Common-Usage C may use equivalent implementation-defined
constructs when void is used as a result type for a function prototype. They may also use int when a function result is
declared ssize_t.

Neither the names of the formal parameters nor their types, as they appear in an implementation, are specified by this
part of ISO/IEC 9945. The names are used within this part of ISO/IEC 9945 as a notational mechanism. However, any
declaration provided by an implementation shall accept all actual parameter types that a declaration lexically identical
to one in this part of ISO/IEC 9945 shall accept, including the effects of both type conversion and checking for the
number of arguments implied by the presence of a filled-out prototype. The implementation's declaration shall not
cause a syntax error if an application provides a prototype lexically identical to one in this part of ISO/IEC 9945. It is
not a requirement that nonconforming parameters to functions that may be used by an application be diagnosed by an
implementation, except as specifically required by this part of ISO/IEC 9945 or the C Standard {2}, as applicable.
Where the C Standard {2} has a more restrictive requirement for a function defined by that standard, that requirement
shall be honored, and this exception does not apply.

2.8 Numerical Limits

The following subclauses list magnitude limitations imposed by a specific implementation. The braces notation,
{LIMIT}, is used in this part of ISO/IEC 9945 to indicate these values, but the braces are n* part of the name.

2.8.1 C Language Limits

The following limits used in this part of ISO/IEC 9945 are defined in the C Standard {2}: {CHAR_BIT},
{CHAR_MAX}, {CHAR_MIN}, {INT_MAX}, {INT_MIN}, {LONG_MAX}, {LONG_MIN}, {MB_LEN_MAX},
{SCHAR_MAX}, {SCHAR_MIN}, {SHRT_MAX}, {SHRT_MIN}, {UCHAR_MAX}, {UINT_MAX},
{ULONG_MAX}, {USHRT_MAX}.

2.8.2 Minimum Values

The symbols in Table 2.3 shall be defined in <limits.h> with the values shown. These are symbolic names for the
most restrictive value for certain features on a system conforming to this part of ISO/IEC 9945. Related symbols are
defined elsewhere in this part of ISO/IEC 9945, which reflect the actual implementation and which need not be as
restrictive. A conforming implementation shall provide values at least this large. A portable application shall not
require a larger value for correct operation.

34 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Table 2.3—Minimum Values
Name Description Value

{_POSIX_AIO_LISTIO_MAX} The number of I/O operations that can be specified in a list I/O
call.

2

{_POSIX_AIO_MAX} The number of outstanding asynchronous I/O operations. 1

{_POSIX_ARG_MAX} The length of the arguments for one of the execfunctions, in
bytes, including environment data.

4096

{_POSIX_CHILD_MAX} The number of simultaneous processes per real user ID. 6

{_POSIX_DELAYTIMER_MAX} The number of timer expiration overruns. 32

{_POSIX_LINK_MAX} The value of a file's link count. 8

{_POSIX_LOGIN_NAME_MAX} The size of the storage required for a login name, in bytes,
including the terminating null.

9

{_POSIX_MAX_CANON} The number of bytes in a terminal canonical input queue. 255

{_POSIX_MAX_INPUT} The number of bytes for which space will be available in a
terminal input queue.

255

{_POSIX_MQ_OPEN_MAX} The number of message queues that can be open for a single
process.

8

{_POSIX_MQ_PRIO_MAX} The maximum number of message priorities supported by the
implementation.

32

{_POSIX_NAME_MAX} The number of bytes in a filename. 14

{_POSIX_NGROUPS_MAX} The number of simultaneous supplementary group IDs per
process.

0

{_POSIX_OPEN_MAX} The number of files that one process can have open at one time. 16

{_POSIX_PATH_MAX} The number of bytes in a pathname. 255

{_POSIX_PIPE_BUF} The number of bytes that can be written atomically when writing
to a pipe.

512

{_POSIX_RTSIG_MAX} The number of realtime signal numbers reserved for application
use.

8

{_POSIX_SEM_NSEMS_MAX} The number of semaphores that a process may have. 256

{_POSIX_SEM_VALUE_MAX} The maximum value a semaphore may have. 32 767

{_POSIX_SIGQUEUE_MAX} The number of queued signals that a process may send and have
pending at the receiver(s) at any time.

32

{_POSIX_SSIZE_MAX} The value that can be stored in an object of type ssize_t. 32 767

{_POSIX_STREAM_MAX} The number of streams that one process can have open at one
time.

8

{_POSIX_THREAD_DESTRUCTOR-
_ITERATIONS}

The number of attempts made to destroy the thread-specific data
values of a thread on thread exit.

4

{_POSIX_THREAD_KEYS_MAX} The number of data keys per process. 128

{_POSIX_THREAD_THREADS_MAX} The number of threads per process. 64

{_POSIX_TTY_NAME_MAX} The size of the storage required for a terminal device name, in
bytes, including the terminating null.

9

{_POSIX_TIMER_MAX} The per-process number of timers. 32

{_POSIX_TZNAME_MAX} The maximum number of bytes supported for the name of a time
zone (not of the TZ variable).

3

Copyright © 1996 IEEE All Rights Reserved 35

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

2.8.3 Run-Time Increasable Values

The magnitude limitations in Table 2.4 shall be fixed by specific implementations.

Table 2.4—Run-Time Increasable Values

A Strictly Conforming POSIX. 1 Application shall assume that the value supplied by <limits.h> in a specific
implementation is the minimum value that pertains whenever the Strictly Conforming POSIX. 1 Application is run
under that implementation.2 A specific instance of a specific implementation may increase the value relative to that
supplied by <limits.h> for that implementation. The actual value supported by a specific instance shall be
provided by the sysconf() function.

2.8.4 Run-Time Invariant Values (Possibly Indeterminate)

A definition of one of the values in Table 2.5 shall be omitted from the <limits.h> on specific implementations
where the corresponding value is equal to or greater than the stated minimum, but is indeterminate.

This might depend on the amount of available memory space on a specific instance of a specific implementation. The
actual value supported by a specific instance shall be provided by the sysconf() function.

2.8.5 Pathname Variable Values

The values in Table 2.6 may be constants within an implementation or may vary from one pathname to another.

For example, file systems or directories may have different characteristics.

A definition of one of the values from Table 2.6 shall be omitted from <limits.h> on specific implementations
where the corresponding value is equal to or greater than the stated minimum, but where the value can vary depending
on the file to which it is applied. The actual value supported for a specific pathname shall be provided by the pathconf()
function.

Name Description Minimum Value

{NGROUPS_MAX} Maximum number of simultaneous supplementary
group IDs per process.

{_POSIX_NGROUPS_MAX}

2In a future revision of this part of ISO/IEC 9945, omitting a symbol defined in this subclause from <limits.h> is expected to indicate that the
value is variable.

Table 2.5—Run-Time Invariant Values (Possibly Indeterminate)

Name Description Minimum Value

{AIO_LISTIO_MAX} Maximum number of I/O operations in a single
list I/O call supported by the implementation.

{_POSIX_AIO_LISTIO_MAX}

{AIO_MAX} Maximum number of outstanding
asynchronous I/O operations supported by the
implementation.

{_POSIX_AIO_MAX}

{AIO_PRIO_DELTA_MAX} The maximum amount by which a process can
decrease its asynchronous I/O priority level
from its own scheduling priority.

0

{ARG_MAX} Maximum length of arguments for the exec
functions, in bytes, including environment
data.

{_POSIX_ARG_MAX}

36 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

{CHILD_MAX} Maximum number of simultaneous processes
per real user ID.

{_POSIX_CHILD_MAX}

{DELAYTIMER_MAX} Maximum number of timer expiration
overruns.

{_POSIX_DELAYTIMER_MAX}

{LOGIN_NAME_MAX} Maximum length of a login name. {_POSIX_LOGIN_NAME_MAX}

{MQ_OPEN_MAX} The maximum number of open message queue
descriptors a process may hold.

{_POSIX_MQ_OPEN_MAX}

{MQ_PRIO_MAX} The maximum number of message priorities
supported by the implementation.

{_POSIX_MQ_PRIO_MAX}

{OPEN_MAX} Maximum number of files that one process can
have open at any given time.

{_POSIX_OPEN_MAX}

{PAGESIZE} Granularity in bytes of memory mapping and
process memory locking.

1

{PTHREAD_DESTRUCTOR_-
ITERATIONS}

Maximum number of attempts made to destroy
the thread-specific data values of a thread on
thread exit.

{_POSIX_THREAD_DESTRUCTOR_-
ITERATIONS}

{PTHREAD_KEYS_MAX} Maximum number of data keys that can be
created per process.

{_POSIX_THREAD_KEYS_MAX}

{PTHREAD_STACK_MIN} Mininum size in bytes of thread stack storage. 0

{PTHREAD_THREADS_MAX} Maximum number of threads that can be
created per process.

{_POSIX_THREAD_THREADS_MAX}

{RTSIG_MAX} Maximum number of real time signals
reserved for application use in this
implementation.

{_POSIX_RTSIG_MAX}

{SEM_NSEMS_MAX} Maximum number of semaphores that a
process may have.

{_POSIX_SEM_NSEMS_MAX}

{SEM_VALUE_MAX} The maximum value a semaphore may have. {_POSIX_SEM_VALUE_MAX}

{SIGQUEUE_MAX} Maximum number of queued signals that a
process may send and have pending at the
receiver(s) at any time.

{_POSIX_SIGQUEUE_MAX}

{STREAM_MAX} The number of streams that one process can
have open at one time. If defined, it shall have
the same value as {FOPEN_MAX} from the C
Standard {2}.

{_POSIX_STREAM_MAX}

{TIMER_MAX} Maximum number of timers per process
supported by the implementation.

{_POSIX_TIMER_MAX}

{TTY_NAME_MAX} Maximum length of terminal device name. {_POSIX_TTY_NAME_MAX}

{TZNAME_MAX} The maximum number of bytes supported for
the name of a time zone (not of the TZ
variable).

{_POSIX_TZNAME_MAX}

Table 2.5—Run-Time Invariant Values (Possibly Indeterminate) (Continued)

Name Description Minimum Value

Copyright © 1996 IEEE All Rights Reserved 37

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Table 2.6—Pathname Variable Values

2.8.6 Invariant Values

The value in Table 2.7 shall not vary in a given implementation. The value in that table shall appear in <limits.h>.

Table 2.7—Invariant Value

2.8.7 Maximum Values

The symbols in Table 2-7a shall be defined in <limits.h> with the values shown. These are symbolic names for the
most restrictive value for certain features on a system conforming to this part of ISO/IEC 9945. A conforming
implementation shall provide values no larger than these values. A portable application shall not require a smaller
value for correct operation.

Table 2-7a —Maximum Values

2.9 Symbolic Constants

A conforming implementation shall have the header <unistd.h>. This header defines the symbolic constants and
structures referenced elsewhere in this part of ISO/IEC 9945. The constants defined by this header are shown in the
following subclauses. The actual values of the constants are implementation defined.

2.9.1 Symbolic Constants for the access() Function

The constants used by the access() function are shown in Table Default. The constants F_OK, R_OK, W_OK, and
X_OK, and the expressions

Name Description Minimum Value

{LINK_MAX} Maximum value of a file's link count. {_POSIX_LINK_MAX}

{MAX_CANON} Maximum number of bytes in a terminal canonical
input line. (See 7.1.1.6.)

{_POSIX_MAX_CANON}

{MAX_INPUT} Minimum number of bytes for which space will be
available in a terminal input queue; therefore, the
maximum number of bytes a portable application
may require to be typed as input before reading them.

{_POSIX_MAX_INPUT}

{NAME_MAX} Maximum number of bytes in a file name (not a
string length; count excludes a terminating null).

{_POSIX_NAME_MAX}

{PATH_MAX} Maximum number of bytes in a pathname (not a
string length; count excludes a terminating null).

{_POSIX_PATH_MAX}

{PIPE_BUF} Maximum number of bytes that can be written
atomically when writing to a pipe.

{_POSIX_PIPE_BUF}

Name Description Value

{SSIZE_MAX} The maximum value that can be stored in an object of
type ssize_t.

{_POSIX_SSIZE_MAX}

Name Description Value

{_POSIX_CLOCKRES_MIN} The CLOCK_REALTIME clock resolution, in
nanoseconds

20 000 000

38 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

R_OK | W_OK

(where the | represents the bitwise inclusive OR operator),

R_OK | X_OK

and

R_OK | W_OK | X_OK

shall all have distinct values.

Table 2.8—Symbolic Constants for the access() Function

2.9.2 Symbolic Constant for the lseek() Function

The constants used by the lseek() function are shown in Table 2.9.

Table 2.9—Symbolic Constants for the lseek() Function

2.9.3 Compile-Time Symbolic Constants for Portability Specifications

The constants in Table 2-10 may be used by the application, at compile time, to determine which optional facilities are
present and what actions shall be taken by the implementation.

If the symbol {_POSIX_MEMLOCK_RANGE} is defined, the symbol {_POSIX_MEMLOCK} shall be defined. If
the symbol {_POSIX_MEMORY_PROTECTION} is defined, then at least one of the symbols
{_POSIX_MAPPED_FILES} or {_POSIX_SHARED_MEMORY_OBJECTS} shall be defined. If the symbol
{_POSIX_SYNCHRONIZED_IO} is defined, the symbol {_POSIX_FSYNC} shall be defined.

If the symbol {_POSIX_THREADS} is defined, then the symbol {_POSIX_THREAD_SAFE_FUNCTIONS} shall
also be defined.

If the symbol {_POSIX_THREAD_PRIORITY_SCHEDULING} is defined, then the symbol {_POSIX_THREADS}
shall also be defined. If the symbol {_POSIX_THREAD_PRIO_INHERIT} is defined, then the symbol
{_POSIX_THREAD_PRIORITY_SCHEDULING} shall also be defined. If the symbol{_POSIX_THREAD_-
PRIO_PROTECT} is defined, then the symbol {_POSIX_THREAD_PRIORITY_SCHEDULING} shall also be
defined.

Constant Description

R_OK Test for read permission.

W_OK Test for write permission.

X_OK Test for execute or search permission.

F_OK Test for existence of file.

Constant Description

SEEK_SET Set file offset to offset.

SEEK_CUR Set file offset to current plus offset.

SEEK_END Set file offset to EOF plus offset.

Copyright © 1996 IEEE All Rights Reserved 39

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Although a Strictly Conforming POSIX.1 Application can rely on the values compiled from the <unistd.h> header
to afford it portability on all instances of an implementation, it may choose, to interrogate a value at run-time to take
advantage of the current configuration. See 4.8.1.

Table 2.10—Compile-Time Symbolic Constants

Name Description

{_POSIX_ASYNCHRONOUS_IO} If this symbol is defined, the implementation supports the
Asynchronous Input and Output option.

{_POSIX_FSYNC} If this symbol is defined, the implementation supports the File
Synchronization option.

{_POSIX_JOB_CONTROL} If this symbol is defined, it indicates that the implementation
supports the Job Control option.

{_POSIX_MAPPED_FILES} If this symbol is defined, the implementation supports the
Memory Mapped Files option.

{_POSIX_MEMLOCK} If this symbol is defined, the implementation supports the
Process Memory Locking option.

{_POSIX_MEMLOCK_RANGE} If this symbol is defined, the implementation supports the Range
Memory Locking option.

{_POSIX_MEMORY_PROTECTION} If this symbol is defined, the implementation supports the
Memory Protection option.

{_POSIX_MESSAGE_PASSING} If this symbol is defined, the implementation supports the
Message Passing option.

{_POSIX_PRIORITIZED_IO} If this symbol is defined, the implementation supports the
Prioritized Input and Output option.

{_POSIX_PRIORITY_SCHEDULING} If this symbol is defined, the implementation supports the
Process Scheduling option.

{_POSIX_REALTIME_SIGNALS} If this symbol is defined, the implementation supports the
Realtime Signals Extension option.

{_POSIX_SAVED_IDS} If defined, each process has a saved set-user-ID and a saved set-
group-ID.

{_POSIX_SEMAPHORES} If this symbol is defined, the implementation supports the
Semaphores option.

{_POSIX_SHARED_MEMORY_OBJEC TS} If this symbol is defined, the implementation supports the Shared
Memory Objects option.

{_POSIX_SYNCHRONIZED_IO} If this symbol is defined, the implementation supports the
Synchronized Input and Output option.

{_POSIX_THREADS} If this symbol is defined, the implementation supports the
Threads option.

{_POSIX_THREAD_ATTR_STACKADDR} If this symbol is defined, the implementation supports the Thread
Stack Address Attribute option.

{_POSIX_THREAD_ATTR_STACKSIZE} If this symbol is defined, the implementation supports the Thread
Stack Size Attribute option.

{_POSIX_THREAD_PRIORITY_SCHEDULING} If this symbol is defined, the implementation supports the Thread
Execution Scheduling option.

40 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

2.9.4 Execution-Time Symbolic Constants for Portability Specifications

The constants in Table 2-11 may be used by the application, at execution time, to determine which optional facilities
are present and what actions shall be taken by the implementation in some circumstances described by this part of ISO/
IEC 9945 as implementation defined.

Table 2-11 —Execution-Time Symbolic Constants

If any of the constants in Table 2-11 are not defined in the header <unistd.h>, the value varies depending on the file
to which it is applied. See 5.7.1.

If any of the constants in Table 2-11 are defined to have value −1 in the header <unistd.h>, the implementation
shall not provide the option on any file; if any are defined to have a value other than −1 in the header <unistd.h>,
the implementation shall provide the option on all applicable files.

All of the constants in Table 2-11, whether defined in <unistd.h> or not, may be queried with respect to a specific
file using the pathconf() or fpathconf() functions.

{_POSIX_THREAD_PRIO_INHERIT} If this symbol is defined, the implementation supports the
Priority Inheritance option.

{_POSIX_THREAD_PRIO_PROTECT} If this symbol is defined, the implementation supports the
Priority Protection option.

{_POSIX_THREAD_PROCESS_SHARED} If this symbol is defined, the implementation supports the
Process-Shared Synchronization option.

{_POSIX_THREAD_SAFE_FUNCTIONS} If this symbol is defined, the implementation supports the
Thread-Safe Functions option.

{_POSIX_TIMERS} If this symbol is defined, the implementation supports the Timers
option.

{_POSIX_VERSION} The integer value 199506L. This value shall be used for system
that conform to this part of ISO/IEC 9945.

Name Description

{_POSIX_ASYNC_IO} Asynchronous input or output operations may be performed for the
associated file.

{_POSIX_CHOWN_RESTRICTED} The implementation supports the Change File Owner Restriction. The
use of the chown() function is restricted to a process with appropriate
privileges, and to changing the group ID of a file only to the effective
group ID of the process or to one of its supplementary group IDs.

{_POSIX_NO_TRUNC} Pathname components longer than {NAME_MAX} generate an error.

{_POSIX_PRIO_IO} Prioritized input or output operations may be performed for the
associated file.

{_POSIX_SYNC_IO} Synchronized input or output operations may be performed for the
associated file.

{_POSIX_VDISABLE} Terminal special characters defined in 7.1.1.9 can be disabled using this
character value, if it is defined. See tcgetattr() and tcsetattr().

Table 2.10—Compile-Time Symbolic Constants (Continued)

Name Description

Copyright © 1996 IEEE All Rights Reserved 41

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

3. Process Primitives

The functions described in this section perform the most primitive operating system services dealing with processes,
interprocess signals, and timers. All attributes of a process that are specified in this part of ISO/IEC 9945 shall remain
unchanged by a process primitive unless the description of that process primitive states explicitly that the attribute is
changed.

3.1 Process Creation and Execution

3.1.1 Process Creation

Function: fork()

3.1.1.1 Synopsis

#include <sys/types.h>
pid_t fork(void);

3.1.1.2 Description

The fork() function creates a new process. The new process (child process) shall be an exact copy of the calling process
(parent process) except for the following:

1) The child process has a unique process ID. The child process ID also does not match any active process group
ID.

2) The child process has a different parent process ID (which is the process ID of the parent process).
3) The child process has its own copy of the parent's file descriptors. Each of the child's file descriptors refers to

the same open file description with the corresponding file descriptor of the parent.
4) The child process has its own copy of the parent's open directory streams (see 5.1.2). Each open directory

stream in the child process may share directory stream positioning with the corresponding directory stream of
the parent.

5) The child process's values of tms_utime, tms_stime, tms_cutime, and tms_cstime are set to zero (see 4.5.2).
6) File locks previously set by the parent are not inherited by the child.(See 6.5.2.)
7) Pending alarms are cleared for the child process. (See 3.4.1.)
8) The set of signals pending for the child process is initialized to the empty set. (See 3.3.1.1.)
9) If the Semaphores option is supported, any semaphores that are open in the parent process shall also be open

in the child process. (See 11.2.)
10) If the Process Memory Locking option is supported, the child process shall not inherit any address space

memory locks established by the parent process via calls to mlockall() or mlock(). (See 12.1.)
11) If the Memory Mapped Files or Shared Memory Objects option is supported, memory mappings created in

the parent are retained in the child process. MAP_PRIVATE mappings inherited from the parent shall also be
MAP_PRIVATE mappings in the child, and any modifications to the data in these mappings made by the
parent prior to calling fork() shall be visible to the child. Any modifications to the data in MAP_PRIVATE
mappings made by the parent after fork() returns shall be visible only to the parent. Modifications to the data
in MAP_PRIVATE mappings made by the child shall be visible only to the child. (See 12.2.)

12) If the Process Scheduling option is supported, for the SCHED_FIFO and SCHED_RR scheduling policies the
child process shall inherit the policy and priority settings of the parent process during a fork() function. For
other scheduling policies, the policy and priority settings on fork() are implementation defined. (See 13.3.)

13) If the Timers option is supported, per-process timers created by the parent are not inherited by the child
process. (See Section 14)

42 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

14) If the Message Passing option is supported, the child process has its own copy of the message queue
descriptors of the parent. Each of the message descriptors of the child refers to the same open message queue
description as the corresponding message descriptor of the parent. (See Section 15)

15) If the Asynchronous Input and Output option is supported, no asynchronous input or asynchronous output
operations are inherited by the child process. (See 6.7.)

16) A process is created with a single thread. If a multithreaded process calls fork(), the new process shall contain
a replica of the calling thread and its entire address space, possibly including the states of mutexes and other
resources. Consequently, to avoid errors, the child process may only execute async-signal safe operations (see
3.3.1.3) until such time as one of the exec functions is called. If {_POSIX_THREADS} is defined, fork
handlers may be established by means of the pthread_atfork() function in order to maintain application
invariants across fork() calls.

All other process characteristics defined by this part of ISO/IEC 9945 shall be the same in the parent and the child
processes. The inheritance of process characteristics not defined by this part of ISO/IEC 9945 is unspecified by this
part of ISO/IEC 9945, but should be documented in the system documentation.

After fork(), both the parent and the child processes shall be capable of executing independently before either
terminates.

3.1.1.3 Returns

Upon successful completion, fork() shall return a value of zero to the child process and shall return the process ID of
the child process to the parent process. Both processes shall continue to execute from the fork() function. Otherwise,
a value of −1 shall be returned to the parent process, no child process shall be created, and errno shall be set to indicate
the error.

3.1.1.4 Errors

If any of the following conditions occur, the fork() function shall return −1 and set errno to the corresponding value:

[EAGAIN] The system lacked the necessary resources to create another process, or the system-imposed limit on
the total number of processes under execution by a single user would be exceeded.

For each of the following conditions, if the condition is detected, the fork() function shall return −1 and set errno to the
corresponding value:

[ENOMEM] The process requires more space than the system is able to supply.

3.1.1.5 Cross-References

alarm(), 3.4.1; exec, 3.1.2; fcntl(), 6.5.2; kill(), 3.3.2; times(), 4.5.2; wait, 3.2.1.

3.1.2 Execute a File

Functions: execl(), execv(), execle(), execve(), execlp(), execvp().

3.1.2.1 Synopsis

int execl(const char *path, const char *arg, ...);
int execv(const char *path, char *const argv[]);
int execle(const char *path, const char *arg, ...);
int execve(const char *path, char *const argv[], char *cons envp[]);
int execlp(const char *file, const char *arg, ...);
int execvp(const char *file, char *const argv[]);

Copyright © 1996 IEEE All Rights Reserved 43

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

3.1.2.2 Description

The exec family of functions shall replace the current process image with a new process image. The new image is
constructed from a regular, executable file called the new process image file. There shall be no return from a successful
exec because the calling process image is overlaid by the new process image.

When a C program is executed as a result of this call, it shall be entered as a C language function call as follows:

 int main(int argc, char *argv[]);

where argc is the argument count and argv is an array of character pointers to the arguments themselves. In addition,
the following variable:

 extern char **environ;

is initialized as a pointer to an array of character pointers to the environment strings. The argv and environ arrays are
each terminated by a NULL pointer. The NULL pointer terminating the argv array is not counted in argc.

The arguments specified by a program with one of the exec functions shall be passed on to the new process image in
the corresponding main() arguments.

The argument path points to a pathname that identifies the new process image file.

The argument file is used to construct a pathname that identifies the new process image file. If the file argument
contains a slash character, the file argument shall be used as the pathname for this file. Otherwise, the path prefix for
this file is obtained by a search of the directories passed as the environment variable PATH (see 2.6). If this
environment variable is not present, the results of the search are implementation defined.

The argument argv is an array of character pointers to null-terminated strings. The last member of this array shall be
a NULL pointer. These strings constitute the argument list available to the new process image. The value in argv[0]
should point to a filename that is associated with the process being started by one of the exec functions.

The const char *arg and subsequent ellipses in the execl(), execlp(), and execle() functions can be thought of as
arg0, arg1, …, argn. Together they describe a list of one or more pointers to null-terminated character strings that
represent the argument list available to the new program. The first argument should point to a filename that is
associated with the process being started by one of the exec functions, and the last argument shall be a NULL. pointer.
For the execle() function, the environment is provided by following the NULL pointer that shall terminate the list of
arguments in the parameter list to execle() with an additional parameter, as if it were declared as

 char *const envp[]

The argument envp to execve() and the final argument to execle() name an array of character pointers to null-
terminated strings. These strings constitute the environment for the new process image. The environment array is
terminated by a NULL pointer.

For those forms not containing an envp pointer [execl(), execv(), execlp(), and execvp()], the environment for the new
process image is taken from the external variable environ in the calling process.

The number of bytes available for the new process's combined argument and environment lists is {ARG_MAX}. The
implementation shall specify in the system documentation (see 1.3.1.2) whether any combination of null terminators,
pointers, or alignment bytes are included in this total.

If {_POSIX_THREADS} is defined, conforming multithreaded applications shall not use the environ variable to
access or modify any environment variable while any other thread is concurrently modifying any environment

44 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

variable. A call to any function dependent on any environment variable shall be considered a use of the environ
variable to access that environment variable.

NOTE — Functions for setting and clearing environment variables are currently proposed. When such functions are standardized,
they will be defined to be safe to use for setting and clearing environment variables in multithreaded programs.

File descriptors open in the calling process image remain open in the new process image, except for those whose close-
on-exec flag FD_CLOEXEC is set (see 6.5.2 and 6.5.1). For those file descriptors that remain open, all attributes of the
open file description, including file locks (see 6.5.2), remain unchanged by this function call.

Directory streams open in the calling process image shall be closed in the new process image.

Signals set to the default action (SIG_DFL) in the calling process image shall be set to the default action in the new
process image. Signals set to be ignored (SIG_IGN) by the calling process image shall be set to be ignored by the new
process image. Signals set to be caught by the calling process image shall be set to the default action in the new process
image (see 3.3.1.1).

If the set-user-ID mode bit of the new process image file is set (see 5.6.4), the effective user ID of the new process
image is set to the owner ID of the new process image file. Similarly, if the set-group-ID mode bit of the new process
image file is set, the effective group ID of the new process image is set to the group ID of the new process image file.
The real user ID, real group ID, and supplementary group IDs of the new process image remain the same as those of
the calling process image. If {_POSIX_SAVED_IDS} is defined, the effective user ID and effective group ID of the
new process image shall be saved (as the saved set-user-ID and the saved set-group-ID for use by the setuid() function.

If the Semaphores option is supported, any named semaphores that are open in the calling process shall be closed as if
by appropriate calls to sem_close().

If the Process Memory Locking option is supported, memory locks established by the calling process via calls to
mlockall() or mlock() shall be removed. If locked pages in the address space of the calling process are also mapped into
the address spaces of other processes and are locked by those processes, the locks established by the other processes
shall be unaffected by the call by this process to the exec function. If the exec function fails, the effect on memory locks
is unspecified.

If the Memory Mapped Files or Shared Memory Objects option is supported, memory mappings created in the process
are unmapped before the address space is rebuilt for the new process image.

If the Process Scheduling option is supported, for the SCHED_FIFO and SCHED_RR scheduling policies the policy
and priority settings shall not be changed by a call to an exec function. For other scheduling policies, the policy and
priority settings on exec are implementation defined.

If the Timers option is supported, per-process timers created by the calling process shall be deleted before replacing the
current process image with the new process image.

If the Message Passing option is supported, all open message queue descriptors in the calling process shall be closed,
as described in mq_close().

If the Asynchronous Input and Output option is supported, any outstanding asynchronous I/O operations may be
canceled. Those asynchronous I/O operations that are not canceled shall complete as if the exec function had not yet
occurred, but any associated signal notifications shall be suppressed. It is unspecified whether the exec function itself
blocks awaiting such I/O completion. In no event, however, shall the new process image created by the exec function
be affected by the presence of outstanding asynchronous I/O operations at the time the exec function is called. Whether
any I/O is cancelled, and which I/O may be cancelled upon exec, is implementation defined.

Copyright © 1996 IEEE All Rights Reserved 45

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

A call to any exec function from a process with more than one thread shall result in all threads being terminated and
the new executable image being loaded and executed. No destructor functions shall be called.

The new process image also inherits the following attributes from the calling process image:

1) Process ID
2) Parent process ID
3) Process group ID
4) Session membership
5) Real user ID
6) Real group ID
7) Supplementary group IDs
8) Time left until an alarm clock signal (see 3.4.1)
9) Current working directory
10) Root directory
11) File mode creation mask (see 5.3.3)
12) Process signal mask (see 3.3.5)
13) Pending signals (see 3.3.6)
14) tms_utime, tms_stime, tms_cutime, and tms_cstime (see 4.5.2)

All process attributes defined by this part of ISO/IEC 9945 and not specified in this subclause (3.1.2) shall be the same
in the new and old process images. The inheritance of process characteristics not defined by this part of ISO/IEC 9945
is unspecified by this part of ISO/IEC 9945, but should be documented in the system documentation.

Upon successful completion, the exec functions shall mark for update the st_atime field of the file. If the exec function
failed, but was able to locate the process image file, whether the st_atime field is marked for update is unspecified.
Should the exec function succeed, the process image file shall be considered to have been open()-ed. The
corresponding close() shall be considered to occur at a time after this open, but before process termination or
successful completion of a subsequent call to one of the exec functions.

The argv[] and envp[] arrays of pointers and the strings to which those arrays point shall not be modified by a call to
one of the exec functions, except as a consequence of replacing the process image.

3.1.2.3 Returns

If one of the exec functions returns to the calling process image, an error has occurred; the return value shall be −1, and
errno shall be set to indicate the error.

3.1.2.4 Errors

If any of the following conditions occur, the exec functions shall return −1 and set errno to the corresponding value:

[E2BIG] The number of bytes used by the argument list and the environment list of the new process image is
greater than the system-imposed limit of {ARG_MAX} bytes.

[EACCES] Search permission is denied for a directory listed in the path prefix of the new process image file, or
the new process image file denies execution permission, or the new process image file is not a
regular file and the implementation does not support execution of files of its type.

[ENAMETOOLONG]

The length of the path or file arguments, or an element of the environment variable PATH prefixed
to a file, exceeds {PATH_MAX}, or a pathname component is longer than {NAME_MAX} and
{_POSIX_NO_TRUNC} is in effect for that file.

46 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

[ENOENT] One or more components of the pathname of the new process image file do not exist, or the path or
file argument points to an empty string.

[ENOTDIR] A component of the path prefix of the new process image file is not a directory.

If any of the following conditions occur, the execl(), execv(), execle(), and execve() functions shall return −1 and set
errno to the corresponding value:

[ENOEXEC] The new process image file has the appropriate access permission, but is not in the proper format.

For each of the following conditions, if the condition is detected, the exec functions shall return −1 and return the
corresponding value in errno:

[ENOMEM] The new process image requires more memory than is allowed by the hardware or system-imposed
memory management constraints.

3.1.2.5 Cross-References

alarm(), 3.4.1; chmod(), 5.6.4;_exit(), 3.2.2; fcntl(), 6.5.2; fork(), 3.1.1; setuid(), 4.2.2; <signal.h>, 3.3.1.1;
sigprocmask(), 3.3.5; sigpending(), 3.3.6; stat(), 5.6.2; <sys/stat.h>, 5.6.1; times(), 4.5.2; umask(), 5.3.3; 2.6.

3.1.3 Register Fork Handlers

Function: pthread_atfork()

3.1.3.1 Synopsis

#include <sys/types.h>
int pthread_atfork(void (*prepare) (void), void (*parent) (void),
 void (*child) (void));

3.1.3.2 Description

If {_POSIX_THREADS} is defined:

The pthread_atfork() function shall declare fork handlers to be called before and after fork(), in the context of
the thread that called fork(). The prepare fork handler shall be called before fork() processing commences.
The parent fork handler shall be called after fork() processing completes in the parent process. The child fork
handler shall be called alter fork() processing completes in the child process. If no handling is desired at one
or more of these three points, the corresponding fork handler address(es) may be set to NULL.
The order of calls to pthread_atfork() is significant. The parent and child fork handlers shall be called in the
order in which they were established by calls to pthread_atfork(). The prepare fork handlers shall be called in
the opposite order.

Otherwise:

Either the implementation shall support the pthread_atfork() function as described above or the
pthread_atfork() function shall not be provided.

3.1.3.3 Returns

Upon successful completion, pthread_atfork() shall return a value of zero. Otherwise, an error number shall be
returned to indicate the error.

Copyright © 1996 IEEE All Rights Reserved 47

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

3.1.3.4 Errors

If any of the following conditions occur, the pthread_atfork() function shall return the corresponding error number:

[ENOMEM] Insufficient table space exists to record the fork handler addresses.

3.1.3.5 Cross-References

fork(), 3.1.1.

3.2 Process Termination

There are two kinds of process termination:

1) Normal termination occurs by a return from main() or when requested with the exit() or _exit() functions.
2) Abnormal termination occurs when requested by the abort() function or when some signals are received (see

3.3.1.1).

The exit() and abort() functions shall be as described in the C Standard {2}. Both exit() and abort() shall terminate a
process with the consequences specified in 3.2.2, except that the status made available to wait() or waitpid() by abort()
shall be that of a process terminated by the SIGABRT signal.

A thread of the parent process can suspend its execution to wait for termination of a child process with the wait() or
waitpid() functions.

3.2.1 Wait for Process Termination

Functions: wait(), waitpid()

3.2.1.1 Synopsis

#include <sys/types.h>
#include <sys/wait.h>
pid_t wait(int *stat_loc);
pid_t waitpid(pid_t pid, int *stat_loc, int options);

3.2.1.2 Description

The wait() and waitpid() functions allow the calling process to obtain status information pertaining to one of its child
processes. Various options permit status information to be obtained for child processes that have terminated or
stopped. If status information is available for two or more child processes, the order in which their status is reported is
unspecified.

The wait() function shall suspend execution of the calling thread until status information for one of the terminated
child processes of the calling process is available or until a signal whose action is either to execute a signal-catching
function tion or to terminate the process is delivered. If more than one thread is suspended in wait() or waitpid()
awaiting termination of the same process, exactly one thread shall return the process status at the time of the target
process termination. If status information is available prior to the call to wait(), return shall be immediate.

The waitpid() function shall behave identically to the wait() function if the pid argument has a value of −1 and the
options argument has a value of zero. Other wise, its behavior shall be modified by the values of the pid and options
arguments.

48 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

The pid argument specifies a set of child processes for which status is requested. The waitpid() function shall only
return the status of a child process from this set.

1) If pid is equal to −1, status is requested for any child process. In this respect, waitpid() is then equivalent to
wait().

2) If pid is greater than zero, it specifies the process ID of a single child process for which status is requested.
3) If pid is equal to zero, status is requested for any child process whose process group ID is equal to that of the

calling process.
4) If pid is less than −1, status is requested for any child process whose process group ID is equal to the absolute

value of pid.

The options argument is constructed from the bitwise inclusive OR of zero or more of the following flags, defined in
the header <sys/wait.h>:

WNOHANG The waitpid() function shall not suspend execution of the calling thread if status is not immediately
available for one of the child processes specified by pid.

WUNTRACED

If the implementation supports Job Control, the status of any child processes specified by pid that are
stopped, and whose status has not yet been reported since they stopped, shall also be reported to the
requesting process.

If wait() or waitpid() return because the status of a child process is available, these functions shall return a value equal
to the process ID of the child process. In this case, if the value of the argument stat_loc is not NULL, information shall
be stored in the location pointed to by stat_loc. If and only if the status returned is from a terminated child process that
returned a value of zero from main() or passed a value of zero as the status argument to _exit() or exit(), the value stored
at the location pointed to by stat_loc shall be zero. Regardless of its value, this information may be interpreted using
the following macros, which are defined in <sys/wait.h> and evaluate to integral expressions; the stat_val
argument is the integer value pointed to by stat_loc.

WIFEXITED(stat_val)

This macro evaluates to a nonzero value if status was returned for a child process that terminated
normally.

WEXITSTATUS(stat_val)

If the value of WIFEXITED(stat_val) is nonzero, this macro evaluates to the low-order 8 bits of the
status argument that the child process passed to _exit() or exit(), or the value the child process
returned from main().

WIFSIGNALED(stat_val)

This macro evaluates to a nonzero value if status was returned for a child process that terminated due
to the receipt of a signal that was not caught (see 3.3.1.1).

WTERMSIG(stat_val)

If the value of WIFSIGNALED(stat_val) is nonzero, this macro evaluates to the number of the
signal that caused the termination of the child process.

WIFSTOPPED(stat_val)

This macro evaluates to a nonzero value if status was returned for a child process that is currently
stopped.

Copyright © 1996 IEEE All Rights Reserved 49

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

WSTOPSIG(stat_val)

If the value of WIFSTOPPED(stat_val) is nonzero, this macro evaluates to the number of the signal
that caused the child process to stop.

If the information stored at the location pointed to by stat_loc was stored there by a call to the waitpid() function that
specified the WUNTRACED flag, exactly one of the macros WIFEXITED(*stat_loc), WIFSIGNALED(*stat_loc), or
WIFSTOPPED(*stat_loc) shall evaluate to a nonzero value. If the information stored at the location pointed to by
stat_loc was stored there by a call to the wait-pid() function that did not specify the WUNTRACED flag or by a call
to the wait() function, exactly one of the macros WIFEXITED(*stat_loc) or WIFSIGNALED(*stat_loc) shall evaluate
to a nonzero value.

An implementation may define additional circumstances under which wait() or waitpid() reports status. This shall not
occur unless the calling process or one of its child processes explicitly makes use of a nonstandard extension. In these
cases, the interpretation of the reported status is implementation defined.

3.2.1.3 Returns

If the wait() or waitpid() functions return because the status of a child process is available, these functions shall return
a value equal to the process ID of the child process for which status is reported. If the wait() or waitpid() functions
return due to the delivery of a signal to the calling process, a value of −1 shall be returned and errno shall be set to
[EINTR]. If the waitpid() function was invoked with WNOHANG set in options, has at least one child process
specified by pid for which status is not available, and status is not available for any process specified by pid, a value of
zero shall be returned. Otherwise, a value of −1 shall be returned, and errno shall be set to indicate the error.

3.2.1.4 Errors

If any of the following conditions occur, the wait() function shall return −1 and set errno to the corresponding value:

[ECHILD] The calling process has no existing unwaited-for child processes.

[EINTR] The function was interrupted by a signal. The value of the location pointed to by stat_loc is
undefined.

If any of the following conditions occur, the waitpid() function shall return −1 and set errno to the corresponding
value:

[ECHILD] The process or process group specified by pid does not exist or is not a child of the calling process.

[EINTR] The function was interrupted by a signal. The value of the location pointed to by stat_loc is
undefined.

[EINVAL] The value of the options argument is not valid.

3.2.1.5 Cross-References

_exit(), 3.2.2; fork(), 3.1.1; pause(), 3.4.2; times(), 4.5.2; <signal.h>, 3.3.1.1.

3.2.2 Terminate a Process

Function:_exit()

3.2.2.1 Synopsis

void _exit(int status);

50 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

3.2.2.2 Description

The _exit() function shall terminate the calling process with the following consequences:

1) All open file descriptors and directory streams in the calling process are closed.
2) If the parent process of the calling process is executing a wait() or waitpid(), it is notified of the termination

of the calling process and the low order 8 bits of status are made available to it; see 3.2.1.
3) If the parent process of the calling process is not executing a wait() or waitpid() function, the exit status code

is saved for return to the parent process whenever the parent process executes an appropriate subsequent
wait() or waitpid().

4) Termination of a process does not directly terminate its children. The sending of a SIGHUP signal as
described below indirectly terminates children in some circumstances. Children of a terminated process shall
be assigned a new parent process ID, corresponding to an implementation-defined system process.

5) If the implementation supports the SIGCHLD signal, a SIGCHLD signal shall be sent to the parent process.
6) If the process is a controlling process, the SIGHUP signal shall be sent to each process in the foreground

process group of the controlling terminal belonging to the calling process.
7) If the process is a controlling process, the controlling terminal associated with the session is disassociated

from the session, allowing it to be acquired by a new controlling process.
8) If the implementation supports job control, and if the exit of the process causes a process group to become

orphaned, and if any member of the newly orphaned process group is stopped, then a SIGHUP signal
followed by a SIGCONT signal shall be sent to each process in the newly orphaned process group.

9) If the Semaphores option is supported, all open named semaphores in the calling process shall be closed as if
by appropriate calls to sem_close().

10) If the Process Memory Locking option is supported, any memory locks established by the process via calls to
mlockall() or mlock() shall be removed. If locked pages in the address space of the calling process are also
mapped into the address spaces of other processes and are locked by those processes, the locks established by
the other processes shall be unaffected by the call by this process to _exit().

11) If the Memory Mapped Files or Shared Memory Objects option is supported, memory mappings created in
the process are unmapped before the process is destroyed.

12) If the Message Passing option is supported, all open message queue descriptors in the calling process shall be
closed as if by appropriate calls to mq_close().

13) If the Asynchronous Input and Output option is supported, any outstanding cancelable asynchronous I/O
operations may be canceled. Those asynchronous I/O operations that are not canceled shall complete as if the
_exit() operation held not yet occurred, but any associated signal notifications shall be suppressed. The _exit()
operation itself may or may not block awaiting such I/O completion. Whether any I/O is cancelled, and which
I/O may be cancelled upon _exit(), is implementation defined.

14) Threads terminated by a call to _exit() shall not invoke their cancellation cleanup handlers (see Section 18)
and shall not invoke per-thread data destructors (see Section 17).

These consequences shall occur on process termination for any reason.

3.2.2.3 Returns

The _exit() function cannot return to its caller.

3.2.2.4 Cross-References

close(), 6.3.1; sigaction(), 3.3.4; wait, 3.2.1.

Copyright © 1996 IEEE All Rights Reserved 51

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

3.3 Signals

3.3.1 Signal Concepts

3.3.1.1 Signal Names

The <signal.h> header declares the sigset_t type and the sigaction structure. It also defines the following symbolic
constants, each of which expands to a distinct constant expression of the type void(*)(), whose value matches no
declarable function.

The type sigset_t is used to represent sets of signals. It is always an integral or structure type. Several functions used
to manipulate objects of type sigset_t are defined in 3.3.3.2.

The <signal.h> header also declares the constants that are used to refer to the signals that occur in the system. Each
of the signals defined by this part of ISO/IEC 9945 and supported by the implementation shall have distinct, positive
integral values. The value zero is reserved for use as the null signal (see 3.3.2). An implementation may define
additional signals that may occur in the system.

The constants shown in Table 3.1 shall be supported by all implementations.

The constants shown in Table 3.2 and Table 3.3 shall be defined by all implementations. However, implementations
that do not support Job Control are not required to support the signals in Table 3.2, and those not supporting Memory
Protection are not required to support the signals in Table 3.3. If these signals are supported by the implementation,
they shall behave in accordance with this part of ISO/IEC 9945. Otherwise, the implementation shall not generate
these signals, and attempts to send these signals or to examine or specify their actions shall return an error condition.
See 3.3.2 and 3.3.4.

Symbolic
Constant Description

SIG_DFL Request for default signal handling

SIG_IGN Request that signal be ignored

52 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Table 3.1—Required Signals

NOTE — The default actions are

1 Abnormal termination of the process.

Table 3.2—Job Control Signals

NOTE — The default actions are

2 Ignore the signal.
3 Stop the process.
4 Continue the process if it is currently stopped; otherwise, ignore the signal.

The macros SIGRTMIN and SIGRTMAX shall be defined in <signal.h>, shall evaluate to integral expressions,
and, if the Realtime Signals Extension option is supported, shall specify a range of signal numbers that are reserved for

Symbolic
Constant

Default
Action Description

SIGABRT 1 Abnormal termination signal, such as is initiated by the abort() function (as defined in
the C Standard {2}).

SIGALRM 1 Timeout signal, such as initiated by the alarm() function (see 3.4.1).

SIGFPE 1 Erroneous arithmetic operation, such as division by zero or an operation resulting in
overflow.

SIGHUP 1 Hangup detected on controlling terminal (see 7.1.1.10) or death of controlling process
(see 3.2.2).

SIGILL 1 Detection of an invalid hardware instruction.

SIGINT 1 Interactive attention signal (see 7.1.1.9).

SIGKILL 1 Termination signal (cannot be caught or ignored).

SIGPIPE 1 Write on a pipe with no readers (see 6.4.2).

SIGQUIT 1 Interactive termination signal (see 7.1.1.9).

SIGSEGV 1 Detection of an invalid memory reference.

SIGTERM 1 Termination signal.

SIGUSR1 1 Reserved as application-defined signal 1.

SIGUSR2 1 Reserved as application-defined signal 2.

Symbolic
Constant

Default
Action Description

SIGCHLD 2 Child process terminated or stopped.

SIGCONT 4 Continue if stopped.

SIGSTOP 3 Stop signal (cannot be caught or ignored).

SIGTSTP 3 Interactive stop signal (see 7.1.1.9).

SIGTTIN 3 Read from control terminal attempted by a member of a background process group
(see 7.1.1.4).

SIGTTOU 3 Write to control terminal attempted by a member of a background process group (see
7.1.1.4).

Copyright © 1996 IEEE All Rights Reserved 53

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

application use and for which the realtime signal behavior specified in this section shall be supported. The signal
numbers in this range shall not overlap any of the signals specified in Tables 3.1, 3.2, or 3.3.

Table 3.3—Memory Protection Signals

The range SIGRTMIN through SIGRTMAX inclusive shall include at least {RTSIG_MAX} signal numbers.

It is implementation defined whether the realtime signal behavior specified in this section—specifically, the queuing
of signals and the passing of application-defined values—is supported for the signals defined in Tables 3.1, 3.2, or 3.3.

3.3.1.2 Signal Generation and Delivery

A signal is said to be generated for (or sent to) a process or a thread when the event that causes the signal first occurs.
Examples of such events include detection of hardware faults, timer expiration, signals generated via the sigevent
structure, and terminal activity, as well as invocations of the kill() and sigqueue() functions. In some circumstances, the
same event generates signals for multiple processes.

At the time of generation, a determination shall be made whether the signal has been generated for the process or for
a specific thread within the process. Signals that are generated by some action attributable to a particular thread, such
as a hardware fault, shall be generated for the thread that caused the signal to be generated. Signals that are generated
in association with a process ID or process group ID or an asynchronous event such as terminal activity shall be
generated for the process.

Each process has an action to be taken in response to each signal defined by the system (see 3.3.1.3). A signal is said
to be delivered to a process when the appropriate action for the process and signal is taken. A signal is said to be
accepted by a process when the signal is selected and returned by one of the sigwait functions.

During the time between the generation of a signal and its delivery or acceptance, the signal is said to be pending.
Ordinarily, this interval cannot be detected by an application. However, a signal can be blocked from being delivered
to a thread. If the action associated with a blocked signal is anything other than to ignore the signal, and if that signal
is generated for a thread, the signal shall remain pending until either it is accepted, it is unblocked, or the action
associated with it is set to ignore the signal. Signals generated for the process shall be delivered to or accepted by
exactly one of those threads within the process. The thread shall be in a call to a sigwait function selecting that signal
or it shall not block delivery of the signal. If there are no threads in a call to a sigwait function selecting that signal, and
if all threads within the process block delivery of the signal, the signal shall remain pending on the process until either
a thread calls a sigwait function selecting that signal, a thread unblocks delivery of the signal, or the action associated
with the signal is set to ignore the signal. If the action associated with a blocked signal is to ignore the signal, and if that
signal is generated for the process or the thread, it is unspecified whether the signal is discarded immediately upon
generation or remains pending.

Each thread has a signal mask that defines the set of signals currently blocked from delivery to it. The signal mask for
a thread is initialized from that of its creating thread, or from the corresponding thread in the parent process if the
thread was created as the result of a call to fork(). The sigaction(), sigprocmask(), pthread_sigmask(), and sigsuspend()
functions control the manipulation of the signal mask.

The determination of which action is taken in response to a signal is made at the time the signal is delivered, allowing
for any changes since the time of generation. This determination is independent of the means by which the signal was
originally generated. If a subsequent occurrence of a pending signal is generated, it is implementation defined as to
whether the signal is delivered or accepted more than once in circumstances other than those for which queueing is

Symbolic
Constant

Default
Action Description

SIGBUS 1 Access to an undefined portion of a memory object (see 5.6.7, 12.2.1).

54 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

required under the Realtime Signals Extension option. The order in which multiple, simultaneously pending signals
outside the range SIGRTMIN to SIGRTMAX are delivered to or accepted by a process is unspecified.

When any stop signal (SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU) is generated for a process, any pending SIGCONT
signals for that process shall be discarded. Conversely, when SIGCONT is generated for a process, all pending stop
signals for that process shall be discarded. When SIGCONT is generated for a process that is stopped, the process shall
be continued, even if the SIGCONT signal is blocked or ignored. If SIGCONT is blocked and not ignored, it shall
remain pending until it is either unblocked or a stop signal is generated for the process.

When a signal is delivered to a thread, if the action of that signal specifies termination, stop, or continue, the entire
process shall be terminated, stopped, or continued, respectively.

Some signal-generating functions, such as high-resolution timer expiration, asynchronous I/O completion,
interprocess message arrival, and the sigqueue() function, support the specification of an application-defined value,
either explicitly as a parameter to the function or in a sigevent structure parameter. The sigevent structure shall be
defined in <signal.h> and shall contain at least the following members:

Implementations may add extensions as permitted in 1.3.1.1, item (2). Adding extensions to this structure, which may
change the behavior of the application with respect to this standard when those fields in the structure are uninitialized,
also requires that the extension be enabled as required by 1.3.1.1.

The sigev_notify member specifies the notification mechanism to use when an asynchronous event occurs. This
standard defines the following values for the sigev_notify member:

SIGEV_NONE No asynchronous notification shall be delivered when the event of interest occurs.

SIGEV_SIGNAL

The signal specified in sigev_signo shall be generated for the process when the event of interest
occurs. If the implementation supports the Realtime Signals Extension option and if the
SA_SIGINFO flag is set for that signal number, then the signal shall be queued to the process, and
the value specified in sigev_value shall be the si_value component of the generated signal. If
SA_SIGINFO is not set for that signal number, it is unspecified whether the signal is queued and
what value, if any, is sent.

SIGEV_THREAD

A notification function shall be called to perform notification.

An implementation may define additional notification mechanisms.

Member
Type

Name
Member Description

int sigev_notify Notification type

int sigev_signo Signal number

union sigval sigev_value Signal value

void (*)(union sigval) sigev_notify_function Notification function

(pthread_attr_t *) sigev_notify_attributes Notification attributes

Copyright © 1996 IEEE All Rights Reserved 55

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The sigev_signo member specifies the signal to be generated. The sigev_value member is the application-defined value
to be passed to the signal-catching function at the time of the signal delivery or to be returned at signal acceptance as
the si_value member of the siginfo_t structure.

Multithreaded programs can use an alternate event notification mechanism. If {_POSIX_THREADS} is defined:

When a notification is processed, and when the sigev_notify member of the sigevent structure has the value
SIGEV_THREAD, the function sigev_notify_function shall be called with the parameter sigev_value.
The function shall be executed in an environment as if it were the start_routine for a newly created thread
with thread attributes specified by sigev_notify_attributes. If sigev_notify_attributes is NULL, the behavior
shall be as if the thread were created with the detachstate attribute set to PTHREAD
CREATE_DETACHED. Supplying a thread attributes object with a detachstate attribute of
PTHREAD_CREATE_JOINABLE results in undefined behavior. The signal mask of this thread is
implementation defined.

Otherwise:

Either the implementation shall support the behavior specified above or the implementation shall treat the
SIGEV_THREAD value as an error.

The sigval union shall be defined in <signal.h> and shall contain at least the following members:

The sival_int member shall be used when the application-defined value is of type int; the sival_ptr member shall be
used when the application-defined value is a pointer.

If the Realtime Signals Extension option is supported:

When a signal is generated by the sigqueue() function or any signal-generating function that supports the
specification of an application-defined value, the signal shall be marked pending and, if the SA_SIGINFO
flag is set for that signal, the signal shall be queued to the process along with the application-specified signal
value. Multiple occurrences of signals so generated shall be queued in FIFO order. It is unspecified whether
signals so generated are queued when the SA_SIGINFO flag is not set for that signal.
Signals generated by the kill() function or other events that cause signals to occur, such as detection of
hardware faults, alarm() timer expiration, or terminal activity, and for which the implementation does not
support queuing, shall have no effect on signals already queued for the same signal number.
When multiple unblocked signals, all in the range SIGRTMIN to SIGRTMAX, are pending, the behavior
shall be as if the implementation delivers the pending unblocked signal with the lowest signal number within
that range. No other ordering of signal delivery is specified.
If, when a pending signal is delivered, there are additional signals queued to that signal number, the signal
shall remain pending. Otherwise, the pending indication shall be reset.

An implementation shall document any conditions not specified by this part of ISO/IEC 9945 under which the
implementation generates signals. (See 1.3.1.2.)

Member
Type

Member
Name Description

int sival_int Integer signal value

void * sival_ptr Pointer signal value

56 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

3.3.1.3 Signal Actions

There are three types of actions that can be associated with a signal: SIG_DFL, SIG_IGN, or a pointer to a function.
Initially, all signals shall be set to SIG_DFL or SIG_IGN prior to entry of the main() routine (see 3.1.2). The actions
prescribed by these values are as follows:

1) SIG_DFL — signal-specific default action
a) The default actions for the signals defined in this part of ISO/IEC 9945 are specified in Tables 3.1, 3.2,

and 3.3. If the Realtime Signals Extension option is supported, the default actions for the realtime
signals in the range of SIGRTMIN through SIGRTMAX shall be to terminate the process abnormally.

b) If the default action is to stop the process, the execution of that process is temporarily suspended. When
a process stops, a SIGCHLD signal shall be generated for its parent process, unless the parent process
has set the SA_NOCLDSTOP flag (see 3.3.4). While a process is stopped, any additional signals that are
sent to the process shall not be delivered until the process is continued except SIGKILL which always
terminates the receiving process. A process that is a member of an orphaned process group shall not be
allowed to stop in response to the SIGTSTP, SIGTTIN, or SIGTTOU signals. In cases where delivery of
one of these signals would stop such a process, the signal shall be discarded.

c) Setting a signal action to SIG_DFL for a signal that is pending, and whose default action is to ignore the
signal (for example, SIGCHLD), shall cause the pending signal to be discarded, whether or not it is
blocked. If the Realtime Signals Extension option is supported, any queued values pending shall be
discarded, and the resources used to queue them shall be released and made available to queue other
signals.

2) SIG_IGN — ignore signal
a) Delivery of the signal shall have no effect on the process. The behavior of a process is undefined after it

ignores a SIGFPE, SIGILL, SIGSEGV, or SIGBUS signal that was not generated by the kill() function,
the sigqueue() function, or the raise() function as defined by the C Standard {2}.

b) The system shall not allow the action for the signals SIGKILL or SIGSTOP to be set to SIG_IGN.
c) Setting a signal action to SIG_IGN for a signal that is pending shall cause the pending signal to be

discarded, whether or not it is blocked. Any queued values pending shall be discarded, and the resources
used to queue them shall be released and made available to queue other signals.

d) If a process sets the action for the SIGCHLD signal to SIG_IGN, the behavior is unspecified.
3) pointer to a function — catch signal

a) On delivery of the signal, the receiving process is to execute the signal-catching function at the specified
address. After returning from the signal-catching function, the receiving process shall resume execution
at the point at which it was interrupted.

b) If the SA_SIGINFO flag for the signal is cleared, the signal-catching function shall be entered as a C
language function call as follows:
 void func(int signo) ;
If the SA_SIGINFO flag for the signal is set, the signal-catching function shall be entered as a C
language function call as follows:
 void func(int signo, siginfo_t *info, void *context);
where func is the specified signal-catching function and signo is the signal number of, the signal being
delivered, and info is a pointer to a siginfo_t structure defined in <signal.h> containing at least the
following member(s):

Member
Type

Member
Name Description

int si_signo Signal number

int si_code Cause of the signal

union sigval si_value Signal value

Copyright © 1996 IEEE All Rights Reserved 57

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The si_signo member shall contain the signal number. This shall be the same as the signo parameter. The
si_code member shall contain a code identifying the cause of the signal. The following values are
defined for si_code:

SI_USER The signal was sent by the kill() function. The implementation may set si_code to
SI_USER if the signal was sent by the raise() or abort() functions as defined in the C
Standard {2} or any similar functions provided as implementation extensions.

SI_QUEUE The signal was sent by the sigqueue() function.

SI_TIMER The signal was generated by the expiration of a timer set by timer_settime().

SI_ASYNCIO The signal was generated by the completion of an asynchronous I/O request.

SI_MESGQ The signal was generated by the arrival of a message on an empty message queue.

If the signal was not generated by one of the functions or events listed above, the si_code shall be set to
an implementation-defined value that is not equal to any of the values defined above.
If the Realtime Signals Extension option is supported and si_code is one of SI_QUEUE, SI_TIMER,
SI_ASYNCIO, or SI_MESGQ, then si_value shall contain the application-specified signal value.
Otherwise, the contents of si_value are undefined.
The parameter context is undefined by this part of ISO/IEC 9945.

c) The behavior of a process is undefined after it returns normally from a signal-catching function for a
SIGFPE, SIGILL, SIGSEGV, or SIGBUS signal that was not generated by the kill() function, the
sigqueue() function, or the raise() function as defined by the C Standard {2}.

d) The system shall not allow a process to catch the signals SIGKILL and SIGSTOP.
e) If a process establishes a signal-catching function for the SIGCHLD signal while it has a terminated

child process for which it has not waited, it is unspecified whether a SIGCHLD signal is generated to
indicate that child process.

f) When signal-catching functions are invoked asynchronously with process execution, the behavior of
some of the functions defined by this part of ISO/IEC 9945 is unspecified if they are called from a
signal-catching function. The following table defines a set of functions that shall be async-signal safe.

access() fdatasync() read() tcdrain()
aio_error() fork() rename() tcflow()
aio_return() fstat() rmdir() tcflush()
aio_suspend() fsync() sem_post() tcgetattr()
alarm() getegid() setgid() tcgetpgrp()
cfgetispeed() geteuid() setpgid() tcsendbreak()
cfgetospeed() getgid() setsid() tcsetattr()
cfsetispeed() getgroups() setuid() tcsetpgrp()
cfsetospeed() getpgrp() sigaction() time()
chdir() getpid() sigaddset() timer_getoverrun()
chmod() getppid() sigdelset() timer_gettime()
chown() getuid() sigemptyset() timer_settime()
clock_gettime() kill() sigfillset() times()
close() link() sigismember() umask()
creat() lseek() sigpending() uname()
dup2() mkdir() sigprocmask() unlink()
dup() mkfifo() sigqueue() utime()
execle() open() sigsuspend() wait()
execve() pathconf() sleep() waitpid()
_exit() pause() stat() write()
fcntl() pipe() sysconf()

58 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

All POSIX.1 functions not in the preceding table and all functions defined in the C Standard {2} not
stated to be callable from a signal-catching function are considered to be unsafe with respect to signals.
In the presence of signals, all functions defined by this part of ISO/IEC 9945 or by the C Standard {2}
shall behave as defined (by the defining standard) when called from or interrupted by a signal-catching
function, with a single exception: when a signal interrupts an unsafe function and the signal-catching
function calls an unsafe function, the behavior is undefined.

3.3.1.4 Signal Effects on Other Functions

Signals affect the behavior of certain functions defined by this part of ISO/IEC 9945 if delivered to a process while it
is executing such a function. If the action of the signal is to terminate the process, the process shall be terminated and
the function shall not return. If the action of the signal is to stop the process, the process shall stop until continued or
terminated. Generation of a SIGCONT signal for the process causes the process to be continued, and the original
function shall continue at the point where the process was stopped. If the action of the signal is to invoke a signal-
catching function, the signal-catching function shall be invoked; in this case, the original function is said to be
interrupted by the signal. If the signal-catching function executes a return, the behavior of the interrupted function
shall be as described individually for that function. Signals that are ignored shall not affect the behavior of any
function; signals that are blocked shall not affect the behavior of any function until they are delivered, except as
specified for sigpending() (3.3.6) and the sigwait functions (3.3.8).

3.3.2 Send a Signal to a Process

Function: kill()

3.3.2.1 Synopsis

#include <sys/types.h>
#include <signal.h>
int kill(pid_t pid, int sig);

3.3.2.2 Description

The kill() function shall send a signal to a process or a group of processes specified by pid. The signal to be sent is
specified by sig and is either one from the list given in 3.3.1.1 or zero. If sig is zero (the null signal), error checking is
performed, but no signal is actually sent. The null signal can be used to check the validity of pid.

For a process to have permission to send a signal to a process designated by pid, the real or effective user ID of the
sending process must match the real or effective user ID of the receiving process, unless the sending process has
appropriate privileges. If {_POSIX_SAVED_IDS} is defined, the saved set-user-ID of the receiving process shall be
checked in place of its effective user ID.

If pid is greater than zero, sig shall be sent to the process whose process ID is equal to pid.

If pid is zero, sig shall be sent to all processes (excluding an unspecified set of system processes) whose process group
ID is equal to the process group ID of the sender and for which the process has permission to send a signal.

If pid is −1, the behavior of the kill() function is unspecified.

If pid is negative, but not −1, sig shall be sent to all processes (excluding an unspecified set of system processes) whose
process group ID is equal to the absolute value of pid and for which the process has permission to send a signal.

If the value of pid causes sig to be generated for the sending process, and if sig is not blocked for the calling thread and
if no other thread has sig unblocked or is waiting in a sigwait function for sig, either sig or at least one pending
unblocked signal shall be delivered to the calling thread before the kill() function returns.

Copyright © 1996 IEEE All Rights Reserved 59

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

If the implementation supports the SIGCONT signal, the user ID tests described above shall not be applied when
sending SIGCONT to a process that is a member of the same session as the sending process.

An implementation that provides extended security controls may impose further implementation-defined restrictions
on the sending of signals, including the null signal. In particular, the system may deny the existence of some or all of
the processes specified by pid.

The kill() function is successful if the process has permission to send sig to any of the processes specified by pid. If the
kill() function fails, no signal shall be sent.

3.3.2.3 Returns

Upon successful completion, the function shall return a value of zero. Otherwise, a value of −1 shall be returned and
errno shall be set to indicate the error.

3.3.2.4 Errors

If any of the following conditions occur, the kill() function shall return −1 and set errno to the corresponding value:

[EINVAL] The value of the sig argument is an invalid or unsupported signal number.

[EPERM] The process does not have permission to send the signal to any receiving process.

[ESRCH] No process or process group can be found corresponding to that specified by pid.

3.3.2.5 Cross-References

getpid(), 4.1.1; setsid(), 4.3.2; sigaction(), 3.3.4; <signal.h>, 3.3.1.1.

3.3.3 Manipulate Signal Sets

Functions: sigemptyset(), sigfillset(), sigaddset(), sigdelset(), sigismember()

3.3.3.1 Synopsis

#include <signal.h>
int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset(sigset_t *set, int signo);
int sigdelset(sigset_t *set, int signo);
int sigismember(const sigset_t *set, int signo);

3.3.3.2 Description

The sigsetops primitives manipulate sets of signals. They operate on data objects addressable by the application, not on
any set of signals known to the system, such as the set blocked from delivery to a process or the set pending for a
process (see 3.3.1.1).

The sigemptyset() function initializes the signal set pointed to by the argument set, such that all signals defined in this
part of ISO/IEC 9945 are excluded.

The sigfillset() function initializes the signal set pointed to by the argument set, such that all signals defined in this part
of ISO/IEC 9945 are included.

60 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Applications shall call either sigemptyset() or sigfillset() at least once for each object of type sigset_t prior to any other
use of that object. If such an object is not initialized in this way, but is nonetheless supplied as an argument to any of
the pthread_sigmask(), sigaction(), sigaddset(), sigdelset(), sigismember(), sigpending(), sigprocmask(), sigsuspend(),
sigtimedwait(), sigwait(), or sigwaitinfo() functions, the results are undefined.

The sigaddset() and sigdelset() functions respectively add or delete the individual signal specified by the value of the
argument signo to or from the signal set pointed to by the argument set.

The sigismember() function tests whether the signal specified by the value of the argument signo is a member of the set
pointed to by the argument set.

3.3.3.3 Returns

Upon successful completion, the sigismember() function returns a value of one if the specified signal is a member of
the specified set, or a value of zero if it is not. Upon successful completion, the other functions return a value of zero.
For all of the above functions, if an error is detected, a value of −1 is returned, and errno is set to indicate the error.

3.3.3.4 Errors

For each of the following conditions, if the condition is detected, the sigaddset(), sigdelset(), and sigismember()
functions shall return −1 and set errno to the corresponding value:

[EINVAL] The value of the signo argument is an invalid or unsupported signal number.

3.3.3.5 Cross-References

sigaction(), 3.3.4; <signal.h>, 3.3.1.1; sigpending(), 3.3.6; sigprocmask(), 3.3.5; sigsuspend(), 3.3.7.

3.3.4 Examine and Change Signal Action

Function: sigaction()

3.3.4.1 Synopsis

#include <signal.h>
int sigaction(int sig, const struct sigaction *act,
 struct sigaction *oact);

3.3.4.2 Description

The sigaction() function allows the calling process to examine or specify (or both) the action to be associated with a
specific signal. The argument sig specifies the signal; acceptable values are defined in 3.3.1.1.

The structure sigaction, used to describe an action to be taken, is defined in the header <signal.h> to include at
least the following members:

Copyright © 1996 IEEE All Rights Reserved 61

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The storage occupied by sa_handler and sa_sigaction may overlap, and a conforming application shall not use both
simultaneously.

NOTE — Application writers are cautioned that although the current declaration required for sa_handler is not a prototype (and
thus does not do argument type checking), a future revision of this standard may require a complete prototype. Signal
handlers stored in sa_handler should be declared to match the single int argument implied prototype.

Implementations may add extensions as permitted in 1.3.1.1, item (2). Adding extensions to this structure, which
might change the behavior of the application with respect to this standard when those fields in the structure are
uninitialized, also requires that the extensions be enabled as required by 1.3.1.1.

If the argument actis not NULL, it points to a structure specifying the action to be associated with the specified signal.
If the argument oact is not NULL, the action previously associated with the signal is stored in the location pointed to
by the argument oact. If the argument act is NULL, signal handling is unchanged by this function call; thus, the call
can be used to enquire about the current handling of a given signal. If the SA_SIGINFO flag (see below) is cleared in
the sa_flags field of the sigaction structure, the sa_handler field identifies the action to be associated with the specified
signal. If the implementation supports the Realtime Signals Extension option and the SA_SIGINFO flag is set in the
sa_flags field, the sa_sigaction field specifies a signal-catching function. If the SA_SIGINFO bit is cleared and the
sa_handler field specifies a signal-catching function, or if the SA_SIGINFO bit is set, the sa_mask field identifies a set
of signals that shall be added to the signal mask of the thread before the signal-catching function is invoked. The
SIGKILL and SIGSTOP signals shall not be added to the signal mask using this mechanism; this restriction shall be
enforced by the system without causing an error to be indicated.

The sa_flags field can be used to modify the behavior of the specified signal.

The following flag bits, defined in the header <signal.h>, can be set in sa_flags:

If sig is SIGCHLD and the SA_NOCLDSTOP flag is not set in sa_flags, and the implementation supports the
SIGCHLD signal, a SIGCHLD signal shall be generated for the calling process whenever any of its child processes

Member
Type

Member
Name

Description

void (*)() sa_handler SIG_DFL, SIG_IGN, or pointer to a
function.

sigset_t sa_mask Additional set of signals to be blocked
during execution of signal-catching function.

int sa_flags Special flags to affect behavior of signal.

void(*)(int, siginfo_t *, void *) sa_sigaction Pointer to a function.

Symbolic
Constant Description

SA_NOCLDSTOP Do not generate SIGCHLD when children stop.

SA_SIGINFO Invoke the signal-catching function with three arguments
instead of one.

62 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

stop. If sig is SIGCHLD and the SA_NOCLDSTOP flag is set in sa_flags, the implementation shall not generate a
SIGCHLD signal in this way.

If SA_SIGINFO is not set in sa_flags, then the disposition of subsequent occurrences of sig when it is already pending
is implementation-defined; the signal-catching function shall be invoked with a single argument. If the implementation
supports the Realtime Signals Extension option and the SA_SIGINFO flag is set in sa_flags, then subsequent
occurrences of sig generated by sigqueue() or as a result of any signal-generating function that supports the
specification of an application-defined value—when sig is already pending—shall be queued in FIFO order until
delivered or accepted; if delivered, the signal-catching function shall be invoked with three arguments. The application
specified value shall be passed to the signal-catching function as the si_value member of the siginfo_t structure.

When a signal is caught by a signal-catching function installed by the sigaction() function, a new signal mask is
calculated and installed for the duration of the signal-catching function [or until a call to either the sigprocmask() or
sig-suspend() function is made]. This mask is formed by taking the union of the current signal mask and the value of
the sa_mask for the signal being delivered, and then including the signal being delivered. If and when the user's signal
handler returns normally, the original signal mask is restored.

Once an action is installed for a specific signal, it remains installed until another action is explicitly requested [by
another call to the sigaction() function] or until one of the exec functions is called.

If the previous action for sig had been established by the signal() function, defined in the C Standard {2}, the values
of the fields returned in the structure pointed to by oact are unspecified and, in particular, oact->sv_handler is not
necessarily the same value passed to the signal() function. However, if a pointer to the same structure or a copy thereof
is passed to a subsequent call to the sigaction() function via the act argument, handling of the signal shall be as if the
original call to the signal() function were repeated.

If the sigaction() function fails, no new signal handler is installed.

It is unspecified whether an attempt to set the action for a signal that cannot be caught or ignored to SIG_DFL is
ignored or causes an error to be returned with errno set to [EINVAL]. The result of the use of sigaction() and a sigwait
function concurrently within a process on the same signal is unspecified.

3.3.4.3 Returns

Upon successful completion, a value of zero is returned. Otherwise, a value of −1 is returned and errno is set to
indicate the error.

3.3.4.4 Errors

If any of the following conditions occur, the sigaction() function shall return −1 and set errno to the corresponding
value:

[EINVAL] The value of the sig argument is an invalid or unsupported signal number, or an attempt was made to
catch a signal that cannot be caught or to ignore a signal that cannot be ignored. See 3.3.1.1.

[ENOTSUP] The SA_SIGINFO bit flag is set in the sa_flags field of the sigaction structure, and the
implementation does not support the Realtime Signals Extension option.

For each of the following conditions, when the condition is detected and the implementation treats it as an error, the
sigaction() function shall return a value of −1 and set errno to the corresponding value.

[EINVAL] An attempt was made to set the action to SIG_DFL for a signal that cannot be caught or ignored (or
both).

Copyright © 1996 IEEE All Rights Reserved 63

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

3.3.4.5 Cross-References

kill(), 3.3.2; <signal.h>, 3.3.1.1; sigprocmask(), 3.3.5; sigsetops, 3.3.3.2; sigsuspend(), 3.3.7.

3.3.5 Examine and Change Blocked Signals

Functions: pthread_sigmask(), sigprocmask()

3.3.5.1 Synopsis

#include <signal.h>
int pthread_sigmask(int how, const sigset_t *set, sigset_t *oset);
int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

3.3.5.2 Description

In a single-threaded process, the sigprocmask() function is used to examine or change (or both) the signal mask of the
calling thread. The use of the sigprocmask() function is unspecified in a multithreaded process. If the value of the
argument set is not NULL, it points to a set of signals to be used to change the currently blocked set.

The value of the argument how indicates the manner in which the set is changed and shall consist of one of the
following values, as defined in the header <signal.h>:

If the argument oset is not NULL, the previous mask is stored in the space pointed to by oset. If the value of the
argument set is NULL, the value of the argument how is not significant and the signal mask of the thread is unchanged
by this function call; thus, the call can be used to enquire about currently blocked signals.

If there are any pending unblocked signals after the call to the sigprocmask() function, at least one of those signals
shall be delivered before the sigprocmask() function returns.

It is not possible to block the SIGKILL and SIGSTOP signals; this shall be enforced by the system without causing an
error to be indicated.

If any of the SIGFPE, SIGILL, SIGSEGV, or SIGBUS signals are generated while they are blocked, the result is
undefined unless the signal was generated by the kill() function, the sigqueue() function, or the raise() function as
defined by the C Standard {2}.

If the sigprocmask() function fails, the signal mask of the thread is not changed by this function call.

If {_POSIX_THREADS} is defined:

Name Description

SIG_BLOCK The resulting set shall be the union of the current set and the signal set pointed to by the
argument set.

SIG_UNBLOCK The resulting set shall be the intersection of the current set and the complement of the
signal set pointed to by the argument set.

SIG_SETMASK The resulting set shall be the signal set pointed to by the argument set.

64 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

The pthread_sigmask() function is used to examine or change (or both) the signal mask of the calling thread,
regardless of the number of threads in the process. The effect shall be the same as described for
sigprocmask(), without the restriction that the call needs to be made in a single-threaded process.

Otherwise:

Either the implementation shall support the pthread_sigmask() function as described above or the
pthread_sigmask() function shall not be provided.

3.3.5.3 Returns

Upon successful completion, the sigprocmask() function shall return a value of zero. Otherwise, the function shall
return a value of −1 and set errno to indicate the error. Upon successful completion, the pthread_sigmask() function
shall return a value of zero. Otherwise, the function shall return an error number.

3.3.5.4 Errors

If any of the following conditions occur, the sigprocmask() function shall return −1 ανδ σετ errno to the
corresponding value:

[EINVAL] The value of the how argument is not equal to one of the defined values.

If any of the following conditions occur, the pthread_sigmask() function shall return the corresponding error number:

[EINVAL] The value of the how argument is not equal to one of the defined values.

3.3.5.5 Cross-References

sigaction(), 3.3.4; <signal.h>, 3.3.1.1; sigpending(), 3.3.6; sigsetops, 3.3.3.2; sigsuspend(), 3.3.7.

3.3.6 Examine Pending Signals

Function: sigpending()

3.3.6.1 Synopsis

#include <signal.h>
int sigpending(sigset_t *set);

3.3.6.2 Description

The sigpending() function shall store, in the location referenced by the set argument, the set of signals that are blocked
from delivery and are pending either for the process or the calling thread.

3.3.6.3 Returns

Upon successful completion, a value of zero is returned. Otherwise, a value of −1 is returned and errno is set to
indicate the error.

3.3.6.4 Errors

This part of ISO/IEC 9945 does not specify any error conditions that are required to be detected for the sigpending()
function. Some errors may be detected under conditions that are unspecified by this part of ISO/IEC 9945.

Copyright © 1996 IEEE All Rights Reserved 65

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

3.3.6.5 Cross-References

<signal.h>, 3.3.1.1; sigprocmask(), 3.3.5; sigsetops, 3.3.3.2.

3.3.7 Wait for a Signal

Function: sigsuspend()

3.3.7.1 Synopsis

#include <signal.h>
int sigsuspend(const sigset_t *sigmask);

3.3.7.2 Description

The sigsuspend() function replaces the signal mask of the thread with the set of signals pointed to by the argument
sigmask and then suspends the calling thread until delivery of a signal to the calling thread whose action is either to
execute a signal-catching function or to terminate the process. This shall not cause any other signals that may have
been pending on the process to become pending o the thread.

If the action is to terminate the process, the sigsuspend() function shall not return. If the action is to execute a signal-
catching function, the sigsuspend() shall return after the signal-catching function returns, with the signal mask restored
to the set that existed prior to the sigsuspend() call.

It is not possible to block those signals that cannot be ignored, as documented in 3.3.1.1; this shall be enforced by the
system without causing an error to be indicated.

3.3.7.3 Returns

Since the sigsuspend() function suspends process execution indefinitely, there is no successful completion return
value. A value of −1 is returned and errno is set to indicate the error.

3.3.7.4 Errors

If any of the following conditions occur, the sigsuspend() function shall return −1 and set errno to the corresponding
value:

[EINTR] A signal is caught by the calling process, and control is returned from the signal-catching function.

3.3.7.5 Cross-References

pause(), 3.4.2; sigaction(), 3.3.4; <signal.h>, 3.3.1.1; sigpending(), 3.3.6; sigprocmask(), 3.3.5; sigsetops, 3.3.3.2.

3.3.8 Synchronously Accept a Signal

Function: sigwait(), sigwaitinfo(), sigtimedwait()

3.3.8.1 Synopsis

#include <signal.h>
int sigwait(const sigset_t *set, int *sig);
int sigwaitinfo(const sigset_t *set, siginfo_t *info);
int sigtimedwait(const sigset_t *set, siginfo_t *info,
 const struct timespec *timeout);

66 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

3.3.8.2 Description

This subclause defines the family of sigwait functions.

The sigwait() function selects a pending signal from set, atomically clears it from the set of pending signals in the
system, and returns that signal number in the location referenced by sig. If prior to the call to sigwait() there are
multiple pending instances of a single signal number, it is implementation defined whether upon successful return
there are any remaining pending signals for that signal number. If the implementation supports queued signals and
there are multiple signals queued for the signal number selected, the first such queued signal shall cause a return from
sigwait() and the remainder shall remain queued. If no signal in set is pending at the time of the call, the thread shall
be suspended until one or more becomes pending. The signals defined by set shall have been blocked at the time of the
call to sigwait(); otherwise, the behavior is undefined. The effect of sigwait() on the signal actions for the signals in set
is unspecified.

If more than one thread is using sigwait() to wait for the same signal, no more than one of these threads shall return
from sigwait() with the signal number. Which thread returns from sigwait() if more than a single thread is waiting is
unspecified.

If {_POSIX_REALTIME_SIGNALS} is defined:

Should any of multiple pending signals in the range SIGRTMIN to SIGRTMAX be selected, it shall be the
lowest numbered one. The selection order between realtime and nonrealtime signals, or between multiple
pending nonrealtime signals, is unspecified.
The function sigwaitinfo() behaves the same as the sigwait() function if the info argument is NULL. If the
info argument is non-NULL, the sigwaitinfo() function behaves the same as sigwait(), except that the selected
signal number shall be stored in the si_signo member, and the cause of the signal shall be stored in the si_code
member. If any value is queued to the selected signal, the first such queued value shall be dequeued and, if the
info argument is non-NULL, the value shall be stored in the si_value member of info. The system resource
used to queue the signal shall be released and made available to queue other signals. If no value is queued, the
content of the si_value member is undefined. If no further signals are queued for the selected signal, the
pending indication for that signal shall be reset.
The function sigtimedwait() behaves the same as sigwaitinfo() except that if none of the signals specified by
set are pending, sigtimedwait() shall wait for the time interval specified in the timespec structure referenced
by timeout. If the timespec structure pointed to by timeout is zero-valued and if none of the signals specified
by set are pending, then sigtimedwait() shall return immediately with an error. If timeout is the NULL pointer,
the behavior is unspecified.

Otherwise:

Either the implementation shall support the sigwaitinfo() and sigtimedwait() functions as described above or
each of the sigwaitinfo()and sigtimedwait() functions shall fail.

3.3.8.3 Returns

Upon successful completion (that is, one of the signals specified by set is pending or has been generated) sigwait()
shall store the signal number of the received signal at the location referenced by sig and return zero. Otherwise, an
error number shall be returned to indicate the error. Upon successful completion sigwaitinfo() and sigtimedwait() shall
return the selected signal number. Otherwise, the function shall return a value of −1 and set errno to indicate the error.

3.3.8.4 Errors

For each of the following conditions, if the condition is detected, the sigwait() function shall return the corresponding
error number:

Copyright © 1996 IEEE All Rights Reserved 67

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

[EINVAL] The set argument contains an invalid or unsupported signal number.

If any of the following conditions occur, the sigwaitinfo() and sigtimedwait() functions shall return −1 and set errno to
the corresponding value:

[ENOSYS] The functions sigwaitinfo() and sigtimedwait() are not supported by this implementation.

For each of the following conditions, if the condition is detected, the sigwaitinfo() and sigtimedwait() functions shall
return −1 and set errno to the corresponding value:

[EINTR] The wait was interrupted by an unblocked, caught signal. It shall be documented in the system
documentation whether this error is returned.

If any of the following conditions occur, the sigtimedwait() function shall return −1 and set errno to the corresponding
value:

[EAGAIN] No signal specified by set was generated within the specified timeout period.

For each of the following conditions, if the condition is detected, the sigtimedwait() function shall return −1 and set
errno to the corresponding value:

[EINVAL] The timeout argument specified a tv_nsec value less than zero or greater than or equal to 1000
million.

An implementation should only check for this error if no signal is pending in set and it is necessary to wait.

3.3.8.5 Cross-References

pause(), 3.4.2; pthread_sigmask(), 3.3.5; sigaction(), 3.3.4; sigpending(), 3.3.6; sigsuspend(), 3.3.7; <signal.h>,
3.3.1.1; <time.h>, 14.1.

3.3.9 Queue a Signal to a Process

Function: sigqueue()

3.3.9.1 Synopsis

#include <signal.h>
int sigqueue(pid_t pid, int signo, const union sigval value);

3.3.9.2 Description

If {_POSIX_REALTIME_SIGNALS} is defined:

The sigqueue() function causes the signal specified by signo to be sent with the value specified by value to the
process specified by pid. If signo is zero (the null signal), error checking is performed but no signal is actually
sent. The null signal can be used to check the validity of pid.
The conditions required for a process to have permission to queue a signal to another process are the same as
for the kill() function.
The sigqueue() function shall return immediately. If SA_SIGINFO is set for signo and if the resources are
available to queue the signal, the signal shall be queued and sent to the receiving process. If SA_SIGINFO is
not set for signo, then signo shall be sent at least once to the receiving process; it is unspecified whether value
shall be sent to the receiving process as a result of this call.

68 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

If the value of pid causes signo to be generated for the sending process, and if signo is not blocked for the
calling thread and if no other thread has signo unblocked or is waiting in a sigwait function for signo, either
signo or at least one pending unblocked signal shall be delivered to the calling thread before the sigqueue()
function returns. Should any of multiple pending signals in the range SIGRTMIN to SIGRTMAX be selected
for delivery, it shall be the lowest numbered one. The selection order between realtime and nonrealtime
signals, or between multiple pending nonrealtime signals, is unspecified.

Otherwise:

Either the implementation shall support the sigqueue() function as described above or the sigqueue() function
shall fail.

3.3.9.3 Returns

Upon successful completion, the specified signal shall have been queued, and the sigqueue() function shall return a
value of zero. Otherwise, the function shall return a value of −1 and set errno to indicate the error.

3.3.9.4 Errors

If any of the following conditions occur, the sigqueue() function shall return −1 and set errno to the corresponding
value:

[EAGAIN] No resources available to queue the signal. The process has already queued {SIGQUEUE_MAX}
signals that are still pending at the receiver(s), or a systemwide resource limit has been exceeded.

[EINVAL] The value of the signo argument is an invalid or unsupported signal number.

[ENOSYS] The function sigqueue() is not supported by this implementation.

[EPERM] The process does not have the appropriate privilege to send the signal to the receiving process.

[ESRCH] The process pid does not exist.

3.3.9.5 Cross-References

<signal.h>, 3.3.1.1.

3.3.10 Send a Signal to a Thread

Function: pthread_kill()

3.3.10.1 Synopsis

#include <signal.h>
int pthread_kill(pthread_t thread, int sig);

3.3.10.2 Description

If {POSIX_THREADS} is defined:

The pthread_kill() function is used to request that a signal be delivered to the specified thread.
As in kill(), if sig is zero, error checking is performed but no signal is actually sent.

Otherwise:

Copyright © 1996 IEEE All Rights Reserved 69

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Either the implementation shall support the pthread_kill() function as described above or the pthread_kill()
function shall not be provided.

3.3.10.3 Returns

Upon successful completion, the function shall return a value of zero. Otherwise, the function shall return an error
number. If the pthread_kill() function fails, no signal shall be sent.

3.3.10.4 Errors

If any of the following conditions occur, the pthread_kill() function shall return the corresponding error number:

[ESRCH] No thread could be found corresponding to that specified by the given thread ID.

[EINVAL] The value of the sig argument is an invalid or unsupported signal number.

3.3.10.5 Cross-References

kill(), 3.3.2; pthread_self(), 16.2.6; raise(), 8.1.

3.4 Timer Operations

A thread can suspend itself for a specific period of time with the sleep() function or suspend itself indefinitely with the
pause() function until a signal is delivered to the thread. The alarm() function schedules a signal to be generated for the
process at a specific time.

3.4.1 Schedule Alarm

Function: alarm()

3.4.1.1 Synopsis

unsigned int alarm(unsigned int seconds);

3.4.1.2 Description

The alarm() function shall cause the system to generate a SIGALRM signal for the process after the number of
realtime seconds specified by seconds have elapsed.

Processor scheduling delays may cause the process actually not to begin handling the signal until after the desired
time.

Alarm requests are not stacked; only one SIGALRM generation can be scheduled in this manner. If the SIGALRM has
not yet been generated, the call will result in rescheduling the time at which the SIGALRM will be generated.

If seconds is zero, any previously made alarm() request is canceled.

3.4.1.3 Returns

If there is a previous alarm() request with time remaining, the alarm() function shall return a nonzero value that is the
number of seconds until the previous request would have generated a SIGALRM signal. Otherwise, the alarm()
function shall return zero.

70 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

3.4.1.4 Errors

The alarm() function is always successful, and no return value is reserved to indicate an error.

3.4.1.5 Cross-References

exec, 3.1.2; fork(), 3.1.1; pause(), 3.4.2; sigaction(), 3.3.4; <signal.h>, 3.3.1.1.

3.4.2 Suspend Process Execution

Function: pause()

3.4.2.1 Synopsis

int pause(void);

3.4.2.2 Description

The pause() function suspends the calling thread until delivery of a signal whose action is either to execute a signal-
catching function or to terminate the process.

If the action is to terminate the process, the pause() function shall not return.

If the action is to execute a signal-catching function, the pause() function shall return after the signal-catching function
returns.

3.4.2.3 Returns

Since the pause() function suspends thread execution indefinitely, there is no successful completion return value. A
value of −1 is returned and errno is set to indicate the error.

3.4.2.4 Errors

If any of the following conditions occur, the pause() function shall return −1 ανδ σετ errno to the corresponding value:

[EINTR] A signal is caught by the calling process, and control is returned from the signal-catching function.

3.4.2.5 Cross-References

alarm(), 3.4.1; kill(), 3.3.2; wait, 3.2.1; 3.3.1.4.

3.4.3 Delay Process Execution

Function: sleep()

3.4.3.1 Synopsis

unsigned int sleep(unsigned int seconds);

3.4.3.2 Description

The sleep() function shall cause the current thread to be suspended from execution until either the number of realtime
seconds specified by the argument seconds have elapsed or a signal is delivered to the calling thread and its action is

Copyright © 1996 IEEE All Rights Reserved 71

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

to invoke a signal-catching function or to terminate the process. The suspension time may be longer than requested due
to the scheduling of other activity by the system.

If a SIGALRM signal is generated for the calling process during execution of the sleep() function and the SIGALRM
signal is being ignored or blocked from delivery, it is unspecified whether sleep() returns when the SIGALRM signal
is scheduled. If the signal is being blocked, it is also unspecified whether it remains pending after the sleep() function
returns or is discarded.

If a SIGALRM signal is generated for the calling process during execution of the sleep() function, except as a result of
a prior call to the alarm() function, and if the SIGALRM signal is not being ignored or blocked from delivery, it is
unspecified whether that signal has any effect other than causing the sleep() function to return.

If a signal-catching function interrupts the sleep() function and either examines or changes the time a SIGALRM is
scheduled to be generated, the action associated with the SIGALRM signal, or whether the SIGALRM signal is
blocked from delivery, the results are unspecified.

If a signal-catching function interrupts the sleep() function and calls the siglongjmp() or longjmp() function to restore
an environment saved prior to the sleep() call, the action associated with the SIGALRM signal and the time at which
a SIGALRM signal is scheduled to be generated are unspecified. It is also unspecified whether the SIGALRM signal
is blocked, unless the process's signal mask is restored as part of the environment (see 8.3.1).

3.4.3.3 Returns

If the sleep() function returns because the requested time has elapsed, the value returned shall be zero. If the sleep()
function returns due to delivery of a signal, the value returned shall be the unslept amount (the requested time minus
the time actually slept) in seconds.

3.4.3.4 Errors

The sleep() function is always successful, and no return value is reserved to indicate an error.

3.4.3.5 Cross-References

alarm(), 3.4.1; pause(), 3.4.2; sigaction(), 3.3.4.

4. Process Environment

4.1 Process Identification

4.1.1 Get Process and Parent Process IDs

Functions: getpid(), getppid()

4.1.1.1 Synopsis

#include <sys/types.h>
pid_t getpid(void);
pid_t getppid(void);

72 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

4.1.1.2 Description

The getpid() function returns the process ID of the calling process.

The getppid() function returns the parent process ID of the calling process.

4.1.1.3 Returns

See 4.1.1.2.

4.1.1.4 Errors

The getpid() and getppid() functions are always successful, and no return value is reserved to indicate an error.

4.1.1.5 Cross-References

exec, 3.1.2; fork(), 3.1.1; kill(), 3.3.2.

4.2 User Identification

4.2.1 Get Real User, Effective User, Real Group, and Effective Group IDs

Functions: getuid(), geteuid(), getgid(), getegid()

4.2.1.1 Synopsis

#include <sys/types.h>
uid_t getuid(void);
uid_t geteuid(void);
gid_t getgid(void);
gid_t getegid(void);

4.2.1.2 Description

The getuid() function returns the real user ID of the calling process.

The geteuid() function returns the effective user ID of the calling process.

The getgid() function returns the real group ID of the calling process.

The getegid() function returns the effective group ID of the calling process.

4.2.1.3 Returns

See 4.2.1.2.

4.2.1.4 Errors

The getuid(), geteuid(), getgid(), and getegid() functions are always successful, and no return value is reserved to
indicate an error.

Copyright © 1996 IEEE All Rights Reserved 73

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

4.2.1.5 Cross-References

setuid(), 4.2.2.

4.2.2 Set User and Group IDs

Functions: setuid(), setgid()

4.2.2.1 Synopsis

#include <sys/types.h>
int setuid(uid_t uid);
int setgid(gid_t gid);

4.2.2.2 Description

If {_POSIX_SAVED_IDS} is defined:

1) If the process has appropriate privileges, the setuid() function sets the real user ID, effective user ID, and the
saved set-user-ID to uid.

2) If the process does not have appropriate privileges, but uid is equal to the real user ID or the saved set-user-
ID, the setuid() function sets the effective user ID to uid; the real user ID and saved set-user-ID remain
unchanged by this function call.

3) If the process has appropriate privileges, the setgid() function sets the real group ID, effective group ID, and
the saved set-group-ID to gid.

4) If the process does not have appropriate privileges, but gid is equal to the real group ID or the saved set-group-
ID, the setgid() function sets the effective group ID to gid; the real group ID and saved set-group-ID remain
unchanged by this function call.

Otherwise:

1) If the process has appropriate privileges, the setuid() function sets the real user ID and effective user ID to uid.
2) If the process does not have appropriate privileges, but uid is equal to the real user ID, the setuid() function

sets the effective user ID to uid; the real user ID remains unchanged by this function call.
3) If the process has appropriate privileges, the setgid() function sets the real group ID and effective group ID to

gid.
4) If the process does not have appropriate privileges, but gid is equal to the real group ID, the setgid() function

sets the effective group ID to gid; the real group ID remains unchanged by this function call.

Any supplementary group IDs of the calling process remain unchanged by these function calls.

4.2.2.3 Returns

Upon successful completion, a value of zero is returned. Otherwise, a value of −1 is returned and errno is set to
indicate the error.

4.2.2.4 Errors

If any of the following conditions occur, the setuid() function shall return −1 and set errno to the corresponding value:

[EINVAL] The value of the uid argument is invalid and not supported by the implementation.

[EPERM] The process does not have appropriate privileges and uid does not match the real user ID or, if
{_POSIX_SAVED_IDS} is defined, the saved set-user-ID.

74 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

If any of the following conditions occur, the setgid() function shall return −1 and set errno to the corresponding value:

[EINVAL] The value of the gid argument is invalid and not supported by the implementation.

[EPERM] The process does not have appropriate privileges and gid does not match the real group ID or, if
{_POSIX_SAVED_IDS} is defined, the saved set-group-ID.

4.2.2.5 Cross-References

exec, 3.1.2; getuid(), 4.2.1.

4.2.3 Get Supplementary Group IDs

Function: getgroups()

4.2.3.1 Synopsis

#include <sys/types.h>
int getgroups(int gidsetsize, gid_t grouplist[]);

4.2.3.2 Description

The getgroups() function fills in the array grouplist with the supplementary group IDs of the calling process. The
gidsetsize argument specifies the number of elements in the supplied array grouplist. The actual number of
supplementary group IDs stored in the array is returned. The values of array entries with indices larger than or equal
to the returned value are undefined.

As a special case, if the gidsetsize argument is zero, getgroups() returns the number of supplementary group IDs
associated with the calling process without modifying the array pointed to by the grouplist argument.

4.2.3.3 Returns

Upon successful completion, the number of supplementary group IDs is returned. This value is zero if
{NGROUPS_MAX} is zero. A return value of −1 indicates 109 failure, and errno is set to indicate the error.

4.2.3.4 Errors

If any of the following conditions occur, the getgroups() function shall return −1 ανδ σετ errno to the corresponding
value:

[EINVAL] The gidsetsize argument is not equal to zero and is less than the number of supplementary group IDs.

4.2.3.5 Cross-References

setgid(), 4.2.2.

4.2.4 Get User Name

Functions: getlogin(), getlogin_r()

4.2.4.1 Synopsis

char *getlogin(void);
int getlogin_r(char *name, size_t namesize);

Copyright © 1996 IEEE All Rights Reserved 75

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

4.2.4.2 Description

The getlogin() function returns a pointer to a string giving a user name associated with the calling process, which is the
login name associated with the calling process.

If getlogin() returns a non-NULL pointer, that pointer points to the name under which the user logged in, even if there
are several login names with the same user ID.

If {_POSIX_THREAD_SAFE_FUNCTIONS} is defined:

The getlogin_r() function puts the name associated by the login activity with the control terminal of the
current process in the character array pointed to by name. The array is namesize characters long and should
have space for the name and the terminating null character. The maximum size of the login name is
{LOGIN_NAME_MAX}.
If getlogin_r() is successful, name points to the name the user used at login, even if there are several login
names with the same user ID.

Otherwise:

Either the implementation shall support the getlogin_r() function as described above or the getlogin_r()
function shall not be provided.

4.2.4.3 Returns

The getlogin() function returns a pointer to a string containing the user's login name, or a NULL pointer if the user's
login name cannot be found.

The return value from getlogin() may point to static data and, therefore, may be overwritten by each call.

If successful, the getlogin_r() function shall return zero. Otherwise, an error number shall be returned to indicate the
error.

4.2.4.4 Errors

This part of ISO/IEC 9945 does not specify any error conditions that are required to be detected for the getlogin()
function. Some errors may be detected under conditions that are unspecified by this part of ISO/IEC 9945.

For each of the following conditions, if the condition is detected, the getlogin_r() function shall return the
corresponding error number:

[ERANGE] The value of namesize is smaller than the length of the string to be returned, including the
terminating null character.

4.2.4.5 Cross-References

getpwnam(), 9.2.2; getpwuid(), 9.2.2.

4.3 Process Groups

4.3.1 Get Process Group ID

Function: getpgrp()

76 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

4.3.1.1 Synopsis

#include <sys/types.h>
pid_t getpgrp(void);

4.3.1.2 Description

The getpgrp() function returns the process group ID of the calling process.

4.3.1.3 Returns

See 4.3.1.2.

4.3.1.4 Errors

The getpgrp() function is always successful, and no return value is reserved to indicate an error.

4.3.1.5 Cross-References

setpgid(), 4.3.3; setsid(), 4.3.2; sigaction(), 3.3.4.

4.3.2 Create Session and Set Process Group ID

Function: setsid()

4.3.2.1 Synopsis

#include <sys/types.h>
pid_t setsid(void);

4.3.2.2 Description

If the calling process is not a process group leader, the setsid() function shall create a new session. The calling process
shall be the session leader of this new session, shall be the process group leader of a new process group, and shall have
no controlling terminal. The process group ID of the calling process shall be set equal to the process ID of the calling
process. The calling process shall be the only process in the new process group and the only process in the new session.

4.3.2.3 Returns

Upon successful completion, the setsid() function returns the value of the process group ID of the calling process.
Otherwise, a value of −1 is returned and errno is set to indicate the error.

4.3.2.4 Errors

If any of the following conditions occur, the setsid() function shall return −1 and set errno to the corresponding value:

[EPERM] The calling process is already a process group leader, or the process group ID of a process other than
the calling process matches the process ID of the calling process.

4.3.2.5 Cross-References

exec, 3.1.2; _exit(), 3.2.2; fork(), 3.1.1; getpid(), 4.1.1; kill(), 3.3.2; setpgid(), 4.3.3; sigaction(), 3.3.4.

Copyright © 1996 IEEE All Rights Reserved 77

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

4.3.3 Set Process Group ID for Job Control

Function: setpgid()

4.3.3.1 Synopsis

#include <sys/types.h>
int setpgid(pid_t pid, pid_t pgid);

4.3.3.2 Description

If {_POSIX_JOB_CONTROL} is defined:

The setpgid() function is used to either join an existing process group or create a new process group within the
session of the calling process. The process group ID of a session leader shall not change. Upon successful
completion, the process group ID of the process with a process ID that matches pid shall be set to pgid. As a
special case, if pid is zero, the process ID of the calling process shall be used. Also, if pgid is zero, the process
ID of the indicated process shall be used.

Otherwise:

Either the implementation shall support the setpgid() function as described above or the setpgid() function
shall fail.

4.3.3.3 Returns

Upon successful completion, the setpgid() function returns a value of zero. Otherwise, a value of −1 is returned and
errno is set to indicate the error.

4.3.3.4 Errors

If any of the following conditions occur, the setpgid() function shall return −1 and set errno to the corresponding value:

[EACCES] The value of the pid argument matches the process ID of a child process of the calling process, and
the child process has successfully executed one of the exec functions.

[EINVAL] The value of the pgid argument is less than zero or is not a value supported by the implementation.

[ENOSYS] The setpgid() function is not supported by this implementation.

[EPERM] The process indicated by the pid argument is a session leader.

The value of the pid argument is valid, but matches the process ID of a child process of the calling
process, and the child process is not in the same session as the calling process.

The value of the pgid argument does not match the process ID of the process indicated by the pid
argument, and there is no process with a process group ID that matches the value of the pgid
argument in the same session as the calling process.

[ESRCH] The value of the pid argument does not match the process ID of the calling process or of a child
process of the calling process.

4.3.3.5 Cross-References

getpgrp(), 4.3.1; setsid(), 4.3.2; tcsetpgrp(), 7.2.4; exec, 3.1.2.

78 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

4.4 System Identification

4.4.1 Get System Name

Function: uname()

4.4.1.1 Synopsis

#include <sys/utsname.h>
int uname(struct utsname *name);

4.4.1.2 Description

The uname() function stores information identifying the current operating system in the structure pointed to by the
argument name.

The structure utsname is defined in the header <sys/utsname.h> and contains at least the members shown in
Table 4.1.

Table 4.1—uname() Structure Members

Each of these data items is a null-terminated array of char.

The format of each member is implementation defined. The system documentation (see 1.3.1.2) shall specify the
source and format of each member and may 261 specify the range of values for each member.

The inclusion of the nodename, member in this structure does not imply that it is sufficient information for interfacing
to communications networks.

4.4.1.3 Returns

Upon successful completion, a nonnegative value is returned. Otherwise, a value of −1 is returned and errno is set to
indicate the error.

4.4.1.4 Errors

This part of ISO/IEC 9945 does not specify any error conditions that are required to be detected for the uname()
function. Some errors may be detected under conditions that are unspecified by this part of ISO/IEC 9945.

Member
Name

Description

sysname Name of this implementation of the operating system.

nodename Name of this node within an implementation-specified communications network.

release Current release level of this implementation.

version Current version level of this release.

machine Name of the hardware type on which the system is running.

Copyright © 1996 IEEE All Rights Reserved 79

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

4.5 Time

4.5.1 Get System Time

Function: time()

4.5.1.1 Synopsis

#include <time.h>
time_t time(time_t *tloc);

4.5.1.2 Description

The time() function returns the value of time in seconds since the Epoch.

The argument tloc points to an area where the return value is also stored. If tloc is a NULL pointer, no value is stored.

4.5.1.3 Returns

Upon successful completion, time() returns the value of time. Otherwise, a value of ((time_t) −1) is returned and errno
is set to indicate the error.

4.5.1.4 Errors

This part of ISO/IEC 9945 does not specify any error conditions that are required to be detected for the time() function.
Some errors may be detected under conditions that are unspecified by this part of ISO/IEC 9945.

4.5.2 Get Process Times

Function: times()

4.5.2.1 Synopsis

#include <sys/times.h>
clock_t times(struct tms *buffer);

4.5.2.2 Description

The times() function shall fill the structure pointed to by buffer with time accounting information. The type clock_t and
the tms structure are defined in <sys/times.h>; the tms structure shall contain at least the following members:

Member
Type

Member
Name Description

clock_t tms_utime User CPU time.

clock_t tms_stime System CPU time.

clock_t tms_cutime User CPU time of terminated child processes.

clock_t tms_cstime System CPU time of terminated child processes.

80 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

All times are measured in terms of the number of clock ticks used.

The times of a terminated child process are included in the tms_cutime and tms_cstime elements of the parent when a
wait() or waitpid() function returns the 306 process ID of this terminated child. See 3.2.1. If a child process has not
waited 307 for its terminated children, their times shall not be included in its times.

The value tms_utime is the CPU time charged for the execution of user instructions.

The value tms_stime is the CPU time charged for execution by the system on behalf of the process.

The value tms_cutime is the sum of the tms_utimes and tms_cutimes of the child processes.

The value tms_cstime is the sum of the tms_stimes and tms_cstimes of the child processes.

4.5.2.3 Returns

Upon successful completion, times() shall return the elapsed real time, in clock ticks, since an arbitrary point in the
past (for example, system start-up time). This point does not change from one invocation of times() within the process
to another. The return value may overflow the possible range of type clock_t. If the times() function fails, a value of
((clock_t) −1) is returned and errno is set to indicate the error.

4.5.2.4 Errors

This part of ISO/IEC 9945 does not specify any error conditions that are required to be detected for the times()
function. Some errors may be detected under conditions that are unspecified by this part of ISO/IEC 9945.

4.5.2.5 Cross-References

exec, 3.1.2; fork(), 3.1.1; sysconf(), 4.8.1; time(), 4.5.1; wait(), 3.2.1.

4.6 Environment Variables

4.6.1 Environment Access

Function: getenv

4.6.1.1 Synopsis

#include <stdlib.h>
char *getenv(const char *name);

4.6.1.2 Description

The getenv() function searches the environment list (see 2.6) for a string of the form name=value and returns a pointer
to value if such a string is present. If the specified name cannot be found, a NULL pointer is returned.

4.6.1.3 Returns

Upon successful completion, the getenv() function returns a pointer to a string containing the value for the specified
name, or a NULL pointer if the specified name cannot be found. The return value from getenv() may point to static
data and, therefore, may be overwritten by each call. Unsuccessful completion shall result in the return of a NULL
pointer.

Copyright © 1996 IEEE All Rights Reserved 81

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

4.6.1.4 Errors

This part of ISO/IEC 9945 does not specify any error conditions that are required to be detected for the getenv()
function. Some errors may be detected under conditions that are unspecified by this part of ISO/IEC 9945.

4.6.1.5 Cross-References

3.1.2; 2.6.

4.7 Terminal Identification

4.7.1 Generate Terminal Pathname

Function: ctermid()

4.7.1.1 Synopsis

#include <stdio.h>
char *ctermid(char *s);

4.7.1.2 Description

The ctermid() function generates a string that, when used as a pathname, refers to the current controlling terminal for
the current process.

If the ctermid() function returns a pathname, access to the file is not guaranteed. If the application uses any of the
interfaces guaranteed to be available if either {_POSIX_THREAD_SAFE_FUNCTIONS} or {_POSIX_THREADS}
is defined, the ctermid() function shall be called with a non-NULL parameter.

4.7.1.3 Returns

If s is a NULL pointer, the string is generated in an area that may be static (and, therefore, may be overwritten by each
call), the address of which is returned. Otherwise, s is assumed to point to an array of char of at least L_ctermid bytes;
the string is placed in this array and the value of s is returned. The symbolic constant L_ctermid is defined in
<stdio.h> and shall have a value greater than zero.

The ctermid() function shall return an empty string if the pathname that would refer to the controlling terminal cannot
be determined or if the function is unsuccessful.

4.7.1.4 Errors

This part of ISO/IEC 9945 does not specify any error conditions that are required to be detected for the ctermid()
function. Some errors may be detected under conditions that are unspecified by this part of ISO/IEC 9945.

4.7.1.5 Cross-References

ttyname(), 4.7.2.

4.7.2 Determine Terminal Device Name

Functions: ttyname(), ttyname_r(), isatty()

82 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

4.7.2.1 Synopsis

char *ttyname(int fildes);
int ttyname_r(int fildes, char *name, size_t namesize);
int isatty(int fildes);

4.7.2.2 Description

The ttyname() function returns a pointer to a string containing a null-terminated pathname of the terminal associated
with file descriptor fildes.

The return value of ttyname() may point to static data that is overwritten by each call.

The isatty() function returns 1 if fildes is a valid file descriptor associated with a terminal, zero otherwise.

If {_POSIX_THREAD_SAFE_FUNCTIONS} is defined:

The ttyname_r() function stores the null-terminated pathname of the terminal associated with the file
descriptor fildes in the character array referenced by name. The array is namesize characters long and should
have space for the name and the terminating null character. The maximum length of the terminal name is
{TTY_NAME_MAX}.

Otherwise:

Either the implementation shall support the ttyname_r() function as described above or the ttyname_r()
function shall not be provided.

4.7.2.3 Returns

The ttyname() function returns a NULL pointer if fildes is not a valid file descriptor associated with a terminal or if the
pathname cannot be determined.

If successful, the ttyname_r() function shall return zero. Otherwise, an error number shall be returned to indicate the
error.

4.7.2.4 Errors

This part of ISO/IEC 9945 does not specify any error conditions that are required to be detected for the ttyname() or
isatty() functions. Some errors may be detected under conditions that are unspecified by this part of ISO/IEC 9945.

For each of the following conditions, if the condition is detected, the ttyname_r() function shall return the
corresponding error number:

[EBADF] The filedes argument is not a valid file descriptor.

[ENOTTY] The filedes argument does not refer to a tty.

[ERANGE] The value of namesize is smaller than the length of the string to be returned, including the
terminating null character.

Copyright © 1996 IEEE All Rights Reserved 83

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

4.8 Configurable System Variables

4.8.1 Get Configurable System Variables

Function: sysconf()

4.8.1.1 Synopsis

#include <unistd.h>
long sysconf(int name);

4.8.1.2 Description

The sysconf() function provides a method for the application to determine the current value of a configurable system
limit or option (variable).

The name argument represents the system variable to be queried. The implementation shall support all of the variables
listed in Table 4.2 and may support others. The variables in Table 4.2 come from <limits.h> or <unistd.h> and
the symbolic constants, defined in <unistd.h>, that are the corresponding values used for name.

Table 4.2—Configurable System Variables

Variable name Value

{AIO_LISTIO_MAX} {_SC_AIO_LISTIO_MAX}

{AIO_ MAX} {_SC_AIO_MAX}

{AIO_PRIO_DELTA_MAX} {SC_AIO_PRIO_DELTA_MAX}

{ARG_MAX} {_SC_ARG_MAX}

{CHILD_MAX} {_SC_CHILD_MAX}

clock ticks/second {_SC_CLK_TCK}

{DELAYTIMER_MAX} {_SC_DELAYTIMER_MAX}

Maximum size of getgrgid_r() and getgrnam_r()
data buffers

{_SC_GETGR_R_SIZE_MAX}

Maximum size of getpwuid_r() and getpwnam_r()
data buffers

{_SC_GETPW_R_SIZE_MAX}

{LOGIN_NAME_MAX} {_SC_LOGIN_NAME_MAX}

{MQ_OPEN_MAX} {_SC_MQ_OPEN_MAX}

{MQ_PRIO_MAX} {_SC_MQ_PRIO_MAX}

{NGROUPS_MAX} {_SC_NGROUPS_MAX}

{OPEN_MAX} {_SC_OPEN_MAX}

{PAGESIZE} {_SC_PAGESIZE}

{RTSIG_MAX} {_SC_RTSIG_MAX}

{SEM_NSEMS_MAX} {_SC_SEM_NSEMS_MAX}

{SEM_VALUE_MAX} {_SC_SEM_VALUE_MAX}

{SIGQUEUE_MAX} {_SC_SIGQUEUE_MAX}

84 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

{STREAM_MAX} {_SC_STREAM_MAX}

{PTHREAD_DESTRUCTOR_ITERATIONS} {_SC_THREAD_DESTRUCTOR_ITERATIONS}

{PTHREAD_KEYS_MAX} {_SC_THREAD_KEYS_MAX}

{PTHREAD_STACK_MIN} {_SC_THREAD_STACK_MIN}

{PTHREAD_THREADS_MAX} {_SC_THREAD_THREADS_MAX}

{TIMER_MAX} {_SC_TIMER_MAX}

{TTY_NAME_MAX} {_SC_TTY_NAME_MAX}

{TZNAME_MAX} {_SC_TZNAME_MAX}

{_POSIX_ASYNCHRONOUS_IO} {_SC_ASYNCHRONOUS_IO}

{_POSIX_FSYNC} {_SC_FSYNC}

{_POSIX_JOB_CONTROL} {_SC_JOB_CONTROL}

{_POSIX_MAPPED_FILES} {_SC_MAPPED_FILES}

{_POSIX_MEMLOCK} {_SC_MEMLOCK}

{_POSIC_MEMLOCK_RANGE} {_SC_MEMLOCK_RANGE}

{_POSIX_MEMORY_PROTECTION} {_SC_MEMORY_PROTECTION}

{_POSIX_MESSAGE_PASSING} {_SC_MESSAGE_PASSING}

{_POSIX_PRIORITIZED_IO} {_SC_PRIORITIZED_IO}

{_POSIX_PRIORITY_SCHEDULING} {_SC_PRIORITY_SCHEDULING}

{_POSIX_REALTIME_SIGNALS} {_SC_REALTIME_SIGNALS}

{_POSIX_SAVED_IDS} {_SC_SAVED_IDS}

{_POSIX_SEMAPHORES} {_SC_SEMAPHORES}

{_POSIX_SHARED_MEMORY_OBJECTS} {_SC_SHARED_MEMORY_OBJECTS}

{_POSIX_SYNCHRONIZED_IO} {_SC_SYNCHRONIZED_IO}

{_POSIX_TIMERS} {_SC_TIMERS}

{_POSIX_THREADS} {_SC_THREADS}

{_POSIX_THREAD_ATTR_STACKADDR} {_SC_THREAD_ATTR_STACKADDR}

{_POSIX_THREAD_ATTR_STACKSIZE} {_SC_THREAD_ATTR_STACKSIZE}

{_POSIX_THREAD_PRIORITY_SCHEDULING} {_SC_THREAD_PRIORITY_SCHEDULING}

{_POSIX_THREAD_PRIO_INHERIT} {_SC_THREAD_PRIO_INHERIT}

{_POSIX_THREAD_PRIO_PROTECT} {_SC_THREAD_PRIO_PROTECT}

{_POSIX_THREAD_PROCESS_SHARED} {_SC_THREAD_PROCESS_SHARED}

{_POSIX_THREAD_SAFE_FUNCTIONS} {_SC_THREAD_SAFE_FUNCTIONS}

{_POSIX_VERSION} {_SC_VERSION}

Table 4.2—Configurable System Variables (Continued)

Variable name Value

Copyright © 1996 IEEE All Rights Reserved 85

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

4.8.1.3 Returns

If name is an invalid value, sysconf() shall return −1. If the variable corresponding to name is associated with
functionality that is not supported by the system, sysconf() shall return −1 without changing the value of errno.

Otherwise, the sysconf() function returns the current variable value on the system. The value returned shall not be more
restrictive than the corresponding value described to the application when it was compiled with the implementation's
<limits.h> or <unistd.h>. The value shall not change during the lifetime of the calling process.

4.8.1.4 Errors

If any of the following conditions occur, the sysconf() function shall return −1 and set errno to the corresponding value:

[EINVAL] The value of the name argument is invalid.

4.8.1.5 Special Symbol {CLK_TCK}

The special symbol {CLK_TCK} shall yield the same result as sysconf (_SC_CLK_TCK). It shall be defined in
<time.h>. The symbol {CLK_TCK} may be evaluated by the implementation at run time or may be a constant. This
special symbol is obsolescent.

5. Files and Directories

The functions in this section perform the operating system services dealing with the creation and removal of files and
directories and the detection and modification of their characteristics. They also provide the primary methods a
process will use to gain access to files and directories for subsequent I/O operations (see Section 6).

5.1 Directories

5.1.1 Format of Directory Entries

The header <dirent.h> defines a structure and a defined type used by the directory routines.

The internal format of directories is unspecified.

The readdir() function returns a pointer to an object of type struct dirent that includes the member:

The array of char d_name is of unspecified size, but the number of bytes preceding the terminating null character shall
not exceed {NAME_MAX}.

5.1.2 Directory Operations

Functions: opendir(), readdir(), readdir_r(), rewinddir(), closedir()

Member
Type

Member
Name Description

char [] d_name Null-terminated filename

86 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

5.1.2.1 Synopsis

#include <sys/types.h>
#include <dirent.h>
DIR *opendir(const char *dirname);
struct dirent *readdir(DIR *dirp);
int readdir_r(DIR *dirp, struct dirent *entry, struct dirent **result);
void rewinddir(DIR *dirp);
int closedir(DIR *dirp);

5.1.2.2 Description

The type DIR, which is defined in the header <dirent.h>, represents a directory stream, which is an ordered
sequence of all the directory entries in a particular directory. Directory entries represent files; files may be removed
from a directory or added to a directory asynchronously to the operations described in this subclause (5.1.2). The type
DIR may be implemented using a file descriptor. In that case, applications will only be able to open up to a total of
{OPEN_MAX} files and directories; see 5.3.1. A successful call to any of the exec functions shall close any directory
streams that are open in the calling process.

The opendir() function opens a directory stream corresponding to the directory named by the dirname argument. The
directory stream is positioned at the first entry.

The readdir() function returns a pointer to a structure representing the directory entry at the current position in the
directory stream to which dirp refers, and positions the directory stream at the next entry. It returns a NULL pointer
upon reaching the end of the directory stream.

The readdir() function shall not return directory entries containing empty names. It is unspecified whether entries are
returned for dot or dot-dot.

The pointer returned by readdir() points to data that may be overwritten by another call to readdir() on the same
directory stream. This data shall not be overwritten by another call to readdir() on a different directory stream.

The readdir() function may buffer several directory entries per actual read operation; the readdir() function shall mark
for update the st_atime field of the directory each time the directory is actually read.

If {_POSIX_THREAD_SAFE_FUNCTIONS} is defined:

The readdir_r() function shall initialize the dirent structure referenced by entry to represent the directory
entry at the current position in the directory stream referred to by dirp, store a pointer to this structure at the
location referenced by result, and position the directory stream at the next entry.
The storage pointed to by entry shall be large enough for a dirent with the d_name member an array of char
containing at least {NAME_MAX} plus one elements.
Upon successful return, the pointer returned at *result shall have the same value as the argument entry. Upon
reaching the end of the directory stream, this pointer shall have the value NULL.
The readdir_r() function shall not return directory entries containing empty names. It is unspecified whether
entries are returned for dot or dot-dot.
The readdir_r() function may buffer several directory entries per actual read operation; the readdir_r()
function shall mark for update the st_atime field of the directory each time the directory is actually read.

Otherwise:

Either the implementation shall support the readir_r() function as described above or the readir_r() function
shall not be provided.

Copyright © 1996 IEEE All Rights Reserved 87

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The rewinddir() function resets the position of the directory stream to which dirp refers to the beginning of the
directory. It also causes the directory stream to refer to the current state of the corresponding directory, as a call to
opendir() would have done. It does not return a value.

If a file is removed from or added to the directory after the most recent call to opendir() or rewinddir(), whether a
subsequent call to readdir() or readdir_r() returns an entry for that file is unspecified.

The closedir() function closes the directory stream referred to by dirp and returns a value of zero if successful.
Otherwise, it returns −1 indicating an error. Upon return, the value of dirp may no longer point to an accessible object
of type DIR. If a file descriptor is used to implement type DIR, that file descriptor shall be closed.

If the dirp argument passed to any of these functions does not refer to a currently open directory stream, the effect is
undefined.

The result of using a directory stream after one of the exec family of functions is undefined. After a call to the fork()
function, either the parent or the child (but not both) may continue processing the directory stream using readdir() or
rewinddir() or both. If both the parent and child processes use these functions, the result is undefined. Either or both
processes may use closedir().

5.1.2.3 Returns

Upon successful completion, opendir() returns a pointer to an object of type DIR. Otherwise, a value of NULL is
returned and errno is set to indicate the error.

Upon successful completion, readdir() returns a pointer to an object of type struct dirent. When an error is
encountered, a value of NULL is returned and errno is set to indicate the error. When the end of the directory is
encountered, a value of NULL is returned and errno is unchanged by this function call.

If successful, the readdir_r() function shall return zero. Otherwise, an error number shall be returned to indicate the
error.

Upon successful completion, closedir() returns a value of zero. Otherwise, a value of −1 is returned and errno is set to
indicate the error.

5.1.2.4 Errors

If any of the following conditions occur, the opendir() function shall return −1 and set errno to the corresponding
value:

[EACCES] Search permission is denied for a component of the path prefix of dirname, or read permission is
denied for the directory itself.

[ENAMETOOLONG]

The length of the dirname argument exceeds {PATH_MAX}, or a pathname component is longer
than {NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

[ENOENT] The named directory does not exist, or dirname points to an empty string.

[ENOTDIR] A component of dirname is not a directory.

For each of the following conditions, if the condition is detected, the opendir() function shall return −1 and set errno
to the corresponding value:

[EMFILE] Too many file descriptors are currently open for the process.

88 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

[ENFILE] Too many file descriptors are currently open in the system.

For each of the following conditions, if the condition is detected, the readdir() function shall return −1 and set errno
to the corresponding value:

[EBADF] The dirp argument does not refer to an open directory stream.

For each of the following conditions, if the condition is detected, the readdir_r() function shall return the
corresponding error number:

[EBADF] The dirp argument does not refer to an open directory stream.

For each of the following conditions, if the condition is detected, the closedir() function shall return −1 and set errno
to the corresponding value:

[EBADF] The dirp argument does not refer to an open directory stream.

5.1.2.5 Cross-References

<dirent.h>, 5.1.1; exec, 3.1.2.

5.2 Working Directory

5.2.1 Change Current Working Directory

Function: chdir()

5.2.1.1 Synopsis

int chdir(const char *path);

5.2.1.2 Description

The path argument points to the pathname of a directory. The chdir() function causes the named directory to become
the current working directory, that is, the starting point for path searches of pathnames not beginning with slash.

If the chdir() function fails, the current working directory shall remain unchanged by this function call.

5.2.1.3 Returns

Upon successful completion, a value of zero is returned. Otherwise, a value of −1 is returned and errno is set to
indicate the error.

5.2.1.4 Errors

If any of the following conditions occur, the chdir() function shall return −1 and set errno to the corresponding value:

[EACCES] Search permission is denied for any component of the path-name.

[ENAMETOOLONG]

The path argument exceeds {PATH_MAX} in length, or a pathname component is longer than
{NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

[ENOTDIR] A component of the pathname is not a directory.

Copyright © 1996 IEEE All Rights Reserved 89

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

[ENOENT] The named directory does not exist or path is an empty string.

5.2.1.5 Cross-References

getcwd(), 5.2.2.

5.2.2 Get Working Directory Pathname

Function: getcwd()

5.2.2.1 Synopsis

char *getcwd(char *buf, size_t size);

5.2.2.2 Description

The getcwd() function copies an absolute pathname of the current working directory to the array of char pointed to by
the argument buf and returns a pointer to the result. The size argument is the size in bytes of the array of char pointed
to by the buf argument. If buf is a NULL pointer, the behavior of getcwd() is undefined.

5.2.2.3 Returns

If successful, the buf argument is returned. A NULL pointer is returned if an error occurs and the variable errno is set
to indicate the error. The contents of buf after an error are undefined.

5.2.2.4 Errors

If any of the following conditions occur, the getcwd() function shall return a value of NULL and set errno to the
corresponding value:

[EINVAL] The size argument is zero.

[ERANGE] The size argument is greater than zero but smaller than the length of the pathname plus 1.

For each of the following conditions, if the condition is detected, the getcwd() function shall return a value of NULL
and set errno to the corresponding value:

[EACCES] Read or search permission was denied for a component of the pathname.

5.2.2.5 Cross-References

chdir(), 5.2.1.

5.3 General File Creation

5.3.1 Open a File

Function: open()

5.3.1.1 Synopsis

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

90 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

int open(const char *path, int oflag, ...);

5.3.1.2 Description

The open() function establishes the connection between a file and a file descriptor. It creates an open file description
that refers to a file and a file descriptor that refers to that open file description. The file descriptor is used by other I/O
functions to refer to that file. The path argument points to a pathname naming a file.

The open() function shall return a file descriptor for the named file that is the lowest file descriptor not currently open
for that process. The open file description is new, and therefore the file descriptor does not share it with any other
process in the system. The file offset shall be set to the beginning of the file. The FD_CLOEXEC file descriptor flag
associated with the new file descriptor shall be cleared. The file status flags and file access modes of the open file
description shall be set according to the value of oflag. The value of oflag is the bitwise inclusive OR of values from
the following list. See 6.5.1 for the definitions of the symbolic constants. Applications shall specify exactly one of the
first three values (file access modes) below in the value of oflag:

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing. The result is undefined if this flag is applied to a FIFO.

Any combination of the remaining flags may be specified in the value of oflag:

O_APPEND If set, the file offset shall be set to the end of the file prior to each write.

O_CREAT This option requires a third argument, mode, which is of type mode_t. If the file exists, this flag has
no effect, except as noted under O_EXCL below. Otherwise, the file is created; the file's user ID
shall be set to the effective user ID of the process; the file's group ID shall be set to the group ID of
the directory in which the file is being created or to the effective group ID of the process. The file
permission bits (see 5.6.1) shall be set to the value of mode except those set in the file mode creation
mask of the process (see 5.3.3). When bits in mode other than the file permission bits are set, the
effect is unspecified. The mode argument does not affect whether the file is opened for reading, for
writing, or for both.

O_DSYNC Write I/O operations on the file descriptor complete as defined by synchronized I/O data integrity
completion.

O_EXCL If O_EXCL and O_CREAT are set, open() shall fail if the file exists. The check for the existence of
the file and the creation of the file if it does not exist shall be atomic with respect to other processes
executing open() naming the same filename in the same directory with O_EXCL and O_CREAT set.
If O_EXCL is set and O_CREAT is not set, the result is undefined.

O_NOCTTY If set, and path identifies a terminal device, the open() function shall not cause the terminal device
to become the controlling terminal for the process (see 7.1.1.3).

O_NONBLOCK
1) When opening a FIFO with O_RDONLY or O_WRONLY set:

a) If O_NONBLOCK is set:
An open() for reading-only shall return without delay. An open() for writing-only
shall return an error if no process currently has the file open for reading.

b) If O_NONBLOCK is clear:
An open() for reading-only shall block the calling thread until a thread opens the file
for writing. An open() for writing-only shall block the calling thread until a thread
opens the file for reading.

2) When opening a block special or character special file that supports nonblocking opens:
a) If O_NONBLOCK is set:

Copyright © 1996 IEEE All Rights Reserved 91

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The open() shall return without waiting for the device to be ready or available.
Subsequent behavior of the device is device-specific.

b) If O_NONBLOCK is clear:
The open() shall block the calling thread until the device is ready or available before
returning.

3) Otherwise, the behavior of O_NONBLOCK is unspecified.

O_RSYNC Read I/O operations on the file descriptor complete at the same level of integrity as specified by the
O_DSYNC and O_SYNC flags. If both O_DSYNC and O_RSYNC are set in oflag, all I/O
operations on the file descriptor complete as defined by synchronized I/O data integrity completion.
If both O_SYNC and O_RSYNC are set in oflag, all I/O operations on the file descriptor complete
as defined by synchronized I/O file integrity completion.

O_SYNC Write I/O operations on the file descriptor complete as defined by synchronized I/O file integrity
completion.

O_TRUNC If the file exists and is a regular file, and the file is successfully opened O_RDWR or O_WRONLY,
it shall be truncated to zero length and the mode and owner shall be unchanged by this function call.
O_TRUNC shall have no effect on FIFO special files or terminal device files. Its effect on other file
types is implementation defined. The result of using O_TRUNC with O_RDONLY is undefined.

If O_CREAT is set and the file did not previously exist, upon successful completion the open() function shall mark for
update the st_atime, st_ctime, and st_mtime fields of the file and the st_ctime and st_mtime fields of the parent
directory.

If both the O_SYNC and O_DSYNC flags are set, the effect is as if only the O_SYNC flag was set.

If O_TRUNC is set and the file did previously exist, upon successful completion the open() function shall mark for
update the st_crime and st_mtime fields of the file.

5.3.1.3 Returns

Upon successful completion, the function shall open the file and return a nonnegative integer representing the lowest
numbered unused file descriptor. Otherwise, it shall return −1 and shall set errno to indicate the error. No files shall be
created or modified if the function returns −1.

5.3.1.4 Errors

If any of the following conditions occur, the open() function shall return −1 and set errno to the corresponding value:

[EACCES] Search permission is denied on a component of the path prefix, or the file exists and the permissions
specified by oflag are denied, or the file does not exist and write permission is denied for the parent
directory of the file to be created, or O_TRUNC is specified and write permission is denied.

[EEXIST] O_CREAT and O_EXCL are set and the named file exists.

[EINTR] The open() operation was interrupted by a signal.

[EINVAL] This implementation does not support synchronized I/O for this file.

[EISDIR] The named file is a directory, and the oflag argument specifies write or read/write access.

[EMFILE] Too many file descriptors are currently in use by this process.

[ENAMETOOLONG]

The length of the path string exceeds {PATH_MAX}, or a pathname component is longer than
{NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

92 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

[ENFILE] Too many files are currently open in the system.

[ENOENT] O_CREAT is not set and the named file does not exist, or O_CREAT is set and either the path prefix
does not exist or the path argument points to an empty string.

[ENOSPC] The directory or file system that would contain the new file cannot be extended.

[ENOTDIR] A component of the path prefix is not a directory.

[ENXIO] O_NONBLOCK is set, the named file is a FIFO, O_WRONLY is set, and no process has the file
open for reading.

[EROFS] The named file resides on a read-only file system and either O_WRONLY, O_RDWR, O_CREAT (if
the file does not exist), or O_TRUNC is set in the oflag argument.

5.3.1.5 Cross-References

close(), 6.3.1; creat(), 5.3.2; dup(), 6.2.1; exec, 3.1.2; fcntl(), 6.5.2; <fcntl.h>, 6.5.1; lseek(), 6.5.3; read(), 6.4.1;
<signal.h>, 3.3.1.1; star(), 5.6.2; <sys/stat.h>, 5.6.1; write(), 6.4.2; umask(), 5.3.3; 3.3.1.4.

5.3.2 Create a New File or Rewrite an Existing One

Function: creat()

5.3.2.1 Synopsis

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int creat(const char *path, mode_t mode);

5.3.2.2 Description

The function call:

 creat(path, mode);

is equivalent to:

 open(path, O_WRONLY | O_CREAT | O_TRUNC, mode);

5.3.2.3 Cross-References

open(), 5.3.1; <sys/lstat.h>, 5.6.1.

5.3.3 Set File Creation Mask

Function: umask()

5.3.3.1 Synopsis

#include <sys/types.h>
#include <sys/stat.h>
mode_t umask(mode_t cmask);

Copyright © 1996 IEEE All Rights Reserved 93

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

5.3.3.2 Description

The umask() routine sets the file mode creation mask of the process to cmask and returns the previous value of the
mask. Only the file permission bits (see 5.6.1) of cmask are used; the meaning of the other bits is implementation
defined.

The file mode creation mask of the process is used during open(), creat(), mkdir(), and mkfifo() calls to turn off
permission bits in the mode argument supplied. Bit positions that are set in cmask are cleared in the mode of the created
file.

5.3.3.3 Returns

The file permission bits in the value returned by umask() shall be the previous value of the file mode creation mask.
The state of any other bits in that value is unspecified, except that a subsequent call to umask() with that returned value
as cmask shall leave the state of the mask the same as its state before the first call, including any unspecified (by this
part of ISO/IEC 9945) use of those bits.

5.3.3.4 Errors

The umask() function is always successful, and no return value is reserved to indicate an error.

5.3.3.5 Cross-References

chmod(), 5.6.4; creat(), 5.3.2; mkdir(), 5.4.1; mkfifo(), 5.4.2; open(), 5.3.1; <sys/stat.h>, 5.6.1.

5.3.4 Link to a File

Function: link()

5.3.4.1 Synopsis

int link(const char *existing, const char *new);

5.3.4.2 Description

The argument existing points to a pathname naming an existing file. The argument new points to a pathname naming
the new directory entry to be created. Implementations may support linking of files across file systems. The link()
function shall atomically create a new link for the existing file and increment the link count of the file by one.

If the link() function fails, no link shall be created, and the link count of the file shall remain unchanged by this
function call.

The existing argument shall not name a directory unless the user has appropriate privileges and the implementation
supports using link() on directories.

The implementation may require that the calling process has permission to access the existing file.

Upon successful completion, the link() function shall mark for update the st_ctime field of the file. Also, the st_ctime
and st_mtime fields of the directory that contains the new entry are marked for update.

5.3.4.3 Returns

Upon successful completion, link() shall return a value of zero. Otherwise, a value of −1 is returned and errno is set to
indicate the error.

94 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

5.3.4.4 Errors

If any of the following conditions occur, the link() function shall return −1 and set errno to the corresponding value:

[EACCES] A component of either path prefix denies search permission; or the requested link requires writing in
a directory with a mode that denies write permission; or the calling process does not have permission
to access the existing file, and this is required by the implementation.

[EEXIST] The link named by new exists.

[EMLINK] The number of links to the file named by existing would exceed {LINK_MAX}.

[ENAMETOOLONG]

The length of the existing or new string exceeds {PATH_MAX}, or a pathname component is longer
than {NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

[ENOENT] A component of either path prefix does not exist, the file named by existing does not exist, or either
existing or new points to an empty string.

[ENOSPC] The directory that would contain the link cannot be extended.

[ENOTDIR] A component of either path prefix is not a directory.

[EPERM] The file named by existing is a directory, and either the calling process does not have appropriate
privileges or the implementation prohibits using link() on directories.

[EROFS] The requested link requires writing in a directory on a read-only file system.

[EXDEV] The link named by new and the file named by existing are on different file systems, and the
implementation does not support links between file systems.

5.3.4.5 Cross-References

rename(), 5.5.3; unlink(), 5.5.1.

5.4 Special File Creation

5.4.1 Make a Directory

Function: mkdir()

5.4.1.1 Synopsis

#include <sys/types.h>
#include <sys/stat.h>
int mkdir(const char *path, mode_t mode);

5.4.1.2 Description

The mkdir() routine creates a new directory with name path. The file permission bits of the new directory are
initialized from mode. The file permission bits of the mode argument are modified by the file creation mask of the
process (see 5.3.3). When bits in mode other than the file permission bits are set, the meaning of these additional bits
is implementation defined.

The owner ID of the directory is set to the effective user ID of the process. The directory's group ID shall be set to the
group ID of the directory in which the directory is being created or to the effective group ID of the process.

Copyright © 1996 IEEE All Rights Reserved 95

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The newly created directory shall be an empty directory.

Upon successful completion, the mkdir() function shall mark for update the st_atime, st_ctime, and st_mtime fields of
the directory. Also, the st_ctime and st_mtime fields of the directory that contains the new entry are marked for update.

5.4.1.3 Returns

A return value of zero indicates success. A return value of −1 indicates that an error has occurred, and an error code is
stored in errno. No directory shall be created if the return value is −1.

5.4.1.4 Errors

If any of the following conditions occur, the mkdir() function shall return −1 and set errno to the corresponding value:

[EACCES] Search permission is denied on a component of the path prefix, or write permission is denied on the
parent directory of the directory to be created.

[EEXIST] The named file exists.

[EMLINK] The link count of the parent directory would exceed {LINK_MAX}.

[ENAMETOOLONG]

The length of the path argument exceeds {PATH_MAX}, or a pathname component is longer than
{NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

[ENOENT] A component of the path prefix does not exist, or the path argument points to an empty string.

[ENOSPC] The file system does not contain enough space to hold the contents of the new directory or to extend
the parent directory of the new directory.

[ENOTDIR] A component of the path prefix is not a directory.

[EROFS] The parent directory of the directory being created resides on a read-only file system.

5.4.1.5 Cross-References

chmod(), 5.6.4; stat(), 5.6.2; <sys/stat.h>, 5.6.1; umask(), 5.3.3.

5.4.2 Make a FIFO Special File

Function: mkfifo()

5.4.2.1 Synopsis

#include <sys/types.h>
#include <sys/stat.h>
int mkfifo(const char *path, mode_t mode);

5.4.2.2 Description

The mkfifo() routine creates a new FIFO special file named by the pathname pointed to by path. The file permission
bits of the new FIFO are initialized from mode. The file permission bits of the mode argument are modified by the file
creation mask of the process (see 5.3.3). When bits in mode other than the file permission bits are set, the effect is
implementation defined.

The owner ID of the FIFO shall be set to the effective user ID of the process. The group ID of the FIFO shall be set to
the group ID of the directory in which the FIFO is being created or to the effective group ID of the process.

96 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Upon successful completion, the mkfifo() function shall mark for update the st_atime, st_ctime, and st_mtime fields of
the file. Also, the st_ctime and st_mtime fields of the directory that contains the new entry are marked for update.

5.4.2.3 Returns

Upon successful completion, a value of zero is returned. Otherwise, a value of −1 is returned, no FIFO is created, and
errno is set to indicate the error.

5.4.2.4 Errors

If any of the following conditions occur, the mkfifo() function shall return −1 and set errno to the corresponding value:

[EACCES] Search permission is denied on a component of the path prefix, or write permission is denied on the
parent directory of the file to be created.

[EEXIST] The named file already exists.

[ENAMETOOLONG]

The length of the path string exceeds {PATH_MAX}, or a pathname component is longer than
{NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

[ENOENT] A component of the path prefix does not exist, or the path argument points to an empty string.

[ENOSPC] The directory that would contain the new file cannot be extended, or the file system is out of file
allocation resources.

[ENOTDIR] A component of the path prefix is not a directory.

[EROFS] The named file resides on a read-only file system.

5.4.2.5 Cross-References

chmod(), 5.6.4; exec, 3.1.2; pipe(), 6.1.1; stat(), 5.6.2; <sys/stat.h>, 5.6.1; umask(), 5.3.3.

5.5 File Removal

5.5.1 Remove Directory Entries

Function: unlink()

5.5.1.1 Synopsis

int unlink(const char *path);

5.5.1.2 Description

The unlink() function shall remove the link named by the pathname pointed to by path and decrement the link count
of the file referenced by the link.

When the link count of the file becomes zero and no process has the file open, the space occupied by the file shall be
freed and the file shall no longer be accessible. If one or more processes have the file open when the last link is
removed, the link shall be removed before unlink() returns, but the removal of the file contents shall be postponed until
all references to the file have been closed.

The path argument shall not name a directory unless the process has appropriate privileges and the implementation
supports using unlink() on directories. Applications should use rmdir() to remove a directory.

Copyright © 1996 IEEE All Rights Reserved 97

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Upon successful completion, the unlink() function shall mark for update the st_ctime and st_mtime fields of the parent
directory. Also, if the link count of the file is not zero, the st_ctime field of the file shall be marked for update.

5.5.1.3 Returns

Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 shall be returned and errno
shall be set to indicate the error. If −1 is returned, the named file shall not be changed by this function call.

5.5.1.4 Errors

If any of the following conditions occur, the unlink() function shall return −1 and set errno to the corresponding value:

[EACCES] Search permission is denied for a component of the path prefix, or write permission is denied on the
directory containing the link to be removed.

[EBUSY] The directory named by the path argument cannot be unlinked because it is being used by the system
or another process and the implementation considers this to be an error.

[ENAMETOOLONG]

The length of the path argument exceeds {PATH_MAX}, or a pathname component is longer than
{NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

[ENOENT] The named file does not exist, or the path argument points to an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The file named by path is a directory, and either the calling process does not have appropriate
privileges or the implementation prohibits using unlink() on directories.

[EROFS] The directory entry to be unlinked resides on a read-only file system.

5.5.1.5 Cross-References

close(), 6.3.1; link(), 5.3.4; open(), 5.3.1; rename(), 5.5.3; rmdir(), 5.5.2.

5.5.2 Remove a Directory

Function: rmdir()

5.5.2.1 Synopsis

int rmdir(const char *path);

5.5.2.2 Description

The rmdir() function removes a directory whose name is given by path. The directory shall be removed only if it is an
empty directory.

If the named directory is the root directory or the current working directory of any process, it is unspecified whether
the function succeeds or whether it fails and sets errno to [EBUSY].

If the link count of the directory becomes zero and no process has the directory open, the space occupied by the
directory shall be freed and the directory shall no longer be accessible. If one or more processes have the directory
open when the last link is removed, the dot and dot-dot entries, if present, are removed before rmdir() returns and no
new entries may be created in the directory, but the directory is not removed until all references to the directory have
been closed.

98 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Upon successful completion, the rmdir() function shall mark for update the st_ctime and st_mtime fields of the parent
directory.

5.5.2.3 Returns

Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 shall be returned and errno
shall be set to indicate the error. If −1 is returned, the named directory shall not be changed by this function call.

5.5.2.4 Errors

If any of the following conditions occur, the rmdir() function shall return −1 and set errno to the corresponding value:

[EACCES] Search permission is denied on a component of the path prefix, or write permission is denied on the
parent directory of the directory to be removed.

[EBUSY] The directory named by the path argument cannot be removed because it is being used by another
process and the implementation considers this to be an error.

[EEXIST] or [ENOTEMPTY]

The path argument names a directory that is not an empty directory.

[ENAMETOOLONG]

The length of the path argument exceeds {PATH_MAX}, or a pathname component is longer than
{NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

[ENOENT] The path argument names a nonexistent directory or points to an empty string.

[ENOTDIR] A component of the path is not a directory.

[EROFS] The directory entry to be removed resides on a read-only file system.

5.5.2.5 Cross-References

mkdir(), 5.4.1; unlink(), 5.5.1.

5.5.3 Rename a File

Function: rename()

5.5.3.1 Synopsis

int rename(const char *old, const char *new);

5.5.3.2 Description

The rename() function changes the name of a file. The old argument points to the pathname of the file to be renamed.
The new argument points to the new pathname of the file.

If the old argument and the new argument both refer to links to the same existing file, the rename() function shall return
successfully and perform no other action.

If the old argument points to the pathname of a file that is not a directory, the new argument shall not point to the
pathname of a directory. If the link named by the new argument exists, it shall be removed and old renamed to new. In
this case, a link named new shall exist throughout the renaming operation and shall refer either to the file referred to
by new or old before the operation began. Write access permission is required for both the directory containing old and
the directory containing new.

Copyright © 1996 IEEE All Rights Reserved 99

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

If the old argument points to the pathname of a directory, the new argument shall not point to the pathname of a file that
is not a directory. If the directory named by the new argument exists, it shall be removed and old renamed to new. In
this case, a link named new shall exist throughout the renaming operation and shall refer either to the file referred to
by new or old before the operation began. Thus, if new names an existing directory, it shall be required to be an empty
directory.

The new pathname shall not contain a path prefix that names old. Write access permission is required for the directory
containing old and the directory containing new. If the old argument points to the pathname of a directory, write access
permission may be required for the directory named by old, and, if it exists, the directory named by new.

If the link named by the new argument exists and the link count of the file becomes zero when it is removed and no
process has the file open, the space occupied by the file shall be freed and the file shall no longer be accessible. If one
or more processes have the file open when the last link is removed, the link shall be removed before rename() returns,
but the removal of the file contents shall be postponed until all references to the file have been closed.

Upon successful completion, the rename() function shall mark for update the st_ctime and st_mtime fields of the parent
directory of each file.

5.5.3.3 Returns

Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 shall be returned and errno
shall be set to indicate the error. If −1 is returned, neither the file named by old nor the file named by new, if either
exists, shall be changed by this function call.

5.5.3.4 Errors

If any of the following conditions occur, the rename() function shall return −1 and set errno to the corresponding
value:

[EACCES] A component of either path prefix denies search permission, or one of the directories containing old
or new denies write permissions, or write permission is required and is denied for a directory pointed
to by the old or new arguments.

[EBUSY] The directory named by old or new cannot be renamed because it is being used by the system or
another process and the implementation considers this to be an error.

[EEXIST] or [ENOTEMPTY]

The link named by new is a directory containing entries other than dot and dot-dot.

[EINVAL] The new directory pathname contains a path prefix that names the old directory.

[EISDIR] The new argument points to a directory, and the old argument points to a file that is not a directory.

[ENAMETOOLONG]

The length of the old or new argument exceeds {PATH_MAX}, or a pathname component is longer
than {NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

[EMLINK] The file named by old is a directory, and the link count of the parent directory of new would exceed
{LINK_MAX}.

[ENOENT] The link named by the old argument does not exist, or either old or new points to an empty string.

[ENOSPC] The directory that would contain new cannot be extended.

[ENOTDIR] A component of either path prefix is not a directory, or the old argument names a directory and the
new argument names a nondirectory file.

[EROFS] The requested operation requires writing in a directory on a read-only file system.

100 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

[EXDEV] The links named by new and old are on different file systems, and the implementation does not
support links between file systems.

5.5.3.5 Cross-References

link(), 5.3.4; rmdir(), 5.5.2; unlink(), 5.5.1.

5.6 File Characteristics

5.6.1 File Characteristics: Header and Data Structure

The header <sys/stat.h> defines the structure stat, which includes the members shown in Table 5.1, returned by
the functions stat() and fstat().

Table 5.1—stat Structure

NOTE — File serial number and device ID taken together uniquely identify the file within the system.

All of the described members shall appear in the stat structure. The structure members st_mode, st_ino, st_dev, st_uid,
st_gid, st_atime, st_ctime, and st_mtime shall have meaningful values for all file types defined in this part of ISO/IEC
9945. The value of the member st_nlink shall be set to the number of links to the file.

5.6.1.1 <sys/stat.h> File Types

The following macros shall test whether a file is of the specified type. The value m supplied to the macros is the value
of st_mode from a stat structure. The macro evaluates to a nonzero value if the test is true, zero if the test is false.

S_ISDIR(m) Test macro for a directory file.

S_ISCHR(m) Test macro for a character special file.

S_ISBLK(m) Test macro for a block special file.

S_ISREG(m) Test macro for a regular file.

S_ISFIFO(m) Test macro for a pipe or a FIFO special file.

Member
Type

Member
Type

Description

mode_t st_mode File mode (see 5.6.1.2).

ino_t st_ino File serial number.

dev_t st_dev ID of device containing this file.

nlink_t st_nlink Number of links.

uid_t st_uid User ID of the owner of the file.

gid_t st_gid Group ID of the group of the file.

off_t st_size For regular files, the file size in bytes. For other file types, the use of this field is unspecified.

time_t st_atime Time of last access.

time_t st_mtime Time of last data modification.

time_t st_ctime Time of last file status change.

Copyright © 1996 IEEE All Rights Reserved 101

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The implementation may implement message queues, semaphores, or shared memory objects as distinct file types.
The following macros shall test whether a file is of the specified type. The value of the buf argument supplied to the
macros is a pointer to a stat structure. The macro shall evaluate to a nonzero value if the specified object is
implemented as a distinct file type and the specified file type is contained in the stat structure referenced by buf.
Otherwise, the macro shall evaluate to zero.

S_TYPEISMQ(buf)Test macro for a message queue

S_TYPEISSEM(buf)Test macro for a semaphore

S_TYPEISSHM(buf)Test macro for a shared memory object

5.6.1.2 <sys/stat.h> File Modes

The file modes portion of values of type mode_t, such as the st_mode value, are bit-encoded with the following masks
and bits:

S_IRWXU Read, write, search (if a directory), or execute (otherwise) permissions mask for the file owner class.

S_IRUSR Read permission bit for the file owner class.

S_IWUSR Write permission bit for the file owner class.

S_IXUSR Search (if a directory) or execute (otherwise)permissions bit for the file owner
class.

S_IRWXG Read, write, search (if a directory), or execute (otherwise) permissions mask for the file group class.

S_IRGRP Read permission bit for the file group class.

S_IWGRP Write permission bit for the file group class.

S_IXGRP Search (if a directory) or execute (otherwise) permissions bit for the file group
class.

S_IRWXO Read, write, search (if a directory), or execute (otherwise) permissions mask for the file other class.

S_IROTH Read permission bit for the file other class.

S_IWOTH Write permission bit for the file other class.

S_IXOTH Search (if a directory) or execute (otherwise) permissions bit for the file other
class.

S_ISUID Set user ID on execution. The effective user ID of the process shall be set to that of the owner of the
file when the file is run as a program (see exec). On a regular file, this bit should be cleared on any
write.

S_ISGID Set group ID on execution. Set effective group ID on the process to the group of the file when the file
is run as a program (see exec). On a regular file, this bit should be cleared on any write.

The bits defined by S_IRUSR, S_IWUSR, S_IXUSR, S_IRGRP, S_IWGRP, S_IXGRP, S_IROTH, S_IWOTH,
S_IXOTH, S_ISUID, and S_ISGID shall be unique. S_IRWXU shall be the bitwise inclusive OR of S_IRUSR,
S_IWUSR, and S_IXUSR. S_IRWXG shall be the bitwise inclusive OR of S_IRGRP, S_IWGRP, and S_IXGRP.
S_IRWXO shall be the bitwise inclusive OR of S_IROTH, S_IWOTH, and S_IXOTH. Implementations may OR other
implementation-defined bits into S_IRWXU, S_IRWXG, and S_IRWXO, but they shall not overlap any of the other
bits defined in this part of ISO/IEC 9945. The file permission bits are defined to be those corresponding to the bitwise
inclusive OR of S_IRWXU, S_IRWXG, and S_IRWXO.

102 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

5.6.1.3 <sys/stat.h> Time Entries

The time-related fields of struct stat are as follows:

st_atime Accessed file data, for example, read().

st_mtime Modified file data, for example, write().

st_crime Changed file status, for example, chmod().

These times are updated as described in B.2.3.5.

Times are given in seconds since the Epoch.

5.6.1.4 Cross-References

chmod(), 5.6.4; chown(), 5.6.5; creat(), 5.3.2; exec, 3.1.2; link(), 5.3.4; mkdir(), 5.4.1; mkfifo(), 5.4.2; pipe(), 6.1.1;
read(), 6.4.1; unlink(), 5.5.1; utime(), 5.6.6; write(), 6.4.2; remove() [C Standard {2}].

5.6.2 Get File Status

Functions: stat(), fstat()

5.6.2.1 Synopsis

#include <sys/types.h>
#include <sys/stat.h>
int stat(const char *path, struct stat *buf);
int fstat(int fildes, struct stat *buf);

5.6.2.2 Description

The path argument points to a pathname naming a file. Read, write, or execute permission for the named file is not
required, but all directories listed in the pathname leading to the file must be searchable. The stat() function obtains
information about the named file and writes it to the area pointed to by the buf argument.

Similarly, the fstat() function obtains information about an open file known by the file descriptor fildes. If the Shared
Memory Objects option is supported and fildes references a shared memory object, the implementation needs to
update in the stat structure pointed to by the buf argument only the st_uid, st_gid, st_size, and st_mode fields, and only
the S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits need be valid.

An implementation that provides additional or alternate file access control mechanisms may, under implementation-
defined conditions, cause the stat() and fstat() functions to fail. In particular, the system may deny the existence of the
file specified by path.

Both functions update any time-related fields, as described in B.2.3.5, before writing into the stat structure.

The buf is taken to be a pointer to a stat structure, as defined in the header <sys/stat.h>, into which information
is placed concerning the file.

5.6.2.3 Returns

Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 shall be returned and errno
shall be set to indicate the error.

Copyright © 1996 IEEE All Rights Reserved 103

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

5.6.2.4 Errors

If any of the following conditions occur, the stat() function shall return −1 and set errno to the corresponding value:

[EACCES] Search permission is denied for a component of the path prefix.

[ENAMETOOLONG]

The length of the path argument exceeds {PATH_MAX}, or a pathname component is longer than
{NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

[ENOENT] The named file does not exist, or the path argument points to an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

If any of the following conditions occur, the fstat() function shall return −1 and set errno to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.

5.6.2.5 Cross-References

creat(), 5.3.2; dup(), 6.2.1; fcntl(), 6.5.2; open(), 5.3.1; pipe(), 6.1.1; <sys/stat.h>, 5.6.1.

5.6.3 Check File Accessibility

Function: access()

5.6.3.1 Synopsis

#include <unistd.h>
int access(const char *path, int amode);

5.6.3.2 Description

The access() function checks the accessibility of the file named by the pathname pointed to by the path argument for
the file access permissions indicated by amode, using the real user ID in place of the effective user ID and the real
group ID in place of the effective group ID.

The value of amode is either the bitwise inclusive OR of the access permissions to be checked (R_OK, W_OK, and
X_OK) or the existence test (F_OK). See 2.9.1 for the description of these symbolic constants.

If any access permission is to be checked, each shall be checked individually, as described in B.2.3.2. If the process has
appropriate privileges, an implementation may indicate success for X_OK even if none of the execute file permission
bits are set.

5.6.3.3 Returns

If the requested access is permitted, a value of zero shall be returned. Otherwise, a value of −1 shall be returned and
errno shall be set to indicate the error.

5.6.3.4 Errors

If any of the following conditions occur, the access() function shall return −1 ανδ σετ errno to the corresponding
value:

104 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

[EACCES] The permissions specified by amode are denied, or search permission is denied on a component of
the path prefix.

[ENAMETOOLONG]

The length of the path argument exceeds {PATH_MAX}, or a pathname component is longer than
{NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

[ENOENT] The path argument points to an empty string or to the name of a file that does not exist.

[ENOTDIR] A component of the path prefix is not a directory.

[EROFS] Write access was requested for a file residing on a read-only file system.

For each of the following conditions, if the condition is detected, the access() function shall return −1 and set errno to
the corresponding value:

[EINVAL] An invalid value was specified for amode.

5.6.3.5 Cross-References

chmod(), 5.6.4; stat(), 5.6.2; <unistd.h>, 2.9.

5.6.4 Change File Modes

Function: chmod(), fchmod()

5.6.4.1 Synopsis

#include <sys/stat.h>
int chmod(const char *path, mode_t mode);
int fchmod(int fildes, mode_t mode);

5.6.4.2 Description

The path argument shall point to a pathname naming a file. If the effective user ID of the calling process matches the
file owner or the calling process has appropriate privileges, the chmod() function shall set the S_ISUID, S_ISGID, and
the file permission bits, as described in 5.6.1, of the named file from the corresponding bits in the mode argument.
These bits define access permissions for the user associated with the file, the group associated with the file, and all
others, as described in B.2.3.2. Additional implementation-defined restrictions may cause the S_ISUID and S_ISGID
bits in mode to be ignored.

If at least one of {_POSIX_MAPPED_FILES} or {_POSIX_SHARED_MEMORY_OBJECTS} is defined:

The fchmod() function similarly sets the S_ISUID, S_ISGID, and file permission bits of the open file known
by the file descriptor fildes. If the Shared Memory Objects option is supported and fildes references a shared
memory object, the chmod() function need affect only the S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP,
S_IROTH, and S_IWOTH file permission bits.
NOTE — It is expected that a future revision will make this interface mandatory for conforming implementations and

regular files. The text of the condition on {_POSIX_MAPPED_FILES} and
{_POSIX_SHARED_MEMORY_OBJECTS} will be removed at the time the contemplated revision is
approved. Since the existence of shared memory will remain optional, the semantics relating to it will remain
conditional.

Copyright © 1996 IEEE All Rights Reserved 105

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Otherwise:

Either the implementation shall support the fchmod() function as described above or the fchmod() function
shall fail.

If the calling process does not have appropriate privileges, if the group ID of the file does not match the effective group
ID or one of the supplementary group IDs, if one or more of the S_IXUSR, S_IXGRP, or S_IXOTH bits of the file
mode are set, and if the file is a regular file, bit S_ISGID (set group ID on execution) in the mode of the file shall be
cleared upon successful return from chmod() or fchmod().

The effect on file descriptors for files open at the time of the chmod() or fchmod() function is implementation defined.

Upon successful completion, the chmod() or fchmod() function shall mark for update the st_ctime field of the file.

5.6.4.3 Returns

Upon successful completion, the function shall return a value of zero. Otherwise, a value of −1 shall be returned and
errno shall be set to indicate the error. If −1 is returned, no change to the file mode shall have occurred.

5.6.4.4 Errors

If any of the following conditions occur, the chmod() function shall return −1 and set errno to the corresponding value:

[EACCES] Search permission is denied on a component of the path prefix.

[ENAMETOOLONG]

The length of the path argument exceeds {PATH_MAX}, or a pathname component is longer than
{NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist or the path argument points to an empty string.

[EPERM] The effective user ID does not match the owner of the file, and the calling process does not have the
appropriate privileges.

[EROFS] The named file resides on a read-only file system.

If any of the following conditions occur, the fchmod() function shall return −1 and set errno to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOSYS] This implementation does not support the fchmod() function.

[EPERM] The effective user ID does not match the owner of the file and the calling process does not have the
appropriate privileges.

[EROFS] The file resides on a read-only file system.

For each of the following conditions, if the condition is detected, the fchmod() function shall return −1 and set errno
to the corresponding value:

[EINVAL] The fildes argument refers to a pipe and the implementation disallows execution of fchmod() on a
pipe.

106 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

5.6.4.5 Cross-References

chown(), 5.6.5; mkdir(), 5.4.1; mkfifo(), 5.4.2; stat(), 5.6.2; <sys/stat.h>, 5.6.1.

5.6.5 Change Owner and Group of a File

Function: chown()

5.6.5.1 Synopsis

#include <sys/types.h>
int chown(const char *path, uid_t owner, gid_t group);

5.6.5.2 Description

The path argument points to a pathname naming a file. The user ID and group ID of the named file are set to the
numeric values contained in owner and group respectively.

Only processes with an effective user ID equal to the user ID of the file or with appropriate privileges may change the
ownership of a file. If {_POSIX_CHOWN_RESTRICTED} is in effect for path:

1) Changing the owner is restricted to processes with appropriate privileges.
2) Changing the group is permitted to a process without appropriate privileges, but with an effective user ID

equal to the user ID of the file, if and only if owner is equal to the user ID of the file and group is equal either
to the effective group ID of the calling process or to one of its supplementary group IDs.

If the path argument refers to a regular file, the set-user-ID (.IOU Con S_ISUID) and set-group-ID (S_ISGID) bits of
the file mode shall be cleared upon successful return from chown(), unless the call is made by a process with
appropriate privileges, in which case it is implementation defined whether those bits are altered. If the chown()
function is successfully invoked on a file that is not a regular file, these bits may be cleared. These bits are defined in
5.6.1.

Upon successful completion, the chown() function shall mark for update the st_ctime field of the file.

5.6.5.3 Returns

Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 shall be returned and errno
shall be set to indicate the error. If −1 is returned, no change shall be made in the owner and group of the file.

5.6.5.4 Errors

If any of the following conditions occur, the chown() function shall return −1 and set errno to the corresponding value:

[EACCES] Search permission is denied on a component of the path prefix.

[ENAMETOOLONG]

The length of the path argument exceeds {PATH_MAX}, or a pathname component is longer than
{NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist, or the path argument points to an empty string.

Copyright © 1996 IEEE All Rights Reserved 107

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

[EPERM] effective user ID does not match the owner of the file, or the calling process does not have
appropriate privileges and {_POSIX_CHOWN_RESTRICTED} indicates that such privilege is
required.

[EROFS] The named file resides on a read-only file system.

For each of the following conditions, if the condition is detected, the chown() function shall return −1 and set errno to
the corresponding value:

[EINVAL] The owner or group ID supplied is invalid and not supported by the implementation.

5.6.5.5 Cross-References

chmod(), 5.6.4; <sys/stat.h>, 5.6.1.

5.6.6 Set File Access and Modification Times

Function: utime()

5.6.6.1 Synopsis

#include <sys/types.h>
#include <utime.h>
int utime(const char *path, const struct utimbuf *times);

5.6.6.2 Description

The argument path points to a pathname naming a file. The utime() function sets the access and modification times of
the named file.

If the times argument is NULL, the access and modification times of the file are set to the current time. The effective
user ID of the process must match the owner of the file, or the process must have write permission to the file or
appropriate privileges, to use the utime() function in this manner.

If the times argument is not NULL, it is interpreted as a pointer to a utimbuf structure, and the access and modification
times are set to the values contained in the designated structure. Only the owner of the file and processes with
appropriate privileges shall be permitted to use the utime() function in this way.

The utimbuf structure is defined by the header <utime.h> and includes the following members:

The times in the utimbuf structure are measured in seconds since the Epoch.

Implementations may add extensions as permitted in 1.3.1.1, item (2). Adding extensions to this structure, which
might change the behavior of the application with respect to this standard when those fields in the structure are
uninitialized, also requires that the extensions be enabled as required by 1.3.1.1.

Member
Type

Member
Name Description

time_t actime Access time

time_t modtime Modification time

108 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Upon successful completion, the utime() function shall mark for update the st_ctime field of the file.

5.6.6.3 Returns

Upon successful completion, the function shall return a value of zero. Otherwise, a value of −1 shall be returned, errno
is set to indicate the error, and the file times shall not be affected.

5.6.6.4 Errors

If any of the following conditions occur, the utime() function shall return −1 ανδ σετ errno to the corresponding value:

[EACCES] Search permission is denied by a component of the path prefix, or the times argument is NULL and
the effective user ID of the process does not match the owner of the file and write access is denied.

[ENAMETOOLONG]

The length of the path argument exceeds {PATH_MAX}, or a pathname component is longer than
{NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

[ENOENT] The named file does not exist or the path argument points to an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The times argument is not NULL, the effective user ID of the calling process has write access to the
file, but does not match the owner of the file, and the calling process does not have the appropriate
privileges.

[EROFS] The named file resides on a read-only file system.

5.6.6.5 Cross-References

<sys/stat.h>, 5.6.1.

5.6.7 Truncate a File to a Specified Length

Function: ftruncate()

5.6.7.1 Synopsis

#include <unistd.h>
int ftruncate(int fildes, off_t length);

5.6.7.2 Description

If at least one of {_POSIX_MAPPED_FILES} or {_POSIX_SHARED_MEMORY_OBJECTS} is defined:

The ftruncate() function shall cause the regular file known by the file descriptor fildes, which must be open
for writing, to be truncated to length. If the size of the file previously exceeded length, the extra data shall be
discarded. If the file previously was smaller than this size, it is unspecified whether the file is changed or its
size increased. If the file is extended, the extended area shall appear as if it were zero-filled. If fildes
references a shared memory object, ftruncate() sets the size of the shared memory object to length. If the file
is not a regular file or a shared memory object, the result is unspecified.
If the effect of ftruncate() is to decrease the size of a file or shared memory object and whole pages beyond
the new end were previously mapped, then the whole pages beyond the new end shall be discarded. If the
Memory Protection option is supported, references to such pages shall result in the generation of a SIGBUS
signal; otherwise, the result of such references is undefined.
The value of the seek pointer shall not be modified by a call to ftruncate().

Copyright © 1996 IEEE All Rights Reserved 109

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Upon successful completion, the ftruncate() function shall mark for update the st_ctime and st_mtime fields
of the file. If the ftruncate() function is unsuccessful, the file is unaffected.

Otherwise:

Either the implementation shall support the ftruncate() function as described above or the ftruncate() function
shall fail.

NOTE — It is expected that a future revision will make this interface mandatory for conforming implementations and regular files.
The text of the support condition will be removed at the time the contemplated revision is approved. Since the existence
of file mappings and shared memory will remain optional, the semantics relating to them will remain conditional.

5.6.7.3 Returns

Upon successful completion, the ftruncate() function shall return zero. Otherwise, it shall return −1 and set errno to
indicate the error.

5.6.7.4 Errors

If any of the following conditions occur, the ftruncate() function shall return −1 and set errno to the corresponding
value:

[EBADF] The fildes argument is not a valid file descriptor open for writing.

[EINVAL] The fildes argument does not refer to a file on which this operation is possible.

[EROFS] The file resides on a read-only file system.

5.6.7.5 Cross-References

mmap() 12.2.1; open(), 5.3.1; shm_open() 12.3.1.

5.7 Configurable Pathname Variables

5.7.1 Get Configurable Pathname Variables

Functions: pathconf(), fpathconf()

5.7.1.1 Synopsis

#include <unistd.h>
long pathconf(const char *path, int name);
long fpathconf(int fildes, int name);

5.7.1.2 Description

The pathconf() and fpathconf() functions provide a method for the application to determine the current value of a
configurable limit or option (variable) that is associated with a file or directory.

For pathconf(), the path argument points to the pathname of a file or directory. For fpathconf(), the fildes argument is
an open file descriptor.

The name argument represents the variable to be queried relative to that file or directory. The implementation shall
support all of the variables listed in Table 5.2 and may support others. The variables in Table 5.2 come from

110 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

<limits.h> or <unistd.h> and the symbolic constants, defined in <unistd.h>, that are the corresponding
values used for name.

Table 5.2—Configurable Pathname Variables

NOTES:

1 — If path or fildes refers to a directory, the value returned applies to the directory itself.

2 — If path or fildes does not refer to a terminal file, it is unspecified whether an implementation supports an association of the
variable name with the specified file.

3 — If path or fildes refers to a directory, the value returned applies to the filenames within the directory.

4 — If path or fildes does not refer to a directory, it is unspecified whether an implementation supports an association of the
variable name with the specified file.

5 — If path or fildes refers to a directory, the value returned is the maximum length of a relative pathname when the specified
directory is the working directory.

6 — If path refers to a FIFO, or fildes refers to a pipe or a FIFO, the value returned applies to the referenced object itself. If path
or fildes refers to a directory, the value returned applies to any FIFOs that exist or can be created within the directory. If path
or fildes refers to any other type of file, it is unspecified whether an implementation supports an association of the variable
name with the specified file.

7 — If path or fildes refers to a directory, the value returned applies to any files defined in this part of ISO/IEC 9945 , other than
directories, that exist or can be created within the directory.

8 — If path or fildes refers to a directory, it is unspecified whether an implementation supports an association of the variable name
with the specified file.

5.7.1.3 Returns

If name is an invalid value, the pathconf() and fpathconf() functions shall return −1.

If the variable corresponding to name has no limit for the path or file descriptor, the pathconf() and fpathconf()
functions shall return −1 without changing errno.

Variable name Value Notes

{LINK_MAX} {_PC_LINK_MAX} (1)

{MAX_CANON} {_PC_MAX_CANON} (2)

{MAX_INPUT} {_PC_MAX_INPUT} (2)

{NAME_MAX} {_PC_NAME_MAX} (3), (4)

{PATH_MAX} {_PC_PATH_MAX} (4), (5)

{PIPE_BUF} {_PC_PIPE_BUF} (6)

{_POSIX_ASYNC_IO} [_PC_ASYNC_IO} (8)

{_POSIX_CHOWN_RESTRICTED} {PC_CHOWN_RESTRICTED} (7)

{_POSIX_NO_TRUNC} {_PC_NO_TRUNC} (3, 4)

{_POSIX_PRIO_IO} {_PC_PRIO_IO} (8)

{_POSIX_SYNC_IO} {_PC_SYNC_IO} (8)

{_POSIX_VDISABLE} {_PC_VDISABLE} (2)

Copyright © 1996 IEEE All Rights Reserved 111

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

If the implementation needs to use path to determine the value of name and the implementation does not support the
association of name with the file specified by path, or if the process did not have the appropriate privileges to query the
file specified by path, or path does not exist, the pathconf() function shall return −1.

If the implementation needs to use fildes to determine the value of name and the implementation does not support the
association of name with the file specified by fildes, or if fildes is an invalid file descriptor, the fpathconf() function
shall return −1.

Otherwise, the pathconf() and fpathconf() functions return the current variable value for the file or directory without
changing errno. The value returned shall not be more restrictive than the corresponding value described to the
application when it was compiled with the implementation's <limits.h> or <unistd.h>.

5.7.1.4 Errors

If any of the following conditions occur, the pathconf() and fpathconf() functions shall return −1 and set errno to the
corresponding value:

[EINVAL] The value of name is invalid.

For each of the following conditions, if the condition is detected, the pathconf() function shall return −1 and set errno
to the corresponding value:

[EACCES] Search permission is denied for a component of the path prefix.

[EINVAL] The implementation does not support an association of the variable name with the specified file.

[ENAMETOOLONG]

The length of the path argument exceeds {PATH_MAX}, or a pathname component is longer than
{NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

[ENOENT] The named file does not exist, or the path argument points to an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

For each of the following conditions, if the condition is detected, the fpathconf() function shall return −1 and set errno
to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The implementation does not support an association of the variable name with the specified file.

6. Input and Output Primitives

The functions in this section deal with input and output from files and pipes. Functions are also specified that deal with
the coordination and management of file descriptors and I/O activity.

6.1 Pipes

6.1.1 Create an Inter-Process Channel

Function: pipe()

112 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

6.1.1.1 Synopsis

int pipe(int fildes [2]);

6.1.1.2 Description

The pipe() function shall create a pipe and place two file descriptors, one each into the arguments fildes[0] and
fildes[1], that refer to the open file descriptions for the read and write ends of the pipe. Their integer values shall be the
two lowest available at the time of the pipe() function call. The O_NONBLOCK and FD_CLOEXEC flags shall be
clear on both file descriptors. [The fcntl() function can be used to set these flags.]

Data can be written to file descriptor fildes[1] and read from file descriptor fildes[0]. A read on file descriptor fildes[0]
shall access the data written to file descriptor fildes[1] on a first-in-first-out basis.

A process has the pipe open for reading if it has a file descriptor open that refers to the read end, fildes[0]. A process
has the pipe open for writing if it has a file descriptor open that refers to the write end, fildes[1].

Upon successful completion, the pipe() function shall mark for update the st_atime, st_ctime, and st_mtime fields of
the pipe.

6.1.1.3 Returns

Upon successful completion, the function shall return a value of zero. Otherwise, a value of −1 shall be returned and
errno shall be set to indicate the error.

6.1.1.4 Errors

If any of the following conditions occur, the pipe() function shall return −1 and set errno to the corresponding value:

[EMFILE] More than {OPEN_MAX}-2 file descriptors are already in use by this process.

[ENFILE] The number of simultaneously open files in the system would exceed a system-imposed limit.

6.1.1.5 Cross-References

fcntl(), 6.5.2; open(), 5.3.1; read(), 6.4.1; write(), 6.4.2.

6.2 File Descriptor Manipulation

6.2.1 Duplicate an Open File Descriptor

Functions: dup(), dup2()

6.2.1.1 Synopsis

int dup(int fildes);
int dup2(int fildes, int fildes2);

6.2.1.2 Description

The dup() and dup2() functions provide an alternate interface to the service provided by the fcntl() function using the
F_DUPFD command. The call:

 fid = dup (fildes);

Copyright © 1996 IEEE All Rights Reserved 113

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

shall be equivalent to:

 fid = fcntl (fildes, F_DUPFD, 0);

The call:

 fid = dup2 (fildes, fildes2);

shall be equivalent to:

 close (fildes2);
 fid = fcntl (fildes, F_DUPFD, fildes2);

except for the following:

1) If fildes2 is negative or greater than or equal to {OPEN_MAX}, the dup2() function shall return −1 and errno
shall be set to [EBADF].

2) If fildes is a valid file descriptor and is equal to fildes2, the dup2() function shall return fildes2 without closing
it.

3) If fildes is not a valid file descriptor, dup2() shall fail and not close fildes2.
4) The value returned shall be equal to the value of fildes2 upon successful completion or shall be −1 upon

failure.

6.2.1.3 Returns

Upon successful completion, the function shall return a file descriptor. Otherwise, a value of −1 shall be returned and
errno shall be set to indicate the error.

6.2.1.4 Errors

If any of the following conditions occur, the dup() function shall return −1 and set errno to the corresponding value:

[EBADF] The argument fildes is not a valid open file descriptor.

[EMFILE] The number of file descriptors would exceed {OPEN_MAX}.

If any of the following conditions occur, the dup2() function shall return −1 and set errno to the corresponding value:

[EBADF] The argument fildes is not a valid open file descriptor, or the argument fildes2 is negative or greater
than or equal to {OPEN_MAX}.

[EINTR] The dup2() function was interrupted by a signal.

6.2.1.5 Cross-References

close(), 6.3.1; creat(), 5.3.2; exec, 3.1.2; fcntl(), 6.5.2; open(), 5.3.1; pipe(), 6.1.1.

6.3 File Descriptor Deassignment

6.3.1 Close a File

Function: close()

114 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

6.3.1.1 Synopsis

int close(int fildes);

6.3.1.2 Description

The close() function shall deallocate (i.e., make available for return by subsequent open()s, etc., executed by the
process) the file descriptor indicated by fildes. All outstanding record locks owned by the process on the file associated
with the file descriptor shall be removed (that is, unlocked).

If the close() function is interrupted by a signal that is to be caught, it shall return −1 with errno set to [EINTR], and
the state of fildes is unspecified.

When all file descriptors associated with a pipe or FIFO special file have been closed, any data remaining in the pipe
or FIFO shall be discarded.

If the Asynchronous Input and Output option is supported:

When there is an outstanding cancelable asynchronous I/O operation against fildes when close() is called, that
I/O operation may be canceled. An I/O operation that is not canceled completes as if the close() operation had
not yet occurred. All operations that are not canceled shall complete as if the close() blocked until the
operations completed. The close() operation itself need not block awaiting such I/O completion. Whether any
I/O operation is cancelled, and which I/O operation may be cancelled upon close(), is implementation
defined.

When all file descriptors associated with an open file description have been closed, the open file description shall be
freed.

If the link count of the file is zero, when all file descriptors associated with the file have been closed, the space
occupied by the file shall be freed and the file shall no longer be accessible.

If the Mapped Files or Shared Memory Objects option is supported:

If a memory object remains referenced at the last close (i.e., a process has it mapped), then the entire contents
of the memory object shall persist until the memory object becomes unreferenced. If this is the last close of
a memory object and the close results in the memory object becoming unreferenced, and the memory object
has been unlinked, then the memory object shall be removed.

6.3.1.3 Returns

Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 shall be returned and errno
shall be set to indicate the error.

6.3.1.4 Errors

If any of the following conditions occur, the close() function shall return −1 and set errno to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINTR] The close() function was interrupted by a signal.

6.3.1.5 Cross-References

creat(), 5.3.2; dup(), 6.2.1; exec, 3.1.2; fcntl(), 6.5.2; fork(), 3.1.1; open(), 5.3.1; pipe(), 6.1.1; unlink(), 5.5.1; 3.3.1.4.

Copyright © 1996 IEEE All Rights Reserved 115

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

6.4 Input and Output

6.4.1 Read from a File

Function: read()

6.4.1.1 Synopsis

ssize_t read(int fildes, void *buf, size_t nbyte);

6.4.1.2 Description

The read() function shall attempt to read nbyte bytes from the file associated with the open file descriptor, fildes, into
the buffer pointed to by buf.

If nbyte is zero, the read() function shall return zero and have no other results.

On a regular file or other file capable of seeking, read() shall start at a position in the file given by the file offset
associated with fildes. Before successful return from read(), the file offset shall be incremented by the number of bytes
actually read.

On a file not capable of seeking, the read() shall start from the current position. The value of a file offset associated
with such a file is undefined.

Upon successful completion, the read() function shall return the number of bytes actually read and placed in the buffer.
This number shall never be greater than nbyte. The value returned may be less than nbyte if the number of bytes left in
the file is less than nbyte, if the read() request was interrupted by a signal, or if the file is a pipe (or FIFO) or special
file and has fewer than nbyte bytes immediately available for reading. For example, a read() from a file associated with
a terminal may return one typed line of data.

If a read() is interrupted by a signal before it reads any data, it shall return −1 with errno set to [EINTR].

If a read() is interrupted by a signal after it has successfully read some data, either it shall return −1 with errno set to
[EINTR], or it shall return the number of bytes read. A read() from a pipe or FIFO shall never return with errno set to
[EINTR] if it has transferred any data.

No data transfer shall occur past the current end-of-file. If the starting position is at or after the end-of-file, zero shall
be returned. If the file refers to a device special file, the result of subsequent read() requests is implementation defined.

If the value of nbyte is greater than {SSIZE_MAX}, the result is implementation defined.

When attempting to read from an empty pipe (or FIFO):

1) If no process has the pipe open for writing, read() shall return zero to indicate end-of-file.
2) If some process has the pipe open for writing and O_NONBLOCK is set, read() shall return −1 and set errno

to [EAGAIN].
3) If some process has the pipe open for writing and O_NONBLOCK is clear, read() shall block the calling

thread until some data is written or the pipe is closed by all processes that had the pipe open for writing.

When attempting to read a file (other than a pipe or FIFO) that supports nonblocking reads and has no data currently
available:

1) If O_NONBLOCK is set, read() shall return −1 and set errno to [EAGAIN].
2) If O_NONBLOCK is clear, read() shall block the calling thread until some data becomes available.

116 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

The use of the O_NONBLOCK flag has no effect if there is some data available.

For any portion of a regular file, prior to the end-of-file, that has not been written, read() shall return bytes with value
zero.

Upon successful completion where nbyte is greater than zero, the read() function shall mark for update the st_atime
field of the file.

If the Synchronized Input and Output option is supported:

If the O_DSYNC and O_RSYNC bits have been set, read I/O operations on the file descriptor complete as
defined by synchronized I/O data integrity completion. If the O_SYNC and 0_RSYNC bits have been set,
read I/O operations on the file descriptor complete as defined by synchronized I/O file integrity completion.

If the Shared Memory Objects option is supported:

If fildes refers to a shared memory object, the result of the read() function is unspecified.

6.4.1.3 Returns

Upon successful completion, read() shall return an integer indicating the number of bytes actually read. Otherwise,
read() shall return a value of −1 and set errno to indicate the error, and the content of the buffer pointed to by buf is
indeterminate.

6.4.1.4 Errors

If any of the following conditions occur, the read() function shall return −1 ανδ σετ errno to the corresponding value:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor and the process would be delayed in the read
operation.

[EBADF] The fildes argument is not a valid file descriptor open for reading.

[EINTR] The read operation was interrupted by a signal, and either no data was transferred or the
implementation does not report partial transfer for this file.

[EIO] The implementation supports Job Control, the process is in a background process group and is
attempting to read from its controlling terminal, and either the process is ignoring or blocking the
SIGTTIN signal or the process group of the process is orphaned. This error may also be generated
when conditions unspecified by this part of ISO/IEC 9945 occur.

6.4.1.5 Cross-References

creat(), 5.3.2; dup(), 6.2.1; fcntl(), 6.5.2; lseek(), 6.5.3; open(), 5.3.1; pipe(), 6.1.1; 3.3.1.4; 7.1.1.

6.4.2 Write to a File

Function: write()

6.4.2.1 Synopsis

ssize_t write(int fildes, const void *buf, size_t nbyte);

Copyright © 1996 IEEE All Rights Reserved 117

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

6.4.2.2 Description

The write() function shall attempt to write nbyte bytes from the buffer pointed to by buf to the file associated with the
open file descriptor, fildes.

If nbyte is zero and the file is a regular file, the write() function shall return zero and have no other results. If nbyte is
zero and the file is not a regular file, the results are unspecified.

On a regular file or other file capable of seeking, the actual writing of data shall proceed from the position in the file
indicated by the file offset associated with fildes. Before successful return from write(), the file offset shall be
incremented by the number of bytes actually written. On a regular file, if this incremented file offset is greater than the
length of the file, the length of the file shall be set to this file offset.

On a file not capable of seeking, the write() shall start from the current position. The value of a file offset associated
with such a file is undefined.

If the O_APPEND flag of the file status flags is set, the file offset shall be set to the end of the file prior to each write,
and no intervening file modification operation shall be allowed between changing the file offset and the write
operation.

If a write() requests that more bytes be written than there is room for (for example, the physical end of a medium), only
as many bytes as there is room for shall be written. For example, suppose there is space for 20 bytes more in a file
before reaching a limit. A write of 512 bytes would return 20. The next write of a nonzero number of bytes would give
a failure return (except as noted below).

Upon successful completion, the write() function shall return the number of bytes actually written to the file associated
with fildes. This number shall never be greater than nbyte.

If a write() is interrupted by a signal before it writes any data, it shall return −1 with errno set to [EINTR].

If write() is interrupted by a signal after it successfully writes some data, either it shall return −1 with errno set to
[EINTR], or it shall return the number of bytes written. A write() to a pipe or FIFO shall never return with errno set to
[EINTR] if it has transferred any data and nbyte is less than or equal to {PIPE_BUF}.

If the value of nbyte is greater than {SSIZE_MAX}, the result is implementation defined.

After a write() to a regular file has successfully returned:

1) Any successful read() from each byte position in the file that was modified by that write() shall return the data
specified by the write() for that position, until such byte positions are again modified.

2) Any subsequent successful write() to the same byte position in the file shall overwrite that file data. The
phrase “subsequent successful write()” in the previous sentence is intended to be viewed from a system
perspective [i.e., read() followed by a systemwide subsequent write()].

Write requests to a pipe (or FIFO) handled in the same manner as write requests to a regular file, with the following
exceptions:

1) There is no file offset associated with a pipe, hence each write request shall append to the end of the pipe.
2) Write requests of {PIPE_BUF} bytes or less shall not be interleaved with data from other processes doing

writes on the same pipe. Writes of greater than {PIPE_BUF} bytes may have data interleaved, on arbitrary
boundaries, with writes by other processes, whether or not the O_NONBLOCK flag of the file status flags is
set.

3) If the O_NONBLOCK flag is clear, a write request may cause the thread to block, but on normal completion
it shall return nbyte.

118 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

4) If the O_NONBLOCK flag is set, write() requests shall be handled differently, in the following ways:
a) The write() function shall not block the process.
b) A write request for {PIPE_BUF} or fewer bytes shall either:

1) If there is sufficient space available in the pipe, transfer all the data and return the number of bytes
requested.

2) If there is not sufficient space available in the pipe, transfer no data and return −1 ωιτη errno set to
[EAGAIN].

c) A write request for more than {PIPE BUF} bytes shall either:
1) When at least one byte can be written, transfer what it can and return the number of bytes written.

When all data previously written to the pipe has been read, it shall transfer at least {PIPE_BUF}
bytes.

2) When no data can be written, transfer no data and return –1 with errno set to [EAGAIN].

When attempting to write to a file descriptor (other than a pipe or FIFO) that supports nonblocking writes and cannot
accept the data immediately:

1) If the O_NONBLOCK flag is clear, write() shall block the calling thread until the data can be accepted.
2) If the O_NONBLOCK flag is set, write() shall not block the process. If some data can be written without

blocking the process, write() shall write what it can and return the number of bytes written. Otherwise, it shall
return −1 and errno shall be set to [EAGAIN].

Upon successful completion where nbyte is greater than zero, the write() function shall mark for update the st_ctime
and st_mtime fields of the file.

If the Synchronized Input and Output option is supported:

If the O_DSYNC bit has been set, write I/O operations on the file descriptor complete as defined by
synchronized I/O data integrity completion. If the O_SYNC bit has been set, write I/O operations on the file
descriptor complete as defined by synchronized I/O file integrity completion.

If the Shared Memory Objects option is supported:

If fildes refers to a shared memory object, the result of the write() function is unspecified.

6.4.2.3 Returns

Upon successful completion, write() shall return an integer indicating the number of bytes actually written. Otherwise,
it shall return a value of −1 and set errno to indicate the error.

6.4.2.4 Errors

If any of the following conditions occur, the write() function shall return −1 and set errno to the corresponding value:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor and the process would be delayed in the write
operation.

[EBADF] The fildes argument is not a valid file descriptor open for writing.

[EFBIG] An attempt was made to write a file that exceeds an implementation-defined maximum file size.

[EINTR] The write operation was interrupted by a signal, and either no data was transferred or the
implementation does not report partial transfers for this file.

[EIO] The implementation supports Job Control, the process is in a background process group and is
attempting to write to its controlling terminal, TOSTOP is set, the process is neither ignoring nor

Copyright © 1996 IEEE All Rights Reserved 119

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

blocking SIGTTOU signals, and the process group of the process is orphaned. This error may also
be generated when conditions unspecified by this part of ISO/IEC 9945 occur.

[ENOSPC] There is no free space remaining on the device containing the file.

[EPIPE] An attempt is made to write to a pipe (or FIFO) that is not open for reading by any process. A
SIGPIPE signal shall also be sent to the process.

6.4.2.5 Cross-References

creat(), 5.3.2; dup(), 6.2.1; fcntl(), 6.5.2; lseek(), 6.5.3; open(), 5.3.1; pipe(), 6.1.1; 3.3.1.4.

6.5 Control Operations on Files

6.5.1 Data Definitions for File Control Operations

The header <fcntl.h> defines the following requests and arguments for the fcntl() and open() functions. The values
within each of the tables within this clause (Table 6.1 through Table 6.7) shall be unique numbers. In addition, the
values of the entries for oflag values, file status flags, and file access modes shall be unique.

6.5.2 File Control

Function: fcntl()

6.5.2.1 Synopsis

#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
int fcntl(int fildes, int cmd, ...);

6.5.2.2 Description

The function fcntl() provides for control over open files. The argument fildes is a file descriptor.

The available values for cmd are defined in the header <fcntl.h> (see 6.5.1), which shall include:

F_DUPFD Return a new file descriptor that is the lowest numbered available (i.e., not already open) file
descriptor greater than or equal to the third argument, arg, taken as an integer of type int. The new
file descriptor refers to the same open file description as he original file descriptor and shares any
locks.

The FD_CLOEXEC flag associated with the new file descriptor is cleared to keep the file open
across calls to the exec family of functions.

120 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Table 6.1—cmd Values for fcntl()

Table 6.2—File Descriptor Flags Used for fcntl()

Table 6.3—l_type Values for Record Locking With fcntl()

Table 6.4—oflag Values for open

F_GETFD Get the file descriptor flags, as defined in Table 6.2, that are associated with the file descriptor fildes.
File descriptor flags are associated with a single file descriptor and do not affect other file
descriptors that refer to the same file.

F_SETFD Set the file descriptor flags, as defined in Table 6.2, that are associated with fildes to the third
argument, arg, taken as type int. If the FD_CLOEXEC flag is zero, the file shall remain open across
exec functions; otherwise, the file shall be closed upon successful execution of an exec function.

F_GETFL Get the file status flags, as defined in Table 6.5, and file access modes for the open file description
associated with fildes. The file access modes defined in Table 6.6 can be extracted from the return
value using the mask O_ACCMODE, which is defined in <fcntl.h>. File status flags and file
access modes are associated with the open file description and do not affect other file

Constant Description

F_DUPFD Duplicate file descriptor.

F_GETFD Get file descriptor flags.

F_GETLK Get record locking information.

F_SETFD Set file descriptor flags.

F_GETFL Get file status flags.

F_SETFL Set file status flags.

F_SETLK Set record locking information.

F_SETLKW Set record locking information; wait if blocked.

Constant Description

FD_CLOEXEC Close the file descriptor upon execution of an exec-family function.

Constant Description

F_RDLCK Shared or read lock.

F_UNLCK Unlock.

F_WRLCK Exclusive or write lock.

Constant Description

O_CREAT Create file if it does not exist.

O_EXCL Exclusive use flag.

O_NOCTTY Do not assign a controlling terminal.

O_TRUNC Truncate flag.

Copyright © 1996 IEEE All Rights Reserved 121

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Table 6.5—File Status Flags Used for open() and fcntl()

Table 6.6—File Access Modes Used for open() and fcntl()

Table 6.7—Mask for Use With File Access Modes

descriptors that refer to the same file with different open file descriptions.

F_SETFL Set the file status flags, as defined in Table 6.5, for the open file description associated with fildes
from the corresponding bits in the third argument, arg, taken as type int. Bits corresponding to the
file access modes (as defined in Table 6.6) and the oflag values (as defined in Table 6.4) that are set
in arg are ignored. If any bits in arg other than those mentioned here are changed by the application,
the result is unspecified.

The following commands are available for advisory record locking. Advisory record locking shall be supported for
regular files, and may be supported for other files.

F_GETLK Get the first lock that blocks the lock description pointed to by the third argument, arg, taken as a
pointer to type struct flock (see below). The information retrieved overwrites the information passed
to fcntl() in the flock structure. If no lock is found that would prevent this lock from being created,
the structure shall be left unchanged by this function call except for the lock type, which shall be set
to F_UNLCK().

F_SETLK Set or clear a file segment lock according to the lock description pointed to by the third argument,
arg, taken as a pointer to type struct flock (see below). F_SETLK is used to establish shared (or read)
locks (F_RDLCK) or exclusive (or write) locks, (F_WRLCK), as well as to remove either type of
lock (F_UNLCK). F_RDLCK, F_WRLCK, and F_UNLCK are defined by the <fcntl.h> header.
If a shared or exclusive lock cannot be set, fcntl() shall return immediately.

F_SETLKW This command is the same as F_SETLK except that if a shared or exclusive lock is blocked by other
locks, the thread shall wait until the request can be satisfied. If a signal that is to be caught is received
while fcntl() is waiting for a region, the fcntl() shall be interrupted. Upon return from the signal
handler of the process, fcntl() shall return −1 with errno set to [EINTR], and the lock operation shall
not be done.

Constant Description

O_APPEND Set append mode.

O_DSYNC Write according to synchronized I/O data integrity completion.

O_NONBLOCK No delay.

O_RSYNC Synchronized read I/O operations.

O_SYNC Write according to synchronized I/O file integrity completion.

Constant Description

O_RDONLY Open for reading only.

O_RDWR Open for reading and writing.

O_WRONLY Open for writing only.

Constant Description

O_ACCMODE Mask for file access modes.

122 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

The flock structure, defined by the <fcntl.h> header, describes an advisory lock. It includes the members shown in
Table 6.8.

Table 6.8—flock Structure

When a shared lock has been set on a segment of a file, other processes shall be able to set shared locks on that segment
or a portion of it. A shared lock prevents any other process from setting an exclusive lock on any portion of the
protected area. A request for a shared lock shall fail if the file descriptor was not opened with read access.

An exclusive lock shall prevent any other process from setting a shared lock or an exclusive lock on any portion of the
protected area. A request for an exclusive lock shall fail if the file descriptor was not opened with write access.

The value of l_whence is SEEK_SET, SEEK_CUR, or SEEK_END to indicate that the relative offset, l_start bytes,
will be measured from the start of the file, current position, or end of the file, respectively. The value of l_len is the
number of consecutive bytes to be locked. If l_len is negative, the result is undefined. The l_pid field is only used with
F_GETLK to return the process ID of the process holding a blocking lock. After a successful F_GETLK request, the
value of l_whence shall be SEEK_SET.

Locks may start and extend beyond the current end of a file, but shall not start or extend before the beginning of the
file. A lock shall be set to extend to the largest possible value of the file offset for that file if l_len is set to zero. If the
flock struct has l_whence and l_start that point to the beginning of the file, and l_len of zero, the entire file shall be
locked.

There shall be at most one type of lock set for each byte in the file. Before a successful return from an F_SETLK or an
F_SETLKW request when the calling process has previously existing locks on bytes in the region specified by the
request, the previous lock type for each byte in the specified region shall be replaced by the new lock type. As specified
above under the descriptions of shared locks and exclusive locks, an F_SETLK or an F_SETLKW request shall
(respectively) fail or block when another process has existing locks on bytes in the specified region and the type of any
of those locks conflicts with the type specified in the request.

All locks associated with a file for a given process shall be removed when a file descriptor for that file is closed by that
process or the process holding that file descriptor terminates. Locks are not inherited by a child process created using
the fork() function.

A potential for deadlock occurs if a process controlling a locked region is put to sleep by attempting to lock the locked
region of another process. If the system detects that sleeping until a locked region is unlocked would cause a deadlock,
the fcntl() function shall fail with an [EDEADLK] error.

If the Shared Memory Objects option is supported and the file descriptor fildes refers to a shared memory object, the
behavior of fcntl() shall be the same as for a regular file except the effect of the following values for the argument cmd
shall be unspecified: F_SETFL, F_GETLK, F_SETLK, and F_SETLKW.

Member
Type

Member
Name Description

short l_type F_RDLCK, F_WRLCK, or F_UNLCK.

short l_whence Flag for starting offset.

off_t l_start Relative offset in bytes.

off_t l_len Size; if 0, then until EOF.

pid_t l_pid Process ID of the process holding the lock, returned with F_GETLK.

Copyright © 1996 IEEE All Rights Reserved 123

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

6.5.2.3 Returns

Upon successful completion, the value returned shall depend on cmd. The various return values are shown in Table 6.9.

Table 6.9—fcntl() Return Values

Otherwise, a value of −1 shall be returned and errno shall be set to indicate the error.

6.5.2.4 Errors

If any of the following conditions occur, the fcntl() function shall return −1 and set errno to the corresponding value:

[EACCES] or [EAGAIN]

The argument cmd is F_SETLK, the type of lock (l_type) is a shared lock (F_RDLCK) or exclusive
lock (F_WRLCK), and the segment of a file to be locked is already exclusive-locked by another
process; or the type is an exclusive lock and some portion of the segment of a file to be locked is
already shared-locked or exclusive-locked by another process.

[EBADF] The fildes argument is not a valid file descriptor.

The argument cmd is F_SETLK or F_SETLKW, the type of lock (l_type) is a shared lock
(F_RDLCK), and fildes is not a valid file descriptor open for reading.

The argument cmd is F_SETLK or F_SETLKW, the type of lock (l_type) is an exclusive lock
(F_WRLCK), and fildes is not a valid file descriptor open for writing.

[EINTR] The argument cmd is F_SETLKW, and the function was interrupted by a signal.

[EINVAL] The argument cmd is F_DUPFD, and the third argument is negative or greater than or equal to
{OPEN_MAX}.

The argument cmd is F_GETLK, F_SETLK, or F_SETLKW and the data to which arg points is not
valid, or fildes refers to a file that does not support locking.

This implementation does not support synchronized I/O for this file.

[EMFILE] The argument cmd is F_DUPFD and {OPEN_MAX} file descriptors are currently in use by this
process, or no file descriptors greater than or equal to arg are available.

[ENOLCK] The argument cmd is F_SETLK or F_SETLKW, and satisfying the lock or unlock request would
result in the number of locked regions in the system exceeding a system-imposed limit.

Request Return Value

F_DUPFD A new file descriptor.

F_GETFD Value of the flags defined in Table 6.2, but the return value shall not be negative.

F_SETFD Value other than −1.

F_GETFL Value of file status flags and access modes, but the return value shall not be negative.

F_SETFL Value other than −1.

F_GETLK Value other than −1.

F_SETLK Value other than −1.

F_SETLKW Value other than −1.

124 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

For each of the following conditions, if the condition is detected, the fcntl() function shall return −1 and set errno to the
corresponding value:

[EDEADLK] The argument cmd is F_SETLKW, and a deadlock condition was detected.

6.5.2.5 Cross-References

close(), 6.3.1; exec, 3.1.2; open(), 5.3.1; <fcntl.h>, 6.5.1; 3.3.1.4.

6.5.3 Reposition Read/Write File Offset

Function: lseek()

6.5.3.1 Synopsis

#include <sys/types.h>
#include <unistd.h>
off_t lseek(int fildes, off_t offset, int whence);

6.5.3.2 Description

The fildes argument is an open file descriptor. The lseek() function shall set the file offset for the open file description
associated with fildes as follows:

1) If whence is SEEK_SET, the offset is set to offset bytes.
2) If whence is SEEK_CUR, the offset is set to its current value plus offset bytes.
3) If whence is SEEK_END, the offset is set to the size of the file plus offset bytes.

The symbolic constants SEEK_SET, SEEK_CUR, and SEEK_END are defined in the header <unistd.h>.

Some devices are incapable of seeking. The value of the file offset associated with such a device is undefined. The
behavior of the lseek() function on such devices is implementation defined.

The lseek() function shall allow the file offset to be set beyond the end of existing data in the file. If data is later written
at this point, subsequent reads of data in the gap shall return bytes with the value zero until data is actually written into
the gap.

The lseek() function shall not, by itself, extend the size of a file.

If fildes refers to a shared memory object, the result of the lseek() function is unspecified.

6.5.3.3 Returns

Upon successful completion, the function shall return the resulting offset location as measured in bytes from the
beginning of the file. Otherwise, it shall return a value of ((off_t) −1), shall set errno to indicate the error, and the file
offset shall remain unchanged by this function call.

6.5.3.4 Errors

If any of the following conditions occur, the lseek() function shall return −1 and set errno to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The whence argument is not a proper value, or the resulting file offset would be invalid.

Copyright © 1996 IEEE All Rights Reserved 125

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

[ESPIPE] The fildes argument is associated with a pipe or FIFO.

6.5.3.5 Cross-References

creat(), 5.3.2; dup(), 6.2.1; fcntl(), 6.5.2; open(), 5.3.1; read(), 6.4.1; sigaction(), 3.3.4; write(), 6.4.2; <unistd.h>,
2.9.

6.6 File Synchronization

The hardware characteristics upon which the implementation relies to assure that data is successfully transferred for
synchronized I/O operations are implementation defined.

6.6.1 Synchronize the State of a File

Function: fsync()

6.6.1.1 Synopsis

#include <unistd.h>
int fsync(int fildes);

6.6.1.2 Description

If {_POSIX_FSYNC} is defined:

The fsync() function can be used by the application to indicate that all data for the open file description named
by fildes is to be transferred to the storage device associated with the file described by fildes in an
implementation-defined manner. The fsync() function shall not return until the system has completed that
action or until an error is detected.
The conformance document shall include sufficient information for the user to determine whether it is
possible to configure an application and installation to ensure that the data is stored with the degree of
required stability for the intended use.
If the Synchronized Input and Output option is supported, then the fsync() function forces all currently
queued I/O operations associated with the file indicated by file descriptor fildes to the synchronized I/O
completion state. All I/O operations are completed as defined for synchronized I/O file integrity completion.
If both symbols {_POSIX_SYNCHRONIZED_IO} and {_POSIX_FSYNC} are defined, then the definition
for {_POSIX_SYNCHRONIZED_IO} shall apply.

Otherwise:

Either the implementation shall support the fsync() function as described above or the fsync() function shall
fail.

NOTE — It is expected that a future revision will make this interface mandatory for conforming implementations and regular files.
The text of the support condition will be removed at the time the contemplated revision is approved. Since the
Synchronized Input and Output option will remain optional, the semantics relating to it will remain conditional.

6.6.1.3 Returns

Upon successful completion, the fsync() function shall return zero. Otherwise, it shall return −1 and set errno to
indicate the error. If the fsync() function fails, outstanding I/O operations are not guaranteed to have been completed

126 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

6.6.1.4 Errors

If any of the following conditions occur, the fsync() function shall return −1 and set errno to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] This implementation does not support synchronized I/O for this file.

[ENOSYS] The function fsync() is not supported by this implementation.

In the event that any of the queued I/O operations fail, fsync() shall return the error conditions defined for read() and
write().

6.6.1.5 Cross-References

aio_fsync(), 6.7.9; fdatasync(), 6.6.2; fcntl(), 6.5.2; open(), 5.3.1; read(), 6.4.1; write(), 6.4.2.

6.6.2 Synchronize the Data of a File

Function: fdatasync()

6.6.2.1 Synopsis

#include <unistd.h>
int fdatasync(int fildes);

6.6.2.2 Description

If {_POSIX_SYNCHRONIZED_IO} is defined:

The fdatasync() function forces all currently queued I/O operations associated with the file indicated by file
descriptor fildes to the synchronized I/O completion state.
The functionality is as described for fsync() (with the symbol {_POSIX_SYNCHRONIZED_IO} defined)
with the exception that all I/O operations are completed as defined for synchronized I/O data integrity
completion.

Otherwise:

Either the implementation shall support the fdatasync() function as described above or the fdatasync()
function shall fail.

6.6.2.3 Returns

If successful, the fdatasync() function shall return the value 0. Otherwise, the function shall return the value −1 and set
errno to indicate the error. If the fdatasync() function fails, outstanding I/O operations are not guaranteed to have been
completed.

6.6.2.4 Errors

If any of the following conditions occur, the fdatasync() function shall return −1 and set errno to the corresponding
value:

[EBADF] The fildes argument is not a valid file descriptor open for writing.

[EINVAL] This implementation does not support synchronized I/O for this file.

Copyright © 1996 IEEE All Rights Reserved 127

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

[ENOSYS] The function fdatasync() is not supported by this implementation.

In the event that any of the queued I/O operations fail, fdatasync() shall return the error conditions defined for read()
and write().

6.6.2.5 Cross-References

aio_fsync(), 6.7.9; fcntl(), 6.5.2; fsync(), 6.6.1; open(), 5.3.1; read(), 6.4.1; write(), 6.4.2.

6.7 Asynchronous Input and Output

6.7.1 Data Definitions for Asynchronous Input and Output

Inclusion of the <aio.h> header may make visible the symbols allowed by this part of ISO/IEC 9945 to be in the
headers <sys/types.h>, <signal.h>, <time.h>, and <fcntl.h>.

6.7.1.1 Asynchronous I/O Control Block

An asynchronous I/O control block structure aiocb is used in many of the asynchronous I/O function interfaces. It is
defined in <aio.h> and has at least the following members:

Implementations may add extensions as permitted in 1.3.1.1, item (2). Adding extensions to this structure, which may
change the behavior of the application with respect to this standard when those fields in the structure are uninitialized,
also requires that the extension be enabled as required by 1.3.1.1.

The aio_fildes element is the file descriptor on which the asynchronous operation is to be performed.

If O_APPEND is not set for the file descriptor aio_fildes, and if aio_fildes is associated with a device that is capable
of seeking, then the requested operation takes place at the absolute position in the file as given by aio_offset, as if
lseek() were called immediately prior to the operation with an offset argument equal to aio_offset and a whence
argument equal to SEEK_SET. If O_APPEND is set for the file descriptor, or if aio_fildes is associated with a device
that is incapable of seeking, write operations append to the file in the same order as the calls were made, with the
following exception. Under implementation-defined circumstances, such as operation on a multiprocessor or when
requests of differing priorities are submitted at the same time, the ordering restriction may be relaxed; the
implementation shall document under what circumstances the ordering restriction may be relaxed. After a successful

Member
Type

Member
Name Description

int aio_fildes File descriptor.

off_t aio_offset File offset.

volatile void * aio_buf Location of buffer.

size_t aio_nbytes Length of transfer.

int aio_reqprio Request priority offset.

struct sigevent aio_sigevent Signal number and value.

int aio_lio_opcode Operation to be performed.

128 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

call to enqueue an asynchronous I/O operation, the value of the file offset for the file is unspecified. The aio_nbytes
and aio_buf elements are the same as the nbyte and buf arguments defined by 6.4.1 and 6.4.2, respectively.

If {_POSIX_PRIORITIZED_IO} and {_POSIX_PRIORITY_SCHEDULING} are defined, then asynchronous I/O is
queued in priority order, with the priority of each asynchronous operation based on the current scheduling priority of
the calling process. The aio_reqprio member can be used to lower (but not raise) the asynchronous I/O operation
priority and shall be within the range zero through {AIO_PRIO_DELTA_MAX}, inclusive. The order of processing of
requests submitted by processes whose schedulers are not SCHED_FIFO or SCHED_RR is unspecified. The priority
of an asynchronous request is computed as (process scheduling priority) minus aio_reqprio. The priority assigned to
each asynchronous I/O request is an indication of the desired order of execution of the request relative to other
asynchronous I/O requests for this file. If {_POSIX_PRIORITIZED_IO} is defined, requests issued with the same
priority to a character special file shall be processed by the underlying device in FIFO order; the order of processing
of requests of the same priority issued to files that are not character special files is unspecified. Numerically higher
priority values indicate requests of higher priority. The value of aio_reqprio shall have no effect on process scheduling
priority. When prioritized asynchronous I/O requests to the same file are blocked waiting for a resource required for
that I/O operation, the higher-priority I/O requests shall be granted the resource before lower-priority I/O requests are
granted the resource. The relative priority of asynchronous I/O and synchronous I/O is implementation defined. If
{_POSIX_PRIORITIZED_IO} is defined, the implementation shall define for which files I/O prioritization is
supported.

The aio_sigevent determines how the calling process shall be notified upon I/O completion, as specified in 3.3.1.2. If
aio_sigevent.sigev_notify is SIGEV_NONE, then no signal shall be posted upon I/O completion, but the error status
for the operation and the return status for the operation shall be set appropriately.

The aio_lio_opcode field is used only by the lio_listio() call. The lio_listio() call allows multiple asynchronous I/O
operations to be submitted at a single time. The function takes as an argument an array of pointers to aiocb structures.
Each aiocb structure indicates the operation to be performed (read or write) via the aio_lio_opcode field.

The address of the aiocb structure is used as a handle for retrieving the error status and return status of the
asynchronous operation while it is in progress.

The aiocb structure and the data buffers associated with the asynchronous I/O operation are being used by the system
for asynchronous I/O while, and only while, the error status of the asynchronous operation is equal to
[EINPROGRESS]. Conforming applications shall not modify the aiocb structure while the structure is being used by
the system for asynchronous I/O.

The return status of the asynchronous operation is the number of bytes transferred by the I/O operation. If the error
status is set to indicate an error completion, then the return status is set to the return value that the corresponding
read(), write(), or fsync() call would have returned. When the error status is not equal to [EINPROGRESS], the return
status shall reflect the return status of the corresponding synchronous operation.

6.7.1.2 Manifest Constants

The header <aio.h> shall define the following symbols:

AIO_CANCELED

A return value indicating that all requested operations have been canceled (see 6.7.7).

AIO_NOTCANCELED

A return value indicating that some of the requested operations could not be canceled since they are
in progress (see 6.7.7).

Copyright © 1996 IEEE All Rights Reserved 129

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

AIO_ALLDONE

A return value indicating that none of the requested operations could be canceled since they are
already complete (see 6.7.7).

LIO_WAIT A lio_listio() synchronization option indicating that the calling thread is to suspend until the
lio_listio() operation is complete.

LIO_NOWAIT A lio_listio() synchronization option indicating that the calling process is to continue execution
while the lio_listio() operation is being performed, and no notification shall be given when the
operation is complete.

LIO_READ A lio_listio() element operation option requesting a read.

LIO_WRITE A lio_listio() element operation option requesting a write.

LIO_NOP A lio_listio() element operation option indicating that no transfer is requested.

6.7.2 Asynchronous Read

Function: aio_read()

6.7.2.1 Synopsis

#include <aio.h>
int aio_read(struct aiocb *aiocbp);

6.7.2.2 Description

If {_POSIX_ASYNCHRONOUS_IO} is defined:

The aio_read() function allows the calling process to read aiocbp->aio_nbytes from the file associated with
aiocbp->aio_fildes into the buffer pointed to by aiocbp->aio_buf (see 6.4.1). The function call returns when
the read request has been initiated or queued to the file or device (even when the data cannot be delivered
immediately). If {_POSIX_PRIORITIZED_IO} is defined and prioritized I/O is supported for this file, then
the asynchronous operation is submitted at a priority equal to the scheduling priority of the process minus
aiocbp->aio_reqprio. The aiocbp value may be used as an argument to aio_error() and aio_return() in order
to determine the error status and return status, respectively, of the asynchronous operation while it is
proceeding. If an error condition is encountered during queuing, the function call returns without having
initiated or queued the request. The requested operation takes place at the absolute position in the file as given
by aio_offset, as if lseek() were called immediately prior to the operation with an offset equal to aio_offset and
a whence equal to SEEK_SET. After a successful call to enqueue an asynchronous I/O operation, the value of
the file offset for the file is unspecified.
The aiocbp->aio_lio_opcode field is ignored by aio_read().
The aiocbp argument points to an aiocb structure. If the buffer pointed to by aiocbp->aio_buf or the control
block pointed to by aiocbp becomes an illegal address prior to asynchronous I/O completion, then the
behavior is undefined.
Simultaneous asynchronous operations using the same aiocbp produce undefined results.
If {_POSIX_SYNCHRONIZED_IO} is defined and synchronized I/0 is enabled on the file associated with
aiocbp->aio_fildes, the behavior of this function shall be according to the definitions of synchronized I/0 data
integrity completion and synchronized I/0 file integrity completion
For any system action that changes the process memory space while an asynchronous I/O is outstanding to
the address range being changed, the result of that action is undefined.

130 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Otherwise:

Either the implementation shall support the aio_read() function as described above or the aio_read() function
shall fail.

6.7.2.3 Returns

The aio_read() function shall return the value zero to the calling process if the I/O operation is successfully queued;
otherwise, the function shall return the value −1 and set errno to indicate the error.

6.7.2.4 Errors

If any of the following conditions occur, the aio_read() function shall return −1 and set errno to the corresponding
value:

[EAGAIN] The requested asynchronous I/O operation was not queued due to system resource limitations.

[ENOSYS] The aio_read() function is not supported by this implementation.

Each of the following conditions may be detected synchronously at the time of the call to aio_read(), or
asynchronously. If any of the conditions below are detected synchronously, the aio_read() function shall return −1 and
set errno to the corresponding value. If any of the conditions below are detected asynchronously, the return status of
the asynchronous operation shall be set to −1, and the error status of the asynchronous operation shall be set to the
corresponding value.

[EBADF] The aiocbp->aio_fildes argument is not a valid file descriptor open for reading.

[EINVAL] The file offset value implied by aiocbp->aio_offset would be invalid, aiocbp->aio_reqprio is not a
valid value, or aiocbp->aio_nbytes is an invalid value.

In the case that the aio_read() successfully queues the I/O operation but the operation is subsequently canceled or
encounters an error, the return status of the asynchronous operation shall be one of the values normally returned by the
read() function call. In addition, the error status of the asynchronous operation shall be set to one of the error statuses
normally set by the read() function call, or one of the following values:

[EBADF] The aiocbp->aio_fildes argument is not a valid file descriptor open for reading.

[ECANCELED]

The requested I/O was canceled before the I/O completed due to an explicit aio_cancel() request.

[EINVAL] The file offset value implied by aiocbp->aio_offset would be invalid.

6.7.2.5 Cross-References

aio_write(), 6.7.3; lio_listio(), 6.7.4; aio_error(), 6.7.5; aio_return(), 6.7.6; aio_cancel(), 6.7.7; read(), 6.4.1; lseek(),
6.5.3; close(), 6.3.1; _exit(), 3.2.2; exec, 3.1.2; fork(), 3.1.1.

6.7.3 Asynchronous Write

Function: aio_write()

6.7.3.1 Synopsis

#include <aio.h>
int aio_write(struct aiocb *aiocbp);

Copyright © 1996 IEEE All Rights Reserved 131

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

6.7.3.2 Description

If {_POSIX_ASYNCHRONOUS_IO} is defined:

The aio_write() function allows the calling process to write aiocbp->aio_nbytes to the file associated with
aiocbp->aio_fildes from the buffer pointed to by aiocbp->aio_buf (see 6.4.2). The function call shall return
when the write request has been initiated or, at a minimum, queued to the file or device. If
{_POSIX_PRIORITIZED_IO} is defined and prioritized I/O is supported for this file, then the asynchronous
operation is submitted at a priority equal to the scheduling priority of the process minus aiocbp-
>aio_reqprio. The aiocbp may be used as an argument to aio_error() and aio_return() in order to determine
the error status and return status, respectively, of the asynchronous operation while it is proceeding.
The aiocbp argument points to an aiocb structure. If the buffer pointed to by aiocbp->aio_buf or the control
block pointed to by aiocbp becomes an illegal address prior to asynchronous I/O completion, then the
behavior is undefined.
If O_APPEND is not set for the file descriptor aio_fildes, then the requested operation takes place at the
absolute position in the file as given by aio_offset, as if lseek() were called immediately prior to the operation
with an offset equal to aio_offset and a whence equal to SEEK_SET. If O_APPEND is set for the file
descriptor, write operations append to the file in the same order as the calls were made. After a successful call
to enqueue an asynchronous I/O operation, the value of the file offset for the file is unspecified.
The aiocbp->aio_lio_opcode field is ignored by aio_write().
Simultaneous asynchronous operations using the same aiocbp produce undefined results.
If {_POSIX_SYNCHRONIZED_IO} is defined and synchronized I/O is enabled on the file associated with
aiocbp->aio_fildes, the behavior of this function shall be according to the definitions of synchronized I/O
data integrity completion and synchronized I/O file integrity completion
For any system action that changes the process memory space while an asynchronous I/O is outstanding to
the address range being changed, the result of that action is undefined.

Otherwise:

Either the implementation shall support the aio_write() function as described above or the aio_write()
function shall fail.

6.7.3.3 Returns

The aio_write() function shall return the value zero to the calling process if the I/O operation is successfully queued;
otherwise, the function shall return the value −1 and set errno to indicate the error.

6.7.3.4 Errors

If any of the following conditions occur, the aio_write() function shall return −1 and set errno to the corresponding
value:

[EAGAIN] The requested asynchronous I/O operation was not queued due to system resource limitations.

[ENOSYS] The aio_write() function is not supported by this implementation.

Each of the following conditions may be detected synchronously at the time of the call to aio_write(), or
asynchronously. If any of the conditions below are detected synchronously, the aio_write() function shall return −1 and
set errno to the corresponding value. If any of the conditions below are detected asynchronously, the return status of
the asynchronous operation shall be set to −1, and the error status of the asynchronous operation shall be set to the
corresponding value.

[EBADF] The aiocbp->aio_fildes argument is not a valid file descriptor open for writing.

132 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

[EINVAL] The file offset value implied by aiocbp->aio_offset would be invalid, aiocbp->aio_reqprio is not a
valid value, or aiocbp->aio_nbytes is an invalid value.

In the case that the aio_write() successfully queues the I/O operation, the return status of the asynchronous operation
shall be one of the values normally returned by the write() function call. If the operation is successfully queued but is
subsequently canceled or encounters an error, the error status for the asynchronous operation shall contain one of the
values normally set by the write() function call, or one of the following:

[EBADF] The aiocbp->aio_fildes argument is not a valid file descriptor open for writing.

[EINVAL] The file offset value implied by aiocbp->aio_offset would be invalid.

[ECANCELED]

The requested I/O was canceled before the I/O completed due to an explicit aio_cancel() request.

6.7.3.5 Cross-References

aio_read(), 6.7.2; lio_listio(), 6.7.4; aio_error(), 6.7.5; aio_return(), 6.7.6; aio_cancel(), 6.7.7; write(), 6.4.2; lseek(),
6.5.3; close(), 6.3.1; _exit(), 3.2.2; exec, 3.1.2; fork(), 3.1.1.

6.7.4 List Directed I/O

Function: lio_listio()

6.7.4.1 Synopsis

#include <aio.h>
int lio_listio(int mode, struct aiocb *const list[], int nent,
 struct sigevent *sig);

6.7.4.2 Description

If {_POSIX_ASYNCHRONOUS_IO} is defined:

The lio_listio() function allows the calling process to initiate a list of I/O requests with a single function call.
The mode argument takes one of the values LIO_WAIT or LIO_NOWAIT declared in 6.7.1 and determines
whether the function returns when the I/O operations have been completed, or as soon as the operations have
been queued. If the mode argument is LIO WAIT, the function waits until all I/O is complete and the sig
argument is ignored.
If the mode argument is LIO_NOWAIT, the function returns immediately, and signal delivery shall occur,
according to the sig argument, when all the I/O operations complete. If the mode argument is LIO_NOWAIT,
the function returns immediately, and asynchronous notification shall occur, according to the sig argument,
when all the I/O operations complete. If sig is NULL, then no asynchronous notification occurs. If sig is not
NULL, asynchronous notification shall occur as specified in 3.3.1.2 when all the requests in list have
completed.
The I/O requests enumerated by list are submitted in an unspecified order.
The list argument is an array of pointers to aiocb structures. The array contains nent elements. The array may
contain NULL elements, which shall be ignored.
The aio_lio_opcode field of each aiocb structure specifies the operation to be performed. The supported
operations are LIO_READ, LIO_WRITE, and LIO_NOP; these symbols are defined in 6.7.1. The LIO_NOP
operation causes the list entry to be ignored. If the aio_lio_opcode element is equal to LIO_READ, then an
I/O operation is submitted as if by a call to aio_read() with the aiocbp equal to the address of the aiocb
structure. If the aio_lio_opcode element is equal to LIO_WRITE, then an I/O operation is submitted as if by
a call to aio_write() with the aiocbp equal to the address of the aiocb structure.

Copyright © 1996 IEEE All Rights Reserved 133

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The aio_fildes member specifies the file descriptor on which the operation is to be performed.
The aio_buf member specifies the address of the buffer to or from which the data is to be transferred.
The aio_nbytes member specifies the number of bytes of data to be transferred.
The members of the aiocb structure further describe the I/O operation to be performed, in a manner identical
to that of the corresponding aiocb structure when used by the aio_read() and aio_write() functions.
The nent argument specifies how many elements are members of the list, that is, the length of the array.
The behavior of this function is altered according to the definitions of synchronized I/O data integrity
completion and synchronized I/O file integrity completion if synchronized I/O is enabled on the file
associated with aio_fildes.

Otherwise:

Either the implementation shall support the lio_listio() function as described above or the lio_listio() function
shall fail.

6.7.4.3 Returns

If the mode argument has the value LIO_NOWAIT, the lio_listio() function shall return the value zero if the I/O
operations are successfully queued; otherwise, the function shall return the value −1 and set errno to indicate the error.

If the mode argument has the value LIO_WAIT, the lio_listio() function shall return the value zero when all the
indicated I/O has completed successfully. Otherwise, lio_listio() shall return a value of −1 and set errno to indicate the
error.

In either case, the return value only indicates the success or failure of the lio_listio() call itself, not the status of the
individual I/O requests. In some cases one or more of the I/O requests contained in the list may fail. Failure of an
individual request does not prevent completion of any other individual request. To determine the outcome of each I/O
request, the application shall examine the error status associated with each aiocb structure. The error statuses so
returned are identical to those returned as the result of an aio_read() or aio_write() function.

6.7.4.4 Errors

If any of the following conditions occur, the lio_listio() function shall return −1 and set errno to the corresponding
value:

[EAGAIN] The resources necessary to queue all the I/O requests were not available. The application may check
the error status for each aiocb to determine the individual request(s) that failed.

[EAGAIN] The number of entries indicated by nent would cause the systemwide limit {AIO_MAX} to be
exceeded.

[EINVAL] The mode argument is not a proper value, or the value of nent was greater than
{AIO_LISTIO_MAX}.

[EINTR] A signal was delivered while waiting for all I/O requests to complete during a LIO WAIT operation.
Note that, since each I/O operation invoked by lio_listio() may possibly provoke a signal when it
completes, this error return may be caused by the completion of one (or more) of the very I/O
operations being awaited. Outstanding I/O requests are not canceled, and the application shall
examine each list element to determine whether the request was initiated, canceled, or completed.

[EIO] One or more of the individual I/O operations failed. The application may check the error status for
each aiocb structure to determine the individual request(s) that failed.

[ENOSYS] The lio_listio() function is not supported by this implementation.

134 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

In addition to the errors returned by the lio_listio() function, if the lio_listio() function succeeds or fails with errors of
[EAGAIN], [EINTR], or [EIO], then some of the I/O specified by the list may have been initiated. If the lio_listio()
function fails with an error code other than [EAGAIN], [EINTR], or [EIO], no operations from the list shall have been
initiated. The I/O operation indicated by each list element can encounter errors specific to the individual read or write
function being performed. In this event, the error status for each aiocb control block contains the associated error code.
The error codes that can be set are the same as would be set by a read() or write() function, with the following
additional error codes possible:

[EAGAIN] The requested I/O operation was not queued due to resource limitations.

[ECANCELED]

The requested I/O was canceled before the I/O completed due to an explicit aio_cancel() request.

[EINPROGRESS]

The requested I/O is in progress.

6.7.4.5 Cross-References

aio_read(), 6.7.2; aio_write(), 6.7.3; aio_error(), 6.7.5; aio_return(), 6.7.6; aio_cancel(), 6.7.7; read(), 6.4.1; lseek(),
6.5.3; close(), 6.3.1; _exit(), 3.2.2; exec, 3.1.2; fork(), 3.1.1.

6.7.5 Retrieve Error Status of Asynchronous I/O Operation

Function: aio_error()

6.7.5.1 Synopsis

#include <aio.h>
int aio_error (const struct aiocb *aiocbp);

6.7.5.2 Description

If {_POSIX_ASYNCHRONOUS_IO} is defined:

The aio_error() function returns the error status associated with the aiocb structure referenced by the aiocbp
argument. The error status for an asynchronous I/O operation is the errno value that would be set by the
corresponding read(), write(), or fsync() operation. If the operation has not yet completed, then the error
status shall be equal to [EINPROGRESS].

Otherwise:

Either the implementation shall support the aio_error() function as described above or the aio_error()
function shall fail.

6.7.5.3 Returns

If the asynchronous I/O operation has completed successfully, then 0 shall be returned. If the asynchronous operation
has completed unsuccessfully, then the error status, as described for read(), write(), and fsync(), shall be returned. If the
asynchronous I/O operation has not yet completed, then [EINPROGRESS] shall be returned.

6.7.5.4 Errors

If any of the following conditions occur, the aio_error() function shall return −1 and set errno to the corresponding
value:

Copyright © 1996 IEEE All Rights Reserved 135

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

[ENOSYS] The aio_error() function is not supported by this implementation.

For each of the following conditions, if the condition is detected, the aio_error() function shall return −1 and set errno
to the corresponding value:

[EINVAL] The aiocbp argument does not refer to an asynchronous operation whose return status has not yet
been retrieved.

6.7.5.5 Cross-References

aio_read(), 6.7.2; aio_write(), 6.7.3; aio_fsync(), 6.7.9; lio_listio(), 6.7.4; aio_return(), 6.7.6; aio_cancel(), 6.7.7;
read(), 6.4.1; lseek(), 6.5.3; close(), 6.3.1; _exit(), 3.2.2; exec, 3.1.2; fork(), 3.1.1.

6.7.6 Retrieve Return Status of Asynchronous I/O Operation

Function: aio_return()

6.7.6.1 Synopsis

#include <aio.h>
ssize_t aio_return(struct aiocb *aiocbp);

6.7.6.2 Description

If {_POSIX_ASYNCHRONOUS_IO} is defined:

The aio_return() function returns the return status associated with the aiocb structure referenced by the
aiocbp argument. The return status for an asynchronous I/O operation is the value that would be returned by
the corresponding read(), write(), or fsync() function call. If the error status for the operation is equal to
[EINPROGRESS], then the return status for the operation is undefined. The aio_return() function may be
called exactly once to retrieve the return status of a given asynchronous operation; thereafter, if the same
aiocb structure is used in a call to aio_return() or aio_error(), an error may be returned. When the aiocb
structure referred to by aiocbp is used to submit another asynchronous operation, then aio_return() may be
successfully used to retrieve the return status of that operation.

Otherwise:

Either the implementation shall support the aio_return() function as described above or the aio_return()
function shall fail.

6.7.6.3 Returns

If the asynchronous I/O operation has completed, then the return status, as described for read(), write(), and fsync(),
shall be returned. If the asynchronous I/O operation has not yet completed, the results of aio_return() are undefined.

6.7.6.4 Errors

If any of the following conditions occur, the aio_return() function shall return −1 and set errno to the corresponding
value:

[EINVAL] The aiocbp argument does not refer to an asynchronous operation whose return status has not yet
been retrieved.

[ENOSYS] The aio_return() function is not supported by this implementation.

136 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

6.7.6.5 Cross-References

aio_read(), 6.7.2; aio_write(), 6.7.3; aio_fsync(), 6.7.9; lio_listio(), 6.7.4; aio_error(), 6.7.5; aio_cancel(), 6.7.7;
read(), 6.4.1; lseek(), 6.5.3; close(), 6.3.1; _exit(), 3.2.2; exec, 3.1.2; fork(), 3.1.1.

6.7.7 Cancel Asynchronous I/O Request

Function: aio_cancel()

6.7.7.1 Synopsis

#include <aio.h>
int aio_cancel (int fildes, struct aiocb *aiocbp);

6.7.7.2 Description

If {_POSIX_ASYNCHRONOUS_IO} is defined:

The aio_cancel() function attempts to cancel one or more asynchronous I/O request currently outstanding
against file descriptor fildes. The aiocbp argument points to the asynchronous I/O control block for a
particular request to be canceled. If aiocbp is NULL, then all outstanding cancelable asynchronous I/O
requests against fildes are canceled
Normal signal notification shall occur for asynchronous I/O operations that are successfully canceled. If there
are requests that cannot be canceled, then the normal asynchronous completion process shall take place for
those requests when they are completed.
For requested operations that are successfully canceled, the associated error status is set to [ECANCELED]
and the return status is −1. For requested operations that are not successfully canceled, the aiocbp is not
modified by aio_cancel().
If aiocbp is not NULL, then if fildes does not have the same value as the file descriptor with which the
asynchronous operation was initiated, unspecified results occur.

Otherwise:

Either the implementation shall support the aio_cancel() function as described above or the aio_cancel()
function shall fail.

Which operations are cancelable is implementation defined.

6.7.7.3 Returns

The aio_cancel() function returns the value AIO_CANCELED to the calling process if the requested operation(s)
were canceled. The value AIO_NOTCANCELED is returned if at least one of the requested operation(s) cannot be
canceled because it is in progress. In this case, the state of the other operations, if any, referenced in the call to
aio_cancel() is not indicated by the return value of aio_cancel(). The application may determine the state of affairs for
these operations by using aio_error(). The value AIO_ALLDONE is returned if all of the operations have already
completed. Otherwise, the function shall return −1 and set errno to indicate the error.

6.7.7.4 Errors

If any of the following conditions occur, the aio_cancel() function shall return −1 and set errno to the corresponding
value:

[EBADF] The fildes argument is not a valid file descriptor.

Copyright © 1996 IEEE All Rights Reserved 137

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

[ENOSYS] The aio_cancel() function is not supported by this implementation.

6.7.7.5 Cross-References

aio_write(), 6.7.3; aio_read(), 6.7.2.

6.7.8 Wait for Asynchronous I/O Request

Function: aio_suspend()

6.7.8.1 Synopsis

#include <aio.h>
int aio_suspend (const struct aiocb *const list[], int nent,
 const struct timespec *timeout);

6.7.8.2 Description

If {_POSIX_ASYNCHRONOUS_IO} is defined:

The aio_suspend() function shall suspend the calling thread until at least one of the asynchronous I/O
operations referenced by the list argument has completed, until a signal interrupts the function, or, if timeout
is not NULL, until the time interval specified by timeout has passed. If any of the aiocb structures in the list
correspond to completed asynchronous I/O operations (i.e., the error status for the operation is not equal to
[EINPROGRESS]) at the time of the call, the function shall return without suspending the calling process.
The list argument is an array of pointers to asynchronous I/O control blocks. The nent argument indicates the
number of elements in the array. Each aiocb structure pointed to shall have been used in initiating an
asynchronous I/O request via aio_read(), aio_write(), or lio_listio(). This array may contain NULL pointers,
which shall be ignored. If this array contains pointers that refer to aiocb structures that have not been used in
submitting asynchronous I/O, the effect is undefined.
If the time interval indicated in the timespec structure pointed to by timeout passes before any of the I/O
operations referenced by list are completed, then aio_suspend() shall return with an error.

Otherwise:

Either the implementation shall support the aio_suspend() function as described above or the aio_suspend()
function shall fail.

6.7.8.3 Returns

If the aio_suspend() function returns after one or more asynchronous I/0 operations have completed, the function shall
return zero. Otherwise, the function shall return a value of −1 and set errno to indicate the error.

The application may determine which asynchronous I/O completed by scanning the associated error and return status
using aio_error() and aio_return(), respectively.

6.7.8.4 Errors

If any of the following conditions occur, the aio_suspend() function shall return −1 and set errno to the corresponding
value:

[EAGAIN] No asynchronous I/O indicated in the list referenced by list completed in the time interval indicated
by timeout.

138 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

[EINTR] A signal interrupted the aio_suspend() function. Note that, since each asynchronous I/O operation
may possibly provoke a signal when it completes, this error return may be caused by the completion
of one (or more) of the very I/O operations being awaited.

[ENOSYS] The aio_suspend() function is not supported by this implementation.

6.7.8.5 Cross-References

aio_write(), 6.7.3; aio_read(), 6.7.2; lio_listio(), 6.7.4.

6.7.9 Asynchronous File Synchronization

Function: aio_fsync()

6.7.9.1 Synopsis

#include <aio.h>
int aio_fsync (int op, struct aiocb *aiocbp);

6.7.9.2 Description

If {_POSIX_ASYNCHRONOUS_IO} and {_POSIX_SYNCHRONIZED_IO} are defined:

The aio_fsync() function asynchronously forces all I/O operations associated with the file indicated by the file
descriptor aio_fildes member of the aiocb structure referenced by the aiocbp argument and queued at the time
of the call to aio_fsync() to the synchronized I/O completion state. The function call shall return when the
synchronization request has been initiated or queued to the file or device (even when the data cannot be
synchronized immediately).
If op is O_DSYNC, all currently queued I/O operations are completed as if by a call to fdatasync(); that is, as
defined for synchronized I/O data integrity completion. If op is O_SYNC, all currently queued I/O operations
are completed as if by a call to fsync(); that is, as defined for synchronized I/O file integrity completion. If the
aio_fsync() function fails, or if the operation queued by aio_fsync() fails, then, as for fsync() and fdatasync(),
outstanding I/O operations are not guaranteed to have been completed.
If aio_fsync() succeeds, then it is only the I/O that was queued at the time of the call to aio_fsync() that is
guaranteed to be forced to the relevant completion state. The completion of subsequent I/O on the file
descriptor is not guaranteed to be completed in a synchronized fashion.
The aiocbp argument refers to an asynchronous I/O control block. The aiocbp value may be used as an
argument to aio_error() and aio_return() in order to determine the error status and return status, respectively,
of the asynchronous operation while it is proceeding. When the request is queued, the error status for the
operation shall be [EINPROGRESS]. When all data has been successfully transferred, the error status shall
be reset to reflect the success or failure of the operation. If the operation does not complete successfully, the
error status for the operation shall be set to indicate the error. The aio_sigevent member shall determine the
asynchronous notification to occur as specified in 3.3.1.2 when all operations have achieved synchronized I/
O completion. All other members of the structure referenced by aiocbp are ignored. If the control block
referenced by aiocbp becomes an illegal address prior to asynchronous I/O completion, then the behavior is
undefined.
If the aio_fsync() function fails or the aiocbp indicates an error condition, data is not guaranteed to have been
successfully transferred.
If aiocbp is NULL, then no status is returned in aiocbp, and no signal is generated upon completion of the
operation.

Copyright © 1996 IEEE All Rights Reserved 139

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Otherwise:

Either the implementation shall support the aio_fsync() function as described above or the aio_fsync()
function shall fail.

6.7.9.3 Returns

The aio_fsync() function returns the value 0 to the calling process if the I/O operation is successfully queued;
otherwise, the function shall return the value −1 and set errno to indicate the error.

6.7.9.4 Errors

If any of the following conditions occur, the aio_fsync() function shall return −1 and set errno to the corresponding
value:

[EAGAIN] The requested asynchronous operation was not queued due to temporary resource limitations.

[EBADF] The aio_fildes member of the aiocb structure referenced by the aiocbp argument is not a valid file
descriptor open for writing.

[EINVAL] This implementation does not support synchronized I/O for this file.

A value of op other than O_DSYNC or O_SYNC was specified.

[ENOSYS] The aio_fsync() function is not supported by this implementation.

In the event that any of the queued I/O operations fail, aio_fsync() shall return the error condition defined for read()
and write(). The error shall be returned in the error status for the asynchronous fsync() operation, which can be
retrieved using aio_error().

6.7.9.5 Cross-References

fcntl(), 6.5.2; fdatasync(), 6.6.2; fsync(), 6.6.1; open(), 5.3.1; read(), 6.4.1; write(), 6.4.2.

7. Device- and Class-Specific Functions

7.1 General Terminal Interface

This section describes a general terminal interface that shall be provided. It shall be supported on any asynchronous
communication ports if the implementation provides them. It is implementation defined whether this interface
supports network connections or synchronous ports or both. The conformance document shall describe which device
types are supported by these interfaces. Certain functions in this section apply only to the controlling terminal of a
process; where this is the case, it is so noted.

7.1.1 Interface Characteristics

7.1.1.1 Opening a Terminal Device File

When a terminal file is opened, it normally causes the process to wait until a connection is established. In practice,
application programs seldom open these files; they are opened by special programs and become the standard input,
output, and error files of an application.

140 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

As described in 5.3.1, opening a terminal device file with the O_NONBLOCK flag clear shall cause the process to
block until the terminal device is ready and available. The CLOCAL flag can also affect open(). See 7.1.2.4.

7.1.1.2 Process Groups

A terminal may have a foreground process group associated with it. This foreground process group plays a special role
in handling signal-generating input characters, as discussed below in 7.1.1.9.

If the implementation supports Job Control (if {_POSIX_JOB_CONTROL} is defined; see 2.9), command interpreter
processes supporting job control can allocate the terminal to different jobs, or process groups, by placing related
processes in a single process group and associating this process group with the terminal. The foreground process group
of a terminal may be set or examined by a process, assuming the permission requirements in this section are met; see
7.2.3 and 7.2.4. The terminal interface aids in this allocation by restricting access to the terminal by processes that are
not in the foreground process group; see 7.1.1.4.

When there is no longer any process whose process ID or process group ID matches the process group ID of the
foreground process group, the terminal shall have no foreground process group. It is unspecified whether the terminal
has a foreground process group when there is no longer any process whose process group ID matches the process
group ID of the foreground process group, but there is a process whose process ID matches. No actions defined by this
part of ISO/IEC 9945, other than allocation of a controlling terminal as described in 7.1.1.3 or a successful call to
tcsetpgrp(), shall cause a process group to become the foreground process group of a terminal.

7.1.1.3 The Controlling Terminal

A terminal may belong to a process as its controlling terminal. Each process of a session that has a controlling terminal
has the same controlling terminal. A terminal may be the controlling terminal for at most one session. The controlling
terminal for a session is allocated by the session leader in an implementation-defined manner. If a session leader has
no controlling terminal and opens a terminal device file that is not already associated with a session without using the
O_NOCTTY option (see 5.3.1), it is implementation defined whether the terminal becomes the controlling terminal of
the session leader. If a process that is not a session leader opens a terminal file, or the O_NOCTTY option is used on
open(), that terminal shall not become the controlling terminal of the calling process. When a controlling terminal
becomes associated with a session, its foreground process group shall be set to the process group of the session leader.

The controlling terminal is inherited by a child process during a fork() function call. A process relinquishes its
controlling terminal when it creates a new session with the setsid() function; other processes remaining in the old
session that had this terminal as their controlling terminal continue to have it. Upon the close of the last file descriptor
in the system (whether or not it is in the current session) associated with the controlling terminal, it is unspecified
whether all processes that had that terminal as their controlling terminal cease to have any controlling terminal.
Whether and how a session leader can reacquire a controlling terminal after the controlling terminal has been
relinquished in this fashion is unspecified. A process does not relinquish its controlling terminal simply by closing all
of its file descriptors associated with the controlling terminal if other processes continue to have it open.

When a controlling process terminates, the controlling terminal is disassociated from the current session, allowing it to
be acquired by a new session leader. Subsequent access to the terminal by other processes in the earlier session may be
denied, with attempts to access the terminal treated as if modem disconnect had been sensed.

7.1.1.4 Terminal Access Control

If a process is in the foreground process group of its controlling terminal, read operations shall be allowed as described
in 7.1.1.5. For those implementations that support Job Control, any attempts by a process in a background process
group to read from its controlling terminal shall cause its process group to be sent a SIGTTIN signal unless one of the
following special cases apply: If the reading process is ignoring or blocking the SIGTTIN signal, or if the process
group of the reading process is orphaned, the read() returns −1 with errno set to [EIO], and no signal is sent. The
default action of the SIGTTIN signal is to stop the process to which it is sent. See 3.3.1.1.

Copyright © 1996 IEEE All Rights Reserved 141

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

If a process is in the foreground process group of its controlling terminal, write operations shall be allowed as
described in 7.1.1.8. Attempts by a process in a background process group to write to its controlling terminal shall
cause the process group to be sent a SIGTTOU signal unless one of the following special cases apply: If TOSTOP is
not set, or if TOSTOP is set and the process is ignoring or blocking the SIGTTOU signal, the process is allowed to
write to the terminal and the SIGTTOU signal is not sent. If TOSTOP is set, and the process group of the writing
process is orphaned, and the writing process is not ignoring or blocking SIGTTOU, the write() returns −1 with errno
set to [EIO], and no signal is sent.

Certain calls that set terminal parameters are treated in the same fashion as write, except that TOSTOP is ignored; that
is, the effect is identical to that of terminal writes when TOSTOP is set. See 7.2.

7.1.1.5 Input Processing and Reading Data

A terminal device associated with a terminal device file may operate in full-duplex mode, so that data may arrive even
while output is occurring. Each terminal device file has associated with it an input queue, into which incoming data is
stored by the system before being read by a process. The system may impose a limit, {MAX_INPUT}, on the number
of bytes that may be stored in the input queue. The behavior of the system when this limit is exceeded is
implementation defined.

Two general kinds of input processing are available, determined by whether the terminal device file is in canonical
mode or noncanonical mode. These modes are described in 7.1.1.6 and 7.1.1.7. Additionally, input characters are
processed according to the c_iflag (see 7.1.2.2) and c_lflag (see 7.1.2.5) fields. Such processing can include echoing,
which in general means transmitting input characters immediately back to the terminal when they are received from
the terminal. This is useful for terminals that can operate in full-duplex mode.

The manner in which data is provided to a process reading from a terminal device file is dependent on whether the
terminal device file is in canonical or noncanonical mode.

Another dependency is whether the O_NONBLOCK flag is set by open() or fcntl(). If the O_NONBLOCK flag is
clear, then the read request shall be blocked until data is available or a signal has been received. If the O_NONBLOCK
flag is set, then the read request shall be completed, without blocking, in one of three ways:

1) If there is enough data available to satisfy the entire request, the read() shall complete successfully and return
the number of bytes read.

2) If there is not enough data available to satisfy the entire request, the read() shall complete successfully,
having read as much data as possible, and return the number of bytes it was able to read.

3) If there is no data available, the read() shall return −1 with errno set to [EAGAIN].

When data is available depends on whether the input processing mode is canonical or noncanonical. The following
subclauses, 7.1.1.6 and 7.1.1.7, describe each of these input processing modes.

7.1.1.6 Canonical Mode Input Processing

In canonical mode input processing, terminal input is processed in units of lines. A line is delimited by a newline
('\n') character, an end-of-file (EOF) character, or an end-of-line (EOL) character. See 7.1.1.9 for more information
on EOF and EOL. This means that a read request shall not return until an entire line has been typed or a signal has been
received. Also, no matter how many bytes are requested in the read call, at most one line shall be returned. It is not,
however, necessary to read a whole line at once; any number of bytes, even one, may be requested in a read without
losing information.

If {MAX_CANON} is defined for this terminal device, it is a limit on the number of bytes in a line. The behavior of
the system when this limit is exceeded is implementation defined. If {MAX_CANON} is not defined, there is no such
limit; see 2.8.5.

142 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Erase and kill processing occur when either of two special characters, the ERASE and KILL characters (see 7.1.1.9),
is received. This processing affects data in the input queue that has not yet been delimited by a newline (NL), EOF, or
EOL character. This undelimited data makes up the current line. The ERASE character deletes the last character in the
current line, if there is any. The KILL character deletes all data in the current line, if there is any. The ERASE and
KILL characters have no effect if there is no data in the current line. The ERASE and KILL characters themselves are
not placed in the input queue.

7.1.1.7 Noncanonical Mode Input Processing

In noncanonical mode input processing, input bytes are not assembled into lines, and erase and kill processing does not
occur. The values of the MIN and TIME members of the c_cc array are used to determine how to process the bytes
received.

MIN represents the minimum number of bytes that should be received when the read() function successfully returns.
TIME is a timer of 0,1 second granularity that is used to time out short-term or bursty data transmissions. If MIN is
greater than {MAX_INPUT}, the response to the request is undefined. The four possible values for MIN and TIME
and their interactions are described below.

7.1.1.7.1 Case A: MIN > 0, TIME > 0

In this case TIME serves as an interbyte timer and is activated after the first byte is received. Since it is an interbyte
timer, it is reset after a byte is received. The interaction between MIN and TIME is as follows: as soon as one byte is
received, the interbyte timer is started. If MIN bytes are received before the interbyte timer expires (remember that the
timer is reset upon receipt of each byte), the read is satisfied. If the timer expires before MIN bytes are received, the
characters received to that point are returned to the user. Note that if TIME expires, at least one byte shall be returned
because the timer would not have been enabled unless a byte was received. In this case (MIN > 0, TIME > 0), the read
shall block until the MIN and TIME mechanisms are activated by the receipt of the first byte or until a signal is
received. If data is in the buffer at the time of the read(), the result shall be as if data had been received immediately
after the read().

7.1.1.7.2 Case B: MIN > 0, TIME = 0

In this case, since the value of TIME is zero, the timer plays no role and only MIN is significant. A pending read is not
satisfied until MIN bytes are received (i.e., the pending read shall block until MIN bytes are received) or a signal is
received. A program that uses this case to read record-based terminal I/O may block indefinitely in the read operation.

7.1.1.7.3 Case C: MIN = 0, TIME > 0

In this case, since MIN = 0, TIME no longer represents an interbyte timer. It now serves as a read timer that is activated
as soon as the read() function is processed. A read is satisfied as soon as a single byte is received or the read timer
expires. Note that in this case if the timer expires, no bytes shall be returned. If the timer does not expire, the only way
the read can be satisfied is if a byte is received. In this case, the read shall not block indefinitely waiting for a byte; if
no byte is received within TIME*0,1 seconds after the read is initiated, the read() shall return a value of zero, having
read no data. If data is in the buffer at the time of the read(), the timer shall be started as if data had been received
immediately after the read().

7.1.1.7.4 Case D: MIN = 0, TIME = 0

The minimum of either the number of bytes requested or the number of bytes currently available shall be returned
without waiting for more bytes to be input. If no characters are available, read() shall return a value of zero, having
read no data.

Copyright © 1996 IEEE All Rights Reserved 143

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

7.1.1.8 Writing Data and Output Processing

When a process writes one or more bytes to a terminal device file, they are processed according to the c_oflag field
(see 7.1.2.3). The implementation may provide a buffering mechanism; as such, when a call to write() completes, all
of the bytes written have been scheduled for transmission to the device, but the transmission will not necessarily have
completed. See also 6.4.2 for the effects of O_NONBLOCK on write().

7.1.1.9 Special Characters

Certain characters have special functions on input or output or both. These functions are summarized as follows:

INTR Special character on input and recognized if the ISIG flag (see 7.1.2.5) is enabled. It generates a
SIGINT signal that is sent to all processes in the foreground process group for which the terminal is
the controlling terminal. If ISIG is set, the INTR character is discarded when processed.

QUIT Special character on input and recognized if the ISIG flag is enabled. It generates a SIGQUIT signal
that is sent to all processes in the foreground process group for which the terminal is the controlling
terminal. If ISIG is set, the QUIT character is discarded when processed.

ERASE Special character on input and recognized if the ICANON flag is set. It erases the last character in
the current line; see 7.1.1.6. The ERASE character shall not erase beyond the start of a line, as
delimited by an NL, EOF, or EOL character. If ICANON is set, the ERASE character is discarded
when processed.

KILL Special character on input and recognized if the ICANON flag is set. It deletes the entire line, as
delimited by a NL, EOF, or EOL character. If ICANON is set, the KILL character is discarded when
processed.

EOF Special character on input and recognized if the ICANON flag is set. When received, all the bytes
waiting to be read are immediately passed to the process, without waiting for a newline, and the EOF
is discarded. Thus, if there are no bytes waiting (that is, the EOF occurred at the beginning of a line),
a byte count of zero shall be returned from the read(), representing an end-of-file indication. If
ICANON is set, the EOF character is discarded when processed.

NL Special character on input and recognized if the ICANON flag is set. It is the line delimiter ('\n').

EOL Special character on input and recognized if the ICANON flag is set. It is an additional line
delimiter, like NL.

SUSP Recognized on input if Job Control is supported (see 7.1.2.6). If the ISIG flag is enabled, receipt of
the SUSP character causes a SIGTSTP signal to be sent to all processes in the foreground process
group for which the terminal is the controlling terminal, and the SUSP character is discarded when
processed.

STOP Special character on both input and output and recognized if the IXON (output control) or IXOFF
(input control) flag is set. It can be used to temporarily suspend output. It is useful with CRT
terminals to prevent output from disappearing before it can be read. If IXON is set, the STOP
character is discarded when processed.

START Special character on both input and output and recognized if the IXON (output control) or IXOFF
(input control) flag is set. Can be used to resume output that has been suspended by a STOP
character. If IXON is set, the START character is discarded when processed.

CR Special character on input and recognized if the ICANON flag is set; it is the '\r', as denoted in
the C Standard {2}. When ICANON and ICRNL are set and IGNCR is not set, this character is
translated into a NL and has the same effect as a NL character.

144 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

The NL and CR characters cannot be changed. It is implementation defined whether the START and STOP characters
can be changed. The values for INTR, QUIT, ERASE, KILL, EOF, EOL, and SUSP (Job Control only), shall be
changeable to suit individual tastes.

If {_POSIX_VDISABLE} is in effect for the terminal file, special character functions associated with changeable
special control characters can be disabled individually; see 7.1.2.6.

If two or more special characters have the same value, the function performed when that character is received is
undefined.

A special character is recognized not only by its value, but also by its context; for example, an implementation may
define multibyte sequences that have a meaning different from the meaning of the bytes when considered individually.
Implementations may also define additional single-byte functions. These implementation-defined multibyte or single-
byte functions are recognized only if the IEXTEN flag is set; otherwise, data is received without interpretation, except
as required to recognize the special characters defined in this subclause (7.1.1.9).

7.1.1.10 Modem Disconnect

If a modem disconnect is detected by the terminal interface for a controlling terminal, and if CLOCAL is not set in the
c_cflag field for the terminal (see 7.1.2.4), the SIGHUP signal is sent to the controlling process associated with the
terminal. Unless other arrangements have been made, this causes the controlling process to terminate; see 3.2.2. Any
subsequent call to the read() function shall return the value zero, indicating end of file. See 6.4.1. Thus, processes that
read a terminal file and test for end-of-file can terminate appropriately after a disconnect. If the [EIO] condition
specified in 6.4.1.4 that applies when the implementation supports Job Control also exists, it is unspecified whether the
EOF condition or the [EIO] is returned. Any subsequent write() to the terminal device returns −1, with errno set to
[EIO], until the device is closed.

7.1.1.11 Closing a Terminal Device File

The last process to close a terminal device file shall cause any output to be sent to the device and any input to be
discarded. Then, if HUPCL is set in the control modes and the communications port supports a disconnect function,
the terminal device shall perform a disconnect.

7.1.2 Parameters That Can Be Set

7.1.2.1 termios Structure

Routines that need to control certain terminal I/O characteristics shall do so by using the termios structure as defined
in the header <termios.h>. The members of this structure include (but are not limited to) those shown in Table 7.1.

The types tcflag_t and cc_t shall be defined in the header <termios.h>. They shall be unsigned integral types.

Table 7.1—termios Structure

Member
Type

Array
Size

Member
Name Description

tcflag_t c_iflag Input modes.

tcflag_t c_oflag Output modes.

tcflag_t c_cflag Control modes.

tcflag_t c_lflag Local modes.

cc_t NCCS c_cc Control characters.

Copyright © 1996 IEEE All Rights Reserved 145

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

7.1.2.2 Input Modes

Values of the c_iflag field, shown in Table 7.2, describe the basic terminal input control and are composed of the
bitwise inclusive OR of the masks shown, which shall be bitwise distinct. The mask name symbols in this table are
defined in <termios.h>.

Table 7.2—termios c_iflag Field

In the context of asynchronous serial data transmission, a break condition is defined as a sequence of zero-valued bits
that continues for more than the time to send one byte. The entire sequence of zero-valued bits is interpreted as a single
break condition, even if it continues for a time equivalent to more than one byte. In contexts other than asynchronous
serial data transmission, the definition of a break condition is implementation defined.

If IGNBRK is set, a break condition detected on input is ignored, that is, not put on the input queue and therefore not
read by any process. If IGNBRK is not set and BRKINT is set, the break condition shall flush the input and output
queues. If the terminal is the controlling terminal of a foreground process group, the break condition shall generate a
single SIGINT signal to that foreground process group. If neither IGNBRK nor BRKINT is set, a break condition is
read as a single '\0', or if PARMRK is set, as '\377', '\0', '\0'.

If IGNPAR is set, a byte with a framing or parity error (other than break) is ignored.

If PARMRK is set and IGNPAR is not set, a byte with a framing or parity error (other than break) is given to the
application as the three-character sequence '\377', '\0', X, where '\377', '\0' is a two-character flag
preceding each sequence and X is the data of the character received in error. To avoid ambiguity in this case, if ISTRIP
is not set, a valid character of '\377' is given to the application as '\377', '\377'. If neither PARMRK nor
IGNPAR is set, a framing or parity error (other than break) is given to the application as a single character '\0'.

If INPCK is set, input parity checking is enabled. If INPCK is not set, input parity checking is disabled, allowing
output parity generation without input parity errors. Note that whether input parity checking is enabled or disabled is
independent of whether parity detection is enabled or disabled (see 7.1.2.4). If parity detection is enabled, but input
parity checking is disabled, the hardware to which the terminal is connected shall recognize the parity bit, but the
terminal special file shall not check whether this bit is set correctly or not.

If ISTRIP is set, valid input bytes are first stripped to seven bits; otherwise, all eight bits are processed.

Mask Name Description

BRKINT Signal interrupt on break.

ICRNL Map CR to NL on input.

IGNBRK Ignore break condition.

IGNCR Ignore CR.

IGNPAR Ignore characters with parity errors.

INLCR Map NL to CR on input.

INPCK Enable input parity check.

ISTRIP Strip character.

IXOFF Enable start/stop input control.

IXON Enable start/stop output control.

PARMRK Mark parity errors.

146 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

If INLCR is set, a received NL character is translated into a CR character. If IGNCR is set, a received CR character is
ignored (not read). If IGNCR is not set and ICRNL is set, a received CR character is translated into a NL character.

If IXON is set, start/stop output control is enabled. A received STOP character shall suspend output, and a received
START character shall restart output. When IXON is set, START and STOP characters are not read, but merely
perform flow control functions. When IXON is not set, the START and STOP characters are read.

If IXOFF is set, start/stop input control is enabled. The system shall transmit one or more STOP characters, which are
intended to cause the terminal device to stop transmitting data, as needed to prevent the input queue from overflowing
and causing the undefined behavior described in 7.1.1.5 and shall transmit one or more START characters, which are
intended to cause the terminal device to resume transmitting data, as soon as the device can continue transmitting data
without risk of overflowing the input queue. The precise conditions under which STOP and START characters are
transmitted are implementation defined.

The initial input control value after open() is implementation defined.

7.1.2.3 Output Modes

Values of the c_oflag field describe the basic terminal output control and are composed of the bitwise inclusive OR of
the following masks, which shall be bitwise distinct:

The mask name symbols for the c_oflag field are defined in <termios.h>.

If OPOST is set, output data is processed in an implementation-defined fashion so that lines of text are modified to
appear appropriately on the terminal device; otherwise, characters are transmitted without change.

The initial output control value after open() is implementation defined.

7.1.2.4 Control Modes

Values of the c_cflag field, shown in Table 7.3, describe the basic terminal hardware control and are composed of the
bitwise inclusive OR of the masks shown, which shall be bitwise distinct; not all values specified are required to be
supported by the underlying hardware. The mask name symbols in this table are defined in <termios.h>.

Mask Name Description

OPOST Perform output processing.

Copyright © 1996 IEEE All Rights Reserved 147

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Table 7.3—termios c_cflag Field

The CSIZE bits specify the byte size in bits for both transmission and reception. This size does not include the parity
bit, if any. If CSTOPB is set, two stop bits are used; otherwise, one stop bit is used. For example, at 110 baud, two stop
bits are normally used.

If CREAD is set, the receiver is enabled; otherwise, no characters shall be received.

If PARENB is set, parity ,generation and detection is enabled and a parity bit is added to each character. If parity is
enabled, PARODD specifies odd parity if set; otherwise, even parity is used.

If HUPCL is set, the modem control lines for the port shall be lowered when the last process with the port open closes
the port or the process terminates. The modem connection shall be broken.

If CLOCAL is set, a connection does not depend on the state of the modem status lines. If CLOCAL is clear, the
modem status lines shall be monitored.

Under normal circumstances, a call to the open() function shall wait for the modem connection to complete. However,
if the O_NONBLOCK flag is set (see 5.3.1) or if CLOCAL has been set, the open() function shall return immediately
without waiting for the connection.

If the object for which the control modes are set is not an asynchronous serial connection, some of the modes may be
ignored; for example, if an attempt is made to set the baud rate on a network connection to a terminal on another host,
the baud rate may or may not be set on the connection between that terminal and the machine to which it is directly
connected.

The initial hardware control value after open() is implementation defined.

7.1.2.5 Local Modes

Values of the c_lflag field, shown in Table 7.4, describe the control of various functions and are composed of the
bitwise inclusive OR of the masks shown, which shall be bitwise distinct. The mask name symbols in this table are
defined in <termios.h>.

Mask Name Description

CLOCAL Ignore modem status lines.

CREAD Enable receiver.

CSIZE Number of bits per byte:

CS5 5 bits

CS6 6 bits

CS7 7 bits

CS8 8 bits

CSTOPB Send two stop bits, else one.

HUPCL Hang up on last close.

PARENB Parity enable.

PARODD Odd parity, else even.

148 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Table 7.4—termios c_lflag Field

If ECHO is set, input characters are echoed back to the terminal. If ECHO is not set, input characters are not echoed.

If ECHOE and ICANON are set, the ERASE character shall cause the terminal to erase the last character in the current
line from the display, if possible. If there is no character to erase, an implementation may echo an indication that this
was the case or do nothing.

If ECHOK and ICANON are set, the KILL character shall either cause the terminal to erase the line from the display
or shall echo the '\n' character after the KILL character.

If ECHONL and ICANON are set, the '\n' character shall be echoed even if ECHO is not set.

If ICANON is set, canonical processing is enabled. This enables the erase and kill edit functions and the assembly of
input characters into lines delimited by NL, EOF, and EOL, as described in 7.1.1.6.

If ICANON is not set, read requests are satisfied directly from the input queue. A read shall not be satisfied until at
least MIN bytes have been received or the timeout value TIME has expired between bytes. The time value represents
tenths or seconds. See 7.1.1.7 for more details.

If ISIG is set, each input character is checked against the special control characters INTR, QUIT, and SUSP (Job
Control only). If an input character matches one of these control characters, the function associated with that character
is performed. If ISIG is not set, no checking is done. Thus, these special input functions are possible only if ISIG is set.

If IEXTEN is set, implementation-defined functions shall be recognized from the input data. It is implementation
defined how IEXTEN being set interacts with ICANON, ISIG, IXON, or IXOFF. If IEXTEN is not set, then
implementation-defined functions shall not be recognized, and the corresponding input characters shall be processed
as described for ICANON, ISIG, IXON, and IXOFF.

If NOFLSH is set, the normal flush of the input and output queues associated with the INTR, QUIT, and SUSP (Job
Control only). characters shall not be done.

If TOSTOP is set and the implementation supports Job Control, the signal SIGTTOU is sent to the process group of a
process that tries to write to its controlling terminal if it is not ill the foreground process group for that terminal. This
signal, by default, stops the members of the process group. Otherwise, the output generated by that process is output
to the current output stream. Processes that are blocking or ignoring SIGTTOU signals are excepted and allowed to
produce output, and the SIGTTOU signal is not sent.

Mask Name Description

ECHO Enable echo.

ECHOE Echo ERASE as an error-correcting backspace.

ECHOK Echo KILL.

ECHONL Echo '\n'.

ICANON Canonical input (erase and kill processing).

IEXTEN Enable extended (implementation-defined) functions

ISIG Enable signals.

NOFLSH Disable flush after interrupt, quit, or suspend.

TOSTOP Send SIGTTOU for background output.

Copyright © 1996 IEEE All Rights Reserved 149

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The initial local control value after open() is implementation defined.

7.1.2.6 Special Control Characters

The special control characters values are defined by the array c_cc. The subscript name and description for each
element in both canonical and noncanonical modes are shown in Table 7.5. The subscript name symbols in this table
are defined in <termios.h>.

Table 7.5—termios c_cc Special Control Characters

The subscript values shall be unique, except that the VMIN and VTIME subscripts may have the same values as the
VEOF and VEOL subscripts, respectively.

Implementations that do not support Job Control may ignore the SUSP character value in the c_cc array indexed by the
VSUSP subscript.

The value of NCCS (the number of elements in the c_cc array) is unspecified by this part of ISO/IEC 9945.

Implementations that do not support changing the START and STOP characters may ignore the character values in the
c_cc array indexed by the VSTART and VSTOP subscripts when tcsetattr() is called, but shall return the value in use
when tcgetattr() is called.

If {_POSIX_VDISABLE} is defined for the terminal device file, and the value of one of the changeable special control
characters (see 7.1.1.9) is {_POSIX_VDISABLE}, that function shall be disabled, that is, no input data shall be
recognized as the disabled special character. If ICANON is not set, the value of {_POSIX_VDISABLE} has no special
meaning for the VMIN and VTIME entries of the c_cc array.

The initial values of all control characters are implementation defined.

7.1.2.7 Baud Rate Values

The baud rate values specified in Table 7.6 can be set into the termios structure by the baud rate functions in 7.1.3.

Subscript Usage

Canonical
Mode

Noncanonical
Mode Description

VEOF EOF character

VEOL EOL character

VERASE ERASE character

VINTR VINTR INTR character

VKILL KILL character

VMIN MIN value

VQUIT VQUIT QUIT character

VSUSP VSUSP SUSP character

VTIME TIME value

VSTART VSTART START character

VSTOP VSTOP STOP character

150 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Table 7.6—termios Baud Rate Values

7.1.3 Baud Rate Functions

Functions: cfgetispeed(), cfgetospeed(), cfsetispeed(), cfsetospeed()

7.1.3.1 Synopsis

#include <termios.h>
speed_t cfgetospeed(const struct termios *termios_p);
int cfsetospeed(struct termios *termios_p, speed_t speed);
speed_t cfgetispeed(const struct termios *termios_p);
int cfsetispeed(struct termios *termios_p, speed_t speed);

7.1.3.2 Description

The following interfaces are provided for getting and setting the values of the input and output baud rates in the termios
structure. The effects on the terminal device described below do not become effective until the tcsetattr() function is
successfully called, and not all errors are detected until tcsetattr() is called as well.

The input and output baud rates are represented in the termios structure. The values shown in Table 7.6 are defined.
The name symbols in this table are defined in <termios.h>.

The type speed_t shall be defined in <termios.h> and shall be an unsigned integral type.

The termios_p argument is a pointer to a termios structure.

The cfgetospeed() function shall return the output baud rate stored in the termios structure to which termios_p points.

The cfgetispeed() function shall return the input baud rate stored in the termios structure to which termios_p points.

The cfsetospeed() function shall set the output baud rate stored in the termios structure to which termios_p points.

The cfsetispeed() function shall set the input baud rate stored in the termios structure to which termios_p points.

Certain values for speeds that are set in the termios structure and passed to tcsetattr() have special meanings. These are
discussed under tcsetattr().

Name Description Name Description

B0 Hang up B600 600 baud

B50 50 baud B1200 1200 baud

B75 75 baud B1800 1800 baud

B110 110 baud B2400 2400 baud

B134 134.5 baud B4800 4800 baud

B150 150 baud B9600 9600 baud

B200 200 baud B19200 19200 baud

B300 300 baud B38400 38400 baud

Copyright © 1996 IEEE All Rights Reserved 151

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The cfgetispeed() and cfgetospeed() functions return exactly the value found in the termios data structure, without
interpretation.

Both cfsetispeed() and cfsetospeed() return a value of zero if successful and −1 to indicate an error. It is unspecified
whether these return an error if an unsupported baud rate is set.

7.1.3.3 Returns

See 7.1.3.2.

7.1.3.4 Errors

This part of ISO/IEC 9945 does not specify any error conditions that are required to be detected for the cfgetispeed(),
cfgetospeed(), cfsetispeed(), or cfsetospeed() functions. Some errors may be detected under conditions that are
unspecified by this part of ISO/IEC 9945.

7.1.3.5 Cross-References

tcsetattr(), 7.2.1.

7.2 General Terminal Interface Control Functions

The functions that are used to control the general terminal function are described in this clause. If the implementation
supports Job Control, unless otherwise noted for a specific command, these functions are restricted from use by
background processes. Attempts to perform these operations shall cause the process group to be sent a SIGTTOU
signal. If the calling process is blocking or ignoring SIGTTOU signals, the process is allowed to perform the operation
and the SIGTTOU signal is not sent.

In all the functions, fildes is an open file descriptor. However, the functions affect the underlying terminal file, not just
the open file description associated with the file descriptor.

7.2.1 Get and Set State

Functions: tcgetattr(), tcsetattr()

7.2.1.1 Synopsis

#include <termios.h>
int tcgetattr(int fildes, struct termios *termios_p);
int tcsetattr(int fildes, int optional_actions,
 const struct termios *termios_p);

7.2.1.2 Description

The tcgetattr() function shall get the parameters associated with the object referred to by fildes and store them in the
termios structure referenced by termios_p. This function is allowed from a background process; however, the terminal
attributes may be subsequently changed by a foreground process. If the terminal device supports different input and
output baud rates, the baud rates stored in the termios structure returned by tcgetattr() shall reflect the actual baud
rates, even if they are equal. If differing baud rates are not supported, the rate returned as the output baud rate shall be
the actual baud rate. The rate returned as the input baud rate shall be either the number zero or the output rate (as one
of the symbolic values). Permitting either behavior is obsolescent.3

3In a future revision of this part of ISO/IEC 9945, a returned value of zero as the input baud rate when differing baud rates are not supported may
no longer be permitted.

152 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

The tcsetattr() function shall set the parameters associated with the terminal (unless support is required from the
underlying hardware that is not available) from the termios structure referenced by termios_p as follows:

1) If optional_actions is TCSANOW, the change shall occur immediately.
2) If optional_actions is TCSADRAIN, the change shall occur after all output written to fildes has been

transmitted. This function should be used when changing parameters that affect output.
3) If optional_actions is TCSAFLUSH, the change shall occur after all output written to the object referred to by

fildes has been transmitted, and all input that has been received, but not read, shall be discarded before the
change is made.

The symbolic constants for the values of optional_actions are defined in <termios.h>.

The zero baud rate, B0, is used to terminate the connection. If B0 is specified as the output baud rate when tcsetattr()
is called, the modem control lines shall no longer be asserted. Normally, this will disconnect the line.

If the input baud rate is equal to the numeral zero in the termios structure when tcsetattr() is called, the input baud rate
will be changed by tcsetattr() to the same value as that specified by the value of the output baud rate, exactly as if the
input rate had been set to the output rate by cfsetispeed(). This usage of zero is obsolescent.

The tcsetattr() function shall return success if it was able to perform any of the requested actions, even if some of the
requested actions could not be performed. It shall set all the attributes that the implementation does support as
requested and leave all the attributes not supported by the hardware unchanged. If no part of the request can be
honored, it shall return −1 and set errno to [EINVAL]. If the input and output baud rates differ and are a combination
that is not supported, neither baud rate is changed. A subsequent call to tcgetattr() shall return the actual state of the
terminal device [reflecting both the changes made and not made in the previous tcsetattr() call]. The tcsetattr()
function shall not change the values in the termios structure whether or not it actually accepts them.

The termios structure may have additional fields not defined by this part of ISO/IEC 9945. The effect of the tcsetattr()
function is undefined if the value of the termios structure pointed to by termios_p was not derived from the result of a
call to tcgetattr() on fildes; a Strictly Conforming POSIX.1 Application shall modify only fields and flags defined by
this part of ISO/IEC 9945 between the call to tcgetattr() and tcsetattr(), leaving all other fields and flags unmodified.

No actions defined by this part of ISO/IEC 9945, other than a call to tcsetattr() or a close of the last file descriptor in
the system associated with this terminal device, shall cause any of the terminal attributes defined by this part of ISO/
IEC 9945 to change.

7.2.1.3 Returns

Upon successful completion, a value of zero is returned. Otherwise, a value of −1 is returned and errno is set to
indicate the error.

7.2.1.4 Errors

If any of the following conditions occur, the tcgetattr() function shall return −1 and set errno to the corresponding
value:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOTTY] The file associated with fildes is not a terminal.

If any of the following conditions occur, the tcsetattr() function shall return −1 and set errno to the corresponding
value:

[EBADF] The fildes argument is not a valid file descriptor.

Copyright © 1996 IEEE All Rights Reserved 153

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

[EINTR] A signal interrupted the tcsetattr() function.

[EINVAL] The optional_actions argument is not a proper value, or an attempt was made to change an attribute
represented in the termios structure to an unsupported value.

[ENOTTY] The file associated with fildes is not a terminal.

7.2.1.5 Cross-References

<termios.h>, 7.1.2.

7.2.2 Line Control Functions

Functions: tcsendbreak(), tcdrain(), tcflush(), tcflow()

7.2.2.1 Synopsis

#include <termios.h>
int tcsendbreak(int fildes, int duration);
int tcdrain(int fildes);
int tcflush(int fildes, int queue_selector);
int tcflow(int fildes, int action);

7.2.2.2 Description

If the terminal is using asynchronous serial data transmission, the tcsendbreak() function shall cause transmission of a
continuous stream of zero-valued bits for a specific duration. If duration is zero, it shall cause transmission of zero-
valued bits for at least 0,25 seconds and not more that 0,5 seconds. If duration is not zero, it shall send zero-valued bits
for an implementation-defined period of time.

If the terminal is not using asynchronous serial data transmission, it is implementation defined whether the
tcsendbreak() function sends data to generate a break condition (as defined by the implementation) or returns without
taking any action.

The tcdrain() function shall wait until all output written to the object referred to by fildes has been transmitted.

Upon successful completion, the tcflush() function shall have discarded any data written to the object referred to by
fildes but not transmitted, or data received, but not read, depending on the value of queue_selector:

1) If queue_selector is TCIFLUSH, it shall flush data received, but not read.
2) If queue_selector is TCOFLUSH, it shall flush data written, but not transmitted.
3) If queue_selector is TCIOFLUSH, it shall flush both data received but not read and data written but not

transmitted.

The tcflow() function shall suspend transmission or reception of data on the object referred to by fildes, depending on
the value of action:

1) If action is TCOOFF, it shall suspend output.
2) If action is TCOON, it shall restart suspended output.
3) If action is TCIOFF, the system shall transmit a STOP character, which is intended to cause the terminal

device to stop transmitting data to the system. (See the description of IXOFF in 7.1.2.2.)
4) If action is TCION, the system shall transmit a START character, which is intended to cause the terminal

device to start transmitting data to the system. (See the description of IXOFF in 7.1.2.2.)

The symbolic constants for the values of queue_selector and action are defined in <termios.h>.

154 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

The default on the opening of a terminal file is that neither its input nor its output is suspended.

7.2.2.3 Returns

Upon successful completion, a value of zero is returned. Otherwise, a value of −1 is returned and errno is set to
indicate the error.

7.2.2.4 Errors

If any of the following conditions occur, the tcsendbreak() function shall return −1 and set errno to the corresponding
value:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOTTY] The file associated with fildes is not a terminal.

If any of the following conditions occur, the tcdrain() function shall return −1 and set errno to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINTR] A signal interrupted the tcdrain() function.

[ENOTTY] The file associated with fildes is not a terminal.

If any of the following conditions occur, the tcflush() function shall return −1 and set errno to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The queue_selector argument is not a proper value.

[ENOTTY] The file associated with fildes is not a terminal.

If any of the following conditions occur, the tcflow() function shall return −1 and set errno to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The action argument is not a proper value.

[ENOTTY] The file associated with fildes is not a terminal.

7.2.2.5 Cross-References

<termios.h>, 7.1.2.

7.2.3 Get Foreground Process Group ID

Function: tcgetpgrp()

7.2.3.1 Synopsis

#include <sys/types.h>
pid_t tcgetpgrp (int fildes);

Copyright © 1996 IEEE All Rights Reserved 155

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

7.2.3.2 Description

If {_POSIX_JOB_CONTROL} is defined:

1) The tcgetpgrp() function shall return the value of the process group ID of the foreground process group
associated with the terminal.

2) The tcgetpgrp() function is allowed from a process that is a member of a background process group; however,
the information may be subsequently changed by a process that is a member of a foreground process group.

Otherwise:

The implementation shall either support the tcgetpgrp() function as described above or the tcgetpgrp() call
shall fail.

7.2.3.3 Returns

Upon successful completion, tcgetpgrp() returns the process group ID of the foreground process group associated with
the terminal. If there is no foreground process group, tcgetpgrp() shall return a value greater than 1 that does not match
the process group ID of any existing process group. Otherwise, a value of −1 is returned and errno is set to indicate the
error.

7.2.3.4 Errors

If any of the following conditions occur, the tcgetpgrp() function shall return −1 and set errno to the corresponding
value:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOSYS] The tcgetpgrp() function is not supported in this implementation.

[ENOTTY] The calling process does not have a controlling terminal, or the file is not the controlling terminal.

7.2.3.5 Cross-References

setsid(), 4.3.2; setpgid(), 4.3.3; tcsetpgrp(), 7.2.4.

7.2.4 Set Foreground Process Group ID

Function: tcsetpgrp()

7.2.4.1 Synopsis

#include <sys/types.h>
int tcsetpgrp (int fildes, pid_t pgrp_id);

7.2.4.2 Description

If {_POSIX_JOB_CONTROL} is defined:

If the process has a controlling terminal, the tcsetpgrp() function shall set the foreground process group ID
associated with the terminal to pgrp_id. The file associated with fildes must be the controlling terminal of the
calling process, and the controlling terminal must be currently associated with the session of the calling
process. The value of pgrp_id must match a process group ID of a process in the same session as the calling
process.

156 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Otherwise:

The implementation shall either support the tcsetpgrp() function as described above, or the tcsetpgrp() call
shall fail.

7.2.4.3 Returns

Upon successful completion, tcsetpgrp() returns a value of zero. Otherwise, a value of −1 is returned and errno is set
to indicate the error.

7.2.4.4 Errors

If any of the following conditions occur, the tcsetpgrp() function shall return −1 and set errno to the corresponding
value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The value of the pgrp_id argument is not supported by the implementation.

[ENOSYS] The tcsetpgrp() function is not supported in this implementation.

[ENOTTY] The calling process does not have a controlling terminal, or the file is not the controlling terminal, or
the controlling terminal is no longer associated with the session of the calling process.

[EPERM] The value of pgrp_id is a value supported by the implementation, but does not match the process
group ID of a process in the same session as the calling process.

8. Language-Specific Services for the C Programming Language

8.1 Referenced C Language Routines

The functions listed below are described in the indicated sections of the C Standard {2}. POSIX.1 with the C
Language Binding comprises these functions, the extensions to them described in this clause, and the rest of the
requirements stipulated in this part of ISO/IEC 9945. The functions appended with plus signs (+) have requirements
beyond those set forth in the C Standard {2}. Any implementation claiming conformance to POSIX.1 with the C
Language Binding shall comply with the requirements outlined in this clause, the requirements stipulated in the rest of
this part of ISO/IEC 9945, and the requirements in the indicated sections of the C Standard {2}.

For requirements concerning conformance to this clause, see 1.3.3 and its subclauses.

4.2 Diagnostics

Functions: assert.

4.3 Character Handling

Functions: isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit,
tolower, toupper.

4.4 Localization

Functions: setlocale+.

4.5 Mathematics

Functions: acos, asin, atan, atan2, cos, sin, tan, cosh, sinh, tanh, exp, frexp, ldexp, log, log10, modf, pow, sqrt,
ceil, fabs, floor, fmod.

Copyright © 1996 IEEE All Rights Reserved 157

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

4.6 Non-Local Jumps

Functions: setjm+, longimp+.

4.9 Input/Output

Functions: clearerr, fclose, feof, ferror, fflush, fgetc, fgets, fopen, fputc, fputs, fread, freopen, fseek, ftell,
fwrite, getc, getchar, gets, perror, printf, fprintf, sprintf, putc, putchar, puts, remove, rename+, rewind, scanf,
fscanf, sscanf, setbuf, tmpfile, tmpnam, ungetc.

4.10 General Utilities

Functions: abs, atof, atoi, atol, rand, srand, calloc, free, malloc, realloc, abort+, exit, getenv+, bsearch, qsort.

4.11 String Handling

Functions: strcpy, strncpy, strcat, strncat, strcmp, strncmp, strchr, strcspn, strpbrk, strrchr, strspn, strstr, strtok,
strlen.

4.12 Date and Time

Functions: time, asctime, ctime+, gmtime+, localtime+, mktime+, strftime+.

Systems conforming to this part of ISO/IEC 9945 shall make no distinction between the “text streams” and the “binary
streams” described in the C Standard {2}.

For the fseek() function, if the specified position is beyond end-of-file, the consequences described in lseek() (see
6.5.3) shall occur.

The EXIT_SUCCESS macro, as used by the exit() function, shall evaluate to a value of zero. Similarly, the
EXIT_FAILURE macro shall evaluate to a nonzero value.

The relationship between a time in seconds since the Epoch used as an argument to gmtime() and the tm structure
(defined in <time.h>) is that the result shall be as specified in the expression given in the definition of seconds since
the Epoch in 2.2.2.113, where the names in the structure and in the expression correspond. If the time zone UCT0 is in
effect, this shall also be true for localtime() and mktime().

The effect of the raise() function shall be equivalent to calling pthread_kill (pthread_self() , sig).

8.1.1 Extensions to Time Functions

The contents of the environment variable named TZ (see 2.6) shall be used by the functions ctime(), localtime(),
strftime(), and mktime() to override the default time zone. The value of TZ has one of the two forms (spaces inserted
for clarity):

 :characters

or:

 std offset dst offset, rule

If TZ is of the first format (i.e., if the first character is a colon), the characters following the colon are handled in an
implementation-defined manner.

The expanded format (for all TZs whose value does not have a colon as the first character) is as follows:

 stdoffset[dst[offset][, start[/time], end[/time]]]

158 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Where:

std and dst Indicates no less than three, nor more than {TZNAME_MAX}, bytes that are the designation for the
standard (std) or summer (dst) time zone. Only std is required; if dst is missing, then summer time
does not apply in this locale. Upper- and lowercase letters are explicitly allowed. Any characters
except a leading colon (:) or digits, the comma (,), the minus (−), the plus (+), and the null character
are permitted to appear in these fields, but their meaning is unspecified.

offset Indicates the value one must add to the local time to arrive at Coordinated Universal Time. The offset
has the form:
 hh [: mm[: ss]]

The minutes (mm) and seconds (ss) are optional. The hour (hh) shall be required and may be a single
digit. The offset following std shall be required. If no offset follows dst, summer time is assumed to
be one hour ahead of standard time. One or more digits may be used; the value is always interpreted
as a decimal number. The hour shall be between zero and 24, and the minutes (and seconds)—if
present—between zero and 59. Use of values outside these ranges causes undefined behavior. If
preceded by a “−”, the time zone shall be east of the Prime Meridian; otherwise it shall be west
(which may be indicated by an optional preceding “+”).

rule Indicates when to change to and back from summer time. The rule has the form:
 date / time,date/ time

where the first date describes when the change from standard to summer time occurs and the second
date describes when the change back happens. Each time field describes when, in current local time,
the change to the other time is made.

The format of date shall be one of the following:

Jn The Julian day n (1 ≤ n ≤ 365). Leap days shall not be counted. That is, in all years—
including leap years—February 28 is day 59 and March 1 is day 60. It is impossible to
explicitly refer to the occasional February 29.

n The zero-based Julian day (0 ≤ n ≤ 365). Leap days shall be counted, and it is possible to
refer to February 29.

Mm.n.d

The dth day (0 ≤ δ ≤ 6) of week n of month m of the year (1 ≤ n ≤ 5, 1 ≤ m ≤ 12, where week
5 means “the last d day in month m” which may occur in either the fourth or the fifth week).
Week 1 is the first week in which the d'th day occurs. Day zero is Sunday.

The time has the same format as offset except that no leading sign (“−” or “+”) shall be allowed. The
default, if time is not given, shall be 02:00:00.

Whenever ctime(), strftime(), mktime(), or localtime() is called, the time zone names contained in the external variable
tzname shall be set as if the tzset() function had been called.

Applications are explicitly allowed to change TZ and have the changed TZ apply to themselves.

8.1.2 Extensions to setlocale() Function

Function: setlocale()

8.1.2.1 Synopsis

#include <locale.h>
char *setlocale (int category, const char *locale) ;

Copyright © 1996 IEEE All Rights Reserved 159

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

8.1.2.2 Description

The setlocale() function sets, changes, or queries the locale of the process according to the values of the category and
the locale arguments. The possible values for category include:

LC_CTYPE
LC_COLLATE
LC_TIME
LC_NUMERIC
LC_MONETARY
Implementation-defined additional categories

For POSIX.1 systems, environment variables are defined that correspond to the named categories above and that have
the same spelling.

The value LC_ALL for category names all of the categories of the locale of the process; LC_ALL is a special constant,
not a category. There is an environment variable LC_ALL with the semantics noted below.

The locale argument is a pointer to a character string that can be an explicit string, a NULL pointer, or a null string.

When locale is an explicit string, the contents of the string are implementation defined except for the value “C” The
value “C” for locale specifies the minimal environment for C-language translation. If setlocale() is not invoked, the
“C” locale shall be the locale of the process. The locale name “POSIX” shall be recognized. It shall provide the same
semantics as the C locale for those functions defined within this part of ISO/IEC 9945 or by the C Standard {2}.
Extensions or refinements to the POSIX locale beyond those provided by the C locale may be included in future
revisions, and other parts of ISO/IEC 9945 are expected to add to the requirements of the POSIX locale.

When locale is a NULL pointer the locale of the process is queried according to the value of category. The content of
the string returned is unspecified.

When locale is a null string, the setlocale() function takes the name of the new locale for the specified category from
the environment as determined by the first condition met below:

1) If LC_ALL is defined in the environment and is not null, the value of LC_ALL is used.
2) If there is a variable defined in the environment with the same name as the category and that is not null, the

value specified by that environment variable is used.
3) If LANG is defined in the environment and is not null, the value of LANG is used.

If the resulting value is a supported locale, setlocale() sets the specified category of the locale of the process to that
value and returns the value specified below. If the value does not name a supported locale (and is not null), setlocale()
returns a NULL pointer, and the locale of the process is not changed by this function call. If no nonnull environment
variable is present to supply a value, it is implementation defined whether setlocale() sets the specified category of the
locale of the process to a systemwide default value or to “C” or to “POSIX”. The possible actual values of the
environment variables are implementation defined and should appear in the system documentation.

Setting all of the categories of the locale of the process is similar to successively setting each individual category of the
locale of the process, except that all error checking is done before any actions are performed. To set all the categories
of the locale of the process, setlocale() is invoked as:

 setlocale (LC_ALL, "") ;

In this case, setlocale() first verifies that the values of all the environment variables it needs according to the
precedence above indicate supported locales. If the value of any of these environment-variable searches yields a locale
that is not supported (and nonnull), the setlocale() function returns a NULL pointer and the locale of the process is not

160 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

changed. If all environment variables name supported locales, setlocale() then proceeds as if it had been called for each
category, using the appropriate value from the associated environment variable or from the implementation-defined
default if there is no such value.

The locale state is common to all threads within a process.

8.1.2.3 Returns

A successful call to setlocale() returns a string that corresponds to the locale set. The string returned is such that “a
subsequent call with that string and its associated category will restore that part of the process's locale” (C Standard
{2}). The string returned shall not be modified by the process, but may be overwritten by a subsequent call to the
setlocale() function. This string is not required to be the value of the environment variable used, if one was used.

8.2 C Language Input/Output Functions

This clause describes input/output functions of the C Standard {2} and their interactions with other functions defined
by this part of ISO/IEC 9945.

All functions specified in the C Standard {2} as operating on a file name shall operate on a pathname. All functions
specified in the C Standard {2} as creating a file shall do so as if they called the creat() function with a value
appropriate to the C language function for the path argument and a value of

 S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH

for the mode argument.

The type FILE and the terms file position indicator and stream are those defined by the C Standard {2}.

A stream is considered local to a single process. After a fork() call, each of the parent and child have distinct streams
that share an open file description.

8.2.1 Map a Stream Pointer to a File Descriptor

Function: fileno()

8.2.1.1 Synopsis

#include <stdio.h>
int fileno(FILE *stream);

8.2.1.2 Description

The fileno() function returns the integer file descriptor associated with the stream (see 5.3.1).

The following symbolic values in the <unistd.h> header (see 2.9) define the file descriptors that shall be associated
with the C language stdin, stdout, and stderr when the application is started:

Copyright © 1996 IEEE All Rights Reserved 161

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

At entry to main(), these streams shall be in the same state as if they had just been opened with fdopen() called with a
mode consistent with that required by the C Standard {2} and the file descriptor described above.

8.2.1.3 Returns

See 8.2.1.2. If an error occurs, a value of −1 is returned and errno is set to indicate the error.

8.2.1.4 Errors

This part of ISO/IEC 9945 does not specify any error conditions that are required to be detected for the fileno()
function. Some errors may be detected under conditions that are unspecified by this part of ISO/IEC 9945.

8.2.1.5 Cross-References

open(), 5.3.1.

8.2.2 Open a Stream on a File Descriptor

Function: fdopen()

8.2.2.1 Synopsis

#include <stdio.h>
FILE *fdopen(int fildes, const char *type);

8.2.2.2 Description

The fdopen() routine associates a stream with a file descriptor.

The type argument is a character string having one of the following values:

“r” Open for reading.
“w” Open for writing.
“a” Open for writing at end-of-file.
“r+” Open for update (reading and writing).
“w+” Open for update (reading and writing).
“a+” Open for update (reading and writing) at end-of-file.

The meaning of these flags is exactly as specified by the C Standard {2} for fopen(), except that “w” and “w+” do not
cause truncation of the file. Additional values for the type argument may be defined by an implementation.

The application shall ensure that the mode of the stream is allowed by the mode of the open file.

Name Description Value

STDIN_FILENO Standard input value, stdin. 0

STDOUT_FILENO Standard output value, stdout. 1

STDERR_FILENO Standard error value, stderr. 2

162 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

The file position indicator associated with the new stream is set to the position indicated by the file offset associated
with the file descriptor. The error indicator and end-of-file indicator for the stream shall be cleared.

If fildes refers to a shared memory object, the result of the fdopen() function is unspecified.

8.2.2.3 Returns

If successful, the fdopen() function returns a pointer to a stream. Otherwise, a NULL pointer is returned and errno is
set to indicate the error.

8.2.2.4 Errors

This part of ISO/IEC 9945 does not specify any error conditions that are required to be detected for the fdopen()
function. Some errors may be detected under conditions that are unspecified by this part of ISO/IEC 9945.

8.2.2.5 Cross-References

open(), 5.3.1; fopen() [C Standard {2}].

8.2.3 Interactions of Other FILE-Type C Functions

A single open file description can be accessed both through streams and through file descriptors. Either a file
descriptor or a stream will be called a handle on the open file description to which it refers; an open file description
may have several handles.

Handles can be created or destroyed by user action without affecting the underlying open file description. Some of the
ways to create them include fcntl(), dup(), fdopen(), fileno(), and fork() (which duplicates existing ones into new
processes). They can be destroyed by at least fclose(), close(), and the exec functions (which close some file descriptors
and destroy streams).

A file descriptor that is never used in an operation that could affect the file offset [for example read(), write(), or
lseek()] is not considered a handle in this discussion, but could give rise to one [as a consequence of fdopen(), dup(),
or fork(), for example]. This exception does include the file descriptor underlying a stream, whether created with
fopen() or fdopen(), as long as it is not used directly by the application to affect the file offset. [The read() and write()
functions implicitly affect the file offset; lseek() explicitly affects it.]

The result of function calls involving any one handle (the active handle) are defined elsewhere in this part of ISO/IEC
9945, but if two or more handles are used, and any one of them is a stream, their actions shall be coordinated as
described below. If this is not done, the result is undefined.

A handle that is a stream is considered to be closed when either an fclose() or freopen() is executed on it [the result of
freopen() is a new stream for this discussion, which cannot be a handle on the same open file description as its previous
value] or when the process owning that stream terminates with exit() or abort(). A file descriptor is closed by close(),
_exit(), or by one of the exec functions when FD_CLOEXEC is set on that file descriptor.

For a handle to become the active handle, the actions below must be performed between the last other use of the first
handle (the current active handle) and the first other use of the second handle (the future active handle). The second
handle then becomes the active handle. All activity by the application affecting the file offset on the first handle shall
be suspended until it again becomes the active handle. (If a stream function has as an underlying function that affects
the file offset, the stream function will be considered to affect the file offset. The underlying functions are described
below.)

The handles need not be in the same process for these rules to apply. Note that after a fork(), two handles exist where
one existed before. The application shall assure that, if both handles, will ever be accessed, that they will both be in a

Copyright © 1996 IEEE All Rights Reserved 163

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

state where the other could become the active handle first. The application shall prepare for a fork() exactly as if it were
a change of active handle. [If the only action performed by one of the processes is one of the exec functions or _exit()
{not exit()}, the handle is never accessed in that process.]

1) For the first handle, the first applicable condition below shall apply. After the actions required below are
taken, the handle may be closed if it is still open.
a) If it is a file descriptor, no action is required.
b) If the only further action to be performed on any handle to this open file description is to close it, no

action need be taken.
c) If it is a stream that is unbuffered, no action need be taken.
d) If it is a stream that is line-buffered and the last character written to the stream was a newline [that is, as

if a putc('\n') was the most recent operation on that stream], no action need be taken.
e) If it is a stream that is open for writing or append (but not also open for reading), either an fflush() shall

occur or the stream shall be closed.
f) If the stream is open for reading and it is at the end of the file [feof() is true], no action need be taken.
g) If the stream is open with a mode that allows reading and the underlying open file description refers to

a device that is capable of seeking, either an fflush() shall occur or the stream shall be closed.
h) Otherwise, the result is undefined.

2) For the second handle: if any previous active handle has called a function that explicitly changed the file
offset, except as required above for the first handle, the application shall perform an lseek() or an fseek() (as
appropriate to the type of the handle) to an appropriate location.

3) If the active handle ceases to be accessible before the requirements on the first handle above have been met,
the state of the open file description becomes undefined. This might occur, for example, during a fork() or an
_exit().

4) The exec functions shall be considered to make inaccessible all streams that are open at the time they are
called, independent of what streams or file descriptors may be available to the new process image.

5) Implementations shall assure that an application, even one consisting of several processes, shall yield correct
results (no data is lost or duplicated when writing, all data is written in order, except as requested by seeks)
when the rules above are followed, regardless of the sequence of handles used. If the rules above are not
followed, the result is unspecified. When these rules are followed, it is implementation defined whether, and
under what conditions, all input is seen exactly once.

6) Each function that operates on a stream is said to have zero or more underlying functions. This means that the
stream function shares certain traits with the underlying functions, but does not require that there be any
relation between the implementations of the stream function and its underlying functions.

7) Also, in the subclauses below, additional requirements on the standard I/O routines, beyond those in the C
Standard {2}, are given.

8.2.3.1 fopen()

The fopen() function shall allocate a file descriptor as open() does.

The underlying function is open().

8.2.3.2 fclose()

The fclose() function shall perform a close() on the file descriptor that is associated with the FILE stream. It shall also
mark for update the st_ctime and st_mtime fields of the underlying file, if the stream was writable, and if buffered data
had not been written to the file yet.

The underlying functions are write() and close().

8.2.3.3 freopen()

The freopen() function has the properties of both fclose() and fopen().

164 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

8.2.3.4 fflush()

The fflush() function shall mark for update the st_ctime and st_mtime fields of the underlying file if the stream was
writable and if buffered data had not been written to the file yet.

The underlying functions are write() and lseek().

8.2.3.5 fgetc(), fgets(), fread(), getc(), getchar(), gets(), scanf(), fscanf()

These functions may mark the st_atime field for update. The st_atime field shall be marked for update by the first
successful execution of one of these functions that returns data not supplied by a prior call to ungetc().

The underlying functions are read() and lseek().

8.2.3.6 fputc(), fputs(), fwrite(), putc(), putchar(), puts(), printf(), fprintf()

The st_crime and st_mtime fields of the file shall be marked for update between the successful execution of one of
these functions and the next successful completion of a call to either fflush() or fclose() on the same stream or a call to
exit() or abort().

The underlying functions are write() and lseek().

If fwrite() writes greater than zero bytes, but fewer than requested, the error indicator for the stream shall be set. If the
underlying write() reports an error, errno shall not be modified by fwrite(), and the error indicator for the stream shall
be set.

If the implementation provides the vprintf() and vfprintf() functions from the C Standard {2}, they also shall meet the
constraints specified in this part of ISO/IEC 9945 for (respectively) printf() and fprintf().

8.2.3.7 fseek(), rewind()

These functions shall mark the st_ctime and st_mtime fields of the file for update if the stream was writable and if
buffered data had not yet been written to the file.

The underlying functions are lseek() and write().

If the most recent operation, other than ftell(), on a given stream is fflush(), the file offset in the underlying open file
description shall be adjusted to reflect the location specified by the fseek().

8.2.3.8 perror()

The perror() function shall mark the file associated with the standard error stream as having been written (st_ctime,
st_mtime marked for update) at some time between its successful completion and exit(), abort(), or the completion of
fflush() or fclose() on stderr.

8.2.3.9 tmpfile()

The tmpfile() function shall allocate a file descriptor as fopen() does.

8.2.3.10 ftell()

The underlying function is lseek(). The result of ftell() after an fflush() shall be the same as the result before the fflush().
If the stream is opened in append mode or if the O_APPEND flag is set as a consequence of dealing with other handles
on the file, the result of ftell() on that stream is unspecified.

Copyright © 1996 IEEE All Rights Reserved 165

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

8.2.3.11 Error Reporting

If any of the functions above return an error indication, the value of errno shall be set to indicate the error condition.
If that error condition is one that this part of ISO/IEC 9945 specifies to be detected by one of the corresponding
underlying functions, the value of errno shall be the same as the value specified for the underlying function.

8.2.3.12 exit(), abort()

The exit() function shall have the effect of fclose() on every open stream, with the properties of fclose() as described
above. The abort() function shall also have these effects if the call to abort() causes process termination, but shall have
no effect on streams otherwise. The C Standard {2} specifies the conditions where abort() does or does not cause
process termination. For the purposes of that specification, a signal that is blocked shall not be considered caught.

8.2.4 Operations on Files — the remove() Function

The remove() function shall have the same effect on file times as unlink().

8.2.5 Temporary File Name — the tmpnam() Function

If the application uses any of the interfaces guaranteed to be available if either
{_POSIX_THREAD_SAFE_FUNCTIONS} or {_POSIX_THREADS} is defined, the tmpnam() function shall be
called with a non-NULL parameter.

8.2.6 Stdio Locking Functions

Functions: flockfile(), ftrylockfile(), funlockfile()

8.2.6.1 Synopsis

#include <stdio.h>
void flockfile(FILE *file);
int ftrylockfile(FILE *file);
void funlockfile(FILE *file);

8.2.6.2 Description

If {_POSIX_THREAD_SAFE FUNCTIONS} is defined:

The flockfile(), ftrylockfile(), and funlockfile() functions provide for explicit application-level locking of stdio
(FILE *) objects. These functions can be used by a thread to delineate a sequence of I/O statements that are
to be executed as a unit.
The flockfile() function is used by a thread to acquire ownership of a (FILE *) object.
The ftrylockfile() function is used by a thread to acquire ownership of a (FILE *) object if the object is
available; ftrylockfile() is a nonblocking version of flockfile().
The funlockfile() function is used to relinquish the ownership granted to the thread. The behavior is undefined
if a thread other than the current owner calls the funlockfile() function.
The implementation shall act as if there is a lock count associated with each (FILE *) object. This count is
implicitly initialized to zero when the (FILE *) object is created. The (FILE *) object is unlocked when the
count is zero. When the count is positive, a single thread owns the (FILE *) object. When the flockfile()
function is called, if the count is zero or if the count is positive and the caller owns the (FILE *) object, the
count is incremented. Otherwise, the calling thread is suspended, waiting for the count to return to zero. Each
call to funlockfile() decrements the count. This allows matching calls to flockfile() [or successful calls to
ftrylockfile()] and funlockfile() to be nested.

166 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

All POSIX.1 and C Standard {2} functions that reference (FILE *) objects shall behave as if they use
flockfile() and funlockfile() internally to obtain ownership of these (FILE *) objects.

Otherwise:

Either the implementation shall support the flockfile(), ftrylockfile(), and funlockfile() functions as described
above or the flockfile(), ftrylockfile(), and funlockfile() functions shall not be provided.

8.2.6.3 Returns

None for flockfile() and funlockfile(). The function ftrylock() returns zero for success and nonzero to indicate that the
lock cannot be acquired.

8.2.6.4 Errors

None.

8.2.6.5 Cross-References

getc_unlocked(), 8.2.7; getchar_unlocked(), 8.2.7; putc_unlocked(), 8.2.7; putchar_unlocked(), 8.2.7.

8.2.7 Stdio With Explicit Client Locking

Functions: getc_unlocked(), getchar_unlocked(), putc_unlocked(), putchar_unlocked()

8.2.7.1 Synopsis

#include <stdio.h>
int getc_unlocked(FILE *stream);
int getchar_unlocked(void);
int putc_unlocked(int c, FILE *stream);
int putchar_unlocked(int c);

8.2.7.2 Description

If {_POSIX_THREAD_SAFE_FUNCTIONS} is defined:

Versions of the functions getc(), getchar(), putc(), and putchar() respectively named getc_unlocked(),
getchar_unlocked(), putc_unlocked(), and putchar_unlocked() shall be provided, which are functionally
identical to the original versions with the exception that they are not required to be implemented in a thread-
safe manner. They may only safely be used within a scope protected by flockfile() [or ftrylockfile()] and
funlockfile(). These functions may safely be used in a multithreaded program if and only if they are called
while the invoking thread owns the (FILE *) object, as is the case after a successful call of the flockfile() or
ftrylockfile() functions.

Otherwise:

Either the implementation shall support the getc_unlocked(), getchar_unlocked(), putc_unlocked(), and
putchar_unlocked() functions as described above or the getc_unlocked(), getchar_unlocked(),
putc_unlocked(), and putchar_unlocked() functions shall not be provided.

8.2.7.3 Returns

See the C Standard {2}.

Copyright © 1996 IEEE All Rights Reserved 167

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

8.2.7.4 Errors

This standard does not specify any error conditions that are required to be detected by these interfaces. Some errors
may be detected under implementation-defined conditions or as defined by C Standard {2}.

8.2.7.5 Cross-References

getc(), 8.1; getchar(), 8.1; putc(), 8.1; putchar(), 8.1.

8.3 Other C Language Functions

8.3.1 Nonlocal Jumps

Functions: setjmp(), longjmp(), sigsetjmp(), siglongjmp()

8.3.1.1 Synopsis

#include <setjmp.h>
int sigsetjmp(sigjmp_buf env, int savemask);
void siglongjmp(sigjmp_buf env, int val);

8.3.1.2 Description

The sigsetjmp() macro shall comply with the definition of the setjmp() macro in the C Standard {2}. If the value of the
savemask argument is not zero, the sigsetjmp() function shall also save the current signal mask of the thread (see
3.3.1.1) as part of the calling environment.

The siglongjmp() function shall comply with the definition of the longjmp() function in the C Standard {2}. If and only
if the env argument was initialized by a call to the sigsetjmp() function with a nonzero savemask argument, the
siglongjmp() function shall restore the saved signal mask.

The effect of a call to longjmp() where the initialization of the jmp_buf argument was not performed in the calling
thread is undefined. The effect of a call to siglongjmp() where the initialization of the sigjmp_buf argument was not per
formed in the calling thread is undefined.

8.3.1.3 Cross-References

sigaction(), 3.3.4; <signal.h>, 3.3.1.1; sigprocmask(), 3.3.5; sigsuspend(), 3.3.7.

8.3.2 Set Time Zone

Function: tzset()

8.3.2.1 Synopsis

#include <time.h>
void tzset(void);

8.3.2.2 Description

The tzset() function uses the value of the environment variable TZ to set time conversion information used by
localtime(), ctime(), strftime(), and mktime(). If TZ is absent from the environment, implementation-defined default
time-zone information shall be used.

168 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

The tzset() function shall set the external variable tzname:

 extern char *tzname[2] = { "std" , "dst" } ;

where std and dst are as described in 8.1.1.

8.3.3 Find String Token

Functions: strtok_r()

8.3.3.1 Synopsis

#include <string.h>
char *strtok_r(char *s, const char *sep, char **lasts);

8.3.3.2 Description

If {_POSIX_THREAD_SAFE_FUNCTIONS} is defined:

The function strtok_r() considers the null-terminated string s as a sequence of zero or more text tokens
separated by spans of one or more characters from the separator string sep. The argument lasts points to a
user-provided pointer, which points to stored information necessary for strtok_r() to continue scanning the
same string.
In the first call to strtok_r(), s shall point to a null-terminated string, sep shall point to a null-terminated string
of separator characters, and the value pointed to by lasts is ignored. The function strtok_r() returns a pointer
to the first character of the first token, writes a null character into s immediately following the returned token,
and updates the pointer to which lasts points.
In subsequent calls, s shall be a NULL pointer and lasts shall be unchanged from the previous call so that
subsequent calls will move through the string s, returning successive tokens until no tokens remain. The
separator string sep may be different from call to call. When no token remains in s, a NULL pointer is
returned.

Otherwise:

Either the implementation shall support the strtok_r() function as described above or the strtok_r() function
shall not be provided.

8.3.3.3 Returns

The function strtok_r() returns a pointer to the token found, or to a NULL pointer when no token is found.

8.3.3.4 Errors

This standard does not specify any error conditions that are required to be detected for the strtok_r() function. Some
errors may be detected under implementation-defined conditions.

8.3.4 ASCII Time Representation

Functions: asctime_r()

8.3.4.1 Synopsis

#include <time.h>
char *asctime_r(const struct tm *tm, char *buf);

Copyright © 1996 IEEE All Rights Reserved 169

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

8.3.4.2 Description

If {_POSIX_THREAD_SAFE_FUNCTIONS} is defined:

The asctime_r() function converts the broken-down time in the structure pointed to by tm into a string that is
placed in the user-supplied buffer pointed to by buf (which shall contain at least 26 B) and then returns buf.

Otherwise:

Either the implementation shall support the asctime_r() function as described above or the asctime_r()
function shall not be provided.

8.3.4.3 Returns

Upon successful completion, asctime_r() shall return a pointer to a character string containing the date and time. This
string is pointed to by the argument buf. If the function is unsuccessful, it shall return NULL.

8.3.4.4 Errors

This standard does not specify any error conditions that are required to be detected by the asctime_r() function. Some
errors may be detected under implementation-defined conditions, or as defined by the C Standard {2}.

8.3.4.5 Cross-References

asctime(), 8.1.1.

8.3.5 Current Time Representation

Functions: ctime_r()

8.3.5.1 Synopsis

#include <time.h>
char *ctime_r(const time_t *clock, char *buf);

8.3.5.2 Description

If {_POSIX_THREAD SAFE FUNCTIONS} is defined:

The ctime_r() function converts the calendar time pointed to by clock to local time in exactly the same form
as ctime(), puts the string into the array pointed to by buf (which contains at least 26 B), and returns buf.
Unlike ctime(), the thread-safe version ctime_r() is not required to set tzname.

Otherwise:

Either the implementation shall support the ctime_r() function as described above or the ctime_r() function
shall not be provided.

8.3.5.3 Returns

Upon successful completion, ctime_r() shall return a pointer to the string pointed to by buf. When an error is
encountered, a NULL pointer shall be returned.

170 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

8.3.5.4 Errors

This standard does not specify any error conditions that are required to be detected by the ctime_r() function. Some
errors may be detected under 617 implementation-defined conditions, or as defined by the C Standard {2}.

8.3.5.5 Cross-References

ctime(), 8.1.

8.3.6 Coordinated Universal Time

Function: gmtime_r()

8.3.6.1 Synopsis

#include <time.h>
struct tm *gmtime_r(const time_t *clock, struct tm *result);

8.3.6.2 Description

If {_POSIX_THREAD_SAFE FUNCTIONS} is defined:

The gmtime_r() function converts the calendar time pointed to by clock into a broken-down time expressed as
Coordinated Universal Time (UTC). The broken-down time is stored in the structure referred to by result. The
gmtime_r() function also returns the address of the same structure.

Otherwise:

Either the implementation shall support the gmtime_r() function as described above or the gmtime_r()
function shall not be provided.

8.3.6.3 Returns

Upon successful completion, gmtime_r() shall return the address of the structure pointed to by the argument result. If
an error is detected, or UTC is not available, 637 gmtime_r() shall return a NULL pointer.

8.3.6.4 Errors

This standard does not specify any additional error conditions that are required to be detected by the gmtime_r()
function. Some errors may be detected under implementation-defined conditions.

8.3.6.5 Cross-References

gmtime(), 8.1.

8.3.7 Local Time

Functions: localtime_r()

8.3.7.1 Synopsis

#include <time.h>
struct tm *localtime_r(const time_t *clock, struct tm *result);

Copyright © 1996 IEEE All Rights Reserved 171

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

8.3.7.2 Description

If {_POSIX_THREAD_SAFE_FUNCTIONS} is defined:

The localtime_r() function converts the calendar time pointed to by clock into a broken-down time stored in
the structure to which result points. The localtime_r() function also returns a pointer to that same structure.
Unlike localtime(), the reentrant version is not required to set tzname.

Otherwise:

Either the implementation shall support the localtime_r() function as described above or the localtime_r()
function shall not be provided.

8.3.7.3 Returns

Upon successful completion, localtime_r() returns a pointer to the structure pointed to by the argument result.

8.3.7.4 Errors

This standard does not specify any error conditions that are required to be detected for the localtime_r() function.
Some errors may be detected under implementation-defined conditions.

8.3.7.5 Cross-References

localtime(), 8.1.

8.3.8 Pseudo-Random Sequence Generation Functions

Functions: rand_r()

8.3.8.1 Synopsis

#include <stdlib.h>
int rand_r(unsigned int *seed);

8.3.8.2 Description

If {_POSIX_THREAD_SAFE_FUNCTIONS} is defined:

The rand_r() function computes a sequence of pseudo-random integers in the range 0 to RAND_MAX. (The
value of the RAND_MAX macro shall be at least 32767.)
If rand_r() is called with the same initial value for the object pointed to by seed and that object is not modified
between successive returns and calls to rand_r(), the same sequence shall be generated.

8.3.8.3 Returns

The rand_r() function returns a pseudo-random integer. See the C Standard {2}.

8.3.8.4 Errors

This standard does not specify any error conditions that are required to be detected for the rand_r() function. See the
C Standard {2}.

172 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

8.3.8.5 Cross-References

rand(), 8.1; srand(), 8.1.

9. System Databases

9.1 System Databases

The routines described in this section allow an application to access the two system databases that are described below.

The group database contains the following information for each group:

1) Group name
2) Numerical group ID
3) List of all users allowed in the group

The user database contains the following information for each user:

1) User name
2) Numerical user ID
3) Numerical group ID
4) Initial working directory
5) Initial user program

If the initial user program field is null, the system default is used.

If the initial working directory field is null, the interpretation of that field is implementation defined.

These databases may contain other fields that are unspecified by this part of ISO/IEC 9945.

9.2 Database Access

9.2.1 Group Database Access

Functions: getgrgid(), getgrgid_r(), getgrnam(), getgrnam_r()

9.2.1.1 Synopsis

#include <sys/types.h>
#include <grp.h>
struct group *getgrgid(gid_t gid);
int getgrgid_r(gid_t gid, struct group *grp, char *buffer,
 size_t bufsize, struct group **result);
struct group *getgrnam(const char *name);
int getgrnam_r(const char *name, struct group *grp, char *buffer,
 size_t bufsize, struct group **result);

Copyright © 1996 IEEE All Rights Reserved 173

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

9.2.1.2 Description

The getgrgid() and getgrnam() routines both return pointers to an object of type struct group containing an entry from
the group database with a matching gid or name. This structure, which is defined in <grp.h>, includes the members
shown in Table 9.1.

Table 9.1—group Structure

If {_POSIX_THREAD_SAFE_FUNCTIONS} is defined:

The getgrgid_r() and getgrnam_r() functions both update the group structure pointed to by grp and store a
pointer to that structure at the location pointed to by result. The structure shall contain an entry from the group
database with a matching gid or name. Storage referenced by the group structure shall be allocated from the
memory provided with the buffer parameter, which is bufsize characters in size. The maximum size needed
for this buffer can be determined with the {_SC_GETGR_R_SIZE_MAX} sysconf() parameter. A NULL
pointer is returned at the location pointed to by result on error or if the requested entry is not found.

Otherwise:

Either the implementation shall support the getgrgid_r() and getgrnam_r() functions as described above or
the getgrgid_r() and getgrnam_r() functions shall not be provided.

9.2.1.3 Returns

A NULL pointer is returned from getgrgid() and getgrnam() on error or if the requested entry is not found.

The return values from getgrgid() and getgrnam() may point to static data that is overwritten by each call.

If successful, the getgrgid_r() and getgrnam_r() functions shall return zero. Otherwise, an error number shall be
returned to indicate the error.

9.2.1.4 Errors

This part of ISO/IEC 9945 does not specify any error conditions that are required to be detected for the getgrgid() or
getgrnam() functions. Some errors may be detected under conditions that are unspecified by this part of ISO/IEC 9945.

For each of the following conditions, if the condition is detected, the getgrgid_r() and getgrnam_r() functions shall
return the corresponding error number:

[ERANGE] Insufficient storage was supplied via buffer and bufsize to contain the data to be referenced by the
resulting group structure.

9.2.1.5 Cross-References

getlogin(), 4.2.4.

Member
Type

Member
Name

Description

char * gr_name The name of the group.

gid_t gr_gid The numerical group ID.

char ** gr_mem A null-terminated vector of pointers to the individual member names.

174 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

9.2.2 User Database Access

Functions: getpwuid(), getpwuid_r(), getpwnam(), getpwnam_r()

9.2.2.1 Synopsis

#include <sys/types.h>
#include <pwd.h>
struct passwd *getpwuid (uid_t uid);
int getpwuid_r(uid_t uid, struct passwd *pwd, char *buffer,
 size_t bufsize, struct passwd **result);
struct passwd *getpwnam(const char *name);
int getpwnam_r(const char *name, struct passwd *pwd, char *buffer,
 size_t bufsize, struct passwd **result);

9.2.2.2 Description

The getpwuid() and getpwnam() functions both return a pointer to an object of type struct passwd containing an entry
from the user database with a matching uid or name. This structure, which is defined in <pwd.h>, includes the
members shown in Table 9.2.

Table 9.2—passwd Structure

If {POSIX_THREAD_SAFE_FUNCTIONS} is defined:

The getpwuid_r() and getpwnam_r() functions both update the passwd structure pointed to by pwd and store
a pointer to that structure at the loca tion pointed to by result. The structure shall contain an entry from the
user database with a matching uid or name. Storage referenced by the structure shall be allocated from the
memory provided with the buffer parameter, which is bufsize characters in size. The maximum size needed
for this buffer can be determined with the {_SC_GETPW_R_SIZE_MAX} sysconf() parameter. A NULL
pointer is returned at the location pointed to by result on error or if the requested entry is not found.

Otherwise:

Either the implementation shall support the getpwuid_r() and getpwnam_r() function as described above or
the getpwuid_r() and getpwnam_r() functions shall not be provided.

9.2.2.3 Returns

A NULL pointer is returned from getpwuid() and getpwnam() on error or if the requested entry is not found.

The return values from getpwuid() and getpwnam() may point to static data that is overwritten by each call.

Member
Type

Member
Name

Description

char * pw_name User name.

uid_t pw_uid User ID number.

gid_t pw_gid Group ID number.

char * pw_dir Initial Working Directory.

char * pw_shell Initial User Program.

Copyright © 1996 IEEE All Rights Reserved 175

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

If successful, the getpwuid_r() and getpwnam_r() functions shall return zero. Otherwise, an error number shall be
returned to indicate the error.

9.2.2.4 Errors

This part of ISO/IEC 9945 does not specify any error conditions that are required to be detected for the getpwuid() or
getpwnam() functions. Some errors may be detected under conditions that are unspecified by this part of ISO/IEC
9945.

For each of the following conditions, if the condition is detected, the getpwuid_r() and getpwnam_r() functions shall
return the corresponding error number:

[ERANGE] Insufficient storage was supplied via buffer and bufsize to contain the data to be referenced by the
resulting passwd structure.

9.2.2.5 Cross-References

getlogin(), 4.2.4.

10. Data Interchange Format

10.1 Archive/Interchange File Format

A conforming system shall provide a mechanism to copy files from a medium to the file hierarchy and copy files from
the file hierarchy to a medium using the interchange formats described here. This part of ISO/IEC 9945 does not define
this mechanism.

When this mechanism is used to copy files from the medium by a process without appropriate privileges, the protection
information (ownership and access permissions) shall be set in the same fashion that creat() would when given the
mode argument matching the file permissions supplied by the mode field of the extended tar format or the c_mode
field of the extended cpio format. A process with appropriate privileges shall restore the ownership and the
permissions exactly as recorded on the medium, except that the symbolic user and group IDs are used for the tar
format, as described in 10.1.1.

The format-creating utility is used to translate from the file system to the formats defined in this clause. The format-
reading utility is used to translate from the formats defined in this clause to a file system. The interface to these
utilities, including their name or names, is implementation defined.

The headers of these formats are defined to use characters represented in ISO/IEC 646 {1}; however, no restrictions
are placed on the contents of the files themselves. The data in a file may be binary data or text represented in any
format available to the user. When these formats are used to transfer text at the source level, all characters shall be
represented in ISO/IEC 646 {1} International Reference Version (IRV).

The media format and the frames on the media in which the data appear are unspecified by this part of ISO/IEC 9945.

NOTE — Guidelines are given in B.

10.1.1 Extended tar Format

An extended tar archive tape or file contains a series of blocks. Each block is a fixed-size block of 512 bytes (see
below). Although this format may be thought of as being stored on 9-track industry-standard 12,7 mm (0,5 in)

176 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

magnetic tape, other types of transportable media are not excluded. Each file archived is represented by a header block
that describes the file, followed by zero or more blocks that give the contents of the file. At the end of the archive file
are two blocks filled with binary zeroes, interpreted as an end-of-archive indicator.

The blocks may be grouped for physical I/O operations. Each group of n blocks (where n is set by the application
utility creating the archive file) may be written with a single write() operation. On magnetic tape, the result of this write
is a single tape record. The last group of blocks is always at the full size, so blocks after the two zero blocks contain
undefined data.

The header block is structured as shown in Table 10.1. All lengths and offsets are in decimal.

Table 10.1—tar Header Block

Symbolic constants used in the header block are defined in the header <tar.h> as follows:

#define TMAGIC "ustar" /* ustar and a null */
#define TMAGLEN 6
#define TVERSION "00" /* 00 and no null */
#define TVERSLEN 2

/* Values used in typeflag field */
#define REGTYPE '0' /* Regular file */
#define AREGTYPE '\0' /* Regular file */
#define LNKTYPE '1' /* Link */
#define SYMTYPE '2' /* Reserved */
#define CHRTYPE '3' /* Character special */
#define BLKTYPE '4' /* Block special */

Field Name Byte Offset Length (in bytes)

name 0 100

mode 100 8

uid 108 8

gid 116 8

size 124 12

mtime 136 12

chksum 148 8

typeflag 156 1

linkname 157 100

magic 257 6

version 263 2

uname 265 32

gname 297 32

devmajor 329 8

devminor 337 8

prefix 345 155

Copyright © 1996 IEEE All Rights Reserved 177

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

#define DIRTYPE '5' /* Directory */
#define FIFOTYPE '6' /* FIFO special */
#define CONTTYPE '7' /* Reserved */

/* Bits used in the mode field - values in octal */
#define TSUID 04 000 /* Set UID on execution */
#define TSGID 02 000 /* Set GID on execution */
#define TSVTX 01 000 /* Reserved */
 /* File permissions */
#define TUREAD 00 400 /* Read by owner */
#define TUWRITE 00 200 /* Write by owner */
#define TUEXEC 00 100 /* Execute/Search by owner */
#define TGREAD 00 040 /* Read by group */
#define TGWRITE 00 020 /* Write by group */
#define TGEXEC 00 010 /* Execute/Search by group */
#define TOREAD 00 004 /* Read by other */
#define TOWRITE 00 002 /* Write by other */
#define TOEXEC 00 001 /* Execute/Search by other */

All characters are represented in the coded character set of ISO/IEC 646 {1}. For maximum portability between
implementations, names should be selected from characters represented by the portable filename character set as 8-bit
characters with most significant bit zero. If an implementation supports the use of characters outside the portable
filename character set in names for files, users, and groups, one or more implementation-defined encodings of these
characters shall be provided for interchange purposes. However, the format-reading utility shall never create file names
on the local system that cannot be accessed via the functions described previously in this part of ISO/IEC 9945; see
5.3.1, 5.6.2, 5.2.1, 6.5.2, and 5.1.2. If a file name is found on the medium that would create an invalid file name, the
implementation shall define if the data from the file is stored on the file hierarchy and under what name it is stored. A
format-reading utility may choose to ignore these files as long as it produces an error indicating 104 that the file is
being ignored.

Each field within the header block is contiguous; that is, there is no padding used. Each character on the archive
medium is stored contiguously.

The fields magic, uname, and gname are null-terminated character strings. The fields name, linkname, and prefix are
null-terminated character strings except when all characters in the array contain nonnull characters including the last
character. The version field is two bytes containing the characters “00” (zero-zero). The typeflag contains a single
character. All other fields are leading zero-filled octal numbers using digits from ISO/IEC {1} IRV. Each numeric field
is terminated by one or more space or null characters.

The name and the prefix fields produce the pathname of the file. The hierarchical relationship of the file is retained by
specifying the pathname as a path prefix, and a slash character and filename as the suffix. A new pathname is formed,
if prefix is not an empty string (its first character is not null), by concatenating prefix (up to the first null character), a
slash character, and name; otherwise, name is used alone. In either case, name is terminated at the first null character.
If prefix is an empty string, it is simply ignored. In this manner, pathnames of at most 256 characters can be supported.
If a pathname does not fit in the space provided, the format-creating utility shall notify the user of the error, and no
attempt shall be made by the format-creating utility to store any part of the file—header or data—on the medium.

The linkname field, described below, does not use the prefix to produce a pathname. As such, a linkname is limited to
100 characters. If the name does not fit in the space provided, the format-creating utility shall notify the user of the
error, and the utility shall not attempt to store the link on the medium.

The mode field provides 9 bits specifying file permissions and 3 bits to specify the set UID, set GID, and TSVTX
modes. Values for these bits were defined previously. When appropriate privilege is required to set one of these mode
bits, and the user restoring the files from the archive does not have the appropriate privilege, the mode bits for which

178 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

the user does not have appropriate privilege shall be ignored. Some of the mode bits in the archive format are not
mentioned elsewhere in this part of ISO/IEC 9945 . If the implementation does not support those bits, they may 136 be
ignored.

The uid and gid fields are the user and group ID of the owner and group of the file, respectively.

The size field is the size of the file in bytes. If the typeflag field is set to specify a file to be of type LNKTYPE or
SYMTYPE, the size field shall be specified as zero. If the typeflag field is set to specify a file of type DIRTYPE, the
size field is interpreted as described under the definition of that record type. No data blocks are 143 stored for
LNKTYPE, SYMTYPE, or DIRTYPE. If the typeflag field is set to CHRTYPE, BLKTYPE, or FIFOTYPE, the
meaning of the size field is unspecified by this part of ISO/IEC 9945, and no data blocks are stored on the medium.
Additionally, for FIFOTYPE, the size field shall be ignored when reading. If the typeflag field is set to any other value,
the number of blocks written following the header is (size+511)/512, ignoring any fraction in the result of the division.

The mtime field is the modification time of the file at the time it was archived. It is the ISO/IEC 646 {1} representation
of the octal value of the modification time 151 obtained from the stat() function.

The chksum field is the ISO/IEC 646 {1} IRV representation of the octal value of the simple sum of all bytes in the
header block. Each 8-bit byte in the header is treated as an unsigned value. These values are added to an unsigned
integer, initialized to zero, the precision of which shall be no less than 17 bits. When calculating the checksum, the
chksum field is treated as if it were all blanks.

The typeflag field specifies the type of file archived. If a particular implementation does not recognize the type, or the
user does not have appropriate privilege to create that type, the file shall be extracted as if it were a regular file if the
file type is defined to have a meaning for the size field that could cause data blocks to be written on the medium (see
the previous description for size). If conversion to an ordinary file occurs, the format-reading utility shall produce an
error indicating that the conversion took place. All of the typeflag fields are coded in ISO/IEC 646 {1} IRV:

'0' Represents a regular file. For backward compatibility, a typeflag value of binary zero ('\0') should be
recognized as meaning a regular file when extracting files from the archive. Archives written with this
version of the archive file format shall create regular files with a typeflag value of ISO/IEC 646 {1} IRV
'0'.

'1' Represents a file linked to another file, of any type, previously archived. Such files are identified by each
file having the same device and file serial number. The linked-to name is specified in the linkname field
with a null terminator if it is less than 100 bytes in length.

'2' Reserved to represent a link to another file, of any type, whose device or file serial number differs. This is
provided for systems that support linked files whose device or file serial numbers differ, and should be
treated as a type '1' file if this extension does not exist.

'3','4' Represent character special files and block special files respectively. In this case the devmajor and
devminor fields shall contain information defining the device, the format of which is unspecified by this
part of ISO/IEC 9945. Implementations may map the device specifications to their own local specification
or may ignore the entry.

'5' Specifies a directory or subdirectory. On systems where disk allocation is performed on a directory basis,
the size field shall contain the maximum number of bytes (which may be rounded to the nearest disk block
allocation unit) that the directory may hold. A size field of zero indicates no such limiting. Systems that do
not support limiting in this manner should ignore the size field.

'6' Specifies a FIFO special file. Note that the archiving of a FIFO file archives the existence of this file and
not its contents.

'7' Reserved to represent a file to which an implementation has associated some high performance attribute.
Implementations without such extensions should treat this file as a regular file (type '0').

Copyright © 1996 IEEE All Rights Reserved 179

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

'A'–'Z' The letters A through Z are reserved for custom implementations. All other values are reserved for
specification in future revisions of this part of ISO/IEC 9945.

The magic field is the specification that this archive was output in this archive format. If this field contains TMAGIC,
the uname and gname fields shall contain the ISO/IEC 646 {1} IRV representation of the owner and group of the file
respectively (truncated to fit, if necessary). When the file is restored by a privileged, protection-preserving version of
the utility, the password and group files shall be scanned for these names. If found, the user and group IDs contained
within these files shall be used rather than the values contained within the uid and gid fields.

The encoding of the header is designed to be portable across machines.

10.1.1.1 Cross-References

<grp.h>, 9.2.1.1; <pwd.h>, 9.2.2.1; <sys/stat.h>, 5.6.1; stat(), 5.6.2; <unistd.h>, 2.9.

10.1.2 Extended cpio Format

The byte-oriented cpio archive format is a series of entries, each comprised of a header that describes the file, the
name of the file, and then the contents of the file.

An archive may be recorded as a series of fixed-size blocks of bytes. This blocking shall be used only to make physical
I/O more efficient. The last group of blocks is always at the full size.

For the byte-oriented cpio archive format, the individual entry information must be in the order indicated and
described by Table 10.2.

Table 10.2—Byte-Oriented cpio Archive Entry
Header

Field Name Length (in bytes) Interpreted as

c_magic 6 Octal number

c_dev 6 Octal number

c_ino 6 Octal number

c_mode 6 Octal number

c_uid 6 Octal number

c_gid 6 Octal number

c_nlink 6 Octal number

c_rdev 6 Octal number

c_mtime 11 Octal number

c_namesize 6 Octal number

c_filesize 11 Octal number

File Name

Field Name Length Interpreted as

c_name c_namesize Pathname string

File Data

Field Name Length Interpreted as

c_filedata c_filesize Data

180 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

10.1.2.1 cpio Header

For each file in the archive, a header as defined previously shall be written. The information in the header fields shall
be written as streams of ISO/IEC 646 {1} characters interpreted as octal numbers. The octal numbers are extended to
the necessary length by appending ISO/IEC 646 {1} IRV zeros at the most-significant-digit end of the number; the
result is written to the stream of bytes most-significant-digit first. The fields shall be interpreted as follows:

1) c_magic shall identify the archive as being a transportable archive by containing the magic bytes as defined
by MAGIC (070707).

2) c_dev and c_ino shall contain values that uniquely identify the file within the archive (i.e., no files shall
contain the same pair of c_dev and c_ino values unless they are links to the same file). The values shall be
determined in an unspecified manner.

3) c_mode shall contain the file type and access permissions as defined in Table 10.3.
4) c_uid shall contain the user ID of the owner.
5) c_gid shall contain the group ID of the group.

Table 10.3—Values for cpio c_mode Field

File Permissions

Name Value Indicates

C_IRUSR 000 400 Read by owner.

C_IWUSR 000 200 Write by owner.

C_IXUSR 000 100 Execute by owner.

C_IRGRP 000 040 Read by group.

C_IWGRP 000 020 Write by group.

C_IXGRP 000 010 Execute by group.

C_IROTH 000 004 Read by others.

C_IWOTH 000 002 Write by others.

C_IXOTH 000 001 Execute by others.

C_ISUID 004 000 Set uid.

C_ISGID 002 000 Set gid.

C_ISVTX 001 000 Reserved.

File Type

Name Value Indicates

C_ISDIR 040 000 Directory.

C_ISFIFO 010 000 FIFO.

C_ISREG 0100 000 Regular file.

C_ISBLK 060 000 Block special file.

C_ISCHR 020 000 Character special file.

C_ISCTG 0110 000 Reserved.

C_ISLNK 0120 000 Reserved.

C_ISSOCK 0140 000 Reserved.

Copyright © 1996 IEEE All Rights Reserved 181

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

6) c_nlink shall contain the number of links referencing the file at the time the archive was created.
7) c_rdev shall contain implementation-defined information for character or block special files.
8) c_mtime shall contain the latest time of modification of the file at the time the archive was created.
9) c_namesize shall contain the length of the pathname, including the terminating null byte.
10) c_filesize shall contain the length of the file in bytes. This is the length of the data section following the header

structure.

10.1.2.2 cpio File Name

c_name shall contain the pathname of the file. The length of this field in bytes is the value of c_namesize. If a file name
is found on the medium that would create an invalid pathname, the implementation shall define if the data from the file
is stored on the file hierarchy and under what name it is stored.

All characters are represented in ISO/IEC 646 {1} IRV. For maximum portability between implementations, names
should be selected from characters represented by the portable filename character set as 8-bit characters most
significant bit zero. If an implementation supports the use of characters outside the portable filename character set in
names for files, users, and groups, one or more implementation-defined encodings of these characters shall be
provided for interchange purposes. However, the format-reading utility shall never create file names on the local
system that cannot be accessed via the functions described previously in this part of ISO/IEC 9945; see open(), stat(),
chdir(), fcntl(), and opendir(). If a file name is found on the medium that would create an invalid file name, the
implementation shall define if the data from the file is stored on the local file system and under what name it is stored.
A format-reading utility may choose to ignore these files as long as it produces an error indicating that the file is being
ignored.

10.1.2.3 cpio File Data

Following c_name, there shall be c_filesize bytes of data. Interpretation of such data shall occur in a manner dependent
on the file. If c_filesize is zero, no data shall be contained in c_filedata.

10.1.2.4 cpio Special Entries

FIFO special files, directories, and the trailer are recorded with c_filesize equal to zero. For other special files,
c_filesize is unspecified by this part of ISO/IEC 9945. The header for the next file entry in the archive shall be written
directly after the last byte of the file entry preceding it. A header denoting the file name “TRAILER!!!” shall indicate
the end of the archive; the contents of bytes in the last block of the archive following such a header are undefined.

10.1.2.5 cpio Values

Values needed by the cpio archive format are described in Table 10.3.

C_ISDIR, C_ISFIFO, and C_ISREG shall be supported on a system conforming to this part of ISO/IEC 9945;
additional values defined previously are reserved for compatibility with existing systems. Additional file types may be
supported; however, such files should not be written on archives intended for transport to portable systems.

C_ISVTX, C_ISCTG, C_ISLNK, and C_ISSOCK have been reserved by this part of ISO/IEC 9945 to retain
compatibility with some existing implementations.

When restoring from an archive:

1) If the user does not have the appropriate privilege to create a file of the specified type, the format-interpreting
utility shall ignore the entry and issue an error to the standard error output.

2) Only regular files have data to be restored. Presuming a regular file meets any selection criteria that might be
imposed on the format-reading utility by the user, such data shall be restored.

182 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

3) If a user does not have appropriate privilege to set a particular mode flag, the flag shall be ignored. Some of
the mode flags in the archive format are not mentioned elsewhere in this part of ISO/IEC 9945. If the
implementation does not support those flags, they may be ignored.

10.1.2.6 Cross-References

<grp.h>, 9.2.1.1; <pwd.h>, 9.2.2.1; <sys/stat.h>, 5.6.1; chmod(), 5.6.4; link(), 5.3.4; mkdir(), 5.4.1; read(),
6.4.1; stat(), 5.6.2.

10.1.3 Multiple Volumes

It shall be possible for data represented by the Archive/Interchange File Format to reside in more than one file.

The format is considered a stream of bytes. An end-of-file (or equivalently an end-of-media) condition may occur
between any two bytes of the logical byte stream. If this condition occurs, the byte following the end-of-file will be the
first byte on the next file. The format-reading utility shall, in an implementation defined manner, determine what file
to read as the next file.

11. Synchronization

The facilities described in this clause provide synchronization via counting semaphores, mutexes, and condition
variables.

11.1 Semaphore Characteristics

The header <semaphore.h> shall define the type sem_t, used in performing semaphore operations. The type sem_t
is used to represent semaphores. The semaphore may be implemented using a file descriptor. In that case, applications
shall be able to open up to at least a total of {OPEN_MAX} files and semaphores; see 5.3.1.

Inclusion of the <semaphore.h> header may make visible the symbols allowed by this part of ISO/IEC 9945 to be
in the headers <sys/types.h> and <fcntl.h>.

11.2 Semaphore Functions

11.2.1 Initialize an Unnamed Semaphore

Function: sem_init()

11.2.1.1 Synopsis

#include <semaphore.h>
int sem_init(sem_t *sem, int pshared, unsigned int value);

11.2.1.2 Description

If {_POSIX_SEMAPHORES} is defined:

The sem_init() function is used to initialize the unnamed semaphore referred to by sem. The value of the
initialized semaphore is value. Following a successful call to sem_init(), the semaphore may be used in
subsequent calls to sem_wait(), sem_trywait(), sem_post(), and sem_destroy(). This semaphore remains
usable until the semaphore is destroyed.

Copyright © 1996 IEEE All Rights Reserved 183

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

If the pshared argument has a nonzero value, then the semaphore is shared between processes; in this case,
any process that can access the semaphore sem can use sem for performing sem_wait(), sem_trywait(),
sem_post(), and sem_destroy() operations.
Only sem itself may be used for performing synchronization. The result of referring to copies of sem in calls
to sem_wait(), sem_trywait(), sem_post(), and sem_destroy(), is undefined.
If the pshared argument is zero, then the semaphore is shared between threads of the process; any thread in
this process can use sem for performing sem_wait(), sem_trywait(), sem_post(), and sem_destroy()
operations. The use of the semaphore by threads other than those created in the same process is undefined.
Attempting to initialize an already initialized semaphore results in undefined behavior.

Otherwise:

Either the implementation shall support the sem_init() function as described above or the sem_init() function
shall fail.

11.2.1.3 Returns

Upon successful completion, the function shall initialize the semaphore in sem. Otherwise, it shall return −1 and set
errno to indicate the error.

11.2.1.4 Errors

If any of the following conditions occur, the sem_init() function shall return −1 and set errno to the corresponding
value:

[EINVAL] The value argument exceeds {SEM_VALUE_MAX}.

[ENOSPC] A resource required to initialize the semaphore has been exhausted.

The limit on semaphores ({SEM_NSEMS_MAX}) has been reached.

[ENOSYS] The function sem_init() is not supported by this implementation.

[EPERM] The process lacks the appropriate privileges to initialize the semaphore.

11.2.1.5 Cross-References

<semaphore.h>, 11.1; sem_destroy(), 11.2.2; sem_post(), 11.2.7; sem_trywait(), 11.2.6; sem_wait(), 11.2.6.

11.2.2 Destroy an Unnamed Semaphore

Function: sem_destroy()

11.2.2.1 Synopsis

#include <semaphore.h>
int sem_destroy(sem_t *sem);

11.2.2.2 Description

If {_POSIX_SEMAPHORES} is defined:

The sem_destroy() function is used to destroy the unnamed semaphore indicated by sem. Only a semaphore
that was created using sem_init() may be destroyed using sem_destroy(); the effect of calling sem_destroy()
with a named semaphore is undefined. The effect of subsequent use of the semaphore sem is undefined until
sem is re-initialized by another call to sem_init().

184 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

It shall be safe to destroy an initialized semaphore upon which no threads are currently blocked. The effect of
destroying a semaphore upon which other threads are currently blocked is undefined.

Otherwise:

Either the implementation shall support the sem_destroy() function as described above or the sem_destroy()
function shall fail.

11.2.2.3 Returns

Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 is returned and errno shall be
set to indicate the error.

11.2.2.4 Errors

If any of the following conditions occur, the sem_destroy() function shall return −1 ανδ σετ errno to the corresponding
value:

[EINVAL] The sem argument is not a valid semaphore.

[ENOSYS] The function sem_destroy() is not supported by this implementation.

For each of the following conditions, if the condition is detected, the sem_destroy() function shall return −1 ανδ σετ
errno to the corresponding value:

[EBUSY] There are currently processes blocked on the semaphore.

11.2.2.5 Cross-References

<semaphore.h>, 11.1; sem_init(), 11.2.1; sem_open(), 11.2.3.

11.2.3 Initialize/Open a Named Semaphore

Function: sem_open()

11.2.3.1 Synopsis

#include <semaphore.h>
sem_t *sem_open(const char *name, int oflag, ...);

11.2.3.2 Description

If {_POSIX_SEMAPHORES} is defined:

The sem_open() function establishes a connection between a named semaphore and a process. Following a
call to sem_open() with semaphore name name, the process may reference the semaphore associated with
name using the address returned from the call. This semaphore may be used in subsequent calls to
sem_wait(), sem_trywait(), sem_post(), and sem_close(). The semaphore remains usable by this process until
the semaphore is closed by a successful call to sem_close(), _exit(), or a exec function.
The oflag argument controls whether the semaphore is created or merely accessed by the call to sem_open().
The following flag bits may be set in oflag:

O_CREAT This flag is used to create a semaphore if it does not already exist. If O_CREAT is set and
the semaphore already exists, then O_CREAT has no effect, except as noted under
O_EXCL. Otherwise, sem_open() creates a named semaphore. The O_CREAT flag

Copyright © 1996 IEEE All Rights Reserved 185

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

requires a third and a fourth argument: mode, which is of type mode_t, and value, which is
of type unsigned int. The semaphore is created with an initial value of value. Valid initial
values for semaphores shall be less than or equal to {SEM_VALUE_MAX}.

The user ID of the semaphore shall be set to the effective user ID of the process; the group
ID of the semaphore shall be set to a system default group ID or to the effective group ID
of the process. The permission bits of the semaphore shall be set to the value of the mode
argument except those set in the file mode creation mask of the process. When bits in mode
other than the file permission bits are specified, the effect is unspecified.

After the semaphore named name has been created by sem_open() with the O_CREAT
flag, other processes can connect to the semaphore by calling sem_open() with the same
value of name.

O_EXCL If O_EXCL and O_CREAT are set, sem_open() shall fail if the semaphore name exists. The
check for the existence of the semaphore and the creation of the semaphore if it does not
exist shall be atomic with respect to other processes executing sem_open() with O_EXCL
and O_CREAT set. If O_EXCL is set and O_CREAT is not set, the effect is undefined.

If flags other than O_CREAT and O_EXCL are specified in the oflag parameter, the effect
is unspecified.

The name argument points to a string naming a semaphore object. It is unspecified whether the name appears
in the file system and is visible to functions that take pathnames as arguments. The name argument shall
conform to the construction rules for a pathname. If name begins with the slash character, then processes
calling sem_open() with the same value of name shall refer to the same semaphore object, as long as that
name has not been removed. If name does not begin with the slash character, the effect is implementation
defined. The interpretation of slash characters other than the leading slash character in name is
implementation defined.
If a process makes multiple successful calls to sem_open() with the same value for name, the same semaphore
address shall be returned for each such successful call, provided that there have been no calls to sem_unlink()
for this semaphore.
References to copies of the semaphore produce undefined results.

Otherwise:

Either the implementation shall support the sem_open() function as described above or the sem_open()
function shall fail.

11.2.3.3 Returns

Upon successful completion, the function shall return the address of the semaphore. Otherwise, it shall return a value
of SEM_FAILED and set errno to indicate the error. The symbol SEM_FAILED shall be defined in the header
<semaphore.h>. No successful return from sem_open() shall return the value SEM_FAILED.

11.2.3.4 Errors

If any of the following conditions occur, the sem_open() function shall return SEM_FAILED and set errno to the
corresponding value:

[EACCES] The named semaphore exists and the permissions specified by oflag are denied, or the named
semaphore does not exist and permission to create the named semaphore is denied.

[EEXIST] O_CREAT and O_EXCL are set and the named semaphore already exists.

[EINTR] The sem_open() operation was interrupted by a signal.

186 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

[EINVAL] The sem_open() operation is not supported for the given name. The implementation shall document
under what circumstances this error may be returned.

O_CREAT was specified in oflag and value was greater than {SEM_VALUE_MAX}.

[EMFILE] Too many semaphore descriptors or file descriptors are currently in use by this process.

[ENAMETOOLONG]

The length of the name string exceeds {PATH_MAX}, or a pathname component is longer than
{NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

[ENFILE] Too many semaphores are currently open in the system.

[ENOENT] O_CREAT is not set and the named semaphore does not exist.

[ENOSPC] There is insufficient space for the creation of the new named semaphore.

[ENOSYS] The function sem_open() is not supported by this implementation.

11.2.3.5 Cross-References

<semaphore.h>, 11.1; sem_close(), 11.2.4; sem_post(), 11.2.7; sem_trywait(), 11.2.6; sem_unlink(), 11.2.5;
sem_wait(), 11.2.6.

11.2.4 Close a Named Semaphore

Function: sem_close()

11.2.4.1 Synopsis

#include <semaphore.h>
int sem_close(sem_t *sem);

11.2.4.2 Description

If {_POSIX_SEMAPHORES} is defined:

The sem_close() function is used to indicate that the calling process is finished using the named semaphore
indicated by sem. The effects of calling sem_close() for an unnamed semaphore [one created by sem_init()]
are undefined. The sem_close() function shall deallocate [that is, make available for reuse by a subsequent
sem_open() by this process] any system resources allocated by the system for use by this process for this
semaphore. The effect of subsequent use of the semaphore indicated by sem by this process is undefined. If
the semaphore has not been removed with a successful call to sem_unlink(), then sem_close() shall have no
effect on the state of the semaphore. If the sem_unlink() function has been successfully invoked for name after
the most recent call to sem_open() with O_CREAT for this semaphore, then when all processes that have
opened the semaphore close it, the semaphore shall no longer be accessible.

Otherwise:

Either the implementation shall support the sem_close() function as described above or the sem_close()
function shall fail.

11.2.4.3 Returns

Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 is returned and errno shall be
set to indicate the error.

Copyright © 1996 IEEE All Rights Reserved 187

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

11.2.4.4 Errors

If any of the following conditions occur, the sem_close() function shall return −1 and set errno to the corresponding
value:

[EINVAL] The sem argument is not a valid semaphore descriptor.

[ENOSYS] The function sem_close() is not supported by this implementation.

11.2.4.5 Cross-References

<semaphore.h>, 11.1; sem_init(), 11.2.1; sem_open(), 11.2.3; sem_unlink(), 11.2.5.

11.2.5 Remove a Named Semaphore

Function: sem_unlink()

11.2.5.1 Synopsis

#include <semaphore.h>
int sem_unlink(const char *name);

11.2.5.2 Description

If {_POSIX_SEMAPHORES} is defined:

The sem_unlink() function shall remove the semaphore named by the string name. If the semaphore named by
name is currently referenced by other processes, then sem_unlink() shall have no effect on the state of the
semaphore. If one or more processes have the semaphore open when sem_unlink() is called, destruction of the
semaphore shall be postponed until all references to the semaphore have destroyed by calls to sem_close(),
_exit(), or exec. Calls to sem_open() to re-create or re-connect to the semaphore shall refer to a new
semaphore after sem_unlink() is called. The sem_unlink() call shall not block until all references have been
destroyed; it shall return immediately.

Otherwise:

Either the implementation shall support the sem_unlink() function as described above or the sem_unlink()
function shall fail.

11.2.5.3 Returns

Upon successful completion, the function shall return a value of zero. Otherwise, the semaphore shall not be changed
by this function call, and the function shall return a value of −1 and set errno to indicate the error.

11.2.5.4 Errors

If any of the following conditions occur, the sem_unlink() function shall return −1 and set errno to the corresponding
value:

[EACCES] Permission is denied to unlink the named semaphore.

[ENAMETOOLONG]

The length of the name string exceeds {NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

[ENOENT] The named semaphore does not exist.

188 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

[ENOSYS] The function sem_unlink() is not supported by this implementation.

11.2.5.5 Cross-References

<semaphore.h>, 11.1; sem_close(), 11.2.4; sem_open(), 11.2.3.

11.2.6 Lock a Semaphore

Functions: sem_wait(), sem_trywait()

11.2.6.1 Synopsis

#include <semaphore.h>
int sem_wait(sem_t *sem);
int sem_trywait(sem_t *sem);

11.2.6.2 Description

If {_POSIX_SEMAPHORES} is defined:

The sem_wait() function locks the semaphore referenced by sem by performing the semaphore lock operation
on that semaphore. If the semaphore value is currently zero, then the calling thread shall not return from the
call to sem_wait() until it either locks the semaphore or the call is interrupted by a signal. The sem_trywait()
function locks the semaphore referenced by sem only if the semaphore is currently not locked; that is, if the
semaphore value is currently positive. Otherwise, it does not lock the semaphore.
Upon successful return, the state of the semaphore is locked and shall remain locked until the sem_post()
function is executed and returns successfully.
The sem_wait() function shall be interruptible by the delivery of a signal.

Otherwise:

Either the implementation shall support the sem_wait() and sem_trywait() functions as described above or
each of the sem_wait() and sem_trywait() functions shall fail.

11.2.6.3 Returns

The sem_wait() and sem_trywait() functions return zero if the calling process successfully performed the semaphore
lock operation on the semaphore designated by sem. If the call was unsuccessful, the state of the semaphore shall be
unchanged, and the function shall return a value of −1 and set errno to indicate the error.

11.2.6.4 Errors

If any of the following conditions occur, the sem_wait() and sem_trywait() functions shall return −1 and set errno to
the corresponding value:

[EAGAIN] The semaphore was already locked, so it cannot be immediately locked by the sem_trywait()
operation [sem_trywait() only].

[EINVAL] The sem argument does not refer to a valid semaphore.

[ENOSYS] The functions sem_wait() and sem_trywait() are not supported by this implementation.

For each of the following conditions, if the condition is detected, the sem_wait() and sem_trywait() functions shall
return −1 and set errno to the corresponding value:

Copyright © 1996 IEEE All Rights Reserved 189

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

[EDEADLK] A deadlock condition was detected.

[EINTR] A signal interrupted this function. It shall be documented in the system documentation whether this
error is returned.

11.2.6.5 Cross-References

<semaphore.h>, 11.1; sem_post(), 11.2.7.

11.2.7 Unlock a Semaphore

Function: sem_post()

11.2.7.1 Synopsis

#include <semaphore.h>
int sem_post(sem_t *sem);

11.2.7.2 Description

If {_POSIX_SEMAPHORES} is defined:

The sem_post() function unlocks the semaphore referenced by sem by performing the semaphore unlock
operation on that semaphore.
If the semaphore value resulting from this operation is positive, then no threads were blocked waiting for the
semaphore to become unlocked; the semaphore value is simply incremented.
If the value of the semaphore resulting from this operation is zero, then one of the threads blocked waiting for
the semaphore shall be allowed to return successfully from its call to sem_wait(). If the symbol
{_POSIX_PRIORITY_SCHEDULING} is defined, the thread to be unblocked shall be chosen in a manner
appropriate to the scheduling policies and parameters in effect for the blocked threads. In the case of the
schedulers SCHED_FIFO and SCHED_RR, the highest priority waiting thread shall be unblocked, and if
there is more than one highest priority thread blocked waiting for the semaphore, then the highest priority
thread that has been waiting the longest shall be unblocked. If the symbol
{_POSIX_PRIORITY_SCHEDULING} is not defined, the choice of a thread to unblock is unspecified.
The sem_post() function shall be reentrant with respect to signals and may be invoked from a signal-catching
function.

Otherwise:

Either the implementation shall support the sem_post() function as described above or the sem_post()
function shall fail.

11.2.7.3 Returns

If successful, the sem_post() function shall return zero; otherwise the function shall return −1 and set errno to indicate
the error.

11.2.7.4 Errors

If any of the following conditions occur, the sem_post() function shall return −1 and set errno to the corresponding
value:

[EINVAL] The sem does not refer to a valid semaphore.

[ENOSYS] The function sem_post() is not supported by this implementation.

190 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

11.2.7.5 Cross-References

<semaphore.h>, 11.1; sem_trywait(), 11.2.6; sem_wait(), 11.2.6.

11.2.8 Get the Value of a Semaphore

Function: sem_getvalue()

11.2.8.1 Synopsis

#include <semaphore.h>
int sem_getvalue(sem_t *sem, int *sval);

11.2.8.2 Description

If {_POSIX_SEMAPHORES} is defined:

The sem_getvalue() function updates the location referenced by the sval argument to have the value of the
semaphore referenced by sem without affecting the state of the semaphore. The updated value represents an
actual semaphore value that occurred at some unspecified time during the call, but it need not be the actual
value of the semaphore when it is returned to the calling process.
If sem is locked, then the value returned by sem_getvalue() shall be either zero or a negative number whose
absolute value represents the number of processes waiting for the semaphore at some unspecified time during
the call.

Otherwise:

Either the implementation shall support the sem_getvalue() function as described above or the
sem_getvalue() function shall fail.

11.2.8.3 Returns

Upon successful completion, the function shall return a value of zero. Otherwise, the function shall return a value of –1
and set errno to indicate the error.

11.2.8.4 Errors

If any of the following conditions occur, the sem_getvalue() function shall return −1 and set errno to the corresponding
value:

[EINVAL] The sem argument does not refer to a valid semaphore.

[ENOSYS] The function sem_getvalue() is not supported by this implementation.

11.2.8.5 Cross-References

<semaphore.h>, 11.1; sem_post() 11.2.7; sem_trywait() 11.2.6; sem_wait() 11.2.6.

11.3 Mutexes

A thread that has blocked shall not prevent any unblocked thread that is eligible to use the same processing resources
from eventually making forward progress in its execution. Eligibility for processing resources shall be determined by
the scheduling policy. See 13.6 for full details.

Copyright © 1996 IEEE All Rights Reserved 191

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

A thread becomes the owner of a mutex, m, when either

1) It returns successfully from pthread_mutex_lock() with m as the mutex argument, or
2) It returns successfully from pthread_mutex_trylock() with m as the mutex argument, or
3) It returns (successfully or not) from pthread_cond_wait() with m as the mutex argument (except as explicitly

indicated otherwise for certain errors), or
4) It returns (successfully or not) from pthread_cond_timedwait() with m as the mutex argument (except as

explicitly indicated otherwise for certain errors)

The thread remains the owner of m until it either

1) Executes pthread_mutex_unlock() with m as the mutex argument, or
2) Blocks in a call to pthread_cond_wait() with m as the mutex argument, or
3) Blocks in a call to in a call to pthread_cond_timedwait() with m as the mutex argument

The implementation shall behave as if at all times there is at most one owner of any mutex.

A thread that becomes the owner of a mutex is said to have acquired the mutex and the mutex is said to have become
locked; when a thread gives up ownership of a mutex it is said to have released the mutex and the mutex is said to have
become unlocked.

11.3.1 Mutex Initialization Attributes

Functions: pthread_mutexattr_init(), pthread_mutexattr_destroy(), pthread_mutexattr_getpshared(),
pthread_mutexattr_setpshared()

11.3.1.1 Synopsis

#include <pthread.h>
int pthread_mutexattr_init(pthread_mutexattr_t *attr);
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);
int pthread_mutexattr_getpshared(const pthread_mutexattr_t *attr,
 int *pshared);
int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr,
 int pshared);

11.3.1.2 Description

If {_POSIX_THREADS} is defined:

The function pthread_mutexattr_init() initializes a mutex attributes object attr with a default value for all of
the attributes defined by the implementation.
The effect of initializing an already initialized mutex attributes object is undefined.
After a mutex attributes object has been used to initialize one or more mutexes, any function affecting the
attributes object (including destruction) does not affect any previously initialized mutexes.
The pthread_mutexattr_destroy() function destroys a mutex attributes object; the object becomes, in effect,
uninitialized. An implementation may cause pthread_mutexattr_destroy() to set the object referenced by attr
to an invalid value. A destroyed mutex attributes object can be reinitialized using pthread_mutexattr_init();
the results of otherwise referencing the object after it has been destroyed are undefined.
If the symbol {_POSIX_THREAD_PROCESS_SHARED} is defined, the implementation shall provide the
attribute process-shared and the associated functions pthread_mutexattr_getpshared() and
pthread_mutexattr_setpshared(). If this symbol is not defined, then the process-shared attribute and these
functions are not supported. The process-shared attribute is set to PTHREAD_PROCESS_SHARED to
permit a mutex to be operated upon by any thread that has access to the memory where the mutex is allocated,

192 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

even if the mutex is allocated in memory that is shared by multiple processes. If the process-shared attribute
is PTHREAD_PROCESS_PRIVATE, the mutex shall only be operated upon by threads created within the
same process as the thread that initialized the mutex; if threads of differing processes attempt to operate on
such a mutex, the behavior is undefined. The default value of the attribute shall be
PTHREAD_PROCESS_PRIVATE.
The pthread_mutexattr_setpshared() function is used to set the process-shared attribute in an initialized
attributes object referenced by attr. The pthread_mutexattr_getpshared() function obtains the value of the
process-shared attribute from the attributes object referenced by attr.

Otherwise:

Either the implementation shall support the pthread_mutexattr_init(), pthread_mutexattr_destroy(),
pthread_mutexattr_getpshared(), and pthread_mutexattr_setpshared() functions as described above or the
pthread_mutexattr_init(), pthread_mutexattr_destroy(), pthread_mutexattr_getpshared(), and
pthread_mutexattr_setpshared() functions shall not be provided.

See 13.4.1 for full details of attributes related to scheduling policies.

Additional attributes, their default values, and the names of the associated functions to get and set those attribute
values are implementation-defined.

11.3.1.3 Returns

Upon successful completion, pthread_mutexattr_init(), pthread_mutexattr_destroy(), and pthread_mutexattr_-
setpshared() shall return zero. Otherwise, an error number shall be returned to indicate the error.

Upon successful completion, the pthread_mutexattr_getpshared() function shall return zero and store the value of the
process-shared attribute of attr into the object referenced by the pshared parameter. Otherwise, an error number shall
be returned to indicate the error.

11.3.1.4 Errors

For each of the following conditions, if the condition is detected, the pthread_mutexattr_init() function shall return the
corresponding error number:

[ENOMEM] Insufficient memory exists to initialize the mutex attributes object.

For each of the following conditions, if the condition is detected, the pthread_mutexattr_destroy(),
pthread_mutexattr_getpshared(), and pthread_mutexattr_setpshared() functions shall return the corresponding error
number:

[EINVAL] The value specified by attr is invalid.

For each of the following conditions, if the condition is detected, the pthread_mutexattr_setpshared() function shall
return the corresponding error number:

[EINVAL] The new value specified for the attribute is outside the range of legal values for that attribute.

11.3.1.5 Cross-References

pthread_create(), 16.2.2; pthread_mutex_init(), 11.3.2; pthread_cond_init(), 11.4.2.

Copyright © 1996 IEEE All Rights Reserved 193

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

11.3.2 Initializing and Destroying a Mutex

Functions: pthread_mutex_init(), pthread_mutex_destroy()

11.3.2.1 Synopsis

#include <pthread.h>
int pthread_mutex_init(pthread_mutex_t *mutex,
 const pthread_mutexattr_t *attr);
int pthread_mutex_destroy(pthread_mutex_t *mutex);
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

11.3.2.2 Description

If {_POSIX_THREADS} is defined:

The pthread_mutex_init() function initializes the mutex referenced by mutex with attributes specified by attr.
If attr is NULL, the default mutex attributes are used; the effect is the same as passing the address of a default
mutex attributes object. Upon successful initialization, the state of the mutex becomes initialized and
unlocked.
Attempting to initialize an already initialized mutex results in undefined behavior.
The pthread_mutex_destroy() function destroys the mutex object referenced by mutex; the mutex object
becomes, in effect, uninitialized. An implementation may cause pthread_mutex_destroy() to set the object
referenced by mutex to an invalid value. A destroyed mutex object can be reinitialized using
pthread_mutex_init(); the results of otherwise referencing the object after it has been destroyed are
undefined.
It shall be safe to destroy an initialized mutex that is unlocked. Attempting to destroy a locked mutex results
in undefined behavior.
In cases where default mutex attributes are appropriate, the macro PTHREAD_MUTEX_INITIALIZER can
be used to initialize mutexes that are statically allocated. The effect shall be equivalent to dynamic
initialization by a call to pthread_mutex_init() with the parameter attr specified as NULL, except that no
error checks are performed.

Otherwise:

Either the implementation shall support the pthread_mutex_init() and pthread_mutex_destroy() functions as
described above or the pthread_mutex_init() and pthread_mutex_destroy() functions shall not be provided.

11.3.2.3 Returns

If successful, the pthread_mutex_init() and pthread_mutex_destroy() functions shall return zero. Otherwise, an error
number shall be returned to indicate the error. The [EBUSY] and [EINVAL] error checks, if implemented, shall act as
if they were performed immediately at the beginning of processing for the function and caused an error return prior to
modifying the state of the mutex specified by mutex.

11.3.2.4 Errors

If any of the following conditions occur, the pthread_mutex_init() function shall return the corresponding error
number:

[EAGAIN] The system lacked the necessary resources (other than memory) to initialize another mutex.

[ENOMEM] Insufficient memory exists to initialize the mutex.

[EPERM] The caller does not have the privilege to perform the operation.

194 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

For each of the following conditions, if the condition is detected, the pthread_mutex_init() function shall return the
corresponding error number:

[EBUSY] The implementation has detected an attempt to reinitialize the object referenced by mutex (a
previously initialized, but not yet destroyed, mutex).

[EINVAL] The value specified by attr is invalid.

For each of the following conditions, if the condition is detected, the pthread_mutex_destroy() function shall return the
corresponding error number:

[EBUSY] The implementation has detected an attempt to destroy the object referenced by mutex while it is
locked or referenced [for example, while being used in a pthread_cond_wait() or
pthread_cond_timedwait()] by another thread.

[EINVAL] The value specified by mutex is invalid.

11.3.2.5 Cross-References

pthread_mutex_lock(), 11.3.3; pthread_mutex_unlock(), 11.3.3; pthread_mutex_trylock(), 11.3.3.

11.3.3 Locking and Unlocking a Mutex

Functions: pthread_mutex_lock(), pthread_mutex_unlock(), pthread_mutex_trylock().

11.3.3.1 Synopsis

#include <pthread.h>
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

11.3.3.2 Description

If {_POSIX_THREADS} is defined:

The mutex object referenced by mutex shall be locked by calling pthread_mutex_lock(). If the mutex is
already locked, the calling thread blocks until the mutex becomes available. This operation returns with the
mutex object referenced by mutex in the locked state with the calling thread as its owner. An attempt by the
current owner of a mutex to relock the mutex results in undefined behavior.
The function pthread_mutex_trylock() is identical to pthread_mutex_lock() except that if the mutex object
referenced by mutex is currently locked (by any thread, including the current thread), the call returns
immediately.
The function pthread_mutex_unlock() is called by the owner of the mutex object referenced by mutex to
release it. A pthread_mutex_unlock() call by a thread that is not the owner of the mutex results in undefined
behavior. Calling pthread_mutex_unlock() when the mutex object is unlocked also results in undefined
behavior. If there are threads blocked on the mutex object referenced by mutex when pthread_mutex_unlock()
is called, the mutex becomes available, and the scheduling policy is used to determine which thread shall
acquire the mutex. See 13.6 for full details.
If a signal is delivered to a thread waiting for a mutex, upon return from the signal handler the thread shall
resume waiting for the mutex as if it was not interrupted.

Copyright © 1996 IEEE All Rights Reserved 195

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Otherwise:

Either the implementation shall support the pthread_mutex_lock(), pthread_mutex_unlock(), and
pthread_mutex_trylock() functions as described above or the pthread_mutex_lock(),
pthread_mutex_unlock(), and pthread_mutex_trylock() functions shall not be provided.

11.3.3.3 Returns

If successful, the pthread_mutex_lock() and pthread_mutex_unlock() functions shall return zero. Otherwise, an error
number shall be returned to indicate the error.

The function pthread_mutex_trylock() shall return zero if a lock on the mutex object referenced by mutex is acquired.
Otherwise, an error number shall be returned to indicate the error.

11.3.3.4 Errors

If any of the following conditions occur, the pthread_mutex_lock() and pthread_mutex_trylock() functions shall return
the corresponding error number:

[EINVAL] The mutex was created with the protocol attribute having the value PTHREAD_PRIO_PROTECT
and the priority of the calling thread is higher than the current priority ceiling of the mutex. (See
13.6.)

If any of the following conditions occur, the pthread_mutex_trylock() function shall return the corresponding error
number:

[EBUSY] The mutex could not be acquired because it was already locked.

For each of the following conditions, if the condition is detected, the pthread_mutex_lock(), pthread_mutex_trylock(),
and pthread_mutex_unlock() functions shall return the corresponding error number:

[EINVAL] The value specified by mutex does not refer to an initialized mutex object.

For each of the following conditions, if the condition is detected, the pthread_mutex_lock() function shall return the
corresponding error number:

[EDEADLK] The current thread already owns the mutex.

For each of the following conditions, if the condition is detected, the pthread_mutex_unlock() function shall return the
corresponding error number:

[EPERM] The current thread does not own the mutex.

11.3.3.5 Cross-References

pthread_mutex_init(), 11.3.2; pthread_mutex_destroy(), 11.3.2.

11.4 Condition Variables

11.4.1 Condition Variable Initialization Attributes

Function: pthread_condattr_init(), pthread_condattr_destroy(), pthread_condattr_getpshared(),
pthread_condattr_setpshared()

196 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

11.4.1.1 Synopsis

#include <pthread.h>
int pthread_condattr_init(pthread_condattr_t *attr);
int pthread_condattr_destroy(pthread_condattr_t *attr);
int pthread_condattr_getpshared(const pthread_condattr_t *attr,
 int *pshared);
int pthread_condattr_setpshared(pthread_condattr_t *attr,
 int pshared);

11.4.1.2 Description

If {_POSIX_THREADS} is defined:

The function pthread_condattr_init() initializes a condition variable attributes object attr with the default
value for all of the attributes defined by the implementation.
Attempting to initialize an already initialized condition variable attributes object results in undefined
behavior.
After a condition variable attributes object has been used to initialize one or more condition variables, any
function affecting the attributes object (including destruction) does not affect any previously initialized
condition variables.
The pthread_condattr_destroy() function destroys a condition variable attributes object; the object becomes,
in effect, uninitialized. An implementation may cause pthread_condattr_destroy() to set the object referenced
by attr to an invalid value. A destroyed condition variable attributes object can be reinitialized using
pthread_condattr_init(); the results of otherwise referencing the object after it has been destroyed are
undefined.
If the symbol {_POSIX_THREAD_PROCESS_SHARED} is defined, the implementation shall provide the
attribute process-shared and the associated functions pthread_condattr_getpshared() and
pthread_condattr_setpshared(). If this symbol is not defined, then the process-shared attribute and these
functions are not supported. The process-shared attribute is set to PTHREAD_PROCESS_SHARED to
permit a condition variable to be operated upon by any thread that has access to the memory where the
condition variable is allocated, even if the condition variable is allocated in memory that is shared by multiple
processes. If the process-shared attribute is PTHREAD_PROCESS_PRIVATE, the condition variable shall
only be operated upon by threads created within the same process as the thread that initialized the condition
variable; if threads of differing processes attempt to operate on such a condition variable, the behavior is
undefined. The default value of the attribute shall be PTHREAD_PROCESS_PRIVATE.
The pthread_condattr_setpshared() function is used to set the process-shared attribute in an initialized
attributes object referenced by attr. The pthread_condattr_getpshared() function obtains the value of the
process-shared attribute from the attributes object referenced by attr.

Otherwise:

Either the implementation shall support the pthread_condattr_init(), pthread_condattr_destroy(),
pthread_condattr_getpshared(), and pthread_condattr_setpshared() functions as described above or the
pthread_condattr_init(), pthread_condattr_destroy(), pthread_condattr_getpshared(), and
pthread_condattr_setpshared() functions shall not be provided.

See 13.4.1 for full details of attributes related to scheduling policies.

Additional attributes, their default values, and the names of the associated functions to get and set those attribute
values are implementation defined.

Copyright © 1996 IEEE All Rights Reserved 197

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

11.4.1.3 Returns

If successful, the pthread_condattr_init(), pthread_condattr_destroy(), and pthread_condattr_setpshared() functions
shall return zero. Otherwise, an error number shall be returned to indicate the error.

If successful, the pthread_condattr_getpshared() function shall return zero and store the value of the process-shared
attribute of attr into the object referenced by the pshared parameter. Otherwise, an error number shall be returned to
indicate the error.

11.4.1.4 Errors

If any of the following conditions occur, the pthread_condattr_init() function shall return the corresponding error
number:

[ENOMEM] Insufficient memory exists to initialize the condition variable attributes object.

For each of the following conditions, if the condition is detected, the pthread_condattr_destroy(),
pthread_condattr_getpshared(), and pthread_condattr_setpshared() functions shah return the corresponding error
number:

[EINVAL] The value specified by attr is invalid.

For each of the following conditions, if the condition is detected, the pthread_condattr_setpshared() function shall
return the corresponding error number:

[EINVAL] The new value specified for the attribute is outside the range of legal values for that attribute.

11.4.1.5 Cross-References

pthread_create(), 16.2.2; pthread_mutex_init(), 11.3.2; pthread_cond_init(), 11.4.2.

11.4.2 Initializing and Destroying Condition Variables

Functions: pthread_cond_init(), pthread_cond_destroy()

11.4.2.1 Synopsis

#include <pthread.h>
int pthread_cond_init(pthread_cond_t *cond,
 const pthread_condattr_t *attr);
int pthread_cond_destroy(pthread_cond_t *cond);
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

11.4.2.2 Description

If {_POSIX_THREADS} is defined:

The function pthread_cond_init() initializes the condition variable referenced by cond with attributes
referenced by attr. If attr is NULL, the default condition variable attributes are used; the effect is the same as
passing the address of a default condition variable attributes object. Upon successful initialization, the state of
the condition variable becomes initialized.
Attempting to initialize an already initialized condition variable results in undefined behavior.
The function pthread_cond_destroy() destroys the given condition variable specified by cond; the object
becomes, in effect, uninitialized. An implementation may cause pthread_cond_destroy() to set the object

198 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

referenced by cond to an invalid value. A destroyed condition variable object can be reinitialized using
pthread_cond_init(); the results of otherwise referencing the object after it has been destroyed are undefined.
It shall be safe to destroy an initialized condition variable upon which no threads are currently blocked.
Attempting to destroy a condition variable upon which other threads are currently blocked results in
undefined behavior.
In cases where default condition variable attributes are appropriate, the macro
PTHREAD_COND_INITIALIZER can be used to initialize condition variables that are statically allocated.
The effect shall be equivalent to dynamic initialization by a call to pthread_cond_init() with the parameter
attr specified as NULL, except that no error checks are performed.

Otherwise:

Either the implementation shall support the pthread_cond_init() and pthread_cond_destroy() functions as
described above or the pthread_cond_init() and pthread_cond_destroy() functions shall not be provided.

11.4.2.3 Returns

If successful, the pthread_cond_init() and pthread_cond_destroy() functions shall return zero. Otherwise, an error
number shall be returned to indicate the error. The [EBUSY] and [EINVAL] error checks, if implemented, shall act as
if they were performed immediately at the beginning of processing for the function and caused an error return prior to
modifying the state of the condition variable specified by cond.

11.4.2.4 Errors

If any of the following conditions occur, the pthread_cond_init() function shall return the corresponding error number:

[EAGAIN] The system lacked the necessary resources (other than memory) to initialize another condition
variable.

[ENOMEM] Insufficient memory exists to initialize the condition variable.

For each of the following conditions, if the condition is detected, the pthread_cond_init() function shall return the
corresponding error number:

[EBUSY] The implementation has detected an attempt to reinitialize the object referenced by cond (a
previously initialized, but not yet destroyed, condition variable).

[EINVAL] The value specified by attr is invalid.

For each of the following conditions, if the condition is detected, the pthread_cond_destroy() function shall return the
corresponding error number:

[EBUSY] The implementation has detected an attempt to destroy the object referenced by cond while it is
referenced by another thread [for example, while being used in a pthread_cond_wait() or a
pthread_cond_timedwait()].

[EINVAL] The value specified by cond is invalid.

11.4.2.5 Cross-References

pthread_cond_signal(), 11.4.3; pthread_cond_broadcast(), 11.4.3; pthread_cond_wait(), 11.4.4;
pthread_cond_timedwait(), 11.4.4.

Copyright © 1996 IEEE All Rights Reserved 199

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

11.4.3 Broadcasting and Signaling a Condition

Functions: pthread_cond_signal(), pthread_cond_broadcast()

11.4.3.1 Synopsis

#include <pthread.h>
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

11.4.3.2 Description

If {_POSIX_THREADS} is defined:

These two functions are used to unblock threads blocked on a condition variable.
The pthread_cond_signal() call unblocks at least one of the threads that are blocked on the specified
condition variable cond (if any threads are blocked on cond).
The pthread_cond_broadcast() call unblocks all threads currently blocked on the specified condition variable
cond.
If more than one thread is blocked on a condition variable, the scheduling policy determines the order in
which threads are unblocked. When each thread unblocked as a result of a pthread_cond_signal() or
pthread_cond_broadcast() returns from its call to pthread_cond_wait() or pthread_cond_timedwait(), the
thread owns the mutex with which it called pthread_cond_wait() or pthread_cond_timedwait(). The thread(s)
that are unblocked shall contend for the mutex according to the scheduling policy (if applicable) and as if
each had called pthread_mutex_lock(). See 13.6 for full details of the effects of the various scheduling
policies.
The pthread_cond_signal() or pthread_cond_broadcast() functions may be called by a thread whether or not
that thread currently owns the mutex that threads calling pthread_cond_wait() or pthread_cond_timedwait()
have associated with the condition variable during their waits. However, if predictable scheduling behavior is
required, then that mutex shall be locked by the thread calling pthread_cond_signal() or
pthread_cond_broadcast().
The pthread_cond_signal() and pthread_cond_broadcast() functions have no effect if there are no threads
currently blocked on cond.

Otherwise:

Either the implementation shall support the pthread_cond_signal() and pthread_cond_broadcast() functions
as described above or the pthread_cond_signal() and pthread_cond_broadcast() functions shall not be
provided.

11.4.3.3 Returns

If successful, the pthread_cond_signal() and pthread_cond_broadcast() functions shall return zero. Otherwise, an
error number shall be returned to indicate the error.

11.4.3.4 Errors

For each of the following conditions, if the condition is detected, the pthread_cond_signal() and
pthread_cond_broadcast() functions shall return the corresponding error number:

[EINVAL] The value cond does not refer to an initialized condition variable.

200 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

11.4.3.5 Cross-References

pthread_cond_init(), 11.4.2; pthread_cond_wait(), 11.4.4; pthread_cond_timedwait(), 11.4.4.

11.4.4 Waiting on a Condition

Functions: pthread_cond_wait(), pthread_cond_timedwait()

11.4.4.1 Synopsis

#include <pthread.h>
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_timedwait(pthread_cond_t *cond,
 pthread_mutex_t *mutex, const struct timespec *abstime);

11.4.4.2 Description

If {_POSIX_THREADS} is defined:

The pthread_cond_wait() and pthread_cond_timedwait() functions are used to block on a condition variable.
They shall be called with mutex locked by the calling thread or undefined behavior will result.
These functions release mutex and cause the calling thread to block on the condition variable cond. If another
thread is able to acquire the mutex after the about-to-block thread has released it, then a subsequent call to
pthread_cond_signal() or pthread_cond_broadcast() in that thread shall behave as if it were issued after the
about-to-block thread has blocked.
Upon successful return, the mutex is locked and is owned by the calling thread.
When using condition variables, there is always a Boolean predicate involving shared variables associated
with each condition wait that is true if the thread should proceed. Spurious wakeups from the
pthread_cond_wait() or pthread_cond_timedwait() functions may occur. Since the return from
pthread_cond_wait() or pthread_cond_timedwait() does not imply anything about the value of this predicate,
the predicate should be re-evaluated upon each return.
The effect of using more than one mutex for concurrent pthread_cond_wait() or pthread_cond_timedwait()
operations on the same condition variable is undefined—that is, a condition variable becomes bound to a
unique mutex when a thread waits on the condition variable, and this (dynamic) binding ends when the wait
returns.
A condition wait (whether timed or not) is a cancellation point. When the cancelability enable state of a
thread is set to PTHREAD_CANCEL_DEFERRED, a side effect of acting upon a cancellation request while
in a condition wait is that the mutex is (in effect) re-acquired before calling the first cancellation cleanup
handler. The effect is as if the thread were unblocked, allowed to execute up to the point of returning from the
call to pthread_cond_wait() or pthread_cond_timedwait(), but at that point notices the cancellation request
and instead of returning to the caller of pthread_cond_wait() or pthread_cond_timedwait(), starts the thread
cancellation activities, which includes calling cancellation cleanup handlers. See Section 18 for full details of
cancellation and cancellation cleanup handlers.
A thread that has been unblocked because it has been canceled while blocked in a call to pthread_cond_wait()
or pthread_cond_timedwait() shall not consume any condition signal that may be directed concurrently at the
condition variable if there are other threads blocked on the condition variable.
The pthread_cond_timedwait() function is the same as the pthread_cond_wait() function except that an error
is returned if the absolute time specified by abstime passes (that is, system time equals or exceeds abstime)
before the condition cond is signaled or broadcasted, or if the absolute time specified by abstime has already
been passed at the time of the call. When such timeouts occur, pthread_cond_timedwait() shall nonetheless
release and reacquire the mutex referenced by mutex. The function pthread_cond_timedwait() is also a
cancellation point.

Copyright © 1996 IEEE All Rights Reserved 201

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

If a signal is delivered to a thread waiting for a condition variable, upon return from the signal handler the
thread shall resume waiting for the condition variable as if it was not interrupted, or it shall return zero due to
spurious wakeup.

Otherwise:

Either the implementation shall support the pthread_cond_wait() and pthread_cond_timedwait() functions as
described above or the pthread_cond_wait() and pthread_cond_timedwait() functions shall not be provided.

11.4.4.3 Returns

Except in the case of [ETIMEDOUT], all these error checks shall act as if they were performed immediately at the
beginning of processing for the function and shall cause an error return prior to modifying the state of the mutex
specified by mutex or the condition variable specified by cond.

Upon successful completion, a value of zero shall be returned. Otherwise, an error number shall be returned to indicate
the error.

11.4.4.4 Errors

If any of the following conditions occur, the pthread_cond_timedwait() function shall return the corresponding error
number:

[ETIMEDOUT]

The time specified by abstime to pthread_cond_timedwait() has passed.

For each of the following conditions, if the condition is detected, the pthread_cond_wait() and
pthread_cond_timedwait() functions shall return the corresponding error number:

[EINVAL] The value specified by cond, mutex, or abstime is invalid.

Different mutexes were supplied for concurrent pthread_cond_wait() or pthread_cond_timedwait()
operations on the same condition variable.

The mutex was not owned by the current thread at the time of the call.

11.4.4.5 Cross-References

pthread_cond_signal(), 11.4.3; pthread_cond_broadcast(), 11.4.3.

12. Memory Management

This section describes the process memory locking, memory mapped files, and shared memory facilities available
under this part of ISO/IEC 9945.

Range memory locking and memory mapping operations are defined in terms of pages. Implementations may restrict
the size and alignment of range lockings and mappings to be on page-size boundaries. The page size, in bytes, is the
value of the configurable system variable {PAGESIZE}. If an implementation has no restrictions on size or alignment,
it may specify a 1B page size.

Memory locking guarantees the residence of portions of the address space. It is implementation defined whether
locking memory guarantees fixed translation between virtual addresses (as seen by the process) and physical

202 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

addresses. Per process memory locks are not inherited across a fork(), and all memory locks owned by a process are
unlocked upon exec or process termination. Unmapping of an address range removes any memory locks established on
that address range by this process.

The Memory Mapped Files option provides a mechanism that allows a process to access files by directly incorporating
file data into its address space. Once a file is “mapped” into a process address space, the data can be manipulated as
memory. If more than one process maps a file, its contents are shared among them. If the mappings allow shared write
access, then data written into the memory object through the address space of one process shall appear in the address
spaces of all processes that similarly map the same portion of the memory object.

Implementations may support the Shared Memory Objects option without supporting a general Memory Mapped Files
option. Shared memory objects are named regions of storage that may be independent of the file system and can be
mapped into the address space of one or more processes to allow them to share the associated memory.

An unlink() of a file or shm_unlink() of a shared memory object, while causing the removal of the name, does not
unmap any mappings established for the object. Once the name has been removed, the contents of the memory object
are preserved as long as it is referenced. The memory object remains referenced as long as a process has the memory
object open or has some area of the memory object mapped.

If the Memory Protection option is supported, the mapping may be restricted to disallow some types of access. When
the Memory Protection option is supported, references to whole pages within the mapping but beyond the current
length of an object shall result in a SIGBUS signal. SIGBUS is used in this context to indicate an error using the object.
When the Memory Protection option is not supported, the result of references to memory within the mapping but
beyond the current length of an object is undefined. The size of the object is unaffected by access beyond the end of the
object. If the Memory Protection option is supported, write attempts to memory that was mapped without write access,
or any access to memory mapped PROT_NONE, shall result in a SIGSEGV signal. SIGSEGV is used in this context
to indicate, a mapping error. If the Memory Protection option is supported, references to unmapped addresses shall
result in a SIGSEGV signal. If the Memory Protection option is not supported, the effect of references to unmapped
addresses is undefined.

12.1 Memory Locking Functions

12.1.1 Lock/Unlock the Address Space of a Process

Functions: mlockall(), munlockall()

12.1.1.1 Synopsis

#include <sys/mman.h>
int mlockall(int flags);
int munlockall(void);

12.1.1.2 Description

If {_POSIX_MEMLOCK} is defined:

The function mlockall() shall cause all of the pages mapped by the address space of a process to be memory
resident until unlocked or until the process exits or execs another process image. The flags argument
determines whether the pages to be locked are those currently mapped by the address space of the process,
those that will be mapped in the future, or both. The flags argument is constructed from the inclusive OR of
one or more of the following symbolic constants, defined in <sys/mman.h>:

Copyright © 1996 IEEE All Rights Reserved 203

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

MCL_CURRENT

Lock all of the pages currently mapped into the address space of the process.

MCL_FUTURE Lock all of the pages that become mapped into the address space of the process in the
future, when those mappings are established.

If MCL_FUTURE is specified, and the automatic locking of future mappings eventually causes the amount
of locked memory to exceed the amount of available physical memory or any other implementation-defined
limit, the behavior is implementation defined. The manner in which the implementation informs the
application of these situations is implementation defined.
The munlockall() function unlocks all currently mapped pages of the address space of the process. Any pages
that become mapped into the address space of the process after a call to munlockall() shall not be locked,
unless there is an intervening call to mlockall() specifying MCL_FUTURE or a subsequent call to mlockall()
specifying MCL_CURRENT. If pages mapped into the address space of the process are also mapped into the
address spaces of other processes and are locked by those processes, the locks established by the other
processes are unaffected by a call by this process to munlockall().
Upon successful return from the mlockall() function that specifies MCL_CURRENT, all currently mapped
pages of the process's address space shall be memory resident and locked. Upon return from the munlockall()
function, all currently mapped pages of the process's address space shall be unlocked with respect to the
process's address space. The memory residency of unlocked pages is unspecified.
The appropriate privilege is required to lock process memory with mlockall().

Otherwise:

Either the implementation shall support the mlockall() and munlockall() functions as described above or each
of the mlockall() and munlockall() functions shall fail.

12.1.1.3 Returns

Upon successful completion, the mlockall() function shall return a value of zero. Otherwise, no additional memory
shall be locked, and the function shall return a value of −1 and set errno to indicate the error. The effect of failure of
mlockall() on previously existing locks in the address space is unspecified.

If it is supported by the implementation, the munlockall() function shall always return a value of zero. Otherwise, the
function shall return a value of −1 and set errno to indicate the error.

12.1.1.4 Errors

If any of the following conditions occur, the mlockall() and munlockall() functions shall return −1 and set errno to the
corresponding value:

[ENOSYS] The implementation does not support this memory locking interface.

If any of the following conditions occur, the mlockall() function shall return −1 and set errno to the corresponding
value:

[EAGAIN] Some or all of the memory identified by the operation could not be locked when the call was made.

[EINVAL] The flags argument is zero, or includes unimplemented flags.

For each of the following conditions, if the condition is detected, the mlockall() function shall return −1 and set errno
to the corresponding value:

[ENOMEM] Locking all of the pages currently mapped into the address space of the process would exceed an
implementation-defined limit on the amount of memory that the process may lock.

204 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

[EPERM] The calling process does not have the appropriate privilege to perform the requested operation.

12.1.1.5 Cross-References

exec, 3.1.2; _exit(), 3.2.2; fork(), 3.1.1; munmap(), 12.2.2.

12.1.2 Lock/Unlock a Range of Process Address Space

Functions: mlock(), munlock()

12.1.2.1 Synopsis

#include <sys/mman.h>
int mlock(const void *addr, size_t len);
int munlock(const void *addr, size_t len);

12.1.2.2 Description

If {_POSIX_MEMLOCK_RANGE} is defined:

The function mlock() shall cause those whole pages containing any part of the address space of the process
starting at address addr and continuing for len bytes to be memory resident until unlocked or until the process
exits or execs another process image. The implementation may require that addr be a multiple of the page size
{PAGESIZE}.

NOTE — It is expected that a later amendment of this standard will disallow the implementation from imposing the
restriction on the alignment of addr.

The function munlock() shall unlock those whole pages containing any part of the address space of the
process starting at address addr and continuing for len bytes, regardless of how many times mlock() has been
called by the process for any of the pages in the specified range. The implementation may require that addr
be a multiple of the page size {PAGESIZE}.

NOTE — It is expected that a later amendment of this standard will disallow the implementation from imposing the
restriction on the alignment of addr.

If any of the pages in the range specified to a call to munlock() are also mapped into the address spaces of
other processes, any locks established on those pages by another process are unaffected by the call of this
process to munlock(). If any of the pages in the range specified by a call to munlock() are also mapped into
other portions of the address space of the calling process outside the range specified, any locks established on
those pages via the other mappings are also unaffected by this call.
Upon successful return from mlock(), pages in the specified range shall be locked and memory resident. Upon
successful return from munlock(), pages in the specified range shall be unlocked with respect to the address
space of the process. Memory residency of unlocked pages is unspecified.
The appropriate privilege is required to lock process memory with mlock().

Otherwise:

Either the implementation shall support the mlock() and munlock() functions as described above or each of
the mlock() and munlock() functions shall fail.

12.1.2.3 Returns

Upon successful completion, the mlock() and munlock() functions shall return a value of zero. Otherwise, no change
shall be made to any locks in the address space of the process, and the function shall return a value of −1 and set errno
to indicate the error.

Copyright © 1996 IEEE All Rights Reserved 205

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

12.1.2.4 Errors

If any of the following conditions occur, the mlock() and munlock() functions shall return −1 and set errno to the
corresponding value:

[ENOMEM] Some or all of the address range specified by the addr and len arguments does not correspond to
valid mapped pages in the address space of the process.

[ENOSYS] The implementation does not support this memory locking interface.

If any of the following conditions occur, the mlock() function shall return −1 and set errno to the corresponding value:

[EAGAIN] Some or all of the memory identified by the operation could not be locked when the call was made.

For each of the following conditions, if the condition is detected, the mlock() and munlock() functions shall return −1
and set errno to the corresponding value:

[EINVAL] The addr argument is not a multiple of the page size {PAGESIZE}.

For each of the following conditions, if the condition is detected, the mlock() function shall return −1 and set errno to
the corresponding value:

[ENOMEM] Locking the pages mapped by the specified range would exceed an implementation-defined limit on
the amount of memory that the process may lock.

[EPERM] The calling process does not have the appropriate privilege to perform the requested operation.

12.1.2.5 Cross-References

exec, 3.1.2; _exit(), 3.2.2; fork(), 3.1.1; munmap(), 12.2.2.

12.2 Memory Mapping Functions

12.2.1 Map Process Addresses to a Memory Object

Function: mmap()

12.2.1.1 Synopsis

#include <sys/mman.h>
void *mmap(void *addr, size_t len, int prot, int flags, int fildes,
 off_t off);

12.2.1.2 Description

If at least one of {_POSIX_MAPPED_FILES} or {_POSIX_SHARED_MEMORY_OBJECTS} is defined:

The function mmap() establishes a mapping between the address space of the process and a memory object.
The format of the call is as follows:
 pa = mmap(addr, len, prot, flags, fildes, off);
The mmap() function establishes a mapping between the address space of the process at an address pa for len
bytes to the memory object represented by the file descriptor fildes at offset off for len bytes. The value of pa
is an implementation-dependent function of the parameter addr and the values of flags, further described
below. A successful mmap() call returns pa as its result. The address range starting at pa and continuing for

206 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

len bytes shall be legitimate for the possible (not necessarily current) address space of the process. The range
of bytes starting at off and continuing for len bytes shall be legitimate for the possible (not necessarily current)
offsets in the file or shared memory object represented by fildes.
The mapping established by mmap() replaces any previous mappings for those whole pages containing any
part of the address space of the process starting at pa and continuing for len bytes.
The parameter prot determines whether read, write, execute, or some combination of accesses are permitted
to the data being mapped. The prot should be either PROT_NONE or the bitwise inclusive OR of one or more
of the other flags in Table 12.1, defined in the header <sys/mman.h>.
If an implementation cannot support the combination of access types specified by prot, the call to mmap()
shall fail. An implementation may permit accesses other than those specified by prot; however, if the Memory
Protection option is supported, the implementation shall not permit a write to succeed where PROT_WRITE
has not been set or permit any access where

Table 12.1—Memory Protection Values

PROT_NONE alone has been set. If the Memory Protection option is supported, the implementation shall
support at least the following values of prot: PROT_NONE, PROT_READ, PROT_WRITE, and the inclusive
OR of PROT_READ and PROT_WRITE. If the Memory Protection option is not supported, the result of any
access that conflicts with the specified protection is undefined. The file descriptor fildes shall have been
opened with read permission, regardless of the protection options specified. If PROT_WRITE is specified,
the application shall have opened the file descriptor fildes with write permission unless MAP_PRIVATE is
specified in the flags parameter as described below.
The parameter flags provides other information about the handling of the mapped data. The value of flags is
the bitwise inclusive OR of these options, defined in <sys/roman.h>:

MAP_SHARED and MAP_PRIVATE describe the disposition of write references to the memory object.
Implementations that do not support the Memory Mapped Files option are not required to support
MAP_PRIVATE. If MAP_SHARED is specified, write references change the underling object. If the
implementation supports MAP_PRIVATE and it is specified, modifications to the mapped data by the calling
process shall be visible only to the calling process and shall not change the underlying object. It is unspecified
whether modifications to the underlying object done after the MAP_PRIVATE mapping is established are
visible through the MAP_PRIVATE mapping. Either MAP_SHARED or MAP_PRIVATE shall be specified,
but not both. The mapping type is retained across fork().
MAP_FIXED informs the system that the value of pa shall be addr exactly. It is implementation defined
whether MAP_FIXED is supported.

Symbolic
Constant

Description

PROT_READ Data can be read.

PROT_WRITE Data can be written.

PROT_EXEC Data can be executed.

PROT_NONE Data cannot be accessed.

Symbolic
Constant Description

MAP_SHARED Changes are shared.

MAP_PRIVATE Changes are private.

MAP_FIXED Interpret addr exactly.

Copyright © 1996 IEEE All Rights Reserved 207

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

NOTE — For implementations that support MAP_FIXED, its use may result in poor performance.

When MAP_FIXED is not set, the system uses addr in an implementation-defined manner to arrive at pa.
The pa so chosen shall be an area of the address space that the system deems suitable for a mapping of len
bytes to the specified object. An addr value of zero grants the system complete freedom in selecting pa,
subject to the constraints described below. A nonzero value of addr is taken to be a suggestion of a process
address near which the mapping should be placed. When the system selects a value for pa, it shall never place
a mapping at address zero, nor shall it replace an extant mapping.
If MAP_FIXED is specified and addr is nonzero, it shall have the same remainder as the off parameter,
modulo the page size {PAGESIZE}. The implementation may require that off is a multiple of the page size.
If MAP_FIXED is specified, the implementation may require that addr is a multiple of the page size. The
system performs mapping operations over whole pages. Thus, while the parameter len need not meet a size or
alignment constraint, the system shall include, in any mapping operation, any partial page specified by the
address range starting at pa and continuing for len bytes.

NOTE — It is expected that a later amendment of this standard will disallow the implementation from imposing the
restriction on the alignment of the off and addr arguments.

The system shall always zero-fill any partial page at the end of an object. Further, the system shall never write
out any modified portions of the last page of an object that are beyond its end. If the Memory Protection
option is supported, references within the address range starting at pa and continuing for len bytes to whole
pages following the end of an object shall result in the generation of a SIGBUS signal. When the Memory
Protection option is not supported, the result of references within the address range starting at pa and
continuing for len bytes to whole pages following the end of an object is undefined.
An implementation may deliver SIGBUS signals when a reference would cause an error in the mapped
object, such as out-of-space condition.
The st_atime field of the mapped memory object may be marked for update at any time between the mmap()
call and the corresponding mmunmap() call. The initial read or write reference to a mapped region shall cause
the st_atime field of the file to be marked for update if it has not already been marked for update.
The st_ctime and st_mtime fields of a memory object that is mapped with MAP_SHARED and
PROT_WRITE shall be marked for update at some point in the interval between a write reference to the
mapped region and the next call to msync() with MS_ASYNC or MS_SYNC for that portion of the file by any
process. If there is no such call, these fields may be marked for update at any time after a write reference if the
underlying file is modified as a result.

Otherwise:

Either the implementation shall support the mmap() function as described above or the mmap() function shall
fail.

12.2.1.3 Returns

Upon successful completion, the mmap() function shall return the address at which the mapping was placed (pa);
otherwise, it shall return a value of MAP_FAILED and set errno to indicate the error. The symbol MAP_FAILED shall
be defined in the header <sys/mman.h>. No successful return from mmap() shall return the value MAP_FAILED.

If mmap() fails for reasons other than [EBADF], [EINVAL], or [ENOTSUP], some of the mappings in the address
range starting at addr and continuing for len bytes may have been unmapped.

12.2.1.4 Errors

If any of the following conditions occur, the mmap() function shall return MAP_FAILED and set errno to the
corresponding value:

208 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

[EACCES] The file descriptor fildes is not open for read, regardless of the protection specified.

The file descriptor fildes is not open for write and PROT_WRITE was specified for a
MAP_SHARED type mapping.

[EAGAIN] The mapping could not be locked in memory, if required by mlockall(), due to a lack of resources.

[EBADF] The fildes argument is not a valid open file descriptor.

[EINVAL] The value in flags is invalid (e.g., neither MAP_PRIVATE or MAP_SHARED).

[ENODEV] The fildes argument refers to an object for which mmap() is meaningless, such as a terminal.

[ENOMEM] MAP_FIXED was specified, and the address range starting at addr and continuing for len bytes
exceeds that allowed for the address space of a process; or MAP_FIXED was not specified, and
there is insufficient room in the address space to effect the mapping.

The mapping could not be locked in memory, if required by mlockall(), because it would require
more space than the system is able to supply.

[ENOSYS] The function mmap() is not supported by this implementation.

[ENOTSUP] MAP_FIXED or MAP_PRIVATE was specified in the flags argument, and the implementation does
not support this functionality.

The implementation does not support the combination of accesses requested in the prot argument.

[ENXIO] The addresses in the range starting at off and continuing for len bytes are invalid for the object
specified by fildes.

MAP_FIXED was specified in flags and the combination of addr, len, and off is invalid for the
object specified by fildes.

For each of the following conditions, if the condition is detected, the mmap() function shall return MAP_FAILED and
set errno to the corresponding value:

[EINVAL] The arguments addr (if MAP_FIXED was specified) or off are not multiples of the page size
{PAGESIZE}.

12.2.1.5 Cross-References

open(), 5.3.1; close(), 6.3.1; munmap(), 12.2.2; ftruncate(), 5.6.7; mlockall(), 12.1.1; shm_open(), 12.3.1; <sys/
mman.h>, 12.1.1.2.

12.2.2 Unmap Previously Mapped Addresses

Function: munmap()

12.2.2.1 Synopsis

#include <sys/mman.h>
int munmap(void *addr, size_t len);

12.2.2.2 Description

If at least one of {_POSIX_MAPPED_FILES} or {_POSIX_SHARED_MEMORY_OBJECTS} is defined:

The function munmap() removes any mappings for those entire pages containing any part of the address space
of the process starting at addr and continuing for len bytes. Further references to these pages shall result in the

Copyright © 1996 IEEE All Rights Reserved 209

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

generation of a SIGSEGV signal to the process. If there are no mappings in the specified address range, then
munmap() shall have no effect.
The implementation may require that addr be a multiple of the page size, {PAGESIZE}.

NOTE — It is expected that a later amendment of this standard will disallow the implementation from imposing the
restriction on the alignment of addr.

If a mapping to be removed was private, any modifications made in this address range shall be discarded.
Any memory locks (see 12.1.2 and 12.1.1) associated with this address range shall be removed, as if by an
appropriate call to munlock().
The behavior of this function is unspecified if the mapping was not established by a call to mmap().

Otherwise:

Either the implementation shall support the munmap() function as described above or the munmap() function
shall fail.

12.2.2.3 Returns

Upon successful completion, the munmap() function shall return a value of zero; otherwise, it shall return a value of −1
and set errno to indicate the error.

12.2.2.4 Errors

If any of the following conditions occur, the munmap() function shall return −1 and set errno to the corresponding
value:

[EINVAL] Some of the addresses in the range starting at addr and continuing for len bytes are outside the range
allowed for the address space of a process.

[ENOSYS] The function munmap() is not supported by this implementation.

For each of the following conditions, if the condition is detected, the munmap() function shall return −1 and set errno
to the corresponding value:

[EINVAL] The value of addr is not a multiple of the page size {PAGESIZE}.

12.2.2.5 Cross-References

mmap(), 12.2.1; mlock(), 12.1.2; mlockall(), 12.1.1; munlock(), 12.1.2; unlink(), 5.5.1; <sys/mman.h>, 12.1.1.2.

12.2.3 Change Memory Protection

Function: mprotect()

12.2.3.1 Synopsis

#include <sys/mman.h>
int mprotect(const void *addr, size_t len, int prot);

12.2.3.2 Description

If {_POSIX_MEMORY_PROTECTION} is defined:

The function mprotect() changes the access protections to be that specified by prot for those whole pages
containing any part of the address space of the process starting at address addr and continuing for len bytes.

210 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

The parameter prot determines whether read, write, execute, or some combination of accesses are permitted
to the data being mapped. The prot argument should be either PROT_NONE or the bitwise inclusive OR of
one or more of the other values in Table 12.1.
If an implementation cannot support the combination of access types specified by prot, the call to mprotect()
shall fail. An implementation may permit accesses other than those specified by prot; however, no
implementation shall permit a write to succeed where PROT_WRITE has not been set or permit any access
where PROT_NONE alone has been set. The implementation shall support at least the following values of
prot: PROT_NONE, PROT_READ, PROT_WRITE, and the inclusive OR of PROT_READ and
PROT_WRITE. If PROT_WRITE is specified, the application shall have opened the mapped objects in the
specified address range with write permission, unless MAP_PRIVATE was specified in the original mapping,
regardless of whether the file descriptors used to map the objects have since been closed.
The implementation may require that addr be a multiple of the page size, {PAGESIZE}.

NOTE — It is expected that a later amendment of this standard will disallow the implementation from imposing the
restriction on the alignment of addr.

The behavior of this function is unspecified if the mapping was not established by a call to mmap().

Otherwise:

Either the implementation shall support the mprotect() function as described above or the mprotect() function
shall fail.

12.2.3.3 Returns

Upon successful completion, the mprotect() function shall return a value of zero; otherwise, it shall return a value of −1
and set errno to indicate the error.

If mprotect() fails for reasons other than [EINVAL], the protections on some of the pages in the address range starting
at addr and continuing for len bytes may have been changed.

12.2.3.4 Errors

If any of the following conditions occur, the mprotect() function shall return −1 and set errno to the corresponding
value:

[EACCES] The memory object was not opened for read, regardless of the protection specified.

The memory object was not opened for write, and PROT_WRITE was specified for a
MAP_SHARED type mapping.

[EAGAIN] The prot argument specifies PROT_WRITE on a MAP_PRIVATE mapping, and there are
insufficient memory resources to reserve for locking the private pages, if required.

[ENOMEM] The addresses in the range starting at addr and continuing for len bytes are outside the range allowed
for the address space of a process or specify one or more pages that are not mapped.

The prot argument specifies PROT_WRITE on a MAP_PRIVATE mapping, and it would require
more space than the system is able to supply for locking the private pages, if required.

[ENOSYS] The function mprotect() is not supported by this implementation.

[ENOTSUP] The implementation does not support the combination of accesses requested in the prot argument.

For each of the following conditions, if the condition is detected, the mprotect() function shall return −1 and set errno
to the corresponding value:

[EINVAL] The value of addr is not a multiple of the page size {PAGESIZE}.

Copyright © 1996 IEEE All Rights Reserved 211

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

12.2.3.5 Cross-References

mmap(), 12.2.1; mlock(), 12.1.2; mlockall(), 12.1.1; <sys/mman.h>, 12.1.1.2.

12.2.4 Memory Object Synchronization

Function: msync()

12.2.4.1 Synopsis

#include <sys/mman.h>
int msync(void *addr, size_t len, int flags);

12.2.4.2 Description

If {_POSIX_MAPPED_FILES} and {_POSIX_SYNCHRONIZED_IO} are defined:

The msync() function writes all modified data to permanent storage locations, if any, in those whole pages
containing any part of the address space of the process starting at address addr and continuing for len bytes.
If no such storage exists, msync() need not have any effect. If requested, the msync() function then invalidates
cached copies of data.
The implementation may require that addr be a multiple of the page size, {PAGESIZE}.

NOTE — It is expected that a later amendment of this standard will disallow the implementation from imposing the
restriction on the alignment of addr.

For mappings to files, the msync() function shall assure that all write operations are completed as defined for
synchronized I/O data integrity completion. It is unspecified whether the implementation also writes out
other file attributes. When the msync() function is called on MAP_PRIVATE mappings, any modified data
shall not be written to the underlying object and shall not cause such data to be made visible to other
processes. It is unspecified whether data in MAP_PRIVATE mappings has any permanent storage locations.
The effect of msync() on shared memory objects is unspecified.
The flags argument is constructed from the bitwise inclusive OR of one or more of the following flags defined
in the header <sys/mman.h>:

When MS_ASYNC is specified, msync() returns immediately once all the write operations are initiated or
queued for servicing; when MS_SYNC is specified, msync() shall not return until all write operations are
completed as defined for synchronized I/O data integrity completion. Either MS_ASYNC or MS_SYNC
shall be specified, but not both.
When MS_INVALIDATE is specified, msync() invalidates all cached copies of mapped data that are
inconsistent with the permanent storage locations such that subsequent references shall obtain data that was
consistent with the permanent storage locations sometime between the call to msync() and the first
subsequent memory reference to the data.
The behavior of this function is unspecified if the mapping was not established by a call to mmap().
If msync() causes any write to a file, the st_crime and st_mtime fields of the file shall be marked for update.

Symbolic
Constant

Description

MS_ASYNC Perform asynchronous writes.

MS_SYNC Perform synchronous writes.

MS_INVALIDATE Invalidate cached data.

212 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Otherwise:

Either the implementation shall support the msync() function as described above or the msync() function shall
fail.

12.2.4.3 Returns

Upon successful completion, the msync() function shall return a value of zero; otherwise, it shall return a value of −1
and set errno to indicate the error.

12.2.4.4 Errors

If any of the following conditions occur, the msync() function shall return −1 and set errno to the corresponding value:

[EBUSY] Some or all of the addresses in the range starting at addr and continuing for len bytes are locked, and
MS_INVALIDATE is specified.

[EINVAL] The value in flags is invalid.

[ENOMEM] The addresses in the range starting at addr and continuing for len bytes are outside the range allowed
for the address space of a process or specify one or more pages that are not mapped.

[ENOSYS] The function msync() is not supported by this implementation.

For each of the following conditions, if the condition is detected, the msync() function shall return −1 and set errno to
the corresponding value:

[EINVAL] The value of addr is not a multiple of the page size {PAGESIZE}.

12.2.4.5 Cross-References

mmap(), 12.2.1; mlock(), 12.1.2; mlockall(), 12.1.1; <sys/mman.h>, 12.1.1.2.

12.3 Shared Memory Functions

12.3.1 Open a Shared Memory Object

Function: shm_open()

12.3.1.1 Synopsis

#include <sys/mman.h>
int shm_open(const char *name, int oflag, mode_t mode);

12.3.1.2 Description

If {_POSIX_SHARED_MEMORY_OBJECTS} is defined:

The shm_open() function establishes a connection between a shared memory object and a file descriptor. It
creates an open file description that refers to the shared memory object and a file descriptor that refers to that
open file description. The file descriptor is used by other functions to refer to that shared memory object. The
name argument points to a string naming a shared memory object. It is unspecified whether the name appears
in the file system and is visible to other functions that take pathnames as arguments. The name argument shall
conform to the construction rules for a pathname. If name begins with the slash character, then processes
calling shm_open() with the same value of name shall refer to the same shared memory object, as long as that

Copyright © 1996 IEEE All Rights Reserved 213

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

name has not been removed. If name does not begin with the slash character, the effect is implementation
defined. The interpretation of slash characters other than the leading slash character in name is
implementation defined.
If successful, shm_open() returns a file descriptor for the shared memory object that is the lowest numbered
file descriptor not currently open for that process. The open file description is new, and therefore the file
descriptor does not share it with any other processes. It is unspecified whether the file offset is set. The
FD_CLOEXEC file descriptor flag associated with the new file descriptor shall be set.
The file status flags and file access modes of the open file description shall be set according to the value of
oflag. The oflag argument is the bitwise inclusive OR of the following flags defined in the header
<fcntl.h>. Applications shall specify exactly one of the first two values (access modes) below in the value
of oflag:

O_RDONLY Open for read access only.
O_RDWR Open for read or write access.

Any combination of the remaining flags may be specified in the value of oflag:
O_CREAT If the shared memory object exists, this flag shall have no effect, except as noted under

O_EXCL below. Otherwise, the shared memory object is created; the user ID of the
shared memory object shall be set to the effective user ID of the process; the group ID of
the shared memory object shall be set to a system default group ID or to the effective
group ID of the process. The permission bits of the shared memory object shall be set to
the value of the mode argument, except for those set in the file mode creation mask of the
process. When bits in mode other than the file permission bits are set, the effect is
unspecified. The mode argument does not affect whether the shared memory object is
opened for reading, for writing, or for both. The shared memory object shall have a size
of zero.

O_EXCL If O_EXCL and O_CREAT are set, shm_open() shall fail if the shared memory object
exists. The check for the existence of the shared memory object and the creation of the
object if it does not exist shall be atomic with respect to other processes executing
shm_open() naming the same shared memory object with O_EXCL and O_CREAT set.
If O_EXCL is set and O_CREAT is not set, the result is undefined.

O_TRUNC If the shared memory object exists, and it is successfully opened O_RDWR, the object
shall be truncated to zero length and the mode and owner shall be unchanged by this
function call. The result of using O_TRUNC with O_RDONLY is undefined.

When a shared memory object is created, the state of the shared memory object, including all data associated
with the shared memory object, shall persist until the shared memory object is unlinked and all other
references are gone. It is unspecified whether the name and shared memory object state remain valid after a
system reboot.

Otherwise:

Either the implementation shall support the shm_open() function as described above or the shm_open()
function shall fail.

12.3.1.3 Returns

Upon successful completion, the shm_open() function shall return a nonnegative integer representing the lowest
numbered unused file descriptor. Otherwise, it shall return −1 and set errno to indicate the error.

12.3.1.4 Errors

If any of the following conditions occur, the shm_open() function shall return −1 and set errno to the corresponding
value:

214 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

[EACCES] The shared memory object exists and the permissions specified by oflag are denied, or the shared
memory object does not exist and permission to create the shared memory object is denied, or
O_TRUNC is specified and write permission is denied.

[EEXIST] O_CREAT and O_EXCL are set and the named shared memory object already exists.

[EINTR] The shm_open() operation was interrupted by a signal.

[EINVAL] The shm_open() operation is not supported for the given name. The implementation shall document
under what circumstances this error may be returned.

[EMFILE] Too many file descriptors are currently in use by this process.

[ENAMETOOLONG]

The length of the name string exceeds {PATH_MAX}, or a path-name component is longer than
{NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

[ENFILE] Too many shared memory objects are currently open in the system.

[ENOENT] O_CREAT is not set and the named shared memory object does not exist.

[ENOSPC] There is insufficient space for the creation of the new shared memory object.

[ENOSYS] The function shm_open() is not supported by this implementation.

12.3.1.5 Cross-References

close(), 6.3.1; dup(), 6.2.1; exec, 3.1.2; fcntl(), 6.5.2; <fcntl.h>, 6.5.1; umask(), 5.3.3; shm_unlink(), 12.3.2;
mmap(), 12.2.1; <sys/mman.h>, 12.1.1.2.

12.3.2 Remove a Shared Memory Object

Function: shm_unlink()

12.3.2.1 Synopsis

int shm_unlink(const char *name);

12.3.2.2 Description

If {_POSIX_SHARED_MEMORY_OBJECTS} is defined:

The shm_unlink() shall remove the name of the shared memory object named by the string pointed to by
name. If one or more references to the shared memory object exist when the object is unlinked, the name shall
be removed before shm_unlink() returns, but the removal of the memory object contents shall be postponed
until all open and map references to the shared memory object have been removed.

Otherwise:

Either the implementation shall support the shm_unlink() function as described above or the shm_unlink()
function shall fail.

12.3.2.3 Returns

Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 shall be returned and errno
shall be set to indicate the error. If −1 is returned, the named shared memory object shall not be changed by this
function call.

Copyright © 1996 IEEE All Rights Reserved 215

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

12.3.2.4 Errors

If any of the following conditions occur, the shm_unlink() function shall return −1 and set errno to the corresponding
value:

[EACCES] Permission is denied to unlink the named shared memory object.

[ENAMETOOLONG]

The length of the name string exceeds [NAME_MAX] while {POSIX_NO_TRUNC} is in effect.

[ENOENT] The named shared memory object does not exist.

[ENOSYS] The function shm_unlink() is not supported by this implementation.

12.3.2.5 Cross-References

shm_open(), 12.3.1; close(), 6.3.1; mmap(), 12.2.1; munmap(), 12.2.2.

13. Execution Scheduling

13.1 Scheduling Parameters

A scheduling parameter structure sched_param contains the scheduling parameters required for implementation of
each scheduling policy supported. It is defined in <sched.h> and shall contain at least the following member:

Implementations may add extensions as permitted in 1.3.1.1, item (2). Adding extensions to this structure, which may
change the behavior of the application with respect to this standard when those fields in the structure are uninitialized,
also requires that the extension be enabled as required by 1.3.1.1.

Inclusion of the <sched.h> header shall make visible the symbols allowed by this standard to be in the header
<time.h>.

13.2 Scheduling Policies

The scheduling semantics described in this section are defined in terms of a conceptual model that contains a set of
thread lists. No implementation structures are necessarily implied by the use of this conceptual model. It is assumed
that no time elapses during operations described using this model, and therefore no simultaneous operations are
possible. This model discusses only processor scheduling for runnable threads, but it should be noted that greatly
enhanced predictability of realtime applications will result if the sequencing of other resources takes processor
scheduling policy into account.

There is, conceptually, one thread list for each priority. Any runnable thread may be on any thread list. Multiple
scheduling policies shall be provided. Each nonempty thread list is ordered, contains a head as one end of its order, and

Member
Type

Member
Name

Description

int sched_priority Process execution scheduling priority.

216 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

a tail as the other. The purpose of a scheduling policy is to define the allowable operations on this set of lists (e.g.,
moving threads between and within lists).

Each process shall be controlled by an associated scheduling policy and priority. These parameters may be specified by
explicit application execution of the sched_setscheduler() or sched_setparam() functions.

Each thread shall be controlled by an associated scheduling policy and priority. These parameters may be specified by
explicit application execution of the pthread_setschedparam() function.

Associated with each policy is a priority range. Each policy definition shall specify the minimum priority range for that
policy. The priority ranges for each policy may or may not overlap the priority ranges of other policies.

A conforming implementation shall select the thread that is defined as being at the head of the highest priority
nonempty thread list to become a running thread, regardless of its associated policy. This thread is then removed from
its thread list.

Three scheduling policies are specifically required; others may be implementation defined. The following symbols
shall be defined in the header <sched.h>:

The values of these symbols shall be distinct.

13.2.1 SCHED_FIFO

Conforming implementations shall include a scheduling policy called the FIFO scheduling policy.

Threads scheduled under this policy are chosen from a thread list that is ordered by the time its threads have been on
the list without being executed; generally, the head of the list is the thread that has been on the list the longest time, and
the tail is the thread that has been on the list the shortest time.

Under the SCHED_FIFO policy, the modification of the definitional thread lists is as follows:

1) When a running thread becomes a preempted thread, it becomes the head of the thread list for its priority.
2) When a blocked thread becomes a runnable thread, it becomes the tail of the thread list for its priority.
3) When a running thread calls the sched_setscheduler() function, the process specified in the function call is

modified to the specified policy and the priority specified by the param argument.
4) When a running thread calls the sched_setparam() function, the priority of the process specified in the

function call is modified to the priority specified by the param argument. If the thread whose priority has been
modified is a running thread or is runnable, runnable thread it then becomes the tail of the thread list for its
new priority.

5) When a running thread calls the pthread_setschedparam() function, the thread specified in the function call
is modified to the specified policy and the priority specified by the param argument.

6) If a thread whose policy or priority has been modified is a running thread or is runnable, runnable thread it
then becomes the tail of the thread list for its new priority.

Symbol Description

SCHED_FIFO First in-first out (FIFO) scheduling policy.

SCHED_RR Round robin scheduling policy.

SCHED_OTHER Another scheduling policy.

Copyright © 1996 IEEE All Rights Reserved 217

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

7) When a running thread issues the sched_yield() function, the thread becomes the tail of the thread list for its
priority.

8) At no other time shall the position of a thread with this scheduling policy within the thread lists be affected.

For this policy, valid priorities shall be within the range returned by the function sched_get_priority_max() and
sched_getpriority_min() when SCHED_FIFO is provided as the parameter. Conforming implementations shall
provide a priority range of at least 32 priorities for this policy.

13.2.2 SCHED_RR

Conforming implementations shall include a scheduling policy called the round robin scheduling policy. This policy is
identical to the SCHED_FIFO policy with the additional condition that when the implementation detects that a
running thread has been executing as a running thread for a time period of the length returned by the function
sched_rr_get_interval() or longer, the thread shall become the tail of its thread list and the head of that thread list shall
be removed and made a running thread.

The effect of this policy is to ensure that if there are multiple SCHED_RR threads at the same priority, one of them will
not monopolize the processor. An application should not rely only on the use of SCHED_RR to ensure application
progress among multiple threads if the application includes threads using the SCHED_FIFO policy at the same or
higher priority levels or SCHED_RR threads at a higher priority level.

A thread under this policy that is preempted and subsequently resumes execution as a running thread shall complete
the unexpired portion of its round-robin-interval time period.

For this policy, valid priorities shall be within the range returned by the functions sched_getpriority_max() and
sched_get_priority_min() when SCHED_RR is provided as the parameter. Conforming implementations shall provide
a priority range of at least 32 priorities for this policy.

13.2.3 SCHED_OTHER

Conforming implementations shall include one scheduling policy identified as SCHED_OTHER (which may execute
identically with either the FIFO or round robin scheduling policy). Conforming implementations shall document the
behavior of this policy as described in the definition of scheduling policy. The effect of scheduling threads with the
SCHED_OTHER policy in a system in which other threads are executing under SCHED_FIFO or SCHED_RR shall
thus be implementation defined. This policy is defined to allow strictly conforming applications to be able to indicate
that they no longer need a realtime scheduling policy in a portable manner.

For threads executing under this policy, the implementation shall use only priorities within the range returned by the
functions sched_get_priority_max() and sched_get_priority_min() when SCHED_OTHER is provided as the
parameter.

13.3 Process Scheduling Functions

13.3.1 Set Scheduling Parameters

Function: sched_setparam()

13.3.1.1 Synopsis

#include <sched.h>
int sched_setparam(pid_t pid, const struct sched_param *param);

218 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

13.3.1.2 Description

If {_POSIX_PRIORITY_SCHEDULING} is defined:

The sched_setparam() function sets the scheduling parameters of the process specified by pid to the values
specified by the sched_param structure pointed to by param. The value of the sched_priority member in the
param structure shall be any integer within the inclusive priority range for the current scheduling policy of the
process specified by pid. Higher numerical values for the priority represent higher priorities. If the value of
pid is negative, the behavior of the sched_setparam() function is unspecified.
If a process specified by pid exists and if the calling process has permission, the scheduling parameters shall
be set for the process whose process ID is equal to pid.
If pid is zero, the scheduling parameters shall be set for the calling process.
The conditions under which one process has permission to change the scheduling parameters of another
process are implementation defined.
Implementations may require the requesting process to have the appropriate privilege to set its own
scheduling parameters or those of another process.
The target process, whether it is running or not running, shall resume execution after all other runnable
processes of equal or greater priority have been scheduled to run.
If the priority of the process specified by the pid argument is set higher than that of the lowest priority running
process and if the specified process is ready to run, the process specified by the pid argument shall preempt a
lowest priority running process. Similarly, if the process calling sched_setparam() sets its own priority lower
than that of one or more other nonempty process lists, then the process that is the head of the highest priority
list shall also preempt the calling process. Thus, in either case, the originating process might not receive
notification of the completion of the requested priority change until the higher priority process has executed.
If the current scheduling policy for the process specified by pid is not SCHED_FIFO or SCHED_RR,
including SCHED_OTHER, the result is implementation defined.
The effect of this function on individual threads is dependent on the scheduling contention scope of the
threads. For threads with system scheduling contention scope, these functions shall have no effect on their
scheduling. For threads with process scheduling contention scope, scheduling with respect to threads in other
processes may be dependent on the scheduling policy and scheduling parameters of their particular process,
which is governed using these functions.

Otherwise:

Either the implementation shall support the sched_setparam() function as described above or the
sched_setparam() function shall fail.

13.3.1.3 Returns

If successful, the sched_setparam() function shall return zero.

If the call to sched_setparam() is unsuccessful, the priority shall remain unchanged, and the function shall return a
value of −1 and set errno to indicate the error.

13.3.1.4 Errors

If any of the following conditions occur, the sched_setparam() function shall return −1 and set errnoto the
corresponding value:

[EINVAL] One or more of the requested scheduling parameters is outside the range defined for the scheduling
policy of the specified pid.

[ENOSYS] The function sched_setparam() is not supported by this implementation.

Copyright © 1996 IEEE All Rights Reserved 219

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

[EPERM] The requesting process does not have permission to set the scheduling parameters for the specified
process, or does not have the appropriate privilege to invoke sched_setparam().

[ESRCH] No process can be found corresponding to that specified by pid.

13.3.1.5 Cross-References

sched_getparam(), 13.3.2; sched_getscheduler(), 13.3.4; sched_setscheduler(), 13.3.3.

13.3.2 Get Scheduling Parameters

Function: sched_getparam()

13.3.2.1 Synopsis

#include <sched.h>
int sched_getparam(pid_t pid, struct sched_param *param);

13.3.2.2 Description

If {_POSIX_PRIORITY SCHEDULING} is defined:

The sched_getparam() function shall return the scheduling parameters of a process specified by pid in the
sched_param structure pointed to by param.
If a process specified by pid exists and if the calling process has permission, the scheduling parameters for the
process whose process ID is equal to pid shall be returned.
If pid is zero, the scheduling parameters for the calling process shall be returned. The behavior of the
sched_getparam() function is unspecified if the value of pid is negative.

Otherwise:

Either the implementation shall support the sched_getparam() function as described above or the
sched_getparam() function shall fail.

13.3.2.3 Returns

Upon successful completion, the sched_getparam() function shall return zero. If the call to sched_getparam() is
unsuccessful, the function shall return a value of −1 and set errno to indicate the error.

13.3.2.4 Errors

If any of the following conditions occur, the sched_getparam() function shall return −1 and set errno to the
corresponding value:

[ENOSYS] The function sched_getparam() is not supported by this implementation.

[EPERM] The requesting process does not have permission to obtain the scheduling parameters of the
specified process.

[ESRCH] No process can be found corresponding to that specified by pid.

13.3.2.5 Cross-References

sched_getscheduler(), 13.3.4; sched_setparam(), 13.3.1; sched_setscheduler(), 13.3.3.

220 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

13.3.3 Set Scheduling Policy and Scheduling Parameters

Function: sched_setscheduler()

13.3.3.1 Synopsis

#include <sched.h>
int sched_setscheduler(pid_t pid, int policy,
 const struct sched_param *param);

13.3.3.2 Description

If {_POSIX_PRIORITY_SCHEDULING} is defined:

The sched_setscheduler() function sets the scheduling policy and scheduling parameters of the process
specified by pid to policy and the parameters specified in the sched_param structure pointed to by param,
respectively. The value of the sched_priority member in the param structure shall be any integer within the
inclusive priority range for the scheduling policy specified by policy. If the value of pid is negative, the
behavior of the sched_setscheduler() function is unspecified.
The possible values for the policy parameter are defined in the header file <sched.h>.
If a process specified by pid exists and if the calling process has permission, the scheduling policy and
scheduling parameters shall be set for the process whose process ID is equal to pid.
If pid is zero, the scheduling policy and scheduling parameters shall be set for the calling process.
The conditions under which one process has the appropriate privilege to change the scheduling parameters of
another process are implementation defined.
Implementations may require that the requesting process have permission to set its own scheduling
parameters or those of another process. Additionally, implementation-defined restrictions may apply as to the
appropriate privileges required to set a process's own scheduling policy, or another process's scheduling
policy, to a particular value.
The sched_setscheduler() function shall be considered successful if it succeeds in setting the scheduling
policy and scheduling parameters of the process specified by pid to the values specified by policy and the
structure param, respectively.
The effect of this function on individual threads is dependent on the scheduling contention scope of the
threads. For threads with system scheduling contention scope, these functions shall have no effect on their
scheduling. For threads with process scheduling contention scope, scheduling with respect to threads in other
processes may be dependent on the scheduling policy and scheduling parameters of their particular process,
which is governed using these functions.

Otherwise:

Either the implementation shall support the sched_setscheduler() function as described above or the
sched_setscheduler() function shall fail.

13.3.3.3 Returns

Upon successful completion, the function shall return the former scheduling policy of the specified process. If the
sched_setscheduler() function fails to complete successfully, the policy and scheduling paramenters shall remain
unchanged, and the function shall return a value of −1 and set errno to indicate the error.

13.3.3.4 Errors

If any of the following conditions occur, the sched_setscheduler() function shall return −1 and set errno to the
corresponding value:

Copyright © 1996 IEEE All Rights Reserved 221

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

[EINVAL] The value of the policy parameter is invalid, or one or more of the parameters contained in param is
outside the valid range for the specified scheduling policy.

[ENOSYS] The function sched_setscheduler() is not supported by this implementation.

[EPERM] The requesting process does not have permission to set either or both of the scheduling parameters
or the scheduling policy of the specified process.

[ESRCH] No process can be found corresponding to that specified by pid.

13.3.3.5 Cross-References

sched_getparam(), 13.3.2; sched_getscheduler(), 13.3.4; sched_setparam(), 13.3.1.

13.3.4 Get Scheduling Policy

Function: sched_getscheduler()

13.3.4.1 Synopsis

#include <sched.h>
int sched_getscheduler(pid_t pid);

13.3.4.2 Description

If {_POSIX_PRIORITY_SCHEDULING} is defined:

The sched_getscheduler() function shall return the scheduling policy of the process specified by pid. If the
value of pid is negative, the behavior of the sched_getscheduler() function is unspecified.
The values that can be returned by sched_getscheduler() are defined in the header file <sched.h> [see
sched_setscheduler()].
If a process specified by pid exists and if the calling process has permission, the scheduling policy shall be
returned for the process whose process ID is equal to pid.
If pid is zero, the scheduling policy shall be returned for the calling process.

Otherwise:

Either the implementation shall support the sched_getscheduler() function as described above or the
sched_getscheduler() function shall fail.

13.3.4.3 Returns

Upon successful completion, the sched_getscheduler() function shall return the scheduling policy of the specified
process. If unsuccessful, the function shall return −1 and set errno to indicate the error.

13.3.4.4 Errors

If any of the following conditions occur, the sched_getscheduler() function shall return −1 and set errno to the
corresponding value:

[ENOSYS] The function sched_getscheduler() is not supported by this implementation.

[EPERM] The requesting process does not have permission to determine the scheduling policy of the specified
process.

[ESRCH] No process can be found corresponding to that specified by pid.

222 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

13.3.4.5 Cross-References

sched_getparam(), 13.3.2; sched_setparam(), 13.3.1; sched_setscheduler(), 13.3.3.

13.3.5 Yield Processor

Function: sched_yield()

13.3.5.1 Synopsis

#include <sched.h>
int sched_yield(void);

13.3.5.2 Description

If at least one of {_POSIX_PRIORITY_SCHEDULING} or {_POSIX_THREADS} is defined:

The sched_yield() function forces the running thread to relinquish the processor until it again becomes the
head of its thread list.

Otherwise:

Either the implementation shall support the sched_yield() function as described above or the sched_yield()
function shall fail.

13.3.5.3 Returns

The sched_yield() function shall return zero if it completes successfully, or it shall return a value of −1 and set errno
to indicate the error.

13.3.5.4 Errors

If any of the following conditions occur, the sched_yield() function shall return −1 and set errno to the corresponding
value:

[ENOSYS] The sched_yield() function is not supported by this implementation.

13.3.6 Get Scheduling Parameter Limits

Functions: sched_get priority_max(), sched_get_priority_min(), sched_rr_get_interval()

13.3.6.1 Synopsis

#include <sched.h>
int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);
int sched_rr_get_interval(pid_t pid, struct timespec *interval);

13.3.6.2 Description

If {_POSIX_PRIORITY_SCHEDULING} is defined:

The sched_get_priority_max() and sched_get_priority_min() functions return the appropriate maximum or
minimum, respectfully, for the scheduling policy specified by policy. The sched_rr_get_interval() function

Copyright © 1996 IEEE All Rights Reserved 223

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

updates the timespec structure referenced by the interval argument to contain the current execution time limit
(i.e., time quantum) for the process specified by pid. If pid is zero, the current execution time limit for the
calling process shall be returned.
The value of policy shall be one of the scheduling policy values defined in <sched.h>.

Otherwise:

Either the implementation shall support the sched_get_priority_max(), sched_get_priority_min(), and
sched_rr_get_interval() functions as described above or each of the sched_get_priority_max(),
sched_get_priority_min(), and sched_rr_get_interval() functions shall fail.

13.3.6.3 Returns

If successful, the sched_get_priority_max() and sched_get_priority_min() functions shall return the appropriate
maximum or minimum values, respectively. If unsuccessful, they shall return a value of −1 and set errno to indicate the
error.

If successful, the sched_rr_get_interval() function shall return zero. Otherwise, it shall return a value of −1 and set
errno to indicate the error.

13.3.6.4 Errors

If any of the following conditions occur, the sched_get_priority_max(), sched_get_priority_min(), and
sched_rr_get_interval() functions shall return −1 and set errno to the corresponding value:

[EINVAL] The value of the policy parameter does not represent a defined scheduling policy.

[ENOSYS] The sched_get_priority_max(), sched_get_priority_min(), and sched_rr_get_interval() functions
are not supported by this implementation.

[ESRCH] No process can be found corresponding to that specified by pid.

13.3.6.5 Cross-References

sched_getparam(), 13.3.2; sched_setparam(), 13.3.1; sched_getscheduler(), 13.3.4; sched_setscheduler(), 13.3.3.

13.4 Thread Scheduling

This clause defines a set of operations that provide an extensible interface for the programmed control of scheduling
of multiple threads within a single POSIX.1 process and within a POSIX.1 system. In this section, the scheduling
interface is separate from the scheduling policies, and some of the functions are to be provided by any implementation
that supports threads. However, implementations are not required to support any particular scheduling policies.
Particular scheduling policies are specified under other options, including a set of priority based policies. The support
of scheduling policies, including the optional priority-based policies defined by this standard, includes support for
scheduling related attributes and functions of the synchronization mechanisms described in Section 11 These
scheduling-related synchronization attributes and functions are described in this section. Thus, an implementation may
support the scheduling interface without necessarily supporting the particular scheduling policies described or the
scheduling policy-dependent synchronization attributes and functions.

13.4.1 Thread Scheduling Attributes

In support of the scheduling interface, threads have attributes that are accessed through the pthread_attr_t thread
creation attributes object.

224 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

The contention scope attribute defines the scheduling contention scope of the thread to be either
PTHREAD_SCOPE_PROCESS or PTHREAD_SCOPE_SYSTEM.

The inheritsched attribute specifies whether a newly created thread is to inherit the scheduling attributes of the
creating thread or to have its scheduling values set according to the other scheduling attributes in the pthread_attr_t
object.

The schedpolicy attribute defines the scheduling policy for the thread. The schedparam attribute defines the
scheduling parameters for the thread. The interaction of threads having different policies within a process shall be
described as part of the definition of those policies.

If the {_POSIX_THREAD_PRIORITY_SCHEDULING} option is defined, and the schedpolicy attribute
specifies one of the priority-based policies defined under this option, the schedparam attribute contains the scheduling
priority of the thread. A conforming implementation shall ensure that the priority value in schedparam is in the range
associated with the scheduling policy when the thread attributes object is used to create a thread or when the
scheduling attributes of a thread are dynamically modified. The meaning of the priority value in schedparam is the
same as that of priority as defined in 13.2.

When a process is created, its single thread has a scheduling policy and associated attributes equal to the policy and
attributes of the process. The default scheduling contention scope value is implementation defined. The default values
of other scheduling attributes are implementation defined.

13.4.2 Scheduling Contention Scope

The scheduling contention scope of a thread defines the set of threads with which the thread has to compete for use of
the processing resources. The scheduling operation will select at most one thread to execute on each processor at any
point in time and the scheduling attributes of the thread (e.g., priority), whether under process scheduling contention
scope or system scheduling contention scope, are the parameters used to determine the scheduling decision.

The scheduling contention scope, in the context of scheduling a mixed scope environment, effects threads as follows:

 A thread created with the PTHREAD_SCOPE_SYSTEM scheduling contention scope contends for
resources with all other threads in the same scheduling allocation domain relative to their system scheduling
attributes. The system scheduling attributes of a thread created with the PTHREAD_SCOPE_SYSTEM
scheduling contention scope are the scheduling attributes with which the thread was created. The system
scheduling attributes of a thread created with the PTHREAD_SCOPE_PROCESS scheduling contention
scope are the implementation-defined mappings into the system attribute space of the scheduling attributes
with which the thread was created.

 Threads created with the PTHREAD_SCOPE_PROCESS scheduling contention scope contend directly with
other threads within their process that were created with the PTHREAD_SCOPE_PROCESS scheduling
contention scope. The contention is resolved based on the scheduling attributes and policies of the threads. It
is unspecified how such threads are scheduled relative to threads in other processes or threads with the
PTHREAD_SCOPE_SYSTEM scheduling contention scope.

 Conforming implementations shall support the PTHREAD_SCOPE_PROCESS scheduling contention
scope, the PTHREAD_SCOPE_SYSTEM scheduling contention scope, or both.

13.4.3 Scheduling Allocation Domain

Implementations shall support scheduling allocation domains containing one or more processors. It should be noted
that the presence of multiple processors does not automatically indicate a scheduling allocation domain size greater
than one. Conforming implementations on multiprocessors may map all or any subset of the CPUs to one or multiple
scheduling allocation domains. They could define these scheduling allocation domains on a per-thread, per-process, or
per-system basis, depending on the types of applications intended to be supported by the implementation. The
scheduling allocation domain is independent of scheduling contention scope, as the scheduling contention scope

Copyright © 1996 IEEE All Rights Reserved 225

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

merely defines the set of threads with which a thread has to contend for processor resources, while scheduling
allocation domain defines the set of processors for which it contends. The semantics of how this contention is resolved
among threads for processors is determined by the scheduling policies of the threads.

The choice of scheduling allocation domain size and the level of application control over scheduling allocation
domains shall be implementation defined. Conforming implementations may change the size of scheduling allocation
domains and the binding of threads to scheduling allocation domains at any time.

For application threads whose scheduling allocation domain size is equal to one, the scheduling rules defined for
SCHED_FIFO and SCHED_RR in 13.2 shall be used. All threads with system scheduling contention scope, regardless
of the processes in which they reside, compete for the processor according to their priorities. Threads with process
scheduling contention scope compete only with other threads with process scheduling contention scope within their
process.

For application threads whose scheduling allocation domain size is greater than one, the rules defined for
SCHED_FIFO and SCHED-RR in 13.2 shall be used in an implementation-defined manner. Each thread with system
scheduling contention scope competes for the processors in its scheduling allocation domain in an implementation-
defined manner according to its priority. Threads with process scheduling contention scope are scheduled relative to
other threads within the same scheduling contention scope in the process.

13.4.4 Scheduling Documentation

If {_POSIX_THREAD_PRIORITY_SCHEDULING} is defined, then any scheduling policies beyond
SCHED_OTHER, SCHED_FIFO, and SCHED_RR, as well as the effects of the scheduling policies indicated by these
other values, and the attributes required in order to support such a policy, are implementation defined. Furthermore, the
implementation shall document the effect of all processor scheduling allocation domain values supported for these
policies.

13.5 Thread Scheduling Functions

13.5.1 Thread Creation Scheduling Attributes

Functions: pthread_attr_setscope(), pthread_attr_getscope(), pthread_attr_setinheritsched(), pthread_attr_-
getinheritsched(), pthread_attr_setschedpolicy(), pthread_attr_getschedpolicy(), pthread_attr_setschedparam(),
pthread_attr_getschedparam()

13.5.1.1 Synopsis

#include <pthread.h>
int pthread_attr_setscope(pthread_attr_t *attr, int contentionscope);
int pthread_attr_getscope(const pthread_attr_t *attr,
 int *contentionscope);
int pthread_attr_setinheritsched(pthread_attr_t *attr,
 int inheritsched);
int pthread_attr_getinheritsched(const pthread_attr_t *attr,
 int *inheritsched);
int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);
int pthread_attr_getschedpolicy(const pthread_attr_t *attr,
 int *policy);
int pthread_attr_setschedparam(pthread_attr_t *attr,
 const struct sched_param *param);
int pthread_attr_getschedparam(const pthread_attr_t *attr,
 struct sched_param *param);

226 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

13.5.1.2 Description

If {_POSIX_THREAD_PRIORITY_SCHEDULING} is defined:

The pthread_attr_setscope() and pthread_attr_getscope() functions are used to set and get the
contentionscope attribute in the attr object. The contentionscope attribute may have the values
PTHREAD_SCOPE_SYSTEM, signifying system scheduling contention scope, or PTHREAD_-
SCOPE_PROCESS, signifying process scheduling contention scope. The symbols
PTHREAD_SCOPE_SYSTEM and PTHREAD_SCOPE_PROCESS shall be defined by the header
<pthread.h>.
The functions pthread_attr_setinheritsched() and pthread_attr_ getinheritsched() set and get the
inheritsched attribute in the attr argument.
When the thread attributes objects are used by pthread_create(), the inheritsched attribute determines
how the other scheduling attributes of the created thread are to be set:

PTHREAD_INHERIT_SCHEDSpecifies that the scheduling policy and associated attributes are to be
inherited from the creating thread, and the scheduling attributes in this attr
argument are to be ignored.

PTHREAD_EXPLICIT_SCHEDSpecifies that the scheduling policy and associated attributes are to be set to
the corresponding values from this attributes object.

The symbols PTHREAD_INHERIT_SCHED and PTHREAD_EXPLICIT_SCHED shall be defined in the
header <pthread.h>.
The functions pthread_attr_setschedpolicy() and pthread_attr_getschedpolicy() set and get the
schedpolicy attribute in the attr argument.
The supported values of policy shall include SCHED_FIFO, SCHED_RR, or SCHED_OTHER, which shall
be defined by the header <sched.h>. The meaning of the value of policy, for these values of
schedpolicy, is the same as that defined in 13.2. When threads executing with the scheduling policy
SCHED_FIFO or SCHED_RR are waiting on a mutex, they will acquire the mutex in priority order when the
mutex is unlocked. See 11.3 for details of mutex handling.

Otherwise:

Either the implementation shall support the pthread_attr_setscope(), pthread_attr_getscope(),
pthread_attr_setinheritsched(), pthread_attr_getinheritsched(), pthread_attr_setschedpolicy(), and
pthread_attr_getschedpolicy() functions as described above or the pthread_attr_setscope(),
pthread_attr_getscope(), pthread_attr_setinheritsched(), pthread_attr_getinheritsched(),
pthread_attr_setschedpolicy(), and pthread_attr_getschedpolicy() functions shall not be provided.

If {_POSIX_THREADS} is defined:

The functions pthread_attr_setschedparam() and pthread_attr_getschedparam() set and get the
schedparam attribute in the attr argument. The contents of the param structure are defined in 13.1. For the
SCHED_FIFO and SCHED_RR policies, the only required member of the param is sched_priority.

Otherwise:

Either the implementation shall support the pthread_attr_setschedparam() and
pthread_attr_getschedparam() functions as described above or the pthread_attr_setschedparam() and
pthread_attr_getschedparam() functions shall not be provided.

13.5.1.3 Returns

If successful, the pthread_attr_setscope(), pthread_attr_getscope(), pthread_attr_setinheritsched(), pthread_attr_-
getinheritsched(), pthread_attr_setschedpolicy(), pthread_attr_getschedpolicy(), pthread_attr_setschedparam(), and

Copyright © 1996 IEEE All Rights Reserved 227

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

pthread_attr_getschedparam() functions shall return zero. Otherwise, an error number shall be returned to indicate the
error.

13.5.1.4 Errors

If any of the following conditions occur, the pthread_attr_setscope(), pthread_attr_getscope(),
pthread_attr_setinheritsched(), pthread_attr_getinheritsched(), pthread_attr_setschedpolicy(), pthread_attr_-
getschedpolicy(), pthread_attr_setschedparam(), and pthread_attr_getschedparam() functions shall return the
corresponding error number:

[ENOSYS] The implementation does not support the pthread_attr_setscope(), pthread_attr_getscope(),
pthread_attr_setinheritsched(), pthread_attr_getinheritsched(), pthread_attr_setschedpolicy(),
pthread_attr_getschedpolicy(), pthread_attr_setschedparam(), and pthread_attr_getschedparam()
functions.

For each of the following conditions, if the condition is detected, the pthread_attr_setscope(),
pthread_attr_setinheritsched(), pthread_attr_setschedpolicy(), and pthread_attr_setschedparam() functions shall
return the corresponding error number:

[EINVAL] The value of the attribute being set is not valid.

[ENOTSUP] An attempt was made to set the attribute to an unsupported value.

13.5.1.5 Cross-References

pthread_attr_init(), 16.2.1; pthread_create(), 16.2.2.

13.5.2 Dynamic Thread Scheduling Parameters Access

Functions: pthread_getschedparam(), pthread_setschedparam()

13.5.2.1 Synopsis

#include <pthread.h>
int pthread_getschedparam(pthread_t thread, int *policy,
 struct sched_param *param);
int pthread_setschedparam(pthread_t thread, int policy,
 const struct sched_param *param);

13.5.2.2 Description

If {_POSIX_THREAD_PRIORITY_SCHEDULING} is defined:

The pthread_getschedparam() and pthread_setschedparam() functions allow the scheduling policy and
scheduling parameters of individual threads within a multithreaded process to be retrieved and set. For
SCHED_FIFO and SCHED_RR, the only required member of the sched_param structure is the priority
sched_priority. For SCHED_OTHER, the affected scheduling parameters are implementation defined.
The pthread_getschedparam() function shall retrieve the scheduling policy and scheduling parameters for the
thread whose thread ID is given by thread and store those values in policy and param, respectively. The
priority value returned from pthread_getschedparam() shall be the value specified by the most recent
pthread_setschedparam() or pthread_create() call affecting the target thread. It shall not reflect any
temporary adjustments to its priority as a result of any priority inheritance or ceiling functions. The
pthread_setschedparam() function shall set the scheduling policy and associated scheduling parameters for

228 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

the thread whose thread ID is given by thread to the policy and associated parameters provided in policy and
param, respectively.
The policy parameter may have the value SCHED_OTHER, SCHED_FIFO, or SCHED_RR. The scheduling
parameters for the SCHED_OTHER policy are implementation defined. The SCHED_FIFO and
SCHED_RR policies shall have a single scheduling parameter, sched_priority.
If the pthread_setschedparam() fails, no scheduling parameters shall be changed for the target thread.

Otherwise:

Either the implementation shall support the pthread_getschedparam() and pthread_setschedparam()
functions as described above or the pthread_getschedparam() and pthread_setschedparam() functions shall
not be provided.

13.5.2.3 Returns

If successful, the pthread_getschedparam() and pthread_setschedparam() functions shall return zero. Otherwise, an
error number shall be returned to indicate the error.

13.5.2.4 Errors

If any of the following conditions occur, the pthread_getschedparam() and pthread_setschedparam() functions shall
return the corresponding error number:

[ENOSYS] The option {_POSIX_THREAD_PRIORITY_SCHEDULING} is not defined and the
implementation does not support the pthread_getschedparam() and pthread_setschedparam()
functions.

For each of the following conditions, if the condition is detected, the pthread_getschedparam() function shall return
the corresponding error number:

[ESRCH] The value specified by thread does not refer to a existing thread.

For each of the following conditions, if the condition is detected, the pthread_setschedparam() function shall return
the corresponding error number:

[EINVAL] The value specified by policy or one of the scheduling parameters associated with the scheduling
policy policy is invalid.

[ENOTSUP] An attempt was made to set the policy or scheduling parameters to an unsupported value.

[EPERM] The caller does not have the appropriate permission to set either the scheduling parameters or the
scheduling policy of the specified thread.

The implementation does not allow the application to modify one of the parameters to the value
specified.

[ESRCH] The value specified by thread does not refer to a existing thread.

13.5.2.5 Cross-References

sched_setparam(), 13.3.1; sched_getparam(), 13.3.2; sched_setscheduler(), 13.3.3; sched_getscheduler(), 13.3.4.

Copyright © 1996 IEEE All Rights Reserved 229

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

13.6 Synchronization Scheduling

13.6.1 Mutex Initialization Scheduling Attributes

Functions: pthread_mutexattr_setprotocol(), pthread_mutexattr_getprotocol(), pthread_mutexattr_setprioceiling(),
pthread mutexattr_getprioceiling()

13.6.1.1 Synopsis

#include <pthread.h>
int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr,
 int protocol);
int pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr,
 int *protocol);
int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr,
 int prioceiling);
int pthread_mutexattr_getprioceiling (
 const pthread_mutexattr_t *attr, int *prioceiling);

13.6.1.2 Description

If at least one of {_POSIX_THREAD_PRIO_INHERIT} or {_POSIX_THREAD_PRIO_PROTECT} is defined:

These functions shall manipulate a mutex attributes object pointed to by attr, which has been previously
created by the function pthread_mutexattr_init() (see 11.3.1).
The pthread_mutexattr_t mutex attributes object shall include at least the protocol attribute.
If the symbol {_POSIX_THREAD_PRIO_PROTECT} is defined, the pthread_mutexattr_t mutex attributes
object shall include the prioceiling attribute.
The prioceiling attribute contains the priority ceiling of initialized mutexes. The values of prioceiling
shall be within the maximum range of priorities defined by SCHED_FIFO.
The protocol attribute defines the protocol to be followed in utilizing mutexes. The value of protocol may
be one of PTHREAD_PRIO_NONE, PTHREAD_PRIO_INHERIT, or PTHREAD_PRIO_PROTECT,
which shall be defined by the header <pthread.h>. The PTHREAD_PRIO_PROTECT value shall be
valid if the symbol {_POSIX_THREAD_PRIO_PROTECT} is defined, and the
PTHREAD_PRIO_INHERIT value shall be valid if the symbol {_POSIX_THREAD_PRIO_INHERIT} is
defined.
When a thread owns a mutex with the PTHREAD_PRIO_NONE protocol attribute, its priority and
scheduling are not affected by its mutex ownership.
When a thread is blocking higher priority threads because of owning one or more mutexes with the
PTHREAD_PRIO_INHERIT protocol attribute, it executes at the higher of either its priority or the priority of
the highest priority thread waiting on any of the mutexes owned by this thread and initialized with this
protocol.
When a thread owns one or more mutexes initialized with the PTHREAD_PRIO_PROTECT protocol, it
executes at the higher of either its priority or the highest of the priority ceilings of all the mutexes owned by
this thread and initialized with this attribute, regardless of whether or not other threads are blocked on any of
these mutexes. The prioceiling attribute defines the priority ceiling of initialized mutexes, which is the
minimum priority level at which the critical section guarded by the mutex is executed. In order to avoid
priority inversion, the priority ceiling of the mutex shall be set to a priority higher than or equal to the highest
priority of all the threads that may lock that mutex. The values of prioceiling shall be within the
maximum range of priorities defined under the SCHED_FIFO scheduling policy.
While a thread is holding a mutex that has been initialized with the PRIO_INHERIT or PRIO_PROTECT
protocol attributes, it shall not be subject to being moved to the tail of the scheduling queue at its priority [in
the event that its original priority is changed, such as by a call to sched_setparam()]. Likewise, when a thread
unlocks a mutex that has been initialized with the PRIO_INHERIT or PRIO_PROTECT protocol attributes,

230 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

it shall not be subject to being moved to the tail of the scheduling queue at its priority (in the event that its
original priority is changed).
If a thread simultaneously owns several mutexes initialized with different protocols, it shall execute at the
highest of the priorities that it would have obtained by each of these protocols.
If the symbol {_POSIX_THREAD_PRIO_INHERIT} is defined, when a thread makes a call to
pthread_mutex_lock() on a mutex that was initialized with the protocol attribute having the value
PTHREAD_PRIO_INHERIT and the calling thread is blocked because the mutex is owned by another
thread, that owner thread shall inherit the priority level of the calling thread as long as it continues to own the
mutex. The implementation shall update its execution priority to the maximum of its assigned priority and all
its inherited priorities. Furthermore, if this owner thread itself becomes blocked on another mutex, the same
priority inheritance effect shall be propagated to this other owner thread, in a recursive manner.

Otherwise:

Either the implementation shall support the pthread_mutexattr_setprotocol(), pthread_mutexattr_-
getprotocol(), pthread_mutexattr_setprioceiling(), and pthread_mutexattr_getprioceiling() functions as
described above or the pthread_mutexattr_setprotocol(), pthread_mutexattr_getprotocol(), pthread_-
mutexattr_setprioceiling(), and pthread_mutexattr_getprioceiling() functions shall not be provided.

13.6.1.3 Returns

Upon successful completion, the pthread_mutexattr_setprotocol(), pthread_mutexattr_getprotocol(),
pthread_mutexattr_setprioceiling(), and pthread_mutexattr_getprioceiling() functions shall return zero. Otherwise,
number shall be returned to indicate the error.

13.6.1.4 Errors

If any of the following conditions occur, the pthread_mutexattr_setprotocol(), pthread_mutexattr_getprotocol(),
pthread_mutexattr_setprioceiling(), and pthread_mutexattr_getprioceiling() functions shall return the corresponding
error number:

[ENOSYS] The option {_POSIX_THREAD_PRIO_PROTECT} is not defined, and the implementation does
not support the pthread_mutexattr_setprioceiling() and pthread_mutexattr_getprioceiling()
functions.

[ENOTSUP] The value specified by protocol is an unsupported value.

For each of the following conditions, if the condition is detected, the pthread_mutexattr_setprotocol(),
pthread_mutexattr_getprotocol(), pthread_mutexattr_setprioceiling(), and pthread_mutexattr_getprioceiling()
functions shall return the corresponding error number:

[EINVAL] The value specified by attr, protocol, or prioceiling is invalid.

[EPERM] The caller does not have the privilege to perform the operation.

13.6.1.5 Cross-References

pthread_create(), 16.2.2; pthread_mutex_init(), 11.3.2; pthread_cond_init(), 11.4.2.

13.6.2 Change the Priority Ceiling of a Mutex

Functions: pthread_mutex_getprioceiling(), pthread_mutex_setprioceiling()

Copyright © 1996 IEEE All Rights Reserved 231

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

13.6.2.1 Synopsis

#include <pthread.h>
int pthread_mutex_setprioceiling(pthread_mutex_t *mutex,
 int prioceiling, int *old_ceiling);
int pthread_mutex_getprioceiling(const pthread_mutex_t *mutex,
 int *prioceiling);

13.6.2.2 Description

If {_POSIX_THREAD_PRIO_PROTECT} is defined:

The pthread_mutex_getprioceiling() function returns the current priority ceiling of the mutex.
The pthread_mutex_setprioceiling() function either locks the mutex if it is unlocked, or blocks until it can
successfully lock the mutex; then it changes the priority ceiling of the mutex and releases the mutex. When
the change is successful, the previous value of the priority ceiling is returned in old_ceiling. The process of
locking the mutex need not adhere to the priority protect protocol.
If the pthread_mutex_setprioceiling() function fails, the mutex priority ceiling is not changed.

Otherwise:

Either the implementation shall support the pthread_mutex_getprioceiling() and
pthread_mutex_setprioceiling() functions as described above or the pthread_mutex_getprioceiling() and
pthread_mutex_setprioceiling() functions shall not be provided.

13.6.2.3 Returns

If successful, the pthread_mutex_setprioceiling() and pthread_mutex_getprioceiling() functions shall return zero.
Otherwise, an error number shall be returned to indicate the error.

13.6.2.4 Errors

If any of the following conditions occur, the pthread_mutex_getprioceiling() and pthread_mutex_setprioceiling()
functions shall return the corresponding error number:

[ENOSYS] The option {_POSIX_THREAD_PRIO_PROTECT} is not defined, and the implementation does
not support the pthread_mutex_setprioceiling() and pthread_mutex_getprioceiling() functions.

For each of the following conditions, if the condition is detected, the pthread_mutex_setprioceiling() and
pthread_mutex_getprioceiling() functions shall return the corresponding error number:

[EINVAL] The priority requested by prioceiling is out of range.

The value specified by mutex does not refer to a currently existing mutex.

[ENOSYS] The implementation does not support the priority ceiling protocol for mutexes.

[EPERM] The caller does not have the privilege to perform the operation.

13.6.2.5 Cross-References

pthread_mutex_init(), 11.3.2; pthread_mutex_lock() 11.3.3; thread_mutex_unlock(), 11.3.3; pthread_mutex_trylock(),
11.3.3.

232 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

14. Clocks and Timers

14.1 Data Definitions for Clocks and Timers

The header file <time.h> defines the types and manifest constants used by the timing facility.

14.1.1 Time Value Specification Structures

Many of the timing facility functions accept or return time value specifications. A time value structure timespec
specifies a single time value and includes at least the following members:

Implementations may add extensions as permitted in 1.3.1.1, item (2). Adding extensions to this structure, which may
change the behavior of the application with respect to this standard when those fields in the structure are uninitialized,
also requires that the extension be enabled as required by 1.3.1.1.

The tv_nsec member is only valid if greater than or equal to zero, and less than the number of nanoseconds in a second
(1000 million). The time interval described by this structure is (tv_sec × 109 + tv_nsec) nanoseconds.

A time value structure itimerspec specifies an initial timer value and a repetition interval for use by the per-process
timer functions. This structure includes at least the following members:

Implementations may add extensions as permitted in 1.3.1.1, item (2). Adding extensions to this structure, which may
change the behavior of the application with respect to this standard when those fields in the structure are uninitialized,
also requires that the extension be enabled as required by 1.3.1.1.

If the value described by it_value is nonzero, it indicates the time to or time of the next timer expiration (for relative
and absolute timer values, respectively). If the value described by it_value is zero, the timer is disarmed.

If the value described by it_interval is nonzero, it specifies an interval to be used in reloading the timer when it
expires—that is, a periodic timer is specified. If the value described by it_interval is zero, the timer shall be disarmed
after its next expiration—that is, a “one-shot” timer is specified.

Member
Type

Member
Name

Description

time_t tv_sec Seconds

long tv_nsec Nanoseconds

Member
Type

Member
Name

Description

struct timespec it_interval Timer period

struct timespec it_value Timer expiration

Copyright © 1996 IEEE All Rights Reserved 233

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Implementations may add extensions to these structures as permitted in 1.3.1.1, item (2). Adding extensions to this
structure, which might change the behavior of the application with respect to this standard when those fields in the
structures are uninitialized, also requires that the extensions be enabled as required by 1.3.1.1.

14.1.2 Timer Event Notification Control Block

For implementations that support the Realtime Signals Extension option, per-process timers may be created that notify
the process of timer expirations by queuing a realtime extended signal. The sigevent structure, defined in
<signal.h>, is used in creating such a timer. The sigevent structure contains the signal number and an application-
specific data value to be used when notifying the calling process of timer expiration events.

14.1.3 Type Definitions

The following types are defined by the implementation in <sys/types.h>.

14.1.4 Manifest Constants

The following constants are defined in <time.h>:

CLOCK_REALTIME

The identifier for the systemwide realtime clock.

TIMER_ABSTIME

Flag indicating time is “absolute” with respect to the clock associated with a timer.

The maximum allowable resolution for the CLOCK_REALTIME clock and all timers based on this clock, including
the nanosleep() function, is represented by {_POSIX_CLOCKRES_MIN} and is defined as 20 ms (1/50 of a second).
Implementations may support smaller values of resolution for the CLOCK_REALTIME clock to provide finer
granularity time bases. The actual resolution supported by an implementation for a specific clock is obtained using
functions defined in this chapter. If the actual resolution supported for the nanosleep() function of timers based on this
clock differs from the resolution supported for the clock, the implementation shall document this difference.

The minimum allowable maximum value for the CLOCK_REALTIME clock and absolute timers based on it is the
same as that defined by the C Standard {2} for the time_t type. If the maximum value supported by the nanosleep()
function or timers based on this clock is different than the maximum value supported by the clock, the implementation
shall document this difference.

14.2 Clock and Timer Functions

14.2.1 Clocks

Functions: clock_settime(), clock_gettime(), clock_getres()

Defined Type Description

clockid_t Used for clock ID type in the clock and timer functions

timer_t Used for timer ID returned by timer_create().

234 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

14.2.1.1 Synopsis

#include <time.h>
int clock_settime(clockid_t clock_id, const struct timespec *tp);
int clock_gettime(clockid_t clock_id, struct timespec *tp);
int clock_getres(clockid_t clock_id, struct timespec *res);

14.2.1.2 Description

If {_POSIX_TIMERS} is defined:

The clock_settime() function shall set the specified clock, clock_id, to the value specified by tp. Time values
that are between two consecutive nonnegative integer multiples of the resolution of the specified clock are
truncated down to the smaller multiple of the resolution.
The clock_gettime() function returns the current value tp for the specified clock, clock_id.
The resolution of any clock can be obtained by calling clock_getres(). Clock resolutions are implementation
defined and cannot be set by a process. If the argument res is not NULL, the resolution of the specified clock
is stored into the location pointed to by res. If res is NULL, the clock resolution is not returned. If the time
argument of clock_settime() is not a multiple of res, then the value is truncated to a multiple of res.
A clock may be systemwide—that is, visible to all processes; or per-process—measuring time that is
meaningful only within a process. All implementations shall support a clock_id of CLOCK_REALTIME
defined in 14.1. This clock represents the realtime clock for the system. For this clock, the values returned by
clock_gettime() and specified by clock_settime() represent the amount of time (in seconds and nanoseconds)
since the Epoch. An implementation may also support additional clocks. The interpretation of time values for
these clocks is unspecified.
The effect of setting a clock via clock_settime() on armed per-process timers associated with that clock is
implementation defined.
The appropriate privilege to set a particular clock is implementation defined.

Otherwise:

Either the implementation shall support the clock_settime(), clock_gettime(), and clock_getres() functions as
described above or each of the clock_settime(), clock_gettime(), and clock_getres() functions shall fail.

14.2.1.3 Returns

A return value of 0 indicates that the call succeeded. A return value of −1 indicates that an error occurred, and errno
is set to indicate the error.

14.2.1.4 Errors

If any of the following conditions occur, the clock_settime(), clock_gettime(), and clock_getres() functions shall return
−1 and set errno to the corresponding value:

[EINVAL] The clock_id argument does not specify a known clock.

[ENOSYS] The functions clock_settime(), clock_gettime(), and clock_getres() are not supported by this
implementation.

If any of the following conditions occur, the clock_settime() function shall return −1 and set errno to the corresponding
value:

[EINVAL] The tp argument to clock_settime() is outside the range for the given clock id.

The tp argument specified a nanosecond value less than zero or greater than or equal to 1000 million.

Copyright © 1996 IEEE All Rights Reserved 235

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

For each of the following conditions, if the condition is detected, the clock_settime() function shall return −1 and set
errno to the corresponding value:

[EPERM] The requesting process does not have the appropriate privilege to set the specified clock.

14.2.1.5 Cross-References

timer_gettime(), 14.2.4; time(), 4.5.1; ctime(), 8.1.

14.2.2 Create a Per-Process Timer

Function: timer_create()

14.2.2.1 Synopsis

#include <signal.hh>
#include <time.h>
int timer_create(clockid_t clock_id, struct sigevent *evp,
 timer_t *timerid);

14.2.2.2 Description

If {_POSIX_TIMERS} is defined:

The timer_create() function shall create a per-process timer using the specified clock, clock_id, as the timing
base. The timer_create() function returns, in the location referenced by timerid, a timer ID of type timer_t
used to identify the timer in timer requests (see 14.2.4). This timer ID shall be unique within the calling
process until the timer is deleted. The particular clock, clock_id, is defined in <time.h>. The timer whose
ID is returned shall be in a disarmed state upon return from timer_create().
The evp argument, if non-NULL, points to a sigevent structure. This structure, allocated by the application,
shall determine the asynchronous notification that will occur as specified in 3.3.1.2 when the timer expires. If
the evp argument is NULL, the effect shall be as if the evp argument pointed to a sigevent structure where the
sigev_notify member had the value SIGEV_SIGNAL, the sigev_signo had a default signal number, and the
sigev_value member had the value of the timer ID.
Each implementation shall define a set of clocks that can be used as timing bases for per-process timers. All
implementations shall support a clock_id of CLOCK_REALTIME.
Per-process timers shall not be inherited by a child process across a fork() and shall be disarmed and deleted
by an exec.

Otherwise:

Either the implementation shall support the timer_create() function as described above or the timer_create()
function shall fail.

14.2.2.3 Returns

If the call succeeds, timer_create() shall return zero and update the location referenced by timerid to a timer_t, which
can be passed to the per-process timer calls (see 14.2.4). If an error occurs, the function shall return a value of −1 and
set errno to indicate the error. The value of timerid is undefined if an error occurs.

14.2.2.4 Errors

If any of the following conditions occur, the timer_create() function shall return −1 and set errno to the corresponding
value:

236 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

[EAGAIN] The system lacks sufficient signal queuing resources to honor the request.

The calling process has already created all of the timers it is allowed by this implementation.

[EINVAL] The specified clock ID is not defined.

[ENOSYS] The function timer_create() is not supported by this implementation.

14.2.2.5 Cross-References

<time.h>, 14.1; timer_delete(), 14.2.3; clock_gettime(), 14.2.1; clock_settime(), 14.2.1; clock_getres(), 14.2.1;
timer_gettime(), 14.2.4; timer_settime(), 14.2.4.

14.2.3 Delete a Per-Process Timer

Function: timer_delete()

14.2.3.1 Synopsis

#include <time.h>
int timer_delete(timer_t timerid);

14.2.3.2 Description

If {_POSIX_TIMERS} is defined:

The timer_delete() function deletes the specified timer, timerid, previously created by the timer_create()
function. If the timer is armed when timer_delete() is called, the behavior shall be as if the timer is
automatically disarmed before removal. The disposition of pending signals for the deleted timer is
unspecified.

Otherwise:

Either the implementation shall support the timer_delete() function as described above or the timer_delete()
function shall fail.

14.2.3.3 Returns

If successful, the function shall return a value of zero. Otherwise, the function shall return a value of −1 and set errno
to indicate the error.

14.2.3.4 Errors

If any of the following conditions occur, the timer_delete() function shall return −1 and set errno to the corresponding
value:

[EINVAL] The timer ID specified by timerid is not a valid timer ID.

[ENOSYS] The function timer_delete() is not supported by this implementation.

14.2.3.5 Cross-References

timer_create(), 14.2.2.

Copyright © 1996 IEEE All Rights Reserved 237

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

14.2.4 Per-Process Timers

Functions: timer_settime(), timer_gettime(), timer_getoverrun()

14.2.4.1 Synopsis

#include <time.h>
int timer_settime(timer_t timerid, int flags,
 const struct itimerspec *value, struct itimerspec *ovalue);
int timer_gettime(timer_t timerid, struct itimerspec *value);
int timer_getoverrun(timer_t timerid);

14.2.4.2 Description

If {_POSIX_TIMERS} is defined:

The timer_settime() function shall set the time until the next expiration of the timer specified by timerid from
the it_value member of the value argument and arm the timer if the it_value member of value is nonzero. If
the specified timer was already armed when timer_settime() is called, this call shall reset the time until next
expiration to the value specified. If the it_value member of value is zero, the timer shall be disarmed. The
effect of disarming or resetting a timer on pending expiration notifications is unspecified.
If the flag TIMER_ABSTIME is not set in the argument flags, timer_settime() behaves as if the time until
next expiration is set to be equal to the interval specified by the it_value member of value. That is, the timer
shall expire in it_value nanoseconds (see 14.1.1) from when the call is made. If the flag TIMER_ABSTIME
is set in the argument flags, timer_settime() behaves as if the time until next expiration is set to be equal to the
difference between the absolute time specified by the it_value member of value and the current value of the
clock associated with timerid. That is, the timer shall expire when the clock reaches the value specified by the
it_value member of value. If the specified time has already passed, the function shall succeed and the
expiration notification shall be made.
The reload value of the timer is set to the value specified by the it_interval member of value. When a timer is
armed with a nonzero it_interval, a periodic (or repetitive) timer is specified.
Time values that are between two consecutive nonnegative integer multiples of the resolution of the specified
timer shall be rounded up to the larger multiple of the resolution. Quantization error shall not cause the timer
to expire earlier than the rounded time value.
If the argument ovalue is not NULL, the function timer_settime() shall store, in the location referenced by
ovalue, a value representing the previous amount of time before the timer would have expired or zero if the
timer was disarmed, together with the previous timer reload value. The members of ovalue are subject to the
resolution of the timer, and they are the same values that would be returned by a timer_gettime() call at that
point in time.
The timer_gettime() function shall store the amount of time until the specified timer, timerid, expires and the
reload value of the timer into the space pointed to by the value argument. The it_value member of this
structure shall contain the amount of time before the timer expires, or zero if the timer is disarmed. This value
is returned as the interval until timer expiration, even if the timer was armed with absolute time. The
it_interval member of value shall contain the reload value last set by timer_settime().
Only a single signal shall be queued to the process for a given timer at any point in time. When a timer for
which a signal is still pending expires, no signal shall be queued, and a timer overrun shall occur. When a
timer expiration signal is delivered to or accepted by a process, if the implementation supports the Realtime
Signals Extension, the timer_getoverrun() function shall return the timer expiration overrun count for the
specified timer. The overrun count returned shall contain the number of extra timer expirations that occurred
between the time the signal was generated (queued) and when it was delivered or accepted, up to but not
including an implementation-defined maximum of {DELAYTIMER_MAX}. If the number of such extra
expirations is greater than or equal to {DELAYTIMER_MAX}, then the overrun count shall be set to
{DELAYTIMER_MAX}. The value returned by timer_getoverrun() applies to the most recent expiration

238 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

signal delivery or acceptance for the timer. If no expiration signal has been delivered or accepted for the timer,
or if the Realtime Signals Extension is not supported, the meaning of the overrun count returned is undefined.

Otherwise:

Either the implementation shall support the timer_settime(), timer_gettime(), and timer_getoverrun()
functions as described above or each of the timer_settime(), timer_gettime(), and timer_getoverrun()
functions shall fail.

14.2.4.3 Returns

If the timer_settime() or timer_gettime() functions succeed, a value of 0 shall be returned. If an error occurs for either
of these functions, the value −1 shall be returned, and errno shall be set to indicate the error. If the timer_getoverrun()
function succeeds, it shall return the timer expiration overrun count as explained in 14.2.4.2.

14.2.4.4 Errors

If any of the following conditions occur, the timer_settime(), timer_gettime(), and timer_getoverrun() functions shall
return −1 and set errno to the corresponding value:

[EINVAL] The timerid argument does not correspond to an id returned by timer_create() but not yet deleted by
timer_delete().

[ENOSYS] The functions timer_settime(), timer_gettime(), and timer_getoverrun() are not supported by this
implementation.

If any of the following conditions occur, the timer_settime() function shall return −1 and set errno to the corresponding
value:

[EINVAL] A value structure specified a nanosecond value less than zero or greater than or equal to 1000
million.

14.2.4.5 Cross-References

clock_gettime(), 14.2.1; timer_create(), 14.2.2.

14.2.5 High Resolution Sleep

Function: nanosleep()

14.2.5.1 Synopsis

#include <time.h>
int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);

14.2.5.2 Description

If {_POSIX_TIMERS} is defined:

The nanosleep() function shall cause the current thread to be suspended from execution until either the time
interval specified by the rqtp argument has elapsed, a signal is delivered to the calling thread and the action
of the signal is to invoke a signal-catching function, or the process is terminated. The suspension time may be
longer than requested because the argument value is rounded up to an integer multiple of the sleep resolution
or because of the scheduling of other activity by the system. But, except for the case of being interrupted by

Copyright © 1996 IEEE All Rights Reserved 239

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

a signal, the suspension time shall not be less than the time specified by rqtp, as measured by the system
clock, CLOCK_REALTIME.
The use of the nanosleep() function shall have no effect on the action or blockage of any signal.

Otherwise:

Either the implementation shall support the nanosleep() function as described above or the nanosleep()
function shall fail.

14.2.5.3 Returns

If the nanosleep() function returns because the requested time has elapsed, its return value shall be zero.

If the nanosleep() function returns because it has been interrupted by a signal, the function shall return a value of −1
and set errno to indicate the interruption. If the rmtp argument is non-NULL, the timespec structure referenced by it
shall be updated to contain the amount of time remaining in the interval (the requested time minus the time actually
slept). If the rmtp argument is NULL, the remaining time is not returned.

If nanosleep() fails, it shall return a value of −1 and set errno to indicate the error.

14.2.5.4 Errors

If any of the following conditions occur, the nanosleep() function shall return −1 and set errno to the corresponding
value:

[EINTR] The nanosleep() function was interrupted by a signal.

[EINVAL] The rqtp argument specified a nanosecond value less than zero or greater than or equal to 1000
million.

[ENOSYS] The nanosleep() function is not supported by this implementation.

14.2.5.5 Cross-References

sleep(), 3.4.3.

15. Message Passing

15.1 Data Definitions for Message Queues

Inclusion of the <mqueue.h> header may make visible the symbols allowed by this part of ISO/IEC 9945 to be in the
headers <sys/types.h>, <fcntl.h>, <time.h>, and <signal.h>.

15.1.1 Data Structures

The header <mqueue.h> shall define the following implementation-defined types:

Type Description

mqd_t Used for message queue descriptors.

240 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

The type mqd_t shall not be an array type. The message queue descriptor may be implemented using a file descriptor.
In that case, applications shall be able to open up to at least a total of {OPEN_MAX} file and message queues; see
5.3.1.

The header <mqueue.h> defines the following implementation-defined structures:

A message queue status structure mq_attr is used in getting and setting the attributes of a message queue. Attributes
are initially set when the message queue is created. This structure is defined in <mqueue.h> and has at least the
following members:

Implementations may add extensions as permitted in 1.3.1.1, item (2). Adding extensions to this structure, which may
change the behavior of the application with respect to this standard when those fields in the structure are uninitialized,
also requires that the extension be enabled as required by 1.3.1.1.

A brief description of each of the above members is given below; further details are given in the message queue
functions described later in this section. The following members represent attributes that can be set and queried.

mq_flags Specifies actions and state for the message queue operations. The following flags shall be defined:

O_NONBLOCK

If set, then mq_send() or mq_receive() operations associated with this message queue shall
not block.

The existence of other flags is unspecified.

The following members represent attributes that can be queried, but they can only be set at message queue creation.

mq_maxmsg

Specifies the number of messages that can be held in the message queue without causing mq_send() to fail or
wait due to lack of resources.

mq_msgsize

Specifies the maximum size of each message in the message queue.

Type Description

struct sigevent As specified in 3.3.1.

Member
Type

Member
Name Description

long mq_flags Message queue flags.

long mq_maxmsg Maximum number of messages.

long mq_msgsize Maximum message size.

long mq_curmsgs Number of messages currently queued.

Copyright © 1996 IEEE All Rights Reserved 241

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The following members represent the current status of dynamic attributes of the message queue. These can be queried,
but they cannot be explicitly set.

mq_curmsgs Indicates the number of messages currently on the queue.

15.2 Message Passing Functions

15.2.1 Open a Message Queue

Function: mq_open()

15.2.1.1 Synopsis

#include <mqueue.h>
mqd_t mq_open(const char *name, int oflag, ...);

15.2.1.2 Description

If {_POSIX_MESSAGE_PASSING} is defined:

The mq_open() function establishes the connection between a process and a message queue with a message
queue descriptor. It creates an open message queue description that refers to the message queue, and it creates
a message queue descriptor that refers to that open message queue description. The name argument points to
a string naming a message queue. It is unspecified whether the name appears in the file system and is visible
to other functions that take pathnames as arguments. The name argument shall conform to the construction
rules for a pathname. If name begins with the slash character, then processes calling mq_open() with the same
value of name shall refer to the same message queue object, as long as that name has not been removed. If
name does not begin with the slash character, the effect is implementation defined. The interpretation of slash
characters other than the leading slash character in name is implementation defined. If the name argument is
not the name of an existing message queue and creation is not requested, mq_open() shall fail and return an
error.
The oflag argument requests the desired receive and/or send access to the message queue. The requested
access permission to receive messages or send messages is granted if the calling process would be granted
read or write access, respectively, to an equivalently protected file. Read and write access to the file is
determined as described in 2.3.
The value of oflag is the bitwise inclusive OR of values from the following list. Applications shall specify
exactly one of the first three values (access modes) below in the value of oflag:

O_RDONLY Open the message queue for receiving messages. The process can use the returned message
queue descriptor with mq_receive(), but not mq_send(). A message queue may be open
multiple times in the same or different processes for receiving messages.

O_WRONLY Open the queue for sending messages. The process can use the returned message queue
descriptor with mq_send() but not mq_receive(). A message queue may be open multiple
times in the same or different processes for sending messages.

O_RDWR Open the queue for both receiving and sending messages. The process can use any of the
functions allowed for O_RDONLY and O_WRONLY. A message queue may be open
multiple times in the same or different processes for sending messages.

Any combination of the remaining flags may be specified in the value of oflag:

O_CREAT This option is used to create a message queue, and it requires two additional arguments:
mode, which is of type mode_t, and attr, which is a pointer to a mq_attr structure. If the
pathname, name, has already been used to create a message queue that still exists, then this
flag has no effect, except as noted under O_EXCL. Otherwise, a message queue is created

242 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

without any messages in it. The user ID of the message queue shall be set to the effective
user ID of the process, and the group ID of the message queue shall be set to the effective
group ID of the process. The “file permission bits” shall be set to the value of mode. When
bits in mode other than file permission bits are set, the effect is implementation defined. If
attr is NULL, the message queue is created with implementation-defined default message
queue attributes. If attr is non-NULL and the calling process has the appropriate privilege
on name, the message queue mq_maxmsg and mq_msgsize attributes are set to the values of
the corresponding members in the mq_attr structure referred to by attr. If attr is non-
NULL, but the calling process does not have the appropriate privilege on name, the
mq_open() function shall fail and return an error without creating the message queue.

O_EXCL If O_EXCL and O_CREAT are set, mq_open() shall fail if the message queue name exists.
The check for the existence of the message queue and the creation of the message queue if
it does not exist shall be atomic with respect to other processes executing mq_open()
naming the same name with O_EXCL and O_CREAT set. If O_EXCL is set and
O_CREAT is not set, the result is undefined.

O_NONBLOCK The setting of this flag is associated with the open message queue description and
determines whether a mq_send() or mq_receive() shall wait for resources or messages that
are not currently available, or fail with errno set to [EAGAIN]. See mq_send() and
mq_receive() for details.

The mq_open() function shall not add or remove messages from the queue.

Otherwise:

Either the implementation shall support the mq_open() function as described above or the mq_open()
function shall fail.

15.2.1.3 Returns

Upon successful completion, the function shall return a message queue descriptor. Otherwise, the function shall return
(mqd_t) −1 and set errno to indicate the error.

15.2.1.4 Errors

If any of the following conditions occur, the mq_open() function shall return (mqd_t) −1 and set errno to the
corresponding value:

[EACCES] The message queue exists and the permissions specified by oflag are denied, or the message queue
does not exist and permission to create the message queue is denied.

[EEXIST] O_CREAT and O_EXCL are set and the named message queue already exists.

[EINTR] The mq_open() operation was interrupted by a signal.

[EINVAL] The mq_open() operation is not supported for the given name. The implementation shall document
under what circumstances this error may be returned.

O_CREAT was specified in oflag, the value of attr is not NULL, and either mq_maxmsg or
mq_msgsize was less than or equal to zero.

[EMFILE] Too many message queue descriptors or file descriptors are currently in use by this process.

[ENAMETOOLONG]

The length of the name string exceeds {PATH_MAX}, or a pathname component is longer than
{NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

[ENFILE] Too many message queues are currently open in the system.

Copyright © 1996 IEEE All Rights Reserved 243

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

[ENOENT] O_CREAT is not set and the named message queue does not exist.

[ENOSPC] There is insufficient space for the creation of the new message queue.

[ENOSYS] The function mq_open() is not supported by this implementation.

15.2.1.5 Cross-References

mq_close(), 15.2.2; mq_receive(), 15.2.5; mq_send(), 15.2.4; mq_setattr(), 15.2.7; mq_getattr(), 15.2.8; mq_unlink(),
15.2.3.

15.2.2 Close a Message Queue

Function: mq_close()

15.2.2.1 Synopsis

#include <mqueue.h>
int mq_close(mqd_t mqdes);

15.2.2.2 Description

If {_POSIX_MESSAGE_PASSING} is defined:

The mq_close() function shall remove the association between the message queue descriptor, mqdes, and its
message queue. The results of using this message queue descriptor after successful return from this
mq_close(), and until the return of this message queue descriptor from a subsequent mq_open(), are
undefined.
If the process has successfully attached a notification request to the message queue via this mqdes, this
attachment shall be removed, and the message queue is available for another process to attach for notification.

Otherwise:

Either the implementation shall support the mq_close() function as described above or the mq_close()
function shall fail.

15.2.2.3 Returns

Upon successful completion, the mq_close() function shall return a value of zero; otherwise, the function shall return
a value of −1 and set errno to indicate the error.

15.2.2.4 Errors

If any of the following conditions occur, the mq_close() function shall return −1 and set errno to the corresponding
value:

[EBADF] The mqdes argument is not a valid message queue descriptor.

[ENOSYS] The function mq_close() is not supported by this implementation.

15.2.2.5 Cross-References

mq_open(), 15.2.1; mq_unlink(), 15.2.3.

244 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

15.2.3 Remove a Message Queue

Function: mq_unlink()

15.2.3.1 Synopsis

#include <mqueue.h>
int mq_unlink(const char *name);

15.2.3.2 Description

If {_POSIX_MESSAGE_PASSING} is defined:

The mq_unlink() function shall remove the message queue named by the pathname name. After a successful
call to mq_unlink() with name, a call to mq_open() with name shall fail if the flag O_CREAT is not set in
flags. If one or more processes have the message queue open when mq_unlink() is called, destruction of the
message queue shall be postponed until all references to the message queue have been closed. Calls to
mq_open() to re-create the message queue may fail until the message queue is actually removed. However,
the mq_unlink() call need not block until all references have been closed; it may return immediately.

Otherwise:

Either the implementation shall support the mq_unlink() function as described above or the mq_unlink()
function shall fail.

15.2.3.3 Returns

Upon successful completion, the function shall return a value of zero. Otherwise, the named message queue shall not
be changed by this function call, and the function shall return a value of −1 and set errno to indicate the error.

15.2.3.4 Errors

If any of the following conditions occur, the mq_unlink() function shall return −1 and set errno to the corresponding
value:

[EACCES] Permission is denied to unlink the named message queue.

[ENAMETOOLONG]

The length of the name string exceeds {NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

[ENOENT] The named message queue does not exist.

[ENOSYS] The function mq_unlink() is not supported by this implementation.

15.2.3.5 Cross-References

mq_close(), 15.2.2; mq_open(), 15.2.1.

15.2.4 Send a Message to a Message Queue

Function: mq_send()

15.2.4.1 Synopsis

#include <mqueue.h>

Copyright © 1996 IEEE All Rights Reserved 245

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

int mq_send(mqd_t mqdes, const char *msg_ptr, size_t msg_len,
 unsigned int msg_prio);

15.2.4.2 Description

If {_POSIX_MESSAGE_PASSING} is defined:

The mq_send() function adds the message pointed to by the argument msg_ptr to the message queue specified
by mqdes. The msg_len argument specifies the length of the message in bytes pointed to by msg_ptr. The
value of msg_len shall be less than or equal to the mq_msgsize attribute of the message queue, or mq_send()
shall fail.
If the specified message queue is not full, mq_send() shall behave as if the message is inserted into the
message queue at the position indicated by the msg_prio argument. A message with a larger numeric value of
msg_prio is inserted before messages with lower values of msg_prio. A message shall be inserted after other
messages in the queue, if any, with equal msg_prio. The value of msg_prio shall be less than
{MQ_PRIO_MAX}.
If the specified message queue is full and O_NONBLOCK is not set in the message queue description
associated with mqdes, mq_send() shall block until space becomes available to enqueue the message, or until
mq_send() is interrupted by a signal. If more than one thread is waiting to send when space becomes available
in the message queue and the Process Scheduling option is supported, then the thread of the highest priority
that has been waiting the longest shall be unblocked to send its message. Otherwise, it is unspecified which
waiting thread is unblocked. If the specified message queue is full and O_NONBLOCK is set in the message
queue description associated with mqdes, the message is not queued and mq_send() returns an error.

Otherwise:

Either the implementation shall support the mq_send() function as described above or the mq_send() function
shall fail.

15.2.4.3 Returns

Upon successful completion, the mq_send() function shall return a value of zero. Otherwise, no message shall be
enqueued, the function shall return −1, and errno shall be set to indicate the error.

15.2.4.4 Errors

If any of the following conditions occur, the mq_send() function shall return −1 and set errno to the corresponding
value:

[EAGAIN] The O_NONBLOCK flag is set in the message queue description associated with mqdes, and the
specified message queue is full.

[EBADF] The mqdes argument is not a valid message queue descriptor open for writing.

[EINTR] A signal interrupted the call to mq_send().

[EINVAL] The value of msg_prio was outside the valid range.

[EMSGSIZE] The specified message length, msg_len, exceeds the message size attribute of the message queue.

[ENOSYS] The function mq_send() is not supported by this implementation.

15.2.4.5 Cross-References

mq_receive(), 15.2.5; mq_setattr(), 15.2.7.

246 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

15.2.5 Receive a Message From a Message Queue

Function: mq_receive()

15.2.5.1 Synopsis

#include <mqueue.h>
ssize_t mq_receive(mqd_t mqdes, char *msg_ptr, size_t msg_len,
 unsigned int *msg_prio);

15.2.5.2 Description

If {_POSIX_MESSAGE_PASSING} is defined:

The mq_receive() function is used to receive the oldest of the highest priority message(s) from the message
queue specified by mqdes. If the size of the buffer in bytes, specified by the msg_len argument, is less than the
mq_msgsize attribute of the message queue, the function shall fail and return an error. Otherwise, the selected
message is removed from the queue and copied to the buffer pointed to by the msg_ptr argument.
If the argument msg_prio is not NULL, the priority of the selected message shall be stored in the location
referenced by msg_prio.
If the specified message queue is empty and O_NONBLOCK is not set in the message queue description
associated with mqdes, mq_receive() shall block until a message is enqueued on the message queue or until
mq_receive() is interrupted by a signal. If more than one thread is waiting to receive a message when a
message arrives at an empty queue and the Process Scheduling option is supported, then the thread of highest
priority that has been waiting the longest shall be selected to receive the message. Otherwise, it is unspecified
which waiting thread receives the message. If the specified message queue is empty and O_NONBLOCK is
set in the message queue description associated with mqdes, no message is removed from the queue, and
mq_receive() returns an error.

Otherwise:

Either the implementation shall support the mq_receive() function as described above or the mq_receive()
function shall fail.

15.2.5.3 Returns

Upon successful completion, mq_receive() shall return the length of the selected message in bytes and the message
shall have been removed from the queue. Otherwise, no message shall be removed from the queue, the function shall
return a value of −1, and set errno to indicate the error.

15.2.5.4 Errors

If any of the following conditions occur, the mq_receive() function shall return −1 and set errno to the corresponding
value:

[EAGAIN] O_NONBLOCK was set in the message description associated with mqdes, and the specified
message queue is empty.

[EBADF] The mqdes argument is not a valid message queue descriptor open for reading.

[EMSGSIZE] The specified message buffer size, msg_len, is less than the message size attribute of the message
queue.

[EINTR] The mq_receive() operation was interrupted by a signal.

[ENOSYS] The mq_receive() function is not supported by this implementation.

Copyright © 1996 IEEE All Rights Reserved 247

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

For each of the following conditions, if the condition is detected, the mq_receive() function shall return −1 and set
errno to the corresponding value:

[EBADMSG] The implementation has detected a data corruption problem with the message.

15.2.5.5 Cross-References

mq_send(), 15.2.4.

15.2.6 Notify Process That a Message is Available on a Queue

Function: mq_notify()

15.2.6.1 Synopsis

#include <mqueue.h>
int mq_notify(mqd_t mqdes, const struct sigevent *notification);

15.2.6.2 Description

If {_POSIX_MESSAGE_PASSING} and {_POSIX_REALTIME_SIGNALS} are defined:

If the argument notification is not NULL, this function registers the calling process to be notified of message
arrival at an empty message queue associated with the specified message queue descriptor, mqdes. The
notification specified by the notification argument shall be sent to the process when the message queue
transitions from empty to nonempty. At any time, only one process may be registered for notification by a
message queue. If the calling process or any other process has already registered for notification of message
arrival at the specified message queue, subsequent attempts to register for that message queue shall fail.
If notification is NULL and the process is currently registered for notification by the specified message
queue, the existing registration shall be removed.
When the notification is sent to the registered process, its registration shall be removed. The message queue
shall then be available for registration.
If a process has registered for notification of message arrival at a message queue and some thread is blocked
in mq_receive() waiting to receive a message when a message arrives at the queue, the arriving message shall
satisfy the appropriate mq_receive() (see 15.2.5). The resulting behavior is as if the message queue remains
empty, and no notification shall be sent.

Otherwise:

Either the implementation shall support the mq_notify() function as described above or the mq_notify()
function shall fail.

15.2.6.3 Returns

Upon successful completion, the mq_notify() function shall return a value of zero; otherwise, the function shall return
a value of −1 and set errno to indicate the error.

15.2.6.4 Errors

If any of the following conditions occur, the mq_notify() function shall return −1 and set errno to the corresponding
value:

[EBADF] The mqdes argument is not a valid message queue descriptor.

248 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

[EBUSY] A process is already registered for notification by the message queue.

[ENOSYS] The function mq_notify() is not supported by this implementation.

15.2.6.5 Cross-References

mq_open(), 15.2.1; mq_send(), 15.2.4.

15.2.7 Set Message Queue Attributes

Function: mq_setattr()

15.2.7.1 Synopsis

#include <mqueue.h>
int mq_setattr(mqd_t mqdes, const struct mq_attr *mqstat,
 struct mq_attr *omqstat);

15.2.7.2 Description

If {_POSIX MESSAGE_PASSING} is defined:

The mq_setattr() function is used to set attributes associated with the open message queue description
referenced by the message queue descriptor specified by mqdes.
The message queue attributes corresponding to the following members defined in the mq_attr structure are
set to the specified values upon successful completion of mq_setattr():

mq_flags The value of this member is the bitwise logical OR of zero or more of O_NONBLOCK and
any implementation-defined flags.

The values of the mq_maxmsg, mq_msgsize, and mq_curmsgs members of the mq_attr structure are ignored
by mq_setattr().
If omqstat is non-NULL, the function mq_setattr() shall store, in the location referenced by omqstat, the
previous message queue attributes and the current queue status. These values are the same as would be
returned by a call to mq_getattr() at that point.

Otherwise:

Either the implementation shall support the mq_setattr() function as described above or the mq_setattr()
function shall fail.

15.2.7.3 Returns

Upon successful completion, the function shall return a value of zero and the attributes of the message queue shall have
been changed as specified. Otherwise, the message queue attributes shall be unchanged, and the function shall return
a value of −1 and set errno to indicate the error.

15.2.7.4 Errors

If any of the following conditions occur, the mq_setattr() function shall return −1 and set errno to the corresponding
value:

[EBADF] The mqdes argument is not a valid message queue descriptor.

[ENOSYS] The function mq_setattr() is not supported by this implementation.

Copyright © 1996 IEEE All Rights Reserved 249

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

15.2.7.5 Cross-References

mq_open(), 15.2.1; mq_send(), 15.2.4.

15.2.8 Get Message Queue Attributes

Function: mq_getattr()

15.2.8.1 Synopsis

#include <mqueue.h>
int mq_getattr(mqd_t mqdes, struct mq_attr *mqstat);

15.2.8.2 Description

If {_POSIX_MESSAGE_PASSING} is defined:

The mqdes argument specifies a message queue descriptor. The mq_getattr() function is used to get status
information and attributes of the message queue and the open message queue description associated with the
message queue descriptor. The results are returned in the mq_attr structure referenced by the mqstat
argument.
Upon return, the following members shall have the values associated with the open message queue
description as set when the message queue was opened and as modified by subsequent mq_setattr() calls.

mq_flags
The following attributes of the message queue shall be returned as set at message queue creation.

mq_maxmsg
mq_msgsize

Upon return, the following members within the mq_attr structure referenced by the mqstat argument shall be
set according to the current state of the message queue.

mq_curmsgs The number of messages currently on the queue.

Otherwise:

Either the implementation shall support the mq_getattr() function as described above or the mq_getattr()
function shall fail.

15.2.8.3 Returns

Upon successful completion, the mq_getattr() function shall return zero. Otherwise, the function shall return −1 and
set errno to indicate the error.

15.2.8.4 Errors

If any of the following conditions occur, the mq_getattr() function shall return −1 and set errno to the corresponding
value:

[EBADF] The mqdes argument is not a valid message queue descriptor.

[ENOSYS] The function mq_getattr() is not supported by this implementation.

15.2.8.5 Cross-References

<mqueue.h>, 15.1.1; mq_open(), 15.2.1; mq_send(), 15.2.4; mq_setattr() 15.2.7.

250 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

16. Thread Management

16.1 Threads

This section describes the facilities relating to multiple threads of control available through this standard.

A thread is a single flow of control within a process. This section defines a set of operations that allow for the creation
and management of multiple threads within a single process.

Although implementations may have thread IDs that are unique in a system, applications should only assume that
thread IDs are usable and unique within a single process. The effect of calling any of the functions defined by this part
of ISO/IEC 9945 and passing as an argument the thread ID of a thread from another process is unspecified. A
conforming implementation is free to reuse a thread ID after the thread terminates if it was created with the
detachstate attribute set to PTHREAD_CREATE_DETACHED or if pthread_detach() or pthread_join() has
been called for that thread. If a thread is detached, its thread ID is invalid for use as an argument in a call to
pthread_detach() or pthread_join().

16.2 Thread Functions

16.2.1 Thread Creation Attributes

Functions: pthread_attr_init(), pthread_attr_destroy(), pthread_attr_setstacksize(), pthread_attr_getstacksize(),
pthread_attr_setstackaddr(), pthread_attr_getstackaddr(), pthread_attr_setdetachstate(),
pthread_attr_getdetachstate()

16.2.1.1 Synopsis

#include <pthread.h>
int pthread_attr_init(pthread_attr_t *attr);
int pthread_attr_destroy(pthread_attr_t *attr);
int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize);
int pthread_attr_getstacksize(const pthread_attr_t *attr,
 size_t *stacksize);
int pthread_attr_setstackaddr(pthread_attr_t *attr, void *stackaddr);
int pthread_attr_getstackaddr(const pthread_attr_t *attr,
 void **stackaddr);
int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);
int pthread_attr_getdetachstate(const pthread_attr_t *attr,
 int *detachstate);

16.2.1.2 Description

If {_POSIX_THREADS} is defined:

The function pthread_attr_init() initializes a thread attributes object attr with the default value for all of the
individual attributes used by a given implementation.
Each implementation shall document the individual attributes it uses and their default values unless these
values are defined by this standard.
The resulting attributes object (possibly modified by setting individual attribute values), when used by
pthread_create(), defines the attributes of the thread created. A single attributes object can be used in multiple
simultaneous calls to pthread_create().

Copyright © 1996 IEEE All Rights Reserved 251

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The pthread_attr_destroy() function is used to destroy a thread attributes object. An implementation may
cause pthread_attr_destroy() to set attr to an implementation-specific invalid value. The behavior of using the
attribute after it has been destroyed is undefined.
If the symbol {_POSIX_THREAD_ATTR_STACKSIZE} is defined, then the implementation shall support
a stacksize attribute for threads that defines the minimum stack size (in bytes). The functions
pthread_attr_setstacksize() and pthread_attr_getstacksize() set and get the thread creation stacksize attribute
in the attr object.
If the symbol {_POSIX_THREAD_ATTR_STACKADDR} is defined, then the implementation shall support
a stackaddr attribute that specifies the location of storage to be used for the stack of the created thread. The
size of the storage shall be at least {PTHREAD_STACK_MIN}. The functions pthread_attr_setstackaddr()
and pthread_attr_getstackaddr() set and get the thread creation stackaddr attribute in the attr object.
The detachstate attribute controls whether the thread is created in a detached state. If the thread is
created detached, then use of the ID of the newly created thread by the pthread_detach() or pthread_join()
functions is an error.
The pthread_attr_setdetachstate() and pthread_attr_getdetachstate() functions set and get the
detachstate attribute in the attr object. The location referenced by the detachstate argument shall be set
to either PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE. A value of
PTHREAD_CREATE_DETACHED shall cause all threads created with attr to be in the detached state,
whereas using a value of PTHREAD_CREATE_JOINABLE shall cause all threads created with attr to be in
the joinable state. The default value of the detachstate attribute is PTHREAD_CREATE_JOINABLE.

Otherwise:

Either the implementation shall support the pthread_attr_init(), pthread_attr_destroy(),
pthread_attr_setstacksize(), pthread_attr_getstacksize(), pthread_attr_setstackaddr(), pthread_attr_-
getstackaddr(), pthread_attr_setdetachstate(), and pthread_attr_getdetachstate() functions as described
above or the pthread_attr_init(), pthread_attr_destroy(), pthread_attr_setstacksize(), pthread__attr_-
getstacksize(), pthread_attr_setstackaddr(), pthread_attr_getstackaddr(), pthread_attr_setdetachstate(), and
pthread_attr_getdetachstate() functions shall not be provided.

16.2.1.3 Returns

Upon successful completion, pthread_attr_init(), pthread_attr_destroy(), pthread_attr_setstacksize(), pthread_attr_-
getstacksize(), pthread_attr_setstackaddr(), pthread_attr_getstackaddr(), pthread_attr_setdetachstate(), and
pthread_attr_getdetachstate() shall return a value of 0. Otherwise, an error number shall be returned to indicate the
error. The pthread_attr_getstacksize() function stores the stacksize attribute value in stacksize if successful. The
pthread_attr_getstackaddr() function stores the stackaddr attribute value in stackaddr if successful. The
pthread_attr_getdetachstate() function stores the value of the detachstate attribute in detachstate if successful.

16.2.1.4 Errors

If any of the following conditions occur, the pthread_attr_init() function shall return the corresponding error number:

[ENOMEM] Insufficient memory exists to initialize the thread attributes object.

If any of the following conditions occur, the pthread_attr_getstacksize() and pthread_attr_setstacksize() functions
shall return the corresponding error number:

[ENOSYS] The option {_POSIX_THREAD_ATTR_STACKSIZE} is not defined and the stacksize attribute for
threads is not supported.

If any of the following conditions occur, the pthread_attr_setstacksize() function shall return the corresponding error
number:

252 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

[EINVAL] The value of stacksize is less than {PTHREAD_STACK_MIN} or exceeds a system-imposed limit.

If any of the following conditions occur, the pthread_attr_getstackaddr() and pthread_attr_setstackaddr() functions
shall return the corresponding error number:

[ENOSYS] The option {_POSIX_THREAD_ATTR_STACKADDR} is not defined, and the stackaddr attribute
for threads is not supported.

If any of the following conditions occur, the pthread_attr_setdetachstate() function shall return the corresponding
error number:

[EINVAL] The value of detachstate was not valid.

16.2.1.5 Cross-References

pthread_create(), 16.2.2.

16.2.2 Thread Creation

Function: pthread_create()

16.2.2.1 Synopsis

#include <pthread.h>
int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
 void *(*start_routine) (void *), void *arg);

16.2.2.2 Description

If {_POSIX_THREADS} is defined:

The pthread_create() function is used to create a new thread, with attributes specified by attr, within a
process. If attr is NULL, the default attributes are used. If the attributes specified by attr are modified later,
the attributes of the thread are not affected. Upon successful completion, pthread_create() shall store the ID
of the created thread in the location referenced by thread.
The thread is created executing start_routine with arg as its sole argument. If the start_routine returns, the
effect shall be as if there was an implicit call to pthread_exit() using the return value of start_routine as the
exit status. Note that the thread in which main() was originally invoked differs from this. When this thread
returns from main(), the effect shall be as if there was an implicit call to exit() using the return value of main()
as the exit status.
The signal state of the new thread shall be initialized as follows:
1) The signal mask shall be inherited from the creating thread.
2) The set of signals pending for the new thread shall be empty.
If pthread_create() fails, no new thread is created, and the contents of the location referenced by thread are
undefined.

Otherwise:

Either the implementation shall support the pthread_create() function as described above or the
pthread_create() function shall not be provided.

Copyright © 1996 IEEE All Rights Reserved 253

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

16.2.2.3 Returns

If successful, the pthread_create() function shall return zero. Otherwise, an error number shall be returned to indicate
the error.

16.2.2.4 Errors

If any of the following conditions occur, the pthread_create() function shall return the corresponding error number:

[EAGAIN] The system lacked the necessary resources to create another thread, or the system-imposed limit on
the total number of threads in a process {PTHREAD_THREADS_MAX} would be exceeded.

[EINVAL] The value specified by attr is invalid.

16.2.2.5 Cross-References

pthread_exit(), 16.2.5; pthread_join(), 16.2.3; fork(), 3.1.1.

16.2.3 Wait for Thread Termination

Function: pthread_join()

16.2.3.1 Synopsis

#include <pthread.h>
int pthread_join(pthread_t thread, void **value_ptr);

16.2.3.2 Description

If {_POSIX_THREADS} is defined:

The pthread_join() function suspends execution of the calling thread until the target thread terminates, unless
the target thread has already terminated. On return from a successful pthread_join() call with a non-NULL
value_ptr argument, the value passed to pthread_exit() by the terminating thread shall be made available in
the location referenced by value_ptr.
When a pthread_join() returns successfully, the target thread has been terminated. The results of multiple
simultaneous calls to pthread_join() specifying the same target thread are undefined. If the thread calling
pthread_join() is canceled, then the target thread shall not be detached.
It is unspecified whether a thread that has exited but remains unjoined counts against
{PTHREAD_THREADS_MAX}.

Otherwise:

Either the implementation shall support the pthread_join() function as described above or the pthread_join()
function shall not be provided.

16.2.3.3 Returns

If successful, the pthread_join() function shall return zero. Otherwise, an error number shall be returned to indicate the
error.

16.2.3.4 Errors

If any of the following conditions occur, the pthread_join() function shall return the corresponding error number:

254 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

[EINVAL] The implementation has detected that the value specified by thread does not refer to a thread that can
be joined.

[ESRCH] No thread could be found corresponding to that specified by the given thread ID.

For each of the following conditions, if the condition is detected, the pthread_join() function shall return the
corresponding error number:

[EDEADLK] A deadlock was detected, or the value of thread specifies the calling thread.

16.2.3.5 Cross-References

pthread_create(), 16.2.2; wait(), 3.2.1.

16.2.4 Detaching a Thread

Function: pthread_detach()

16.2.4.1 Synopsis

#include <pthread.h>
int pthread_detach(pthread_t thread);

16.2.4.2 Description

If {_POSIX_THREADS} is defined:

The pthread_detach() function is used to indicate to the implementation that storage for the thread thread can
be reclaimed when that thread terminates. If thread has not terminated, pthread_detach() shall not cause it to
terminate. The effect of multiple pthread_detach() calls on the same target thread is unspecified.

Otherwise:

Either the implementation shall support the pthread_detach() function as described above or the
pthread_detach() function shall not be provided.

16.2.4.3 Returns

If the call succeeds, pthread_detach() returns 0. Otherwise, an error number shall be returned to indicate the error.

16.2.4.4 Errors

If any of the following conditions occur, the pthread_detach() function shall return the corresponding error number:

[EINVAL] The implementation has detected that the value specified by thread does not refer to a thread that can
be joined.

[ESRCH] No thread could be found corresponding to that specified by the given thread ID.

16.2.4.5 Cross-References

pthread_join(), 16.2.3.

Copyright © 1996 IEEE All Rights Reserved 255

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

16.2.5 Thread Termination

Function: pthread_exit()

16.2.5.1 Synopsis

#include <pthread.h>
void pthread_exit(void *value_ptr);

16.2.5.2 Description

If {_POSIX_THREADS} is defined:

The pthread_exit() function terminates the calling thread and makes the value value_ptr available to any
successful join with the terminating thread. Any cancellation cleanup handlers that have been pushed and not
yet popped shall be popped in the reverse order that they were pushed and then executed. After all
cancellation cleanup handlers have been executed, if the thread has any thread-specific data, appropriate
destructor functions shall be called in an unspecified order. Thread termination does not release any
application visible process resources, including, but not limited to, mutexes and file descriptors, nor does it
perform any process level cleanup actions, including, but not limited to, calling any atexit() routines that may
exist.
An implicit call to pthread_exit() is made when a thread other than the thread in which main() was first
invoked returns from the start routine that was used to create it. The return value of the function serves as the
exit status of the thread.
The behavior of pthread_exit() is undefined if called from a cancellation cleanup handler or destructor
function that was invoked as a result of either an implicit or explicit call to pthread_exit().
After a thread has terminated, the result of access to local (auto) variables of the thread is undefined. Thus,
references to local variables of the exiting thread should not be used for the pthread_exit() value_ptr
parameter value.
The process shall exit with an exit status of 0 after the last thread has been terminated. The behavior shall be
as if the implementation called exit() with a zero argument at the time of thread termination.

Otherwise:

Either the implementation shall support the pthread_exit() function as described above or the pthread_exit()
function shall not be provided.

16.2.5.3 Returns

The pthread_exit() function cannot return to its caller.

16.2.5.4 Errors

None.

16.2.5.5 Cross-References

pthread_create(), 16.2.2; pthread_join(), 16.2.3; exit(), 8.1; _exit(), 3.2.2.

16.2.6 Get Thread ID

Function: pthread_self()

256 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

16.2.6.1 Synopsis

#include <pthread.h>
pthread_t pthread_self(void);

16.2.6.2 Description

If {_POSIX_THREADS} is defined:

The pthread_self() function returns the thread ID of the calling thread.

16.2.6.3 Returns

See 16.2.6.2.

16.2.6.4 Errors

None.

16.2.6.5 Cross-References

pthread_create(), 16.2.2; pthread_equal(), 16.2.7.

16.2.7 Compare Thread IDs

Function: pthread_equal()

16.2.7.1 Synopsis

#include <pthread.h>
int pthread_equal(pthread_t t1, pthread_t t2);

16.2.7.2 Description

If {_POSIX_THREADS} is defined:

This function compares the thread IDs t1 and t2.

Otherwise:

Either the implementation shall support the pthread_equal() function as described above or the
pthread_equal() function shall not be provided.

16.2.7.3 Returns

The pthread_equal() function shall return a nonzero value if t1 and t2 are equal; otherwise, zero shall be returned.

If either t1 or t2 are not valid thread IDs, the behavior is undefined.

16.2.7.4 Errors

None.

Copyright © 1996 IEEE All Rights Reserved 257

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

16.2.7.5 Cross-References

pthread_create(), 16.2.2; pthread_self(), 16.2.6.

16.2.8 Dynamic Package Initialization

Function: pthread_once()

16.2.8.1 Synopsis

#include <pthread.h>
pthread_once_t once_control = PTHREAD_ONCE_INIT;
int pthread_once(pthread_once_t *once_control,
 void (*init_routine) (void));

16.2.8.2 Description

If {_POSIX_THREADS} is defined:

The first call to pthread_once() by any thread in a process with a given once_control will call the
init_routine() with no arguments. Subsequent calls of pthread_once() with the same once_control will not
call the init_routine(). On return from pthread_once(), it is guaranteed that init_routine() has completed. The
once_control parameter is used to determine whether the associated initialization routine has been called.
The function pthread_once() is not a cancellation point. However, if init_routine() is a cancellation point and
is canceled, the effect on once_control shall be as if pthread_once() was never called.
The constant PTHREAD_ONCE_INIT shall be defined by the header <pthread.h>.
The behavior of pthread_once() is undefined if once_control has automatic storage duration or is not
initialized by PTHREAD_ONCE_INIT.

Otherwise:

Either the implementation shall support the pthread_once() function as described above or the
pthread_once() function shall not be provided.

16.2.8.3 Returns

Upon successful completion, pthread_once() shall return zero. Otherwise, an error number shall be returned to
indicate the error.

16.2.8.4 Errors

None specified.

17. Thread-Specific Data

This section describes the facilities available in this part of ISO/IEC 9945 relating to the association of threads and
data.

258 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

17.1 Thread-Specific Data Functions

17.1.1 Thread-Specific Data Key Creation

Function: pthread_key_create()

17.1.1.1 Synopsis

#include <pthread.h>
int pthread_key_create(pthread_key_t *key, void (*destructor) (void *));

17.1.1.2 Description

If {_POSIX_THREADS} is defined:

This function creates a thread-specific data key visible to all threads in the process. Key values provided by
pthread_key_create() are opaque objects used to locate thread-specific data. Although the same key value
may be used by different threads, the values bound to the key by pthread_setspecific() are maintained on a
per-thread basis and persist for the life of the calling thread.
Upon key creation, the value NULL shall be associated with the new key in all active threads. Upon thread
creation, the value NULL shall be associated with all defined keys in the new thread.
An optional destructor function may be associated with each key value. At thread exit, if a key value has a
non-NULL destructor pointer and if the thread has a non-NULL value associated with that key, the function
pointed to is called with the current associated value as its sole argument. The order of destructor calls is
unspecified if more than one destructor exists for a thread when it exits.
If, after all the destructors have been called for all non-NULL values with associated destructors, there are
still some non-NULL values with associated destructors, then the process shall be repeated. If, after at least
{PTHREAD_DESTRUCTOR_ITERATIONS} iterations of destructor calls for outstanding non-NULL
values, there are still some non-NULL values with associated destructors, implementations may stop calling
destructors, or they may continue calling destructors until no non-NULL values with associated destructors
exist, even though this might result in an infinite loop.

Otherwise:

Either the implementation shall support the pthread_key_create() function as described above or the
pthread_key_create() function shall not be provided.

17.1.1.3 Returns

If successful, the pthread_key_create() function shall store the newly created key value at *key and return zero.
Otherwise, an error number shall be returned to indicate the error.

17.1.1.4 Errors

If any of the following conditions occur, the pthread_key_create() function shall return the corresponding error
number:

[EAGAIN] The system lacked the necessary resources to create another thread-specific data key, or the system-
imposed limit on the total number of keys per process {PTHREAD_KEYS_MAX} has been
exceeded.

[ENOMEM] Insufficient memory exists to create the key.

Copyright © 1996 IEEE All Rights Reserved 259

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

17.1.1.5 Cross-References

pthread_getspecific(), 17.1.2; pthread_setspecific(), 17.1.2; pthread_key_delete(), 17.1.3.

17.1.2 Thread-Specific Data Management

Functions: pthread_setspecific(), pthread_getspecific()

17.1.2.1 Synopsis

#include <pthread.h>
int pthread_setspecific(pthread_key_t key, const void *value);
void *pthread_getspecific(pthread_key_t key);

17.1.2.2 Description

If {_POSIX_THREADS} is defined:

The pthread_setspecific() function associates a thread-specific value with a key obtained via a previous call to
pthread_key_create(). Different threads may bind different values to the same key. These values are typically
pointers to blocks of dynamically allocated memory that have been reserved for use by the calling thread.
The pthread_getspecific() function returns the value currently bound to the specified key on behalf of the
calling thread.
The effect of calling pthread_setspecific() or pthread_getspecific() with a key value not obtained from
pthread_key_create() or after key has been deleted with pthread_key_delete() is undefined.
Both pthread_setspecific() and pthread_getspecific() may be called from a thread-specific data destructor
function. However, calling pthread_setspecific() from a destructor may result in lost storage or infinite loops.
Both functions may be implemented as macros.

Otherwise:

Either the implementation shall support the pthread_setspecific() and pthread_getspecific() functions as
described above or the pthread_setspecific() and pthread_getspecific() functions shall not be provided.

17.1.2.3 Returns

The function pthread_getspecific() returns the thread-specific data value associated with the given key. If no thread-
specific data value is associated with key, then the value NULL is returned.

If successful, the pthread_setspecific() function shall return zero. Otherwise, an error number shall be returned to
indicate the error.

17.1.2.4 Errors

If any of the following conditions occur, the pthread_setspecific() function shall return the corresponding error
number:

[ENOMEM] Insufficient memory exists to associate the value with the key.

For each of the following conditions, if the condition is detected, the pthread_setspecific() function shall return the
corresponding error number:

[EINVAL] The key value is invalid.

260 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

No errors are returned from pthread_getspecific().

17.1.2.5 Cross-References

pthread_key_create(), 17.1.1.

17.1.3 Thread-Specific Data Key Deletion

Function: pthread_key_delete()

17.1.3.1 Synopsis

#include <pthread.h>
int pthread_key_delete(pthread_key_t key);

17.1.3.2 Description

If {_POSIX_THREADS} is defined:

This function deletes a thread-specific data key previously returned by pthread_key_create(). The thread-
specific data values associated with key need not be NULL at the time pthread_key_delete() is called. It is the
responsibility of the application to free any application storage or perform any cleanup actions for data
structures related to the deleted key or associated thread-specific data in any threads; this cleanup can be done
either before or after pthread_key_delete() is called. Any attempt to use key following the call to
pthread_key_delete() results in undefined behavior.
The pthread_key_delete() function shall be callable from within destructor functions. No destructor functions
shall be invoked by pthread_key_delete(). Any destructor function that may have been associated with key
shall no longer be called upon thread exit.

Otherwise:

Either the implementation shall support the pthread_key_delete() function as described above or the
pthread_key_delete() function shall not be provided.

17.1.3.3 Returns

If successful, the pthread_key_delete() function shall return zero. Otherwise, an error number shall be returned to
indicate the error.

17.1.3.4 Errors

For each of the following conditions, if the condition is detected, the pthread_key_delete() function shall return the
corresponding error number:

[EINVAL] The key value is invalid.

17.1.3.5 Cross-References

pthread_key_create(), 17.1.1.

Copyright © 1996 IEEE All Rights Reserved 261

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

18. Thread Cancellation

This section defines a set of operations that allow for the cancellation of threads.

The C language binding to thread cancellation is presented first, followed by a presentation of the language-
independent thread cancellation functionality required of all language bindings.

18.1 Thread Cancellation Overview

The thread cancellation mechanism allows a thread to terminate the execution of any other thread in the process in a
controlled manner. The target thread (that is, the one being canceled) is allowed to hold cancellation requests pending
in a number of ways and to perform application-specific cleanup processing when acting on the notice of cancellation.

Cancellation is controlled by the cancellation control interfaces. Each thread maintains its own “cancelability state.”
Cancellation may only occur at cancellation points or when the thread is asynchronously cancelable.

The thread cancellation mechanism described in this section depends upon programs having deferred cancelability set,
which is specified as the default. Applications also need to follow carefully static lexical scoping rules in their
execution behavior. For instance, use of setjmp(), return, goto, etc. to leave user-defined cancellation scopes without
doing the necessary scope pop operation will result in undefined behavior.

Use of asynchronous cancelability while holding resources that potentially need to be released may result in resource
loss. Similarly, cancellation scopes may only be safely manipulated (pushed and popped) when the thread is in the
deferred or disabled cancelability states.

18.1.1 Cancelability States

The cancelability state of a thread determines the action taken upon receipt of a cancellation request. The thread may
control cancellation in a number of ways.

Each thread maintains its own “cancelability state,” which may be encoded in two bits:

Cancelability Enable: When cancelability is PTHREAD_CANCEL_DISABLE, cancellation requests
against the target thread are held pending. By default, cancelability is set to
PTHREAD_CANCEL_ENABLE.
Cancelability Type: When cancelability is enabled and the cancelability type is
PTHREAD_CANCEL_ASYNCHRONOUS, new or pending cancellation requests may be acted upon at any
time. When cancelability is enabled and the cancelability type is PTHREAD_CANCEL_DEFERRED,
cancellation requests are held pending until a cancellation point (see below) is reached. If cancelability is
disabled, the setting of the cancelability type has no immediate effect, as all cancellation requests are held
pending; however, once cancelability is enabled again, the new type will be in effect. The cancelability type
is PTHREAD_CANCEL_DEFERRED in all newly created threads, including the thread in which main() was
first invoked.

18.1.2 Cancellation Points

Cancellation points shall occur when a thread is executing the following POSIX.1 or C Standard {2} functions:

 aio_suspend() pause() sigwait()
 close() pthread_cond_timedwait() sigwaitinfo()
 creat() pthread_cond_wait() sleep()
 fsync() pthread_join() system()

262 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

 mq_receive() pthread_testcancel() tcdrain()
 mq_send() read() wait()
 msync() sem_wait() waitpid()
 nanosleep() sigsuspend() write()
 open() sigtimedwait()
 fcntl() (when the cmd argument is F_SETLKW)

A cancellation point may also occur when a thread is executing the following POSIX.1 or C Standard {2} functions:

 closedir() ftell() getpwnam() puts()
 ctermid() fwrite() getpwnam_r() readdir()
 fclose() getc() getpwuid() remove()
 fflush() getc_unlocked() getpwuid_r() rename()
 fgetc() getchar() gets() rewind()
 fgets() getchar_unlocked() lseek() rewinddir()
 fopen() getcwd() opendir() scanf()
 fprintf() getgrgid() perror() tmpfile()
 fputc() getgrgid_r() printf() tmpname()
 fputs() getgrnam() putc() ttyname()
 fread() getgrnam_r() putc_unlocked() ttyname_r()
 freopen() getlogin() putchar() ungetc()
 fscanf() getlogin_r() putchar_unlocked() unlink()
 fseek()
 fcntl() for any value of the command argument

An implementation shall not introduce cancellation points into any other POSIX.1 or C Standard {2} functions.

The side effects of acting upon a cancellation request while suspended during a call of a POSIX.1 function shall be the
same as the side effects that may be seen in a single-threaded program when a call to a function is interrupted by a
signal and the given function returns [EINTR]. Any such side effects shall occur before any cancellation cleanup
handlers are called.

Whenever a thread has cancelability enabled and a cancellation request has been so made with that thread as the target
and the thread calls pthread_testcancel(), the cancellation request shall be acted upon before pthread_testcancel()
returns. If a thread has cancelability enabled and the thread has an asynchronous cancellation request pending and the
thread is suspended at a cancellation point waiting for an event to occur, then the cancellation request shall be acted
upon. However, if the thread is suspended at a cancellation point and the event that it is waiting for occurs before the
cancellation request is acted upon, it is unspecified whether the cancellation request is acted upon or whether the
request remains pending and the thread resumes normal execution.

18.1.3 Thread Cancellation Cleanup Handlers

Each thread maintains a list of cancellation cleanup handlers. The programmer uses the functions
pthread_cleanup_push() and pthread_cleanup_pop() to place routines on and remove routines from this list.

When a cancellation request is acted upon, the routines in the list are invoked one by one in LIFO sequence; i.e., the
last routine pushed onto the list (Last In) is the first to be invoked (First Out). The thread invokes the cancellation
cleanup handler with cancellation disabled until the last cancellation cleanup handler returns. When the cancellation
cleanup handler for a scope is invoked, the storage for that scope shall remain valid. If the last cancellation cleanup
handler returns, thread execution is terminated and a status of PTHREAD_CANCELED is made available to any
threads joining with the target. The symbolic constant PTHREAD_CANCELED expands to a constant expression of
type (void *) whose value matches no pointer to an object in memory nor the value NULL.

The cancellation cleanup handlers are also invoked when the thread calls pthread_exit().

Copyright © 1996 IEEE All Rights Reserved 263

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

A side effect of acting upon a cancellation request while in a condition variable wait is that the mutex is reacquired
before calling the first cancellation cleanup handler. In addition, the thread shall no longer be considered to be waiting
for the condition, and the thread shall not have consumed any pending condition signals on the condition.

A cancellation cleanup handler shall not exit via longjmp() or siglongjmp().

18.1.4 Async-Cancel Safety

The functions pthread_cancel(), pthread_setcancelstate(), and pthread_setcanceltype() shall be async-cancel safe.

No other functions in POSIX.1 or the C Standard {2} are required to be async-cancel safe.

18.2 Thread Cancellation Functions

18.2.1 Canceling Execution of a Thread

Function: pthread_cancel()

18.2.1.1 Synopsis

#include <pthread.h>
int pthread_cancel(pthread_t thread);

18.2.1.2 Description

If {_POSIX_THREADS} is defined:

The pthread_cancel() function requests that thread be canceled. The cancelability state and type of the target
thread determines when the cancellation takes effect. When the cancellation is acted on, the cancellation
cleanup handlers for thread are called. When the last cancellation cleanup handler returns, the thread-specific
data destructor functions shall be called for thread. When the last destructor function returns, thread shall be
terminated.
The cancellation processing in the target thread runs asynchronously with respect to the calling thread
returning from pthread_cancel().

Otherwise:

Either the implementation shall support the pthread_cancel() function as described above or the
pthread_cancel() function shall not be provided.

18.2.1.3 Returns

If successful, the pthread_cancel() function shall return zero. Otherwise, an error number shall be returned to indicate
the error.

18.2.1.4 Errors

For each of the following conditions, if the condition is detected, the pthread_cancel() function shall return the
corresponding error number:

[ESRCH] No thread could be found corresponding to that specified by the given thread ID.

264 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

18.2.1.5 Cross-References

pthread_exit(), 16.2.5; pthread_join(), 16.2.3; pthread_setcancelstate(), 18.2.2; pthread_cond_wait(), 11.4.4;
pthread_cond_timedwait(), 11.4.4.

18.2.2 Setting Cancelability State

Functions: pthread_setcancelstate(), pthread_setcanceltype(), pthread_testcancel()

18.2.2.1 Synopsis

#include <pthread.h>
int pthread_setcancelstate(int state, int *oldstate);
int pthread_setcanceltype(int type, int *oldtype);
void pthread_testcancel(void);

18.2.2.2 Description

If {_POSIX_THREADS} is defined:

The pthread_setcancelstate() function atomically both sets the cancelability state of the calling thread to the
indicated state and returns the previous cancelability state at the location referenced by oldstate. Legal values
for state are PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DISABLE.
The pthread_setcanceltype() function atomically both sets the cancelability type of the calling thread to the
indicated type and returns the previous cancelability type at the location referenced by oldtype. Legal values
for type are PTHREAD_CANCEL_DEFERRED and PTHREAD_CANCEL_ASYNCHRONOUS.
The cancelability state and type of any newly created threads, including the thread in which main() was first
invoked, shall be PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DEFERRED respectively.
The pthread_testcancel() function creates a cancellation point in the calling thread. The pthread_testcancel()
function has no effect if cancelability is disabled.

Otherwise:

Either the implementation shall support the pthread_setcancelstate(), pthread_setcanceltype(), and
pthread_testcancel() functions as described above or the pthread_setcancelstate(), pthread_setcanceltype(),
and pthread_testcancel() functions shall not be provided.

18.2.2.3 Returns

If successful, the pthread_setcancelstate() and pthread_setcanceltype() functions shall return zero. Otherwise, an error
number shall be returned to indicate the error.

18.2.2.4 Errors

For each of the following conditions, if the condition is detected, the pthread_setcancelstate() function shall return the
corresponding error number:

[EINVAL] The specified state is not PTHREAD_CANCEL_ENABLE or PTHREAD_CANCEL_DISABLE.

For each of the following conditions, if the condition is detected, the pthread_setcanceltype() function shall return the
corresponding error number:

[EINVAL] The specified type is not PTHREAD_CANCEL_DEFERRED or PTHREAD_CANCEL_-
ASYNCHRONOUS.

Copyright © 1996 IEEE All Rights Reserved 265

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

18.2.3 Establishing Cancellation Handlers

Functions: pthread_cleanup_push(), pthread_cleanup_pop()

18.2.3.1 Synopsis

#include <pthread.h>
void pthread_cleanup_push(void (*routine) (void *), void *arg);
void pthread_cleanup_pop(int execute);

18.2.3.2 Description

If {_POSIX_THREADS} is defined:

The pthread_cleanup_push() function pushes the specified cancellation cleanup handler routine onto the
cancellation cleanup stack of the calling thread. The cancellation cleanup handler shall be popped from the
cancellation cleanup stack and invoked with the argument arg when the thread exits [that is, calls
pthread_exit()], the thread acts upon a cancellation request, or the thread calls pthread_cleanup_pop() with a
nonzero execute argument.
The pthread_cleanup_pop() function removes the routine at the top of the cancellation cleanup stack of the
calling thread and optionally invokes it (if execute is nonzero).
In the C language, these functions may be implemented as macros and shall appear as statements and in pairs
within the same lexical scope [that is, the pthread_cleanup_push() macro may be thought to expand to a
token list whose first token is “{” with pthread_cleanup_pop() expanding to a token list whose last token is
the corresponding “}”].
The effect of calling longjmp() or siglongjmp() is undefined if there have been any calls to
pthread_cleanup_push() or pthread_cleanup_pop() made without the matching call since the jump buffer
was filled. The effect of calling longjmp() or siglongjmp() from inside a cancellation cleanup handler is also
undefined unless the jump buffer was also filled in the cancellation cleanup handler.

Otherwise:

Either the implementation shall support the pthread_cleanup_push() and pthread_cleanup_pop() functions
as described above or the pthread_cleanup_push() and pthread_cleanup-pop() functions shall not be
provided.

18.2.3.3 Returns

The pthread_cleanup_push() and pthread_cleanup_pop() functions shall be used as statements.

18.2.3.4 Errors

This standard does not specify any error conditions for the pthread_cleanup_push() or the pthread_cleanup_pop()
functions.

18.2.3.5 Cross-References

pthread_cancel(), 18.2.1; pthread_setcancelstate(), 18.2.2.

18.3 Language-Independent Cancellation Functionality

This clause presents the language-independent thread cancellation functionality required of all language bindings.

266 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

18.3.1 Requesting Cancellation

All language bindings for thread cancellation shall provide a mechanism to request the cancellation of the computation
currently being run by a thread. The C language binding for this mechanism is the pthread_cancel() function.

18.3.2 Associating Cleanup Code With Scopes

All language bindings for thread cancellation shall provide a mechanism for associating cleanup code (which is run
when a scope of code is canceled) with that scope. The mechanism shall allow an arbitrary number of such scopes and
their cleanup codes to be established and for such scopes to stack. The C language bindings for this mechanism are the
pthread_cleanup_push() and pthread_cleanup_pop() routines.

18.3.3 Controlling Cancellation Within Scopes

All language bindings for thread cancellation shall provide a mechanism for controlling the points at which
cancellation may occur within scopes. This mechanism shall be usable in a modular fashion such that the cancellation
control choices made within one scope are not violated or invalidated by choices made by nested or called scopes. It
is recommended that the default cancellation control environment permit cancellation only at defined cancellation
points. The C language bindings for this mechanism are the pthread_setcancelstate(), pthread_setcanceltype(), and
pthread_testcancel() functions.

18.3.4 Defined Cancellation Sequence

All language bindings for thread cancellation shall define the sequence of execution and the execution environment
present during cancellation. All bindings are constrained to execute sets of scope cleanup code in the reverse order
from the order in which the associated scopes were entered (i.e., in LIFO order). Bindings may provide a mechanism
for cleanup code within the thread being canceled to indicate that the cancellation has been completed before all
scopes are cleaned up, allowing execution to resume within the scope associated with the cleanup code. The C
language binding provides no mechanism for completing a cancellation before all cleanup code has been run and the
canceled thread has been terminated.

18.3.5 List of Cancellation Points

All language bindings for thread cancellation shall provide a complete list of the cancellation points for all functions
provided with the language binding. It is intended that this list consist of those functions that may block for unbounded
periods of time. This part of ISO/IEC 9945 provides such a list.

Copyright © 1996 IEEE All Rights Reserved 267

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Annex A Bibliography

(Informative)

This Annex contains lists of related open systems standards and suggested reading on historical implementations and
application programming.

A.1 Related Open Systems Standards

A.1.1 Networking Standards

{B1}ISO 7498: 1984, Information processing systems—Open Systems Interconnection—Basic Reference Model.4

{B2}ISO 8072: 1986, Information processing systems—Open Systems Interconnection—Transport service definition.

{B3}ISO/IEC 8073: 1988, Information processing systems—Open Systems Interconnection—Connection oriented
transport protocol specification.5

{B4}ISO 8326: 1987, Information processing systems—Open Systems Interconnection—Basic connection oriented
session service definition.

{B5}ISO 8327: 1987, Information processing systems—Open Systems Interconnection—Basic connection oriented
session protocol definition.

{B6}ISO 8348: 1987, Information processing systems—Data communications—Network service definition.

{B7}ISO 8473: 1988, Information processing systems—Data communications—Protocol for providing the
connectionless-mode network service.

{B8}ISO 8571: 1988, Information processing systems—Open Systems Interconnection—File Transfer, Access and
Management.

{B9}ISO 8649: 1988, Information processing systems—Open Systems Interconnection—Service definition for the
Association Control Service Element.

{B10}ISO 8650: 1988, Information processing systems—Open Systems Interconnection—Protocol specification for
the Association Control Service Element.

{B11}ISO 8802-2:1989 [IEEE Std 802.2-1989 (ANSI)], Information processing systems—Local area networks—Part
2: Logical link control.

{B12}ISO 8802-3:1989 [IEEE Std 802.3-1988 (ANSI)], Information processing systems—Local area networks—Part
3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications.

{B13}ISO/IEC 8802-4:1990 [IEEE Std 802.4-1990 (ANSI)], Information technology—Local area networks—Part 4:
Token-passing bus access method and physical layer specifications.

{B14}ISO 8802-5:… (IEEE 802.5-1989), Information technology—Local area networks—Part 5: Token ring access
method and physical layer specifications.

4ISO documents can be obtained from the ISO office, 1, rue de Varembé, Case Postale 56, CH-1211, Genève 20, Switzerland/Suisse.
5IEC documents can be obtained from the IEC office, 3, rue de Varembé, Case Postale 131, CH-1211, Genève 20, Switzerland/Suisse.

268 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

{B15}ISO 8822: 1988, Information processing systems—Open Systems Interconnection—Connection oriented
presentation service definition.

{B16}ISO 8823: 1988, Information processing systems—Open Systems Interconnection—Connection oriented
presentation protocol specification.

{B17}ISO 8831: 1989, Information processing systems—Open Systems Interconnection—Job transfer and
manipulation concepts and services.

{B18}ISO 8832: 1989, Information processing systems—Open Systems Interconnection—Specification of the basic
class protocol for job transfer and manipulation.

{B19}CCITT Recommendation X.25, Interface between data terminal equipment (DTE) and data circuit-terminating
equipment (DCT) for terminals operating in the packet mode and connected to public data networks by dedicated
circuit.6

{B20}CCITT Recommendation X. 212, Information processing systems—Data communication—Data link service
definition for Open Systems Interconnection.

A.1.2 Language Standards

{B21}ISO 1539: 1980, Programming languages—FORTRAN.

{B22}ISO 1989: 1985, Programming Languages—COBOL.

{B23}ISO 8652: 1987, Programming Languages—Ada.

{B24}ANSI X3.113-19877, Information systems—Programming language—FULL BASIC.

{B25}ANSI/IEEE 770X3.97-1983, Standard Pascal Computer Programming Language.

{B26}ANSI/MDC X11.1-1984, Programming Language MUMPS.

A.1.3 Graphics Standards

{B27}ISO 7942: 1985, Information processing systems—Computer graphics—Graphical Kernel System (GKS)
functional description.

{B28}ISO 8632: 1987, Information processing systems—Computer graphics—Metafile for the storage and transfer of
picture description information.

{B29}ISO/IEC 9592: 1989 (ANSI X3.144-1988), Information processing systems—Computer graphics—
Programmer's hierarchical interactive graphics system (PHIGS).

A.1.4 Database Standards

{B30}ISO 8907: 1987, Database Language—NDL.

{B31}ISO 9075: 1987, Database Language—SQL.

6CCITT documents can be obtained from the International Telecommunications Union, Sales Section, Place des Nations, CH-1211, Genève 20,
Switzerland/Suisse.
7ANSI documents can be obtained from the Sales Department, American National Standards Institute, 1430 Broadway, New York, NY 10018.

Copyright © 1996 IEEE All Rights Reserved 269

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

A.2 Other Standards

{B32}ISO 639: 1988, Code for the representation of names of languages.

{B33}ISO 3166: 1988, Code for the representation of names of countries.

{B34}ISO 8859-1: 1987, Information Processing—8-bit single-byte coded graphic character sets—Part 1: Latin
alphabet No. 1.

{B35}ISO 9127: 1988, Information processing systems—User documentation and cover information for consumer
software packages.

{B36}ISO/IEC 9945-2:…,, 8 Information technology—Portable operating system interface (POSIX)—Part 2: Shell
and utilities.

{B37}ISO/IEC 10646:…,, 9 Information processing—Multiple octet coded character set.

{B38}IEEE Std 100-1988, IEEE Standard Dictionary of Electrical and Electronics Terms.

{B39}P1003.0/D16,10 Draft Guide to the POSIX Open Systems Environment.

{B40}ISO/IEC TR 10000-1: 1990, Information technology—Framework and taxonomy of International Standardized
Profiles—Part 1: Framework.

A.3 Historical Documentation and Introductory Texts

{B41}American Telephone and Telegraph Company. System V Interface Definition (SVID), Issues 2 and 3.
Morristown, NJ: UNIX Press, 1986, 1989.11

{B42}American Telephone and Telegraph Company. UNIX System III Programmer's Manual. Greensboro, NC:
Western Electric Company, October 1981.

{B43}American Telephone and Telegraph Company. UNIX Time Sharing System: UNIX Programmer's Manual. 7th
ed. Murray Hill, NJ: Bell Telephone Laboratories, January 1979.

{B44}Apollo Computer, Inc., Concurrent Programming Support (CPS) Reference, Order No. 010233, June 1987.

{B45}“The UNIX System.”12 AT&T Bell Laboratories Technical Journal. vol. 63 (8 Part 2), October 1984.

{B46}“UNIX Time-Sharing System.”13 Bell System Technical Journal. vol. 57 (6 Part 2), July–August 1978.

{B47}Bach, Maurice J. The Design of the UNIX Operating System. Englewood Cliffs, NJ: Prentice-Hall, 1987.

{B48}Birrell, A., An Introduction to Programming with Threads, DEC SRC Research Report 35, DEC Systems
Research Center, 130 Lytton Ave., Palo Alto, CA, January 1989.

8To be approved and published.
9To be approved and published.
10This unapproved draft document is available from IEEE Publications, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331. Telephone: 1
(800) 678-IEEE or +1 (908)981-1393 (outside US).
11This is one of several documents that represent an industry specification in an area related to POSIX.1. The creators of such documents may be
able to identify newer versions that may be interesting.
12This entire edition is devoted to the UNIX system.
13This entire edition is devoted to the UNIX time-sharing system.

270 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

{B49}Cooper, E. and Draves, R., C Threads, Technical Report CMU-CS-88-154, Carnegie Mellon University,
Computer Science Department, Pittsburgh, PA, June 1988.

{B50}Dijkstra, E. W. “Solution of a Problem in Concurrent Programming Control,” Communications of the ACM.
vol. 8 (9), September 1965, pp. 569–570.

{B51}Digital Equipment Corporation, Concert Multi-thread(TM) Architecture, Revision 1.0–2, April 1989.

{B52}Doeppner, T., Threads: A system for the support of concurrent programming, Technical Report CS-87-11,
Brown University, Computer Science Department, Providence, RI, June 1987.

{B53}Furht, Borko, Grostick, Dan, Gluch, David, Rabbat, Guy, Parker, John, and McRoberts, Meg. Real-Time UNIX
Systems: Design and Application Guide. Boston, MA: Kluwer Academic Publishers, 1991.

{B54}Harbison, Samuel P. and Steele, Guy L. C: A Reference Manual. Englewood Cliffs, NJ: Prentice-Hall, 1987.

{B55}Hoare, C.A.R., “Monitors: An operating system structuring concept,” Communications of the ACM, vol. 17, no.
10, pp. 549–557, October 1974.

{B56}Jones, Michael B., “Bringing the C Libraries With Us into a Multi-Threaded Future,” Winter 1991 Usenix
Conference Proceedings, Dallas, TX, pp. 81–91, January 1991.

{B57}Kernighan, Brian W. and Ritchie, Dennis M. The C Programming Language. Englewood Cliffs, NJ: Prentice-
Hall, 1978.

{B58}Kernighan, Brian W. and Pike, Rob. The UNIX Programming Environment. Englewood Cliffs, NJ: Prentice-
Hall, 1984.

{B59}Lampson, B. and Redell, D., “Experience with processes and monitors in Mesa,” Communications of the ACM,
vol. 23, no. 2, pp. 105–117, February 1980.

{B60}Leffler, Samuel J., McKusick, Marshall Kirk, Karels, Michael J., Quarterman, John S., and Stettner, Armando.
The Design and Implementation of the 4.3BSD UNIX Operating System. Reading, MA: Addison-Wesley, 1988.

{B61}McGilton, Henry and Morgan, Rachel. Introducing the UNIX System. New York: McGraw-Hill (BYTE Books),
1983.

{B62}McJones, P. and Swart, G., “Evolving the UNIX system interface to support multi-threaded programs,”
Proceedings of the Winter 1989 USENIX Conference, pp. 393–404, February 1989.

{B63}Organick, Elliot I. The Multics System: An Examination of Its Structure. Cambridge, MA: The MIT Press, 1972.

{B64}Quarterman, John S., Silberschatz, Abraham, and Peterson, James L. “4.2BSD and 4.3BSD as Examples of the
UNIX System.” ACM Computing Surveys. vol. 17 (4), December 1985, pp. 379–418.

{B65}Ritchie, Dennis M. “Reflections on Software Research.” Communications of the ACM. vol. 27 (8), August
1984, pp. 758–760. ACM Turing Award Lecture.

{B66}Ritchie, Dennis. “The Evolution of the UNIX Time-Sharing System.” AT&T Bell Laboratories Technical
Journal. vol. 63 (8), October 1984, pp. 1577–1593.

{B67}Ritchie, D. M. and Thompson, K. “The UNIX Time-Sharing System.” Communications of the ACM. vol. 7 (7),
July 1974, pp. 365–375. This is the original paper, which describes Version 6.

Copyright © 1996 IEEE All Rights Reserved 271

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

{B68}Ritchie, D. M. and Thompson, K. “The UNIX Time-Sharing System.” Bell System Technical Journal. vol. 57
(6 Part 2), July-August 1978, pp, 1905–1929. This is a revised version and describes Version 7.

{B69}Ritchie, Dennis M. “Unix: A Dialectic.” Winter 1987 USENIX Association Conference Proceedings,
Washington, D.C., pp. 29–34. Berkeley, CA: USENIX Association, January 1987.

{B70}Sun Microsystems Inc., Sun OS 4.0 Reference Manual, Chapter 6, May 1988.

{B71}Rochkind, Marc J. Advanced UNIX Programming. Englewood Cliffs, NJ: Prentice-Hall, 1985.

{B72}Tucker, Andrew and Gupta, Anoop. “Process Control and Scheduling Issues for Multipgrammed Shared-
Memory Processors.” Proceedings of the 12th ACM Symposium on Operating System Principles, pp. 159–166.
December, 1989.

{B73}University of California at Berkeley—Computer Science Research Group. 4.3 Berkeley Software Distribution,
Virtual VAX-11 Version. Berkeley, CA: The Regents of the University of California, April 1986.

{B74}UNIX International Inc., Multiprocessor Working Group Report, 1990.

{B75}/usr/group Standards Committee. 1984 /usr/group Standard. Santa Clara, CA: UniForum, 1984.

{B76}X/Open Company, Ltd. X/Open Portability Guide, Issue 2. Amsterdam: Elsevier Science Publishers, 1987.

{B77}X/Open Company, Ltd. X/Open Portability Guide, Issue 3. Englewood Cliffs, NJ: Prentice-Hall, 1989.

A.4 Other Sources of Information

[B78] ISO/IEC JTC 1 N1335, Final Report of ISO/IEC JTC 1 TSG-1 on Standards Necessary to Define Interfaces for
Application Portability (IAP).

272 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Annex B Rationale and Notes

(Informative)

The annex is being published as an informative part of POSIX.1 to assist in the process of review. It contains historical
information concerning the contents of POSIX.1 and why features were included or discarded. It also contains notes
of interest to application programmers on recommended programming practices, emphasizing the consequences of
some aspects of POSIX.1 that may not be immediately apparent.14

B.1 Scope and Normative Cross-References

B.1.1 Scope

This rationale focuses primarily on additions, clarifications, and changes made to the UNIX system, from which
POSIX.1 was derived. It is not a rationale for the UNIX system as a whole, since the goal of the developers of POSIX.1
was to codify existing practice, not design a new operating system. No attempt is made in this rationale to defend the
pre-existing structure of UNIX systems. It is primarily deviations from existing practice, as codified in the base
documents, that are explained or justified here.

Material that is “outside the scope” or otherwise not addressed by this part of ISO/IEC 9945 is implicitly
“unspecified.” It may be included in an implementation, and thus the implementation does provide a specification for
it. The term “implementation defined” has a specific meaning in POSIX.1 and is not a synonym for “defined (or
specified) by the implementation.”

The rationale discusses some UNIX system features that were not adopted into POSIX.1. Many of these are features
that are popular in some UNIX system implementations, so that a user of those implementations might question why
they do not appear in POSIX.1. This rationale should provide the appropriate answers.

There are choices allowed by POSIX.1 for some details of the interface specification; some of these are specifiable
optional subsets of POSIX.1. See B.2.9.

Although the services POSIX.1 provides have been defined in the C language, the concept of providing fundamental,
standardized services should not be restricted only to programs of a particular programming language. The possibility
of implementing interfaces in alternate programming languages inspired the term POSIX.1 with a C Language
Binding. The word Binding refers to the binding of a conceptual set of services and a standardized C interface that
establishes rules and syntax for accessing them. Future international standards are expected to separate the C language
binding from the language-independent services of POSIX.1 and to include bindings for other programming
languages.

The C Standard {2} will be the basis for functional definitions of core services that are independent of programming
languages. POSIX.1 as it stands now can be thought of as a C Language Binding. Sections 1 through 7, and 9,
correspond roughly to the C language implementation of what will be defined in the programming language-
independent core services portion of POSIX.1; Section 8 corresponds to the C language-specific portion.

The criteria used to choose the programming language-independent core services may be different from those
expected. The core services represent services that are common to those programming languages likely to form
language bindings to POSIX.1—the greatest common denominator. They are not chosen to reflect the most important
system services of an ideal operating system. For this reason, some fundamental system services are not included in
the language-independent core. As an example, memory management routines would at first seem to be a core

14The material in this annex is derived in part from copyrighted draft documents developed under the sponsorship of UniForum, as part of an
ongoing program of that association to support the POSIX standards program efforts.

Copyright © 1996 IEEE All Rights Reserved 273

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

service—they are an absolutely fundamental system service. They must, however, be included in language-specific
portions of POSIX.1 because programming languages such as FORTRAN have traditionally not provided memory
management. Categorizing memory management as a core service would impose unreasonable requirements for
FORTRAN implementations.

Any programming language traditionally supporting memory management should include those routines in the
language-dependent portions of their bindings. Work will be done at a later time to standardize the classes of functions
that must be included in the language-dependent portions of language bindings if those functions have been
traditionally implemented for that language. This will ensure that certain classes of critical functions, such as memory
management, will not be excluded from any applicable language binding; see B.1.3.3.

POSIX.1 is not a tutorial on the use of the specified interface, nor is this rationale. However, this part of ISO/IEC 9945
includes a bibliography of well-regarded historical documentation on the UNIX system in A.3.

B.1.1.1 POSIX.1 and the C Standard

Some C language functions and definitions were handled by POSIX.1, but most were handled by the C Standard {2}.
The general guideline is that POSIX.1 retained responsibility for operating-system specific functions, while the C
Standard {2} defined C library functions. See also B.2.7 and B.8.

There are several areas in which the two standards differ philosophically:

1) Function parameter type lists. These appear in the syntax of the C Standard {2}. In this version of POSIX.1,
the parameter lists were restated in terms of these function prototypes. There were two major reasons for
making this change from IEEE Std 1003.1-1988 : the use of the C Standard {2} was rapidly becoming more
widespread, and implementors were experiencing difficulties with some of the function prototypes where
guidance was not provided in POSIX.1. (The modifier const provided the most difficulty.) Specific
guidance and permission remains in POSIX.1 for translation to common-usage C.

2) Single vs. multiple processes. The C Standard {2} specifies a language that can be used on single-process
operating systems and as a freestanding base for the implementation of operating systems or other stand alone
programs. However, the POSIX.1 interface is that of a multiprocess timesharing system. Thus, POSIX.1 has
to take multiple processes into account in places where the C Standard {2} does not mention processes at all,
such as kill(). See also B.3.3.1.1B.1.3.1.1.

3) Single vs. multiple operating system environments. The C Standard {2} specifies a language that may be
useful on more than one operating system and thus has means of tailoring itself to the particular current
environment. POSIX.1 is an operating system interface specification and thus by definition is only concerned
with one operating system environment, even though it has been carefully written to be broadly
implementable (see Broadly Implementable in the Introduction) in terms of various underlying operating
systems. See also B.1.3.1.1.

4) Translation vs. execution environment. POSIX.1 is primarily concerned with the C Standard {2} execution
environment, leaving the translation environment to the C Standard {2}. See also B.1.3.1.1.

5) Hosted vs. freestanding implementations. All POSIX.1 implementations are hosted in the sense of the C
Standard {2}. See also the remarks on conformance in the Introduction.

6) Text vs. binary file modes. The C Standard {2} defines text and binary modes for a file. But the POSIX.1
interface and historical implementations related to it make no such distinction, and all functions defined by
POSIX.1 treat files as if these modes were identical. (It should not be stated that POSIX.1 files are either text
or binary.) The definitions in the C Standard {2} were written so that this interpretation is possible. In
particular, text mode files are not required to end with a line separator, which also means that they are not
required to include a line separator at all.

Furthermore, there is a basic difference in approach between the Rationale accompanying the C Standard {2} and this
Rationale Annex. The C Standard {2} Rationale, a separate document, addresses almost all changes as differences
from the Base Documents of the C Standard {2}, usually either Kernighan and Ritchie {B57} or the 1984 /usr/group
Standard {B75} . This Rationale cannot do that, since there are many more variants of (and Base Documents for) the

274 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

operating system interface than for the C language. The most noticeable aspect of this difference is that the C Standard
{2} Rationale identifies “QUIET CHANGES” from the Base Documents. This Annex cannot include such markings,
since a quiet change from one historical implementation may correspond exactly to another historical implementation,
and may be very noticeable to an application written for yet another.

The following subclauses justify the inclusion or omission of various C language functions in POSIX.1 or the C
Standard {2}.

B.1.1.1.1 Solely by POSIX.1

These return parameters from the operating system environment: ctermid(), ttyname(), and isatty().

The fileno() and fdopen() functions map between C language stream pointers and POSIX.1 file descriptors.

B.1.1.1.2 Solely by the C Standard

There are many functions that are useful with the operating system interface and are required for conformance with
POSIX.1, but that are properly part of the C Language. These are listed in 8.1, which also notes which functions are
defined by both POSIX.1 and the C Standard {2}. Certain terms defined by the C Standard {2} are incorporated by
POSIX.1 in 2.7.

Some routines were considered too specialized to be included in POSIX.1. These include bsearch() and qsort().

B.1.1.1.3 By Neither POSIX.1 Nor the C Standard

Some functions were considered of marginal utility and problematical when international character sets were
considered: _toupper(), _tolower(), toascii(), and isascii().

Although malloc() and free() are in the C Standard {2} and are required by 8.1 of POSIX.1, neither brk() nor sbrk()
occur in either standard (although they were in the 1984 / usr / group Standard {B75}), because POSIX.1 is designed
to provide the basic set of functions required to write a Conforming POSIX.1 Application; the underlying
implementation of malloc() or free() is not an appropriate concern for POSIX.1.

B.1.1.1.4 Base by POSIX.1, Additions by the C Standard

Since the C Standard {2} does not depend on POSIX.1 in any way, there are no items in this category.

B.1.1.1.5 Base by the C Standard, Additions by POSIX.1

The C Standard {2} has to define errno if only because examining that variable offers the only way to determine when
some mathematics routines fail. But POSIX.1 uses it more extensively and adds some semantics to it in 2.4, which also
defines some values for it.

Many numerical limits used by the C Standard {2} were incorporated by POSIX.1 in 2.8, and some new ones were
added, all to be found in the header <limits.h>.

The C Standard {2} provides signal(), a minimal functionality for interrupts. The POSIX.1 definition replaces this
with an elaborate mechanism that deals with multiple processes and is reliable when signals come from outside
sources.

The time() function is used by the C Standard {2}, but POSIX.1 further specifies the time value.

The getenv() function is referenced in 2.6 and 3.1.2 and is also defined by the C Standard {2}.

Copyright © 1996 IEEE All Rights Reserved 275

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The rename() function is extended to further specify its behavior when the new filename already exists or either
argument refers to a directory.

The setlocale() function and the handling of time zones were further specified to take advantage of the POSIX
environment.

The standard-I/O functions were specified in terms of their relationship to file descriptors and the relationship between
multiple processes.

B.1.1.1.6 Related Functions by Both

The C Standard {2} definition of compliance and the POSIX.1 definition of conformance are similar, although the
latter notes certain potential hardware limitations.

POSIX.1 defined a portable filename character set in 2.2.2 that is like the C Standard {2} identifier character set.
However, POSIX.1 did not allow upper and lowercase characters to be considered equivalent. See filename portability
in 2.3.4.

The exit() function is defined only by the C Standard {2} because it refers to closing streams, and that subject, as well
as fclose() itself, is defined almost entirely by the C Standard {2}. But POSIX.1 defined _exit(), which also adds
semantics to exit(). This allows POSIX.1 to omit references to the C Standard {2} atexit() function.

POSIX.1 defined kill(), while the C Standard {2} defined raise(), which is similar except that it does not have a process
ID argument, since the language defined by the C Standard {2} does not incorporate the idea of multiple processes.

The new functions sigsetjmp() and siglongjmp() were added to provide similar functions to the C Standard {2}
setjmp() and longjmp() that additionally save and restore signal state.

B.1.1.2 Threads

Threads are an emerging model for expressing parallelism within a process in POSIX.

On a system that provides hardware and software support for parallel execution, the use of threads can increase the
speed of execution by providing an application programmer with the ability to utilize all the available processors
simultaneously.

Even on a uniprocessor system, threads are useful for mapping asynchronous behavior into equivalent synchronous
behavior such as providing I/O parallelism, controlling asynchronous computations, or structuring applications
composed of many logically distinct tasks (e.g., simulations and windowing systems).

The thread model is based on a well-understood synchronous, procedural model consistent with the C function model.
Threads can be used to model the parallelism inherent in windowing environments, realtime event processing, Ada
tasking, transaction processing, and networked/distributed systems.

It is required that a threads standard provide for the following:

 Preservation of POSIX.1 syntax and semantics relative to threads.
 Support for a model for explicit parallelism within a process. This requires support for the explicit creation

and termination of multiple schedulable threads of control within the address space of a process and requires
that a suspended thread not suspend other threads within the same process.

 Support for various models of thread scheduling. Unless the system is a multiprocessor, these shall include
deterministic scheduling in a manner equivalent to the scheduling options available under this part of ISO/
IEC 9945.

276 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

 Support for the efficient synchronization of access to objects within the process address space by multiple
threads; for example, access to critical sections.

 Support for a facility that allows for one or more threads to wait for the occurrence of some condition internal
to the process; for example, waiting for the completion of a computation.

 Support for a mechanism that allows threads to maintain thread-specific data.

The design of this facility involved compromises between compatibility with existing practice and the optimal solution
to a problem. The philosophy adopted was to aim for a high level of compatibility and to break with existing practice
only if absolutely necessary.

B.1.2 Normative Cross-References

There is no additional rationale provided for this subclause.

B.1.3 Conformance

These conformance definitions are descended from those of conforming implementation, conforming application, and
conforming portable application of early drafts, but were changed to clarify

1) Extensions, options, and limits;
2) Relations among the three terms, and;
3) Relations between POSIX.1 and the C Standard {2}.

B.1.3.1 Implementation Conformance

These definitions allow application developers to know what to depend on in an implementation.

There is no definition of a strictly conforming implementation; that would be an implementation that provides only
those facilities specified by POSIX.1 with no extensions whatsoever. This is because no actual operating system
implementation can exist without system administration and initialization facilities that are beyond the scope of
POSIX.1.

B.1.3.1.1 Requirements

The word “support” is used, rather than “provide,” in order to allow an implementation that has no resident software
development facilities, but that supports the execution of a Strictly Conforming POSIX.1 Application, to be a
conforming implementation. See also B.1.1.1.

B.1.3.1.2 Documentation

The conforming documentation is required to use the same numbering scheme as POSIX.1 for purposes of cross
referencing. This requirement is consistent with and supplements the verification test assertions being developed by
other POSIX groups. All options that an implementation chooses shall be reflected in <limits.h> and
<unistd.h>.

Note that the use of “may” in terms of where conformance documents record where implementations may vary implies
that it is not required to describe those features identified as undefined or unspecified.

Other aspects of systems must be evaluated by purchasers for suitability. Many systems incorporate buffering
facilities, maintaining updated data in volatile storage and transferring such updates to nonvolatile storage
asynchronously. Various exception conditions, such as a power failure or a system crash, can cause this data to be lost.
The data may be associated with a file that is still open, with one that has been closed, with a directory, or with any
other internal system data structures associated with permanent storage. This data can be lost, in whole or part, so that
only careful inspection of file contents could determine that an update did not occur.

Copyright © 1996 IEEE All Rights Reserved 277

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Also, interrelated file activities, where multiple files and/or directories are updated, or where space is allocated or
released in the file system structures, can leave inconsistencies in the relationship between data in the various files and
directories, or in the file system itself. Such inconsistencies can break applications that expect updates to occur in a
specific sequence, so that updates in one place correspond with related updates in another place.

For example, if a user creates a file, places information in the file, and then records this action in another file, a system
or power failure at this point followed by restart may result in a state in which the record of the action is permanently
recorded, but the file created (or some of its information) has been lost. The consequences of this to the user may be
undesirable. For a user on such a system, the only safe action may be to require the system administrator to have a
policy that requires, after any system or power failure, that the entire file system must be restored from the most recent
backup copy (causing all intervening work to be lost).

The characteristics of each implementation will vary in this respect and may or may not meet the requirements of a
given application or user. Enforcement of such requirements is beyond the scope of POSIX.1. It is up to the purchaser
to determine what facilities are provided in an implementation that affect the exposure to possible data or sequence
loss and also what underlying implementation techniques and/or facilities are provided that reduce or limit such loss
or its consequences.

B.1.3.1.3 Conforming Implementation Options

Within POSIX.1 there are some symbolic constants that, if defined, indicate that a certain option is enabled. Other
symbolic constants exist in POSIX.1 for other reasons. This clause helps clarify which constants are related to true
“options” and which are related more to the behavior of differing systems.

To accommodate historical implementations where there were distinct semantics in certain situations, but where one
was not clearly better or worse than another, early drafts of POSIX.1 permitted either of (typically) two options using
“may.” At the request of the working group developing test assertions, this was changed to be specified by formal
options with flags. It quickly became obvious that these would be treated as options that could be selected by a
purchaser, when the intent of the developers of POSIX.1 was to allow either behavior (or both, in some cases) to
conform to the standard, and to constrain the application to accommodate either. Thus, these options were removed
and the phrase “An implementation may either” introduced to replace the option. Where this phrase is used, it indicates
that an application shall tolerate either behavior.

It is intended that all conforming applications shall tolerate either behavior and that only in the most exceptional of
circumstances (driven by technical need) should a purchaser specify only one behavior. Backwards compatibility is not
considered exceptional, as this is not consistent with the intent of POSIX.1: to promote the portability of applications
(and the development of portable applications).

An application can tolerate these behaviors either by ignoring the differences (if they are irrelevant to the application)
or by taking an action to assure a known state. It might be that that action would be redundant on some
implementations.

Validation programs, which are applications in this sense, could either report the actual result found or simply ignore
the difference. In no case should either acceptable behavior be treated as an error. This may complicate the validation
slightly, but is more consistent with the intent of this permissible variation in behavior.

In certain circumstances, the behavior may vary for a given process. For example, in the presence of networked file
systems, whether or not dot and dot-dot are present in the directory may vary with the directory being searched, and the
program would only be portable if it tolerated, but did not require, the presence of these entries in a directory.

In situations like this, it is typically easier to simply ignore dot and dot-dot if they are found than to try to determine if
they should be expected or not.

278 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

B.1.3.2 Application Conformance

These definitions guide users or adaptors of applications in determining on which implementations an application will
run and how much adaptation would be required to make it run on others. These three definitions are modeled after
related ones in the C Standard {2}.

POSIX.1 occasionally uses the expressions portable application or conforming application. As they are used, these
are synonyms for any of these three terms. The differences between the three classes of application conformance relate
to the requirements for other standards, or, in the case of the Conforming POSIX.1 Application Using Extensions, to
implementation extensions. When one of the less explicit expressions is used, it should be apparent from the context
of the discussion which of the more explicit names is appropriate.

B.1.3.2.1 Strictly Conforming POSIX.1 Application

This definition is analogous to that of a C Standard {2} conforming program.

The major difference between a Strictly Conforming POSIX.1 Application and a C Standard {2} strictly conforming
program is that the latter is not allowed to use features of POSIX.1 that are not in the C Standard {2}.

B.1.3.2.2 Conforming POSIX.1 Application

Examples of <National Bodies> include ANSI, BSI, and AFNOR.

B.1.3.2.3 Conforming POSIX.1 Application Using Extensions

Due to possible requirements for configuration or implementation characteristics in excess of the specifications in
2.8.2 or related to the hardware (such as array size or file space), not every Conforming POSIX.1 Application Using
Extensions will run on every conforming implementation.

B.1.3.3 Language-Dependent Services for the C Programming Language

POSIX.1 is, for historical reasons, both a specification of an operating system interface and a C binding for that
specification. It is clear that these need to be separated into unique entities, but the urgency of getting the initial
standard out, and the fact that C is the de facto primary language on systems similar to the UNIX system, makes this
a necessary and workable situation.

Nevertheless, work will be done on language bindings, beyond that for C before the specification and the current
binding are separated. Language bindings for languages other than C should not model themselves too closely on the
C binding and in the process pick up various idiosyncrasies of C.

Where functionality is duplicated in POSIX.1 [e.g., open() and creat()] there is no reason for that duplication to be
carried forward into another language. On the other hand, some languages have functionality already in them that is
essentially the same as that provided in POSIX.1. In this case, a mapping between the functionality in that language
and the underlying functionality in POSIX.1 is a better choice than mimicking the C binding.

Since C has no syntax for I/O, and I/O is a large fraction of POSIX.1, the paradigm of functions has been used. This
may not be appropriate to another language. For example, FORTRAN's REWIND statement is a candidate to map onto
a special case of lseek(), and its SEEK statement may completely cover for lseek(). If this is the case, there is no reason
to provide SUBROUTINEs with the same functionality. In the more general case, file descriptors and FORTRAN's
logical unit numbers may have a useful mapping. FORTRAN's ERR= option in I/O operations might replace returning
−1; the whole concept of errors might be handled differently.

Copyright © 1996 IEEE All Rights Reserved 279

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

As was done with C, it is not unreasonable for other language bindings to specify some areas that are undefined or
unspecified by the underlying language standard or that are permissible as extensions. This may, in fact, solve some
difficult problems.

Using as much as possible of the target language in the binding enhances portability. If a program wishes to use some
POSIX.1 capabilities, and these are bound to the language statements rather than appearing as additional procedure or
function calls, and the program does in fact conform to the language standard while using those functions, it will port
to a larger range of systems than one that is obligated to use procedure or function calls introduced specifically for the
binding to POSIX.1 to do the same thing.

A program that requires the POSIX.1 capabilities that are not bound to the standard language directly (as above) has
no chance to be portable outside the POSIX.1 environment. It does not matter whether the extension is syntactic or a
new function; it still will not port without effort. Given this, it seems unreasonable not to consider language extensions
when determining how best to map the functionality of POSIX.1 into a particular language binding. For example, a
new statement similar to READ, which loads the values from a call like stat(), might be the best solution for reading
the data lists returned as structures in C into a list of FORTRAN variables.

No attempt to mimic printf() or scanf() (or the rest of the C Standard {2} functions) should be made; the equivalent
functions in the language should be used. (Formatted READ and WRITE in FORTRAN, read/readln and
write/writeln in Pascal, for example.)

There is an inherent special relationship between an operating system standard and a language standard. It is unlikely
that standards for other kinds of features (such as graphics) will bind directly to statements in a general purpose
language. However, an operating system standard should provide the services required by a language. This is an
unusual situation, and the tendency to use only new functions and procedures when creating a binding should be
examined carefully. (A one-to-one binding in all cases is probably not possible, but bindings such as those for standard
I/O in Section 8 may be possible.)

Binding directly to the language, where possible, should be encouraged both by making maximal use of the mapping
between the operating system and the language that naturally exists and, where appropriate, by having the languages
request changes to the operating system to facilitate such a mapping. (A future inclusion of a truncate function,
specifically for the FORTRAN ENDFILE statement, but that is also generally useful, is a good example.)

Part of the job of creating a binding is choosing names for functions that are introduced, and these will need to be
appropriate for that language. It is possible to use other than the most restrictive form of a name, since, as discussed
previously, using these functions inherently makes the application not portable to systems that are not POSIX.1, and if
POSIX.1 conformant systems typically accept names that the lowest-common-denominator system will not, there is
no reason to a priori exclude such names. (The specific example is C, where it is typically “non-UNIX” systems that
limit external identifiers to six characters.)

See B.1.1 for additional information about C bindings.

B.1.3.3.1 Types of Conformance

There is no additional rationale provided for this subclause.

B.1.3.3.2 C Standard Language-Dependent System Support

The issue of “namespace pollution” needs to be understood in this context. See B.2.7.2.

B.1.3.3.3 Common-Usage C Language-Dependent System Support

The issue of “namespace pollution” needs to be understood in this context. See B.2.7.2.

280 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

B.1.3.4 Other C Language-Related Specifications

The information concerning the use of library functions was adapted from a description in the C Standard {2}. Here is
an example of how an application program can protect itself from library functions that may or may not be macros,
rather than true functions:

The atoi () function may be used in any of several ways:

1) By use of its associated header (possibly generating a macro expansion)
 #include <stdlib.h>
 /* ... */
 i = atoi (str);

2) By use of its associated header (assuredly generating a true function call)
 #include <stdlib.h>
 #undef atoi
 /* ... */
 i = atoi (str);
 or
 #include <stdlib.h>
 /* ... */
 i = (atoi) (str);

3) By explicit declaration
 extern int atoi (const char *);
 /* ... */
 i = atoi (str);

4) By implicit declaration
 /* ... */
 i = atoi (str);
(Assuming no function prototype is in scope. This is not allowed by the C Standard {2} for functions with
variable arguments; furthermore, parameter type conversion “widening” is subject to different rules in this
case.)

Note that the C Standard {2} reserves names starting with '_' for the compiler. Therefore, the compiler could, for
example, implement an intrinsic, built-in function _asm_builtin_atoi(), which it recognized and expanded into inline
assembly code. Then, in <stdlib.h>, there could be the following:

 #define atoi (X) _asm_builtin_atoi (X)

The user's “normal” call to atoi() would then be expanded inline, but the implementor would also be required to
provide a callable function named atoi() for use when the application requires it; for example, if its address is to be
stored in a function pointer variable.

B.1.3.5 Other Language-Related Specifications

It is intended that “long” identifiers and multicase linkage would be supported on POSIX.1 systems for all languages,
including C. This is where that condition is stated. The portion of the sentence about “if such extensions are” is
included to permit languages that have an absolute maximum, or an absolute requirement of case folding, to be
conformant.

The requirement for longer names is included for several reasons:

1) Most systems similar to POSIX.1 are already conformant.

Copyright © 1996 IEEE All Rights Reserved 281

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

2) Many existing language standards restrict the length of names to accommodate existing systems that cannot
be modified to allow longer names. However, those systems are not expected to be POSIX.1 conformant, for
other reasons.

3) Many historical applications rely on such long names.
4) Future languages (such as FORTRAN 88) are likely to require it.

Specific to FORTRAN 77 {B21} , that standard permits long names, and this part of ISO/IEC 9945 requires that
FORTRAN implementations running on POSIX.1 support long names. The requirements of case distinction and
length are considered orthogonal, but both are required if both are permitted by the language. Note that a language can
be conformant to POSIX.1 even though a binding does not exist, because an application need not step outside the
language standard to write a useful program.

This requirement permits the use of reasonable-length names in a POSIX.1 binding to a language such as FORTRAN.
Clearly nothing prohibits a program that does conform to the FORTRAN minima to compile and run on POSIX.1.

It is within the constraints of POSIX.1 to specify the behavior of the language processors and linker, consistent with
the language, as it is a specification for an execution environment. This is different than a package such as GKS {B27}
, which can reasonably be expected to be ported to a system that enforces the language minima.

It might be argued that this specification is appropriate to the language binding committees for POSIX generally, rather
than specifically to POSIX.1. That argument misses the intent. The intent is to require that the linker and other code
that handles “object code” (a concept not formally defined in POSIX.1) are able to support long names. This
requirement, being one that spans all languages, belongs in the specification standard, rather than tied to any one
language. Note that it is also somewhat permissive, in that if the language is unable to deal with long names it is
permitted not to require them, but it does remove the argument that “the loader might not permit long names, so [a
specific] language binding should not force the issue.”

A strictly conforming application for a given language could not use any extensions outside of POSIX.1 for that
language (regardless of the underlying operating system). An application will strictly conform to POSIX.1 if it
conforms to the language using additional interfaces from that language's binding to POSIX.1.

B.2 Definitions and General Requirements

B.2.1 Conventions

There is no additional rationale provided for this subclause.

B.2.2 Definitions

B.2.2.1 Terminology

The meanings specified in POSIX.1 for the words shall, should, and may are mandated by ISO/IEC directives.

In this Rationale, the words shall, should, and may are sometimes used to illustrate similar usages in the standard.
However, the Rationale itself does not specify anything regarding implementations or applications.

conformance document: As a practical matter, the conformance document is effectively part of the system
documentation. They are distinguished by POSIX.1 so that they can be referred to distinctly.

implementation defined: This definition is analogous to that of the C Standard {2} and, together with undefined and
unspecified, provides a range of specification of freedom allowed to the interface implementor.

282 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

may: The use of may has been limited as much as possible, due both to confusion stemming from its ordinary English
meaning and to objections regarding the desirability of having as few options as possible and those as clearly specified
as possible.

shall: Declarative sentences are sometimes used in POSIX.1 as if they included the word shall, and facilities thus
specified are no less required. For example, the two statements:

1) The foo() function shall return zero
2) The foo() function returns zero

are meant to be exactly equivalent. It is expected that a future version of POSIX.1 will be rewritten to use the “shall”
form more consistently.

should: In POSIX.1, the word should does not usually apply to the implementation, but rather to the application. Thus,
the important words regarding implementations are shall, which indicates requirements, and may, which indicates
options.

obsolescent: The term obsolescent was preferred over deprecated to represent functionality that should not be used in
new work. The term obsolescent is more intuitive and reduced the possibility of misunderstanding in the intended
context.

supported: An example of this concept is the setpgid() function. If the implementation does not support the job
control feature provided under the Job Control option, it nevertheless has to provide a function named setpgid(), even
though its only ability is that of returning [ENOSYS].

system documentation: The system documentation should normally describe the whole of the implementation,
including any extensions provided by the implementation. Such documents normally contain information at least as
detailed as the POSIX.1 specifications. Few requirements are made on the system documentation, but the term is
needed to avoid a dangling pointer where the conformance document is permitted to point to the system
documentation.

undefined: See implementation defined.

unspecified: See implementation defined.

The definitions for unspecified and undefined appear nearly identical at first examination, but are not. Unspecified
means that a conforming program may deal with the unspecified behavior, and it should not care what the outcome is.
Undefined says that a conforming program should not do it because no definition is provided for what it does (and
implicitly it would care what the outcome was if it tried it). It is important to remember, however, that if the syntax
permits the statement at all, it must have some outcome in a real implementation.

Thus, the terms undefined and unspecified apply to the way the application should think about the feature. In terms of
the implementation it is always “defined”—there is always some result, even if it is an error. The implementation is
free to choose the behavior it prefers.

This also implies that an implementation, or another standard, could specify or define the result in a useful fashion.
The terms apply to POSIX.1 specifically.

The term implementation defined implies requirements for documentation that are not required for undefined (or
unspecified). Where there is no need for a conforming program to know the definition, the term undefined is used, even
though implementation defined could also have been used in this context. There could be a fourth term, specifying
“POSIX.1 does not say what this does; it is acceptable to define it in an implementation, but it does not need to be
documented,” and undefined would then be used very rarely for the few things for which any definition is not useful.

In many places POSIX.1 is silent about the behavior of some possible construct. For example, a variable may be
defined for a specified range of values and behaviors are described for those values; nothing is said about what happens
if the variable has any other value. That kind of silence can imply an error in the standard, but it may also imply that
the standard was intentionally silent and that any behavior is permitted. There is a natural tendency to infer that if the

Copyright © 1996 IEEE All Rights Reserved 283

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

standard is silent, a behavior is prohibited. That is not the intent. Silence is intended to be equivalent to the term
unspecified.

B.2.2.2 General Terms

Many of these definitions are necessarily circular, and some of the terms (such as process) are variants of basic
computing science terms that are inherently hard to define. Some are defined by context in the prose topic descriptions
of the general concepts in 2.3, but most appear in the alphabetical glossary format of the terms in 2.2.2.

Some definitions must allow extension to cover terms or facilities that are not explicitly mentioned in POSIX.1. For
example, the definition of file must permit interpretation to include streams, as found in the Eighth Edition (a research
version of the UNIX system). The use of abstract intermediate terms (such as object in place of, or in addition to, file)
has mostly been avoided in favor of careful definition of more traditional terms.

Some terms in the following list of notes do not appear in POSIX.1; these are marked prefixed with a asterisk (*).
Many of them have been specifically excluded from POSIX.1 because they concern system administration,
implementation, or other issues that are not specific to the programming interface. Those are marked with a reason,
such as “implementation defined.”

appropriate privileges: One of the fundamental security problems with many historical UNIX systems has been that
the privilege mechanism is monolithic—a user has either no privileges or all privileges. Thus, a successful “trojan
horse” attack on a privileged process defeats all security provisions. Therefore, POSIX.1 allows more granular
privilege mechanisms to be defined. For many historical implementations of the UNIX system, the presence of the
term appropriate privileges in POSIX.1 may be understood as a synonym for super-user (UID 0). However, future
systems will undoubtedly emerge where this is not the case and each discrete controllable action will have appropriate
privileges associated with it. Because this mechanism is implementation defined, it must be described in the
conformance document. Although that description affects several parts of POSIX.1 where the term appropriate
privilege is used, because the term implementation defined only appears here, the description of the entire mechanism
and its effects on these other sections belongs in clause 2.3 of the conformance document. This is especially
convenient for implementations with a single mechanism that applies in all areas, since it only needs to be described
once.

clock tick: The C Standard {2} defines a similar interval for use by the clock() function. There is no requirement that
these intervals be the same. In historical implementations these intervals are different. Currently only the times()
function uses values stated in terms of clock ticks, although other functions might use them in the future.

controlling terminal: The question of which of possibly several special files referring to the terminal is meant is not
addressed in POSIX.1.

*device number: The concept is handled in stat() as ID of device.

direct I/O: Historically, direct I/O refers to the system bypassing intermediate buffering, but may be extended to cover
implementation-specific optimizations.

directory: The format of the directory file is implementation defined and differs radically between System V and
4.3BSD. However, routines (derived from 4.3BSD) for accessing directories are provided in 5.1.2 and certain
constraints on the format of the information returned by those routines are made in 5.1.1.

directory entry: Throughout the document, the term link is used [about the link() function, for example] in describing
the objects that point to files from directories.

dot: The symbolic name dot is carefully used in POSIX.1 to distinguish the working directory filename from a period
or a decimal point.

dot-dot: Historical implementations permit the use of these filenames without their special meanings. Such use
precludes any meaningful use of these filenames by a Conforming POSIX.1 Application. Therefore, such use is
considered an extension, the use of which makes an implementation nonconforming. See also B.2.3.6.

284 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Epoch: Historically, the origin of UNIX system time was referred to as “00:00:00 GMT, January 1, 1970.” Greenwich
Mean Time is actually not a term acknowledged by the international standards community; therefore, this term, Epoch,
is used to abbreviate the reference to the actual standard, Coordinated Universal Time. The concept of leap seconds is
added for precision; at the time POSIX.1 was published, 14 leap seconds had been added since January 1, 1970. These
14 seconds are ignored to provide an easy and compatible method of computing time differences.

Most systems' notion of “time” is that of a continuously increasing value, so this value should increase even during
leap seconds. However, not only do most systems not keep track of leap seconds, but most systems are probably not
synchronized to any standard time reference. Therefore, it is inappropriate to require that a time represented as seconds
since the Epoch precisely represent the number of seconds between the referenced time and the Epoch.

It is sufficient to require that applications be allowed to treat this time as if it represented the number of seconds
between the referenced time and the Epoch. It is the responsibility of the vendor of the system, and the administrator
of the system, to ensure that this value represents the number of seconds between the referenced time and the Epoch
as closely as necessary for the application being run on that system.

It is important that the interpretation of time names and seconds since the Epoch values be consistent across
conforming systems. That is, it is important that all conforming systems interpret “536457599 seconds since the
Epoch” as 59 seconds, 59 minutes, 23 hours 31 December 1986, regardless of the accuracy of the system's idea of the
current time. The expression is given to assure a consistent interpretation, not to attempt to specify the calendar. The
relationship between tm_yday and the day of week, day of month, and month is presumed to be specified elsewhere
and is not given in POSIX.1.

Consistent interpretation of seconds since the Epoch can be critical to certain types of distributed applications that rely
on such timestamps to synchronize events. The accrual of leap seconds in a time standard is not predictable. The
number of leap seconds since the Epoch will likely increase. POSIX.1 is more concerned about the synchronization of
time between applications of astronomically short duration. These concerns are expected to become more critical in
the future.

Note that tm_yday is zero-based, not one-based, so the day number in the example above is 364. Note also that the
division is an integer division (discarding remainder) as in the C language.

Note also that in Section 8, the meaning of gmtime(), localtime(), and mktime() is specified in terms of this expression.
However, the C Standard {2} computes tm_yday from tm_mday, tm_mon, and tm_year in mktime(). Because it is
stated as a (bidirectional) relationship, not a function, and because the conversion between month-day-year and day-
of-year dates is presumed well known and is also a relationship, this is not a problem.

Note that the expression given will fail after the year 2099. Since the issue of time_t overflowing a 32-bit integer
occurs well before that time, both of these will have to be addressed in revisions to POSIX.1.

FIFO special file: See pipe in B.2.2.2.

file: It is permissible for an implementation-defined file type to be nonreadable or nonwritable.

file classes: These classes correspond to the historical sets of permission bits. The classes are general to allow
implementations flexibility in expanding the access mechanism for more stringent security environments. Note that a
process is in one and only one class, so there is no ambiguity.

filename: At the present time, the primary responsibility for truncating filenames containing multibyte characters
must reside with the application. Some industry groups involved in internationalization believe that in the future the
responsibility must reside with the kernel. For the moment, a clearer understanding of the implications of making the
kernel responsible for truncation of multibyte file names is needed.

Character level truncation was not adopted because there is no support in POSIX.1 that advises how the kernel
distinguishes between single and multibyte characters. Until that time, it must be incumbent upon application writers
to determine where multibyte characters must be truncated.

file system: Historically the meaning of this term has been overloaded with two meanings: that of the complete file
hierarchy and that of a mountable subset of that hierarchy; i.e., a mounted file system. POSIX.1 uses the term file

Copyright © 1996 IEEE All Rights Reserved 285

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

system in the second sense, except that it is limited to the scope of a process (and a process's root directory). This usage
also clarifies the domain in which a file serial number is unique.

*group file: Implementation defined; see B.9.

*historical implementations: This refers to previously existing implementations of programming interfaces and
operating systems that are related to the interface specified by POSIX.1. See also “Minimal Changes to Historical
Implementations” in the Introduction.

*hosted implementation: This refers to a POSIX.1 implementation that is accomplished through interfaces from the
POSIX.1 services to some alternate form of operating system kernel services. Note that the line between a hosted
implementation and a native implementation is blurred, since most implementations will provide some services
directly from the kernel and others through some indirect path. [For example, fopen() might use open(); or mkfifo()
might use mknod().] There is no necessary relationship between the type of implementation and its correctness,
performance, and/or reliability.

*implementation: The term is generally used instead of its synonym, system, to emphasize the consequences of
decisions to be made by system implementors. Perhaps if no options or extensions to POSIX.1 were allowed, this
usage would not have occurred.

The term specific implementation is sometimes used as a synonym for implementation. This should not be interpreted
too narrowly; both terms can represent a relatively broad group of systems. For example, a hardware vendor could
market a very wide selection of systems that all used the same instruction set, with some systems desktop models and
others large multiuser minicomputers. This wide range would probably share a common POSIX.1 operating system,
allowing an application compiled for one to be used on any of the others; this is a [specific] implementation.

However, that wide range of machines probably has some differences between the models. Some may have different
clock rates, different file systems, different resource limits, different network connections, etc., depending on their
sizes or intended usages. Even on two identical machines, the system administrators may configure them differently.
Each of these different systems is known by the term a specific instance of a specific implementation. This term is only
used in the portions of POSIX.1 dealing with run-time queries: sysconf() and pathconf().

*incomplete pathname: Absolute pathname has been adequately defined.

job control: In order to understand the job-control facilities in POSIX.1 it is useful to understand how they are used
by a job-control-cognizant shell to create the user interface effect of job control.

While the job-control facilities supplied by POSIX.1 can, in theory, support different types of interactive job-control
interfaces supplied by different types of shells, there is historically one particular interface that is most common
(provided by BSD C Shell). This discussion describes that interface as a means of illustrating how the POSIX.1 job-
control facilities can be used.

Job control allows users to selectively stop (suspend) the execution of processes and continue (resume) their execution
at a later point. The user typically employs this facility via the interactive interface jointly supplied by the terminal I/
O driver and a command interpreter (shell).

The user can launch jobs (command pipelines) in either the foreground or background. When launched in the
foreground, the shell waits for the job to complete before prompting for additional commands. When launched in the
background, the shell does not wait, but immediately prompts for new commands.

If the user launches a job in the foreground and subsequently regrets this, the user can type the suspend character
(typically set to control-Z), which causes the foreground job to stop and the shell to begin prompting for new
commands. The stopped job can be continued by the user (via special shell commands) either as a foreground job or
as a background job. Background jobs can also be moved into the foreground via shell commands.

If a background job attempts to access the login terminal (controlling terminal), it is stopped by the terminal driver and
the shell is notified, which, in turn, notifies the user. [Terminal access includes read() and certain terminal control
functions and conditionally includes write().] The user can continue the stopped job in the foreground, thus allowing
the terminal access to succeed in an orderly fashion. After the terminal access succeeds, the user can optionally move
the job into the background via the suspend character and shell commands.

286 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Implementing Job Control Shells

The interactive interface described previously can be accomplished using the POSIX.1 job-control facilities in the
following way.

The key feature necessary to provide job control is a way to group processes into jobs. This grouping is necessary in
order to direct signals to a single job and also to identify which job is in the foreground. (There is at most one job that
is in the foreground on any controlling terminal at a time.)

The concept of process groups is used to provide this grouping. The shell places each job in a separate process group
via the setpgid() function. To do this, the setpgid() function is invoked by the shell for each process in the job. It is
actually useful to invoke setpgid() twice for each process: once in the child process, after calling fork() to create the
process, but before calling one of the exec functions to begin execution of the program, and once in the parent shell
process, after calling fork() to create the child. The redundant invocation avoids a race condition by ensuring that the
child process is placed into the new process group before either the parent or the child relies on this being the case. The
process group ID for the job is selected by the shell to be equal to the process ID of one of the processes in the job.
Some shells choose to make one process in the job be the parent of the other processes in the job (if any). Other shells
(e.g., the C Shell) choose to make themselves the parent of all processes in the pipeline (job). In order to support this
latter case, the setpgid() function accepts a process group ID parameter since the correct process group ID cannot be
inherited from the shell. The shell itself is considered to be a job and is the sole process in its own process group.

The shell also controls which job is currently in the foreground. A foreground and background job differ in two ways:
the shell waits for a foreground command to complete (or stop) before continuing to read new commands, and the
terminal I/O driver inhibits terminal access by background jobs (causing the processes to stop). Thus, the shell must
work cooperatively with the terminal I/O driver and have a common understanding of which job is currently in the
foreground. It is the user who decides which command should be currently in the foreground, and the user informs the
shell via shell commands. The shell, in turn, informs the terminal I/O driver via the tcsetpgrp() function. This indicates
to the terminal I/O driver the process group ID of the foreground process group (job). When the current foreground job
either stops or terminates, the shell places itself in the foreground via tcsetpgrp() before prompting for additional
commands. Note that when a job is created the new process group begins as a background process group. It requires
an explicit act of the shell via tcsetpgrp() to move a process group (job) into the foreground.

When a process in a job stops or terminates, its parent (e.g., the shell) receives synchronous notification by calling the
waitpid() function with the WUNTRACED flag set. Asynchronous notification is also provided when the parent
establishes a signal handler for SIGCHLD and does not specify the SA_NOCLDSTOP flag. Usually all processes in
a job stop as a unit since the terminal I/O driver always sends job-control stop signals to all processes in the process
group.

To continue a stopped job, the shell sends the SIGCONT signal to the process group of the job. In addition, if the job
is being continued in the foreground, the shell invokes tcsetpgrp() to place the job in the foreground before sending
SIGCONT. Otherwise, the shell leaves itself in the foreground and reads additional commands.

There is additional flexibility in the POSIX.1 job-control facilities that allows deviations from the typical interface.
Clearing the TOSTOP terminal flag (see 7.1.2.5) allows background jobs to perform write() functions without
stopping. The same effect can be achieved on a per-process basis by having a process set the signal action for
SIGTTOU to SIG_IGN.

Note that the terms job and process group can be used interchangeably. A login session that is not using the job control
facilities can be thought of as a large collection of processes that are all in the same job (process group). Such a login
session may have a partial distinction between foreground and background processes; that is, the shell may choose to
wait for some processes before continuing to read new commands and may not wait for other processes. However, the
terminal I/O driver will consider all these processes to be in the foreground since they are all members of the same
process group.

In addition to the basic job-control operations already mentioned, a job-control-cognizant shell needs to perform the
following actions:

Copyright © 1996 IEEE All Rights Reserved 287

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

When a foreground (not background)job stops, the shell must sample and remember the current terminal settings so
that it can restore them later when it continues the stopped job in the foreground [via the tcgetattr() and tcsetattr()
functions].

Because a shell itself can be spawned from a shell, it must take special action to ensure that subshells interact well with
their parent shells.

A subshell can be spawned to perform an interactive function (prompting the terminal for commands) or a
noninteractive function (reading commands from a file). When operating noninteractively, the job-control shell will
refrain from performing the job-control specific actions described above. It will behave as a shell that does not support
job control. For example, all jobs will be left in the same process group as the shell, which itself remains in the process
group established for it by its parent. This allows the shell and its children to be treated as a single job by a parent shell,
and they can be affected as a unit by terminal keyboard signals.

An interactive subshell can be spawned from another job-control-cognizant shell in either the foreground or
background. (For example, from the C Shell, the user can execute the command, csh&.) Before the subshell
activates job control by calling setpgid() to place itself in its own process group and tcsetpgrp() to place its new process
group in the foreground, it needs to ensure that it has already been placed in the foreground by its parent. (Otherwise,
there could be multiple jobcontrol shells that simultaneously attempt to control mediation of the terminal.) To
determine this, the shell retrieves its own process group via getpgrp() and the process group of the current foreground
job via tcgetpgrp(). If these are not equal, the shell sends SIGTTIN to its own process group, causing itself to stop.
When continued later by its parent, the shell repeats the process-group check. When the process groups finally match,
the shell is in the foreground and it can proceed to take control. After this point, the shell ignores all the job-control
stop signals so that it does not inadvertently stop itself.

Implementing Job Control Applications

Most applications do not need to be aware of job-control signals and operations; the intuitively correct behavior
happens by default. However, sometimes an application can inadvertently interfere with normal job-control
processing, or an application may choose to overtly effect job control in cooperation with normal shell procedures.

An application can inadvertently subvert job-control processing by “blindly” altering the handling of signals. A
common application error is to learn how many signals the system supports and to ignore or catch them all. Such an
application makes the assumption that it does not know what this signal is, but knows the right handling action for it.
The system may initialize the handling of job-control stop signals so that they are being ignored. This allows shells that
do not support job control to inherit and propagate these settings and hence to be immune to stop signals. A job-control
shell will set the handling to the default action and propagate this, allowing processes to stop. In doing so, the job-
control shell is taking responsibility for restarting the stopped applications. If an application wishes to catch the stop
signals itself, it should first determine their inherited handling states. If a stop signal is being ignored, the application
should continue to ignore it. This is directly analogous to the recommended handling of SIGINT described in the
UNIX Programmer's Manual {B43} .

If an application is reading the terminal and has disabled the interpretation of special characters (by clearing the ISIG
flag), the terminal I/O driver will not send SIGTSTP when the suspend character is typed. Such an application can
simulate the effect of the suspend character by recognizing it and sending SIGTSTP to its process group as the terminal
driver would have done. Note that the signal is sent to the process group, not just to the application itself; this ensures
that other processes in the job also stop. (Note also that other processes in the job could be children, siblings, or even
ancestors.) Applications should not assume that the suspend character is control-Z (or any particular value); they
should retrieve the current setting at startup.

Implementing Job Control Systems

The intent in adding 4.2BSD-style job control functionality was to adopt the necessary 4.2BSD programmatic
interface with only minimal changes to resolve syntactic or semantic conflicts with System V or to close recognized
security holes. The goal was to maximize the ease of providing both conforming implementations and Conforming
POSIX.1 Applications.

Discussions of the changes can be found in the clauses that discuss the specific interfaces. See B.3.2.1, B.3.2.2,
B.3.3.1.1, B.3.3.2, B.3.3.4, B.4.3.1, B.4.3.3, B.7.1.1.4, and B.7.2.4.

288 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

It is only useful for a process to be affected by job-control signals if it is the descendant of a job-control shell.
Otherwise, there will be nothing that continues the stopped process. Because a job-control shell is allowed, but not
required, by POSIX.1, an implementation must provide a mechanism that shields processes from job-control signals
when there is no job-control shell. The usual method is for the system initialization process (typically called init),
which is the ancestor of all processes, to launch its children with the signal handling action set to SIG_IGN for the
signals SIGTSTP, SIGTTIN, and SIGTTOU. Thus, all login shells start with these signals ignored. If the shell is not
job-control cognizant, then it should not alter this setting and all its descendants should inherit the same ignored
settings. At the point where a job-control shell is launched, it resets the signal handling action for these signals to be
SIG_DFL for its children and (by inheritance) their descendants. Also, shells that are not job-control cognizant will not
alter the process group of their descendants or of their controlling terminal; this has the effect of making all processes
be in the foreground (assuming the shell is in the foreground). While this approach is valid, POSIX.1 added the
concept of orphaned process groups to provide a more robust solution to this problem.

All processes in a session managed by a shell that is not job-control cognizant are in an orphaned process group and
are protected from stopping.

POSIX.1 does not specify how controlling terminal access is affected by a user logging out (that is, by a controlling
process terminating). 4.2BSD uses the vhangup() function to prevent any access to the controlling terminal through
file descriptors opened prior to logout. System V does not prevent controlling terminal access through file descriptors
opened prior to logout (except for the case of the special file, /dev/tty). Some implementations choose to make
processes immune from job control after logout (that is, such processes are always treated as if in the foreground);
other implementations continue to enforce foreground/background checks after logout. Therefore, a Conforming
POSIX.1 Application should not attempt to access the controlling terminal after logout since such access is unreliable.
If an implementation chooses to deny access to a controlling terminal after its controlling process exits, POSIX.1
requires a certain type of behavior (see 7.1.1.3).

*kernel: See system call.

*library routine: See system call.

*logical device: Implementation defined.

map: The definition of map is included to clarify the usage of mapped pages in the description of the behavior of
process memory locking.

memory-resident: The term memory-resident is historically understood to mean that the so-called resident pages are
actually present in the physical memory of the computer system and are immune from swapping, paging, copy-on-
write faults, etc. This is the actual intent of the standard in the process memory locking section for implementations
where this is logical. But for some implementations—primarily mainframes—actually locking pages into primary
storage is not advantageous to other system objectives, such as maximizing throughput. For such implementations,
memory locking is a “hint” to the implementation that the application wishes to avoid situations that would cause long
latencies in accessing memory. Furthermore, there are other implementation-specific issues with minimizing memory
access latencies that “memory residency” does not address—such as MMU reload faults. The definition attempts to
accommodate various implementations while allowing portable applications to specify to the implementation that they
want or need the best memory access times that the implementation can provide.

*memory object: The term memory object usually implies shared memory. If the object is the same as a file name in
the file system name space of the implementation, it is expected that the data written into the memory object be
preserved on disk. A memory object may also apply to a physical device on an implementation. In this case, writes to
the memory object are sent to the controller for the device and reads result in control registers being returned.

*mount point: The directory on which a mounted file system is mounted. This term, like mount() and umount(), was
not included because it was implementation defined.

*mounted file system: See file system.

*native implementation: This refers to an implementation of POSIX.1 that interfaces directly to an operating-system
kernel. See also hosted implementation and cooperating implementation. A similar concept is a native UNIX system,
which would be a kernel derived from one of the original UNIX system products.

Copyright © 1996 IEEE All Rights Reserved 289

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

open file description: An open file description, as it is currently named, describes how a file is being accessed. What
is currently called a file descriptor is actually just an identifier or “handle”; it does not actually describe anything.

The following alternate names were discussed:
For open file description:

open instance, file access description, open file information, and file access information.
For file descriptor:

file handle, file number [c.f., fileno()]. Some historical implementations use the term file table entry.

orphaned process group: Historical implementations have a concept of an orphaned process, which is a process
whose parent process has exited. When job control is in use, it is necessary to prevent processes from being stopped in
response to interactions with the terminal after they no longer are controlled by a job-control-cognizant program.
Because signals generated by the terminal are sent to a process group and not to individual processes, and because a
signal may be provoked by a process that is not orphaned, but sent to another process that is orphaned, it is necessary
to define an orphaned process group. The definition assumes that a process group will be manipulated as a group and
that the jobcontrol-cognizant process controlling the group is outside of the group and is the parent of at least one
process in the group [so that state changes may be reported via waitpid()]. Therefore, a group is considered to be
controlled as long as at least one process in the group has a parent that is outside of the process group, but within the
session.

This definition of orphaned process groups ensures that a session leader's process group is always considered to be
orphaned, and thus it is prevented from stopping in response to terminal signals.

page: The term page is defined to support the description of the behavior of memory mapping for shared memory and
memory mapped files, and the description of the behavior of process memory locking. It is not intended to imply that
shared memory/file mapping and memory locking are applicable only to “paged” architectures. For the purposes of
this part of ISO/IEC 9945, whatever the granularity on which an architecture supports mapping or locking is
considered to be a “page.” If an architecture cannot support the memory mapping or locking functions specified by the
standard on any granularity, then these options will not be implemented on the architecture.

*passwd file: Implementation defined; see B.9.

parent directory: There may be more than one directory entry pointing to a given directory in some implementations.
The wording here identifies that exactly one of those is the parent directory. In 2.3.6, dot-dot is identified as the way
that the unique directory is identified. (That is, the parent directory is the one to which dot-dot points.) In the case of
a remote file system, if the same file system is mounted several times, it would appear as if they were distinct file
systems (with interesting synchronization properties).

pipe: It proved convenient to define a pipe as a special case of a FIFO even though historically the latter was not
introduced until System III and does not exist at all in 4.3BSD.

portable filename character set: The encoding of this character set is not specified—specifically, ASCII is not
required. But the implementation must provide a unique character code for each of the printable graphics specified by
POSIX.1. See also B.2.3.4.

Situations where characters beyond the portable filename character set (or historically ASCII or ISO/IEC 646 {1})
would be used (in a context where the portable filename character set or ISO/IEC 646 {1} is required by POSIX.1) are
expected to be common. Although such a situation renders the use technically noncompliant, mutual agreement among
the users of an extended character set will make such use portable between those users. Such a mutual agreement could
be formalized as an optional extension to POSIX.1. (Making it required would eliminate too many possible systems,
as even those systems using ISO/IEC 646 {1} as a base character set extend their character sets for Western Europe and
the rest of the world in different ways.)

Nothing in POSIX.1 is intended to preclude the use of extended characters where interchange is not required or where
mutual agreement is obtained. It has been suggested that in several places “should” be used instead of “shall.” Because
(in the worst case) use of any character beyond the portable filename character set would render the program or data
not portable to all possible systems, no extensions are permitted in this context.

290 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

regular file: POSIX.1 does not intend to preclude the addition of structuring data (e.g., record lengths) in the file, as
long as such data is not visible to an application that uses the features described in POSIX.1.

root directory: This definition permits the operation of chroot(), even though that function is not in POSIX.1. See also
file hierarchy.

*root file system: Implementation defined.

*root of a file system: Implementation defined. See mount point.

seconds since the Epoch: The formula here is not precisely correct for leap centuries. See the discussion for Epoch for
further details.

signal: The definition implies a double meaning for the term. Although a signal is an event, common usage implies
that a signal is an identifier of the class of event.

*super-user: This concept, with great historical significance to UNIX system users, has been replaced with the notion
of appropriate privileges.

synchronously generated signal: Those signals that may be generated synchronously include SIGABRT, SIGBUS,
SIGILL, SIGFPE, SIGPIPE, SIGSEGV.

*system call: The distinction between a system call and a library routine is an implementation detail that may differ
between implementations and has thus been excluded from POSIX.1. See “Interface, Not Implementation” in the
Introduction.

system reboot: A system reboot is an event initiated by an unspecified circumstance that causes all processes (other
than special system processes) to be terminated in an implementation-defined manner, after which any changes to the
state and contents of files created or written to by a Conforming POSIX.1 Application prior to the event are
implementation-defined.

synchronized I/O data integrity completion-synchronized I/O file integrity completion: These terms specify that
for synchronized read operations, pending writes must be successfully completed before the read operation can
complete. This is motivated by two circumstances. Firstly, when synchronizing processes can access the same file, but
not share common buffers (such as for a remote file system), this requirement permits the reading process to guarantee
that it can read data written remotely. Secondly, having data written synchronously is insufficient to guarantee the
order with respect to a subsequent write by a reading process, and thus this extra read semantic is necessary.

thread: This part of ISO/IEC 9945 defines a thread to be a flow of control within a process. Each thread has a minimal
amount of private state; most of the state associated with a process is shared among all of the threads in the process.
While most multithread extensions to POSIX have taken this approach, others have made different decisions.

NOTE — The choice to put threads within a process does not constrain implementations to implement threads in that manner.
However, all functions have to behave as though threads share the indicated state information with the process from
which they were created.

Threads need to share resources in order to cooperate. Memory has to be widely shared between threads in order for
the threads to cooperate at a fine level of granularity. Threads keep data structures and the locks protecting those data
structures in shared memory. For a data structure to be usefully shared between threads, such structures should not
refer to any data that can only be interpreted meaningfully by a single thread. Thus, any system resources that might
be referred to in data structures need to be shared between all threads. File descriptors, pathnames, and pointers to
stack variables are all things that programmers want to share between their threads. Thus, the file descriptor table, the
root directory, the current working directory, and the address space have to be shared.

Library implementations are possible as long as the effective behavior is as if system services invoked by one thread
do not suspend other threads. This may be difficult for some library implementations on systems that do not provide
asynchronous facilities.

thread ID: Separate programs should communicate through well-defined interfaces and should not depend on each
other's implementation. For example, if a programmer decides to rewrite the sort program using multiple threads, it
should be easy to do this so that the interface to the sort program does not change. Consider that if the user causes
SIGINT to be generated while the sort program is running, keeping the same interface means that the entire sort

Copyright © 1996 IEEE All Rights Reserved 291

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

program is killed, not just one of its threads. As another example, consider a real-time program that manages a reactor.
Such a program may wish to allow other programs to control the priority at which it watches the control rods. One
technique to accomplish this is to write the ID of the thread watching the control rods into a file and allow other
programs to change the priority of that thread as they see fit. A simpler technique is to have the reactor process accept
IPCs (Inter-Process Communication messages) from other processes, telling it at a semantic level what priority the
program should assign to watching the control rods. This allows the programmer greater flexibility in the
implementation. For example, the programmer can change the implementation from having one thread per rod to
having one thread watching all of the rods without changing the interface. Having threads live inside the process means
that the implementation of a process is invisible to outside processes (excepting debuggers and system management
tools).

Threads do not provide a protection boundary. Every thread model allows threads to share memory with other threads
and encourages this sharing to be widespread. This means that one thread can wipe out memory that is needed for the
correct functioning of other threads that are sharing its memory. Consequently, providing each thread with its own user
and/or group IDs would not provide a protection boundary between threads sharing memory.

thread-safe function: All functions required by this part of ISO/IEC 9945 need to be thread-safe. Implementations
have to provide internal synchronization when necessary in order to achieve this goal. In certain cases, e.g., most
floating-point implementations, context switch code may have to manage the writable shared state.

See the discussion under thread-safety.

It is not required that all functions provided by this part of ISO/IEC 9945 be either async-cancel safe or async-signal
safe.

Thread-Safety and Locking of Existing Functions

Originally, POSIX.1 was not designed to work in a multithreaded environment, and some implementations of some
existing functions will not work properly when executed concurrently. To provide routines that will work correctly in
an environment with threads (“thread-safe”), two problems need to be solved:

1) Routines that maintain or return pointers to static areas internal to the routine (which may now be shared)
need to be modified. The routines ttyname(), 4.7.2, and localtime (), 8.1, are examples.

2) Routines that access data space shared by more than one thread need to be modified. The malloc(), 8.1, and
stdio, 8.2, routines are examples.

There are a variety of constraints on these changes. The first is compatibility with the existing versions of these
functions—non-thread-safe functions will continue to be in use for some time, as the original interfaces are used by
existing code. Another is that the new thread-safe versions of these functions represent as small a change as possible
over the familiar interfaces provided by the existing non-thread-safe versions. The new interfaces should be
independent of any particular threads implementation. In particular, they should be thread-safe without depending on
explicit thread-specific memory. Finally, there should be minimal performance penalty due to the changes made to the
functions.

It is intended that the list of functions from POSIX.1 that cannot be made threadsafe and for which corrected versions
are provided be complete.

Thread-Safety and Locking Solutions

Many of the POSIX.1 functions were thread-safe and did not change at all. However, some functions (for example, the
math functions typically found in libm) are not thread-safe because of writable shared global state. For instance, in
IEEE Std 754-1985 standard floating-point implementations, the computation modes and flags are global and shared.

Some functions are not thread-safe because a particular implementation is not reentrant, typically because of a
nonessential use of static storage. These require only a new implementation.

Thread-safe libraries are useful in a wide range of parallel (and asynchronous) programming environments, not just
within pthreads. In order to be used outside the context of pthreads, however, such libraries still have to use some
synchronization method. These could either be independent of the pthread synchronization operations, or they could
be a subset of the pthread interfaces. Either method results in thread-safe library implementations that can be used
without the rest of pthreads.

292 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Some functions, such as the stdio interface and dynamic memory allocation functions such as malloc(), are
interdependent routines that share resources (for example, buffers) across related calls. These require synchronization
to work correctly, but they do not require any change to their external (user-visible) interfaces.

In some cases, such as getc() and putc(), adding synchronization is likely to create an unacceptable performance
impact. In this case, slower thread-safe synchronized functions are to be provided, but the original, faster (but unsafe)
functions (which may be implemented as macros) are retained under new names. Some additional special-purpose
synchronization facilities are necessary for these macros to be usable in multithreaded programs. This also requires
changes in <stdio.h>.

The other common reason that functions are unsafe is that they return a pointer to static storage, making the functions
non-thread-safe. This has to be changed, and there are three natural choices:

1) Return a pointer to thread-specific storage. This could incur a severe performance penalty on those
architectures with a costly implementation of the thread-specific data interface.
A variation on this technique is to use malloc() to allocate storage for the function output and return a pointer
to this storage. This technique may also have an undesirable performance impact, however, and a simplistic
implementation requires that the user program explicitly free the storage object when it is no longer needed.
This technique is used by some existing POSIX.1 functions. With careful implementation for infrequently
used functions, there may be little or no performance or storage penalty, and the maintenance of already-
standardized interfaces is a significant benefit.

2) Return the actual value computed by the function. This technique can only be used with functions that return
pointers to structures—routines that return character strings would have to wrap their output in an enclosing
structure in order to return the output on the stack. There is also a negative performance impact inherent in
this solution in that the output value has to be copied twice before it can be used by the calling function: once
from the called routine's local buffers to the top of the stack, then from the top of the stack to the assignment
target. Finally, many older compilers cannot support this technique due to a historical tendency to use internal
static buffers to deliver the results of structure-valued functions.

3) Have the caller pass the address of a buffer to contain the computed value. The only disadvantage of this
approach is that extra arguments have to be provided by the calling program. It represents the most efficient
solution to the problem, however, and, unlike the malloc() technique, it is semantically clear.

There are some routines (often groups of related routines) whose interfaces are inherently non-thread-safe because
they communicate across multiple function invocations by means of static memory locations. The solution is to
redesign the calls so that they are thread-safe, typically by passing the needed data as extra parameters. Unfortunately,
this may require major changes to the interface as well.

A floating-point implementation using IEEE Std 754-1985 is a case in point. A less problematic example is the rand48
family of pseudorandom number generators. The functions getgrgid(), getgrnam(), getpwnam(), and getpwuid() are
another such case.

The problems with errno are discussed in B.2.4.

Asynchronous Safety and Thread-Safety

A floating-point implementation has many modes that effect rounding and other aspects of computation. Functions in
some math library implementations may change the computation modes for the duration of a function call. If such a
function call is interrupted by a signal or cancellation, the floating-point state is not required to be protected.

There is a significant cost to make floating-point operations async-cancel safe or async-signal safe; accordingly,
neither form of async safety is required.

Functions Returning Pointers to Static Storage

For those functions that are not thread-safe because they return values in fixed size statically allocated structures,
alternate “_r” forms are provided that pass a pointer to an explicit result structure. Those that return pointers into
library-allocated buffers have forms provided with explicit buffer and length parameters.

For functions that return pointers to library-allocated buffers, it makes sense to provide “_r” versions that allow the
application control over allocation of the storage in which results are returned. This allows the state used by these

Copyright © 1996 IEEE All Rights Reserved 293

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

functions to be managed on an application-specific basis, supporting per-thread, per-process, or other application-
specific sharing relationships.

Previous drafts of this part of ISO/IEC 9945 had provided “_r” versions for functions that returned pointers to
variable-size buffers without providing a means for determining the required buffer size. This would have made using
such functions exceedingly clumsy, potentially requiring iteratively calling them with increasingly larger guesses for
the amount of storage required. Hence, sysconf() variables have been provided for such functions that return the
maximum required buffer size.

Thus, the rule that has been followed by this part of ISO/IEC 9945 when adapting single-threaded non-thread-safe
library functions is as follows: all functions returning pointers to library-allocated storage should have “_r” versions
provided, allowing the application control over the storage allocation. Those with variable-sized return values accept
both a buffer address and a length parameter. The sysconf() variables are provided to supply the appropriate buffer
sizes when required. Implementors are encouraged to apply the same rule when adapting their own existing functions
to a pthreads environment.

*virtual processor: The term “virtual processor” was chosen as a neutral term describing all kernel-level scheduleable
entities, such as processes, Mach tasks, or lightweight processes. Implementing threads using multiple processes as
virtual processors, or implementing multiplexed threads above a virtual processor layer, should be possible, provided
some mechanism has also been implemented for sharing state between processes or virtual processors. Many systems
may also wish to provide implementations of threads on systems providing “shared processes” or “variable-weight
processes.” It was felt that exposing such implementation details would severely limit the type of systems upon which
the threads interface could be supported and prevent certain types of valid implementations. It was also determined
that a virtual processor interface was out of the scope of this part of ISO/IEC 9945.

B.2.2.3 Abbreviations

POSIX.0: Although this term is not used in the normative text of this part of ISO/IEC 9945, it is used in this rationale
to refer to IEEE Std 1003.0-1995 .

POSIX.1b: Although this term is not used in the normative text for this part of ISO/IEC 9945, it is used in this
rationale to refer to the elements of the realtime extension amendment. (This was earlier referred to as POSIX.4 during
the standard development process.)

POSIX.1c: Although this term is not used in the normative text of this part of ISO/IEC 9945, it is used in this rationale
to refer to the threads extension amendment. (This was earlier referred to as POSIX.4a during the standard
development process.)

B.2.3 General Concepts

B.2.3.1 extended security controls: Allowing an implementation to define extended security controls enables the use
of POSIX.1 in environments that require different or more rigorous security than that provided in POSIX.1. Extensions
are allowed in two areas: privilege and file access permissions. The semantics of these areas have been defined to
permit extensions with reasonable, but not exact, compatibility with all existing practices. For example, the
elimination of the super-user definition precludes identifying a process as privileged or not by virtue of its effective
user ID.

B.2.3.2 file access permissions: A process should not try to anticipate the result of an attempt to access data by a
priori use of these rules. Rather, it should make the attempt to access data and examine the return value (and possibly
errno as well), or use access(). An implementation may include other security mechanisms in addition to those
specified in POSIX.1, and an access attempt may fail because of those additional mechanisms, even though it would
succeed according to the rules given in this subclause. (For example, the user's security level might be lower than that
of the object of the access attempt.) The optional supplementary group IDs provide another reason for a process to not
attempt to anticipate the result of an access attempt.

B.2.3.3 file hierarchy: Though the file hierarchy is commonly regarded to be a tree, POSIX.1 does not define it as
such for three reasons:

294 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

1) Links may join branches.
2) In some network implementations, there may be no single absolute root directory. See pathname resolution.
3) With symbolic links (found in 4.3BSD), the file system need not be a tree or even a directed acyclic graph.

B.2.3.4 file permissions: Examples of implementation-defined constraints that may deny access are mandatory labels
and access control lists. Historically, certain filenames have been reserved. This list includes core, /etc/passwd,
etc. Portable applications should avoid these.

Most historical implementations prohibit case folding in filenames; i.e., treating upper- and lowercase alphabetic
characters as identical. However, some consider case folding desirable:

 For user convenience
 For ease of implementation of the POSIX.1 interface as a hosted system on some popular operating systems,

which is compatible with the goal of making the POSIX.1 interface broadly implementable (see “Broadly
Implementable” in the Introduction)

Variants such as maintaining case distinctions in filenames, but ignoring them in comparisons, have been suggested.
Methods of allowing escaped characters of the case opposite the default have been proposed.

Many reasons have been expressed for not allowing case folding, including:
1) No solid evidence has been produced as to whether case sensitivity or case insensitivity is more convenient

for users.
2) Making case insensitivity a POSIX.1 implementation option would be worse than either having it or not

having it, because
a) More confusion would be caused among users.
b) Application developers would have to account for both cases in their code.
c) POSIX.1 implementors would still have other problems with native file systems, such as short or

otherwise constrained filenames or pathnames, and the lack of hierarchical directory structure.
3) Case folding is not easily defined in many European languages, both because many of them use characters

outside the USASCII alphabetic set, and because
a) In Spanish, the digraph 11 is considered to be a single letter, the capitalized form of which may be either

Ll or LL, depending on context.
b) In French, the capitalized form of a letter with an accent may or may not retain the accent depending on

the country in which it is written.
c) In German, the sharp ess may be represented as a single character resembling a Greek beta (β) in

lowercase, but as the digraph SS in uppercase.
d) In Greek, there are several lowercase forms of some letters; the one to use depends on its position in the

word. Arabic has similar rules.
4) Many East Asian languages, including Japanese, Chinese, and Korean, do not distinguish case and are

sometimes encoded in character sets that use more than one byte per character.
5) Multiple character codes may be used on the same machine simultaneously. There are several ISO character

sets for European alphabets. In Japan, several Japanese character codes are commonly used together,
sometimes even in filenames; this is evidently also the case in China. To handle case insensitivity, the kernel
would have to at least be able to distinguish for which character sets the concept made sense.

6) The file system implementation historically deals only with bytes, not with characters, except for slash and
the null byte.

7) The purpose of POSIX.1 is to standardize the common, existing definition (see “Application Oriented” in the
Introduction) of the UNIX system programming interface, not to change it. Mandating case insensitivity
would make all historical implementations nonstandard.

8) Not only the interface, but also application programs would need to change, counter to the purpose of having
minimal changes to existing application code.

9) At least one of the original developers of the UNIX system has expressed objection in the strongest terms to
either requiring case insensitivity or making it an option, mostly on the basis that POSIX.1 should not hinder
portability of application programs across related implementations in order to allow compatibility with
unrelated operating systems.

Two proposals were entertained regarding case folding in filenames:

Copyright © 1996 IEEE All Rights Reserved 295

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

 Remove all wording that previously permitted case folding.
Rationale: Case folding is inconsistent with portable filename character set definition and filename definition
(all characters except slash and null). No known implementations allowing all characters except slash and
null also do case folding.

 Change “though this practice is not recommended:” to “although this practice is strongly discouraged.”
Rationale: If case folding must be included in POSIX.1, the wording should be stronger to discourage the
practice.

The consensus selected the first proposal. Otherwise, a portable application would have to assume that case folding
would occur when it was not wanted, but that it would not occur when it was wanted.

B.2.3.5 file times update: This subclause reflects the actions of historical implementations. The times are not updated
immediately, but are only marked for update by the functions. An implementation may update these times
immediately.

The accuracy of the time update values is intentionally left unspecified so that systems can control the bandwidth of a
possible covert channel.

The wording was carefully chosen to make it clear that there is no requirement that the conformance document contain
information that might incidentally affect file update times. Any function that performs pathname resolution might
update several st_atime fields. Functions such as getpwnam() and getgrnam() might update the st_atime field of some
specific file or files. It is intended that these are not required to be documented in the conformance document, but they
should appear in the system documentation.

B.2.3.6 pathname resolution: What the filename dot-dot refers to relative to the root directory is implementation
defined. In Version 7 it refers to the root directory itself; this is the behavior mentioned in the standard. In some
networked systems the construction /../hostname/ is used to refer to the root directory of another host, and
POSIX.1 permits this behavior.

Other networked systems use the construct //hostname for the same purpose; i.e., a double initial slash is used.
There is a potential problem with existing applications that create full pathnames by taking a trunk and a relative
pathname and making them into a single string separated by /, because they can accidentally create networked
pathnames when the trunk is /. This practice is not prohibited because such applications can be made to conform by
simply changing to use // as a separator instead of /:

1) If the trunk is /, the full path name will begin with / / / (the initial / and the separator / /). This is the
same as /, which is what is desired. (This is the general case of making a relative pathname into an absolute
one by prefixing with / / / instead of /.)

2) If the trunk is /A, the result is /A/ /...; since nonleading sequences of two or more slashes are treated as
a single slash, this is equivalent to the desired /A/

3) If the trunk is / /A, the implementation-defined semantics will apply. (The multiple slash rule would apply.)

Application developers should avoid generating pathnames that start with “/ /”. Implementations are strongly
encouraged to avoid using this special interpretation since a number of applications currently do not follow this
practice and may inadvertently generate “/ / ...”.

The term root directory is only defined in POSIX.1 relative to the process. In some implementations, there may be no
absolute root directory. The initialization of the root directory of a process is implementation defined.

B.2.3.7 concurrent execution: There is no additional rationale provided for this subclause.

B.2.3.8 memory synchronization: In older multiprocessors, access to memory by the processors was strictly
multiplexed. This meant that a processor executing program code interrogates or modifies memory in the order
specified by the code and that all the memory operation of all the processors in the system appear to happen in some
global order, though the operation histories of different processors are interleaved arbitrarily. The memory operations
of such machines are said to be sequentially consistent. In this environment, threads can synchronize using ordinary
memory operations. For example, a producer thread and a consumer thread can synchronize access to a circular data
buffer as follows:
 int rdptr = 0;
 int wrptr = 0;

296 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

 data_t buf[BUFSIZE];
Thread 1:
 while (work_to_do) {
 int next;
 buf[wrptr] = produce();
 next = (wrptr + 1) % BUFSIZE;
 while (rdptr == next)
 ;
 wrptr = next;
 }
Thread 2:
 while (work_to_do) {
 while (rdptr == wrptr)
 ;
 consume (buf[rdptr]);
 rdptr = (rdptr + 1) % BUFSIZE;
 }

In modern multiprocessors, these conditions are relaxed to achieve greater performance. If one processor stores values
in location A and then location B, then other processors loading data from location B and then location A may see the
new value of B but the old value of A. The memory operations of such machines are said to be weakly ordered. On
these machines, the circular buffer technique shown in the example will fail because the consumer may see the new
value of wrptr but the old value of the data in the buffer. In such machines, synchronization can only be achieved
through the use of special instructions that enforce an order on memory operations. Most high-level language
compilers only generate ordinary memory operations to take advantage of the increased performance. They usually
cannot determine when memory operation order is important and generate the special ordering instructions. Instead,
they rely on the programmer to use synchronization primitives correctly to ensure that modifications to a location in
memory are ordered with respect to modifications and/or access to the same location in other threads. Access to read-
only data need not be synchronized. The resulting program is said to be data-race free.

Synchronization is still important even when accessing a single primitive variable (e.g., an integer). On machines
where the integer may not be aligned to the bus data width or be larger than the data width, a single memory load may
require multiple memory cycles. This means that it may be possible for some parts of the integer to have an old value
while other parts have a newer value. On some processor architectures this cannot happen, but portable programs
cannot rely on this.

In summary, a portable multithreaded program, or a multiprocess program that shares writeable memory between
processes, has to use the synchronization primitives to synchronize data access. It cannot rely on modifications to
memory being observed by other threads in the order written in the program or even on modification of a single
variable being seen atomically.

Conforming applications may only use the functions listed to synchronize threads of control with respect to memory
access. There are many other candidates for functions that might also be used. Examples are: signal sending and
reception, or pipe writing and reading. In general, any function that allows one thread of control to wait for an action
caused by another thread of control is a candidate. This part of ISO/IEC 9945 does not require these additional
functions to synchronize memory access since this would imply the following:

1) All these functions would have to be recognized by advanced compilation systems so that memory operations
and calls to these functions are not reordered by optimization.

2) All these functions would potentially have to have memory synchronization instructions added, depending on
the particular machine.

3) The additional functions complicate the model of how memory is synchronized and make automatic data race
detection techniques impractical.

Formal definitions of the memory model were rejected as unreadable by the vast majority of programmers. In addition,
most of the formal work in the literature has concentrated on the memory as provided by the hardware as opposed to
the application programmer through the compiler and runtime system. It was believed that a simple statement intuitive

Copyright © 1996 IEEE All Rights Reserved 297

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

to most programmers would be most effective. This part of ISO/IEC 9945 defines functions that can be used to
synchronize access to memory, but it leaves open exactly how one relates those functions to the semantics of each
function as specified elsewhere in this part of ISO/IEC 9945. This part of ISO/IEC 9945 also does not make a formal
specification of the partial ordering in time that the functions can impose, as that is implied in the description of the
semantics of each function. It simply states that the programmer has to ensure that modifications do not occur
“simultaneously” with other access to a memory location.

B.2.3.9 thread-safety: Where the interface of a function required by POSIX.1 or the C Standard {2} precludes thread-
safety, an alternate form that shall be thread-safe is provided. The names of these thread-safe forms are the same as the
non-thread-safe forms with the addition of the suffix “_r.” The suffix “_r” is historical, where the “r” stood for
“reentrant.” The term “reentrant” has since been replaced by the term “thread-safe.”

In some cases, thread-safety is provided by restricting the arguments to an existing function.

B.2.4 Error Numbers

The C Standard {2} requires that errno be an assignable lvalue. Originally, the definition in POSIX.1 was stricter than
that in the C Standard {2}, extern int errno, in order to support historical usage. In a multithreaded environment,
implementing errno as a global variable results in non-deterministic results when accessed. It is required, however,
that errno work as a per-thread error reporting mechanism. In order to do this, a separate errno value has to be
maintained for each thread. The following subclause discusses the various alternative solutions that were considered.

In order to avoid this problem altogether for new functions, these functions avoid using errno and, instead, return the
error number directly as the function return value; a return value of zero indicates that no error was detected.

For any function that can return errors, the function return value is not used for any purpose other than for reporting
errors. Even when the output of the function is scalar, it is passed through a function argument. While it might have
been possible to allow some scalar outputs to be coded as negative function return values and mixed in with positive
error status returns, this was rejected—using the return value for a mixed purpose was judged to be of limited use and
error prone.

Checking the value of errno alone is not sufficient to determine the existence or type of an error, since it is not required
that a successful function call clear errno. The variable errno should only be examined when the return value of a
function indicates that the value of errno is meaningful. In that case, the function is required to set the variable to
something other than zero.

A successful function call may set the value of errno to zero, or to any other value (except where specifically
prohibited; see B.5.4.1). But it is meaningless to do so, since the value of errno is undefined except when the
description of a function explicitly states that it is set, and no function description states that it should be set on a
successful call. Most functions in most implementations do not change errno on successful completion. Exceptions
are isatty() and ptrace(). The latter is not in POSIX.1, but is widely implemented and clears errno when called. The
value of errno is not defined unless all signal handlers that use functions that could change errno save and restore it.

POSIX.1 requires (in the Errors subclauses of function descriptions) certain error values to be set in certain conditions
because many existing applications depend on them. Some error numbers, such as [EFAULT], are entirely
implementation defined and are noted as such in their description in 2.4. This subclause otherwise allows wide latitude
to the implementation in handling error reporting.

Some of the Errors clauses in POSIX.1 have two subclauses. The first:

“If any of the following conditions occur, the foo() function shall return −1 and set errno to the corresponding
value:”

could be called the “mandatory” subclause. The second:

298 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

“For each of the following conditions, when the condition is detected, the foo() function shall return −1 and
set errno to the corresponding value:”

could be informally known as the “optional” subclause. This latter subclause has evolved in meaning over time. In
early drafts, it was only used for error conditions that could not be detected by certain hardware configurations, such
as the [EFAULT] error, as described below. The subclause recently has also added conditions associated with optional
system behavior, such as job control errors. Attempting to infer the quality of an implementation based on whether it
detects such conditions is not useful.

Following each one-word symbolic name for an error, there is a one-line tag, which is followed by a description of the
error. The one-line tag is merely a mnemonic or historical referent and is not part of the specification of the error. Many
programs print these tags on the standard error stream [often by using the C Standard {2} perror() function] when the
corresponding errors are detected, but POSIX.1 does not require this action.

[ECANCELED]

This spelling was chosen as being more common.

[EFAULT] Most historical implementations do not catch an error and set errno when an invalid address is given
to the functions wait(), time(), or times(). Some implementations cannot reliably detect an invalid
address. And most systems that detect invalid addresses will do so only for a system call, not for a
library routine.

[EFTYPE] This error code was proposed in earlier drafts as “Inappropriate operation for file type,” meaning
that the operation requested is not appropriate for the file specified in the function call. This code
was proposed, although the same idea was covered by [ENOTTY], because the connotations of the
name would be misleading. It was pointed out that the fcntl() function uses the error code [EINVAL]
for this notion, and hence all instances of [EFTYPE] were changed to this code.

[EINTR] POSIX.1 prohibits conforming implementations from restarting interrupted system calls. However,
it does not require that [EINTR] be returned when another legitimate value may be substituted; e.g.,
a partial transfer count when read() or write() are interrupted. This is only given when the signal
catching function returns normally as opposed to returns by mechanisms like longjmp() or
siglongimp().

[ENOMEM] The term main memory is not used in POSIX.1 because it is implementation defined.

[ENOTSUP] This error code is to be used when an implementation chooses to implement the required
functionality of this standard but does not support optional facilities defined by this standard. The
return of [ENOSYS] is to be taken to indicate that the function of the interface is not supported at all;
the function will always fail with this error code.

[ENOTTY] The symbolic name for this error is derived from a time when device control was done by ioctl() and
that operation was only permitted on a terminal interface. The term “TTY” is derived from
teletypewriter, the devices to which this error originally applied.

[EPIPE] This condition normally generates the signal SIGPIPE; the error is returned if the signal does not
terminate the process.

[EROFS] In historical implementations, attempting to unlink() or rmdir() a mount point would generate an
[EBUSY] error. An implementation could be envisioned where such an operation could be
performed without error. In this case, if either the directory entry or the actual data structures reside
on a read-only file system, [EROFS] is the appropriate error to generate. (For example, changing the
link count of a file on a read-only file system could not be done, as is required by unlink(), and thus
an error should be reported.)

Two error numbers, [EDOM] and [ERANGE], were added to this subclause primarily for consistency with the C
Standard {2}.

Copyright © 1996 IEEE All Rights Reserved 299

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

B.2.4.1 Alternative Solutions for Per-Thread errno

The usual implementation of errno as a single global variable does not work in a multithreaded environment. In such
an environment, a thread may make a POSIX.1 call and get a −1 error return, but before that thread can check the value
of errno, another thread might have made a second POSIX.1 call that also set errno. This behavior is unacceptable in
robust programs. There were a number of alternatives that were considered for handling the errno problem:

1) Implement errno as a per-thread integer variable.
2) Implement errno as a service that can access the per-thread error number.
3) Change all POSIX.1 calls to accept an extra status argument and avoid setting errno.
4) Change all POSIX.1 calls to raise a language exception.

The first option offers the highest level of compatibility with existing practice but requires special support in the linker,
compiler, and/or virtual memory system to support the new concept of thread private variables. When compared with
current practice, the third and fourth options are much cleaner, more efficient, and encourage a more robust
programming style, but they require new versions of all of the POSIX.1 functions that might detect an error. The
second option offers compatibility with existing code that uses the C Standard {2} language header <errno.h> to
define the symbol errno. In this option, errno may be a macro defined:

 #define errno (*__errno())
 extern int *__errno();

This option may be implemented as a per-thread variable whereby an errno field is allocated in the user space object
representing a thread, and whereby the function __errno() makes a system call to determine the location of its user
space object and returns the address of the errno field of that object. Another implementation, one that avoids calling
the kernel, involves allocating stacks in chunks. The stack allocator keeps a side table indexed by chunk number
containing a pointer to the thread object that uses that chunk. The __errno() function then looks at the stack pointer,
determines the chunk number, and uses that as an index into the chunk table to find its thread object and thus its private
value of errno. On most architectures, this can be done in four to five instructions. Some compilers may wish to
implement __errno() inline to improve performance.

B.2.4.2 Disallowing Return of the [EINTR] Error Code

Many blocking interfaces defined by POSIX.1 may return [EINTR] if interrupted during their execution by a signal
handler. Blocking interfaces introduced under the {_POSIX_THREADS} option do not have this property. Instead,
they require that the interface appear to be atomic with respect to interruption. In particular, clients of block interfaces
need not handle any possible [EINTR] return as a special case since it will never occur. If it is necessary to restart
operations or complete incomplete operations following the execution of a signal handler, this is handled by the
implementation, rather than by the application.

Requiring applications to handle [EINTR] errors on blocking interfaces has been shown to be a frequent source of
often unreproducible bugs, and it adds no compelling value to the available functionality. Thus, blocking interfaces
introduced for use by multithreaded programs do not use this paradigm. In particular, in none of the functions
flockfile(), pthread_cond_timedwait(), pthread_cond_wait(), pthread_join(), pthread_mutex_lock(), and sigwait() did
providing [EINTR] returns add value, or even particularly make sense. Thus, these functions do not provide for an
[EINTR] return, even when interrupted by a signal handler. The same arguments can be applied to sem_wait(),
sem_trywait(), sigwaitinfo(), and sigtimedwait(), but implementations are permitted to return [EINTR] error codes for
these functions for compatibility with earlier versions of this standard. Applications cannot rely on calls to these
functions returning [EINTR] error codes when signals are delivered to the calling thread, but they should allow for the
possibility.

300 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

B.2.5 Primitive System Data Types

The requirement that additional types defined in this subclause end in “_t” was prompted by the problem of namespace
pollution (see B.2.7.2). It is difficult to define a type (where that type is not one defined by POSIX.1) in one header file
and use it in another without adding symbols to the namespace of the program. To allow implementors to provide their
own types, all POSIX.1 conforming applications are required to avoid symbols ending in “_t”, which permits the
implementor to provide additional types. Because a major use of types is in the definition of structure members, which
can (and in many cases must) be added to the structures defined in POSIX.1, the need for additional types is
compelling.

The types such as ushort and ulong, which are in common usage, are not defined in POSIX.1 (although ushort_t would
be permitted as an extension). They can be added to <sys/types.h> using a feature test macro (see 2.7.2). A
suggested symbol for these is _SYSIII. Similarly, the types like u_short would probably be best controlled by _BSD.

Some of these symbols may appear in other headers; see 2.7.

dev_t This type may be made large enough to accommodate host-locality considerations of networked systems.

This type must be arithmetic. Earlier drafts allowed this to be nonarithmetic (such as a structure) and provided
a samefile() function for comparison.

gid_t Some implementations had separated gid_t from uid_t before POSIX.1 was completed. It would be difficult
for them to coalesce them when it was unnecessary. Additionally, it is quite possible that user IDs might be
different than group IDs because the user ID might wish to span a heterogeneous network, where the group
ID might not.

For current implementations, the cost of having a separate gid_t will be only lexical.

mode_t This type was chosen so that implementations could choose the appropriate integral type, and for
compatibility with the C Standard {2}. 4.3BSD uses unsigned short and the SVID uses ushort, which is the
same. Historically, only the low-order sixteen bits are significant.

nlink_t This type was introduced in place of short for st_nlink (see 5.6.1) in response to an objection that short was
too small.

off_t This type is used only in lseek(), fcntl(), and <sys/stat.h>. Many implementations would have
difficulties if it were defined as anything other than long. Requiring an integral type limits the capabilities of
lseek() to four gigabytes. See the description of lread() in B.6.4. Also, the C Standard {2} supplies routines
that use larger types: see fgetpos() and fsetpos() in B.6.5.3.

pid_t The inclusion of this symbol was controversial because it is tied to the issue of the representation of a process
ID as a number. From the point of view of a portable application, process IDs should be “magic cookies”15

that are produced by calls such as fork(), used by calls such as waitpid() or kill(), and not otherwise analyzed
(except that the sign is used as a flag for certain operations).

The concept of a {PID_MAX} value interacted with this in early drafts. Treating process IDs as an opaque
type both removes the requirement for {PID_MAX} and allows systems to be more flexible in providing
process IDs that span a large range of values, or a small one.

Since the values in uid_t, gid_t, and pid_t will be numbers generally, and potentially both large in magnitude
and sparse, applications that are based on arrays of objects of this type are unlikely to be fully portable in any
case. Solutions that treat them as magic cookies will be portable.

{CHILD_MAX} precludes the possibility of a “toy implementation,” where 'there would only be one
process.

15An historical term meaning: “An opaque object, or token, of determinate size, whose significance is known only to the entity which created it. An
entity receiving such a token from the generating entity may only make such use of the 'cookie' as is defined and permitted by the supplying entity.”

Copyright © 1996 IEEE All Rights Reserved 301

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

ssize_t This is intended to be a signed analog of size_t. The wording is such that an implementation may either
choose to use a longer type or simply to use the signed version of the type that underlies size_t. All functions
that return ssize_t [read() and write()] describe as “implementation defined” the result of an input exceeding
{SSIZE_MAX}. It is recognized that some implementations might have ints that are smaller than size_t. A
portable application would be constrained not to perform I/O in pieces larger than [SSIZE_MAX), but a
portable application using extensions would be able to use the full range if the implementation provided an
extended range, while still having a single type-compatible interface.

The symbols size_t and ssize_t are also required in <unistd.h> to minimize the changes needed for calls
to read() and write(). Implementors are reminded that it must be possible to include both <sys/types.h>
and <unistd.h> in the same program (in either order) without error.

uid_t Before the addition of this type, the data types used to represent these values varied throughout early drafts.
The <sys/stat.h> header defined these values as type short, the <passwd.h> file (now <pwd.h> and
<grp.h>) used an int, and getuid() returned an int. In response to a strong objection to the inconsistent
definitions, all the types to were switched to uid_t.

In practice, those historical implementations that use varying types of this sort can typedef uid_t to short with
no serious consequences.

The problem associated with this change concerns object compatibility after structure size changes. Since
most implementations will define uid_t as a short, the only substantive change will be a reduction in the size
of the passwd structure. Consequently, implementations with an overriding concern for object compatibility
can pad the structure back to its current size. For that reason, this problem was not considered critical enough
to warrant the addition of a separate type to POSIX.1.

The types uid_t and gid_t are magic cookies. There is no {UID_MAX} defined by POSIX.1, and no structure
imposed on uid_t and gid_t other than that they be positive arithmetic types. (In fact, they could be unsigned
char.) There is no maximum or minimum specified for the number of distinct user or group IDs.

B.2.6 Environment Description

The variable environ is not intended to be declared in any header, but rather to be declared by the user for accessing the
array of strings that is the environment. This is the traditional usage of the symbol. Putting it into a header could break
some programs that use the symbol for their own purposes.

LC_* The description of the environment variable names starting with the characters “LC_”
acknowledges the fact that the interfaces presented in the current version of POSIX.1 are not
complete and may be extended as new international functionality is required. In the C Standard {2},
names preceded by “LC_” are reserved in the name space for future categories.

To avoid name clashes, new categories and environment variables are divided into two
classifications: implementation independent and implementation dependent.

Implementation-independent names will have the following format:

LC_NAME

where NAME is the name of the new category and environment variable. Capital letters must be used
for implementation-independent names.

Implementation-dependent names must be in lowercase letters, as below:

LC_name

PATH Many historical implementations of the Bourne shell do not interpret a trailing colon to represent the
current working directory and are thus nonconforming. The C Shell and the KornShell conform to
POSIX.1 on this point. The usual name of dot may also be used to refer to the current working
directory.

302 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

TZ See 8.1.1 for an explanation of the format.

LOGNAME 4.3BSD uses the environment variable USER for this purpose. In most implementations, the value
of such a variable is easily forged, so security-critical applications should rely on other means of
determining user identity. LOGNAME is required to be constructed from the portable filename
character set for reasons of interchange. No diagnostic condition is specified for violating this rule,
and no requirement for enforcement exists. The intent of the requirement is that if extended
characters are used, the “guarantee” of portability implied by a standard is voided. (See also
B.2.2.2.)

The following environment variables have been used historically as indicated. However, such use was either so variant
as to not be amenable to standardization or to be relevant only to other facilities not specified in POSIX.1, and they
have therefore been excluded. They may or may not be included in future POSIX standards. Until then, writers of
conforming applications should be aware that details of the use of these variables are likely to vary in different
contexts.

IFS Characters used as field separators.

MAIL System mailer information.

PS1 Prompting string for interactive programs.

PS2 Prompting string for interactive programs.

SHELL The shell command interpreter name.

B.2.7 C Language Definitions

The construct <name.h> for headers is also taken from the C Standard {2}.

B.2.7.1 Symbols From the C Standard

The reservation of identifiers is paraphrased from the C Standard {2}. The text is included because it needs to be part
of POSIX.1, regardless of possible changes in future versions of the C Standard {2}. The reservation of other
namespaces is particularly for <errno.h>.

These identifiers may be used by implementations, particularly for feature test macros. Implementations should not
use feature test macro names that might be reasonably used by a standard.

The requirement for representing the number of clock ticks in 24 h refers to the interval defined by POSIX.1, not to the
interval defined by the C Standard {2}.

Including headers more than once is a reasonably common practice, and it should be carried forward from the C
Standard {2}. More significantly, having definitions in more than one header is explicitly permitted. Where the
potential declaration is “benign” (the same definition twice) the declaration can be repeated, if that is permitted by the
compiler. (This is usually true of macros, for example.) In those situations where a repetition is not benign (e.g.,
typedefs), conditional compilation must be used. The situation actually occurs both within the C Standard {2} and
within POSIX.1: time_t should be in <sys/types.h>, and the C Standard {2} mandates that it be in <time.h>.
POSIX.1 requires using <sys/types.h> with <time.h> because of the common-usage environment.

B.2.7.2 POSIX.1 Symbols

This subclause addresses the issue of “namespace pollution.” The C Standard {2} requires that the namespace beyond
what it reserves not be altered except by explicit action of the application writer. This subclause defines the actions to
add the POSIX.1 symbols for those headers where both the C Standard {2} and POSIX.1 need to define symbols.
Where there are nonoverlapping uses of headers, there is no problem.

Copyright © 1996 IEEE All Rights Reserved 303

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The list of symbols defined in the C Standard {2} is summarized in the rationale associated with C.

Implementors should note that the requirement on type conversion disallows using an older declaration as a prototype
and in effect requires that the number of arguments in the prototype, match that given in POSIX.1.

When headers are used to provide symbols, there is a potential for introducing symbols that the application writer
cannot predict. Ideally, each header should only contain one set of symbols, but this is not practical for historical
reasons. Thus, the concept of feature test macros is included. This is done in a general manner because it is expected
that future additions to POSIX.1 and other related standards will have this same problem. (Future standards not
constrained by historical practice should avoid the problem by using new header files rather than using ones already
extant.)

This idea is split into two subclauses: 2.7.2.1 covers the case of the C Standard {2} conformant systems, where the
requirements of the C Standard {2} are that unless specifically requested the application will not see any other
symbols, and “Common Usage,” where the default set of symbols is not well controlled and backwards compatibility
is an issue.

The common usage case is the more difficult to define. In the C Standard {2} case, each feature test macro simply adds
to the possible symbols. In common usage, having _POSIX C SOURCE defined with a value of 199309L is a special
case in that it reduces the set to the sum of the C Standard {2} and POSIX.1. (The developers of the C Standard {2}
will determine if they want a similar macro to limit the features to just the C Standard {2}; the wording permits this
because under those circumstances _POSIX_C_SOURCE would be just another ordinary feature test macro. The only
order requirement is “before headers.”)

If _POSIX_C_SOURCE is not defined in a common-usage environment, the user presumably gets the same results as
in previous releases. Some applications may today be conformant without change, so they would continue to compile
as long as common usage is provided. When the C Standard {2} is the default they will have to change (unless they are
already C Standard {2} conformant), but this can be done gradually.

Note that the net result of defining _POSIX_C_SOURCE at the beginning of a program is in either case the same: the
implementation-defined symbols are only visible if they are requested. (But if _POSIX_C_SOURCE is not used, the
implementation default, which is probably backwards compatible, determines their visibility.)

Since_POSIX_SOURCE as specified by IEEE Std 1003.1-1990 did not have a value associated with it, the
_POSIX_C_SOURCE macro replaces it, allowing an application to inform the system of the version of the standard to
which it conforms. This symbol will allow implementations to support various versions of POSIX.1 simultaneously.
For instance, when either _POSIX_SOURCE is defined or _POSIX_C_SOURCE is defined as 1, the system should
make visible the same namespace as permitted and required by IEEE Std 1003.1-1990. When _POSIX_C_SOURCE
is defined, the state of _POSIX_SOURCE is completely irrelevant.

It is expected that C bindings to future POSIX standards and amendments will define new values for
_POSIX_C_SOURCE, with each new value reserving the namespace for that new standard or amendment, plus all
earlier POSIX standards. Using a single feature text macro for all standards rather than a separate macro for each
standard furthers the goal of eventually combining all of the C bindings into one standard.

It is further intended that these feature test macros apply only to the headers specified by POSIX.1. Implementations
are expressly permitted to make visible symbols not specified by this part of ISO/IEC 9945, within both POSIX.1 and
other headers, under the control of feature test macros that are not defined by this part of ISO/IEC 9945.

The area of namespace pollution versus additions to structures is difficult because of the macro structure of C. The
following discussion summarizes all the various problems with and objections to the issue.

304 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Note the phrase “user defined macro.” Users are not permitted to define macro names (or any other name) beginning
with _[A-Z_]. Thus, the conflict cannot occur for symbols reserved to the vendor's namespace, and the permission to
add fields automatically applies, without qualification, to those symbols.

1) Data structures (and unions) need to be defined in headers by implementations to meet certain requirements
of POSIX.1 and the C Standard {2}.

2) The structures defined by POSIX.1 are typically minimal, and any practical implementation would wish to
add fields to these structures either to hold additional related information or for backwards compatibility (or
both). Future standards (and de facto standards) would also wish to add to these structures. Issues of field
alignment make it impractical (at least in the general case) to simply omit fields when they are not defined by
the particular standard involved.
Struct dirent is an example of such a minimal structure (although one could argue about whether the other
fields need visible names). The st_rdev field of most implementations' stat structure is a common example
where extension is needed and where a conflict could occur.

3) Fields in structures are in an independent namespace, so the addition of such fields presents no problem to the
C language itself in that such names cannot interact with identically named user symbols because access is
qualified by the specific structure name.

4) There is an exception to this: macro processing is done at a lexical level. Thus, symbols added to a structure
might be recognized as user-provided macro names at the location where the structure is declared. This only
can occur if the user-provided name is declared as a macro before the header declaring the structure is
included. The user's use of the name after the declaration cannot interfere with the structure because the
symbol is hidden and only accessible through access to the structure. Presumably, the user would not declare
such a macro if there was an intention to use that field name.

5) Macros from the same or a related header might use the additional fields in the structure, and those field
names might also collide with user macros. Although this is a less frequent occurrence, since macros are
expanded at the point of use, no constraint on the order of use of names can apply.

6) An “obvious” solution of using names in the reserved namespace and then redefining them as macros when
they should be visible does not work because this has the effect of exporting the symbol into the general
namespace. For example, given a (hypothetical) system-provided header <h.h>, and two parts of a C
program in a.c and b.c:
In header <h.h>:
 struct foo {
 int __i;
 }
 #ifdef _FEATURE_TEST
 #define i __i;
 #endif
In file a.c:
 #include h.h
 extern int i;
 ...
In file b.c:
 extern int i;
 ...
The symbol that the user thinks of as i in both files has an external name of "__i" in a.c; the same symbol
i in b.c has an external name "i" (ignoring any hidden manipulations the compiler might perform on the
names). This would cause a mysterious name resolution problem when a.o and b.o are linked.
Simply avoiding definition then causes alignment problems in the structure.
A structure of the form
 struct foo {
 union {
 int __i;
 #ifdef _FEATURE_TEST
 int i;

Copyright © 1996 IEEE All Rights Reserved 305

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

 #endif
 } __ii;
 }
does not work because the name of the logical field i is "__ii.i", and introduction of a macro to restore
the logical name immediately reintroduces the problem discussed previously (although its manifestation
might be more immediate because a syntax error would result if a recursive macro did not cause it to fail first).

7) A more workable solution would be to declare the structure:
 struct foo {
 #ifdef _FEATURE_TEST
 int i;
 #else
 int __i;
 #endif
 }
However, if a macro (particularly one required by a standard) is to be defined that uses this field, two must be
defined: one that uses i, the other that uses __i. If more than one additional field is used in a macro and they
are conditional on distinct combinations of features, the complexity goes up as 2n.

All this leaves a difficult situation: vendors must provide very complex headers to deal with what is conceptually
simple and safe: adding a field to a structure. It is the possibility of user-provided macros with the same name that
makes this difficult.

Several alternatives were proposed that involved constraining the user's access to part of the namespace available to the
user (as specified by the C Standard {2}). In some cases, this was only until all the headers had been included. There
were two proposals discussed that failed to achieve consensus:

 Limiting it for the whole program.
 Restricting the use of identifiers containing only uppercase letters until after all system headers had been

included. It was also pointed out that because macros might wish to access fields of a structure (and macro
expansion occurs totally at point of use) restricting names in this way would not protect the macro expansion,
and thus the solution was inadequate.

It was finally decided that reservation of symbols would occur, but as constrained.

The current wording also allows the addition of fields to a structure, but requires that user macros of the same name not
interfere. This allows vendors to either:

 Not create the situation [do not extend the structures with user-accessible names or use the solution in (7)
above] or

 Extend their compilers to allow some way of adding names to structures and macros safely.

There are at least two ways that the compiler might be extended: add new preprocessor directives that turn off and on
macro expansion for certain symbols (without changing the value of the macro) and a function or lexical operation that
suppresses expansion of a word. The latter seems more flexible, particularly because it addresses the problem in
macros as well as in declarations.

The following seems to be a possible implementation extension to the C language that will do this: any token that
during macro expansion is found to be preceded by three # symbols shall not be further expanded in exactly the same
way as described for macros that expand to their own name as in section 3.8.3.4 of the C Standard {2}. A vendor may
also wish to implement this as an operation that is lexically a function, which might be implemented as

 #define __safe_name(x) ###x

306 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Using a function notation would insulate vendors from changes in standards until such a functionality is standardized
(if ever). Standardization of such a function would be valuable because it would then permit third parties to take
advantage of it portably in software they may supply.

The symbols that are “explicitly permitted, but not required by this part of ISO/IEC 9945” include those classified
below. (That is, the symbols classified below might, but are not required to, be present when _POSIX_C_SOURCE is
defined to have the value 199309L.)

 Symbols in 2.8 and 2.9 that are defined to indicate support for options or limits that are constant at compile-
time.

 Symbols in the namespace reserved for the implementation by the C Standard {2}.
 Symbols in a namespace reserved for a particular type of extension (e.g., type names ending with _t in

<sys/types.h>).
 Additional members of structures or unions whose names do not reduce the namespace reserved for

applications (see B.2.7.2).

The phrase “when that header is included” was chosen to allow any fine structure of auxiliary headers the implementor
may choose to use, as long as the net result is as required.

There are several common environments available today where a feature test macro would be useful to applications
programmers during the transition to standard-conforming environments from certain common historical
environments. The symbols in Table B-1, derived from common porting bases and industry specifications are
suggested.

Table B-1 —Suggested Feature Test Macros

Only symbols that are actually in the porting base or industry specification should be enabled by these symbols.

Feature test macros for implementation extensions will also probably be required. Quite a few of these are traditionally
available, but are in violation of the intent of namespace pollution control. These can be made conforming simply by
prefixing them with an underscore. Symbols beginning with “_POSIX” are strongly discouraged, as they will probably
be used by later revisions of POSIX.1.

The environment for compilation has traditionally been fairly portable in historical systems, but during the transition
to the C Standard {2} there will be confusion about how to specify that a C Standard {2} compiler is expected, as
considerations of backwards compatibility will constrain many implementors from providing a conformant
environment replacing the traditional one. This concern has more to do with the issues of namespace than with the
syntax of the language accepted, which is highly compatible.

Symbol Description

_V7 Version 7

_BSD General BSD systems

_BSD4_2 4.2BSD

_BSD4_3 4.3BSD

_SYSIII System III

_SYSV System V. 1, V.2

_SYSV3 System V.3

_XPGn X/Open Portability Guide, Issue n

_USR GROUP The 1984 /usr/group standard

Copyright © 1996 IEEE All Rights Reserved 307

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

For systems that are sufficiently similar to traditional UNIX systems for this to make sense, it is suggested that if a
compilation line of the form

 CC -D__STDC__ ...;

is provided, that the system provide an environment that is conformant with the C Standard {2}, at least with respect
to namespace.

It was decided to use feature test macros, rather than the inclusion of a header, both because <unistd.h> was
already in use and would itself have this problem, and because the underlying mechanism would probably have been
this anyway, but in a less flexible fashion.

POSIX.1 requires that headers be included in all cases, although it is not directly clear from the text at this point in the
standard. If a function does not need any special types, then it must be declared in <unistd.h>, as stated here. If it
does require something special, then it has an associated header, and the program will not compile without that header.

B.2.7.3 Headers and Function Prototypes

The statement that names need not be carried forward literally exists for several reasons. These include the fact that
some vendors may historically use other names and that the names are irrelevant to application portability. More
importantly, because of the pervasive nature of C macros, a declaration of the form:

 kill (pid_t pid, int sig);

could be seriously undermined by a (perfectly valid) user declaration of the form:

 #define pid statusstruct.pidinfo

B.2.8 Numerical Limits

This subclause clarifies the scope and mutability of several classes of limits.

B.2.8.1 C Language Limits

See also 2.7 and B.1.1.1.

{CHAR_MIN} It is possible to tell if the implementation supports native character comparison as signed or
unsigned by comparing this limit to zero.

{WORD_BIT} This limit has been omitted, as it is not referenced elsewhere in POSIX.1.

No limits are given in <limits.h> for floating point values because none of the functions in POSIX.1 use floating
point values, and all the functions that do that are imported from the C Standard {2} by 8.1, as are the limits that apply
to the floating point values associated with them.

Though limits to the addresses to system calls were proposed, they were not included in POSIX.1 because it is not
clear how to implement them for the range of systems being considered, and no complete proposal was ever received.
Limits regarding hardware register characteristics were similarly proposed and not attempted.

B.2.8.2 Minimum Values

There has been confusion about the minimum maxima, and when that is understood there is still a concern about
providing ways to allocate storage based on the symbols. This is particularly true for those in 2.8.4 where an
indeterminate value will leave the programmer with no symbol upon which to fall back.

308 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Providing explicit symbols for the minima (from the implementor's point of view, or maxima from the the application's
point of view) helps to resolve possible confusion. Symbols are still provided for the actual value, and it is expected
that many applications will take advantage of these larger values, but they need not do so unless it is to their advantage.
Where the values in this subclause are adequate for the application, it should use them. These are given symbolically
both because it is easier to understand and because the values of these symbols could change between revisions of
POSIX.1. Arguments to “good programming practice” also apply.

B.2.8.3 Run-Time Increasable Values

The heading of the far-right column of the table is given as “Minimum Value” rather than “Value” in order to
emphasize that the numbers given in that column are minimal for the actual values a specific implementation is
permitted to define in its <limits.h>. The values in the actual <limits.h> define, in turn, the maximum amount
of a given resource that a Conforming POSIX.1 Application can depend on finding when translated to execute on that
implementation. A Conforming POSIX.1 Application Using Extensions must function correctly even if the value
given in <limits.h> is the minimum that is specified in POSIX.1. (The application may still be written so that it
performs more efficiently when a larger value is found in <limits.h>.) A conforming implementation must provide
at least as much of a particular resource as that given by the value in POSIX.1. An implementation that cannot meet
this requirement (a “toy implementation”) cannot be a conforming implementation.

B.2.8.4 Run-Time Invariant Values (Possibly Indeterminate)

{CHILD_MAX}

This name can be misleading. This limit applies to all processes in the system with the same user ID,
regardless of ancestry.

{PTHREAD_KEYS_MAX}

The definition of this symbol is inconsistent with the motivations for defining the pthread_key_delete()
function. It is expected that a future revision of this standard will redefine this symbol to be the maximum
number of data keys that can exist in a process at one time.

B.2.8.5 Pathname Variable Values

{MAX_INPUT}

Since the only use of this limit is in relation to terminal input queues, it mentions them specifically. This limit
was originally named {MAX_CHAR}. Application writers should use {MAX_INPUT} primarily as an
indication of the number of bytes that can be written as a single unit by one Conforming POSIX.1 Application
Using Extensions communicating with another via a terminal device. It is not implied that input lines received
from terminal devices always contain {MAX_INPUT} bytes or fewer: an application that attempts to read
more than {MAX_INPUT} bytes from a terminal may receive more than {MAX_INPUT} bytes.

It is not obvious that {MAX_INPUT} is of direct value to the application writer. The existence of such a value
(whatever it may be) is directly of use in understanding how the tty driver works (particularly with respect to
flow control and dropped characters). The value can be determined by finding out when flow control takes
effect (see the description of IXOFF in 7.1.2.2).

Understanding that the limit exists and knowing its magnitude is important to making certain classes of
applications work correctly. It is unlikely to be used in an application, but its presence makes POSIX.1
clearer.

{PATH_ MAX}

A Conforming POSIX.1 Application or Conforming POSIX.1 Application Using Extensions that, for
example, compiles to use different, algorithms depending on the value of {PATH_MAX} should use code
such as:
#if defined(PATH_MAX) && PATH_MAX < 512

Copyright © 1996 IEEE All Rights Reserved 309

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

 ...
#else
#if defined(PATH_MAX) /* PATH_MAX >= 512 */
 ...
#else /* PATH_MAX indeterminate */
 ...
#endif
#endif

This is because the value tends to be very large or indeterminate on most historical implementations (it is
arbitrarily large on System V). On such systems there is no way to quantify the limit, and it seems
counterproductive to include an artificially small fixed value in <limits.h> in such cases.

B.2.9 Symbolic Constants

B.2.9.1 Symbolic Constants for the access() Function

There is no additional rationale provided for this subclause.

B.2.9.2 Symbolic Constants for the lseek() Function

There is no additional rationale provided for this subclause.

B.2.9.3 Compile-Time Symbolic Constants for Portability Specifications

The purpose of this material is to allow an application developer to have a chance to determine whether a given
application would run (or run well) on a given implementation. To this purpose has been added that of simplifying
development of verification suites for POSIX.1. The constants given here were originally proposed for a separate file,
<posix.h>, but it was decided that they should appear in <unistd.h> along with other symbolic constants.

As mentioned elsewhere in this rationale, thread-safe functions are useful beyond a multithreaded environment, thus
the creation of the {_POSIX_THREAD_SAFE_FUNCTIONS} option.

If multithreaded applications are supported, thread-safe functions are necessary for correct operation of current
application code.

B.2.9.4 Execution-Time Symbolic Constants for Portability Specifications

Without the addition of {_POSIX_NO_TRUNC} and {_PC_NO_TRUNC} to this list, POSIX.1 says nothing about
the effect of a pathname component longer than {NAME_MAX}. There are only two effects in common use in
implementations: truncation or an error. It is desirable to limit allowable behavior to these two cases. It is also desirable
to permit applications to determine what an implementation's behavior is because services that are available with one
behavior may be impractical to provide with the other. However, since the behavior may vary from one file system to
another, it may be necessary to use pathconf() to resolve it.

B.3 Process Primitives

Consideration was given to enumerating all characteristics of a process defined by POSIX.1 and describing each
function in terms of its effects on those characteristics, rather than English text. This is quite different from any known
descriptions of historical implementations, and it was not certain that this could be done adequately and completely
enough to produce a usable standard. Providing such descriptions in addition to the text was also considered. This was
not done because it would provide at best two redundant descriptions, and more likely two descriptions with subtle
inconsistencies.

310 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

B.3.1 Process Creation and Execution

Running a new program takes two steps. First the existing process (the parent) calls the fork() function, producing a
new process (the child), which is a copy of itself. One of these processes (normally, but not necessarily, the child) then
calls one of the exec functions to overlay itself with a copy of the new process image.

If the new program is to be run synchronously (the parent suspends execution until the child completes), the parent
process then uses either the wait() or waitpid() function. If the new program is to be run asynchronously, it does not
suffice to simply omit the wait() or waitpid() call, because after the child terminates it continues to hold some
resources until it is waited for. A common way to produce (“spawn”) a descendant process that does not need to be
waited on is to fork() to produce a child and wait() on the child. The child fork()s again to produce a grandchild. The
child then exits and the parent's wait() returns. The grandchild is thus disinherited by its grandparent.

A simpler method (from the programmer's point of view) of spawning is to do

 system("something &");

However, this depends on features of a process (the shell) that are outside the scope of POSIX.1, although they are
currently being addressed by the working group preparing ISO/IEC 9945-2 {B36} .

B.3.1.1 Process Creation

Many historical implementations have timing windows where a signal sent to a process group (e.g., an interactive
SIGINT) just prior to or during execution of fork() is delivered to the parent following the fork() but not to the child
because the fork() code clears the child's set of pending signals. POSIX.1 does not require, or even permit, this
behavior. However, it is pragmatic to expect that problems of this nature may continue to exist in implementations that
appear to conform to POSIX.1 and pass available verification suites. This behavior is only a consequence of the
implementation failing to make the interval between signal generation and delivery totally invisible. From the
application's perspective, a fork() call should appear atomic. A signal that is generated prior to the fork() should be
delivered prior to the fork(). A signal sent to the process group after the fork() should be delivered to both parent and
child. The implementation might actually initialize internal data structures corresponding to the child's set of pending
signals to include signals sent to the process group during the fork(). Since the fork() call can be considered as atomic
from the application's perspective, the set would be initialized as empty and such signals would have arrived after the
fork(). See also B.3.3.1.2.

One approach that has been suggested to address the problem of signal inheritance across fork() is to add an [EINTR]
error, which would be returned when a signal is detected during the call. While this is preferable to losing signals, it
was not considered an optimal solution. Although it is not recommended for this purpose, such an error would be an
allowable extension for an implementation.

The [ENOMEM] error value is reserved for those implementations that detect and distinguish such a condition. This
condition occurs when an implementation detects that there is not enough memory to create the process. This is
intended to be returned when [EAGAIN] is inappropriate because there can never be enough memory (either primary
or secondary storage) to perform the operation. Because fork() duplicates an existing process, this must be a condition
where there is sufficient memory for one such process, but not for two. Many historical implementations actually
return [ENOMEM] due to temporary lack of memory, a case that is not generally distinct from [EAGAIN] from the
perspective of a portable application.

Part of the reason for including the optional error [ENOMEM] is because the SVID {B41} specifies it and it should be
reserved for the error condition specified there. The condition is not applicable on many implementations.

IEEE Std 1003.1-1988 neglected to require concurrent execution of the parent and child of fork(). A system that single-
threads processes was clearly not intended and is considered an unacceptable, “toy implementation” of POSIX.1. The
only objection anticipated to the phrase “executing independently” is testability, but this assertion should be testable.

Copyright © 1996 IEEE All Rights Reserved 311

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Such tests require that both the parent and child can block on a detectable action of the other, such as a write to a pipe
or a signal. An interactive exchange of such actions should be possible for the system to conform to the intent of
POSIX.1.

The [EAGAIN] error exists to warn applications that such a condition might occur. Whether it will occur or not is not
in any practical sense under the control of the application because the condition is usually a consequence of the user's
use of the system, not of the application's code. Thus, no application can or should rely upon its occurrence under any
circumstances, nor should the exact semantics of what concept of “user” is used be of concern to the application writer.
Validation writers should be cognizant of this limitation.

There are two reasons why POSIX programmers call fork(). One reason is to create a new thread of control within the
same program (which was originally only possible in POSIX by creating a new process); the other is to create a new
process running a different program. In the latter case, the call to fork() is soon followed by a call to one of the exec
functions.

The general problem with making fork() work in a multithreaded world is what to do with all of the threads. There are
two alternatives. One is to copy all of the threads into the new process. This causes the programmer or implementation
to deal with threads that are suspended on system calls or that might be about to execute system calls that should not
be executed in the new process. The other alternative is to copy only the thread that calls fork(). This creates the
difficulty that the state of process-local resources is usually held in process memory. If a thread that is not calling fork()
holds a resource, that resource will never be released in the child process because the thread whose job it is to release
the resource does not exist in the child process.

When a programmer is writing a multithreaded program, the first described use of fork(), creating new threads in the
same program, is provided by the pthread_create() function. The fork() function is thus used only to run new
programs, and the effects of calling functions that require certain resources between the call to fork() and the call to an
exec function are undefined.

A cleaner and easier alternative is to define a single new operation that combines the fork() and exec functions and the
miscellaneous code between them that sets up the new process state. This was considered to be too large a departure
from standard practice.

The addition of the forkall() function to the standard was considered and rejected. The forkall() function lets all the
threads in the parent be duplicated in the child. This essentially duplicates the state of the parent in the child. This
allows threads in the child to continue processing and allows locks and the state to be preserved without explicit
pthread_atfork() code. The calling process has to ensure that the threads processing state that is shared between the
parent and child (e.g., file descriptors or MAP_SHARED memory) behaves properly after forkall(). For example, if a
thread is reading a file descriptor in the parent when forkall() is called, then two threads (one in the parent and one in
the child) will be reading the file descriptor after the forkall(). If this is not desired behavior, the parent process has to
synchronize with such threads before calling forkall().

When forkall() is called, threads, other than the calling thread, that are in POSIX.1 functions that can return with an
[EINTR] error may have those functions return [EINTR] if the implementation cannot ensure that the function will
behave correctly in the parent and child. In particular, pthread_cond_wait() and pthread_cond_timedwait() need to
return in order to ensure that the condition has not changed. These functions can be awakened by a spurious condition
wakeup rather than returning [EINTR].

B.3.1.2 Execute a File

Early drafts of POSIX.1 required that the value of argc passed to main() be “one or greater.” This was driven by the
same requirement in drafts of the C Standard {2}. In fact, historical implementations have passed a value of zero when
no arguments are supplied to the caller of the exec functions. This requirement was removed from the C Standard {2}
and subsequently removed from POSIX.1 as well. The POSIX.1 wording, in particular the use of the word “should,”
requires a Strictly Conforming POSIX.1 Application (see 1.3.3) to pass at least one argument to the exec function, thus

312 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

guaranteeing that argc be one or greater when invoked by such an application. In fact, this is good practice, since many
existing applications reference argv[0] without first checking the value of argc.

The requirement on a Strictly Conforming POSIX.1 Application also states that the value passed as the first argument
be a filename associated with the process being started. Although some existing applications pass a pathname rather
than a filename in some circumstances, a filename is more generally useful, since the common usage of argv[0] is in
printing diagnostics. In some cases the filename passed is not the actual filename of the file; for example, many
implementations of the login utility use a convention of prefixing a hyphen (–) to the actual filename, which
indicates to the command interpreter being invoked that it is a “login shell.”

Some systems can exec shell scripts. This functionality is outside the scope of POSIX.1, since it requires
standardization of the command interpreter language of the script and/or where to find a command interpreter. These
fall in the domain of the shell and utilities standard, currently under development as ISO/IEC 9945-2 {B36} . However,
it is important that POSIX.1 neither require nor preclude any reasonable implementation of this behavior. In particular,
the description of the [ENOEXEC] error is intended to permit discretion to implementations on whether to give this
error for shell scripts.

One common historical implementation is that the execl(), execv(), execle(), and execve() functions return an
[ENOEXEC] error for any file not recognizable as executable, including a shell script. When the execlp() and execvp()
functions encounter such a file, they assume the file to be a shell script and invoke a known command interpreter to
interpret such files. These implementations of execvp() and execlp() only give the [ENOEXEC] error in the rare case
of a problem with the command interpreter's executable file. Because of these implementations the [ENOEXEC] error
is not mentioned for execlp() or execvp(), although implementations can still give it.

Another way that some historical implementations handle shell scripts is by recognizing the first two bytes of the file
as the character string #! and using the remainder of the first line of the file as the name of the command interpreter to
execute.

Some implementations provide a third argument to main() called envp. This is defined as a pointer to the environment.
The C Standard {2} specifies invoking main() with two arguments, so implementations must support applications
written this way. Since POSIX.1 defines the global variable environ, which is also provided by historical
implementations and can be used anywhere envp could be used, there is no functional need for the envp argument.
Applications should use the getenv() function rather than accessing the environment directly via either envp or environ.
Implementations are required to support the two-argument calling sequence, but this does not prohibit an
implementation from supporting envp as an optional, third argument.

POSIX.1 specifies that signals set to SIG_IGN remain set to SIG_IGN and that the process signal mask be unchanged
across an exec. This is consistent with historical implementations, and it permits some useful functionality, such as the
nohup command. However, it should be noted that many existing applications wrongly assume that they start with
certain signals set to the default action and/or unblocked. In particular, applications written with a simpler signal
model that does not include blocking of signals, such as the one in the C Standard {2}, may not behave properly if
invoked with some signals blocked. Therefore, it is best not to block or ignore signals across execs without explicit
reason to do so, and especially not to block signals across execs of arbitrary (not closely co-operating) programs.

If {_POSIX_SAVED_IDS} is defined, the exec functions always save the value of the effective user ID and effective
group ID of the process at the completion of the exec, whether or not the set-user-ID or the set-group-ID bit of the
process image file is set.

The statement about argv[] and envp[] being constants is included to make explicit to future writers of language
bindings that these objects are completely constant. Due to a limitation of the C Standard {2}, it is not possible to state
that idea in Standard C. Specifying two levels of const-qualification for the argv[] and envp[] parameters for the
exec functions may seem to be the natural choice, given that these functions do not modify either the array of pointers
or the characters to which the function points, but this would disallow existing correct code. Instead, only the array of

Copyright © 1996 IEEE All Rights Reserved 313

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

pointers is noted as constant. The table of assignment compatibility for dst = src, derived from the C Standard {2},
summarizes the compatibility:

Since all existing code has a source type matching the first row, the column that gives the most valid combinations is
the third column. The only other possibility is the fourth column, but using it would require a cast on the argv or envp
arguments. It is unfortunate that the fourth column cannot be used, because the declaration a nonexpert would
naturally use would be that in the second row.

The C Standard {2} and POSIX.1 do not conflict on the use of environ, but some historical implementations of environ
may cause a conflict. As long as environ is treated in the same way as an entry point [e.g., fork()], it conforms to both
standards. A library can contain fork(), but if there is a user-provided fork(), that fork() is given precedence and no
problem ensues. The situation is similar for environ—the POSIX.1 definition is to be used if there is no user-provided
environ to take precedence. At least three implementations are known to exist that solve this problem.

[E2BIG] The limit {ARC_MAX} applies not just to the size of the argument list, but to the sum of that and the
size of the environment list.

[EFAULT] Some historical systems return [EFAULT] rather than [ENOEXEC] when the new process image file
is corrupted. They are nonconforming.

[ENAMETOOLONG]

Since the file pathname may be constructed by taking elements in the PATH variable and putting
them together with the filename, the [ENAMETOOLONG] condition could also be reached this
way.

[ETXTBSY] The error [ETXTBSY] was considered too implementation dependent to include. System V returns
this error when the executable file is currently open for writing by some process. POSIX.1 neither
requires nor prohibits this behavior.

Other systems (such as System V) may return [EINTR] from exec. This is not addressed by POSIX.1, but
implementations may have a window between the call to exec and the time that a signal could cause one of the exec
calls to return with [EINTR].

B.3.1.3 Register Fork Handlers

There are at least two serious problems with the semantics of fork() in a multithreaded program. One problem has to
do with state (e.g., memory) covered by mutexes. Consider the case where one thread has a mutex locked and the state
covered by that mutex is inconsistent while another thread calls fork(). In the child, the mutex will be in the locked

dst:

char *[]
const
char*[]

char
*const[

]
const

char*const[]

src:

char * [] VALID VALID

const char *[] VALID VALID

char * const [] VALID

const char *const[] VALID

314 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

state (locked by a nonexistent thread and thus can never be unlocked). Having the child simply reinitialize the mutex
is unsatisfactory since this approach does not resolve the question about how to correct or otherwise deal with the
inconsistent state in the child.

It is suggested that programs that use fork() will call a exec function very soon afterwards in the child process, thus
resetting all states. In the meantime, only a short list of async-signal safe library routines are promised to be available.

Unfortunately, this solution does not address the needs of multithreaded libraries. Application programs may not be
aware that a multithreaded library is in use, and they will feel free to call any number of library routines between the
fork() and exec calls, just as they always have. Indeed, they may be extant single-threaded programs and cannot,
therefore, be expected to obey new restrictions imposed by the threads library.

On the other hand, the multithreaded library needs a way to protect its internal state during fork() in case it is reentered
later in the child process. The problem arises especially in multithreaded I/O libraries, which are almost sure to be
invoked between the fork() and exec calls to effect I/O redirection. The solution may require locking mutex variables
during fork(), or it may entail simply resetting the state in the child after the fork() processing completes.

The pthread_atfork() function provides multithreaded libraries with a means to protect themselves from innocent
application programs that call fork(), and it provides multithreaded application programs with a standard mechanism
for protecting themselves from fork() calls in a library routine or the application itself.

The expected usage is that the prepare handler acquires all mutex locks and the other two fork handlers release them.

For example, an application can supply a prepare routine that acquires the necessary mutexes the library maintains and
supply child and parent routines that release those mutexes, thus ensuring that the child gets a consistent snapshot of
the state of the library (and that no mutexes are left stranded). Alternatively, some libraries might be able to supply just
a child routine that reinitializes the mutexes in the library and all associated states to some known value (e.g., what it
was when the image was originally executed).

When fork() is called, only the calling thread is duplicated in the child process. Synchronization variables remain in the
same state in the child as they were in the parent at the time fork() was called. Thus, for example, mutex locks may be
held by threads that no longer exist in the child process, and any associated states may be inconsistent. The parent
process may avoid this by explicit code that acquires and releases locks critical to the child via pthread_atfork(). In
addition, any critical threads need to be recreated and reinitialized to the proper state in the child [also via
pthread_atfork()].

A higher-level package may acquire locks on its own data structures before invoking lower-level packages. Under this
scenario, the order specified for fork handler calls allows a simple rule of initialization for avoiding package deadlock:
a package initializes all packages on which it depends before it calls the pthread_atfork() function for itself.

B.3.2 Process Termination

Early drains drew a different distinction between normal and abnormal process termination. Abnormal termination
was caused only by certain signals and resulted in implementation-defined “actions,” as discussed below. Subsequent
drafts of POSIX.1 distinguished three types of termination: normal termination (as in the current POSIX.1), “simple
abnormal termination,” and “abnormal termination with actions.” Again the distinction between the two types of
abnormal termination was that they were caused by different signals and that implementation-defined actions would
result in the latter case. Given that these actions were completely implementation defined, the early drafts were only
saying when the actions could occur and how their occurrence could be detected, but not what they were. This was of
little or no use to portable applications, and thus the distinction was dropped from POSIX.1.

The implementation-defined actions usually include, in most historical implementations, the creation of a file named
core in the current working directory of the process. This file contains an image of the memory of the process,

Copyright © 1996 IEEE All Rights Reserved 315

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

together with descriptive information about the process, perhaps sufficient to reconstruct the state of the process at the
receipt of the signal.

There is a potential security problem in creating a core file if the process was set-user-ID and the current user is not
the owner of the program, if the process was set-group-ID and none of the user's groups match the group of the
program, or if the user does not have permission to write in the current directory. In this situation, an implementation
either should not create a core file or should make it unreadable by the user.

Despite the silence of POSIX.1 on this feature, applications are advised not to create files named core because of
potential conflicts in many implementations. Some historical implementations use a different name than core for the
file, such as by appending the process ID to the filename.

B.3.2.1 Wait for Process Termination

A call to the wait() or waitpid() function only returns status on an immediate child process of the calling process; i.e.,
a child that was produced by a single fork() call (perhaps followed by an exec or other function calls) from the parent.
If a child produces grandchildren by further use of fork(), none of those grandchildren nor any of their descendants will
affect the behavior of a wait() from the original parent process. Nothing in POSIX.1 prevents an implementation from
providing extensions that permit a process to get status from a grandchild or any other process, but a process that does
not use such extensions must be guaranteed to see status from only its direct children.

The waitpid() function is provided for three reasons:

 To support job control (see B.3.3).
 To permit a nonblocking version of the wait() function.
 To permit a library routine, such as system() or pclose(), to wait for its children without interfering with other

terminated children for which the process has not waited.

The first two of these facilities are based on the wait3() function provided by 4.3BSD. The interface uses the options
argument, which is identical to an argument to wait3(). The WUNTRACED flag is used only in conjunction with job
control on systems supporting the Job Control option. Its name comes from 4.3BSD and refers to the fact that there are
two types of stopped processes in that implementation: processes being traced via the ptrace() debugging facility and
(untraced) processes stopped by job-control signals. Since ptrace() is not part of POSIX.1, only the second type is
relevant. The name WUNTRACED was retained because its usage is the same, even though the name is not intuitively
meaningful in this context.

The third reason for the waitpid() function is to permit independent sections of a process to spawn and wait for children
without interfering with each other. For example, the following problem occurs in developing a portable shell, or
command interpreter:

 stream = popen("/bin/true");
 (void) system("sleep 100");
 (void) pclose(stream);

On all historical implementations, the final pclose() will fail to reap the wait status of the popen().

The status values are retrieved by macros, rather than given as specific bit encodings as they are in most historical
implementations (and thus expected by existing programs). This was necessary to eliminate a limitation on the number
of signals an implementation can support that was inherent in the traditional encodings. POSIX.1 does require that a
status value of zero corresponds to a process calling _exit(0), as this is the most common encoding expected by
existing programs. Some of the macro names were adopted from 4.3BSD.

These macros syntactically operate on an arbitrary integer value. The behavior is undefined unless that value is one
stored by a successful call to wait() or waitpid() in the location pointed to by the stat_loc argument. An earlier draft

316 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

attempted to make this clearer by specifying each argument as *stat_loc rather than stat_val. However, that did not
follow the conventions of other specifications in POSIX.1 or traditional usage. It also could have implied that the
argument to the macro must literally be *stat_loc; in fact, that value can be stored or passed as an argument to other
functions before being interpreted by these macros.

The extension that affects wait() and waitpid() and is common in historical implementations is the ptrace() function.
It is called by a child process and causes that child to stop and return a status that appears identical to the status
indicated by WIFSTOPPED. The status of ptraced children is traditionally returned regardless of the WUNTRACED
flag [or by the wait() function]. Most applications do not need to concern themselves with such extensions because
they have control over what extensions they or their children use. However, applications, such as command
interpreters, that invoke arbitrary processes may see this behavior when those arbitrary processes misuse such
extensions.

Implementations that support core file creation or other implementation-defined actions on termination of some
processes traditionally provide a bit in the status returned by wait() to indicate that such actions have occurred.

B.3.2.2 Terminate a Process

Most C language programs should use the exit() function rather than _exit(). The _exit() function is defined here
instead of exit() because the C Standard {2} defines the latter to have certain characteristics that are beyond the scope
of POSIX.1, specifically the flushing of buffers on open files and the use of atexit(). See “The C Language” in the
Introduction. There are several public-domain implementations of atexit() that may be of use to interface
implementors who wish to incorporate it.

It is important that the consequences of process termination as described in this subclause occur regardless of whether
the process called _exit() [perhaps indirectly through exit()] or instead was terminated due to a signal or for some other
reason. Note that in the specific case of exit() this means that the status argument to exit() is treated the same as the
status argument to _exit(). See also B.3.2.

A language other than C may have other termination primitives than the C language exit() function, and programs
written in such a language should use its native termination primitives, but those should have as part of their function
the behavior of _exit() as described in this subclause. Implementations in languages other than C are outside the scope
of the present version of POSIX.1, however.

As required by the C Standard {2}, using return from main() is equivalent to calling exit() with the same argument
value. Also, reaching the end of the main() function is equivalent to using exit() with an unspecified value.

A value of zero (or EXIT_SUCCESS, which is required by 8.1 to be zero) for the argument status conventionally
indicates successful termination. This corresponds to the specification for exit() in the C Standard {2}. The convention
is followed by utilities such as make and various shells, which interpret a zero status from a child process as success.
For this reason, applications should not call exit(0) or _exit(0) when they terminate unsuccessfully, for example in
signal-catching functions.

Historically, the implementation-dependent process that inherits children whose parents have terminated without
waiting on them is called init and has a process ID of 1.

The sending of a SIGHUP to the foreground process group when a controlling process terminates corresponds to
somewhat different historical implementations. In System V, the kernel sends a SIGHUP on termination of
(essentially) a controlling process. In 4.2BSD, the kernel does not send SIGHUP in a case like this, but the termination
of a controlling process is usually noticed by a system daemon, which arranges to send a SIGHUP to the foreground
process group with the vhangup() function. However, in 4.2BSD, due to the behavior of the shells that support job
control, the controlling process is usually a shell with no other processes in its process group. Thus, a change to make
_exit() behave this way in such systems should not cause problems with existing applications.

Copyright © 1996 IEEE All Rights Reserved 317

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The termination of a process may cause a process group to become orphaned in either of two ways. The connection of
a process group to its parent(s) outside of the group depends on both the parents and their children. Thus, a process
group may be orphaned by the termination of the last connecting parent process outside of the group or by the
termination of the last direct descendant of the parent process(es). In either case, if the termination of a process causes
a process group to become orphaned, processes within the group are disconnected from their job control shell, which
no longer has any information on the existence of the process group. Stopped processes within the group would
languish forever. In order to avoid this problem, newly orphaned process groups that contain stopped processes are
sent a SIGHUP signal and a SIGCONT signal to indicate that they have been disconnected from their session. The
SIGHUP signal causes the process group members to terminate unless they are catching or ignoring SIGHUP. Under
most circumstances, all of the members of the process group are stopped if any of them are stopped.

The action of sending a SIGHUP and a SIGCONT signal to members of a newly orphaned process group is similar to
the action of 4.2BSD, which sends SIGHUP and SIGCONT to each stopped child of an exiting process. If such
children exit in response to the SIGHUP, any additional descendants will receive similar treatment at that time. In
POSIX.1, the signals will be sent to the entire process group at the same time. Also, in POSIX.1, but not in 4.2BSD,
stopped processes may be orphaned, but may be members of a process group that is not orphaned; therefore, the action
taken at _exit() must consider processes other than child processes.

It is possible for a process group to be orphaned by a call to setpgid() or setsid(), as well as by process termination.
POSIX.1 does not require sending SIGHUP and SIGCONT in those cases, because, unlike process termination, those
cases will not be caused accidentally by applications that are unaware of job control. An implementation can choose
to send SIGHUP and SIGCONT in those cases as an extension; such an extension must be documented as required in
3.3.1.2.

B.3.3 Signals

Signals, as defined in Version 7, System III, the 1984/ usr/group Standard {B75} , and System V (except very recent
releases), have shortcomings that make them unreliable for many application uses. Several objections were raised
against early drafts of POSIX.1 because of this. Therefore, a new signal mechanism, based very closely on the one of
4.2BSD and 4.3BSD, was added to POSIX.1. With the exception of one feature [see item (4) below and also
sigpending()], it is possible to implement the POSIX.1 interface as a simple library veneer on top of 4.3BSD. There are
also a few minor aspects of the underlying 4.3BSD implementation (as opposed to the interface) that would also need
to change to conform to POSIX.1.

The major differences from the BSD mechanism are:

1) Signal mask type. BSD uses the type int to represent a signal mask, thus limiting the number of signals to the
number of bits in an int (typically 32.) The new standard instead uses a defined type for signal masks.
Because of this change, the interface is significantly different than it is in BSD implementations, although the
functionality, and potentially the implementation, are very similar.

2) Restarting system calls. Unlike all previous historical implementations, 4.2BSD restarts some interrupted
system calls rather than returning an error with errno set to [EINTR] after the signal-catching function
returns. This change caused problems for some existing application code. 4.3BSD and other systems derived
from 4.2BSD allow the application to choose whether system calls are to be restarted. POSIX.1 (in 3.3.4)
does not require restart of functions because it was not clear that the semantics of system-call restart in any
historical implementation were useful enough to be of value in a standard. Implementors are free to add such
mechanisms as extensions.

3) Signal stacks. The 4.2BSD mechanism includes a function sigstack(). The 4.3BSD mechanism includes this
and a function sigreturn(). No equivalent is included in POSIX.1 because these functions are not portable,
and no sufficiently portable and useful equivalent has been identified. See also 8.3.1.

4) Pending signals. The sigpending() function is the sole new signal operation introduced in POSIX.1.

A proposal was considered for making reliable signals optional. However, the consensus was that this would hurt
application portability, as a large percentage of applications using signals can be hurt by the unreliable aspects of

318 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

historical implementations of the signal() mechanism defined by the C Standard {2}. This unreliability stems from the
fact that the signal action is reset to SIG_DFL before the user's signal-catching routine is entered. The C Standard {2}
does not require this behavior, but does explicitly permit it, and most historical implementations behave this way.

For example, an application that catches the SIGINT signal using signal() could be terminated with no chance to
recover when two such signals arrive sufficiently close in time (e.g., when an impatient user types the INTR character
twice in a row on a busy system). Although the C Standard {2} no longer requires this unreliable behavior, many
historical implementations, including System V, will reset the signal action to SIG_DFL. For this reason, it is strongly
recommended that the signal() function not be used by POSIX.1 conforming applications. Implementations should
also consider blocking signals during the execution of the signal-catching function instead of resetting the action to
SIG_DFL, but backward compatibility considerations will most likely prevent this from becoming universal.

Most historical implementations do not queue signals; i.e., a process's signal handler is invoked once, even if the signal
has been generated multiple times before it is delivered. A notable exception to this is SIGCLD, which, in System V,
is queued. The queueing of signals is neither required nor prohibited by POSIX.1. See 3.3.1.2. It is expected that a
future realtime extension to POSIX.1 will address the issue of reliable queueing of event notification.

Realtime Signals Extension

This portion of the rationale presents models, requirements, and standardization issues relevant to the Realtime Signals
Extension. This extension provides the capability required to support reliable, deterministic, asynchronous notification
of events. While a new mechanism, unencumbered by the historical usage and semantics of POSIX.1 signals, might
allow for a more efficient implementation, the application requirements for event notification can be met with a small
number of extensions to signals. Therefore, a minimal set of extensions to signals to support the application
requirements is specified.

The realtime signal extensions specified in this clause are used by other realtime functions requiring asynchronous
notification.

Models

The model supported is one of multiple cooperating processes, each of which handles multiple asynchronous external
events. Events represent occurrences that are generated as the result, of some activity in the system. Examples of
occurrences that can constitute an event include

 Completion of an asynchronous I/O request
 Expiration of a POSIX.1b timer
 Arrival of an interprocess message
 Generation of a user-defined event

Processing of these events may occur synchronously via polling for event notifications or asynchronously via a
software interrupt mechanism. Existing practice for this model is well established for traditional proprietary realtime
operating systems, realtime executives, and realtime extended POSIX-like systems.

A contrasting model is that of “cooperating sequential processes” where each process handles a single priority of
events via polling. Each process blocks while waiting for events, and each process depends on the preemptive, priority-
based process scheduling mechanism to arbitrate between events of different priority that need to be processed
concurrently. Existing practice for this model is also well established for small realtime executives that typically
execute in an unprotected physical address space, but it is just emerging in the context of a fuller function operating
system with multiple virtual address spaces.

It could be argued that the cooperating sequential process model, and the facilities supported by the POSIX Threads
Extension obviate a software interrupt model. But, even with the cooperating sequential process model, the need has
been recognized for a software interrupt model to handle exceptional conditions and process aborting, so the

Copyright © 1996 IEEE All Rights Reserved 319

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

mechanism must be supported in any case. Furthermore, it is not the purview of this standard to attempt to convince
realtime practitioners that their current application models based on software interrupts are “broken” and should be
replaced by the cooperating sequential process model. Rather, it is the charter of this standard to provide standard
extensions to mechanisms that support existing realtime practice.

Requirements

This subclause discusses the following realtime application requirements for asynchronous event notification:

 Reliable delivery of asynchronous event notification
The events notification mechanism shall guarantee delivery of an event notification. Asynchronous
operations (such as asynchronous I/O and timers) that complete significantly after they are invoked have to
guarantee that delivery of the event notification can occur at the time of completion.

 Prioritized handling of asynchronous event notifications
The events notification mechanism shall support the assigning of a user function as an event notification
handler. Furthermore, the mechanism shall support the preemption of an event handler function by a higher
priority event notification and shall support the selection of the highest priority pending event notification
when multiple notifications (of different priority) are pending simultaneously.
The model here is based on hardware interrupts. Asynchronous event handling allows the application to
ensure that time-critical events are immediately processed when delivered, without the indeterminism of
being at a random location within a polling loop. Use of handler priority allows the specification of how
handlers are interrupted by other higher priority handlers.

 Differentiation between multiple occurrences of event notifications of the same type
The events notification mechanism shall pass an application-defined value to the event handler function. This
value can be used for a variety of purposes, such as enabling the application to identify which of several
possible events of the same type (for example, timer expirations) has occurred.

 Polled reception of asynchronous event notifications
The events notification mechanism shall support blocking and nonblocking polls for asynchronous event
notification.
The polled mode of operation is often preferred over the interrupt mode by those practitioners accustomed to
this model. Providing support for this model facilitates the porting of applications based on this model to
POSIX.1b conforming systems.

 Deterministic response to asynchronous event notifications
The events notification mechanism shall not preclude implementations that provide deterministic event
dispatch latency and shall minimize the number of system calls needed to use the event facilities during
realtime processing.

Rationale for Extension

POSIX.1 signals have many of the characteristics necessary to support the asynchronous handling of event
notifications, and the Realtime Signals Extension addresses the following deficiencies in the POSIX.1 signal
mechanism:

 Signals do not support reliable delivery of event notification. Subsequent occurrences of a pending signal are
not guaranteed to be delivered.

 Signals do not support prioritized delivery of event notifications. The order of signal delivery when multiple
unblocked signals are pending is undefined.

 Signals do not support the differentiation between multiple signals of the same type.

320 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

B.3.3.1 Signal Concepts

B.3.3.1.1 Signal Names

The restriction on the actual type used for sigset_t is intended to guarantee that these objects can always be assigned,
have their address taken, and be passed as parameters by value. It is not intended that this type be a structure including
pointers to other data structures, as that could impact the portability of applications performing such operations. A
reasonable implementation could be a structure containing an array of some integer type.

The signals described in POSIX.1 must have unique values so that they may be named as parameters of case
statements in the body of a C language switch clause. However, implementation-defined signals may have values that
overlap with each other or with signals specified in this document. An example of this is SIGABRT, which
traditionally overlaps some other signal, such as SIGIOT.

SIGKILL, SIGTERM, SIGUSR1, and SIGUSR2 are ordinarily generated only through the explicit use of the kill()
function, although some implementations generate SIGKILL under extraordinary circumstances. SIGTERM is
traditionally the default signal sent by the kill command.

The signals SIGBUS, SIGEMT, SIGIOT, SIGTRAP, and SIGSYS were omitted from POSIX.1 because their behavior
is implementation dependent and could not be adequately categorized. Conforming implementations may deliver these
signals, but must document the circumstances under which they are delivered and note any restrictions concerning
their delivery. The signals SIGFPE, SIGILL, and SIGSEGV are similar in that they also generally result only from
programming errors. They were included in POSIX.1 because they do indicate three relatively well-categorized
conditions. They are all defined by the C Standard {2} and thus would have to be defined by any system with a C
Standard {2} binding, even if not explicitly included in POSIX.1.

There is very little that a Conforming POSIX.1 Application can do by catching, ignoring, or masking any of the signals
SIGILL, SIGTRAP, SIGIOT, SIGEMT, SIGBUS, SIGSEGV, SIGSYS, or SIGFPE. They will generally be generated
by the system only in cases of programming errors. While it may be desirable for some robust code (e.g., a library
routine) to be able to detect and recover from programming errors in other code, these signals are not nearly sufficient
for that purpose. One portable use that does exist for these signals is that a command interpreter can recognize them as
the cause of a process's termination [with wait()] and print an appropriate message. The mnemonic tags for these
signals are derived from their PDP-11 origin.

The signals SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU, and SIGCONT are provided for job control and are
unchanged from 4.2BSD. The signal SIGCHLD is also typically used by job control shells to detect children that have
terminated or, as in 4.2BSD, stopped. See also B.3.3.4.

Some implementations, including System V, have a signal named SIGCLD, which is similar to SIGCHLD in 4.2BSD.
POSIX.1 permits implementations to have a single signal with both names. POSIX.1 carefully specifies ways in which
portable applications can avoid the semantic differences between the two different implementations. The name
SIGCHLD was chosen for POSIX.1 because most current application usages of it can remain unchanged in
conforming applications. SIGCLD in System V has more cases of semantics that POSIX.1 does not specify, and thus
applications using it are more likely to require changes in addition to the name change.

Some implementations that do not support Job Control may nonetheless implement SIGCHLD. Similarly, such an
implementation may choose to implement SIGSTOP. Since POSIX.1 requires that symbolic names always be defined
(with the exception of certain names in <limits.h> and <unistd.h>), a portable method of determining, at run-
time, whether an optional signal is supported is to call the sigaction() function with NULL act and oact arguments. A
successful return indicates that the signal is supported. Note that if sysconf() shows that Job Control is present, then all
of the optional signals shall also be supported.

The signals SIGUSR1 and SIGUSR2 are commonly used by applications for notification of exceptional behavior and
are described as “reserved as application defined” so that such use is not prohibited. Implementations should not

Copyright © 1996 IEEE All Rights Reserved 321

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

generate SIGUSR1 or SIGUSR2, except when explicitly requested by kill(). It is recommended that libraries not use
these two signals, as such use in libraries could interfere with their use by applications calling the libraries. If such use
is unavoidable, it should be documented. It is prudent for nonportable libraries to use nonstandard signals to avoid
conflicts with use of standard signals by portable libraries.

There is no portable way for an application to catch or ignore nonstandard signals. Some implementations define the
range of signal numbers, so applications can install signal-catching functions for all of them. Unfortunately,
implementation-defined signals often cause problems when caught or ignored by applications that do not understand
the reason for the signal. While the desire exists for an application to be more robust by handling all possible signals
[even those only generated by kill()], no existing mechanism was found to be sufficiently portable to include in
POSIX.1. The value of such a mechanism, if included, would be diminished given that SIGKILL would still not be
catchable.

A number of new signal numbers are reserved for applications because the two user signals defined by POSIX.1 are
insufficient for many realtime applications. A range of signal numbers is specified, rather than an enumeration of
additional reserved signal names, because different applications and application profiles will require a different
number of application signals. It is not desirable to burden all application domains and therefore all implementations
with the maximum number of signals required by all possible applications. Note that in this context, signal numbers
are essentially different signal priorities.

The relatively small number of required additional signals, {_POSIX_RTSIG_MAX}, was chosen so as not to require
an unreasonably large signal mask/set. While this number of signals defined in POSIX.1 will fit in a single 32 b word
signal mask, it is recognized that most existing implementations define many more signals than are specified in
POSIX.1 and, in fact, many implementations have already exceeded 32 signals (including the “null signal”). Support
of {_POSIX_RTSIG_MAX} additional signals may push some implementation over the single 32 b word line, but is
unlikely to push any implementations that are already over that line beyond the 64-signal line.

B.3.3.1.2 Signal Generation and Delivery

The terms defined in this subclause are not used consistently in documentation of historical systems. Each signal can
be considered to have a lifetime beginning with generation and ending with delivery or acceptance. The POSIX.1
definition of delivery does not exclude ignored signals; this is considered a more consistent definition. This revised
text in several parts of this standard clarifies the distinct semantics of asynchronous signal delivery and synchronous
signal acceptance. The previous wording attempted to categorize both under the term delivery, which led to conflicts
over whether the effects of asynchronous signal delivery applied to synchronous signal acceptance.

Signals generated for a process are delivered to only one thread. Thus, if more than one thread is eligible to receive a
signal, one has to be chosen. The choice of threads is left entirely up to the implementation both to allow the widest
possible range of conforming implementations and to give implementations the freedom to deliver the signal to the
“easiest possible” thread should there be differences in ease of delivery between different threads.

Note that should multiple delivery among cooperating threads be required by an application, this can be trivially
constructed out of the provided single-delivery semantics. The construction of a sigwait_multiple() function that
accomplishes this goal is presented with the sigwait rationale.

Implementations should deliver unblocked signals as soon after they are generated as possible. However, it is difficult
for POSIX.1 to make specific requirements about this, beyond those in kill() and sigprocmask(). Even on systems with
prompt delivery, scheduling of higher priority processes is always likely to cause delays.

In general, the interval between the generation and delivery of unblocked signals cannot be detected by an application.
Thus, references to pending signals generally apply to blocked, pending signals. An implementation registers a signal
as pending on the process when no thread has the signal unblocked and there are no threads blocked in a sigwait
function for that signal. Thereafter, the implementation delivers the signal to the first thread that unblocks the signal or

322 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

calls a sigwait function on a signal set containing this signal rather than choosing the recipient thread at the time the
signal is sent.

In the 4.3BSD system, signals that are blocked and set to SIG_IGN are discarded immediately upon generation. For a
signal that is ignored as its default action, if the action is SIG_DFL and the signal is blocked, a generated signal
remains pending. In the 4.1BSD system and in System V Release 3, two other implementations that support a
somewhat similar signal mechanism, all ignored, blocked signals remain pending if generated. Because it is not
normally useful for an application to simultaneously ignore and block the same signal, it was unnecessary for POSIX.1
to specify behavior that would invalidate any of the historical implementations.

There is one case in some historical implementations where an unblocked, pending signal does not remain pending
until it is delivered. In the System V implementation of signal(), pending signals are discarded when the action is set
to SIG_DFL or a signal-catching routine (as well as to SIG_IGN). Except in the case of setting SIGCHLD to
SIG_DFL, implementations that do this do not conform completely to POSIX.1. Some earlier drafts of POSIX.1
explicitly stated this, but these statements were redundant due to the requirement that functions defined by POSIX.1
not change attributes of processes defined by POSIX.1 except as explicitly stated (see Section 3).

POSIX.1 specifically states that the order in which multiple, simultaneously pending signals are delivered is
unspecified. This order has not been explicitly specified in historical implementations, but has remained quite
consistent and been known to those familiar with the implementations. Thus, there have been cases where applications
(usually system utilities) have been written with explicit or implicit dependencies on this order. Implementors and
others porting existing applications may need to be aware of such dependencies.

When there are multiple pending signals that are not blocked, implementations should arrange for the delivery of all
signals at once, if possible. Some implementations stack calls to all pending signal-catching routines, making it appear
that each signal-catcher was interrupted by the next signal. In this case, the implementation should ensure that this
stacking of signals does not violate the semantics of the signal masks established by sigaction(). Other
implementations process at most one signal when the operating system is entered, with remaining signals saved for
later delivery. Although this practice is widespread, this behavior is neither standardized nor endorsed. In either case,
implementations should attempt to deliver signals associated with the current state of the process (e.g., SIGFPE)
before other signals, if possible.

In 4.2BSD and 4.3BSD, it is not permissible to ignore or explicitly block SIGCONT because if blocking or ignoring
this signal prevented it from continuing a stopped process, such a process could never be continued (only killed by
SIGKILL). However, 4.2BSD and 4.3BSD do block SIGCONT during execution of its signal-catching function when
it is caught, creating exactly this problem. A proposal was considered to disallow catching SIGCONT SIGCONT in
addition to ignoring and blocking it, but this limitation led to objections. The consensus was to require that SIGCONT
always continue a stopped process when generated. This removed the need to disallow ignoring or explicit blocking of
the signal; note that SIG_IGN and SIG_DFL are equivalent for SIGCONT.

The Realtime Signals Extension to POSIX.1 signal generation and delivery behavior is required for the following
reasons:

1) The sigevent structure is used by other POSIX.1 functions that result in asynchronous event notifications to
specify the notification mechanism to use and other information needed by the notification mechanism. The
standard defines only three symbolic values for the notification mechanism. SIGEV_NONE is used to
indicate that no notification is required when the event occurs. This is useful for applications that use
asynchronous I/O with polling for completion. SIGEV_SIGNAL indicates that a signal shall be generated
when the event occurs. SIGEV_NOTIFY provides for “callback functions” for asynchronous notifications
done by a function call within the context of a new thread. This provides a multithreaded process a more
natural means of notification than signals. The primary difficulty with previous notification approaches has
been to specify the environment of the notification routine.
a) One approach is to limit the notification routine to call only functions permitted in a signal handler.

While the list of permissible functions is clearly stated, this is overly restrictive.

Copyright © 1996 IEEE All Rights Reserved 323

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

b) A second approach is to define a new list of functions or classes of functions that are explicitly permitted
or not permitted. This would give a programmer more lists to deal with, which would be awkward.

c) The third approach is to define completely the environment for execution of the notification function. A
clear definition of an execution environment for notification is provided by executing the notification
function in the environment of a newly created thread.

Implementations may support additional notification mechanisms by defining new values for sigev_notify.
For a notification type of SIGEV_SIGNAL, the other members of the sigevent structure defined by the
standard specify the realtime signal—that is, the signal number and application-defined value that
differentiates between occurrences of signals with the same number—that will be generated when the event
occurs. The structure is defined in <signal.h>, even though the structure is not directly used by any of the
signal functions, because it is part of the signals interface used by the POSIX.1b “client functions.” When the
client functions include <signal.h> to define the signal names, the sigevent structure will also be defined.
An application-defined value passed to the signal handler is used to differentiate between different “events”
instead of requiring that the application use different signal numbers for several reasons:
a) Realtime applications potentially handle a very large number of different events. Requiring that

implementations support a correspondingly large number of distinct signal numbers will adversely
impact the performance of signal delivery because the signal masks to be manipulated on entry and exit
to the handlers will become large.

b) Event notifications are prioritized by signal number (the rationale for this is explained in the following
paragraphs) and the use of different signal numbers to differentiate between the different event
notifications overloads the signal number more than has already been done. It also requires that the
application writer make arbitrary assignments of priority to events that are logically of equal priority.

A union is defined for the application-defined value so that either an integer constant or a pointer can be
portably passed to the signal-catching function. On some architectures a pointer cannot be cast to an int and
vice versa.
Use of a structure here with an explicit notification type discriminant rather than explicit parameters to
realtime functions, or embedded in other realtime structures, provides for future extensions to the standard.
Additional, perhaps more efficient, notification mechanisms can be supported for existing realtime function
interfaces, such as timers and asynchronous I/O, by extending the sigevent structure appropriately. The
existing realtime function interfaces will not have to be modified to use any such new notification
mechanism. The revised text concerning the SIGEV_SIGNAL value makes consistent the semantics of the
members of the sigevent structure, particularly in the definitions of lio_listio() and aio_fsync(). For
uniformity, other revisions cause this specification to be referred to rather than inaccurately duplicated in the
descriptions of functions and structures using the sigevent structure. The revised wording does not relax the
requirement in 6.7.1.1 that the signal number be in the range SIGRTMIN to SIGRTMAX to guarantee
queueing and passing of the application value, since that requirement is still implied by 3.3.1.1.

2) The standard is intentionally vague on whether “nonrealtime” signal-generating mechanisms can result in a
siginfo_t being supplied to the handler on delivery. In one existing implementation, a siginfo_t is posted on
signal generation, even though the implementation does not support queuing of multiple occurrences of a
signal. It is not the intent of the standard to preclude this, independent of the mandate to define signals that do
support queuing. Any interpretation that appears to preclude this is a mistake in the reading or writing of the
standard.

3) Signals handled by realtime signal handlers might be generated by functions or conditions that do not allow
the specification of an application-defined value and do not queue. The standard specifies the si_code
member of the siginfo_t structure used in existing practice and defines additional codes so that applications
can detect whether an application-defined value is present or not. The code SI_USER for kill()-generated
signals is adopted from existing practice.

4) The sigaction() sa_flags value SA_SIGINFO tells the implementation that the signal-catching function
expects two additional arguments. When the flag is not set, a single argument, the signal number, is passed as
specified by ISO/IEC 9945-1 : 1990. Although this part of ISO/IEC 9945 does not explicitly allow the info
argument to the handler function to be NULL, this is existing practice. This provides for compatibility with
programs whose signal-catching functions are not prepared to accept the additional arguments. The standard
is explicitly unspecified as to whether signals actually queue when SA_SIGINFO is not set for a signal, as
there appears to be no benefits to applications in specifying one behavior or another. One existing

324 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

implementation queues a siginfo_t on each signal generation, unless the signal is already pending, in which
case the implementation discards the new siginfo_t; that is, the queue length is never greater than one. This
implementation only examines SA_SIGINFO on signal delivery, discarding the queued siginfo_t if its
delivery was not requested.
The standard specifies several new values for the si_code member of the siginfo_t structure. In existing
practice, a si_code value of less than or equal to zero indicates that the signal was generated by a process via
the kill() function. In existing practice, values of si_code that provide additional information for
implementation-generated signals, such as SIGFPE or SIGSEGV, are all positive. Thus, if implementations
define the new constants specified in this standard to be negative numbers, programs written to use existing
practice will not break. This standard chose not to attempt to specify existing practice values of si_code other
than SI_USER both because it was deemed beyond the scope of this standard and because many of the values
in existing practice appear to be platform and implementation specific. But, the standard does specify that if
an implementation—for example, one that does not have existing practice in this area—chooses to define
additional values for si_code, these values have to be different from the values of the symbols specified by
this standard. This will allow portable applications to differentiate between signals generated by one of the
POSIX.1b asynchronous events and those generated by other implementation events in a manner compatible
with existing practice.
The unique values of si_code for the POSIX.1b asynchronous events have implications for implementations
of, for example, asynchronous I/O or message passing in user space library code. Such an implementation
will be required to provide a hidden interface to the signal generation mechanism that allows the library to
specify the standard values of si_code.
Existing practice also defines additional members of siginfo_t, such as the process ID and user ID of the
sending process for kill()-generated signals. These members were deemed not necessary to meet the
requirements of realtime applications and are not specified by the standard. Neither are they precluded.
The third argument to the signal-catching function, context, is left undefined by this standard, but is specified
in the interface because it matches existing practice for the SA_SIGINFO flag. It was considered undesirable
to require a separate implementation for SA_SIGINFO for POSIX conformance on implementations that
already support the two additional parameters.

5) The requirement to deliver lower numbered signals in the range SIGRTMIN to SIGRTMAX first, when
multiple unblocked signals are pending, results from several considerations:
a) A method is required to prioritize event notifications. The signal number was chosen instead of, for

instance, associating a separate priority with each request, because an implementation has to check
pending signals at various points and select one for delivery when more than one is pending. Specifying
a selection order is the minimal additional semantic that will achieve prioritized delivery. If a separate
priority were to be associated with queued signals, it would be necessary for an implementation to
search all nonempty, nonblocked signal queues and select from among them the pending signal with the
highest priority. This would significantly increase the cost of and decrease the determinism of signal
delivery.

b) Given the specified selection of the lowest numeric unblocked pending signal, preemptive priority signal
delivery can be achieved using signal numbers and signal masks by ensuring that the sa_mask for each
signal number blocks all signals with a higher numeric value.
For realtime applications that want to use only the newly defined realtime signal numbers without
interference from the ISO/IEC 9945-1 : 1990 signals, this can be achieved by blocking all of the ISO/
IEC 9945-1 : 1990 signals in the process signal mask and in the sa_mask installed by the signal action
for the realtime signal handlers.

The standard explicitly leaves unspecified the ordering of signals outside of the range of realtime signals and
the ordering of signals within this range with respect to those outside the range. It was believed that this
would unduly constrain implementations or standards in the future definition of new signals.

B.3.3.1.3 Signal Actions

Earlier drafts of POSIX.1 mentioned SIGCONT as a second exception to the rule that signals are not delivered to
stopped processes until continued Because POSIX.1 now specifies that SIGCONT causes the stopped process to

Copyright © 1996 IEEE All Rights Reserved 325

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

continue when it is generated, delivery of SIGCONT is not prevented because a process is stopped, even without an
explicit exception to this rule.

Ignoring a signal by setting the action to SIG_IGN (or SIG_DFL for signals whose default action is to ignore)is not the
same as installing a signal-catching function that simply returns. Invoking such a function will interrupt certain system
functions that block processes [e.g., wait(), sigsuspend(), pause(), read(), write()] while ignoring a signal has no such
effect on the process.

Historical implementations discard pending signals when the action is set to SIG_IGN. However, they do not always
do the same when the action is set to SIG_DFL and the default action is to ignore the signal. POSIX.1 requires this for
the sake of consistency and also for completeness, since the only signal this applies to is SIGCHLD, and POSIX.1
disallows setting its action to SIG_IGN.

The specification of the effects of SIG_IGN on SIGCHLD as implementation defined permits, but does not require, the
System V effect of causing terminating children to be ignored by wait(). Yet it permits SIGCHLD to be effectively
ignored in an implementation-independent manner by use of SIG_DFL.

Some implementations (System V, for example) assign different semantics for SIGCLD depending on whether the
action is set to SIG_IGN or SIG_DFL. Since POSIX.1 requires that the default action for SIGCHLD be to ignore the
signal, applications should always set; the action to SIG_DFL in order to avoid SIGCHLD.

Some implementations (System V, for example) will deliver a SIGCLD signal immediately when a process establishes
a signal-catching function for SIGCLD when that process has a child that has already terminated. Other
implementations, such as 4.3BSD, do not generate a new SIGCHLD signal in this way. In general, a process should not
attempt to alter the signal action for the SIGCHLD signal while it has any outstanding children. However, it is not
always possible for a process to avoid this; for example, shells sometimes start up processes in pipelines with other
processes from the pipeline as children. Processes that cannot ensure that they have no children when altering the
signal action for SIGCHLD thus need to be prepared for, but not depend on, generation of an immediate SIGCHLD
signal.

The default action of the stop signals (SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU) is to stop a process that is
executing. If a stop signal is delivered to a process that is already stopped, it has no effect. In fact, if a stop signal is
generated for a stopped process whose signal mask blocks the signal, the signal will never be delivered to the process
since the process must receive a SIGCONT, which discards all pending stop signals, in order to continue executing.

The SIGCONT signal shall continue a stopped process even if SIGCONT is blocked (or ignored). However, if a signal-
catching routine has been established for SIGCONT, it will not be entered until SIGCONT is unblocked.

If a process in an orphaned process group stops, it is no longer under the control of a job-control shell and hence would
not normally ever be continued. Because of this, orphaned processes that receive terminal-related stop signals
(SIGTSTP, SIGTTIN, SIGTTOU, but not SIGSTOP) must not be allowed to stop. The goal is to prevent stopped
processes from languishing forever. [As SIGSTOP is sent only via kill(), it is assumed that the process or user sending
a SIGSTOP can send a SIGCONT when desired.] Instead, the system must discard the stop signal. As an extension, it
may also deliver another signal in its place. 4.3BSD sends a SIGKILL, which is overly effective because SIGKILL is
not catchable. Another possible choice is SIGHUP. 4.3BSD also does this for orphaned processes (processes whose
parent has terminated) rather than for members of orphaned process groups; this is less desirable because job-control
shells manage process groups. POSIX.1 also prevents SIGTTIN and SIGTTOU signals from being generated for
processes in orphaned process groups as a direct result of activity on a terminal, preventing infinite loops when read()
and write() calls generate signals that are discarded. (See B.7.1.1.4.) A similar restriction on the generation of
SIGTSTP was considered, but that would be unnecessary and more difficult to implement due to its asynchronous
nature.

Although POSIX.1 requires that signal-catching functions be called with only one argument, there is nothing to
prevent conforming implementations from extending POSIX.1 to pass additional arguments, as long as Strictly

326 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Conforming POSIX.1 Applications continue to compile and execute correctly. Most historical implementations do, in
fact, pass additional, signal-specific arguments to certain signal-catching routines.

There was a proposal to change the declared type of the signal handler to:

 void func (int sig, ...);

The usage of ellipses (“, …”) is C Standard {2} syntax to indicate a variable number of arguments. Its use was intended
to allow the implementation to pass additional information to the signal handler in a standard manner.

Unfortunately, this construct would require all signal handlers to be defined with this syntax because the C Standard
{2} allows implementations to use a different parameter passing mechanism for variable parameter lists than for
nonvariable parameter lists. Thus, all existing signal handlers in all existing applications would have to be changed to
use the variable syntax in order to be standard and portable. This is in conflict with the goal of Minimal Changes to
Existing Application Code.

When terminating a process from a signal-catching function, processes should be aware of any interpretation that their
parent may make of the status returned by wait() or waitpid(). In particular, a signal-catching function should not call
exit(0) or _exit(0) unless it wants to indicate successful termination. A nonzero argument to exit() or _exit() can be used
to indicate unsuccessful termination. Alternatively, the process can use kill() to send itself a fatal signal (first ensuring
that the signal is set to the default action and not blocked). (See also B.3.2.2).

The behavior of unsafe functions, as defined by this subclause, is undefined when they are invoked from signal-
catching functions in certain circumstances. The behavior of reentrant functions, as defined by this subclause, is as
specified by POSIX.1, regardless of invocation from a signal-catching function. This is the only intended meaning of
the statement that reentrant functions may be used in signal-catching functions without restriction. Applications must
still consider all effects of such functions on such things as data structures, files, and process state. In particular,
application writers need to consider the restrictions on interactions when interrupting sleep() [see sleep() and B.3.4.3]
and interactions among multiple handles for a file description (see 8.2.3 and B.8.2.3). The fact that any specific
function is listed as reentrant does not necessarily mean that invocation of that function from a signal-catching
function is recommended.

In order to prevent errors arising from interrupting nonreentrant function calls, applications should protect calls to
these functions either by blocking the appropriate signals or through the use of some programmatic semaphore.
POSIX.1 does not address the more general problem of synchronizing access to shared data structures. Note in
particular that even the “safe” functions may modify the global variable errno; the signal-catching function may want
to save and restore its value. The same principles apply to the reentrancy of application routines and asynchronous data
access.

Note that longjmp() and siglongjmp() are not in the list of reentrant functions. This is because the code executing after
longjmp() or siglongjmp() can call any unsafe functions with the same danger as calling those unsafe functions directly
from the signal handler. Applications that use longjmp() or siglongjmp() out of signal handlers require rigorous
protection in order to be portable. Many of the other functions that are excluded from the list are traditionally
implemented using either the C language malloc() or free() functions or the C language standard I/O library, both of
which traditionally use data structures in a nonreentrant manner. Because any combination of different functions using
a common data structure can cause reentrancy problems, POSIX.1 does not define the behavior when any unsafe
function is called in a signal handler that interrupts any unsafe function.

The only realtime extension to signal actions is the addition of the additional parameters to the signal-catching
function. This extension has been explained and motivated in the previous subclause. In making this extension, though,
developers of POSIX.1b ran into issues relating to C Standard {2} function prototypes. In response to input from the
POSIX.1 standard developers, members were added to the sigaction structure to specify function prototypes for the
newer signal-catching function specified by POSIX.1b. These members follow changes that are being made to
POSIX.1. Note that the standard explicitly states that these fields may overlap so that a union can be defined. This will

Copyright © 1996 IEEE All Rights Reserved 327

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

enable existing implementations of ISO/IEC 9945-1 : 1990 to maintain binary compatibility when these extensions are
added.

The siginfo_t structure was adopted for passing the application-defined value to match existing practice, but the
existing practice has no provision for an application-defined value, so this was added. Note that POSIX normally
reserves the “_t” type designation for opaque types. The siginfo_t breaks with this convention to follow existing
practice and thus promote portability. Standardization of the existing practice for the other members of this structure
may be addressed in the future.

Although it is not explicitly visible to applications, there are additional semantics for signal actions implied by queued
signals and their interaction with other POSIX.1b realtime functions. Specifically,

 It is not necessary to queue signals whose action is SIG_IGN.
 For implementations that support POSIX.1b timers, some interaction with the timer functions at signal

delivery is implied to manage the timer over-run count (see 14.2.4).

B.3.3.1.4 Signal Effects on Other Functions

The most common behavior of an interrupted function after a signal-catching function returns is for the interrupted
function to give an [EINTR] error. However, there are a number of specific exceptions, including sleep() and certain
situations with read() and write().

The historical implementations of many functions defined by POSIX.1 are not interruptible, but delay delivery of
signals generated during their execution until after they complete. This is never a problem for functions that are
guaranteed to complete in a short (imperceptible to a human) period of time. It is normally those functions that can
suspend a process indefinitely or for long periods of time [e.g., wait(), pause(), sigsuspend(), sleep(), or read()/write()
on a slow device like a terminal] that are interruptible. This permits applications to respond to interactive signals or to
set timeouts on calls to most such functions with alarm(). Therefore, implementations should generally make such
functions (including ones defined as extensions) interruptible.

Functions not mentioned explicitly as interruptible may be so on some implementations, possibly as an extension
where the function gives an [EINTR] error. There are several functions [e.g., getpid(), getuid()] that are specified as
never returning an error, which can thus never be extended in this way.

B.3.3.2 Send a Signal to a Process

The semantics for permission checking for kill() differ between System V and most other implementations, such as
Version 7 or 4.3BSD. The semantics chosen for POSIX.1 agree with System V. Specifically, a set-user-ID process
cannot protect itself against signals (or at least not against SIGKILL) unless it changes its real user ID. This choice
allows the user who starts an application to send it signals even if it changes its effective user ID. The other semantics
give more power to an application that wants to protect itself from the user who ran it.

Some implementations provide semantic extensions to the kill() function when the absolute value of pid is greater than
some maximum, or otherwise special, value. Negative values are a flag to kill(). Since most implementations return
[ESRCH] in this case, this behavior is not included in POSIX.1, although a conforming implementation could provide
such an extension.

The implementation-defined processes to which a signal cannot be sent may include the scheduler or init.

Most historical implementations use kill (-1, sig) from a super-user process to send a signal to all processes
(excluding system processes like init). This use of the kill() function is for administrative purposes only; portable
applications should not send signals to processes about which they have no knowledge. In addition, there are semantic
variations among different implementations that, because of the limited use of this feature, were not necessary to
resolve by standardization. System V implementations also use kill (-1, sig) from a nonsuper-user process to

328 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

send a signal to all processes with matching user IDs. This use was considered neither sufficiently widespread nor
necessary for application portability to warrant inclusion in POSIX.1.

There was initially strong sentiment to specify that, if pid specifies that a signal be sent to the calling process and that
signal is not blocked, that signal would be delivered before kill() returns. This would permit a process to call kill() and
be guaranteed that the call never return. However, historical implementations that provide only the signal() interface
make only the weaker guarantee in POSIX.1, because they only deliver one signal each time a process enters the
kernel. Modifications to such implementations to support the sigaction() interface generally require entry to the kernel
following return from a signal-catching function, in order to restore the signal mask. Such modifications have the
effect of satisfying the stronger requirement, at least when sigaction() is used, but not necessarily when signal() is
used. The developers of POSIX.1 considered making the stronger requirement except when signal() is used, but felt
this would be unnecessarily complex. Implementors are encouraged to meet the stronger requirement whenever
possible. In practice, the weaker requirement is the same, except in the rare case when two signals arrive during a very
short window. This reasoning also applies to a similar requirement for sigprocmask().

In 4.2BSD, the SIGCONT signal can be sent to any descendant process regardless of user-ID security checks. This
allows a job-control shell to continue a job even if processes in the job have altered their user IDs (as in the su
command). In keeping with the addition of the concept of sessions, similar functionality is provided by allowing the
SIGCONT signal to be sent to any process in the same session, regardless of user-ID security checks. This is less
restrictive than BSD in the sense that ancestor processes (in the same session) can now be the recipient. It is more
restrictive than BSD in the sense that descendant processes that form new sessions are now subject to the user-ID
checks. A similar relaxation of security is not necessary for the other job-control signals since those signals are
typically sent by the terminal driver in recognition of special characters being typed; the terminal driver bypasses all
security checks.

In secure implementations, a process may be restricted from sending a signal to a process having a different security
label. In order to prevent the existence or nonexistence of a process from being used as a covert channel, such
processes should appear nonexistent to the sender; i.e., [ESRCH] should be returned, rather than [EPERM], if pid
refers only to such processes.

Existing implementations vary on the result of a kill() with pid indicating an inactive process (a terminated process that
has not been waited for by its parent). Some indicate success on such a call (subject to permission checking), while
others give an error of [ESRCH]. Since POSIX.1's definition of process lifetime covers inactive processes, the
[ESRCH] error as described is inappropriate in this case. In particular, this means that an application cannot have a
parent process check for termination of a particular child with kill() [usually this is done with the null signal; this can
be done reliably with waitpid()].

There is some belief that the name kill() is misleading, since the function is not always intended to cause process
termination. However, the name is common to all historical implementations, and any change would be in conflict with
the goal of Minimal Changes to Existing Application Code.

B.3.3.3 Manipulate Signal Sets

The implementation of the sigemptyset() [or sigfillset()] functions could quite trivially clear (or set) all the bits in the
signal set. Alternatively, it would be able to initialize part of the structure, such as a version field, to permit binary
compatibility between releases where the size of the set varies. For such reasons, either sigemptyset() or sigfillset()
must be called prior to any other use of the signal set, even if such use is read-only [e.g., as an argument to
sigpending()]. This function is not intended for dynamic allocation.

The sigfillset() and sigemptyset() functions require that the resulting signal set include (or exclude) all the signals
defined in POSIX.1. Although it is outside the scope of POSIX.1 to place this requirement on signals that are
implemented as extensions, it is recommended that implementation-defined signals also be affected by these
functions. However, there may be a good reason for a particular signal not to be affected. For example, blocking or
ignoring an implementation-defined signal may have undesirable side effects, whereas the default action for that signal

Copyright © 1996 IEEE All Rights Reserved 329

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

is harmless. In such a case, it would be preferable for such a signal to be excluded from the signal set returned by
sigfillset().

In earlier drafts of POSIX.1 there was no distinction between invalid and unsupported signals (the names of optional
signals that were not supported by an implementation were not defined by that implementation). The [EINVAL] error
was thus specified as a required error for invalid signals. With that distinction, it is not necessary to require
implementations of these functions to determine whether an optional signal is actually supported, as that could have a
significant performance impact for little value. The error could have been required for invalid signals and optional for
unsupported signals, but this seemed unnecessarily complex. Thus, the error is optional in both cases.

B.3.3.4 Examine and Change Signal Action

Although POSIX.1 requires that signals that cannot be ignored shall not be added to the signal mask when a signal-
catching function is entered, there is no explicit requirement that subsequent calls to sigaction() reflect this in the
information returned in the oact argument. In other words, if SIGKILL is included in the sa_mask field of act, it is
unspecified whether or not a subsequent call to sigaction() will return with SIGKILL included in the sa_mask field of
oact.

The SA_NOCLDSTOP flag, when supplied in the act->sa_flags parameter, allows overloading SIGCHLD with the
System V semantics that each SIGCLD signal indicates a single terminated child. Most portable applications that
catch SIGCHLD are expected to install signal-catching functions that repeatedly call the waitpid() function with the
WNOHANG flag set, acting on each child for which status is returned, until waitpid() returns zero. If stopped children
are not of interest, the use of the SA_NOCLDSTOP flag can prevent the overhead from invoking the signal-catching
routine when they stop.

Some historical implementations also define other mechanisms for stopping processes, such as the ptrace() function.
These implementations usually do not generate a SIGCHLD signal when processes stop due to this mechanism;
however, that is beyond the scope of POSIX.1.

POSIX.1 requires that calls to sigaction() that supply a NULL act argument succeed, even in the case of signals that
cannot be caught or ignored (i.e., SIGKILL or SIGSTOP). The System V signal() and BSD sigvec() functions return
[EINVAL] in these cases and, in this respect, their behavior varies from sigaction().

POSIX.1 requires that sigaction() properly save and restore a signal action set up by the C Standard {2} signal()
function. However, there is no guarantee that the reverse is true, nor could there be given the greater amount of
information conveyed by the sigaction structure. Because of this, applications should avoid using both functions for
the same signal in the same process. Since this cannot always be avoided in case of general-purpose library routines,
they should always be implemented with sigaction().

It was intended that the signal() function should be implementable as a library routine using sigaction().

POSIX.1b extends the sigaction() function as specified by ISO/IEC 9945-1 : 1990 to allow the application to request
on a per-signal basis via an additional signal action flag that the extra parameters, including the application-defined
signal value, if any, be passed to the signal-catching function. This extension has been explained and motivated above.

The new members of the sigaction structure, explained and motivated above, are specified in this subclause.

B.3.3.5 Examine and Change Blocked Signals

When a process's signal mask is changed in a signal-catching function that is installed by sigaction(), the restoration
of the signal mask on return from the signal-catching function overrides that change [see sigaction()]. If the signal-
catching function was installed with signal(), it is unspecified whether this occurs.

See B.3.3.2 for a discussion of the requirement on delivery of signals.

330 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

B.3.3.6 Examine Pending Signals

There is no additional rationale provided for this subclause.

B.3.3.7 Wait for a Signal

Normally, at the beginning of a critical code section, a specified set of signals is blocked using the sigprocmask()
function. When the process has completed the critical section and needs to wait for the previously blocked signal(s), it
pauses by calling sigsuspend() with the mask that was returned by the sigprocmask() call.

B.3.3.8 Synchronously Accept a Signal

Existing programming practice on realtime systems uses the ability to pause waiting for a selected set of events and
handle the first event that occurs in-line instead of in a signal-handling function. This allows applications to be written
in an event-directed style similar to a state machine. This style of programming is useful for large scale transaction
processing in which the overall throughput of an application and the ability to clearly track states are more important
than the ability to minimize the response time of individual event handling.

It is possible to construct a signal-waiting macro function out of the realtime signal function mechanism defined in this
supplement. However, such a macro has to include the definition of a generalized handler for all signals to be waited
on. A significant portion of the overhead of handler processing can be avoided if the signal-waiting function is
provided by the kernel. This proposal therefore provides two signal-waiting function interfaces—one that waits
indefinitely and one with a timeout—as part of the overall realtime signal interface specification.

The specification of an interface with a timeout allows an application to be written that can be broken out of a wait after
a set period of time if no event has occurred. It was argued that setting a timer event before the wait and recognizing
the timer event in the wait would also implement the same functionality, but at a lower performance level. Because of
the performance degradation associated with the user level specification of a timer event and the subsequent
cancellation of that timer event after the wait completes for a valid event, and the complexity associated with handling
potential race conditions associated with the user level method, the separate interface has been included.

Note that the semantics of the sigwaitinfo() function are nearly identical to that of the sigwait() function defined by
IEEE P1003.1c. The only difference is that sigwaitinfo() returns the queued signal value in the value argument. The
return of the queued value is required so that applications can differentiate between multiple events queued to the same
signal number.

The two distinct interfaces are being maintained because some implementations may choose to implement the threads
extension interfaces and not implement the queued signals extensions. Note, though, that sigwaitinfo() does not return
the queued value if the value argument is NULL, so the POSIX.1c sigwait() function can be implemented as a macro
on sigwaitinfo().

The sigtimedwait() function was separated from the sigwaitinfo() function to address concerns regarding the
overloading of the timeout pointer to indicate indefinite wait (no timeout), timed wait, and immediate return and
concerns regarding consistency with other interfaces where the conditional and timed waits were separate functions
from the pure blocking function. The semantics of sigtimedwait() are specified such that sigwaitinfo() could be
implemented as a macro with a NULL pointer for timeout.

The sigwait functions provide a synchronous mechanism for threads to wait for asynchronously generated signals.
One important question was how many threads that are suspended in a call to a sigwait() function for a signal should
return from the call when the signal is sent. Four choices were considered:

 Returning an error for multiple simultaneous calls to sigwait functions for the same signal.
 One or more threads return.
 All waiting threads return.

Copyright © 1996 IEEE All Rights Reserved 331

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

 Exactly one thread returns.

Prohibiting multiple calls to sigwait() for the same signal was felt to be overly restrictive. The “one or more” behavior
made implementation of conforming packages easy at the expense of forcing pthreads clients to protect against
multiple simultaneous calls to sigwait() in application code in order to achieve predictable behavior. There was
concern that the “all waiting threads” behavior would result in “signal broadcast storms,” consuming excessive CPU
resources by replicating the signals in the general case. Furthermore, no convincing examples could be presented that
delivery to all was either simpler or more powerful than delivery to one.

Thus, the consensus was that exactly one thread that was suspended in a call to a sigwait function for a signal should
return when that signal occurs. This is not an onerous restriction as

1) A multi-way signal wait can be built from the single-way wait
2) Signals should only be handled by application level code, as library routines cannot guess what the

application wants to do with signals generated for the entire process
3) Applications can thus arrange for a single thread to wait for any given signal and call any needed routines

upon its arrival

In an application that is using signals for interprocess communication, signal processing is typically done in one place
Alternatively, if the signal is being caught so that process cleanup can be done, the signal handler thread can call
separate process cleanup routines for each portion of the application. Since the application main line started each
portion of the application, it is at the right abstraction level to tell each portion of the application to clean up.

Certainly, there exist programming styles where it is logical to consider waiting for a single signal in multiple threads.
A simple sigwait_multiple() routine can be constructed to achieve this goal. A possible implementation would be to
have each sigwait_multiple() caller registered as having expressed interest in a set of signals. The caller then waits on
a thread-specific condition variable. A single server thread calls a sigwait function on the union of all registered
signals. When the sigwait function returns, the appropriate state is set and condition variables are broadcast. New
sigwait_multiple() callers may cause the pending sigwait call to be canceled and reissued in order to update the set of
signals being waited for.

B.3.3.9 Queue a Signal to a Process

The sigqueue() function allows an application to queue a realtime signal to itself or to another process, specifying the
application-defined value. This is common practice in realtime applications on existing realtime systems. It was felt
that specifying another function in the sig… namespace already carved out for signals was preferable to extending the
interface to kill().

Such an interface became necessary when the put/get event function of the message queues was removed. It should be
noted that the sigqueue() interface implies reduced performance in a security-conscious implementation as the access
permissions between the sender and receiver have to be checked on each send when the pid is resolved into a target
process. Such access checks were necessary only at message queue open in the previous interface.

The standard developers required that sigqueue() have the same semantics with respect to the null signal as kill(), and
that the same permission checking be used. But because of the difficulty of implementing the “broadcast” semantic of
kill()—to process groups, for example—and the interaction with resource allocation, this semantic was not adopted.
The sigqueue() function queues a signal to a single process specified by the pid argument.

The sigqueue() function can fail if the system has insufficient resources to queue the signal. An explicit limit on the
number of queued signals that a process could send was introduced. While the limit is “per-sender,” the standard does
not specify that the resources be part of the state of the sender. This would require either that the sender be maintained
after exit until all signals that it had sent to other processes were handled or that all such signals that had not yet been
acted upon be removed from the queue(s) of the receivers. The standard does not preclude this behavior, but an

332 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

implementation that allocated queuing resources from a systemwide pool (with per-sender limits) and that leaves
queued signals pending after the sender exits is also permitted.

B.3.3.10 Send a Signal to a Thread

The pthread_kill() function provides a mechanism for asynchronously directing a signal at a thread in the calling
process. This could be used, for instance, by one thread to effect broadcast delivery of a signal to a set of threads.

Note that pthread_kill() only causes the signal to be handled in the context of the given thread; the signal action
(termination or stopping) affects the process as a whole.

B.3.4 Timer Operations

B.3.4.1 Schedule Alarm

Many historical implementations (including Version 7 and System V) allow an alarm to occur up to a second early.
Other implementations allow alarms up to half a second or one clock tick early or do not allow them to occur early at
all. The latter is considered most appropriate, since it gives the most predictable behavior, especially since the signal
can always be delayed for an indefinite amount of time due to scheduling. Applications can thus choose the seconds
argument as the minimum amount of time they wish to have elapse before the signal.

The term “realtime” here and elsewhere [sleep(), times()] is intended to mean “wall clock” time as common English
usage, and has nothing to do with “realtime operating systems.” It is in contrast to “virtual time,” which could be
misinterpreted if just “time” were used.

In some implementations, including 4.3BSD, very large values of the seconds argument are silently rounded down to
an implementation-defined maximum value. This maximum is large enough (on the order of several months) that the
effect is not noticeable.

Application writers should note that the type of the argument seconds and the return value of alarm() is unsigned int.
That means that a Strictly Conforming POSIX.1 Application cannot pass a value greater than the minimum guaranteed
value for {UINT_MAX}, which the C Standard {2} sets as 65 535, and any application passing a larger value is
restricting its portability. A different type was considered, but historical implementations, including those with a 16-bit
int type, consistently use either unsigned int or int.

There were two possible choices for alarm generation in multithreaded applications:: generation for the calling thread
or generation for the process. The first option would not have been particularly useful since the alarm state is
maintained on a per-process basis and the alarm that is established by the last invocation of alarm() is the only one that
would be active.

Furthermore, allowing generation of an asynchronous signal for a thread would have introduced an exception to the
overall signal model. This requires a compelling reason in order to be justified.

Application writers should be aware of possible interactions when the same process uses both the alarm() and sleep()
functions [see sleep() and B.3.4.3].

B.3.4.2 Suspend Process Execution

Many common uses of pause() have timing windows. The scenario involves checking a condition related to a signal
and, if the signal has not occurred, calling pause(). When the signal occurs between the check and the call to pause(),
the process often blocks indefinitely. The sigprocmask() and sigsuspend() functions can be used to avoid this type of
problem.

Copyright © 1996 IEEE All Rights Reserved 333

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

B.3.4.3 Delay Process Execution

There are two general approaches to the implementation of the sleep() function. One is to use the alarm() function to
schedule a SIGALRM signal and then suspend the process waiting for that signal. The other is to implement an
independent facility. POSIX.1 permits either approach.

In order to comply with the wording of the introduction to Section 3, that no primitive shall change a process attribute
unless explicitly described by POSIX.1, an implementation using SIGALRM must carefully take into account any
SIGALRM signal scheduled by previous alarm() calls, the action previously established for SIGALRM, and whether
SIGALRM was blocked. If a SIGALRM has been scheduled before the sleep() would ordinarily complete, the sleep()
must be shortened to that time and a SIGALRM generated (possibly simulated by direct invocation of the signal-
catching function) before sleep() returns. If a SIGALRM has been scheduled after the sleep() would ordinarily
complete, it must be rescheduled for the same time before sleep() returns. The action and blocking for SIGALRM must
be saved and restored.

Historical implementations often implement the SIGALRM-based version using alarm() and pause(). One such
implementation is prone to infinite hangups, as described in B.3.4.2. Another such implementation uses the C
language setjmp() and longjmp() functions to avoid that window. That implementation introduces a different problem:
when the SIGALRM signal interrupts a signal-catching function installed by the user to catch a different signal, the
longjmp() aborts that signal-catching function. An implementation based on sigprocmask(), alarm(), and sigsuspend()
can avoid these problems.

Despite all reasonable care, there are several very subtle, but detectable and unavoidable, differences between the two
types of implementations. These are the cases mentioned in POSIX.1 where some other activity relating to SIGALRM
takes place, and the results are stated to be unspecified. All of these cases are sufficiently unusual as not to be of
concern to most applications.

(See also the discussion of the term “realtime” in B.3.4.1.)

Because sleep() can be implemented using alarm(), the discussion about alarms occurring early under B.3.4.1 applies
to sleep() as well.

Application writers should note that the type of the argument seconds and the return value of sleep() is unsigned int.
That means that a Strictly Conforming POSIX.1 Application cannot pass a value greater than the minimum guaranteed
value for {UINT_MAX}, which the C Standard {2} sets as 65 535, and any application passing a larger value is
restricting its portability. A different type was considered, but historical implementations, including those with a 16-bit
int type, consistently use either unsigned int or int.

Scheduling delays may cause the process to return from the sleep() function significantly after the requested time. In
such cases, the return value should be set to zero, since the formula (requested time minus the time actually spent)
yields a negative number and sleep() returns an unsigned int.

B.4 Process Environment

B.4.1 Process Identification

B.4.1.1 Get Process and Parent Process IDs

There is no additional rationale provided for this subclause.

334 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

B.4.2 User Identification

B.4.2.1 Get Real User, Effective User, Real Group, and Effective Group IDs

There is no additional rationale provided for this subclause.

B.4.2.2 Set User and Group IDs

The saved set-user-ID capability allows a program to regain the effective user ID established at the last exec call.
Similarly, the saved set-group-ID capability allows a program to regain the effective group ID established at the last
exec call.

These two capabilities are derived from System V. Without them, a program may have to run as super-user in order to
perform the same functions, because super-user can write on the user's files. This is a problem because such a program
can write on any user's files, and so must be carefully written to emulate the permissions of the calling process
properly.

A process with appropriate privilege on a system with this saved ID capability establishes all relevant IDs to the new
value, since this function is used to establish the identity of the user during login or su. Any change to this behavior
would be dangerous since it involves programs that need to be trusted.

The behavior of 4.2BSD and 4.3BSD that allows setting the real ID to the effective ID is viewed as a value-dependent
special case of appropriate privilege.

B.4.2.3 Get Supplementary Group IDs

The related function setgroups() is a privileged operation and therefore is not covered by POSIX.1.

As implied by the definition of supplementary groups, the effective group ID may appear in the array returned by
getgroups() or it may be returned only by getegid(). Duplication may exist, but the application needs to call getegid()
to be sure of getting all of the information. Various implementation variations and administrative sequences will cause
the set of groups appearing in the result of getgroups() to vary in order and as to whether the effective group ID is
included, even when the set of groups is the same (in the mathematical sense of “set”). (The history of a process and
its parents could affect the details of result.)

Applications writers should note that {NGROUPS_MAX} is not necessarily a constant on all implementations.

B.4.2.4 Get User Name

The getlogin() function returns a pointer to the user's login name. The same user ID may be shared by several login
names. If it is desired to get the user database entry that is used during login, the result of getlogin() should be used to
provide the argument to the getpwnam() function. (This might be used to determine the user's login shell, particularly
where a single user has multiple login shells with distinct login names, but the same user ID.)

The information provided by the cuserid() function, which was originally defined in ISO/IEC 9945-1 : 1990 and
subsequently removed, can be obtained by the following:

 getpwuid(geteuid())

while the information provided by historical implementations of cuserid() can be obtained by:

 getpwuid(getuid())

Copyright © 1996 IEEE All Rights Reserved 335

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The thread-safe version of this function places the user name in a user-supplied buffer and returns a nonzero value if
it fails. The non-thread-safe version may return the name in a static data area that may be overwritten by each call.

B.4.3 Process Groups

B.4.3.1 Get Process Group ID

4.3BSD provides a getpgrp() function that returns the process group ID for a specified process. Although this function
is used to support job control, all known job-control shells always specify the calling process with this function. Thus,
the simpler System V getpgrp() suffices, and the added complexity of the 4.3BSD getpgrp() has been omitted from
POSIX.1.

B.4.3.2 Create Session and Set Process Group ID

The setsid() function is similar to the setpgrp() function of System V. System V, without job control, groups processes
into process groups and creates new process groups via setpgrp(); only one process group may be part of a login
session.

Job control allows multiple process groups within a login session. In order to limit job-control actions so that they can
only affect processes in the same login session, POSIX.1 adds the concept of a session that is created via setsid(). The
setsid() function also creates the initial process group contained in the session. Additional process groups can be
created via the setpgid() function. A System V process group would correspond to a POSIX.1 session containing a
single POSIX.1 process group. Note that this function requires that the calling process not be a process group leader.
The usual way to ensure this is true is to create a new process with fork() and have it call setsid(). The fork() function
guarantees that the process ID of the new process does not match any existing process group ID.

B.4.3.3 Set Process Group ID for Job Control

The setpgid() function is used to group processes together for the purpose of signaling, placement in foreground or
background, and other job-control actions. See B.2.2.2.

The setpgid() function is similar to the setpgrp() function of 4.2BSD, except that 4.2BSD allowed the specified new
process group to assume any value. This presents certain security problems and is more flexible than necessary to
support job control.

To provide tighter security, setpgid() only allows the calling process to join a process group already in use inside its
session or create a new process group whose process group ID was equal to its process ID.

When a job-control shell spawns a new job, the processes in the job must be placed into a new process group via
setpgid(). There are two timing constraints involved in this action:

1) The new process must be placed in the new process group before the appropriate program is launched via one
of the exec functions.

2) The new process must be placed in the new process group before the shell can correctly send signals to the
new process group.

To address these constraints, the following actions are performed: The new processes call setpgid() to alter their own
process groups after fork() but before exec. This satisfies the first constraint. Under 4.3BSD, the second constraint is
satisfied by the synchronization property of vfork(); that is, the shell is suspended until the child has completed the
exec, thus ensuring that the child has completed the setpgid(). A new version of fork() with this same synchronization
property was considered, but it was decided instead to merely allow the parent shell process to adjust the process group
of its child processes via setpgid(). Both timing constraints are now satisfied by having both the parent shell and the
child attempt to adjust the process group of the child process; it does not matter which succeeds first.

336 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Because it would be confusing to an application to have its process group change after it began executing (i.e., after
exec) and because the child process would already have adjusted its process group before this, the [EACCES] error
was added to disallow this.

One nonobvious use of setpgid() is to allow a job-control shell to return itself to its original process group (the one in
effect when the job-control shell was executed). A job-control shell does this before returning control back to its parent
when it is terminating or suspending itself as a way of restoring its job control “state” back to what its parent would
expect. (Note that the original process group of the job-control shell typically matches the process group of its parent,
but this is not necessarily always the case.) See also B.7.2.4.

B.4.4 System Identification

B.4.4.1 System Name

The values of the structure members are not constrained to have any relation to the version of POSIX.1 implemented
in the operating system. An application should instead depend on {_POSIX_VERSION} and related constants defined
in 2.9.

POSIX.1 does not define the sizes of the members of the structure and permits them to be of different sizes, although
most implementations define them all to be the same size: eight bytes plus one byte for the string terminator. That size
for nodename is not enough for use with many networks.

The uname() function is specific to System III, System V, and related implementations, and it does not exist in Version
7 or 4.3BSD. The values it returns are set at system compile time in those historical implementations.

4.3BSD has gethostname() and gethostid(), which return a symbolic name and a numeric value, respectively. There are
related sethostname() and sethostid() functions that are used to set the values the other two functions return. The length
of the host name is limited to 31 characters in most implementations and the host ID is a 32-bit integer.

B.4.5 Time

The time() function returns a value in seconds (type time_t) while times() returns a set of values in clock ticks (type
clock_t). Some historical implementations, such as 4.3BSD, have mechanisms capable of returning more precise times
[see the description of gettimeofday() in B.4.5.1]. A generalized timing scheme to unify these various timing
mechanisms has been proposed but not adopted in POSIX.1.

B.4.5.1 Get System Time

Implementations in which time_t is a 32-bit signed integer (most historical implementations) will fail in the year 2038.
This version of POSIX.1 does not address this problem. However, the use of the new time_t type is mandated in order
to ease the eventual fix.

The use of the header <time.h>, instead of <sys/types.h>, allows compatibility with the C Standard {2}.

Many historical implementations (including Version 7) and the 1984 /usr/group Standard {B75} use long instead of
time_t. POSIX.1 uses the latter type in order to agree with the C Standard {2}.

4.3BSD includes time() only as an interface to the more flexible gettimeofday() function.

B.4.5.2 Get Process Times

The accuracy of the times reported is intentionally left unspecified to allow implementations flexibility in design, from
uniprocessor to multiprocessor networks.

Copyright © 1996 IEEE All Rights Reserved 337

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The inclusion of times of child processes is recursive, so that a parent process may collect the total times of all of its
descendants. But the times of a child are only added to those of its parent when its parent successfully waits on the
child. Thus, it is not guaranteed that a parent process will always be able to see the total times of all its descendants.

(See also the discussion of the term “real time” in B.3.4.1)

If the type clock_t is defined to be a signed 32-bit integer, it will overflow in somewhat more than a year if there 60
clock ticks per second, or less than a year if there are 100. There are individual systems that run continuously for
longer than that. POSIX.1 permits an implementation to make the reference point for the returned value be the startup
time of the process, rather than system startup time.

The term “charge” in this context has nothing to do with billing for services. The operating system accounts for time
used in this way. That information must be correct, regardless of how that information is used.

B.4.6 Environment Variables

B.4.6.1 Environment Access

Additional functions putenv() and clearenv() were considered but rejected because they were considered to be more
oriented towards system administration than ordinary application programs. This is being reconsidered for an
amendment to POSIX.1 because uses from within an application have been identified since the decision was made.

It was proposed that this function is properly part of Section 8. It is an extension to a function in the C Standard {2}.
Because this function should be available from any language, not just C, it appears here, to separate it from the material
in Section 8, which is specific to the C binding. (The localization extensions to C are not, at this time, appropriate for
other languages.)

B.4.7 Terminal Identification

The difference between ctermid() and ttyname() is that ttyname() must be passed a file descriptor and returns the
pathname of the terminal associated with that file descriptor, while ctermid() returns a string (such as /dev/tty) that
will refer to the controlling terminal if used as a pathname. Thus ttyname() is useful only if the process already has at
least one file open to a terminal.

The historical value of ctermid() is /dev/tty; this is acceptable. The ctermid() function should not be used to
determine if a process actually has a controlling terminal, but merely the name that would be used.

B.4.7.1 Generate Terminal Pathname

L_ctermid must be defined appropriately for a given implementation and must be greater than zero so that array
declarations using it are accepted by the compiler. The value includes the terminating null byte.

Portable applications that use threads cannot call ctermid() with NULL as the parameter if either
{_POSIX_THREAD_SAFE_FUNCTIONS} or {_POSIX_THREADS} is defined. If s is not NULL, the ctermid()
function generates a string that, when used as a pathname, refers to the current controlling terminal for the current
process. If s is NULL, the return value of ctermid() is undefined.

If the ctermid() function returns a pathname, access to the file is not guaranteed.

There is no additional burden on the programmer—changing to use a hypothetical thread-safe version of ctermid()
along with allocating a buffer is more of a burden than merely allocating a buffer. Application code should not assume
that the returned string will be short, as some implementations have more than two pathname components before
reaching a logical device name.

338 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

B.4.7.2 Determine Terminal Device Name

The term “terminal” is used instead of the historical term “terminal device” in order to avoid a reference to an
undefined term.

The thread-safe version places the terminal name in a user-supplied buffer and returns a nonzero value if it fails. The
non-thread-safe version may return the name in a static data area that may be overwritten by each call.

B.4.8 Configurable System Variables

This subclause was added in response to requirements of application developers and of system vendors who deal with
many international system configurations. It is closely related to B.5.7 as well.

Although a portable application can run on all systems by never demanding more resources than the minimum values
published in POSIX.1, it is useful for that application to be able to use the actual value for the quantity of a resource
available on any given system. To do this, the application will make use of the value of a symbolic constant in
<limits.h> or <unistd.h>.

However, once compiled, the application must still be able to cope if the amount of resource available is increased. To
that end, an application may need a means of determining the quantity of a resource, or the presence of an option, at
execution time.

Two examples are offered:

1) Applications may wish to act differently on systems with or without job control. Applications vendors who
wish to distribute only a single binary package to all instances of a computer architecture would be forced to
assume job control is never available if it were to rely solely on the <unistd.h> value published in
POSIX.1.

2) International applications vendors occasionally require knowledge of the number of clock ticks per second.
Without the facilities of this subclause, they would be required to either distribute their applications partially
in source form or to have 50 Hz and 60 Hz versions for the various countries in which they operate.

It is the knowledge that many applications are actually distributed widely in executable form that lead to this facility.
If limited to the most restrictive values in the headers, such applications would have to be prepared to accept the most
limited environments offered by the smallest microcomputers. Although this is entirely portable, there was a
consensus that they should be able to take advantage of the facilities offered by large systems, without the restrictions
associated with source and object distributions.

During the discussions of this feature, it was pointed out that it is almost always possible for an application to discern
what a value might be at run-time by suitably testing the various interfaces themselves. And, in any event, it could
always be written to adequately deal with error returns from the various functions. In the end, it was felt that this
imposed an unreasonable level of complication and sophistication on the application writer.

This run-time facility is not meant to provide ever-changing values that applications will have to check multiple times.
The values are seen as changing no more frequently than once per system initialization, such as by a system
administrator or operator with an automatic configuration program. POSIX.1 specifies that they shall not change
within the, lifetime of the process.

Some values apply to the system overall and others vary at the file system or directory level. These latter are described
in B.5.7.

Copyright © 1996 IEEE All Rights Reserved 339

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

B.4.8.1 Get Configurable System Variables

Note that all values returned must be expressible as integers. String values were considered, but the additional
flexibility of this approach was rejected due to its added complexity of implementation and use.

Some values, such as {PATH_MAX}, are sometimes so large that they must not be used to, say, allocate arrays. The
sysconf() function will return a negative value to show that this symbolic constant is not even defined in this case.

B.4.8.1.1 Special Symbol {CLK_TCK}

{CLK_TCK} appears in POSIX.1 for backwards compatibility with IEEE Std 1003.1-1988. Its use is obsolescent.

B.4.8.2 Get Password From User

The getpass() function was explicitly excluded from POSIX.1 because it was found that the name was misleading, and
it provided no functionality that the user could not easily implement within POSIX.1. The implication of some form of
security, which was not actually provided, exceeded the small gain in convenience.

B.5 Files and Directories

See pathname resolution.

The wording regarding the group of a newly created regular file, directory, or FIFO in open(), mkdir(), mkfifo(),
respectively, defines the two acceptable behaviors in order to permit both the System V (and Version 7) behavior (in
which the group of the new object is set to the effective group ID of the creating process) and the 4.3BSD behavior (in
which the new object has the group of its parent directory). An application that needs a file to be created specifically
in one or the other of the possible groups should use chown() to ensure the new group regardless of the style of groups
the interface implements. Most applications will not and should not be concerned with the group ID of the file.

B.5.1 Directories

Historical implementations prior to 4.2BSD had no special functions, types, or headers for directory access. Instead,
directories were read with read() and each program that did so had code to understand the internal format of directory
files. Many such programs did not correctly handle the case of a maximum-length (historically fourteen character)
filename and would neglect to add a null character string terminator when doing comparisons. The access methods in
POSIX.1 eliminate that bug, as well as hiding differences in implementations of directories or file systems.

The directory access functions originally selected for POSIX.1 were derived from 4.2BSD, were adopted in System V
Release 3, and are in SVID {B41} Volume 3, with the exception of a type difference for the d_ino field. That field
represents implementation-dependent or even file system-dependent information (the i-node number in most
implementations). Since the directory access mechanism is intended to be implementation-independent, and since
only system programs, not ordinary applications, need to know about the i-node number (or file serial number) in this
context, the d_ino field does not appear in POSIX.1. Also, programs that want this information can get it with stat().

B.5.1.1 Format of Directory Entries

Information similar to that in the header <dirent.h> is contained in a file <sys/dir.h> in 4.2BSD and 4.3BSD.
The equivalent in these implementations of struct dirent from POSIX.1 is struct direct. The filename was changed
because the name <sys/dir.h> was also used in earlier implementations to refer to definitions related to the older
access method; this produced name conflicts. The name of the structure was changed because POSIX.1 does not
completely define what is in the structure, so it could be different on some implementations from struct direct.

The name of an array of char of an unspecified size should not be used as an lvalue. Use of

340 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

 sizeof (d_name)

is incorrect; use

 strlen (d_name)

instead.

The array of char d_name is not a fixed size. Implementations may need to declare struct dirent with an array size for
d_name of 1, but the actual number of characters provided matches (or only slightly exceeds) the length of the file
name.

Currently, implementations are excluded if they have d_name with type char *. Lacking experience of such
implementations, the developers of POSIX.1 declined to try to describe in standards language what to do if either type
were permitted.

B.5.1.2 Directory Operations

Based on historical implementations, the rules about file descriptors apply to directory streams as well. However,
POSIX.1 does not mandate that the directory stream be implemented using file descriptors. The description of
opendir() clarifies that if a file descriptor is used for the directory stream it is mandatory that closedir() deallocate the
file descriptor. When a file descriptor is used to implement the directory stream, it behaves as if the FD_CLOEXEC
had been set for the file descriptor.

The returned value of readdir() merely represents a directory entry. No equivalence should be inferred.

The directory entries for dot and dot-dot are optional. POSIX.1 does not provide a way to test a priori for their
existence because an application that is portable must be written to look for (and usually ignore) those entries. Writing
code that presumes that they are the first two entries does not always work, as many implementations permit them to
be other than the first two entries, with a “normal” entry preceding them. There is negligible value in providing a way
to determine what the implementation does because the code to deal with dot and dot-dot must be written in any case
and because such a flag would add to the list of those flags (which has proven in itself to be objectionable) and might
be abused.

Since the structure and buffer allocation, if any, for directory operations are defined by the implementation, POSIX.1
imposes no portability requirements for erroneous program constructs, erroneous data, or the use of indeterminate
values such as the use or referencing of a dirp value or a dirent structure value after a directory stream has been closed
or alter a fork() or one of the exec function calls.

Historical implementations of readdir() obtain multiple directory entries on a single read operation, which permits
subsequent readdir() operations to operate from the buffered information. Any wording that required each successful
readdir() operation to mark the directory st_atime field for update would militate against the historical performance-
oriented implementations.

Since readdir() returns NULL both:

1) When it detects an error, and
2) When the end of the directory is encountered

an application that needs to tell the difference must set errno to zero before the call and check it if NULL is returned.
Because the function must not change errno in case (2) and must set it to a nonzero value in case (1), a zero errno after
a call returning NULL indicates end of directory, otherwise an error.

Routines to deal with this problem more directly were proposed:

Copyright © 1996 IEEE All Rights Reserved 341

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

 int derror (dirp)
 DIR *dirp;
 void clearderr (dirp)
 DIR *dirp;

The first would indicate whether an error had occurred, and the second would clear the error indication. The simpler
method involving errno was adopted instead by requiring that readdir() not change errno when end-of-directory is
encountered.

Historical implementations include two more functions:

 long telldir (dirp)
 DIR *dirp;
 void seekdir (dirp, loc)
 DIR *dirp;
 long loc;

The telldir() function returns the current location associated with the named directory stream.

The seekdir() function sets the position of the next readdir() operation on the directory stream. The new position
reverts to the one associated with the directory stream when the telldir() operation was performed.

These functions have restrictions on their use related to implementation details. Their capability can usually be
accomplished by saving a filename found by readdir() and later using rewinddir() and a loop on readdir() to relocate
the position from which the filename was saved. Though this method is probably slower than using seekdir() and
telldir(), there are few applications in which the capability is needed. Furthermore, directory systems that are
implemented using technology such as balanced trees, where the order of presentation may vary from access to access,
do not lend themselves well to any concept along these lines. For these reasons, seekdir() and telldir() are not included
in POSIX.1.

An error or signal indicating that a directory has changed while open was considered but rejected.

The thread-safe version of the directory reading function returns values in a user-supplied buffer instead of possibly
using a static data area that may be overwritten by each call. Either the {NAME_MAX} compile-time constant or the
corresponding pathconf() option can be used to determine the maximum sizes of returned pathnames.

B.5.1.3 Set Position of Directory Stream

The seekdir() and telldir() functions were proposed for inclusion in POSIX.1, but were excluded because they are
inherently unreliable when all the possible conforming implementations of the rest of POSIX.1 were considered. The
problem is that returning to a given point in a directory is quite difficult to describe formally, in spite of its intuitive
appeal, when systems that used B-trees, hashing functions, or other similar mechanisms for directory search are
considered.

Even the simple goal of attempting to visit each directory entry that is unmodified between the opendir() and closedir()
calls exactly once is difficult to implement reliably in the face of directory compaction and reorganization.

Since the primary need for seekdir() and telldir() is to implement file tree walks, and since such a function is likely to
be included in a future revision of POSIX.1, and since in that more constrained context it appears that at least the goal
of visiting unmodified nodes exactly once can be achieved, it was felt that waiting for the development of that function
best served all the constituencies.

342 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

B.5.2 Working Directory

B.5.2.1 Change Current Working Directory

The chdir() function only affects the working directory of the current process.

The result if a NULL argument is passed to chdir() is left implementation defined because some implementations
dynamically allocate space in that case.

B.5.2.2 Working Directory Pathname

Since the maximum pathname length is arbitrary unless {PATH_MAX} is defined, an application generally cannot
supply a buf with size {PATH_MAX} + 1}.

Having getcwd() take no arguments and instead use the C function malloc() to produce space for the returned argument
was considered. The advantage is that getcwd() knows how big the working directory pathname is and can allocate an
appropriate amount of space. But the programmer would have to use the C function free() to free the resulting object,
or each use of getcwd() would further reduce the available memory. Also, malloc() and free() are used nowhere else in
POSIX.1. Finally, getcwd() is taken from the SVID {B41} , where it has the two arguments used in POSIX.1.

The older function getwd() was rejected for use in this context because it had only a buffer argument and no size
argument, and thus had no way to prevent overwriting the buffer, except to depend on the programmer to provide a
large enough buffer.

The result if a NULL argument is passed to getcwd() is left implementation defined because some implementations
dynamically allocate space in that case.

If a program is operating in a directory where some (grand)parent directory does not permit reading, getcwd() may fail,
as in most implementations it must read the directory to determine the name of the file. This can occur if search, but
not read, permission is granted in an intermediate directory, or if the program is placed in that directory by some more
privileged process (e.g., login). Including this error, [EACCES], makes the reporting of the error consistent and warns
the application writer that getcwd() can fail for reasons beyond the control of the application writer or user. Some
implementations can avoid this occurrence [e.g., by implementing getcwd() using pwd, where pwd is a set-user-root
process], thus the error was made optional.

Because POSIX.1 permits the addition of other errors, this would be a common addition and yet one that applications
could not be expected to deal with without this addition.

Some current implementations use {PATH_MAX}+2 bytes. These will have to be changed. Many of those same
implementations also may not diagnose the [ERANGE] error properly or deal with a common bug having to do with
newline in a directory name (the fix to which is essentially the same as the fix for using +1 bytes), so this is not a severe
hardship.

B.5.2.3 Change Root Directory of a Process

The chroot() function was excluded from POSIX.1 on the basis that it was not useful to portable applications. In
particular, creating an environment in which an application could run after executing a chroot() call is well beyond the
current scope of POSIX.1.

B.5.3 General File Creation

Because there is no portable way to specify a value for the argument indicating the file mode bits (except zero),
<sys/stat.h> is included with the functions that reference mode bits.

Copyright © 1996 IEEE All Rights Reserved 343

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

B.5.3.1 Open a File

Except as specified in POSIX.1, the flags allowed in oflag are not mutually exclusive and any number of them may be
used simultaneously.

Some implementations permit opening FIFOs with O_RDWR. Since FIFOs could be implemented in other ways, and
since two file descriptors can be used to the same effect, this possibility is left as undefined.

See B.4.2.3 about the group of a newly created file.

The use of open() to create a regular file is preferable to the use of creat() because the latter is redundant and included
only for historical reasons.

The use of the O_TRUNC flag on FIFOs and directories [pipes cannot be open()-ed] must be permissible without
unexpected side effects [e.g., creat() on a FIFO must not remove data]. Because terminal special files might have type-
ahead data stored in the buffer, O_TRUNC should not affect their content, particularly if a program that normally
opens a regular file should open the current controlling terminal instead. Other file types, particularly implementation-
defined ones, are left implementation defined.

Implementations may deny access and return [EACCES] for reasons other than just those listed in the [EACCES]
definition.

The O_NOCTTY flag was added to allow applications to avoid unintentionally acquiring a controlling terminal as a
side effect of opening a terminal file. POSIX.1 does not specify how a controlling terminal is acquired, but it allows an
implementation to provide this on open() if the O_NOCTTY flag is not set and other conditions specified in 7.1.1.3 are
met. The O_NOCTTY flag is an effective no-op if the file being opened is not a terminal device.

In historical implementations the value of O_RDONLY is zero. Because of that, it is not possible to detect the presence
of O_RDONLY and another option. Future implementations should encode O_RDONLY and O_WRONLY as bit
flags so that:

O_RDONLY | O_WRONLY == O_RDWR

See the rationale for the change from O_NDELAY to O_NONBLOCK in B.6.

B.5.3.2 Create a New File or Rewrite an Existing One

The creat() function is redundant. Its services are also provided by the open() function. It has been included primarily
for historical purposes since many existing applications depend on it. It is best considered a part of the C binding rather
than a function that should be provided in other languages.

B.5.3.3 Set File Creation Mask

Unsigned argument and return types for umask() were proposed. The return type and the argument were both changed
to mode_t.

Historical implementations have made use of additional bits in cmask for their implementation-specific purposes. The
addition of the text that the meaning of other bits of the field are implementation defined permits these
implementations to conform to POSIX.1.

B.5.3.4 Link to a File

See B.2.2.2.

344 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Linking to a directory is restricted to the super-user in most historical implementations because this capability may
produce loops in the file hierarchy or otherwise corrupt the file system. POSIX.1 continues that philosophy by
prohibiting link() and unlink() from doing this. Other functions could do it if the implementor designed such an
extension.

Some historical implementations allow linking of files on different file systems. Wording was added to explicitly allow
this optional behavior. Symbolic links are not discussed by POSIX.1. The exception for cross-file system links is
intended to apply only to links that are programmatically indistinguishable from “hard” links.

B.5.4 Special File Creation

B.5.4.1 Make a Directory

See B.2.5.

The mkdir() function originated in 4.2BSD and was added to System V in Release 3.0.

4.3BSD detects [ENAMETOOLONG].

See B.4.2.3 about the group of a newly created directory.

B.5.4.2 Make a FIFO Special File

The syntax of this routine is intended to maintain compatibility with historical implementations of mknod(). The latter
function was included in the 1984 /usr/group Standard {B75} , but only for use in creating FIFO special files. The
mknod() function was excluded from POSIX.1 as implementation defined and replaced by mkdir() and mkfifo().

See B.4.2.3 about the group of a newly created FIFO.

B.5.5 File Removal

The rmdir() and rename() functions originated in 4.2BSD, and they used [ENOTEMPTY] for the condition when the
directory to be removed does not exist or new already exists. When the 1984 /usr/group Standard {B75} was
published, it contained [EEXIST] instead. When these functions were adopted into System V, the 1984 /usr/group
Standard {B75} was used as a reference. Therefore, several existing applications and implementations support/use
both forms, and no agreement could be reached on either value. All implementations are required to supply both
[EEXIST] and [ENOTEMPTY] in <errno.h> with distinct values so that applications can use both values in C
language case statements.

B.5.5.1 Remove Directory Entries

Unlinking a directory is restricted to the super-user in many historical implementations for reasons given in B.5.3.4.
But see B.5.5.3.

The meaning of [EBUSY] in historical implementations is “mount point busy.” Since POSIX.1 does not cover the
system administration concepts of mounting and unmounting, the description of the error was changed to “resource
busy.” (This meaning is used by some device drivers when a second process tries to open an exclusive use device.) The
wording is also intended to allow implementations to refuse to remove a directory if it is the root or current working
directory of any process.

B.5.5.2 Remove a Directory

See also and B.5.5.1.

Copyright © 1996 IEEE All Rights Reserved 345

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

B.5.5.3 Rename a File

This rename() function is equivalent for regular files to that defined by the C Standard {2}. Its inclusion here expands
that definition to include actions on directories and specifies behavior when the new parameter names a file that
already exists. That specification requires that the action of the function be atomic.

One of the reasons for introducing this function was to have a means of renaming directories while permitting
implementations to prohibit the use of link() and unlink() with directories, thus constraining links to directories to
those made by mkdir().

The specification that if old and new refer to the same file describes existing, although undocumented, 4.3BSD
behavior. It is intended to guarantee that:

 rename("x", "x");

does not remove the file.

Renaming dot or dot-dot is prohibited in order to prevent cyclical file system paths.

See also the descriptions of [ENOTEMPTY] and [ENAMETOOLONG] in B.5.5 and [EBUSY] in B.5.5.1. For a
discussion of [EXDEV], see B.5.3.4.

B.5.6 File Characteristics

The ustat() function, which appeared in the 1984 /usr/group Standard {B75} and is still in the SVID {B41} , was
excluded from POSIX.1 because it is:

 Not reliable. The amount of space available can change between the time the call is made and the time the
calling process attempts to use it.

 Not required. The only known program that uses it is the text editor ed.
 Not readily extensible to networked systems.

B.5.6.1 Characteristics: Header and Data Structure

See B.2.5

A conforming C language application must include <sys/stat.h> for functions that have arguments or return
values of type mode_t, so that symbolic values for that type can be used. An alternative would be to require that these
constants are also defined by including <sys/types.h>.

The S_ISUID and S_ISGID bits may be cleared on any write, not just on open(), as some historical implementations
do it.

System calls that update the time entry fields in the stat structure must be documented by the implementors. POSIX.1
conforming systems should not update the time entry fields for functions listed in POSIX.1 unless the standard
requires that they do, except in the case of documented extensions to the standard.

Note that st_dev must be unique within the Local Area Network (LAN) in a “system” made up of multiple computers'
file systems connected by a LAN.

Networked implementations of a POSIX.1 system must guarantee that all files visible within the file tree (including
parts of the tree that may be remotely mounted from other machines on the network) on each individual processor are
uniquely identified by the combination of the st_ino and st_dev fields.

346 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

B.5.6.2 Get File Status

The intent of the paragraph describing “additional or alternate file access control mechanisms” is to allow a secure
implementation where a process with a label that does not dominate the file's label cannot perform a stat() function.
This is not related to read permission; a process with a label that dominates the file's label will not read permission. An
implementation that supports write-up operations could fail fstat() function calls even though it has a valid file
descriptor open for writing.

B.5.6.3 File Accessibility

In early drafts of POSIX.1, some inadequacies in the access() function led to the creation of an eaccess() function
because:

1) Historical implementations of access() do not test file access correctly when then process's real user ID is a
super-user. In particular, they always return zero when testing execute permissions without regard to whether
the file is executable.

2) The super-user has complete access to all files on a system. As a consequence, programs started by the super-
user and switched to the effective user ID with lesser privileges cannot use access() to test their file access
permissions.

However, the historical model of eaccess() does not resolve problem (1), so POSIX.1 now allows access() to behave
in the desired way because several implementations have corrected the problem. It was also argued that problem (2) is
more easily solved by using open(), chdir(), or one of the exec functions as appropriate and responding to the error,
rather than creating a new function that would not be as reliable. Therefore, eaccess() was taken back out of POSIX.1.

Secure implementations will probably need an extended access()-like function, but there were not enough of the
requirements to define it yet. This could be proposed as an extension for a future amendment to POSIX.1.

The sentence concerning appropriate privileges and execute permission bits reflects the two possibilities implemented
by historical implementations when checking super-user access for X_OK.

B.5.6.4 Change File Modes

POSIX.1 specifies that the S_ISGID bit is cleared by chmod() on a regular file under certain conditions. This is
specified on the assumption that regular files may be executed, and the system should prevent users from making
executable setgid files perform with privileges that the caller does not have. On implementations that support
execution of other file types, the S_ISGID bit should be cleared for those file types under the same circumstances.

Implementations that use the S_ISUID bit to indicate some other function (for example, mandatory record locking) on
nonexecutable files need not clear this bit on writing. They should clear the bit for executable files and any other cases
where the bit grants special powers to processes that change the file contents. Similar comments apply to the S_ISGID
bit.

B.5.6.5 Change Owner and Group of File

System III and System V allow a user to give away files; that is, the owner of a file may change its user ID to anything.
This is a serious problem for implementations that are intended to meet government security regulations. Version 7 and
4.3BSD permit only the super-user to change the user ID of a file. Some government agencies (usually not ones
concerned directly with security) find this limitation too confining. POSIX.1 uses “may” to permit secure
implementations while not disallowing System V.

System III and System V allow the owner of a file to change the group ID to anything. Version 7 permits only the
super-user to change the group ID of a file. 4.3BSD permits the owner to change the group ID of a file to its effective
group ID or to any of the groups in the list of supplementary group IDs, but to no others.

Copyright © 1996 IEEE All Rights Reserved 347

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Although chown() can be used on some systems by the file owner to change the owner and group to any desired values,
the only portable use of this function is to change the group of a file to the effective GID of the calling process or to a
member of its group set.

The decision to require that, for nonprivileged processes, the S_ISUID and S_ISGID bits be cleared on regular files,
but only may be cleared on nonregular files, was to allow plans for using these bits in implementation-specified
manners on directories. Similar cases could be made for other file types, so POSIX.1 does not require that these bits
be cleared except on regular files. As these cases arise, the system implementors will have to determine whether these
features enable any security loopholes and specify appropriate restrictions. If the implementation supports executing
any file types other than regular files, the S_ISUID and S_ISGID bits should be cleared for those file types in the same
way as they are on regular files.

B.5.6.6 Set File Access and Modification Times

The actime structure member must be present so that an application may set it, even though an implementation may
ignore it and not change the access time on the file. If an application intends to leave one of the times of a file
unchanged while changing the other, it should use stat() to retrieve the file's st_atime and st_mtime parameters, set
actime and modtime in the buffer, and change one of them before making the utime() call.

B.5.6.7 Truncate a File to a Specified Length

It was determined that truncate(), which takes a pathname as an argument, was of marginal additional utility in this
case and was omitted in favor of the more likely use of open() and ftruncate().

B.5.7 Configurable Pathname Variables

When the run-time facility described in B.4.8 was designed, it was realized that some variables change depending on
the file system. For example, it is quite feasible for a system to have two varieties of file systems mounted: a System
V file system and a BSD “Fast File System.”

If limited to strictly compile-time features, no application that was widely distributed in executable binary form could
rely on more than 14 bytes in a pathname component, as that is the minimum published for {NAME_MAX} in
POSIX.1. The pathconf() function allows the application to take advantage of the most liberal file system available at
run-time. In many BSD-based systems, 255 bytes are allowed for pathname components.

These values are potentially changeable at the directory level, not just at the file system. And, unlike the overall system
variables, there is no guarantee that these might not change during program execution.

B.5.7.1 Get Configurable Pathname Variables

The pathconf() function was proposed immediately after the sysconf() function when it was realized that some
configurable values may differ across file system, directory, or device boundaries.

For example, {NAME_MAX} frequently changes between System V and BSD-based file systems; System V uses a
maximum of 14, BSD 255. On an implementation that provided both types of file systems, an application would be
forced to limit all pathname components to 14 bytes, as this would be the value specified in <limits.h> on such a
system.

Therefore, various useful values can be queried on any pathname or file descriptor, assuming that the appropriate
permissions are in place.

The value returned for the variable {PATH_MAX} indicates the longest relative pathname that could be given if the
specified directory is the process’s current working directory. A process may not always be able to generate a name
that long and use it if a subdirectory in the pathname crosses into a more restrictive file system.

348 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

The value returned for the variable {_POSIX_CHOWN_RESTRICTED} also applies to directories that do not have
file systems mounted on them. The value may change when crossing a mount point, so applications that need to know
should check for each directory. [An even easier check is to try the chown() function and look for an error in case it
happens.]

Unlike the values returned by sysconf(), the pathname-oriented variables are potentially more volatile and are not
guaranteed to remain constant throughout the process's lifetime. For example, in between two calls to pathconf(), the
file system in question may have been unmounted and remounted with different characteristics.

Also note that most of the errors are optional. If one of the variables always has the same value on an implementation,
the implementation need not look at path or fildes to return that value and is, therefore, not required to detect any of the
errors except the meaning of [EINVAL] that indicates that the value of name is not valid for that variable.

If the value of any of the limits described in 2.8.4 or 2.8.5 are indeterminate (logically infinite), they will not be defined
in <limits.h> and the pathconf() and fpathconf() functions will return −1 without changing errno. This can be
distinguished from the case of giving an unrecognized name argument because errno will be set to [EINVAL] in this
case.

Since −1 is a valid return value for the pathconf() and fpathconf() functions, applications should set errno to zero
before calling them and check errno only if the return value is −1.

B.6 Input and Output Primitives

System III and System V have included a flag, O_NDELAY, to mark file descriptors so that user processes would not
block when doing I/O to them. If the flag is set, a read() or write() call that would otherwise need to block for data
returns a value of zero instead. But a read() call also returns a value of zero on end-of-file, and applications have no
way to distinguish between these two conditions.

BSD systems support a similar feature through a flag with the same name, but somewhat different semantics. The flag
applies to all users of a file (or socket) rather than only to those sharing a file descriptor. The BSD interface provides
a solution to the problem of distinguishing between a blocking condition and an end-of-file condition by returning an
error, [EWOULDBLOCK], on a blocking condition.

The 1984 /usr/group Standard {B75} includes an interface with some features from both System III/V and BSD. The
overall semantics are that it applies only to a file descriptor. However, the return indication for a blocking condition is
an error, [EAGAIN]. This was the starting point for POSIX.1.

The problem with the 1984 /usr/group Standard {B75} is that it does not allow compatibility with existing
applications. An implementation cannot both conform to that standard and support applications written for existing
System V or BSD systems. Several changes have been considered address this issue. These include:

1) No change (from 1984 /usr/group Standard {B75})
2) Changing to System III/V semantics
3) Changing to BSD semantics
4) Broadening POSIX.1 to allow conforming implementation a choice among these semantics
5) Changing the name of the flag from O_NDELAY
6) Changing to System III/V semantics and providing a new call to distinguish between blocking and end-of-file

conditions

Alternative (5) was the consensus choice. The new name is O_NONBLOCK. This alternative allows a conforming
implementation to provide backward compatibility at the source and/or object level with either System III/V or BSD
systems (but POSIX.1 does not require or even suggest that this be done). It also allows a Conforming POSIX.1
Application Using Extensions the functionality to distinguish between blocking and end-of-file conditions, and to do so
in as simple a manner as any of the alternatives. The greatest shortcoming was that it forces all existing System III/V and

Copyright © 1996 IEEE All Rights Reserved 349

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

BSD applications that use this facility to be modified in order to strictly conform to POSIX.1. This same shortcoming
applies to (1) and (4) as well, and it applies to one group of applications for (2), (3), and (6).

Systems may choose to implement both O_NDELAY and O_NONBLOCK, and there is no conflict as long as an
application does not turn both flags on at the same time.

See also the discussion of scope in B.6.5.1.

B.6.1 Pipes

An implementation that fails write() operations on fildes[0] or read()s on fildes[1] is not required. Historical
implementations (Version 7 and System V) return the error [EBADF] in such cases. This allows implementations to set
up a second pipe for full duplex operation at the same time. A conforming application that uses the pipe() function as
described in POSIX.1 will succeed whether this second pipe is present or not.

B.6.1.1 Create an Inter-Process Channel

The wording carefully avoids using the verb “to open” in order to avoid any implication of use of open().

See also B.6.4.2.

B.6.2 File Descriptor Manipulation

B.6.2.1 Duplicate an Open File Descriptor

The dup() and dup2() functions are redundant. Their services are also provided by the fcntl() function. They have been
included in POSIX.1 primarily for historical reasons, since many existing applications use them.

While the brief code segment shown is very similar in behavior to dup2(), a conforming implementation based on other
functions defined by POSIX.1 is significantly more complex. Least obvious is the possible effect of a signal-catching
function that could be invoked between steps and allocate or deallocate file descriptors. This could be avoided by
blocking signals.

The dup2() function is not marked obsolescent because it presents a type-safe version of functionality provided in a
type-unsafe version by fcntl(). It is used in the current draft of the Ada binding to POSIX.1.

The dup2() function is not intended for use in critical regions as a synchronization mechanism.

In the description of [EBADF], the case of fildes being out of range is covered by the given case of fildes not being
valid. The descriptions for fildes and fildes2 are different because the only kind of invalidity that is relevant for fildes2
is whether it is out of range; that is, it does not matter whether fildes2 refers to an open file when the dup2() call is
made.

If fildes2 is a valid file descriptor, it shall be closed, regardless of whether the function returns an indication of success
or failure, unless fildes2 is equal to fildes.

B.6.3 File Descriptor Deassignment

B.6.3.1 Close a File

Once a file is closed, the file descriptor no longer exists, since the integer corresponding to it no longer refers to a file.

The use of interruptible device close routines should be discouraged to avoid problems with the implicit closes of file
descriptors by exec and exit(). POSIX.1 only intends to permit such behavior by specifying the [EINTR] error case.

350 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

B.6.4 Input and Output

The use of I/O with large byte counts has always presented problems. Ideas such as lread() and lwrite() (using and
returning longs) were considered at one time. The current solution is to use abstract types on the C Standard {2}
interface to read() and write() (and not to discuss common usage). The abstract types can be declared so that existing
interfaces work, but can also be declared so that larger types can be represented in future implementations. It is
presumed that whatever constraints limit the maximum range of size_t also limit portable I/O requests to the same
range. POSIX.1 also limits the range further by requiring that the byte count be limited so that a signed return value
remains meaningful. Since the return type is also a (signed) abstract type, the byte count can be defined by the
implementation to be larger than an int can hold.

POSIX.1 requires that no action be taken when nbyte is zero. This is not intended to take precedence over detection of
errors (such as invalid buffer pointers or file descriptors). This is consistent with the rest of POSIX.1, but the phrasing
here could be misread to require detection of the zero case before any other errors. A value of zero is to be considered
a correct value, for which the semantics are a no-op.

There were recommendations to add format parameters to read() and write() in order to handle networked transfers
among heterogeneous file system and base hardware types. Such a facility may be required for support by the OSI
presentation of layer services. However, it was determined that this should correspond with similar C Language
facilities, and that is beyond the scope of POSIX.1. The concept was suggested to the developers of the C Standard {2}
for their consideration as a possible area for future work.

In 4.3BSD, a read() or write() that is interrupted by a signal before transferring any data does not by default return an
[EINTR] error, but is restarted. In 4.2BSD, 4.3BSD, and the Eighth Edition there is an additional function, select(),
whose purpose is to pause until specified activity (data to read, space to write, etc.) is detected on specified file
descriptors. It is common in applications written for those systems for select() to be used before read() in situations
(such as keyboard input) where interruption of I/O due to a signal is desired. But this approach does not conform,
because select() is not in POSIX.1. 4.3BSD semantics can be provided by extensions to POSIX.1.

POSIX.1 permits read() and write() to return the number of bytes successfully transferred when interrupted by an
error. This is not simply required because it was not done by Version 7, System III, or System V, and because some
hardware may not be capable of returning information about partial transfers if a device operation is interrupted.
Unfortunately, this does make writing a Conforming POSIX.1 Application more difficult in circumstances where this
could occur.

Requiring this behavior does not address the situation of pipelined buffers, such as might be found in streaming tape
drives or other devices that read ahead of the actual requests. The signal interruption will often indicate an exceptional
condition and flush all buffers. Thus, the amount read from the device may be different from the amount transferred to
the application.

The issue of which files or file types are interruptible is considered an implementation design issue. This is often
affected primarily by hardware and reliability issues.

There are no references to actions taken following an “unrecoverable error.” It is considered beyond the scope of
POSIX.1 to describe what happens in the case of hardware errors.

B.6.4.1 Read from a File

POSIX.1 does not specify the value of the file offset after an error is returned; there are too many cases. For
programming errors, such as [EBADF], the concept is meaningless since no file is involved. For errors that are
detected immediately, such as [EAGAIN], clearly the pointer should not change. After an interrupt or hardware error,
however, an updated value would be very useful and is the behavior of many implementations.

Copyright © 1996 IEEE All Rights Reserved 351

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Note that a read() of zero bytes does not modify st_atime. A read() that requests more than zero bytes, but returns zero,
does modify st_atime.

B.6.4.2 Write to a File

An attempt to write to a pipe or FIFO has several major characteristics:

Atomic/nonatomic
A write is atomic if the whole amount written in one operation is not interleaved with data from any
other process. This is useful when there are multiple writers sending data to a single reader. Applications
need to know how large a write request can be expected to be performed atomically. This maximum is
called {PIPE_BUF}. POSIX.1 does not say whether write requests for more than {PIPE_BUF} bytes
will be atomic, but requires that writes of {PIPE_BUF} or fewer bytes shall be atomic.

Blocking/immediate
Blocking is only possible with O_NONBLOCK clear. If there is enough space for all the data requested
to be written immediately, the implementation should do so. Otherwise, the process may block; that is,
pause until enough space is available for writing. The effective size of a pipe or FIFO (the maximum
amount that can be written in one operation without blocking) may vary dynamically, depending on the
implementation, so it is not possible to specify a fixed value for it.

Complete/partial/deferred
A write request,
 int fildes;
 size_t nbyte;
 ssize_t ret;
 char *buf;
 ret = write (fildes, buf, nbyte);
may return

complete: ret = nbyte

partial: ret < nbyte

This shall never happen if nbyte ≤ {PIPE_BUF}. If it does happen (with nbyte > {PIPE_BUF}),
POSIX.1 does not guarantee atomicity, even if ret ≤ {PIPE_BUF}, because atomicity is
guaranteed according to the amount requested, not the amount written.

deferred: ret = −1, errno = [EAGAIN]

This error indicates that a later request may succeed. It does not indicate that it shall succeed,
even if nbyte ≤ {PIPE_BUF}, because if no process reads from the pipe or FIFO, the write will
never succeed. An application could usefully count the number of times [EAGAIN] is caused
by a particular value of nbyte > {PIPE_BUF} and perhaps do later writes with a smaller value,
on the assumption that the effective size of the pipe may have decreased.

Partial and deferred writes are only possible with O_NONBLOCK set.

The relations of these properties are shown in the following tables.

352 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

If the O_NONBLOCK flag is clear, a write request shall block if the amount writable immediately is less than that
requested. If the flag is set [by fcntl()], a write request shall never block.

There is no exception regarding partial writes when O_NONBLOCK is set. With the exception of writing to an empty
pipe, POSIX.1 does not specify exactly when a partial write will be performed since that would require specifying
internal details of the implementation. Every application should be prepared to handle partial writes when
O_NONBLOCK is set and the requested amount is greater than {PIPE_BUF}, just as every application should be
prepared to handle partial writes on other kinds of file descriptors.

The intent of forcing writing at least one byte if any can be written is to assure that each write will make progress if
there is any room in the pipe. If the pipe is empty, {PIPE_BUF} bytes must be written; if not, at least some progress
must have been made.

Where POSIX.1 requires −1 to be returned and errno set to [EAGAIN], most historical implementations return zero
(with the O_NDELAY flag set—that flag is the historical predecessor of O_NONBLOCK, but is not itself in
POSIX.1). The error indications in POSIX.1 were chosen so that an application can distinguish these cases from end-
of-file. While write() cannot receive an indication of end-of-file, read() can, and the two functions have similar return
values. Also, some existing systems (e.g., Eighth Edition) permit a write of zero bytes to mean that the reader should
get an end-of-file indication; for those systems, a return value of zero from write() indicates a successful write of an
end-of-file indication.

The concept of a {PIPE_MAX} limit (indicating the maximum number of bytes that can be written to a pipe in a single
operation) was considered, but rejected, because this concept would unnecessarily limit application writing.

See also the discussion of O_NONBLOCK in B.6.

Write to a Pipe or FIFO with O_NONBLOCK clear

Immediately
Writable:

None Some nbyte

nbyte ≤
{PIPE_BUF}

Atomic
blocking

nbyte

Atomic
blocking

nbyte

Atomic
immediate

nbyte

nbyte >
{PIPE_BUF}

Blocking
nbyte

Blocking
nbyte

Blocking
nbyte

Write to a Pipe or FIFO with O_NONBLOCK set

Immediately
Writable:

None Some nbyte

nbyte ≤
{PIPE_BUF}

−1,
[EAGAIN]

−1,
[EAGAIN]

Atomic
nbyte

nbyte >
{PIPE_BUF}

−1,
[EAGAIN]

< nbyte
or −1,

[EAGAIN]

≤ nbyte
or −1,

[EAGAIN]

Copyright © 1996 IEEE All Rights Reserved 353

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Writes can be serialized with respect to other reads and writes. If a read() of file data can be proven (by any means) to
occur after a write() of the data, it must reflect that write(), even if the calls are made by different processes. A similar
requirement applies to multiple write operations to the same file position. This is needed to guarantee the propagation
of data from write() calls to subsequent read() calls. This requirement is particularly significant for networked file
systems, where some caching schemes violate these semantics.

Note that this is specified in terms of read() and write(). Additional calls such as the common readv() and writev()
would want to obey these semantics. A new “high-performance” write analog that did not follow these serialization
requirements would also be permitted by this wording. POSIX.1 is also silent about any effects of application-level
caching (such as that done by stdio).

POSIX.1 does not specify the value of the file offset after an error is returned; there are too many cases. For
programming errors, such as [EBADF], the concept is meaningless since no file is involved. For errors that are
detected immediately, such as [EAGAIN], clearly the pointer should not change. After an interrupt or hardware error,
however, an updated value would be very useful and is the behavior of many implementations.

POSIX.1 does not specify behavior of concurrent writes to a file from multiple processes. Applications should use
some form of concurrency control.

B.6.5 Control Operations on Files

B.6.5.1 Data Definitions for File Control Operations

The main distinction between the file descriptor flags and the file status flags is scope. The former apply to a single file
descriptor only, while the latter apply to all file descriptors that share a common open file description [by inheritance
through fork() or an F_DUPFD operation with fcntl()]. For O_NONBLOCK, this scoping is like that of O_NDELAY
in System V rather than in 4.3BSD, where the scoping for O_NDELAY is different from all the other flags accessed
via the same commands.

For example:

 fd1 = open (pathname, oflags);
 fd2 = dup (fd1);
 fd3 = open (pathname, oflags);

Does an fcntl() call on fd1 also apply to fd2 or fd3 or to both? According to POSIX.1, F_SETFD applies only to fd1,
while F_SETFL applies to fd1 and fd2 but not to fd3. This is in agreement with all common historical implementations
except for BSD with the F_SETFL command and the O_NDELAY flag (which would apply to fd3 as well). Note that
this does not force any incompatibilities in BSD implementations, because O_NDELAY is not in POSIX.1. See also .

Historically, the file descriptor flags have had only the literal values 0 and 1. POSIX.1 defines the symbolic name
FD_CLOEXEC to permit a more graceful extension of this functionality. Owners of existing applications should be
aware of the need to change applications using the literal values, and implementors should be aware of the existence
of this practice in existing applications.

B.6.5.2 File Control

The ellipsis in the Synopsis is the syntax specified by the C Standard {2} for a variable number of arguments. It is used
because System V uses pointers for the implementation of file locking functions.

The arg values to F_GETFD, F_SETFD, F_GETFL, and F_SETFL all represent flag values to allow for future growth.
Applications using these functions should do a read-modify-write operation on them, rather than assuming that only
the values defined by POSIX.1 are valid. It is a common error to forget this, particularly in the case of F_SETFD,
because there is only one flag in POSIX.1.

354 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

POSIX.1 permits concurrent read and write access to file data using the fcntl() function; this is a change from the 1984
/usr/group Standard {B75} and early POSIX.1 drafts, which included a lockf() function. Without concurrency
controls, this feature may not be fully utilized without occasional loss of data. Since other mechanisms for creating
critical regions, such as semaphores, are not included, a file record locking mechanism was thought to be appropriate.
The fcntl() mechanism may be used to implement semaphores, although access is not first-in-first-out without extra
application development effort.

Data losses occur in several ways. One is that read and write operations are not atomic, and as such a reader may get
segments of new and old data if concurrently written by another process. Another occurs when several processes try to
update the same record, without sequencing controls; several updates may occur in parallel and the last writer will
“win.” Another case is a b-tree or other internal list-based database that is undergoing reorganization. Without
exclusive use to the tree segment by the updating process, other reading processes chance getting lost in the database
when the index blocks are split, condensed, inserted, or deleted. While fcntl() is useful for many applications, it is not
intended to be overly general and will not handle the b-tree example well.

This facility is only required for regular files because it is not appropriate for many devices such as terminals and
network connections.

Since fcntl() works with “any file descriptor associated with that file, however it is obtained,” the file descriptor may
have been inherited through a fork() or exec operation and thus may affect a file that another process also has open.

The use of the open file description to identify what to lock requires extra calls and presents problems if several
processes are sharing an open file description, but there are too many implementations of the existing mechanism for
POSIX.1 to use different specifications.

Another consequence of this model is that closing any file descriptor for a given file (whether or not it is the same open
file description that created the lock) causes the locks on that file to be relinquished for that process. Equivalently, any
close for any file/process pair relinquishes the locks owned on that file for that process. But note that while an open file
description may be shared through fork(), locks are not inherited through fork(). Yet locks may be inherited through
one of the exec functions.

The identification of a machine in a network environment is outside of the scope of POSIX.1. Thus, an l_sysid
member, such as found in System V, is not included in the locking structure.

Since locking is performed with fcntl(), rather than lockf(), this specification prohibits use of advisory exclusive
locking on a file that is not open for writing.

Before successful return from a F_SETLK or F_SETLKW request, the previous lock type for each byte in the
specified region shall be replaced by the new lock type. This can result in a previously locked region being split into
smaller regions. If this would cause the number of regions being held by all processes in the system to exceed a system-
imposed limit, the fcntl() function returns −1 with errno set to [ENOLCK].

Mandatory locking was a major feature of the 1984 /usr/group Standard {B75} . For advisory file record locking to be
effective, all processes that have access to a file must cooperate and use the advisory mechanism before doing I/O on
the file. Enforcement-mode record locking is important when it cannot be assumed that all processes are cooperating.
For example, if one user uses an editor to update a file at the same time that a second user executes another process that
updates the same file and if only one of the two processes is using advisory locking, the processes are not cooperating.
Enforcement-mode record locking would protect against accidental collisions.

Secondly, advisory record locking requires a process using locking to bracket each I/O operation with lock (or test) and
unlock operations. With enforcement-mode file and record locking, a process can lock the file once and unlock when
all I/O operations have been completed. Enforcement-mode record locking provides a base that can be enhanced, for
example, with sharable locks. That is, the mechanism could be enhanced to allow a process to lock a file so other
processes could read it, but none of them could write it.

Copyright © 1996 IEEE All Rights Reserved 355

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Mandatory locks were omitted for several reasons:

1) Mandatory lock setting was done by multiplexing the set-group-ID bit in most implementations; this was
confusing, at best.

2) The relationship to file truncation as supported in 4.2BSD was not well specified.
3) Any publicly readable file could be locked by anyone. Many historical implementations keep the password

database in a publicly readable file. A malicious user could thus prohibit logins. Another possibility would be
to hold open a long-distance telephone line

4) Some demand-paged historical implementations offer memory mapped files, and enforcement cannot be
done on that type of file

Since sleeping on a region is interrupted with any signal, alarm() may be used to provide a timeout facility in
applications requiring it. This is useful in deadlock detection. Because implementation of full deadlock detection is not
always feasible, the [EDEADLK] error was made optional.

B.6.5.3 Reposition Read/Write File Offset

The C Standard {2} includes the functions fgetpos() and fsetpos(), which work on very large files by use of a special
positioning type.

Although lseek() may position the file offset beyond the end of the file, this function does not itself extend the size of
the file. While the only function in POSIX.1 that may extend the size of the file is write(), several C Standard {2}
functions, such as fwrite(), fprintf(), etc., may do so [by causing calls on write()].

An invalid file offset that would cause [EINVAL] to be returned may be both implementation defined and device
dependent (for example, memory may have few invalid values). A negative file offset may be valid for some devices
in some implementations.

See B.6.5.2 for a explanation of the use of signed and unsigned offsets with lseek().

B.6.6 File Synchronization

The integrity of the data and files being accessed is critical to many applications. This subclause describes the facilities
that allow an application to achieve the required integrity. These facilities are defined in terms of “successfully
transferred,” “synchronized I/O completion,” “synchronized I/O data integrity completion,” and “synchronized I/O
file integrity completion.”

Synchronized I/O is a mechanism provided to an application to ensure integrity of its data and files. A synchronized
output operation provides the assurance that data that is written to an output device actually is recorded by the device.
A synchronized output operation is blocking; that is, the function does not return, or an event is not posted (in the case
of asynchronous I/O operations), to the application until the operation is completed. A synchronized input operation
provides the assurance that data that is read from a device is actually a current image of data present on that device, any
pending write operations affecting the data being read having been completed prior to returning to the requesting
process.

An application specifies that synchronized I/O is to be performed on a file by specifying the O_DSYNC or O_SYNC
flags on the fcntl() or open() functions. The O_DSYNC flag specifies that I/O is to be performed with respect to data
integrity; that is, integrity is assured for the data being transferred. The O_SYNC flag specifies that I/O is to be
performed with respect to file integrity; that is, integrity is assured not only for the data being transferred, but also for
the parameters associated with the file being accessed.

In addition to the two flags just described, this section also specifies the functions fsync() and fdatasyn(), which
provide for the synchronization of any system buffers and the actual peripheral device. This synchronization function
shall force the completion of any pending output operations.

356 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Models

Numerous applications require confirmation of data transfer to a nonvolatile storage medium. Probably one of the best
known application areas is that of transaction processing. When data is written and if confirmation is not received, then
the application is able to abort the data update and back up to the previous known state of its data, thus ensuring the
integrity of its data.

Requirements

The synchronized I/O facility is meant to satisfy an application requirement for data integrity. Data integrity involves
guaranteeing that data written to an output device actually reaches the output device, and, once written, that a read will
obtain the data that is on the device.

1) I/O operations are synchronous, that is, they are processed in such a manner that the requesting process does
not continue execution until a requested I/O operation completes.

2) It has to be possible to determine the completion of certain I/O requests in order to ensure data integrity.
Information shall be provided to the process that a converse I/O operation (e.g., read after a write) issued by
the same or a coexistent process will succeed.

3) Assurance shall be provided that all data written to a file is readable on a subsequent open of the file in the
absence of a failure of the physical storage medium.

It is important to realize that the synchronized I/O facility does not provide a capability to recover data in the event of
a device or media failure. To ensure that critical data can be recovered, techniques such as “mirroring” (maintaining
duplicate copies of file systems) and “file duplexing” (maintaining duplicate copies of files, preferably in different file
systems) should be used. These techniques are not addressed at this time since they are out of scope of the facilities
currently being addressed in this standard.

Standardization Issues

In defining “successfully transferred,” it is not the intention of this standard to specify the hardware characteristics of
the storage device. The purpose of synchronized I/O is to ensure that application data is an “image” of what resides on
“nonvolatile storage.” A buffer cache, unless it is secure from power failure, does not qualify as “nonvolatile storage.“

In regards to the references to “system buffers,” it is not the intent of this standard to require a buffered
implementation. It is the intent of this standard that if a buffered implementation is used, a mechanism is provided to
maintain consistency, and hence integrity, between the buffers and the actual device.

It may not always be possible to tell if a satisfied read request reflects what is physically on the medium. All that can
be guaranteed from the standpoint of an operating system is that the physical operation has been initiated and that the
device has acknowledged receipt of the information. Caching disk controllers make the guarantee of data residency
difficult.

Separate Synchronized I/O Data and File Integrity

The difference between synchronized I/O data integrity and synchronized I/O file integrity is subtle, but important to
understand. Synchronized I/O data integrity ensures that the data and all information required to subsequently retrieve
the data has been successfully transferred. Synchronized I/O file integrity is a superset of data integrity. File integrity
requires data integrity, but extends the concept one step further. File integrity not only guarantees the integrity of the
data, but also ensures that all other file system information relevant to that data is successfully transferred. This includes
related file system information not required for actual data access, e.g., time of last update, time of last access, etc.

At first thought one might assume that the single concept of file integrity would be adequate and that data integrity
could be eliminated. However, possible performance implications of conforming implementations make support of
both concepts desirable. For example, it is quite possible that support of file integrity will require extra I/O operations

Copyright © 1996 IEEE All Rights Reserved 357

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

to update the nonessential file system information. As another example, many systems have an access time that is
updated on every read or write; this information may not be worth the performance cost for some time-critical realtime
applications. Thus, the performance cost of synchronized I/O file integrity could very likely be much greater than that
of just synchronized I/O data integrity. Forcing all users of synchronized I/O to bear this possibly undesired and
unnecessary cost was deemed unacceptable. Therefore, the separate features of synchronized I/O data integrity and
synchronized I/O file integrity are both supported.

Rationale for New Interface

The synchronized I/O interface described in this standard describes an interface for two levels of integrity, and the
ability to request completion of outstanding write operations before completion of read operations. The O_SYNC flag
described here is essentially identical to the O_SYNC of existing practice. The O_DSYNC specifies a less stringent
form of integrity. It requires only that the data and the information to access it be done in a synchronized manner; the
file status information may be updated in a more “leisurely” manner.

Since existing practice does not impose synchronized I/O on input operations, this standard extends this concept to
include input operations via the O_RSYNC flag.

The fsync() function provides that any pending output be completed in a manner as if the O_SYNC flag had been set.
The fdatasync() function was added to provide an similar capability, but as if the O_DSYNC flag had been set.

Technical Considerations

The following issues arise with respect to implementation or use of synchronized I/O.

 FIFO flies or pipes
The purpose of synchronized I/O is to give assurance to an application that data that is written to a storage
device actually is present on the physical media of the device. Since FIFO files or pipes may be implemented
without access to any physical storage media, the concept of synchronized I/O does not apply. If an
application desires to pass data in a physically secure manner, i.e., immune to system crashes, the data should
be passed via a file with synchronized I/O. The standard is silent on the implementation of synchronized I/O
to pipes. This will allow a particular implementation to extend the concept of data integrity via synchronized
I/O to pipes.

 Synchronized read
A synchronized read “provides assurance that data that is read from a device is actually a current image of
data present on that device”. This image may be obtained by actually reading the data from the storage device,
or it may be obtained from a buffer, if the buffer data is identical to, i.e., is an image of, the data on the storage
device. The standard does not specify how the implementation obtains the data; this is left to the implementor
to determine.

 File system considerations
It should be noted that not all file systems may, or even need to, support synchronized I/O. Consequently,
when synchronized I/O is specified (the O_SYNC or O_DSYNC flags are specified) on the open() or fcntl()
functions, the function may fail ([EINVAL] returned) due to the file system not being able to support
synchronized I/O for the specified file.

 Raw I/0
The operating system cannot protect users if they circumvent the provided protection mechanisms by using
raw I/O. Consequently, the standard is silent on the issue of raw I/O. It is assumed that if an application uses
raw I/O, then the application is providing its own mechanisms for ensuring data and file integrity.

B.6.6.1 Synchronize the State of a File

The fsync() function has been adapted from IEEE P1003.1a , with its functionality described in its entirety in this
standard. This “base” function is supported if the symbol {_POSIX_FSYNC} is defined. The “base” function is
defined quite loosely to meet the requirements of nonrealtime applications. This loosely defined fsync() function is

358 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

deemed by the standard developers to be unacceptable for realtime applications. Consequently, if the implementation
supports the Synchronized Input and Output option, then a more rigorous specification of the function applies. For
example, in the less rigorous case, a null implementation is permitted. In the more rigorous case, a null implementation
would not be acceptable. Note that if {_POSIX_SYNCHRONIZED_IO} is defined, then the fsync() function is
defined and the more rigorous specification applies, regardless of whether {_POSIX_FSYNC} is defined or not. The
“base” function is separated out from the rest of the functions described in this section so that it may be specifically
called out by an Applications Environment Profile (AEP), for example, the POSIX Platform AEP (IEEE P1003.18).

The fsync() function should be used by programs that require a file to be in a known state; for example, a program that
contains a simple transaction facility might use it to ensure that all modifications to a file or files caused by a
transaction are recorded.

The fsync() function is intended to force a physical write of data from the buffer cache, and to assure that after a system
crash or other failure that all data up to the time of the fsync() call is recorded on the disk. Since the concepts of “buffer
cache,” “system crash,” “physical write,” and “nonvolatile storage” are not defined here, the wording has to be more
abstract.

In the less rigorous case, the wording relies heavily on the conformance document to tell the user what can be expected
from the system. It is explicitly intended that a null implementation is permitted. This could be valid in the case where
the system cannot assure nonvolatile storage under any circumstances or when the system is highly fault-tolerant and
the functionality is not required. In the middle ground between these extremes, fsync() might or might not actually
cause data to be written where it is safe from a power failure. The conformance document should identify at least that
one configuration exists (and how to obtain that configuration) where this can be assured for at least some files that the
user can select to use for critical data. It is not intended that an exhaustive list is required, but rather sufficient
information is provided to let the user determine that if he or she has critical data he or she can configure her system
to allow it to be written to nonvolatile storage.

It is reasonable to assert that the key aspects of fsync() are unreasonable to test in a test suite. That does not make the
function any less valuable, just more difficult to test. A formal conformance test should probably force a system crash
(power shutdown) during the test for this condition, but it needs to be done in such a way that automated testing does
not require this to be done except when a formal record of the results is being made. It would also not be unreasonable
to omit testing for fsync(), allowing it to be treated as a quality-of-implementation issue.

B.6.6.2 Synchronize the Data of a File

There is no specific rationale for this subclause.

B.6.7 Asynchronous Input and Output

Many applications need to interact with the I/O subsystem in an asynchronous manner. The asynchronous I/O
mechanism provides the ability to overlap application processing and I/O operations initiated by the application. The
asynchronous I/O mechanism allows a single process to perform I/O simultaneously to a single file multiple times or
to multiple files multiple times.

Overview

Asynchronous I/O operations proceed in logical parallel with the processing done by the application after the
asynchronous I/O has been initiated. Other than this difference, asynchronous I/O behaves similarly to normal I/O
using read(), write(), lseek(), and fsync(). The effect of issuing an asynchronous I/O request is as if a separate thread
of execution were to perform atomically the implied lseek() operation, if any, and then the requested I/O operation
[either read(), write(), or fsync()]. There is no seek implied with a call to aio_fsync(). Concurrent asynchronous
operations and synchronous operations applied to the same file update the file as if the I/O operations had proceeded
serially.

Copyright © 1996 IEEE All Rights Reserved 359

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

When asynchronous I/O completes, a signal can be delivered to the application to indicate the completion of the I/O.
This signal can be used to indicate that buffers and control blocks used for asynchronous I/O can be re-used. Signal
delivery is not required for an asynchronous operation and may be turned off on a per-operation basis by the
application. Signals may also be synchronously polled using aio_suspend(), sigtimedwait(), or sigwaitinfo().

Normal I/O has a return value and an error status associated with it. Asynchronous I/O returns a value and an error
status when the operation is first submitted, but that only relates to whether the operation was successfully queued up
for servicing. The I/O operation itself also has a return status and an error value. To allow the application to retrieve the
return status and the error value, functions are provided that, given the address of an asynchronous I/O control block,
yield the return and error status associated with the operation. Until an asynchronous I/O operation is done, its error
status shall be [EINPROGRESS]. Thus, an application can poll for completion of an asynchronous I/O operation by
waiting for the error status to become equal to a value other than [EINPROGRESS]. The return status of an
asynchronous I/O operation is undefined so long as the error status is equal to [EINPROGRESS].

Storage for asynchronous operation return and error status may be limited. Submission of asynchronous I/O operations
may fail if this storage is exceeded. When an application retrieves the return status of a given asynchronous operation,
therefore, any system-maintained storage used for this status and the error status may be reclaimed for use by other
asynchronous operations.

Asynchronous I/O can be performed on file descriptors that have been enabled for POSIX.1b synchronized I/O. In this
case, the I/O operation still occurs asynchronously, as defined herein; however, the asynchronous operation I/O in this
case is not completed until the I/O has reached either the state of synchronized I/O data integrity completion or
synchronized I/O file integrity completion, depending on the sort of synchronized I/O that is enabled on the file
descriptor.

Models

Three models illustrate the use of asynchronous I/O: a journalization model, a data acquisition model, and a model of
the use of asynchronous I/O in supercomputing applications.

 Journalization model
Many realtime applications perform low-priority journalizing functions. Journalizing requires that logging
records be queued for output without blocking the initiating process.

 Data acquisition model
A data acquisition process may also serve as a model. The process has two or more channels delivering
intermittent data that must be read within a certain time. The process issues one asynchronous read on each
channel. When one of the channels needs data collection, the process reads the data and posts it through an
asynchronous write to secondary memory for future processing.

 Supercomputing model
The supercomputing community has used asynchronous I/O much like that specified herein for many years.
This community requires the ability to perform multiple I/O operations to multiple devices with a minimal
number of entries to “the system”; each entry to “the system” provokes a major delay in operations when
compared to the normal progress made by the application. This existing practice motivated the use of
combined lseek() and read() or write() calls, as well as the lio_listio() call. Another common practice is to
disable signal notification for I/O completion, and simply poll for I/O completion at some interval by which
the I/O should be completed. Likewise, interfaces like aio_cancel() have been in successful commercial use
for many years. Note also that an underlying implementation of asynchronous I/O will require the ability, at
least internally, to cancel outstanding asynchronous I/O, at least when the process exits (Consider an
asynchronous read from a terminal, when the process intends to exit immediately).

Requirements

Asynchronous input and output for realtime implementations have these requirements:

360 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

 The ability to queue multiple asynchronous read and write operations to a single open instance. Both
sequential and random access should be supported.

 The ability to queue asynchronous read and write operations to multiple open instances.
 The ability to obtain completion status information by polling and/or asynchronous event notification.
 Asynchronous event notification on asynchronous I/O completion is optional.
 It has to be possible for the application to associate the event with the aiocbp for the operation that generated

the event.
 The ability to cancel queued requests.
 The ability to wait upon asynchronous I/O completion in conjunction with other types of events.
 The ability to accept an aio_read() and an aio_cancel() for a device that accepts a read(), and the ability to

accept an aio_write() and an aio_cancel() for a device that accepts a write(). This does not imply that the
operation is asynchronous.

Standardization Issues

The following issues are addressed by the standardization of asynchronous I/O.

 Rationale for new interface
Nonblocking I/O does not satisfy the needs of either realtime or high-performance computing models; these
models require that a process overlap program execution and I/O processing. Realtime applications will often
make use of direct I/O to or from the address space of the process, or require synchronized (unbuffered) I/O;
they also require the ability to overlap this I/O with other computation. In addition, asynchronous I/O allows
an application to keep a device busy at all times, possibly achieving greater throughput. Supercomputing and
database architectures will often have specialized hardware that can provide true asynchrony underlying the
logical asynchrony provided by this interface. In addition, asynchronous I/O should be supported by all types
of files and devices in the same manner.

 Effect of buffering
If asynchronous I/O is performed on a file that is buffered prior to being actually written to the device, it is
possible that asynchronous I/O will offer no performance advantage over normal I/O; the cycles “stolen” to
perform the asynchronous I/O will be taken away from the running process and the I/O will occur at interrupt
time. This potential lack of gain in performance in no way obviates the need for asynchronous I/O by realtime
applications, which very often will use specialized hardware support; multiple processors; and/or unbuffered,
synchronized I/O.

B.6.7.1 Data Definitions for Asynchronous Input and Output

This revision makes consistent the semantics of the members of the sigevent structure, particularly in the definitions of
lio_listio() and aio_fsync(). The requirements previously listed are subsumed by the reference to 3.3.1.2.

B.6.7.2 Asynchronous Read

There is no specific rationale for this subclause.

B.6.7.3 Asynchronous Write

There is no specific rationale for this subclause.

B.6.7.4 List Directed I/O

This revision makes consistent the semantics of the members of the sigevent structure.

Although it may appear that there are inconsistencies in the specified circumstances for error codes, the error code
[EIO] applies when any circumstance relating to an individual operation makes that operation fail. This might be due
to a badly formulated request (e.g., the aio_lio_opcode field is invalid, and aio_error() returns [EINVAL]) or might

Copyright © 1996 IEEE All Rights Reserved 361

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

arise from application behavior (e.g., the file descriptor is closed before the operation is initiated, and aio_error()
returns [EBADF]).

The limitation on the set of error codes returned when operations from the list shall have been initiated enables
applications to know when operations have been started and whether aio_error() is valid for a specific operation.

B.6.7.5 Retrieve Error Status of Asynchronous I/O Operation

There is no specific rationale for this subclause.

B.6.7.6 Retrieve Return Status of Asynchronous I/O Operation

There is no specific rationale for this subclause.

B.6.7.7 Cancel Asynchronous I/O Request

There is no specific rationale for this subclause.

B.6.7.8 Wait for Asynchronous I/O Request

There is no specific rationale for this subclause.

B.6.7.9 Asynchronous File Synchronization

This revision makes consistent the semantics of the members of the sigevent structure.

B.7 Device- and Class-Specific Functions

There were several sources of difficulties involved with using historical interfaces as the basis of this section:

1) The basic Version 7 ioctl() mechanism is difficult to specify adequately, due to its use of a third argument that
varies in both size and type according to the second, command, argument.

2) System III introduced and System V continued ioctl() commands that are completely different from those of
Version 7.

3) 4.2BSD and other BSD systems added to the basic Version 7 ioctl() command set; some of these were for
features such as job control that POSIX.1 eventually adopted.

4) None of the basic historical implementations are adequate in an international environment. This concern is
not technically within the scope of POSIX.1, but the goal of POSIX.1 was to mandate no unnecessary
impediments to internationalization.

The 1984 /usr/group Standard {B75} attempted to specify a portable mechanism that application writers could use to
get and set the modes of an asynchronous terminal. The intention of that committee was to provide an interface that
was neither implementation specific nor hardware dependent. Initial proposals dealt with high-level routines similar to
the curses library (available on most historical implementations). In such an implementation, the user interface would
consist of calls similar to:

 setraw();
 setcooked();

It was quickly pointed out that if such routines were standardized, the definition of “raw” and “cooked” would have to
be provided. If these modes were not well defined in POSIX.1, application code could not be written in a portable way.
However, the definition of the terms would force low-level concepts to be included in a supposedly high-level interface
definition.

362 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Focus was given to the necessary low-level attributes that were needed to support the necessary terminal characteristics
(e.g., line speeds, raw mode, cooked mode, etc.). After considerable debate, a structure similar to, but more flexible
than, the System III termio was accepted. The format of that structure, referred to as the termios structure, has formed
the basis for the current section.

A method was needed to communicate with the system about the termios information. Proposals included:

1) The ioctl() function as in System V. This had the same problems as mentioned previously for the Version 7
ioctl() function and was basically identical to it. Another problem was that the direction of the command
(whether information is written from or read into the third argument) was not specified—in historical
implementations, only the device driver knows this information. This was a problem for networked
implementations. It was also a problem that there was no size parameter to specify the variable size of the
third argument, and there was a similar problem with its type.

2) An iocntl() function with additional arguments specifying direction, type, and size. But these new arguments
did not help application writers, who would have no control over their values, which would have to match
each command exactly. The new arguments did, however, solve the problems of networked implementations.
And iocntl() would have been implementable in terms of ioctl() on historical implementations (without need
for modifying existing code), although it would have been easy to update existing code to use the arguments
directly.

3) A termcntl function with the same arguments as proposed for the iocntl() function. The difference was that
termcntl() would be limited to terminal interface functions; there would be other interface functions, such as
a tapecntl() function for tape interfaces, rather than a single general device interface routine.

4) Unspecified functions. The issue of what the interface function(s) should be called was avoided for many of
the early drafts while details of the information to be handled was of prime concern. The resulting
specification resembled the information in System V, but attempted to avoid problems of case, speed,
networks, and internationalization.

Specific tc*() functions16 to replace each ioctl() function were finally incorporated into POSIX.1, instead of any of the
previously mentioned proposals.

The issue of modem control was excluded from POSIX.1 on the grounds that

1) It was concerned with setting and control of hardware timers.
2) The appropriate timers and settings vary widely internationally.
3) Feedback from European computer manufacturers indicated that this facility was not consistent with

European needs and that specification of such a facility was not a requirement for portability.

B.7.1 General Terminal Interface

If the implementation does not support this interface on any device types, it should behave as if it were being used on
a device that is not a terminal device (in most cases errno will be set to [ENOTTY]) on return from functions defined
by this interface. This is based on the fact that many applications are written to run both interactively and in some
noninteractive mode, and they adapt themselves at run time. Requiring that they all be modified to test an environment
variable to determine if they should try to adapt is unnecessary. On a system that provides no Section 7 interface,
providing all the entry points as stubs that return [ENOTTY] (or an equivalent, as appropriate) has the same effect and
requires no changes to the application.

Although the needs of both interface implementors and application developers were addressed throughout POSIX.1,
this section pays more attention to the needs of the latter. This is because, while many aspects of the programming
interface can be hidden from the user by the application developer, the terminal interface is usually a large part of the
user interface. Although to some extent the application developer can build missing features or work around

16The notation tc*() is reminiscent of shell pattern matching notation and is an abbreviated way of referring to all functions beginning with the
letters “tc.”

Copyright © 1996 IEEE All Rights Reserved 363

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

inappropriate ones, the difficulties of doing that are greater in the terminal interface than elsewhere. For example,
efficiency prohibits the average program from interpreting every character passing through it in order to simulate
character erase, line kill, etc. These functions should usually be done by the operating system, possibly at the interrupt
level.

The tc*() functions were introduced as a way of avoiding the problems inherent in the traditional ioctl() function and
in variants of it that were proposed. For example, tcsetattr() is specified in place of the use of the TCSETA ioctl()
command function. This allows specification of all the arguments in a manner consistent with the C Standard {2},
unlike the varying third argument of ioctl(), which is sometimes a pointer (to any of many different types) and
sometimes an int.

The advantages of this new method include:

 It allows strict type checking.
 The direction of transfer of control data is explicit.
 Portable capabilities are clearly identified.
 The need for a general interface routine is avoided.
 Size of the argument is well-defined (there is only one type).

The disadvantages include:

 No historical implementation uses the new method.
 There are many small routines instead of one general-purpose one.
 The historical parallel with fcntl() is broken.

B.7.1.1 Interface Characteristics

B.7.1.1.1 Opening a Terminal Device File

Further implications of the effects of CLOCAL are discussed in 7.1.2.4.

B.7.1.1.2 Process Groups

There is a potential race when the members of the foreground process group on a terminal leave that process group,
either by exit or by changing process groups. After the last process exits the process group, but before the foreground
process group ID of the terminal is changed (usually by a job-control shell), it would be possible for a new process to
be created with its process ID equal to the terminal's foreground process group ID. That process might then become the
process group leader and accidentally be placed into the foreground on a terminal that was not necessarily its
controlling terminal. As a result of this problem, the controlling terminal is defined to not have a foreground process
group during this time.

The cases where a controlling terminal has no foreground process group occur when all processes in the foreground
process group either terminate and are waited for or join other process groups via setpgid() or setsid(). If the process
group leader terminates, this is the first case described; if it leaves the process group via setpgid(), this is the second
case described [a process group leader cannot successfully call setsid()]. When one of those cases causes a controlling
terminal to have no foreground process group, it has two visible effects on applications. The first is the value returned
by tcgetpgrp(), as discussed in 7.2.3 and B.7.2.3. The second (which occurs. only in the case where the process group
leader terminates) is the sending of signals in response to special input characters. The intent of POSIX.1 is that no
process group be wrongly identified as the foreground process group by tcgetpgrp() or unintentionally receive signals
because of placement into the foreground.

In 4.3BSD, the old process group ID continues to be used to identify the foreground process group and is returned by
the function equivalent to tcgetpgrp(). In that implementation it is possible for a newly created process to be assigned
the same value as a process ID and then form a new process group with the same value as a process group ID. The

364 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

result is that the new process group would receive signals from this terminal for no apparent reason, and POSIX.1
precludes this by forbidding a process group from entering the foreground in this way. It would be more direct to place
part of the requirement made by the last sentence under 3.1.1, but there is no convenient way for that subclause to refer
to the value that tcgetpgrp() returns, since in this case there is no process group and thus no process group ID.

One possibility for a conforming implementation is to behave similarly to 4.3BSD, but to prevent this reuse of the ID,
probably in the implementation of fork(), as long as it is in use by the terminal.

Another possibility is to recognize when the last process stops using the terminal's foreground process group ID, which
is when the process group lifetime ends, and to change the terminal's foreground process group ID to a reserved value
that is never used as a process ID or process group ID. (See the definition of process group lifetime in 2.2.2.) The
process ID can then be reserved until the terminal has another foreground process group.

The 4.3BSD implementation permits the leader (and only member) of the foreground process group to leave the
process group by calling the equivalent of setpgid() and to later return, expecting to return to the foreground. There are
no known application needs for this behavior, and POSIX.1 neither requires nor forbids it (except that it is forbidden
for session leaders) by leaving it unspecified.

B.7.1.1.3 The Controlling Terminal

POSIX.1 does not specify a mechanism by which to allocate a controlling terminal. This is normally done by a system
utility (such as getty) and is considered an administrative feature outside the scope of POSIX.1.

Historical implementations allocate controlling terminals on certain open() calls. Since open() is part of POSIX.1, its
behavior had to be dealt with. The traditional behavior is not required because it is not very straightforward or flexible
for either implementations or applications. However, because of its prevalence, it was not practical to disallow this
behavior either. Thus, a mechanism was standardized to ensure portable, predictable behavior in open().

Some historical implementations deallocate a controlling terminal on its last systemwide close. This behavior in
neither required nor prohibited. Even on implementations that do provide this behavior, applications generally cannot
depend on it due to its systemwide nature.

B.7.1.1.4 Terminal Access Control

The access controls described in this subclause apply only to a process that is accessing its controlling terminal. A
process accessing a terminal that is not its controlling terminal is effectively treated the same as a member of the
foreground process group. While this may seem unintuitive, note that these controls are for the purpose of job control,
not security, and job control relates only to a process's controlling terminal. Normal file access permissions handle
security.

If the process calling read() or write() is in a background process group that is orphaned, it is not desirable to stop the
process group, as it is no longer under the control of a job-control shell that could put it into foreground again.
Accordingly, calls to read() or write() functions by such processes receive an immediate error return. This is different
than in 4.2BSD, which kills orphaned processes that receive terminal stop signals.

The foreground/background/orphaned process group check performed by the terminal driver must be repeatedly
performed until the calling process moves into the foreground or until the process group of the calling process becomes
orphaned. That is, when the terminal driver determines that the calling process is in the background and should receive
a job-control signal, it sends the appropriate signal (SIGTTIN or SIGTTOU) to every process in the process group of
the calling process and then it allows the calling process to immediately receive the signal. The latter is typically
performed by blocking the process so that the signal is immediately noticed. Note, however, that after the process
finishes receiving the signal and control is returned to the driver, the terminal driver must reexecute the foreground/
background/orphaned process group check. The process may still be in the background, either because it was
continued in the background by a job-control shell, or because it caught the signal and did nothing.

Copyright © 1996 IEEE All Rights Reserved 365

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The terminal driver repeatedly performs the foreground/background/orphaned process group checks whenever a
process is about to access the terminal. In the case of write() or the control functions in 7.2, the check is performed at
the entry of the function. In the case of read(), the check is performed not only at the entry of the function, but also after
blocking the process to wait for input characters (if necessary). That is, once the driver has determined that the process
calling the read() function is in the foreground, it attempts to retrieve characters from the input queue. If the queue is
empty, it blocks the process waiting for characters. When characters are available and control is returned to the driver,
the terminal driver must return to the repeated foreground/background/orphaned process group check again. The
process may have moved from the foreground to the background while it was blocked waiting for input characters.

B.7.1.1.5 Input Processing and Reading Data

There is no additional rationale provided for this subclause.

B.7.1.1.6 Canonical Mode Input Processing

The term “character” is intended here. ERASE should erase the last character, not the last byte. In the case of multibyte
characters, these two may be different. 4.3BSD has a WERASE character that erases the last “word” typed (but not any
preceding blanks or tabs). A word is defined as a sequence of nonblank characters, with tabs counted as blanks. Like
ERASE, WERASE does not erase beyond the beginning of the line. This WERASE feature has not been specified in
POSIX.1 because it is difficult to define in the international environment. It is only useful for languages where words
are delimited by blanks. In some ideographic languages, such as Japanese and Chinese, words are not delimited at all.
The WERASE character should presumably take one back to the beginning of a sentence in those cases; practically,
this means it would not get much use for those languages.

It should be noted that there is a possible inherent deadlock if the application and implementation conflict on the value
of MAX_CANON. With ICANON set (if IXOFF is enabled) and more than MAX_CANON characters transmitted
without a linefeed, transmission will be stopped, the linefeed (or carriage return when ICRLF is set) will never arrive,
and the read() will never be satisfied.

An application should not set IXOFF if it is using canonical mode unless it knows that (even in the face of a
transmission error) the conditions described previously cannot be met or unless it is prepared to deal with the possible
deadlock in some other way, such as timeouts.

It should also be noted that this can be made to happen in noncanonical mode if the trigger value for sending IXOFF
is less than VMIN and VTIME is zero.

B.7.1.1.7 Noncanonical Mode Input Processing

Some points to note about MIN and TIME:

1) The interactions of MIN and TIME are not symmetric. For example, when MIN > 0 and TIME = 0, TIME has
no effect. However, in the opposite case where MIN = 0 and TIME > 0, both MIN and TIME play a role in
that MIN is satisfied with the receipt of a single character.

2) Also note that in case A (MIN > 0, TIME > 0), TIME represents an inter-character timer while in case C
(MIN = 0, TIME > 0) TIME represents a read timer.

These two points highlight the dual purpose of the MIN/TIME feature. Cases A and B, where MIN > 0, exist to handle
burst-mode activity (e.g., file transfer programs) where a program would like to process at least MIN characters at a
time. In case A, the intercharacter timer is activated by a user as a safety measure; in case B, it is turned off.

Cases C and D exist to handle single-character timed transfers. These cases are readily adaptable to screen-based
applications that need to know if a character is present in the input queue before refreshing the screen. In case C the
read is timed; in case D, it is not.

366 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Another important note is that MIN is always just a minimum. It does not denote a record length. That is, if a program
does a read of 20 bytes, MIN is 10, and 25 characters are present, 20 characters shall be returned to the user. In the
special case of MIN=0, this still applies: if more than one character is available, they all will be returned immediately.

B.7.1.1.8 Writing Data and Output Processing

There is no additional rationale provided for this subclause.

B.7.1.1.9 Special Characters

There is no additional rationale provided for this subclause.

B.7.1.1.10 Modem Disconnect

There is no additional rationale provided for this subclause.

B.7.1.1.11 Closing a Terminal Device File

POSIX.1 is silent on whether a close() will block on waiting for transmission to drain, or even if a close() might cause
a flush of pending output. If the application is concerned about this, it should call the appropriate function, such as
tcdrain(), to ensure the desired behavior.

B.7.1.2 Parameters That Can Be Set

B.7.1.2.1 termios Structure

This structure is part of an interface that, in general, retains the historic grouping of flags. Although a more optimal
structure for implementations may be possible, the degree of change to applications would be significantly larger.

B.7.1.2.2 Input Modes

Some historical implementations treated a long break as multiple events, as many as one per character time. The
wording in POSIX.1 explicitly prohibits this.

Although the ISTRIP flag is normally superfluous with today’s terminal hardware and software, it is historically
supported. Therefore, applications may be using ISTRIP, and there is no technical problem with supporting this flag.
Also, applications may wish to receive only 7-bit input bytes and may not be connected directly to the hardware
terminal device (for example, when a connection traverses a network).

Also, there is no requirement in general that the terminal device ensures that high-order bits beyond the specified
character size are cleared. ISTRIP provides this function for 7-bit characters, which are common.

In dealing with multibyte characters, the consequences of a parity error in such a character, or in an escape sequence
affecting the current character set, are beyond the scope of POSIX.1 and are best dealt with by the application
processing the multibyte characters.

B.7.1.2.3 Output Modes

POSIX.1 does not describe postprocessing of output to a terminal or detailed control of that from a portable
application. (That is, translation of newline to carriage return followed by linefeed or tab processing.) There is nothing
that a portable application should do to its output for a terminal because that would require knowledge of the operation
of the terminal. It is the responsibility of the operating system to provide postprocessing appropriate to the output
device, whether it is a terminal or some other type of device.

Copyright © 1996 IEEE All Rights Reserved 367

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Extensions to POSIX.1 to control the type of postprocessing already exist and are expected to continue into the future.
The control of these features is primarily to adjust the interface between the system and the terminal device so the
output appears on the display correctly. This should be set up before use by any application.

In general, both the input and output modes should not be set absolutely, but rather modified from the inherited state.

B.7.1.2.4 Control Modes

This subclause could be misread that the symbol “CSIZE” is a title in Table 7.3. Although it does serve that function,
it is also a required symbol, as a literal reading of POSIX.1 (and the caveats about typography) would indicate.

B.7.1.2.5 Local Modes

Noncanonical mode is provided to allow fast bursts of input to be read efficiently while still allowing single-character
input.

The ECHONL function historically has been in many implementations. Since there seems to be no technical problem
with supporting ECHONL, it is included in POSIX.1 to increase consensus.

The alternate behavior possible when ECHOK or ECHOE are specified with ICANON is permitted as a compromise
depending on what the actual terminal hardware can do. Erasing characters and lines is preferred, but is not always
possible.

B.7.1.2.6 Special Control Characters

Permitting VMIN and VTIME to overlap with VEOF and VEOL was a compromise for historical implementations.
Only when backwards compatibility of object code is a serious concern to an implementor should an implementation
continue this practice. Correct applications that work with the overlap (at the source level) should also work if it is not
present, but not the reverse.

B.7.1.2.7 Baud Rate Values

There is no additional rationale provided for this subclause.

B.7.1.3 Baud Rate Functions

The term baud is used historically here, but is not technically correct. This is properly “bits per second,” which may
not be the same as “baud.” However, the term is used because of the historical usage and understanding.

These functions do not take numbers as arguments, but rather symbolic names. There are two reasons for this:

 Historically, numbers were not used because of the way the rate was stored in the data structure. This is
retained even though an interface function is now used.

 More importantly, only a limited set of possible rates is at all portable, and this constrains the application to
that set.

There is nothing to prevent an implementation to accept, as an extension, a number (such as 126) if it wished, and
because the encoding of the Bxxx symbols is not specified, this can be done so no ambiguity is introduced.

Setting the input baud rate to zero was a mechanism to allow for split baud rates. Clarifications to this version of
POSIX.1 have made it possible to determine if split rates are supported and to support them without having to treat
zero as a special case. Since this functionality is also confusing, it has been declared obsolescent. The 0 argument
referred to is the literal constant 0, not the symbolic constant B0. POSIX.1 does not preclude B0 from being defined
as the value 0; in fact, implementations will likely benefit from the two being equivalent. POSIX.1 does not fully

368 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

specify whether the previous cfsetispeed() value is retained after a tcgetattr() as the actual value or as zero. Therefore,
portable applications should always set both the input speed and output speed when setting either.

In historical implementations, the baud rate information is traditionally kept in c_cflag. Applications should be written
to presume that this might be the case (and thus not blindly copy c_cflag) but not to rely on it, in case it is in some other
field of the structure. Setting the c_cflag field absolutely after setting a baud rate is a nonportable action because of
this. In general, the unused parts of the flag fields might be used by the implementation and should not be blindly
copied from the descriptions of one terminal device to another.

B.7.2 General Terminal Interface Control Functions

The restrictions described in this subclause on access from processes in background process groups controls apply
only to a process that is accessing its controlling terminal. (See B.7.1.1.4).

Care must be taken when changing the terminal attributes. Applications should always do a tcgetattr(), save the
termios structure values returned, and then do a tcsetattr() changing only the necessary fields. The application should
use the values saved from the tcgetattr() to reset the terminal state whenever it is done with the terminal. This is
necessary because terminal attributes apply to the underlying port and not to each individual open instance; that is, all
processes that have used the terminal see the latest attribute changes.

A program that uses these functions should be written to catch all signals and take other appropriate actions to assure
that when the program terminates, whether planned or not, the terminal device's state is restored to its original state.
See also B.7.1.

Existing practice dealing with error returns when only part of a request can be honored is based on calls to the ioctl()
function. In historical BSD and System V implementations, the corresponding ioctl() returns zero if the requested
actions were semantically correct, even if some of the requested changes could not be made. Many existing applications
assume this behavior and would no longer work correctly if the return value were changed from zero to −1 in this case.

Note that either specification has a problem. When zero is returned, it implies everything succeeded even if some of the
changes were not made. When −1 is returned, it implies everything failed even though some of the changes were made.

Applications that need all of the requested changes made to work properly should follow tcsetattr() with a call to
tcgetattr() and compare the appropriate field values.

B.7.2.1 Get and Set State

The tcsetattr() function can be interrupted in the following situations:

 It is interrupted while waiting for output to drain.
 It is called from a process in a background process group and SIGTTOU is caught.

B.7.2.2 Line Control Functions

There is no additional rationale provided for this subclause.

B.7.2.3 Get Foreground Process Group ID

The tcgetpgrp() function has identical functionality to the 4.2BSD ioctl() function TIOCGPGRP except for the
additional security restriction that the referenced terminal must be the controlling terminal for the calling process.

In the case where there is no foreground process group, returning an error rather than a positive value was considered.
This was rejected because existing applications based on either IEEE Std 1003.1-1988 or 4.3BSD are likely to
consider errors from this call or the BSD equivalent to be catastrophic and respond inappropriately. Such applications

Copyright © 1996 IEEE All Rights Reserved 369

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

implicitly assume that this case does not exist, and the positive return value is the only solution that permits them to
behave properly even when they do encounter it. No application has been identified that can benefit from
distinguishing between this case and the case of a valid foreground process group other than its own. Therefore,
requiring or permitting any other solution would cause more application portability problems with no corresponding
benefit to applications. The value must be positive, not zero, because applications may use the negation as the pid
argument to kill(). In addition, the value 1 must not be used so that an attempt to send a signal to this (nonexistent)
process group does not result in broadcasting a signal unintentionally. See also B.7.1.1.2.

B.7.2.4 Set Foreground Process Group ID

The tcsetpgrp() function has identical functionality to the 4.2BSD ioctl() function TIOCSPGRP except for the
additional security restrictions that the referenced terminal must be the controlling terminal for the calling process and
the specified new process group must be currently in use in the caller's session.

B.8 Language-Specific Services for the C Programming Language

See the discussion of C functions in B.1.1.1.

Common usage may be defined by historical publications such as The C Programming Language {B57} .

The null set of supported languages is allowed.

The list of functions comprises the list of “common-usage” functions and also includes those that are not in common
usage that are addressed by POSIX.1. The rules for common-usage conformance to POSIX.1 address whether the
functions that are not generally considered in common usage are implemented. There are a large number of functions
found in various systems that, although frequently found, are not broadly enough available to be considered in
common usage. The signal() function (although in common usage) is omitted because applications conforming to
POSIX.1 should use the more reliable sigaction() interface instead.

B.8.1 Referenced C Language Routines

The raise() function could logically either direct the signal to the calling thread or to the calling process. Directing it
to the thread matches both the usual existing implementations and the C Standard {2} rationale.

B.8.1.1 Extensions to Time Functions

System V uses the TZ environment variable to set some information about time. It has the form (spaces inserted for
clarity):

 std offset dst

where the first three characters (std) are the name of the standard time zone, the digits that follow (offset) represent the
time added to the local time zone to arrive at Coordinated Universal Time, and the next three characters (dst) are the
name of the summer time zone. The meaning of offset implies that most sites west of the Prime Meridian will have a
positive offset (preceded by an optional plus sign, “+”), while most sites east of the Prime Meridian will have a
negative offset (preceded by a minus sign, “–”). Both std and offset are required; if dst is missing, summer time does
not apply.

Currently, the UNIX system localtime() function translates a number of seconds since the Epoch into a detailed
breakdown of that time. This breakdown includes

1) Time of day: Hours, minutes, and seconds.
2) Day of the month, month of the year, and the year.
3) Day of the week and day of the year (Julian day).

370 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

4) Whether or not summer (daylight saving) time is in effect.

It is the first and last items that present a problem: the time of the day depends on whether or not summer time is in
effect. Whether or not summer time is in effect depends on the locale and date.

Most historical systems had time-zone rules compiled into the C library. These rules usually represented United States
rules for 1970 to 1986. This did not accommodate the changes of 1987, nor other world variations (1/2-hour time,
double daylight time, and solar time being common, but not complete, examples). Some recent systems addressed
these problems in various ways.

Having the rules compiled into the program made binary distributions that accommodated all the variations (including
sudden changes to the law), and per-process rule changes, difficult at best.

POSIX.1 includes a way of specifying the time zone in the TZ string, but only permits one time-zone pattern at a time,
thus not dealing with different patterns in previous years and with such issues as solar time. Methods exist to deal with
all the problems above. The method in POSIX.1 appears to be simpler to implement and may be faster in execution
when it is adequate. POSIX.1 also permits an implementation-defined rule set that begins with a colon. (The previous
format cannot begin with a colon.)

Rules of the form AAAn or AAAnBBB (the style used in many historical implementations) do not carry with them any
statement about the start and end of daylight time (neither the date nor the time of day; the default to 02:00 not
applying if no rule is present at all), thus implying that the implementation must provide the appropriate rules. An
implementation may provide those rules in any way it sees fit, as long as the constraints implied by the TZ string as
provided by the user are met. Specifically, the implementation may use the string as an index into a table, which may
reside either on disk or in memory. Such tables could contain rules that are sensitive to the year to which they are
applied, again since the user did not specify the exact rule. (Although impractical, every possible TZ string could be
represented in a table, as a detail of implementation; the less specific the user is about the TZ string, the more freedom
the implementation has to interpret it.)

There is at least one public-domain time-zone implementation (the Olson/Harris method) that uses nonspecific TZ
strings and a table, as described previously, and handles all the general time-zone problems mentioned above. This
implementation also appears in a late release of 4.3BSD. If this implementation honors all the specifications provided
in the TZ string, it would conform to POSIX.1. Nothing precludes the implementation from adding information
beyond that given by the user in the TZ string.

The fully specified TZ environment variable extends the historical meaning to also include a rule for when to use
standard time and when to use summer time. Southern hemisphere time zones are supported by allowing the first rule
date (change to summer time) to be later in the year than the second rule date (change to standard time).

This mechanism accommodates the “floating day” rules (for example “last Sunday in October”) used in the United
States and Canada (and the European Economic Community for the last several years). In theory, TZ only has to be set
once and then never touched again unless the law is changed.

Julian dates are proposed with two syntaxes, one zero-based, the other one-based. They are here for historical reasons.
The one-based counting (J) is used more commonly in Europe (and on calendars people may use for reference). The
zero-based counting (n) is used currently in some implementations and should be kept for historical reasons as well as
being the only way to specify Leap Day.

It is expected that the leading colon format will allow systems to implement an even broader range of specifications for
the time zone without having to resort to a file or permit naming an explicit file containing the appropriate rules.

The specification in POSIX.1 for TZ assumes that very few programs need to be historically accurate as long as the
relative timing of two events is preserved.

Copyright © 1996 IEEE All Rights Reserved 371

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Summer time is governed by both locale and date. This proposal only handles the locale dependency. Using an
implementation-defined file format for either the entire TZ variable or to specify the rules for a particular time zone is
allowed as a means by which both the locale and date dependency can be handled.

Since historical implementations do not examine TZ beyond the assumed end of dst, it is possible literally to extend
TZ and break very little existing software. Since much historical software does not function outside the US time zones,
minor changes to TZ (such as extending offset to be hh:mm—as long as the colon and minutes, :mm, are optional)
should have little effect.

POSIX.1 is intentionally silent about values of TZ that do not fit either of the specified forms. It simply requires that
TZ values that follow those forms be interpreted as specified.

B.8.1.2 Extensions to setlocale() Function

The C Standard {2} defines a collection of interfaces to support internationalization. One of the most significant
aspects of these interfaces is a facility to set and query the international environment. The international environment
is a repository of information that affects the behavior of certain functionality, namely

1) Character Handling
2) String Handling (i.e., collating)
3) Date/Time Formatting
4) Numeric Editing

The setlocale() function provides the application developer with the ability to set all or portions, called categories, of
the international environment. These categories correspond to the areas of functionality, mentioned above. The syntax
for setlocale() is the following:

 char *setlocale (int category, const char *locale);

where category is the name of one of five categories, namely

 LC_CTYPE
 LC_COLLATE
 LC_TIME
 LC_MONETARY
 LC_NUMERIC

In addition, a special value, called LC_ALL, directs setlocale() to set all categories.

The locale argument is a character string that points to a specific setting for the international environment, or locale.
There are three preset values for the locale argument, namely

"C" Specifies the minimal environment for C translation. If setlocale() is not invoked, the “C” locale is
the default.

"POSIX" Specifies a locale that is the same as "C" for the attributes defined by the C Standard {2} and
POSIX.1, but may contain extensions. The wording permits extensions by standards, specifically
that of ISO/IEC 9945-2 {B36} , which is expected to use the same symbol, and by future versions of
POSIX.1.

"" Specifies an implementation-defined native environment.

NULL Used to direct setlocale() to query the current international environment and return the name of the
locale.

372 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

This subclause describes the behavior of an implementation of setlocale() and its use of environment variables in
controlling this behavior on POSIX.1-based systems. There are two primary uses of setlocale():

1) Querying the international environment to find out what it is set to;
2) Setting the international environment, or locale, to a specific value.

The following subclauses describe the behavior of setlocale() in these two areas. Since it is difficult to describe the
behavior in words, examples will be used to illustrate the behavior of specific uses.

To query the international environment, setlocale() is invoked with a specific category and the NULL pointer as the
locale. The NULL pointer is a special directive to setlocale() that tells it to query rather than set the international
environment. The following syntax is used to query the name of the international environment:

The setlocale() function returns the string corresponding to the current international environment. This value may be
used by a subsequent call to setlocale() to reset the international environment to this value. However, it should be noted
that the return value from setlocale() is a pointer to a static area within the function and is not guaranteed to remain
unchanged [i.e., it may be modified by a subsequent call to setlocale()]. Therefore, if the purpose of calling setlocale()
is to save the value of the current international environment so it can be changed and reset later, the return value should
be copied to an array of char in the calling program.

There are three ways to set the international environment with setlocale():

setlocale(category, string)

This usage will set a specific category in the international environment to a specific value corresponding to
the value of the string. A specific example is provided below:
 setlocale (LC_ALL, "Fr_FR. 8859");

In this example, all categories of the international environment will be, set to the locale corresponding to the
string "Fr_FR. 8859", or to the French language as spoken in France using the ISO 8859-1 code set.

If the string does not correspond to a valid locale, setlocale() will return a NULL pointer and the international
environment is not changed. Otherwise, setlocale() will return the name of the locale just set.

setlocale(category, "C")

The C Standard {2} states that one locale must exist on all conforming implementations. The name of the
locale is "C" and corresponds to a minimal international environment needed to support the C programming
language.

setlocale(category, "")

This will set a specific category to an implementation-defined default. For POSIX.1-based systems, this
corresponds to the value of the environment variables.

Copyright © 1996 IEEE All Rights Reserved 373

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

B.8.2 C Language Input/Output Functions

B.8.2.1 Map a Stream Pointer to a File Descriptor

Without some specification of which file descriptors are associated with these streams, it is impossible for an
application to set up the streams for another application it starts with fork() and exec. In particular, it would not be
possible to write a portable version of the sh command interpreter (although there may be other constraints that would
prevent that portability).

B.8.2.2 Open a Stream on a File Descriptor

The file descriptor may have been obtained from open(), creat(), pipe(), dup(), or fcntl(); inherited through fork() or
exec; or perhaps obtained by implementation-dependent means, such as the 4.3BSD socket() call.

The meanings of the type arguments of fdopen() and fopen() differ. With fdopen(), open for write ("w" or "w+") does
not truncate, and append ("a" or "a+") cannot create for writing. There is no need for "b" in the format due to the
equivalence of binary and text files in POSIX.1. See B.1.1.1. Although not explicitly required by POSIX.1, a good
implementation of append ("a") mode would cause the O_APPEND flag to be set.

B.8.2.3 Interactions of Other FILE-Type C Functions

Note that the existence of open streams on a file implies open file descriptors and thus affects the timestamps of the
file. The intent is that using stdio routines to read a file must eventually update the access time, and using them to write
a file must eventually update the modify and change times. However, the exact timing of marking the st_atime,
st_ctime, and st_mtime fields cannot be specified, as that would imply a particular buffering strategy.

The purpose of the rules about handles is to allow the writing of a program that uses stdio and does some shell-like
things; in particular, creating an open file for a child process to use, where both the parent and child wish to use stdio,
with the consequences of buffering. In most cases, this cannot happen in the C Standard {2} (because there is no way
to create a second handle), but the system() function can cause this to occur, at least in most historical implementations.

Presently, POSIX.1 deals mostly with output streams; input is implementation defined. It should be possible to make
input on seekable devices work for seekable files without affecting buffering strategies significantly. However, the
details have not been worked out fully and will be addressed in a future revision of POSIX.1. The requirements on
applications are unlikely to change [basically, serving notice to the implementation that the use of a particular handle
is (temporarily) completed] and are symmetric to those for output.

There are some implied rules about interprocess synchronization, but no mechanism is given, intentionally. In the
simplest case, if the parent meets the requirements on all its files and then performs a fork() and a wait() before further
activity on them [and a fflush() on input files after that], the desired synchronization will be achieved. Synchronization
could in theory be done with signals, but the only likely case is the one just described. The terms handle and active
handle were required to make the text readable and are not intended for use outside this discussion.

Note that since exit() implies _exit(), a file descriptor is also closed by exit().

Because a handle is either freshly opened, or if not must have handed off control of the open file description as
specified, the new handle is always ready to be used (except for seeks) with no initialization. [A freshly opened stream
has not yet done any reads, as required by the C Standard {2}, at least implicitly by the rules associated with setvbuf().]

In requiring the seek to an appropriate location for the new handle, the application is required to know what it is doing
if it is passing streams with seeks involved. If the required seek is not done, the results are undefined (and in fact the
program probably will not work on many common implementations).

374 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

A naive program used as a utility can be reasonably expected to work properly when the constraints are met by the
calling program because it will not hand off file descriptors except with closes.

The exec functions are treated specially because the application should always fflush() everything before performing
one of the exec functions. If stdout is available on the same open file description after the exec, it is a different stream,
at least because any unflushed data will be discarded during the exec (similarly for stdin). Process termination is also
special because a process terminating due to a signal or _exit() will not have the buffers flushed.

The fork() function also must be specially treated because it clones a number of file descriptors simultaneously. Thus,
all of them should be prepared for handoff before the fork(). In effect, fork() creates a pair of handles that are
improperly dealt with unless, before the fork(), the first part of a handoff occurred. Note that fflush(NULL) in the C
Standard {2} is an appropriate way to do this for output. A subsequent exec call [that does not succeed in calling exit()
in some way] will reduce the number of handles back to the original value (allowing for files that are not close-on-
exec), and, thus, preparations for exec need not necessarily do the flush. However, because exit() closes all streams, if
the exec fails, the application must be careful to terminate with _exit().

POSIX.1 does not specify asynchronous I/O, and when dealing with asynchronous I/O the problem of coordinating
access to streams will be more difficult. If asynchronous I/O is provided as an extension, the problems it introduces in
this area should be addressed as part of that extension.

It may be that functions such as system() and popen(), currently being considered for ISO/IEC 9945-2 {B36} , will
have to perform some of these operations.

The introduction of underling functions allows generic reference to errno values returned by those functions and also
to other side effects (as required in the handles discussion above). It is not intended to specify implementation,
although many implementations may in fact use those functions. The C Standard {2} says very little about errno in the
context of stdio. In the more restricted POSIX.1 environment, providing a reasonable set of errno values become
possible.

B.8.2.3.1 fopen()

There is no additional rationale provided for this subclause.

B.8.2.3.2 fclose()

The fclose() function is required to synchronize the buffer pointer with the file pointer (unless it already is, which
would be the case at EOF). Functionality equivalent to

 fseek(stream, ftell(stream), SEEK_SET)

does this nicely. The exception for devices incapable of seeking is an obvious requirement, but the implication is that
there is no way to reliably read a buffered pipe and hand off handles. This is the situation in historical implementations
and is inherent in any “read-ahead” buffering scheme. This limitation is also reflected in the handle hand-off rules.

Note that the last byte read from a stream and the last byte read from an open file description are not necessarily the
same; in most cases the open file description's pointer will be past that of the stream because of the stream's read-
ahead.

B.8.2.3.3 freopen()

There is no additional rationale provided for this subclause.

Copyright © 1996 IEEE All Rights Reserved 375

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

B.8.2.3.4 fflush()

There is no additional rationale provided for this subclause.

B.8.2.3.5 fgetc(), fgets(), fread(), getc(), getchar(), gets(), scanf(), fscanf()

There is no additional rationale provided for this subclause.

B.8.2.3.6 fputc(), fputs(), fwrite(), putc(), putchar(), puts(), printf(), vprintf(), vfprintf()

There is no additional rationale provided for this subclause.

B.8.2.3.7 fseek(), rewind()

The fseek() function must operate as specified to make the case where seeking is being done work. The key
requirement is to avoid an optimization such that an fseek() would not result in an lseek() if the fseek() pointed within
the current buffer. This optimization is valuable in general, so it is only required after an fflush().

B.8.2.3.8 perror()

There is no additional rationale provided for this subclause.

B.8.2.3.9 tmpfile()

There is no additional rationale provided for this subclause.

B.8.2.3.10 ftell()

In append mode, a fflush() will change the seek pointer because of possible writes by other processes on the same file.
An fseek() reflects the underlying file's file offset, which is not necessarily the end of the file. Implementors should be
aware that the operating system itself (not some in-memory approximation) of the file offset should be queried when
in append mode.

B.8.2.3.11 Error Reporting

POSIX.1 intentionally does not require that all errors detected by the underlying functions be detected by the functions
listed here. There are many reasonable cases where this might not occur; for example, many of the functions with
write() as an underlying function might not detect a number of error conditions in cases where they simply buffer
output for a subsequent flush.

[ENOMEM] was considered for addition as an explicit possible error because most implementations use malloc().
This was not done because the scope does not include “out of resource” errors. Nevertheless this is the most likely
error to be added to the possible error conditions. Other implementation-defined errors, particularly in the f*open()
family, are to be expected, and the generic rules about adding (or deleting) possible errors apply, except that it is
expected that implementation-defined changes in the error set returned by open() would also apply to fopen() [unless
the condition cannot possibly happen in fopen(), which may be possible, but appears unlikely].

B.8.2.3.12 exit(), abort()

POSIX.1 intends that processing related to the abort() function will occur unless “the signal SIGABRT is being
caught, and the signal handler does not return,” as defined by the C Standard {2}. This processing includes at least the
effect of fclose() on all open streams, and the default actions defined for SIGABRT.

376 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

The abort() function will override blocking or ignoring the SIGABRT signal. Catching the signal is intended to
provide the application writer with a portable means to abort processing, free from possible interference from any
implementation-provided library functions.

Note that the term “program termination” in the C Standard {2} is equivalent to “process termination” in POSIX.1.

B.8.2.4 Operations on Files — the remove() Function

There is no additional rationale provided for this subclause.

B.8.2.5 Temporary File Name — the tmpnam() Function

Portable applications that use threads cannot call tmpnam() with NULL as the parameter if either
{_POSIX_THREAD_SAFE_FUNCTIONS} or {_POSIX_THREADS} is defined.

If s is not NULL, the tmpnam() function generates a string that is a valid file name and that is not the same as the name
of an existing file.

The tmpnam() function generates a different string each time it is called, up to TMP_MAX times. If it is called more
than TMP_MAX times, the behavior is implementation defined.

B.8.2.6 Stdio Locking Functions

The flockfile() and funlockfile() functions provide an orthogonal mutual exclusion lock for each FILE. The
ftrylockfile() function provides a nonblocking attempt to acquire a file lock, analogous to pthread_mutex_trylock().

These locks behave as if they are the same as those used internally by stdio for thread-safety. This both provides
thread-safety of these functions without requiring a second level of internal locking and allows functions in stdio to be
implemented in terms of other stdio functions.

Application writers and implementors should be aware that there are potential deadlock problems on FILE objects. For
instance, the line-buffered flushing semantics of stdio (requested via _IOLBF) require that certain input operations
sometimes cause the buffered contents of implementation-defined line-buffered output streams to be flushed. If two
threads each hold the lock on the other's FILE, deadlock will ensue. This type of deadlock can be avoided by acquiring
FILE locks in a consistent order. In particular, the line-buffered output stream deadlock can typically be avoided by
acquiring locks on input streams before locks on output streams if a thread will be acquiring both.

In summary, threads sharing stdio streams with other threads can use flockfile() and funlockfile() to cause sequences of
I/O performed by a single thread to be kept bundled. The only case where the use of flockfile() and funlockfile() is
required is to provide a scope protecting uses of the *_unlocked() functions/macros. This moves the cost/performance
tradeoff to the optimal point.

B.8.2.7 Stdio With Explicit Client Locking

Some I/O functions are typically implemented as macros for performance reasons [for example, putc() and getc()]. For
safety, they need to be synchronized, but it is often too expensive to synchronize on every character. Nevertheless, it
was felt that the safety concerns were more important; consequently, the current functions are required to be thread-
safe. However, unlocked versions are also provided with names that clearly indicate the unsafe nature of their
operation but can be used to exploit their higher performance. These unlocked versions can be safely used only within
explicitly locked program regions, using exported locking primitives. In particular, a sequence such as

 flockfile(fileptr);
 putc_unlocked('1', fileptr);
 putc_unlocked('\n', fileptr);

Copyright © 1996 IEEE All Rights Reserved 377

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

 fprintf(fileptr, "Line 2\n");
 funlockfile (fileptr);

is permissible, and results in the text sequence

 1
 Line 2

being printed without being interspersed with output from other threads.

It would be wrong to have the standard names such as getc(), putc(), etc., map to the “faster, but unsafe” rather than the
“slower, but safe” versions. In either case, one would still want to inspect all uses of getc(), putc(), etc., by hand when
converting existing code. Choosing the safe bindings as the default, at least, results in correct code and maintains the
“atomicity at the interface” invariant. To do otherwise would introduce gratuitous synchronization errors into
converted code. Other routines that modify the stdio (FILE *) structures or buffers will also be safely synchronized.

Note that there is no need for functions of the form getc_locked(), putc_locked(), etc., since this is the functionality of
getc(), putc(), et al. It would be inappropriate to use a feature test macro to switch a macro definition of getc() between
getc_locked() and getc_unlocked(), since the C Standard {2} requires an actual function to exist, a function whose
behavior could not be changed by the feature test macro. Also, providing both the xxx_locked() and xxx_unlocked()
forms leads to the confusion of whether the suffix describes the behavior of the function or the circumstances under
which it should be used.

Three additional routines, flockfile(), ftrylockfile(), and funlockfile() (which may be macros), are provided to allow the
user to delineate a sequence of I/O statements that are to be executed synchronously.

The ungetc() function is infrequently called relative to the other functions/macros so no unlocked variation is needed.

B.8.3 Other C Language Functions

B.8.3.1 Nonlocal Jumps

The C Standard {2} specifies various restrictions on the usage of the setjmp() macro in order to permit implementors
to recognize the name in the compiler and not implement an actual function. These same restrictions apply to the sig-
setjmp() macro.

There are processors that cannot easily support these calls, but this was not considered a sufficient reason to exclude
them.

The distinction between setjmp()/longjmp() and sigsetjmp()/siglongjmp() is only significant for programs that use the
sigaction(), sigprocmask(), or sigsuspend() functions. Since earlier implementations did not have signal masks, only a
single pair was provided.

4.2BSD and 4.3BSD systems provide functions named _setjmp() and _longjmp() that, together with setjmp() and
longjmp(), provide the same functionality as sig-setjmp() and siglongjmp(). On those systems, setjmp() and longjmp()
save and restore signal masks, while _setjmp() and _longjmp() do not. On System V Release 3 and in corresponding
issues of the SVID {B41} , setjmp() and longjmp() are explicitly defined not to save and restore signal masks. In order
to permit existing practice in both cases, the relation of setjmp() and longjmp() to signal masks is not specified, and a
new set of functions is defined instead.

The longjmp() and siglongjmp() functions operate as in the previous edition of this standard provided the matching
setjmp() or sigsetjmp() has been performed in the same thread. Nonlocal jumps into contexts saved by other threads
would be at best a questionable practice and were not considered worthy of standardization.

378 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

B.8.3.2 Set Time Zone

There is no additional rationale provided for this subclause.

B.8.3.3 Find String Token

The strtok() function searches for a separator string within a larger string. It returns a pointer to the last substring
between separator strings. This function uses static storage to keep track of the current string position between calls.
The new function, strtok_r(), takes an additional argument, lasts, to keep track of the current position in the string.

B.8.3.4 ASCII Time Representation

Note that the C Standard {2} specifies 26 B as the length of the string.

B.8.3.5 Current Time Representation

Note that the C Standard {2} specifies 26 B as the length of the string.

B.8.3.6 Coordinated Universal Time

There is no additional rationale provided for this subclause.

B.8.3.7 Local Time

There is no additional rationale provided for this subclause.

B.8.3.8 Pseudo-Random Sequence Generation Functions

The C Standard {2} rand() and srand() functions allow per-process pseudo-random streams shared by all threads.
Those two functional interfaces need not change, but there has to be mutual exclusion that prevents interference
between two threads concurrently accessing the random number generator.

With regard to rand(), there are two different behaviors that may be wanted in a multithreaded program:

1) A single per-process sequence of pseudo-random numbers that is shared by all threads that call rand()
2) A different sequence of pseudo-random numbers for each thread that calls rand()

This is provided by the modified thread-safe interface based on whether the seed value is global to the entire process
or local to each thread.

This does not address the known deficiencies of the rand() function implementations, which have been approached by
maintaining more state. In effect, this specifies new thread-safe forms of a deficient interface. Since alternatives to
rand() are not standardized, they are not modified as part of this standard.

B.8.3.9 Omitted Memory Management

The brk() and sbrk() functions frequently were proposed for inclusion in POSIX.1, but they were excluded
deliberately. See also B.1.1. The rationale for including them is usually addressed to the argument that it is the sbrk()
primitive that makes it possible to implement some more general heap management system, such as that provided for
C by malloc(). The need for such functionality is fully understood, but specifying it as a part of a standard would have
the effect of limiting the number of architectures that could support POSIX.1. It might also constrain languages whose
memory-management model was not served by the sbrk() model.

Copyright © 1996 IEEE All Rights Reserved 379

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Memory management is not excluded from POSIX.1: POSIX.1 relies on the language to provide it, and in the C
binding (as reflected in Section 8) it is provided by malloc(). It would be provided by new() in Pascal. In a language
like FORTRAN, which does not supply memory management to the user, it would be undesirable to force the language
binding to attempt to include such a function. It is reasonable to imagine a language that required a more powerful
primitive than sbrk() to be implemented, and standardizing sbrk() would only constrain such future languages.

POSIX.1 is silent about mixed languages. Mixing languages that provide incompatible memory-management
mechanisms can yield unpredictable results. Future standards that address mixing of languages should consider this
issue.

Architectures that could not support sbrk() are also a limiting factor. In particular, architectures that do not present a
model of a single linear address space would be severely constrained by sbrk(), but are not so constrained by malloc()
or new().

Each language should specify the memory-management primitives best suited to that language. Whether the
implementor chooses to use a more primitive mechanism to implement that, or the implementor chooses to directly
implement the language function in the kernel, is not a proper concern of the developers of POSIX.1, nor should it be
for any portable application. An application that presumes the sbrk() model of memory management will not port to all
architectures in any case, for the same reasons that sbrk() itself does not work on those architectures. No true gain in
application portability would be achieved by mandating such an interface. This implies that an implementor of
software that wishes to port to multiple platforms and that attempts to implement its own memory management rather
than relying on language-supplied functions must be prepared to deal with multiple platform-supplied primitives and,
because it is doing its own memory management inherently, cannot be considered, or be made to be, portable in that
regard.

B.9 System Databases

At one time, this section was entitled Passwords, but this title was changed as all references to a “password file” were
changed to refer to a “user database.”

B.9.1 System Databases

There are no references in POSIX.1 to a passwd file or a group file, and there is no requirement that the group or
passwd databases be kept in files containing editable text. Many large timesharing systems use passwd databases that
are hashed for speed. Certain security classifications prohibit certain information in the passwd database from being
publicly readable.

The term “encoded” is used instead of “encrypted” in order to avoid the implementation connotations (such as
reversibility or use of a particular algorithm) of the latter term.

The getgrent(), setgrent(), endgrent(), getpwent(), setpwent(), and endpwent() functions are not included in POSIX.1
because they provide a linear database search capability that is not generally useful [the getpwuid(), getpwnam(),
getgrgid(), and getgrnam() functions are provided for keyed lookup] and because in certain distributed systems,
especially those with different authentication domains, it may not be possible or desirable to provide an application
with the ability to browse the system databases indiscriminately.

A change from historical implementations is that the structures used by these functions have fields of the types gid_t
and uid_t, which are required to be defined in the header <sys/types.h>. POSIX.1 has not changed the synopses
of these functions to require the inclusion of this header, since that would invalidate a large number of existing
applications. Implementations must ensure that these types are defined by the inclusion of <grp.h> and <pwd.h>,
respectively, without imposing any namespace pollution or errors from redefinition of types.

380 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

POSIX.1 is silent about the content of the strings containing user or group names. These could be digit strings.
POSIX.1 is also silent as to whether such digit strings bear any relationship to the corresponding (numeric) user or
group ID.

B.9.2 Database Access

B.9.2.1 Group Database Access

The thread-safe versions of the group database access functions return values in user-supplied buffers instead of
possibly using static data areas that may be overwritten by each call.

B.9.2.2 User Database Access

The thread-safe versions of the user database access functions return values in user-supplied buffers instead of possibly
using static data areas that may be overwritten by each call.

B.10 Data Interchange Format

B.10.1 Archive/Interchange File Format

There are three areas of interest associated with file interchange:

1) Media. There are other existing standards that define the media used for data interchange.
2) User Interface. This rightfully should be in the shell and utilities standard, under development as ISO/IEC

9945-2 {B36} .
3) Format of the Data. None of the groups currently developing POSIX standards address topics that match this

area. The groups felt that this area is closest to the types of things that should be in the POSIX.1 document,
as the level of that document most closely matches the level of data required.

There are two programs in wide use today: tar and cpio. There are many supporters for each program. Four options
were considered for POSIX.1:

1) Make both formats optional. This was considered unacceptable because it does not allow any portable
method for data interchange.

2) Require one format.
3) Require one format with the other optional.
4) Require both formats.

Both the Extended cpio and the Extended tar Formats are required by POSIX.1.

There are a number of concerns about defining extensions that are known to be required by historical implementations.
Failure to specify a consistent method to implement these extensions will limit portability of the data and, more
importantly, will create confusion if these extensions are later standardized.

Two of these extensions that should be documented are symbolic links, which were defined by 4.2BSD and 4.3BSD
systems, and high-performance (or contiguous) files, which exist in a number of implementations and are now being
considered for future amendments to POSIX.1.

By defining these extensions, implementors are able to recognize these features and take appropriate implementation-
defined actions for these files. For example, a high-performance file could be converted to a regular file if the system
did not support high-performance files; symbolic links might be replaced by normal hard links.

The policy of not defining user interfaces to utilities preempted any description of a tar or cpio command. The
behavior of the former command was described in some detail in previous drafts.

Copyright © 1996 IEEE All Rights Reserved 381

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The possibilities for transportable media include, but are not limited to

1) 12,7 mm (0,5 in) magnetic tape, 9 track, 63 bpmm (1 600 bpi)
2) 12,7 mm (0,5 in) magnetic tape, 9 track, 246 cpmm (6 250 cpi)
3) QIC-11, 6,30 mm (0,25 in) streamer tape
4) QIC-24, 6,30 mm (0,25 in) streamer tape
5) 130 mm (5,25 in) diskettes, 9 512-byte sectors/track, 3,8 tpmm (96 tpi)
6) 130 mm (5,25 in) diskettes, 9 512-byte sectors/track, 1,9 tpmm (48 tpi)

When selecting media, issues such as character frame size also need to be addressed. The easiest environment for
interchange occurs when 8-bit frames are used.

The utilities are not restricted to work only with transportable media: existing related utilities are often used to
transport data from one place to another in the file hierarchy.

The formats are included to provide implementation-independent ways to move files from one system to another and
also to provide ways for a user to save data on a transportable medium to be restored at a later date. Unfortunately,
these two goals can contradict each other, as system security problems are easy to find in tape systems if they are not
protected. Thus, there are strict requirements about how the mechanism to copy files shall react when operated by both
privileged and nonprivileged users. The general concept is that a privileged (historically using the ISUID bit in the
file's mode with the owner UID of the file set to super-user) version of the utility (or one operated by a privileged user)
can be used as a save/restore scheme, but a nonprivileged version is used to interpret media from a different system
without compromising system security.

Regardless of the archive format used, guidelines should be observed when writing tapes to be read on other systems.
Assuming the target system conforms to POSIX.1, archives created should only use definitions found in POSIX.1
(e.g., file types, minimum values as found in Section 2) and should only use relative pathnames (i.e., no leading slash).

Both tar and cpio formats have traditionally been used for both exchange of information and archiving. These
formats have a number of features that facilitate archiving, for example, the ability to store information about a file that
is a device. POSIX.1 does not assume this kind of data is portable. It is intended that these formats provide for the
portable exchange of source information between dissimilar systems. This requires specification of the character set to
be used (ISO/IEC 646 {1}) when these formats are used to write source information. The 1990 version of ISO/IEC 646
{1} IRV was selected as the international character set that corresponds most directly to the ASCII set used in many
historical implementations. The 1990 version was chosen over the 1983 version because it defines ‘$’ as the currency
symbol in the IRV, as opposed to the starburst-like generic currency symbol. Note that ISO/IEC 646 {1} is a safe
lowest-common-denominator character set and that interchange of larger character sets is permitted by mutual
agreement. Using any other character set (such as ISO 8859-1 {B34} or some multibyte character set) reduces the
number of machines to which interchange is guaranteed.

All data written by format-creating utilities and read by format-reading utilities is an ordered stream of bytes. The first
byte of the stream should be first on the medium, the second byte second, etc. On systems where the hardware swaps
bytes or otherwise rearranges the byte stream on output or input, the implementor of these utilities must compensate
for this so that the data on the storage device retains its ordered nature.

POSIX.1 describes two different formats for data archiving and interchange. Strong support for both formats was
evident through the balloting process. This is a clear indication of the need for both formats due to existing practice.
The balloting process also defined a number of deficiencies of each format. The strong support indicates that these
deficiencies are not sufficient to remove either format from POSIX.1, but will need to be addressed in future
amendments to POSIX.1. It was not practical to remedy these deficiencies during the balloting process. Considerable
thought and review must occur before making any changes to these formats. It was felt that the best solution is to
advise implementors and application writers of these deficiencies by documenting them in the rationale and to include
both formats in POSIX.1.

382 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

The developers of POSIX.1 recognize the desirability for migration toward one common format and have been made
aware of some strong inputs to consider both formats in light of existing practice, current technology trends, and the
POSIX standards activities such as security and high-performance systems, and to develop one format that is
technically superior. This format will be incorporated into a future amendment to POSIX.1 when it is developed.

The deficiencies that have been identified in the existing formats are as follows. The size of a file link is limited to 100
characters in tar. A number of fields in the cpio header (c_filesize, c_dev, c_ino, c_mode, and c_rdev) are too short
to support values that POSIX.1 allows these fields to contain. Some existing implementations and current trends in
development will require the ability to represent even larger values in these fields. The cpio format does not provide
a mechanism to represent the user and group IDs symbolically, and a range of implementation-defined file types have
not been reserved for the user. The cpio format specification does not reserve any formats for implementation-
defined usage. The extensions that have been made to cpio for POSIX.1 are compatible with existing versions of
cpio. Correction of some of these deficiencies would make existing versions of cpio behave unpredictably. When
these changes are made the cpio magic number will have to be changed.

This clause uses the term file name; note that filename and file name are not synonyms; the latter is a synonym for
pathname, in that it includes the slashes between filenames.

In earlier drafts, the word “local” was used in the context of “file system” and was taken (incorrectly) to be related to
“remotely mounted file system.” This was not intended. The term “(local) file system” refers to the file hierarchy as
seen by the utilities, and “local” was removed because of this confusion.

B.10.1.1 Extended tar Format

The original model for this facility is the 4.3BSD or Version 7 tar program and format, but the format given here is
an extension of the traditional tar format. The name USTAR was adopted to reflect this.

This description reflects numerous enhancements over previous versions. The goal of these changes was not only to
provide the functional enhancements desired, but also to retain compatibility between new and old versions. This
compatibility has been retained. Archives written using the old archive format are compatible with the new format.
Archives written using this new format may be read by applications designed to use the old format as long as the
functional enhancements provided here are not used. This means the user is limited to archiving only regular type files
and nonsymbolic links to such files.

Implementors should be aware that the previous file format did not include a mechanism to archive directory type files.
For this reason, the convention of using a file name ending with slash was adopted to specify a directory on the archive.

The total size of the name and prefix fields have been set to meet the minimum requirements for {PATH_MAX}. If a
pathname will fit within the name field, it is recommended that the pathname be stored there without the use of the
prefix field. Although the name field is known to be too small to contain {PATH_MAX} characters, the value was not
changed in this version of the archive file format to retain backward compatibility, and instead the prefix was
introduced. Also, because of the earlier version of the format, there is no way to remove the restriction on the linkname
field being limited in size to just that of the name field.

The size field is required to be meaningful in all implementation extensions, although it could be zero. This is required
so that the data blocks can always be properly counted.

It is suggested that if device special files need to be represented that cannot be represented in the standard format that
one of the extension types ('A'-'Z') be used, and that the additional information for the special file be represented
as data and be reflected in the size field.

Attempting to restore a special file type, where it is converted to ordinary data and conflicts with an existing file name,
need not be specially detected by the utility. If run as an ordinary user, a format-reading utility should not be able to
overwrite the entries in, for example, /dev in any case (whether the file is converted to another type or not). If run as

Copyright © 1996 IEEE All Rights Reserved 383

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

a privileged user, it should be able to do so, and it would be considered a bug if it did not. The same is true of ordinary
data files and similarly named special files; it is impossible to anticipate the user's needs (who could really intend to
overwrite the file), so the behavior should be predictable (and thus regular) and rely on the protection system as
required.

The values '2' and '7' in the typeflag field are intended to define how symbolic links and contiguous files can be
stored in a tar archive. POSIX.1 does not require the symbolic link or contiguous file extensions, but does define a
standard way of archiving these files so that all conforming systems can interpret these file types in a meaningful and
consistent manner. On a system that does not support extended file types, the format-interpreting utility should do the
best it can with the file and go on to the next.

B.10.1.2 Extended cpio Format

The model for this format is the existing System V cpio –c data interchange format. This model documents the
portable version of cpio format and not the binary version. It has the flexibility to transfer data of any type described
within the POSIX.1 standard, yet is extensible to transfer data types specific to extensions beyond POSIX.1 (e.g.,
symbolic links or contiguous files). Because it describes existing practice, there is no question of maintaining upward
compatibility.

This subclause does not standardize behavior for the utility when the file type is not understood or supported. It is
useful for the utility to report to the user whatever action is taken in this case, though POSIX.1 neither requires nor
recommends this.

B.10.1.2.1 cpio Header

There has been some concern that the size of the c_ino field of the header is too small to handle those systems that have
very large i-node numbers. However, the c_ino field in the header is used strictly as a hard link resolution mechanism
for archives. It is not necessarily the same value as the i-node number of the file in the location from which that file is
extracted.

B.10.1.2.2 cpio File Name

For most historical implementations of the cpio utility, {PATH_MAX} bytes can be used to describe the pathname
without the addition of any other header fields (the null byte would be included in this count). {PATH_MAX} is the
minimum value for pathname size, documented as 256 bytes in Section 2 However, an implementation may use
c_namesize to determine the exact length of the pathname. With the current description of the cpio header, this
pathname size can be as large as a number that is described in six octal digits.

B.10.1.2.3 cpio File Data

There is no additional rationale provided for this subclause.

B.10.1.2.4 cpio Special Entries

These are provided to maintain backward compatibility.

B.10.1.2.5 cpio Values

Three values are documented under the c_mode field values to provide for extensibility for known file types:

0110 000 Reserved for contiguous files. The implementation may treat the rest of the information for this
archive like a regular file. If this file type is undefined, the implementation may create the file as a
regular file.

384 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

0120 000 Reserved for files with symbolic links. The implementation may store the link name within the data
portion of the file. If this type is undefined, the implementation may not know how to link this file
or be able to understand the data section. The implementation may decide to ignore this file type and
output a warning message.

0140 000 Reserved for sockets. If this type is undefined on the target system, the implementation may decide
to ignore this file type and output a warning message.

This provides for extensibility of the cpio format while allowing for the ability to read old archives. Files of an
unknown type may be read as “regular files” on some implementations. On a system that does not support extended
file types, the format-interpreting utility should do the best it can with the file and go on to the next.

B.10.1.3 Multiple Volumes

Multivolume archives have been introduced in a manner that has become a de facto standard in many implementations.
Though it is not required by POSIX.1, classical implementations of the format-reading and -creating utility, upon
reading logical end-of-file, check to see if an error channel is open to a controlling terminal. The utility then produces
a message requesting a new medium to be made available. The utility waits for a new medium to be made available by
attempting to read a message to restart from the controlling terminal. In all cases, the communication with the
controlling terminal is in an implementation-defined manner.

This subclause (10.1.3) is intended to handle the issue of multiple volume archives. Since the end-of-medium and
transition between media are not properly part of POSIX.1, the transition is described in terms of files; the word “file”
is used in a very broad, but correct, sense—a tape drive is a file. The intent is that files will be read serially until the
end-of-archive indication is encountered and that file or media change will be handled by the utilities in an
implementation-defined manner.

Note that there was an issue with the representation of this on magnetic tape, and POSIX.1 is intended to be interpreted
such that each byte of the format is represented on the media exactly once. In some current implementations, it is not
deterministic whether encountering the end-of-medium reflector foil on magnetic tape during a write will yield an
error during a subsequent read() of that record, or if that record is actually recorded on the tape. It is also possible that
read() will encounter the end-of-medium when end-of-medium was not encountered when the data was written. This
has to do with conditions where the end of [magnetic] record is in such a position that the reflector foil is on the verge
of being detected by the sensor and is detected during one operation and not on a later one, or vice versa.

An implementation of the format-creating utility must assure when it writes a record that the data appears on the tape
exactly once. This implies that the program and the tape driver work in concert. An implementation of the format-
creating utility must assure that an error in a boundary condition described above will not cause loss of data.

The general consensus was that the following would be considered as correct operation of a tape driver when end-of-
medium is detected:

1) During writing, either
a) The record where the reflector spot was detected is backspaced over by the driver so that the trailing tape

mark that will be written on close() will overwrite. Writing the tape mark should not yield an end-of-
medium condition, or

b) The condition is reported as an error on the write() following the one where the end-of-medium is
detected (the one where the end-of-medium is actually detected completing successfully). No data will
be actually transferred on the write() reporting the error. The subsequent close() would write a tape mark
following the last record actually written. Writing the tape mark, and writing any subsequent records,
should not yield any end-of-medium conditions.

[The latter behavior permits the implementation of ANSI standard labels because several records (the trailer
records) can be written after the end-of-medium indications. It also permits dealing with, for example,
COBOL “ON” statements.

Copyright © 1996 IEEE All Rights Reserved 385

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

2) During reading, the end-of-medium indicator is simply ignored, presuming that a tape mark (end-of-file) will
be recorded on the magnetic medium and that the reflector foil was advisory only to the write().

Systems where these conditions are not met by the tape driver should assure that the format-creating and -reading
utilities assure proper representation and interpretations of the files on the media in a way consistent with the above
recommendations.

The typical failures on systems that do not meet the above conditions are either

1) To leave the record written when the end-of-medium is encountered on the tape, but to report that it was not
written. The format-creating utility would then rewrite it, and then the format-reading utility could see the
record twice if the end-of-medium is not sensed during the read operations, or

2) The write() occurs uneventfully, but the read() senses the error and does not actually see the data, causing a
record to be omitted.

Nothing in POSIX.1 requires that end-of-medium be determined by anything on the medium itself (for example, a
predetermined maximum size would be an acceptable solution for the format-creating utility). The format-reading
utility must be able to read() tapes written by machines that do use the whole medium, however.

On media where end-of-medium and end-of-file are reliably coincident, such as disks, end-of-medium and end-of-file
can be treated as synonyms.

Note that partial physical records [corresponding to a single write()] can be written on some media, but that only full
physical records will actually be written to magnetic tape, given the manner in which the tape operates.

B.11 Synchronization

B.11.1 Semaphore Characteristics

There is no specific rationale for this subclause.

B.11.2 Semaphore Functions

Semaphores are a high-performance process synchronization mechanism. Semaphores are named by null-terminated
strings of characters.

A semaphore is created using the sem_init() function of the sem_open() function with the O_CREAT flag set in oflag.

To use a semaphore, a process has to first initialize the semaphore or inherit an open descriptor for the semaphore via
fork()

A semaphore preserves its state when the last reference is closed. For example, if a semaphore has a value of 13 when
the last reference is closed, it will have a value of 13 when it is next opened.

When a semaphore is created, an initial state for the semaphore has to be provided. This value is a nonnegative integer.
Negative values are not possible since they indicate the presence of blocked processes. The persistence of any of these
objects across a system crash or a system reboot is undefined. Conforming applications shall not depend on any sort
of persistence across a system reboot or a system crash.

Models and Requirements

A realtime system requires synchronization and communication between the processes comprising the overall
application. An efficient and reliable synchronization mechanism has to be provided in a realtime system that will
allow more than one schedulable process mutually exclusive access to the same resource. This synchronization

386 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

mechanism has to allow for the optimal implementation of synchronization or systems implementors will define other,
more cost-effective methods.

At issue are the methods whereby multiple processes (tasks) can be designed and implemented to work together in
order to perform a single function. This requires interprocess communication and synchronization. A semaphore
mechanism is the lowest level of synchronization that can be provided by an operating system.

A semaphore is defined as an object that has an integral value and a set of blocked processes associated with it. If the
value is positive or zero, then the set of blocked processes is empty; otherwise, the size of the set is equal to the
absolute value of the semaphore value. The value of the semaphore can be incremented or decremented by any process
with access to the semaphore and must be done as an indivisible operation. When a semaphore value is less than or
equal to zero, any process that attempts to lock it again will block or be informed that it is not possible to perform the
operation.

A semaphore may be used to guard access to any resource accessible by more than one schedulable task in the system.
It is a global entity and not associated with any particular process. As such, a method of obtaining access to the
semaphore has to be provided by the operating system. A process that wants access to a critical resource (section) has
to wait on the semaphore that guards that resource. When the semaphore is locked on behalf of a process, it knows that
it can utilize the resource without interference by any other cooperating process in the system. When the process
finishes its operation on the resource, leaving it in a well-defined state, it posts the semaphore, indicating that some
other process may now obtain the resource associated with that semaphore.

In this section, mutexes and condition variables are specified as the synchronization mechanisms between threads.

These primitives are typically used for synchronizing threads that share memory in a single process. However, this
section provides an option allowing the use of these synchronization interfaces and objects between processes that
share memory, regardless of the method for sharing memory.

Much experience with semaphores shows that there are two distinct uses of synchronization: locking, which is
typically of short duration; and waiting, which is typically of long or unbounded duration. These distinct usages map
directly onto mutexes and condition variables, respectively.

Semaphores are provided in this standard primarily to provide a means of synchronization for processes; these
processes may or may not share memory. Mutexes and condition variables are specified as synchronization
mechanisms between threads; these threads always share (some) memory. Both are synchronization paradigms that
have been in widespread use for a number of years. Each set of primitives is particularly well matched to certain
problems.

With respect to binary semaphores, experience has shown that condition variables and mutexes are easier to use for
many synchronization problems than binary semaphores. The primary reason for this is the explicit appearance of a
Boolean predicate that specifies when the condition wait is satisfied. This Boolean predicate terminates a loop,
including the call to pthread_cond_wait(). As a result, extra wakeups are benign since the predicate governs whether
the thread will actually proceed past the condition wait. With stateful primitives, such as binary semaphores, the
wakeup in itself typically means that the wait is satisfied. The burden of ensuring correctness for such waits is thus
placed on all signalers of the semaphore rather than on an explicitly coded Boolean predicate located at the condition
wait. Experience has shown that the latter creates a major improvement in safety and ease of use.

Counting semaphores are well matched to dealing with producer/consumer problems, including those that might exist
between threads of different processes, or between a signal handler and a thread. In the former case, there may be little
or no memory shared by the processes; in the latter case, one is not communicating between co-equal threads, but
between a thread and an interruptlike entity. It is for these reasons that this standard allows semaphores to be used by
threads.

Copyright © 1996 IEEE All Rights Reserved 387

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Mutexes and condition variables have been effectively used with and without priority inheritance, priority ceiling, and
other attributes to synchronize threads that share memory. The efficiency of their implementation is comparable to or
better than that of other synchronization primitives that are sometimes harder to use (for example, binary semaphores).
Furthermore, there is at least one known implementation of Ada tasking that uses these primitives. Mutexes and
condition variables together constitute an appropriate, sufficient, and complete set of interthread synchronization
primitives.

Efficient multithreaded applications require high-performance synchronization primitives. Considerations of
efficiency and generality require a small set of primitives upon which more sophisticated synchronization functions
can be built.

Standardization Issues

It is possible to implement very high-performance semaphores using test-and-set instructions on shared memory
locations. The library routines that implement such a high-performance interface has to properly ensure that a
sem_wait() or sem_trywait() operation that cannot be performed will issue a blocking semaphore system call or
properly report the condition to the application. The same interface to the application program would be provided by
a high-performance implementation.

B.11.2.1 Initialize an Unnamed Semaphore

The revised text restricts the use of sem_init() to a single initialization of any particular semaphore.

Although this standard fails to specify a successful return value, it is likely that a later amendment may require the
implementation to return a value of zero if the call to sem_init() is successful.

B.11.2.2 Destroy an Unnamed Semaphore

There is no specific rationale for this subclause.

B.11.2.3 Initialize/Open a Named Semaphore

The previous version of this standard required an error return value of −1 with the type sem_t* for the sem_open()
function, which is not guaranteed to be portable across implementations. The revised text provides the symbolic error
code SEM_FAILED to eliminate the type conflict.

B.11.2.4 Close a Named Semaphore

There is no specific rationale for this subclause.

B.11.2.5 Remove a Named Semaphore

There is no specific rationale for this subclause.

B.11.2.6 Lock a Semaphore

There is no specific rationale for this subclause.

B.11.2.7 Unlock a Semaphore

There is no specific rationale for this subclause.

388 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

B.11.2.8 Get the Value of a Semaphore

There is no specific rationale for this subclause.

B.11.3 Mutexes

B.11.3.1 Mutex Initialization Attributes

See B.16.2.1 for a general explanation of attributes. Attribute objects allow implementations to experiment with useful
extensions and permit extension of this standard without changing the existing interfaces. They thus provide for future
extensibility of this standard and reduce the temptation to standardize prematurely on semantics that are not yet widely
implemented or understood.

Examples of possible additional mutex attributes that have been discussed are spin_only, limited_spin, no_spin,
recursive, and metered. (To explain what the latter attributes might mean: recursive mutexes would allow for multiple
re-locking by the current owner; metered mutexes would transparently keep records of queue length, wait time, etc.)
Since there is not yet wide agreement on the usefulness of these resulting from shared implementation and usage
experience, they are not yet specified in the standard. Mutex attributes objects, however, make it possible to test out
these concepts for possible standardization at a later time.

Mutex Attributes and Performance

Care has been taken to ensure that the default values of the mutex attributes have been defined such that mutexes
initialized with the defaults have simple enough semantics so that the locking and unlocking can be done with the
equivalent of a test-and-set instruction (plus possibly a few other basic instructions).

There is at least one implementation method that can be used to reduce the cost of testing at lock-time if a mutex has
nondefault attributes. One such method that an implementation can employ (and this can be made fully transparent to
fully conforming POSIX applications) is to secretly pre-lock any mutexes that are initialized to nondefault attributes.
Any later attempt to lock such a mutex will cause the implementation to branch to the “slow path” as if the mutex were
unavailable; then, on the slow path, the implementation can do the “real work” to lock a nondefault mutex. The
underlying unlock operation is more complicated since the implementation never really wants to release the pre-lock
on this kind of mutex. This illustrates that, depending on the hardware, there may be certain optimizations that can be
used so that whatever mutex attributes are considered “most frequently used” can be processed most efficiently.

Process Shared Memory and Synchronization

The existence of memory-mapping functions in this standard leads to the possibility that an application may allocate
the synchronization objects from this section in memory that is accessed by multiple processes (and therefore, by
threads of multiple processes).

In order to permit such usage, while at the same time keeping the usual case (i.e., usage within a single process)
efficient, a process-shared option has been defined.

If an implementation supports the {_POSIX_THREAD_PROCESS_SHARED} option, then the process-shared
attribute can be used to indicate that mutexes or condition variables may be accessed by threads of multiple processes.

The default setting of PTHREAD_PROCESS_PRIVATE has been chosen for the process-shared attribute so that the
most efficient forms of these synchronization objects are created by default.

Synchronization variables that are initialized with the PTHREAD_PROCESS_PRIVATE process-shared attribute may
only be operated on by threads in the process that initialized them. Synchronization variables that are initialized with
the PTHREAD_PROCESS_SHARED process-shared attribute may be operated on by any thread in any process that

Copyright © 1996 IEEE All Rights Reserved 389

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

has access to it. In particular, these processes may exist beyond the lifetime of the initializing process. For example, the
following code implements a simple counting semaphore in a mapped file that may be used by many processes.

/* sem.h */
struct semaphore {
 pthread_mutex_t lock;
 pthread_cond_t nonzero;
 unsigned int count;

};
typedef struct semaphore semaphore_t;

semaphore_t *semaphore_create (char *semaphore_name);
semaphore_t *semaphore_open(char *semaphore_name);
void semaphore_post(semaphore_t *semap);
void semaphore_wait(semaphore_t *semap);
void semaphore_close(semaphore_t *semap);

/* sem.c */
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <pthread.h>
#include "sem.h"

semaphore_t *
semaphore_create(char *semaphore_name)
{
 int fd;
 semaphore_t *semap;
 pthread_mutexattr_t psharedm;
 pthread_condattr_t psharedc;

 fd = open(semaphore_name, O_RDWR | O_CREAT | O_EXCL, 0666);
 if (fd < 0)
 return (NULL);
 (void) ftruncate(fd, sizeof (semaphore_t));
 (void) pthread_mutexattr_init(&psharedm);
 (void) pthread_mutexattr_setpshared(&psharedm,
 PTHREAD_PROCESS_SHARED);
 (void) pthread_condattr_init(&psharedc);
 (void) pthread_condattr_setpshared(&psharedc,
 PTHREAD_PROCESS_SHARED);
 semap = (semaphore_t *) mmap(NULL, sizeof (semaphore_t),
 PROT_READ | PROT_WRITE, MAP_SHARED,
 fd, 0);
 close (fd);
 (void) pthread_mutex_init(&semap->lock, &psharedm);
 (void) pthread_cond_init(&semap->nonzero, &psharedc);
 semap->count = 0;
 return (semap);
}

390 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

semaphore_t *
semaphore_open(char *semaphore_name)
{
 int fd;
 semaphore_t *semap;

 fd = open (semaphore_name, O_RDWR, 0666);
 if (fd < 0)
 return (NULL);
 semap = (semaphore_t *) mmap(NULL, sizeof (semaphore_t),
 PROT_READ | PROT_WRITE, MAP_SHARED,
 fd, 0);
 close (fd);
 return (semap);
}

void
semaphore_post(semaphore_t *semap)
{
 pthread_mutex_lock(&semap->lock);
 if (semap->count == 0)
 pthread_cond_signal(&semap->nonzero);
 semap->count++;
 pthread_mutex_unlock(&semap->lock);
}

void
semaphore_wait(semaphore_t *semap)
{
 pthread_mutex_lock(&semap->lock);
 while (semap->count == 0)
 pthread_cond_wait(&semap->;nonzero, &semap->lock);
 semap->count--;
 pthread_mutex_unlock(&semap->lock);
}

void
semaphore_close(semaphore_t *semap)
{
 munmap((void *) semap, sizeof (semaphore_t));
}

The following code is for three separate processes that create, post, and wait on a semphore in the file “/tmp/
semaphore.” Once the file is created, the post and wait programs increment and decrement the counting semaphore
(waiting and waking as required) even though they did not initialize the semaphore.

/* create.c */
#include "pthread.h"
#include "sem.h"

int
main()
{
 semaphore_t *semap;

Copyright © 1996 IEEE All Rights Reserved 391

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

 semap = semaphore_create("/tmp/semaphore");
 if (semap == NULL)
 exit(1);
 semaphore_close(semap);
 return (0);

}
/* post */
#include "pthread.h"
#include "sem.h"
int
main()
{
 semaphore_t *semap;

 semap = semaphore_open("/tmp/semaphore");
 if (semap == NULL)
 exit(1);
 semaphore_post(semap);
 semaphore_close(semap);
 return (0);
}

/* wait */
#include "pthread.h"
#include "sem. h"

int
main()
{
 semaphore_t *semap;

 semap = semaphore_open ("/tmp/semaphore");
 if (semap == NULL)
 exit (1);
 semaphore_wait (semap);
 semaphore_close (semap);
 return (0);
}

B.11.3.2 Initializing and Destroying a Mutex

Alternate Implementations Possible

The standard supports several alternative implementations of mutexes. An implementation may store the lock directly
in the object of type pthread_mutex_t. Alternatively, an implementation may store the lock in the heap and merely
store a pointer, handle, or unique ID in the mutex object. Either implementation has advantages or may be required on
certain hardware configurations. So that portable code can be written that is invariant to this choice, the standard does
not define assignment or equality for this type, and it uses the term “initialize” to reinforce the (more restrictive) notion
that the lock may actually reside in the mutex object itself.

Note that this precludes an overspecification of the type of the mutex or condition variable and motivates the opacity
of the type.

392 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

An implementation is permitted, but not required, to have pthread_mutex_destroy() store an illegal value into the
mutex. This may help detect erroneous programs that try to lock (or otherwise reference) a mutex that has already been
destroyed.

Tradeoff Between Error Checks and Performance Supported

Many of the error checks were made optional in order to let implementations trade off performance versus degree of
error checking according to the needs of their specific applications and execution environment. As a general rule,
errors or conditions caused by the system (such as insufficient memory) always need to be reported, but errors due to
an erroneously coded application (such as failing to provide adequate synchronization to prevent a mutex from being
deleted while in use) are made optional.

A wide range of implementations is thus made possible. For example, an implementation intended for application
debugging may implement all of the error checks, but an implementation running a single, provably correct application
under very tight performance constraints in an embedded computer might implement minimal checks. An
implementation might even be provided in two versions, similar to the options that compilers provide: a full-checking,
but slower version; and a limited-checking, but faster version. To forbid this optionality would be a disservice to users.

By carefully limiting the use of “undefined behavior” only to things that an erroneous (badly coded) application might
do, and by defining that resource-not-available errors are mandatory, the standard ensures that an application fully
conforming to the standard will be portable across the full range of implementations—while not forcing all
implementations to add overhead to check for numerous things that a correct program will never do.

Why No Limits Defined

Defining symbols for the maximum number of mutexes and condition variables was considered but rejected because
the number of these objects may change dynamically. Furthermore, many implementations will place these objects
into application memory; thus, there is no explicit maximum.

Static Initializers for Mutexes and Condition Variables

Providing for static initialization of statically allocated synchronization objects allows modules with private static
synchronization variables to avoid runtime initialization tests and overhead. Furthermore, it simplifies the coding of
self-initializing modules. Such modules are common in C libraries, where for various reasons the design calls for self-
initialization instead of requiring an explicit module initialization function to be called. An example use of static
initialization follows.

Without static initialization, a self-initializing routine foo() might look like

 static pthread_once_t foo_once = PTHREAD_ONCE_INIT;
 static pthread_mutex_t foo_mutex;
 void foo_init()
 {
 pthread_mutex_init(&foo_mutex, NULL);
 }
 void foo()
 {
 pthread_once (&foo_once, foo_init);
 pthread_mutex_lock (&foo_mutex);
 /* Do work */
 pthread_mutex_unlock (&foo_mutex);
 }

With static initialization, the same routine could be coded as

Copyright © 1996 IEEE All Rights Reserved 393

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

 static pthread_mutex_t foo_mutex = PTHREAD_MUTEX_INITIALIZER;
 void foo()
 {
 pthread_mutex_lock(&foo_mutex);
 /* Do work */
 pthread_mutex_unlock(&foo_mutex);
 }

Note that the static initialization both eliminates the need for the initialization test inside pthread_once() and the fetch
of &foo_mutex to learn the address to be passed to pthread_mutex_lock() or pthread_mutex_unlock().

Thus, the C code written to initialize static objects is simpler on all systems and will also be faster on a large class of
systems—those where the (entire) synchronization object can be stored in application memory.

Yet the locking performance question will be raised for machines that require mutexes to be allocated out of special
memory. Such machines will actually have to have mutexes and possibly condition variables contain pointers to the
actual hardware locks. For static initialization to work on such machines, pthread_mutex_lock() will also have to test
whether or not the pointer to the actual lock has been allocated. If it has not, pthread_mutex_lock() will have to
initialize it before use. The reservation of such resources can be made when the program is loaded, and hence return
codes have not been added to mutex locking and condition variable waiting to indicate failure to complete
initialization.

This runtime test in pthread_mutex_lock() would at first seem to be extra work—an extra test is required to see if the
pointer has been initialized. On most machines this would actually be implemented as a fetch of the pointer, testing the
pointer against zero, and then using the pointer if it has already been initialized. While the test might seem to add extra
work, the extra effort of testing a register is usually negligible since no extra memory references are actually done. As
more and more machines provide caches, the real expenses are memory references, not instructions executed.

Alternatively, depending on the machine architecture, there are often ways to eliminate all overhead in the most
important case: on the lock operations that occur after the lock has been initialized. This can be done by shifting more
overhead to the less frequent operation: initialization. Since out-of-line mutex allocation also means that an address
will have to be dereferenced to find the actual lock, one technique that is widely applicable is to have static
initialization store a bogus value for that address; in particular, an address that causes a machine fault to occur. When
such a fault occurs upon the first attempt to lock such a mutex, validity checks can be done, and then the correct
address for the actual lock can be filled in. Subsequent lock operations will incur no extra overhead since they will not
“fault.” This is merely one technique that can be used to support static initialization, while not adversely affecting the
performance of lock acquisition. No doubt there are other techniques that are highly machine dependent.

The locking overhead for machines doing out-of-line mutex allocation is thus similar for modules being implicitly
initialized, where it is improved for those doing mutex allocation entirely inline. The inline case is thus made much
faster, and the out-of-line case is not significantly worse.

Besides the issue of locking performance for such machines, a concern is raised that it is possible that threads would
serialize contending for initialization locks when attempting to finish initializing statically allocated mutexes. (Such
finishing would typically involve taking an internal lock, allocating a structure, storing a pointer to the structure in the
mutex, and releasing the internal lock.) First, many implementations would reduce such serialization by hashing on the
mutex address. Second, such serialization can only occur a bounded number of times. In particular, it can happen at
most as many times as there are statically allocated synchronization objects. Dynamically allocated objects would still
be initialized via pthread_mutex_init() or pthread_cond_init().

Finally, if none of the above optimization techniques for out-of-line allocation yields sufficient performance for an
application on some implementation, the application can avoid static initialization altogether by explicitly initializing
all synchronization objects with the corresponding pthread_*_init() functions, which are supported by all

394 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

implementations. An implementation can also document the tradeoffs and advise which initialization technique is
more efficient for that particular implementation.

Destroying Mutexes

A mutex can be destroyed immediately after it is unlocked. For example, consider the following code:

 struct obj {
 pthread_mutex_t om;
 int refcnt;
 ...
 };
 obj_done(struct obj *op)
 {
 pthread_mutex_lock (&op->om);
 if (--op->refcnt == 0) {
 pthread_mutex_unlock (&op->om);
(A) pthread_mutex_destroy (&op->om);
(B) free (op);
 } else
(C) pthread_mutex_unlock (&op- >om);
 }

In this case obj is reference counted and obj_done() is called whenever a reference to the object is dropped.
Implementations are required to allow an object to be destroyed and freed and potentially unmapped (e.g. lines A and
B) immediately after the object is unlocked (line C).

B.11.3.3 Locking and Unlocking a Mutex

Mutex objects are intended to serve as a low-level primitive from which other thread synchronization functions can be
built. As such, the implementation of mutexes should be as efficient as possible, and this has ramifications on the
features available at the interface.

The mutex interfaces and the particular default settings of the mutex attributes have been motivated by the desire to not
preclude fast, inlined implementations of mutex locking and unlocking.

For instance, deadlocking on a double-lock is explicitly allowed behavior in order to avoid requiring more overhead in
the basic mechanism than is absolutely necessary. (More “friendly” mutexes that detect deadlock or that allow multiple
locking by the same thread are easily constructed by the user via the other mechanisms provided. For example,
pthread_self() can be used to record mutex ownership.) Implementations might also choose to provide such extended
features as options via special mutex attributes.

Since most attributes only need to be checked when a thread is going to be blocked, the use of attributes does not slow
the (common) mutex-locking case.

Likewise, while being able to extract the thread ID of the owner of a mutex might be desirable, it would require storing
the current thread ID when each mutex is locked, and this could incur unacceptable levels of overhead. Similar
arguments apply to a “mutex_tryunlock” operation.

B.11.4 Condition Variables

B.11.4.1 Condition Variable Initialization Attributes

See B.16.2.1 and B.11.3.1.

Copyright © 1996 IEEE All Rights Reserved 395

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

A process-shared attribute has been defined for condition variables for the same reason it has been defined for
mutexes.

B.11.4.2 Initializing and Destroying Condition Variables

See B.11.3.2; a similar rationale applies to condition variables.

A condition variable can be destroyed immediately after all the threads that are blocked on it are awakened. For
example, consider the following code:

 struct list {
 pthread_mutex_t lm;
 ...
 }
 struct elt {
 key k;
 int busy;
 pthread_cond_t notbusy;
 ...
 }
 /* Find a list element and reserve it */
 struct elt *
 list_find(struct list *lp, key k)
 {
 struct elt *ep;
 pthread_mutex_lock (&lp->lm);
 while ((ep = find_elt(1, k) != NULL) && ep->busy)
 pthread_cond_wait(&ep->notbusy, &lp->lm);
 if (ep != NULL)
 ep->busy = 1;
 pthread_mutex_unlock(&lp->lm);
 return (ep);
 }
 delete_elt(struct list *lp, struct elt *ep)
 {
 pthread_mutex_lock (&lp->lm);
 assert (ep->busy);
 ... remove ep from list ...
 ep->busy = 0; /* paranoid */
(A) pthread_cond_broadcast (&ep->notbusy);
 pthread_mutex_unlock (&lp->lm);
(B) pthread_cond_destroy (&rp->notbusy);
 free (ep);
 }

In this example, the condition variable and its list element may be freed (line B) immediately after all threads waiting
for it are awakened (line A), since the mutex and the code ensure that no other thread can touch the element to be
deleted.

B.11.4.3 Broadcasting and Signaling a Condition

Multiple Awakenings by Condition Signal

396 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

On a multiprocessor, it may be impossible for an implementation of pthread_cond_signal() to avoid the unblocking of
more than one thread blocked on a condition variable. For example, consider the following partial implementation of
pthread_cond_wait() and pthread_cond_signal(), executed by two threads in the order given. One thread is trying to
wait on the condition variable; another is concurrently executing pthread_cond_signal(), while a third thread is already
waiting.

 pthread_cond_wait (mutex, cond):
 value = cond->;value; /* 1 */
 pthread_mutex_unlock (mutex); /* 9 */
 pthread_mutex_lock (cond->mutex); /* 10 */
 if (value == cond->value) { /* 11 */
 me->next_cond = cond->waiter;
 cond->waiter = me;
 pthread_mutex_unlock (cond->mutex);
 unable_to_run (me);
 } else
 pthread_mutex_unlock(cond->mutex); /* 12 */
 pthread_mutex_lock(mutex); /* 13 */
 pthread_cond_signal (cond):
 pthread_mutex_lock(cond->mutex); /* 2 */
 cond->value++; /* 3 */
 if (cond->waiter) { /* 4 */
 sleeper = cond->waiter; /* 5 */
 cond->waiter = sleeper->next_cond; /* 6 */
 able_to_run(sleeper); /* 7 */
 }
 pthread_mutex_unlock(cond->mutex); /* 8 */

The effect is that more than one thread can return from its call to pthread_cond_wait() or pthread_cond_timedwait()
as a result of one call to pthread_cond_signal(). This effect is called “spurious wakeup.” Note that the situation is self-
correcting in that the number of threads that are so awakened is finite; for example, the next thread to call
pthread_cond_wait() after the sequence of events above will block.

While this problem could be resolved, the loss of efficiency for a fringe condition that will occur only rarely is
unacceptable, especially given that one has to check the predicate associated with a condition variable anyway.
Correcting this problem would unnecessarily reduce the degree of concurrency in this basic building block for all
higher-level synchronization operations.

An added benefit of allowing spurious wakeups is that applications will be forced to code a predicate-testing-loop
around the condition wait. This will also make the application tolerate superfluous condition broadcasts or signals on
the same condition variable that may be coded in some other part of the application. The resulting applications are thus
more robust. Therefore, the standard explicitly documents that spurious wakeups may occur.

Condition Broadcast

The pthread_cond_broadcast() function is used whenever the shared-variable state has been changed in a way that
more than one thread can proceed with its task. Consider a single-producer/multiple-consumer problem, where the
producer can insert multiple items on a list that is accessed one item at a time by the consumers. By calling the
pthread_cond_broadcast() function, the producer would notify all consumers that might be waiting, and thereby the
application would receive more throughput on a multiprocessor. In addition, pthread_cond_broadcast() makes it
easier to implement a readers/writer lock. The pthread_cond_broadcast() function is needed in order to wake up all
waiting readers when a writer releases its lock. Finally, the two-phase commit algorithm can use this broadcast
function to notify all clients of an impending transaction commit.

Copyright © 1996 IEEE All Rights Reserved 397

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Releasing Threads From a Signal Handler

It is not safe to use the pthread_cond_signal() function in a signal handler that is invoked asynchronously. Even if it
were safe, there would still be a race between the test of the Boolean predicate, the signal delivery, and the call to
pthread_cond_wait() that could not be efficiently eliminated.

Mutexes and condition variables are thus not suitable for releasing a waiting thread by signalling from code running in
a signal handler.

To provide a convenient way for a thread to await a signal, this standard provides the function sigwait(). For most cases
where a thread has to wait for a signal, the function sigwait() should be quite convenient, efficient, and adequate.

However, requests were made for a a lower-level primitive than sigwait() and for semaphores that could be used by
threads. After some consideration, threads were allowed to use semaphores and sem_post() was defined to be async-
signal and async-cancel safe.

In summary, when it is necessary for code run in response to an asynchronous signal to notify a thread, sigwait()
should be used to handle the signal. Alternatively, if the implementation provides semaphores, they also can be used,
either following sigwait() or from within a signal handling routine previously registered with sigaction().

B.11.4.4 Waiting on a Condition

Condition Wait Semantics

It is important to note that when pthread_cond_wait() and pthread_cond_timedwait() return without error, the
associated predicate may still be false. Similarly, when pthread_cond_timedwait() returns with the timeout error, the
associated predicate may be true due to an unavoidable race between the expiration of the timeout and the predicate
state change.

Some implementations, particularly on a multiprocessor, may sometimes cause multiple threads to wake up when the
condition variable is signaled simultaneously on different processors.

In general, whenever a condition wait returns, the thread has to re-evaluate the predicate associated with the condition
wait to determine whether it can safely proceed, should wait again, or should declare a timeout. A return from the wait
does not imply that the associated predicate is either true or false.

It is thus recommended that a condition wait be enclosed in the equivalent of a “while loop” that checks the predicate.

Timed Wait Semantics

An absolute time measure was chosen for specifying the timeout parameter for two reasons. First, a relative time
measure can be easily implemented on top of an interface that specifies absolute time, but there is a race condition
associated with specifying an absolute timeout on top of an interface that specifies relative timeouts. For example,
assume that clock_gettime() returns the current time and pthread_cond_relative_timed_wait() uses relative timeouts:

 clock_gettime (CLOCK_REALTIME, &now)
 reltime = sleep_til_this_absolute_time - now;
 cond_relative_timed_wait(c, m, &reltime);

If the thread is preempted between the first statement and the last statement, the thread will block for too long.
Blocking, however, is irrelevant if an absolute timeout is used. An absolute timeout also need not be recomputed if it
is used multiple times in a loop, such as that enclosing a condition wait.

398 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

For cases when the system clock is advanced discontinuously by an operator, it is expected that implementations will
process any timed wait expiring at an intervening time as if that time had actually occurred.

Cancellation and Condition Wait

A condition wait, whether timed or not, is a cancellation point. That is, the functions pthread_cond_wait() or
pthread_cond_timedwait() are points where a pending (or concurrent) cancellation request is noticed. The reason for
this is that an indefinite wait is possible at these points—whatever event is being waited for, even if the program is
totally correct, might never occur; for example, some input data being awaited might never be sent. By making
condition wait a cancellation point, the thread can be canceled and perform its cancellation cleanup handler even
though it may be stuck in some indefinite wait.

A side effect of acting on a cancellation request while a thread is blocked on a condition variable is to reacquire the
mutex before calling any of the cancellation cleanup handlers. This is done in order to ensure that the cancellation
cleanup handler is executed in the same state as the critical code that lies both before and after the call to the condition
wait function. This rule is also required when interfacing to pthreads from languages, such as Ada or C++, which may
choose to map cancellation onto a language exception—this rule ensures that each exception handler guarding a
critical section can always safely depend upon the fact that the associated mutex has already been locked regardless of
exactly where within the critical section the exception was raised. Without this rule, there would not be a uniform rule
that exception handlers could follow regarding the lock and so coding would become very cumbersome.

Therefore, since some statement has to be made regarding the state of the lock when a cancellation is delivered during
a wait, a definition has been chosen that makes application coding most convenient and error free.

When acting on a cancellation request while a thread is blocked on a condition variable, the implementation is required
to ensure that the thread does not consume any condition signals directed at that condition variable if there are any
other threads waiting on that condition variable. This rule is specified in order to avoid deadlock conditions that could
occur if these two independent requests (one acting on a thread and the other acting on the condition variable) were not
processed independently.

Performance of Mutexes and Condition Variables

Mutexes are expected to be locked only for a few instructions. This practice is almost automatically enforced by the
desire of programmers to avoid long serial regions of execution (which would reduce total effective parallelism).

When using mutexes and condition variables, one tries to ensure that the usual case is to lock the mutex, access shared
data, and unlock the mutex. Waiting on a condition variable should be a relatively rare situation. For example, when
implementing a readers/writers lock, code that acquires a read-lock typically needs only to increment the count of
readers (under mutual exclusion) and return. The calling thread would actually wait on the condition variable only
when there is already an active writer. So the efficiency of a synchronization operation is bounded by the cost of mutex
lock/unlock and not by condition wait. Note that in the usual case there is no context switch.

This is not to say that the efficiency of condition waiting is unimportant. Since there needs to be at least one context
switch per Ada rendezvous, the efficiency of waiting on a condition variable is important. The cost of waiting on a
condition variable should be little more than the minimal cost for a context switch plus the time to unlock and lock the
mutex.

Features of Mutexes and Condition Variables

It had been suggested that the mutex acquisition and release be decoupled from condition wait. This was rejected
because it is the combined nature of the operation that, in fact, facilitates realtime implementations. Those
implementations can atomically move a high-priority thread between the condition variable and the mutex in a manner
that is transparent to the caller. This can prevent extra context switches and provide more deterministic acquisition of

Copyright © 1996 IEEE All Rights Reserved 399

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

a mutex when the waiting thread is signaled. Thus, fairness and priority issues can be dealt with directly by the
scheduling discipline. Furthermore, the current condition wait operation matches existing practice.

Scheduling Behavior of Mutexes and Condition Variables

Synchronization primitives that attempt to interfere with scheduling policy by specifying an ordering rule are
considered undesirable. Threads waiting on mutexes and condition variables are selected to proceed in an order
dependent upon the scheduling policy rather than in some fixed order (for example, FIFO or priority). Thus, the
scheduling policy determines which thread(s) will be awakened and allowed to proceed. See Section 13 for the effect
of scheduling policy on synchronization operations.

Timed Condition Wait

The pthread_cond_timedwait() function allows an application to give up waiting for a particular condition after a given
amount of time. An example of its use follows:

 (void) pthread_mutex_lock(&t.mn);
 t.waiters++;
 clock_gettime (CLOCK_REALTIME, &ts);
 ts.tv_sec += 5;
 rc = 0;
 while (! mypredicate(&t) && rc == 0)
 rc == pthread_cond_timedwait(&t.cond, &t.mn, &ts);
 t.waiters--;
 if (rc == 0) setmystate(&t);
 (void) pthread_mutex_unlock (&t.mn);

By making the timeout parameter absolute, it does not need to be recomputed each time the program checks its
blocking predicate. If the timeout was relative, it would have to be recomputed before each call. This would be
especially difficult since such code would need to take into account the possibility of extra wakeups that result from
extra broadcasts or signals on the condition variable that occur before either the predicate is true or the timeout is due.

B.11.4.5 Omitted and Rejected Functions

Adding global names for mutexes and condition variables (such as are provided for semaphores) was considered. This
proposed change was rejected because the resulting semantics became overly complicated and error prone. In addition,
the change was considered to be inconsistent with the existing practice, where mutexes and condition variables are
used exclusively to synchronize threads that access shared memory.

B.12 Memory Management

All memory management and shared memory definitions are located in the header <sys/mman.h>. Both the SVR4
and BSD systems use the header <sys/roman. h> for memory management definitions.

B.12.1 Memory Locking Functions

This portion of the rationale presents models, requirements, and standardization issues relevant to process memory
locking.

Models

POSIX.1b conforming realtime systems are expected (and desired) to be supported on systems with demand-paged
virtual memory management, nonpaged swapping memory management, and physical memory systems with no
Memory Management hardware. The general case, however, is the demand-paged, virtual memory system with each

400 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

POSIX process running in a virtual address space. Note that this includes architectures where each process resides in
its own virtual address space and architectures where the address space of each process is only a portion of a larger
global virtual address space.

The concept of memory locking is introduced to eliminate the indeterminacy introduced by paging and swapping, and
to support an upper bound on the time required to access the memory mapped into the address space of a process.
Ideally, this upper bound will be the same as the time required for the processor to access “main memory,” including
any address translation and cache miss overheads. But some implementations—primarily on mainframes—will not
actually force locked pages to be loaded and held resident in main memory. Rather, they will handle locked pages so
that accesses to these pages will meet the performance metrics for locked process memory in the implementation.
Also, although it is not, for example, the intention that this interface, as specified, be used to lock process memory into
“cache,” it is conceivable that an implementation could support a large static RAM memory and define this as “main
memory” and use a large[r] dynamic RAM as “backing store.” These interfaces could then be interpreted as supporting
the locking of process memory into the static RAM. Support for multiple levels of backing store would require
extensions to these interfaces.

Implementations may also use memory locking to guarantee a fixed translation between virtual and physical addresses
where such is beneficial to improving determinancy for direct-to/from-process Input/Output. The standard does not
guarantee to the application that the virtual-to-physical address translations, if such exist, are fixed, because such
behavior would not be implementable on all architectures on which implementations of this standard are expected. But
the standard does mandate that an implementation define, for the benefit of potential users, whether or not locking
guarantees fixed translations.

Memory locking is defined with respect to the address space of a process. Only the pages mapped into the address
space of a process may be locked by the process, and when the pages are no longer mapped into the address space—
for whatever reason—the locks established with respect to that address space are removed. Shared memory areas
warrant special mention, as they may be mapped into more than one address space or mapped more than once into the
address space of a process; locks may be established on pages within these areas with respect to several of these
mappings. In such a case, the lock state of the underlying physical pages is the logical OR of the lock state with respect
to each of the mappings. Only when all such locks have been removed are the shared pages considered unlocked.

In recognition of the page granularity of Memory Management Units (MMU), and in order to support locking of
ranges of address space, memory locking is defined in terms of “page” granularity. That is, for the interfaces that
support an address and size specification for the region to be locked, the address must be on a page boundary, and all
pages mapped by the specified range are locked, if valid. This means that the length is implicitly rounded up to a
multiple of the page size. The page size is implementation defined and is available to applications as a compile time
symbolic constant or at run-time via sysconf().

A “real memory” POSIX.1b implementation that has no MMU could elect not to support these interfaces, returning
[ENOSYS]. But an application could easily interpret this as meaning that the implementation would unconditionally
page or swap the application when such is not the case. It is the intention of the standard that such a system could
define these interfaces as “NO-OPs,” returning success without actually performing any function except for mandated
argument checking.

Requirements

For realtime applications, memory locking is generally considered to be required as part of application initialization.
This locking is performed after an application has been loaded (that is, exec'ed) and the program remains locked for its
entire lifetime. But to support applications that undergo major mode changes where, in one mode, locking is required,
but in another it is not, the specified interfaces allow repeated locking and unlocking of memory within the lifetime of
a process.

When a realtime application locks its address space, it should not be necessary for the application to then “touch” all
of the pages in the address space to guarantee that they are resident or else suffer potential paging delays the first time

Copyright © 1996 IEEE All Rights Reserved 401

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

the page is referenced. Thus, the standard requires that the pages locked by the specified interfaces be resident when
the locking functions return successfully.

Many architectures support system-managed stacks that grow automatically when the current extent of the stack is
exceeded. A realtime application has a requirement to be able to “preallocate” sufficient stack space and lock it down
so that it will not suffer page faults to grow the stack during critical realtime operation. There was no consensus on a
portable way to specify how much stack space is needed, so the standard supports no specific interface for
preallocating stack space. But an application can portably lock down a specific amount of stack space by specifying
MCL_FUTURE in a call to memlockall() and then calling a dummy function that declares an automatic array of the
desired size.

Memory locking for realtime applications is also generally considered to be an “all or nothing” proposition. That is,
the entire process, or none, is locked down. But, for applications that have well-defined sections that need to be locked
and others that do not, the standard supports an optional set of interfaces to lock or unlock a range of process addresses.
Reasons for locking down a specific range include

 An asynchronous event handler function that must respond to external events in a deterministic manner such
that page faults cannot be tolerated

 An input/output “buffer” area that is the target for direct-to-process I/O, and the overhead of implicit locking
and unlocking for each I/O call cannot be tolerated

Finally, locking is generally viewed as an “application-wide” function. That is, the application is globally aware of
which regions are locked and which are not over time. This is in contrast to a function that is used temporarily within
a “third party” library routine whose function is unknown to the application, and therefore must have no “side effects.”
The specified interfaces, therefore, do not support “lock stacking” or “lock nesting” within a process. But, for pages
that are shared between processes or mapped more than once into a process address space, “lock stacking” is
essentially mandated by the requirement that unlocking of pages that are mapped by more that one process or more
than once by the same process does not affect locks established on the other mappings.

There was some support for “lock stacking” so that locking could be transparently used in library functions or opaque
modules. But the consensus was not to burden all implementations with lock stacking (and reference counting), and an
implementation option was proposed. There were strong objections to the option because applications would have to
support both options in order to remain portable. The consensus was to eliminate lock stacking altogether, primarily
through overwhelming support for the SVR4 “m[un]lock[all]” interface on which the standard is now based.

Locks are not inherited across fork()s because some systems implement fork() by creating new address spaces for the
child. In such an implementation, requiring locks to be inherited would lead to new situations in which a fork would
fail due to the inability of the system to lock sufficient memory to lock both the parent and the child. The consensus
was that there was no benefit to such inheritance. Note that this does not mean that locks are removed when, for
instance, a thread is created in the same address space.

Similarly, locks are not inherited across execs because some systems implement exec by unmapping all of the pages in
the address space (which, by definition, removes the locks on these pages), and maps in pages of the execed image. In
such an implementation, requiring locks to be inherited would lead to new situations in which exec would fail.
Reporting this failure would be very cumbersome to detect in time to report to the calling process, and no appropriate
mechanism exists for informing the execed process of its status.

It was determined that, if the newly loaded application required locking, it was the responsibility of that application to
establish the locks. This is also in keeping with the general view that it is the responsibility of the application to be
aware of all locks that are established.

There was one request to allow (not mandate) locks to be inherited across fork(), and a request for a flag,
MCL_INHERIT, that would specify inheritance of memory locks across execs. Given the difficulties raised by this and
the general lack of support for the feature in the standard, it was not added. The does not preclude an implementation

402 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

from providing this feature for administrative purposes, such as a “run” command that will lock down and execute
specified program. Additionally, the rationale for the objection equated fork() with creating a thread in the address
space. The standard does not mandate releasing locks when creating additional threads in an existing process.

Standardization Issues

One goal of the standard is to define a set of primitives that provide the necessary functionality for realtime
applications, with consideration for the needs of other application domains where such were identified, which is based
to the extent possible on existing industry practice.

The ISO/IEC 9945-1 :1990 definition does not include any memory locking facility. The Memory Locking option is
required by many realtime applications to tune performance. Such a facility is accomplished by placing constraints on
the virtual memory system to limit paging of time of the process or of critical sections of the process. This facility
should not be used by most nonrealtime applications.

Optional features provided in this standard allow applications to lock selected address ranges with the caveat that the
process is responsible for being aware of the page granularity of locking and the unnested nature of the locks.

B.12.1.1 Lock/Unlock the Address Space of a Process

There is no specific rationale for this subclause.

B.12.1.2 Lock/Unlock a Range of Process Address Space

There is no specific rationale for this subclause.

B.12.2 Mapped Files Functions

The Memory Mapped Files option provides a mechanism that allows a process to access files by directly incorporating
file data into its address space. Once a file is “mapped” into a process address space, the data can be manipulated by
instructions as memory. The use of mapped files can significantly reduce I/O data movement since file data does not
have to be copied into process data buffers as in read() and write(). If more than one process maps a file, its contents
are shared among them. This provides a low overhead mechanism by which processes can synchronize and
communicate.

Historical Perspective

Realtime applications have historically been implemented using a collection of cooperating processes or tasks. In early
systems, these processes ran on bare hardware (that is, without an operating system) with no memory relocation or
protection. The application paradigms that arose from this environment involve the sharing of data between the
processes.

When realtime systems were implemented on top of vendor-supplied operating systems, the paradigm or performance
benefits of direct access to data by multiple processes was still deemed necessary. As a result, operating systems that
claim to support realtime applications must support the shared memory paradigm.

Additionally, a number of realtime systems provide the ability to map specific sections of the physical address space
into the address space of a process. This ability is required if an application is to obtain direct access to memory
locations that have specific properties (for example, refresh buffers or display devices, dual ported memory locations,
DMA target locations). The use of this ability is common enough to warrant some degree of standardization of its
interface. This ability overlaps the general paradigm of shared memory in that, in both instances, common global
objects are made addressable by individual processes or tasks.

Copyright © 1996 IEEE All Rights Reserved 403

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Finally, a number of systems also provide the ability to map process addresses to files. This provides both a general
means of sharing persistent objects, and using files in a manner that optimizes memory and swapping space usage.

Simple shared memory is clearly a special case of the more general file mapping capability. In addition, there is
relatively wide spread agreement and implementation of the file mapping interface. In these systems, many different
types of objects can be mapped (e.g., files, memory, devices, etc.) using the same mapping interfaces. This approach
both minimizes interface proliferation and maximizes the generality of programs using the mapping interfaces.

Memory Mapped Files Usage

A memory object can be concurrently mapped into the address space of one or more processes. The mmap() and
munmap() functions allow a process to manipulate its address space by mapping portions of memory objects into it and
removing them from it. When multiple processes map the same memory object, they can share access to the
underlying data. Implementations may restrict the size and alignment of mappings to be on page-size boundaries. The
page size, in bytes, is the value of the system-configurable variable {PAGESIZE}, typically accessed by calling
sysconf() with a name argument of {_SC_PAGESIZE}. If an implementation has no restrictions on size or alignment,
it may specify a 1B page size.

To map memory, a process first opens a memory object. The ftruncate() function can be used to contract or extend the
size of the memory object even when the object is currently mapped. If the memory object is extended, the contents of
the extended areas are zeros.

After opening a memory object, the application maps the object into its address space using the mmap() function call.
Once a mapping has been established, it remains mapped until unmapped with munmap(), even if the memory object
is closed. The mprotect() function can be used to change the memory protections initially established by mmap().

A close() of the file descriptor, while invalidating the file descriptor itself, does not unmap any mappings established
for the memory object. The address space, including all mapped regions, is inherited on fork(). The entire address
space is unmapped on process termination or by successful calls to any of the exec functions.

The msync() function is used to force mapped file data to permanent storage.

Effects on Other Functions

When the Memory Mapped Files option is supported, the operation of the open(), creat(), and unlink() functions are a
natural result of using the file system name space to map the global names for memory objects.

The ftruncate() function can be use to set the length of a sharable memory object.

The meaning of stat() fields other than the size and protection information is undefined on implementations where
memory objects are not implemented using regular files. When regular files are used, the times reflect when the
implementation updated the file image of the data, not when a process updated the data in memory.

The operations of fdopen(), write(), read(), and lseek() were made unspecified for objects opened with shm_open() so
that implementations that did not implement memory objects as regular files would not have to support the operation
of these functions on shared memory objects.

The behavior of memory objects with respect to close(), dup(), dup2(), open(), close(), fork(), _exit(), and exec is the
same as the behavior of the existing practice of the mmap() function.

A memory object can still be referenced after a close. That is, any mappings made to the file are still in effect, and read
and writes that are made to those mappings are still valid and are shared with other processes that have the same
mapping. Likewise, the memory object can still be used if any references remain after its name(s) have been deleted.
Any references that remain after a close must not appear to the application as file descriptors.

404 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

This is existing practice for mmap() and close(). In addition, there are already mappings present (text, data, stack) that
do not have open file descriptors. The text mapping in particular is considered a reference to the file containing the
text. The desire was to treat all mappings by the process uniformly. Also, many modern implementations use mmap()
to implement shared libraries, and it would not be desirable to keep file descriptors for each of the many libraries an
application can use. It was felt there were many other existing programs that used this behavior to free a file descriptor,
and thus this standard could not forbid it and still claim to be using existing practice.

For implementations that implement memory objects using memory only, memory objects will retain the memory
allocated to the file after the last close and will use that same memory on the next open. Note that closing the memory
object is not the same as deleting the name, since the memory object is still defined in the memory object name space.

The locks of fcntl() do not block any read or write operation, including read or write access to shared memory or
mapped files. In addition, implementations that only support shared memory objects should not be required to
implement record locks. The reference to fcntl() is added to make this point explicitly. The other fcntl() commands are
useful with shared memory objects.

The size of pages that mapping hardware may be able to support may be a configurable value, or it may change based
on hardware implementations. The addition of the {_SC_PAGESIZE} parameter to the sysconf() function is provided
for determining the mapping page size at runtime.

B.12.2.1 Map Process Addresses to a Memory Object

After considering several other alternatives, it was decided to adopt the mmap() definition found in SVR4 for mapping
memory objects into process address spaces. The SVR4 definition is minimal, in that it describes only what has been
built, and what appears to be necessary for a general and portable mapping facility.

Note that while mmap() was first designed for mapping files, it is actually a general-purpose mapping facility. It can be
used to map any appropriate object, such as memory, files, devices, etc., into the address space of a process.

When a mapping is established, it is possible that the implementation may need to map more than is requested into the
address space of the process because of hardware requirements. An application, however, cannot count on this
behavior. Implementations that do not use a paged architecture may simply allocate a common memory region and
return the address of it; such implementations will probably not allocate any more than is necessary. References past
the end of the requested area are unspecified.

If an application requests a mapping that would overlay existing mappings in the process, it might be desirable that an
implementation detect this and inform the application. However, the default, portable (not MAP_FIXED) operation
will not overlay existing mappings. On the other hand, if the program specifies a fixed address mapping (which
requires some implementation knowledge to determine a suitable address, if the function is supported at all), then the
program is presumed to be successfully managing its own address space and should be trusted when it asks to map
over existing data structures. Furthermore, it is also desirable to make as few system calls as possible, and it might be
considered onerous to require a munmap() before an mmap() to the same address range. The standard specifies that the
new mappings will replace any existing mappings, following existing practice in this regard.

It is not expected, when the Memory Protection option is supported, that all hardware implementations will be able to
support all combinations of permissions at all addresses. When this option is supported, implementations are required
to disallow write access to mappings without write permission and to disallow access to mappings without any access
permission. Other than these restrictions, implementations may allow access types other than those requested by the
application. For example, if the application requests only PROT_WRITE, the implementation may also allow read
access. A call to mmap() will fail if the implementation cannot support allowing all the access requested by the
application. For example, some implementations cannot support a request for both write access and execute access
simultaneously. All implementations supporting the Memory Protection option must support requests for no access,
read access, write access, and both read and write access. Strictly conforming code must only rely on the required
checks. These restrictions allow for portability across a wide range of hardware.

Copyright © 1996 IEEE All Rights Reserved 405

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The MAP_FIXED address treatment will likely fail for non-page-aligned values and for certain architecture-
dependent address ranges. Conforming implementations cannot count on being able to choose address values for
MAP_FIXED without utilizing nonportable, implementation-specific knowledge. Nonetheless, MAP_FIXED is
provided as a standard interface conforming to existing practice for utilizing such knowledge when it is available.

Similarly, in order to allow implementations that do not support virtual addresses, support for directly specifying any
mapping addresses via MAP_FIXED is not required and thus a conforming application may not count on it.

The MAP_PRIVATE function can be implemented efficiently when memory protection hardware is available. When
such hardware is not available, implementations can implement such “mappings” by simply making a real copy of the
relevant data into process private memory, though this tends to behave similarly to read().

The interface has been defined to allow for many different models of using shared memory. However, all uses are not
equally portable across all machine architectures. In particular, the mmap() function allows the system as well as the
application to specify the address at which to map a specific region of a memory object. The most portable way to use
the interface is always to let the system choose the address, specifying NULL as the value for the argument addr and
not to specify MAP_FIXED.

If it is intended that a particular region of a memory object be mapped at the same address in a group of processes (on
machines where this is even possible), then MAP_FIXED can be used to pass in the desired mapping address. The
system can still be used to choose the desired address if the first such mapping is made without specifying
MAP_FIXED, and then the resulting mapping address can be passed to subsequent processes for them to pass in via
MAP_FIXED. The availability of a specific address range cannot be guaranteed, in general.

The mmap() function can be used to map a region of memory that is larger than the current size of the object. Memory
access within the mapping but beyond the current end of the underlying objects may result in SIGBUS signals being
sent to the process. The reason for this is that the size of the object can be manipulated by other processes and can
change at any moment. The implementation should tell the application that a memory reference is outside the object
where this can be detected, otherwise written data may be lost and read data may not reflect actual data in the object.

Note that references beyond the end of the object do not extend the object as the new end cannot be determined
precisely by most virtual memory hardware. Instead, the size can be directly manipulated by ftruncate().

Process memory locking does apply to shared memory regions, and the MEMLOCK_FUTURE argument to
memlockall() can be relied upon to cause new shared memory regions to be automatically locked.

Existing implementations of mmap() return the value −1 when unsuccessful. Since the casting of this value to type
void* cannot be guaranteed by the C Standard {2} to be distinct from a successful value, this standard defines the
symbol MAP_FAILED, which a conforming implementation will not return as the result of a successful call.

B.12.2.2 Unmap Previously Mapped Addresses

The munmap() function corresponds to SVR4, just as the mmap() function does.

It is possible that an application has applied process memory locking to a region that contains shared memory. If this
has occurred, the munmap() call will ignore those locks and, if necessary, cause those locks to be removed.

B.12.2.3 Change Memory Protection

There is no additional rationale provided for this subclause.

406 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

B.12.2.4 Memory Object Synchronization

The msync() function is used to write out data in a mapped region to the permanent storage for the underlying object.
The call to msync() ensures data integrity of the file.

After the data is written out, any cached data may be invalidated if the MS_INVALIDATE flag was specified. This is
useful on systems that do not support read/write consistency.

B.12.3 Shared Memory Functions

Implementations may support the Shared Memory Objects option without supporting a general Memory Mapped Files
option. Shared memory objects are named regions of storage that may be independent of the file system and can be
mapped into the address space of one or more processes to allow them to share the associated memory.

Requirements

Shared memory is used to share data among several processes, each potentially running at different priority levels,
responding to different inputs, or performing separate tasks. Shared memory is not just simply providing common
access to data, it is providing the fastest possible communication between the processes. With one memory write
operation, a process can pass information to as many processes as have the memory region mapped.

As a result, shared memory provides a mechanism that can be used for all other interprocess communications facilities.
It may also be used by an application for implementing more sophisticated mechanisms than semaphores and message
queues.

The need for a shared memory interface is obvious for virtual memory systems, where the operating system is directly
preventing processes from accessing each other's data. However in unprotected systems, such as those found in some
embedded controllers, a shared memory interface is needed to provide a portable mechanism to allocate a region of
memory to be shared and then to communicate the address of that region to other processes.

This then, provides the minimum functionality that a shared memory interface must have in order to support realtime
applications: to allocate and name a object to be mapped into memory for potential sharing [open() or shm_open()],
and to make the memory object available within the address space of a process [mmap()]. To complete the interface, a
mechanism to release the claim of a process on a shared memory object [munmap()] is also needed, as well as a
mechanism for deleting the name of a sharable object that was previously created [unlink() or shm_unlink()].

After a mapping has been established, an implementation should not have to provide services to maintain that
mapping. All memory writes into that area will appear immediately in the memory mapping of that region by any other
processes.

Thus, requirements include

 Support creation of sharable memory objects and the mapping of these objects into the address space of a
process.

 Sharable memory objects should be accessed by global names accessible from all processes.
 Support the mapping of specific sections of physical address space (such as a memory mapped device) into

the address space of a process. This should not be done by the process specifying the actual address, but again
by an implementation-defined global name (such as a special device name) dedicated to this purpose.

 Support the mapping of discrete portions of these memory objects.
 Support for minimum hardware configurations that contain no physical media on which to store shared

memory contents permanently.
 The ability to preallocate the entire shared memory region so that minimum hardware configurations without

virtual memory support can guarantee contiguous space.

Copyright © 1996 IEEE All Rights Reserved 407

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

 The maximizing of performance by not requiring functionality that would require implementation interaction
above creating the shared memory area and returning the mapping.

Note that the above requirements do not preclude:

 The sharable memory object from being implemented using actual files on an actual file system.
 The global name that is accessible from all processes being restricted to a file system area that is dedicated to

handling shared memory.
 An implementation not providing implementation-defined global names for the purpose of physical address

mapping.

Shared Memory Objects Usage

If the Shared Memory Objects option is supported, a shared memory object may be created, or opened if it already
exists, with the shm_open() function. If the shared memory object is created, it has a length of zero. The ftruncate()
function can be used to set the size of the shared memory object after creation. The shm_unlink() function removes the
name for a shared memory object created by shm_open().

Shared Memory Overview

The shared memory facility defined by this standard usually results in memory locations being added to the address
space of the process. The implementation returns the address of the new space to the application by means of a pointer.
This works well in languages like C. However, in languages such as FORTRAN, it will not work because these
languages do not have pointer types. In the bindings for such a language, either a special COMMON section will need
to be defined (which is unlikely), or the binding will have to allow existing structures to be mapped. The
implementation will likely have to place restrictions on the size and alignment of such structures or will have to map
a suitable region of the address space of the process into the memory object, and thus into other processes. These are
issues for that particular language binding. For this standard, however, the practice will not be forbidden, merely
undefined.

Two potentially different name spaces are used for naming objects that may be mapped into process address spaces.
When the Memory Mapped Files option is supported, files may be accessed via open(). When the Shared Memory
Objects option is supported, sharable memory objects that might not be files may be accessed via the shm_open()
function. These options are not mutually exclusive.

Some systems supporting the Shared Memory Objects option may choose to implement the shared memory object
name space as part of the file system name space. There are several reasons for this.

 It allows applications to prevent name conflicts by use of the directory structure.
 It uses an existing mechanism for accessing global objects and prevents the creation of a new mechanism for

naming global objects.

In such implementations, memory objects can be implemented using regular files, if that is what the implementation
chooses. The shm_open() function can be implemented as an open() call in a fixed directory followed by a call to
fcntl() to set FD_CLOEXEC. The shm_unlink() function can be implemented as an unlink() call.

On the other hand, it is also expected that small embedded systems that support the Shared Memory Objects option
may wish to implement shared memory without having any file systems present. In this case, the implementations may
choose to use a simple string valued name space for shared memory regions. The shm_open() function permits either
type of implementation.

Some systems have hardware that supports protection of mapped data from certain classes of access and some do not.
Systems that supply this functionality can support the Memory Protection option.

408 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Some implementations restrict size, alignment, and protections to be on page-size boundaries. If an implementation
has no restrictions on size or alignment, it may specify a 1B page size. Applications on implementations that do
support larger pages must be cognizant of the page size since this is the alignment and protection boundary.

Simple embedded implementations may have a 1B page size and only support the Shared Memory Objects option.
This provides simple shared memory between processes without requiring mapping hardware.

The standard is silent about how implementations that chose to implement memory objects directly would treat them
with standard utilities such as ls because utilities are not within the charter of this standard.

The standard specifically allows a memory object to remain referenced after a close because that is existing practice
for the mmap() function.

B.12.3.1 Open a Shared Memory Object

When the Memory Mapped Files option is supported, the normal open() call is used to obtain a descriptor to a file to
be mapped according to existing practice with mmap(). When the Shared Memory Objects option is supported, the
shm_open() function is used to obtain a descriptor to shared memory object to be mapped.

There is ample precedent for having a file descriptor represent several types of objects. In ISO/IEC 9945-1 : 1990, a
file descriptor can represent a file, a pipe, a FIFO, a tty, or a directory. Many implementations simply have an
operations vector, which is indexed by the file descriptor type and does very different operations.

Note that in some cases the file descriptor passed to generic operations on file descriptors are returned by open() or
creat() and in some cases returned by alternate functions, such as pipe(). The latter technique used by shm_open().
Having separate type-specific functions for similar operation was rejected in POSIX.

Note that such shared memory objects can actually be implemented as mapped files. In both cases, the size can be set
after the open using ftruncate(). The shm_open() function itself does not create a shared object of a specified size
because this would duplicate an extant interface that set the size of an object referenced by a file descriptor.

On implementations where memory objects are implemented using the existing file system, the shm_open() function
may be implemented using a macro that invokes open(), and the shm_unlink() function may be implemented using a
macro that invokes unlink().

For implementations without a permanent file system, the definition of the name of the memory objects is allowed not
to survive a system reboot. Note that this allows systems with a permanent file system to implement memory objects
as data structures internal to the implementation as well.

On implementations that choose to implement memory objects using memory directly, a shm_open() followed by a
ftruncate() and close() can be used to preallocate a shared memory area and to set the size of that preallocation. This
may be necessary for systems without virtual memory hardware support in order to insure that the memory is
contiguous.

The set of valid open flags to shm_open() was restricted to O_RDONLY, O_RDWR, O_CREAT, and O_TRUNC
because these could be easily implemented on most memory mapping systems. This section of the standard is silent on
the results if the implementation cannot supply the requested file access because of implementation-defined reasons,
including hardware ones.

The error codes [EACCES] and [ENOTSUP] are provided to inform the application that the implementation can not
complete a request.

[EACCES] indicates for implementation-dependent reasons, probably hardware related, that the implementation
cannot comply with a requested mode because it conflicts with another requested mode. A example might be that an

Copyright © 1996 IEEE All Rights Reserved 409

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

application desires to open a memory object two times, mapping different areas with different access modes. If the
implementation can not map a single area into a process space in two places, which would be required if different
access modes were required for the two areas, then the implementation may inform the application at the time of the
second open.

[ENOTSUP] indicates for implementation-dependent reasons, probably hardware related, that the implementation
cannot comply with a requested mode at all. An example would be that the hardware of the implementation cannot
support write-only shared memory areas.

On all implementations, it may be desirable to restrict the location of the memory objects to specific file systems for
performance (such as a RAM disk) or implementation-specific reasons (shared memory supported directly only on
certain file systems). The shm_open() function may be used to enforce these restrictions. There are a number of
methods available to the application to determine an appropriate name of the file or the location of an appropriate
directory. One way is from the environment via getenv(). Another would be from a configuration file.

The standard specifies that memory objects have initial contents of zero when created. This is consistent with current
behavior for both files and newly allocated memory. For those implementations that use physical memory, it would be
possible that such implementations could simply use available memory and give it to the process uninitialized. This,
however, is not consistent with standard behavior for the uninitialized data area, the stack, and of course, files. Finally,
it is highly desirable to set the allocated memory to zero for security reasons. Thus, initializing memory objects to zero
is required.

B.12.3.2 Remove a Shared Memory Object

Names of memory objects that were allocated with open() are deleted with unlink() in the usual fashion. Names of
memory objects that were allocated with shm_open() are deleted with shm_unlink(). Note that the actual memory
object will not be destroyed until the last close and unmap on it have occurred if it was already in use.

B.13 Execution Scheduling

This portion of the rationale presents models, requirements, and standardization issues relevant to priority scheduling.

In an operating system supporting multiple concurrent processes, the system determines the order in which processes
execute to meet system-defined goals. For time-sharing systems, the goal is to enhance system throughput and
promote fairness; the application is provided little or no control over this sequencing function. While this is acceptable
and desirable behavior in a time-sharing system, it is inappropriate in a realtime system; realtime applications must
specifically control the execution sequence of their concurrent processes in order to meet externally defined response
requirements.

In this standard, the control over process sequencing is provided using a concept of scheduling policies. These policies,
described in detail in this section, define the behavior of the system whenever processor resources are to be allocated
to competing processes. Only the behavior of the policy is defined; conforming implementations are free to use any
mechanism desired to achieve the described behavior.

Models

In an operating system supporting multiple concurrent processes, the system determines the order in which processes
execute and might force long-running processes to yield to other processes at certain intervals. Typically, the
scheduling code is executed whenever an event occurs that might alter the process to be executed next.

The simplest scheduling strategy is a “first-in, first-out” (FIFO) dispatcher. Whenever a process becomes runnable, it
is placed on the end of a ready list. The process at the front of the ready list is executed until it exits or becomes
blocked, at which point it is removed from the list. This scheduling technique is also known as “run-to-completion” or
“run-to-block.”

410 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

A natural extension to this scheduling technique is the assignment of a “nonmigrating priority” to each process. This
policy differs from strict FIFO scheduling in only one respect: whenever a process becomes runnable, it is placed at the
end of the list of processes runnable at that priority level. When selecting a process to run, the system always selects
the first process from the highest priority queue with a runnable process. Thus, when a process becomes unblocked, it
will preempt a running process of lower priority without otherwise altering the ready list. Further, if a process elects to
alter its priority, it is removed from the ready list and reinserted, using its new priority, according to the policy above.

While the above policy might be considered unfriendly in a time-sharing environment in which multiple users require
more balanced resource allocation, it could be ideal in a realtime environment for several reasons. The most important
of these is that it is deterministic: the highest-priority process is always run and, among processes of equal priority, the
process that has been runnable for the longest time is executed first. Because of this determinism, cooperating
processes can implement more complex scheduling simply by altering their priority. For instance, if processes at a
single priority were to reschedule themselves at fixed time intervals, a time-slice policy would result.

In a dedicated operating system in which all processes are well-behaved realtime applications, nonmigrating priority
scheduling is sufficient. However, many existing implementations provide for more complex scheduling policies.

This part of ISO/IEC 9945 specifies a linear scheduling model. In this model, every process in the system has a
priority. The system scheduler always dispatches a process that has the highest (generally the most time-critical)
priority among all runnable processes in the system. As long as there is only one such process, the dispatching policy
is trivial. When multiple processes of equal priority are eligible to run, they are ordered according to a strict run-to-
completion (FIFO) policy.

The priority is represented as a positive integer and is inherited from the parent process. For processes running under
a fixed priority scheduling policy the priority is never altered except by an explicit function call.

It was determined arbitrarily that larger integers correspond to “higher priorities.”

Certain implementations might impose restrictions on the priority ranges to which processes can be assigned. There
also can be restrictions on the set of policies to which processes can be set.

Requirements

Realtime processes require that scheduling be fast and deterministic, and that it guarantees to preempt lower priority
processes.

Thus, given the linear scheduling model, realtime processes require that they be run at a priority that is higher than
other processes. Within this framework, realtime processes are free to yield execution resources to each other in a
completely portable and implementation-independent manner.

As there is a generally perceived requirement for processes at the same priority level to share processor resources more
equitably, provisions are made by providing a scheduling policy (that is, SCHED_RR) intended to provide a timeslice-
like facility.

NOTE — The following topics assume that low numeric priority implies low scheduling criticality and vice versa.

Rationale for New Interface

Realtime applications need to be able to determine when processes will run in relation to each other. It must be
possible to guarantee that a critical process will run whenever it is runnable; that is, whenever it wants to for as long
as it needs. SCHED_FIFO satisfies this requirement. Additionally, SCHED_RR was defined to meet a realtime
requirement for a well-defined time-sharing policy for processes at the same priority.

Copyright © 1996 IEEE All Rights Reserved 411

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

It would be possible to use the BSD setpriority() and getpriority() functions by redefining the meaning of the “nice”
parameter according to the scheduling policy currently in use by the process. The System V nice() interface was felt to
be undesirable for realtime because it specifies an adjustment to the “nice” value, rather than setting it to an explicit
value. Realtime applications will usually want to set priority to an explicit value. Also, System V nice() does not allow
for changing the priority of another process.

With the POSIX.1b interfaces, the traditional “nice” value does not affect the SCHED_FIFO or SCHED_RR
scheduling policies. If a “nice” value is supported, it is implementation-defined whether it affects the
SCHED_OTHER policy.

An important aspect of the standard is the explicit description of the queuing and preemption rules. It is critical, to
achieve deterministic scheduling, that such rules be stated clearly in the standard.

This standard does not address the interaction between priority and swapping. The issues involved with swapping and
virtual memory paging are extremely implementation dependent and would be nearly impossible to standardize at this
point. The proposed scheduling paradigm, however, fully describes the scheduling behavior of runnable processes, of
which one criterion is that the working set be resident in memory. Assuming the existence of a portable interface for
locking portions of a process in memory, paging behavior need not affect the scheduling of realtime processes.

This standard also does not address the priorities of “system” processes. In general, these processes should always
execute in low-priority ranges to avoid conflict with other realtime processes. Implementations should document the
priority ranges in which system processes run.

The default scheduling policy is not defined. The effect of I/O interrupts and other system processing activities is not
defined. The temporary lending of priority from one process to another (such as for the purposes of affecting freeing
resources) by the system is not addressed. Preemption of resources is not addressed. Restrictions on the ability of a
process to affect other processes beyond a certain level (influence levels) is not addressed.

The rationale used to justify the simple time-quantum scheduler is that it is common practice to depend upon this type
of scheduling to assure “fair” distribution of processor resources among portions of the application that must
interoperate in a serial fashion. Note that the standard is silent with respect to the setting of this time quantum, or
whether it is a systemwide value or a per-process value, although it appears that the prevailing realtime practice is for
it to be a systemwide value.

In a system with N processes at a given priority, all processor-bound, in which the time quantum is equal for all
processes at a specific priority level, the following assumptions are made of such a scheduling policy:

1) A time quantum Q exists and the current process will own control of the processor for at least a duration of
Q and will have the processor for a duration of Q.

2) The Nth process at that priority will control a processor within a duration of (N−1) × Q.

These assumptions are necessary to provide equal access to the processor and bounded response from the application.

The assumptions hold for the described scheduling policy only if no system overhead, such as interrupt servicing, is
present. If the interrupt servicing load is nonzero, then one of the two assumptions becomes fallacious, based upon
how Q is measured by the system.

If Q is measured by clock time, then the assumption that the process obtains a duration Q processor time is false if
interrupt overhead exists. Indeed, a scenario can be constructed with N processes in which a single process undergoes
complete processor starvation if a peripheral device, such as an analog-to-digital converter, generates significant
interrupt activity periodically with a period of N × Q.

If Q is measured as actual processor time, then the assumption that the Nth process runs in within the duration (N−1)
× Q is false.

412 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

It should be noted that SCHED_FIFO suffers from interrupt-based delay as well. However, for SCHED_FIFO, the
implied response of the system is “as soon as possible,” so that the interrupt load for this case is a vendor selection and
not a compliance issue.

With this in mind, it is necessary either to complete the definition by including bounds on the interrupt load, or to
modify the assumptions that can be made about the scheduling policy.

Since the motivation of inclusion of the policy is common usage, and since current applications do not enjoy the luxury
of bounded interrupt load, item (2) above is sufficient to express existing application needs and is less restrictive in the
standard definition. No difference in interface is necessary.

In an implementation in which the time quantum is equal for all processes at a specific priority, our assumptions can
then be restated as:

 A time quantum Q exists, and a processor-bound process will be rescheduled after a duration of, at most, Q.
Time quantum Q may be defined in either wall clock time or execution ti me.

 In general, the Nth process of a priority level should wait no longer than (N−l) × Q time to execute, assuming
no processes exist at higher priority levels.

 No process should wait indefinitely.

For implementations supporting per-process time quanta, these assumptions can be readily extended.

B.13.1 Thread Scheduling

Scheduling Implementation Models

The following scheduling implementation models are presented in terms of threads and “kernel entities.” This is to
simplify exposition of the models, and it does not imply that an implementation actually has an identifiable “kernel
entity.”

A kernel entity is not defined beyond the fact that it has scheduling attributes that are used to resolve contention with
other kernel entities for execution resources. A kernel entity may be thought of as an envelope that holds a thread or a
separate kernel thread. It is not a conventional process, although it shares with the process the attribute that it has a
single thread of control; it does not necessarily imply an address space, open files, etc. It is better thought of as a
primitive facility upon which conventional processes and threads may be %constructed.

 System Thread Scheduling Model: This model consists of one thread per kernel entity. The kernel entity is
solely responsible for scheduling thread execution on one or more processors. This model schedules all
threads against all other threads in the system using the scheduling attributes of the thread.

 Process Scheduling Model: A generalized process scheduling model consists of two levels of scheduling. A
threads library creates a pool of kernel entities, as required, and schedules threads to run on them using the
scheduling attributes of the threads. Typically, the size of the pool is a function of the simultaneously
runnable threads, not the total number of threads. The kernel then schedules the kernel entities onto
processors according to their scheduling attributes, which are managed by the threads library. This set model
potentially allows a wide range of mappings between threads and kernel entities.

System and Process Scheduling Model Performance

There are a number of important implications on the performance of applications using these scheduling models. The
process scheduling model potentially provides lower overhead for making scheduling decisions, since there is no need
to access kernel-level information or functions and the set of schedulable entities is smaller (only the threads within the
process).

Copyright © 1996 IEEE All Rights Reserved 413

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

On the other hand, since the kernel is also making scheduling decisions regarding the system resources under its
control (e.g., CPU(s), I/O devices, memory), decisions that do not take thread scheduling parameters into account can
result in indeterminate delays for realtime application threads, causing them to miss maximum response time limits.

Rate Monotonic Scheduling

Rate Monotonic Scheduling was considered, but rejected for standardization in the context of threads. It and a sporadic
server policy are being considered in the context of further POSIX standardization efforts.

Scheduling Options

In this standard, the basic thread scheduling functions are defined under the {_POSIX_THREADS} option so that they
are required of all threads implementations. However, there are no specific scheduling policies required by this option
to allow for conforming thread implementations that are not targeted to realtime applications.

Specific standard scheduling policies are defined to be under the {_POSIX_THREAD_PRIORITY_SCHEDULING}
option, and they are specifically designed to support realtime applications by providing predictable resource sharing
sequences. The name of this option was chosen to emphasize that this functionality is defined as appropriate for
realtime applications that require simple priority-based scheduling.

It is recognized that these policies are not necessarily satisfactory for some multiprocessor implementations, and work
is ongoing to address a wider range of scheduling behaviors. The interfaces have been chosen to create abundant
opportunity for future scheduling policies to be implemented and standardized based on this interface. In order to
standardize a new scheduling policy, all that is required (from the standpoint of thread scheduling attributes) is to
define a new policy name, new members of the thread attributes object, and functions to set these members when the
scheduling policy is equal to the new value.

B.13.1.1 Scheduling Contention Scope

In order to accommodate the requirement for realtime response, each thread has a scheduling contention scope
attribute. Threads with a system scheduling contention scope have to be scheduled with respect to all other threads in
the system. These threads are usually bound to a single kernel entity that reflects their scheduling attributes and are
directly scheduled by the kernel.

Threads with a process scheduling contention scope need be scheduled only with respect to the other threads in the
process. These threads may be scheduled within the process onto a pool of kernel entities. The implementation is also
free to bind these threads directly to kernel entities and let them be scheduled by the kernel. Process scheduling
contention scope allows the implementation the most flexibility and is the default if both contention scopes are
supported and none is specified.

Thus, the choice by implementors to provide one or the other (or both) of these scheduling models is driven by the need
of their supported application domains for worst-case (i.e., realtime) response, or average-case (nonrealtime) response.

B.13.1.2 Scheduling Allocation Domain

The SCHED_FIFO and SCHED_RR scheduling policies take on different characteristics on a multiprocessor. Other
scheduling policies are also subject to changed behavior when executed on a multiprocessor. The concept of
scheduling allocation domain determines the set of processors on which the threads of an application may run. By
considering the application's processor scheduling allocation domain for its threads, scheduling policies can be defined
in terms of their behavior for varying processor scheduling allocation domain values. It is conceivable that not all
scheduling allocation domain sizes make sense for all scheduling policies on all implementations. The concept of
scheduling allocation domain, however, is a useful tool for the description of multiprocessor scheduling policies.

414 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

The “process control” approach to scheduling (See {B72}) obtains significant performance advantages from dynamic
scheduling allocation domain sizes when it is applicable.

Non-Uniform Memory Access (NUMA) multiprocessors (for instance, BBN Butterfly, Stanford DASH) may use a
system scheduling structure that involves reassignment of threads among scheduling allocation domains. In NUMA
machines, a natural model of scheduling is to match scheduling allocation domains to clusters of processors. Load
balancing in such an environment requires changing the scheduling allocation domain to which a thread is assigned.

B.13.1.3 Scheduling Documentation

Implementation-provided scheduling policies need to be completely documented in order to be useful. This
documentation includes a description of the attributes required for the policy, the scheduling interaction of threads
running under this policy and all other supported policies, and the effects of all possible values for processor
scheduling allocation domain. Note that for the implementor wishing to be minimally compliant, it is (minimally)
acceptable to define the behavior as undefined.

B.13.2 Thread Scheduling Functions

B.13.2.1 Thread Creation Scheduling Attributes

Scheduling Contention Scope Attribute

The scheduling contention scope defines how threads compete for resources. Within this standard, scheduling
contention scope is used to describe only how threads are scheduled in relation to one another in the system. That is,
either they are scheduled against all other threads in the system (“system scope”) or only against those threads in the
process (“process scope”). In fact, scheduling contention scope may apply to additional resources, including virtual
timers and profiling, which are not currently considered by this standard.

Mixed Scopes

If only one scheduling contention scope is supported, the scheduling decision is straightforward. To perform the
processor scheduling decision in a mixed scope environment, it is necessary to map the scheduling attributes of the
thread with process-wide contention scope to the same attribute space as the thread with system-wide contention
scope.

Since a conforming implementation has to support one and may support both scopes, it is useful to discuss the effects
of such choices with respect to example applications. If an implementation supports both scopes, mixing scopes
provides a means of better managing system-level (that is, kernel level) and library-level resources. In general, threads
with system scope will require the resources of a separate kernel entity in order to guarantee the scheduling semantics.
On the other hand, threads with process scope can share the resources of a kernel entity while maintaining the
scheduling semantics.

The application is free to create threads with dedicated kernel resources, and other threads that multiplex kernel
resources. Consider the example of a window server. The server allocates two threads per widget: one thread manages
the widget user interface (including drawing), while the other thread takes any required application action. This allows
the widget to be “active” while the application is computing. A screen image may be built from thousands of widgets.
If each of these threads had been created with system scope, then most of the kernel level resources might be wasted,
since only a few widgets are active at any one time. In addition, mixed scope is particularly useful in a window server
where one thread with high priority and system scope handles the mouse so that it tracks well. As another example,
consider a database server. For each of the hundreds or thousands of clients supported by a large server, an equivalent
number of threads will have to be created. If each of these threads were system, the consequences would be the same
as for the window server example above. However, the server could be constructed so that actual retrieval of data is
done by several dedicated threads. Dedicated threads that do work for all clients frequently justify the added expense

Copyright © 1996 IEEE All Rights Reserved 415

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

of system scope. If it were not permissible to mix system and process threads in the same process, this type of solution
would not be possible.

B.13.2.2 Dynamic Thread Scheduling Parameters Access

In many time-constrained applications, there is no need to change the scheduling attributes dynamically during thread
or process execution, since the general use of these attributes is to reflect directly the time constraints of the
application. Since these time constraints are generally imposed to meet higher-level system requirements, such as
accuracy or availability, they frequently should remain unchanged during application execution.

However, there are important situations in which the scheduling attributes should be changed. Generally, this will
occur when external environmental conditions exist in which the time constraints change. Consider, for example, a
space vehicle major mode change, such as the change from ascent to descent mode, or the change from the space
environment to the atmospheric environment. In such cases, the frequency with which many of the sensors or acutators
need to be read or written will change, which will necessitate a priority change. In other cases, even the existence of a
time constraint might be temporary, necessitating not just a priority change, but also a policy change for ongoing
threads or processes. For this reason, it is critical that the interface should provide functions to change the scheduling
parameters dynamically, but, as with many of the other real-time functions, it is important that applications use them
properly to avoid the possibility of unnecessarily degrading performance.

In providing functions for dynamically changing the scheduling behavior of threads, there were two options: provide
functions to get and set the individual scheduling parameters of threads, or provide a single interface to get and set all
the scheduling parameters for a given thread simultaneously. Both approaches have merit. Access functions for
individual parameters allow simpler control of thread scheduling for simple thread scheduling parameters. However, a
single function for setting all the parameters for a given scheduling policy is required when first setting that scheduling
policy. Since the single all-encompassing functions are required, it was decided to leave the interface as minimal as
possible. Note that simpler functions (such as pthread_setprio() for threads running under the priority-based
schedulers) can be easily defined in terms of the all-encompassing functions.

If the function pthread_setschedparam() executes successfully, it will have set all of the scheduling parameter values
indicated in param; otherwise, none of the scheduling parameters will have been modified. This is necessary to ensure
that the scheduling of this and all other threads continues to be consistent in the presence of an erroneous scheduling
parameter.

The [EPERM] value is included in the list of possible pthread_setschedparam() error returns as a reflection of the fact
that the ability to change scheduling parameters increases risks to the implementation and application performance if
the scheduling parameters are changed improperly. For this reason, and based on some existing practice, it was felt that
some implementations would probably choose to define specific permissions for changing either a thread's own or
another thread's scheduling parameters. The standard does not include portable methods for setting or retrieving
permissions, so any such use of permissions is completely unspecified.

B.13.2.3 Mutex Initialization Scheduling Attributes

In a priority-driven environment, a direct use of traditional primitives like mutexes and condition variables can lead to
unbounded priority inversion, where a higher priority thread can be blocked by a lower priority thread, or set of
threads, for an unbounded duration of time. As a result, it becomes impossible to guarantee thread deadlines. Priority
inversion can be bounded and minimized by the use of priority inheritance protocols. This allows thread deadlines to
be guaranteed even in the presence of synchronization requirements.

Two useful but simple members of the family of priority inheritance protocols are the basic priority inheritance
protocol and the priority ceiling protocol emulation. Under the Basic Priority Inheritance protocol (governed by the
{_POSIX_THREAD_PRIO_INHERIT} option), a thread that is blocking higher priority threads executes at the
priority of the highest priority thread that it blocks. This simple mechanism allows priority inversion to be bounded by
the duration of critical sections and makes timing analysis possible.

416 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Under the Priority Ceiling Protocol Emulation protocol (governed by the {_POSIX_THREAD_PRIO_PROTECT}
option), each mutex has a priority ceiling, usually defined as the priority of the highest priority thread that can lock the
mutex. When a thread is executing inside critical sections, its priority is unconditionally increased to the highest of the
priority ceilings of all the mutexes owned by the thread. This protocol has two very desirable properties in
uniprocessor systems. First, a thread can be blocked by a lower priority thread for at most the duration of one single
critical section. Furthermore, when the protocol is correctly used in a single processor, and if threads do not become
blocked while owning mutexes, mutual deadlocks are prevented.

The priority ceiling emulation can be extended to multiple processor environments, in which case the values of the
priority ceilings will be assigned depending on the kind of mutex that is being used: local to only one processor, or
global, shared by several processors. Local priority ceilings will be assigned the usual way, equal to the priority of the
highest priority thread that may lock that mutex. Global priority ceilings will usually be assigned a priority level higher
than all the priorities assigned to any of the threads that reside in the involved processors to avoid the effect called
remote blocking.

B.13.2.4 Change the Priority Ceiling of a Mutex

In order for the priority protect protocol to exhibit its desired properties of bounding priority inversion and avoidance
of deadlock, it is critical that the ceiling priority of a mutex be the same as the priority of the highest thread that can
ever hold it, or higher. Thus, if the priorities of the threads using such mutexes never change dynamically, there is no
need ever to change the priority ceiling of a mutex.

However, if a major system mode change results in an altered response time requirement for one or more application
threads, their priority has to change to reflect it. It will occasionally be the case that the priority ceilings of mutexes
held also need to change. While changing priority ceilings should generally be avoided, it is important that the
standard provide these interfaces for those cases in which it is necessary.

B.14 Clocks and Timers

Clocks

ISO/IEC 9945-1 :1990 and the C Standard {2} both define functions for obtaining System Time. Implicit behind these
functions is a mechanism for measuring passage of time. This specification makes this mechanism explicit and calls it
a clock. The CLOCK_REALTIME clock required by the standard is a higher resolution version of the clock that
maintains ISO/IEC 9945-1 :1990 System Time. This is a “systemwide” clock in that it is visible to all processes and,
were it possible for multiple processes to all read the clock at the same time, they would see the same value.

An extensible interface was defined, with the ability for implementations to define additional clocks. This was done
because of the observation that many realtime platforms support multiple clocks, and it was desired to fit this model
within the standard interface. But implementation-defined clocks need not represent actual hardware devices, nor are
they necessarily systemwide.

Timers

Two timer types are required for a system to support realtime applications.

 One-shot
A one-shot timer is a timer that is armed with an initial expiration time, either relative to the current time or
at an absolute time (based on some timing base, such as time in seconds and nanoseconds since the Epoch).
The timer expires once and then is disarmed. With the specified facilities, this is accomplished by setting the
it_value member of the value argument to the desired expiration time and the it_interval member to zero.

 Periodic
A periodic timer is a timer that is armed with an initial expiration time, again either relative or absolute, and
a repetition interval. When the initial expiration occurs, the timer is reloaded with the repetition interval and

Copyright © 1996 IEEE All Rights Reserved 417

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

continues counting. With the specified facilities, this is accomplished by setting the it_value member of the
value argument to the desired initial expiration time and the it_interval member to the desired repetition
interval.

For both of these types of timers, the time of the initial timer expiration can be specified in two ways:

 Relative (to the current time) or
 Absolute

Examples of Using Realtime Timers

In the diagrams below, “S” indicates a program schedule, “R” shows a schedule method request, and “E” suggests an
internal operating system event.

 Periodic timer—data logging
During an experiment, it might be necessary to log realtime data periodically to an internal buffer or to a mass
storage device. With a periodic scheduling method, a logging module can be started automatically at fixed
time intervals to log the data.
Program schedule is requested every 10 s.

To achieve this type of scheduling using the specified facilities, one would allocate a per-process timer based
on clock ID CLOCK_REALTIME. Then the timer would be armed via a call to timer_settime() with the
TIMER_ABSTIME flag reset, and with an initial expiration value and a repetition interval of 10 s.

 One-shot timer (relative time)—device initialization
In an emission test environment, large sample bags are used to capture the exhaust from a vehicle. The
exhaust is purged from these bags before each and every test. With a one-shot timer, a module could initiate
the purge function and then suspend itself for a predetermined period of time while the sample bags are
prepared.
Program schedule requested 20 s after call is issued.

To achieve this type of scheduling using the specified facilities, one would allocate a per-process timer based
on clock ID CLOCK_REALTIME. Then the timer would be armed via a call to timer_settime() with the
TIMER_ABSTIME flag reset, and with an initial expiration value of 20 s and a repetition interval of zero.
Note that if the program wishes merely to suspend itself for the specified interval, it could more easily use
nanosleep().

 One-shot timer (absolute time)—data transmission
The results from an experiment are often moved to a different system within a network for postprocessing or
archiving. With an absolute one-shot timer, a module that moves data from a test-cell computer to a host
computer can be automatically scheduled on a daily basis.
Program schedule requested for 2:30 a.m.

418 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

To achieve this type of scheduling using the specified facilities, one would allocate a per-process timer based
on clock ID CLOCK_REALTIME. Then the timer would be armed via a call to timer_settime() with the
TIMER_ABSTIME flag set, and an initial expiration value equal to 2:30 a.m. of the next day.

 Periodic timer (relative time)—signal stabilization
Some measurement devices, such as emission analyzers, do not respond instantaneously to an introduced
sample. With a periodic timer with a relative initial expiration time, a module that introduces a sample and
records the average response could suspend itself for a predetermined period of time while the signal is
stabilized and then sample at a fixed rate.
Program schedule requested 15 s after call is issued and every 2 s thereafter.

To achieve this type of scheduling using the specified facilities, one would allocate a per-process timer based
on clock ID CLOCK_REALTIME. Then the timer would be armed via a call to timer_settime() with
TIMER_ABSTIME flag reset, and with an initial expiration value of 15 s and a repetition interval of 2 s.

 Periodic timer (absolute time)—work-shift related processing
Resource utilization data is useful when time to perform experiments is being scheduled at a facility. With a
periodic timer with an absolute initial expiration time, a module can be scheduled at the beginning of a work
shift to gather resource utilization data throughout the shift. This data can be used to allocate resources
effectively to minimize bottlenecks and delays and maximize facility throughput.
Program schedule requested for 2:00 a.m. and every 15 min thereafter.

To achieve this type of scheduling using the specified facilities, one would allocate a per-process timer based
on clock ID CLOCK_REALTIME. Then the timer would be armed via a call to timer_settime() with
TIMER_ABSTIME flag set, and with an initial expiration value equal to 2:00 a.m. and a repetition interval
equal to 15 min.

Relationship of Timers to Clocks

The relationship between clocks and timers armed with an absolute time is straightforward: a timer expiration signal
is requested when the associated clock reaches or exceeds the specified time. The relationship between clocks and
timers armed with a relative time (an interval) is less obvious, but not unintuitive. In this case, a timer expiration signal
is requested when the specified interval, as measured by the associated clock, has passed. For the required
CLOCK_REALTIME clock, this allows timer expiration signals to be requested at specified “wall clock” times
(absolute), or when a specified interval of “realtime” has passed (relative). For an implementation-defined clock—say,
a process virtual time clock—timer expirations could be requested when the process has used a specified total amount
of virtual time (absolute), or when it has used a specified additional amount of virtual time (relative).

Copyright © 1996 IEEE All Rights Reserved 419

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The interfaces also allow flexibility in the implementation of the functions. For example, an implementation could
convert all absolute times to intervals by subtracting the clock value at the time of the call from the requested
expiration time and “counting down” at the supported resolution. Or it could convert all relative times to absolute
expiration time by adding in the clock value at the time of the call and comparing the clock value to the expiration time
at the supported resolution. Or it might even choose to maintain absolute times as absolute and compare them to the
clock value at the supported resolution for absolute timers, and maintain relative times as intervals and count them
down at the resolution supported for relative timers. The choice will be driven by efficiency considerations and the
underlying hardware or software clock implementation.

B.14.1 Data Definitions for Clocks and Timers

The standard uses a time representation capable of supporting nanosecond resolution timers for the following reasons:

 To enable the standard to represent those computer systems already using nanosecond or submicrosecond
resolution clocks.

 To accommodate those per-process timers that might need nanoseconds to specify an absolute value of
systemwide clocks even though the resolution of the per-process timer may only be milliseconds, or vice
versa.

 Because the number of nanoseconds in a second can be represented in 32 b.

Time values are represented in the timespec structure. The tv_sec member is of type time_t so that this member is
compatible with time values used by ISO/IEC 9945-1 : 1990 functions and the C Standard {2}. The tv_nsec member
is a signed long in order to simplify and clarify code that decrements or finds differences of time values. Note that
because i billion (number of nanoseconds per second) is less than half of the value representable by a signed 32 b
value, it is always possible to add two valid fractional seconds represented as integral nanoseconds without
overflowing the signed 32 b value.

A maximum allowable resolution for the CLOCK_REALTIME clock of 20 ms (1/50 s) was chosen to allow line
frequency clocks in European countries to be conforming. 60 Hz clocks in the U.S. will also be conforming, as will
finer granularity clocks, although a Strictly Conforming Application cannot assume a granularity of less than 20 ms (1/
50 s).

The minimum allowable maximum time allowed for the CLOCK_REALTIME clock and the function nanosleep(),
and timers created with clock_id = CLOCK_REALTIME, is determined by the fact that the tv_sec member is of type
time_t. Earlier development of this part of ISO/IEC 9945 provided for different maximums for timers and nanosleep().
This provision was removed when the resolution functions were removed because existing practice does not specify a
maximum, but accepts any interval that can be described by a time_t.

The standard specifies that timer expirations shall not be delivered early nor shall nanosleep() return early due to
quantization error. ISO/IEC 9945-1 :1990 discusses the various implementations of alarm() in the rationale and states
that implementations that do not allow alarm signals to occur early are the most appropriate, but refrained from
mandating this behavior. Because of the importance of predictability to realtime applications, this standard takes a
stronger stance.

The developers of this part of ISO/IEC 9945 considered using a time representation that differs from POSIX. lb in the
second 32 b of the 64-b value. Whereas POSIX.lb defines this field as a fractional second in nanoseconds, the other
methodology defines this as a binary fraction of one second, with the radix point assumed before the most significant
bit.

POSIX.lb is a software, source-level standard and most of the benefits of the alternate representation are enjoyed by
hardware implementations of clocks and algorithms. It was felt that mandating this format for POSIX.lb clocks and
timers would unnecessarily burden the application writer with writing, possibly non-portable, multiple precision
arithmetic packages to perform conversion between binary fractions and integral units such as nanoseconds,
milliseconds, etc.

420 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

B.14.2 Clock and Timer Functions

B.14.2.1 Clocks

The need for clock drift rate adjustment was pointed out for two reasons:

1) To provide a mechanism for writing portable clock synchronization algorithms for synchronizing clocks in
distributed or cooperating realtime systems, and

2) To provide a way to set a clock while ensuring that time, as measured by the clock, is a monotonically
increasing quantity. This is analogous to the capability provided by the BSD adjtime() function.

Interfaces were defined to support the synchronization of clocks with external time or between systems by using
clock_settime() for gross adjustments in time, and by using clock_setdrift() to adjust the time precisely. When a clock
needs to be set back in time, a negative drift can be used to slow down the clock so that it converges over time to the
correct value without invalidating programs that expect time to be monotonically increasing. It also minimizes the
impact of changing the time base on armed per-process timers based on that clock.

There is no equivalent to the BSD adjtime() function in this part of ISO/IEC 9945. The adjtime() function could be
implemented on the clock-drift functions described in this rationale. The virtual and profiling interval timing functions
of BSD are not in this part of ISO/IEC 9945 , but these could be implemented as extensions using new clock_id values.

B.14.2.2 Create a Per-Process Timer

Periodic Timer Overrun and Resource Allocation

The specified timer facilities may deliver Realtime Signals (that is, queued signals) on implementations that support
this option. Because realtime applications cannot afford to lose notifications of asynchronous events, like timer
expirations or asynchronous I/O completions, it must be possible to ensure that sufficient resources exist to deliver the
signal when the event occurs. In general, this is not a difficulty because there is a one-to-one correspondence between
a request and a subsequent signal generation. If the request cannot allocate the signal delivery resources, it can fail the
call with an [EAGAIN] error.

Periodic Timers are a special case. A single request can generate an indeterminate number of signals. This is not a
problem if the requesting process can service the signals as fast as they are generated, thus making the signal delivery
resources available for delivery of subsequent periodic timer expiration signals. But, in general, this cannot be
assured—processing of periodic timer signals may “overrun.” That is, subsequent periodic timer expirations may
occur before the currently pending signal has been delivered.

Also, for signals, according to ISO/IEC 9945-1 : 1990, if subsequent occurrences of a pending signal are generated, it
is implementation defined whether a signal is delivered for each occurrence. This is not adequate for some realtime
applications. So a mechanism is required to allow applications to detect how many timer expirations were delayed
without requiring an indefinite amount of system resources to store the delayed expirations.

The specified facilities provide for an overrun count. The overrun count is defined as the number of extra timer
expirations that occurred between the time a timer expiration signal is generated and the time the signal is delivered.
The signal-catching function, if it is concerned with overruns, can retrieve this count on entry. With this method, a
periodic timer only needs one “signal queuing resource” that can be allocated at the time of the timer_create() function
call.

A function is defined to retrieve the overrun count so that an application need not allocate static storage to contain the
count, and an implementation need not update this storage asynchronously on timer expirations. But, for some high-
frequency periodic applications, the overhead of an additional system call on each timer expiration may be prohibitive.
The interfaces, as defined, permit an implementation to maintain the overrun count in user space, associated with the
timerid. The timer_getoverrun() function can then be implemented as a macro that uses the timerid argument (which

Copyright © 1996 IEEE All Rights Reserved 421

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

may just be a pointer to a user space structure containing the counter) to locate the overrun count with no system call
overhead. Other implementations, less concerned with this class of applications, can avoid the asynchronous update of
user space by maintaining the count in a system structure at the cost of the extra system call to obtain it.

Timer Expiration Signal Parameters

The Realtime Signals Extension option supports an application-specific datum that is delivered to the extended signal
handler. This value is explicitly specified by the application, along with the signal number to be delivered, in a sigevent
structure. The type of the application-defined value can be either an integer constant or a pointer. This explicit
specification of the value, as opposed to always sending the timer ID, was selected based on existing practice.

It is common practice for realtime applications (on non-POSIX systems or realtime extended POSIX systems) to use
the parameters of event handlers as the case label of a switch statement or as a pointer to an application-defined data
structure. Because timer_ids are dynamically allocated by the timer_create() function, they can be used for neither of
these functions without additional application overhead in the signal handler—for example, to search an array of saved
timer IDs to associate the ID with a constant or application data structure.

The revised text makes consistent the semantics of the members of the sigevent structure.

B.14.2.3 Delete a Per-Process Timer

There is no additional rationale provided for this subclause.

B.14.2.4 Per-Process Timers

The clock_settime(), timer_settime() and nanosleep() functions are defined to truncate specified time values down to
the resolution supported by the implementation. Values are truncated when set because this appears to be existing
practice, and it does not seem reasonable to require an error in this case. Note that this is symmetric with the truncation
that occurs when reading the time via clock_gettime() or timer_gettime() at a time that is not an integral multiple of the
clock or timer resolution.

The specification defines interfaces that allow an application to determine the implementation-supported resolution for
the clocks and requires an implementation to document the resolution supported for timers and nanosleep() if they
differ from the supported clock resolution. This is more of a procurement issue than a run-time application issue.

B.14.2.5 High Resolution Sleep

It is common to suspend execution of a process for an interval in order to poll the status of a noninterrupting interface.
A large number of actual needs can be met with a simple extension to sleep() that provides finer resolution.

In ISO/IEC 9945-1 : 1990 and SVR4, it is possible to implement such a routine, but the frequency of wakeup is limited
by the resolution of the alarm() and sleep() functions. In BSD4.3, it is possible to write such a routine using no static
storage and reserving no system facilities. Although it is possible to write a function with similar functionality to
sleep() using the remainder of the timers interface, such a function will require the use of signals and the reservation
of some signal number. This standard requires that nanosleep() be nonintrusive of the signals interface.

The nanosleep() function returns a value of 0 on success and −1 on failure or if interrupted. This latter case is different
from sleep(). This was done because the remaining time is returned via an argument structure pointer, rmtp, instead of
as the return value.

B.15 Message Passing

This section provides the rationale for the definition of the message passing interface in this standard. This is presented
in terms of the objectives, models, and requirements imposed upon this interface.

422 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Objectives

Many applications, including both realtime and database applications, require a means of passing arbitrary amounts of
data between cooperating processes comprising the overall application on one or more processors. Many conventional
interfaces for interprocess communication are insufficient for realtime applications in that efficient and deterministic
data passing methods cannot be implemented. This has prompted the definition of message passing interfaces
providing these facilities:

 Open a message queue.
 Send a message to a message queue.
 Receive a message from a queue, either synchronously or asynchronously.
 Alter message queue attributes for flow and resource control.

It is assumed that an application may consist of multiple cooperating processes and that these processes may wish to
communicate and coordinate their activities. The message passing facility described in this standard allows processes
to communicate through system wide queues. These message queues are accessed through names that may be
pathnames. A message queue can be opened for use by multiple sending and/or multiple receiving processes.

Background on Embedded Applications

Interprocess communication utilizing message passing is a key facility for the construction of deterministic, high-
performance realtime applications. The facility is present in all realtime systems and is the framework upon which the
application is constructed. The performance of the facility is usually a direct indication of the performance of the
resulting application.

Realtime applications, especially for embedded systems, are typically designed around the performance constraints
imposed by the message passing mechanisms. Applications for embedded systems are typically very tightly
constrained. Application writers expect to design and control the entire system. In order to minimize system costs, the
writer will attempt to use all resources to their utmost and minimize the requirement to add additional memory or
processors.

The embedded applications usually share address spaces and only a simple message passing mechanism is required.
The application can readily access common data incurring only mutual exclusion overheads. The models desired are
the simplest possible with the application building higher level facilities only when needed.

Requirements

The following requirements determined the features of the message passing facilities defined in this part of ISO/IEC
9945.

 Naming of message queues
The mechanism for gaining access to a message queue is a pathname evaluated in a context that is allowed to
be a file system name space, or it can be independent of any file system. This is a specific attempt to allow
implementations based on either method in order to address both embedded systems and to also allow
implementation in larger systems.
The interface of mq_open() is defined to allow but not require the access control and name conflicts resulting
from utilizing a file system for name resolution. All required behavior is specified for the access control case.
Yet a conforming implementation, such as an embedded system kernel, may define that there are no
distinctions between users and may define that all process have all access privileges.

 Embedded system naming
Embedded systems need to be able to utilize independent name spaces for accessing the various system
objects. They typically do not have a file system, precluding its utilization as a common name resolution
mechanism. The modularity of an embedded system limits the connections between separate mechanisms
that can be allowed.

Copyright © 1996 IEEE All Rights Reserved 423

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Embedded systems typically do not have any access protection. Since the system does not support the mixing
of applications from different areas, and usually does not even have the concept of an authorization entity,
access control is not useful.

 Large system naming
On systems with more functionality, the name resolution must support the ability to use the file system as the
name resolution mechanism/object storage medium and to have control over access to the objects. Utilizing
the pathname space can result in further errors when the names conflict with other objects.

 Fixed size of messages
The interfaces impose a fixed upper bound on the size of messages that can be sent to a specific message
queue. The size is set on an individual queue basis and cannot be changed dynamically.
The purpose of the fixed size is to increase the ability of the system to optimize the implementation of
mq_send() and mq_receive(). With fixed sizes of messages and fixed numbers of messages, specific message
blocks can be pre-allocated. This eliminates a significant amount of checking for errors and boundary
conditions. Additionally, an implementation can optimize data copying to maximize performance. Finally,
with a restricted range of message sizes, an implementation is better able to provide deterministic operations.

 Prioritization of messages
Message prioritization allows the application to determine the order in which messages are received.
Prioritization of messages is a key facility that is provided by most realtime kernels and is heavily utilized by
the applications. The major purpose of having priorities in message queues is to avoid priority inversions in
the message system, where a high-priority message is delayed behind one or more lower-priority messages.
It has been observed that a significant problem with Ada rendezvous is that it queues tasks in strict FIFO
order, ignoring priorities. This allows the applications to be designed so that they do not need to be
interrupted in order to change the flow of control when exceptional conditions occur. The prioritization does
add additional overhead to the message operations in those cases it is actually used but a clever
implementation can optimize for the FIFO case to make that more efficient.

 Asynchronous notification
The interface supports the ability to have a task asynchronously notified of the availability of a message on
the queue. The purpose of this facility is to allow the task to perform other functions and yet still be notified
that a message has become available on the queue.
To understand the requirement for this function, it is useful to understand two models of application design:
a single task performing multiple functions and multiple tasks performing a single function. Each of these
models has advantages.
Asynchronous notification is required to build the model of a single task performing multiple operations. This
model typically results from either the expectation that interruption is less expensive than utilizing a separate
task or from the growth of the application to include additional functions.

B.15.1 Data Definitions for Message Queues

B.15.1.1 Data Structures

There is no specific rationale for this subclause.

B.15.2 Message Passing Functions

There are several facilities that are not supported by the specified interfaces. The primary reason for this is that they
adversely impact performance and are not present in the realtime kernels examined.

The following facilities were explicitly excluded from the interfaces. Some of the rationale behind the exclusion is
provided.

 Buffer management
Buffer management is a controversial area. With additional information from the user, the system can make
significant performance improvements by eliminating the copying if the messages. But this is only useful if
the message buffer is a relatively large, natural allocation unit, such as a page, and the destination is local.

424 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

For the embedded applications, only the “local” requirement is met. The assumptions are that the messages
are small.

 Multiple waiting
The ability to wait on multiple message queues simultaneously has been indicated as a highly desirable
facility but adds significant implementation complexity and is not present in most of the realtime kernels.
The implementation of waiting for messages on multiple queues tends to be complex. There is the necessity
of placing an indication in each of the queues that a specific process wishes to receive a message. It is then
also required that after the first message is received, that no more messages are assigned to the process.
Consideration of the possibility of multiple processes waiting for messages on multiple disjoint sets of queues
gives insight into the possible implementation complexity.

B.15.2.1 Open a Message Queue

The revised text clarifies the creation of a message queue description and associates the O_NONBLOCK flag with the
message queue description.

B.15.2.2 Close a Message Queue

There is no specific rationale for this subclause.

B.15.2.3 Remove a Message Queue

There is no specific rationale for this subclause.

B.15.2.4 Send a Message to a Message Queue

The value of the symbol {MQ_PRIO_MAX} limits the number of priority levels supported by the application. The
revised text requires that message priorities range from 0 to {MQ_PRIO_MAX}−1.

B.15.2.5 Receive a Message From a Message Queue

There is no specific rationale for this subclause.

B.15.2.6 Notify Process that a Message is Available on a Queue

There is no specific rationale for this subclause.

B.15.2.7 Set Message Queue Attributes

The revised text clarifies the creation of a message queue description and associates the O_NONBLOCK flag with the
message queue description.

B.15.2.8 Get Message Queue Attributes

The revised text clarifies the creation of a message queue description and associates the O_NONBLOCK flag with the
message queue description.

B.16 Thread Management

B.16.1 Threads

Threads will normally be more expensive than subroutines (or functions, routines, etc.) if specialized hardware support
is not provided. Nevertheless, threads should be sufficiently efficient to encourage their use as a medium- to fine-
grained structuring mechanism for parallelism in an application. Structuring an application using threads then allows

Copyright © 1996 IEEE All Rights Reserved 425

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

it to take immediate advantage of any underlying parallelism available in the host environment. This means
implementors are encouraged to optimize for fast execution at the possible expense of efficient utilization of storage.
For example, a common thread creation technique is to cache appropriate thread data structures. That is, rather than
releasing system resources, the implementation retains these resources and reuses them when the program next asks to
create a new thread. If this reuse of thread resources is to be possible, there has to be very little unique state associated
with each thread, because any such state has to be reset when the thread is reused.

B.16.2 Thread Functions

B.16.2.1 Thread Creation Attributes

Attributes objects are provided for threads, mutexes, and condition variables as a mechanism to support probable
future standardization in these areas without requiring that the interface itself be changed. Attributes objects provide
clean isolation of the configurable aspects of threads. For example, “stack size” is an important attribute of a thread,
but it cannot be expressed portably. When porting a threaded program, stack sizes often need to be adjusted. The use
of attributes objects can help by allowing the changes to be isolated in a single place, rather than being spread across
every instance of thread creation.

Attributes objects can be used to set up “classes” of threads with similar attributes, for example, “threads with large
stacks and high priority” or “threads with minimal stacks.” These classes can be defined in a single place and then
referenced wherever threads need to be created. Changes to “class” decisions become straightforward, and detailed
analysis of each pthread_create() call is not required.

The attributes objects are defined as opaque types as an aid to extensibility. If these objects had been specified as
structures, adding new attributes would force recompilation of all multithreaded programs when the attributes objects
are extended; this might not be possible if different program components were supplied by different vendors.

Additionally, opaque attributes objects present opportunities for improving performance. Argument validity can be
checked once when attributes are set, rather than each time a thread is created. Implementations will often need to
cache kernel objects that are expensive to create. Opaque attributes objects provide an efficient mechanism to detect
when cached objects become invalid due to attribute changes.

Because assignment is not necessarily defined on a given opaque type, implementation-dependent default values
cannot be defined in a portable way. The solution to this problem is to allow attribute objects to be initialized
dynamically by attributes object initialization functions, so that default values can be supplied automatically by the
implementation.

The following proposal was provided as a suggested alternative to the supplied attributes:

1) Maintain the style of passing a parameter formed by the bitwise inclusive OR of flags to the initialization
routines [pthread_create(), pthread_mutex_init(), pthread_cond_init()]. The parameter containging the flags
should be an opaque type for extensibility. If no flags are set in the parameter, then the objects are created
with default characteristics. An implementation may specify implementation-specific flag values and
associated behavior.

2) If further specialization of mutexes and condition variables is necessary, implementations may specify
additional procedures that operate on the pthread_mutex_t and pthread_cond_t objects (instead of on
attributes objects).

The difficulties with this solution are

a) A bitmask is not opaque if bits have to be set into bitvector attributes objects using explicitly-coded bitwise
inclusive OR operations. If the set of options exceeds an int, application programmers need to know the
location of each bit. If bits are set or read by encapsulation (i.e., get- or set- functions), then the bitmask is

426 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

merely an implementation of attributes objects as currently defined and should not be exposed to the
programmer.

b) Many attributes are not Boolean or very small integral values. For example, scheduling policy may be placed
in 3 b or 4 b, but priority requires 5 b or more, thereby taking up at least 8 b out of a possible 16 b on machines
with 16-b integers. Because of this, the bitmask can only reasonably control whether particular attributes are
set or not, and it cannot serve as the repository of the value itself. The value needs to be specified as a function
parameter (which is nonextensible), or by setting a structure field (which is non-opaque), or by get and set
functions (making the bit mask a redundant addition to the attributes objects).

Stack size is defined as an optional attribute because the very notion of a stack is inherently machine dependent. Some
implementations may not be able to change the size of the stack, for example, and others may not need to because stack
pages may be discontiguous and can be allocated and released on demand.

The attribute mechanism has been designed in large measure for extensibility. Future extensions to the attribute
mechanism or to any attributes object defined in this standard has to be done with care so as not to affect binary
compatibility.

Attribute objects, even if allocated by means of dynamic allocation functions such as malloc(), may have their size
fixed at compile time. This means, for example, a pthread_create() in an implementation with extensions to the
pthread_attr_t cannot look beyond the area that the binary application assumes is valid. This suggests that
implementations should maintain a size field in the attributes object, as well as possibly version information, if
extensions in different directions (possibly by different vendors) are to be accommodated.

B.16.2.2 Thread Creation

A suggested alternative to pthread_create() would be to define two separate operations: create and start. Some
applications would find such behavior more natural. Ada, in particular, separates the “creation” of a task from its
“activation.”

Splitting the operation was rejected by the working group for many reasons:

 The number of calls required to start a thread would increase from one to two and thus place an additional
burden on applications that do not require the additional synchronization. The second call, however, could be
avoided by the additional complication of a startup state attribute.

 An extra state would be introduced: “created but not started.” This would require the standard to specify the
behavior of the thread operations when the target has not yet started executing.

 For those applications that require such behavior, it is possible to simulate the two separate steps with the
facilities that are currently provided. The start_routine() can synchronize by waiting on a condition variable
that will be signalled by the start operation.

An Ada implementor can choose to create the thread at either of two points in the Ada program—when the task object
is created or when the task is activated (generally at a “begin”). If the first approach is adopted, the start_routine() will
need to wait on a condition variable to receive the order to begin “activation.” The second approach requires no such
condition variable or extra synchronization. In either approach, a separate Ada task control block would need to be
created when the task object is created to hold rendezvous queues, etc.

An extension of the preceding model would be to allow the state of the thread to be modified between the create and
start. This would allow the thread attributes object to be eliminated. This has been rejected because

 All state in the thread attributes object has to be able to be set for the thread. This would require the definition
of interfaces to modify thread attributes. There would be no reduction in the number of function calls required
to set up the thread. In fact, for an application that creates all threads using identical attributes, the number of
function calls required to set up the threads would be dramatically increased. Use of a thread attributes object

Copyright © 1996 IEEE All Rights Reserved 427

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

permits the application to make one set of attribute setting function calls. Otherwise, the set of attribute
setting function calls needs to be made for each thread creation.

 Depending on the implementation archite$cture, interfaces to set thread state would require kernel calls, or
for other implementation reasons would not be able to be implemented as macros, thereby increasing the cost
of thread creation.

 The ability for applications to segregate threads by class would be lost.

Another suggested alternative uses a model similar to that for process creation, such as “thread fork.” The fork
semantics would provide more flexibility and the “create” function can be implemented simply by doing a thread fork
followed immediately by a call to the desired “start routine” for the thread. This alternative has these problems:

 For many implementations, the entire stack of the calling thread would need to be duplicated, since in many
architectures there is no way to determine the size of the calling frame.

 Efficiency is reduced since at least some part of the stack has to be copied, even though in most cases the
thread will never need the copied context, since it will merely call the desired start routine.

B.16.2.3 Wait for Thread Termination

The pthread_join() function is a convenience that has proven useful in multithreaded applications. It is true that a
programmer could simulate this function if it were not provided by passing extra state as part of the argument to the
start_routine(). The terminating thread would set a flag to indicate termination and broadcast a condition that is part of
that state; a joining thread would wait on that condition variable. While such a technique would allow a thread to wait
on more complex conditions (for example, waiting for multiple threads to terminate), waiting on individual thread
termination is considered widely useful. Also, including the pthread_join() function in no way precludes a
programmer from coding such complex waits. Thus, while not a primitive, including pthread_join() in the standard
was considered valuable.

The pthread_join() function provides a simple mechanism allowing an application to wait for a thread to terminate.
After the thread terminates, the application may then choose to clean up resources that were used by the thread. For
instance, after pthread_join() returns, any application-provided stack storage could be reclaimed.

The pthread_join() or pthread_detach() function should eventually be called for every thread that is created with the
detachstate attribute set to PTHREAD_CREATE_JOINABLE so that storage associated with the thread may be
reclaimed.

The interaction between pthread_join() and cancellation is well defined for the following reasons:

1) The pthread_join() function, like all other non-async-cancel-safe functions, can only be called with deferred
cancelability type.

2) Cancellation cannot occur in the disabled cancelability state.

Thus, only the default cancelability state need be considered. As specified, either the pthread_join() call is cancelled,
or it succeeds, but not both. The difference is obvious to the application, since either a cancellation handler is run or
pthread_join() returns. There are no race conditions since pthread_join() was called in the deferred cancelability state.

Here is an example of thread creation and deletion.

 typedef struct {
 int *ar;
 long n;
 } subarray;
 void *
 incer(void *arg)
 {

428 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

 long i;
 for (i = 0; i < ((subarray *)arg)->n; i++)
 ((subarray *)arg)->;ar[i]++;
 }
 main()
 {
 int ar[1000000];
 pthread_t th1, th2;
 subarray sb1, sb2;
 sb1.ar = &ar[0];
 sb1.n = 500000;
 (void) pthread_create(&th1, NULL, incer, &sb1);
 sb2.ar = &ar[500000];
 sb2.n = 500000;
 (void) pthread_create(&th2, NULL, incer, &sb2);
 (void) pthread_join(th1, NULL);
 (void) pthread_join(th2, NULL);
 }

B.16.2.4 Detaching a Thread

The pthread_join() or pthread_detach() functions should eventually be called for every thread that is created so that
storage associated with the thread may be reclaimed.

It has been suggested that a “detach” function is not necessary—that the detach-state thread creation attribute is
sufficient, since a thread need never be dynamically detached. However, need arises in at least two cases:

1) In a cancellation handler for a pthread_join() it is nearly essential to have a pthread_detach() function in
order to detach the thread on which pthread_join() was waiting. Without it, it would be necessary to have the
handler do another pthread_join() to attempt to detach the thread, which would both delay the cancellation
processing for an unbounded period and introduce a new call to pthread_join(), which might itself need a
cancellation handler. A dynamic detach is nearly essential in this case.

2) In order to detach the “initial thread” (as may be desirable in processes that set up server threads).

B.16.2.5 Thread Termination

The normal mechanism by which a thread terminates is to return from the routine that was specified in the
pthread_create() call that started it. The pthread_exit() function provides the capability for a thread to terminate
without requiring a return from the start routine of that thread, thereby providing a function analogous to exit().

Regardless of the method of thread termination, any cancellation cleanup handlers that have been pushed and not yet
popped will be executed, and the destructors for any existing thread specific data will be executed. The standard
requires that cancellation cleanup handlers be popped and called in order. After all cancellation cleanup handlers have
been executed, thread-specific data destructors are called, in an unspecified order, for each item of thread-specific data
that exists in the thread. This ordering is necessary because cancellation cleanup handlers may rely on thread-specific
data.

As the meaning of the status is determined by the application (except when the thread has been canceled, in which case
it is PTHREAD_CANCELED), the implementation has no idea what an illegal status value is, which is why no
address error checking is done.

Copyright © 1996 IEEE All Rights Reserved 429

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

B.16.2.6 Get Thread ID

The pthread_self() function provides a capability similar to the getpid() function for processes and the rationale is the
same: the creation call does not provide the thread ID to the created thread.

B.16.2.7 Compare Thread IDs

Implementations may choose to define a thread ID as a structure. This allows additional flexibility and robustness over
using an int. For example, a thread ID could include a sequence number that allows detection of “dangling IDs”
(copies of a thread ID that has been detached). Because the C language does not support comparison on structure
types, the pthread_equal() function is provided to compare thread IDs.

B.16.2.8 Dynamic Package Initialization

Some C libraries are designed for dynamic initialization. That is, the global initialization for the library is performed
when the first procedure in the library is called. In a single-threaded program, this is normally implemented using a
static variable whose value is checked on entry to a routine, like this:

 static int random_is_initialized = 0;
 extern int initialize_random();
 int random_function()
 {
 if (random_is_initialized == 0) {
 initialize_random();
 random_is_initialized = 1;
 }
 ... /* operations performed after initialization */
 }

To keep the same structure in a multithreaded program, a new primitive is needed. Otherwise, library initialization has
to be accomplished by an explicit call to a library-exported initialization function prior to any use of the library.

For dynamic library initialization in a multithreaded process, a simple initialization flag is not sufficient; the flag needs
to be protected against modification by multiple threads simultaneously calling into the library. Protecting the flag
requires the use of a mutex; however, mutexes have to be initialized before they are used. Ensuring that the mutex is
only initialized once requires a recursive solution to this problem.

The use of pthread_once() not only supplies an implementation-guaranteed means of dynamic initialization, it
provides an aid to the reliable construction of multithreaded and realtime systems. The preceding example then
becomes:

 #include <pthread.h>
 static pthread_once_t random_is_initialized = PTHREAD_ONCE_INIT;
 extern int initialize_random();
 int random_function()
 {
 (void) pthread_once(&random_is_initialized, initialize_random);
 ... /* operations performed after initialization */
 }

Note that a pthread_once_t cannot be an array because some compilers do not accept the construct
&<array_name>.

430 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

B.16.2.9 Omitted and Rejected Functions

B.16.2.9.1 Thread Suspend/Resume

This standard does not provide a facility for suspending or resuming an individual thread. The absence of this feature
does not imply that these facilities will not be available for use by debuggers, language runtimes, and other system
management tools whose needs are beyond the scope of this application portability interface.

Suspend/resume is considered error-prone when generally used as a thread synchronization mechanism by
applications, as there are race conditions that are difficult to avoid. In addition, there is a large amount of existing
practice that does not provide these interfaces in application thread packages. Therefore, it was thought that these
functions should not be made available at the application interface.

The functions “suspend self” and “resume thread” can be implemented with the interfaces defined in this standard,
although perhaps not as efficiently as possible, as follows:

 struct susp {
 struct susp *next;
 pthread_t who;
 pthread_cond_t w;
 } *list;
 pthread_mutex_t lock;
 void suspend_self(void)
 {
 struct susp s;
 pthread_mutex_lock (&lock);
 pthread_cond_init (&s.w, (pthread_condattr_t *) NULL);
 s.who = pthread_self ();
 s.next = list;
 list = &s;
 while (pthread_equal (s.who, pthread_self ()))
 pthread_cond_wait (&s.w, &lock);
 pthread_mutex_unlock (&lock);
 }
 void resume (pthread_t t)
 {
 struct susp *p, *q;
 pthread_mutex_lock (&lock);
 for (q = (struct susp *)&list; p = q->next; q = p)
 {
 if (pthread_equal (t, p->who))
 {
 q->next = p->next;
 p->who = pthread_self ();
 pthread_cond_signal (&p->w);
 break;
 }
 }
 pthread_mutex_unlock (&lock);
 }

Copyright © 1996 IEEE All Rights Reserved 431

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

B.17 Thread-Specific Data

Many applications require that a certain amount of context be maintained on a per-thread basis across procedure calls.
A common example is a multithreaded library routine that allocates resources from a common pool and maintains an
active resource list for each thread. The thread-specific data interface provided to meet these needs may be viewed as
a two-dimensional array of values with keys serving as the row index and thread IDs as the column index (although the
implementation need not work this way).

Models

Three possible thread-specific data models were considered:

1) No explicit support: A standard thread-specific data interface is not strictly necessary to support applications
that require per-thread context. One could, for example, provide a hash function that converted a p-thread_t
into an integer value that could then be used to index into a global array of per-thread data pointers. This hash
function, in conjunction with pthread_self(), would be all the interface required to support a mechanism of
this sort. Unfortunately, this technique is cumbersome. It can lead to duplicated code as each set of
cooperating modules implements their own per-thread data management schemes.

2) Single (void *) pointer: Another technique would be to provide a single word of per-thread storage and a pair
of functions to fetch and store the value of this word. The word could then hold a pointer to a block of per-
thread memory. The allocation, partitioning, and general use of this memory would be entirely up to the
application. Although this method is not as problematic as technique 1, it suffers from interoperability
problems. For example, all modules using the per-thread pointer would have to agree on a common usage
protocol.

3) Key/value mechanism: This method associates an opaque key (e.g., stored in a variable of type pthread_key_t)
with each per-thread datum. These keys play the role of identifiers for per-thread data. This technique is the
most generic and avoids the problems noted above, albeit at the cost of some complexity.

The primary advantage of the third model is its information hiding properties. Modules using this model are free to
create and use their own key(s) independent of all other such usage, whereas the other models require that all modules
that use thread-specific context explicitly cooperate with all other such modules. The data independence provided by
the third model is worth the additional interface.

Requirements

It is important that it be possible to implement the thread-specific data interface without the use of thread private
memory. To do otherwise would increase the weight of each thread, thereby limiting the range of applications for
which the threads interfaces provided by this standard is appropriate.

The values that one binds to the key via pthread_setspecific() may, in fact, be pointers to shared storage locations
available to all threads. It is only the key/value bindings that are maintained on a per-thread basis, and these can be kept
in any portion of the address space that is reserved for use by the calling thread (for example, on the stack). Thus, no
per-thread MMU state is required to implement the interface. On the other hand, there is nothing in the interface
specification to preclude the use of a per-thread MMU state if it is available [for example, the key values returned by
pthread_key_create() could be thread private memory addresses].

Standardization Issues

Thread-specific data is a requirement for a usable thread interface. The binding described in this section provides a
portable thread-specific data mechanism for languages that do not directly support a thread-specific storage class. A
binding to this standard for a language that does include such a storage class need not provide this specific interface.

If a language were to include the notion of thread-specific storage, it would be desirable (but not required) to provide
an implementation of the pthreads thread-specific data interface based on the language feature. For example, assume

432 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

that a compiler for a C-like language supports a “private” storage class that provides thread-specific storage.
Something similar to the following macros might be used to effect a compatible implementation:

 #define pthread_key_t private void *
 #define pthread_key_create(key) /* no-op */
 #define pthread_setspecific(key, value) (key) = (value)
 #define pthread_getspecific(key) (key)

NOTE — For the sake of clarity, this example ignores destructor functions. A correct implementation would have to support them.

B.17.1 Thread-Specific Data Functions

B.17.1.1 Thread-Specific Data Key Creation

Destructor Functions

Normally, the value bound to a key on behalf of a particular thread will be a pointer to storage allocated dynamically
on behalf of the calling thread. The destructor functions specified with pthread_key_create() are intended to be used to
free this storage when the thread exits. Thread cancellation cleanup handlers cannot be used for this purpose because
thread-specific data may persist outside the lexical scope in which the cancellation cleanup handlers operate.

If the value associated with a key needs to be updated during the lifetime of the thread, it may be necessary to release
the storage associated with the old value before the new value is bound. Although the pthread_setspecific() function
could 8966 do this automatically, this feature is not needed often enough to justify the added complexity. Instead, the
programmer is responsible for freeing the stale storage:

 pthread_getspecific(key, &old);
 new = allocate();
 destructor(old);
 pthread_setspecific(key, new);

NOTE — The above example could leak storage if run with asynchronous cancellation enabled. No such problems will occur in
the default cancellation state if no cancellation points occur between the get and set.

There is no notion of a destructor-safe function. If an application does not call pthread_exit() from a signal handler, or
if it blocks any signal whose handler may call pthread_exit() while calling async-unsafe functions, all functions may
be safely called from destructors.

Non-Idempotent Data Key Creation

There were requests to make pthread_key_create() idempotent with respect to a given key address parameter. This
would allow applications to call pthread_key_create() multiple times for a given key address and be guaranteed that
only one key would be created. Doing so would require the key value to be previously initialized (possibly at compile
time) to a known null value and would require that implicit mutual exclusion be performed based on the address and
contents of the key parameter in order to guarantee that exactly one key would be created.

Unfortunately, the implicit mutual exclusion would not be limited to only pthread_key_create(). On many
implementations, implicit mutual exclusion would also have to be performed by pthread_getspecific() and
pthread_setspecific() in order to guard against using incompletely stored or not-yet-visible key values. This could
significantly increase the cost of important operations, particularly pthread_getspecific().

Thus, this proposal was rejected. The pthread_key_create() function performs no implicit synchronization. It it the
responsibility of the programmer to ensure that it is called exactly once per key before use of the key. Several
straightforward mechanisms can already be used to accomplish this, including calling explicit module initialization

Copyright © 1996 IEEE All Rights Reserved 433

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

functions, using mutexes, and using pthread_once(). This places no significant burden on the programmer, introduces
no possibly confusing ad-hoc implicit synchronization mechanism, and potentially allows commonly used thread-
specific data operations to be more efficient.

B.17.1.2 Thread-Specific Data Management

Performance and ease of use of pthread_getspecific() will be critical for functions that rely on maintaining state in
thread-specific data. Since no errors are required to be detected by it, and since the only error that could be detected is
the use of an invalid key, the interface to pthread_getspecific() has been designed to favor speed and simplicity over
error reporting.

B.17.1.3 Thread-Specific Data Key Deletion

A thread-specific data key deletion function has been included in order to allow the resources associated with an
unused thread-specific data key to be freed.

Unused thread-specific data keys can arise, among other scenarios, when a dynamically loaded module that allocated
a key is unloaded.

Portable applications are responsible for performing any cleanup actions needed for data structures associated with the
key to be deleted, including data referenced by thread-specific data values. No such cleanup is done by
pthread_key_delete(). In particular, destructor functions are not called. There are several reasons for this division of
responsibility:

1) The associated destructor functions used to free thread-specific data at thread exit time are only guaranteed to
work correctly when called in the thread that allocated the thread-specific data. (Destructors themselves may
utilize thread-specific data.) Thus, they cannot be used to free thread-specific data in other threads at key
deletion time. Attempting to have them called by other threads at key deletion time would require other
threads to be asynchronously interrupted. But since interrupted threads could be in an arbitrary state,
including holding locks necessary for the destructor to run, this approach would fail. In general, there is no
safe mechanism whereby an implementation could free thread-specific data at key deletion time.

2) Even if there were a means of safely freeing thread-specific data associated with keys to be deleted, doing so
would require that implementations be able to enumerate the threads with non-NULL data and potentially
keep them from creating more thread-specific data while the key deletion is occurring. This special case could
cause extra synchronization in the normal case, which would otherwise be unnecessary.

For an application to know that it is safe to delete a key, it has to know that all the threads that might potentially ever
use the key will not attempt to use it again. For instance, it could know this if all the client threads have called a cleanup
procedure declaring that they are through with the module that is being shut down, perhaps by zeroing a reference
count.

B.17.2 Thread-Specific Data Example

The following example demonstrates a function that initializes a thread-specific data key when it is first called and
associates a thread-specific object with each calling thread, initializing this object when necessary.

 static pthread_key_t key;
 static pthread_once_t key_once = PTHREAD_ONCE_INIT;
 static void
 make_key()
 {
 (void) pthread_key_create(&key, NULL);
 }
 func()

434 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

 {
 void *ptr;
 (void) pthread_once(&key_once, make_key);
 if ((ptr = pthread_getspecific(key)) == NULL) {
 ptr = malloc(OBJECT_SIZE);
 ...
 (void) pthread_setspecific(key, ptr);
 }
 ...
 }

Note that the key has to be initialized before pthread_getspecific() or pthread_setspecific() can be used. The
pthread_key_create() call could either be explicitly made in a module initialization routine, or it can be done implicitly
by the first call to a module as in this example. Any attempt to use the key before it is initialized is a programming
error, making the code below incorrect:

 static pthread_key_t key;
 func()
 {
 void *ptr;
 /* KEY NOT INITIALIZED!!! THIS WON'T WORK!!! */
 if ((ptr = pthread_getspecific(key)) == NULL &&
 pthread_setspecific(key, NULL) != 0) {
 pthread_key_create(&key, NULL);
 ...
 }
 }

B.18 Thread Cancellation

Many existing threads packages have facilities for canceling an operation or canceling a thread. These facilities are
used for implementing user requests (such as the CANCEL button in a window-based application), for implementing
OR parallelism (for example, telling the other threads to stop working once one thread has found a forced mate in a
parallel chess program), or for implementing the ABORT mechanism in Ada.

POSIX programs traditionally have used the signal mechanism combined with either longjmp() or polling to cancel
operations. Many POSIX programmers have trouble using these facilities to solve their problems efficiently in a
single-threaded process. With the introduction of threads, these solutions become even more difficult to use.

The main issues with implementing a cancellation facility are specifying the operation to be canceled, cleanly
releasing any resources allocated to that operation, controlling when the target notices that it has been canceled, and
defining the interaction between asynchronous signals and cancellation.

Specifying the Operation to Cancel

Consider a thread that calls through five distinct levels of program abstraction and then, inside the lowest level
abstraction, calls a function that suspends the thread. (An abstraction boundary is a layer at which the client of the
abstraction sees only the service being provided and can remain ignorant of the implementation. Abstractions are often
layered, each level of abstraction being a client of the lower level abstraction and implementing a higher level
abstraction.) Depending on the semantics of each abstraction, one could imagine wanting to cancel only the call that
causes suspension, only the bottom two levels, or the operation being done by the entire thread. Canceling operations
at a finer grain than the entire thread is difficult because threads are active and they may be run in parallel on a
multiprocessor. By the time one thread can make a request to cancel an operation, the thread performing the operation
may have completed that operation and gone on to start another operation whose cancellation is not desired. Thread

Copyright © 1996 IEEE All Rights Reserved 435

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

IDs are not reused until the thread has exited, and either it was created with the detachstate attribute set to
PTHREAD_CREATE_DETACHED or the pthread_join() or pthread_detach() function has been called for that
thread. Consequently, a thread cancellation will never be misdirected when the thread terminates. For these reasons,
the canceling of operations is done at the granularity of the thread. Threads are designed to be inexpensive enough so
that a separate thread may be created to perform each separately cancelable operation, for example, each possibly long
running user request.

For cancellation to be used in existing code, cancellation scopes and handlers will have to be established for code that
needs to release resources upon cancellation, so that it follows the programming discipline described in the text.

A Special Signal Versus a Special Interface

Two different mechanisms were considered for providing the cancellation interfaces. The first was to provide an
interface to direct signals at a thread and then to define a special signal that had the required semantics. The other
alternative was to use a special interface that delivered the correct semantics to the target thread.

The solution using signals produced a number of problems. It required the implementation to provide cancellation in
terms of signals whereas a perfectly valid (and possibly more efficient) implementation could have both layered on a
low-level set of primitives. There were so many exceptions to the special signal (it cannot be used with kill, no
POSIX.1 interfaces can be used with it) that it was clearly not a valid signal. Its semantics on delivery were also
completely different from any existing POSIX.1 signal. As such, a special interface that did not mandate the
implementation and did not confuse the semantics of signals and cancellation was felt to be the better solution.

Races Between Cancellation and Resuming Execution

Due to the nature of cancellation, there is generally no synchronization between the thread requesting the cancellation
of a blocked thread and events that may cause that thread to resume execution. For this reason, and because excess
serialization hurts performance, when both an event that a thread is waiting for has occurred and a cancellation request
has been made and cancellation is enabled, the standard explicitly allows the implementation to choose between
returning from the blocking call or acting on the cancellation request.

Interaction of Cancellation With Asynchronous Signals

A typical use of cancellation is to acquire a lock on some resource and to establish a cancellation cleanup handler for
releasing the resource when and if the thread is canceled.

A correct and complete implementation of cancellation in the presence of asynchonous signals requires considerable
care. An implementation has to push a cancellation cleanup handler on the cancellation cleanup stack while
maintaining the integrity of the stack data structure. If an asynchronously generated signal is posted to the thread
during a stack operation, the signal handler cannot manipulate the cancellation cleanup stack. As a consequence,
asynchronous signal handlers may not cancel threads or otherwise manipulate the cancellation state of a thread.
Threads may, of course, be canceled by another thread that used a sigwait function to wait synchronously for an
asynchronous signal.

In order for cancellation to function correctly, it is required that asynchronous signal handlers not change the
cancellation state. This requires that some elements of existing practice, such as using longjmp() to exit from an
asynchronous signal handler implicitly, be prohibited in cases where the integrity of the cancellation state of the
interrupt thread cannot be ensured.

436 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

B.18.1 Thread Cancellation Overview

B.18.1.1 Cancelability States

The three possible cancelability states (disabled, deferred, and asynchronous) are encoded into two separate bits
[(disable, enable) and (deferred, asynchronous)] to allow them to be changed and restored independently. For instance,
short code sequences that will not block sometimes disable cancelability on entry and restore the previous state upon
exit. Likewise, long or unbounded code sequences containing no convenient explicit cancellation points will
sometimes set the cancelability type to asynchronous on entry and restore the previous value upon exit.

B.18.1.2 Cancellation Points

Cancellation points are points inside of certain functions where a thread has to act on any pending cancellation request
when cancelability is enabled, if the function would block. As with checking for signals, operations need only check
for pending cancellation requests when the operation is about to block indefinitely.

The idea was considered of allowing implementations to define whether blocking calls such as read() should be
cancellation points. It was decided that it would adversely affect the design of portable applications if blocking calls
were not cancellation points because threads could be left blocked in an uncancelable state.

There is one important blocking routine that is specifically not made a cancellation point: pthread_mutex_lock(). If
pthread_mutex_lock() were a cancellation point, every routine that called it would also become a cancellation point
(that is, any routine that touched shared state would automatically become a cancellation point). For example,
malloc(), free(), and rand() would become cancellation points under this scheme. Having too many cancellation points
makes programming very difficult, leading to either much disabling and restoring of cancelability or much difficulty
in trying to arrange for reliable cleanup at every possible place.

Since pthread_mutex_lock() is not a cancellation point, threads could result in being blocked uninterruptibly for long
periods of time if mutexes were used as a general synchronization mechanism. As this is normally not acceptable,
mutexes should only be used to protect resources that are held for small fixed lengths of time where not being able to
be cancelled will not be a problem. Resources that need to be held exclusively for long periods of time should be
protected with condition variables.

Every library routine should specify whether or not it includes any cancellation points. Typically, only those routines
that may block or compute indefinitely need to include cancellation points.

Correctly coded routines only reach cancellation points after having set up a cancellation cleanup handler to restore
invariants if the thread is canceled at that point. Being cancelable only at specified cancellation points allows
programmers to keep track of actions needed in a cancellation cleanup handler more easily. A thread should only be
made asynchronously cancelable when it is not in the process of acquiring or releasing resources or otherwise in a state
from which it would be difficult or impossible to recover.

B.18.1.3 Thread Cancellation Cleanup Handlers

The cancellation cleanup handlers provide a portable mechanism, easy to implement, for releasing resources and
restoring invariants. They are easier to use than signal handlers because they provide a stack of cancellation cleanup
handlers rather than a single handler and because they have an argument that can be used to pass context information
to the handler.

The alternative to providing these simple cancellation cleanup handlers (whose only use is for cleaning up when a
thread is canceled) is to define a general exception package that could be used for handling and cleaning up after
hardware traps and software detected errors. This was too far removed from the charter of providing threads to handle
asynchrony. However, it is an explicit goal of this standard to be compatible with existing exception facilities and
languages having exceptions.

Copyright © 1996 IEEE All Rights Reserved 437

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The interaction of this facility and other procedure-based or language-level exception facilities is unspecified in this
version of this standard. However, it is intended that it be possible for an implementation to define the relationship
between these cancellation cleanup handlers and Ada, C++, or other language-level exception handling facilities.

It was suggested that the cancellation cleanup handlers should also be called when the process exits or calls the exec
function. This was rejected partly due to the performance problem caused by having to call the cancellation cleanup
handlers of every thread before the operation could continue. The other reason was that the only state expected to be
cleaned up by the cancellation cleanup handlers would be the intraprocess state. Any handlers that are to clean up the
interprocess state would be registered with atexit(). There is the orthogonal problem that the exec functions do not
honor the atexit() handlers, but resolving this is beyond the scope of this standard.

B.18.1.4 Async-Cancel Safety

A function is said to be async-cancel safe if it is written in such a way that entering the function with asynchronous
cancelability enabled will not cause any invariants to be violated, even if a cancellation request is delivered at any
arbitrary instruction. Functions that are async-cancel safe are often written in such a way that they need to acquire no
resources for their operation and the visible variables that they may write are strictly limited.

Any routine that gets a resource as a side effect cannot be made async-cancel safe [for example, malloc()]. If such a
routine were called with asynchronous cancelability enabled, it might acquire the resource successfully, but as it was
returning to the client, it could act on a cancellation request. In such a case, the application would have no way of
knowing whether the resource was acquired or not.

Indeed, because many interesting routines cannot be made async-cancel safe, most library routines in general are not
async-cancel safe. Every library routine should specify whether or not it is async-cancel safe so that programmers
know which routines can be called from code that is asynchronously cancelable.

B.18.2 Thread Cancellation Functions

B.18.2.1 Canceling Execution of a Thread

Two alternative interfaces were considered to sending the cancellation notification to a thread. One would be to define
a new SIGCANCEL signal that had the cancellation semantics when delivered; the other was to define the new
pthread_cancel() function, which would trigger the cancellation semantics.

The advantage of a new signal was that so much of the delivery criteria were identical to that used when trying to
deliver a signal that making cancellation notification a signal was seen as consistent. Indeed, many implementations
will implement cancellation using a special signal. On the other hand, there would be no signal functions that could be
used with this signal except pthread_kill(), and the behavior of the delivered cancellation signal would be unlike any
previously existing defined signal.

The benefits of a special interface include the recognition that this signal would be defined because of the similar
delivery criteria and that this is the only common behavior between a cancellation request and a signal. In addition, the
cancellation delivery mechanism does not have to be implemented as a signal. There are also strong, if not stronger,
parallels with language exception mechanisms than with signals that are potentially obscured if the delivery
mechanism is visibly closer to signals.

In the end, it was considered that as there were so many exceptions to the use of the new signal with existing signals
interfaces that it would be misleading. A special interface has resolved this problem. This interface was carefully
defined so that an implementation wishing to provide the cancellation interfaces on top of signals could do so. The
special interface also means that implementations are not obliged to implement cancellation with signals.

438 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

B.18.2.2 Setting Cancelability State

The pthread_setcancelstate() and pthread_setcanceltype() functions are used to control the points at which a thread
may be asynchronously canceled. For cancellation control to be usable in modular fashion, some rules need to be
followed.

An object can be considered to be a generalization of a procedure. It is a set of procedures and global variables written
as a unit and called by clients not known by the object. Objects may depend on other objects.

First, cancelability should only be disabled on entry to an object, never explicitly enabled. On exit from an object, the
cancelability state should always be restored to its value on entry to the object.

This follows from a modularity argument: if the client of an object (or the client of an object that uses that object) has
disabled cancelability, it is because the client does not want to be concerned about cleaning up if the thread is canceled
while executing some sequence of actions. If an object is called in such a state and it enables cancelability and a
cancellation request is pending for that thread, then the thread will be canceled, contrary to the wish of the client that
disabled.

Second, the cancelability type may be explicitly set to either deferred or asynchronous upon entry to an object. But as
with the cancelability state, on exit from an object the cancelability type should always be restored to its value on entry
to the object.

Finally, only functions that are cancel-safe may be called from a thread that is asynchronously cancelable.

B.18.2.3 Establishing Cancellation Handlers

The two routines that push and pop cancellation cleanup handlers, pthread_cleanup_push() and
pthread_cleanup_pop(), can be thought of as left and right parentheses. They always need to be matched. The
restriction that they have to appear in the same lexical scope allows for efficient macro or compiler implementations
and efficient storage management. A sample implementation of these routines as macros might look like

 #define pthread_cleanup_push(rtn,arg) { \
 struct _pthread_handler_rec __cleanup_handler, **__head; \
 __cleanup_handler.rtn = rtn; \
 __cleanup_handler.arg = arg; \
 (void) pthread_getspecific(_pthread_handler_key, &__head); \
 __cleanup_handler.next = *__head; \
 *__head = &__cleanup_handler;
 #define pthread_cleanup_pop(ex) \
 *__head = __cleanup_handler.next; \
 if (ex) (*__cleanup_handler.rtn) (__cleanup_handler.arg); \
 }

A more ambitious implementation of these routines might do even better by allowing the compiler to note that the
cancellation cleanup handler is a constant and can be expanded inline.

This standard currently leaves unspecified the effect of calling longjmp() from a signal handler executing in a POSIX.1
function. If an implementation wants to allow this and give the programmer reasonable behavior, the longjmp()
function has to call all cancellation cleanup handlers that have been pushed but not popped since the time setjmp() was
called.

Consider a multithreaded function called by a thread that uses signals. If a signal were delivered to a signal handler
during the operation of qsort() and that handler were to call longjmp() (which, in turn, did not call the cancellation

Copyright © 1996 IEEE All Rights Reserved 439

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

cleanup handlers) the helper threads created by the qsort() function would not be canceled. Instead, they would
continue to execute and write into the argument array even though the array might have been popped off of the stack.

Note that the specified cleanup handling mechanism is especially tied to the C language and, while the requirement for
a uniform mechanism for expressing clean up is language independent, the mechanism used in other languages may be
quite different. In addition, this mechanism is really only necessary due to the lack of a real exception mechanism in
the C language, which would be the ideal solution.

There is no notion of a cancellation cleanup-safe function. If an application has no cancellation points in its signal
handlers, blocks any signal whose handler may have cancellation points while calling async-unsafe functions, or
disables cancellation while calling async-unsafe functions, all functions may be safely called from cancellation
cleanup routines.

B.18.2.3.1 Examples

The following is an example using thread primitives to implement a cancelable, writers-priority readers/writers lock:

 typedef struct {
 pthread_mutex_t lock;
 pthread_cond_t rcond,
 wcond;
 int lock_count; /* < 0 .. held by writer */
 /* > 0 .. held by lock_count readers */
 /* = 0 .. held by nobody */
 int waiting_writers; /* count of waiting writers */
 } rwlock;
 void
 waiting_reader_cleanup(void *arg)
 {
 rwlock *l;
 l = (rwlock *) arg;
 pthread_mutex_unlock(&l->lock);
 }
 void
 lock_for_read(rwlock *l)
 {
 pthread_mutex_lock(&l->lock);
 pthread_cleanup_push{waiting_reader_cleanup, l);
 while ((l->lock_count < 0) && (l->waiting_writers ! = 0))
 pthread_cond_wait(&l->rcond, &l->lock);
 l->lock count++;
 /*
 * Note the pthread_cleanup_pop will execute
 * waiting_reader_cleanup
 */
 pthread_cleanup_pop(1);
 }
 void
 release_read_lock(rwlock *l)
 {
 pthread_mutex_lock(&l->lock);
 if (--l->lock_count == 0)
 pthread_cond_signal(&l->wcond);
 pthread_mutex_unlock(l);

440 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

 }
 void
 waiting_writer_cleanup(void *arg)
 {
 rwlock *l;
 l = (rwlock *) arg;
 if ((--l->waiting_writers == 0) && (l->lock_count >= 0)) {
 /*
 * This only happens if we have been canceled
 */
 pthread_cond_broadcast(&l->wcond);
 }
 pthread_mutex_unlock(&l->lock);
 }
 void
 lock_for_write(rwlock *l)
 {
 pthread_mutex_lock(&l->lock);
 l->waiting_writers++;
 pthread_cleanup_push(waiting_writer_cleanup, l);
 while (l->lock_count != 0)
 pthread_cond_wait(&l->wcond, &l->lock);
 l->lock_count = −1;
 /*
 * Note the pthread_cleanup_pop will execute
 * waiting_writer_cleanup
 */
 pthread_cleanup_pop(1);
 }
 void
 release_write_lock(rwlock *l)
 {
 pthread_mutex_lock(&l->lock);
 l->lock_count = 0;
 if (l->waiting_writers == 0)
 pthread_cond_broadcast(&l->rcond)
 else
 pthread_cond_signal(&l->wcond);
 pthread_mutex_unlock(&l->lock);
 }
 /*
 * This function is called to initialize the read/write lock
 */
 void
 initialize_rwlock(rwlock *l)
 {
 pthread_mutex_init(&l->lock, pthread_mutexattr_default);
 pthread_cond_init(&l->wcond, pthread_condattr_default);
 pthread_cond_init(&l->rcond, pthread_condattr_default);
 l->lock_count = 0;
 l->waiting_writers = 0;
 }
 reader_thread()
 {

Copyright © 1996 IEEE All Rights Reserved 441

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

 lock_for_read(&lock);
 pthread_cleanup_push(release_read_lock, &lock);
 /*
 * Thread has read lock
 */
 pthread_cleanup_pop(1);
 }
 writer_thread()
 {
 lock_for_write(&lock);
 pthread_cleanup_push(release_write_lock, &lock);
 /*
 * Thread has write lock
 */
 pthread_cleanup_pop(1);
 }

B.18.3 Language-Independent Cancellation Functionality

The language-independent cancellation functionality is intended to provide each language binding with the capability
for active computations to be canceled in a controlled fashion by other computations. Cleanup code has to be
associated with scopes so that resources held by scopes can be freed and scope invariants can be maintained when
cancellation occurs. Cancellation has to occur only at well-defined points under control of the scopes to be canceled in
order for the complexity of scope cleanup to remain feasible.

It is intended that bindings be able to use language exception facilities as part of the implementation of thread
cancellation. In particular, it would be desirable to have thread cancellation, cancellation scopes, and their associated
cleanup code map into exception raise, exception scopes, and exception handlers in languages providing them.

Some bindings may choose to allow active cancellations to be caught and declared completed by cleanup code,
allowing execution of the cancelled thread to resume normally from that point on. This is a natural operation to allow
for bindings that map cancellations into exceptions and cleanup code into exception handlers. Note that this operation
may require that the stack be unwound during cancellation. By contrast, if all cleanup code is run and the thread is
terminated, the stack may not need to be unwound.

442 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Annex C Header Contents Samples

(Informative)

The material in this informative annex serves as an index to which symbols should appear in which headers in a system
that conforms to POSIX.1 with C Standard Language-Dependent System support.

This is only an index, and any conflicts with the actual body of any relevant standard shall be resolved in favor of that
standard. The actual body of the declaration was omitted in part because this is an index and in part to avoid any
possible conflict with the standards.

Where it is known that a symbol or header is not required for Common Usage C Language-Dependent System support,
the name is followed by an asterisk (*). Omission of an asterisk does not imply that the symbol is required for
Common Usage C. For Common-Usage C, although the location of symbols is typical, it is not to be taken as a
requirement: POSIX.1 is quite explicit that there is no requirement except that differences from the C Standard be
documented. {2}

Generally, where it is stated that functions are defined in a header, macros are permitted as acceptable alternatives by
both standards. See the bodies of the standards for details.

<aio.h>

The header defines the macros

 AIO_ALLDONE LIO_NOP LIO_WAIT
 AIO_CANCELED LIO_NOWAIT LIO_WRITE
 AIO_NOTCANCELED LIO_READ

and the structure

 aiocb

with structure elements

 aio_buf aio_lio_opcode aio_offset aio_sigevent
 aio_fildes aio_nbytes aio_reqprio

and the functions

 aio_cancel() aio_fsync() aio_return() aio_write()
 aio_error() aio_read() aio_suspend() lio_listio()

<assert.h>

The header defines the macro

 assert()

and makes reference to the macro

 NDEBUG

Copyright © 1996 IEEE All Rights Reserved 443

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

<ctype.h>

The header declares the functions

 isalnum() isdigit() islower() ispunct() isupper() tolower()
 isalpha() isgraph() isprint() isspace() isxdigit() toupper()
 iscntrl()

<dirent.h>

The header defines the typedef

 DIR

and declares the structure

 dirent

with structure element member

 d_name

and declares functions

 closedir() opendir() readdir() readdir_r() rewinddir()

<errno.h>

The header defines the macros

 E2BIG EFAULT ENFILE ENOTTY
 EACCES EFBIG ENODEV ENXIO
 EAGAIN EINPROGRESS ENOENT EPERM
 EBADF EINTR ENOEXEC EPIPE
 EBADMSG EINVAL ENOLCK ERANGE
 EBUSY EIO ENOMEM EROFS
 ECANCELED EISDIR ENOSPC ESPIPE
 ECHILD EMFILE ENOSYS ESRCH
 EDEADLK EMLINK ENOTDIR ETIMEDOUT
 EDOM EMSGSIZE ENOTEMPTY EXDEV
 EEXIST ENAMETOOLONG ENOTSUP

and defines the symbol

 errno

<fcntl.h>

The header defines the macros

 FD_CLOEXEC F_SETFL O_APPEND O_RDONLY
 F_DUPFD F_SETLK O_CREAT O_RDWR
 F_GETFD F_SETLKW O_DSYNC O_RSYNC
 F_GETFL F_UNLCK O_EXCL O_SYNC

444 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

 F_GETLK F_WRLCK O_NOCTTY O_TRUNC
 F_RDLCK O_ACCMODE O_NONBLOCK O_WRONLY
 F_SETFD

and declares the structure

 flock

with structure elements

 l_len l_pid l_start l_type l_whence

and the functions

 creat() fcntl() open()

and may contain the macros

 SEEK_CUR S_IRUSR S_ISCHR S_ISREG S_IWUSR
 SEEK_END S_IRWXG S_ISDIR S_ISUID S_IXGRP
 SEEK_SET S_IRWXO S_ISFIFO S_IWGRP S_IXOTH
 S_IRGRP S_IRWXU S_ISGID S_IWOTH S_IXUSR
 S_IROTH S_ISBLK

<float.h>

The header defines the macros

 DBL_DIG* FLT_EPSILON* LDBL_DIG*
 DBL_EPSILON* FLT_MANT_DIG* LDBL_EPSILON*
 DBL_MANT_DIG* FLT_MAX* LDBL_MANT_DIG*
 DBL_MAX* FLT_MAX_10_EXP* LDBL_MAX*
 DBL_MAX_10_EXP* FLT_MAX_EXP* LDBL_MAX_10_EXP*
 DBL_MAX_EXP* FLT_MIN* LDBL_MAX_EXP*
 DBL_MIN* FLT_MIN_10_EXP* LDBL_MIN*
 DBL_MIN_10_EXP* FLT_MIN_EXP* LDBL_MIN_10_EXP*
 DBL_MIN_EXP* FLT_RADIX* LDBL_MIN_EXP*
 FLT_DIG* FLT_ROUNDS*

<grp.h>

The header declares the structure

 group

with structure elements

 gr_gid gr_mem gr_name

and the functions

 getgrgid() getgrnam()
 getgrgid_r() getgrnam_r()

Copyright © 1996 IEEE All Rights Reserved 445

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

<limits.h>

The header defines the macros

 _POSIX_AIO_LISTIO_MAX _POSIX_OPEN_MAX
 _POSIX_AIO_MAX _POSIX_PATH_MAX
 _POSIX_ARG_MAX _POSIX_PIPE_BUF
 _POSIX_CHILD_MAX _POSIX_RTSIG_MAX
 _POSIX_CLOCKRES_MIN _POSIX_SEM_NSEMS_MAX
 _POSIX_DELAYTIMER_MAX _POSIX_SEM_VALUE_MAX
 _POSIX_LINK_MAX _POSIX_SIGQUEUE_MAX
 _POSIX_LOGIN_NAME_MAX _POSIX_SSIZE_MAX
 _POSIX_MAX_CANON _POSIX_STREAM_MAX
 _POSIX_MAX_INPUT _POSIX_THREAD_KEYS_MAX
 _POSIX_MQ_OPEN_MAX _POSIX_THREAD_THREADS_MAX
 _POSIX_MQ_PRIO_MAX _POSIX_TIMER_MAX
 _POSIX_NAME_MAX _POSIX_TTY_NAME_MAX
 _POSIX_NGROUPS_MAX _POSIX_TZNAME_MAX

 _POSIX_THREAD_DESTRUCTOR_ITERATIONS

and defines the macros

 AIO_LISTIO_MAX MAX_CANON•
 AIO_MAX MAX_INPUT•
 ARG_MAX MB_LEN_MAX
 CHAR_BIT MQ_OPEN_MAX
 CHAR_MAX MQ_PRIO_MAX•
 CHAR_MIN NAME_MAX•
 CHILD_MAX NGROUPS_MAX
 DELAYTIMER_MAX• OPEN_MAX
 INT_MAX PAGESIZE
 INT_MIN PATH_MAX•
 LINK_MAX• PIPE_BUF•
 LOGIN_NAME_MAX RTSIG_MAX
 LONG_MAX SCHAR_MAX
 LONG_MIN SCHAR_MIN

 PTHREAD_DESTRUCTOR_ITERATIONS
 PTHREAD_KEYS_MAX
 PTHREAD_STACK_MIN
 PTHREAD_THREADS_MAX

The macros marked with shall be omitted from <limits.h> on specific implementations where the
corresponding value is greater than or equal to the stated minimum, but is indeterminate. The macros marked with •
shall be omitted from <limits.h> on specific implementations where the corresponding value is greater than or
equal to the stated minimum, but where the value can vary depending on the file to which it is applied.

<locale.h>

The header defines the macros

 LC_ALL* LC_CTYPE* LC_NUMERIC* NULL*
 LC_COLLATE* LC_MONETARY* LC_TIME*

446 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

and declares the structure

 lconv*

with structure elements

 currency_symbol* mon_decimal_point* negative_sign*
 decimal_point* mon_grouping* p_cs_precedes*
 frac_digits* mon_thousands_sep* p_sep_by_space*
 grouping* n_cs_precedes* p_sign_posn*
 int_curr_symbol* n_sep_by_space* positive_sign*
 int_frac_digits* n_sign_posn* thousands_sep*

and the functions

 localeconv()* setlocale()*

<math.h>

The header defines the macro

 HUGE_VAL

and declares the functions

 acos() ceil() exp() fmod() log10() pow() sqrt()
 asin() cos() fabs() frexp() log() sin() tan()
 atan2() cosh() floor() ldexp() modf() sinh() tanh()
 atan()

<mqueue.h>

The header defines the type

 mqd_t

and the structure sigevent as defined in <signal.h>

and the structure

 mq_attr

with structure elements

 mq_curmsgs mq_flags mq_maxmsg mq_msgsize

and the functions

 mq_close() mq_notify() mq_receive() mq_setattr()
 mq_getattr() mq_open() mq_send() mq_unlink()

<pthread.h>

The header defines the functions

 pthread_atfork() pthread_detach()
 pthread_attr_destroy() pthread_equal()

Copyright © 1996 IEEE All Rights Reserved 447

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

 pthread_attr_getdetachstate() pthread_exit()
 pthread_attr_getinheritsched() pthread_getspecific()
 pthread_attr_getschedparam() pthread_join()
 pthread_attr_getschedpolicy() pthread_key_create()
 pthread_attr_getscope() pthread_key_delete()
 pthread_attr_getstackaddr() pthread_kill()
 pthread_attr_getstacksize() pthread_mutex_destroy()
 pthread_attr_init() pthread_mutex_getprioceiling()
 pthread_attr_setdetachstate() pthread_mutex_init()
 pthread_attr_setinheritsched() pthread_mutex_lock()
 pthread_attr_setschedparam() pthread_mutex_setprioceiling()
 pthread_attr_setschedpolicy() pthread_mutex_trylock()
 pthread_attr_setscope() pthread_mutex_unlock()
 pthread_attr_setstackaddr() pthread_mutexattr_destroy()
 pthread_attr_setstacksize() pthread_mutexattr_getprioceiling()
 pthread_cleanup_pop() pthread_mutexattr_getprotocol()
 pthread_cleanup_push() pthread_mutexattr_getpshared()
 pthread_cond_broadcast() pthread_mutexattr_init()
 pthread_cond_destroy() pthread_mutexattr_setprioceiling()
 pthread_cond_init() pthread_mutexattr_setprotocol()
 pthread_cond_signal() pthread_mutexattr_setpshared()
 pthread_cond_timedwait() pthread_once()
 pthread_cond_wait() pthread_self()
 pthread_condattr_destroy() pthread_setcancelstate()
 pthread_condattr_getpshared() pthread_setcanceltype()
 pthread_condattr_init() pthread_setspecific()
 pthread_condattr_setpshared() pthread_sigmask()
 pthread_create() pthread_testcancel()

and defines the macros

 PTHREAD_CANCELED PTHREAD_MUTEX_INITIALIZER
 PTHREAD_CANCEL_ASYNCHRONOUS PTHREAD_ONCE_INIT
 PTHREAD_CANCEL_DEFERRED PTHREAD_PRIO_INHERIT
 PTHREAD_CANCEL_DISABLE PTHREAD_PRIO_NONE
 PTHREAD_CANCEL_ENABLE PTHREAD_PRIO_PROTECT
 PTHREAD_COND_INITIALIZER PTHREAD_PROCESS_PRIVATE
 PTHREAD_CREATE_DETACHED PTHREAD_PROCESS_SHARED
 PTHREAD_CREATE_JOINABLE PTHREAD_SCOPE_PROCESS
 PTHREAD_EXPLICIT_SCHED PTHREAD_SCOPE_SYSTEM
 PTHREAD_INHERIT_SCHED

<pwd.h>

The header defines the structure

 passwd

with structure elements

 pw_dir pw_gid pw_name pw_shell pw_uid

and declares the functions

 getpwnam() getpwuid()

448 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

 getpwnam_r() getpwuid_r()

<sched.h>

The header defines the macros

 SCHED_FIFO SCHED_OTHER SCHED_RR

and the structure

 sched_param

with structure elements

 sched_priority

and the functions

 sched_get_priority_max() sched_getparam() sched_setscheduler()
 sched_get_priority_min() sched_getscheduler() sched_yield()
 sched_get_rr_interval() sched_setparam()

and the symbols defined by <time.h>.

<semaphore.h>

The header defines the type

 sem_t

and declares the functions

 sero_close() sem_init() sem_post() sem_unlink()
 sem_destroy() sem_open() sem_trywait() sem_wait()
 sem_getvalue()

<setjmp.h>

The header defines the types

 jmp_buf sigjmp_buf

and declares the functions

 longjmp() setjmp() siglongjmp() sigsetjmp()

Note that the C Standard {2} and this part of ISO/IEC 9945 both permit these functions to be defined solely as macros.

<signal.h>

The header defines the macros

 SA_NOCLDSTOP SIGFPE SIGSTOP SIG_ERR*
 SA_SIGINFO SIGHUP SIGTERM SIG_IGN
 SIGABRT SIGILL SIGTSTP SIG_SETMASK

Copyright © 1996 IEEE All Rights Reserved 449

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

 SIGALRM SIGINT SIGTTIN SIG_UNBLOCK
 SIGBUS SIGKILL SIGTTOU SI_ASYNCIO
 SIGCHLD SIGPIPE SIGUSR1 SI_MESGQ
 SIGCONT SIGQUIT SIGUSR2 SI_QUEUE
 SIGEV_NONE SIGRTMAX SIG_BLOCK SI_TIMER
 SIGEV_SIGNAL SIGRTMIN SIG_DFL SI_USER
 SIGEV_THREAD SIGSEGV

and the types

 sig_atomic_t* sigset_t

and declares the structure

 sigaction

with structure elements

 sa_flags sa_handler sa_mask
 sa_sigaction

and defines the type

 siginfo_t

with the members

 si_code si_signo si_value

and declares the structure

 sigevent

with the members

 sigev_notify sigev_notify_function sigev_notify_attributes
 sigev_signo sigev_value

and the union

 sigval

with the members

 sival_int sival_ptr

and the functions

 kill() sigdelset() signal() sigsuspend()
 raise() sigemptyset() sigpending() sigtimedwait()
 sigaction() sigfillset() sigprocmask() sigwait()
 sigaddset() sigismember() sigqueue() sigwaitinfo()

450 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

<stdarg.h>

The header defines the macros

 va_arg* va_end* va_list* va_start*

<stddef.h>

The header defines the macros

NULL* offsetof*

and the types

ptrdiff_t* size_t* wchar_t*

<stdio.h>

The header defines the macros

 BUFSIZ L_tmpnam* STREAM_MAX stdout
 EOF NULL TMP_MAX _IOFBF*
 FILENAME_MAX* SEEK_CUR stderr _IOLBF*
 L_ctermid SEEK_END stdin _IONBF*
 L_cuserid SEEK_SET

NOTE — The L_cuserid symbol is permitted in this header, but need not be supplied. See 2.7.2.

and the types

fpos_t* size_tw

and declares the type

 FILE

and the functions

 clearerr() fscanf() putc_unlocked()
 fclose() fseek() puts()
 fdopen() fsetpos() remove()
 feof() ftell() rename()
 ferror() ftrylockfile() rewind()
 fflush() funlockfile() scanf()
 fgetc() fwrite() setbuf()
 fgetpos() getc() setvbuf()
 fgets() getchar() sprintf()
 fileno() getchar_unlocked() sscanf()
 flockfile() getc_unlocked() tmpfile()
 fopen() gets() tmpnam()
 fprintf() perror() ungetc()
 fputc() printf() vfprintf()
 fputs() putc() vprintf()
 fread() putchar() vsprintf()

Copyright © 1996 IEEE All Rights Reserved 451

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

 freopen() putchar_unlocked()

<stdlib.h>

The header defines the macros

 EXIT_FAILURE MB_CUR_MAX* RAND_MAXM
 EXIT_SUCCESS NULL

and the types

div_t* ldiv_t* size_t* wchar_t*

and declares the functions

 abort() bsearch() labs()* qsort() strtol()*
 abs() calloc() ldiv()* rand() strtoul()*
 atexit()* div()* malloc() rand_r() system()*
 atof() exit() mblen()* realloc() wcstombs()*
 atoi() free() mbstowcs()* srand() wctomb()*
 atol() getenv() mbtowc()* strtod()*

<string.h>

The header defines the macro

 NULL

and the type

 size_t

and declares the functions

 memchr()* strcat() strcspn() strncpy() strstr()
 memcmp()* strchr() strerror()* strpbrk() strtok()
 memcpy()* strcmp() strlen() strrchr() strtok_r()
 memmove()* strcoll()* strncat() strspn() strxfrm()*
 memset()* strcpy() strncmp()

<sys/mman.h>

The header defines the macros

 MAP_FAILED MCL_CURRENT MS_INVALIDATE PROT_NONE
 MAP_FIXED MCL_FUTURE MS_SYNC PROT_READ
 MAP_PRIVATE MS_ASYNC PROT_EXEC PROT_WRITE
 MAP_SHARED

and declares the functions

 mlock() mprotect() munlockall() shm_open()
 mlockall() msync() munmap() shm_unlink
 mmap() munlock()

452 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

<sys/stat.h>

The header defines the macros

 S_IRGRP S_ISBLK S_ISUID S_IXOTH
 S_IROTH S_ISCHR S_IWGRP S_IXUSR
 S_IRUSR S_ISDIR S_IWOTH S_TYPEISMQ
 S_IRWXG S_ISFIFO S_IWUSR S_TYPEISSEM
 S_IRWXO S_ISGID S_IXGRP S_TYPEISSHM
 S_IRWXU S_ISREG

and declares the structure

 stat

with structure elements

 st_atime st_dev st_ino st_mtime st_size
 st_ctime st_gid st_mode st_nlink st_uid

and the functions

 chmod() fstat() mkfifo() umask()
 fchmod() mkdir() stat()

<sys/times.h>

The header defines the type

clock_t

and declares the structure

tms

with structure elements

 tms_cstime tms_cutime tms_stime tms_utime

and the function

 times()

<sys/types.h>

The header defines the types

 dev_t pid_t pthread_mutex_t
 gid_t pthread_attr_t pthread_once_t
 ino_t pthread_condattr_t pthread_t
 mode_t pthread_cond_t size_t
 nlink_t pthread_key_t ssize_t
 off_t pthread_mutexattr_t uid_t

Copyright © 1996 IEEE All Rights Reserved 453

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

<sys/utsname.h>

The header declares the structure

 utsname
 utsname

with structure elements

 machine nodename release sysname version

and the function

 uname()

<sys/wait.h>

The header defines the macros

 WEXITSTATUS WIFSIGNALED WNOHANG WTERMSIG
 WIFEXITED WIFSTOPPED WSTOPSIG WUNTRACED

and declares the functions

 wait() waitpid()

<termios.h>

The header defines the macros

 B0 B75 ECHONL NCCS TCSAFLUSH
 B110 B9600 HUPCL NOFLSH TCSANOW
 B1200 BRKINT ICANON OPOST TOSTOP
 B134 CLOCAL ICRNL PARENB VEOF
 B150 CREAD IEXTEN PARMRK VEOL
 B1800 CS5 IGNBRK PARODD VERASE
 B19200 CS6 IGNCR TCIFLUSH VINTR
 B200 CS7 IGNPAR TCIOFF VKILL
 B2400 CS8 INLCR TCIOFLUSH VMIN
 B300 CSIZE INPCK TCION VQUIT
 B38400 CSTOPB ISIG TCOFLUSH VSTART
 B4800 ECHO ISTRIP TCOOFF VSTOP
 B50 ECHOE IXOFF TCOON VSUSP
 B600 ECHOK IXON TCSADRAIN VTIME

and the types

 cc_t speed_t tcflag_t

and declares the structure

 termios

with structure elements

 c_cc c_cflag c_iflag c_lflag c_oflag

454 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

and the functions

 cfgetispeed() cfsetospeed() tcflush() tcsendbreak()
 cfgetospeed() tcdrain() tcgetattr() tcsetattr()
 cfsetispeed() tcflow()

<time.h>

The header defines the macros

 CLK_TCK CLOCK_REALTIME TIMER_ABSTIME
 CLOCKS_PER_SEC NULL

the types

 clockid_t size_t time_t
 clock_t timer_t

and declares the structure

 tm

with structure elements

 tm_hour tm_mday tm_mon tm_wday tm_year
 tm_isdst tm_min tm_sec tm_yday

and declares the structure

 timespec

with the members

 tv_nsec tv_sec

and the structure

 itimerspec

with the members

 it_interval it_value

and the functions

 asctime() difftime() time()
 asctime_r() gmtime() timer_create()
 clock() gmtime_r() timer_delete()
 clock_getres() localtime() timer_getoverrun()
 clock_gettime() localtime_r() timer_gettime()
 clock_settime() mktime() timer_settime()
 ctime() nanosleep() tzset()
 ctime_r() strftime()

and declares the external variable

 tzname

Copyright © 1996 IEEE All Rights Reserved 455

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

<unistd.h>

The header defines the macros

 F_OK SEEK_END STDOUT_FILENO
 NULL SEEK_SET W_OK
 R_OK STDERR_FILENO X_OK
 SEEK_CUR STDIN_FILENO

and defines the macros

 _POSIX_ASYNCHRONOUS_IO _POSIX_SAVED_IDS
 _POSIX_ASYNC_IO _POSIX_SEMAPHORES
 _POSIX_CHOWN_RESTRICTED _POSIX_SHARED_MEMORY_OBJECTS
 _POSIX_FSYNC _POSIX_SYNCHRONIZED_IO
 _POSIX_JOB_CONTROL _POSIX_SYNC_IO
 _POSIX_MAPPED_FILES _POSIX_THREADS
 _POSIX_MEMLOCK _POSIX_THREAD_ATTR_STACKADDR
 _POSIX_MEMLOCK_RANGE _POSIX_THREAD_ATTR_STACKSIZE
 _POSIX_MEMORY_PROTECTION _POSIX_THREAD_PRIO_INHERIT
 _POSIX_MESSAGE_PASSING _POSIX_THREAD_PRIO_PROTECT
 _POSIX_NO_TRUNC _POSIX_THREAD_PROCESS_SHARED
 _POSIX_PRIORITIZED_IO _POSIX_THREAD_SAFE_FUNCTIONS
 _POSIX_PRIORITY_SCHEDULING _POSIX_TIMERS
 _POSIX_PRIO_IO _POSIX_VDISABLE
 _POSIX_REALTIME_SIGNALS _POSIX_VERSION

 _POSIX_THREAD_PRIORITY_SCHEDULING

and defines the macros

 _PC_ASYNC_IO _SC_MQ_PRIO_MAX
 _PC_CHOWN_RESTRICTED _SC_NGROUPS_MAX
 _PC_LINK_MAX _SC_OPEN_MAX
 _PC_MAX CANON _SC_PAGE SIZE
 _PC_MAX_INPUT _SC_PRIORITIZED_IO
 _PC_NAME_MAX _SC_PRIORITY_SCHEDULING
 _PC_NO_TRUNC _SC_REALTIME_SIGNALS
 _PC_PATH_MAX _SC_RTSIG_MAX
 _PC_PIPE_BUF _SC_SAVED_IDS
 _PC_PRIO_IO _SC_SEMAPHORES
 _PC_SYNC_IO _SC_SEM_NSEMS_MAX
 _PC_VDISABLE _SC_SEM_VALUE_MAX
 _SC_AIO_LISTIO_MAX _SC_SHARED_MEMORY_OBJECTS
 _SC_AIO_MAX _SC_SIGQUEUE_MAX
 _SC_AIO_PRIO_DELTA_MAX _SC_STREAM_MAX
 _SC_ARG_MAX _SC_SYNCHRONIZED_IO
 _SC_ASYNCHRONOUS_IO _SC_THREADS
 _SC_CHILD_MAX _SC_THREAD_ATTR_STACKADDR
 _SC_CLK_TCK _SC_THREAD_ATTR_STACKSIZE
 _SC_DELAYTIMER_MAX _SC_THREAD_KEYS_MAX
 _SC_FSYNC _SC_THREAD_PRIO_INHERIT
 _SC_GETGR_R_SIZE_MAX _SC_THREAD_PRIO_PROTECT
 _SC_GETPW_R_SIZE_MAX _SC_THREAD_PROCESS_SHARED

456 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

 _SC_JOB_CONTROL _SC_THREAD_SAFE_FUNCTIONS
 _SC_LOGIN_NAME_MAX _SC_THREAD_STACK_MIN
 _SC_MAPPED_FILES _SC_THREAD_THREADS_MAX
 _SC_MEMLOCK _SC_TIMERS
 _SC_MEMLOCK_RANGE _SC_TIMER_MAX
 _SC_MEMORY_PROTECTION _SC_TTY_NAME_MAX
 _SC_MESSAGE_PASSING _SC_TZNAME_MAX
 _SC_MQ_OPEN_MAX _SC_VERSION
 _SC_MQ_PRIO_MAX

 _SC_THREAD_DESTRUCTOR_ITERATIO NS
 _SC_THREAD_PRIORITY_SCHEDULING

and defines the types

 size_t* ssize_t*

and declares the functions

 _exit() execle() getegid() isatty() setsid()
 access() execlp() geteuid() link() setuid()
 alarm() execv() getgid() lseek() sleep()
 chdir() execve() getgroups() pathconf() sysconf()
 chown() execvp() getlogin() pause() tcgetpgrp()
 close() fdatasync() getlogin_r() pipe() tcsetpgrp()
 ctermid() fork() getpgrp() read() ttyname()
 cuserid() fpathconf() getpid() rmdir() ttyname_r()
 dup2() fsync() getppid() setgid() unlink()
 dup() ftruncate() getuid() setpgid() write()
 execl() getcwd()

NOTE — The cuserid() symbol is permitted in this header, but need not be supplied. See 545 2.7.2.

<utime.h>

The header declares the structure

 utimbuf

with structure elements

 actime modtime

and the function

 utime()

Copyright © 1996 IEEE All Rights Reserved 457

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Annex D Profiles

(Informative)

This standard contains a number of options and variables that reflect the range of systems and environments that might
be encountered. In general, it will be useful for applications to take the full range of these possibilities into account and
either accommodate them or exclude them. However, there are significant communities of interest that may have
common needs that warrant focusing on a specific suite of these options and parameters. This annex discusses the
concept of profiles (also known as functional standards) and how they address this problem.

This annex reflects current thinking. It is clear that a concept such as this will help significantly in clarifying the
intended use of these standards. It is to be expected that some of the details of this material will be changed before it
is fully stabilized.

As background: the OSI model has over 170 standards (and consequent combinations thereof) that fit within it. Only
a fraction of those are actually useful for any given application environment. The concept of profiles was developed to
address this issue and appears also to apply to the area of application portability. The ISO/IEC term for such profiles
is ISP, or “International Standardized Profile.”

D.1 Definitions

The following definitions are proposed for use in the area covered by this part of ISO/IEC 9945.

D.1.1 Applications Environment Profile (AEP) [profile]:

The specification of a complete and coherent subset of an Open System Environment, together with the options and
parameters necessary to support a class of applications for interoperability or applications portability, including
consistency of data access and human interfaces. Where there are several AEPs for the same OSE, they are
harmonized.

AEPs are the basis for procurement and conformance testing and are the target environment for software development.

D.1.2 Application Specific Environment (ASE):

A complete and coherent subset of an Applications Environment Profile, together with interfaces, services, or
supporting formats outside of the profile, that are required by a particular application for its installation and execution.

D.1.3 Application Specific Environment Description (ASED):

The specification of an Application Specific Environment, together with the specific options or parameters required;
interfaces, services, or supporting formats outside of the profile; and resource requirements necessary for the
satisfactory operation of the application. (For example, storage and performance requirements.)

(This term is intended for use in Applications Conformance clauses found in profiles.)

D.1.4 coherent: The parts are logically connected. (For example, if both FORTRAN and COBOL are specified,
whether they can share files is specified.)

D.1.5 complete: Having all the necessary parts. (For example, if COBOL and SQL are both specified, then there is a
COBOL binding to SQL, or at least an explanation of why not.)

D.1.6 comprehensive: A sufficiently broad range of functionality is covered that the needs of most Applications
Environment Profiles are met.

458 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

D.1.7 consistent: The parts of the Open System Environment do not inherently conflict with each other. This does not
preclude options that conflict, as long as an Applications Environment Profile can select a set that does not conflict.

D.1.8 harmonized: Where same functionality is needed in several profiles, it appears identically in all of them.

D.1.9 Open System Environment (OSE): A comprehensive and consistent set of international information
technology standards and functional standards (profiles) that specify interfaces, services, and supporting formats to
accomplish interoperability and portability of applications, data, and people. These are based on International
Standards (ISO, IEC, CCITT, ...)

D.1.10 POSIX Open System Environment: A comprehensive and consistent set of ISO/IEC, regional, and national
information technology standards and functional standards (profiles) that specify interfaces, services, and supporting
formats for interoperability and portability of applications, data, and people that are in accord with ISO/IEC 9945
(POSIX).

No single component of the OSE, including ISO/IEC 9945, is expected to be required in all such profiles.

D.2 Options in This Part of ISO/IEC 9945

In terms of this part of ISO/IEC 9945, there are a number of features that could be specified in a profile. This list
includes:

 The options listed in 1.3.1.3.
 The limits in 2.8. Regarding the the C Language Limits for the type char, care should be taken that those

limits are not for the POSIX.1 definition of character, but for the one in the C language. For the POSIX.1
definition of character, the following limits from the C Standard {2} could be specified as well:
{MB_LEN_MAX} and {MB_CUR_MAX}.

 The flags in 2.9.4.
 Instances of the word “may” throughout the document. (Note that not all instances of “may” constitute

behavior that could or should be considered appropriate for specification in a profile. Some reflect
implementation variants that should not matter to applications.)

 Features that are specified in a generic way for broad portability of the standard, that might reasonably be
constrained in the more limited context of a profile. For such features, the constraint shall be documented in
a profile so that the effects of the constraint on the standard would be clarified.

D.3 Related Standards

The other POSIX standards (ISO/IEC 9945-2 {B36} , in particular) are expected to form a major part of the POSIX
OSE. Other formal standards, such as those listed in A, are also expected to be part of such a document (in particular,
the C Standard {2}.)

Standards such as other languages, SQL, graphics standards such as GKS, and networking standards are also probable
candidates for inclusion in the POSIX OSE.

D.4 Related Activities

In many ways, the work of NIST (in terms of FIPS), OSF, UNIX International, and X/Open often act like early (but
sophisticated) profiles or metaprofiles, specifying a range of standards from which true profiles could select. They
collect together many standards, specify options, and specify the relationship between the parts. These activities go
well beyond profiles, as they add specifications that are not formal standards to the suite as well. Often these additional
specifications point to areas where formal standards are required.

Copyright © 1996 IEEE All Rights Reserved 459

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

D.5 Relationship to IEEE Std 1003.0-1995

The IEEE P1003.0 working group has written a Guide to the POSIX Open System Environment. This guide presents an
overview of open system concepts and their applications. The guide provides information to persons evaluating
systems based on the existence of, and interrelationship among, application software standards, with the objective of
enabling application portability and system interoperability. This guide also presents a framework that identifies key
information system interfaces involved in application portability and system interoperability, and describes the
services offered across these interfaces. Standards or standards activities associated with the services are identified
where they exist or are in progress.

460 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Annex E Sample National Profile

(Informative)

One class of “community of interest” for which profiles (as discussed in D) are useful is specific countries, where the
general characteristics warrant specific focus to serve the needs of users in those countries. Such needs lead to a
number of implications concerning the options available within this part of ISO/IEC 9945 and may warrant
specification of complementary standards as well.

The following is an example of a country's needs with respect to this part of ISO/IEC 9945 and how those needs relate
to other international standards as well as national standards. The example provided is included here for informative
purposes and is not a formal standard in the country in question. It is provided by the Danish Standards Association
and is as accurate as possible with regards to Danish needs.17 This example national profile is worded as if it were a
national standard.

A subclass of conforming implementations can be identified that meet the requirements of a specific profile. By
documenting these either in national standards, in a document similar to an ISO/IEC ISP (an International
Standardized Profile), or in an informative annex (such as this), these can be referenced in a consistent manner.

E.1 (Example) Profile for Denmark

NOTE — This profile is chosen both for its instructive value by being a European profile and the generality in the provisions it
makes, addressing most of the relevant points. It does claim to be correct for Denmark, and the style is what would be
expected in a real ISP. A collection of real ISPs would be as useful, and work is underway collecting these.

This is the definition of the Danish Standards Association POSIX.1 profile. Information on the actual data for the
locale and coded character set mapping definitions are under development as part of an informative annex in ISO/IEC
9945-2 {B36} .18

The subset of conforming implementations that provide the required characteristics below is referred to as conforming
to the “Danish Standards Association (DS) Environment Profile” for this part of ISO/IEC 9945.

The profile specifies no options according to POSIX.1 section 2.9.3. For section 2.8.4 in the <limits.h>
specification, the {_POSIX_TZNAME_MAX} value shall be 7.

E.1.1 Character Encoding

Any character encoding with the required repertoire of the POSIX profile plus the following repertoire shall be
allowed.

A “character set description file,” as described in ISO/IEC 9945-2, {B36} shall use the symbolic character names of
the ISO_10646 charmap file described in the ISO/IEC 9945-2 {B36} sample profile annex for the characters
encoded in the character set.

For the Danish and Greenlandic languages, the following characters shall be present in addition to the repertoire
required by the POSIX profile: <ae>, <o/>, <aa>, <AE>, <O/>, and <AA>. For the Faroese language, the following

17Further information may be obtained from the Danish Standards Association, Attn: S142u22A11 POSIX WG, Box 77, DK-2900 Hellerup,
Denmark; FAX: +45 31 62 30 77; Email: posix@itc.dk
The data is also available electronically by anonymous FTAM or FTP at the site dkuug.dk in the directory isp, where some other example national
profiles, locales, and charmaps may also be found. They are also available by an archive server reached at archive@dkuug.dk; use
“Subject: help” for further information.
More complete examples of profiles are expected to be available in future revisions of this part of ISO/IEC 9945 and in other POSIX standards.
18The 9945-2 document, “POSIX.2,” is currently in the state of a Committee Document (CD), to be approved as a Draft International Standard.

Copyright © 1996 IEEE All Rights Reserved 461

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

characters shall be present in addition to the required POSIX locale characters and Danish repertoire: <a’>, <i’>,
<o’>, <u’>, <y’>, <d>, <A’>, <I’>, <O’>, <U’>, <Y’>, and <D->.

Recommended character sets are ISO 8859-1 {B34} or ISO 10646 {B37} . The CHARSET environment variable
shall be used to specify the processing character set; for instance, ISO_8859-1 or ISO_10646. This shall be used
to select the encoded character-set-specific versions of the locale definitions. If no CHARSET variable is present,
ISO_8859-1 shall be assumed.

E.1.2 Character Encoding and Display

For terminal equipment not capable of generating or showing the processing character set, the character names defined
in the current charmap file shall be used: characters in the charmap file having two-character names shall be specified
by the two-character name preceded by the <intro> character, and characters having charmap names longer than
two characters shall be specified by the character name preceded by the <intro> character and an <underline>
and followed by an <underline>. In names longer than two characters, an <intro> character and an
<underline> character in sequence shall signify a literal <underline> character part of the character name.
Two <intro> characters in sequence shall signify one <intro> character, both in names and in the general stream.

For input, if the character name is undefined in the current charmap file, the data shall be left untouched (including the
<intro> character) and the behavior is implementation defined.

E.1.3 Locale Definitions

The following guideline is used for specifying the locale identification string:19

 "%2.2s_%2.2s.%s,%s", <language>, <territory>, <character-set>, <version>

where <language> shall be taken from ISO 639 {B32} and <territory> shall be the two-letter country code of ISO
3166 {B33} , if possible. The <language> shall be specified with lowercase letters only, and the <territory> shall be
specified in uppercase letters only. An optional <character-set> specification may follow after a <period> for the
name of the character set; if just a numeric specification is present, this shall represent the number of the international
standard describing the character set. If the <character-set> specification is not present, the encoded character set
specific locale shall be determined by the CHARSET environment variable, and if this is unset or null, the encoding
of ISO 8859-1 {B34} shall be assumed. A parameter specifying a <version> of the profile may be placed after the
optional <character-set> specification, delimited by <comma>. This may be used to discriminate between different
cultural needs; for instance, dictionary order versus a more systems-oriented collating order.

Following the above guidelines for locale names, the national Danish locale string shall be

 da_DK

In the following, the TZ variable shall be specified according to the current official daylight-saving-time rules in
Denmark. Since Daylight Saving Time is politically decided and thus changeable, this is only a recommendation.

The locale definition for Denmark shall be as follows:

 LANG da_DK
 TZ CET-1CET DST,M3.5.0/M9.5.0

The locale definition for the Faroe Islands shall be as follows:

 LANG fo_DK

19The guideline was inspired by the X/Open Portability Guide {B77} . It is presented in the file format notation used by ISO/IEC 9945-2 {B36} .

462 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

 TZ UTC0UTC DST,M3.5.0/M9.5.0

The locale definition for Western Greenland shall be as follows:

 LANG kl_DK
 TZ UTZ+3VTZ,M3.5.0/M9.5.0

The locale definition for Eastern Greenland shall be as follows:

 LANG kl_DK
 TZ VTZ+2WTZ,M3.5.0/M9.5.0

For the Faroe Islands and Greenland, only the LC_TIME and LC_MESSAGES data are different from the Danish
language specifications.

Copyright © 1996 IEEE All Rights Reserved 463

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Annex F Portability Considerations

(Informative)

This annex contains information to satisfy the recommendations of the TSG-1 Final Report [B78] . The first clause
describes perceived user requirements and the second indicates how the facilities of this part of ISO/IEC 9945 satisfy
those requirements. The third clause offers guidance to writers of profiles on how the configurable options, limits, and
optional behavior of this part of ISO/IEC 9945 should be cited in profiles.

F.1 User Requirements

This clause describes the user requirements as perceived by the developers of this part of ISO/IEC 9945. The primary
source for these requirements was an analysis of historical practice in widespread use, as typified by the base
documents listed in the introduction to this part of ISO/IEC 9945.

This standard addresses the needs of users requiring open systems solutions for source-code portability of
applications. It currently addresses

 Multiprogramming and process management (creating processes, signaling, etc.)
 Access to files and directories in a hierarchy of file systems (opening, reading, writing, deleting files, etc.)
 Access to asynchronous communications ports and other special devices
 Access to information about other users of the system
 Facilities supporting applications requiring bounded (realtime) response

This standard provides C-language interfaces. Thus, it also addresses the following requirements

 Specific requirements of the C binding
 Interaction of the C binding with the underlying I/O system
 Interaction of the C internationalization capabilities with the environment

Extensions in many areas are being prepared, and this annex will be revised as these extensions are completed.

The requirements of users of this standard can be summarized as a single goal: application source portability. The
requirements of the user are stated in terms of the requirements of portability of applications. This in turn becomes a
requirement for a standardized set of syntax and semantics for operations commonly found on many operating
systems.

The following subclauses list the perceived requirements for application portability.

F.1.1 Configuration Interrogation

An application must be able to determine whether and how certain optional features are provided and to identify the
system upon which it is running, so that it may appropriately adapt to its environment.

F.1.2 Process Management

An application must be able to manage itself either as a single process or as multiple processes. Applications must be
able to manage other processes when appropriate.

Applications must be able to identify, control, create, and delete processes, and there must be communication of
information between processes and to and from the system.

464 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Applications must be able to use multiple flows of control with a process (threads) and synchronize operations
between these flows of control.

F.1.3 Access to Data

Application must be able to operate on the data stored on the system, access it, and transmit it to other applications.
Information must have protection from unauthorized or accidental access or modification.

Applications must have sufficient information to adapt to varying behaviors of the system.

F.1.4 Access to the Environment

Applications must be able to access the external environment to communicate their input and results.

F.1.5 Access to Determinism and Performance Enhancements

Applications must have sufficient control of resource allocation to ensure the timeliness of interactions with external
objects.

F.1.6 Operating System Dependent Profile

The capabilities of the operating system may make certain optional characteristics of the base language in effect no
longer optional, and this should be specified.

F.1.7 I/O Interaction

The interaction between the C language I/O subsystem and the I/O subsystem of this part of ISO/IEC 9945 must be
specified.

F.1.8 Internationalization Interaction

The effects of the environment of this part of ISO/IEC 9945 on the internationalization facilities of the C language
must be specified.

F.1.9 C Language Extensions

Certain functions in the C language must be extended to support the additional capabilities provided by this part of
ISO/IEC 9945.

F.1.10 Future Growth

These requirements must be met to be able to create any useful set of applications. It is recognized that many
interesting classes of applications cannot be written using only services meeting these requirements. Significant
additions to this standard are being developed, and future addenda and revisions will meet many of these additional
requirements.

F.2 Portability Capabilities

This clause describes the significant portability capabilities of this part of ISO/IEC 9945 and indicates how the user
requirements listed in F.1 are addressed. The capabilities are listed in the same format as the preceding user
requirements; they are summarized in Table F.1.

Copyright © 1996 IEEE All Rights Reserved 465

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

F.2.1 Configuration Interrogation

The uname() operation provides basic identification of the system. The sysconf(), pathconf(), and fpathconf() functions
provide means to interrogate the implementation to determine how to adapt to the environment in which it is running.
These values can be either static (indicating that all instances of the implementation have the same value) or dynamic
(indicating that different instances of the implementation have the different values, or that the value may vary for other
reasons, such as reconfiguration).

Table F.1—Portability Capability Summary

Unsatisfied Requirements

None directly. However, as new areas are added, there will be a need for additional capability in this area.

F.2.2 Process Management

The fork() and exec functions provide for the creation of new processes or the insertion of new applications into
existing processes. The exit() function and abort() function, defined by the C Standard {2}, allow for the termination
of a process by itself. The wait() and waitpid() functions allow one process to deal with the the termination of another.

The times() function allows for basic measurement of times used by a process. Various functions, including getpid(),
getppid(), getuid(), geteuid(), getgid(), getegid(), setuid(), setgid(), setsid(), getlogin(), getpwnam(), getpwuid(),
getgrnam(), and getgrgid() provide for access to the identifiers of processes and the identifiers and names of owners of
processes (and files).

The various functions operating on environment variables provide for communication of information (primarily user
configurable defaults) from parent to child process.

The operations on the current working directory control and interrogate the directory from which relative file name
searches start. The umask() function controls the default protections applied to files created by the process.

The alarm() and sleep() operations allow the process to suspend until a timer has expired or to be notified when a
period of time has elapsed. The time() operation interrogates the current time and date.

The signal mechanism provides for communication of events either from other processes or from the environment to
the application, and the means for the application to control the effect of these events. The mechanism provides for
external termination of a process and for a process to suspend until an event occurs. The mechanism also provides for
a value to be associated with an event.

Configuration Interrogation

Process Management

Access to Data

Access to the Environment

Access to Determinism and Performance Enhancements

Operating System Dependent Profile

I/O Interaction

Internationalization Interaction

C Language Extensions

Future Growth

466 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

The Job Control option provides a means to group processes and control them as groups, and to control their access to
the interface between the user and the system (the “controlling terminal”). It also provides the means to suspend and
resume processes.

The Process Scheduling option provides control of the scheduling and priority of a process.

The Message Passing option provides a means for inter-process communication involving small amounts of data.

The Memory Management facilities provide control of memory resources and for the sharing of memory.

The Threads facilities provide multiple flows of control with a process (threads), synchronization between threads,
association of data with threads, and controlled cancellation of threads.

Unsatisfied Requirements

The following areas are currently under consideration: process resource limits, and checkpointing and restarting of
processes.

F.2.3 Access to Data

The open(), close(), and pipe() functions provide for access to files and data. Such files may be classical files,
interprocess data channels (pipes), or devices. Additional type of objects in the filesystem are permitted and are being
contemplated for standardization.

The dup(), dup2(), fcntl(), stat(), fstat(), access(), chmod(), fchmod(), chown(), ftruncate(), and utime() functions allow
for control and interrogation of file and file-related objects, and their ownership, protections, and timestamps.

The read(), write(), and lseek() functions provide for data transfer from the application to files (in all their forms).

The mkdir(), rmdir(), link(), unlink(), rename(), opendir(), readdir(), rewinddir(), and closedir() functions provide for
a complete set of operations on directories. Directories can arbitrarily contain other directories, and a single file can be
mentioned in more than one directory.

The file-locking mechanism provides for advisory locking (protection during transactions) of ranges of bytes (in
effect, records) in a file.

The pathconf() and fpathconf() functions provide for inquiry as to the behavior of the system where variability is
permitted. Since this can vary with the location of the file, the inquiry includes a proposed location.

The Synchronized Input and Output option provides for assured commitment of data to media.

The Asynchronous Input and Output option provides for initiation and control of asynchronous data transfers.

Unsatisfied Requirements

The following areas are currently under consideration: control of accessibility to file types (which may be remote) with
reduced semantics.

F.2.4 Access to the Environment

The operations and types in Section 7 are provided for access to asynchronous serial devices. The primary intended use
for these is the controlling terminal for the application (the interaction point between the user and the system). They
are general enough to be used to control any asynchronous serial device. The interfaces are also general enough to be
used with many other device types as a user interface when some emulation is provided.

Copyright © 1996 IEEE All Rights Reserved 467

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Less detailed access is provided for other device types, but in many instances an application need not know whether an
object in the file system is a device or a file to operate correctly.

Unsatisfied Requirements

Detailed control of common device classes, specifically magnetic tape, is not provided.

F.2.5 Bounded (Realtime) Response

The Realtime Signals Extension provides queued signals and the prioritization of the handling of signals. The
SCHED_FIFO and SCHED_RR scheduling policies provide control over processor allocation. The Semaphores
option provides high performance synchronization. The Memory Management functions provide memory locking for
control of memory allocation, file mapping for high performance, and shared memory for high-performance
interprocess communication. The Message Passing option provides for interprocess communication without being
dependent on shared memory.

Unsatisfied Requirements

An interface to provide performance advice on file allocation and transfers is being developed.

F.2.6 Operating System Dependent Profile

This standard makes no distinction between text and binary files. The values of EXIT_SUCCESS and
EXIT_FAILURE are further defined.

Unsatisfied Requirements

None known, but the C Standard {2} may contain some additional options that could be specified.

F.2.7 I/O Interaction

Section 8 defines how each of the C Standard {2} stdio functions interacts with the POSIX.1 operations, typically
specifying the behavior in terms of POSIX.1 operations.

Unsatisfied Requirements

None.

F.2.8 Internationalization Interaction

The POSIX.1 environment operations provide a means to define the environment for setlocale() and time functions
such as ctime(). These functions then become fully specified in the POSIX.1 environment. An additional function to
set the time conversion is provided in tzset().

Unsatisfied Requirements

See F.2.10.

F.2.9 C Language Extensions

The setjmp() and longjmp() functions are not defined to be cognizant of the signal masks defined for POSIX.1.
Functions sigsetjmp() and siglongjmp() are provided to fill this gap.

468 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Unsatisfied Requirements

None.

F.2.10 Future Growth

It is arguable whether or not all functionality to support applications is potentially within the scope of this part of ISO/
IEC 9945. As a simple matter of practicality, it cannot be. Areas such as general networking, graphics, application
domain-specific functionality, windowing, and the like should be in unique standards. As such, they are properly
“Unsatisfied Requirements” in terms of providing fully portable applications, but ones which are outside the scope of
this standard.

However, certain broad areas that are applicable are currently under consideration.

Security: All the functionality provided in this standard is subject to additional constraints when high levels of security
are required. Additional functionality and constraints are now being investigated.

Internationalization: Only a small fraction of the requirements for writing applications that operate properly across
varying cultures have been met. Much of this belongs in the underlying language, but some properly belongs in this
part of ISO/IEC 9945, once consensus on the specific solutions can be reached.

F.3 Profiling Considerations

This clause offers guidance to writers of profiles on how the configurable options, limits, and optional behavior of this
part of ISO/IEC 9945 should be cited in profiles. Profile writers should consult the general guidance in POSIX.0
{B39} when writing POSIX Standardized Profiles.

The information in this clause is an inclusive list of the current features that should be considered by profile writers.
Further subsetting of this part of ISO/IEC 9945, including the specification of behavior currently described as
unspecified, undefined, implementation defined, or with the verbs “may” or “need not,” violates the intent of the
developers of this part of ISO/IEC 9945 and the guidelines of TR 10000-1 {B40} . Work is in progress to identify
application requirements (for example, embedded realtime systems) for subgroupings of the features.

F.3.1 Configuration Options

The options to support the various configuration options are listed in 1.3.1.3. Profile writers should consult the
following list and the comments concerning user requirements addressed by various POSIX.1 components in F.2.

{NGROUPS_MAX}

A nonzero value indicates that the implementation supports supplementary groups.

This option is needed where there is a large amount of shared use of files but where a certain amount
of protection is needed. Many profiles20 are known to require this option; it should only be required
if needed, but it should never be prohibited.

{_POSIX_ASYNCHRONOUS_IO}

The system provides concurrent process execution and input and output transfers.

This option was created to support historical systems that did not provide the feature. It should only
be required if needed, but it should never be prohibited.

20There are no formally approved profiles of this part of ISO/IEC 9945 at the time of publication; the reference here is to various profiles generated
by private bodies or governments.

Copyright © 1996 IEEE All Rights Reserved 469

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

{_POSIX_CHOWN_RESTRICTED}

The system restricts the right to “give away” files to other users.

This option should be carefully investigated before it is required. Some applications expect that they
can change the ownership of files in this way. It is provided where either security or system account
requirements cause this ability to be a problem. It is also known to be specified in many profiles.

{_POSIX_FSYNC}

The system supports file synchronization requests.

This option was created to support historical systems that did not provide the feature. Applications
that are expecting guaranteed completion of their input and output operations should require the
{_POSIX_SYNC_IO} option. This option should never be prohibited.

{POSIX_JOB_CONTROL}

The system supports the optional job control facilities appearing in Section 7

The option was created primarily to support historical systems that did not provide the feature. Many
existing profiles now require it; it should only be required if needed, but it should never be
prohibited. Most applications that use it can run when it is not present, although with a degraded
level of user convenience.

{_POSIX_MAPPED_FILES}

The system supports a the mapping of regular files into the process address space.

Both this option and the {_POSIX_SHARED_MEMORY_OBJECTS} option provide shared
access to memory objects in the process address space. The interfaces defined under this option
provide the functionality of existing practice for mapping regular files. This functionality was
deemed unnecessary, if not inappropriate, for embedded systems applications and, hence, is
provided under this option. It should only be required if needed, but it should never be prohibited.

{_POSIX_MEMLOCK}

The system supports the locking of the address space.

This option was created to support historical systems that did not provide the feature. It should only
be required if needed, but it should never be prohibited.

{_POSIX_MEMLOCK_RANGE}

The system supports the locking of specific ranges of the address space.

For applications that have well-defined sections that need to be locked and others that do not, the
standard supports an optional set of interfaces to lock or unlock a range of process addresses. The
following are two reasons for having a means to lock down a specific range:

 An asynchronous event handler function that must respond to external events in a
deterministic manner such that page faults cannot be tolerated.

 An input/output “buffer” area that is the target for direct-to-process I/O, and the overhead
of implicit locking and unlocking for each I/O call cannot be tolerated.

It should only be required if needed, but it should never be prohibited.

{_POSIX_MEMORY_PROTECTION}

The system supports memory protection.

The provision of this option typically imposes additional hardware requirements. It should never be
prohibited.

470 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

{_POSIX_PRIORITIZED_IO}

The system provides prioritization for input and output operations.

The use of this option may interfere with the ability of the system to optimize input and output
throughput. It should only be required if needed, but it should never be prohibited.

{_POSIX_MESSAGE_PASSING}

The system supports the passing of messages between processes.

This option was created to support historical systems that did not provide the feature. The
functionality adds a high-performance interprocess communication facility for local
communication. It should only be required if needed, but it should never be prohibited.

{_POSIX_PRIORITY_SCHEDULING}

The system provides priority-based process scheduling.

Support of this option provides predictable scheduling behavior, allowing applications to determine
the order in which processes that are ready to run are granted access to a processor. It should only be
required if needed, but it should never be prohibited.

{_POSIX_REALTIME_SIGNALS}

The system provides prioritized, queued signals with associated data values.

This option was created to support historical systems that did not provide the features. It should only
be required if needed, but it should never be prohibited.

{_POSIX_SAVED_IDS}

The option was created primarily to support historical systems that did not provide the feature
(typically the complement of the ones that at the time provided {_POSIX_JOB_CONTROL}).
Many existing profiles now require it; it should only be required if needed, but it should never be
prohibited. Certain classes of applications rely on it for proper operation, and there is no alternative
short of giving the application “root” privileges on most implementations that do not provide
{_POSIX_SAVED_IDS}.

{_POSIX_SEMAPHORES}

The system provides counting semaphores.

This option was created to support historical systems that did not provide the feature. It should only
be required if needed, but it should never be prohibited.

{_POSIX_SHARED_MEMORY_OBJECTS}

The system supports the mapping of shared memory objects into the process address space.

Both this option and the {_POSIX_MAPPED_FILES} option provide shared access to memory
objects in the process address space. The interfaces defined under this option provide the
functionality of existing practice for shared memory objects. This functionality was deemed
appropriate for embedded systems applications and, hence, is provided under this option. It should
only be required if needed, but it should never be prohibited.

{_POSIX_SYNCHRONIZED_IO}

The system supports guaranteed file synchronization.

This option was created to support historical systems that did not provide the feature. Applications
that are expecting guaranteed completion of their input and output operations should require this
option, rather than the {_POSIX_FSYNC} option. It should only be required if needed, but it should
never be prohibited.

Copyright © 1996 IEEE All Rights Reserved 471

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

{_POSIX_THREADS}

The system supports multiple threads of control within a single process.

This option was created to support historical systems that did not provide the feature. Applications
written assuming a multithreaded environment would be expected to require this option. It should
only be required if needed, but it should never be prohibited.

{_POSIX_THREADS_ATTR_STACKADDR}

The system supports specification of the stack address for a created thread.

Applications may take advantage of support of this option for performance benefits, but dependence
on this feature should be minimized. This option should never be prohibited.

{_POSIX_THREADS_ATTR_STACKSIZE}

The system supports specification of the stack size for a created thread.

Applications may require this option in order to ensure proper execution, but such usage limits
portability and dependence on this feature should be minimized. It should only be required if
needed, but it should never be prohibited.

{POSIX_THREADS_PRIORITY_SCHEDULING}

The system provides priority-based thread scheduling.

Support of this option provides predictable scheduling behavior, allowing applications to determine
the order in which threads that are ready to run are granted access to a processor. It should only be
required if needed, but it should never be prohibited.

{_POSIX_THREADS_PRIO_INHERIT}

The system provides mutual exclusion operations with priority inheritance.

Support of this option provides predictable scheduling behavior, allowing applications to determine
the order in which threads that are ready to run are granted access to a processor. It should only be
required if needed, but it should never be prohibited.

{_POSIX_THREADS_PRIO_PROTECT}

The system supports a priority ceiling emulation protocol for mutual exclusion operations.

Support of this option provides predictable scheduling behavior, allowing applications to determine
the order in which threads that are ready to run are granted access to a processor. It should only be
required if needed, but it should never be prohibited.

{_POSIX_THREADS_PROCESS_SHARED}

The system provides shared access among multiple processes to synchronization objects.

This option was created to support historical systems that did not provide the feature. It should only
be required if needed, but it should never be prohibited.

{_POSIX_THREAD_SAFE_FUNCTIONS}

The system provides thread-safe versions of all of the POSIX.1 functionality.

This option is required if the {_POSIX_THREADS} option is supported. This is a separate option
because thread-safe functions are useful in implementations providing other mechanisms for
concurrency. It should only be required if needed, but it should never be prohibited.

{_POSIX_TIMERS}

The system provides higher resolution clocks with multiple timers per process.

472 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

This option was created to support historical systems that did not provide the features. This option
is appropriate for applications requiring higher resolution timestamps or needing to control the
timing of multiple activities. It should only be required if needed, but it should never be prohibited.

F.3.2 Configurable Limits

In general, the configurable limits in 2.8 have been set to minimal values; many applications or implementations may
require larger values. No profile can cite lower values.

{AIO_LISTIO_MAX}

The current minimum is likely to be inadequate for most applications. It is expected that this value
will be increased by profiles requiring support for list input and output operations.

{AIO_MAX}

The current minimum is likely to be inadequate for most applications. It is expected that this value
will be increased by profiles requiring support for asynchronous input and output operations.

{AIO_PRIO_DELTA_MAX}

The functionality associated with this limit is needed only by sophisticated applications. It is not
expected that this limit would need to be increased under a general-purpose profile.

{ARG_MAX}

The current minimum is likely to need to be increased for profiles, particularly as larger amounts of
information are passed through the environment. Many implementations are believed to support
larger values.

{CHILD_MAX}

The current minimum is suitable only for systems where a single user will not be running
applications in parallel. It is significantly too low for any system also requiring windows, and if
{_POSIX_JOB_CONTROL} is specified, it should be raised.

{CLOCKRES_MIN}

It is expected that profiles will require a finer granularity clock, perhaps as fine as 1 µs, represented
by a value of 1000 for this limit.

{DELAYTIMER_MAX}

It is believed that most implementations will provide larger values.

{LINK_MAX}

For most applications and usage, the current minimum is adequate. Many implementations have a
much larger value, but this should not be used as a basis for raising the value unless the applications
to be used will require it.

{LOGIN_NAME_MAX}

This is not actually a limit, but an implementation parameter. No profile should impose a
requirement on this value.

{MAX_CANON}

For most purposes, the current minimum is adequate. Unless high-speed burst serial devices are to
be used, it should be left as is.

{MAX_INPUT}

See {MAX_CANON}.

Copyright © 1996 IEEE All Rights Reserved 473

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

{MQ_OPEN_MAX}

The current minimum should be adequate for most profiles.

{MQ_PRIO_MAX}

The current minimum corresponds to the required number of process scheduling priorities. Many
realtime practitioners believe that the number of message priority levels ought to be the same as the
number of execution scheduling priorities.

{NAME_MAX}

Many implementations now support larger values, and many applications and users assume that
larger names can be used. Many existing profiles also specify a larger value. Specifying this value
will reduce the number of conforming implementations, although this may not be significant
consideration over time. Values greater than 255 should not be required.

{NGROUPS_MAX}

Nonzero values act as an option (as discussed in F.3.1). The value selected might be typically 8 or
larger.

{OPEN_MAX}

The historically common value for this has been 20. Many implementations support values larger
than that. If applications that use larger values are anticipated, they should be specified.

{PAGESIZE}

This is not actually a limit, but an implementation parameter. No profile should impose a
requirement on this value.

{PATH_MAX}

Historically, the minimum has been either 1024 or indefinite, depending on the implementation.
Few applications actually require values larger than 256, but some users might create file hierarchies
that must be accessed with longer paths. This value should only be changed if there is a clear
requirement.

{PIPE_BUF}

The current minimum is adequate for most applications. Historically, it has been larger. If
applications that write single transactions larger than this are anticipated, it should be increased.
Applications that write lines of text larger than this probably do not need it increased, as the text line
will be delimited by a newline.

{POSIX_VERSION}

This is actually not a limit, but a standard version stamp. Generally, a profile should specify this
standard by a name in the normative references section, not this value.

{PTHREAD_DESTRUCTOR_ITERATIONS}

It is unlikely that applications will need larger values to avoid loss of memory resources.

{PTHREAD_KEYS_MAX}

The current value should be adequate for most profiles.

{PTHREAD_STACK_MIN}

This should not be treated as an actual limit, but as an implementation parameter. No profile should
impose a requirement on this value.

474 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

{PTHREAD_THREADS_MAX}

It is believed that most implementations will provide larger values.

{RTSIG_MAX}

The current limit was chosen so that the set of POSIX.1 signal numbers can fit within a 32 b field.
It is recognized that most existing implementations define many more signals than are specified in
POSIX.1 and, in fact, many implementations have already exceeded 32 signals (including the “null
signal”). Support of {_POSIX_RTSIG_MAX} additional signals may push some implementation
over the single 32 b word line, but is unlikely to push any implementations that are already over that
line beyond the 64 signal line.

{SEM_NSEMS_MAX}

The current value should be adequate for most profiles.

{SEM_VALUE_MAX}

The current value should be adequate for most profiles.

{SSIZE_MAX}

This limit reflects fundamental hardware characteristics (the size of an integer) and should not be
specified unless it is clearly required. Extreme care should be taken to assure that any value that
might be specified does not unnecessarily eliminate implementations because of accidents of
hardware design.

{STREAM_MAX}

This limit is very closely related to {OPEN_MAX}. It should never be larger than {OPEN_MAX},
but could reasonably be smaller for application areas where most files are not accessed through
stdio. Some implementations may limit {STREAM_MAX} to 20 but allow {OPEN_MAX} to be
considerably larger. Such implementations should be allowed for if the applications permit.

{TIMER_MAX}

The current limit should be adequate for most profiles, but it may need to be larger for applications
with a large number of asynchronous operations.

{TTY_NAME_MAX}

This is not actually a limit, but an implementation parameter. No profile should impose a
requirement on this value.

{TZNAME_MAX}

The minimum has been historically adequate, but if longer timezone names are anticipated
(particularly such values as “UTC-1”), this should be increased.

F.3.3 Optional Behavior

In this part of ISO/IEC 9945, there are no instances of the terms unspecified, undefined, implementation defined, or
with the verbs “may” or “need not,” that the developers of this part of ISO/IEC 9945 anticipate or sanction as suitable
for profile or test method citation. All of these are merely warnings to portable applications to avoid certain areas that
can vary from system to system, and even over time on the same system. In many cases, these terms are used explicitly
to support extensions, but profiles should not anticipate and require such extensions; future versions of the standard
may do so.

Copyright © 1996 IEEE All Rights Reserved 475

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Annex G Performance Metrics

(Informative)

Performance metrics are an essential element in evaluation and use of a system. To this end, for each facility, a set of
performance metrics was defined to assist in uniform treatment of the measurement of performance between different
conforming implementations. Moreover, in order to achieve full functionality, a realtime application may have
requirements on the performance of an implementation according to the performance metrics defined by this annex.

This annex contains the results of the performance metrics work. It is included here as a guide to what the performance
expectations might be for the interfaces defined in this standard.

G.1 Performance Measurement Documentation

An implementation may optionally provide performance documentation. An implementation claiming conformance to
this part of ISO/IEC 9945 with the POSIX Realtime Performance Documentation option shall provide a document
with measurements of the performance metrics for the required functionality of this part of ISO/IEC 9945 and the
metrics associated with each of the options of this part of ISO/IEC 9945 that it supports. For each metric, the
documentation shall include the mean observed value and the worst-case guaranteed behavior, together with the
condition under which the worst-case behavior is incurred. The performance measurement shall be cross-referenced to
the standard and section number defining the metric or function.

This document shall provide performance measurements for the following function calls defined in this part of ISO/
IEC 9945:

 calloc longjmp siglongjmp
 fcntl (fd, F_GETLK, ...) malloc sigpending
 fcntl (fd, F_SETLK, ...) read sigprocmask
 fpathconf realloc sigsetjmp
 free setjmp sysconf
 fstat sigaction write
 kill

For all documented metrics, the conditions of measurement shall be supplied. Conditions of measurement is defined as
the methodology used, software and hardware configuration, call parameters, system loading, initial conditions, and
any other information required to duplicate the measurement. Where a measurement varies due to differences in call
parameters or initial conditions, multiple measurements may be provided. Multiple measurements of a given metric
shall be accompanied by the altered conditions of measurement. Where measurements may deviate from the
documented value, the conditions of deviation shall be supplied along with maximum deviation possible. Conditions
of deviation should include at least the following where applicable:

1) Interrupts
2) Cache residence status
3) Memory conflicts
4) Bus conflicts
5) Virtual memory paging
6) Other hardware resource conflicts

G.2 Signals

Because realtime applications require fast and deterministic response to both external and internal events, it is
important that the system provide accurately characterized event notification performance. Each of the metrics below

476 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

assumes that the user application is the highest priority user process in the system. Worst-case observed measurements
should be provided.

If the implementation supports both the Realtime Signals Extension and Realtime Performance Documentation
options, it shall report

Event Dispatch Latency

This is the time interval between the occurrence of an event (generation of the signal) and the
execution of the first instruction of the signal-catching function in response to the event.

For the purposes of this metric, an event is defined as one resulting from the execution of the
sigqueue() function with the pid of a higher priority process.

NOTE — Realtime applications that respond to sporadic external events or that use a timer-driven event
handler to implement a periodic realtime application need to know how long it takes to enter the
application event handler in response to the event. This is one of the primary performance metrics
used to compare existing realtime kernels and operating systems.

Signal Waiting Overhead With an Indefinite Wait

This is the time interval between the initiation of a sigwaitinfo() function and the completion of that
function. It is measured when a blocked signal is polled that currently has at least one queued signal
pending.

Signal Waiting Overhead With a NonZero Timeout Period

This is the time interval between the initiation of a sigtimedwait() function and the completion of
that function. It is measured when a blocked signal is polled that currently has at least one queued
signal pending and a nonzero timeout period is specified.

Signal Waiting Overhead With a Zero Timeout Period

This is the time interval between the initiation of a sigtimedwait() function and the completion of
that function. It is measured when a blocked signal is polled that currently has at least one queued
signal pending and a zero timeout period is specified.

Signal Waiting Overhead With No Pending Signal

This is the time interval between the initiation of a sigtimedwait() function and the completion of
that function. It is measured when a blocked signal is polled that does not have any queued signals
pending and a zero timeout period is specified.

NOTE — For the same classes of applications that are implemented as polling loops instead of interrupt
handlers, the overhead of polling is the metric of interest. The metric is required both with and
without timeout so that the application designer can know the cost of the various features.

G.3 Synchronized Input and Output

The purpose of these metrics is twofold:

1) To allow the user to compare the performance of synchronized I/O on equivalent hardware platforms, and
2) On a given platform, to distinguish the following performance differences.

a) Regular I/O versus Synchronized I/O
b) Synchronized I/O with data integrity versus file integrity

G.3.1 Conformance

If the implementation supports both the Synchronized Input and Output and Realtime Performance Documentation
options, it shall report, for at least one hardware platform specified by the vendor, all metrics described in this

Copyright © 1996 IEEE All Rights Reserved 477

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

subclause. A conforming implementation may specify any given metric as “Not Applicable” if the system under test
does not support the function tested or if use of that function has no visible effect on file I/O performance.

G.3.2 Metrics

The vendor shall first specify a number, referred to as the Fundamental Transfer Size, which, for rotating magnetic
media, should correspond to the block size for the device. If this value is other than the block size, the vendor shall
document the significance of the value chosen.

G.3.3 Transfer Metrics

For each of the metrics defined, the vendor shall specify multiple transfer timings. These timings shall be taken under
the conditions defined for each metric under each of five different pairs of file size and values of nbyte. These pairs are:

If the values 65 536 and 2 097 152 are not integral multiples of the Fundamental Transfer Size, the vendor may select
the integral multiples of the Fundamental Transfer Size that are immediately above these values and shall specify the
values used.

If the largest possible file size supported by the implementation is smaller than 65 536 B, the vendor shall provide and
document metrics for the largest possible size and approximately 1/32 of that size. If the largest possible file size
supported by the implementation is smaller than 2 097 152 B but larger than 65 536 B, the vendor shall provide and
document metrics for the largest possible size, for approximately 1/32 of that size, and for 65 536 B. The vendor shall
specify the size used.

For those metrics that include actual I/O, the implementor shall identify that portion of the metric that is contributed
by the I/O device to transfer the data.

Open File Time, Unsynchronized I/O

This metric measures the time to open a file without synchronized I/O.

Open File Time, Synchronized I/O, Data Integrity

This metric measures the time to open a file with synchronized I/O data integrity (O_DSYNC).

Open File Time, Synchronized I/O, File Integrity

This metric measures the time to open a file with synchronized I/O file integrity (O_SYNC).

File Size
(in bytes)

nbytes

65 536 Fundamental transfer size / 2

65 536 Fundamental transfer size

65 536 Optimal transfer size

2 097 152 Fundamental transfer size

2 097 152 Optimal transfer size

478 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Unsynchronized Input Time

This metric measures the time to input data from a file using normal I/O. This metric forms a base
of comparison for the synchronized input operation metrics. This metric shall be taken for each
possible combination of file size and transfer size.

Unsynchronized Output Time

This metric measures the time to output data to a file using normal I/O. This metric forms a base of
comparison for the synchronized output operation metrics. This metric shall be taken for each
possible combination of file size and transfer size.

Synchronized Input Time, Data Integrity

This metric measures the time to input data from a file using synchronized I/O with data integrity
(O_DSYNC|O_RSYNC). This metric shall be taken for each possible combination of file size and
transfer size.

Synchronized Input Time, File Integrity

This metric measures the time to input data from a file using synchronized I/O with file integrity
(O_SYNC|O_RSYNC). This metric shall be taken for each possible combination of file size and
transfer size.

Synchronized Output Time, Data Integrity

This metric measures the time to output data to a file using synchronized I/O with data integrity
(O_DSYNC). This metric shall be taken for each possible combination of file size and transfer size.

Synchronized Output Time, File Integrity

This metric measures the time to output data to a file using synchronized I/O with file integrity
(O_SYNC). This metric shall be taken for each possible combination of file size and transfer size.

NOTE — It is recognized that the area of standardizing metrics for file I/O is nebulous. What is presented here is an overall set of
metrics for the total Synchronized I/O model presented in this section. Individual vendors will find it necessary to
interpret this section with regard to each different hardware platform. This interpretation should be consistent with the
purpose of the metrics.

It became apparent that the performance measurement of fsync() and fdatasync() was not realistically possible. There is
no means, short of modifying the I/O subsystem of the operating system, of obtaining meaningful measurements. As
writes are performed, they are also being updated to disk asynchronously, consequently making it impossible to control
the number of disk blocks that will actually be updated.

G.4 Asynchronous Input and Output

If the implementation supports both the Asynchronous Input and Output and Realtime Performance Documentation
options, it shall report

Asynchronous I/O Request Time, No Signal, aio_read

The time required to queue an aio_read() request and return control to the requesting process. For
this measurement, the aio_sigevent.sigev_signo member shall be zero.

Asynchronous I/O Request Time, No Signal, aio_write

The time required to queue an aio_write() request and return control to the requesting process. For
this measurement, the aio_sigevent.sigev_signo member shall be zero.

Copyright © 1996 IEEE All Rights Reserved 479

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Asynchronous I/O Request Time, No Signal, aio_fsync

The time required to queue an aio_fsync() request and return control to the requesting process. For
this measurement, the aio_sigevent.sigev_signo member shall be zero.

Asynchronous I/O Request Time, Regular Signal, aio_read

The time required to queue an aio_read() request and return control to the requesting process. For
this measurement, the aio_sigevent.sigev_signo member shall be equal to SIGUSR1.

Asynchronous I/O Request Time, Regular Signal, aio_write

The time required to queue an aio_write() request and return control to the requesting process. For
this measurement, the aio_sigevent.sigev_signo member shall be SIGUSR1.

Asynchronous I/O Request Time, Regular Signal, aio_fsync

The time required to queue an aio_fsync() request and return control to the requesting process. For
this measurement, the aio_sigevent.sigev_signo member shall be equal to SIGUSR1.

Asynchronous I/O Request Time, No Signal, lio_listio

The time required to queue a lio_listio() request and return control to the requesting process. The
mode shall be set to LIO_NOWAIT, sig shall be NULL, and there shall be a single valid entry in list.
The entry shall have aio_lio_opcode equal to LIO_READ.

Asynchronous I/O Request Time, Regular Signal, lio_listio

The time required to queue a lio_listio() request and return control to the requesting process. The
mode shall be set to LIO_NOWAIT, the sig argument shall refer to a sigevent structure with
sigev_signo equal to SIGUSR1, and there shall be a single valid entry in list. The entry shall have
aio_lio_opcode equal to LIO_READ.

Signal Delivery Latency, Regular Signal

The time from an asynchronous I/O completion to the first execution executed within the process
signal handler for the signal SIGUSR1.

Signal Delivery Latency, Iosuspend, No Completed I/O

The time from an asynchronous I/O completion to when the process returns from a call to
aio_suspend() with a single aiocb as argument.

Signal Delivery Latency, Sigwaitinfo, No Completed I/O, Regular Signal

The time from an asynchronous I/O completion to when the process returns from a call to
sigwaitinfo() that synchronously receives the signal. The signal used for this measurement shall be
SIGUSR1.

If the implementation supports all of the Asynchronous Input and Output, Realtime Signals Extension, and Realtime
Performance Documentation options, it shall report

Asynchronous I/O Request Time, Realtime Signal, aio_read

The time required to queue an aio_read() request and return control to the requesting process. For
this measurement, the aio_sigevent.sigev_signo member shall be equal to a number between
SIGRTMIN and SIGRTMAX.

Asynchronous I/O Request Time, Realtime Signal, aio_write

The time required to queue an aio_write() request and return control to the requesting process. For
this measurement, the aio_sigevent.sigev_signo member shall be equal to a number between
SIGRTMIN and SIGRTMAX.

480 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Asynchronous I/O Request Time, Realtime Signal, aio_fsync

The time required to queue an aio_fsync() request and return control to the requesting process. For
this measurement, the aio_sigevent.sigev_signo member shall be equal to a number between
SIGRTMIN and SIGRTMAX.

Asynchronous I/O Request Time, Realtime Signal, lio_listio

The time required to queue a lio_listio() request and return control to the requesting process. For this
measurement, mode shall be set to LIO_NOWAIT, the sig argument shall refer to a sigevent structure
with sigev_signo equal to a number between SIGRTMIN and SIGRTMAX, and there shall be a
single valid entry in list. The entry shall have aio_lio_opcode equal to LIO_READ.

Signal Delivery Latency, Realtime Signal

The time from an asynchronous I/O completion to the first execution executed within the process
signal handler for a realtime extended signal. See G.2.

Signal Delivery Latency, Sigwaitinfo, No Completed I/O, Realtime Signal

The time from an asynchronous I/O completion to when the process returns from a call to
sigwaitinfo() that synchronously receives the signal. The signal used for this measurement shall be
in the range of SIGRTMIN to SIGRTMAX.

G.5 Semaphores

The usability of a realtime system for a given application depends on the speed with which the system can effectively
synchronize processes. This, in turn, depends on the cost of locking and posting to a semaphore.

If the implementation supports both the Semaphores and Realtime Performance Documentation options, it shall report

Semaphore Unconditional Unlocking Time, No Waiters

This is the time required by the sem_post() function when there is no process waiting for the
semaphore.

Semaphore Unconditional Unlocking Time, No Switch Required

This is the time required by the sem_post() function when there is a process waiting for the
semaphore, but the process does not preempt the process calling sem_post().

Semaphore Unconditional Unlocking Time, Switch Required

This is the time required by the sem_post() function when there is a process waiting for the
semaphore, and the process preempts the process calling sem_post(). The time reported shall not
include time spent by the preempting process.

Semaphore Unconditional Locking Time, Semaphore Unlocked

This is the time required by the sem_wait() function when the semaphore is unlocked prior to calling
sem_wait().

Semaphore Unconditional Locking Time, Semaphore Locked

This is the time required by the sem_wait() function when the semaphore is locked prior to calling
sem_wait(). The time measured shall exclude all time the process is blocked while waiting for
another process to unlock the semaphore. The time measured shall exclude all time taken by a
process other than the one performing the sem_wait() function.

Copyright © 1996 IEEE All Rights Reserved 481

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Semaphore Conditional Locking Time, Semaphore Unlocked

This is the time required by the sem_trywait() function when the semaphore is unlocked prior to
calling sem_trywait().

Semaphore Conditional Locking Time, Semaphore Locked

This is the time required by the sem_trywait() function when the semaphore is locked prior to calling
sem_trywait().

G.6 Mutexes and Condition Variables

If the implementation supports both the Threads and Realtime Performance Documentation options, it shall report

Mutex Lock/Unlock with No Contention

This is the time interval needed to call pthread_mutex_lock() followed immediately by
pthread_mutex_unlock() on a mutex that is unowned and that is only being used by the thread doing
the test.

Mutex Lock/Unlock with Contention

This is the time interval between when one thread calls pthread_mutex_unlock() and another thread
that was blocked on pthread_mutex_lock() returns with the lock held.

On a machine with p processors, this metric should be provided for a system dedicated to running a
single instance of this test and a system with 2*p processes, each running an instance of this test in
a tight loop.

Condition Variable Signal/Broadcast with No Waiters

This is the amount of time needed to execute pthread_cond_signal() or pthread_cond_broadcast() if
there are no threads blocked on the condition.

Condition Variable Wake Up

This is the amount of time from when one thread calls pthread_cond_signal() and a thread blocked
on that condition variable returns from its pthread_cond_wait() call. The condition and its
associated mutex should not be used by any other thread. Metrics shall be provided for both the case
when the pthread_cond_signal() call is executed under the associated mutex, as well as not under
the mutex. In addition, on a machine with p processors, the metric shall be provided for a system
dedicated to running a single instance of this test and a system with 2*p processes, each running an
instance of this test in a tight loop. The scheduling parameters used (such as the scheduling policy
and priority for each thread) have to be specified along with this metric.

Time of Wakeup After Timed Wait

This is the time required for the highest priority thread to resume execution after a call to
pthread_cond_timedwait(). Metrics shall be provided for both the case when the
pthread_cond_timedwait() call is awakened by a call to pthread_cond_signal() and when the
absolute time to be awaited has already been passed at the time of the call.

G.7 Process Memory Locking

If the implementation supports both the Process Memory Locking and Realtime Performance Documentation options,
it shall report

482 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Maximum Locked Memory Access Time

This metric measures the upper bound on the amount of time required for an application to fetch data
of size int from locked memory. The measurement shall be made by fetching from and storing to a
C language “static” variable allocated within a range locked by mlock() or mlockall(). The
implementor shall show in the metrics documentation the C code used to perform the measurement
and document other conditions of measurement, such as process priority, special memory types, etc.,
necessary to obtain equivalent measurements.

G.8 Shared Memory

If the implementation supports both the Shared Memory and the Realtime Performance Documentation options, and it
supports either of the Process Memory Locking or Range Memory Locking options, it shall report whether using
locked, shared memory objects may cause I/O activity.

In implementations that support shared memory object through mapped files, it is important to document whether
using shared memory may result in some I/O traffic.

G.9 Execution Scheduling

The following measures are defined assuming that the priority setting operations are performed by the highest priority
process in the system (i.e., the running process on a uniprocessor) under system workload conditions indicated for that
measure. The test environment shall consist of a priority_setting process and, in some cases, a target process that shall
perform the tests and zero or more background workload processes. These measures are selected due to their
importance in predicting application performance. The required metrics, the measurement environment, required
measurements, measurement methodology, and other requirements placed on the implementation are further defined
below.

The metrics shall be reported for both SCHED_RR and SCHED_FIFO scheduling policies.

G.9.1 Measurement Environment

The test environment for these measurements shall consist of background workloads containing the following number
of processes in addition to the priority_setting and target processes:

1) None
2) One
3) MAX_PROC/2, where MAX_PROC is the implementation-defined maximum number of processes that may

be present on the system at any one time
4) MAX_PROC-2
5) If MAX_PROC > 32, 33 plus the number of processors minus 1
6) If MAX_PROC > 64, 65 plus the number of processors minus 1
7) If MAX_PROC > 128, 129 plus the number of processors minus 1

In every case, the number of processes shall not exceed MAX_PROC-2, regardless of the number of processors.

Each background workload process except the process that may become runnable as a result of the priority setting
operation shall be so constructed that it is always a runnable process (i.e., all such processes shall be compute-bound.)

Priorities of the workload processes shall be uniformly distributed across the allowable range of priorities, subject to
the constraint that they shall not exceed the measured process or its target.

Copyright © 1996 IEEE All Rights Reserved 483

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

G.9.2 Metrics Definitions

If the implementation supports both the Process Scheduling and Realtime Performance Documentation options, it
shall report

Set Self Same

The priority_setting process shall set its priority to its current priority value. The priority_setting
process shall continue execution. The measurement shall be made by taking the difference between
a time-stamp taken immediately prior to the sched_setparam() call and a time-stamp taken
immediately after return from the call.

Set Self Lower

The priority_setting process shall set its priority to a value which shall cause it to be replaced as the
running process by the target process [using sched_setparam() or sched_yield()]. The measurement
shall be made by taking the difference between a time-stamp taken immediately prior to the
sched_setparam() call and a time-stamp taken immediately upon execution of the target process.

Set Target Same

The priority_setting process shall set the priority of the target process to its current priority value.
The priority_setting process shall continue execution. The measurement shall be made by taking the
difference between a time-stamp taken immediately prior to the sched_setparam() call and a time-
stamp taken immediately after return from the call.

Set Target Higher

The priority_setting process shall set the priority of the target process to a value that shall cause the
priority_setting process to be replaced as the running process by the target process. The
measurement shall be made by taking the difference between a time-stamp taken immediately prior
to the sched_setparam() call and a time-stamp taken immediately upon execution of the target
process.

SCHED_RR rr_interval Accuracy

In an environment with some number of processes (more than one) at a single priority, all using the
SCHED_RR scheduling policy, the implementation shall measure the deviation of the time at which
the processes are moved to the tail of their priority queues relative to the value returned by
sched_rr_get_interval() for those processes. This deviation shall be reported as a mean, maximum
observed, and minimum observed values.

If the implementation supports the {_POSIX_THREADS} option, it shall report

Thread Yield Time (Busy)

This is the amount of time between that point when a running thread voluntarily gives up the CPU
until the highest priority runnable thread begins execution of its application code.

Scheduler Overhead

This is the amount of time needed to effect fair scheduling policies for timesharing threads by
having the implementation interrupt the current executing thread at regular intervals to recalculate
priorities and gather statistics. In an ideal realtime environment, threads would be immune from
such overhead but, if not, this overhead needs to be measured. The values to be reported shall be the
highest rate at which the implementation causes application tasks to be preempted for managing
scheduling parameters, and the maximum time such preemption can last, along with a description of
the functionality provided at such preemption points.

484 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Scheduling Attribute Change Time (No Context Switch)

This is the time needed to execute a pthread_getschedparam() and pthread_setschedparam() pair
when the result of the set does not change which thread is currently running.

Scheduling Attribute Change Time (Context Switch)

This is the amount of time between that point when a running thread begins a
pthread_attr_getschedparam() and pthread_attr_setschedparam() pair that alters the running thread
or some other thread in such a way that the setting thread relinquishes the CPU to another thread,
and until that other thread begins execution of its application code.

If the symbol {_POSIX_THREAD_PRIO_INHERIT} is defined, the performance metrics Mutex Lock/Unlock, No
Contention and Mutex Lock/Unlock, Contention, should be given for both the cases when the protocol attribute is set
to PTHREAD_PRIO_NONE or PTHREAD_PRIO_INHERIT. If the symbol{_POSIX_THREAD_PRIO_PRO-
TECT} is defined, these metrics should be given for both the cases when the protocol attribute is set to
PTHREAD_PRIO_NONE or PTHREAD_PRIO_PROTECT.

G.9.3 Other Requirements

For those tests that require the target process to run and take a time-stamp, the target process shall be constructed so
that it makes the priority-setting process a process that is able to run via a sched_setparam() function call and performs
the time-stamp immediately following that call. The priority of the target process and the priority-setting process shall
be such that the target process is the next process executed after the priority-setting process places its
sched_setparam() function call.

The implementation shall document the time-stamp mechanism used for the tests. All timings shall be adjusted for the
time required for the time-stamp operations.

The implementor is free to choose the method by which time-stamps taken in the priority-setting and target processes
are compared but shall document the method used.

The documentation shall include the source for all tests.

G.10 Clocks and Timers

Because realtime systems are based heavily on the accuracy of the timers in the system, an implementation should
provide accurate measurements of its timers. All timer measurements are taken with respect to the highest priority
process.

If the implementation supports both the Timers and Realtime Performance Documentation options, it shall report

Clock Drift

This is a measure of the worst-case, long-term (cumulative) deviation of a clock. It is a cyclic
deviation of long period that appears to vary linearly with time and is expressed as percent deviation
per month. For example, a watch might have a drift of 5 s every month (0.0002%/month).

The drift should be measured over at least 24 h. The measurement period shall be reported.

Clock Jitter

This is a measure of the worst-case, short-term deviation or repeatability of a clock. It is a cyclic
deviation of short period and is expressed as percent deviation per second. For example, a clock
might have a jitter of 50 µs from one second to the next (0.001%/s), perhaps because it must
implement a 60 Hz clock from a higher resolution counter whose rate is not a multiple of 60 Hz.

Copyright © 1996 IEEE All Rights Reserved 485

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The measurement period shall be reported if this measurement is documented.

Clock/Timer Granularity

This is a measurement of the resolution of the various clocks and timers. The numbers returned by
clock_getres() (for clock_id = CLOCK_REALTIME) should be published. In addition, if the
resolutions supported by the nanosleep() function or of timers created with a clock_id =
CLOCK_REALTIME are different from that returned by clock_getres() (for clock_id =
CLOCK_REALTIME), then these resolutions should also be documented.

Time Setting

The time for a user process to set a clock and have the system return to the caller.

Time Getting

The time for a user process to read a clock and have the system return to the caller.

Timer Arming—Absolute Time, One-Shot

The time for a user process to set and arm a one-shot per-process timer, using timer_settime() with
an absolute time, and have the system return to the caller.

Timer Arming—Absolute Time, Periodic

The time for a user process to set and arm a periodic per-process timer, using timer_settime() with an
absolute time, and have the system return to the caller.

Timer Arming—Relative Time, One-Shot

The time for a user process to set and arm a one-shot per-process timer, using timer_settime() with
a relative time, and have the system return to the caller.

Timer Arming—Relative Time, Periodic

The time for a user process to set and arm a periodic per-process timer, using timer_settime() with a
relative time, and have the system return to the caller.

Timer Disarming—Absolute Time, One-Shot

The time for a user process to disarm a one-shot per-process timer, using timer_settime() with an
absolute time, and have the system return to the caller.

Timer Disarming—Absolute Time, Periodic

The time for a user process to disarm a periodic per-process timer, using timer_settime() with an
absolute time, and have the system return to the caller.

Timer Disarming—Relative Time, One-Shot

The time for a user process to disarm a one-shot per-process timer, using timer_settime() with a
relative time, and have the system return to the caller.

Timer Disarming—Relative Time, Periodic

The time for a user process to disarm a periodic per-process timer, using timer_settime() with a
relative time, and have the system return to the caller.

Timer Reload Time

The amount of time required to reload and rearm a timer when a periodic timer expires.

Timer Expiration Service Latency—Absolute, One-Shot

This is the time interval between the timer expiration—that is, the absolute time specified in the call
to timer_settime()—and the first instruction to be executed in the event handler for a one-shot timer.

486 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

In some cases this might be a fixed interval (for example, it is always at least 50 µs) plus some
variance. Both the interval and the variance should be reported.

Timer Expiration Service Latency—Absolute, Periodic

This is the time interval between the timer expiration—that is, the absolute time specified in the call
to timer_settime()—and the first instruction to be executed in the event handler for the first
expiration of an absolute, periodic timer. In some cases this might be a fixed interval (for example,
it is always at least 50 µs) plus some variance. Both the interval and the variance should be reported.

Timer Expiration Service Latency—Relative, One-Shot

This is the time interval between the timer expiration—that is, the interval specified in the call to
timer_settime() plus the current clock time at the time of the call—and the first instruction to be
executed in the event handler for a one-shot relative timer. In some cases this might be a fixed
interval (for example, it is always at least 50 µs) plus some variance. Both the interval and the
variance should be reported.

Timer Expiration Service Latency—Relative, Periodic

This is the time interval between the timer expiration—that is, the interval specified in the call to
timer_settime() plus the current clock time at the time of the call—and the first instruction to be
executed in the event handler for a periodic relative timer. In some cases this might be a fixed
interval (for example, it is always at least 50 µs) plus some variance. Both the interval and the
variance should be reported.

G.11 Message Passing

If the implementation supports both the Message Passing and Realtime Performance Documentation options, it shall
report the metrics listed below. The metric report shall include sufficient information that the measurements can be
reproduced.

MQ Open Time

This metric is the time for a single successful first mq_open() of a message queue.

MQ Close Time

This metric is the time for a single successful last mq_close() of a message queue.

MQ Send Times

This metric is the time for a successful mq_send() for messages of the following msg_len: 0, 4, 7, 16,
32.

MQ Transfer Rates

This metric is the rate (number of bytes of message data divided by time) for successful mq_send()
to mq_receive() for messages of the following msg_len: 0, 4, 7, 16, 32. The methodology for
measuring the transfer rate is implementation defined.

MQ Receive Rates

This metric is the rate (time divided by number of bytes of message data) for a successful
mq_receive() from a queue already containing a single message for messages of the following
lengths: 0, 4, 7, 16, 32.

G.12 Thread Management

If the implementation supports both the Thread and Realtime Performance Documentation options, it shall report

Copyright © 1996 IEEE All Rights Reserved 487

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Granularity of Parallelism: Light Load with n Threads

This is the minimum number of iterations of a null loop that have to be executed in n threads
simultaneously before the time needed by the n threads is less than the time needed for a single
thread to execute the total number of iterations by itself. The time for the n thread case has to include
the time to create all n threads and to wait for them to terminate. This number is used by a
programmer to determine when it might be advantageous to divide a task into n different pieces that
can be executed simultaneously. This metric should be provided for n between one and the number
of processors on the machine.

Granularity of Parallelism: Heavy Load Overhead of x Percent

On a machine with p processors, this is the minimum number of iterations of a null loop such that
running 4*p copies of this loop takes no more than x percent longer than running 2*p copies of the
loop with twice that number of iterations. The time needed has to include the time to create all of the
threads and to wait for them to terminate. The metric shall be provided for x equal 1%, 5%, 10%, and
20%.

Once Overhead

This is the time needed for the highest priority thread to execute the pthread_once() function when
the init_routine has already been executed.

Self Overhead

This is the time needed for the highest priority thread to perform the pthread_self() operation for the
following numbers of threads: 1, 21, 101, 1023.

G.13 Thread Cancellation

Cancellation Response

This is the time interval between the issuing of a cancellation request to a thread executing an
infinite loop with asynchronous cancelability enabled and the start of the execution of its first
cancellation cleanup handler.

Handler Registration

This is the time interval needed to register a handler and a non-NULL argument with the
pthread_cleanup_push() function when no other application-defined handlers are already
registered.

Handler De-registration

This is the time interval needed to deregister a handler with the pthread_cleanup_pop() function
when it is the only application-defined handler registered. The handler is not executed.

Opening a Cancellation Point

This is the time interval it takes to call pthread_testcancel() in a thread with no pending cancellation
requests.

Taking a Cancellation Point

This is the time interval between calling pthread_testcancel() in a thread with a pending cancellation
request and the start of the execution of its first cancellation cleanup handler.

488 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Annex H Realtime Files

(Informative)

This annex defines an interface that allows an application to specify various characteristics regarding how its normal
file requests [such as read() and write()] should be handled. This is an informative annex, placing no requirements on
implementations. It is expected that this annex will be removed in a later amendment when a file advisory interface is
made part of the standard.

This facility provides a mechanism for the manipulation of realtime attributes of files in two component parts:

1) The Interface: An interface that allows an application to obtain information about and influence system usage
of a file system, and

2) Attributes and Capabilities: A set of defined types of information that make this interface useful in a rotating
storage media model.
 Capabilities: These are parameters that are constant with (direct) respect to the application, such as the

transfer granularity, disk geometry based parameters, and so on.
 Attributes: These are parameters that the application may control, such as the number of blocks pre-

reserved for a file and what sort of access the application will use (for example, random versus
sequential).

The following set of attributes exist:

1) Sequential access
2) Pre-allocation
3) Direct I/O
4) Cache usage
5) Aligned transfers
6) Transfer granularity

Passage of the attributes is accomplished via a structure.

Lastly, the interface contains an ability to obtain a buffer that is placed in memory according to desired constraints.

The state or value of realtime attributes of a file shall be persistent from the time of setting of the attribute until last
close of the file.

Conforming implementations are not required to make realtime attributes persistent after last close of the file.

A Strictly Conforming Application shall not depend upon persistence of realtime attributes of a file after last close.

With one exception, conforming implementations are not required to make real-time attributes persistent across
different open instances of the same file. That exception is that the atb_alloc attribute shall be persistent across all open
instances of a file.

A conforming implementation may support file systems to which only a subset of attributes applies.

H.1 Data Definitions for Realtime Files

The header file <rtfiles.h> defines the symbols, types, and manifest constants used by the realtime file facility.

Copyright © 1996 IEEE All Rights Reserved 489

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

Inclusion of the <rtfiles.h> header shall make visible the symbols defined by this part of ISO/IEC 9945 to be in
the header <sys/types.h>.

H.1.1 Realtime Files Specification Structures

H.1.1.1 The Allocation Attribute Buffer Structure

The attribute buffer structure rf_attrbuf specifies the attributes of a file and includes the following members:

Implementations may add extensions as permitted in 1.3.1.1, item (2). Adding extensions to this structure, which may
change the behavior of the application with respect to this standard when those fields in the structure are uninitialized,
also requires that the extension be enabled as required by 1.3.1.1.

The atb_alloc field is the length in bytes of the space to be allocated for future use as part of that file. The allocation
has the following characteristics:

The allocation amount is independent of file size as returned by the stat() function, and is reduced to zero
when the file is truncated.

The atb_allocflags field shall have a value formed from the inclusive OR of zero or more of the following flags defined
in <rtfiles.h> that pertain to the type of allocation required:

ATB_SEQ

Advisory indicating that allocation shall be done in a manner consistent with sequential access. If such
allocation is not possible, rf_create() and rf_setattr() shall fail. When returned in actattr, this flag indicates
that the file was made sequential. If both ATB_ADVSEQ and ATB_SEQ are specified, ATBSEQ takes
precedence and ATB_ADVSEQ is ignored.

ATB_ADVSEQ

Advisory indicating that the file is to be primarily accessed sequentially; that is, that the system should
optimize placement for sequential access if possible.

The atb_cacheflags field shall have a value formed from the inclusive OR of zero or more of the following flags
defined in <rtfiles.h> that pertain to the type of caching desired:

ATB_CACHENOREUSE

Advisory indicating that recently accessed data blocks are not likely to be accessed again in the near term.

Member
Type

Member
Name

Description

off_t atb_alloc File allocation length

int atb_allocflags Allocation flags

int atb_cacheflags File usage pattern

int atb_dioflags Direct I/O flags

size_t atb_diosize Direct I/O transfer size

490 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

ATB_CACHERANDOM

Advisory indicating that the application will be accessing the file randomly.

ATB_CACHESEQUENTIAL

Advisory indicating that the application will be accessing the file sequentially.

The atb_dioflags field shall have a value formed from the inclusive OR of zero or more of the following flags defined
in <rtfiles.h> that pertain to direct I/O:

ATB_DIOENABLE

Advisory indicating that the file can be enabled for direct I/O. When this attribute is set for an open file
description, subsequent read() and write() operations shall perform direct I/O.

The atb_diosize field contains the direct I/O transfer size in bytes for files that require a single direct I/O transfer size
to be defined. This field shall be returned as zero unless the underlying file system restricts direct I/O to a single
transfer size.

The flags ATB_CACHENOREUSE, ATB_CACHERANDOM, ATB_CACHESEQUENTIAL, and ATB_-
DIOENABLE shall be associated with the open file description.

H.1.1.2 The Allocation Capabilities Buffer

The allocation capabilities buffer structure rf_capallocbuf specifies the allocation capabilities of a file or file system
and includes the following members:

Implementations may add extensions as permitted in 1.3.1.1, item (2). Adding extensions to this structure, which may
change the behavior of the application with respect to this standard when those fields in the structure are uninitialized,
also requires that the extension be enabled as required by 1.3.1.1.

The members of the structure are defined as follows:

The atc_allocmin field contains the minimum preallocation size in bytes.
The atc_allocmax field contains the maximum preallocation size in bytes.
This field shall be returned as zero if preallocation is not supported.
The atc_allocincr field contains the granularity of increment for file space allocation.
The following values of atc_allocincrtype defined in <rtfiles.h> indicate how to interpret the
granularity of increment.

Member
Type

Member
Name

Description

off_t atc_allocmin Minimum preallocation size

off_t atc_allocmax Maximum preallocation size

off_t atc_allocincr Granularity of file space allocation

int atc_allocincrtype

int atc_allocflags Allocation flags

Copyright © 1996 IEEE All Rights Reserved 491

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

ATC_MULTIPLY

Allocation size shall be an integral multiple of atc_allocincr.

ATC_EXPONENT

Allocation size shall be an integral power of atc_allocincr.

ATC_LIST

Possible allocation values are a list with atc_allocincr entries.
If the bitwise AND of atc_allocflags and any of the following flags defined in <rtfiles.h> is nonzero,
the associated preallocation attribute is provided:

ATC_SEQ

Sequential allocation is possible.

H.1.1.3 The Cache Capabilities Buffer

The cache capabilities buffer structure rf_capcachebuf specifies the cache capabilities of a file or file system and
includes the following members:

Implementations may add extensions as permitted in 1.3.1.1, item (2). Adding extensions to this structure, which may
change the behavior of the application with respect to this standard when those fields in the structure are uninitialized,
also requires that the extension be enabled as required by 1.3.1.1.

The members of the structure are defined as follows:

The atc_cacheflags field indicates which of the following caching options are supported:

ATC_CACHENOREUSE

The implementation provides ATB_CACHENOREUSE functionality.

ATC_CACHERANDOM

The implementation provides ATB_CACHERANDOM functionality.

ATC_CACHESEQUENTIAL

The implementation provides ATB_CACHESEQUENTIAL functionality.

H.1.1.4 The Buffered I/O Capabilities Buffer

The buffered I/O capabilities buffer structure rf_capbiobuf specifies the buffered I/O capabilities of a file or file system
and includes the following members:

Member
Type

Member
Name

Description

int atc_cacheflags Supported caching options

492 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

Implementations may add extensions as permitted in 1.3.1.1, item (2). Adding extensions to this structure, which may
change the behavior of the application with respect to this standard when those fields in the structure are uninitialized,
also requires that the extension be enabled as required by 1.3.1.1.

The members of the structure are defined as follows:

The atc_boffset field indicates the seek alignment in bytes advised for best performance.
The atc_biomin field indicates the minimum transfer size advised for best performance.
The atc_biomax field indicates the maximum transfer size advised for best performance.
The atc_bioincr field indicates the transfer size increment (see H.1.1.2).
The atc_bioincrtype field indicates how to interpret atc_bioincr (see H.1.1.2).

H.1.1.5 The Atomic I/O Capabilities Buffer

The atomic I/O capabilities buffer structure rf_capaiobuf specifies the atomic I/O capabilities of a file or file system
and includes the following members:

Implementations may add extensions as permitted in 1.3.1.1, item (2). Adding extensions to this structure, which may
change the behavior of the application with respect to this standard when those fields in the structure are uninitialized,
also requires that the extension be enabled as required by 1.3.1.1.

The members of the structure are defined as follows:

Member
Type

Member
Name

Description

off_t atc_boffset Optimal seek alignment

size_t atc_biomin Minimum recommended transfer size

size_t atc_biomax Maximum recommended transfer size

size_t atc_bioincr Transfer size increment

int atc_bioincrtype

Member
Type

Member
Name

Description

size_t atc_aiomin Minimum atomic transfer size

size_t atc_aiomax Maximum atomic transfer size

size_t atc_aioincr Atomic transfer size increment

int atc_aioincrtype

off_t atc_aiosoffset Atomic seek alignment required

off_t atc_aioboundary

Copyright © 1996 IEEE All Rights Reserved 493

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The atc_aiomin field indicates the minimum atomic transfer size supported. An atomic I/O operation is a
transfer of data that succeeds or fails as a unit and that is not divisible by another transfer to the same
addresses in the data storage involved.
The atc_aiomax field indicates the maximum atomic transfer size supported.
The atc_aioincr field indicates the transfer size increment (see H.1.1.2).
The atc_aioincrtype field indicates how to interpret atc_aioincr (see H.1.1.2).
The atc_aiosoffset indicates starting seek alignment required for atomic transfer, if any.
The atc_aioboundary indicates a seek alignment that cannot be spanned by an atomic transfer, if any.

H.1.1.6 The Direct I/O Capabilities Buffer

The direct I/O capabilities buffer structure rf_capdiobuf specifies the direct I/O capabilities of a file or file system and
includes the following members:

Implementations may add extensions as permitted in 1.3.1.1, item (2). Adding extensions to this structure, which may
change the behavior of the application with respect to this standard when those fields in the structure are uninitialized,
also requires that the extension be enabled as required by 1.3.1.1.

The members of the structure are defined as follows:

The atc_doffset field indicates a seek alignment required for direct I/O.
The atc_dalign field indicates the memory alignment required for direct I/O. A buffer used for direct I/O shall
start at an address that is a multiple of this value. A direct read or write operation using a buffer that is not
properly aligned may fail, with errno set to [EFAULT].
The atc_diomin field indicates the minimum transfer size for direct I/O.
The atc_diomax field indicates the maximum transfer size for direct I/O.
The atc_dioincr field indicates the transfer size increment (see H.1.1.2).
The atc_dioincrtype field indicates how to interpret atc_dioincr (see H.1.1.2).
If the bitwise AND of atc_dioflags and any of the following flags defined in <rtfiles.h> is nonzero, the
associated direct I/O attribute is provided:

ATC_DIOCAPABLE

Direct I/O may be performed on this file.

ATC_DIOREQUIRED

Direct I/O shall be performed on this file.

Member
Type

Member
Name

Description

off_t atc_doffset Direct I/O seek alignment required

size_t atc_dalign Direct I/O memory alignment required

size_t atc_diomin Minimum direct I/O transfer size

size_t atc_diomax Maximum direct I/O transfer size

size_t atc_dioincr Direct I/O transfer size increment

int atc_dioincrtype

int atc_dioflags Direct I/O flags

494 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

For any capability attributes that are not applicable to the associated file or file system, zero shall be returned as the
attribute value.

H.1.1.7 Which Argument Formats

A reqwhich argument shall have a value formed from the inclusive OR of zero or 243 more of the following flags
defined in <rtfiles.h>, each indicating the associated attributes:

ATB_ALLOC

Preallocation size.

ATB_ALLOCFLAGS

Preallocation flags.

ATB_CACHEFLAGS

Caching flags.

ATB_DIOFLAGS

Direct I/O flags.

ATB_DIOSIZE

Direct I/O size.

ATB_ALL

All of the above.

A nonzero value for the bitwise AND of the updated value of the actwhich argument, returned by the rf_create() and
rf_setattr() functions, and any of the values defined for the reqwhich argument indicates that the associated requested
attributes buffer does not match the corresponding element in the associated actual attributes buffer. A zero value in
actwhich indicates that all requested attributes have been set as requested.

H.2 Realtime File Functions

H.2.1 Create a Realtime File

Function: rf_create()

H.2.1.1 Synopsis

#include <rtfiles.h>
int rf_create(const char *path, mode_t mode,
 const struct rf_attrbuf *reqattr, int reqwhich,
 struct rf_attrbuf *actattr, int *actwhich);

H.2.1.2 Description

If {_POSIX_REALTIME_FILES} is defined:

The rf_create() function creates a file with realtime attributes. The path and mode arguments are the same as
for creat()(see 5.3.2).
The reqattr and actattr arguments point to structures of type rf_attrbuf.
The requested attributes of the created file are specified the rf_attrbuf structure specified by the reqattr
argument.

Copyright © 1996 IEEE All Rights Reserved 495

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The actual attributes of the created file shall be stored in the rf_attrbuf structure specified by the actattr
argument upon successful completion of the rf_create() function.
The reqwhich argument shall be as described for the reqwhich argument in H.1.1.7.
The actwhich argument shall be as described for the actwhich argument in H.1.1.7.

Otherwise:

Either the implementation shall support the rf_create() function as described above or the rf_create() function
shall fail.

H.2.1.3 Returns

Upon successful completion, the function shall open the file and return a nonnegative integer representing the lowest
numbered unused file descriptor. Otherwise it shall return −1 and set errno to indicate the error.

H.2.1.4 Errors

If any of the following conditions occur, the rf_create() function shall return −1 and set errno to the corresponding
value:

[EACCES] Search permission is denied on a component of the path prefix, or the file exists and write
permission is denied, or the file does not exist and write permission is denied for the parent directory
of the file to be created.

[EEXIST] The specified file already exists.

[EINTR] The rf_create() operation was interrupted by a signal.

[EINVAL] The rf_create() function is not supported for the specified file.

One or more of the requested attributes are not valid. Upon return, if one or more of the attributes
was not valid, actwhich shall indicate at least one of the parameters found to be invalid.

[EMFILE] Too many file descriptors are currently in use by this process.

[ENAMETOOLONG]

The length of the path string exceeds {PATH_MAX}, or a pathname component is longer than
{NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

[ENFILE] Too many files are currently open in the system.

[ENOENT] Either the path prefix does not exist or the path argument points to an empty string.

[ENOSPC] The directory or file system that would contain the new file cannot be extended.

[ENOSYS] The function rf_create is not supported by this implementation.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The process does not have the appropriate privilege.

[EROFS] The requested operation requires writing in a directory on a read-only file system.

H.2.1.5 Cross-References

creat(), 5.3.2; open(), 5.3.1.

H.2.2 Get Attributes of Realtime File

Function: rf_getattr()

496 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

H.2.2.1 Synopsis

#include <rtfiles.h>
int rf_getattr(int fildes, struct rf_attrbuf *actattr);

H.2.2.2 Description

If {_POSIX_REALTIME_FILES} is defined:

The rf_getattr() function allows the calling process to obtain the realtime attributes of the file specified by
fildes. The fields of the rf_attrbuf structure referenced by actattr need not match those used when the file was
created or the states of the attributes after use of the rf_setattr() function. Implementations are not required to
make all attributes persistent across open file descriptions of a file.

Otherwise:

Either the implementation shall support the rf_getattr() function as described above or the rf_getattr()
function shall fail.

H.2.2.3 Returns

The rf_getattr() function shall return zero if the function is successful; otherwise, the function shall return −1 and set
errno to indicate the error.

H.2.2.4 Errors

If any of the following conditions occur, the rf_getattr() function shall return −1 and set errno to the corresponding
value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The rf_getattr() function is not supported for the specified file.

[ENOSYS] The function rf_getattr()is not supported by this implementation.

H.2.2.5 Cross-References

rf_create(), H.2.1; rf_setattr(), H.2.3.

H.2.3 Set Attributes of Realtime File

Function: rf_setattr()

H.2.3.1 Synopsis

#include <rtfiles.h>
int rf_setattr(int fildes, const struct rf_attrbuf *reqattr,
 int reqwhich, struct rf_attrbuf *actattr, int *actwhich);

H.2.3.2 Description

If {_POSIX_REALTIME_FILES} is defined:

The rf_setattr() function sets one or more realtime attributes associated with the file specified by fildes.
The reqwhich argument shall be as described for the reqwhich argument in H.1.1.7.

Copyright © 1996 IEEE All Rights Reserved 497

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The reqattr and actattr arguments point to structures of type rf_attrbuf.
The requested attributes of the file are specified in the rf_attrbuf structure specified by the reqattr argument.
The resulting attributes for the file shall be stored in actattr upon successful completion of the function.
The actwhich argument shall be as described for the actwhich argument in H.1.1.7.

Otherwise:

Either the implementation shall support the rf_setattr() function as described above or the rf_setattr()
function shall fail.

H.2.3.3 Returns

The rf_setattr()function shall return zero if the new attributes were successfully 375 set. The function shall return −1
if at least one of the requested operation(s) cannot be performed. If multiple attributes were specified, and one or more
attributes could not be set, the resultant values in actattr are undefined. Implementations may note one, some, or all of
the attributes in error. A Strictly Conforming Application shall not rely on a particular behavior in this regard.

H.2.3.4 Errors

If any of the following conditions occur, the rf_setattr() function shall return −1 and set errno to the corresponding
value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The rf_setattr() function is not supported for the specified file.

One of the requested attributes was not valid or is in conflict with an attribute specified on another
open instance of this file. Upon return, actwhich shall indicate which parameter was found to be in
error. No attributes of the file are changed.

[ENOSYS] The function rf_setattr() is not supported by this implementation.

H.2.3.5 Cross-References

rf_create(), H.2.1; rf_getattr(), H.2.2.

H.2.4 Get Allocation Capabilities of Realtime Files and File Systems

Function: rf_getalloccap()

H.2.4.1 Synopsis

#include <rtfiles.h>
int rf_getalloccap(int fildes, struct rf_capallocbuf *capbufp);

H.2.4.2 Description

If {_POSIX_REALTIME_FILES} is defined:

The rf_getalloccap() function allows the calling process to obtain the allocation capabilities of the file
specified by fildes.
If fildes specifies a file that is not a directory, then the capabilities refer to the file itself. If fildes specifies a file
that is a directory, then the capabilities refer to files created within that directory.
The capbufp argument points to a structure of type rf_capallocbuf.

498 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

The capabilities of the file or file system shall be stored in the rf_capallocbuf structure specified by the
capbufp argument upon successful completion of the rf_getalloccap() function.

Otherwise:

Either the implementation shall support the rf_getalloccap() function as described above or the
rf_getalloccap() function shall fail.

H.2.4.3 Returns

The rf_getalloccap() function shall return zero if the function is successful; otherwise, the function shall return −1 and
set errno to indicate the error.

H.2.4.4 Errors

If any of the following conditions occur, the rf_getalloccap() function shall return −1 and set errno to the
corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The rf_getalloccap() function is not supported for the specified file.

[ENOSYS] The function rf_getalloccap() is not supported by this implementation.

H.2.5 Get Cache Capabilities of Realtime Files and File Systems

Function: rf_getcachecap()

H.2.5.1 Synopsis

#include <rtfiles.h>
int rf_getcachecap(int fildes, struct rf_capcachebuf *capbufp);

H.2.5.2 Description

If {_POSIX_REALTIME_FILES} is defined:

The rf_getcachecap() function allows the calling process to obtain the cache capabilities of the file specified
by fildes.
If fildes specifies a file that is not a directory, then the capabilities refer to the file itself. If fildes specifies a file
that is a directory, then the capabilities refer to files created within that directory.
The capbufp argument points to a structure of type rf_capcachebuf.
The capabilities of the file or file system shall be stored in the rf_capcachebuf structure specified by the
capbufp argument upon successful completion of the rf_getcachecap() function.

Otherwise:

Either the implementation shall support the rf_getcachecap() function as described above or the
rf_getcachecap() function shall fail.

H.2.5.3 Returns

The rf_getcachecap() function shall return zero if the function is successful; otherwise, the function shall return −1 and
set errno to indicate the error.

Copyright © 1996 IEEE All Rights Reserved 499

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

H.2.5.4 Errors

If any of the following conditions occur, the rf_getcachecap() function shall return −1 and set errno to the
corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The rf_getcachecap() function is not supported for the specified file.

[ENOSYS] The function rf_getcachecap() is not supported by this implementation.

H.2.6 Get Buffered I/O Capabilities of Realtime Files and File Systems

Function: rf_getbiocap()

H.2.6.1 Synopsis

#include <rtfiles.h>
int rf_getbiocap(int fildes, struct rf_capbiobuf *capbufp);

H.2.6.2 Description

If {_POSIX_REALTIME_FILES} is defined:

The rf_getbiocap() function allows the calling process to obtain the buffered I/O capabilities of the file
specified by fildes.
If fildes specifies a file that is not a directory, then the capabilities refer to the file itself. If fildes specifies a file
that is a directory, then the capabilities refer to files created within that directory.
The capbufp argument points to a structure of type rf_capbiobuf.
The capabilities of the file or file system shall be stored in the rf_capbiobuf structure specified by the capbufp
argument upon successful completion of the rf_getbiocap() function.

Otherwise:

Either the implementation shall support the rf_getbiocap() function as described above or the rf_getbiocap()
function shall fail.

H.2.6.3 Returns

The rf_getbiocap() function shall return zero if the function is successful; otherwise, the function shall return −1 and
set errno to indicate the error.

H.2.6.4 Errors

If any of the following conditions occur, the rf_getbiocap() function shall return −1 and set errno to the corresponding
value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The rf_getbiocap() function is not supported for the specified file.

[ENOSYS] The function rf_getbiocap() is not supported by this implementation.

H.2.7 Get Atomic I/O Capabilities of Realtime Files and File Systems

Function: rf_getaiocap()

500 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

H.2.7.1 Synopsis

#include <rtfiles.h>
int rf_getaiocap(int fildes, struct rf_capaiobuf *capbufp);

H.2.7.2 Description

If {_POSIX_REALTIME_FILES} is defined:

The rf_getaiocap() function allows the calling process to obtain the atomic I/O capabilities of the file
specified by fildes.
If fildes specifies a file that is not a directory, then the capabilities refer to the file itself. If fildes specifies a file
that is a directory, then the capabilities refer to files created within that directory.
The capbufp argument points to a structure of type rf_capaiobuf.
The capabilities of the file or file system shall be stored in the rf_capaiobuf structure specified by the capbufp
argument upon successful completion of the rf_getaiocap() function.

Otherwise:

Either the implementation shall support the rf_getaiocap() function as described above or the rf_getaiocap()
function shall fail.

H.2.7.3 Returns

The rf_getaiocap() function shall return zero if the function is successful; otherwise, the function shall return −1 and
set errno to indicate the error.

H.2.7.4 Errors

If any of the following conditions occur, the rf_getaiocap() function shall return −1 and set errno to the corresponding
value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The rf_getaiocap() function is not supported for the specified file.

[ENOSYS] The function rf_getaiocap() is not supported by this implementation.

H.2.8 Get Direct I/O Capabilities of Realtime Files and File Systems

Function: rf_getdiocap()

H.2.8.1 Synopsis

#include <rtfiles.h>
int rf_getdiocap(int fildes, struct rf_capdiobuf *capbufp);

H.2.8.2 Description

If {_POSIX_REALTIME_FILES} is defined:

The rf_getdiocap() function allows the calling process to obtain the direct I/O capabilities of the file specified
by fildes.
If fildes specifies a file that is not a directory, then the capabilities refer to the file itself. If fildes specifies a file
that is a directory, then the capabilities refer to files created within that directory.

Copyright © 1996 IEEE All Rights Reserved 501

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

The capbufp argument points to a structure of type rf_capdiobuf.
The capabilities of the file or file system shall be stored in the rf_capdiobuf structure specified by the capbufp
argument upon successful completion of the rf_getdiocap() function.

Otherwise:

Either the implementation shall support the rf_getdiocap() function as described above or the rf_getdiocap()
function shall fail.

H.2.8.3 Returns

The rf_getdiocap() function shall return zero if the function is successful; otherwise, the function shall return −1 and
set errno to indicate the error.

H.2.8.4 Errors

If any of the following conditions occur, the rf_getdiocap() function shall return −1 and set errno to the corresponding
value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The rf_getdiocap() function is not supported for the specified file.

[ENOSYS] The function rf_getdiocap() is not supported by this implementation.

H.2.9 Get Increment Lists

Functions: rf_getallocincr(), rf_getincr()

H.2.9.1 Synopsis

#include <rtfiles.h>
int rf_getallocincr(int fildes, off_t *offbuffer, int buflen);
int rf_getincr(int fildes, int incr, size_t *sizebuffer, int buflen);

H.2.9.2 Description

If {_POSIX_REALTIME_FILES} is defined:

The rf_getallocincr() function allows the calling process to obtain the allocation increment list of the file
specified by fildes. The rf_getincr() function allows the calling process to obtain the transfer size increment
list for a capability attribute of the file specified by fildes. If fildes specifies a file that is not a directory, then
the increment list refers to the file itself. If fildes specifies a file that is a directory, then the increment list
refers to files created within that directory.
Each value in the increment list is a valid value for the attribute requested. For example, requesting the
ATC_BIOINCR attribute increment list for rotating magnetic media may return the sector, track, and cylinder
sizes as a three element list.
For the rf_getincr() function, the value of the incr argument may be any of the following defined in
<rtfiles.h>, and it specifies which increment list is required:

ATC_AIOINCR

Atomic transfer size increment.

ATC_BIOINCR

Suggested transfer size increment.

502 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

ATC_DIOINCR

Direct I/O transfer size increment.
The offbuffer argument points to an array of type off_t that shall receive the list of allocation increments. The
sizebuffer argument points to an array of type size_t that shall receive the list of transfer size increments.
The buflen argument indicates the maximum number of list entries that may be returned.

Otherwise:

Either the implementation shall support the rf_getallocincr() and rf_getincr() functions as described above or
each of the rf_getallocincr() and rf_getincr() functions shall fail.

H.2.9.3 Returns

If successful, the rf_getallocincr() function shall return the number of list entries stored in offbuffer; otherwise, the
function shall return −1 and set errno to indicate the error.

If successful, the rf_getincr() function shall return the number of list entries stored in sizebuffer; otherwise, the
function shall return −1 and set errno to indicate the error.

H.2.9.4 Errors

If any of the following conditions occur, the rf_getallocincr() and rf_getincr() functions shall return −1 and set errno
to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The function is not supported for the specified file.

The specified capability does not have an increment list.

The incr argument specifies an invalid increment list (rf_getincr() only).

[ENOSYS] The function is not supported by this implementation.

H.2.10 Allocate a Suitably Aligned Data Buffer

Function: rf_getbuf()

H.2.10.1 Synopsis

#include <sys/types.h>
void *rf_getbuf(off_t bufsize, off_t align);

H.2.10.2 Description

If {_POSIX_REALTIME_FILES} is defined:

The rf_getbuf() function returns a pointer to a suitably aligned buffer of size bufsize. The buffer shall start on
an address that is aligned modulo align. The align argument is typically taken from the atc_dalign element of
a rf_capdiobuf structure.

Otherwise:

Either the implementation shall support the rf_getbuf() function as described above or the rf_getbuf() function
shall fail.

Copyright © 1996 IEEE All Rights Reserved 503

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

H.2.10.3 Returns

If successful, the rf_getbuf() function shall return a pointer to a suitably aligned buffer; otherwise, the function shall
return −1 and set errno to indicate the error.

H.2.10.4 Errors

If any of the following conditions occur, the rf_getbuf() function shall return −1 and set errno to the corresponding
value:

[ENOMEM] A buffer area of the requested size could not be allocated.

[ENOSYS] The function rf_getbuf() is not supported by this implementation.

H.2.10.5 Cross-References

rf_create(), H.2.1; rf_freebuf(), H.2.11; rf_getattr(), H.2.2; rf_setattr(), H.2.3.

H.2.11 Release a Previously Allocated Data Buffer

Function: rf_freebuf()

H.2.11.1 Synopsis

#include <sys/types.h>
void *rf_freebuf(void *buf);

H.2.11.2 Description

If {_POSIX_REALTIME_FILES} is defined:

The rf_freebuf() function releases the buffer referenced by buf, which was previously allocated by the
rf_getbuf() function.

Otherwise:

Either the implementation shall support the rf_freebuf() function as described above or the rf_freebuf()
function shall fail.

H.2.11.3 Returns

If successful, the rf_freebuf() function shall return zero; otherwise, the function shall return −1 and set errno to indicate
the error.

H.2.11.4 Errors

If any of the following conditions occur, the rf_freebuf() function shall return −1 and set errno to the corresponding
value:

[EINVAL] The argument buf does not point to a buffer allocated by the rf_getbuf() function.

[ENOSYS] The function rf_freebuf() is not supported by this implementation.

504 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

H.2.11.5 Cross-References

rf_create(), H.2.1; rf_getattr(), H.2.2; rf_getbuf(), H.2.10; rf_setattr(), H.2.3.

H.3 Realtime Files

The purpose of these metrics is twofold:

1) To allow the user to compare the transfer rates of equivalent hardware platforms, and
2) On a given platform, to distinguish performance differences induced by changes in the attributes of files.

NOTE — What is presented here is an overall set of metrics for the total realtime file model presented in this annex. Individual
vendors shall interpret this section with regard to each different hardware platform. This interpretation should be
consistent with the purpose.

H.3.1 Conformance

If the implementation supports both the Realtime Files and Realtime Performance Documentation options, it shall
report, for at least one hardware platform specified by the vendor, all metrics described in this section. A conforming
implementation may specify any given metric as “Not Applicable” if the system under test does not support the
function tested or if use of that function has no visible effect on file I/O performance.

H.3.2 Fundamental Transfer Size

The first metric defines the context of further metrics.

Fundamental Transfer Size

The vendor shall first specify a number, which, for rotating magnetic media, should correspond to the block
size for the device. If this value is other than the block size, the vendor shall document the significance of the
value chosen.

H.3.3 Transfer Metrics

For each of the metrics defined here, the vendor shall specify multiple transfer timings. These timings shall be taken
under the conditions defined for each metric. The timings specify the time to read and to write a file under each of five
different pairs of file size and transfer size. These pairs are

File Size
(in bytes)

Transfer Size

65 536 Fundamental transfer size / 2

65 536 Fundamental transfer size

65 536 Optimal transfer size

2 097 152 Fundamental transfer size

2 097 152 Optimal transfer size

Copyright © 1996 IEEE All Rights Reserved 505

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

If the values 65 536 and 2 097 152 are not integral multiples of the Fundamental Transfer Size, the vendor may select
the integral multiples of the Fundamental Transfer Size that are immediately above these values and shall specify the
values used.

If the largest possible file size supported by the implementation is smaller than 65 536 B, the vendor shall provide and
document metrics for the largest possible size and approximately 1/32 of that size. If the largest possible file size
supported by the implementation is smaller than 2 097 152 B but larger than 65 536 B, the vendor shall provide and
document metrics for the largest possible size, for approximately 1/32 of that size, and for 65 536 B. The vendor shall
specify the size used.

Basic Metric

No optimizations should be made to the file for this test, such as placing the file in such a way as to enhance
performance (i.e., on a cylinder boundary for rotating media). If possible, such optimizations should be
actively defeated for this test. The vendor shall document the conditions under which the Basic Metric was
derived.

Preallocated File Metric

This metric is achieved by the same tests as the Basic Metric, but with file preallocation and the
atb_cacheflags having the value ATB_CACHENOREUSE specified when the file is created.

Contiguous File Metric

This metric is achieved by the same tests as the Basic Metric, but with file preallocation and the
atb_cacheflags having the value ATB_CACHESEQUENTIAL specified when the file is created.
Fundamental Transfer Size, should be used for the test.

Direct I/O Metric

This metric is derived by the same tests as the Basic Metric, but with direct I/O enabled.

Cache Control Metric

This metric is derived by the same tests as the Basic Metric, but with the cache control attributes set to a value
that is optimal for this test. The vendor shall specify what that value is.

Aligned Buffer Metric

This metric is derived by the same tests as the Basic Metric, but with optimal buffer alignment for the test.
The vendor shall specify the buffer alignment used for the test.

Best Case Metric

This metric is derived by the same tests as the Basic Metric, but with all attributes of the file optimized for
best performance. The vendor shall specify what attribute values were used for this test.

H.4 Rationale for Realtime Files

This subclause defines an interface that allows an application to specify various characteristics regarding how its
normal file requests [such as read() and write()] should be handled.

This facility provides a mechanism for the manipulation of realtime attributes of files in two component parts:

1) The Interface: An interface for allowing an application to obtain information about and influence system
usage of a file system, and

2) Attributes and Capabilities: A set of defined types of information that make this interface useful in a rotating
storage media model
 Capabilities: These are parameters that are constant with (direct) respect to the application, such as the

transfer granularity, disk geometry based parameters, and so on.

506 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

 Attributes: These are parameters that the application may control, such as the number of blocks pre-
reserved for a file, what sort of access the application will use (for example, random versus sequential).

The following set of attributes exist:

1) Sequential access
2) Pre-allocation
3) Direct I/O
4) Cache Usage
5) Aligned Transfers
6) Transfer Granularity

Passage of the attributes is accomplished via a structure.

Lastly, the interface contains an ability to obtain a buffer that is placed in memory according to desired constraints.
This facility does not allocate a buffer, it simply places a buffer within a larger buffer.

The application model used is one that allows the transfer of advisory information between an application and the
system. This information can be either system-generated information about the capabilities of the file systems (and
other factors in performance, such as memory alignment) available on that system, and application-generated
information about its use of the file system. The intent is that the application can vary its behavior in light of the
capabilities of the underlying implementation, and that the system may use application “hints” to perform some level
of optimization.

This notion is embodied directly in the interface by providing two primary functions for information interchange: The
capabilities buffer and its associated functions, and the attributes buffer and its associated functions.

In addition to this information exchange interface, those individual capabilities and attributes that are almost
universally provided are also defined in the interface to facilitate standardized usage of common practice.

It must be noted at this point that the standardization of the interface in no way implies that the implementation must
implement any particular optimization. It must simply disclaim existence of the optimization in a standard way.
Further, the names used for the facilities need not imply any implementation. For example, rather than using the term
“contiguous,” the abstraction “optimized for sequential access” is used, since this is indeed the notion that the
application wishes to express.

The following performance enhancement notions are embodied in the interface:

 “Contiguous” files. The notion here is that the access to these files should be optimized for sequential access,
probably with overlapped and/or large buffered operations. This is expressed as a sequential advisory in the
standard and does not imply that the underlying implementation be contiguous.

 Pre-allocation.The notion here is twofold. First is the pre-reservation of space to guarantee success while
writing a given amount of data. Second is the notion of actual pre-allocation, to remove the latency of
allocation from individual writes during data gathering. Once again, the implementation may provide none,
one, or both of these actual capabilities.

 Extension. The notion here is that when a file is extended, the application may desire that a size other than the
fundamental transfer size be pre-reserved or pre-allocated to enhance performance.

 Direct I/O. The notion here is to defeat some level of system buffering to increase overall throughput of data
to the file system. Doing so may constrain alignment of buffers, etc.

 Cache usage. The notion here is that data caching systems earn their performance increase statistically by
providing more advantage on some I/O than they lose on others. By providing hints to the system about
usage, the application can help the system to optimize cache usage.

Copyright © 1996 IEEE All Rights Reserved 507

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

 Aligned transfers. As mentioned above, direct I/O may require that some fundamental alignment be used, and
“normal” I/O may benefit from such alignment. The notion here is to provide information about such
transfers.

 Transfer granularity. Transfers may also be optimized by using a transfer size that is particularly friendly to
the underlying implementation. This notion allows for the expression of transfer sizes.

Additionally, several attributes of files that are not directly related to performance were targeted for standardization.
Although the task of standardizing an interface to myriad ways of achieving adequate performance for realtime file
usage is difficult, some of the techniques that are common practice are used widely enough, at least in their abstraction,
that they may be represented via common interfaces. Such interfaces allow some notions to be specified in a
transparently portable way and enhance the portability of less common techniques by defining a standard interface.
This can be achieved by defining an interface between the application and the system that is abstract; that is, that
defines a protocol for the passage of information regarding devices, file structures, files, and the usage of the file by the
application without defining the nature of the data to be transported. The interface also defines the set of data that can
be used to describe a very common model of higher performance files, a model of contiguous files on rotating storage
media, and he use of “direct” I/O to enhance transfer rate.

Some areas that would suggest themselves for inclusion in his standard are not included for a variety of reasons:

 Guaranteed delivery. The insured delivery of data to the underlying storage media, as opposed to system
buffers, is considered beyond the scope of this interface, and is addressed in 6.6.

 Bounded performance. Consideration was given to a model where the application merely characterized the
performance that it needed and the system took care of adjusting file attributes accordingly; it was noted that
this is not common practice. This lack of common practice was in some small way related to the fact that the
proposed interface might not be implementable. In any case, no consensus could be achieved on some of the
interface details, and it was deemed unlikely that a standard could be defined until the state of the art in this
area is improved.

 Circular file. Consideration was given to files of a fixed size whose contents were written in a circular
fashion. (For example, after reaching the size limit of the file, subsequent write() functions would overwrite
the beginning of the file.) This was requested primarily for logging operations. It was felt that this facility
could be implemented as a library function using functions already defined and therefore need not be
addressed in this part of ISO/IEC 9945.

With the exception of pre-allocation (atb_alloc), persistence of file attributes applies only on an open instance basis.
More persistent implementations are allowed but not required. Since pre-allocation of a file pertains to future use of
the file, it is an attribute of the file. Consequently, pre-allocation is persistent across all open instances of the file.

H.5 Realtime File Functions

The stat() and fcntl() functions were not extended since the additions necessary would exceed the current size of those
interfaces, and some of the facilities required (such as increment lists, capabilities, and the function of the which
argument) could not be expressed in that interface. Additionally, there is an explicit effort to provide interfaces that
promote type checking. The fcntl() function already violates this practice, and it was deemed undesirable to extend its
use.

In order to make the interface extensible and to reduce the likelihood of overlapping identifiers with the names of
existing or new attributes or capabilities, the interface uses constant names that are prefixed with ATC_ or ATB_ and
uses structure members that are prefixed with either atc_ or atb_. Applications should avoid using any identifiers of
that form, so that future use of the Realtime Files interface in programs that do not currently use it and future
extensions to the attributes and or capabilities will not cause name conflicts.

508 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition INFORMATION TECHNOLOGY—POSIX—

H.5.1 Data Definitions for Realtime Files

It is not immediately obvious why there are different attributes for sequential access allocation and cache advisory.
These exist because one is an attribute of the way the file is placed (traditionally implying contiguous allocation), and
one is an attribute of an open instance (typically enabling or disabling read-ahead cache behavior.)

H.5.2 Realtime Files Specification Structures

Due to the complexity of a single large capbuf structure, this structure is separated into the four different capabilities
structures, and the functions separated.

H.5.2.1 The Allocation Attribute Buffer

There is no specific rationale for this subclause.

H.5.2.2 The Allocation Capabilities Buffer

There is no specific rationale for this subclause.

H.5.2.3 The Cache Capabilities Buffer

There is no specific rationale for this subclause.

H.5.2.4 The Buffered I/O Capabilities Buffer

There is no specific rationale for this subclause.

H.5.2.5 The Atomic I/O Capabilities Buffer

Atomic I/O pertains to both buffered and direct I/O. The conditions for atomic I/O may be different for buffered and
direct I/O. The rf_getaiocap() function provides the atomic I/O capabilities for the current mode (buffered or direct,
etc.) of the file.

H.5.2.6 The Direct I/O Capabilities Buffer

There is no specific rationale for this subclause.

H.5.2.7 Which Argument Formats

A problem arises in the passage of the attributes in that some attributes (for example, initial allocation size) have no
reasonable and simple way of specifying a default value, since both zero and the maximum value have meaning. For
this reason, the structure of the attribute is always accompanied by a which parameter that specifies which of the
elements of the structure are to be interpreted. Accordingly, attribute structures that are returned by the system are
accompanied by a which parameter that specifies which of the attributes will be of interest to the application.

An example of returns in the which argument is as follows: an attempt to change the atb_alloc attribute may either
change the actual allocation, in which case no indication is made in actwhich and actattr, or not change the allocation
and return atb_alloc as the original reservation size, indicating in actwhich that atb_alloc was not changed.

H.5.2.8 Increment Lists

One type of data returned as a capability, namely allocation and extension increments, involves an additional
complexity that is visible in the interface. In order to accommodate multiple models of storage, an increment type is

Copyright © 1996 IEEE All Rights Reserved 509

. . . APPLICATION PROGRAM INTERFACE (API) [C LANGUAGE] ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

provided, along with further interfaces, rf_getallocincr() and rf_getincr(). Three types of increments are
acknowledged:

1) Multiples. The quantity is a number that must be supplied in an integral multiple, such as a file system that is
optimized around 8 block allocation granules.

2) Exponent. The increment must be an exponential multiple of the increment size. For example, some memory
disks may have optimal performance for 4, 16, 64 … block sizes and therefore would return an exponent 4 as
the increment size.

3) List. The increment may also have nonlinear boundaries. This is actually the case for most disks, with
disparate performance characteristics when crossing sector, track, and cylinder boundaries.

The rf_getallocincr() and rf_getincr() functions allows for item (3) by returning a list of possible increment sizes.

The rf_getallocincr() function is very similar to the rf_getincr() function but differs in the following respects. The
rf_getincr() function returns an increment list for the various types of transfer sizes. These are of type size_t. The
rf_getallocincr() function returns an increment list for the preallocation attributes of a file. These are of type off_t.

H.5.3 Realtime File Functions

An approach was initially considered that included three variations of each of the attribute/capability functions, one for
an open file descriptor, one for a pathname, and one for the file system associated with a pathname. Due to difficulties
associated with standardizing the definition of file system, the difficulty in some implementations of performing
operations on a path rather than an open instance of the file, and the general complexity of this interface, the concept
was dropped and the file-descriptor-only operations adopted.

Additionally, the original interface allowed the specification of an “intended attributes” buffer on capability functions.
This would constrain the intent of the caller so that the capabilities returned by the system could be adjusted to show
what was possible within that intent. Once again, this interface proved complex and cumbersome and was withdrawn.

H.5.3.1 Create a Realtime File

There is no specific rationale for this subclause.

H.5.3.2 Get Attributes of a Realtime File

There is no specific rationale for this subclause.

H.5.3.3 Set Attributes of a Realtime File

There is no specific rationale for this subclause.

H.5.3.4 Get Allocation Capabilities of Realtime File and File Systems

Again, complexity arguments justified the creation of four separate functions.

H.5.3.5 Get Cache Capabilities of Realtime Files and File Systems

There is no specific rationale for this subclause.

H.5.3.6 Get Buffered I/O Capabilities of Realtime Files and File Systems

There is no specific rationale for this subclause.

510 Copyright © 1996 IEEE All Rights Reserved

ISO/IEC 9945-1: 1996 ANSI/IEEE Std 1003.1, 1996 Edition

H.5.3.7 Get Atomic I/O Capabilities of Realtime Files and File Systems

There is no specific rationale for this subclause.

H.5.3.8 Get Direct I/O Capabilities of Realtime Files and File Systems

There is no specific rationale for this subclause.

H.5.3.9 Get Increment Lists

There is no specific rationale for this subclause.

H.5.3.10 Allocate Suitably Aligned Data Buffer

The placebuf() function was considered, but it raises several issues that need to be addressed.

The first of these is why placebuf() does not do the actual allocation of the buffer itself. The reason behind this is
twofold. First, actual allocation is perceived to be a language binding issue, and in fact some languages such as
FORTRAN have no allocation facility, while malloc() is defined in C Standard {2}. Thus other language bindings
might be inconsistent. Second, it is often necessary to allocate a buffer in a place such as a particular shared memory
region, which would be difficult to allow in a malloc()-derived allocation interface. Thus, the interface of choosing an
aligned buffer from within the specified buffer was chosen.

After much debate, the interface was changed to include an actual allocator interface, rf_getbuf(), and a de-allocator,
rf_freebuf(). This was deemed as acceptable due to the special requirements of this interface.

The second frequently encountered question is why an interface is needed when a compile time computation would
suffice to do the calculation. Once again, the application may need to place a buffer in a shared memory region whose
base alignment is not known to the application.

Note that the current cost of the allocation interface is the inability to place the buffer in shared memory.

Thirdly, it is not obvious how placebuf() can return an error. An example would be placing a 512 B buffer in a specified
buffer that is 768 B but that itself begins at a multiple of 512 B + 4. In this case, no suitable alignment to satisfy the
request exists.

H.5.3.11 Release a Previously Allocated Data Buffer

There is no specific rationale for this subclause.

H.5.4 Performance Metrics

The performance metrics given differ in structure from those given for many of the other interfaces in this part of ISO/
IEC 9945 in that they actually measure performance of an I/O subsystem rather than the performance of the interface.
The reason for this is that the requirement satisfied by the realtime files interface is satisfied in an indirect manner. To
give an example, the goal of message passing is to send messages quickly, and therefore the important metric is the
speed of the send message interface. In the case of realtime files, the speed of setting an attribute is basically
unimportant. What is important is the speed of read and write operations to the file once the attributes are set. Hence,
the supplied metrics give a set of examples that show how to obtain a bounded level of performance and what that level
of performance may be expected to be.

	Title page
	Foreword
	Introduction
	Participants
	CONTENTS
	1. General
	2. Terminology and General Requirements
	3. Process Primitives
	4. Process Environment
	5. Files and Directories
	6. Input and Output Primitives
	7. General Terminal Interface
	8. Language-Specific Services for the C Programming Language
	9. System Databases
	10. Data Interchange Format
	11. Synchronization
	12. Memory Management
	13. Execution Scheduling
	14. Clocks and Timers
	15. Message Passing
	16. Thread Management
	17. Thread-Specific Data
	18. Thread Cancellation
	Annex A Bibliography
	Annex B Rationale and Notes
	Annex C Header Contents Samples
	Annex D Profiles
	Annex E National Profile
	Annex F Portability Considerations
	Annex G Performance Metrics
	Annex H Realtime Files

