

POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

IEEE Std 1003.5, 1999 Edition

(Incorporates IEEE Std 1003.5-1992,
IEEE Std 1003.5b-1996, and

IEEE Std 1003.5c-1998)

IEEE Standard for Information Technology—
POSIX

®

 Ada Language Interfaces—
Part 1: Binding for System Application
Program Interface (API)

Includes

Amendment 1: Realtime Extensions

and

Amendment 2: Protocol-Independent Interfaces

Sponsor

Portable Applications Standards Committee
of the
IEEE Computer Society

Approved 8 December 1998

IEEE Standards Board

Abstract:

 This standard is part of the POSIX

®

 series of standards for applications and user inter-
faces to open systems. It defines the Ada language bindings as package specifications and accom-
panying textual descriptions of the application program interface (API). This standard supports
application portability at the source code level through the binding between ISO 8652:1995 (Ada)
and ISO/IEC 9945-1:1996 (IEEE Std 1003.1-1996) (POSIX) as amended by IEEE P1003.1g/D6.6.
Terminology and general requirements, process primitives, the process environment, files and
directories, input and output primaries, device- and class-specific functions, language-specific
services for Ada, system databases, synchronization, memory management, execution scheduling,
clocks and timers, message passing, task management, the XTI and socket detailed network inter-
faces, event management, network support functions, and protocol-specific mappings are covered.
It also specifies behavior to support the binding that must be proviced by the Ada.

Keywords:

 Ada, API, application portability, computer language bindings, information exchange,
interprocess communication, networks, open systems, operating systems, portable application,
POSIX, POSIX language bindings, protocol-specific, protocol-independent, real-time, sockets,
thread, XTI.

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 1999 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 3 December 1999. Printed in the United States of America.

Print: ISBN 0-7381-1539-8 SH94710
PDF: ISBN 0-7381-1540-1 SS94710

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

IEEE Standards

 documents are developed within the IEEE Societies and the Standards Coordinating Com-
mittees of the IEEE Standards Association (IEEE-SA) Standards Board. Members of the committees serve
voluntarily and without compensation. They are not necessarily members of the Institute. The standards
developed within IEEE represent a consensus of the broad expertise on the subject within the Institute as
well as those activities outside of IEEE that have expressed an interest in participating in the development of
the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there
are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to
the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and
issued is subject to change brought about through developments in the state of the art and comments
received from users of the standard. Every IEEE Standard is subjected to review at least every five years for
revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is rea-
sonable to conclude that its contents, although still of some value, do not wholly reflect the present state of
the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership
affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of
text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they
relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the
Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of
all concerned interests, it is important to ensure that any interpretation has also received the concurrence of a
balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating
Committees are not able to provide an instant response to interpretation requests except in those cases where
the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the
Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright
Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Cus-
tomer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; (978) 750-8400. Permission to photocopy
portions of any individual standard for educational classroom use can also be obtained through the Copy-
right Clearance Center.

Note: Attention is called to the possibility that implementation of this standard may
require use of subject matter covered by patent rights. By publication of this standard,
no position is taken with respect to the existence or validity of any patent rights in
connection therewith. The IEEE shall not be responsible for identifying patents for
which a license may be required by an IEEE standard or for conducting inquiries into
the legal validity or scope of those patents that are brought to its attention.

Contents

PAGE

Introduction . vi

Section 1: General . 1
1.1 Scope . 1
1.2 Normative References . 3
1.3 Conformance . 4

Section 2: Terminology and General Requirements 9
2.1 Editorial Conventions . 9
2.2 Definitions . 10
2.3 General Concepts . 38
2.4 Package POSIX . 42
2.5 Package POSIX_Options . 76
2.6 Package POSIX_Limits . 82
2.7 Package Ada_Streams . 87
2.8 Package System . 88
2.9 Package System_Storage_Elements 89
2.10 Package POSIX_Page_Alignment . 90
2.11 Environment Description . 91

Section 3: Process Primitives . 95
3.1 Package POSIX_Process_Primitives 95
3.2 Package POSIX_Unsafe_Process_Primitives 108
3.3 Package POSIX_Signals . 115

Section 4: Process Environment . 149
4.1 Package POSIX_Process_Identification 149
4.2 Package POSIX_Process_Times . 156
4.3 Package POSIX_Process_Environment 157
4.4 Package POSIX_Calendar . 164
4.5 Package POSIX_Configurable_System_Limits 167

Section 5: Files and Directories . 175
5.1 Package POSIX_Permissions . 175
5.2 Package POSIX_Files . 178
5.3 Package POSIX_File_Status . 190
5.4 Package POSIX_Configurable_File_Limits 194

Section 6: I/O Primitives . 205
6.1 Package POSIX_IO . 205

ii

6.2 Package POSIX_File_Locking . 232
6.3 Package POSIX_Asynchronous_IO . 234

Section 7: Device- and Class-Specific Functions 253
7.1 General Terminal Interface . 253
7.2 Package POSIX_Terminal_Functions 260

Section 8: Language-Specific Services for Ada 279
8.1 Interoperable Ada I/O Services . 279
8.2 Package POSIX_Supplement_to_Ada_IO 283

Section 9: System Databases . 287
9.1 Package POSIX_User_Database . 287
9.2 Package POSIX_Group_Database . 289

Section 10: Data Interchange Format . 293

Section 11: Synchronization . 295
11.1 Package POSIX_Semaphores . 295
11.2 Package POSIX_Mutexes . 304
11.3 Package POSIX_Condition_Variables 314

Section 12: Memory Management . 323
12.1 Package POSIX_Memory_Locking . 324
12.2 Package POSIX_Memory_Range_Locking 326
12.3 Package POSIX_Memory_Mapping . 328
12.4 Package POSIX_Shared_Memory_Objects 337
12.5 Package POSIX_Generic_Shared_Memory 341

Section 13: Execution Scheduling . 349
13.1 Scheduling Concepts and Terminology 349
13.2 Package POSIX_Process_Scheduling 349
13.3 Task Scheduling . 354
13.4 Synchronization Scheduling . 356

Section 14: Clocks and Timers . 357
14.1 Package POSIX_Timers . 357
14.2 High Resolution Delay . 366

Section 15: Message Passing . 367
15.1 Package POSIX_Message_Queues . 367

Section 16: Task Management . 383
16.1 Package Ada_Task_Identification 383

Section 17: Detailed Network Interface - XTI . 385
17.1 Introduction . 385
17.2 States and Events . 391
17.3 The Use of Options . 399
17.4 Package POSIX_XTI . 410

iii

Section 18: Detailed Network Interface - Socket 487
18.1 Introduction . 487
18.2 Events and States . 489
18.3 Use of Options . 498
18.4 Package POSIX_Sockets . 498

Section 19: Event Management . 535
19.1 Package POSIX_Event_Management . 535

Annex A (informative) Bibliography . 547

Annex B (informative) Rationale and Notes . 549
B.1 General . 549
B.2 Terminology and General Requirements 563
B.3 Process Primitives . 575
B.4 Process Environment . 592
B.5 Files and Directories . 598
B.6 Input and Output Primitives . 602
B.7 Device- and Class-Specific Functions . 610
B.8 Language-Specific Services for Ada . 610
B.9 System Databases . 621
B.10 Data Interchange Format . 623
B.11 Synchronization . 623
B.12 Memory Management . 629
B.13 Execution Scheduling . 634
B.14 Clocks and Timers . 639
B.15 Message Passing . 642
B.16 Task Identification . 643
B.17 Thread-Specific Data . 643
B.18 Detailed Network Interface - XTI . 643
B.19 Detailed Network Interface - Socket . 646
B.20 Network Support Functions . 647
B.21 Protocol Mappings Annex . 648

Annex C (informative) Ada/C Cross-References 651
C.1 Ada-to-C Cross-Reference . 651
C.2 C-to-Ada Cross-Reference . 681

Annex D (normative) Protocol Mappings . 713
D.1 Sockets Protocol Mappings . 713
D.2 XTI Protocol Mappings . 759

Alphabetic Topical Index . 819

TABLES

Table1.1 – Sockets and XTI Package Renaming 5
Table2.1 – Typographical Conventions . 9

iv

Table2.2 – Constant and Subtype Correspondences 52
Table2.3 – Option Set Comparisons . 60
Table2.4 – Static Subtypes and Options . 81
Table2.5 – Portable Constants and Limits . 86
Table2.6 – Static Subtypes and Limits . 88
Table3.1 – Default Actions for Job Control Signals 127
Table4.1 – Functions for System-Wide Options 172
Table4.2 – Configurable System Limits . 174
Table6.1 – Standard File Descriptors . 209
Table6.2 – Error Codes and AIO Status Values 247
Table7.1 – Terminal_Characteristics Components 263
Table7.2 – Terminal_Modes Values for Input Control 265
Table7.3 – Terminal_Modes Values for Output Control 267
Table7.4 – Terminal_Modes Values for Hardware Control 267
Table7.5 – Terminal_Modes Values for Local Control Modes 269
Table7.6 – Special Control Character Usage . 272
Table17.1 – Events and Look . 389
Table17.2 – Classification of the XTI Functions 392
Table17.3 – Communication Interface States . 394
Table17.4 – Initialization/De-initialization State Table 396
Table17.5 – Data Transfer State Table for Connectionless-Mode Service 396
Table17.6 – Connection/Release/Data Transfer State Table for Connection-

Mode Service . 397
Table17.7 – Event_Requires_Attention Error Indications 399
Table18.1 – Socket Events . 490
Table18.2 – Socket States . 491
TableB.1 – Correspondence of File Creation Flags 615
TableD.1 – Port Number Re-Use . 744
TableD.2 – Communications_Provider_Info Returned by Get_Info and

Open, mOSI . 774
TableD.3 – XTI and ACSE/Presentation Services 777
TableD.4 – XTI mOSI Connection-Mode Data Transfer Services 779
TableD.5 – XTI and Association Release Services 779
TableD.6 – XTI Connectionless-Mode ACSE Services 780
TableD.7 – Communications_Provider_Info Returned by Get_Info and

Open, ISO . 801
TableD.8 – Communications_Provider_Info Returned by Get_Info and

Open, Internet . 810

v

IEEE Std 1003.5c-1998

Introduction

(This introduction is not a part of IEEE Std 1003.5c-1998, IEEE Standard for Information Technology
– POSIX

R
Ada Language Interfaces – Part 1: Binding for System Application Program Interface (API)

– Amendment 2: Protocol-Independent Interfaces, cbut is included for information only.)

This standard is an amended version of IEEE Std 1003.5b-1996. cThe basic goal of
this standard is to provide an Ada application program interface for the language-
independent services made accessible to C-language applications programs by the
interfaces defined in ISO/IEC 9945-1:1996 (IEEE Std 1003.1-1996) f2g as amended
by IEEE P1003.1g fB14g c.

The intent is to support portability of Ada applications via a standard binding to
the services provided by a POSIX-conforming operating system. POSIX is defined
by the standard C-language interfaces cited above. Therefore, much of the work in
producing this standard was deciding what features of those C-language interfaces
represented POSIX functionality, as opposed to C-language-specific features.

This standard provides package specifications and accompanying textual description
for a set of Ada packages that represent the POSIX system. This standard also spec-
ifies behavior to support the binding that must be provided by the Ada compilation
system, and further defines behavior specified as implementation defined in the Ada
language standard (particularly in the area of Text_IO) for use in a POSIX environ-
ment.

The emphasis in POSIX is on application program portability, so the interfaces in this
standard are not intended to be sufficient to implement an Ada compilation system
or a POSIX shell as defined in IEEE Standard 1003.2 fB16g. For an application,
the intent is that a Strictly Conforming POSIX.5 Application (one that uses only
the facilities in this standard and that does not depend on implementation-defined
behavior) can be ported to any Conforming Implementation of these interfaces and
that the binding makes it easy to identify where a program is not strictly conforming
and makes such programs easier to port.

Organization of This Standard

The standard is divided into three parts:

— Statement of scope, list of normative references, and conformance information
(Section 1)

— Definitions and global concepts (Section 2)

— The various interface facilities (Sections 3 through 19)

The content of the sections parallels that of the correspondingly numbered sections
of ISO/IEC 9945-1:1996 and IEEE P1003.1g/D6.6, with a few changes required to
accomodate differences between the Ada and C-language interfaces. cThis standard

vi Introduction

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

has no Section 10, since there is no Ada binding for that Section 10 (Data Interchange
Formats) of ISO/IEC 9945-1:1996.

This introduction, any footnotes, notes accompanying the text, and the informative
annexes are not considered part of this standard.

Related Standards Activities

Activities to extend this standard to address additional requirements can be antici-
pated in the future1).

Extensions are approved as amendments or revisions to this standard, following
IEEE and ISO/IEC procedures.

Anyone interested in participating in the PASC working groups addressing these
issues should send his or her name, address, and phone number to the Secretary,
IEEE Standards Board, Institute of Electrical and Electronics Engineers, Inc., P.O.
Box 1331, 445 Hoes Lane, Piscataway, NJ 08855-1331, USA, and ask to have this
information forwarded to the chair of the appropriate PASC working group. A per-
son who is interested in participating in this work at the international level should
contact his or her ISO/IEC national body c.

1) A Standards Status Report that lists all current IEEE Computer Society standards projects is avail-
able from the IEEE Computer Society, 1730 Massachusetts Avenue NW, Washington, DC 20036-
1903, USA; Telephone: +1 202 371-0101; FAX: +1 202 728-9614.

Introduction vii

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

IEEE Std 1003.5-1992 was prepared by the 1003.5 Working Group, sponsored by
the Technical Committee on Operating Systems and Applications Environments of
the IEEE Computer Society. At the time IEEE Std 1003.5-1992 was approved the
membership of the IEEE P1003.5 working group was as follows:

Technical Committee on Operating Systems
and Application Environments (TCOS)

Chair: Jehan-François Pâris

TCOS Standards Subcommittee

Chair: Jim Isaak
Vice Chairs: Ralph Barker

Hal Jesperson
Lorraine Kevra
Pete Meier
Andrew Twigger

Treasurer: Peter Smith
Secretary: Shane McCarron

P1003.5 Working Group Officials

Chair: James P. Lonjers
Steven Deller (1989-1991)
Major Terrence Fong (1988-1989)

Vice Chairs: James P. Lonjers (1990-1991)
Major Terrence Fong (1989-1990)
Stowe Boyd (1988-1989)

Editors: David Emery
Hal Jesperson
Steven Deller (1988-1989)

Rationale Editor: Mitch Gart
Secretary: C. Jayne Baker

David Emery (1988-1989)

Technical Reviewers

Ted Baker
Steven Deller
Dennis Doubleday

David Emery
Mitch Gart

Jim Lonjers
Jim Moore
Stephen Schwarm

Working Group

Ted Baker
Stowe Boyd
Bevin Brett
Charles Brown
Robert Brown
Bhavesh Damania
Steven Deller
Dennis Doubleday
David Emery
Terry Fong
Mitchell Gart

Michael Gillam
Al Globus
Mars Gralia
Jayne Guyse
Ken Harvey
Ruth Hirt
Jeff Hooley
Michael Kjolsrud
Peter Krupp
James Leathrum

Sue LeGrand
James Lonjers
James Moore
Mark Ruddock
Stephen Schwarm
Michael Shapiro
Brian Sullivan
Del Swanson
Robert Voigt
Olle Wikstrom
John Zenor

viii Introduction

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

The following persons where members of the balloting group for IEEE Std 1003.5-
1992.

Harold C. Adams
John S. Adams
Omar Ahmed
David Allen
Charles J. Antonelli
B. Ardary
David Athersych
Randall Atkinson
Randal J. August
Kenneth A. Austin
Carolyn J. Baker
Robert L. Baker
Ted Baker
James Baldo
Brad Balfour
Gary E. Barnes
Mitchell C. Barnhart
Randall Barron
Steven Barryte
Barbara K. Beauchamp
Gary Beerman
E. Jerome Bell
Donald Bennett
Peter A. Berggren
Mark Biggar
Robert Bismuth
Alex Blakemore
Stephen Blanchette, Jr.
Pieter Botman
Stowe Boyd
Carl Brandon
Philip Brashear
Joseph P. Brazy
Mark S. Breckenridge
Ronald F. Brender
Jim Briggs
Thomas C. Brooke
Jerry R. Brookshire
Charles O. Brown
Elizabeth B. Brown
Jane C. Bryan
Gary L. Burt
Christopher Byrnes
David Calloway
Nicholas A. Camillone
Kenneth W. Campbell
Rick Carle
David J. Carlson
Dana Carson
Jeffrey R. Carter
Jerry Cashin
H. L. Catala
Larry Chandler
Andy Cheese
James Chelini

Andrew Chung
Brad Clark
Lori A. Clarke
Norman H. Cohen
Edward Colbert
Phillippe Collard
Robert A. Conti
William M. Corwin
Mike Cossey
John Courtney
Donald Cragun
Richard A. Crawford
Jim Creegan
Phyllis Crill
John J. Cupak
Charles Dana
William H. Dashiell
David Davis
Rich DeBernardo
David DeFanti
Mike Dean
Dave Decot
Steven Deller
Jorge Diaz-Herrera
Michael B. Dillencourt
James H. Dobbins
Audrey Dorofee
Terence Dowling
Diptendu Dutta
Eugene Edelstein
Theodore F. Elbert
Richard W. Elwood
David Emery
Arny Engelson
Philip H. Enslow
William Eventoff
Gary Falacara
John H. Fauerby
Charles A. Finnell
Jeffery Fischer
Shayne Flint
Terence Fong
Edward J. Forbes, Jr.
Roy S. Freedman
Randal S. Freier
Dale J. Gaumer
Larry Gearhart
K. M. George
Gregory A. Gicca
Robert T. Goettge
Phillip Goldstein
Roger Golliver
William N. Goolsby
William J. Goulet
Mars J. Gralia

Allen L. Grau
Charles R. Grauling
Daniel Green
Tom Griest
F. Grize
Ernesto Guerrieri
Lawrence M. Gunther
R. N. Hagen
Charles Hammons
Peter A. Hansen
Sam Harbaugh
Samuel Harbison
David S. Hardin
Charles Harkey
Loren L. Hart
Thomas S. Hawker
Clark M. Hay
Ralph Hayward
John Craig Heberle
William Hefley
A. Marlow Henne
Donald C. Hill
Norman Hines
C. Michael Holloway
Jeffrey Hooley
Joseph P. Hoolihan
Tom Housman
Richard Howard
Norman R. Howes
Lynne M. Hubbs
David K. Hughes
Richard G. Hull
Jeremy James
Hal Jespersen
Darryl N. Johnson
Bruce Johnston
Alain Jouchoux
Juern Juergens
Steven Kahn
Fumimiko Kamijo
Alan Kaminsky
Ling Kan
Karl Kelley
Robert H. C. Kemp
Judy S. Kerner
James J. Keys
Paul J. King
Hans R. Klay
Kenneth Kloss
Robert Knighten
Joseph B. Kolb
John C. Krasnowski
Lak Ming Lam
Rudolf C. Landwehr
Charles F. Lanman

Introduction ix

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Gary Lauther
Patricia K. Lawlis
Scott A. Leschke
M. Levitz
Stephen H. Levy
F. C. Lim
Timothy E. Lindquist
J. J. Logan
James P. Lonjers
Warren E. Loper
Mark Loveland
George A. Ludgate
Sonny Lundahl
Wesley Mackey
Austin J. Maher
James Maloney
Roger Martin
Robert Mathis
Fred Maymir-Ducharme
Catherine McDonald
Robert L. McGarvey
Daniel L. McNamee
Robert McWhirter
Nancy R. Mead
Geoff Mendal
Jay Michael
Gary W. Miller
Robert E. Miller
Judah Mogilensky
Al Mok
Charles S. Mooney
James D. Mooney
Freeman Moore
James W. Moore
Jerry A. Moore
John I. Moore, Jr.
Duncan Morrill
M. W. Morron
Gary Mrenak
David G. Mullens
Richard E. Nesee
Sai Lun Ng
Daniel Nissen
Karl Nyberg
James O’Day
Evelyn Obaid
Patricia Oberndorf
Kurt M. Olender
S. Ron Oliver

James K. Parrish
Thomas Parrish
Offer Pazy
Walt Penney
Guido Persch
Flavio Petersen
Thomas A. Peterson
George W. Petznick
Hane W. Polzer
J. Pottmyer
Charles Pow
Eileen Quann
Paul Rabin
John Reddan
W. Scott Redmon
Gregg Reed
Carl Reinert
Judith Richardson
Richard A. Rink
Clyde Roby
C. Allan Rofer
Hyman Rosen
Jerome D. Rosen
Frederick M. Rysz
Agnes M. Sardi
Robert J. Satnik
Allen Saxton
Lorne H. Schachter
F. P. Schauer
Alfred H. Scholldorf
Ron Schroeder
Mike Schultz
W. L. Schultz
Fritz Schulz
Leonard Seagren
Richard Seibel
Lawrence H. Shafer
Michael D. Shapiro
John G. Shea
Nagy M. Shehad
Dan Shia
Thomas E. Shields
Keith Shillington
David Shochat
Stephen Schwarm
Robert Charles Shock
Jerome L. Sibol, Jr.
Lee Silverthorn

Ronald Skoog
Thomas J. Smith
Charles Snyder
Jon S. Squire
Jeff Stevenson
Brian Sullivan
Del Swanson
S. Tucker Taft
Ravi Tavakley
Donn S. Terry
John A. Thalhamer
William J. Thomas
Peter L. Thompson
James L. Troy
Roger Tubby
Mark-Rene Uchida
L. David Umbaugh
Robert B. Urling
Evelyn M. Uzzle
Frances Van Scoy
Leonard Vanek
Michael W. Vannier
Uwe Wacker
Robert N. Wagoner
Mary Wall
Stephen R. Walli
Neal Walters
Kenneth Wasmundt
William Webster
J. Richard Weger
Brian Weis
Robert Weissensee
Michael K. Welter
Stephen Wersan
Thomas Wheeler
William Whitaker
Bruce Wieand
David Willcox
David C. Willet
David Williamson
Paul A. Willis
David H. Winfield
David C. Wolfe
Paul A. Wolfgang
Michal Young
Oren Yuan
Janusz Zalewski
K. M. Zemrowski
John Zolnowsky

x Introduction

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

When the IEEE Standards Board approved IEEE Std 1003.5-1992 on 18 June 1992,
it had the following membership:

Marco W. Migliaro, Chair Donald C. Loughry, Vice Chair

Andrew G. Salem, Secretary

Dennis Bodson
Paul L. Borrill Clyde R.
Camp
Donald C. Fleckenstein
Jay Forster �

David F. Franklin
Ramiro Garcia
Thomas L. Hannan

Donald N. Heirman
Ben C. Johnson
Walter J. Karplus
Ivor N. Knight
Joseph L. Koepfinger�

Irving Kolodny
D.N. “Jim” Logothetis
Lawrence V. McCall

T. Don Michael�

John L. Rankins
Wallace S. Read
Ronald H. Reimer
Gary S. Robinson
Martin V. Schneider
Terrance R. Whittemore
Donald W. Zipse

�Member Emeritus

Also included are the following nonvoting IEEE Standards Board liaisons:

Satish K. Aggarwal
James Beall
Richard B.
Engleman
David E. Soffrin
Stanley Warshaw

Mary Lynne Nielsen
IEEE Standards Project Editor

Introduction xi

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

IEEE Std 1003.5b-1996 was prepared by the P1003.5 working group, sponsored by
the Portable Applications Standards Committee of the IEEE Computer Society. At
the time IEEE Std 1003.5b-1996 was approved the membership of the P1003.5 work-
ing group was as follows:

Portable Applications Standards Committee (PASC)

Chair: Jehan-François Pâris

PASC Standards Subcommittee

Chair: Lowell Johnson
Vice Chair: Charles Severance
Functional Chairs: Barry Needham

John Spencer
Jay Ashford
Andrew Josey

Treasurer: Peter Smith
Secretary: Charles Severance

IEEE P1003.5 Working Group Officials

Chair: James P. Lonjers (1991-1994)
Stephen Schwarm (1995-1996)
Ted Baker (1996-1997)

Vice Chairs: Stephen Schwarm (1991-1995)
Randy Greene (1995-1996)
David Emery (1003.5 Interpretations)

Editor: Ted Baker (P1003.5b)
Rationale Editor: Lee Lucas
Secretary: C. Jayne Guyse (1991-1993)

Peter Obermayer (1994-1996)

Technical Reviewers

Ted Baker
Mark Faulk
Ted Giering
Randy Greene

Lee Lucas
Peter Obermayer
Offer Pazy
Ruth A. Peek
Ed Posnak

Henry H. Robbins
Stephen Schwarm
Del Swanson
Laurent Visconti

Working Group

Theodore P. (Ted) Baker
Bevin Brett
Steven Deller
David Emery
Mark Faulk
Randy Greene
C. Jayne Guyse

David K. Hughes
James Lonjers
Lee Lucas
Peter Obermayer
James T. Oblinger
Offer Pazy
Ruth A. Peek

Ray Ricco
Henry H. Robbins
Stephen Schwarm
Jim Smith
Del Swanson
Laurent Visconti
John Zenor

xii Introduction

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

The following persons were members of the balloting group for IEEE Std 1003.5b-
1996:

Alejandro A. Alonso
Theodore P. Baker
Robert Barned
Andy Bihain
William M. Corwin
Steven Deller
David Emery
Philip H. Enslow
Michael Gonzalez
C. Jayne Guyse
Joe Gwinn
Patrick Hebert
Steven Howell

Norman R. Howes
David K. Hughes
Judy Kerner
Philippe Kruchten
Thomas M. Kurihara
Arthur Licht
C. Douglass Locke
James P. Lonjers
Lee W. Lucas
Roland McGrath
Paul Murdock
James T. Oblinger
Offer Pazy

Dave Plauger
Arlan Pool
Henry H. Robbins
Stephen Schwarm
Leonard W. Seagren
Robert Alan Siegel
Dennis C. Stewart
Alfred Strohmeier
Del Swanson
Mark-René Uchida
USENIX
Victor Fay-Wolfe
John Zenor

When the IEEE Standards Board approved IEEE Std 1003.5b-1996 on 20 June 1996,
it had the following membership:

Donald C. Loughry, Chair Richard J. Holleman, Vice Chair

Andrew G. Salem, Secretary

Gilles A. Baril
Clyde R. Camp
Joseph A. Cannatelli
Stephen L. Diamond
Harold E. Epstein
Donald C. Fleckenstein
Jay Forster �

Donald N. Heirman
Ben C. Johnson

E. G. “Al” Kiener
Joseph L. Koepfinger�

Stephen R. Lambert
Lawrence V. McCall
Bruce McClung
Marco W. Migliaro
Mary Lou Padgett
John W. Pope

Jose R. Ramos
Arthur K. Reilly
Ronald H. Reimer
Gary S. Robinson
Ingo Rüsch
John S. Ryan
Chee Kiow Tan
Leonard L. Tripp
Howard L. Wolfman

�Member Emeritus

Also included are the following nonvoting IEEE Standards Board liaisons:

Satish K. Aggarwal
Alan H. Cookson
Chester C. Taylor

Lisa S. Young
IEEE Standards Project Editor

Introduction xiii

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

IEEE Std 1003.5c-1998 was prepared by the P1003.5 working group, sponsored by
the Portable Applications Standards Committee of the IEEE Computer Society. At
the time IEEE Std 1003.5c-1998 was approved the membership of the P1003.5 work-
ing group was as follows:

PASC Standards Subcommittee

Chair: Lowell Johnson
Vice Chair: Joe Gwinn
Functional Chairs: Curtis Royster

Jason Zions
Jay Ashford
Andrew Josey

Secretary: Nick Stoughton

IEEE P1003.5 Working Group Officials

Chair: Ted Baker
Vice Chair: Linda Harowicz
Editors: Craig Meyer (P1003.5c Editor)

Working Group

Ted Baker Greg Bussiere
Linda Harowicz

Craig Meyer

The following persons were voting members of the balloting group for IEEE Std
1003.5c-1998:

Ted Baker
Bob Barned
Carl Brandon
Greg Bussiere
Jorge L. Diaz-Herrera
Victor Giddings
Michael Gonzalez

Mars J. Gralia
Linda Harowicz
Matthew Heaney
Niklas Holsti
David C. Hoos
Michael J. Kamrad
Mark Lundquist

Craig Meyer
Stephen Michell
Howard E. Neely
Peter E. Obermayer
James T. Oblinger
Jan Pukite
Curtis Royster

The following persons were nonvoting members of the balloting group for IEEE Std
1003.5c-1998:

Robert E. Allen
A. Barnes
Ronald Bjornseth
Stephen E. Blake
Chad Bremmon
Vincent Celier
Hans O. Danielsson
John Davies
Peter Dencker
Guido Duerinckx

Robert A. Duff
W. Douglas Findly
Anthony Gargaro
David Gross
Maretta Holden
Harry Joiner
Rush Kester
Jim Kroening
Mark Larsen

Robert C. Leif
B. Craig Meyers
James W. Moore
Tushar Pokle
Bill Pritchet
Michael Rohan
David Shochat
Lynn Stuckey
Terry J. Westley
Stephen Whiting

xiv Introduction

c

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

When the IEEE Standards Board approved IEEE Std 1003.5c-1998 on 8 December
1998, it had the following membership:

Richard J. Holleman, Chair Donald N. Heirman, Vice Chair

Judith Gorman, Secretary

James H. Gurney
Satish K. Aggarwal
Clyde R. Camp
Gary R. Engman
Harold E. Epstein
Jay Forster*
Thomas F. Garrity
Ruben D. Garzon

Jim D. Isaak
Lowell G. Johnson
Robert Kennelly
E. G. “Al” Kiener
Joseph L. Koepfinger*
Stephen R. Lambert
Jim Logothetis
Donald C. Loughry

L. Bruce McClung
Louis-François Pau Ronald C.
Petersen
Gerald H. Peterson
John B. Posey
Gary S. Robinson
Hans E. Weinrich
Donald W. Zipse

�Member Emeritus

Yvette Ho Sang
IEEE Standards Project Editor

c

Introduction xv

IEEE Std 1003.5c-1998

IEEE Standard for Information Technology—
POSIXR Ada Language Interfaces—
Part 1: Binding for System
Application Program Interface (API)—
Amendment 2: Protocol Independent
Interfaces c

Section 1: General

1.1 Scope

This standard defines a set of system application program interfaces to operating
system services. These interfaces provide access via the Ada programming language
to the same operating system services for which C-language interfaces are specified
in ISO/IEC 9945-1:1996 f2g c

1)2) and IEEE P1003.1g fB14g.

The purpose of this standard is to support application portability at the Ada source
code level. This standard is intended to be used by both application developers and
system implementors.

This standard is intended to be compatible with implementations of the 1995 revi-
sion to the Ada language standard (ISO/IEC 8652:1995 f1g). Fall-back approaches
compatible with implementations of the original Ada language standard (ISO/IEC
8652:1987 fB5g) are also provided (see 1.3).

1) Plain numbers in curly braces correspond to those of the normative references in 1.2. Numbers
preceded by a “B” in curly braces correspond to those of the bibliography in Annex A. See 2.1 for the
description of this and the other typographical conventions followed in this document.

2) A language-independent definitions of this standard was once under development, but work on that
project was suspended.

1 General 1

c

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

This standard is intended to contain no specifications that conflict with “Year 2000”
requirements. c

This standard comprises three major components:

— Definitions for terminology and concepts, and definitions and specifications that
govern program structures, language-system interaction, and related require-
ments.

— Definitions of the specific Ada interfaces to the system services defined by the
POSIX standards, presented in the form of Ada packages.

— Interpretations of Ada semantics with respect to the POSIX standards.

The following areas are outside the scope of this standard:

(1) User interface (shell) and commands associated with Ada program development.

(2) Ada bindings to the archive/interchange file formats for tar and cpio.

(3) Network protocols.

(4) Graphics and windowing interfaces.

(5) Database management system interfaces.

(6) Object or binary code portability.

(7) System configuration and resource availability.

(8) Interfaces to the Ada runtime system.

When the XTI Detailed Network Interface option and/or the Sockets Detailed Network Inter-
face option are supported, then a set of DNI’s (see 2.2.3.26) are also within the scope
of this standard. A DNI is intended to provide access to protocol-specific features of
the underlying network for highly portable applications that need access to sophisti-
cated network features. The DNI’s are based on the SPG4 XTI and 4.4 BSD socket
specifications.

The following areas are outside of the scope of the DNI’s:

— Interface to manipulate underlying protocol implementations

— Network management interface

— Interface to manipulate performance-specific features

— Definition for protocol address formats c

This standard describes the external characteristics and facilities that are of impor-
tance to applications developers, rather than the implementation approaches that
may be employed to achieve them. Special emphasis is placed on those facilities and
capabilities needed for the broad spectrum of applications.

This standard has been defined exclusively at the source code level. The objective is
that a Strictly Conforming POSIX.5 Application can be compiled to execute on any
conforming implementation, within the portability of the application Ada code itself.

2 1 General

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

1.2 Normative References

The following standards contain provisions that, through references in this text, con-
stitute provisions of this standard. At the time of publication, the editions indicated
were valid. All standards are subject to revision, and parties to agreements based
on this standard are encouraged to investigate the possibility of applying the most
recent editions of the standards listed below. Members of IEC and ISO maintain
registers of currently valid International Standards.

f1g ISO/IEC 8652:19953), Information technology—Programming languages—
Ada [Revision of first edition (ISO/IEC 8652:1987)], 15 February 1995.

f2g ISO/IEC 9945-1:1996 (IEEE Std 1003.1-19964)), Information technology—
Portable Operating System Interface (POSIX)—Part 1: System Application
Program Interface (API) [C Language]. This edition incorporates the
extensions for realtime applications (POSIX.1b, POSIX.1i) and threads
(POSIX.1c).

f3g ISO/IEC 8072:1996 (CCIT X.214:19885)), Information technology—Open
systems interconnection—Transport service definition.

f4g ISO/IEC 8073:1992 (CCITT X.224:1992), Information technology—
Telecommunications and information exchange between systems—Open
systems interconnection— Protocol for providing the connection-mode
transport service.

f5g ISO/IEC 8208:1995, Information technology—Data communications—X.25
Packet layer protocol for data terminal equipment.

f6g ISO/IEC 8348:1996, Information technology—Open systems interconnection—
Network service definition.

f7g ISO/IEC 8473-1:1994, Information technology—Protocol for providing the
connectionless-mode network service: Protocol specification.

f8g ISO/IEC 8473-3:1995, Information technology—Protocol for providing the
connectionless-mode network service: Provision of the underlying service by an
X.25 subnetwork.

f9g ISO/IEC 8602:1995, Information Technology—Protocol for providing the OSI
connectionless-mode transport service.

f10g ISO/IEC 8878:1992, Information technology—Telecommunications and infor-
mation exchange between systems—Use of X.25 to provide the OSI connection-
mode network service.

3) ISO/IEC publications can be obtained from the ISO Central Secretariat, Case Postale 56, 1 rue de
Varembé, CH-1211, Genève 20, Switzerland/Suisse (http://www.iso.ch) or from the Sales Depart-
ment of the International Electrotechnical Commission, Case Postale 131, 3 rue de Varembé, CH-
1211, Genève 20, Switzerland/Suisse (http://www.iec.ch/). ISO/IEC publications can also be obtained
in the United States from the Sales Department, American National Standards Institute, 11 West
42nd Street, 13th Floor, New York, NY 10036, USA (http://www.ansi.org).

4) IEEE standards publications are available from the IEEE Service Center, 445 Hoes Lane, P.O. Box
1331, Piscataway, NJ 08855-1331, USA (http://www.standards.ieee.org).

5) CCITT documents can be obtained from the CCIT General Secretariat, International Telecommuni-
cations Union, Sales Section, Place des Nations, CH-1211, Genève 20, Switzerland/Suisse.

1.2 Normative References 3

c

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

f11g ISO/IEC ISP 11188-3:1996, Information Technology—International standard-
ization profile—Common upper layer requirements—Part 3: Minimal OSI
upper layer facilities.

f12g IETF RFC 768:19806), User Datagram Protocol.

f13g IETF RFC 791:1981, Internet Protocol DARPA Internet Program Protocol
Specification.

f14g IETF RFC 793:1981, Transmission Control Protocol DARPA Internet Program
Protocol Specification.

f15g IETF RFC 919:1984, Broadcasting Internet Datagrams.

f16g IETF RFC 922:1984, Broadcasting Internet Datagrams in the Presence of
Subnets.

f17g IETF RFC 1006:1987, ISO Transport Service on Top of the TCP, Version: 3.

f18g IETF RFC 1122:1989, Requirements for Internet Hosts—Communication
Layers.

NOTE: Abbreviations for the above standards are defined in 2.2.3.
c

1.3 Conformance

1.3.1 Implementation Conformance

1.3.1.1 Requirements

A conforming implementation shall meet all of the following criteria:

(1) The system shall support all required interfaces defined within this standard.
These interfaces shall support the functional behavior described in this stan-
dard.

(2) For packages and subprograms that are defined to be dependent on implemen-
tation options, either the runtime behavior shall be as defined by this standard
or references to the name shall be rejected at compile or link time.

(3) The system may provide additional facilities not required by this standard. Non-
standard extensions shall be identified as such in the system documentation.
Nonstandard extensions, when used, may change the behavior of functions or
facilities defined by this standard, but only if the application activates an ex-
tension, by reference to an implementation-defined extension package in a with
clause, calling a subprogram in an implementation-defined extension package,
or using an implementation-definedconfiguration pragma(see 10.1.5 (8) of f1g).
The conformance document shall define an environment in which an application
can be run with the behavior specified by this standard. In no case except pack-
age name conflicts shall such an environment require modification of a Strictly
Conforming POSIX.5 Application. An implementation shall not change package
specifications in this standard except by the following:

6) IETF documents can be obtained in printed form from the Network Information Center, Network
Solutions, 14200 Park Meadow Drive, Suite 200, Chantilly, VA 22021, USA, or in electronic form via
FTP over the Internet from nic.ddn.mil.

4 1 General

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

(a) Adding with clauses, pragmas, representation specifications, and com-
ments.

(b) Replacing instances of the words implementation-defined with appropriate
value(s).

(c) Optionally changing the type POSIX_Character (see 2.4.2).
(d) Adding or changing private parts.
(e) Making any other changes that are lexically transparent to Ada compilers.
(f) Adding specific declarations for which permission is explicitly granted in the

text of this standard.
(g) For Ada 95 implementations, changing packages with names of the form

POSIX_XXXto child packages of the package POSIX with names of the form
POSIX.XXX and adding library-level renaming declarations of the form:

with POSIX.XXX;

package POSIX_XXX renames POSIX.XXX;

NOTE: The implementor does not have permission to change underscores to dots in
the with clauses of the package specifications defined by this standard.

Packages defined for the sockets and XTI interfaces shall be renamed as
indicated in Table 1.1.

Table 1.1 – Sockets and XTI Package Renaming

Ada 83 Package Name Ada 95 Package Name

POSIX_Event_Management POSIX.Event_Management
POSIX_Sockets POSIX.Sockets
POSIX_Sockets_Local POSIX.Sockets.Local
POSIX_Sockets_Internet POSIX.Sockets.Internet
POSIX_Sockets_ISO POSIX.Sockets.ISO
POSIX_XTI POSIX.XTI
POSIX_XTI_Internet POSIX.XTI.Internet
POSIX_XTI_ISO POSIX.XTI.ISO
POSIX_XTI_mOSI POSIX.XTI.mOSI

(h) For implementations that only support the original Ada language standard
fB5g, changing Ada 95 general access types to ordinary access types. c

(i) Where a subprogram has a parameter with a default value expression in
the final position, omitting the default value expression and providing an
equivalent overloaded definition of the same function name, without the
last parameter, if this change results in a gain in efficiency. For example,

procedure P(X: T:= E);

may be replaced by

procedure P(X: T);

procedure P;

Calling the version of procedure P without the parameter X shall have the
same effect as calling P(X=>E) .

(4) Only the following types may be implemented using Ada access types:

1.3 Conformance 5

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

— POSIX.POSIX_String_List

— POSIX_Asynchronous_IO.AIO_Descriptor

— POSIX_Condition_Variables.Attributes

— POSIX_Condition_Variables.Condition

— POSIX_Condition_Variables.Condition_Descriptor

— POSIX_Event_Management.File_Descriptor_Set c

— POSIX_Message_Queues.Message_Queue_Descriptor

— POSIX_Mutexes.Attributes

— POSIX_Mutexes.Mutex

— POSIX_Mutexes.Mutex_Descriptor

— POSIX_Process_Environment.Environment

— POSIX_Process_Primitives.Process_Template

— POSIX_Semaphores.Semaphore

— POSIX_Semaphores.Semaphore_Descriptor

— POSIX_Sockets.IO_Vector_Array_Pointer

— POSIX_Sockets.Socket_Address_Info_List

— POSIX_Sockets_Internet.Database_Array_Pointer

— POSIX_Sockets_Internet.Internet_Socket_Address_Pointer

— POSIX_Sockets_ISO.ISO_Socket_Address_Pointer

— POSIX_Sockets_Local.Local_Socket_Address_Pointer

— POSIX_XTI.Octet_Buffer_Pointer

— POSIX_XTI.Protocol_Option_List

— POSIX_XTI.Protocol_Option_List_Pointer

— POSIX_XTI_Internet.Internet_XTI_Address_Pointer

— POSIX_XTI_Internet.Database_Array_Pointer

— POSIX_XTI_ISO.ISO_XTI_Address_Pointer

— POSIX_XTI_mOSI.mOSI_XTI_Address_Pointer

— POSIX_XTI_mOSI.Presentation_Context_List

— POSIX_XTI_mOSI.Syntax_Object_List c

— Any other type specifically defined as an Ada access type in this standard
No other types defined in this standard shall be implemented as access types or
types with components of an access type.

(5) A POSIX implementation shall not raise Program_Error on elaboration of a
POSIX package or on execution of a POSIX subprogram, due to elaboration order
dependencies in the POSIX implementation.

(6) Except as explicitly provided for in this standard, POSIX.POSIX_Error and
Standard.Storage_Error are the only exceptions that shall be raised by op-
erations declared in this standard.

(7) Wherever this standard states a requirement on an implementation, without
any other explicit qualification, the requirement applies to all conforming imple-
mentations.

6 1 General

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

1.3.1.2 Documentation

A conformance document shall be available for an implementation claiming confor-
mance to this standard. The conformance document shall have the same structure as
this standard, with the information presented in the equivalently numbered sections,
clauses, and subclauses. The conformance document shall not contain information
about extended facilities or capabilities outside the scope of this standard.

The conformance document shall contain a statement that indicates the full name,
number, and date of the standard that applies. The conformance document may
also list software standards approved by ISO/IEC or any ISO/IEC member body
that are available for use by a ISO/IEC Strictly Conforming POSIX.5 Application
(see 1.3.2.2.1). Applicable characteristics whose documentation is required by one of
these standards, or by standards of government bodies, may also be included.

The document shall describe the contents of the packages POSIX, POSIX_ Lim-
its , POSIX_Options , POSIX_Configurable_File_Limits , and POSIX_Config-
urable_System_Limits and shall state values, the conditions under which those
values may change, and the limits of such variations, if any.

The conformance document shall describe the behavior of the implementation for all
implementation-defined features defined in this standard. This requirement shall be
met by listing these features and either providing a specific reference to the system
documentation or providing full syntax and semantics of these features. The confor-
mance document may specify the behavior of the implementation for those features
where this standard states that implementations may vary or where features are
identified as undefined or unspecified.

No specifications other than those described in this subclause shall be present in the
conformance document.

The phrase “shall be documented” in this standard means that documentation of the
feature shall appear in the conformance document, as described previously, unless
the system documentation is explicitly mentioned.

The system documentation should also contain the information found in the confor-
mance document.

1.3.1.3 Conforming Implementation Options

The symbolic constants in the packages POSIX, POSIX_Limits , and POSIX_Options
provide declarations for a range of variation in the standard that is implementa-
tion defined. The packages POSIX_Configurable_System_Limits and POSIX_-
Configurable_File_Limits contain subprograms that may further constrain the
implementation-defined ranges.

An implementation is required to define all of the subprograms for all of the oper-
ations defined in this standard, including those whose implementation is optional.
If an unimplemented feature is used, the exception POSIX.POSIX_Error shall be
raised, with the error code POSIX.Operation_Not_Implemented .

1.3 Conformance 7

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

1.3.2 Application Conformance

All applications claiming conformance to this standard shall fall within one of the
categories defined in the following subclauses.

1.3.2.1 Strictly Conforming POSIX.5 Application

A Strictly Conforming POSIX.5 Application is an application that requires only the
facilities described in this standard and f1g. Such an application shall be designed to
work for all behaviors and values allowed by this standard, including behaviors that
are unspecified or implementation defined. Such applications are permitted to adapt
to the availability of facilities whose availability is indicated by the values from the
packages POSIX, POSIX_Limits , POSIX_Options , POSIX_Configurable_File_-
Limits , and POSIX_Configurable_System_Limits .

1.3.2.2 Conforming POSIX.5 Application

There are three categories of Conforming POSIX.5 Applications:

1.3.2.2.1 ISO/IEC Conforming POSIX.5 Application

An ISO/IEC Conforming POSIX.5 Application is an application that uses only the
facilities described in this standard and approved conforming language bindings for
any ISO or IEC standard. Such an application shall include a statement of confor-
mance that documents all options and limit dependencies and all other ISO or IEC
standards used.

1.3.2.2.2 <National Body> Conforming POSIX.5 Application

A <National Body> Conforming POSIX.5 Application differs from an ISO/IEC Con-
forming POSIX.5 Application in that it also may use specific standards of a single
ISO/IEC member body, referred to here as <National Body>. Such an application
shall include a statement of conformance that documents all options and limit de-
pendencies and all other <National Body> standards used.

1.3.2.2.3 Conforming POSIX.5 Application Using Extensions

A Conforming POSIX.5 Application Using Extensions is an application that differs
from other Conforming POSIX.5 Applications only in that it uses nonstandard facili-
ties that are consistent with this standard. Such an application shall fully document
its requirements for these extended facilities, in addition to the documentation re-
quired of a Conforming POSIX.5 Application. A Conforming POSIX.5 Application
Using Extensions shall be either an ISO/IEC Conforming POSIX.5 Application Us-
ing Extensions or a <National Body> Conforming POSIX.5 Application Using Ex-
tensions. (See 1.3.2.2.1 and 1.3.2.2.2.)

8 1 General

IEEE Std 1003.5c-1998

Section 2: Terminology and General Requirements

2.1 Editorial Conventions

Text with no marginal bars is carried over unchanged from POSIX.5b.

Text with grey marginal bars tagged with the letter “c” is new or substantially
changed between POSIX.5b and POSIX.5c c.

A summary of typographical conventions followed by this standard is shown in Ta-
ble 2.1.

Table 2.1 – Typographical Conventions

Reference Example

Ada Identifier POSIX_String_List
Ada Implementation Defined Element implementation-defined
Ada Reserved Word generic
Bibliographic Citation fB1g
C-Language Data Type long
C-Language Error Number [EINTR]
C-Language Function system()
C-Language Global External errno
C-Language Header <sys/stat.h>
Citation of Normative Reference ISO/IEC 8602 f9g
Conceptual Attribute Message Length
Cross-Reference: Section Section 2
Cross-Reference: Annex Annex C
Cross-Reference: Clause 2.1
Cross-Reference: Subclause 2.1.2, 2.1.2.3, etc.
Environment Variable PATH
Figure Reference Figure 7-3
File Name /tmp
Implementation Limit Realtime Signals Maximum
Implementation Option Job Control option
Table Reference Table 6-1

Long Ada identifiers are occasionally hyphenated for typographic purposes only;
none of the identifiers in this standard have names that include a hyphen.

Qualified name notation, with the package name, is generally used for names that
are not defined within the section where the name is used. The exceptions to this
rule are names that are defined by the Ada language and certain names defined in
the package POSIX that are used so frequently that the fully qualified form would be
merely cumbersome (e.g., POSIX_String is used instead of POSIX.POSIX_String).

Numbers within braces, such as “f1g,” represent citations. If the number within
braces appears alone, it corresponds to that of one of the normative references (1.2).
A number preceded by a B, such as “fB1g”, corresponds to one of bibliographic entries
listed in Annex A. Bibliographic entries are for information only.

Defined terms are shown in three styles, depending on context:

2 Terminology and General Requirements 9

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

(1) Terms defined in 2.2.1 and 2.2.2 are expressed as subclause titles. Alternative
forms of the terms appear in [brackets].

(2) The initial appearances of other terms, applying to a limited portion of the text,
are in italics.

(3) Subsequent appearances of the term are in Roman font.

Filenames and pathnames are shown in Courier . When a pathname is shown start-
ing with “$HOME/”, this indicates the remaining components of the pathname are
to be related to the directory named by the HOME environment variable.

Defined names that are usually in lowercase are never used at the beginning of a
sentence or anywhere else that regular English usage would require capitalization.

Parenthetical expressions within normative text also contain normative information.
The general typographic hierarchy of parenthetical expressions is:

{ [()] }

In some cases, tabular information is presented in line; in others, it is presented
in a separately labeled table. This arrangement was employed purely for ease of
reference and there is no normative difference between these two cases.

Annexes marked as normative are parts of the standard that pose requirements,
exactly the same as the numbered sections, but they follow the body of the standard
for clarity of exposition. Informative annexes are for information only and pose no
requirements. The index, and all material preceding page 1 of this standard (the
front matter) are also only informative.

Notes that appear in a small italic font have two different meanings, depending on
their location:

— When they are within the normal text of the document, they are the same as
footnotes—informative, posing no requirements on implementations or applica-
tions.

— When they are attached to tables or figures, they are normative, posing require-
ments.

Text marked as examples (including the use of “e.g.”) is for information only.

The typographical conventions listed here are for ease of reading only. Any inconsis-
tencies in the use of typography are unintentional and have no normative meaning
in this standard.

2.2 Definitions

2.2.1 Terminology

For the purposes of this standard, the following definitions apply:

2.2.1.1 conformance document: A document provided by an implementor that
contains implementation details as described in 1.3.1.2.(Quoted from POSIX.1 f2g.)

10 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

2.2.1.2 implementation defined: An indication that the implementation shall
define and document the requirements for correct program constructs and correct
data of a value or behavior. (Quoted from POSIX.1 f2g.)

2.2.1.3 may: An indication of an optional feature.

(1) With respect to implementations, the word may is to be interpreted as an op-
tional feature that is not required in this standard but can be provided.

(2) With respect to Strictly Conforming POSIX.5 Applications, the word may means
that the optional feature shall not be used.

(Paraphrased from POSIX.1 f2g.)

2.2.1.4 obsolescent: An indication that a certain feature may be considered for
withdrawal in future revisions of this standard. (Quoted from POSIX.1 f2g.) Use
of obsolescent features is deprecated.

NOTE: Obsolescent features are retained for upward compatibility from POSIX.5, or to main-
tain symmetry with certain aspects of the C-language binding of POSIX.1. Their use in Ada
applications is discouraged.

2.2.1.5 protocol-specific: An indication that the implementation, or Strictly
Conforming POSIX.5 Applications where appropriate, shall behave in a manner that
is specified in D.1 and D.2 c.

2.2.1.6 shall: An indication of a requirement on the implementation or on
Strictly Conforming POSIX.5 Applications, where appropriate. (Paraphrased from
POSIX.1 f2g.)

2.2.1.7 should:

(1) With respect to implementations, an indication of an implementation recommen-
dation, but not a requirement.

(2) With respect to applications, an indication of a recommended programming prac-
tice for applications and a requirement for Strictly Conforming POSIX.5 Appli-
cations.

(Paraphrased from POSIX.1 f2g.)

2.2.1.8 supported: A condition regarding optional functionality.(Quoted from
POSIX.1 f2g.)

Certain functionality in this standard is optional, but the interfaces to that function-
ality are always required. If the functionality is supported, the interfaces work as
specified by this standard (except that they do not raise the exception indicating the
unsupported case). If the functionality is not supported, the interface shall raise the
exception indicating the unsupported case.

(Paraphrased from POSIX.1 f2g.)

2.2 Definitions 11

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

2.2.1.9 system documentation: All documentation provided with an implemen-
tation, except the conformance document.

Electronically distributed documents for an implementation are considered part of
the system documentation. (Quoted from POSIX.1 f2g.)

2.2.1.10 undefined: An indication that this standard imposes no portability re-
quirements on the use by an application of an indeterminate value or the behavior
of that application with erroneous program constructs or erroneous data.

Implementations (or other standards) may specify the result of using that value or
causing that behavior. An application using such behaviors is using extensions, as
defined in 1.3.2.2.3.

(Paraphrased from POSIX.1 f2g.)

2.2.1.11 unspecified: An indication that this standard imposes no portability re-
quirements on applications for correct program constructs or correct data regarding
a value or behavior.

Implementations (or other standards) may specify the result of using that value or
causing that behavior. An application requiring a specific behavior, rather than tol-
erating any behavior when using that functionality, is using extensions, as defined
in 1.3.2.2.3.

(Paraphrased from POSIX.1 f2g.)

2.2.2 General Terms

For the purposes of this standard, the following definitions apply:

2.2.2.1 abort deferred operation: An operation that always continues to com-
pletion without being affected by an abort. (Paraphrased from 9.8 (5) of the
Ada RM f1g.)

Certain operations are required by the Ada language to be abort deferred. It is im-
plementation defined whether other operations defined by this standard are abort
deferred.

2.2.2.2 abort completion point: A point at which the execution of an aborted
construct must complete. (Quoted from 9.8 (15) of the Ada RM f1g.)

2.2.2.3 abortive release: An abrupt termination of a network connection that
may result in the loss of data. c

2.2.2.4 absolute pathname: See the explanation of pathname resolution (2.3.11).

2.2.2.5 access mode: A form of access to a file. or an attribute of a file indicating
the kind of operations that may be performed on the file. For more detail see the
explanation of file access permissions in 2.3.7.

12 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

2.2.2.6 Ada I/O: The I/O operations defined in Annex A of the Ada RM f1g and
further defined in Section 8 of this standard.

2.2.2.7 address space: The memory locations that can be referenced by a process.
(Quoted from POSIX.1 f2g.)

2.2.2.8 ancillary data: Optional, protocol-specific or local-system-specific infor-
mation. The information can be both local or end-to-end significant. It can be
header information or part of the data portion. It can be protocol-specific and
implementation- or system-specific.

2.2.2.9 application: A computer program that performs some desired function.
For the purpose of standard, an application is a program that uses the interfaces
defined in this standard.

2.2.2.10 application entity title: In OSI, a title that unambiguously identifies
an application entity. An application entity title is composed of an application process
title and an application entity qualifier (ISO/IEC 7498 fB3g).

2.2.2.11 application entity qualifier: In OSI, a component of an application en-
tity title that is unambiguous within the scope of the application process (ISO/IEC
7498 fB3g).

2.2.2.12 application process title: In OSI, a title that unambiguously identi-
fies an application process. An application process title is a single name, which, for
convenience, may be structured internally (ISO/IEC 7498 fB3g). c

2.2.2.13 appropriate privileges: An implementation-defined means of associat-
ing privileges with an implementation-defined process with regard to the subpro-
gram calls and options defined in this standard that need special privileges.

There may be zero or more such means.

(Paraphrased from POSIX.1 f2g.)

2.2.2.14 arm a timer: To start a timer measuring the passage of time, enabling
the notification of a process when the specified time or time interval has passed.
(Quoted from POSIX.1 f2g.)

2.2.2.15 asynchronous events: Events that occur independently of the execu-
tion of the application. c

2.2.2.16 asynchronous I/O [AIO] operation: An I/O operation that does not
of itself cause the task requesting the I/O to be blocked. An asynchronous I/O op-
eration and the requesting task may be running concurrently. (Paraphrased from
POSIX.1 f2g.)

2.2.2.17 asynchronous I/O [AIO] completion: The state of an asynchronous
read or write operation when a corresponding synchronous read or write would have
completed and any associated status attributes have been updated. (Paraphrased
from POSIX.1 f2g.)

2.2 Definitions 13

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

2.2.2.18 asynchronously generated signal: An occurrence of a signal that is
generated by some mechanism external to the task receiving the signal; for example,
via a call to POSIX_Signals.Send_Signal by another process or via the keyboard.
Being asynchronous is a property of how an occurrence of the signal was generated
and not a property of the signal. All signals may be generated asynchronously. The
effect of an asynchronously generated occurrence of a reserved signal (3.3.1) on an
Ada implementation is undefined.

NOTE: Only asynchronously generated signal occurrences are visible to an Ada application
as signals. All signal occurrences that are not generated asynchronously are translated into
exceptions.

Whether a signal occurrence is generated asynchronously is not to be confused with
whether it is delivered or accepted. The difference between delivery and acceptance
of a signal is defined in 3.3.1.

2.2.2.19 background process: A process that is a member of a background pro-
cess group. (Quoted from POSIX.1 f2g.)

2.2.2.20 background process group: Any process group other than a fore-
ground process group that is a member of a session that has established a connection
with a controlling terminal. (Quoted from POSIX.1 f2g.)

2.2.2.21 bind: To assign a network address to an endpoint. c

2.2.2.22 block special file: A file that refers to a device.

A block special file is normally distinguished from a character special file by provid-
ing access to the device in a manner such that the hardware characteristics of the
device are not visible.

(Quoted from POSIX.1 f2g.)

2.2.2.23 blocking: Executing with POSIX_IO.Non_Blocking not set. See also
nonblocking (2.2.2.102) c.

2.2.2.24 blocking behavior: The effect on other tasks in the same partition
when a task is blocked by a POSIX operation. Certain POSIX operations are required
to block the calling task under defined conditions. For implementation-defined rea-
sons a blocked task may prevent other tasks from executing. Names for blocking
behaviors are defined in 2.4.1.5.

2.2.2.25 blocked task: An Ada task that is not running or ready to run. A task
is either blocked or ready to run. While ready, a task competes for the available
execution resources that it requires to run. An operation that causes a task to be-
come blocked is said to block the task, and an operation that causes a task to no
longer be blocked is said to unblock the task. (Paraphrased from Section 9 (10) of the
Ada RM f1g.)

2.2.2.26 broadcast: The transfer of data from one endpoint to several endpoints,
as it is described in RFC 919 f15g and RFC 922 f16g. c

14 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

2.2.2.27 byte: The measurement unit for data used in this standard. By common
usage the term byte usually refers to eight bits of data, but within the context of this
standard the size of a byte is implementation defined subject to the constraints given
in 2.4.1.3. The size of a byte is given by the constant POSIX.Byte_Size .

NOTE: In the context of serial I/O (e.g., see Section 7), transmitting a byte of data may require
the transmission of more bits than the size of a byte in memory, since, for example, stop bits
and parity bits might be included.

2.2.2.28 canonical input processing: The processing of terminal input in the
form of text lines. For more detail see the explanation of canonical mode input pro-
cessing in secrefCanonical Mode Input Processing.

2.2.2.29 character: A sequence of one or more values of type POSIX.POSIX_-
Character .

NOTE: This definition of the term character applies when it is used by itself. It does not ap-
ply to qualified phrases containing the word character, such as POSIX character (2.2.2.126),
graphic character (2.2.2.80), Ada character (2.3.3), and character special file (2.2.2.30).

2.2.2.30 character special file: A file that refers to a device.

One specific type of character special file is a terminal device file, whose access is de-
fined in 7.1. Other character special files have no structure defined by this standard,
and their use is unspecified by this standard.

(Paraphrased from POSIX.1 f2g.)

2.2.2.31 character special file for use with XTI calls: A file of a particular
type that is used for process-to-process communication as described in Section 17
of this standard. A character special file for use with XTI calls corresponds to a
communications endpoint that uses a specified family of communications protocols. c

2.2.2.32 child process: See POSIX process (2.2.2.128).

2.2.2.33 clock: An object that measures the passage of time.

The current value of the time measured by a clock can be queried and, possibly, set
to a value within the legal range of the clock.

(Quoted from POSIX.1 f2g.)

2.2.2.34 communication provider: A component of the system that provides
the communications service through an endpoint.

2.2.2.35 communications endpoint: See endpoint (2.2.2.56).

2.2.2.36 communications user: An application that uses process-to-process
communication services. c

2.2 Definitions 15

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

2.2.2.37 completion of a call: The execution of a construct or entity is complete
when the end of that execution has been reached, or when a transfer of control causes
it to be abandoned. Completion due to reaching the end of execution, or due to the
transfer of control of an exit , return , goto , requeue , or of the selection of a ter-
minate alternative is normal completion. Completion is abnormal when control is
transferred out of a construct due to abort or the raising of an exception. (Quoted
from 7.6.1(2) of the Ada RM f1g.)

2.2.2.38 condition variable: A synchronization object that allows a task to be-
come blocked until it is unblocked by some event. The unblocking may occur sponta-
neously or as a result of a timeout or another task performing a condition-signalling
operation on the condition variable. In use, condition variables are always associated
with mutexes. See also 2.2.2.98.

2.2.2.39 connection: An association established between two or more endpoints
for the transfer of data.7)8)

2.2.2.40 connection mode: The transfer of data in the context of a connection.8)

See also connectionless mode (2.2.2.41).

2.2.2.41 connectionless mode: The transfer of data other than in the context of
a connection.8) See also connection mode (2.2.2.40) and datagram (2.2.2.45) c.

2.2.2.42 controlling process: The session leader that established the connection
to the controlling terminal.

Should the terminal subsequently cease to be a controlling terminal for this session,
the session leader shall cease to be the controlling process.

(Quoted from POSIX.1 f2g.)

2.2.2.43 controlling terminal: A terminal that is associated with a session.

Each session may have at most one controlling terminal associated with it, and a
controlling terminal is associated with exactly one session. Certain input sequences
from the controlling terminal (7.1) cause signals to be sent to all processes in the
process group associated with the controlling terminal.

(Quoted from POSIX.1 f2g.)

2.2.2.44 current working directory: See working directory (2.2.2.198).

2.2.2.45 datagram: A unit of data transferred from one endpoint to another in
connectionless mode service. c

2.2.2.46 device: A computer peripheral or an object that appears to the applica-
tion as such. (Quoted from POSIX.1 f2g.)

7) Connection establishment generally involves communication between the endpoints.
8) Definition is based on ISO/IEC 7498-1ISO/IEC 7498 fB3g.

16 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

2.2.2.47 directory: A file that contains directory entries.

No two entries in a directory shall have the same filename.

(Quoted from POSIX.1 f2g.)

2.2.2.48 directory entry [link]: An object that associates a filename with a file.

Several directory entries can associate different filenames with the same file.

(Quoted from POSIX.1 f2g.)

2.2.2.49 disarm a timer: To stop a timer from measuring the passage of time,
thereby disabling any future process notifications (until the timer is armed again).
(Quoted from POSIX.1 f2g.)

2.2.2.50 dot: The filename consisting of a single dot character (.). (Quoted from
POSIX.1 f2g.)

For the significance of dot see the explanation of pathname resolution in 2.3.11.

2.2.2.51 dot-dot: The filename consisting of (..) . (Quoted from POSIX.1 f2g.)

For the significance of dot-dot see the explanation of pathname resolution in 2.3.11.

2.2.2.52 effective group ID: An attribute of a process that is used in determin-
ing various permissions, including the file access permissions described in 2.3.7.

This value is subject to change during the process lifetime, as described in 4.1 and
3.1). See also group ID (2.2.2.81).

(Paraphrased from POSIX.1 f2g.)

2.2.2.53 effective user ID: An attribute of a process that is used in determining
various permissions, including file access permissions.

This value is subject to change during the process lifetime, as described in 4.1 and
3.1). See also user ID (2.2.2.196).

(Paraphrased from POSIX.1 f2g.)

2.2.2.54 empty directory: A directory that contains, at most, entries for dot and
dot-dot. (Quoted from POSIX.1 f2g.)

2.2.2.55 empty string [null string]: A zero-length array whose components are
of some character type.

2.2.2.56 endpoint: An object that is created and maintained by a communica-
tions provider and used by applications for sending and receiving data; endpoints
are used by the communications providers to identify the sources and destinations of
data. c

2.2 Definitions 17

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

2.2.2.57 environment task: The anonymous task whose execution elaborates
the library items of the declarative part of an active partition, and then calls the
main subprogram, if there is one. (Paraphrased from 10.2 (8) of the Ada RM f1g.)

2.2.2.58 Epoch: A base reference time defined as 0 hours, 0 minutes, 0.0 seconds,
1 January 1970, Universal Coordinated Time (see Blair fB2g). (Paraphrased from
POSIX.1 f2g.)

2.2.2.59 erroneous execution: In this standard as defined in 1.1.5 of the
Ada RM f1g.

2.2.2.60 error code of a task: An attribute of a task that ordinarily specifies
information about the most recent error that caused POSIX_Error to be raised. (See
2.4.6.)

2.2.2.61 event management: The mechanism that enables applications to reg-
ister for and be made aware of external events such as data becoming available for
reading. c

2.2.2.62 Exec family of operations: The collection of operations that cause a
new program to be executed, i.e., the Exec and Exec_Search procedures in POSIX_-
Unsafe_Process_Primitives and the Start_Process and Start_Process_-
Search procedures in POSIX_Process_Primitives .

2.2.2.63 FIFO special file [FIFO]: A type of file with the property that data
written to such a file is read on a first-in-first-out basis. (Quoted from POSIX.1 f2g.)

Other characteristics of FIFOs are described in 5.2 and 6.1.

2.2.2.64 file: An object that can be written to, or read from, or both. (Quoted from
POSIX.1 f2g.)

A file has certain attributes, including access permissions and type. File types in-
clude regular file, character special file, block special file, FIFO special file, socket,
character special file for use with XTI calls, cand directory. Other types of files may
be defined by the implementation. (Paraphrased from POSIX.1 f2g.)

2.2.2.65 file description: See open file description (2.2.2.108).

2.2.2.66 file descriptor: A per-process unique nonnegative integer value used to
identify an open file for the purpose of file access. (Quoted from POSIX.1 f2g.)

2.2.2.67 file group class: A property of a file indicating access permissions for a
process related to the group identification of the process.

A process is in the file group class of a file if the process is not in the file owner class
and if the effective group ID or one of the supplementary group IDs of the process
matches the group ID associated with the file. Other members of the class may be
implementation defined. (Paraphrased from POSIX.1 f2g.)

18 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

2.2.2.68 filename: A nonempty string that is used to name a file.

A filename consists of, at most, POSIX_Limits.Filename_Maxima ’Last compo-
nents of type POSIX.POSIX_Character . The characters composing the name may
be selected from the set of all the character values excluding the slash character and
the null character. The filenames dot and dot-dot have special meaning, as specified
in the explanation of pathname resolution (2.3.11). A filename is sometimes referred
to as a pathname component.

(Paraphrased from POSIX.1 f2g.)

2.2.2.69 file offset: The byte position in the file where the next I/O operation be-
gins.

Each open file description associated with a regular file, block special file, or directory
has a file offset. A character special file that does not refer to a terminal device may
have a file offset. There is no file offset specified for a pipe or FIFO.

(Quoted from POSIX.1 f2g.)

2.2.2.70 file other class: A property of a file indicating access permissions for a
process related to the user and group information of the process.

A process is in the file other class of a file if the process is not in the file owner class
or file group class.

(Quoted from POSIX.1 f2g.)

2.2.2.71 file owner class: A property of a file indicating access permissions for a
process related to the user identification of the process.

A process is in the file owner class of a file if the effective user ID of the process
matches the user ID of the file.

(Quoted from POSIX.1 f2g.)

2.2.2.72 file permission: Information about a file that is used, along with other
information, to determine whether a process has read, write, or execute/search per-
mission to a file. (Quoted from POSIX.1 f2g.)

The file permission information is divided into three parts: owner, group, and other.
Each part is used with the corresponding file class of processes. These permissions
are contained in the file mode, as described in 5.1. The detailed usage of the file
permission information in access decisions is described in file access permissions in
2.3.7. (Paraphrased from POSIX.1 f2g.)

2.2.2.73 file serial number: A per-file-system unique value for a file.

File serial numbers are unique throughout a file system.

(Quoted from POSIX.1 f2g.)

2.2 Definitions 19

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

2.2.2.74 file system: A collection of files, together with certain of their attributes.
(Quoted from POSIX.1 f2g.)

Each file system provides a separate binding of file serial numbers to files. A given
file serial number is associated with at most one file in a file system, but it may refer
to distinct files in distinct file systems. In other words, each file system defines a new
name space, giving meaning to the names (file serial numbers) that designate files.

2.2.2.75 first open, of a file: The act when a process opens a file, message queue,
or shared memory object that is not currently open within any process. (Para-
phrased from POSIX.1 f2g.)

2.2.2.76 flow control: The mechanism employed by a communications provider
that constrains a sending entity to wait until the receiving entities can safely receive
additional data without loss. c

2.2.2.77 foreground process: A process that is a member of a foreground pro-
cess group. (Quoted from POSIX.1 f2g.)

2.2.2.78 foreground process group: A group of processes that have certain
privileges, denied to processes in background process groups, when accessing their
controlling terminal.

Each session that has established a connection with a controlling terminal has ex-
actly one process group of the session as the foreground process group of that con-
trolling terminal. See 7.1.0.7.

(Quoted from POSIX.1 f2g.)

2.2.2.79 foreground process group ID: The process group ID of the foreground
process group. (Quoted from POSIX.1 f2g.)

2.2.2.80 graphic character: A sequence of one or more POSIX.POSIX_Charac-
ter s representing a single graphic symbol.

2.2.2.81 group ID: A value identifying a group of system users.

Each system user is a member of at least one group. A group ID is defined in the
package POSIX_Process_Identification (4.1). When the identity of a group is
associated with a process, a group ID value is referred to as a real group ID, an
effective group ID, one of the (optional) supplementary group IDs, or an (optional)
saved set-group-ID.

(Quoted from POSIX.1 f2g.)

2.2.2.82 host byte order: The native representation of an integer: unsigned in-
teger m is the representation in host byte order of bit string bnbn�1 : : : b0 (where bn is
the most significant, or highest order bit, and b0 is the least significant or lowest order
bit) if m = 2n � bn + 2n�1 � bn�1 + � � �+ 20 � b0. c

20 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

2.2.2.83 job control: A facility that allows users to stop (suspend) selectively the
execution of processes and continue (resume) their execution at a later time. (Quoted
from POSIX.1 f2g.)

The user typically employs this facility via the interactive interface jointly supplied
by the terminal I/O driver and a command interpreter. Conforming implementations
may optionally support job control facilities. The presence of this option is indicated
to the application at compile time by the subtype Job_Control_Support in pack-
age POSIX_Options or at run time by the value returned by the function Job_Con-
trol_Is_Supported in package POSIX_Configurable_System_Limits ; see 2.4
and 4.5. (Paraphrased from POSIX.1 f2g.)

2.2.2.84 last close: The act of a process closing a file, message queue, or shared
memory object that results in the file, message queue, or shared memory object no
longer being open within any process. (Paraphrased from POSIX.1 f2g.)

2.2.2.85 linger: To wait for a period of time before terminating a connection to
allow outstanding data to be transferred. c

2.2.2.86 link: See directory entry (2.2.2.48).

2.2.2.87 link count: The number of directory entries that refer to a particular
file. (Quoted from POSIX.1 f2g.)

2.2.2.88 local interprocess communication [local IPC]: The transfer of data
between processes in the same system. c

2.2.2.89 login: The unspecified (by this standard) activity by which a user gains
access to the system. (Paraphrased from POSIX.1 f2g.)

Each login shall be associated with exactly one login name.

(Paraphrased from POSIX.1 f2g.)

2.2.2.90 login name: A user name that is associated with a login. (Quoted from
POSIX.1 f2g.)

2.2.2.91 map a range of addresses: To create an association process’s address
space and a range of physical memory or some memory object, such that a refer-
ence to an address in that range of the address space results in a reference to the
associated physical memory or memory object.

The mapped memory or memory object is not necessarily memory-resident.

(Quoted from POSIX.1 f2g.)

2.2.2.92 memory object: Either a file or shared memory object.

When used in conjunction with Map_Memory, Open_And_Map_Shared_Memory , or
Open_Or_Create_And_Map_Shared_Memory , a memory object will appear in the
address space of the calling process.

(Paraphrased from POSIX.1 f2g.)

2.2 Definitions 21

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

2.2.2.93 memory-resident: Managed by the implementation in such a way as to
provide an upper bound on memory access times. (Quoted from POSIX.1 f2g.)

2.2.2.94 message: Information that can be transferred among tasks (possibly in
different processes) by being added to and removed from a message queue.

A message queue consists of a fixed-size buffer.

(Quoted from POSIX.1 f2g.)

2.2.2.95 message queue: An object to which messages can be added and re-
moved.

Messages may be removed in the order in which they were added or in priority or-
der. Characteristics and interfaces associated with message queues are defined in
Section 15.

(Quoted from POSIX.1 f2g.)

2.2.2.96 message queue descriptor: A per-process unique value used to identify
an open message queue.

2.2.2.97 mode: A collection of attributes that specifies the type of a file and its
access permissions. (Quoted from POSIX.1 f2g.)

For more detail see the explanation of file access permissions in 2.3.7.

2.2.2.98 mutex: A synchronization object used to allow multiple tasks (possibly in
different processes) to serialize their access to shared data or other shared resources.

The name derives from the capability it provides, namely, mutual exclusion.

(Paraphrased from POSIX.1 f2g.)

2.2.2.99 mutex owner: The task that last locked a mutex, until that same task
unlocks the mutex.

2.2.2.100 network address: A network-visible identifier used to designate spe-
cific endpoints in a network. Specific endpoints on host systems shall have addresses,
and host systems may also have addresses.

2.2.2.101 network byte order: An implementation-defined way of representing
an integer so that, when transmitted over a network via a network endpoint, the inte-
ger shall be transmitted as an appropriate number of octets with the most significant
octet first. This term has been used in historical systems and base documents to de-
note this representation. This representation is used in many networking protocols,
including Internet and OSI. However, it should not be assumed this representation
is useful with all network protocols.

2.2.2.102 nonblocking: Executing with POSIX_IO.Non_Blocking set. When
executing with POSIX_IO.Non_Blocking set, functions do not wait for protocol
events (e.g., acknowledgments) to occur before returning control. See also blocking
(2.2.2.23) c.

22 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

2.2.2.103 noncanonical input processing: The processing of terminal input as
uninterpreted characters. (See Section 7.)

2.2.2.104 null character: The value POSIX_Character’Value(0) , if defined.
The use of a null character in filenames or environment variable names or values
produces undefined results. Implementations shall not return null characters to ap-
plications in filenames or environment variable names or values.

2.2.2.105 null string: See empty string (2.2.2.55).

2.2.2.106 octet: Unit of data representation that consists of eight contiguous bits. c

2.2.2.107 open file: A file that is currently associated with a file descriptor.
(Quoted from POSIX.1 f2g.)

2.2.2.108 open file description: A record of how a process or group of processes
is accessing a file.

Each file descriptor shall refer to exactly one open file description, but an open file
description may be referred to by more than one file descriptor. A file offset, file
status (see 6.1.7), and file access modes are attributes of an open file description.

(Quoted from POSIX.1 f2g.)

2.2.2.109 orderly release: The graceful termination of a network connection
with no loss of data. c

2.2.2.110 orphaned process group: A process group in which the parent of ev-
ery member is either itself a member of the group or is not a member of the session
of the group. (Paraphrased from POSIX.1 f2g.)

An orphaned process group is no longer a member of the session of the process that
created it. A process group can become orphaned when all other members of the
session exit.

2.2.2.111 page: The granularity of memory mapping and locking, i.e., a fixed-
length contiguous range of the address space of a process. Physical memory and
memory objects can be mapped into the address space of a process on page bound-
aries and in integral multiples of pages. Process address space can be locked into
memory (i.e., made memory-resident) on page boundaries and in integral multiples
of pages. (Paraphrased from POSIX.1 f2g.)

NOTE: There is no implied requirement that usage of the term page in this interface for mem-
ory mapping necessarily be the same as the term might be used in a virtual memory imple-
mentation.

2.2.2.112 page size: The number of storage units in a page.

NOTE: Unlike POSIX.1, in this standard the page size is given in storage units rather than
bytes. Storage units are used in this standard for consistency with the units used in the
address arithmetic provided by System.Storage_Elements , in case the system storage unit
is not one byte.

2.2 Definitions 23

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

2.2.2.113 parent directory:

(1) When discussing a given directory, the directory that contains a directory entry
for the given directory. The parent directory is represented by the pathname
dot-dot in the given directory.

(2) When discussing other types of files, a directory containing a directory entry for
the file under discussion.

This concept does not apply to dot and dot-dot.

(Quoted from POSIX.1 f2g.)

2.2.2.114 parent process: See POSIX process (2.2.2.128).

2.2.2.115 parent process ID: An attribute of a new process after it is created by
a currently active process.

The parent process ID of a process is the process ID of its creator, for the lifetime of
the creator. After the lifetime of the creator has ended, the parent process ID is the
process ID of an implementation-defined system process.

(Quoted from POSIX.1 f2g.)

2.2.2.116 partition: A partition is a program or part of a program that can be
invoked from outside the Ada implementation. Each partition may run in a separate
address space, possibly on a separate computer. An active partition is a partition
that contains at least one task. Every active partition has an environment task, on
which all the other tasks of that partition depend. (Paraphrased from 10.2 (2) of the
Ada RM f1g.) An active partition corresponds to a POSIX process.

2.2.2.117 path prefix: A pathname, with an optional ending slash, that refers to
a directory. (Quoted from POSIX.1 f2g.)

2.2.2.118 pathname: A nonempty string that is used to identify a file.

A pathname consists of, at most, POSIX_Limits.Pathname_Maxima’Last compo-
nents of type POSIX.POSIX_Character . It has an optional beginning slash followed
by zero or more filenames separated by slashes. If the pathname refers to a directory,
it may also have one or more trailing slashes. Multiple successive slashes are consid-
ered the same as one slash. A pathname that begins with two successive slashes may
be interpreted in an implementation-defined manner, although more than two lead-
ing slashes shall be treated exactly the same as a single slash. The interpretation of
the pathname is explained in 2.3.11.

(Paraphrased from POSIX.1 f2g.)

2.2.2.119 pathname component: See filename (2.2.2.68).

2.2.2.120 permission: See file permission (2.2.2.72).

24 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

2.2.2.121 persistence: A characteristic of semaphores, shared memory, and mes-
sage queues requiring that the object and its state (including data, if any) are pre-
served after last close (the object is no longer referenced by any process).

Persistence of an object does not necessarily imply that the state of the object is
maintained across a system crash or a system reboot.

(Paraphrased from POSIX.1 f2g.)

2.2.2.122 pipe: An object accessed by one of the pair of file descriptors created by
the POSIX_IO.Create_Pipe procedure.

Once created, the file descriptors can be used to manipulate a pipe, and it behaves
identically to a FIFO special file when accessed in this way. It has no name in the
file hierarchy.

(Paraphrased from POSIX.1 f2g.)

2.2.2.123 polling: A scheduling scheme whereby the local process periodically
checks until the prespecified events (e.g., read, write) have occurred. c

2.2.2.124 portable filename character set: The set of characters from which
portable filenames are constructed.

For a filename to be portable across conforming implementations of this standard, it
shall consist only of the following characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9 . _ -

The last three characters are the period, underscore, and hyphen characters, respec-
tively. The hyphen shall not be used as the first character of a portable filename.
Upper- and lowercase letters shall retain their unique identities between conform-
ing implementations.

(Paraphrased from POSIX.1 f2g.)

2.2.2.125 portable pathname character set: The set of characters from which
portable pathnames are constructed. The set contains all the characters of the
portable filename set, plus the character slash (/).

2.2.2.126 POSIX character: A value of the type POSIX_Character . An array of
POSIX characters, of type POSIX_String is called a POSIX string.

2.2.2.127 POSIX I/O: The I/O operations defined by this standard, except for Sec-
tion 8.

2.2.2.128 POSIX process: A conceptual object, having an associated address
space, one or more threads of control executing within that address space, a col-
lection of system resources required for execution, and certain other attributes. A

2.2 Definitions 25

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

POSIX process is said to perform an action if any of the conceptual threads of control
within it performs the action. See also 2.3.1.

Many of the system resources defined by this standard are shared among all of the
threads of control within a process. These resources include (but are not limited to)
the process ID; the parent process ID; process group ID; session membership; real,
effective, and saved set-user-ID; real, effective, and saved set-group-ID; supplemen-
tary group IDs; current working directory; root directory; file mode creation mask;
file descriptors; timers; file locks; mutexes; environment variables; process argument
list; and possibly, a process signal mask. For more detail on the POSIX signal model
see 3.3.1.

A process is created by another process with procedures POSIX_Process_Primi-
tives.Start_Process , POSIX_Process_Primitives.Start_Process_Search ,
or the function POSIX_Unsafe_Process_Primitives.Fork . The process that is-
sues Start_Process , Start_Process_Search , or Fork is known as the parent
process. The newly created process is the child process.

2.2.2.129 potentially blocking operation: An operation that is not allowed
within a protected action, because it may be required to block the calling task. (Para-
phrased from 9.5.1 (8) of the Ada RM f1g.) Certain operations are defined by the
Ada language to be potentially blocking. In addition, every operation defined by this
standard whose effect is defined as blocking the calling task under any circumstance
is also a potentially blocking operation.

2.2.2.130 priority: The general term for an integer-valued attribute of processes,
tasks, messages, and asynchronous I/O operations, whose value is used in selecting
among entities of the same kind. Numerically higher values represent higher priori-
ties and are given preference for selection over lower priorities.

The priority of an Ada task is an integer that indicates a degree of urgency and is
the basis for resolving competing demands of tasks for resources. Unless otherwise
specified, whenever tasks compete for processors or other implementation-defined
resources, the resources are allocated to the task with the highest priority value. The
base priority of a task is the priority with which it was created, or to which it was later
set by Dynamic_Priorities.Set_Priority (defined in D.5 of the Ada RM f1g). At
all times, a task also has an active priority, which generally reflects its base priority
as well as any priority it inherits from other sources. Priority inheritance is the
process by which the priority of a task or other entity (e.g., a protected object, defined
in D.3 of the Ada RM f1g) is used in the evaluation of the active priority of another
task. At any time, the active priority of a task is the maximum of all the priorities the
task is inheriting at that instant. (Paraphrased from D.1 (20) of the Ada RM f1g.)

2.2.2.131 privilege: See appropriate privileges (2.2.2.13).

2.2.2.132 process: See POSIX process (2.2.2.128).

2.2.2.133 process group: A collection of processes that permits the signaling of
related processes.

26 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Each process in the system is a member of a process group that is identified by its
process group ID. A newly created process joins the process group of its creator.

(Quoted from POSIX.1 f2g.)

2.2.2.134 process group ID: A unique value identifying a process group during
its lifetime.

A process group ID shall not be reused by the system until the process group lifetime
ends.

(Quoted from POSIX.1 f2g.)

2.2.2.135 process group leader: The unique process, within a process group,
that created the process group. (Quoted from POSIX.1 f2g.)

2.2.2.136 process group lifetime: A period of time that begins when a process
group is created and ends when the last remaining process in the group leaves the
group, due either to the end of the process lifetime of the last process or to the last
remaining process calling the Set_Process_Group_ID procedure. (Paraphrased
from POSIX.1 f2g.)

2.2.2.137 process ID: A unique value identifying a process during its lifetime.

The process ID is a value of the type Process_ID defined in the package POSIX_-
Process_Identification (4.1). A process ID shall not be reused by the system
until the process lifetime ends. In addition, if a process group exists where the pro-
cess ID of the process group leader is equal to that process ID, that process ID shall
not be reused by the system until the process group lifetime ends.

An implementation shall reserve a value of process ID for use by system processes.
A process that is not a system process shall not have this process ID.

2.2.2.138 process lifetime: A period of time that begins when a process is cre-
ated and ends when its process ID is returned to the system.

After a process is created, it is considered active. Its threads of control and address
space exist until it terminates. It then enters an inactive state where certain re-
sources may be returned to the system, although some resources, such as the process
ID, are still in use. When another process executes a Wait_For_Child_Process
procedure for an inactive process, the remaining resources are returned to the sys-
tem. The last resource to be returned to the system is the process ID. At this time,
the lifetime of the process ends.

(Paraphrased from POSIX.1 f2g.)

2.2.2.139 process-to-process communication: The transfer of data between
processes. c

2.2.2.140 program: A set of partitions, which can execute in parallel with one
another, possibly in a separate address space and possibly on a separate computer.
(Paraphrased from 10.2 (1) of the Ada RM f1g.)

2.2 Definitions 27

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

2.2.2.141 protocol: A set of semantic and syntactic rules for exchanging informa-
tion.

2.2.2.142 protocol independent interface: An interface that enables the ap-
plication to be insulated from the specifics of the underlying protocol stack which
provides the communication services. Protocol independent interfaces allow the ap-
plication to be written so that it can be ported to various protocol stacks.

2.2.2.143 protocol engine: A component of the DNI implementation model that
is a conceptual machine that implements a particular communications protocol pro-
file.

2.2.2.144 protocol event: In the DNI implementation model, an event that is
generated by a protocol engine and queued for attention by the event handler.

2.2.2.145 protocol profile: A set of one or more protocol definitions and, where
applicable, the identification of chosen classes, subsets, option and parameters of
those definitions, necessary for accomplishing a particular function. In the context of
this standard, a protocol profile can be thought of as a vertical slice through a layered
set of communications protocols. c

2.2.2.146 read-only file system: A file system that has implementation-defined
characteristics restricting modifications. (Quoted from POSIX.1 f2g.)

2.2.2.147 ready task: A task that is not blocked. The ready tasks include those
that are running as well as those that are waiting for a processor. See also blocked
task (2.2.2.25).

NOTE: For consistency, this standard uses the definition of ready from the Ada RM f1g, which
includes running tasks among those that are ready. Thus the meaning of ready is close to the
meaning of runnable as used in POSIX.1, but the two terms differ in that ready includes
running threads. This difference in terminology requires differences in several descriptions
between this Ada binding and the base POSIX standards to preserve compatible semantics.

2.2.2.148 real group ID: The attribute of a process that, at the time of process
creation, identifies the group of the user who created the process. (Quoted from
POSIX.1 f2g.)

This value is subject to change during the process lifetime, as described in 4.1. See
also group ID (2.2.2.81).

2.2.2.149 real user ID: The attribute of a process that, at the time of process
creation, identifies the user who created the process. (Quoted from POSIX.1 f2g.)

This value is subject to change during the process lifetime, as described in 4.1. See
also user ID (2.2.2.196).

2.2.2.150 record: A collection of related data units or words that itself is treated
as a unit. c

28 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

2.2.2.151 referenced shared memory object: A shared memory object that is
open or has one or more mappings defined on it. (Quoted from POSIX.1 f2g.)

2.2.2.152 region:

(1) As relates to the address space of a process, sequence of addresses.

(2) As relates to a file, a sequence of offsets.

(Quoted from POSIX.1 f2g.)

2.2.2.153 regular file: A file that is a randomly accessible sequence of bytes, with
no further structure imposed by the system. (Quoted from POSIX.1 f2g.)

2.2.2.154 relative pathname: See the explanation of pathname resolution
(2.3.11).

2.2.2.155 reserved signal: Signals that the application cannot accept and for
which the application cannot modify the signal action or masking because the sig-
nals are reserved for use by the Ada language implementation. The reserved signals
defined by this standard are Signal_Abort , Signal_Alarm , Signal_Floating_-
Point_Error , Signal_Illegal_Instruction , Signal_Segmentation_Viola-
tion , Signal_Bus_Error . If the implementation supports any signals besides those
defined by this standard, the implementation may also reserve some of those.

2.2.2.156 resolution [time]: The minimum time interval that a clock can mea-
sure or whose passage a timer can detect. (Quoted from POSIX.1 f2g.)

2.2.2.157 root directory: A directory, associated with a process, that is used
in pathname resolution for pathnames that begin with a slash. (Quoted from
POSIX.1 f2g.)

2.2.2.158 running task: The task currently being executed by a processor.

2.2.2.159 saved set-group-ID: When the Saved IDs option is implemented, an
attribute of a process that allows some flexibility in the assignment of the effective
group ID attribute, as described for Set_Group_ID . For more detail see 2.3.7 and
Section 4. (Paraphrased from POSIX.1 f2g.)

2.2.2.160 saved set-user-ID: When the Saved IDs option is implemented, an at-
tribute of a process that allows some flexibility in the assignment of the effective user
ID attribute, as described for Set_User_ID . For more detail see 2.3.7 and Section 4.
(Paraphrased from POSIX.1 f2g.)

2.2.2.161 semaphore: A shareable resource that has a nonnegative integer
value. When the value is zero, is a (possibly empty) set of tasks is awaiting the
availability of the semaphore.

2.2 Definitions 29

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

2.2.2.162 semaphore decrement operation: An operation that decrements the
value of a semaphore, blocking until this is possible.

If, prior to the operation, the value of the semaphore is zero, the semaphore decre-
ment operation shall cause the calling task to be blocked and added to the set of tasks
(possibly in different processes) awaiting the semaphore. Otherwise, the semaphore
value is decremented. For more detail see 11.1.7.

2.2.2.163 semaphore increment operation: An operation that increments the
value of a semaphore or unblocks a waiting task.

If, prior to the operation, any tasks are awaiting the semaphore, then some task from
that set shall be removed from the set and be unblocked. Otherwise, the semaphore
value shall be incremented. For more detail see 11.1.8. indexx[blocking]semaphore

2.2.2.164 session: A collection of process groups established for job control pur-
poses.

Each process group is a member of a session. A process is considered to be a member
of the session of which its process group is a member. A newly created process joins
the session of its creator. A process can alter its session membership by the procedure
Create_Session in the package POSIX_Process_Identification . Implementa-
tions that support Set_Process_Group_ID can have multiple process groups in the
same session.

(Paraphrased from POSIX.1 f2g.)

2.2.2.165 session leader: A process that has created a session. (Quoted from
POSIX.1 f2g.) For more detail on the role of session leader see 4.1.2.

2.2.2.166 session lifetime: The period between when a session is created and the
end of the lifetime of all the process groups that remain as members of the session.
(Quoted from POSIX.1 f2g.)

2.2.2.167 shared memory object: An object that represents memory that can be
mapped concurrently into the address space of more than one process. (Quoted from
POSIX.1 f2g.)

These named regions of storage may be independent of the file system and can be
mapped into the address space of one or more processes to allow them to share the
associated memory.

2.2.2.168 signal: A mechanism by which a process may be notified of, or affected
by, an event occurring in the system.

Examples of such events include hardware exceptions and specific actions by pro-
cesses. The term signal is also used to refer to the event itself.

(Quoted from POSIX.1 f2g.)

30 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

2.2.2.169 signal-driven mode: A mode of operation in which the signal POSIX_-
Signals.Signal_IO is sent to the owner of a socket whenever an I/O operation
becomes possible on that socket. In this mode, POSIX_Signals.Signal_IO is sent
when additional data could be sent on the socket, when new data arrives to be re-
ceived on a socket, or a state transition occurs that would allow a send or receive
call to return status without blocking. Signal-driven mode is enabled by setting the
POSIX_IO.Signal_When_Socket_Ready flag on the socket and disabled by reset-
ting the POSIX_IO.Signal_When_Socket_Ready flag. The default mode for signal
driven mode is disabled. c

2.2.2.170 signal queueing: When queueing is enabled for a signal, occurrences
of that signal are queued in FIFO order and information is included if the signal is
from a source that supplies information. Otherwise, the signal queue may be only
one occurrence deep and it is implementation defined whether the data are included.
Support for signal queueing is governed by the Realtime Signals option. Not all signals
may support queueing.

2.2.2.171 slash: The literal character "/" .

This character is also known as solidus in ISO 8859-1 ().

(Quoted from POSIX.1 f2g.)

2.2.2.172 socket: A file of a particular type that is used as a communications
endpoint for process-to-process communication as described in Section 18.

2.2.2.173 socket address: An address associated with a socket or remote end-
point. The address may include multiple parts, such as a network address associated
with a host system and an identifier for a specific endpoint. c

2.2.2.174 storage unit: The length of an addressable element of storage in the
machine, measured in bits. (Every storage element has the same size.) This term is
used here as defined in 13.7 (31) of the Ada RM f1g, where it is declared as System.-
Storage_Unit .

NOTE: The storage unit is very likely to be one byte, but this is not a requirement. For example,
it might be 32 or 64 bits.

2.2.2.175 successfully transferred: For a write operation to a regular file, when
the system ensures that all data written is readable on anys subsequent open of the
file (even one that follows a system or power failure) in the absence of a failure of the
physical storage medium.

For a read operation, when an image of the data on the physical storage medium is
available to the requesting process.

(Quoted from POSIX.1 f2g.)

2.2.2.176 supplementary group ID: An attribute of a process, used in deter-
mining file access permissions. (Quoted from POSIX.1 f2g.)

2.2 Definitions 31

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

A process has group IDs in addition to the effective group ID. The size of this list of
supplementary group IDs is specified at compile time by Groups_Maxima in package
POSIX_Limits , or at run time by the value of the function Groups_Maximum in
package POSIX_Configurable_System_Limits . The supplementary group IDs of
a process are set to the supplementary group IDs of the parent process when the
process is created. Whether the effective group ID of a process is included in or
omitted from its list of supplementary group IDs is unspecified.

2.2.2.177 synchronized I/O completion: The state of an I/O operation that has
either been successfully transferred or diagnosed as unsuccessful. (Quoted from
POSIX.1 f2g.)

2.2.2.178 synchronized I/O data integrity completion: A degree of comple-
tion for an I/O operation that occurs when:

(1) For read, the operation has been completed or diagnosed as unsuccessful. The
read is complete only when an image of the data has been successfully trans-
ferred to the requesting task. If there were any pending write requests affecting
the data to be read at the time that the synchronized read operation was re-
quested, these write requests shall be successfully transferred prior to reading
the data.

(2) For write, the operation has been completed or diagnosed as unsuccessful. The
write is complete only when the data specified in the write request is success-
fully transferred, and all file system information required to retrieve the data is
successfully transferred.

File attributes that are not necessary for data retrieval (Last Access Time, Last Mod-
ification Time, Last Status Change Time) need not be successfully transferred prior to
returning to the calling task.

(Paraphrased from POSIX.1 f2g.)

2.2.2.179 synchronized I/O file integrity completion: Identical to a synchro-
nized I/O data integrity completion with the addition that all file attributes rela-
tive to the I/O operation (including Last Access Time, Last Modification Time, Last Status
Change Time) shall be successfully transferred prior to returning to the calling task.
(Paraphrased from POSIX.1 f2g.)

2.2.2.180 synchronized I/O operation: An I/O operation performed on a file
that provides the application assurance of the integrity of its data and files. (Quoted
from POSIX.1 f2g.) See also synchronized I/O file integrity completion (2.2.2.178)
and synchronized I/O data integrity completion (2.2.2.179).

2.2.2.181 synchronous I/O operation: An I/O operation that causes the task
requesting the I/O to be blocked from further use of the processor until that I/O
operation completes. (Quoted from POSIX.1 f2g.)

NOTE: A synchronous I/O operation does not imply synchronized I/O data integrity comple-
tion or synchronized I/O file integrity completion.

32 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

2.2.2.182 system: An implementation of this standard. (Paraphrased from
POSIX.1 f2g.)

2.2.2.183 system crash: An event initiated by an unspecified circumstance that
causes all processes (possibly other than special system processes) to be terminated
in an undefined manner, after which any changes to the state and contents of files
created or written to by a conforming POSIX.5 application prior to the interval
are undefined, except as required elsewhere in this standard. (Paraphrased from
POSIX.1 f2g.)

2.2.2.184 system process: An object, other than a process executing an applica-
tion, that is defined by the system and has a process ID. (Quoted from POSIX.1 f2g.)
An implementation shall reserve at least one process ID for system processes.

2.2.2.185 system reboot: An implementation-defined sequence of events that
may result in the loss of transitory data, i.e., data that are not saved in perma-
nent storage, including message queues, shared memory, semaphores, and processes.
(Paraphrased from POSIX.1 f2g.)

2.2.2.186 task: An Ada object with a thread of control, defined by Section 9 of the
Ada RM f1g as follows:

The execution of an Ada program consists of the execution of one or more tasks.
Each task represents a separate thread of control that proceeds independently and
concurrently between the points where it interacts with other tasks.

2.2.2.187 terminal [terminal device]: A character special file that obeys the
specifications of 7.1. (Quoted from POSIX.1 f2g.)

2.2.2.188 terminate (a connection): To dissolve an association established be-
tween two or more endpoints for the transfer of data. c

2.2.2.189 thread of control: A sequence of instructions executed by a conceptual
sequential subprogram, independent of any programming language. More than one
thread of control may execute concurrently, interleaved on a single processor, or on
separate processors. The conceptual threads of control in an Ada application are Ada
tasks. They may, but need not, correspond to the POSIX threads defined in POSIX.1.

2.2.2.190 timeouts: A method of error checking whereby an expected event is
tested to occur within a specified period of time. c

2.2.2.191 timer: An object that can notify a process when the time as measured by
a particular clock has reached or passed a specified value or when a specified amount
of time as measured by a particular clock has passed. (Quoted from POSIX.1 f2g.)

Timers are per process; that is, they cannot be shared between processes.

2.2.2.192 timer overrun: A condition that occurs each time a timer for which
there is already an expiration signal queued to the process expires. (Quoted from
POSIX.1 f2g.)

2.2 Definitions 33

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

2.2.2.193 unbind: To remove the association between a network address and an
endpoint.

2.2.2.194 unblocked mode (function): A function that behaves like a blocked
function, except that when it returns, the function may be incomplete and the appli-
cation process may have to invoke the interface again.

2.2.2.195 unit data: See datagram (2.2.2.45) c.

2.2.2.196 user ID: A value identifying a system user.

A User ID is a value of the type User_ID defined in the package POSIX_Process_-
Identification . When the identity of a user is associated with a process, a user
ID value is referred to as a real user ID, an effective user ID, or an (optional) saved
set-user-ID.

2.2.2.197 user name: A value of POSIX_String that is used to identify a user,
as described in 9.1.

2.2.2.198 working directory [current working directory]: A directory, asso-
ciated with a process, that is used in pathname resolution for pathnames that do not
begin with a slash. (Quoted from POSIX.1 f2g.)

2.2.3 Abbreviations

For the purposes of this standard, the following abbreviations apply:

2.2.3.1 ACSE: Association Control Service cElement

2.2.3.2 Ada 83: The original Ada language standard, approved by ANSI in 1983
and by ISO/IEC in 1987 as ISO/IEC 8652 fB5g.

2.2.3.3 Ada 95: The 1995 Ada language standard, approved as ISO/IEC 8652 f1g,
used in contrast to Ada 83.

2.2.3.4 Ada RM: The Ada language standard, ISO/IEC 8652: 1995(E) f1g, also
known as the Ada Reference Manual.

2.2.3.5 AE: Application Entity, in the context of protocol mappings (Annex D).

2.2.3.6 AP: Application Process, in the context of protocol mappings (Annex D).

2.2.3.7 API: Application Program Interface

2.2.3.8 AARE: A-ASSOCIATE Response (ISO/IEC ISP 11188-3 f11g)

2.2.3.9 AIO: Asynchronous Input and Output

2.2.3.10 AK TPDU: Acknowledge Transport Protocol Data Unit (ISO/IEC
8073 f4g)

34 2 Terminology and General Requirements

c

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

2.2.3.11 APDU: Application Protocol Data Unit (ISO/IEC ISP 11188-3 f11g)

2.2.3.12 ASN.1: Abstract Syntax Notation One - ISO/IEC 8824-1: 1995, Abstract
Syntax Notation One (ASN.1): Specification of Basic Notation.

2.2.3.13 BER: Basic Encoding Rules for ASN.1 - ISO/IEC 8825:1990, Abstract
Syntax Notation One (ASN.1): Basic Encoding Rules.

2.2.3.14 BSD: Berkeley Software Distribution

2.2.3.15 CC TPDU: Connection Confirm Transport Protocol Data Unit (ISO/IEC
8073 f4g)

2.2.3.16 CLNP: Connectionless-Mode Network Protocol (see ISO/IEC 8473-1 f7g)

2.2.3.17 CLTP: Connectionless-Mode Transport Protocol (see ISO/IEC 8602 f9g)

2.2.3.18 CPU: Central Processing Unit

2.2.3.19 CR: Carriage Return (see CRin 7.1.0.12)

2.2.3.20 CR TPDU: Connection Request Transport Protocol Data Unit (ISO/IEC
8073 f4g)

2.2.3.21 CULR: Common Upper Layer Requirements (in OSI, ISO/IEC ISP
11188-3 f11g)

2.2.3.22 DC TPDU: Disconnection Confirm Transport Protocol Data Unit
(ISO/IEC 8073 f4g)

2.2.3.23 DCS: Defined Context Set (ISO/IEC 8073 f4g)

2.2.3.24 DR TPDU: Disconnection Request Transport Protocol Data Unit
(ISO/IEC 8073 f4g)

2.2.3.25 DT TPDU: Data Transport Protocol Data Unit (ISO/IEC 8073 f4g)

2.2.3.26 DNI: Detailed Network Interface

2.2.3.27 ED TPDU: Expedited Data Transport Protocol Data Unit (ISO/IEC
8073 f4g)

2.2.3.28 EM: Event Management

2.2.3.29 EOF: End of File (EOF in 7.1.0.12)

2.2.3.30 EOL: End of Line (EOL in 7.1.0.12)

2.2.3.31 ETSDU: Expedited Transport Service Data Unit

2.2 Definitions 35

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

2.2.3.32 FD: File Descriptor (6.1.1)

2.2.3.33 FIFO: First-In-First-Out (5.2.1)

2.2.3.34 FIN: no more data from sender (RFC 793 f14g)

NOTE: This value, along with RST, SYN, and URG, represents a control bit in word 4 of the
TCP/IP protocol header. This is a case where the API assumes an intimate knowledge of the
protocol being programmed. There are no names in the Ada or C-language bindings to sockets
for these constructs. This is also the case for much of the terminology used in Annex D for the
ISO protocols.

2.2.3.35 FSM: Finite State Machine

2.2.3.36 ICMP: Internet Control Message Protocol – IETF RFC 792: 1981, Inter-
net Control Message Protocol.

2.2.3.37 IETF: Internet Engineering Task Force

2.2.3.38 I/O: Input and Output

2.2.3.39 IP: Internet Protocol (RFC 793 f14g)

2.2.3.40 IPC: Interprocess Communication

2.2.3.41 LIS: Language-Independent Specification

2.2.3.42 mOSI: Minimal 7-Layer OSI Stack (ISO/IEC 7498 fB3g)

2.2.3.43 NL: New Line (NL in 7.1.0.12)

2.2.3.44 NSAP: Network Service Access Point

2.2.3.45 OOB: Out of Band

2.2.3.46 OSI: Open Systems Interconnection (ISO/IEC 7498 fB3g)

2.2.3.47 PASC: Portable Applications Standards Committee

2.2.3.48 PDU: Protocol Data Unit

2.2.3.49 PDV: Presentation Data cValue

2.2.3.50 POSIX.1: ISO/IEC 9945-1:1996, the POSIX C-language system API from
which this standard is derived f2g.

2.2.3.51 POSIX.1b: IEEE Std 1003.1b-1993, fB12g.

2.2.3.52 POSIX.1c: IEEE Std 1003.1c-1995, fB13g.

36 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

2.2.3.53 P1003.1g: IEEE P1003.1g/D6.6, fB14g.

2.2.3.54 POSIX.1i: IEEE Std 1003.1i-1995, fB15g.

2.2.3.55 POSIX.5: IEEE Std 1003.5-1992, fB17g.

2.2.3.56 POSIX.5b: IEEE Std 1003.5b-1996, fB18g.

2.2.3.57 POSIX.13:1998 IEEE Std 1003.13-1998. fB19g.

2.2.3.58 QOS: Quality of Service

2.2.3.59 RFC: Request for Comment

2.2.3.60 RST: Reset The Connection (RFC 793 f14g)

NOTE: See the notes for 2.2.3.34, above
.

2.2.3.61 SEDU: Service Expedited Data Unit

2.2.3.62 SDU: Service Data Unit

2.2.3.63 SYN: Synchronize Sequence Numbers RFC 793 f14g)

NOTE: See the notes for 2.2.3.34, above
.

2.2.3.64 TCP: Transmission Control Protocol (of the Internet, see RFC 1122 f18g)

2.2.3.65 TP: Transport Protocol (ISO/IEC 8073 f4g)

2.2.3.66 TPDU: Transport Protocol Data Unit (ISO/IEC 8073 f4g)

2.2.3.67 TSAP: Transport Service Access Point

2.2.3.68 TSDU: Transport Service Data Unit

2.2.3.69 UD TPDU: Unit Data Transport Protocol Data Unit (ISO/IEC 8602 f9g)

2.2.3.70 UDP: User Datagram Protocol (Internet, RFC 768 f12g)

2.2.3.71 URG: Urgent Pointer Field Significant (RFC 793 f14g)

NOTE: See the notes for 2.2.3.34, above
.

2.2.3.72 XTI: X/Open Transport Interface c

2.2 Definitions 37

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

2.3 General Concepts

2.3.1 Process/Active Partition Relationship

An Ada active partition in execution shall behave as if it is a single POSIX process,
throughout this standard. Thus, all the tasks of the active partition shall execute
within the environment of the same POSIX process and share the same set of process
attributes. (See 2.2.2.128.)

NOTE: The active partition in Ada 95 generalizes the concept of a main program execution in
Ada 83.

NOTE: While every Ada active partition in a POSIX environment must correspond to some
process, the two concepts are not exactly equivalent. In particular, a process may execute a
program written in other languages. Moreover, during the lifetime of a process it may execute
several different programs (or Ada active partitions), possibly written in different languages,
sequentially. (See 3.2.)

2.3.2 Task/Thread Relationship

The only threads of control visible to an Ada application via this standard are tasks;
requirements that relate to threads of control are generally described in terms of Ada
tasks.

An implementation may optimize away the thread of control of certain tasks (known
as passive tasks) if one of the following applies:

— The implementation takes responsibility for the safety of this optimization. In
other words, it is able to determine that it will not violate any requirements of
the Ada RM f1g, or change the effect of any operations or pragmas defined by
this standard that are supported by the implementation and used within the
application.

— The application takes responsibility for the safety of this optimization, request-
ing it explicitly by implementation-defined means, such as a pragma.

A process may contain threads of control that do not correspond to Ada tasks. Such
threads of control may be created invisibly by the implementation of the Ada lan-
guage or of this standard or via operating system interfaces not defined by this stan-
dard. Such other threads of control are not required to behave as Ada tasks. The
implementation shall not allow the application to refer to such threads as tasks, via
task names or values of type Ada_Task_Identification.Task_ID .

NOTE: The tasks of an Ada program may also be implemented using more than one process in
the underlying system — as long as all the process attributes specified by this standard (e.g.,
see 3.1.2, 3.2.2, and Section 4) — are shared by all the tasks in the program, and all tasks
in the Ada active partition appear to the other POSIX processes in the system to be a single
POSIX process when viewed through the interfaces defined in this standard.

2.3.3 Ada Character Differences

In 3.5.2 of the Ada RM f1g the type Character is defined as “a character type whose
values correspond to the 256 code positions of Row 00 (also known as Latin-1) of

38 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

the ISO 10646 Basic Multilingual Plane (BMP).” It also defines the type Wide_-
Character , which “is a character type whose values correspond to the 65536 code
positions of the ISO 10646 Basic Multilingual Plane (BMP).”

This standard defines its own character set, POSIX_Character , which is neither
required nor prohibited from having the same set of values and representation as
Standard.Character or Standard.Wide_Character .

2.3.4 Posix Signals Are Not Interrupts

The application program interfaces for signals defined by this standard are syn-
chronous; that is, a task executes an operation that causes it to block until an oc-
currence of the signal is available. The preferred interface is via the Await_Signal
and Await_Signal_Or_Timeout operations (see 3.3.15 and 3.3.16). For compati-
bility with POSIX.5, a signal can also be attached to an entry of a task, via the Ada
interrupt-entry mechanism, if the Signal Entries option is supported. (See 3.3.17.)

NOTE: The use of task entries to accept signals is obsolescent.

2.3.5 System Call Exception Errors

Ada supports an exception mechanism that is used in this binding to report errors
from system calls. The details of the error are reported by an error code that can be
accessed via the function Get_Error_Code in package POSIX.

2.3.6 Extended Security Controls

The access control (see 2.3.7) and privilege mechanisms (see 2.2.2.13) have been de-
fined to allow implementation-defined extended security controls. These controls per-
mit an implementation to provide security mechanisms to implement different secu-
rity policies from the polices described in this standard. These mechanisms shall be
implemented and mapped onto the POSIX interfaces so they appear to be extensions
to the POSIX security system.

2.3.7 File Access Permissions

The standard file access control mechanism uses the file permission set, as described
in this subclause. This permission set is determined at file creation by the procedures
POSIX_IO.Open_Or_Create , POSIX_Sockets.Bind (for a socket whose protocol
family is POSIX_Sockets_Local.Local_Protocol), POSIX_Files.Create_FIFO ,
or POSIX_Files.Create_Directory and are changed by POSIX_Files.Change_-
Permissions . cThe permission set can be read by the function POSIX_File_Sta-
tus.Permission_Set_Of .

Implementations may provide additional or alternate file access control mechanisms,
or both. An additional access control mechanism shall only further restrict the access
permissions defined by the file permission set. An alternate access control mecha-
nism shall

(1) Specify file permission set for the owner class, group class, and other class of the
file, corresponding to the access permissions.

2.3 General Concepts 39

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

(2) Be enabled only by explicit user action, on a per-file basis by the file owner or a
user with the appropriate privilege.

(3) Be disabled for a file after the file permission set is changed for that file. The dis-
abling of the alternate mechanism need not disable any additional mechanisms
defined by an implementation.

If a process requests file access permission for read, write, or execute/search and if
no additional mechanism denies access, access is determined as follows:

(1) If a process has the appropriate privilege:
(a) If read, write, or directory search permission is requested, access is granted.
(b) If execute permission is requested, access is granted if execute permission

is granted to at least one user by the file permission set or by an alternate
access control mechanism; otherwise, access is denied.

(2) Otherwise:
(a) The file permission set of a file contains read, write, and execute/search

permissions for the file owner class, file group class, and file other class.
(b) Access is granted if an alternate access control mechanism is not enabled

and the requested access permission is set for the class to which the process
belongs or if an alternate access control mechanism is enabled and it allows
the requested access; otherwise, access is denied.

Unless otherwise stated, the user ID is the effective user ID of the process and the
group ID is the effective group ID of the process. The effective user ID and the
effective group ID can be saved in the saved set-user-ID or saved set-group-ID if the
Saved IDs option is supported. (See 4.1.3.)

2.3.8 File Hierarchy

Files in the system are organized in a hierarchical structure in which all of the non-
terminal nodes are directories and all of the terminal nodes are any other type of
file. Because multiple directory entries may refer to the same file, the hierarchy is
properly described as a directed graph.

2.3.9 Filename Portability

Filenames should be constructed from the portable filename character set because
the use of other characters can be confusing or ambiguous in certain contexts. The
function Is_Portable_Filename (2.4) is provided for checking a POSIX_String
to verify if it is a portable filename. The function Is_Portable_Pathname (2.4) is
provided to check for portable pathnames.

2.3.10 File Times Update

Each file has three associated time value attributes. These are the Last Access
Time, the Last Modification Time, and the Last Status Change Time. They are updated
when file data have been accessed, file data have been modified, or file status has
been changed, respectively. They are accessed via functions defined in the package
POSIX_File_Status .

40 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

For each function or procedure in this standard that reads or writes file data or
changes the file status, the appropriate attributes are noted as marked for update.
If an implementation of such a function marks for update a time-related attribute
not specified by this standard, what such time-related attributes it updates shall be
documented, except that any changes caused by pathname resolution need not be
documented. For the other functions in this standard (those that are not explicitly
required to read or write file data or change file status, but that in some implemen-
tations happen to do so), the effect is unspecified.

An implementation may update attributes that are marked for update immediately,
or it may update such attributes periodically. When the attributes are updated, they
are set to the current time and the update marks are cleared. All attributes that are
marked for update shall be updated when the file is no longer open by any process or
when a POSIX_File_Status.Get_File_Status operation is performed on the file.
Other times when updates are done are unspecified. Updates are not done for files
on read-only file systems.

2.3.11 Pathname Resolution

Pathname resolution is performed for a process to resolve a pathname to a particular
file in a file hierarchy. Multiple pathnames may resolve to the same file. (See 5.2.1
and 5.2.3.)

Each filename in the pathname is located in the directory specified by its predecessor
(for example, in the pathname fragment a/b , file b is located in directory a). Path-
name resolution fails if a filename in the pathname cannot be located in the directory
specified by its predecessor. If the pathname begins with a slash, the predecessor of
the first filename in the pathname is taken to be the root directory of the process
(such pathnames are referred to as absolute pathnames). If the pathname does not
begin with a slash, the predecessor of the first filename of the pathname is taken to be
the current working directory of the process (such pathnames are referred to as rela-
tive pathnames). If the pathname begins with two leading slashes, the predecessor of
the first filename in the pathname may be interpreted in an implementation-defined
manner.

The interpretation of a pathname component is dependent on Filename Limit and
whether the Filename Truncation option is supported for the path prefix of the com-
ponent. If the length in POSIX characters of a pathname component exceeds File-
name_Limit and the Filename Truncation option is not supported for the pathname
prefix, the implementation shall raise the exception POSIX_Error and set the er-
ror code Filename_Too_Long . Otherwise, the implementation shall ignore all the
characters after the initial substring whose length in POSIX characters is the value
returned by Filename_Limit for the pathname component. (See Section 5.)

The special filename dot (.) refers to the directory specified by its predecessor. The
special filename dot-dot (..) refers to the parent directory of the directory specified
by its predecessor. As a special case, in the root directory, dot-dot may refer to the
root directory itself.

A pathname consisting of a single slash (/) resolves to the root directory of the pro-
cess. A null pathname is invalid.

2.3 General Concepts 41

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

2.3.12 Allocated Storage

In some places the POSIX packages may have to allocate storage. One example is
string lists. In any place where an access type is declared in the interface or where
heap storage is likely to be dynamically allocated, storage retrieval procedures are
declared. The storage retrieval procedures allow an application to free any dynamic
storage that is likely to be allocated by a POSIX package.

2.4 Package POSIX

This package defines types, constants, and operations that have general applicability
across this standard, including the following:

— Specifying a count of I/O units.

— Obtaining information about whether a given operation blocks the entire process
or just the calling task.

— Specifying characters, character strings, and lists of character strings.

— Specifying option sets, which are used in other interfaces defined by this stan-
dard.

— Obtaining error information when an operation defined by this standard fails.

— Representing time values with nanosecond precision.

— Obtaining information about the specific system on which a process is executing.

— Specifying the class of signals to mask during an interruptible operation.

with Ada_Streams,
Interfaces; c

package POSIX is
-- 2.4.1 Constants and Static Subtypes
-- 2.4.1.1 Version Identification
POSIX_Version : constant := 1997_XX;
POSIX_Ada_Version : constant := 1998_YY; c
-- 2.4.1.2 Optional Facilities
subtype Job_Control_Support is Boolean -- obsolescent

range implementation-defined; -- obsolescent
subtype Saved_IDs_Support is Boolean -- obsolescent

range implementation-defined; -- obsolescent
subtype Change_Owner_Restriction is Boolean -- obsolescent

range implementation-defined; -- obsolescent
subtype Filename_Truncation is Boolean -- obsolescent

range implementation-defined; -- obsolescent
-- 2.4.1.3 Bytes and I/O Counts
Byte_Size : constant := implementation-defined-integer;
type IO_Count is optional parent type

range 0 .. implementation-defined;
subtype IO_Count_Maxima is IO_Count range 32767 .. IO_Count’Last;
type Octet is mod 2**8;
type Octet_Array is array (Positive range <>) of Octet;
function Host_To_Network_Byte_Order (Host_32 : Interfaces.Unsigned_32)

return Interfaces.Unsigned_32;
function Host_To_Network_Byte_Order (Host_16 : Interfaces.Unsigned_16)

return Interfaces.Unsigned_16;

42 2 Terminology and General Requirements

c

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

function Network_To_Host_Byte_Order (Net_32 : Interfaces.Unsigned_32)
return Interfaces.Unsigned_32;

function Network_To_Host_Byte_Order (Net_16 : Interfaces.Unsigned_16)
return Interfaces.Unsigned_16; c

-- 2.4.1.4 System Limits
Portable_Groups_Maximum : constant Natural := 0; -- obsolescent
subtype Groups_Maxima is Natural -- obsolescent

range implementation-defined; -- obsolescent
Portable_Argument_List_Maximum : constant Natural := 4096; -- obsolescent
subtype Argument_List_Maxima is Natural -- obsolescent

range implementation-defined; -- obsolescent
Portable_Child_Processes_Maximum : constant Natural := 6; -- obsolescent
subtype Child_Processes_Maxima is Natural -- obsolescent

range implementation-defined; -- obsolescent
Portable_Open_Files_Maximum : constant Natural := 16; -- obsolescent
subtype Open_Files_Maxima is Natural -- obsolescent

range implementation-defined; -- obsolescent
Portable_Stream_Maximum : constant Natural := 8; -- obsolescent
subtype Stream_Maxima is Natural -- obsolescent

range implementation-defined; -- obsolescent
Portable_Time_Zone_String_Maximum : constant Natural := 3; -- obsolescent
subtype Time_Zone_String_Maxima is Natural -- obsolescent

range implementation-defined; -- obsolescent
-- Pathname Variable Values
Portable_Link_Limit_Maximum : constant Natural := 8; -- obsolescent
subtype Link_Limit_Maxima is Natural -- obsolescent

range implementation-defined; -- obsolescent
Portable_Input_Line_Limit_Maximum :

constant IO_Count := 255; -- obsolescent
subtype Input_Line_Limit_Maxima is IO_Count -- obsolescent

range implementation-defined; -- obsolescent
Portable_Input_Queue_Limit_Maximum :

constant IO_Count := 255; -- obsolescent
subtype Input_Queue_Limit_Maxima is IO_Count -- obsolescent

range implementation-defined; -- obsolescent
Portable_Filename_Limit_Maximum : constant Natural := 14; -- obsolescent
subtype Filename_Limit_Maxima is Natural -- obsolescent

range implementation-defined; -- obsolescent
Portable_Pathname_Limit_Maximum : constant Natural := 255; -- obsolescent
subtype Pathname_Limit_Maxima is Natural -- obsolescent

range implementation-defined; -- obsolescent
Portable_Pipe_Limit_Maximum : constant IO_Count := 512; -- obsolescent
subtype Pipe_Limit_Maxima is IO_Count -- obsolescent

range implementation-defined; -- obsolescent
-- 2.4.1.5 Blocking Behavior Values
type Blocking_Behavior is (Tasks, Program, Special);
subtype Text_IO_Blocking_Behavior is Blocking_Behavior

range implementation-defined;
IO_Blocking_Behavior :

constant Blocking_Behavior := implementation-defined;
File_Lock_Blocking_Behavior :

constant Blocking_Behavior := implementation-defined;
Wait_For_Child_Blocking_Behavior :

constant Blocking_Behavior := implementation-defined;
XTI_Blocking_Behavior :

constant Blocking_Behavior := implementation-defined;
Sockets_Blocking_Behavior :

constant Blocking_Behavior := implementation-defined; c

2.4 Package POSIX 43

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

subtype Realtime_Blocking_Behavior is Blocking_Behavior
range implementation-defined;

-- 2.4.1.6 Signal Masking for Interruptible Operations
type Signal_Masking is (No_Signals, RTS_Signals, All_Signals);
-- 2.4.2 POSIX Characters
type POSIX_Character is

(
-- ’ ’,’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,
-- ’A’,’B’,’C’,’D’,’E’,’F’,’G’,’H’,’I’,’J’,’K’,’L’,’M’,
-- ’N’,’O’,’P’,’Q’,’R’,’S’,’T’,’U’,’V’,’W’,’X’,’Y’,’Z’,
-- ’a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,’i’,’j’,’k’,’l’,’m’,
-- ’n’,’o’,’p’,’q’,’r’,’s’,’t’,’u’,’v’,’w’,’x’,’y’,’z’,
-- ’.’,’_’,’-’,’/’,’"’,’#’, ’&’, ’’’, ’(’, ’)’,
-- ’*’, ’+’, ’,’, ’:’, ’;’, ’<’, ’=’, ’>’, ’|’
other characters are implementation defined);

-- 2.4.3 POSIX Strings
type POSIX_String is array (Positive range <>) of POSIX_Character;
function To_POSIX_String (Str : String) return POSIX_String;
function To_POSIX_String (Str : Wide_String) return POSIX_String;
function To_String (Str : POSIX_String) return String;
function To_Wide_String (Str : POSIX_String) return Wide_String;
function To_Stream_Element_Array (Buffer : POSIX_String)

return Ada_Streams.Stream_Element_Array;
function To_POSIX_String (Buffer : Ada_Streams.Stream_Element_Array)

return POSIX_String;
subtype Filename is POSIX_String;
subtype Pathname is POSIX_String;
function Is_Filename (Str : POSIX_String) return Boolean;
function Is_Pathname (Str : POSIX_String) return Boolean;
function Is_Portable_Filename (Str : POSIX_String) return Boolean;
function Is_Portable_Pathname (Str : POSIX_String) return Boolean;
-- 2.4.4 String Lists
type POSIX_String_List is limited private ;
Empty_String_List : constant POSIX_String_List;
procedure Make_Empty (List : in out POSIX_String_List);
procedure Append

(List : in out POSIX_String_List;
Str : in POSIX_String);

generic
with procedure Action

(Item : in POSIX_String;
Quit : in out Boolean);

procedure For_Every_Item (List : in POSIX_String_List);
function Length (List : POSIX_String_List) return Natural;
function Value

(List : POSIX_String_List;
Index : Positive)

return POSIX_String;
-- 2.4.5 Option Sets
type Option_Set is private ;
function Empty_Set return Option_Set;
function "+" (L, R : Option_Set) return Option_Set;
function "-" (L, R : Option_Set) return Option_Set;
function "<" (Left, Right : Option_Set) return Boolean;
function "<="(Left, Right : Option_Set) return Boolean;
function ">" (Left, Right : Option_Set) return Boolean;
function ">="(Left, Right : Option_Set) return Boolean;
Option_1 : constant Option_Set;

44 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Option_2 : constant Option_Set;
Option_3 : constant Option_Set;
Option_4 : constant Option_Set;
Option_5 : constant Option_Set;
Option_6 : constant Option_Set;
Option_7 : constant Option_Set;
Option_8 : constant Option_Set;
Option_9 : constant Option_Set;
Option_10 : constant Option_Set;
Option_11 : constant Option_Set;
Option_12 : constant Option_Set;
Option_13 : constant Option_Set;
Option_14 : constant Option_Set;
Option_15 : constant Option_Set;
Option_16 : constant Option_Set;
Option_17 : constant Option_Set;
Option_18 : constant Option_Set;
Option_19 : constant Option_Set;
Option_20 : constant Option_Set;
Option_21 : constant Option_Set;
Option_22 : constant Option_Set;
Option_23 : constant Option_Set;
Option_24 : constant Option_Set;
Option_25 : constant Option_Set;
Option_26 : constant Option_Set;
Option_27 : constant Option_Set;
Option_28 : constant Option_Set;
Option_29 : constant Option_Set;
Option_30 : constant Option_Set;
Option_31 : constant Option_Set;
-- 2.4.6 Error Codes and Exceptions
POSIX_Error : exception ;
type Error_Code is range implementation-defined;
function Get_Error_Code return Error_Code;
procedure Set_Error_Code (Error : in Error_Code);
function Is_POSIX_Error (Error : Error_Code) return Boolean;
function Image (Error : Error_Code) return String;
No_Error : constant Error_Code := 0;
E2BIG,
Argument_List_Too_Long : constant Error_Code := impl-def-static-expression;
EFAULT,
Bad_Address : constant Error_Code := impl-def-static-expression;
EBADF,
Bad_File_Descriptor : constant Error_Code := impl-def-static-expression;
EBADMSG,
Bad_Message : constant Error_Code := impl-def-static-expression;
EPIPE,
Broken_Pipe : constant Error_Code := impl-def-static-expression;
ENOTEMPTY,
Directory_Not_Empty : constant Error_Code := impl-def-static-expression;
ENOEXEC,
Exec_Format_Error : constant Error_Code := impl-def-static-expression;
EEXIST,
File_Exists : constant Error_Code := impl-def-static-expression;
EFBIG,
File_Too_Large : constant Error_Code := impl-def-static-expression;
ENAMETOOLONG,
Filename_Too_Long : constant Error_Code := impl-def-static-expression;

2.4 Package POSIX 45

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

EXDEV,
Improper_Link : constant Error_Code := impl-def-static-expression;
ENOTTY,
Inappropriate_IO_Control_Operation :

constant Error_Code := impl-def-static-expression;
EIO,
Input_Output_Error : constant Error_Code := impl-def-static-expression;
EINTR,
Interrupted_Operation : constant Error_Code := impl-def-static-expression;
EINVAL,
Invalid_Argument : constant Error_Code := impl-def-static-expression;
ESPIPE,
Invalid_Seek : constant Error_Code := impl-def-static-expression;
EISDIR,
Is_A_Directory : constant Error_Code := impl-def-static-expression;
EMSGSIZE,
Message_Too_Long : constant Error_Code := impl-def-static-expression;
ECHILD,
No_Child_Process : constant Error_Code := impl-def-static-expression;
ENOLCK,
No_Locks_Available : constant Error_Code := impl-def-static-expression;
ENOSPC,
No_Space_Left_On_Device : constant Error_Code := impl-def-static-expression;
ENODEV,
No_Such_Operation_On_Device :

constant Error_Code := impl-def-static-expression;
ENXIO,
No_Such_Device_Or_Address :

constant Error_Code := impl-def-static-expression;
ENOENT,
No_Such_File_Or_Directory :

constant Error_Code := impl-def-static-expression;
ESRCH,
No_Such_Process : constant Error_Code := impl-def-static-expression;
ENOTDIR,
Not_A_Directory : constant Error_Code := impl-def-static-expression;
ENOMEM,
Not_Enough_Space : constant Error_Code := impl-def-static-expression;
ECANCELED,
Operation_Canceled : constant Error_Code := impl-def-static-expression;
EINPROGRESS,
Operation_In_Progress : constant Error_Code := impl-def-static-expression;
ENOSYS,
Operation_Not_Implemented : constant Error_Code := impl-def-static-expression;
EPERM,
Operation_Not_Permitted : constant Error_Code := impl-def-static-expression;
ENOTSUP,
Operation_Not_Supported : constant Error_Code := impl-def-static-expression;
EACCES,
Permission_Denied : constant Error_Code := impl-def-static-expression;
EROFS,
Read_Only_File_System : constant Error_Code := impl-def-static-expression;
EBUSY,
Resource_Busy : constant Error_Code := impl-def-static-expression;
EDEADLK,
Resource_Deadlock_Avoided : constant Error_Code := impl-def-static-expression;

46 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

EAGAIN,
Resource_Temporarily_Unavailable :

constant Error_Code := impl-def-static-expression;
ETIMEDOUT,
Timed_Out : constant Error_Code := impl-def-static-expression;
EMLINK,
Too_Many_Links : constant Error_Code := impl-def-static-expression;
EMFILE,
Too_Many_Open_Files : constant Error_Code := impl-def-static-expression;
ENFILE,
Too_Many_Open_Files_In_System :

constant Error_Code := impl-def-static-expression;
-- Socket Error Codes
EADDRINUSE,
Address_In_Use : constant Error_Code := impl-def-static-expression;
EADDRNOTAVAIL,
Address_Not_Available : constant Error_Code := impl-def-static-expression;
EALREADY,
Already_Awaiting_Connection :

constant Error_Code := impl-def-static-expression;
ECONNABORTED,
Connection_Aborted : constant Error_Code := impl-def-static-expression;
ECONNREFUSED,
Connection_Refused : constant Error_Code := impl-def-static-expression;
ECONNRESET,
Connection_Reset : constant Error_Code := impl-def-static-expression;
EDOM,
Domain_Error : constant Error_Code := impl-def-static-expression;
EHOSTDOWN,
Host_Down : constant Error_Code := impl-def-static-expression;
EHOSTUNREACH,
Host_Unreachable : constant Error_Code := impl-def-static-expression;
EAFNOSUPPORT,
Incorrect_Address_Type : constant Error_Code := impl-def-static-expression;
EISCONN,
Is_Already_Connected : constant Error_Code := impl-def-static-expression;
ENETDOWN,
Network_Down : constant Error_Code := impl-def-static-expression;
ENETRESET,
Network_Reset : constant Error_Code := impl-def-static-expression;
ENETUNREACH,
Network_Unreachable : constant Error_Code := impl-def-static-expression;
ENOBUFS,
No_Buffer_Space : constant Error_Code := impl-def-static-expression;
ENOTSOCK,
Not_A_Socket : constant Error_Code := impl-def-static-expression;
ENOTCONN,
Not_Connected : constant Error_Code := impl-def-static-expression;
EOPNOTSUPP,
Option_Not_Supported : constant Error_Code := impl-def-static-expression;
EPROTONOSUPPORT,
Protocol_Not_Supported : constant Error_Code := impl-def-static-expression;
ESOCKTNOSUPPORT,
Socket_Type_Not_Supported : constant Error_Code := impl-def-static-expression;
EWOULDBLOCK,
Would_Block : constant Error_Code := impl-def-static-expression;
EPROTOTYPE,
Wrong_Protocol_Type : constant Error_Code := impl-def-static-expression;

2.4 Package POSIX 47

c

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

-- XTI Error Codes
subtype XTI_Error_Code is Error_Code

range implementation-defined .. implementation-defined;
TBUFOVFLW,
Buffer_Not_Large_Enough : constant XTI_Error_Code := impl-def-static-expression;
TPROVMISMATCH,
Communications_Provider_Mismatch :

constant XTI_Error_Code := impl-def-static-expression;
TNOADDR,
Could_Not_Allocate_Address :

constant XTI_Error_Code := impl-def-static-expression;
TQFULL,
Endpoint_Queue_Full : constant XTI_Error_Code := impl-def-static-expression;
TBADQLEN,
Endpoint_Queue_Length_Is_Zero :

constant XTI_Error_Code := impl-def-static-expression;
TLOOK,
Event_Requires_Attention : constant XTI_Error_Code := impl-def-static-expression;
TFLOW,
Flow_Control_Error : constant XTI_Error_Code := impl-def-static-expression;
TBADDATA,
Illegal_Data_Range : constant XTI_Error_Code := impl-def-static-expression;
TBADADDR,
Incorrect_Address_Format : constant XTI_Error_Code := impl-def-static-expression;
TBADOPT,
Incorrect_Or_Illegal_Option :

constant XTI_Error_Code := impl-def-static-expression;
TRESQLEN,
Incorrect_Surrogate_Queue_Length :

constant XTI_Error_Code := impl-def-static-expression;
TACCES,
Insufficient_Permission : constant XTI_Error_Code := impl-def-static-expression;
TBADNAME,
Invalid_Communications_Provider :

constant XTI_Error_Code := impl-def-static-expression;
TBADF,
Invalid_File_Descriptor : constant XTI_Error_Code := impl-def-static-expression;
TBADFLAG,
Invalid_Flag : constant XTI_Error_Code := impl-def-static-expression;
TBADSEQ,
Invalid_Sequence_Number : constant XTI_Error_Code := impl-def-static-expression;
TNODATA,
No_Data_Available : constant XTI_Error_Code := impl-def-static-expression;
TNODIS,
No_Disconnect_Indication_On_Endpoint :

constant XTI_Error_Code := impl-def-static-expression;
TNOREL,
No_Orderly_Release_Indication_On_Endpoint :

constant XTI_Error_Code := impl-def-static-expression;
TNOUDERR,
No_Unit_Data_Error_On_Endpoint :

constant XTI_Error_Code := impl-def-static-expression;
TOUTSTATE,
Operation_Not_Valid_For_State :

constant XTI_Error_Code := impl-def-static-expression;
TINDOUT,
Outstanding_Connection_Indications :

constant XTI_Error_Code := impl-def-static-expression;

48 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

TPROTO,
Protocol_Error : constant XTI_Error_Code := impl-def-static-expression;
TSTATECHNG,
State_Change_In_Progress : constant XTI_Error_Code := impl-def-static-expression;
TRESADDR,
Surrogate_File_Descriptor_Mismatch :

constant XTI_Error_Code := impl-def-static-expression;
TNOSTRUCTYPE,
Unsupported_Object_Type_Requested :

constant XTI_Error_Code := impl-def-static-expression;
TADDRBUSY,
XTI_Address_In_Use : constant XTI_Error_Code := impl-def-static-expression;
TNOTSUPPORT,
XTI_Operation_Not_Supported :

constant XTI_Error_Code := impl-def-static-expression;
-- Get Socket Address Information Error Codes
subtype Addrinfo_Error_Code is Error_Code

range implementation-defined .. implementation-defined;
EAI_BADFLAGS,
Invalid_Flags : constant Addrinfo_Error_Code := impl-def-static-expression;
EAI_MEMORY,
Memory_Allocation_Failed :

constant Addrinfo_Error_Code := impl-def-static-expression;
EAI_FAIL,
Name_Failed : constant Addrinfo_Error_Code := impl-def-static-expression;
EAI_NONAME,
Name_Not_Known : constant Addrinfo_Error_Code := impl-def-static-expression;
EAI_NODATA,
No_Address_For_Name : constant Addrinfo_Error_Code := impl-def-static-expression;
EAI_SERVICE,
Service_Not_Supported :

constant Addrinfo_Error_Code := impl-def-static-expression;
EAI_AGAIN,
Try_Again : constant Addrinfo_Error_Code := impl-def-static-expression;
EAI_ADDRFAMILY,
Unknown_Address_Type : constant Addrinfo_Error_Code := impl-def-static-expression;
EAI_FAMILY,
Unknown_Protocol_Family :

constant Addrinfo_Error_Code := impl-def-static-expression;
EAI_SOCKTYPE,
Unknown_Socket_Type : constant Addrinfo_Error_Code := impl-def-static-expression; c
-- 2.4.7 System Identification
function System_Name return POSIX_String;
function Node_Name return POSIX_String;
function Release return POSIX_String;
function Version return POSIX_String;
function Machine return POSIX_String;
-- 2.4.8 Time Types
type Seconds is range implementation-defined;
-- must include at least �(231 � 1) :: (231 � 1)
type Minutes is range implementation-defined;
-- must include at least �(231 � 1) :: (231 � 1)
type Nanoseconds_Base is range implementation-defined;
-- must include at least �(231 � 1) :: (231 � 1)
subtype Nanoseconds is Nanoseconds_Base range 0 .. (10**9)-1;
type Timespec is private ;
function Get_Seconds (Time : Timespec) return Seconds;

2.4 Package POSIX 49

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

procedure Set_Seconds
(Time : in out Timespec;

S : in Seconds);
function Get_Nanoseconds (Time : Timespec) return Nanoseconds;
procedure Set_Nanoseconds

(Time : in out Timespec;
NS : in Nanoseconds);

procedure Split
(Time : in Timespec;

S : out Seconds;
NS : out Nanoseconds);

function To_Timespec
(S : Seconds;

NS : Nanoseconds)
return Timespec;

function "+" (Left, Right : Timespec) return Timespec;
function "+" (Left : Timespec; Right : Nanoseconds) return Timespec;
function "-" (Right : Timespec) return Timespec;
function "-" (Left, Right : Timespec) return Timespec;
function "-" (Left : Timespec; Right : Nanoseconds) return Timespec;
function "*" (Left : Timespec; Right : Integer) return Timespec;
function "*" (Left : Integer; Right : Timespec) return Timespec;
function "/" (Left : Timespec; Right : Integer) return Timespec;
function "/" (Left, Right : Timespec) return Integer;
function "<" (Left, Right : Timespec) return Boolean;
function "<="(Left, Right : Timespec) return Boolean;
function ">" (Left, Right : Timespec) return Boolean;
function ">="(Left, Right : Timespec) return Boolean;
function To_Duration (Time : Timespec) return Duration;
function To_Timespec (D : Duration) return Timespec;

private
implementation-defined

end POSIX;

If the Ada language implementation does not support Standard.Wide_String , the
operations on type Wide_String may be omitted from the package.

2.4.1 Constants and Static Subtypes

2.4.1.1 Version Identification

2.4.1.1.1 Synopsis

POSIX_Version : constant := 1997_XX;

POSIX_Ada_Version : constant := 1998_YY; c

2.4.1.1.2 Description

The constant POSIX_Version shall provide the year and month of the POSIX stan-
dard on which this standard is based. The constant POSIX_Ada_Version shall
provide the year and month of this standard.

2.4.1.2 Optional Facilities

The option subtypes declared in POSIX are obsolescent. They are only provided for
compatibility with POSIX.5. The description of implementation options is in 2.5. For

50 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

each of the option subtypes declared in the package POSIX, the requirements are the
same as on the declaration with the corresponding name in POSIX_Options .

2.4.1.3 Bytes and I/O Counts

2.4.1.3.1 Synopsis

Byte_Size : constant := implementation-defined-integer;
type IO_Count is optional parent type

range 0 .. implementation-defined;
subtype IO_Count_Maxima is IO_Count range 32767 .. IO_Count’Last;
type Octet is mod 2**8;
type Octet_Array is array (Positive range <>) of Octet;
function Host_To_Network_Byte_Order (Host_32 : Interfaces.Unsigned_32)

return Interfaces.Unsigned_32;
function Host_To_Network_Byte_Order (Host_16 : Interfaces.Unsigned_16)

return Interfaces.Unsigned_16;
function Network_To_Host_Byte_Order (Net_32 : Interfaces.Unsigned_32)

return Interfaces.Unsigned_32;
function Network_To_Host_Byte_Order (Net_16 : Interfaces.Unsigned_16)

return Interfaces.Unsigned_16; c

2.4.1.3.2 Description

The constant Byte_Size is the size, in bits, of one byte of data. (See 2.2.2.27.) A file
is viewed as a conceptual sequence of bytes, and a position in a file is specified by an
offset given as a count of bytes. In this respect the word byte is used here in the same
sense as in POSIX.1.

NOTE: A byte is likely to be eight bits, but this size is not a requirement.

The type Ada_Streams.Stream_Element_Array is used to represent a buffer that
may contain a block of data for an I/O operation.

NOTE: Because the type Ada_Streams.Stream_Element_Array is used for the low-level
I/O and message-passing operations, an application may derive types of the class Stream
and use the operations defined by this standard to implement the Read and Write operations
on the new stream types.

Instantiation of Unchecked_Conversion shall be supported for conversions, in both
directions, between the type Ada_Streams.Stream_Element_Array and all other
types.

The type IO_Count is used to specify a position in a regular file or a count of units
transferred by an I/O operation. An implementation may specify an optional parent
type for IO_Count . The maximum file length allowed on a file system shall be no less
than IO_Count_Maxima ’First and can be as large as IO_Count_Maxima ’Last .
The file system may limit the length of a file due to capacity limits.

The type Octet is used to specify a data item for use in network I/O operations that
require fixed 8-bit values. The type Octet_Array is used to specify a buffer that
may contain a block of these data objects to be used for a network I/O operation.

The functions Host_To_Network_Byte_Order and Network_To_Host_Byte_Order
shall convert 16-bit and 32-bit quantities between host byte order and network byte
order.

2.4 Package POSIX 51

c

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

NOTE: These functions may be required on some hosts to prepare buffers containing these
data types for network transmission.
Unlike common practice in C-language network interfaces, these functions are not required to
prepare Internet addresses and port values for network I/O operations. Any byte swapping
required for these types will be handled by the implementation of this binding. (See D.1.3.1.)

c

2.4.1.4 System Limits

The implementation limit constants and subtypes declared in POSIX are obsolescent.
They are only provided for compatibility with POSIX.5. The description of implemen-
tation limits is in 2.6. The requirements on the implementation limit constants and
subtypes declared in POSIX are the same as on the corresponding declarations in
POSIX_Limits , according to the correspondence given in Table 2.2.

Table 2.2 – Constant and Subtype Correspondences

In Package POSIX In Package POSIX_Limits

Portable_Argument_List_Maximum Portable_Argument_List_Maximum
Portable_Child_Processes_Maximum Portable_Child_Processes_Maximum
Portable_Filename_Limit_Maximum Portable_Filename_Maximum
Portable_Groups_Maximum Portable_Groups_Maximum
Portable_Input_Line_Limit_Maximum Portable_Input_Line_Maximum
Portable_Input_Queue_Limit_Maximum Portable_Input_Queue_Maximum
Portable_Link_Limit_Maximum Portable_Links_Maximum
Portable_Open_Files_Maximum Portable_Open_Files_Maximum
Portable_Pathname_Limit_Maximum Portable_Pathname_Maximum
Portable_Pipe_Limit_Maximum Portable_Pipe_Length_Maximum
Portable_Stream_Maximum Portable_Streams_Maximum
Portable_Time_Zone_String_Maximum Portable_Time_Zone_String_Maximum
Argument_List_Maxima Argument_List_Maxima
Child_Processes_Maxima Child_Processes_Maxima
Filename_Limit_Maxima Filename_Maxima
Groups_Maxima Groups_Maxima
Input_Line_Limit_Maxima Input_Line_Maxima
Input_Queue_Limit_Maxima Input_Queue_Maxima
Link_Limit_Maxima Links_Maxima
Open_Files_Maxima Open_Files_Maxima
Pathname_Limit_Maxima Pathname_Maxima
Pipe_Limit_Maxima Pipe_Length_Maxima
Stream_Maxima Streams_Maxima
Time_Zone_String_Maxima Time_Zone_String_Maxima

2.4.1.5 Blocking Behavior Values

2.4.1.5.1 Synopsis

type Blocking_Behavior is (Tasks, Program, Special);
subtype Text_IO_Blocking_Behavior is Blocking_Behavior

range implementation-defined;
IO_Blocking_Behavior :

constant Blocking_Behavior := implementation-defined;

52 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

File_Lock_Blocking_Behavior :
constant Blocking_Behavior := implementation-defined;

Wait_For_Child_Blocking_Behavior :
constant Blocking_Behavior := implementation-defined;

XTI_Blocking_Behavior :
constant Blocking_Behavior := implementation-defined;

Sockets_Blocking_Behavior :
constant Blocking_Behavior := implementation-defined; c

subtype Realtime_Blocking_Behavior is Blocking_Behavior

range implementation-defined;

2.4.1.5.2 Description

The Blocking_Behavior type is used to specify the blocking behavior of POSIX
operations. The values of this type are as follows:

Tasks

The blocking behavior is per task. If a task executes a blocking operation
and the operation blocks, the task does not hold any execution resources,
and therefore cannot prevent any other task from executing.

Program

The blocking behavior is per process. If a task executes a blocking opera-
tion and the operation blocks, the task continues to hold all the execution
resources and therefore prevents all the tasks in the POSIX process from
executing.

Special

The blocking behavior is neither per task nor per process. If a task executes
a blocking operation and the operation blocks, the task may continue to hold
some execution resource that may prevent some, but not necessarily all, of
the other tasks in the process from executing. The specific conditions under
which tasks other than the calling task are prevented from executing are
implementation defined.

NOTE: With any form of blocking behavior other than per task, there is danger of accidental
deadlock in which a blocked task is waiting for an action by another task, but is implicitly
preventing the other task from executing by holding needed execution resources.

If the underlying system supports multithreaded processes as defined in POSIX.1,
the blocking behavior of all operations defined by this standard shall be Tasks .

Otherwise, different classes of POSIX operations may have different blocking behav-
iors, subject to the following restrictions:

— Per-task blocking behavior is always required for
— All potentially blocking operations defined in the package POSIX_Mutexes .
— All potentially blocking operations defined in the package POSIX_Condi-

tion_Variables .

— For all other operations defined by this standard, blocking behavior shall also
be per task, except where this behavior is not feasible using the facilities of the
underlying system. The conformance document for each implementation shall
list any exceptions to this rule and the justification for the exception.

2.4 Package POSIX 53

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

The following constants and subtypes shall indicate the actual blocking behavior
of the particular implementation for operations where exceptions to the per task
blocking requirement are permitted. They can be used by an application to tailor its
execution based on the blocking behavior of specific operations.

Text_IO_Blocking_Behavior

Specifies that if the range of the subtype is Tasks .. Tasks , the blocking
behavior of Ada I/O operations shall be per task. If the range of the subtype
is Program .. Program , the blocking behavior of Ada I/O operations shall be
per process. If the range of the subtype is Tasks .. Program , the blocking
behavior of Ada I/O operations shall be selectable via the Form parameter.
(See 8.1.) If the range of the subtype includes Special , the blocking behav-
ior of Ada I/O operations is implementation defined.

IO_Blocking_Behavior

Specifies the blocking behavior of POSIX I/O operations that may block. (See
8.1, 6.1 and 6.3.)

File_Lock_Blocking_Behavior

Specifies the blocking behavior of the file locking operations. (See 6.2.)

Wait_For_Child_Blocking_Behavior

Specifies the blocking behavior of the wait for child termination operations.
(See 3.1.)

Realtime_Blocking_Behavior

Specifies the blocking behavior of the following realtime operations defined
by this standard:
— POSIX_Semaphores.Wait

— POSIX_Signals.Await_Signal

— POSIX_Signals.Await_Signal_Or_Timeout

— POSIX_Shared_Memory_Objects.Open_Shared_Memory

— POSIX_Shared_Memory_Objects.Open_Or_Create_Shared_Memory

— POSIX_Generic_Shared_Memory.Open_And_Map_Shared_Memory

— POSIX_ Generic_ Shared_ Memory. Open_ Or_ Create_ And_ Map_-
Shared_Memory

— POSIX_Message_Queues.Open

— POSIX_Message_Queues.Open_Or_Create

— POSIX_Message_Queues.Send

— POSIX_Message_Queues.Receive

— Generic_Message_Queues.Send

— Generic_Message_Queues.Receive

— POSIX_Asynchronous_IO.List_IO_Wait

— POSIX_Asynchronous_IO.Await_IO_Or_Timeout

— POSIX_Asynchronous_IO.Await_IO

XTI_Blocking_Behavior

Specifies the blocking behavior of the XTI DNI operations (see Section 17).

54 2 Terminology and General Requirements

c

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Sockets_Blocking_Behavior

Specifies the blocking behavior of the Sockets DNI operations (see Sec-
tion 18). c

NOTE: Realtime_Blocking_Behavior is a range, rather than a simple constant. Using a
range allows for the possibility that an implementation may have different blocking behavior
for different operations in the list above. However, the recommended implementation is that
the blocking behavior of all these operations be per to permit compile-time optimization.

2.4.1.6 Signal Masking for Interruptible Operations

2.4.1.6.1 Synopsis

type Signal_Masking is (No_Signals, RTS_Signals, All_Signals);

During some POSIX operations, it is desirable to block the receipt of certain classes
of signals. The type Signal_Masking specifies what class of signal is masked.

No_Signals

No additional signals are masked during the POSIX operation.

RTS_Signals

Only the signals reserved for the Ada language implementation are added
to the signal mask during the POSIX operation. (See 3.3.1.)

All_Signals

All signals that can be masked are masked during the POSIX operation.

2.4.2 POSIX Characters

2.4.2.1 Synopsis

type POSIX_Character is
(
-- ’ ’,’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,
-- ’A’,’B’,’C’,’D’,’E’,’F’,’G’,’H’,’I’,’J’,’K’,’L’,’M’,
-- ’N’,’O’,’P’,’Q’,’R’,’S’,’T’,’U’,’V’,’W’,’X’,’Y’,’Z’,
-- ’a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,’i’,’j’,’k’,’l’,’m’,
-- ’n’,’o’,’p’,’q’,’r’,’s’,’t’,’u’,’v’,’w’,’x’,’y’,’z’,
-- ’.’,’_’,’-’,’/’,’"’,’#’, ’&’, ’’’, ’(’, ’)’,
-- ’*’, ’+’, ’,’, ’:’, ’;’, ’<’, ’=’, ’>’, ’|’

other characters are implementation defined);

2.4.2.2 Description

The type POSIX_Character shall include an element for each possible bit represen-
tation of size POSIX_Character’Size .

It shall be possible to represent all data read from and written to files in POSIX.-
POSIX_Character s or concatenations of POSIX.POSIX_Character s.

The implementation shall provide correspondences between the standard Ada type
Character and and the underlying character set of the implementation, type
POSIX_Character . This correspondence shall have the following characteristics:

2.4 Package POSIX 55

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

(1) The standard Ada string types, Standard.Character , and Wide_Character
shall be as defined in the Ada RM f1g.

(2) A conforming application shall make no assumption about the ordering of the
enumeration and the size of the representation. Therefore, a conforming appli-
cation shall make no assumption that the results of executing "<" , "<=" , ">" ,
">=" , ’Pred , and Succ are preserved across conversions between the standard
Ada string types and POSIX_String .

(3) A core subset of Standard.Character shall be placed into an invertible charac-
ter mapping with the corresponding subset of POSIX_Character , so that char-
acters with the same enumeration literal are mapped to each other. The core
subset shall include the following characters:

— Digits:

0 1 2 3 4 5 6 7 8 9

— Uppercase letters:

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

— Lowercase letters:

a b c d e f g h i j k l m

n o p q r s t u v w x y z

— Special characters: space, ampersand (&), apostrophe (’), left parenthe-
sis ((), right parenthesis ()), star (*), plus (+), comma (,), hyphen (-),
period (.), slash (/), colon (:), semicolon (;), less than (<), equals (=),
greater than (>), underscore (_).

— Format effectors: horizontal tabulation, vertical tabulation, carriage re-
turn, line feed, form feed.

(4) All remaining characters of the type Standard.Character shall be mapped
to some subset of the remaining characters within POSIX_Character . This
standard does not require invertibility of this mapping.

(5) Any remaining characters of the type POSIX_Character would have no coun-
terpart in Standard.Character .

2.4.3 POSIX Strings

2.4.3.1 Synopsis

type POSIX_String is array (Positive range <>) of POSIX_Character;
function To_POSIX_String (Str : String) return POSIX_String;
function To_POSIX_String (Str : Wide_String) return POSIX_String;
function To_String (Str : POSIX_String) return String;
function To_Wide_String (Str : POSIX_String) return Wide_String;
function To_Stream_Element_Array (Buffer : POSIX_String)

return Ada_Streams.Stream_Element_Array;
function To_POSIX_String (Buffer : Ada_Streams.Stream_Element_Array)

return POSIX_String;
subtype Filename is POSIX_String;
subtype Pathname is POSIX_String;
function Is_Filename (Str : POSIX_String) return Boolean;
function Is_Pathname (Str : POSIX_String) return Boolean;
function Is_Portable_Filename (Str : POSIX_String) return Boolean;

function Is_Portable_Pathname (Str : POSIX_String) return Boolean;

56 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

2.4.3.2 Description

The type POSIX_String is an array of POSIX_Character . This type is used as the
argument to all POSIX procedures or functions that require a string.’ All values of
type POSIX_String returned by functions defined in this standard shall have the
attribute ’First = 1 unless otherwise noted.

The function To_POSIX_String taking arguments of type Stream_Element_Array
shall convert an Ada_Streams.Stream_Element_Array value to a POSIX_String
value. The function To_Stream_Element_Array shall convert a POSIX_String
value to a Ada_Streams.Stream_Element_Array value. These operations shall
obey the semantics of instantiations of Unchecked_Conversion , as defined in 13.9
J.1 of the Ada RM f1g.

The functions To_POSIX_String taking arguments of types String and Wide_-
String and the functions To_String , and To_Wide_String are used to convert
between the standard Ada string types and the POSIX_String type. All characters
in the core subset defined in 2.4.2 shall be convertible and their conversion shall be
invertible. The results of converting the other characters in the standard Ada char-
acter set is implementation defined. A character in one character set may translate
into a sequence of characters in the other character set. An implementation may
convert the string sequences back into the single character when doing the inverse
translation.

The significance of the constants Portable_ Pathname_ Limit_ Maximum and
Portable_Filename_Limit_Maximum and the subtypes Pathname_Limit_Maxima
and Filename_Limit_Maxima is explained for the corresponding declarations in the
package POSIX_Limits (2.6).

The function Is_Filename shall return the value True if the parameter has the
correct syntax (or form) to be a filename for this implementation. The function Is_-
Pathname shall return the value True if the parameter has the correct syntax (or
form) to be a pathname for this implementation. These functions shall check all con-
straints set on filename and pathname by the implementation that can be checked
without accessing the file system directly. None of the pathname components need
exist, and access rights are not checked. These functions shall not raise any excep-
tions.

The function Is_Portable_Filename shall return the value True if the parame-
ter has the correct syntax (or form) to be a portable filename. The function Is_-
Portable_Pathname shall return the value True if the parameter has the correct
syntax (or form) to be a portable pathname. These functions shall not raise any ex-
ceptions, and they shall check all constraints on portable filenames and pathnames.
The filename need not exist, and access rights are not checked.

2.4.3.3 Error Handling

Constraint_Error shall be raised by the string conversion functions To_POSIX_-
String , To_String , and To_Wide_String if the conversion is not possible.

No exceptions shall be raised by Is_Filename , Is_Pathname , Is_Portable_-
Filename , and Is_Portable_Pathname .

2.4 Package POSIX 57

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

2.4.4 String Lists

2.4.4.1 Synopsis

type POSIX_String_List is limited private ;
Empty_String_List : constant POSIX_String_List;
procedure Make_Empty (List : in out POSIX_String_List);
procedure Append

(List : in out POSIX_String_List;
Str : in POSIX_String);

generic
with procedure Action

(Item : in POSIX_String;
Quit : in out Boolean);

procedure For_Every_Item (List : in POSIX_String_List);
function Length (List : POSIX_String_List) return Natural;
function Value

(List : POSIX_String_List;
Index : Positive)

return POSIX_String;

2.4.4.2 Description

The type POSIX_String_List is used to process arbitrary lists of POSIX_String s.
The value Empty_String_List represents a POSIX_String_List that contains no
POSIX_String s and is used as a parameter to procedures where an empty POSIX_-
String_List is needed. All objects of type POSIX_String_List shall have the
initial value Empty_String_List .

The procedure Make_Empty shall remove any POSIX_String values on the POSIX_-
String_List value supplied via the parameter, free any allocated storage associated
with the supplied POSIX_String_List , and then set the supplied POSIX_String_-
List to the value Empty_String_List .

The procedure Append shall append the POSIX_String value supplied via Str
to the end of the POSIX_String_List supplied via List . The POSIX_String
value supplied via Str shall be copied by the implementation so that the supplied
POSIX_String value can be modified without changing the value associated with
the POSIX_String_List . The original bounds of the POSIX_String value supplied
via Str shall be preserved.

The application program instantiates the generic procedure For_Every_Item , pro-
viding an actual procedure for the generic formal procedure Action . When invoked,
the newly created instance of For_Every_Item shall invoke the actual procedure
supplied for Action once for every POSIX_String value (as the parameter Str)
in the POSIX_String_List value supplied via List in the invocation of For_Ev-
ery_Item . The original bounds of the POSIX_String values shall be preserved.
The actual procedure supplied for Action shall be able to force termination of the
instance of For_Every_Item by setting the value of Quit to True . Prior to calling
Action , For_Every_Item shall set Quit to False . If Action modifies List (as a
side effect) the effect of calling the instantiation of For_Every_Item is undefined.
Any exceptions raised by the actual procedure supplied for Action shall terminate
the iteration of the instantiation of For_Every_Item and shall propagate to the
caller of the instantiation.

58 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

The function Length shall return the number of (null and nonnull) POSIX_String
values in the POSIX_String_List .

NOTE: Length(S) = 0 if and only if S = Empty_String_List .

The function Value shall return the value of type POSIX_String in the Index po-
sition in the list. The original bounds of the POSIX_String shall be preserved.
Constraint_Error shall be raised if Index is greater than the length of the list.

2.4.4.3 Error Handling

Constraint_Error shall be raised by an invocation of the Value function if the
parameter Index has a value greater than the list length.

No exceptions are specified by this standard for Make_Empty , Append , For_Every_-
Item , or Length .

2.4.5 Option Sets

2.4.5.1 Synopsis

type Option_Set is private ;
function Empty_Set return Option_Set;
function "+" (L, R : Option_Set) return Option_Set;
function "-" (L, R : Option_Set) return Option_Set;
function "<" (Left, Right : Option_Set) return Boolean;
function "<="(Left, Right : Option_Set) return Boolean;
function ">" (Left, Right : Option_Set) return Boolean;
function ">="(Left, Right : Option_Set) return Boolean;
Option_1 : constant Option_Set;
Option_2 : constant Option_Set;
Option_3 : constant Option_Set;
Option_4 : constant Option_Set;
Option_5 : constant Option_Set;
Option_6 : constant Option_Set;
Option_7 : constant Option_Set;
Option_8 : constant Option_Set;
Option_9 : constant Option_Set;
Option_10 : constant Option_Set;
Option_11 : constant Option_Set;
Option_12 : constant Option_Set;
Option_13 : constant Option_Set;
Option_14 : constant Option_Set;
Option_15 : constant Option_Set;
Option_16 : constant Option_Set;
Option_17 : constant Option_Set;
Option_18 : constant Option_Set;
Option_19 : constant Option_Set;
Option_20 : constant Option_Set;
Option_21 : constant Option_Set;
Option_22 : constant Option_Set;
Option_23 : constant Option_Set;
Option_24 : constant Option_Set;
Option_25 : constant Option_Set;
Option_26 : constant Option_Set;
Option_27 : constant Option_Set;
Option_28 : constant Option_Set;
Option_29 : constant Option_Set;
Option_30 : constant Option_Set;

Option_31 : constant Option_Set;

2.4 Package POSIX 59

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

2.4.5.2 Description

The type Option_Set shall be used to represent sets of options. All objects of this
type shall have as their initial value the value returned by Empty_Set . The function
Empty_Set shall return a value of type Option_Set with no options in it. The
operation "+" shall return an option set containing exactly the set of options that
are members of one or both of the two operand sets, i.e., the union operation on
option sets. The binary operation "-" shall return the option set whose members are
the options that are members of the left-hand operand set and are not members of
the right-hand operand set.

An implementation is permitted to add declarations to the POSIX package for addi-
tional deferred constants of the Option_Set type, provided the names are of the form
Option_N where N is an unsigned integer literal, and the range of N is contiguous
and includes 1..31 , and all the values of the constants are distinct.

Deferred constants of the Option_Set type are also defined. These constants shall
each denote a unique set containing a single option. They are provided for use by
implementations in defining constants for singleton sets of options, of types derived
from Option_Set .

Operations on the Option_Set type are specified to allow comparison of two option
sets. If Left and Right are option sets, the operations have the meanings shown in
Table 2.3.

Table 2.3 – Option Set Comparisons

Relation Meaning

Left <= Right Left is a subset of Right
Left < Right Left is a proper subset of Right
Left >= Right Right is a subset of Left
Left > Right Right is a proper subset of Left

2.4.5.3 Error Handling

No exceptions shall be raised by these operations.

2.4.6 Error Codes and Exceptions

2.4.6.1 Synopsis

POSIX_Error : exception ;
type Error_Code is range implementation-defined;
function Get_Error_Code return Error_Code;
procedure Set_Error_Code (Error : in Error_Code);
function Is_POSIX_Error (Error : Error_Code) return Boolean;
function Image (Error : Error_Code) return String;
No_Error : constant Error_Code := 0;
E2BIG,
Argument_List_Too_Long : constant Error_Code := impl-def-static-expression;
EFAULT,
Bad_Address : constant Error_Code := impl-def-static-expression;
EBADF,
Bad_File_Descriptor : constant Error_Code := impl-def-static-expression;

60 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

EBADMSG,
Bad_Message : constant Error_Code := impl-def-static-expression;
EPIPE,
Broken_Pipe : constant Error_Code := impl-def-static-expression;
ENOTEMPTY,
Directory_Not_Empty : constant Error_Code := impl-def-static-expression;
ENOEXEC,
Exec_Format_Error : constant Error_Code := impl-def-static-expression;
EEXIST,
File_Exists : constant Error_Code := impl-def-static-expression;
EFBIG,
File_Too_Large : constant Error_Code := impl-def-static-expression;
ENAMETOOLONG,
Filename_Too_Long : constant Error_Code := impl-def-static-expression;
EXDEV,
Improper_Link : constant Error_Code := impl-def-static-expression;
ENOTTY,
Inappropriate_IO_Control_Operation :

constant Error_Code := impl-def-static-expression;
EIO,
Input_Output_Error : constant Error_Code := impl-def-static-expression;
EINTR,
Interrupted_Operation : constant Error_Code := impl-def-static-expression;
EINVAL,
Invalid_Argument : constant Error_Code := impl-def-static-expression;
ESPIPE,
Invalid_Seek : constant Error_Code := impl-def-static-expression;
EISDIR,
Is_A_Directory : constant Error_Code := impl-def-static-expression;
EMSGSIZE,
Message_Too_Long : constant Error_Code := impl-def-static-expression;
ECHILD,
No_Child_Process : constant Error_Code := impl-def-static-expression;
ENOLCK,
No_Locks_Available : constant Error_Code := impl-def-static-expression;
ENOSPC,
No_Space_Left_On_Device : constant Error_Code := impl-def-static-expression;
ENODEV,
No_Such_Operation_On_Device :

constant Error_Code := impl-def-static-expression;
ENXIO,
No_Such_Device_Or_Address :

constant Error_Code := impl-def-static-expression;
ENOENT,
No_Such_File_Or_Directory :

constant Error_Code := impl-def-static-expression;
ESRCH,
No_Such_Process : constant Error_Code := impl-def-static-expression;
ENOTDIR,
Not_A_Directory : constant Error_Code := impl-def-static-expression;
ENOMEM,
Not_Enough_Space : constant Error_Code := impl-def-static-expression;
ECANCELED,
Operation_Canceled : constant Error_Code := impl-def-static-expression;
EINPROGRESS,
Operation_In_Progress : constant Error_Code := impl-def-static-expression;
ENOSYS,
Operation_Not_Implemented : constant Error_Code := impl-def-static-expression;
EPERM,
Operation_Not_Permitted : constant Error_Code := impl-def-static-expression;

2.4 Package POSIX 61

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

ENOTSUP,
Operation_Not_Supported : constant Error_Code := impl-def-static-expression;
EACCES,
Permission_Denied : constant Error_Code := impl-def-static-expression;
EROFS,
Read_Only_File_System : constant Error_Code := impl-def-static-expression;
EBUSY,
Resource_Busy : constant Error_Code := impl-def-static-expression;
EDEADLK,
Resource_Deadlock_Avoided : constant Error_Code := impl-def-static-expression;
EAGAIN,
Resource_Temporarily_Unavailable :

constant Error_Code := impl-def-static-expression;
ETIMEDOUT,
Timed_Out : constant Error_Code := impl-def-static-expression;
EMLINK,
Too_Many_Links : constant Error_Code := impl-def-static-expression;
EMFILE,
Too_Many_Open_Files : constant Error_Code := impl-def-static-expression;
ENFILE,
Too_Many_Open_Files_In_System :

constant Error_Code := impl-def-static-expression;
-- Socket Error Codes
EADDRINUSE,
Address_In_Use : constant Error_Code := impl-def-static-expression;
EADDRNOTAVAIL,
Address_Not_Available : constant Error_Code := impl-def-static-expression;
EALREADY,
Already_Awaiting_Connection :

constant Error_Code := impl-def-static-expression;
ECONNABORTED,
Connection_Aborted : constant Error_Code := impl-def-static-expression;
ECONNREFUSED,
Connection_Refused : constant Error_Code := impl-def-static-expression;
ECONNRESET,
Connection_Reset : constant Error_Code := impl-def-static-expression;
EDOM,
Domain_Error : constant Error_Code := impl-def-static-expression;
EHOSTDOWN,
Host_Down : constant Error_Code := impl-def-static-expression;
EHOSTUNREACH,
Host_Unreachable : constant Error_Code := impl-def-static-expression;
EAFNOSUPPORT,
Incorrect_Address_Type : constant Error_Code := impl-def-static-expression;
EISCONN,
Is_Already_Connected : constant Error_Code := impl-def-static-expression;
ENETDOWN,
Network_Down : constant Error_Code := impl-def-static-expression;
ENETRESET,
Network_Reset : constant Error_Code := impl-def-static-expression;
ENETUNREACH,
Network_Unreachable : constant Error_Code := impl-def-static-expression;
ENOBUFS,
No_Buffer_Space : constant Error_Code := impl-def-static-expression;
ENOTSOCK,
Not_A_Socket : constant Error_Code := impl-def-static-expression;
ENOTCONN,
Not_Connected : constant Error_Code := impl-def-static-expression;
EOPNOTSUPP,
Option_Not_Supported : constant Error_Code := impl-def-static-expression;

62 2 Terminology and General Requirements

c

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

EPROTONOSUPPORT,
Protocol_Not_Supported : constant Error_Code := impl-def-static-expression;
ESOCKTNOSUPPORT,
Socket_Type_Not_Supported : constant Error_Code := impl-def-static-expression;
EWOULDBLOCK,
Would_Block : constant Error_Code := impl-def-static-expression;
EPROTOTYPE,
Wrong_Protocol_Type : constant Error_Code := impl-def-static-expression;
-- XTI Error Codes
subtype XTI_Error_Code is Error_Code

range implementation-defined .. implementation-defined;
TBUFOVFLW,
Buffer_Not_Large_Enough : constant XTI_Error_Code := impl-def-static-expression;
TPROVMISMATCH,
Communications_Provider_Mismatch :

constant XTI_Error_Code := impl-def-static-expression;
TNOADDR,
Could_Not_Allocate_Address :

constant XTI_Error_Code := impl-def-static-expression;
TQFULL,
Endpoint_Queue_Full : constant XTI_Error_Code := impl-def-static-expression;
TBADQLEN,
Endpoint_Queue_Length_Is_Zero :

constant XTI_Error_Code := impl-def-static-expression;
TLOOK,
Event_Requires_Attention : constant XTI_Error_Code := impl-def-static-expression;
TFLOW,
Flow_Control_Error : constant XTI_Error_Code := impl-def-static-expression;
TBADDATA,
Illegal_Data_Range : constant XTI_Error_Code := impl-def-static-expression;
TBADADDR,
Incorrect_Address_Format : constant XTI_Error_Code := impl-def-static-expression;
TBADOPT,
Incorrect_Or_Illegal_Option :

constant XTI_Error_Code := impl-def-static-expression;
TRESQLEN,
Incorrect_Surrogate_Queue_Length :

constant XTI_Error_Code := impl-def-static-expression;
TACCES,
Insufficient_Permission : constant XTI_Error_Code := impl-def-static-expression;
TBADNAME,
Invalid_Communications_Provider :

constant XTI_Error_Code := impl-def-static-expression;
TBADF,
Invalid_File_Descriptor : constant XTI_Error_Code := impl-def-static-expression;
TBADFLAG,
Invalid_Flag : constant XTI_Error_Code := impl-def-static-expression;
TBADSEQ,
Invalid_Sequence_Number : constant XTI_Error_Code := impl-def-static-expression;
TNODATA,
No_Data_Available : constant XTI_Error_Code := impl-def-static-expression;
TNODIS,
No_Disconnect_Indication_On_Endpoint :

constant XTI_Error_Code := impl-def-static-expression;
TNOREL,
No_Orderly_Release_Indication_On_Endpoint :

constant XTI_Error_Code := impl-def-static-expression;
TNOUDERR,
No_Unit_Data_Error_On_Endpoint :

constant XTI_Error_Code := impl-def-static-expression;

2.4 Package POSIX 63

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

TOUTSTATE,
Operation_Not_Valid_For_State :

constant XTI_Error_Code := impl-def-static-expression;
TINDOUT,
Outstanding_Connection_Indications :

constant XTI_Error_Code := impl-def-static-expression;
TPROTO,
Protocol_Error : constant XTI_Error_Code := impl-def-static-expression;
TSTATECHNG,
State_Change_In_Progress : constant XTI_Error_Code := impl-def-static-expression;
TRESADDR,
Surrogate_File_Descriptor_Mismatch :

constant XTI_Error_Code := impl-def-static-expression;
TNOSTRUCTYPE,
Unsupported_Object_Type_Requested :

constant XTI_Error_Code := impl-def-static-expression;
TADDRBUSY,
XTI_Address_In_Use : constant XTI_Error_Code := impl-def-static-expression;
TNOTSUPPORT,
XTI_Operation_Not_Supported :

constant XTI_Error_Code := impl-def-static-expression;
-- Get Socket Address Information Error Codes
subtype Addrinfo_Error_Code is Error_Code

range implementation-defined .. implementation-defined;
EAI_BADFLAGS,
Invalid_Flags : constant Addrinfo_Error_Code := impl-def-static-expression;
EAI_MEMORY,
Memory_Allocation_Failed :

constant Addrinfo_Error_Code := impl-def-static-expression;
EAI_FAIL,
Name_Failed : constant Addrinfo_Error_Code := impl-def-static-expression;
EAI_NONAME,
Name_Not_Known : constant Addrinfo_Error_Code := impl-def-static-expression;
EAI_NODATA,
No_Address_For_Name : constant Addrinfo_Error_Code := impl-def-static-expression;
EAI_SERVICE,
Service_Not_Supported :

constant Addrinfo_Error_Code := impl-def-static-expression;
EAI_AGAIN,
Try_Again : constant Addrinfo_Error_Code := impl-def-static-expression;
EAI_ADDRFAMILY,
Unknown_Address_Type : constant Addrinfo_Error_Code := impl-def-static-expression;
EAI_FAMILY,
Unknown_Protocol_Family :

constant Addrinfo_Error_Code := impl-def-static-expression;
EAI_SOCKTYPE,
Unknown_Socket_Type : constant Addrinfo_Error_Code := impl-def-static-expression; c

2.4.6.2 Description

Most functions and procedures raise the exception POSIX_Error when an error or
exceptional condition occurs during the processing of the call. The Error Code of the
affected task shall be set when this exception is raised. If more than one error occurs
in the processing, this standard does not define in what order the errors are detected;
therefore, any one of the possible error codes may be set. If the exception is not
raised, the current Error Code shall be unchanged for the current task.

Implementations may support additional error codes not named in this subclause,
may set the Error Code to values named in this subclause under circumstances other

64 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

than those described in this subclause, or may contain extensions or limitations that
prevent some errors from occurring. The error handling subclause in each package
description specifies which error conditions shall be detected by all implementations
and which may be optionally detected by an implementation. Each implementation
shall document, in the conformance document, situations in which each of the op-
tional conditions is detected. If no error condition is detected, the associated action
requested shall be successful.

Implementations may generate the error codes named in this subclause under cir-
cumstances other than those described if and only if all those error conditions can
always be treated identically to the error conditions as described in this subclause.
Implementations may support additional error codes not listed in this subclause, but
they shall not generate a different error code than one required by this subclause for
an error condition described in this subclause.

The function Get_Error_Code shall return the current Error Code associated with
the most recent POSIX operation executed in the context of the calling task. If the
Error Code for the calling task has not been set, the value returned is undefined.

The procedure Set_Error_Code shall set the Error Code attribute of the calling task
to the value specified.

The function Is_POSIX_Error shall return True if the parameter Error specifies is
an error code defined by this standard. For all other values, Is_POSIX_Error shall
return False .

The function Image shall return a string identifying the error code specified by the
parameter Error . If Error is one of the error codes defined by this standard, the
value returned by Image shall be the second of the two constant identifiers specified
in 2.4.1 for the error code, in uppercase. Otherwise, the value returned by Image is
implementation defined, subject to the requirement that the value returned shall be
distinct for each error code used by the implementation.

If the implementation supports package Ada.Exceptions , as defined in 11.4.1 of the
Ada RM f1g and if the function Ada.Exceptions.Exception_Message is called
for an occurrence of POSIX_Error raised with a given error code value by the im-
plementation of this standard, the string returned by Exception_Message shall be
the same as the value returned by Image for that error code value.

The subtype XTI_Error_Code shall be defined to provide discrete Error_Code
ranges for the XTI Detailed Network Interface optional services. The subtype Ad-
drinfo_Error_Code shall be defined to provide discrete Error_Code ranges for the
Sockets Detailed Network Interface with the Network Management optional services (i.e.,
Get_Socket_Address_Info). The implementation shall ensure that the ranges of
these subtypes of Error_Code do not overlap. c

The following descriptions identify the possible errors that can cause the exception
POSIX_Error to be raised and the Error Code attribute of a task to be set by opera-
tions defined in this standard. These general descriptions are more precisely defined
in the error handling subclauses of the packages that raise them.

No_Error

This code is not set by any POSIX operation. It is returned by some POSIX

2.4 Package POSIX 65

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

operations when status is requested and no error has occurred. It shall have
the value zero.

Address_In_Use

The requested communications address is in use.

Address_Not_Available

The specified socket address is not available from the local machine.

Already_Awaiting_Connection

The socket is nonblocking and a previous connection attempt has not yet
been completed. c

Argument_List_Too_Long

The sum of the number of POSIX_Character s used by the argument list
and environment list of the new process image was greater than Argument
List Maximum.

Bad_File_Descriptor

A file descriptor argument was out of range or referred to no open file, or
a read (write) request was made to a file that was only open for writing
(reading).

Bad_Address

The system detected an invalid address in attempting to use an argument
of a call. The reliable detection of this error is implementation defined; how-
ever, implementations that do detect this condition shall use this value.
NOTE: This error is not specified for any of the operations defined by this standard.
If the implementation uses this error code, the likely cause is an uninitialized pa-
rameter.

Bad_Message

The implementation has detected a corrupted message.

Broken_Pipe

A write was attempted on a pipe or FIFO for which there was no process to
read the data.

Buffer_Not_Large_Enough

For XTI, the amount of data to be returned in one of the buffers is greater
than the maximum length specified. If Endpoint is a passive endpoint with
data count larger than one, it remains in the Incoming_Connect state;
otherwise, the state of the endpoint is set to Idle .

Communications_Provider_Mismatch

For the XTI Accept_Connection procedure, indicates that Current_-
Endpoint and Responding_Endpoint do not specify the same transport
provider.

Connection_Aborted

The socket connection was aborted locally.

Connection_Refused

The attempt to connect a socket was forcefully refused.

66 2 Terminology and General Requirements

c

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Connection_Reset

The peer has aborted the socket connection.

Could_Not_Allocate_Address

An XTI address could not be allocated by the transport provider. c

Directory_Not_Empty

A directory with entries other than dot and dot-dot was supplied when an
empty directory was expected.

Domain_Error

A time specification is too large for the socket. This error code is returned
only on calls to Set_Socket_Receive_Timeout and Set_Socket_Send_-
Timeout .

Endpoint_Queue_Full

The maximum number of outstanding XTI connection indications has been
reached.

Endpoint_Queue_Length_Is_Zero

The XTI Endpoint_Queue_Length was zero when it was expected to be
greater than zero.

Event_Requires_Attention

An indication that an asynchronous event is outstanding on the XTI trans-
port endpoint specified by Endpoint . (The application can call Look to re-
trieve the event.) c

Exec_Format_Error

A request was made to execute a file that, although it had the appropri-
ate permissions, was not in the format required by the implementation for
executable files.

File_Exists

An existing file was specified in an inappropriate context.

File_Too_Large

The size of a file would exceed an implementation-defined maximum file
size.

Filename_Too_Long

The length in POSIX characters of the specified pathname exceeds Pathname
Limit; or the length in POSIX characters of a component of the specified path-
name is greater than Filename Maximum, and the Filename Truncation option is
not supported for the pathname prefix of that component. (See 5.4.2.)

Flow_Control_Error

POSIX_IO.Non_Blocking was set, but the flow control mechanism pre-
vented the transport provider from accepting the XTI function at this time.

Host_Down

The destination host for the socket has been determined to be down or dis-
connected.

Host_Unreachable

The host specified in the socket address is not reachable.

2.4 Package POSIX 67

c

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Illegal_Data_Range

The application attempted to send an illegal amount of XTI data. c

Improper_Link

A link to a file on another file system was attempted.

Inappropriate_IO_Control_Operation

A control function was attempted for a file or special file for which the oper-
ation was inappropriate.

Incorrect_Address_Type

The type of the designated address object is incorrect for this socket.

Incorrect_Address_Format

The XTI address specified by the application contained an incorrect protocol
address, or the protocol address was in an incorrect format.

Incorrect_Or_Illegal_Option

The XTI option specified by the application contained incorrect information,
or the information was in an incorrect format.

Incorrect_Surrogate_Queue_Length

An attempt was made to accept an XTI connection on Responding_End-
point (where Responding_Endpoint does not equal Current_Endpoint)
with an Endpoint_Queue_Length greater than zero. c

Input_Output_Error

Some physical input or output error occurred. This error may be reported on
a subsequent operation on the same file descriptor. Any other error-causing
operation on the same file descriptor may cause the Input_Output_Error
to be lost.

Insufficient_Permission

Indicates that either the application does not have the permission to accept
the XTI connection on the responding transport endpoint, to use a specified
option, or to use the specified address. c

Interrupted_Operation

An asynchronous signal was caught by the task during the execution of an
interruptible function. If the signal handler returns normally, then the in-
terrupted function call may raise the POSIX_Error exception with this error
code.

Invalid_Argument

Some invalid argument was supplied.

Invalid_Communications_Provider

The application specified a bad name for the XTI transport provider.

Invalid_File_Descriptor

For XTI, a bad file descriptor was specified in either Current_Endpoint
or Responding_Endpoint , or the application is illegally accepting a con-
nection on the same transport endpoint on which the connection indication
arrived. This error may be returned when the Endpoint has been previ-
ously closed or an erroneous number may have been passed to the call.

68 2 Terminology and General Requirements

c

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Invalid_Flag

The application specified an invalid XTI flag.

Invalid_Flags

The application attempted to set an invalid value for the Flags attribute of
an Socket_Address_Info object (see 18.4.7.2) c.

Invalid_Seek

A Seek operation was issued on a pipe or FIFO.

Invalid_Sequence_Number

The XTI application specified an incorrect sequence number or in the case
of a connect request being rejected, an invalid Call . parameter. Some out-
bound data queued for this endpoint may be lost c.

Is_A_Directory

An attempt was made to open a directory with write mode specified.

Is_Already_Connected

The socket is already connected.

Memory_Allocation_Failed

There was a memory allocation failure when trying to allocate storage for
the return value of a function (see 18.4.7.2).

Message_Too_Long

The message buffer length is inappropriate, or a socket requires that the
message be sent atomically and the size of the message makes this impos-
sible, or the number of segments in a multisegment message exceeds the
system limit.

Name_Failed

A nonrecoverable error occurred when attempting to resolve the name (see
18.4.7.2).

Name_Not_Known

The name is not known. Neither name nor service were passed, at least one
which must be passed (see 18.4.7.2).

Network_Down

The local network connection is not operational.

Network_Reset

The connection was aborted by the network.

Network_Unreachable

The network is not reachable from this host.

No_Address_For_Name

A valid name was passed, but no address was associated with the name (see
18.4.7.2).

No_Buffer_Space

Insufficient resources were available in the system to perform the operation. c

2.4 Package POSIX 69

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

No_Child_Process

A call to a Wait_For_Child_Process procedure was executed by a pro-
cess that had no existing child processes or whose status had not yet been
reported.

No_Data_Available

In nonblocking mode, no XTI connection indications are present; or data
are not available; or no connection confirmations have arrived yet; or the
procedure has successfully issued a connect, but did not wait for a response
from the application.

No_Disconnect_Indication_On_Endpoint

No disconnect indications are found on the XTI transport endpoint specified
by Endpoint . c

No_Locks_Available

A system-imposed limit on the number of simultaneous file and record locks
was reached, and no more were available at that time.

No_Orderly_Release_Indication_On_Endpoint

No orderly release indication is outstanding on the XTI transport endpoint
specified by Endpoint . c

No_Space_Left_On_Device

During a write on a regular file or when extending a directory, no free space
was left on the device.

No_Such_Operation_On_Device

An attempt was made to apply an inappropriate operation on a device, for
example, trying to read a write-only device such as a printer.

No_Such_Device_Or_Address

Input or output on a special file referred to a device that did not exist or
made a request beyond the limits of the device. This error may also occur
when, for example, a tape drive is not online or a removable disk is not
loaded on a drive.

No_Such_File_Or_Directory

A component of a specified pathname did not exist, or the pathname was an
empty string.

No_Such_Process

No process could be found corresponding to that specified by the given pro-
cess ID.

No_Unit_Data_Error_On_Endpoint

No unit data error indication currently exists on the specified XTI commu-
nications endpoint. c

Not_A_Directory

A component of the specified pathname existed, but it was not a directory
when a directory was expected.

Not_A_Socket

The file descriptor does not refer to a socket.

70 2 Terminology and General Requirements

c

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Not_Connected

The socket is not connected or otherwise has not had the peer prespecified. c

Not_Enough_Space

The new process image required more memory than was allowed by the
hardware or by system-imposed memory management constraints.

Operation_Canceled

The associated asynchronous operation was canceled before completion.

Operation_In_Progress

An asynchronous operation has not yet completed; or a socket is nonblocking
and the connection cannot be completed immediately. c

Operation_Not_Implemented

An attempt was made to use a subprogram that is not available in this im-
plementation.

Operation_Not_Permitted

An attempt was made to perform an operation limited to processes with
appropriate privileges or to the owner of a file or other resource.

Operation_Not_Supported

The implementation does not support this feature of the standard.

Operation_Not_Valid_For_State

The procedure was called with the transport provider in the wrong XTI state
(bad sequence).

Option_Not_Supported

The socket type specified does not support one or more of the options se-
lected.

Outstanding_Connection_Indications

An indication that there are outstanding XTI connection indications on the
endpoint when the application called Accept_Connection with Current_-
Endpoint equal to Responding_Endpoint . (The application must either
first accept the other connections on a different endpoint by using Accept_-
Connection or reject them with Send_Disconnect_Request .) c

Permission_Denied

An attempt was made to access a file in a way forbidden by its file access
permissions.

Protocol_Error

An XTI communication problem has occurred and there is no other appro-
priate error number.

Protocol_Not_Supported

The protocol family is not supported, or the type or specified protocol is not
supported within the protocol family. c

Read_Only_File_System

An attempt was made to modify a file or directory on a file system that was
read-only at that time.

2.4 Package POSIX 71

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Resource_Busy

An attempt was made to use a system resource that was not available at the
time because it was being used by a process in a manner that would have
conflicted with the request being made by this process.

Resource_Deadlock_Avoided

An attempt was made to lock a system resource that would have resulted in
a deadlock situation.

Resource_Temporarily_Unavailable

A temporary condition caused failure of the call, and later calls to the same
routine may complete normally.

Service_Not_Supported

The service passed was not recognized for the specified socket type (see
18.4.7.2).

Socket_Type_Not_Supported

Socket type not supported.

State_Change_In_Progress

The XTI transport provider is undergoing a state change.

Surrogate_File_Descriptor_Mismatch

The XTI transport provider only allows Current_Endpoint and Respond-
ing_Endpoint to be bound to the same address. c

Timed_Out

The operation timed out without completing normally.
NOTE: Most operations with timeouts return error code Resource_Temporarily_-
Unavailable .

Too_Many_Links

An attempt was made to have the link count of a single file exceed the value
returned by function POSIX_Configurable_File_Limits.Links_Maxi-
mumfor that file.

Too_Many_Open_Files

An attempt was made to open more file descriptors than the limit returned
by POSIX_Configurable_System_Limits.Open_Files_Maximum .

Too_Many_Open_Files_In_System

Too many files are currently open in the system. The system reached its pre-
defined limit for simultaneously open files and temporarily could not accept
requests to open another one.

Try_Again

A temporary and possibly transient error occurred, such as a failure of a
server to respond (see 18.4.7.2).

Unknown_Address_Type

The address found for the name was of an unsupported type.

Unknown_Protocol_Family

The protocol family was not recognized.

72 2 Terminology and General Requirements

c

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Unknown_Socket_Type

The intended socket type was not recognized by Get_Socket_Address_-
Info .

Unsupported_Object_Type_Requested

An unsupported XTI object was requested, possibly a request for an ob-
ject which is inconsistent with the transport provider type specified, i.e.,
connection-oriented or connectionless.

Would_Block

The socket is marked as nonblocking and no connections are present to be
accepted; or Process_OOB_Data was selected and the implementation does
not support blocking to await out-of-band-data.

Wrong_Protocol_Type

Protocol has wrong type for socket. For example, a socket of one type at-
tempted to connect to a socket of a different type.

XTI_Address_In_Use

The requested XTI communications address is in use.

XTI_Operation_Not_Supported

The transport provider does not support this XTI function. c

2.4.6.3 Error Handling

No exceptions are specified by this standard for Get_Error_Code , Set_Error_Code ,
Is_POSIX_Error , and Image .

2.4.7 System Identification

2.4.7.1 Synopsis

function System_Name return POSIX_String;
function Node_Name return POSIX_String;
function Release return POSIX_String;
function Version return POSIX_String;

function Machine return POSIX_String;

2.4.7.2 Description

The function System_Name shall return the name of this implementation of the op-
erating system. The function Node_Nameshall return the name of this node within
an implementation-specified communications network. The function Release shall
return the current release level of this implementation. The function Version shall
return the current version level of this release. The function Machine shall return
the name of the hardware type on which the system is running.

2.4.7.3 Error Handling

No exceptions are specified by this standard for System_Name, Node_Name, Release ,
Version , and Machine .

2.4 Package POSIX 73

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

2.4.8 Time Types

2.4.8.1 Synopsis

type Seconds is range implementation-defined;
-- must include at least �(231 � 1) :: (231 � 1)
type Minutes is range implementation-defined;
-- must include at least �(231 � 1) :: (231 � 1)
type Nanoseconds_Base is range implementation-defined;
-- must include at least �(231 � 1) :: (231 � 1)
subtype Nanoseconds is Nanoseconds_Base range 0 .. (10**9)-1;
type Timespec is private ;
function Get_Seconds (Time : Timespec) return Seconds;
procedure Set_Seconds

(Time : in out Timespec;
S : in Seconds);

function Get_Nanoseconds (Time : Timespec) return Nanoseconds;
procedure Set_Nanoseconds

(Time : in out Timespec;
NS : in Nanoseconds);

procedure Split
(Time : in Timespec;

S : out Seconds;
NS : out Nanoseconds);

function To_Timespec
(S : Seconds;

NS : Nanoseconds)
return Timespec;

function "+" (Left, Right : Timespec) return Timespec;
function "+" (Left : Timespec; Right : Nanoseconds) return Timespec;
function "-" (Right : Timespec) return Timespec;
function "-" (Left, Right : Timespec) return Timespec;
function "-" (Left : Timespec; Right : Nanoseconds) return Timespec;
function "*" (Left : Timespec; Right : Integer) return Timespec;
function "*" (Left : Integer; Right : Timespec) return Timespec;
function "/" (Left : Timespec; Right : Integer) return Timespec;
function "/" (Left, Right : Timespec) return Integer;
function "<" (Left, Right : Timespec) return Boolean;
function "<="(Left, Right : Timespec) return Boolean;
function ">" (Left, Right : Timespec) return Boolean;
function ">="(Left, Right : Timespec) return Boolean;
function To_Duration (Time : Timespec) return Duration;

function To_Timespec (D : Duration) return Timespec;

2.4.8.2 Description

The time types are used together to represent potentially large amounts of time with
nanosecond precision.

Nanoseconds is a subtype that is interpreted as a nonnegative count of nanoseconds,
amounting to less than one second. Nanoseconds_Base is the base type of this
subtype, which includes negative values and nanosecond counts amounting to more
than one second. The Nanoseconds_Base type is provided for situations where the
application needs to perform arithmetic on nanosecond counts and the intermediate
results may need to be outside the range of Nanoseconds .

Parameters of the type Timespec are used for some operations to represent relative
times, that is, the lengths of time intervals. Timespec is also used to specify absolute

74 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

times, as an offset value from a time of day (usually the Epoch, e.g., see Clock_-
Realtime in 14.1.4). The range of time offsets expressible by this type shall include
at least -(231-1) .. (231-1) seconds.

The resolution of Timespec is implementation-defined, subject to the constraint that
it be no coarser than POSIX_Limits.Portable_Clock_Resolution_Minimum .

NOTE: Timespec may be represented so that an uninitialized object of this type has a value
that cannot be interpreted as a valid time.

Split converts a value of the type Timespec into two components. The component
S is a (signed) count of whole seconds, and the component NS is a count of nanosec-
onds in the range 0 .. 109 � 1. If Time is a valid Timespec value representing an
actual time time, the values obtained from Split(Time, S, NS) shall satisfy the
relationship time = s + ns � 10�9, where s is the value returned in S and ns is the
value returned in NS.

The functions Get_Seconds and Get_Nanoseconds shall return the same values as
are returned by Split in the S and NSparameters, respectively c.

NOTE: The canonical representation of negative values of type Timespec may be surprising.
To represent �0:3 seconds, s = �1 and ns = 700 000 000.

To_Timespec with parameters S and NS converts a count of whole seconds and a
count of nanoseconds to a corresponding value of the type Timespec . The effect
shall be the inverse of Split , when the source value can be represented exactly
in the target type. Moreover, within the resolution of Timespec there shall be no
cumulative error from repeated conversions. In other words,

— If T = To_Timespec(S_1, NS_1) , then after Split(T, S_2, NS_2) , To_-
Timespec(S_2, NS_2) = T .

— After Split(T, S_1, NS_1) , and Split(To_Timespec(S_1, NS_1),S_2,
NS_2) , S_1=S_2 and NS_1=NS_2, to the accuracy of the underlying representa-
tion.

To_Timespec with parameter D converts a value of the type Duration to a value
of the type Timespec if the value belongs to the range of time offsets that can be
expressed in that type. Otherwise, it raises Constraint_Error .

To_Duration converts a value of the type Timespec to a value of the type Dura-
tion , if the value belongs to the range of time offsets that can be expressed in that
type. Otherwise, it raises Constraint_Error .

All conversions to and from Timespec shall be accurate to the limit of precision of
the target type.

2.4.8.3 Error Handling

Constraint_Error shall be raised by the conversion functions if the value of the
argument is outside the range that can be converted to the return type.

These operations shall not raise an exception under any other conditions.

2.4 Package POSIX 75

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

2.5 Package POSIX_Options

This package provides types, constants, and operations that can be used to discover
which options are supported by an implementation of this standard.

with POSIX;
package POSIX_Options is

subtype Asynchronous_IO_Support is Boolean range implementation-defined;
subtype Change_Owner_Restriction is POSIX.Change_Owner_Restriction;
subtype Filename_Truncation is POSIX.Filename_Truncation;
subtype File_Synchronization_Support is Boolean range implementation-defined;
subtype Internet_Datagram_Support is Boolean range implementation-defined;
subtype Internet_Protocol_Support is Boolean range implementation-defined;
subtype Internet_Stream_Support is Boolean range implementation-defined;
subtype ISO_OSI_Protocol_Support is Boolean range implementation-defined; c
subtype Job_Control_Support is POSIX.Job_Control_Support;
subtype Memory_Mapped_Files_Support is Boolean range implementation-defined;
subtype Memory_Locking_Support is Boolean range implementation-defined;
subtype Memory_Range_Locking_Support is Boolean range implementation-defined;
subtype Memory_Protection_Support is Boolean range implementation-defined;
subtype Message_Queues_Support is Boolean range implementation-defined;
subtype Mutex_Priority_Ceiling_Support

is Boolean range implementation-defined;
subtype Mutex_Priority_Inheritance_Support

is Boolean range implementation-defined;
subtype Mutexes_Support is Boolean range implementation-defined;
subtype Network_Management_Support is Boolean range implementation-defined;
subtype OSI_Connectionless_Support is Boolean range implementation-defined;
subtype OSI_Connection_Support is Boolean range implementation-defined;
subtype OSI_Minimal_Support is Boolean range implementation-defined;
subtype Poll_Support is Boolean range implementation-defined; c
subtype Prioritized_IO_Support is Boolean range implementation-defined;
subtype Priority_Process_Scheduling_Support

is Boolean range implementation-defined;
subtype Priority_Task_Scheduling_Support

is Boolean range implementation-defined;
subtype Process_Shared_Support is Boolean range implementation-defined;
subtype Realtime_Signals_Support is Boolean range implementation-defined;
subtype Saved_IDs_Support is POSIX.Saved_IDs_Support;
subtype Select_Support is Boolean range implementation-defined; c
subtype Semaphores_Support is Boolean range implementation-defined;
subtype Shared_Memory_Objects_Support is Boolean range implementation-defined;
subtype Signal_Entries_Support is Boolean range implementation-defined;
subtype Sockets_DNI_Support is Boolean range implementation-defined; c
subtype Synchronized_IO_Support is Boolean range implementation-defined;
subtype Timers_Support is Boolean range implementation-defined;
subtype XTI_DNI_Support is Boolean range implementation-defined; c

end POSIX_Options;

2.5.1 Implementation Options

Support for some of the facilities defined by this standard is optional. A Strictly Con-
forming POSIX.5 Application may adjust its execution, based on information pro-
vided by interfaces defined in this standard, to take advantage of optional features
that are supported by a particular implementation.

76 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

The names and general descriptions of the optional facilities are listed in this sub-
clause. These names are used in the rest of this standard to specify the functionality
that depends on each option. Generally, an option is either supported or not sup-
ported on a system-wide basis. Support for some options, related to operations on
files, is specified as pathname-specific. This means that the option may be supported
for some files and not for other files, depending on the pathname of the file and the
time that the file is accessed.

Asynchronous I/O

The implementation supports asynchronous input and output operations.
This option is pathname-specific.

Change Owner Restriction

The procedure Change_Owner_And_Group is restricted to changing the
group ID of a file only to the effective group ID of the process or to one of its
supplementary group IDs. Changing the owner ID is restricted to processes
with the use privilege. If this option is not supported, no such restriction
applies. This option is pathname-specific.

Filename Truncation

Filenames are truncated to the maximum allowed length in POSIX char-
acters, Filename Maximum. If this option is not supported, and a filename is
longer than allowed, an error shall result, as defined by the subprograms
that use filenames and pathnames. This option is pathname-specific.

File Synchronization

The implementation supports file synchronization operations.

Internet Datagram

The implementation supports an interface to the connectionless-mode In-
ternet transport protocol (i.e., UDP). If the implementation supports this
option, it shall also support the Internet Protocol option.

Internet Protocol

The implementation supports an interface to the Internet family of proto-
cols. If the implementation supports this option, it shall also support the
XTI Detailed Network Interface option and/or the Sockets Detailed Network Interface
option.

Internet Stream

The implementation supports an interface to the connection-mode Internet
transport protocol (i.e., TCP). If the implementation supports this option, it
shall also support the Internet Protocol option.

ISO/OSI Protocol

The implementation supports an interface to the ISO/OSI family of proto-
cols. If the implementation supports this option, it shall also support the
XTI Detailed Network Interface option and/or the Sockets Detailed Network Interface
option. c

Job Control

The implementation supports job control signals.

2.5 Package POSIX_Options 77

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Memory Mapped Files

The implementation supports the mapping of files to the address space of a
process.

Memory Locking

The implementation supports locking all or part the address space of a pro-
cess to be continually resident in memory.

Memory Range Locking

The implementation supports locking regions of the address space of a pro-
cess so that they are continually resident in memory. If this option is sup-
ported, the Memory Locking option shall be supported also.

Memory Protection

The implementation supports protecting regions of the address space of a
process from read, write, or execute access. If this option is supported, then
at least one of the Memory Mapped Files option or the Shared Memory Objects
option shall be supported also.

Message Queues

The implementation supports message queues.

Mutex Priority Ceiling

The implementation temporarily raises the priority of a task that holds a
mutex to the specified ceiling priority of the mutex.

NOTE: The utility of this option depends on support for the Mutexes option.

Mutex Priority Inheritance

The implementation temporarily raises the priority of a task that holds a
mutex to the highest priority of the tasks that are blocked waiting for the
mutex.

NOTE: The utility of this option depends on support for the Mutexes option.

Mutexes

The implementation supports mutex and condition variable synchronization
objects.

Network Management

The implementation supports network information management services.

OSI Connectionless

The implementation supports an interface to the connectionless-mode of
transport service provided by the ISO/OSI family of protocols (i.e., ISO/IEC
8602ISO/IEC 8602 f9g). If the implementation supports this option, it shall
also support the ISO/OSI Protocol option.

OSI Connection

The implementation supports an interface to the connection mode of trans-
port service provided by the ISO/OSI family of protocols (i.e., ISO/IEC
8073ISO/IEC 8073 f4g). If the implementation supports this option, it shall
also support the ISO/OSI Protocol option.

78 2 Terminology and General Requirements

c

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

OSI Minimal

The implementation supports an interface to the ISO/OSI minimal 7-layer
OSI stack (i.e., CULR Part 3). If the implementation supports this option,
it shall also support the ISO/OSI Protocol option and either the OSI Connection
option or the OSI Connectionless option.

Poll

The implementation supports poll for event management. c

Prioritized I/O

The implementation supports prioritized input and output. This option is
pathname-specific.
NOTE: The utility of this option depends on support for the Asynchronous I/O option
and for the Priority Process Scheduling option.

Priority Process Scheduling

The implementation supports the process scheduling interfaces defined by
this standard.

Priority Task Scheduling

The implementation supports the extended task scheduling interfaces de-
fined by this standard.
NOTE: A prerequisite for support of this option is support for the priority model
defined in D.1 of the Ada RM f1g and the pragmas and package interfaces defined
in D.2-D.5 of the Ada RM f1g. (See 13.3.)

Process Shared

The implementation supports sharing of mutexes and condition variables
between processes, in a shared memory object or memory-mapped file.

NOTE: The utility of this option depends on support for the Mutexes option.

Realtime Signals

The implementation supports the realtime signals, for which queueing, sig-
nal information, and notification in priority order are defined.

Saved IDs

The implementation supports a saved set-user-ID and a saved set-group-ID
for each process. If this option is not supported, there is neither a saved
set-user-ID nor a saved set-group-ID.

Select

The implementation supports select for event management. c

Semaphores

The implementation supports counting semaphores.

Shared Memory Objects

The implementation supports shared memory objects.

Signal Entries

The implementation supports binding task entries to signals. (See 3.3.17.)
The range of the static subtype for this option shall be either True ..True or
False ..False .

2.5 Package POSIX_Options 79

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Sockets Detailed Network Interface

The implementation supports the sockets set of DNI for protocol-
independent, process-to-process network communications. c

Synchronized I/O

The implementation supports I/O synchronization, which permits a process
to force I/O operations to synchronized I/O data integrity completion or syn-
chronized I/O file integrity completion. If this option is supported, then the
File Synchronization option shall be supported also. This option is pathname-
specific.

Timers

The implementation supports clocks and timers.

XTI Detailed Network Interface

The implementation supports the XTI set of DNI for protocol-independent,
process-to-process network communications. c

Information about support for an option is provided to the application in the following
forms:

Static subtype
Subtypes, in most cases with names ending with _Support , declared in the
package POSIX_Options , document the implementation-defined possible
range of support for the optional feature. The correspondence of options to
subtypes shall be as shown in Table 2.4.
These subtypes shall all be static.

Configurable system option
The functions with the same names without the _Support suffix declared
in the package POSIX_Configurable_System_Limits and described in
4.5 define the current system-wide support for the option.
NOTE: The value returned by the function at run time is constrained to be within
the static range imposed by the corresponding static subtype.

Configurable pathname variable options
The functions with the same names without the _Support suffix declared
in the package POSIX_Configurable_File_Limits and described in 5.4
define the pathname-dependent support for the option.
NOTE: The value returned by the function at run time is constrained to be within
the static range imposed by the corresponding subtype.

The subtypes in package POSIX_Options and the correspondingly named func-
tions in the packages POSIX_Configurable_System_Limits and POSIX_Con-
figurable_File_Limits define one of the following four possible conditions:

(1) If the range is False..False , the option is not supported. The corresponding
function shall always return False .

(2) If the range is False..True and the corresponding function returns False , the
option is not supported.

(3) If the range is False..True and the corresponding function returns True , the
option is supported.

80 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Table 2.4 – Static Subtypes and Options

Subtype Option

Asynchronous_IO_Support Asynchronous I/O
Change_Owner_Restriction Change Owner Restriction
File_Synchronization_Support File Synchronization
Filename_Truncation Filename Truncation
Job_Control_Support Job Control
Internet_Datagram_Support Internet Datagram
Internet_Protocol_Support Internet Protocol
Internet_Stream_Support Internet Stream
ISO_OSI_Protocol_Support ISO/OSI Protocol c

Memory_Mapped_Files_Support Memory Mapped Files
Memory_Locking_Support Memory Locking
Memory_Range_Locking_Support Memory Range Locking
Memory_Protection_Support Memory Protection
Message_Queues_Support Message Queues
Mutex_Priority_Ceiling_Support Mutex Priority Ceiling
Mutex_Priority_Inheritance_Support Mutex Priority Inheritance
Mutexes_Support Mutexes
Network_Management_Support Network Management
OSI_Connectionless_Support OSI Connectionless
OSI_Connection_Support OSI Connection
OSI_Minimal_Support OSI Minimal
Poll_Support Poll c

Prioritized_IO_Support Prioritized I/O
Priority_Process_Scheduling_Support Priority Process Scheduling
Priority_Task_Scheduling_Support Priority Task Scheduling
Process_Shared_Support Process Shared
Realtime_Signals_Support Realtime Signals
Saved_IDs_Support Saved IDs
Select_Support Select c

Semaphores_Support Semaphores
Shared_Memory_Objects_Support Shared Memory Objects
Signal_Entries_Support Signal Entries
Sockets_DNI_Support Sockets Detailed Network Interface c

Synchronized_IO_Support Synchronized I/O
Timers_Support Timers
XTI_DNI_Support XTI Detailed Network Interface c

(4) If the range is True..True , the option is always supported. The corresponding
function shall always return True .

NOTE: One kind of implementation option is not represented in this package. A POSIX oper-
ation that blocks the calling task may also block other tasks, depending on the implementa-
tion. There are several options, corresponding to the different blocking operations. The type,
subtype, and constant declarations related to blocking behavior are in the package POSIX
(2.4.1.5). The main reason they are not with the other implementation options in package
POSIX_Options is that the subtype Text_IO_Blocking_Behavior is also used as the type
of a user-selectable parameter of some operations defined in the package POSIX_Supple-
ment_to_Ada_IO (see Section 8).

2.5 Package POSIX_Options 81

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

2.6 Package POSIX_Limits

This package provides types and constants that can be used to discover the capacity
limits that are imposed by an implementation of this standard.

with POSIX;
package POSIX_Limits is

-- Portable System Limits
Portable_Argument_List_Maximum : Natural

renames POSIX.Portable_Argument_List_Maximum;
Portable_Asynchronous_IO_Maximum : constant Natural := 1;
Portable_Child_Processes_Maximum : Natural

renames POSIX.Portable_Child_Processes_Maximum;
Portable_Clock_Resolution_Minimum : constant := 20_000_000; -- nanoseconds
Portable_Filename_Maximum : Natural

renames POSIX.Portable_Filename_Limit_Maximum;
Portable_Groups_Maximum : Natural

renames POSIX.Portable_Groups_Maximum;
Portable_Input_Line_Maximum : POSIX.IO_Count

renames POSIX.Portable_Input_Line_Limit_Maximum;
Portable_Input_Queue_Maximum : POSIX.IO_Count

renames POSIX.Portable_Input_Queue_Limit_Maximum;
Portable_Links_Maximum : Natural

renames POSIX.Portable_Link_Limit_Maximum;
Portable_List_IO_Maximum : constant Natural := 2;
Portable_Message_Priority_Maximum : constant Natural := 32;
Portable_Open_Files_Maximum : Natural

renames POSIX.Portable_Open_Files_Maximum;
Portable_FD_Set_Maximum :

constant Natural := Portable_Open_Files_Maximum; c
Portable_Open_Message_Queues_Maximum : constant Natural := 8;
Portable_Pathname_Maximum : Natural

renames POSIX.Portable_Pathname_Limit_Maximum;
Portable_Pipe_Length_Maximum : POSIX.IO_Count

renames POSIX.Portable_Pipe_Limit_Maximum;
Portable_Queued_Signals_Maximum : constant Natural := 32;
Portable_Realtime_Signals_Maximum : constant Natural := 8;
Portable_Semaphores_Maximum : constant Natural := 256;
Portable_Semaphores_Value_Maximum : constant Natural := 32_767;
Portable_Socket_Buffer_Maximum :

constant POSIX.IO_Count := Portable_Pipe_Length_Maximum;
Portable_Socket_IO_Vector_Maximum : constant Natural := 16;
Portable_Socket_Connection_Maximum : constant Natural := 1; c
Portable_Streams_Maximum : Natural

renames POSIX.Portable_Stream_Maximum;
Portable_Timer_Overruns_Maximum : constant Natural := 32;
Portable_Timers_Maximum : constant Natural := 32;
Portable_Time_Zone_String_Maximum : Natural

renames POSIX.Portable_Time_Zone_String_Maximum;
Portable_XTI_IO_Vector_Maximum : constant Natural := 16; c
-- Configurable Limits
subtype Argument_List_Maxima is POSIX.Argument_List_Maxima;
subtype Asynchronous_IO_Maxima is Natural range implementation-defined;
subtype Asynchronous_IO_Priority_Delta_Maxima is Natural

range implementation-defined;
subtype Child_Processes_Maxima is POSIX.Child_Processes_Maxima;
subtype FD_Set_Maxima is Natural range

Portable_FD_Set_Maximum .. implementation-defined; c

82 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

subtype Filename_Maxima is POSIX.Filename_Limit_Maxima;
subtype Groups_Maxima is POSIX.Groups_Maxima;
subtype Input_Line_Maxima is POSIX.Input_Line_Limit_Maxima;
subtype Input_Queue_Maxima is POSIX.Input_Queue_Limit_Maxima;
subtype Links_Maxima is POSIX.Link_Limit_Maxima;
subtype List_IO_Maxima is Natural range implementation-defined;
subtype Open_Message_Queues_Maxima is Natural range implementation-defined;
subtype Message_Priority_Maxima is Natural range implementation-defined;
subtype Open_Files_Maxima is POSIX.Open_Files_Maxima;
subtype Page_Size_Range is Natural range 1 .. implementation-defined;
subtype Pathname_Maxima is POSIX.Pathname_Limit_Maxima;
subtype Pipe_Length_Maxima is POSIX.Pipe_Limit_Maxima;
subtype Queued_Signals_Maxima is Natural range implementation-defined;
subtype Realtime_Signals_Maxima is Natural range implementation-defined;
subtype Semaphores_Maxima is Natural range implementation-defined;
subtype Semaphores_Value_Maxima is Natural range implementation-defined;
subtype Socket_Buffer_Maxima is POSIX.IO_Count range

Portable_Socket_Buffer_Maximum .. implementation-defined;
subtype Socket_IO_Vector_Maxima is Natural range

Portable_Socket_IO_Vector_Maximum .. implementation-defined;
subtype Socket_Connection_Maxima is Natural range

Portable_Socket_Connection_Maximum .. implementation-defined; c
subtype Streams_Maxima is POSIX.Stream_Maxima;
subtype Timer_Overruns_Maxima is Natural range implementation-defined;
subtype Timers_Maxima is Natural

range implementation-defined;
subtype Time_Zone_String_Maxima is POSIX.Time_Zone_String_Maxima;
subtype XTI_IO_Vector_Maxima is Natural range

Portable_XTI_IO_Vector_Maximum .. implementation-defined; c

end POSIX_Limits;

2.6.1 Implementation Limits

This standard defines certain capacity limits that may be imposed by an implemen-
tation. A Strictly Conforming POSIX.5 Application may adjust its execution, based
on information provided by interfaces defined in this standard, to operate within the
limitations of a particular implementation.

The names and general descriptions of the limits are listed in this subclause. These
names are used in the rest of this standard to specify the functionality that depends
on each limit. Generally, the value of a limit is system wide. For some limits related
to files, the value is pathname-specific. In other words, the value of the limit may be
different for some file than for others depending on the pathname of the file and the
time that the file is accessed.

Argument List Maximum

The maximum total length of the argument list, environment data, and
any associated overhead (in bytes) that can be passed to a child when it is
started by the POSIX_Process_Primitives procedures Start_Process
and Start_Process_Search , and the POSIX_Unsafe_Process_Primi-
tives procedures Exec and Exec_Search .

Asynchronous I/O Maximum

The maximum number of outstanding AIO operations.

2.6 Package POSIX_Limits 83

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Asynchronous I/O Priority Delta Maximum

The maximum amount by which a task can decrease the priority of an AIO
operation below the process priority. (See 6.3.1).

Child Processes Maximum

The maximum number of simultaneous processes per real user ID.

Clock Resolution Minimum

The minimum resolution of the system realtime clock. (See Clock_Real-
time in 14.1.2.)

File Descriptor Set Maximum

The maximum number of file descriptors that may be examined with Se-
lect_File operations. c

Filename Maximum

The maximum length of a filename, measured in POSIX characters. This
limit is pathname-specific.

Groups Maximum

The maximum number of simultaneous supplementary group IDs per pro-
cess. Zero means that this feature is not supported.

Input Line Maximum

The maximum length of an input line, measured in bytes. This limit is
pathname-specific.

Input Queue Maximum

The maximum length of a terminal input queue, measured in bytes. This
limit is pathname-specific.

Links Maximum

The maximum value of the link count of a file. This limit is pathname-
specific.

List I/O Maximum

The maximum number of I/O operations that can be specified in a list I/O
call.

Message Priority Maximum

The maximum number of message priority levels supported.

Open Files Maximum

The maximum number of files a process can have open at one time.

Open Message Queues Maximum

The maximum number of message queues that a process can have open at
one time.

Page Size

Granularity, measured in storage units, of memory mapping and process
memory locking.
NOTE: The page size is measured in storage units, rather than bytes, for consistency
with the address arithmetic defined in System.Storage_Elements in case the
system storage unit is not one byte.

84 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Pathname Maximum

The maximum length of a pathname, in POSIX characters. This limit is
pathname-specific.

Pipe Length Maximum

The number of bytes that can be written atomically when writing to a pipe
or FIFO. This limit is pathname-specific.

Queued Signals Maximum

The maximum number of queued signals a single process can send and have
pending at the receiver(s) at any one time.

Realtime Signals Maximum

The maximum number of realtime signal numbers reserved for application
use.

Semaphores Maximum

The maximum number of semaphores that a process can have.

Semaphores Value Maximum

The maximum value a semaphore can have.

Socket Buffer Maximum

The maximum number of bytes that can be buffered on a socket for send or
receive.

Socket IO Vector Maximum

The maximum number of IO_Vector elements in a IO_Vector_Array
object.

Socket Queued Connection Maximum

The maximum number of connections that can be queued on a socket. c

Streams Maximum

For an implementation that also supports the C-language binding, the max-
imum number of C-language streams a process can have open at one time.

Timer Overruns Maximum

The maximum number of timer expiration overruns.

Timers Maximum

The maximum number of timers a process can have.

Time Zone String Maximum

The maximum length of the TZ environment variable, measured in POSIX
characters.

XTI IO Vector Maximum

The maximum number of IO_Vector elements in an XTI IO_Vector_Array
object. c

Information about limits is provided to an application in the following forms:

2.6 Package POSIX_Limits 85

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Portable constant
These numeric constants, whose names begin with “Portable_ ”, define
worst-case bounds of values for a conforming implementation. If the limit
is an upper bound (e.g., Argument List Maximum), the portable constant for the
limit is the smallest value allowed by this standard for the limit. If the limit
is a lower bound (e.g., Clock Resolution Minimum), the portable constant is the
largest value allowed by this standard for the limit.
These portable constants are declared in the package POSIX_Limits . The
correspondence between portable constants and system limits is given in
Table 2.5.
For compatibility with POSIX.5, redundant declarations of some of the con-
stants are retained in package POSIX. However, those declarations in pack-
age POSIX are obsolescent.

Table 2.5 – Portable Constants and Limits

Constant Limit

Portable_Argument_List_Maximum Argument List Maximum
none Asynchronous I/O Priority Delta Maximum
none Page Size
Portable_Asynchronous_IO_Maximum Asynchronous I/O Maximum
Portable_Child_Processes_Maximum Child Processes Maximum
Portable_Clock_Resolution_Minimum Clock Resolution Minimum
Portable_FD_Set_Maximum File Descriptor Set Maximum c

Portable_Filename_Maximum Filename Maximum
Portable_Groups_Maximum Groups Maximum
Portable_Input_Line_Maximum Input Line Maximum
Portable_Input_Queue_Maximum Input Queue Maximum
Portable_Links_Maximum Links Maximum
Portable_List_IO_Maximum List I/O Maximum
Portable_Message_Priority_Maximum Message Priority Maximum
Portable_Open_Files_Maximum Open Files Maximum
Portable_Open_Message_Queues_Maximum Open Message Queues Maximum
Portable_Pathname_Maximum Pathname Maximum
Portable_Pipe_Length_Maximum Pipe Length Maximum
Portable_Queued_Signals_Maximum Queued Signals Maximum
Portable_Realtime_Signals_Maximum Realtime Signals Maximum
Portable_Semaphores_Maximum Semaphores Maximum
Portable_Semaphores_Value_Maximum Semaphores Value Maximum
Portable_Socket_Buffer_Maximum Socket Buffer Maximum
Portable_Socket_IO_Vector_Maximum Socket IO Vector Maximum
Portable_Socket_Connection_Maximum Socket Queued Connect Maximum c

Portable_Streams_Maximum Streams Maximum
Portable_Timer_Overruns_Maximum Timer Overruns Maximum
Portable_Timers_Maximum Timers Maximum
Portable_Time_Zone_String_Maximum Time Zone String Maximum
Portable_XTI_IO_Vector_Maximum XTI IO Vector Maximum c

Static subtype
These subtypes, ending with ..._Maxima , document the implementation-

86 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

defined range of possible values for the corresponding limit to the extent the
value can be bounded at compile time. The ’First and ’Last values of the
subtype shall be static. For maxima, the ’First value of the subtype shall
be greater than or equal to the portable constant. If the ’First value of
the subtype is equal to its ’Last , the value of the corresponding limit shall
always be equal to that constant.
These static subtypes are declared in the package POSIX_Limits . The cor-
respondence between static subtypes and system limits is given in Table 2.6.
For compatibility with POSIX.5, redundant definitions of some of the sub-
types are retained in the package POSIX. However, those declarations in
othe package POSIX are obsolescent.
These subtypes shall all be static.

Configurable system variable
The functions declared in the package POSIX_Configurable_System_-
Limits and described in 4.5 shall return the actual system-wide limit im-
posed by the implementation.

Configurable pathname variable
The functions declared in the package POSIX_Configurable_File_Lim-
its and described in 5.4 shall return the pathname-dependent limit im-
posed by the implementation.

2.7 Package Ada_Streams

with Ada.Streams;

package Ada_Streams renames Ada.Streams;

During transition from Ada 83 to Ada 95, the implementation is permitted to replace
this renaming declaration with the following package specification.

package Ada_Streams is
-- pragma Pure(Streams);
-- type Root_Stream_Type is abstract tagged limited private ;
type Stream_Element is -- mod

impl-def-unsigned-integer-type;
type Stream_Element_Offset is range implementation-defined;
subtype Stream_Element_Count is

Stream_Element_Offset range 0 .. Stream_Element_Offset’Last;
type Stream_Element_Array is

array (Stream_Element_Offset range <>) of Stream_Element;
-- procedure Read (
-- Stream : in out Root_Stream_Type;
-- Item : out Stream_Element_Array;
-- Last : out Stream_Element_Offset) is abstract ;
-- procedure Write (
-- Stream : in out Root_Stream_Type;
-- Item : out Stream_Element_Array) is abstract ;

private
implementation-defined

end Ada_Streams;

2.7 Package Ada_Streams 87

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Table 2.6 – Static Subtypes and Limits

Subtype Limit

Argument_List_Maxima Argument List Maximum
Asynchronous_IO_Maxima Asynchronous I/O Maximum
Asynchronous_IO_Priority_Delta_Maxima Asynchronous I/O Priority Delta Maximum
Child_Processes_Maxima Child Processes Maximum
none Clock Resolution Minimum
FD_Set_Maxima File Descriptor Set Maximum c

Filename_Maxima Filename Maximum
Groups_Maxima Groups Maximum
Input_Line_Maxima Input Line Maximum
Input_Queue_Maxima Input Queue Maximum
Links_Maxima Links Maximum
List_IO_Maxima List I/O Maximum
Message_Priority_Maxima Message Priority Maximum
Open_Files_Maxima Open Files Maximum
Open_Message_Queues_Maxima Open Message Queues Maximum
Page_Size_Range Page Size
Pathname_Maxima Pathname Maximum
Pipe_Length_Maxima Pipe Length Maximum
Queued_Signals_Maxima Queued Signals Maximum
Realtime_Signals_Maxima Realtime Signals Maximum
Semaphores_Maxima Semaphores Maximum
Semaphores_Value_Maxima Semaphores Value Maximum
Socket_Buffer_Maxima Socket Buffer Maximum
Socket_IO_Vector_Maxima Socket IO Vector Maximum
Socket_Connection_Maxima Socket Queued Connection Maximum c
Streams_Maxima Streams Maximum
Timer_Overruns_Maxima Timer Overruns Maximum
Timers_Maxima Timers Maximum
Time_Zone_String_Maxima Time Zone String Maximum
XTI_IO_Vector_Maxima XTI IO Vector Maximum c

NOTE: Places where details of the Ada 95 package specification have been omitted, because
they use features not supported by Ada 83, are indicated by comments in the package specifi-
cation above.

The semantics of the types and operations defined in this package shall satisfy the
requirements of 13.13.1 of the Ada RM f1g.

2.8 Package System

This standard requires the Ada implementation to include the following declarations
in the package System :

Null_Address : constant Address := implementation-defined;
function "<" (Left, Right : Address) return Boolean;
function "<=" (Left, Right : Address) return Boolean;
function ">" (Left, Right : Address) return Boolean;
function ">=" (Left, Right : Address) return Boolean;

88 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

function Image (Addr : Address) return String;
function Value (Str : String) return Address;
Word_Size : constant := implementation-defined;

NOTE: All these declarations are required by Ada 95, and are permitted by Ada 83. They are
included here to permit this standard to be upward compatible. The detailed semantics are
intentionally left unspecified, to avoid conflicts with Ada 95.

The type System.Address shall be nonlimited. Thus, the operations "=" and "/="
are defined for it.

The value of System.Null_Address shall correspond to the value returned by Sys-
tem_Storage_Elements.To_Address(0) .

2.9 Package System_Storage_Elements

with System.Storage_Elements;

package System_Storage_Elements renames System.Storage_Elements;

During transition from Ada 83 to Ada 95 the implementation is permitted to replace
this renaming declaration with the following package specification:

with System;
package System_Storage_Elements is

-- pragma Preelaborate (System.Storage_Units);
-- Storage Elements and Address Arithmetic

type Storage_Offset is range implementation-defined;
subtype Storage_Count is Storage_Offset range 0 .. Storage_Offset’Last;
type Storage_Element is implementation-defined;
-- required to be an unsigned type whose size is one storage unit
type Storage_Array is array

(Storage_Offset range <>) of Storage_Element;
-- required to have a component size of one storage unit
-- required to have components aligned on addressable boundaries
-- components required to be aliased
function "+"

(Left : System.Address;
Right : Storage_Offset)

return System.Address;
function "+"

(Left : Storage_Offset;
Right : System.Address)

return System.Address;
function "-"

(Left : System.Address;
Right : Storage_Offset)

return System.Address;
function "-"

(Left, Right: System.Address)
return Storage_Offset;

function "mod"
(Left : System.Address;

Right : Storage_Offset)
return Storage_Offset;

2.9 Package System_Storage_Elements 89

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

-- Conversions to/from Integers
type Integer_Address is range implementation-defined;
function To_Address (Value : Integer_Address) return System.Address;
function To_Integer (Value : System.Address) return Integer_Address;

end System_Storage_Elements;

NOTE: Places where details of the Ada 95 package specification have been omitted, because
they use features not supported by Ada 83, are indicated by comments.

The semantics of the types and operations defined in this package shall satisfy the
requirements of 13.7.1 of the Ada RM f1g.

2.10 Package POSIX_Page_Alignment

This package provides operations that can be used to compute the address of the first
page containing a given object, and to compute the length of a page-aligned region
containing the object. These operations are provided to simplify the computation
of page-aligned specifications for memory range locking (see 12.2) and memory map-
ping (see 12.3), where the implementation is permitted to require the specified region
to be aligned on a page boundary.

with System,
POSIX,
System_Storage_Elements;

package POSIX_Page_Alignment is
function Truncate_To_Page (Addr : System.Address) return System.Address;
function Truncate_To_Page (Offset : POSIX.IO_Count) return POSIX.IO_Count;
function Adjust_Length

(Addr : System.Address;
Length : System_Storage_Elements.Storage_Offset)

return System_Storage_Elements.Storage_Offset;
function Adjust_Length

(Offset : POSIX.IO_Count;
Length : System_Storage_Elements.Storage_Offset)

return System_Storage_Elements.Storage_Offset;
function Length

(Size : in Natural)
return System_Storage_Elements.Storage_Offset;

end POSIX_Page_Alignment;

2.10.1 Description

The values computed by these functions are specified as follows:

— Truncate_To_Page(A) is the greatest integral multiple of Page Size that is less
than or equal to A. That is, if A is an address (file offset) Truncate_To_Page(A)
shall be the address (file offset) of the first page that includes the storage cell
with address (offset) A.
Truncate_To_Page can be used to compute the address or offset of the first
page containing an object, from the exact address or offset of the object itself.

90 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

— Adjust_Length(A, L) is the least integral multiple of Page Size greater than
or equal to L + (A-Truncate_To_Page(A)) . In other words, the range of cells
with addresses Truncate_To_Page (A) .. Truncate_To_Page (A) + Adjust_-
Length (A, L) -1 shall be the smallest set of complete pages that includes the
range of cells with addresses (offsets) A..A+L .
Adjust_Length can be used to compute the length of a region starting on a
page boundary that contains a given object, given the exact (not necessarily
page0aligned) address or offset of the object and the exact length of the object
itself.

— Length(B) is the least integer greater than or equal to B/System.Storage_-
Unit .

2.10.2 Error Handling

Any of these operations returning an address is permitted to raise Program_Error
if no reasonable interpretation of the requested operation exists on the machine.

2.11 Environment Description

A list of (name, value) pairs called the environment, where the components are both
of type POSIX_String , is made available when a process begins. This list is pro-
cessed using the operations of the package POSIX_Process_Environment . (See
4.3.2.) The name of an environment variable shall not contain the character ’=’ . No
meaning is associated with the order of the strings in the environment. If more than
one string in the environment of a process has the same name, which occurrence
is used is unspecified. The following names may be defined and have the indicated
meaning if they are defined:

HOME The name of the initial working directory of the user, from the user
database.

LOGNAME The login name associated with the current process. The value shall
be composed of characters from the portable filename character set.
NOTE: An application that requires, or an installation that actually uses, charac-
ters outside the portable filename character set would not strictly conform to this
standard. However, it is reasonable to expect that such characters would be used in
many countries (recognizing the reduced level of interchange implied by using char-
acters outside the portable filename character set), and applications or installations
should permit such usage where possible. No error is defined by this standard for
violation of this condition.

PATH The sequence of path prefixes that certain functions apply in searching for
an executable file known only by a filename (a pathname that does not con-
tain a slash). The prefixes are separated by a colon (:). When a nonzero-
length prefix is applied to this filename, a slash is inserted between the
prefix and the filename. A zero-length prefix is a special prefix that indi-
cates the current working directory. It appears as two adjacent colons (“::”),
as an initial colon preceding the rest of the list, or as a trailing colon fol-
lowing the rest of the list. The list is searched from beginning to end until
an executable program by the specified name is found. If the pathname
being sought contains a slash, the search through the path prefixes is not
performed.

2.11 Environment Description 91

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

TERM The terminal type for which output is to be prepared. This information
is used by commands and application programs wishing to exploit special
capabilities specific to a terminal.

TZ Time-zone information. The format for the value of the environment vari-
able is defined in 2.11.1.

LANG, LC–ALL,
LC–COLLATE,
LC–CTYPE,
LC–MONETARY,
LC–NUMERIC, LC–TIME

These environment variable names are defined by POSIX.1. They have no
predefined meaning in this standard.

Environment variable names used or created by an application should consist solely
of characters from the portable filename character set. Other characters may be
permitted by an implementation; applications shall tolerate the presence of such
names. Upper- and lowercase letters shall retain their unique identities and shall not
be folded together. System-defined environment variable names should begin with a
capital letter or underscore and be composed of only capital letters, underscores, and
numbers.

The values that the environment variables may be assigned are not restricted except
that they shall not contain the null character. The total space used by the environ-
ment data, the argument list, and any associated overhead is subject to implemen-
tation limits when given to a process. (See 2.6.1.)

2.11.1 Time-Zone Information

The value of the environment variable TZ shall be used by the package POSIX_-
Calendar to override the default time zone. (See 4.4.) The value of TZ shall be of
one of the two following forms (spaces inserted for clarity):

(1) :characters

(2) std offset dst offset, rule

If TZ is of the first format (i.e., if the first character is a colon), the characters follow-
ing the colon are handled in an implementation-defined manner.

The expanded format (for all TZ values whose value does not have a colon as the first
character) is as follows:

stdoffset[dst[offset][,start[/time],end[/time]]]

where:

std and dst Indicate no less than three, nor more than Time Zone String Maximum,
POSIX_Character s that are the designation for the standard (std) or sum-
mer (dst) time zone. Only std is required; if dst is missing, then summer
time does not apply in this locale. Upper- and lowercase letters are explic-
itly allowed. Any characters except a leading colon (:) or digits, the comma
(,), the minus (-), the plus (+), and the null character are permitted to ap-
pear in these fields, but their meaning is unspecified.

92 2 Terminology and General Requirements

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

offset Indicates the value one must add to the local time to arrive at Universal
Coordinated Time (see Blair fB2g). The offset has the form

hh[:mm[:ss]]
The minutes (mm) and seconds (ss) are optional. The hour (hh) shall be re-
quired and may be a single digit. The offset following std shall be required.
If no offset follows dst, summer time is assumed to be one hour ahead of
standard time. One or more digits may be used; the value is always inter-
preted as a decimal number. The hour shall be in the range from 0 to 24, and
the minutes (and seconds)—if present—shall be in the range from 0 to 59.
Use of values outside these ranges causes undefined behavior. If preceded
by a minus(-), the time zone shall be east of the Prime Meridian; otherwise,
it shall be west (which may be indicated by an optional preceding plus(+).

rule Indicates when to change to and back from summer time. The rule has the
form

date/time,date/time
where the first date describes when the change from standard to summer
time occurs and the second date describes when the change back happens.
Each time field describes when, in current local time, the change to the other
time is made.
The format of date shall be one of the following:

Jn The Julian day n(1 <= n <= 365). Leap days shall not be counted.
That is, in all years—including leap years—February 28 is day 59
and March 1 is day 60. It is impossible to refer to the occasional
February 29 explicitly.

n The zero-based Julian day (0 <= n <= 365). Leap days shall be
counted, and it is possible to refer to February 29.

Mm:n:d The dth day (0 <= d <= 6) of week n of month m of the year
(1 <= n <= 5, 1 <= m <= 12, where week 5 means “the last d
day in month m,” which may occur in either the fourth or the fifth
week). Week 1 is the first week in which the dth day occurs. Day
zero is Sunday.

The time has the same format as offset except that no leading sign (“- ” or
“+”) shall be allowed. The default, if time is not given, shall be 02:00:00 .

2.11 Environment Description 93

IEEE Std 1003.5c-1998

Section 3: Process Primitives

This section specifies services dealing with processes and interprocess signals, as
defined in the three packages POSIX_Process_Primitives , POSIX_Unsafe_Pro-
cess_Primitives , and POSIX_Signals . An execution of an Ada active partition
corresponds to a POSIX process. The programs executed by POSIX processes may
be written in Ada and in other programming languages supported by the underlying
operating system. An Ada program can use the types and operations provided in this
section to create, communicate with, and destroy other POSIX processes, including
executions of programs written in other languages.

3.1 Package POSIX_Process_Primitives

This package provides the types and operations that allow an application to start
a new process and to terminate a process, including operations used by a parent
process to find out about the termination of a child process.

A single Ada active partition shall appear to the POSIX/Ada language interface as
a single process. However, an implementation of the POSIX/Ada language interface
may implement a single Ada active partition execution by allocating it across mul-
tiple processes in the underlying operating system; in this case, such an allocation
shall be hidden by the interface.

The only form of main subprogram that is required to be supported by all Ada lan-
guage implementations is a public parameterless library procedure (see 10.2 (29) of
the Ada RM f1g). Therefore, a Strictly Conforming POSIX.5 Application shall have
a public parameterless library procedure as the main subprogram.

with POSIX,
POSIX_IO,
POSIX_Permissions,
POSIX_Process_Environment,
POSIX_Process_Identification,
POSIX_Signals;

package POSIX_Process_Primitives is
-- 3.1.1 Process Template
type Process_Template is limited private ;
procedure Open_Template (Template : in out Process_Template);
procedure Close_Template (Template : in out Process_Template);
procedure Set_Keep_Effective_IDs (Template : in out Process_Template);
procedure Set_Signal_Mask

(Template : in out Process_Template;
Mask : in POSIX_Signals.Signal_Set);

procedure Set_Creation_Signal_Masking
(Template : in out Process_Template;

Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);
procedure Set_File_Action_To_Open

(Template : in out Process_Template;
File : in POSIX_IO.File_Descriptor;
Name : in POSIX.Pathname;
Mode : in POSIX_IO.File_Mode := POSIX_IO.Read_Only;
Options : in POSIX_IO.Open_Option_Set := POSIX_IO.Empty_Set);

procedure Set_File_Action_To_Close
(Template : in out Process_Template;

File : in POSIX_IO.File_Descriptor);

3 Process Primitives 95

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

procedure Set_File_Action_To_Duplicate
(Template : in out Process_Template;

File : in POSIX_IO.File_Descriptor;
From_File : in POSIX_IO.File_Descriptor);

-- 3.1.2 Process Creation
procedure Start_Process

(Child : out POSIX_Process_Identification.Process_ID;
Pathname : in POSIX.Pathname;
Template : in Process_Template;
Arg_List : in POSIX.POSIX_String_List := POSIX.Empty_String_List);

procedure Start_Process
(Child : out POSIX_Process_Identification.Process_ID;

Pathname : in POSIX.Pathname;
Template : in Process_Template;
Env_List : in POSIX_Process_Environment.Environment;
Arg_List : in POSIX.POSIX_String_List := POSIX.Empty_String_List);

procedure Start_Process_Search
(Child : out POSIX_Process_Identification.Process_ID;

Filename : in POSIX.Filename;
Template : in Process_Template;
Arg_List : in POSIX.POSIX_String_List := POSIX.Empty_String_List);

procedure Start_Process_Search
(Child : out POSIX_Process_Identification.Process_ID;

Filename : in POSIX.Filename;
Template : in Process_Template;
Env_List : in POSIX_Process_Environment.Environment;
Arg_List : in POSIX.POSIX_String_List := POSIX.Empty_String_List);

-- 3.1.3 Process Exit
type Exit_Status is range 0 .. 2**8-1;
Normal_Exit : constant Exit_Status := 0;
Failed_Creation_Exit : constant Exit_Status := 41;
Unhandled_Exception_Exit : constant Exit_Status := 42;
procedure Exit_Process (Status : in Exit_Status := Normal_Exit);
-- 3.1.4 Termination Status
type Termination_Status is private ;
type Termination_Cause is

(Exited, Terminated_By_Signal, Stopped_By_Signal);
function Status_Available (Status : Termination_Status)

return Boolean;
function Process_ID_Of (Status : Termination_Status)

return POSIX_Process_Identification.Process_ID;
function Termination_Cause_Of (Status : Termination_Status)

return Termination_Cause;
function Exit_Status_Of (Status : Termination_Status)

return Exit_Status;
function Termination_Signal_Of (Status : Termination_Status)

return POSIX_Signals.Signal;
function Stopping_Signal_Of (Status : Termination_Status)

return POSIX_Signals.Signal;
-- 3.1.5 Wait for Process Termination
procedure Wait_For_Child_Process

(Status : out Termination_Status;
Block : in Boolean := True;
Trace_Stopped : in Boolean := True;
Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

96 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

procedure Wait_For_Child_Process
(Status : out Termination_Status;

Child : in POSIX_Process_Identification.Process_ID;
Block : in Boolean := True;
Trace_Stopped : in Boolean := True;
Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

procedure Wait_For_Child_Process
(Status : out Termination_Status;

Group : in POSIX_Process_Identification.Process_Group_ID;
Block : in Boolean := True;
Trace_Stopped : in Boolean := True;
Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

private
implementation-defined

end POSIX_Process_Primitives;

3.1.1 Process Template

3.1.1.1 Synopsis

type Process_Template is limited private ;
procedure Open_Template (Template : in out Process_Template);
procedure Close_Template (Template : in out Process_Template);
procedure Set_Keep_Effective_IDs (Template : in out Process_Template);
procedure Set_Signal_Mask

(Template : in out Process_Template;
Mask : in POSIX_Signals.Signal_Set);

procedure Set_Creation_Signal_Masking
(Template : in out Process_Template;

Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);
procedure Set_File_Action_To_Open

(Template : in out Process_Template;
File : in POSIX_IO.File_Descriptor;
Name : in POSIX.Pathname;
Mode : in POSIX_IO.File_Mode := POSIX_IO.Read_Only;
Options : in POSIX_IO.Open_Option_Set := POSIX_IO.Empty_Set);

procedure Set_File_Action_To_Close
(Template : in out Process_Template;

File : in POSIX_IO.File_Descriptor);
procedure Set_File_Action_To_Duplicate

(Template : in out Process_Template;
File : in POSIX_IO.File_Descriptor;

From_File : in POSIX_IO.File_Descriptor);

3.1.1.2 Description

An object of type Process_Template is used to represent the actions that are to take
place when creating another process with Start_Process and Start_Process_-
Search . The user initializes a process template with Open_Template , modifies it
using the various procedures with names of the form Set_... , and then passes it as
a parameter to Start_Process or Start_Process_Search . When the user is done
with the template, the user closes the template, and causes any storage allocated for
it to be reclaimed, by calling Close_Template .

Open_Template shall open the process template specified by the parameter Tem-
plate , if it is not already open, and initialize it to the following content:

3.1 Package POSIX_Process_Primitives 97

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

— The effective user and group IDs shall be obtained from the real user and group
IDs of the calling process, respectively.

— The Signal Mask attribute shall contain no signals.

— The set of file descriptor actions shall be empty; that is, no file descriptors will
be changed when starting a process, except that file descriptors with the mode
Close_On_Exec will be closed. (See type POSIX_IO.File_Mode in 6.1.1.)

Close_Template shall release any dynamically allocated storage that may be asso-
ciated with the template and shall render the template unusable. Any subsequent
calls using the template as a parameter will fail. This call is typically made by the
application just before exiting the scope of the template. Failure by an application to
call Close_Template to release templates may eventually result in storage exhaus-
tion.

Set_Keep_Effective_IDs shall cause the effective user and group IDs of the new
process to be the same as those of the calling process.

Set_Signal_Mask shall set the Signal Mask attribute of the specified template to the
value of the parameter Mask.

Set_Creation_Signal_Masking shall set the Masked_Signals parameter that
will be used for all the interruptible operations involved in creation and initialization
of the new process to the value given by Masked_Signals . (See 3.3.6 and 2.4.1.6.)
The interruptible operations involved in process creation include the open, close, and
duplicate operations.

Set_File_Action_To_Close shall cause the file descriptor named by parameter
File to be closed when the new process is started.

Set_File_Action_To_Open shall cause the file descriptor named by parameter
File to be opened when the new process is started, using the values of the other
parameters as parameters to POSIX_IO.Open . If the given file descriptor was already
open, it shall be closed before the new file is opened.

Set_File_Action_To_Duplicate shall cause the file descriptor named by param-
eter File to be duplicated from the file descriptor named by From_File when the
new process is started.

The effective order of events in processing the process template shall be as follows:

(1) The new process shall be created.

(2) The signal mask and the effective user and group IDs shall be set.

(3) The file actions specified by the Set_File_Action_to_xxxx operations shall be
taken, in the order in which the procedures were called.

(4) The new process image shall replace the old one, and execution of that process
image shall be started.

For example, the code sequence below has the effect of setting both standard output
and standard error to reference a (newly opened) temporary file:

98 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Set_File_Action_To_Open
(Template=> T, File=> Standard_Output,
Name=> "/tmp/name",...);

Set_File_Action_To_Duplicate
(Template=> T, File=> Standard_Error,

From_File=> Standard_Output);

For the Set_xxx operations on templates with a Filename or Pathname parameter,
the string is simply stored in the template, without further processing. In particular,
the current working directory used to resolve the Filename parameter shall be the
one in force when the template is actually used to start a process, rather than the
one in force at the time the template was updated. Also, no checking is performed for
how well formed the filename or pathname is or for the existence of the specified file.

3.1.1.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

Set_Keep_Effective_IDs , Set_Signal_Mask , Set_Creation_Signal_-
Masking , Set_File_Action_To_Close , Set_File_Action_To_Open ,
Set_File_Action_To_Duplicate , or Close_Template was called with a
parameter Template that represents a template that is closed, or for which
the contents are or would become inconsistent as a result of the operation.

No exceptions shall be raised by Open_Template .

3.1.2 Process Creation

3.1.2.1 Synopsis

procedure Start_Process
(Child : out POSIX_Process_Identification.Process_ID;

Pathname : in POSIX.Pathname;
Template : in Process_Template;
Arg_List : in POSIX.POSIX_String_List := POSIX.Empty_String_List);

procedure Start_Process
(Child : out POSIX_Process_Identification.Process_ID;

Pathname : in POSIX.Pathname;
Template : in Process_Template;
Env_List : in POSIX_Process_Environment.Environment;
Arg_List : in POSIX.POSIX_String_List := POSIX.Empty_String_List);

procedure Start_Process_Search
(Child : out POSIX_Process_Identification.Process_ID;

Filename : in POSIX.Filename;
Template : in Process_Template;
Arg_List : in POSIX.POSIX_String_List := POSIX.Empty_String_List);

procedure Start_Process_Search
(Child : out POSIX_Process_Identification.Process_ID;

Filename : in POSIX.Filename;
Template : in Process_Template;
Env_List : in POSIX_Process_Environment.Environment;

Arg_List : in POSIX.POSIX_String_List := POSIX.Empty_String_List);

3.1 Package POSIX_Process_Primitives 99

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

3.1.2.2 Description

Start_Process and Start_Process_Search shall create a new process, called the
child process, executing the program or active partition contained in a regular file
called the new process image file. The calling process is called the parent process.

NOTE: Fork and Exec operations are provided, in package POSIX_Unsafe_Process_-
Primitives , for functionality that cannot be obtained using Start_Process or Start_-
Process_Search .

Start_Process shall specify the new process image file by the value of the parame-
ter Pathname . Start_Process_Search shall specify the new process image file by
the value of the parameter Filename . If Filename does not contain a slash charac-
ter, the path prefix for this file shall be obtained by a search of the directories passed
as the environment variable PATH . (See 2.11.) If this environment variable is not
defined, the result of the search is implementation defined.

The initial state of the child process shall be the state of the calling process with
modifications as specified below.

— The child process shall have a unique process ID.

— The parent process ID of the child process shall be the process ID of the parent
(i.e., the calling process).

— The child process shall have its own copy of the file descriptors of the parent.
Each of the file descriptors of the child shall refer to the same open file descrip-
tion as the corresponding file descriptor of the parent, except as modified by
the file actions set in the process template and the respective file modes. (See
Close_On_Exec in 6.1.7.)

— The child process shall have no open directories.

— The per-process time-accounting information of the child (i.e., user CPU time,
system CPU time, user CPU time of the descendants, system time of the descen-
dants) shall be set to zero. (See 4.2.1 for a discussion of process time accounting.)

— File locks previously set by the parent shall not be inherited by the child. (See
6.2.1.)

— The set of signals pending for the child process shall be initialized to the empty
set. (See 3.3.7 for a discussion of signal sets.)

— The initial signal mask of the child process shall be the set specified by the Signal
Mask attribute of the process template.
These specifications govern the initial signal mask of the new process, regardless
of the language in which the new program was written. After creation of the new
process, the signal mask may be modified as specified in 3.3.1.
NOTE: This operation may result in a temporary change in the signal mask of the calling
process.

NOTE: It is anticipated that a future revision to this standard may specify that the mask
specified by the Signal Mask attribute be overridden, in the case of realtime signals, if the
process is an Ada active partition. See B.3.8 and the note in 3.3.1 for further explanation.

100 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

— The argument list of the child process shall be the list specified by the parameter
Arg_List . By convention, the first component of Arg_List should be be the
filename of the file specified by the parameter Pathname or Filename . (See
4.3.1 for a description of accessing arguments.)

— The environment shall be specified by the value of the parameter Env_List for
the forms of the procedures where this parameter is present. Otherwise, the
environment of the new process shall be the current environment of the calling
process. (See 2.11 and 4.3.2.)

— The effective user and group IDs of the child process shall be determined by
the information in the template and the permissions of the new process file, as
explained further below.

— If the Semaphores option is supported: The child process shall not inherit any
semaphores that are open in the parent process.

— If the Memory Locking option is supported: The child process shall not inherit
any address space memory locks established by the parent process. Any locks
established by the parent process shall not be affected.

— If the Memory Mapped Files option is supported: The child process shall not inherit
any memory mappings created in the parent process.

— If the Priority Process Scheduling option is supported: If the FIFO_Within_Pri-
orities or Round_Robin_Within_Priorities scheduling policy is in effect
for the calling process, the child process shall inherit the policy and priority set-
tings of the parent process. For other scheduling policies, the policy and priority
settings of the child are implementation defined.

— If the Timers option is supported: The child process shall not inherit any timers
created by the parent.

— If the Message Queues option is supported: The child process shall not inherit any
message queue descriptors of the parent.

— If the Asynchronous I/O option is supported: No outstanding asynchronous input
or asynchronous output operations shall be inherited by the child process.

— If the Mutexes option is supported: The state of mutexes and condition variables
(if any) in the child process copy of the address space of the parent process is
undefined.

Normally, if the template has not been set to keep effective IDs, the effective user and
group IDs of the child process are set to the real user and group IDs of the creator. If
the template has been set to keep effective IDs, they are set to the effective user and
group IDs of the creator.

The effect of the template on the effective user and group IDs may be overridden if
the new process image file has permission Set_User_ID or Set_Group_ID . (See
5.1.1.) If the new process image file has permission Set_User_ID , the effective user
ID of the child process shall be set to the owner ID of the new process image file.
Similarly, if the new process image file has permission Set_Group_ID (see 5.1.1),
the effective group ID of the child process shall be set to the group ID of the new
process image file. The real user ID, real group ID, and supplementary group IDs of
the child process remain the same as those of the calling process.

3.1 Package POSIX_Process_Primitives 101

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

If the Saved IDs option is supported: The effective user ID and effective group ID of
the child process shall be saved (as the saved set-user-ID and the saved set-group-ID)
for use by the Set_User_ID and Set_Group_ID operations. (See 4.1.3.)

All process attributes defined in this standard and not specified in this clause shall be
inherited by the child from the parent process. The inheritance of process attributes
not defined by this standard is implementation defined.

Upon successful completion, Start_Process and Start_Process_Search shall
return the process ID of the child process via the parameter Child . They shall also
mark for update the Last Access Time of the new process image file. (See 2.3.10.) The
new process image file shall be considered to have been opened. The corresponding
close shall be considered to occurs at a time after this open but before the new process
terminates or successfully completes a subsequent call to Start_Process , Start_-
Process_Search , Exec , or Exec_Search . Both parent and child processes shall be
capable of executing independently before either terminates.

If the operation failed, but was able to locate the new process image file, this standard
does not specify whether the Last Access Time of the file is marked for update. (See
2.3.10.)

The Start_Process or Start_Process_Search operation may succeed, resulting
in the creation of the child process; but the child process may be terminated before
it begins execution of the program or active partition contained in the new process
image file. In this case, the termination status of the terminated child process shall
have the exit status value Failed_Creation_Exit (see 3.1.3). Specifically, the child
process shall be terminated with exit status value Failed_Creation_Exit for the
error conditions specified for Exec and Exec_Search (see 3.2.2) or for an open, close,
or duplicate operation that fails for a file specified in the template.

3.1.2.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

The template is closed.

Resource_Temporarily_Unavailable

The system lacked the necessary resources to create another process, or Child
Processes Maximum would be exceeded. (Information on the latter limit is
provided by Child_Processes_Maximum in the package POSIX_Config-
urable_System_Limits , described in 4.5.)

Not_Enough_Space

The system detected that the new process requires more storage space than
the system is able to supply.

3.1.3 Process Exit

3.1.3.1 Synopsis

type Exit_Status is range 0 .. 2**8-1;

102 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Normal_Exit : constant Exit_Status := 0;
Failed_Creation_Exit : constant Exit_Status := 41;
Unhandled_Exception_Exit : constant Exit_Status := 42;

procedure Exit_Process (Status : in Exit_Status := Normal_Exit);

3.1.3.2 Description

The type Exit_Status is used by the exiting process to communicate to its parent
status information about its reason for exiting.

Exit_Process shall terminate the calling process, with the following consequences:

— In an Ada multitasking environment, all tasks created by the execution of the
active partition shall cease execution permanently.

— All open file descriptors and open directories in the calling process shall be
closed. The disposition of any output buffered by the Ada runtime system is
implementation defined. (See 8.1.1.3 for a description of buffer flushing opera-
tions.)

— If the parent process of the calling process is executing a blocking Wait_For_-
Child_Process operation for the calling process, it shall be notified of the ter-
mination of the calling process and the exit status value shall be returned to the
parent. (If the parent is an Ada active partition, the exit status shall be returned
as part of the termination status value returned by the Wait_For_Child_Pro-
cess operation.)

— If the parent process of the calling process is not executing a Wait_For_Child_-
Process operation for the calling process, the exit status value shall be saved
for return to the parent process whenever the parent process executes an appro-
priate subsequent Wait_For_Child_Process operation.

— Termination of the process does not directly terminate its child processes. How-
ever, the sending of a Signal_Hangup signal to a child as a consequence of ter-
mination of its parent (see further down this list) may indirectly terminate the
child process in some circumstances. Child processes of a terminated process
shall be assigned a new parent process ID, corresponding to an implementation-
definedsystem process.

— If the implementation supports the Signal_Child signal, a Signal_Child
signal shall be sent to the parent process.

— If the process is a controlling process, the Signal_Hangup signal shall be sent
to each process in the foreground process group of the controlling terminal be-
longing to the calling process.

— If the process is a controlling process, the controlling terminal associated with
the session shall be disassociated from the session, allowing it to be acquired by
a new controlling process.

— If the implementation supports the Job Control option, if the exit of the process
causes a process group to become orphaned, and if any member of the newly
orphaned process group is stopped, then a Signal_Hangup signal followed by a
Signal_Continue signal shall be sent to each process in the newly orphaned
process group.

— If the Semaphores option is supported: All open named semaphores in the calling
process shall be closed as if by appropriate calls to POSIX_Semaphores.Close .

3.1 Package POSIX_Process_Primitives 103

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

— If the Memory Locking option is supported: Any memory locks established by the
process via calls to POSIX_Memory_Locking.Lock_All or POSIX_Memory_-
Range_Locking.Lock_Range shall be removed. If locked pages in the address
space of the calling process are also mapped into the address spaces of other
processes and are locked by those processes, the locks established by the other
processes shall be unaffected by the call to Exit_Process of the calling process.

— If the Memory Mapped Files option is supported: Memory mappings created in the
process shall be unmapped before the process is destroyed.

— If the Message Queues option is supported: All open message queue descriptors in
the calling process shall be closed, as if by appropriate calls to POSIX_Message_-
Queues.Close .

— If the Asynchronous I/O option is supported: Any outstanding cancelable asyn-
chronous I/O operations may be canceled. AIO operations that are not canceled
shall complete as if the Exit_Process operation had not yet occurred, but any
associated signal notifications shall be suppressed. The Exit_Process opera-
tion itself may or may not block awaiting such I/O completion. Whether any I/O
is canceled and which I/O may be canceled upon Exit_Process are implemen-
tation defined.

When an Ada active partition exits without explicitly calling Exit_Process , the
Ada language implementation shall provide the exit status value.

The exit status value of an Ada active partition shall be Unhandled_Exception_-
Exit if completion occurs because of an unhandled exception.

For a child process that is terminated before the beginning of execution of the pro-
gram or active partition in the new process image file, as described in 3.1.2, the exit
status value shall be Failed_Creation_Exit . By convention, a POSIX/Ada ap-
plication should not use the two predefined exit status values for other meanings.
However, the POSIX/Ada interface shall permit these values to be used with Exit_-
Process .

3.1.3.3 Error Handling

No exceptions shall be raised by Exit_Process .

3.1.4 Termination Status

3.1.4.1 Synopsis

type Termination_Status is private ;
type Termination_Cause is

(Exited, Terminated_By_Signal, Stopped_By_Signal);
function Status_Available (Status : Termination_Status)

return Boolean;
function Process_ID_Of (Status : Termination_Status)

return POSIX_Process_Identification.Process_ID;
function Termination_Cause_Of (Status : Termination_Status)

return Termination_Cause;
function Exit_Status_Of (Status : Termination_Status)

return Exit_Status;
function Termination_Signal_Of (Status : Termination_Status)

return POSIX_Signals.Signal;
function Stopping_Signal_Of (Status : Termination_Status)

return POSIX_Signals.Signal;

104 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

3.1.4.2 Description

The type Termination_Status is used to provide information about the condition
that caused termination of a process. If the implementation supports the Job Control
option, the type Termination_Status is also used to provide information about the
condition that caused a process to be stopped. Information may be extracted from a
value of type Termination_Status by means of query functions.

For each value of type Termination_Status , it shall be possible to determine
whether status is available from that value. All objects of type Termination_-
Status shall have a default initial value from which status is not available.

Each value of the type Termination_Status from which status is available shall
have an associated value of Process_ID , which specifies the process for which status
is available, and an associated value of Termination_Cause , which specifies one of
the reasons an Ada process may terminate or stop. The possible termination causes
are

Exited

Some task in the process called Exit_Process (see 3.1.3), or the process
was implicitly terminated by the action of the Ada language implementa-
tion in response to normal active partition completion, propagation of an
unhandled exception, or receipt of a signal caught by the Ada language im-
plementation. In all these cases the process is said to have “exited.”
NOTE: The termination of the environment task is required to await the termination
of all tasks created as part of the execution of the partition, except when a task calls
Exit_Process (see 10.2 (25) of the Ada RM f1g).

Terminated_By_Signal

The process was terminated by the action of the operating system due to
the receipt of a signal that was not caught by the application or the runtime
system of the Ada language implementation.

Stopped_By_Signal

The process was stopped by a signal.

Status_Available shall return True if and only if status is available from the
Status parameter.

Process_ID_Of shall return the process ID of the Status parameter if status is
available from it. Otherwise, this operation shall raise POSIX_Error .

Termination_Cause_Of shall return the termination cause of the Status parame-
ter if status is available from it. Otherwise, this operation shall raise POSIX_Error .

Whether one of the other query functions returns a value for a given termination
status value is determined by the associated termination cause, as follows:

Exited

Exit_Status_Of shall return the exit status of the process, as defined in
3.1.3.

Terminated_By_Signal

Termination_Signal_Of shall return the signal that caused the process
to terminate.

3.1 Package POSIX_Process_Primitives 105

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Stopped_By_Signal

Stopping_Signal_Of shall return the signal that caused the process to
stop.

An attempt to call these query functions for a termination status value for which
status is not available, or with a termination cause other than the one specified for
that function, shall cause POSIX_Error to be raised.

3.1.4.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

(1) Process_ID_Of , Exit_Status_Of , Termination_Signal_Of , or Ter-
mination_Cause_Of was called with an argument Status from which
status is not available.

(2) Exit_Status_Of was called with a parameter for which Termina-
tion_Cause_Of would not return Exited .

(3) Termination_Signal_Of was called with an argument for which Ter-
mination_Cause_Of would not return Terminated_By_Signal .

(4) Stopping_Signal_Of was called with an argument for which Termi-
nation_Cause_Of would not return Stopped_By_Signal .

No exceptions shall be raised by Status_Available .

3.1.5 Wait for Process Termination

3.1.5.1 Synopsis

procedure Wait_For_Child_Process
(Status : out Termination_Status;

Block : in Boolean := True;
Trace_Stopped : in Boolean := True;
Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

procedure Wait_For_Child_Process
(Status : out Termination_Status;

Child : in POSIX_Process_Identification.Process_ID;
Block : in Boolean := True;
Trace_Stopped : in Boolean := True;
Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

procedure Wait_For_Child_Process
(Status : out Termination_Status;

Group : in POSIX_Process_Identification.Process_Group_ID;
Block : in Boolean := True;
Trace_Stopped : in Boolean := True;

Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

106 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

3.1.5.2 Description

Wait_For_Child_Process allows the calling process to enquire about the status of
one of its child processes. Status shall be available for a process if the process has
terminated or is stopped and its status has not been reported by Wait_For_Child_-
Process since it terminated or was last stopped.

A process that is stopped may be signaled to continue. If a child process is stopped
and then is signaled to continue before its parent attempts to obtain status for it,
the parent will not find status available until the process is stopped again or ter-
minates. If a process is signaled to continue after status has been obtained, status
may be obtained for that process again if it is stopped again or terminates. If status
information is available for two or more processes, the order in which their status is
reported is unspecified.

An implementation may define additional circumstances under which status is avail-
able for a child process. Status shall not be made available under such additional cir-
cumstances unless the calling process or one of its child processes explicitly makes
use of a nonstandard extension. In these cases, the interpretation of the reported
status is implementation defined.

The status of a child process has not yet been reported if either

(1) It has not terminated and is not stopped.

(2) It has terminated or is stopped and has status available.

Wait_For_Child_Process shall permit the calling process to obtain the status
of one out of a set of child processes. This set is specified by the parameters. The
parameter Traced_Stopped specifies whether stopped child processes are to be in-
cluded if the implementation supports the Job Control option. If the implementation
supports the Job Control option, stopped child processes shall be included in the set
only if Traced_Stopped is True . The parameter Masked_Signals specifies which
additional signals shall be blocked from delivery during the operation. (See 2.4.1.6.)
If more than one task waits for a particular child, only one task shall return with the
status of the child; what occurs for the other tasks is unspecified.

For the form of Wait_For_Child_Process without a parameter Child or Group ,
the set of processes for which status is requested contains all the child processes
of the calling process. For the form of Wait_For_Child_Process with parameter
Child , this set contains only the child process with the specified process ID. For the
form of Wait_For_Child_Process with parameter Group , the set contains all the
child processes that are members of the specified process group.

When this set contains a child process whose status has not yet been reported and
for which status is available, the status of the child shall be returned in the param-
eter Status . The process ID of the child process shall be available by applying the
function Process_ID_Of to the value returned in the parameter Status .

If the set of processes for which status is requested contains no child processes,
POSIX_Error shall be raised with error code No_Child_Process .

If the set of processes for which status is requested contains child processes whose
statuses have not yet been reported, but status is not available for any of these, the

3.1 Package POSIX_Process_Primitives 107

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

operation shall either block until status becomes available or return without report-
ing status, as determined by the value of the parameter Block . If Block is False ,
the procedure shall return a value for the parameter Status so that Status_Avail-
able shall return False .

NOTE: The other query functions raise POSIX_Error for such a value of Status .

If Block is True , the procedure shall block the calling process until status becomes
available for a child process in the set specified by the other parameters.

NOTE: In the Ada multitasking environment, waiting for status of a child process may affect
the entire process, not just the calling task. Whether the entire process or just the calling task
is blocked is specified by the constant POSIX.Wait_For_Child_Blocking_Behavior . (See
2.4.1.5.)

3.1.5.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

No_Child_Process

Wait_For_Child_Process was called with parameters that specify an
empty set of child processes.

Interrupted_Operation

The operation was interrupted by a signal.

3.2 Package POSIX_Unsafe_Process_Primitives

with POSIX,
POSIX_Process_Environment,
POSIX_Process_Identification;

package POSIX_Unsafe_Process_Primitives is
-- 3.2.1 Process Creation
function Fork return POSIX_Process_Identification.Process_ID;
-- 3.2.2 File Execution
procedure Exec

(Pathname : in POSIX.Pathname;
Arg_List : in POSIX.POSIX_String_List := POSIX.Empty_String_List;
Env_List : in POSIX_Process_Environment.Environment);

procedure Exec
(Pathname : in POSIX.Pathname;

Arg_List : in POSIX.POSIX_String_List := POSIX.Empty_String_List);
procedure Exec_Search

(Filename : in POSIX.Filename;
Arg_List : in POSIX.POSIX_String_List := POSIX.Empty_String_List;
Env_List : in POSIX_Process_Environment.Environment);

procedure Exec_Search
(Filename : in POSIX.Filename;

Arg_List : in POSIX.POSIX_String_List := POSIX.Empty_String_List);

end POSIX_Unsafe_Process_Primitives;

This package gives the user the capability to create a new process with Fork and to
cause the current process to execute a new process image with Exec or Exec_Search .

108 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

These operations are most frequently used as part of a sequence, in which the parent
process uses Fork to create a child, the child process alters its state, and then the
child uses Exec or Exec_Search to execute a new program or active partition.

A Strictly Conforming POSIX.5 Application shall call Fork only if it has no untermi-
nated tasks (other than the environment task corresponding to the active partition)
and every file open for output has been flushed since the last output operation on
that file. For other uses of Fork , the relationship of the state of the child process to
the state of the calling process and the disposition of buffered output are unspecified.

A Strictly Conforming POSIX.5 Application shall call Exec and Exec_Search only
if every file open for output has been flushed since the last output operation to that
file. For other uses of these procedures, the disposition of any buffered output is
unspecified.

The new process may be created with only a single task. If so, the new process con-
tains a replica of the calling task and its entire address space, possibly including the
states of mutexes and other resources. Consequently, the effect on the child process
of executing any operations on mutexes or condition variables, any potentially block-
ing operations, or any Ada tasking operations until such time as one of the Exec
family of operations is called is undefined.

For maximum portability, the application should avoid use of this package; if pos-
sible, it should use the operations of the package POSIX_Process_Primitives ,
instead.

3.2.1 Process Creation

3.2.1.1 Synopsis

function Fork return POSIX_Process_Identification.Process_ID;

3.2.1.2 Description

Fork shall create a new process, which is called the child process. The child process
shall be an exact copy of the calling process, which is called the parent process, except
for the following:

— The child process shall have a unique process ID.

— The parent process ID of the child shall be the process ID of the calling process.

— The child process shall have its own copy of the file descriptors of the parent.
Each of file descriptors of the child shall refer to the same open file description
as the parent.

— The per-process time-accounting information of the child (i.e., user CPU time,
system CPU time, user CPU time of the descendants, system time of the descen-
dants) shall be set to zero. (See 4.2.1 for a description of process time accounting.)

— File locks previously set by the parent shall not be inherited by the child. (See
6.2.1 for a description of file locking.)

3.2 Package POSIX_Unsafe_Process_Primitives 109

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

— The set of signals pending for the child process shall be initialized to the empty
set. (See 3.3.7 for a description of signal sets.)

— If the parent process has more than one unterminated task, the set of untermi-
nated tasks in the child process is unspecified.

— If the Semaphores option is supported: Any semaphores that are open in the par-
ent process shall also be open in the child process.

— If the Memory Locking option is supported: The child process shall not inherit
any address space memory locks established by the parent process via calls
to POSIX_Memory_Locking.Lock_All or POSIX_Memory_Range_Locking.-
Lock_Range .

— If the Memory Mapped Files option is supported: Memory mappings created in the
parent shall be retained in the child process. Private mappings (see POSIX_-
Memory_Mapping.Map_Private) inherited from the parent shall also be private
mappings in the child. Any modifications to the data in these mappings made by
the parent prior to calling Fork shall be visible to the child. Any modifications
to the data in private mappings made by the parent after Fork returns shall be
visible only to the parent. Modifications to the data in private mappings made
by the child shall be visible only to the child.

— If the Priority Process Scheduling option is supported: If the FIFO_Within_Prior-
ities or Round_Robin_Within_Priorities scheduling policy is in effect for
the calling process, the child process shall inherit the policy and priority settings
of the parent process during a Fork operation.. For other scheduling policies, the
policy and priority settings on Fork are implementation defined.

— If the Timers option is supported: The child process shall not inherit any timers
created by the parent.

— If the Message Queues option is supported: The child process shall have its own
copy of the message queue descriptors of the parent process. Each of the message
queue descriptors of the child process refers to the same open message queue
description as the corresponding message queue descriptor of the parent.

— If the Asynchronous I/O option is supported: No AIO operations shall be inherited
by the child process.

All other process attributes defined by this standard shall be the same in the parent
and the child processes. The inheritance of attributes not defined by this standard is
implementation defined.

Upon successful completion, Fork shall return the value Null_Process_ID to the
child process and shall return the Process_ID of the child process to the parent.
Both processes shall continue to execute from the call to Fork . Both parent and
child processes shall be capable of executing independently before either terminates.

If Fork raises an exception, no process shall be created.

3.2.1.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

110 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Resource_Temporarily_Unavailable

The system lacked the necessary resources to create another process, or Child
Processes Maximum would be exceeded. (Information on the latter limit is
provided by Child_Processes_Maximum in the package POSIX_Config-
urable_System_Limits , described in 4.5.)

Not_Enough_Space

The system detected that the process requires more storage space than the
system is able to supply.

3.2.2 File Execution

3.2.2.1 Synopsis

procedure Exec
(Pathname : in POSIX.Pathname;

Arg_List : in POSIX.POSIX_String_List := POSIX.Empty_String_List;
Env_List : in POSIX_Process_Environment.Environment);

procedure Exec
(Pathname : in POSIX.Pathname;

Arg_List : in POSIX.POSIX_String_List := POSIX.Empty_String_List);
procedure Exec_Search

(Filename : in POSIX.Filename;
Arg_List : in POSIX.POSIX_String_List := POSIX.Empty_String_List;
Env_List : in POSIX_Process_Environment.Environment);

procedure Exec_Search
(Filename : in POSIX.Filename;

Arg_List : in POSIX.POSIX_String_List := POSIX.Empty_String_List);

3.2.2.2 Description

Exec and Exec_Search shall cause the calling process to execute a new process
image. The new process image is constructed from a regular, executable file called
the new process image file. There shall be no return from a successful call to Exec or
Exec_Search because the old process image of the calling process is overlaid by the
new process image.

The replacement of the calling process by the new process image is immediate and
does not involve any Ada-specific finalization. In particular, if there are tasks besides
the calling task, they immediately shall cease to exist along with the old process
image. Similarly, if there is buffered output, it shall be discarded along with the old
process image.

NOTE: The effects of Exec and Exec_Search on tasks and buffered output, described above,
are similar to the effects if the process is terminated by the action of a signal or that calls
Exit_Process .

Exec shall specify the new process image by the value of the parameter Pathname .
Exec_Search shall specify the new process image file by the value of the parameter
Filename . If the parameter Filename does not contain a slash character, the path
prefix for this file shall be obtained by a search of the directories passed as the en-
vironment variable PATH. (See 2.11 and 4.3.2.) If this environment variable is not
defined, the results of the search are implementation defined.

3.2 Package POSIX_Unsafe_Process_Primitives 111

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

The parameter Arg_List shall become the new argument list of the calling process.
By convention, the first component of Arg_List should be the filename of the file
specified by the parameter Pathname or Filename . (See 4.3.1.)

If the parameter Environment is present, it shall become the new environment of
the calling process. Otherwise, the current environment of the calling process shall
be maintained. (See 2.11 and 4.3.2.)

The number of POSIX characters available for the combined argument and envi-
ronment lists may be limited by the implementation to Argument List Maximum. (In-
formation on this limit is provided by Argument_List_Maximum in the package
POSIX_Configurable_System_Limits , described in 4.5.)

File descriptors open in the calling process image shall remain open in the new pro-
cess image, except that those with mode Close_on_Exec (see 6.1.7) shall be closed.
For file descriptors that remain open, all attributes of the open file description, in-
cluding the file locks, shall remain unchanged by this operation. (See 6.2.1.)

Any active directory iterators shall be terminated, and any associated implementa-
tion file structures shall be closed.

The operation shall leave the signal actions in the calling process unchanged, except
that any bindings of signals to task entries shall be broken and the actions for these
signals shall revert to the defaults.

NOTE: The statement above implies that signals that are set to be ignored by the calling
process shall also be ignored in the new process image.

The set of signals blocked from delivery for the environment task of the process shall
be that of the calling task.

If the new process image file has permission Set_User_ID , the effective user ID of
the process shall be set to the owner ID of the new process image file. (See 4.1.3.)
Similarly, if the new process image file has permission Set_Group_ID , the effective
group ID of the process is set to the group ID of the new process image file. The real
user ID, real group ID, and supplementary group IDs of the process remain the same
as those of the calling process. If the Saved IDs option is supported, the effective user
ID and effective group ID of the process shall be saved (as the saved set-user-ID and
the saved set-group-ID) for use by the Set_User_ID and Set_Group_ID operations.
(See 4.1.4.)

The process also shall retain the following attributes from the calling process:

— Process ID

— Parent process ID

— Process group ID

— Session membership

— Real user ID

— Real group ID

— Supplementary group IDs

112 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

— Time left until an alarm clock signal paragraphs)
NOTE: The time left until an alarm clock signal is not something that would ordinarily
be observable to an Ada application, since this signal is a reserved signal. (See 2.2.2.155.)
However, this may be observable by the new process image if it was implemented in an-
other programming language.

— Current working directory
— Root directory
— File mode creation mask (see 5.1.1)
— Pending signals (see 3.3)
— Process times (see 4.2.1)

If the Semaphores option is supported: Any named semaphores that are open in the
calling process shall be closed as if by appropriate calls to POSIX_Semaphores.-
Close .

If the Memory Locking option is supported: Memory locks established by the calling
process via calls to POSIX_Memory_Locking.Lock_All or POSIX_Memory_Range_-
Locking.Lock_Range shall be removed. If locked pages in address space of the
calling process are also mapped into the address space of other processes and are
locked by those processes, the locks established by the other processes shall be unaf-
fected by the call to Exec or Exec_Search . If Exec or Exec_Search fails, the effect
on memory locks is unspecified.

If the Memory Mapped Files option is supported: Memory mappings created in the
process shall be unmapped before the address space is rebuilt for the new process
image.

If the Priority Process Scheduling option is supported: If the FIFO_Within_Priorities
or Round_Robin_Within_Priorities scheduling policy is in effect for the calling
process, the policy and priority settings shall not be changed by a call to Exec or
Exec_Search . For other scheduling policies, the policy and priority settings on Exec
or Exec_Search are implementation defined.

If the Timers option is supported: Any timers created by the calling process shall be
deleted before replacing the current process image with the new process image.

If the Message Queues option is supported: All open message queue descriptors in the
calling process shall be closed, as described in POSIX_Message_Queues.Close .

If the Asynchronous I/O option is supported: Any outstanding asynchronous I/O oper-
ations may be canceled. Those AIO operations that are not canceled shall complete
as if the Exec or Exec_Search had not yet occurred, but any associated signal noti-
fications shall be suppressed. It is unspecified whether Exec or Exec_Search itself
blocks, awaiting such I/O completion. In no event, however, shall the new process
image created by Exec or Exec_Search be affected by the presence of outstanding
asynchronous I/O operations at the time Exec or Exec_Search is called. Whether
any I/O is canceled, and which I/O may be canceled upon Exec or Exec_Search , is
implementation defined.

All process attributes defined by this standard and not specified in this clause shall
remain unchanged by the operations Exec and Exec_Search . The inheritance of
process attributes not defined by this standard is implementation defined.

3.2 Package POSIX_Unsafe_Process_Primitives 113

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

On successful completion, the process shall begin executing the program or active
partition from the new process image file. The Last Access Time of the file shall be
marked for update. (See 2.3.10.) The new process image file shall be considered to
have been opened. The corresponding close shall be considered to occur at a time
after this open, but before process termination or successful completion of a subse-
quent call to Start_Process , Start_Process_Search , Exec , or Exec_Search by
this process. If the function failed but was able to locate the new process image file,
this standard does not specify whether the Last Access Time of the file is marked for
update.

Otherwise, if the call to either Exec or Exec_Search is not successful, the calling
process shall continue execution, and POSIX_Error shall be raised by the call.

3.2.2.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Argument_List_Too_Long

The number of POSIX characters used by the argument list and the envi-
ronment list of the new process image is greater than the system-imposed
limit, Argument List Maximum. (Information on this limit is provided by Ar-
gument_List_Maximum in the package POSIX_Configurable_System_-
Limits , described in 4.5.
NOTE: This limit may include storage needed for system overhead in maintaining
the list.)

Permission_Denied

Search permission is denied for a directory listed in the path prefix of the
new process image file, or the new process image file is not a regular file and
the implementation does not support execution of files of its type.

Filename_Too_Long

The length in POSIX characters of the specified pathname exceeds Pathname
Limit; or the length in POSIX characters of a component of the specified path-
name is greater than Filename Maximum, and the Filename Truncation option is
not supported for the pathname prefix of that component. (See 5.4.2.)

No_Such_File_Or_Directory

One or more components of the pathname of the new process image file do
not exist, or the parameter Pathname or Filename is a null string.

Not_A_Directory

A component of the path prefix of the new process image file is not a direc-
tory.

Exec_Format_Error

The new process image file has access permission, but is not in the proper
format.

Not_Enough_Space

The new process image requires more memory than is allowed by the hard-
ware or system-imposed memory management constraints.

114 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

3.3 Package POSIX_Signals

This package defines the type Signal and operations for sending, accepting, and
catching signals. Signals are events that may affect the execution of a process.

with POSIX,
POSIX_Process_Identification,
Ada_Task_Identification,
System;

package POSIX_Signals is
-- 3.3.2 Signal Type
type Signal is implementation-defined-integer;;
function Image (Sig : Signal) return String;
function Value (Str : String) return Signal;
-- 3.3.3 Standard Signals
Signal_Null,
SIGNULL : constant Signal := 0;
Signal_Abort,
SIGABRT : constant Signal := implementation-defined;
Signal_Alarm,
SIGALRM : constant Signal := implementation-defined;
Signal_Bus_Error,
SIGBUS : constant Signal := implementation-defined;
Signal_Floating_Point_Error,
SIGFPE : constant Signal := implementation-defined;
Signal_Hangup,
SIGHUP : constant Signal := implementation-defined;
Signal_Illegal_Instruction,
SIGILL : constant Signal := implementation-defined;
Signal_Interrupt,
SIGINT : constant Signal := implementation-defined;
Signal_Kill,
SIGKILL : constant Signal := implementation-defined;
Signal_Pipe_Write,
SIGPIPE : constant Signal := implementation-defined;
Signal_Quit,
SIGQUIT : constant Signal := implementation-defined;
Signal_Segmentation_Violation,
SIGSEGV : constant Signal := implementation-defined;
Signal_Terminate,
SIGTERM : constant Signal := implementation-defined;
Signal_User_1,
SIGUSR1 : constant Signal := implementation-defined;
Signal_User_2,
SIGUSR2 : constant Signal := implementation-defined;
Signal_Child,
SIGCHLD : constant Signal := implementation-defined;
Signal_Continue,
SIGCONT : constant Signal := implementation-defined;
Signal_Stop,
SIGSTOP : constant Signal := implementation-defined;
Signal_Terminal_Stop,
SIGTSTP : constant Signal := implementation-defined;
Signal_Terminal_Input,
SIGTTIN : constant Signal := implementation-defined;
Signal_Terminal_Output,
SIGTTOU : constant Signal := implementation-defined;

3.3 Package POSIX_Signals 115

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Signal_IO,
SIGIO : constant Signal := implementation-defined;
Signal_Out_Of_Band_Data,
SIGURG : constant Signal := implementation-defined; c
subtype Realtime_Signal is Signal range implementation-defined;
-- 3.3.7 Signal Sets
type Signal_Set is private ;
procedure Add_Signal

(Set : in out Signal_Set;
Sig : in Signal);

procedure Add_All_Signals (Set : in out Signal_Set);
procedure Delete_Signal

(Set : in out Signal_Set;
Sig : in Signal);

procedure Delete_All_Signals (Set : in out Signal_Set);
function Is_Member

(Set : Signal_Set;
Sig : Signal)

return Boolean;
-- 3.3.8 Block and Unblock Signals
procedure Set_Blocked_Signals

(New_Mask : in Signal_Set;
Old_Mask : out Signal_Set);

procedure Block_Signals
(Mask_to_Add : in Signal_Set;

Old_Mask : out Signal_Set);
procedure Unblock_Signals

(Mask_to_Subtract : in Signal_Set;
Old_Mask : out Signal_Set);

function Blocked_Signals return Signal_Set;
-- 3.3.9 Ignore Signals
procedure Ignore_Signal (Sig : in Signal);
procedure Unignore_Signal (Sig : in Signal);
procedure Restore_Default_Action (Sig : in Signal)

renames Unignore_Signal;
function Is_Ignored (Sig : Signal) return Boolean;
procedure Install_Empty_Handler (Sig : in Signal); c
-- 3.3.10 Controlling Generation of Signal for Child Process
procedure Set_Stopped_Child_Signal (Enable : in Boolean := True);
function Stopped_Child_Signal_Enabled return Boolean;
-- 3.3.11 Examine Pending Signals
function Pending_Signals return Signal_Set;
-- 3.3.12 Signal Event Notification
type Signal_Event is private ;
type Signal_Data is private ;
type Notification is range implementation-defined;
No_Notification : constant Notification := implementation-defined;
Signal_Notification : constant Notification := implementation-defined;
function Get_Signal (Event : Signal_Event) return Signal;
procedure Set_Signal

(Event : in out Signal_Event;
Sig : in Signal);

function Get_Notification (Event : Signal_Event) return Notification;
procedure Set_Notification

(Event : in out Signal_Event;
Notify : in Notification);

function Get_Data (Event : Signal_Event) return Signal_Data;

116 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

procedure Set_Data
(Event : in out Signal_Event;

Data : in Signal_Data);
-- 3.3.13 Signal Information
type Signal_Source is range implementation-defined;
From_Send_Signal : constant Signal_Source := implementation-defined;
From_Queue_Signal : constant Signal_Source := implementation-defined;
From_Timer : constant Signal_Source := implementation-defined;
From_Async_IO : constant Signal_Source := implementation-defined;
From_Message_Queue : constant Signal_Source := implementation-defined;
type Signal_Info is private ;
function Get_Signal (Info : Signal_Info) return Signal;
procedure Set_Signal

(Info : in out Signal_Info;
Sig : in Signal);

function Get_Source (Info : Signal_Info) return Signal_Source;
procedure Set_Source

(Info : in out Signal_Info;
Source : in Signal_Source);

function Has_Data (Source : Signal_Source) return Boolean;
function Get_Data (Info : Signal_Info) return Signal_Data;
procedure Set_Data

(Info : in out Signal_Info;
Data : in Signal_Data);

-- 3.3.14 Control Signal Queueing
procedure Enable_Queueing (Sig : in Signal);
procedure Disable_Queueing (Sig : in Signal);
-- 3.3.15 Wait for Signal
function Await_Signal (Set : Signal_Set) return Signal;
function Await_Signal_Or_Timeout

(Set : Signal_Set;
Timeout : POSIX.Timespec)

return Signal;
-- 3.3.16 Wait for Signal with Information
function Await_Signal (Set : Signal_Set) return Signal_Info;
function Await_Signal_Or_Timeout

(Set : Signal_Set;
Timeout : POSIX.Timespec)

return Signal_Info;
-- 3.3.17 Signal Entries -- obsolescent
Signal_Abort_Ref : constant System.Address := implementation-defined;
-- Signal_Floating_Point_Error intentionally omitted.
Signal_Hangup_Ref : constant System.Address := implementation-defined;
-- Signal_Illegal_Instruction intentionally omitted.
Signal_Interrupt_Ref : constant System.Address := implementation-defined;
-- Signal_Kill intentionally omitted.
Signal_Pipe_Write_Ref : constant System.Address := implementation-defined;
Signal_Quit_Ref : constant System.Address := implementation-defined;
Signal_Terminate_Ref : constant System.Address := implementation-defined;
Signal_User_1_Ref : constant System.Address := implementation-defined;
Signal_User_2_Ref : constant System.Address := implementation-defined;
Signal_Child_Ref : constant System.Address := implementation-defined;
Signal_Continue_Ref : constant System.Address := implementation-defined;
-- Signal_Stop intentionally omitted.
Signal_Terminal_Stop_Ref : constant System.Address := implementation-defined;
Signal_Terminal_Input_Ref : constant System.Address := implementation-defined;
Signal_Terminal_Output_Ref : constant System.Address := implementation-defined;
function Signal_Reference (Sig : Signal) return System.Address;

3.3 Package POSIX_Signals 117

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

-- 3.3.18 Send a Signal
procedure Send_Signal

(Process : in POSIX_Process_Identification.Process_ID;
Sig : in Signal);

procedure Send_Signal
(Group : in POSIX_Process_Identification.Process_Group_ID;

Sig : in Signal);
procedure Send_Signal (Sig : in Signal);
-- 3.3.19 Queue a Signal
procedure Queue_Signal

(Process : in POSIX_Process_Identification.Process_ID;
Sig : in Signal;
Data : in Signal_Data);

-- 3.3.20 Interrupt a Task
procedure Interrupt_Task (T : in Ada_Task_Identification.Task_ID);

private
implementation-defined

end POSIX_Signals;

3.3.1 Signal Model

A signal is an abstraction of an event. An occurrence of a signal is said to be gener-
ated when the event that causes the signal occurs. Examples of such events include
detection of hardware faults, timer expiration, and terminal activity as well as the
invocation of the Send_Signal operation. A signal may be generated for a process.
A signal may also be generated for a particular task within a process. In some cases,
the same event generates signals for multiple processes.

If signals can be generated for tasks, at the time a signal is generated, a determina-
tion shall be made whether the signal has been generated for the process or for a spe-
cific task within the process. Signals that are generated by some action attributable
to a particular task, such as a hardware fault, shall be generated for the task that
caused the signal to be generated. Signals that are generated in association with a
process ID, a process group ID, or an asynchronous event such as terminal activity
shall be generated for the process.

A signal may be accepted synchronously by a task within a process. Alternatively,
it may be delivered asynchronously to a task within a process. The latter will only
be visible to the task indirectly, through a service performed by the Ada runtime
system such as the Interrupt_Task operation described in 3.3.20, and through the
exception POSIX_Error being raised with error code Interrupted_Operation if
the task is executing a call to the interruptible operations described in 3.3.6 of this
standard. These two different kinds of signal notification are explained below.

A task is said to accept a signal when the signal is selected and returned by one of
the signal-awaiting operations defined by this standard, which cause a task to block
and wait for the arrival of a signal. These operations are as follows:

— POSIX_Signals.Await_Signal

— POSIX_Signals.Await_Signal_Or_Timeout

See 3.3.15 and 3.3.16 for more details.

118 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

If the Signal Entries option is supported: A task is also said to accept a signal when it
executes a rendezvous via an accept statement for a task entry that has been bound
to the signal.

NOTE: Throughout this section, the term “accept” is used to mean both of the signal notifica-
tion mechanisms defined above, and is used in contrast to the term “deliver” defined below.

The system is said to deliver a signal occurrence when it performs an action in re-
sponse to the signal occurrence, other than holding the signal occurrence pending for
a task to accept it. For each process and signal, there shall be a corresponding signal
action that shall be taken by the system when it delivers the signal.

The possible signal actions include the following:

Ignore the signal.
Only certain signals can be ignored. An attempt to call Ignore_Signal
or Unignore_Signal for a signal that is not permitted to be ignored shall
cause POSIX_Error to be raised with error code Invalid_Argument .
If the signal action for a signal is to ignore it, delivery of the signal shall
have no effect on the process.
Setting the signal action to ignore for a signal that is pending shall cause
any pending occurrences of the signal to be discarded, whether or not the
signal is blocked. Any queued values pending shall be discarded and the
resources used to queue them shall be released and made available to queue
other signals. If a process sets the action for Signal_Child to ignore, the
behavior is unspecified.

Catch the signal.
Other languages allow that certain signals may be caught within the process
to which they are delivered, via a signal handler subprogram installed by
the application (see POSIX.1). This mechanism is not directly available to
Ada applications under this standard. However, handler subprograms may
be installed by the Ada language implementation, for the reserved signals
(see 2.2.2.155), and possibly for signals attached to task entries. In mixed-
language programs, they may also be installed via interfaces not defined
by this standard. The effect on an Ada active partition of calling an Ada
tasking operation or transferring control from a handler installed by such
means (via, e.g., C-language longjmp(), propagation of an Ada exception,
goto) is undefined.

Take the default action.
Every signal has a default signal action. (See 3.3.4.) The default action is
taken if all of the following conditions are satisfied:
— No task is currently waiting for the signal.
— No entry is bound to the signal.
— The signal action has not been set to ignore the signal.

The effect of changing the signal action for a signal that is currently awaited by a
task is unspecified.

3.3 Package POSIX_Signals 119

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

NOTE: It is specified in POSIX.1 that when a task calls one of the signal-awaiting operations
to wait for a set of signals the effect on the actions is unspecified. Thus, it is unsafe to allow a
signal to be unblocked for delivery to any task after any task has performed a signal-awaiting
operation on that signal in the process, until some operation has been executed to restore the
signal action to a well-defined state. (See 3.3.15 of this standard.)

During the time between the generation of a signal and its acceptance or delivery,
the signal is said to be pending. If the occurrence was generated for the process it
is pending for the process; if it was generated for a specific task it is pending for
that task. Ordinarily, this interval cannot be detected by an application. However,
a signal can be blocked from delivery to a task. If a signal occurrence is generated
for a task and the signal action associated with the signal is anything other than to
ignore the signal, the signal occurrence shall remain pending until it is unblocked
for delivery to that task, it is accepted by a call to a signal-awaiting operation by
that task, or the action is set to ignore the signal. Signals generated for the process
shall be accepted by or delivered to exactly one of the tasks within the process that
is ready to accept the signal or for which the signal is not blocked from delivery. If
no tasks are ready to accept the signal and the signal is blocked from delivery to all
tasks within the process, the signal occurrence shall remain pending on the process
until a task is ready to accept the signal, the signal is no longer blocked from delivery
to some task, or the action associated with the signal is set to ignore the signal. If
the action associated with a blocked signal is to ignore the signal and if that signal
is generated for the process or task, it is unspecified whether the signal is discarded
immediately upon generation or remains pending.

Generation of a signal is guaranteed to cause a subsequent attempt at delivery, but
there is no guarantee that an attempt at delivery will be made for every occurrence
of the signal. In the case where the signal is generated again while a previous occur-
rence is still pending, the system need not queue multiple occurrences of a signal.

If the Realtime Signals option is supported: Queueing may be enabled for a signal (see
3.3.14). When queueing is enabled for a signal, operations that generate occurrences
of the signal are guaranteed to queue the signal if they return normally and to fail if
there are insufficient resources to queue the signal.

The set of signals that is blocked from delivery to a task is called the signal mask of
the task. It is unspecified whether the signal mask of a task is an attribute of the
individual task or an attribute of the process to which the task belongs.

It is implementation defined whether the signal mask is per task or per process.

For the environment task, the initial signal mask is that specified for the process in
process creation (see 3.1.2 and 3.2.1).

NOTE: It is anticipated that the paragraph above may be modified by a future revision of this
standard to require that the realtime signals always be initially masked for a process that is
an Ada active partition. See B.3.8 for further details.

For all other tasks, the initial signal mask shall include all the signals that are not
reserved signals (see 2.2.2.155) and are not bound to entries of the task.

An application can explicitly modify the signal mask via calls to Block_Signals ,
Unblock_Signals , and Set_Blocked_Signals .

120 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

NOTE: Applications may mask signals when in critical regions. A critical region is a region
of code where uninterrupted control is required to maintain consistency of the perceived and
actual state of resources. c

The implementation of the Ada language or this standard may temporarily block
signals during the execution of operations defined by this standard and during calls
to the Ada runtime system, as necessary.

The implementation is also allowed to block or unblock any of the reserved signals
(see 2.2.2.155) and any of the signals bound by the application to task entries at any
time that is consistent with the other specifications in this standard.

The determination of which signal action is taken in response to a signal that is de-
livered is made at the time the signal is delivered, allowing for any changes since
the time of generation. This determination is independent of the means by which
the signal was originally generated. If a subsequent occurrence of a pending sig-
nal is generated, it is implementation defined as to whether the signal is delivered
more than once. The order in which multiple, simultaneously pending signals are
delivered to a process is unspecified unless the Realtime Signals option is supported.

When any stop signal (Signal_Stop , Signal_Terminal_Stop , Signal_Termi-
nal_Input , Signal_Terminal_Output) is generated for a process, any pending
Signal_Continue signals for that process shall be discarded. Conversely, when
Signal_Continue is generated for a process, all pending stop signals for that pro-
cess shall be discarded. When Signal_Continue is generated for a process that is
stopped, the process shall be continued, even if the Signal_Continue is blocked or
ignored. If Signal_Continue is blocked and not ignored, it shall remain pending
until it is either unblocked or a stop signal is generated for the process.

NOTE: If Signal_Continue is blocked and not ignored, continuing the process means the
signal will cause the process to resume executing but will not cause it to execute any asyn-
chronous signal handler.

Some signal-generating operations, such as high-resolution timer expiration, AIO
completion, interprocess message arrival, and the Queue_Signal procedure, sup-
port the specification of an application-defined data value, which can be queued to
a process associated with a signal, and then retrieved from the return value of the
Await_Signal function (see 3.3.16).

When a signal is generated by the Queue_Signal procedure or any signal-generating
operation that supports the specification of an application-defined data value, the sig-
nal shall be marked pending and, if queueing is enabled for that signal, the signal
shall be queued to the process along with the application specified data value. Multi-
ple occurrences of signals so generated shall be queued in FIFO order. If queueing is
not enabled for the signal, it is unspecified whether signals so generated are queued,
or what data value, if any, is queued with them.

Signals generated by the Send_Signal function or other events that cause signals
to occur (such as detection of hardware faults or terminal activity) and for which the
implementation does not support signal queueing shall have no effect on occurrences
of the signal already queued for the same signal.

When multiple unblocked signals, all in the range Realtime_Signal , are pending,
the behavior shall be as if the implementation delivers the pending, unblocked signal

3.3 Package POSIX_Signals 121

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

with the lowest signal number within that range. No other ordering of signal delivery
is specified.

If, when a pending signal occurrence is delivered, there are additional occurrences
of that signal queued, they shall remain pending. Otherwise, the pending indication
shall be removed.

3.3.2 Signal Type

3.3.2.1 Synopsis

type Signal is implementation-defined-integer;;
function Image (Sig : Signal) return String;

function Value (Str : String) return Signal;

3.3.2.2 Description

The type Signal shall be used to represent signals. The mapping from signals to
values of type Signal is implementation defined, subject to the requirement that it
be one-to-one.

The values of the type Signal shall represent valid signals in the implementation.

Image shall return a string identifying the signal specified by the parameter Sig . If
Sig is the value of one of the signals defined by this standard, the value returned by
Image shall be the identifier of the corresponding long-name constant, in uppercase.
Otherwise, the value returned by Image is implementation defined, subject to the
requirement that it shall be distinct for each signal supported by the implementation.

Value shall return the value of type Signal corresponding to the parameter Str .
If Str matches either the short name or the long name of an identifier for a signal
supported by the implementation, ignoring leading and trailing blanks and adjusting
the case of letters as necessary, Value shall return the corresponding signal value.
Otherwise, if Str does not match the image of any signal supported by the imple-
mentation, Value shall raise Constraint_Error . In any case, for every signal S
supported by the implementation, Value(Image(S))=S .

3.3.2.3 Error Handling

Constraint_Error shall be raised by Value if Str does not match the image of any
of the signals supported by the implementation.

No exceptions shall be raised by Image .

3.3.3 Standard Signals

3.3.3.1 Synopsis

Signal_Null,
SIGNULL : constant Signal := 0;
Signal_Abort,
SIGABRT : constant Signal := implementation-defined;
Signal_Alarm,
SIGALRM : constant Signal := implementation-defined;

122 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Signal_Bus_Error,
SIGBUS : constant Signal := implementation-defined;
Signal_Floating_Point_Error,
SIGFPE : constant Signal := implementation-defined;
Signal_Hangup,
SIGHUP : constant Signal := implementation-defined;
Signal_Illegal_Instruction,
SIGILL : constant Signal := implementation-defined;
Signal_Interrupt,
SIGINT : constant Signal := implementation-defined;
Signal_Kill,
SIGKILL : constant Signal := implementation-defined;
Signal_Pipe_Write,
SIGPIPE : constant Signal := implementation-defined;
Signal_Quit,
SIGQUIT : constant Signal := implementation-defined;
Signal_Segmentation_Violation,
SIGSEGV : constant Signal := implementation-defined;
Signal_Terminate,
SIGTERM : constant Signal := implementation-defined;
Signal_User_1,
SIGUSR1 : constant Signal := implementation-defined;
Signal_User_2,
SIGUSR2 : constant Signal := implementation-defined;
Signal_Child,
SIGCHLD : constant Signal := implementation-defined;
Signal_Continue,
SIGCONT : constant Signal := implementation-defined;
Signal_Stop,
SIGSTOP : constant Signal := implementation-defined;
Signal_Terminal_Stop,
SIGTSTP : constant Signal := implementation-defined;
Signal_Terminal_Input,
SIGTTIN : constant Signal := implementation-defined;
Signal_Terminal_Output,
SIGTTOU : constant Signal := implementation-defined;
Signal_IO,
SIGIO : constant Signal := implementation-defined;
Signal_Out_Of_Band_Data,
SIGURG : constant Signal := implementation-defined; c
subtype Realtime_Signal is Signal range implementation-defined;

3.3.3.2 Description

The signals defined by this standard are Signal_Null , the required signals, the job
control signals, the memory protection signal, the realtime signals, and the sockets
DNI signals c.

The required signals are as follows:

Signal_Abort

The abnormal process termination signal. It is a reserved signal. The Ada
language implementation may use this signal in the implementation of the
Ada abort operation.

Signal_Alarm

The timeout signal. It is a reserved signal. The Ada language implementa-
tion may use this signal in the implementation of language-defined opera-
tions with timeouts.

3.3 Package POSIX_Signals 123

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Signal_Floating_Point_Error

The signal for detection of an erroneous arithmetic operation, such as divi-
sion by zero or an operation resulting in overflow. It is a reserved signal. The
Ada language implementation may translate this signal to Constraint_-
Error .

Signal_Hangup

The signal for hang-up detected on the controlling terminal or the termina-
tion of the controlling process. (See 7.1 and 3.1.3.)

Signal_Illegal_Instruction

The signal for detection of an invalid hardware instruction. It is a reserved
signal. The Ada language implementation may translate this signal to an
exception. If Ada.Exceptions is supported, the value of Exception_-
Message shall be the string "Signal_Illegal_Instruction" .

Signal_Interrupt

The interactive attention signal. (See 7.2.1.)

Signal_Kill

The process termination signal. It cannot be accepted, caught, or ignored.

Signal_Pipe_Write

The signal for a write operation to a pipe or a socket that has no readers.
(See 6.1.4 and 18.4.13.1.) c

Signal_Quit

The interactive termination signal. (See 7.2.1.)

Signal_Segmentation_Violation

The signal for detection of an invalid memory reference. It is a reserved
signal. Any occurrences that are not identifiable by the Ada language im-
plementation as corresponding to checks that require some other exception
to be raised shall be mapped to the exception Program_Error , and the
Exception_Message value shall be the string "Signal_Segmentation_-
Violation" .

Signal_Terminate

A process termination signal.

Signal_User_1

A signal set aside for the use of applications; that is, the implementation
shall not generate this signal unless it is explicitly sent by an application.

Signal_User_2

A signal set aside for the use of applications; that is, the implementation
shall not generate this signal unless it is explicitly sent by an application.

The job control signals are

Signal_Child

The signal indicating a child process has terminated or stopped.

Signal_Continue

The signal to continue if stopped.

124 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Signal_Stop

The signal to stop. It cannot be accepted, caught, or ignored.

Signal_Terminal_Stop

The interactive stop signal. (See 7.1.0.12.)

Signal_Terminal_Input

The signal for when a read from the controlling terminal is attempted by a
member of the background process group. (See 7.1.0.7.)

Signal_Terminal_Output

The signal for when a write to the controlling terminal is attempted by a
member of the background process group. (See 7.1.0.7.)

The memory protection signal is

Signal_Bus_Error

The signal indicating access to an undefined portion of a memory object. It
is a reserved signal. The Ada language implementation shall translate this
signal to the exception Program_Error . If Ada 95 is supported, the value
of Exception_Message shall be the string "Signal_Bus_Error" .

The realtime signals are those in the range of the subtype Realtime_Signal .

The required support for the realtime signals is as follows:

— All the required signals shall be supported by every implementation.

— If the Job Control option is supported: Job control signals shall be supported.

— If the Memory Protection option is supported: The memory protection signal shall
be supported.

— If the Realtime Signals option is supported: The realtime signals shall be sup-
ported.

If the Realtime Signals option is supported: The range Realtime_Signal shall include
at least POSIX_Limits.Portable_Realtime_Signals_Maximum values, and shall
not overlap with the named signals defined in this standard. It shall specify a range
of signal numbers that are reserved for application use, and for which the realtime
signal behavior specified in this standard shall be supported.

If the Realtime Signals option is not supported, the range of Realtime_Signal is
unspecified.

The Sockets DNI signals are

Signal_IO

The signal indicating that an I/O event occurred on an asynchronous socket
(see 18.2.6).

Signal_Out_Of_Band_Data

The signal indicating detection of expedited or out-of-band data on a com-
munication endpoint (see 18.2.5.5) c.

3.3 Package POSIX_Signals 125

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

The implementation may support other signals in addition to the signals defined by
this standard.

For signals that are supported, the implementation shall behave in accordance with
this standard. For other signals, the implementation shall not generate these sig-
nals, and attempts to send these signals or to examine or specify their signal actions
shall raise POSIX_Error .

It is implementation defined whether the realtime signal behavior specified in this
standard (specifically, the queueing of signals and the passing of application defined
data values) is supported for signals outside of the range Realtime_Signal .

An Ada application is not permitted to explicitly accept, block, catch, or ignore any
of the reserved signals (see 2.2.2.155). (A process executing an Ada program may
accept, block, catch, or ignore the reserved signals, but only indirectly, via actions
of the Ada runtime system.) The effect of any of these signals being generated for
the process of an Ada active partition, or for any task within it, is implementation
defined.

It is not permitted to accept, catch, or ignore Signal_Kill or Signal_Stop .

An implementation shall not impose restrictions on the ability of an application to
send, accept, block, or ignore the signals defined by this standard, except as specified
in this standard.

Some of the signals defined by this standard are named by the constants of type
Signal declared in this package. The values of these constants are implementation
defined. No additional names are permitted to be declared in the visible part of the
specification of any package defined by this standard. Two names are provided for
each signal. The short name is defined for historical reasons; use of the long name
in an Ada program is preferred. Signal_Null is a value of type Signal that cannot
be sent, accepted, or caught. It shall have the value zero.

NOTE: In other words, the representation of the value of Signal_Null shall be the same as
the integer zero.

3.3.4 Default Signal Actions

The following default signal actions shall be supported:

Terminate
Terminate the process abnormally.

Ignore
Ignore the signal.

Stop
Stop the process.

Continue
Continue the process if it is currently stopped; otherwise, ignore the signal.

126 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

If the default action is to stop the process, the execution of that process (including all
tasks within it) shall be temporarily suspended. When a process stops, a Signal_-
Child signal shall be generated for its parent process, unless the parent process
has disabled this feature, by calling Set_Stopped_Child_Signal with parameter
Enable set to False . (See 3.3.10.)

While a process is stopped, any additional signals (except Signal_Continue) that
are sent to the process shall not be delivered until the process is continued, except
Signal_Kill , which shall always terminate the receiving process. A process that is
a member of an orphaned process group shall not be allowed to stop in response to
the Signal_Terminal_Stop , Signal_Terminal_Input , or Signal_Terminal_-
Output signals. In cases where delivery of one of these signals would stop such a
process, the signal shall be discarded.

The default signal action for all the required signals defined by this standard that
are not reserved signals shall be to terminate the process abnormally. Terminating
the process associated with an Ada active partition shall cause the active partition
and all the tasks within it to cease execution permanently.

The default action for the reserved signals is implementation defined.

The default actions for the job-control signals shall be as shown in Table 3.1.

Table 3.1 – Default Actions for Job Control Signals

Signal Default Action
Signal_Child Ignore
Signal_Continue Continue
Signal_Stop Stop
Signal_Terminal_Stop Stop
Signal_Terminal_Input Stop
Signal_Terminal_Output Stop

The default signal actions for the realtime signals shall be to terminate the process
abnormally.

The default action for the Sockets DNI signals shall be to ignore the signal. c

3.3.5 Tasking Safety

In general, a signal may cause an Ada task to preempt another Ada task directly
through unblocking of a task that was blocked on a signal-awaiting operation or in-
directly through reserved signals that are caught by the Ada language implementa-
tion. Except for operations where special restrictions are explicitly imposed for safe
use with Ada tasking (for example, see Fork in 3.2.1), all POSIX operations shall be
tasking-safe; that is, they shall be safely callable from any place within an Ada task.

NOTE: The requirement for tasking safety does not apply if Ada code is executed via an asyn-
chronous signal handler, as it might be via an interface not defined by this standard.

NOTE: The requirement for tasking safety does not imply any greater degree of safety for
concurrent use than is required of the standard Ada libraries by the Ada RM f1g. That is,
unless it is so specified elsewhere in this standard, operations are not necessarily atomic and
are not necessarily safe to execute concurrently on the same data object.

3.3 Package POSIX_Signals 127

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

All operations defined by this standard shall also be safe for asynchronous abortion.
To ensure safety, the implementation may defer abortion during operations that are
not specified as being interruptible.

3.3.6 Interruptibility

Certain operations defined by this standard are defined to be interruptible opera-
tions. If a signal is delivered to a task while it is executing one of these operations,
the behavior of the operation may be affected. If the signal action of the signal is to
terminate the process, the process shall be terminated and the operation shall not
return. If the action of the signal is to stop the process, the process shall stop un-
til continued or terminated. Subsequent generation of a Signal_Continue signal
for the stopped process shall cause the process to be continued, and the original op-
eration shall continue at the point where the process was stopped. If the action of
the signal is to invoke an asynchronous signal handler, the signal handler shall be
invoked; in this case, the original operation is said to be interrupted by the signal.
When the signal handler returns, the behavior of the interrupted operation shall be
as described individually for that operation.

These rules shall also apply to reserved signals that are caught by the Ada language
implementation, unless they are translated by the Ada runtime system into an ex-
ception to satisfy a requirement of this standard or the Ada RM f1g.

Signals that are ignored shall not affect the behavior of any operation.

Signals that are blocked shall not affect the behavior of any operation until they are
delivered.

The interruptible operations defined in this standard are

— POSIX_Asynchronous_IO.Await_IO_Or_Timeout

— POSIX_Asynchronous_IO.Await_IO

— POSIX_Asynchronous_IO.List_IO_Wait

— POSIX_Event_Management.Poll

— POSIX_Event_Management.Select_File c

— POSIX_File_Locking.Wait_to_Set_Lock

— POSIX_Generic_Shared_Memory.Open_And_Map_Shared_Memory

— POSIX_Generic_Shared_Memory. Open_Or_Create_And_Map_Shared_Memory

— POSIX_IO.Open_Or_Create

— POSIX_IO.Open

— POSIX_IO.Duplicate

— POSIX_IO.Close

— POSIX_IO.Read

— POSIX_IO.Write

— POSIX_Message_Queues.Generic_Message_Queues.Send

— POSIX_Message_Queues.Generic_Message_Queues.Receive

128 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

— POSIX_Message_Queues.Open

— POSIX_Message_Queues.Open_Or_Create

— POSIX_Message_Queues.Send

— POSIX_Message_Queues.Receive

— POSIX_Process_Primitives.Wait_For_Child_Process

— POSIX_Semaphores.Wait (optionally interruptible)

— POSIX_Shared_Memory_Objects.Open_Or_Create_Shared_Memory

— POSIX_Shared_Memory_Objects.Open_Shared_Memory

— POSIX_Signals.Await_Signal

— POSIX_Signals.Await_Signal_Or_Timeout

— POSIX_Sockets.Accept_Connection

— POSIX_Sockets.Bind

— POSIX_Sockets.Connect

— POSIX_Sockets.Create

— POSIX_Sockets.Create_Pair

— POSIX_Sockets.Get_Peer_Name

— POSIX_Sockets.Get_Socket_Broadcast

— POSIX_Sockets.Get_Socket_Debugging

— POSIX_Sockets.Get_Socket_Error_Status

— POSIX_Sockets.Get_Socket_Keep_Alive

— POSIX_Sockets.Get_Socket_Linger_Time

— POSIX_Sockets.Get_Socket_Name

— POSIX_Sockets.Get_Socket_No_Routing

— POSIX_Sockets.Get_Socket_OOB_Data_Inline

— POSIX_Sockets.Get_Socket_Receive_Buffer_Size

— POSIX_Sockets.Get_Socket_Receive_Low_Water_Mark

— POSIX_Sockets.Get_Socket_Receive_Timeout

— POSIX_Sockets.Get_Socket_Reuse_Addresses

— POSIX_Sockets.Get_Socket_Send_Buffer_Size

— POSIX_Sockets.Get_Socket_Send_Low_Water_Mark

— POSIX_Sockets.Get_Socket_Send_Timeout

— POSIX_Sockets.Get_Socket_Type

— POSIX_Sockets.Listen

— POSIX_Sockets.Receive

— POSIX_Sockets.Receive_Message

— POSIX_Sockets.Send

3.3 Package POSIX_Signals 129

c

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

— POSIX_Sockets.Send_Message

— POSIX_Sockets.Set_Socket_Broadcast

— POSIX_Sockets.Set_Socket_Debugging

— POSIX_Sockets.Set_Socket_Keep_Alive

— POSIX_Sockets.Set_Socket_Linger_Time

— POSIX_Sockets.Set_Socket_No_Routing

— POSIX_Sockets.Set_Socket_OOB_Data_Inline

— POSIX_Sockets.Set_Socket_Receive_Buffer_Size

— POSIX_Sockets.Set_Socket_Receive_Low_Water_Mark

— POSIX_Sockets.Set_Socket_Receive_Timeout

— POSIX_Sockets.Set_Socket_Reuse_Addresses

— POSIX_Sockets.Set_Socket_Send_Buffer_Size

— POSIX_Sockets.Set_Socket_Send_Low_Water_Mark

— POSIX_Sockets.Set_Socket_Send_Timeout

— POSIX_Sockets.Shutdown

— POSIX_Sockets.Socket_Is_At_OOB_Mark c

— POSIX_Terminal_Functions.Set_Terminal_Characteristics

— POSIX_Terminal_Functions.Drain

— POSIX_XTI.Accept_Connection

— POSIX_XTI.Acknowledge_Orderly_Release

— POSIX_XTI.Acknowledge_Orderly_Release_With_Data

— POSIX_XTI.Bind

— POSIX_XTI.Close

— POSIX_XTI.Confirm_Connection

— POSIX_XTI.Connect

— POSIX_XTI.Gather_And_Send_Data

— POSIX_XTI.Gather_And_Send_Data_Unit

— POSIX_XTI.Get_Current_State

— POSIX_XTI.Get_Info

— POSIX_XTI.Get_Protocol_Address

— POSIX_XTI.Initiate_Orderly_Release

— POSIX_XTI.Initiate_Orderly_Release_With_Data

— POSIX_XTI.Listen

— POSIX_XTI.Look

— POSIX_XTI.Manage_Options

— POSIX_XTI.Open

130 3 Process Primitives

c

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

— POSIX_XTI.Receive

— POSIX_XTI.Receive_And_Scatter_Data

— POSIX_XTI.Receive_And_Scatter_Data_Unit

— POSIX_XTI.Receive_Data_Unit

— POSIX_XTI.Retrieve_Data_Unit_Error

— POSIX_XTI.Retrieve_Disconnect_Info

— POSIX_XTI.Send

— POSIX_XTI.Send_Data_Unit

— POSIX_XTI.Send_Disconnect_Request

— POSIX_XTI.Synchronize_Endpoint

— POSIX_XTI.Unbind c

Return from a call to an interruptible POSIX operation, whether by normal return
or exception propagation, shall be an abort completion point, as defined in 9.8 (15) of
the Ada RM f1g.

While a task is blocked in an interruptible POSIX operation with the Signal_-
Masking value of No_Signals or RTS_Signals , abort of the task shall cause the
operation to be interrupted.

NOTE: A consequence of these rules is that the task must reach an abort completion point,
since interruption is required to raise POSIX_Error , and propagation of the exception is an
abort completion point. Whether the task is aborted at that point depends on whether the task
is executing an abort deferred operation.

Unless it is stated otherwise in the description of the specific operation, it is a con-
sequence of the rules stated above that a Strictly Conforming POSIX.5 Application
must assume that every invocation of an interruptible operation may raise POSIX_-
Error with error code Interrupted_Operation , unless the application has explic-
itly blocked delivery of signals.

Interruptible operations are provided with a parameter Masked_Signals to permit
the application to block signals during the operation. (See 2.4.1.6.) If the value of
Masked_Signals is No_Signals , the operation shall be interruptible by all signals
not already blocked or ignored. If the value of Masked_Signals is All_Signals , the
operation shall not be interrupted. If the value of Masked_Signals is RTS_Signals ,
then the operation shall not be interrupted by reserved signals, except for Signal_-
Abort which may be unblocked if it is used by the Ada language implementation of
abort. The operation shall be interruptible by any other signals not already explicitly
blocked by the application.

NOTE: The Masked_Signals parameter is the only way an application can protect an inter-
ruptible call against interruption by the reserved signals. (The procedures Block_Signals
and Ignore_Signal do not affect the reserved signals.) Therefore, if Masked_Signals is
No_Signals it is advisable for the application to provide an exception handler for POSIX_-
Error .

3.3 Package POSIX_Signals 131

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

3.3.7 Signal Sets

3.3.7.1 Synopsis

type Signal_Set is private ;
procedure Add_Signal

(Set : in out Signal_Set;
Sig : in Signal);

procedure Add_All_Signals (Set : in out Signal_Set);
procedure Delete_Signal

(Set : in out Signal_Set;
Sig : in Signal);

procedure Delete_All_Signals (Set : in out Signal_Set);
function Is_Member

(Set : Signal_Set;
Sig : Signal)

return Boolean;

3.3.7.2 Description

The type Signal_Set is used to represent sets of signals. It is used to indicate
signals to be accepted or blocked. Objects of type Signal_Set shall be implicitly
initialized to include no signals.

Add_Signal shall add the signal specified by Sig to the set of signals specified by
Set . Any other members of the set shall remain.

Add_All_Signals shall update Set so that it includes all values of the type Signal .

Delete_Signal shall update Set so that it does not include the signal specified by
Sig . No other signals shall be deleted from the set.

Delete_All_Signals shall update the set specified by Set so that it includes no
signals.

NOTE: Add_All_Signals adds all the implementation-defined signals and Delete_All_-
Signals deletes all implementation defined signals, as well as all the signals defined in this
standard.

Is_Member shall return the value True if and only if the set specified by the pa-
rameter Set includes the signal specified by the parameter Sig or the value of the
parameter Sig is Signal_Null .

3.3.7.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

Add_Signal , Delete_Signal , or Is_Member was called with a value of
Sig that is not a valid signal in this implementation.
Delete_All_Signals and Add_All_Signals shall not raise any exception
in this case.

132 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

3.3.8 Block and Unblock Signals

3.3.8.1 Synopsis

procedure Set_Blocked_Signals
(New_Mask : in Signal_Set;

Old_Mask : out Signal_Set);
procedure Block_Signals

(Mask_to_Add : in Signal_Set;
Old_Mask : out Signal_Set);

procedure Unblock_Signals
(Mask_to_Subtract : in Signal_Set;

Old_Mask : out Signal_Set);

function Blocked_Signals return Signal_Set;

3.3.8.2 Description

Operations are provided to change and inquire about the signal mask of the calling
task.

NOTE: The main intended use of these operations is with the default signal action, in which
case the signal should be kept blocked in all but one task. Blocking and unblocking the signal
in that one task will control when the default action may occur (for the whole process). In con-
trast, it is recommended that applications keep all signals that are used with signal-awaiting
operations blocked in all tasks at all times.

The Set_Blocked_Signals operation shall replace the specified signal mask by
the parameter New_Mask and return in the parameter Old_Mask the value that is
replaced. The operation shall be atomic, even in the presence of multiple Ada tasks.

The Block_Signals operation shall add the signals specified by the parameter
Mask_to_Add to the current signal mask and return in the parameter Old_Mask
the current mask before this operation. The operation shall be atomic, even in the
presence of multiple Ada tasks.

The Unblock_Signals operation shall remove any signals specified by the parame-
ter Mask_to_Subtract from the current mask and return in the parameter Old_-
Mask the current mask before this operation. The operation shall be atomic, even in
the presence of multiple Ada tasks.

Set_ Blocked_ Signals , Block_ Signals , and Unblock_ Signals may raise
POSIX_Error if the effect would be to unblock a signal that is currently unblocked
by another task in the same process.

NOTE: It is anticipated that a future revision of this standard may remove the implementa-
tion permission stated in the paragraph above.

Blocked_Signals shall return the current signal mask of the calling task.

It is not possible to block the signals Signal_Kill and Signal_Stop ; this require-
ment shall be enforced by the system without raising an exception in any of the
operations specified in this clause. Similarly, it is not possible for an application to
block the reserved signals; this requirement shall be enforced by the implementation
of this standard without raising an exception in any of the operations specified in
this clause.

3.3 Package POSIX_Signals 133

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

If the implementation supports additional signals not defined in package POSIX_-
Signals , the effect of masking all signals shall include the masking of all maskable
implementation defined signals as well as all maskable POSIX signals.

NOTE: The recommended practice for multitasking applications is that at most one task be
responsible for managing the signal actions and blocking/unblocking of each signal.

3.3.8.3 Error Handling

If any of the following conditions is detected, the exception POSIX_Error shall be
raised with the corresponding error code:

Operation_Not_Permitted

An attempt was made to unblock a signal that was already unblocked by
another task in the same process.

3.3.9 Ignore Signals

3.3.9.1 Synopsis

procedure Ignore_Signal (Sig : in Signal);
procedure Unignore_Signal (Sig : in Signal);
procedure Restore_Default_Action (Sig : in Signal)

renames Unignore_Signal;
function Is_Ignored (Sig : Signal) return Boolean;

procedure Install_Empty_Handler (Sig : in Signal); c

3.3.9.2 Description

Ignore_Signal shall cause the signal action for the signal specified by the param-
eter Sig to be set to ignore. (See 3.3.1.)

Unignore_Signal shall cause the signal action for the signal specified by the pa-
rameter Sig to be set to the default action for that signal.

An Ada application is not permitted to explicitly set the signal action for any of the
reserved signals (see 2.2.2.155).

A process is also not permitted to accept, catch, or ignore Signal_Kill or Signal_-
Stop . An attempt to set the action for any of the signals named in this paragraph,
whether to ignore or not ignore, shall cause POSIX_Error to be raised with error
code Invalid_Argument .

Is_Ignored shall return True if and only if the signal action for the signal specified
by the parameter Sig is to ignore it.

The Install_Empty_Handler operation shall have the effect of installing an empty
asynchronous handler procedure that simply executes and returns, so that the action
associated with the signal is for this empty handler to catch the signal. When a signal
is generated for a task (or for a process, respectively) and an empty asynchronous
handler procedure has been installed for the process containing the task, the effect
of the signal depends on whether the signal is currently masked by the task (or by
all the tasks in the process, respectively), as follows:

134 3 Process Primitives

c

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

— When the signal is unmasked, the signal shall be delivered to the empty handler,
which will execute and return, possibly having the side effect of interrupting any
blocked system call in the same task.

— When the signal is masked, the signal shall be held pending on the process or
task.

The effect of Install_Empty_Handler shall be overridden by any subsequent call
to Ignore_Signal or Unignore_Signal .

NOTE: This operation is provided in order to allow an application to accept a signal whose
default action is to ignore the signal. By first calling Ignore_Signal for that signal, an Ada
application can ensure that the signal will not be discarded while the signal is blocked.

c

3.3.9.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

Ignore_Signal , Unignore_Signal , or Is_Ignored was called with a
value for the parameter Sig that specifies a signal that is invalid or not
supported by the implementation or a signal for which the signal action is
not permitted to be set by the application.

3.3.10 Controlling Generation of Signal for Child Process

3.3.10.1 Synopsis

procedure Set_Stopped_Child_Signal (Enable : in Boolean := True);

function Stopped_Child_Signal_Enabled return Boolean;

3.3.10.2 Description

Set_Stopped_Child_Signal shall control the generation of the Signal_Child
signal if the implementation supports the Signal_Child signal. If the parameter
Enable has the value True , the Signal_Child signal shall be generated for the
calling process whenever any of its child processes stop. If Enable is False , the
implementation shall not generate the Signal_Child signal in this way.

NOTE: The effect of calling this procedure with Enable=>False is not the same as blocking
or ignoring Signal_Child since that signal will still be delivered if it is generated by means
other than the stopping of a child process.

Stopped_Child_Signal_Enabled shall return True if and only if the signal spec-
ified by Signal_Child will be generated for the calling process whenever any of its
child processes stop.

3.3.10.3 Error Handling

No exceptions shall be raised by these operations.

3.3 Package POSIX_Signals 135

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

3.3.11 Examine Pending Signals

3.3.11.1 Synopsis

function Pending_Signals return Signal_Set;

3.3.11.2 Description

Pending_Signals shall return the set of signals that are blocked from delivery and
are pending for either the process or the calling task.

NOTE: The set of signals returned should be the union of the set of signals pending for the
process and the set of signals pending for the calling task.

3.3.11.3 Error Handling

No exceptions shall be raised by this operation.

3.3.12 Signal Event Notification

3.3.12.1 Synopsis

type Signal_Event is private ;
type Signal_Data is private ;
type Notification is range implementation-defined;
No_Notification : constant Notification := implementation-defined;
Signal_Notification : constant Notification := implementation-defined;
function Get_Signal (Event : Signal_Event) return Signal;
procedure Set_Signal

(Event : in out Signal_Event;
Sig : in Signal);

function Get_Notification (Event : Signal_Event) return Notification;
procedure Set_Notification

(Event : in out Signal_Event;
Notify : in Notification);

function Get_Data (Event : Signal_Event) return Signal_Data;
procedure Set_Data

(Event : in out Signal_Event;

Data : in Signal_Data);

3.3.12.2 Description

Values of Notification are used to specify the notification mechanism to use when
an asynchronous event occurs. This standard defines the two following constants of
this type:

No_Notification

Specifies that no asynchronous notification shall be delivered when the
event of interest occurs.

Signal_Notification

Specifies that the signal specified by the Signal attribute associated with the
event shall be sent to the process when the event of interest occurs.
If the Realtime Signals option is supported: If queueing is enabled for that
signal, then the signal will be queued to the process and the Data attribute
of the event shall be the Data attribute of the generated signal occurrence. If
queueing is not enabled for that signal, it is unspecified whether the signal
is queued and what Data attribute, if any, is sent.

136 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

An implementation may add notification mechanisms to the Notification type,
as permitted in 1.3.1.1 (2). Such extensions, which may change the behavior of the
application with respect to this standard when those attributes are uninitialized,
also require that the extension be enabled as required by 1.3.1.1.

The Signal_Event type is used to specify how notification of an event is to be deliv-
ered. A value of this type has (at least) the following attributes:

Notification

The notification mechanism to use. This value is of type Notification .

Signal

The signal to be generated if the specified notification mechanism makes
use of a signal.

Data

The information to be sent with the signal if the signal is one for which
signal queueing is supported and enabled. The Data value is the application-
defined data value to be passed as part of the Signal_Info return value of
one of the Await_Signal functions (see 3.3.14).

The type Signal_Data is used as a carrier for untyped information. The size of
this type shall be large enough to hold any value of type Integer or type System. -
Address . Instantiation of Unchecked_Conversion shall be supported for conver-
sions between the type Signal_Data and the types System.Address , Standard. -
Integer , and POSIX_Timers.Timer_ID . Unchecked conversion of a value of one of
the latter types to Signal_Data and then back to the original type shall yield the
original value back again.

The function whose name is of the form Get_X , where X is the name of one of the at-
tributes of Signal_Event , shall return the value of the X attribute of the argument.

The procedure whose name is of the form Set_X shall set the X attribute of the object
specified by the first argument to the value specified by the second argument.

3.3.12.3 Error Handling

No error conditions are specified for these operations.

3.3.13 Signal Information

3.3.13.1 Synopsis

type Signal_Source is range implementation-defined;
From_Send_Signal : constant Signal_Source := implementation-defined;
From_Queue_Signal : constant Signal_Source := implementation-defined;
From_Timer : constant Signal_Source := implementation-defined;
From_Async_IO : constant Signal_Source := implementation-defined;
From_Message_Queue : constant Signal_Source := implementation-defined;
type Signal_Info is private ;
function Get_Signal (Info : Signal_Info) return Signal;
procedure Set_Signal

(Info : in out Signal_Info;
Sig : in Signal);

function Get_Source (Info : Signal_Info) return Signal_Source;

3.3 Package POSIX_Signals 137

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

procedure Set_Source
(Info : in out Signal_Info;

Source : in Signal_Source);
function Has_Data (Source : Signal_Source) return Boolean;
function Get_Data (Info : Signal_Info) return Signal_Data;
procedure Set_Data

(Info : in out Signal_Info;

Data : in Signal_Data);

3.3.13.2 Description

The functionality described in this subclause is optional. If the Realtime Signals option
is not supported, the implementation may cause all calls to the explicitly declared
operations defined in this subclause to raise POSIX_Error . Otherwise, the behavior
shall be as specified in this subclause.

Values of Signal_Source are used to identify the cause, or source of a signal occur-
rence. The following constants of type Signal_Source are defined by this standard,
with the indicated specifications:

From_Send_Signal

The signal was generated by the Send_Signal procedure.

From_Queue_Signal

The signal was generated by the Queue_Signal procedure.

From_Timer

The signal was generated by the expiration of a timer (see 14.1).

From_Async_IO

The signal was generated by the completion of an AIO request (see 6.3).

From_Message_Queue

The signal was generated by the arrival of a message on an empty message
queue for which notification via signal was requested (see 15.1).

The Signal_Info type is used to specify information that can be associated with an
occurrence of a signal. It has the following attributes:

Signal

The signal of the occurrence.

Source

The cause, or source, that generated the signal. If the signal was generated
by one of the operations or events listed in this subclause (above), the value
of Source shall be as specified for that operation or event. If the signal was
not generated by one of the operations or events listed in this subclause, the
Source attribute of a signal occurrence shall be an implementation-defined
value that is not equal to any of the values defined in this subclause.

Data

Additional information that is provided for certain signal sources. If Source
is equal to one of From_Queue_Signal , From_Timer , From_Async_IO , or
From_Message_Queue , Data shall be the application specified signal data
value. Otherwise, the Data attributed is undefined.

138 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

An implementation may add other attributes to the Signal_Info type, as permitted
in 1.3.1.1 (2). Such extensions, which may change the behavior of the application
with respect to this standard when those attributes are uninitialized, also require
that the extension be enabled as required by 1.3.1.1.

The function whose name is of the form Get_X , where X is the name of one of the
attributes of Signal_Info , shall return the value of the X attribute of the argument.

The procedure whose name is of the form Set_X shall set the X attribute of the object
specified by the first argument to the value specified by the second argument.

Has_Data shall return True if and only if Source is a signal source for which the
Data attribute is defined.

3.3.13.3 Error Handling

No error conditions are specified for these operations.

3.3.14 Control Signal Queueing

3.3.14.1 Synopsis

procedure Enable_Queueing (Sig : in Signal);

procedure Disable_Queueing (Sig : in Signal);

3.3.14.2 Description

The functionality described in this subclause is optional. If the Realtime Signals option
is not supported, the implementation may cause all calls to the explicitly declared
operations defined in this subclause to raise POSIX_Error . Otherwise, the behavior
shall be as specified in this subclause.

Enable_Queueing and Disable_Queueing are used to control whether data are
queued for delivery with the designated signal by the functions that are able to do
so. See Queue_Signal (3.3.19), Request_Notify (15.1.8), Create_Timer (14.1.5),
and the AIO operations (6.3).

Enable_Queueing shall enable queueing for the specified signal.

Disable_Queueing shall disable queueing for the specified signal. It is unspecified
whether occurrences already queued for the signal are retained.

If queueing is enabled for the signal, a signal-awaiting operation for the signal shall
return a value of type Signal_Info , which is used to pass information about the
event associated with a signal occurrence.

The initial state of signal queuing for all signals in a new process is unspecified.

3.3.14.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

3.3 Package POSIX_Signals 139

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Invalid_Argument

Sig is not a signal that is supported by the implementation, or Sig is a
signal that is not permitted to be accepted or caught.

Operation_Not_Supported

The implementation does not support the Realtime Signals option.

3.3.15 Wait for Signal

3.3.15.1 Synopsis

function Await_Signal (Set : Signal_Set) return Signal;
function Await_Signal_Or_Timeout

(Set : Signal_Set;
Timeout : POSIX.Timespec)

return Signal;

3.3.15.2 Description

NOTE: The behavior of Await_Signal is defined first. Then, the behavior of Await_Sig-
nal_Or_Timeout is defined by analogy.

Await_Signal selects a pending signal from Set , clears it from the set of pending
signals in the system, and returns that signal number. The selection and clearing
of the signal from the pending set shall be done atomically. If no signal in Set is
pending at the time of the call, the calling task shall remain blocked until one or
more signals specified in Set becomes pending.

The effect of a call to Await_Signal is undefined if any of the signals in Set are not
blocked from delivery to all tasks within the process at the time of the call. Other-
wise, after return from a call to Await_Signal , the signals in Set shall be blocked.

The effect of a call to Await_Signal on the signal actions for the signals in Set is
unspecified.

A Strictly Conforming POSIX.5 Application should not call Await_Signal unless all
the signals in Set are blocked from delivery to all tasks in the process at the time of
the call. Thereafter, no task should unblock any of those signals from delivery, until
Ignore_Signal or Unignore_Signal has been called for that signal in the interim
to redefine the associated signal action.

If prior to the function call there are multiple pending occurrences of a single signal
and the Realtime Signals option is not supported, it is implementation defined whether
upon return there are any remaining pending occurrences of that signal.

If more than one task is using any of the operations Await_Signal and Await_-
Signal_Or_Timeout to wait for the same signal, no more than one of these tasks
shall return from the function call with the signal number. The task that returns
from the function call if more than a single task is waiting is unspecified.

If Set contains any reserved signals, Await_Signal shall raise POSIX_Error .

140 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

NOTE: If, while either Await_Signal or Await_Signal_Or_Timeout is waiting, a signal
occurs that is caught by an asynchronous signal handler of the Ada language implementation,
and the delivery of the signal causes the wait to be interrupted, the implementation is required
to restart the operation.

The following additional specifications apply if the Realtime Signals option is sup-
ported, the following apply:

— When multiple signals in the range Realtime_Signal are pending and any
of them is selected, it shall be the lowest numbered one. The selection order
between realtime and nonrealtime signals or between multiple pending nonre-
altime signals is unspecified. If no signal in Set is pending at the time of the
call, the calling task shall be blocked until one or more signals in Set become
pending.

— If any signal data value is queued for the selected signal, the first such data
value shall be dequeued, and the data value shall be discarded. The system re-
source used to queue the signal shall be released and made available to queue
other signals. If no further signals are queued for the selected signal, the pend-
ing indication for that signal shall be reset.
NOTE: To capture information queued with a signal, the functions described in 3.3.16
can be used.

The implementation shall raise POSIX_Error if the application attempts to call
Await_Signal to await a signal that is bound to a task entry.

Await_Signal_Or_Timeout shall behave the same as Await_Signal , except that
if none of the signals specified by Set is pending, it shall wait for the time interval
specified by Timeout . If Timeout is zero-valued and if none of the signals specified
by Set is pending, then POSIX_Error shall be raised. If none of the signals specified
by Set occurs within the time specified by Timeout , then POSIX_Error shall be
raised.

3.3.15.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

At least one of the signals in Set is attached to a task entry or is a reserved
signal.

Resource_Temporarily_Unavailable

No signal specified by Set was delivered within the specified timeout period.

If any of the following conditions is detected, the exception POSIX_Error shall be
raised with the corresponding error code:

Invalid_Argument

Set contains an invalid, or unsupported signal number.
The Timeout argument specified an invalid value (e.g., uninitialized data).
An implementation should only check for this error if no signal is pending
in Set and it is necessary to wait.

3.3 Package POSIX_Signals 141

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

3.3.16 Wait for Signal with Information

3.3.16.1 Synopsis

function Await_Signal (Set : Signal_Set) return Signal_Info;
function Await_Signal_Or_Timeout

(Set : Signal_Set;
Timeout : POSIX.Timespec)

return Signal_Info;

3.3.16.2 Description

The functionality described in this subclause is optional. If the Realtime Signals option
is not supported, the implementation may cause all calls to the explicitly declared
operations defined in this subclause to raise POSIX_Error . Otherwise, the behavior
shall be as specified in this subclause.

The effects of these signal-awaiting operations are like those of the signal-awaiting
operations defined in 3.3.15, except as follows:

— The Signal attribute of the value returned by the signal-awaiting operation shall
be the selected signal.

— The Source attribute of the value returned by the signal-awaiting operation shall
be the cause of the signal.

— If any occurrence of the selected signal is queued, the first such occurrence shall
be dequeued, and the Data attribute shall be returned as the Data attribute of
the value returned by the function. Otherwise, the Data attribute of the value
returned is undefined.

NOTE: If the signal was sent by one of the signal-queueing operations defined in this standard
and Has_Data(Get_Source(Info)) is True , the Data attribute of Info will generally be
defined. Otherwise, the recipient of the signal must rely on application-specific conventions
established between the sender and recipient of the signal.

3.3.16.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

At least one of the signals in Set is attached to a task entry or is a reserved
signal.

Operation_Not_Implemented

The functions Await_Signal and Await_Signal_Or_Timeout are not
supported by this implementation.

Resource_Temporarily_Unavailable

No signal specified by Set was delivered within the specified timeout period.

If any of the following conditions is detected, the exception POSIX_Error shall be
raised with the corresponding error code:

142 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Invalid_Argument

Set contains an invalid or unsupported signal number.
The Timeout argument specifies an invalid value (e.g., uninitialized data).
An implementation should only check for this error if no signal is pending
in Set and it is necessary to wait.

3.3.17 Signal Entries

3.3.17.1 Synopsis

-- obsolescent
Signal_Abort_Ref : constant System.Address := implementation-defined;
-- Signal_Floating_Point_Error intentionally omitted.
Signal_Hangup_Ref : constant System.Address := implementation-defined;
-- Signal_Illegal_Instruction intentionally omitted.
Signal_Interrupt_Ref : constant System.Address := implementation-defined;
-- Signal_Kill intentionally omitted.
Signal_Pipe_Write_Ref : constant System.Address := implementation-defined;
Signal_Quit_Ref : constant System.Address := implementation-defined;
Signal_Terminate_Ref : constant System.Address := implementation-defined;
Signal_User_1_Ref : constant System.Address := implementation-defined;
Signal_User_2_Ref : constant System.Address := implementation-defined;
Signal_Child_Ref : constant System.Address := implementation-defined;
Signal_Continue_Ref : constant System.Address := implementation-defined;
-- Signal_Stop intentionally omitted.
Signal_Terminal_Stop_Ref : constant System.Address := implementation-defined;
Signal_Terminal_Input_Ref : constant System.Address := implementation-defined;
Signal_Terminal_Output_Ref : constant System.Address := implementation-defined;

function Signal_Reference (Sig : Signal) return System.Address;

3.3.17.2 Description

The functionality described in this subclause is optional. If the Signal Entries option
is not supported, the implementation may cause all calls to the explicitly declared
operations defined in this subclause to raise POSIX_Error . Otherwise, the behavior
shall be as specified in this subclause.

The semantic model for accepting a signal via a task entry is based on the concept
of interrupt entry, as defined in I.7.1 of the Ada RM f1g (where it is classified as an
obsolescent feature of the Ada language) and is described further in this subclause.
The task accepting the signal views it as an interrupt entry call.

The binding of a signal to an entry of a task shall be by means of an Ada address
clause. In order to permit an application to bind task entries to signals, there shall
be a means for obtaining a value of type System.Address corresponding to each
value of type Signal that can be accepted by an Ada application.

The constants defined by this standard with names of the form Signal_ XXX_Ref
shall be usable in an address clause that binds the signal with name Signal_ XXX to
an entry. In addition, for all signals, the function Signal_Reference shall return a
value that can be used in an address clause to bind a signal entry for the parameter
Sig . If Signal_ XXX is the name of a signal declared in POSIX_Signals , then
Signal_Reference(Signal_ XXX) = Signal_ XXX_Ref .

3.3 Package POSIX_Signals 143

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

For a signal that is bound to an entry of a task, the effect shall be as if there were
a virtual task that uses Await_Signal (see 3.3.15) to accept the signal, attempts
to rendezvous with the associated entry each time an occurrence of the signal is
accepted, and is ready to accept the signal again after the rendezvous. This virtual
task shall behave as if it has priority at least as high as that of the task to whose
entry the signal is bound.

There may be an implementation-defined limit on the number of these virtual tasks
that can simultaneously exist, but there must be at least one for each signal that can
be accepted or caught. Even if a limit greater than one is provided, it is unspecified
whether a generated signal results in a new entry call and whether such delivery
results in another queued virtual task if there is at least one virtual task with an
entry call already queued for that signal.

NOTE: In other words, it is unspecified whether multiple generations of a signal can cause
the value of the ’Count attribute of the associated entry to exceed one.

NOTE: A significant semantic change was made here between POSIX.5 and POSIX.5b in the
effect of the signal mask on signal entries. The signal mask can no longer prevent delivery of
the signal to a task with an open accept statement for the corresponding entry. This change
was forced by POSIX.1c.

Clearing pending occurrences of a given signal that is bound to a task entry may
abort any entry calls from virtual tasks that are due to previously accepted occur-
rences of that signal. Clearing pending signals shall have no effect on any calls from
normal Ada tasks that may be queued for the entry.

Given the virtual task model described in this subclause, other details of the se-
mantics of signal accepting via task entries are determined by the Ada language
standard. For example, the times at which entries are bound to signals are defined
by the semantics of Ada task elaboration, and the conditions under which a signal
entry call may be accepted are defined by the semantics of rendezvous.

One restriction imposed by the Ada RM f1g is that a task should not attempt to bind
an entry to a signal to which there is already another bound entry. If a program
attempts to bind an entry to a signal to which another entry is already bound, Pro-
gram_Error shall be raised. However, on termination of a task, the bindings of
any of its entries to interrupts shall be broken so that these interrupts shall become
available for rebinding. When the binding is broken, the signal action shall revert to
the default for that signal.

For the Ignore_Signal operation if the signal is bound to a task entry, the effect
shall be to discard any pending or subsequent deliveries of that signal. The binding
to the entry may remain in force. Any queued signal entry calls to that entry may be
discarded. (The discarding of pending signal entry calls may depend on whether the
signal is blocked; see 3.3.3).

NOTE: For the Await_Signal and Await_Signal_Or_Timeout operations, if the parameter
Set includes a signal to which an interrupt entry is attached, POSIX_Error shall be raised
with error code Invalid_Argument . (See 3.3.15.)

144 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

3.3.17.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

Signal_Reference is called with a value of Sig that is not a valid signal
or is a signal for which the implementation does not support user-defined
signal entries.

3.3.18 Send a Signal

3.3.18.1 Synopsis

procedure Send_Signal
(Process : in POSIX_Process_Identification.Process_ID;

Sig : in Signal);
procedure Send_Signal

(Group : in POSIX_Process_Identification.Process_Group_ID;
Sig : in Signal);

procedure Send_Signal (Sig : in Signal);

3.3.18.2 Description

Send_Signal shall send the signal specified by the parameter Sig to a process or to
all the members of a set of processes. The set of processes is specified by the Process
or Group parameter. The form of Send_Signal with parameter Process shall send
the signal to the process whose process ID is equal to Process , if the calling process
has permission to send the signal to it. The form with parameter Group shall send
the signal to all the processes (excluding an implementation-defined set of system
processes) whose process group ID is equal to Group and to which the calling process
has permission to send the signal. The form without a parameter Process or Group
shall be equivalent to calling the form with Group parameter using Get_Process_-
Group_ID as the parameter value, sending the signal to the process group of the
caller.

If Send_Signal causes the signal specified by the parameter Sig to be generated
for the sending process, if the signal is not blocked for the calling task, and if no
other task is waiting to accept the signal or has it unblocked, either that signal or at
least one pending unblocked signal shall be delivered to the sending process before
Send_Signal returns.

NOTE: See 3.3.1 for additional requirements on the order of delivery for realtime signals.

If the parameter Sig is equal to the value Signal_Null , no signal shall be sent, but
error checking shall be performed.

NOTE: Sending Signal_Null can be used to check the validity of a process ID or process
group ID.

For a process to have permission to send a signal to a process, the real or effective
user ID of the sending process shall match the real or effective user ID of the receiv-
ing process, unless the sending process has appropriate privileges.

3.3 Package POSIX_Signals 145

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

If the Saved IDs option is supported: The saved set-user-ID of the receiving process
shall be checked in place of its effective user ID.

If the effective user ID of a receiving process has been altered through use of the
permission Set_User_ID , the implementation may still permit the application to
receive a signal sent by the parent process or by a process with the same real user
ID. (See 5.1.1.)

If the implementation supports Signal_Continue , the user ID tests described in
the previous paragraph shall not be applied when sending Signal_Continue to a
process that is a member of the same session as the sending process.

An implementation that provides extended security controls may impose further
implementation-defined restrictions on the sending of signals, including Signal_-
Null . In particular, the system may deny the existence of some or all of the processes
specified by the parameters or silently fail to deliver the signal.

3.3.18.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

The value specified by Sig is an invalid signal or a signal not supported by
the implementation.

No_Such_Process

The set of processes specified is empty; that is, no process can be found
whose process ID is equal to Process , or no process group can be found
whose process group ID is equal to Group .

Operation_Not_Permitted

The process does not have permission to send the signal to any of the pro-
cesses in the specified set.

3.3.19 Queue a Signal

3.3.19.1 Synopsis

procedure Queue_Signal
(Process : in POSIX_Process_Identification.Process_ID;

Sig : in Signal;

Data : in Signal_Data);

3.3.19.2 Description

The functionality described in this subclause is optional. If the Realtime Signals option
is not supported, the implementation may cause all calls to the explicitly declared
operations defined in this subclause to raise POSIX_Error . Otherwise, the behavior
shall be as specified in this subclause.

Queue_Signal shall cause the signal specified by Sig to be sent with the data value
specified by Data to the process specified by Process . The conditions required for

146 3 Process Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

a process to have permission to send a signal to another process are the same as for
the procedure Send_Signal .

If the receiving process is the same as the sending process, if the signal specified
by the parameter Sig is not currently blocked for the calling task, and if no other
task is waiting to accept the signal or has it unblocked, either that signal or at least
one pending unblocked signal shall be delivered to the sending process before the
Queue_Signal operation returns.

NOTE: See 3.3.1 for additional requirements on the order of delivery for realtime signals.

If the signal specified by Sig is currently blocked for the receiving process, Queue_-
Signal shall return immediately. If signal queueing is enabled for Sig and if the
resources are available to queue the signal, the signal and the data value shall be
queued and left pending to the receiving process.

If signal queueing is not enabled for Sig by the specified process, then Sig shall be
queued at least once to the receiving process; in this circumstance it is unspecified
whether Data shall be sent to the receiving process as a result of this call.

If the parameter Sig is equal to the value Signal_Null , no signal shall be queued,
but error checking shall be performed.

NOTE: Queueing Signal_Null can be used to check the validity of a process ID or process
group ID.

3.3.19.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Resource_Temporarily_Unavailable

No resources are available to queue the signal. The process has already
queued Queued_Signals_Maximum signals that are still pending at the
receiver(s), or a system-wide resource limit has been exceeded.

Invalid_Argument

The value of Sig is an invalid signal or a signal not supported by the imple-
mentation.

Operation_Not_Implemented

The procedure Queue_Signal is not supported by this implementation.

Operation_Not_Permitted

The requesting process does not have the appropriate privilege to send the
signal to the specified receiving process.

No_Such_Process

Process is not a valid process ID.

3.3.20 Interrupt a Task

3.3.20.1 Synopsis

procedure Interrupt_Task (T : in Ada_Task_Identification.Task_ID);

3.3 Package POSIX_Signals 147

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

3.3.20.2 Description

If the task identified by T is blocked in an interruptible POSIX operation with the
Signal_Masking value of No_Signals or RTS_Signals , Interrupt_Task shall
interrupt the POSIX operation by raising POSIX_Error with error code Inter-
rupted_Operation . If the task identified by T is not executing an interruptible
operation, this procedure shall have no effect. If the task identified by T is executing
an interruptible operation but has not yet blocked, Interrupt_Task may have no
effect.

NOTE: If the Blocking_Behavior for a POSIX operation is Program , no task will be able
to execute the Interrupt_Task procedure while any task is blocked in the POSIX operation.

NOTE: This operation may be implemented by sending a signal to the task that is specified by
the parameter T.

3.3.20.3 Error Handling

If any of the following conditions is detected, the exception POSIX_Error shall be
raised with the corresponding error code:

Invalid_Argument

The parameter T does not identify a task in the current process. Alterna-
tively, the exception Program_Error may be raised.

NOTE: Program_Error is specified by C.7.1 (17) of the Ada RM f1g for some uses of invalid
values of type Task_ID .

148 3 Process Primitives

IEEE Std 1003.5c-1998

Section 4: Process Environment

The environment for a POSIX process provides information about the system state
from which the process was started. This section specifies operations that access
this information, as defined in the packages POSIX_Process_Identification ,
POSIX_Process_Times , POSIX_Process_Environment , POSIX_Calendar , and
POSIX_Configurable_System_Limits .

4.1 Package POSIX_Process_Identification

This package contains operations to

— Identify self and parent processes

— Set and get the process group ID

— Set the process group ID for job control and create a session

— Get the real and the effective identity of the user and the group of the user

— Get a list of the supplementary groups of the user

— Get the effective user login name

with POSIX;
package POSIX_Process_Identification is

-- 4.1.1 Process Identification Operations
type Process_ID is private ;
Null_Process_ID : constant Process_ID;
System_Process_ID : constant Process_ID;
function Get_Process_ID return Process_ID;
function Get_Parent_Process_ID return Process_ID;
function Image (ID : Process_ID) return Standard.String;
function Value (Str : Standard.String) return Process_ID;
-- 4.1.2 Process Group Identification
type Process_Group_ID is private ;
function Get_Process_Group_ID return Process_Group_ID;
procedure Set_Process_Group_ID

(Process : in Process_ID := Get_Process_ID;
Process_Group : in Process_Group_ID := Get_Process_Group_ID);

procedure Create_Process_Group
(Process : in Process_ID;

Process_Group : out Process_Group_ID);
procedure Create_Session (Session_Leader : out Process_Group_ID);
function Image (ID : Process_Group_ID) return Standard.String;
function Value (Str : Standard.String) return Process_Group_ID;
-- 4.1.3 User Identification
type User_ID is private ;
function Get_Real_User_ID return User_ID;
function Get_Effective_User_ID return User_ID;
procedure Set_User_ID (ID : in User_ID);
function Get_Login_Name return POSIX.POSIX_String;
function Image (ID : User_ID) return Standard.String;
function Value (Str : Standard.String) return User_ID;
-- 4.1.4 User and Group Identification
type Group_ID is private ;
function Get_Real_Group_ID return Group_ID;
function Get_Effective_Group_ID return Group_ID;

4 Process Environment 149

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

procedure Set_Group_ID (ID : in Group_ID);
subtype Group_List_Index is positive range 1 .. POSIX.Groups_Maxima’Last;
type Group_List is array (Group_List_Index range <>) of Group_ID;
function Get_Groups return Group_List;
function Image (ID : Group_ID) return Standard.String;
function Value (Str : Standard.String) return Group_ID;

private
implementation-defined

end POSIX_Process_Identification;

4.1.1 Process Identification Operations

4.1.1.1 Synopsis

type Process_ID is private ;
Null_Process_ID : constant Process_ID;
System_Process_ID : constant Process_ID;
function Get_Process_ID return Process_ID;
function Get_Parent_Process_ID return Process_ID;
function Image (ID : Process_ID) return Standard.String;

function Value (Str : Standard.String) return Process_ID;

4.1.1.2 Description

The type Process_ID shall define the values for process IDs. Null_Process_-
ID is a value of Process_ID that shall never represent any process in the system.
System_Process_ID is a value of Process_ID reserved by the system for system
processes. A process that is not a system process shall not have this value as its
process ID.

Get_Process_ID shall return the process ID of the calling process. Get_Parent_-
Process_ID shall return the process ID of the parent of the calling process.

Image shall return a character string representing the parameter ID . The string
representation is implementation defined, but shall be such that if two process IDs
are different, then their images shall be different, and if two values of process ID are
the same, then their images shall be the same.

Value translates the parameter Str into a Process_ID . Value shall translate any
string produced by Image into the process ID value that was originally the input
parameter to Image . It is implementation defined whether any other string repre-
sentation may be successfully translated into a Process_ID .

4.1.1.3 Error Handling

Constraint_Error shall be raised by Value if the parameter Str cannot be suc-
cessfully translated to a Process_ID .

No exceptions are specified by this standard for Get_Process_ID and Get_Parent_-
Process_ID .

No exception shall be raised by Image .

150 4 Process Environment

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

4.1.2 Process Group Identification

4.1.2.1 Synopsis

type Process_Group_ID is private ;
function Get_Process_Group_ID return Process_Group_ID;
procedure Set_Process_Group_ID

(Process : in Process_ID := Get_Process_ID;
Process_Group : in Process_Group_ID := Get_Process_Group_ID);

procedure Create_Process_Group
(Process : in Process_ID;

Process_Group : out Process_Group_ID);
procedure Create_Session (Session_Leader : out Process_Group_ID);
function Image (ID : Process_Group_ID) return Standard.String;

function Value (Str : Standard.String) return Process_Group_ID;

4.1.2.2 Description

The type Process_Group_ID shall define the values for process group IDs.

Get_Process_Group_ID shall return the process group ID of the calling process.

The effect of Set_Process_Group_ID depends on whether the Job Control option is
supported.

If the Job Control option is supported, Set_Process_Group_ID is used to join an
existing process group. Upon successful completion, the process group ID of the
process whose process ID matches the parameter Process shall be the value of
the parameter Process_Group .

If the Job Control option is not supported, Set_Process_Group_ID shall raise
the exception POSIX_Error with error code Operation_Not_Implemented .

The effect of Create_Process_Group depends on whether the Job Control option is
supported.

If the Job Control option is supported, Create_Process_Group shall make the
process specified by Process a process group leader. If the specified process
was not previously a process group leader, a new process group is created within
the session of the calling process with the specified process as the process group
leader. The process group ID of a session leader shall not change. If the specified
process is already a process group leader, the operation completes successfully
without any change. Upon successful completion, the process group ID of the
process specified by the parameter Process shall be returned as the value of
the parameter Process_Group .

If the Job Control option is not supported, Create_Process_Group shall raise the
exception POSIX.POSIX_Error with error code Operation_Not_Implemented .

Create_Session shall create a new session if the calling process is not a process
group leader. If a new session is created, the calling process shall

— Be the session leader of the new session

— Be the process group leader of a new process group

— Have no controlling terminal

4.1 Package POSIX_Process_Identification 151

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

— Be the only process in the new process group

— Be the only process in the new session

Upon successful completion, Create_Session shall return the new process group
ID of the calling process.

Image shall return a character string representing the parameter ID . The string
representation is implementation defined, but it shall be such that if two process
group IDs are different, then their images are different.

Value translates the parameter Str into a Process_Group_ID . Value shall trans-
late any string produced by Image into the Process_Group_ID value that was origi-
nally the input parameter to Image . It is implementation defined whether any other
string representation may be successfully translated into a value of type Process_-
Group_ID .

4.1.2.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

The value for the parameter Process or Process_Group for Set_Pro-
cess_Group_ID or Create_Process_Group is a value not supported by
this implementation.

Permission_Denied

The parameter Process of the procedure Set_Process_Group_ID or Cre-
ate_Process_Group matches the process ID of a child process of the call-
ing process, and the child process has successfully executed a call to Exec ,
Exec_Search , Start_Process , or Start_Process_Search .

Operation_Not_Implemented

Set_Process_Group_ID or Create_Process_Group was called, but it is
not supported by this implementation.

No_Such_Process

The parameter Process of the procedure Set_Process_Group_ID or Cre-
ate_Process_Group does not match the process ID of either the calling
process or of a child process of the calling process.

Operation_Not_Permitted

(1) The process indicated by the parameter Process of Set_Process_-
Group_ID is a session leader or is a child process of the calling process,
but that child process is not in the same session as the calling process.

(2) The process group indicated by the parameter Process_Group of the
procedure Set_Process_Group_ID or Create_Process_Group does
not match the process group ID of the indicated process, and no process
with that process group ID is in the same session as the calling process.

(3) The process calling Create_Session is already a process group leader.

152 4 Process Environment

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Constraint_Error shall be raised if the parameter Str to Value cannot be suc-
cessfully translated to a Process_Group_ID .

No exceptions are specified by this standard for Get_Process_Group_ID .

No exception shall be raised by Image .

4.1.3 User Identification

4.1.3.1 Synopsis

type User_ID is private ;
function Get_Real_User_ID return User_ID;
function Get_Effective_User_ID return User_ID;
procedure Set_User_ID (ID : in User_ID);
function Get_Login_Name return POSIX.POSIX_String;
function Image (ID : User_ID) return Standard.String;

function Value (Str : Standard.String) return User_ID;

4.1.3.2 Description

The type User_ID shall identify users of the system. The concepts of user ID, real
user ID, effective user ID, and saved set-user-ID are defined in 2.2.2.

The Get_Real_User_ID function shall return the real user ID of the calling process.

The Get_Effective_User_ID function shall return the effective user ID of the
calling process.

The effect of Set_User_ID depends on whether the Saved IDs option is supported.

If the Saved IDs option is supported, and the calling process has appropriate
privileges, Set_User_ID shall set the real user ID, effective user ID, and saved
set-user-ID to the value of the parameter ID .

If the Saved IDs option is supported, and the calling process does not have appro-
priate privileges, but the parameter ID is equal to the real user ID or the saved
set-user-ID, Set_User_ID shall set the effective user ID to the value of the pa-
rameter ID . The real user ID and the saved set-user-ID shall remain unchanged.

If the Saved IDs option is not supported, and the process has appropriate privi-
leges, Set_User_ID shall set the real user ID and the effective user ID to the
value of the parameter ID .

If the Saved IDs option is not supported, and the process does not have appropri-
ate privileges, but the parameter ID is equal to the real user ID, Set_User_ID
shall change the effective user ID to the value of the parameter ID . The real user
ID shall remain unchanged.

Get_Login_Name shall return a value of type POSIX.POSIX_String containing the
name associated by the login activity with the controlling terminal for the calling
process. If the login name of the user cannot be found, this function shall return a
null POSIX_String .

4.1 Package POSIX_Process_Identification 153

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Image shall return a character string representing the parameter ID . The string
representation is implementation defined, but shall be such that, if two user IDs are
different, then their images are different.

Value translates the parameter Str into a User_ID . Value shall translate any
string produced by Image into the User_ID value that was originally the input pa-
rameter to Image . It is implementation defined whether any other string represen-
tation may be successfully translated into a User_ID .

4.1.3.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

The parameter ID to Set_User_ID is not a valid user ID supported by the
implementation.

Operation_Not_Permitted

The process calling Set_User_ID does not have appropriate privileges, the
parameter ID does not equal the real user ID, and either the Saved IDs option
is not supported or the parameter ID does not equal the saved set-user-ID.

Constraint_Error shall be raised if the parameter Str to Value cannot be inter-
preted as a user ID.

No exceptions are specified by this standard for Get_Real_User_ID , Get_Effec-
tive_User_ID , and Get_Login_Name .

No exception shall be raised by Image .

4.1.4 User and Group Identification

4.1.4.1 Synopsis

type Group_ID is private ;
function Get_Real_Group_ID return Group_ID;
function Get_Effective_Group_ID return Group_ID;
procedure Set_Group_ID (ID : in Group_ID);
subtype Group_List_Index is positive range 1 .. POSIX.Groups_Maxima’Last;
type Group_List is array (Group_List_Index range <>) of Group_ID;
function Get_Groups return Group_List;
function Image (ID : Group_ID) return Standard.String;

function Value (Str : Standard.String) return Group_ID;

4.1.4.2 Description

The type Group_ID shall identify groups of the system. The concepts of (user) group
ID, real group ID, effective group ID, and saved set-group-ID are defined in 2.2.2.

The type Group_List shall represent an arbitrary list of groups.

Get_Real_Group_ID shall return the real (user) group ID of the calling process.

Get_Effective_Group_ID shall return the effective group ID of the calling process.

154 4 Process Environment

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Get_Groups shall return a list containing the supplementary group IDs of the calling
process. This standard does not specify whether the effective group ID of the calling
process is included in the returned list of supplementary group IDs.

Image shall return a character string representing the parameter ID . The string
representation is implementation defined, but shall be such that if two group IDs
are different, then their images are different.

Value translates the parameter Str into a Group_ID . Value shall translate any
string produced by Image into the Group_ID value that was originally the input
parameter to Image . It is implementation defined whether any other string repre-
sentation may be successfully translated into a Group_ID .

The effect of Set_Group_ID depends on whether the Saved IDs option is supported.

If the Saved IDs option is supported, and the calling process has appropriate
privileges, Set_Group_ID shall set the real group ID, effective group ID, and
saved set-group-ID to the value of the parameter ID .

If the Saved IDs option is supported, and the calling process does not have appro-
priate privileges, but the parameter ID is equal to the real group ID or the saved
set-group-ID, Set_Group_ID shall set the effective group ID to the parameter
ID . The real group ID and the saved set-group-ID shall remain unchanged.

If the Saved IDs option is not supported, and the process has appropriate privi-
leges, Set_Group_ID shall set the real group ID and the effective group ID to
the value of the parameter ID .

If the Saved IDs option is not supported, and the process does not have appropri-
ate privileges, but the parameter ID is equal to the real group ID, Set_Group_ID
shall change the effective group ID to the value of the parameter ID . The real
group ID shall remain unchanged.

4.1.4.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

The parameter ID to Set_Group_ID is not a valid group ID supported by
the implementation.

Operation_Not_Permitted

The process calling Set_Group_ID does not have appropriate privileges,
the parameter ID does not equal the real group ID, and either the Saved
IDs option is not supported or the parameter ID does not equal the saved
set-group-ID.

Constraint_Error shall be raised if the parameter Str to Value cannot be inter-
preted as a group ID.

No exceptions are specified by this standard for Get_Real_Group_ID , Get_Effec-
tive_Group_ID , and Get_Groups .

No exception shall be raised by Image .

4.1 Package POSIX_Process_Identification 155

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

4.2 Package POSIX_Process_Times

This package provides operations to retrieve system time-accounting information.

with POSIX;
package POSIX_Process_Times is

Ticks_Per_Second : constant := implementation-defined;
-- 4.2.1 Process Time Accounting
type Tick_Count is implementation-defined-integer;
-- Minimally 0 to 24 hours
function Elapsed_Real_Time return Tick_Count;
type Process_Times is private ;
function Get_Process_Times return Process_Times;
function Elapsed_Real_Time_Of

(Times : Process_Times) return Tick_Count;
function User_CPU_Time_Of

(Times : Process_Times) return Tick_Count;
function System_CPU_Time_Of

(Times : Process_Times) return Tick_Count;
function Descendants_User_CPU_Time_Of

(Times : Process_Times) return Tick_Count;
function Descendants_System_CPU_Time_Of

(Times : Process_Times) return Tick_Count;

private
implementation-defined

end POSIX_Process_Times;

4.2.1 Process Time Accounting

4.2.1.1 Synopsis

type Tick_Count is implementation-defined-integer;
-- Minimally 0 to 24 hours
function Elapsed_Real_Time return Tick_Count;
type Process_Times is private ;
function Get_Process_Times return Process_Times;
function Elapsed_Real_Time_Of

(Times : Process_Times) return Tick_Count;
function User_CPU_Time_Of

(Times : Process_Times) return Tick_Count;
function System_CPU_Time_Of

(Times : Process_Times) return Tick_Count;
function Descendants_User_CPU_Time_Of

(Times : Process_Times) return Tick_Count;
function Descendants_System_CPU_Time_Of

(Times : Process_Times) return Tick_Count;

4.2.1.2 Description

The type Tick_Count shall express a time duration as a count of the number of ticks
of the system clock. The constant Ticks_Per_Second defines the number of ticks of
the system clock that occur each second; if that number is not integral, this constant
shall be the nearest integer approximation to that number.

The type Process_Times shall comprise real-time and system-accounting time in-
formation about a process.

156 4 Process Environment

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Elapsed_Real_Time shall return the elapsed real time (sometimes informally called
call clock time), in ticks, between the start of the program and the time of its call.

NOTE: Although the values returned by Elapsed_Real_Time and Elapsed_Real_Time_Of
are called “real time”, the values returned are not sufficiently accurate or reliable for use as a
time base in realtime applications. Instead, see the realtime clock and timer facilities which
defined in 14.1.

Get_Process_Times shall return a value of type Process_Times containing time
information about the current process at the time of the call. This value may then be
inspected with Elapsed_Real_Time_Of , User_CPU_Time_Of , System_CPU_Time_-
Of , Descendants_User_CPU_Time_Of , and Descendants_System_CPU_Time_Of
to extract specific time values. All time values shall be of the type Tick_Count .

Elapsed_Real_Time_Of shall return the elapsed real time, in ticks, between the
start of the program and the time of its call as recorded in the parameter Times .

User_CPU_Time_Of shall return the CPU time used by the process as recorded in
the parameter Times .

System_CPU_Time_Of shall return the CPU time used by the system on behalf of
the process as recorded in the parameter Times .

Descendants_User_CPU_Time_Of shall return the sum of the values that would be
returned by User_CPU_Time_Of (Times) and Descendants_User_CPU_Time_Of
(Times) for all terminated child processes for which Wait_For_Child_Process has
returned the child Process_ID . If a child process has not waited for its terminated
children, their times are not included in its Descendants_User_CPU_Time_Of and
thus are not included in this sum.

Descendants_System_CPU_Time_Of shall return the sum of the values that would
be returned by System_CPU_Time_of (Times) and Descendants_System_CPU_-
Time_Of (Times) for all terminated child processes for which Wait_For_Child_-
Process has returned the child Process_ID . If a child process has not waited for
its terminated children, their times are not included in its Descendants_System_-
CPU_Time_Of and thus are not included in this sum.

4.2.1.3 Error Handling

No exceptions are specified by this standard for Elapsed_Real_Time_Of , User_-
CPU_Time_Of , System_CPU_Time_Of , Descendants_User_CPU_Time_Of , or De-
scendants_System_CPU_Time_Of .

No exceptions are specified by this standard for Elapsed_Real_Time or Get_Pro-
cess_Times . Calling Elapsed_Real_Time or Get_Process_Times may raise
POSIX_Error with implementation-defined error codes for implementation-defined
conditions.

4.3 Package POSIX_Process_Environment

This package defines access to the environment that exists when a process is started.

Specific functions are provided to

4.3 Package POSIX_Process_Environment 157

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

— Determine the strings that are passed as command line arguments to a POSIX
process, including the first argument, which is by convention the name of the
command that initiated the process

— Get and set the current process environment, which provides global control of
process options

— Determine whether an environment variable has been defined in an environ-
ment

— Get and modify the values of environment variables

— Iterate execution of a procedure for each of variables in an environment.

— Get and change the current working directory, which is used in resolving relative
pathnames

with POSIX;
package POSIX_Process_Environment is

-- 4.3.1 Argument List
function Argument_List return POSIX.POSIX_String_List;
-- 4.3.2 Environment Variables
type Environment is limited private ;
procedure Copy_From_Current_Environment

(Env : in out Environment);
procedure Copy_To_Current_Environment

(Env : in Environment);
procedure Copy_Environment

(Source : in Environment;
Target : in out Environment);

function Environment_Value_Of
(Name : POSIX.POSIX_String;

Env : Environment;
Undefined : POSIX.POSIX_String := "")

return POSIX.POSIX_String;
function Environment_Value_Of

(Name : POSIX.POSIX_String;
Undefined : POSIX.POSIX_String := "")

return POSIX.POSIX_String;
function Is_Environment_Variable

(Name : POSIX.POSIX_String;
Env : Environment)

return Boolean;
function Is_Environment_Variable

(Name : POSIX.POSIX_String)
return Boolean;

procedure Clear_Environment
(Env : in out Environment);

procedure Clear_Environment;
procedure Set_Environment_Variable

(Name : in POSIX.POSIX_String;
Value : in POSIX.POSIX_String;
Env : in out Environment);

procedure Set_Environment_Variable
(Name : in POSIX.POSIX_String;

Value : in POSIX.POSIX_String);
procedure Delete_Environment_Variable

(Name : in POSIX.POSIX_String;
Env : in out Environment);

158 4 Process Environment

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

procedure Delete_Environment_Variable
(Name : in POSIX.POSIX_String);

function Length (Env : Environment) return Natural;
function Length return Natural;
generic

with procedure Action
(Name : in POSIX.POSIX_String;

Value : in POSIX.POSIX_String;
Quit : in out Boolean);

procedure For_Every_Environment_Variable
(Env : in Environment);

generic
with procedure Action

(Name : in POSIX.POSIX_String;
Value : in POSIX.POSIX_String;
Quit : in out Boolean);

procedure For_Every_Current_Environment_Variable;
-- 4.3.3 Process Working Directory
procedure Change_Working_Directory

(Directory_Name : in POSIX.Pathname);
function Get_Working_Directory return POSIX.Pathname; private

type Environment is implementation-defined;

end POSIX_Process_Environment;

4.3.1 Argument List

4.3.1.1 Synopsis

function Argument_List return POSIX.POSIX_String_List;

4.3.1.2 Description

Argument_List shall return the argument list of the current process as a value of
type POSIX.POSIX_String_List . If the current process was created by a Start_-
Process , Start_Process_Search , Exec , or Exec_Search operation, this shall be
the value provided by the Arg_List parameter of that operation. If no arguments
were provided to the process at startup, the argument list shall contain at most
a single element. By convention, this element is the name of the program being
executed.

4.3.1.3 Error Handling

No exceptions shall be raised by Argument_List .

4.3.2 Environment Variables

4.3.2.1 Synopsis

type Environment is limited private ;
procedure Copy_From_Current_Environment

(Env : in out Environment);
procedure Copy_To_Current_Environment

(Env : in Environment);
procedure Copy_Environment

(Source : in Environment;

4.3 Package POSIX_Process_Environment 159

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Target : in out Environment);
function Environment_Value_Of

(Name : POSIX.POSIX_String;
Env : Environment;
Undefined : POSIX.POSIX_String := "")

return POSIX.POSIX_String;
function Environment_Value_Of

(Name : POSIX.POSIX_String;
Undefined : POSIX.POSIX_String := "")

return POSIX.POSIX_String;
function Is_Environment_Variable

(Name : POSIX.POSIX_String;
Env : Environment)

return Boolean;
function Is_Environment_Variable

(Name : POSIX.POSIX_String)
return Boolean;

procedure Clear_Environment
(Env : in out Environment);

procedure Clear_Environment;
procedure Set_Environment_Variable

(Name : in POSIX.POSIX_String;
Value : in POSIX.POSIX_String;
Env : in out Environment);

procedure Set_Environment_Variable
(Name : in POSIX.POSIX_String;

Value : in POSIX.POSIX_String);
procedure Delete_Environment_Variable

(Name : in POSIX.POSIX_String;
Env : in out Environment);

procedure Delete_Environment_Variable
(Name : in POSIX.POSIX_String);

function Length (Env : Environment) return Natural;
function Length return Natural;
generic

with procedure Action
(Name : in POSIX.POSIX_String;

Value : in POSIX.POSIX_String;
Quit : in out Boolean);

procedure For_Every_Environment_Variable
(Env : in Environment);

generic
with procedure Action

(Name : in POSIX.POSIX_String;
Value : in POSIX.POSIX_String;
Quit : in out Boolean);

procedure For_Every_Current_Environment_Variable;

4.3.2.2 Description

The type Environment shall be used to represent sets of environment variables.
Each environment variable is a (name, value) pair, where the components are both of
type POSIX.POSIX_String . The name shall be a nonnull string and cannot contain
the character ‘=’ or the null character. The value may contain any valid POSIX_-
Character except the null character, but may include the character ‘=’. The case of
characters in the environment variable name is significant; the case of characters in
the environment variable value is retained.

160 4 Process Environment

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Each process shall have a set of environment variables, called the current environ-
ment of the process, which is provided at the time the process is created and may
be modified by the process. There is one current environment per process, and that
environment is shared by all tasks in that process.

A POSIX implementation may (but need not) dynamically allocate storage for (name,
value) pairs. The operations that may allocate such storage are Copy_From_Cur-
rent_Environment , Copy_To_Current_Environment , Copy_Environment , and
Set_Environment_Variable . If these operations do allocate storage dynamically,
then these operations and the operations Clear_Environment and Delete_En-
vironment_Variable shall recover any storage that may have been allocated to
(name, value) pairs that have been deleted or values that have been changed.

A POSIX implementation may also (but need not) impose limits on the amount of
memory available for storing (name, value) pairs in an object of type Environment .
Any operation that would cause such a limit to be exceeded shall raise the exception
POSIX_Error with error code Argument_List_Too_Long . If this error condition
occurs for an environment, Clear_Environment and Delete_Environment_Vari-
able shall continue to operate on the environment that caused the error and recover
storage where possible.

This package provides several operations that read or modify a specified environ-
ment. These operations each have two (overloaded) forms. The first form has a
formal parameter of type Environment , called Env, which specifies explicitly the
environment to which the operation is applied. The second form has an implicit
parameter, which is the current environment of the calling process. Modification op-
erations with this second form operate on the (global) process environment. In the
descriptions of operations in the following paragraphs, the phrase “specified envi-
ronment” means the environment specified by the formal parameter or the current
environment, according to whether there is an Environment parameter.

The operations provided by this package cannot produce an environment with mul-
tiple (name, value) pairs with identical names. Such environments are considered
unspecified by this standard. However, it is possible for the environment supplied
to the process at startup to contain such multiple-name definitions. The result of
calling operations in this package with such an environment is undefined.

A null environment, one with no (name, value) pairs, is a valid environment.

An environment variable name may be undefined in an environment, defined with a
null value, or defined with a nonnull value. Operations that access the environment
can distinguish these three cases.

In a multitasking program, the effect of one task calling an operation that modifies
an environment while another task is performing an operation on the same environ-
ment is undefined.

For iteration, distinct generic procedures are provided for the explicit and implicit
iterator forms, since Ada overloading rules require distinct names.

Copy_From_Current_Environment shall copy into Env a value of type Environ-
ment containing the same set of (name, value) pairs as in the current environment

4.3 Package POSIX_Process_Environment 161

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

of the calling process. The implementation of this procedure shall recover all dynam-
ically allocated storage that may have been allocated for the old value.

Copy_To_Current_Environment shall copy Env into the current environment of the
calling process, deleting all previous (name, value) pairs for the current environment.
The implementation of this procedure shall recover all dynamically allocated storage
that may have been allocated for the old value.

Copy_Environment shall copy the value of the parameter Source into the param-
eter Target . All previous values in Target are deleted. The implementation of
this procedure shall recover all dynamically allocated storage that may have been
allocated for the old value.

Environment_Value_Of shall search the specified environment for a variable whose
name matches the parameter Name. If such a variable is found, its value, possibly
null, shall be returned as a value of type POSIX.POSIX_String . If no matching
variable is found, the value provided by the parameter Undefined shall be returned.

Is_Environment_Variable shall return True if a variable with the name specified
by the parameter Nameis in the specified environment. Otherwise, False shall be
returned.

Clear_Environment shall remove all variables from the specified environment.
It shall also recover all memory that may have been allocated dynamically by the
POSIX implementation for (name, value) pairs belonging to the specified environ-
ment.

Set_Environment_Variable shall add the (name, value) pair specified by Name
and Value to the specified environment. The value of the parameter Value may
be a null POSIX.POSIX_String . If the parameter Nameis already the name of a
variable in the specified environment, then the parameter Value shall become the
new value associated with the variable denoted by Name. The implementation of
this procedure shall recover all dynamically allocated storage that may have been
allocated for the old value.

Delete_Environment_Variable shall delete the variable named by the parameter
Namefrom the specified environment. If the name Nameis not defined in the specified
environment, the procedure returns normally without any effect. The implementa-
tion of this procedure shall recover all dynamically allocated storage that may have
been allocated for the (name, value) pair.

Length shall return the number of (name, value) pairs defined in the specified envi-
ronment.

The generic procedures For_Every_Environment_Variable and For_Every_-
Current_Environment_Variable shall be instantiated by the application with an
actual procedure for the generic formal procedure Action . When called, the instance
shall call the actual procedure supplied for Action once for each (name, value) pair
in the specified environment.

Action shall be able to force termination of the generic instance either by setting
Quit to True or by raising an exception. Prior to calling Action , the instance shall
set Quit to False . The order in which the entries are presented is unspecified. The

162 4 Process Environment

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

behavior of the iterator is undefined if Action modifies the specified environment as
a side effect.

Exceptions raised by Action shall terminate iteration and shall be propagated back
to the caller of the instance. After an exception is raised by Action or Action
returns with Quit set to True , no more calls to Action shall occur.

4.3.2.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

The value for the parameter Name for the subprograms Environment_-
Value_Of , Is_Environment_Variable , Set_Environment_Variable , or
Delete_Environment_Variable is a null string or contains the character
‘=’. If this exception is raised, the specified environment shall be unchanged.

Argument_List_Too_Long

Set_Environment_Variable was called with an environment and variable
value that would exceed system-imposed limits if the variable were added
to the environment.

No exceptions are specified by this standard for Copy_From_Current_Environ-
ment , Copy_To_Current_Environment , Copy_Environment , Clear_Environ-
ment , Length , For_Every_Environment_Variable , and For_Every_Current_-
Environment_Variable .

4.3.3 Process Working Directory

4.3.3.1 Synopsis

procedure Change_Working_Directory
(Directory_Name : in POSIX.Pathname);

function Get_Working_Directory return POSIX.Pathname;

4.3.3.2 Description

The process working directory is used for interpreting relative pathnames (path-
names that do not begin with a slash). The process working directory is the starting
point for resolving a relative pathname, as described in 2.3.11.

There is one working directory per process; the value is shared by all tasks in that
process.

Get_Working_Directory shall return the absolute pathname of the current work-
ing directory as a value of type POSIX.Pathname .

Change_Working_Directory shall change the process working directory to the
value of the parameter Directory_Name . If an exception is raised by Change_-
Working_Directory , the current working directory shall be unchanged.

4.3 Package POSIX_Process_Environment 163

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

4.3.3.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Permission_Denied

(1) The parameter Directory_Name to Change_Working_Directory con-
tains a component directory for which read or search permission is de-
nied.

(2) Read or search permission is denied for a component of the current pro-
cess working directory that would be returned by Get_Working_Di-
rectory .

Filename_Too_Long

The length of the parameter Directory_Name to Change_Working_Di-
rectory exceeds the system-imposed limit for that pathname. Information
on this limit is provided by Pathname Maximum (see 5.4.1).

Not_A_Directory

The parameter Directory_Name to Change_Working_Directory contains
a component that is not a directory.

No_Such_File_Or_Directory

The parameter Directory_Name to Change_Working_Directory defines
a directory that does not exist or is null.

4.4 Package POSIX_Calendar

This package provides an analog to the facilities defined in the Ada standard package
Calendar . However, the time type defined in POSIX_Calendar includes sufficient
information to permit values of this type to be interpreted using the TZ environment
variable. (See 2.11.1.)

with POSIX,
Calendar;

package POSIX_Calendar is
-- 4.4.1 Time Information
type POSIX_Time is private ;
function Clock return POSIX_Time;
function To_Time (Date : POSIX_Time) return Calendar.Time;
function To_POSIX_Time (Date : Calendar.Time) return POSIX_Time;
function To_POSIX_Time (Date : POSIX.Timespec) return POSIX_Time;
function To_Timespec (Date : POSIX_Time) return POSIX.Timespec;
function "+" (L : POSIX_Time; R : Duration) return POSIX_Time;
function "+" (L : Duration; R : POSIX_Time) return POSIX_Time;
function "-" (L : POSIX_Time; R : Duration) return POSIX_Time;
function "-" (L : POSIX_Time; R : POSIX_Time) return Duration;
function "<" (L, R : POSIX_Time) return Boolean;
function "<="(L, R : POSIX_Time) return Boolean;
function ">" (L, R : POSIX_Time) return Boolean;
function ">="(L, R : POSIX_Time) return Boolean;
-- 4.4.2 Operations on POSIX Times
subtype Year_Number is Calendar.Year_Number;

164 4 Process Environment

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

subtype Month_Number is Calendar.Month_Number;
subtype Day_Number is Calendar.Day_Number;
subtype Day_Duration is Calendar.Day_Duration;
function Year (Date : POSIX_Time) return Year_Number;
function Month (Date : POSIX_Time) return Month_Number;
function Day (Date : POSIX_Time) return Day_Number;
function Seconds (Date : POSIX_Time) return Day_Duration;
procedure Split

(Date : in POSIX_Time;
Year : out Year_Number;
Month : out Month_Number;
Day : out Day_Number;
Seconds : out Day_Duration);

function Time_Of
(Year : Year_Number;

Month : Month_Number;
Day : Day_Number;
Seconds : Day_Duration := 0.0)

return POSIX_Time;
Time_Error : exception renames Calendar.Time_Error;

private
implementation-defined;

end POSIX_Calendar;

4.4.1 Time Information

4.4.1.1 Synopsis

type POSIX_Time is private ;
function Clock return POSIX_Time;
function To_Time (Date : POSIX_Time) return Calendar.Time;
function To_POSIX_Time (Date : Calendar.Time) return POSIX_Time;
function To_POSIX_Time (Date : POSIX.Timespec) return POSIX_Time;
function To_Timespec (Date : POSIX_Time) return POSIX.Timespec;
function "+" (L : POSIX_Time; R : Duration) return POSIX_Time;
function "+" (L : Duration; R : POSIX_Time) return POSIX_Time;
function "-" (L : POSIX_Time; R : Duration) return POSIX_Time;
function "-" (L : POSIX_Time; R : POSIX_Time) return Duration;
function "<" (L, R : POSIX_Time) return Boolean;
function "<="(L, R : POSIX_Time) return Boolean;
function ">" (L, R : POSIX_Time) return Boolean;

function ">="(L, R : POSIX_Time) return Boolean;

4.4.1.2 Description

The type POSIX_Time is used to obtain times and dates from the system. Values of
this type shall be independent of the current time zone in effect for the system, so
that an arbitrary value of this type may be interpreted at a later date using informa-
tion in the TZ environment variable. (See 2.11.1.)

The function Clock shall return a value of type POSIX_Time reflecting the current
system time.

The functions named To_POSIX_Time shall convert a value of type POSIX.Timespec
or Calendar.Time to a value of type POSIX_Time .

4.4 Package POSIX_Calendar 165

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

The function To_Timespec shall convert a value of type POSIX_Time to a value of
type POSIX.Timespec .

The function To_Time shall convert a value of type POSIX_Time to a value of type
Calendar.Time .

When converting a value of the type POSIX.Timespec , the value shall be interpreted
as an offset from the Epoch. (See 2.2.2.58.) If a value of Calendar.Time does
not contain sufficient information to interpret its value in a time-zone-independent
fashion, the value shall be interpreted using the current value of the TZ environment
variable.

The operators "+" and "-" provide for arithmetic on values of POSIX_Time and
the Ada standard type Duration . The operators "<" , "<=" , ">" and ">=" provide
relational operations on values of type POSIX_Time . The arithmetic and relational
operators have their conventional meanings.

4.4.1.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

The value of the environment variable TZ is not recognized by this imple-
mentation as specifying valid time-zone information.

Time_Error may be raised by the operators "+" or "-" if the operations cannot
return a valid value of type POSIX_Time whose year number is in the range of the
subtype Year_Number or whose seconds value is not in the range of the type Dura-
tion .

Constraint_Error may be raised by To_Time , To_POSIX_Time , or To_Timespec
for implementation-defined reasons, including the situation where a value of the
source type cannot be converted to a value of the target type.

4.4.2 Operations on POSIX Times

4.4.2.1 Synopsis

subtype Year_Number is Calendar.Year_Number;
subtype Month_Number is Calendar.Month_Number;
subtype Day_Number is Calendar.Day_Number;
subtype Day_Duration is Calendar.Day_Duration;
function Year (Date : POSIX_Time) return Year_Number;
function Month (Date : POSIX_Time) return Month_Number;
function Day (Date : POSIX_Time) return Day_Number;
function Seconds (Date : POSIX_Time) return Day_Duration;
procedure Split

(Date : in POSIX_Time;
Year : out Year_Number;
Month : out Month_Number;
Day : out Day_Number;
Seconds : out Day_Duration);

function Time_Of
(Year : Year_Number;

166 4 Process Environment

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Month : Month_Number;
Day : Day_Number;
Seconds : Day_Duration := 0.0)

return POSIX_Time;

Time_Error : exception renames Calendar.Time_Error;

4.4.2.2 Description

The procedure Split shall take a value of type POSIX_Time and shall interpret it ac-
cording to the current value of the TZ environment variable to provide time-related
information. (See 2.11.1.) The values returned by Split shall indicate the Year ,
Month , Day, and Seconds represented by the POSIX_Time value. The Day_Dura-
tion value in the parameter Seconds shall indicate the total number of seconds in
the indicated day. For instance, a value of Seconds of “3600.0” shall mean 1:00 AM
on the given day.

The function Year shall return the year number corresponding to the date indicated
by the value of type POSIX_Time , interpreted using the current value of the TZ
environment variable. The function Month shall return the month number corre-
sponding to the date indicated by the value of type POSIX_Time , interpreted using
the current value of the TZ environment variable. The function Day shall return the
day number corresponding to the date indicated by the value of type POSIX_Time ,
interpreted using the current value of the TZ environment variable. The function
Seconds shall return the number of seconds in the day corresponding to the date
indicated by the value of type POSIX_Time , interpreted using the current value of
the TZ environment variable.

The function Time_Of shall return a value of type POSIX_Time , interpreted in the
time zone indicated by the TZ environment variable.

If the value of TZ is null, then values of POSIX_Time shall be interpreted using
default system time-zone information.

4.4.2.3 Error Handling

If the following condition occurs, the exception POSIX_Error shall be raised with
the corresponding error code:

Invalid_Argument

The value of the environment variable TZ is not recognized by this imple-
mentation as specifying valid time-zone information.

Time_Error shall be raised by Time_Of if the parameters cannot be interpreted to
form a valid date.

4.5 Package POSIX_Configurable_System_Limits

This package provides operations to retrieve the configurable system limits, options,
or versions at runtime.

4.5 Package POSIX_Configurable_System_Limits 167

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

with POSIX,
POSIX_Limits,
POSIX_Options;

package POSIX_Configurable_System_Limits is
-- 4.5.1 Get Configurable System Options
function Asynchronous_IO_Is_Supported

return POSIX_Options.Asynchronous_IO_Support;
function File_Synchronization_Is_Supported

return POSIX_Options.File_Synchronization_Support;
function Internet_Datagram_Is_Supported

return POSIX_Options.Internet_Datagram_Support;
function Internet_Protocol_Is_Supported

return POSIX_Options.Internet_Protocol_Support;
function Internet_Stream_Is_Supported

return POSIX_Options.Internet_Stream_Support;
function ISO_OSI_Protocol_Is_Supported

return POSIX_Options.ISO_OSI_Protocol_Support; c
function Job_Control_Supported -- obsolescent

return POSIX.Job_Control_Support; -- obsolescent
function Job_Control_Is_Supported

return POSIX_Options.Job_Control_Support
renames Job_Control_Supported;

function Memory_Mapped_Files_Are_Supported
return POSIX_Options.Memory_Mapped_Files_Support;

function Memory_Locking_Is_Supported
return POSIX_Options.Memory_Locking_Support;

function Memory_Range_Locking_Is_Supported
return POSIX_Options.Memory_Range_Locking_Support;

function Memory_Protection_Is_Supported
return POSIX_Options.Memory_Protection_Support;

function Message_Queues_Are_Supported
return POSIX_Options.Message_Queues_Support;

function Mutex_Priority_Ceiling_Is_Supported
return POSIX_Options.Mutex_Priority_Ceiling_Support;

function Mutex_Priority_Inheritance_Is_Supported
return POSIX_Options.Mutex_Priority_Inheritance_Support;

function Mutexes_Are_Supported
return POSIX_Options.Mutexes_Support;

function Network_Management_Is_Supported
return POSIX_Options.Network_Management_Support;

function OSI_Connectionless_Is_Supported
return POSIX_Options.OSI_Connectionless_Support;

function OSI_Connection_Is_Supported
return POSIX_Options.OSI_Connection_Support;

function OSI_Minimal_Is_Supported
return POSIX_Options.OSI_Minimal_Support;

function Poll_Is_Supported
return POSIX_Options.Poll_Support; c

function Prioritized_IO_Is_Supported
return POSIX_Options.Prioritized_IO_Support;

function Process_Shared_Is_Supported
return POSIX_Options.Process_Shared_Support;

function Priority_Process_Scheduling_Is_Supported
return POSIX_Options.Priority_Process_Scheduling_Support;

function Priority_Task_Scheduling_Is_Supported
return POSIX_Options.Priority_Task_Scheduling_Support;

function Realtime_Signals_Are_Supported
return POSIX_Options.Realtime_Signals_Support;

168 4 Process Environment

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

function Saved_IDs_Supported -- obsolescent
return POSIX.Saved_IDs_Support; -- obsolescent

function Saved_IDs_Are_Supported
return POSIX_Options.Saved_IDs_Support
renames Saved_IDs_Supported;

function Select_Is_Supported
return POSIX_Options.Select_Support; c

function Semaphores_Are_Supported
return POSIX_Options.Semaphores_Support;

function Shared_Memory_Objects_Are_Supported
return POSIX_Options.Shared_Memory_Objects_Support;

function Sockets_DNI_Is_Supported
return POSIX_Options.Sockets_DNI_Support; c

function Synchronized_IO_Is_Supported
return POSIX_Options.Synchronized_IO_Support;

function Timers_Are_Supported
return POSIX_Options.Timers_Support;

function XTI_DNI_Is_Supported
return POSIX_Options.XTI_DNI_Support; c

-- 4.5.2 Get Configurable System Limits
type POSIX_Version is implementation-defined-integer;
function System_POSIX_Version return POSIX_Version;
function System_POSIX_Ada_Version return POSIX_Version;
function Argument_List_Maximum

return POSIX_Limits.Argument_List_Maxima;
function Asynchronous_IO_Maximum

return POSIX_Limits.Asynchronous_IO_Maxima;
function Asynchronous_IO_Priority_Delta_Maximum

return POSIX_Limits.Asynchronous_IO_Priority_Delta_Maxima;
function Child_Processes_Maximum

return POSIX_Limits.Child_Processes_Maxima;
function Groups_Maximum

return POSIX_Limits.Groups_Maxima;
function List_IO_Maximum

return POSIX_Limits.List_IO_Maxima;
function Open_Message_Queues_Maximum

return POSIX_Limits.Open_Message_Queues_Maxima;
function Message_Priority_Maximum

return POSIX_Limits.Message_Priority_Maxima;
function Open_Files_Maximum

return POSIX_Limits.Open_Files_Maxima;
function Page_Size

return POSIX_Limits.Page_Size_Range;
function Queued_Signals_Maximum

return POSIX_Limits.Queued_Signals_Maxima;
function Realtime_Signals_Maximum

return POSIX_Limits.Realtime_Signals_Maxima;
function Semaphores_Maximum

return POSIX_Limits.Semaphores_Maxima;
function Semaphores_Value_Maximum

return POSIX_Limits.Semaphores_Value_Maxima;
function Socket_IO_Vector_Maximum

return POSIX_Limits.Socket_IO_Vector_Maxima; c
function Stream_Maximum -- obsolescent

return POSIX.Stream_Maxima; -- obsolescent
function Streams_Maximum

return POSIX_Limits.Streams_Maxima
renames Stream_Maximum;

4.5 Package POSIX_Configurable_System_Limits 169

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

function Timers_Maximum
return POSIX_Limits.Timers_Maxima;

function Timer_Overruns_Maximum
return POSIX_Limits.Timer_Overruns_Maxima;

function Time_Zone_String_Maximum
return POSIX_Limits.Time_Zone_String_Maxima;

function XTI_IO_Vector_Maximum
return POSIX_Limits.XTI_IO_Vector_Maxima; c

end POSIX_Configurable_System_Limits;

4.5.1 Get Configurable System Options

4.5.1.1 Synopsis

function Asynchronous_IO_Is_Supported
return POSIX_Options.Asynchronous_IO_Support;

function File_Synchronization_Is_Supported
return POSIX_Options.File_Synchronization_Support;

function Internet_Datagram_Is_Supported
return POSIX_Options.Internet_Datagram_Support;

function Internet_Protocol_Is_Supported
return POSIX_Options.Internet_Protocol_Support;

function Internet_Stream_Is_Supported
return POSIX_Options.Internet_Stream_Support;

function ISO_OSI_Protocol_Is_Supported
return POSIX_Options.ISO_OSI_Protocol_Support; c

function Job_Control_Supported -- obsolescent
return POSIX.Job_Control_Support; -- obsolescent

function Job_Control_Is_Supported
return POSIX_Options.Job_Control_Support
renames Job_Control_Supported;

function Memory_Mapped_Files_Are_Supported
return POSIX_Options.Memory_Mapped_Files_Support;

function Memory_Locking_Is_Supported
return POSIX_Options.Memory_Locking_Support;

function Memory_Range_Locking_Is_Supported
return POSIX_Options.Memory_Range_Locking_Support;

function Memory_Protection_Is_Supported
return POSIX_Options.Memory_Protection_Support;

function Message_Queues_Are_Supported
return POSIX_Options.Message_Queues_Support;

function Mutex_Priority_Ceiling_Is_Supported
return POSIX_Options.Mutex_Priority_Ceiling_Support;

function Mutex_Priority_Inheritance_Is_Supported
return POSIX_Options.Mutex_Priority_Inheritance_Support;

function Mutexes_Are_Supported
return POSIX_Options.Mutexes_Support;

function Network_Management_Is_Supported
return POSIX_Options.Network_Management_Support;

function OSI_Connectionless_Is_Supported
return POSIX_Options.OSI_Connectionless_Support;

function OSI_Connection_Is_Supported
return POSIX_Options.OSI_Connection_Support;

function OSI_Minimal_Is_Supported
return POSIX_Options.OSI_Minimal_Support;

function Poll_Is_Supported
return POSIX_Options.Poll_Support; c

function Prioritized_IO_Is_Supported

170 4 Process Environment

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

return POSIX_Options.Prioritized_IO_Support;
function Process_Shared_Is_Supported

return POSIX_Options.Process_Shared_Support;
function Priority_Process_Scheduling_Is_Supported

return POSIX_Options.Priority_Process_Scheduling_Support;
function Priority_Task_Scheduling_Is_Supported

return POSIX_Options.Priority_Task_Scheduling_Support;
function Realtime_Signals_Are_Supported

return POSIX_Options.Realtime_Signals_Support;
function Saved_IDs_Supported -- obsolescent

return POSIX.Saved_IDs_Support; -- obsolescent
function Saved_IDs_Are_Supported

return POSIX_Options.Saved_IDs_Support
renames Saved_IDs_Supported;

function Select_Is_Supported
return POSIX_Options.Select_Support; c

function Semaphores_Are_Supported
return POSIX_Options.Semaphores_Support;

function Shared_Memory_Objects_Are_Supported
return POSIX_Options.Shared_Memory_Objects_Support;

function Sockets_DNI_Is_Supported
return POSIX_Options.Sockets_DNI_Support; c

function Synchronized_IO_Is_Supported
return POSIX_Options.Synchronized_IO_Support;

function Timers_Are_Supported
return POSIX_Options.Timers_Support;

function XTI_DNI_Is_Supported

return POSIX_Options.XTI_DNI_Support; c

4.5.1.2 Description

These functions can be used to discover the support provided for certain options (see
2.5) by a particular implementation. For system-wide Boolean valued options, the
function shall return a True if the corresponding option is supported, and False if
the option is not supported. For pathname-specific Boolean valued options, the func-
tion shall return True if the corresponding option is supported on all or some files,
and False if it is not supported on any files. For multivalued options, the function
shall return the value that indicates the support for the option. The correspondence
of functions to options (see 2.5) shall be as shown in Table 4.1.

NOTE: For pathname-specific options, the application can determine reliably that an option
is supported on a specific file only by calling the corresponding pathname-specific function,
declared in the package POSIX_Configurable_File_Limits and described in 5.4.

NOTE: Alternate names are provided for Job_Control_Is_Supported and Saved_IDs_-
Are_Supported , for compatibility with the names of these operations in POSIX.5.

4.5.1.3 Error Handling

None of these functions shall raise any exception.

4.5 Package POSIX_Configurable_System_Limits 171

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Table 4.1 – Functions for System-Wide Options

Function Option

Asynchronous_IO_Is_Supported Asynchronous I/O
File_Synchronization_Is_Supported File Synchronization
Internet_Datagram_Is_Supported Internet Datagram
Internet_Protocol_Is_Supported Internet Protocol
Internet_Stream_Is_Supported Internet Stream
ISO_OSI_Protocol_Is_Supported ISO/OSI Protocol c

Job_Control_Is_Supported Job Control
Memory_Mapped_Files_Are_Supported Memory Mapped Files
Memory_Locking_Is_Supported Memory Locking
Memory_Range_Locking_Is_Supported Memory Range Locking
Memory_Protection_Is_Supported Memory Protection
Message_Queues_Are_Supported Message Queues
Mutex_Priority_Ceiling_Is_Supported Mutex Priority Ceiling
Mutex_Priority_Inheritance_Is_Supported Mutex Priority Inheritance
Mutexes_Are_Supported Mutexes
Network_Management_Is_Supported Network Management
OSI_Connectionless_Is_Supported OSI Connectionless
OSI_Connection_Is_Supported OSI Connection
OSI_Minimal_Is_Supported OSI Minimal [for XTI only]
Poll_Is_Supported Poll c

Prioritized_IO_Is_Supported Prioritized I/O
Priority_Process_Scheduling_Is_Supported Priority Process Scheduling
Priority_Task_Scheduling_Is_Supported Priority Task Scheduling
Process_Shared_Is_Supported Process Shared
Realtime_Signals_Are_Supported Realtime Signals
Saved_IDs_Are_Supported Saved IDs
Select_Is_Supported Select c

Semaphores_Are_Supported Semaphores
Shared_Memory_Objects_Are_Supported Shared Memory Objects
Sockets_DNI_Is_Supported Sockets DNI c

Synchronized_IO_Is_Supported Synchronized I/O
Timers_Are_Supported Timers
XTI_DNI_Is_Supported XTI DNI c

4.5.2 Get Configurable System Limits

4.5.2.1 Synopsis

type POSIX_Version is implementation-defined-integer;
function System_POSIX_Version return POSIX_Version;
function System_POSIX_Ada_Version return POSIX_Version;
function Argument_List_Maximum

return POSIX_Limits.Argument_List_Maxima;
function Asynchronous_IO_Maximum

return POSIX_Limits.Asynchronous_IO_Maxima;
function Asynchronous_IO_Priority_Delta_Maximum

return POSIX_Limits.Asynchronous_IO_Priority_Delta_Maxima;
function Child_Processes_Maximum

return POSIX_Limits.Child_Processes_Maxima;

172 4 Process Environment

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

function Groups_Maximum
return POSIX_Limits.Groups_Maxima;

function List_IO_Maximum
return POSIX_Limits.List_IO_Maxima;

function Open_Message_Queues_Maximum
return POSIX_Limits.Open_Message_Queues_Maxima;

function Message_Priority_Maximum
return POSIX_Limits.Message_Priority_Maxima;

function Open_Files_Maximum
return POSIX_Limits.Open_Files_Maxima;

function Page_Size
return POSIX_Limits.Page_Size_Range;

function Queued_Signals_Maximum
return POSIX_Limits.Queued_Signals_Maxima;

function Realtime_Signals_Maximum
return POSIX_Limits.Realtime_Signals_Maxima;

function Semaphores_Maximum
return POSIX_Limits.Semaphores_Maxima;

function Semaphores_Value_Maximum
return POSIX_Limits.Semaphores_Value_Maxima;

function Socket_IO_Vector_Maximum
return POSIX_Limits.Socket_IO_Vector_Maxima; c

function Stream_Maximum -- obsolescent
return POSIX.Stream_Maxima; -- obsolescent

function Streams_Maximum
return POSIX_Limits.Streams_Maxima
renames Stream_Maximum;

function Timers_Maximum
return POSIX_Limits.Timers_Maxima;

function Timer_Overruns_Maximum
return POSIX_Limits.Timer_Overruns_Maxima;

function Time_Zone_String_Maximum
return POSIX_Limits.Time_Zone_String_Maxima;

function XTI_IO_Vector_Maximum

return POSIX_Limits.XTI_IO_Vector_Maxima; c

4.5.2.2 Description

These functions can be used to obtain information about capacity limits (see 2.6) and
other configurable values for a particular implementation of this standard. Each
function shall return the actual system-wide value of the corresponding limit or other
variable shown in Table 4.2.

System_POSIX_Version shall return a value describing the implemented version or
revision of POSIX.1. The preferred interpretation of this integer is six decimal digits
representing when the version of the standard was approved by the IEEE Standards
Board; the year is the first four digits, and the month is the last two digits. This
interpretation is not required by this standard.

System_POSIX_Ada_Version shall return a value describing the implemented ver-
sion or revision of this standard. The preferred interpretation of this integer is six
decimal digits representing when the version of the standard was approved by the
IEEE Standards Board; the year is the first four digits, and the month is the last two
digits. This interpretation is not required by this standard.

4.5.2.3 Error Handling

None of these functions shall raise any exception.

4.5 Package POSIX_Configurable_System_Limits 173

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Table 4.2 – Configurable System Limits

Function Limit

Argument_List_Maximum Argument List Maximum
Asynchronous_IO_Maximum Asynchronous I/O Maximum
Asynchronous_IO_Priority_Delta_Maximum Asynchronous I/O Priority Delta Maximum
Child_Processes_Maximum Child Processes Maximum
Groups_Maximum Groups Maximum
List_IO_Maximum List I/O Maximum
Message_Priority_Maximum Message Priority Maximum
Open_Files_Maximum Open Files Maximum
Open_Message_Queues_Maximum Open Message Queues Maximum
Page_Size Page Size
Queued_Signals_Maximum Queued Signals Maximum
Realtime_Signals_Maximum Realtime Signals Maximum
Semaphores_Maximum Semaphores Maximum
Semaphores_Value_Maximum Semaphores Value Maximum
Socket_IO_Vector_Maximum Socket IO Vector Maximum c

Streams_Maximum Streams Maximum
Timers_Maximum Timers Maximum
Timer_Overruns_Maximum Timer Overruns Maximum
Time_Zone_String_Maximum Time Zone String Maximum
XTI_IO_Vector_Maximum XTI IO Vector Maximum c

174 4 Process Environment

IEEE Std 1003.5c-1998

Section 5: Files and Directories

This section defines POSIX operations on files and various properties of files as de-
fined in the four packages POSIX_Permissions , POSIX_Files , POSIX_File_Sta-
tus , and POSIX_Configurable_File_Limits . It does not define the I/O operations,
which are defined in the packages POSIX_IO and POSIX_File_Locking in Section 6.

5.1 Package POSIX_Permissions

POSIX file protection is defined in terms of file permissions. The list of permissions
is provided by the Permission enumeration and the constants making use of it.
The permissions for a file are established when it is created and may be changed
with POSIX_Files.Change_Permissions . They are then analyzed during program
execution to determine whether the desired access can be allowed.

package POSIX_Permissions is
-- 5.1.1 File Permissions
type Permission is

(Others_Execute, Others_Write, Others_Read,
Group_Execute, Group_Write, Group_Read,
Owner_Execute, Owner_Write, Owner_Read,
Set_Group_ID, Set_User_ID);

type Permission_Set is array (Permission) of Boolean;
Owner_Permission_Set : constant Permission_Set := Permission_Set’

(Owner_Read | Owner_Write | Owner_Execute => true,
others => false);

Group_Permission_Set : constant Permission_Set := Permission_Set’
(Group_Read | Group_Write | Group_Execute => true,

others => false);
Others_Permission_Set : constant Permission_Set := Permission_Set’

(Others_Read | Others_Write | Others_Execute => true,
others => false);

Access_Permission_Set : constant Permission_Set := Permission_Set’
(Owner_Read | Owner_Write | Owner_Execute => true,

Group_Read | Group_Write | Group_Execute => true,
Others_Read | Others_Write | Others_Execute => true,
others => false);

Set_Group_ID_Set : constant Permission_Set := Permission_Set’
(Set_Group_ID => true,

others => false);
Set_User_ID_Set : constant Permission_Set := Permission_Set’

(Set_User_ID => true,
others => false);

-- 5.1.2 Process Permission Set
function Get_Allowed_Process_Permissions return Permission_Set;
procedure Set_Allowed_Process_Permissions

(Permissions : in Permission_Set);
procedure Set_Allowed_Process_Permissions

(Permissions : in Permission_Set;
Old_Perms : out Permission_Set);

end POSIX_Permissions;

5 Files and Directories 175

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

5.1.1 File Permissions

5.1.1.1 Synopsis

type Permission is
(Others_Execute, Others_Write, Others_Read,

Group_Execute, Group_Write, Group_Read,
Owner_Execute, Owner_Write, Owner_Read,
Set_Group_ID, Set_User_ID);

type Permission_Set is array (Permission) of Boolean;
Owner_Permission_Set : constant Permission_Set := Permission_Set’

(Owner_Read | Owner_Write | Owner_Execute => true,
others => false);

Group_Permission_Set : constant Permission_Set := Permission_Set’
(Group_Read | Group_Write | Group_Execute => true,

others => false);
Others_Permission_Set : constant Permission_Set := Permission_Set’

(Others_Read | Others_Write | Others_Execute => true,
others => false);

Access_Permission_Set : constant Permission_Set := Permission_Set’
(Owner_Read | Owner_Write | Owner_Execute => true,

Group_Read | Group_Write | Group_Execute => true,
Others_Read | Others_Write | Others_Execute => true,
others => false);

Set_Group_ID_Set : constant Permission_Set := Permission_Set’
(Set_Group_ID => true,

others => false);
Set_User_ID_Set : constant Permission_Set := Permission_Set’

(Set_User_ID => true,

others => false);

5.1.1.2 Description

The enumeration type Permission shall list the standard POSIX file modes. Sets
of Permission s are represented by objects of the type Permission_Set . When
assigned to a file, permissions in the Access_Permission_Set control access to
the file. Permissions in Set_User_ID_Set and Set_Group_ID_Set control which
effective group and user IDs are assigned when the file is executed. The meaning of
each of these sets and the individual Permission s are as follows. In each case, a
value of True in the set indicates that the corresponding permission is granted.

Owner_Permission_Set

Read, write, search (if a directory), or execute (otherwise) permission for the
file owner class.

Owner_Read

Read permission for the file owner class.
Owner_Write

Write permission for the file owner class.
Owner_Execute

Search (if a directory) or execute (otherwise) permission for the file
owner class.

Group_Permission_Set

Read, write, search (if a directory), or execute (otherwise) permission for the
file group class.

176 5 Files and Directories

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Group_Read

Read permission for the file group class.
Group_Write

Write permission for the file group class.
Group_Execute

Search (if a directory) or execute (otherwise) permission for the file
group class.

Others_Permission_Set

Read, write, search (if a directory), or execute (otherwise) permission for the
file other class.

Others_Read

Read permission for the file other class.
Others_Write

Write permission for the file other class.
Others_Execute

Search (if a directory) or execute (otherwise) permission for the file
other class.

Set_Group_ID_Set

Contains only the single element Set_Group_ID . The effective group ID of
the process shall be set to that of the group of the file when the file is run as
a program. On a regular file, Set_Group_ID shall be cleared on any write.

Set_User_ID_Set

Contains only the single element Set_User_ID . The effective user ID of the
process shall be set to that of the owner of the file when the file is run as a
program. On a regular file, Set_User_ID shall be cleared on any write.

5.1.2 Process Permission Set

5.1.2.1 Synopsis

function Get_Allowed_Process_Permissions return Permission_Set;
procedure Set_Allowed_Process_Permissions

(Permissions : in Permission_Set);
procedure Set_Allowed_Process_Permissions

(Permissions : in Permission_Set;

Old_Perms : out Permission_Set);

5.1.2.2 Description

Each process shall have a set of allowed process permissions associated with it. The
process permission set shall contain only Permission s that represent file access
permissions, that is, those Permission s contained in the Access_Permission_-
Set . It does not contain either Set_Group_ID or Set_User_ID .

The set is implicitly used whenever the process creates a new file (operations Cre-
ate_Directory , Create_FIFO , and POSIX_IO . Open_Or_Create ; see 5.2.1 and
6.1.1). The access permissions established for the newly created file shall be those
for which the permission is True in both the creation operation and the allowed pro-
cess permission set.

5.1 Package POSIX_Permissions 177

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Get_Allowed_Process_Permissions shall return the current allowed process per-
missions set.

Set_Allowed_Process_Permissions shall set the allowed process permissions set
of the process to Permissions . One form of Set_Allowed_Process_Permissions
permits the user to obtain the previous values of the permissions in the parameter
Old_Perms . If any Permission s other than those in Access_Permission_Set are
present in Permissions , their meaning is implementation defined.

5.1.2.3 Error Handling

No exceptions shall be raised by Get_Allowed_Process_Permissions or Set_-
Allowed_Process_Permissions .

5.2 Package POSIX_Files

This package provides operations for creating and removing files and directories and
modifying their characteristics.

with POSIX,
POSIX_Permissions,
POSIX_Process_Identification,
POSIX_Calendar;

package POSIX_Files is
-- 5.2.1 Create and Remove Files
procedure Create_Directory

(Pathname : in POSIX.Pathname;
Permission : in POSIX_Permissions.Permission_Set);

procedure Create_FIFO
(Pathname : in POSIX.Pathname;

Permission : in POSIX_Permissions.Permission_Set);
procedure Unlink (Pathname : in POSIX.Pathname);
procedure Remove_Directory (Pathname : in POSIX.Pathname);
-- 5.2.2 Inquiries on File Types
function Is_File (Pathname : POSIX.Pathname) return Boolean;
function Is_Directory (Pathname : POSIX.Pathname) return Boolean;
function Is_FIFO (Pathname : POSIX.Pathname) return Boolean;
function Is_Character_Special_File

(Pathname : POSIX.Pathname) return Boolean;
function Is_Block_Special_File

(Pathname : POSIX.Pathname) return Boolean;
function Is_Socket (Pathname : POSIX.Pathname)

return Boolean; c
-- 5.2.3 Modify File Pathnames
procedure Link

(Old_Pathname : in POSIX.Pathname;
New_Pathname : in POSIX.Pathname);

procedure Rename
(Old_Pathname : in POSIX.Pathname;

New_Pathname : in POSIX.Pathname);
-- 5.2.4 Directory Iteration
type Directory_Entry is limited private ;
function Filename_Of (D_Entry : Directory_Entry) return POSIX.Filename;

178 5 Files and Directories

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

generic
with procedure Action

(D_Entry : in Directory_Entry;
Quit : in out Boolean);

procedure For_Every_Directory_Entry
(Pathname : in POSIX.Pathname);

-- 5.2.5 Update File Status Information
procedure Change_Owner_And_Group

(Pathname : in POSIX.Pathname;
Owner : in POSIX_Process_Identification.User_ID;
Group : in POSIX_Process_Identification.Group_ID);

procedure Change_Permissions
(Pathname : in POSIX.Pathname;

Permission : in POSIX_Permissions.Permission_Set);
procedure Set_File_Times

(Pathname : in POSIX.Pathname;
Access_Time : in POSIX_Calendar.POSIX_Time;
Modification_Time : in POSIX_Calendar.POSIX_Time);

procedure Set_File_Times (Pathname : in POSIX.Pathname);
-- 5.2.6 Check File Accessibility
type Access_Mode is (Read_Ok, Write_Ok, Execute_Ok);
type Access_Mode_Set is array (Access_Mode) of Boolean;
function Is_Accessible

(Pathname : POSIX.Pathname;
Access_Modes : Access_Mode_Set)

return Boolean;
function Accessibility

(Pathname : POSIX.Pathname;
Access_Modes : Access_Mode_Set)

return POSIX.Error_Code;
function Is_File_Present (Pathname : POSIX.Pathname) return Boolean;
function Existence (Pathname : POSIX.Pathname) return POSIX.Error_Code;

private
implementation-defined

end POSIX_Files;

5.2.1 Create and Remove Files

5.2.1.1 Synopsis

procedure Create_Directory
(Pathname : in POSIX.Pathname;

Permission : in POSIX_Permissions.Permission_Set);
procedure Create_FIFO

(Pathname : in POSIX.Pathname;
Permission : in POSIX_Permissions.Permission_Set);

procedure Unlink (Pathname : in POSIX.Pathname);

procedure Remove_Directory (Pathname : in POSIX.Pathname);

5.2.1.2 Description

A directory is a file that contains directory entries. Each directory entry shall have a
unique name within that directory and associate a filename with a file. A directory
entry is also referred to as a link, in that it links the filename to its file. A file may be
referenced by more than one directory entry. Implementations may support linking
of files across file systems, and they may also support links to directories. A file exists

5.2 Package POSIX_Files 179

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

as long as at least one directory entry (link) refers to it or there is at least one process
has the file open.

One of the attributes maintained for a file shall be its link count, the number of
directory entries (links) that refer to it.

Create_Directory shall create a directory. The name of the directory shall be
specified by Pathname . Create_FIFO shall create a FIFO. The name of the FIFO
shall be specified by Pathname . For each of the file creation operations, the file
permission given to the new file shall be obtained from Permission as modified by
the process permission set. (See 5.1.2.) The owner of the file shall be set to the
effective user ID of the creating process, and the group of the file shall be set to
the effective group ID of the process. Upon successful completion of a file creation
operation, the Last Access Time, Last Modification Time, and Last Status Change Time of
the new file shall be marked for update. (See 2.3.10.) Also, the Last Modification Time
and Last Status Change Time values for the parent directory of the new file shall be
marked for update.

File removal is accomplished through Unlink . Unlink shall remove the directory
entry (link) named by the Pathname and decrement the link count of the file ref-
erenced by the entry. If the decremented link count is zero and no process has the
file open, the space occupied by the file shall be freed, and the file shall no longer be
accessible. If one or more processes have the file open when the last link is removed,
removal of the file contents shall be postponed until all references to the file have
been closed.

The parameter Pathname shall not name a directory unless the process has appro-
priate privileges and the implementation supports using Unlink on directories. An
application should use Remove_Directory to remove a directory.

Upon successful completion, the Last Modification Time and Last Status Change Time of
the parent directory shall be marked for update. (See 2.3.10.) Additionally, if the
link count of the file is not zero, the Last Status Change Time of the file shall be marked
for update.

A call to Unlink with a pathname that specifies a connected stream socket (i.e., a
socket of type Stream_Socket in states Connected, Sending Only, or Receiving Only,
described in 18.2) shall have no effect on the socket. A call to Unlink specifying
the pathname of a socket is required before a subsequent bind to the pathname will
succeed. All further effects of Unlink on sockets are unspecified.

The effect of Unlink when Pathname specifies a character special file for use with
XTI calls is unspecified. c

Remove_Directory shall remove a directory named by the Pathname . The directory
shall only be removed if it is an empty directory. (See 2.2.2.54.) If the directory is
the root directory or the current working directory of any process, the effect of this
procedure is implementation defined.

Removal of a directory shall cause the link named by the Pathname to be removed
and the link count of the directory to be decremented. When the link count becomes
zero and no process has the directory open, the space occupied by the directory shall
be freed, and the directory shall no longer be accessible. If one or more processes

180 5 Files and Directories

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

have the directory open when the last link is removed, the dot and dot-dot entries,
if present, shall be removed, and no new entries may be created in the directory.
Removal of the directory is postponed until all references to the directory have been
closed. Upon successful completion of the Remove_Directory operation, the Last
Modification Time and Last Status Change Time of the parent directory shall be marked
for update. (See 2.3.10.)

5.2.1.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Permission_Denied

Search permission is denied for any component of the Pathname prefix or
write permission is denied on the parent directory of Pathname .

Filename_Too_Long

The length in POSIX characters of the specified pathname exceeds Pathname
Limit; or the length in POSIX characters of a component of the specified path-
name is greater than Filename Maximum, and the Filename Truncation option is
not supported for the pathname prefix of that component. (See 5.4.2.) To de-
termine these limits, the limit functions are applied to the parent directory
of Pathname .

File_Exists

There is an entry in the file system named by Pathname for a call to Cre-
ate_Directory or Create_FIFO .

Too_Many_Links

The link count in the parent directory of the file named by Pathname ex-
ceeds Links Maximum, for a call to Create_Directory .

No_Such_File_Or_Directory

(1) A component of the path prefix of the file named by Pathname does not
exist, or it is a null string.

(2) Pathname does not exist, or it is a null string for a call to Unlink or
Remove_Directory .

No_Space_Left_On_Device

The file system does not contain enough space to hold the new directory
entry or to extend the contents of the parent directory of the new directory
for a call to Create_Directory or Create_FIFO .

Read_Only_File_System

The parent directory of the file named by Pathname resides on a read-only
file system.

Not_A_Directory

(1) A component of the path prefix of Pathname is not a directory for a call
to Create_Directory , Create_FIFO , or Unlink .

(2) A component of the path named by Pathname is not a directory for a
call to Remove_Directory .

5.2 Package POSIX_Files 181

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Resource_Busy

The directory named by Pathname cannot be removed because it is being
used by another process, during a call to Unlink or Remove_Directory ,
and the implementation considers attempting to unlink or remove a file that
is in use to be an error.

Directory_Not_Empty or File_Exists

The directory named by Pathname is not an empty directory, when using
Remove_Directory . Directory_Not_Empty is preferred in this circum-
stance.

In situations where multiple error codes may be set, which possible error code is set
is unspecified.

5.2.2 Inquiries on File Types

5.2.2.1 Synopsis

function Is_File (Pathname : POSIX.Pathname) return Boolean;
function Is_Directory (Pathname : POSIX.Pathname) return Boolean;
function Is_FIFO (Pathname : POSIX.Pathname) return Boolean;
function Is_Character_Special_File

(Pathname : POSIX.Pathname) return Boolean;
function Is_Block_Special_File

(Pathname : POSIX.Pathname) return Boolean;
function Is_Socket (Pathname : POSIX.Pathname)

return Boolean; c

5.2.2.2 Description

Is_File shall return True if Pathname names a regular file and False otherwise.
False shall also be returned if the file named by Pathname does not exist or if any
other error occurred in determining the type of the file.

Is_Directory shall return True if Pathname names a directory and False other-
wise. False shall also be returned if the file named by Pathname does not exist or if
any other error occurred in determining the type of the file.

Is_FIFO shall return True if Pathname names a FIFO and False otherwise. False
also shall be returned if the file named by Pathname does not exist or if any other
error occurred in determining the type of the file.

Is_Character_Special_File shall return True if Pathname names a character
special file and False otherwise. False also shall be returned if the file named by
Pathname does not exist or if any other error occurred in determining the type of the
file.

Is_Block_Special_File shall return True if Pathname names a block special file
and False otherwise. False is also returned if the file named by Pathname does not
exist or if any other error occurred in determining the type of the file.

Is_Socket shall return True if Pathname names a socket and False otherwise.
False also shall be returned if the file named by Pathname does not exist or if any
other error occurred in determining the type of the file. c

182 5 Files and Directories

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

5.2.2.3 Error Handling

No exceptions shall be returned by Is_File , Is_Directory , Is_FIFO , Is_Char-
acter_Special_File , , Is_Block_Special_File , or Is_Socket . c

5.2.3 Modify File Pathnames

5.2.3.1 Synopsis

procedure Link
(Old_Pathname : in POSIX.Pathname;

New_Pathname : in POSIX.Pathname);
procedure Rename

(Old_Pathname : in POSIX.Pathname;

New_Pathname : in POSIX.Pathname);

5.2.3.2 Description

Link shall atomically create an alternate pathname for a given file specified by
Old_Pathname . New_Pathname is the pathname to be created. Link shall create a
link to the file named by Old_Pathname under the pathname named by New_Path-
name and increment the link count of the file by one.

If Link fails, no link shall be created, and the link count shall remain unchanged.

Old_Pathname shall not name a directory unless the user has appropriate privileges
and the implementation supports using Link on directories.

Implementations may permit or forbid linking of files across file systems and also
may require that the process have permission to access the file named by Old_-
Pathname .

Upon successful completion of Link , the Last Status Change Time of the file shall be
marked for update. (See 2.3.10.) Additionally, the Last Modification Time and Last Status
Change Time of the directory containing the new entry shall be marked for update.

The effect of Link on a socket or a character special file for use with XTI calls is
unspecified. c

Renameshall change the name of the file from the name specified by Old_Pathname
to the name specified by New_Pathname . If the two pathnames both refer to links to
the same existing file, Renameshall return successfully and perform no other action.

If Old_Pathname names a file that is not a directory, New_Pathname shall not be
the pathname of a directory. If the link named by New_Pathname exists, it shall be
removed, and the file named by Old_Pathname shall be renamed to New_Pathname .
In this case, a link named New_Pathname shall exist throughout the renaming op-
eration and shall refer either to the file named by New_Pathname or Old_Pathname
before the operation began. Write access permission is required for both the directory
containing Old_Pathname and the directory containing New_Pathname .

If Old_Pathname names a directory, New_Pathname shall not name the pathname
of a file that is not a directory. If the directory named by New_Pathname exists, it
shall be removed, and the directory named by Old_Pathname shall be renamed to

5.2 Package POSIX_Files 183

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

New_Pathname . In this case, a link named by New_Pathname shall exist throughout
the renaming operation and shall refer either to the file named by New_Pathname
or Old_Pathname before the operation began. Thus, if New_Pathname names an
existing directory, it shall be required to be an empty directory.

New_Pathname shall not contain a path prefix that names Old_Pathname . Write
access permission shall be required for the directory containing Old_Pathname and
the directory containing New_Pathname . If Old_Pathname names a directory, write
access permission may be required for the directory named by Old_Pathname and,
if it exists, the directory named by New_Pathname .

If the link named by New_Pathname exists and the link count of the file becomes zero
when it is removed and no process has the file open, the space occupied by the file
shall be freed, and the file shall no longer be accessible. If one or more processes have
the file open when the last link is removed, the link shall be removed before Rename
returns, but the removal of the file contents shall be postponed until all references to
the file have been closed.

Upon successful completion of the Rename operation, the Last Modification Time and
Last Status Change Time of both parent directories shall be marked for update. (See
2.3.10.)

The behavior of Rename is unspecified if either pathname is that of a socket or a
character special file for use with XTI calls. c

5.2.3.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Permission_Denied

(1) Search permission is denied for any component named by Pathname .
(2) Read permission is denied on the pathname named by Old_Pathname ,

or write permission is denied on the parent directory of the pathname
named by New_Pathname when using Link .

(3) Write permission is required and is denied for a directory named by
Old_Pathname or New_Pathname for a call to Rename.

Filename_Too_Long

The length in POSIX characters of the specified pathname exceeds Pathname
Limit; or the length in POSIX characters of a component of the specified path-
name is greater than Filename Maximum, and the Filename Truncation option is
not supported for the pathname prefix of that component. (See 5.4.2.) To
determine these limits, the limit functions are applied to the directory in
which the Old_Pathname resides and the one in which New_Pathname is to
be created.

No_Space_Left_On_Device

The directory that would contain New_Pathname cannot be extended.

Read_Only_File_System

The operation requires writing on a read-only file system.

184 5 Files and Directories

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Not_A_Directory

(1) A component of the path prefix of either Old_Pathname or New_Path-
name is not a directory for a call to Link .

(2) A component of either path prefix is not a directory, or Old_Pathname
names a directory and New_Pathname names a nondirectory file for a
call to Rename.

No_Such_File_Or_Directory

(1) The file named by Old_Pathname does not exist, or either Old_Path-
name or New_Pathname is an empty directory for a call to Rename.

(2) A component of either path prefix does not exist, the file named by
Old_Pathname does not exist, or either Old_Pathname or New_Path-
name is an empty directory, for a call to Link .

Too_Many_Links

For a call to Link , the number of links to the file named by Old_Pathname
would exceed Links Maximum.

File_Exists

The file named by New_Pathname exists in the file system for a call to Link .

Operation_Not_Permitted

The file referenced by Old_Pathname is a directory, and the process does
not have privilege to link directories or the implementation does not permit
linking directories for a call to Link .

Improper_Link

The file named by Old_Pathname and the file named by New_Pathname
reside on different file systems, and the implementation does not support
links across file systems.

Resource_Busy

The parent directory of either Old_Pathname or New_Pathname cannot be
modified because it is being used by another process, and the implementa-
tion considers this an error for a call to Rename.

File_Exists or Directory_Not_Empty

The file named by New_Pathname is an existing directory that contains en-
tries other than dot and dot-dot for a call to Rename. Directory_Not_-
Empty is preferred in this circumstance.

Invalid_Argument

New_Pathname contains a path prefix that names the same directory as a
component of Old_Pathname , for a call to Rename.

Is_A_Directory

New_Pathname names a directory and Old_Pathname does not name a di-
rectory for a call to Rename.

In situations where multiple error codes may be returned, which possible error code
returned is unspecified.

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

5.2 Package POSIX_Files 185

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Permission_Denied

A component of either path prefix denies search permission; or the requested
link requires writing in a directory that denies write permissions; or the
calling process does not have permission to access the file named by Old_-
Pathname , and permission is required by the implementation of Link .

5.2.4 Directory Iteration

5.2.4.1 Synopsis

type Directory_Entry is limited private ;
function Filename_Of (D_Entry : Directory_Entry) return POSIX.Filename;
generic

with procedure Action
(D_Entry : in Directory_Entry;

Quit : in out Boolean);
procedure For_Every_Directory_Entry

(Pathname : in POSIX.Pathname);

5.2.4.2 Description

Filename_Of shall return the filename provided by Directory_Entry .

The application program instantiates the generic procedure For_Every_Direc-
tory_Entry , providing an actual procedure for the generic formal procedure Ac-
tion . When called, the newly created instance of For_Every_Directory_Entry
shall call the actual procedure supplied for Action once for each directory entry
in the directory named by Pathname . Action shall be able to force termination of
For_Every_Directory_Entry either by setting Quit to True or by raising an ex-
ception. Prior to each call to Action , For_Every_Directory_Entry shall set Quit
to False . The order in which the entries are presented is unspecified.

Exceptions raised by Action shall be propagated back to the caller of the instance
of For_Every_Directory_Entry . After an exception is raised by Action , no more
calls to Action shall occur. Action shall not be called with names whose length
attribute is zero. If entries for dot or dot-dot exist, Action shall be called once for
dot and once for dot-dot; otherwise, Action shall not be called for those entries.

If Action is called, the Last Access Time of the directory referenced by Pathname
shall be marked for update at least once. It may be marked for update more than
once. (See 2.3.10.)

If an entry is added or removed from the directory referenced by Pathname during
execution of the instance of For_Every_Directory_Entry , whether Action is
called for that entry is unspecified.

5.2.4.3 Error Handling

Filename_Of shall not raise any exceptions.

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

186 5 Files and Directories

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Not_A_Directory

A component of the path prefix of Pathname does not refer to a directory.

Permission_Denied

Search permission is denied for a component of Pathname , or read permis-
sion is denied on the directory named by Pathname .

No_Such_File_Or_Directory

The directory named by Pathname does not exist.

Too_Many_Open_Files

An instance of For_Every_Directory_Entry causes a file to be opened,
and the number of open files in the process exceeds Open Files Maximum.

Too_Many_Open_Files_In_System

An instance of For_Every_Directory_Entry causes a file to be opened,
and the limit to the number of open files in the system is exceeded.

Filename_Too_Long

The length in POSIX characters of the specified pathname exceeds Pathname
Limit; or the length in POSIX characters of a component of the specified path-
name is greater than Filename Maximum, and the Filename Truncation option is
not supported for the pathname prefix of that component. (See 5.4.2.) To
determine these limits, the limit functions are applied to Pathname .

5.2.5 Update File Status Information

5.2.5.1 Synopsis

procedure Change_Owner_And_Group
(Pathname : in POSIX.Pathname;

Owner : in POSIX_Process_Identification.User_ID;
Group : in POSIX_Process_Identification.Group_ID);

procedure Change_Permissions
(Pathname : in POSIX.Pathname;

Permission : in POSIX_Permissions.Permission_Set);
procedure Set_File_Times

(Pathname : in POSIX.Pathname;
Access_Time : in POSIX_Calendar.POSIX_Time;
Modification_Time : in POSIX_Calendar.POSIX_Time);

procedure Set_File_Times (Pathname : in POSIX.Pathname);

5.2.5.2 Description

Change_Owner_And_Group shall change the user ID and the group ID of the file
named by Pathname to the Owner_ID and Group_ID , respectively. Only processes
with an effective user ID equal to the user ID of the file or with appropriate privileges
may change the ownership of a file.

If the Change Owner Restriction option is imposed on Pathname ,

— Changing the owner is restricted to processes with appropriate privileges.

— Changing the group is permitted by a process with an effective user ID equal to
the user ID of the file, but without appropriate privileges, if and only if Owner is
equal to the user ID of the file and Group is equal either to the effective group
ID of the calling process or to one of its supplementary group IDs.

5.2 Package POSIX_Files 187

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

If the Pathname refers to a regular file, Set_User_ID and Set_Group_ID of the
file mode shall be cleared upon successful return from Change_Owner_And_Group
unless the call is made from a process with appropriate privileges, in which case it is
implementation defined whether those modes are altered. The Last Status Change Time
of the file shall be marked for update upon successful completion of this operation.
(See 2.3.10.)

Change_ Permissions shall change the permission set associated with the file
named by Pathname . If the effective user ID of the calling process matches the file
owner or the calling process has appropriate privileges, Change_Permissions shall
change the permissions of the file to those specified in Permission . The Last Status
Change Time of the file shall be marked for update upon completion of this operation.
(See 2.3.10.)

Additional implementation-defined restrictions may cause Set_Group_ID and Set_-
User_ID in Permission to be ignored.

If the calling process does not have appropriate privileges, the group ID of the file
does not match the effective group ID or one of the supplementary group IDs, one or
more of — Owner_Execute , Group_Execute , and Others_Execute — are specified
in Permission , and the file is a regular file, then Set_Group_ID in the permission
set of the file shall be cleared upon successful return from Change_Permissions .

The effect on open file descriptions for files open at the time of the call to Change_-
Permissions is implementation defined.

The Last Status Change Time of the file shall be marked for update upon completion of
this operation. (See 2.3.10.)

If the effective user ID of the process matches the owner of the file or if the process
has appropriate privileges, Set_File_Times shall change the Last Access Time and
Last Modification Time associated with the file named by Pathname . If both Access_-
Time and Modification_Time are specified, then the access time of the file shall
be changed to Access_Time , and the Last Modification Time of the file shall be changed
to Modification_Time .

If neither Access_Time nor Modification_Time are specified, then the Last Access
Time and Last Modification Time of the file are set to the same value, the current value
of POSIX_Calendar.Clock .

The Last Status Change Time of the file shall be marked for update upon successful
completion of these operations. (See 2.3.10.)

5.2.5.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Permission_Denied

Search permission is denied for a component of Pathname , or the process
does not have sufficient privilege to perform the operation.

188 5 Files and Directories

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Filename_Too_Long

The length in POSIX characters of the specified pathname exceeds Pathname
Limit; or the length in POSIX characters of a component of the specified path-
name is greater than Filename Maximum, and the Filename Truncation option is
not supported for the pathname prefix of that component. (See 5.4.2.) To
determine these limits, the limit functions are applied to Pathname .

No_Such_File_Or_Directory

The file named by Pathname does not exist.

Not_A_Directory

A component of the path prefix of Pathname does not refer to a directory.

5.2.6 Check File Accessibility

5.2.6.1 Synopsis

type Access_Mode is (Read_Ok, Write_Ok, Execute_Ok);
type Access_Mode_Set is array (Access_Mode) of Boolean;
function Is_Accessible

(Pathname : POSIX.Pathname;
Access_Modes : Access_Mode_Set)

return Boolean;
function Accessibility

(Pathname : POSIX.Pathname;
Access_Modes : Access_Mode_Set)

return POSIX.Error_Code;
function Is_File_Present (Pathname : POSIX.Pathname) return Boolean;

function Existence (Pathname : POSIX.Pathname) return POSIX.Error_Code;

5.2.6.2 Description

The type Access_Mode shall represent access modes for a file. The values of this
type are

Read_Ok

The file can be opened for input, or other read operations may be performed
on the file by the process.

Write_Ok

The file can be opened for output, or other write operations may be per-
formed on the file by the process.

Execute_Ok

The file may be executed via a call to Exec or Start_Process ; or if the file
is a directory, it may be searched.

Is_Accessible and Accessibility shall check the accessibility of the file named
by Pathname for the file access modes, using the real user ID in place of the effective
user ID and the real group ID in place of the effective group ID.

If any access permission is to be checked, each shall be checked individually, as de-
scribed in 2.3.7. If the process has appropriate privileges, an implementation may
indicate success even if none of the execute file permissions are granted.

5.2 Package POSIX_Files 189

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Is_Accessible shall return True if the file named by Pathname supports the access
modes indicated by Access_Modes and False otherwise.

Accessibility shall return POSIX.No_Error if the file named by Pathname sup-
ports the access modes indicated by Access_Modes . If the file does not support the
indicated access mode, the appropriate Error_Code value shall be returned.

Is_File_Present shall return True if the file named by Pathname exists and
False otherwise.

Existence shall return an error code representing the status of a file in the file
system. If the file exists, the value POSIX.No_Error shall be returned. Otherwise,
an appropriate error code value shall be returned.

5.2.6.3 Error Handling

No exceptions shall be raised by Is_Accessible , Accessibility , Is_File_-
Present , or Existence .

The error codes that may be returned by Accessibility and Existence are

Permission_Denied

Search permission is denied for a component of Pathname , or any of the
requested Permissions are denied for the file named by Pathname .

Filename_Too_Long

The length in POSIX characters of the specified pathname exceeds Pathname
Limit; or the length in POSIX characters of a component of the specified path-
name is greater than Filename Maximum, and the Filename Truncation option is
not supported for the pathname prefix of that component. (See 5.4.2.) To
determine these limits, the limit functions are applied to Pathname .

No_Such_File_Or_Directory

The file named by Pathname does not exist.

Not_A_Directory

A component of the path prefix of Pathname does not refer to a directory.

5.3 Package POSIX_File_Status

The package POSIX_File_Status defines the standard attributes of files in the file
system and provides the operations for examining them.

with POSIX,
POSIX_Permissions,
POSIX_Process_Identification,
POSIX_IO,
POSIX_Calendar;

package POSIX_File_Status is
-- 5.3.1 Access File Status
type Status is private ;
function Get_File_Status (Pathname : POSIX.Pathname) return Status;
function Get_File_Status

(File : POSIX_IO.File_Descriptor) return Status;

190 5 Files and Directories

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

-- 5.3.2 Access Status Information
type File_ID is private ;
type Device_ID is private ;
subtype Links is natural range 0 .. POSIX.Link_Limit_Maxima’Last;
function Permission_Set_Of

(File_Status : Status) return POSIX_Permissions.Permission_Set;
function File_ID_Of (File_Status : Status) return File_ID;
function Device_ID_Of (File_Status : Status) return Device_ID;
function Link_Count_Of (File_Status : Status) return Links;
function Owner_Of

(File_Status : Status) return POSIX_Process_Identification.User_ID;
function Group_Of

(File_Status : Status) return POSIX_Process_Identification.Group_ID;
function Size_Of (File_Status : Status) return POSIX.IO_Count;
function Last_Access_Time_Of

(File_Status : Status) return POSIX_Calendar.POSIX_Time;
function Last_Modification_Time_Of

(File_Status : Status) return POSIX_Calendar.POSIX_Time;
function Last_Status_Change_Time_Of

(File_Status : Status) return POSIX_Calendar.POSIX_Time;
function Is_Directory (File_Status : Status) return Boolean;
function Is_Character_Special_File

(File_Status : Status) return Boolean;
function Is_Block_Special_File

(File_Status : Status) return Boolean;
function Is_Regular_File (File_Status : Status) return Boolean;
function Is_FIFO (File_Status : Status) return Boolean;
function Is_Shared_Memory

(File_Status : in Status) return Boolean;
function Is_Message_Queue

(File_Status : in Status) return Boolean;
function Is_Semaphore

(File_Status : in Status) return Boolean;
function Is_Socket (File_Status : Status) return Boolean; c

private
implementation-defined

end POSIX_File_Status;

5.3.1 Access File Status

5.3.1.1 Synopsis

type Status is private ;
function Get_File_Status (Pathname : POSIX.Pathname) return Status;
function Get_File_Status

(File : POSIX_IO.File_Descriptor) return Status;

5.3.1.2 Description

The type Status shall hold status information for a specific file or POSIX_IO.File_-
Descriptor . There are two overloaded functions, both named Get_File_Status .
One identifies the file by its name through a POSIX_String and the other takes an
open file, represented by its POSIX_IO . File_Descriptor . Each operation shall
return the status information for the file named by Pathname or File .

5.3 Package POSIX_File_Status 191

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

5.3.1.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Permission_Denied

Search permission is denied for a component of Pathname .

Filename_Too_Long

The length in POSIX characters of the specified pathname exceeds Pathname
Limit; or the length in POSIX characters of a component of the specified path-
name is greater than Filename Maximum, and the Filename Truncation option is
not supported for the pathname prefix of that component. (See 5.4.2.) To
determine these limits, the limit functions are applied to Pathname .

No_Such_File_Or_Directory

The file named by Pathname does not exist.

Not_A_Directory

A component of the path prefix of Pathname does not refer to a directory.

Bad_File_Descriptor

File is not a valid File_Descriptor .

5.3.2 Access Status Information

5.3.2.1 Synopsis

type File_ID is private ;
type Device_ID is private ;
subtype Links is natural range 0 .. POSIX.Link_Limit_Maxima’Last;
function Permission_Set_Of

(File_Status : Status) return POSIX_Permissions.Permission_Set;
function File_ID_Of (File_Status : Status) return File_ID;
function Device_ID_Of (File_Status : Status) return Device_ID;
function Link_Count_Of (File_Status : Status) return Links;
function Owner_Of

(File_Status : Status) return POSIX_Process_Identification.User_ID;
function Group_Of

(File_Status : Status) return POSIX_Process_Identification.Group_ID;
function Size_Of (File_Status : Status) return POSIX.IO_Count;
function Last_Access_Time_Of

(File_Status : Status) return POSIX_Calendar.POSIX_Time;
function Last_Modification_Time_Of

(File_Status : Status) return POSIX_Calendar.POSIX_Time;
function Last_Status_Change_Time_Of

(File_Status : Status) return POSIX_Calendar.POSIX_Time;
function Is_Directory (File_Status : Status) return Boolean;
function Is_Character_Special_File

(File_Status : Status) return Boolean;
function Is_Block_Special_File

(File_Status : Status) return Boolean;
function Is_Regular_File (File_Status : Status) return Boolean;
function Is_FIFO (File_Status : Status) return Boolean;
function Is_Shared_Memory

(File_Status : in Status) return Boolean;
function Is_Message_Queue

(File_Status : in Status) return Boolean;
function Is_Semaphore

(File_Status : in Status) return Boolean;

function Is_Socket (File_Status : Status) return Boolean; c

192 5 Files and Directories

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

5.3.2.2 Description

Values of the type File_ID shall uniquely identify each file on a specific device.
Values of the type Device_ID shall uniquely identify each device in the system.
Together, they shall uniquely identify a file in the system.

Values of the subtype Links shall contain the number of links to a specific file (iden-
tified by a File_ID and/or Device_ID).

Permission_Set_Of shall return the file permissions for the specified file.

File_ID_Of shall return the file serial number associated with the file.

Device_ID_Of shall return the device serial number for the device that contains the
file.

Link_Count_Of shall return the number of links to the specified file.

Owner_Of shall return the owner associated with the file.

Group_Of shall return the group associated with the file.

For regular files, Size_Of shall return the number of bytes stored in the file. For
other file types, the use of this function is unspecified.

Last_Access_Time_Of shall return the last time the file was accessed by the system.

Last_Modification_Time_Of shall return the last time the file was modified by
the system.

Last_Status_Change_Time_Of shall return the last time status information asso-
ciated with the file was changed.

Values of type Status can contain status information for one of several types of
objects. The functions described in this section are provided to determine the type of
object. Each of the functions takes a single input parameter of type Status .

Is_Directory shall return True if the file is a directory and False otherwise.

Is_Character_Special_File shall return True if the file is a character special
file and False otherwise.

Is_Block_Special_File shall return True if the file is a block special file and
False otherwise.

Is_Regular_File shall return True if the file is a regular file and False otherwise.

Is_FIFO shall return True if the file is a FIFO special file and False otherwise.

Is_Shared_Memory shall return True if the file is that of a POSIX shared memory
object and it is implemented as a distinct file type; otherwise, it shall return False .

Is_Message_Queue shall return True if the file is that of a POSIX message queue
object and it is implemented as a distinct file type; otherwise, it shall return False .

Is_Semaphore shall return True if the file is that of a POSIX semaphore object and
it is implemented as a distinct file type; otherwise, it shall return False .

5.3 Package POSIX_File_Status 193

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

NOTE: Message queues and semaphores may, but need not be, associated with file descriptors.
If they are associated with file descriptors, they may, but need not be, implemented as distinct
file types. Shared memory objects are always associated with file descriptors, and they may,
but need not be, implemented as a distinct file type. Therefore, it is implementation defined
whether Is_Message_Queue , Is_Semaphore , or Is_Shared_Memory return True .

Is_Socket shall return True if the file is a socket and False otherwise. c

5.3.2.3 Error Handling

If the following condition occurs, the exception POSIX_Error shall be raised with
the corresponding error code:

Invalid_Argument

File_Status is invalid.

If the following condition occurs for a call to Size_Of , the exception POSIX_Error
shall be raised, with the corresponding error code:

Invalid_Argument

The file is not a regular file.

5.4 Package POSIX_Configurable_File_Limits

The package POSIX_Configurable_File_Limits provides the application devel-
oper with execution-time access to implementation-defined limitations and other
characteristics that may vary across the file system. Each separate path may have
different characteristics. It is also possible that these characteristics may vary for a
given path over time, particularly if the device may be removed and replaced on the
system.

with POSIX,
POSIX_IO,
POSIX_Limits,
POSIX_Options;

package POSIX_Configurable_File_Limits is
-- 5.4.1 File Limits
-- Link Limits
function Link_Is_Limited (Pathname : POSIX.Pathname) -- obsolescent

return Boolean; -- obsolescent
function Link_Is_Limited (File : POSIX_IO.File_Descriptor) -- obsolescent

return Boolean; -- obsolescent
function Link_Limit (Pathname : POSIX.Pathname) -- obsolescent

return POSIX.Link_Limit_Maxima; -- obsolescent
function Link_Limit (File : POSIX_IO.File_Descriptor) -- obsolescent

return POSIX.Link_Limit_Maxima; -- obsolescent
function Links_Are_Limited (Pathname : POSIX.Pathname)

return Boolean
renames Link_Is_Limited;

function Links_Are_Limited (File : POSIX_IO.File_Descriptor)
return Boolean
renames Link_Is_Limited;

function Links_Maximum (Pathname : POSIX.Pathname)
return POSIX_Limits.Links_Maxima
renames Link_Limit;

194 5 Files and Directories

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

function Links_Maximum (File : POSIX_IO.File_Descriptor)
return POSIX_Limits.Links_Maxima
renames Link_Limit;

-- Input line limits
function Input_Line_Is_Limited (Pathname : POSIX.Pathname)

return Boolean;
function Input_Line_Is_Limited (File : POSIX_IO.File_Descriptor)

return Boolean;
function Input_Line_Limit (Pathname : POSIX.Pathname) -- obsolescent

return POSIX.Input_Line_Limit_Maxima; -- obsolescent
function Input_Line_Limit (File : POSIX_IO.File_Descriptor) -- obsolescent

return POSIX.Input_Line_Limit_Maxima; -- obsolescent
function Input_Line_Maximum (Pathname : POSIX.Pathname)

return POSIX_Limits.Input_Line_Maxima
renames Input_Line_Limit;

function Input_Line_Maximum (File : POSIX_IO.File_Descriptor)
return POSIX_Limits.Input_Line_Maxima
renames Input_Line_Limit;

-- Input queue limits
function Input_Queue_Is_Limited (Pathname : POSIX.Pathname)

return Boolean;
function Input_Queue_Is_Limited (File : POSIX_IO.File_Descriptor)

return Boolean;
function Input_Queue_Limit (Pathname : POSIX.Pathname) -- obsolescent

return POSIX.Input_Queue_Limit_Maxima; -- obsolescent
function Input_Queue_Limit (File : POSIX_IO.File_Descriptor) -- obsolescent

return POSIX.Input_Queue_Limit_Maxima; -- obsolescent
function Input_Queue_Maximum (Pathname : POSIX.Pathname)

return POSIX_Limits.Input_Queue_Maxima
renames Input_Queue_Limit;

function Input_Queue_Maximum (File : POSIX_IO.File_Descriptor)
return POSIX_Limits.Input_Queue_Maxima
renames Input_Queue_Limit;

-- Filename and pathname limits
function Filename_Is_Limited (Pathname : POSIX.Pathname)

return Boolean;
function Filename_Is_Limited (File : POSIX_IO.File_Descriptor)

return Boolean;
function Filename_Limit (Pathname : POSIX.Pathname) -- obsolescent

return POSIX.Filename_Limit_Maxima; -- obsolescent
function Filename_Limit (File : POSIX_IO.File_Descriptor) -- obsolescent

return POSIX.Filename_Limit_Maxima; -- obsolescent
function Filename_Maximum (Pathname : POSIX.Pathname)

return POSIX_Limits.Filename_Maxima
renames Filename_Limit;

function Filename_Maximum (File : POSIX_IO.File_Descriptor)
return POSIX_Limits.Filename_Maxima
renames Filename_Limit;

function Pathname_Is_Limited (Pathname : POSIX.Pathname)
return Boolean;

function Pathname_Is_Limited (File : POSIX_IO.File_Descriptor)
return Boolean;

function Pathname_Limit (Pathname : POSIX.Pathname) -- obsolescent
return POSIX.Pathname_Limit_Maxima; -- obsolescent

function Pathname_Limit (File : POSIX_IO.File_Descriptor) -- obsolescent
return POSIX.Pathname_Limit_Maxima; -- obsolescent

5.4 Package POSIX_Configurable_File_Limits 195

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

function Pathname_Maximum (Pathname : POSIX.Pathname)
return POSIX_Limits.Pathname_Maxima
renames Pathname_Limit;

function Pathname_Maximum (File : POSIX_IO.File_Descriptor)
return POSIX_Limits.Pathname_Maxima
renames Pathname_Limit;

-- Pipe length limits
function Pipe_Length_Is_Limited (Pathname : POSIX.Pathname)

return Boolean;
function Pipe_Length_Is_Limited (File : POSIX_IO.File_Descriptor)

return Boolean;
function Pipe_Length_Limit (Pathname : POSIX.Pathname) -- obsolescent

return POSIX.Pipe_Limit_Maxima; -- obsolescent
function Pipe_Length_Limit (File : POSIX_IO.File_Descriptor) -- obsolescent

return POSIX.Pipe_Limit_Maxima; -- obsolescent
function Pipe_Length_Maximum (Pathname : POSIX.Pathname)

return POSIX_Limits.Pipe_Length_Maxima
renames Pipe_Length_Limit;

function Pipe_Length_Maximum (File : POSIX_IO.File_Descriptor)
return POSIX_Limits.Pipe_Length_Maxima
renames Pipe_Length_Limit;

-- Socket buffer limits
function Socket_Buffer_Is_Limited (File : POSIX_IO.File_Descriptor)

return Boolean;
function Socket_Buffer_Is_Limited (Pathname : POSIX.Pathname)

return Boolean;
function Socket_Buffer_Limit (File : POSIX_IO.File_Descriptor)

return POSIX_Limits.Socket_Buffer_Maxima;
function Socket_Buffer_Limit (Pathname : POSIX.Pathname)

return POSIX_Limits.Socket_Buffer_Maxima; c
-- 5.4.2 File Restrictions
function Change_Owner_Is_Restricted (Pathname : POSIX.Pathname)

return POSIX_Options.Change_Owner_Restriction;
function Change_Owner_Is_Restricted (File : POSIX_IO.File_Descriptor)

return POSIX_Options.Change_Owner_Restriction;
function Filename_Is_Truncated (Pathname : POSIX.Pathname)

return POSIX_Options.Filename_Truncation;
function Filename_Is_Truncated (File : POSIX_IO.File_Descriptor)

return POSIX_Options.Filename_Truncation;
-- 5.4.3 Pathname-Specific Options
function Synchronized_IO_Is_Supported (Pathname : POSIX.Pathname)

return Boolean;
function Synchronized_IO_Is_Supported (File : POSIX_IO.File_Descriptor)

return Boolean;
function Asynchronous_IO_Is_Supported (Pathname : POSIX.Pathname)

return Boolean;
function Asynchronous_IO_Is_Supported (File : POSIX_IO.File_Descriptor)

return Boolean;
function Prioritized_IO_Is_Supported (Pathname : POSIX.Pathname)

return Boolean;
function Prioritized_IO_Is_Supported (File : POSIX_IO.File_Descriptor)

return Boolean;

end POSIX_Configurable_File_Limits;

196 5 Files and Directories

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

5.4.1 File Limits

5.4.1.1 Synopsis

-- Link Limits
function Link_Is_Limited (Pathname : POSIX.Pathname) -- obsolescent

return Boolean; -- obsolescent
function Link_Is_Limited (File : POSIX_IO.File_Descriptor) -- obsolescent

return Boolean; -- obsolescent
function Link_Limit (Pathname : POSIX.Pathname) -- obsolescent

return POSIX.Link_Limit_Maxima; -- obsolescent
function Link_Limit (File : POSIX_IO.File_Descriptor) -- obsolescent

return POSIX.Link_Limit_Maxima; -- obsolescent
function Links_Are_Limited (Pathname : POSIX.Pathname)

return Boolean
renames Link_Is_Limited;

function Links_Are_Limited (File : POSIX_IO.File_Descriptor)
return Boolean
renames Link_Is_Limited;

function Links_Maximum (Pathname : POSIX.Pathname)
return POSIX_Limits.Links_Maxima
renames Link_Limit;

function Links_Maximum (File : POSIX_IO.File_Descriptor)
return POSIX_Limits.Links_Maxima
renames Link_Limit;

-- Input line limits
function Input_Line_Is_Limited (Pathname : POSIX.Pathname)

return Boolean;
function Input_Line_Is_Limited (File : POSIX_IO.File_Descriptor)

return Boolean;
function Input_Line_Limit (Pathname : POSIX.Pathname) -- obsolescent

return POSIX.Input_Line_Limit_Maxima; -- obsolescent
function Input_Line_Limit (File : POSIX_IO.File_Descriptor) -- obsolescent

return POSIX.Input_Line_Limit_Maxima; -- obsolescent
function Input_Line_Maximum (Pathname : POSIX.Pathname)

return POSIX_Limits.Input_Line_Maxima
renames Input_Line_Limit;

function Input_Line_Maximum (File : POSIX_IO.File_Descriptor)
return POSIX_Limits.Input_Line_Maxima
renames Input_Line_Limit;

-- Input queue limits
function Input_Queue_Is_Limited (Pathname : POSIX.Pathname)

return Boolean;
function Input_Queue_Is_Limited (File : POSIX_IO.File_Descriptor)

return Boolean;
function Input_Queue_Limit (Pathname : POSIX.Pathname) -- obsolescent

return POSIX.Input_Queue_Limit_Maxima; -- obsolescent
function Input_Queue_Limit (File : POSIX_IO.File_Descriptor) -- obsolescent

return POSIX.Input_Queue_Limit_Maxima; -- obsolescent
function Input_Queue_Maximum (Pathname : POSIX.Pathname)

return POSIX_Limits.Input_Queue_Maxima
renames Input_Queue_Limit;

function Input_Queue_Maximum (File : POSIX_IO.File_Descriptor)
return POSIX_Limits.Input_Queue_Maxima
renames Input_Queue_Limit;

-- Filename and pathname limits
function Filename_Is_Limited (Pathname : POSIX.Pathname)

return Boolean;
function Filename_Is_Limited (File : POSIX_IO.File_Descriptor)

return Boolean;

5.4 Package POSIX_Configurable_File_Limits 197

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

function Filename_Limit (Pathname : POSIX.Pathname) -- obsolescent
return POSIX.Filename_Limit_Maxima; -- obsolescent

function Filename_Limit (File : POSIX_IO.File_Descriptor) -- obsolescent
return POSIX.Filename_Limit_Maxima; -- obsolescent

function Filename_Maximum (Pathname : POSIX.Pathname)
return POSIX_Limits.Filename_Maxima
renames Filename_Limit;

function Filename_Maximum (File : POSIX_IO.File_Descriptor)
return POSIX_Limits.Filename_Maxima
renames Filename_Limit;

function Pathname_Is_Limited (Pathname : POSIX.Pathname)
return Boolean;

function Pathname_Is_Limited (File : POSIX_IO.File_Descriptor)
return Boolean;

function Pathname_Limit (Pathname : POSIX.Pathname) -- obsolescent
return POSIX.Pathname_Limit_Maxima; -- obsolescent

function Pathname_Limit (File : POSIX_IO.File_Descriptor) -- obsolescent
return POSIX.Pathname_Limit_Maxima; -- obsolescent

function Pathname_Maximum (Pathname : POSIX.Pathname)
return POSIX_Limits.Pathname_Maxima
renames Pathname_Limit;

function Pathname_Maximum (File : POSIX_IO.File_Descriptor)
return POSIX_Limits.Pathname_Maxima
renames Pathname_Limit;

-- Pipe length limits
function Pipe_Length_Is_Limited (Pathname : POSIX.Pathname)

return Boolean;
function Pipe_Length_Is_Limited (File : POSIX_IO.File_Descriptor)

return Boolean;
function Pipe_Length_Limit (Pathname : POSIX.Pathname) -- obsolescent

return POSIX.Pipe_Limit_Maxima; -- obsolescent
function Pipe_Length_Limit (File : POSIX_IO.File_Descriptor) -- obsolescent

return POSIX.Pipe_Limit_Maxima; -- obsolescent
function Pipe_Length_Maximum (Pathname : POSIX.Pathname)

return POSIX_Limits.Pipe_Length_Maxima
renames Pipe_Length_Limit;

function Pipe_Length_Maximum (File : POSIX_IO.File_Descriptor)
return POSIX_Limits.Pipe_Length_Maxima
renames Pipe_Length_Limit;

-- Socket buffer limits
function Socket_Buffer_Is_Limited (File : POSIX_IO.File_Descriptor)

return Boolean;
function Socket_Buffer_Is_Limited (Pathname : POSIX.Pathname)

return Boolean;
function Socket_Buffer_Limit (File : POSIX_IO.File_Descriptor)

return POSIX_Limits.Socket_Buffer_Maxima;
function Socket_Buffer_Limit (Pathname : POSIX.Pathname)

return POSIX_Limits.Socket_Buffer_Maxima; c

5.4.1.2 Description

There are two overloaded subprograms for each limit or option to be queried. One
accepts a pathname of a file or directory. The other accepts an open file descriptor.
(The parameters are named Pathname and File , respectively.)

The implementation shall support all of the limits and options identified by these
subprograms and may support others.

198 5 Files and Directories

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Links_Are_Limited shall return True if there is a limit to the number of links
permissible on the file and False otherwise.

Link_Is_Limited , an alternate name for Links_Are_Limited , is obsolescent.

Links_Maximum shall provide the maximum value of the link count of a file. If
Links_Are_Limited for the given parameter returns False , then Links_Maximum
shall return POSIX_Limits.Links_Maxima’Last .

Link_Limit , an alternate name for Links_Maximum , is obsolescent.

Input_Line_Is_Limited shall return True if there is a maximum number of bytes
in a canonical input line as indicated by File or Pathname and False otherwise.
The behavior of Input_Line_Is_Limited is unspecified if File or Pathname do
not refer to a terminal device.

Input_Line_Maximum shall provide the maximum number of bytes in a terminal
canonical input line identified by the File or Pathname . If Input_Line_Is_Lim-
ited for the given parameter returns False , the Input_Line_Maximum shall return
POSIX_Limits.Input_Line_Maxima ’Last . It is unspecified whether an imple-
mentation supports association of the Input_Line_Maximum if File or Pathname
does not refer to a terminal device.

Input_Line_Limit , an alternate name for Input_Line_Maximum , is obsolescent.

Input_Queue_Is_Limited shall return True if there is a maximum amount of
space available in the terminal input queue associated with File or Pathname and
False otherwise. The behavior of Input_Queue_Is_Limited is unspecified if File
or Pathname does not refer to a terminal device.

Input_Queue_Maximum shall return the minimum number of bytes for which the im-
plementation guarantees space will be available in a terminal input queue associated
with File or Pathname . This implementation minimum is the maximum number of
bytes a portable application may require to be typed as input before reading those
bytes. If Input_Queue_Is_Limited returns False for the given parameter, then
Input_Queue_Maximum shall return POSIX_Limits.Input_Queue_Maxima ’Last .
It is unspecified whether an implementation supports association of the Input_-
Queue_Maximum if File or Pathname does not refer to a terminal device.

Input_Queue_Limit , an alternate name for Input_Queue_Maximum , is obsolescent.

Filename_Is_Limited shall return True if there is a limit to the length of a file-
name associated with File or Pathname and False otherwise. If File or Pathname
refers to a directory, then True shall be returned to indicate that file names within
the indicated directory are limited. If File or Pathname does not refer to a directory,
then the behavior is unspecified.

Filename_Maximum shall return the maximum number of POSIX characters in the
file name associated with File or Pathname . If File or Pathname refer to a direc-
tory, the value returned applies to the file names within the directory. If Filename_-
Is_Limited returns False for the given parameter, then Filename_Maximum shall
return POSIX_Limits.Filename_Maxima’Last . If File or Pathname does not
refer to a directory, then the behavior is unspecified.

5.4 Package POSIX_Configurable_File_Limits 199

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Filename_Limit , an alternate name for Filename_Maximum , is obsolescent.

Pathname_Is_Limited shall return True if there is a limit to the length of any path-
name associated with File or Pathname and False otherwise. If File or Pathname
refers to a directory, then True indicates that file names relative to the named direc-
tory are limited. If File or Pathname does not refer to a directory, then the behavior
is unspecified.

Pathname_Maximum shall return the maximum number of POSIX characters in the
pathname associated with File or Pathname . If File or Pathname refers to a di-
rectory, the value returned applies to pathnames relative to the named directory. If
Pathname_Is_Limited returns False for the given parameter, then Pathname_-
Maximumshall return POSIX_Limits.Pathname_Maxima ’Last . If File or Path-
name does not refer to a directory, then the behavior is unspecified.

Pathname_Limit , an alternate name for Pathname_Maximum , is obsolescent.

Pipe_Length_Is_Limited shall return True if there is a limit to the number of
bytes that can be written at once to a FIFO special file named by File or Pathname
and False otherwise. If File or Pathname refers to a directory, then this character-
istic applies to any FIFO special file created within the named directory. If File or
Pathname refers to any other type of file, the behavior is unspecified

Pipe_Length_Maximum shall return the maximum number of bytes that can be
written at once to a FIFO special file named by File or Pathname . If Filename or
Pathname refers to a directory, the value returned applies to any FIFO special file
that exists or can be created within the named directory. If File or Pathname refers
to any other type of file, the behavior is unspecified. If Pipe_Length_Is_Limited
returns False for the given parameter, then Pipe_Length_Maximum shall return
POSIX_Limits.Pipe_Length_Maxima ’Last .

Pipe_Length_Limit , an alternate name for Pipe_Length_Maximum , is obsolescent.

Socket_Buffer_Is_Limited shall return True if there is a limit to the number
of bytes that can be buffered on a socket for send and receive operations and False
otherwise. If File or Pathname does not refer to a socket, the behavior is unspeci-
fied.

Socket_Buffer_Limit shall return the maximum number of bytes that can be
buffered for send and receive operations on the socket named by File or Path-
name. If File or Pathname does not refer to a socket, the behavior is unspec-
ified. If Socket_Buffer_Is_Limited returns False for the given parameter,
then Socket_Buffer_Limit shall return POSIX_Limits.Socket_Buffer_Max-
ima’Last . c

5.4.1.3 Error Handling

If the Pathname or File parameter of one of these operations is referenced to de-
termine the value returned by the operation and any of the following conditions is
detected, the exception POSIX_Error shall be raised with the corresponding error
code:

200 5 Files and Directories

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Filename_Too_Long

The length in POSIX characters of the specified pathname exceeds Pathname
Limit; or the length in POSIX characters of a component of the specified path-
name is greater than Filename Maximum, and the Filename Truncation option is
not supported for the pathname prefix of that component. (See 5.4.2.)

No_Such_File_Or_Directory

Pathname does not identify an existing file.

Not_A_Directory

A component of the path prefix of Pathname is not a directory.

Permission_Denied

Search permission is denied for a component of the path prefix of Pathname .

If any of the following conditions is detected, the exception POSIX_Error shall be
raised with the corresponding error code:

Bad_File_Descriptor

File is not a valid file descriptor.

Invalid_Argument

The implementation does not define the value of the function for the speci-
fied file.

5.4.2 File Restrictions

5.4.2.1 Synopsis

function Change_Owner_Is_Restricted (Pathname : POSIX.Pathname)
return POSIX_Options.Change_Owner_Restriction;

function Change_Owner_Is_Restricted (File : POSIX_IO.File_Descriptor)
return POSIX_Options.Change_Owner_Restriction;

function Filename_Is_Truncated (Pathname : POSIX.Pathname)
return POSIX_Options.Filename_Truncation;

function Filename_Is_Truncated (File : POSIX_IO.File_Descriptor)

return POSIX_Options.Filename_Truncation;

5.4.2.2 Description

Change_Owner_Is_Restricted shall indicate whether the use of Change_Owner_-
And_Group (see 5.2.5) on the file named by File or Pathname is restricted. If
Change_Owner_Is_Restricted is true, then Change_Owner_And_Group is re-
stricted to a process with appropriate privileges and to changing the group ID of a
file only to the effective group ID of the process or to one of its supplementary group
IDs. If File or Pathname refers to a directory, the value returned shall apply to
any files defined in this standard, other than directories, that exist or can be created
within the directory. If File or Pathname does not refer to a directory, then the
behavior is unspecified.

Filename_Is_Truncated shall return False if pathname components longer than
the limit provided by Filename_Limit (see 5.4.1) will cause an error and True
otherwise. If File or Pathname refers to a directory, the value returned shall apply
to file names within the named directory. If File or Pathname does not refer to a
directory, then the behavior is unspecified.

5.4 Package POSIX_Configurable_File_Limits 201

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

5.4.2.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Filename_Too_Long
The length in POSIX characters of the specified pathname exceeds Pathname
Limit; or the length in POSIX characters of a component of the specified path-
name is greater than Filename Maximum, and the Filename Truncation option is
not supported for the pathname prefix of that component. (See 5.4.2.)

No_Such_File_Or_Directory
Pathname does not identify an existing file.

Not_A_Directory
A component of the path prefix of Pathname is not a directory.

Permission_Denied
Search permission is denied for a component of the path prefix of Pathname .

If any of the following conditions is detected, the exception POSIX_Error shall be
raised with the corresponding error code:

Bad_File_Descriptor
File is not a valid file descriptor.

Invalid_Argument
The implementation does not define the value of the function for the speci-
fied file.

5.4.3 Pathname-Specific Options

5.4.3.1 Synopsis

function Synchronized_IO_Is_Supported (Pathname : POSIX.Pathname)
return Boolean;

function Synchronized_IO_Is_Supported (File : POSIX_IO.File_Descriptor)
return Boolean;

function Asynchronous_IO_Is_Supported (Pathname : POSIX.Pathname)
return Boolean;

function Asynchronous_IO_Is_Supported (File : POSIX_IO.File_Descriptor)
return Boolean;

function Prioritized_IO_Is_Supported (Pathname : POSIX.Pathname)
return Boolean;

function Prioritized_IO_Is_Supported (File : POSIX_IO.File_Descriptor)
return Boolean;

5.4.3.2 Description

Synchronized_IO_Is_Supported shall return True if the Synchronized I/O option
is supported for the file specified by File or Pathname .

Asynchronous_IO_Is_Supported shall return True if the Asynchronous I/O option
is supported for the file specified by File or Pathname .

Prioritized_IO_Is_Supported shall return True if the Prioritized I/O option is
supported for the file specified by File or Pathname .

If File or Pathname refers to a directory, it is unspecified whether the value of the
function is defined.

202 5 Files and Directories

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

5.4.3.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Filename_Too_Long

The length in POSIX characters of the specified pathname exceeds Pathname
Limit; or the length in POSIX characters of a component of the specified path-
name is greater than Filename Maximum, and the Filename Truncation option is
not supported for the pathname prefix of that component. (See 5.4.2.)

No_Such_File_Or_Directory

Pathname does not identify an existing file.

Not_A_Directory

A component of the path prefix of Pathname is not a directory.

Permission_Denied

Search permission is denied for a component of the path prefix of Pathname .

If any of the following conditions is detected, the exception POSIX_Error shall be
raised with the corresponding error code:

Bad_File_Descriptor

File is not a valid file descriptor.

Invalid_Argument

The implementation does not define the value of the function for the speci-
fied file.

5.4 Package POSIX_Configurable_File_Limits 203

IEEE Std 1003.5c-1998

Section 6: I/O Primitives

This section contains the packages POSIX_IO and POSIX_Asynchronous_IO , includ-
ing all of the POSIX I/O operations, and the package POSIX_File_Locking , which
provides support for file locking. The relationship between POSIX I/O and Ada I/O is
defined in 8.1.

6.1 Package POSIX_IO

with Ada_Streams,
POSIX,
POSIX_Process_Identification,
POSIX_Permissions,
System c;

package POSIX_IO is
-- 6.1.1 Open or Create a File
-- File Descriptors
type File_Descriptor is range 0 .. POSIX.Open_Files_Maxima’Last - 1;
Standard_Input : constant File_Descriptor := 0;
Standard_Output : constant File_Descriptor := 1;
Standard_Error : constant File_Descriptor := 2;
type IO_Offset is implementation-defined-integer;
-- File modes and options
type File_Mode is (Read_Only, Write_Only, Read_Write);
type Open_Option_Set is new POSIX.Option_Set;
-- Empty˙Set, ”+”, and ”-” are derived operations
Non_Blocking : constant Open_Option_Set := implementation-defined;
Append : constant Open_Option_Set := implementation-defined;
Truncate : constant Open_Option_Set := implementation-defined;
Exclusive : constant Open_Option_Set := implementation-defined;
Not_Controlling_Terminal : constant Open_Option_Set := implementation-defined;
Signal_When_Socket_Ready : constant Open_Option_Set := implementation-defined; c
File_Synchronized :

constant POSIX_IO.Open_Option_Set := implementation-defined;
Data_Synchronized :

constant POSIX_IO.Open_Option_Set := implementation-defined;
Read_Synchronized :

constant POSIX_IO.Open_Option_Set := implementation-defined;
-- Operations to open or close file descriptors
function Open

(Name : POSIX.Pathname;
Mode : File_Mode;
Options : Open_Option_Set := Empty_Set;
Masked_Signals : POSIX.Signal_Masking := POSIX.RTS_Signals)

return File_Descriptor;
function Open_Or_Create

(Name : POSIX.Pathname;
Mode : File_Mode;
Permissions : POSIX_Permissions.Permission_Set;
Options : Open_Option_Set := Empty_Set;
Masked_Signals : POSIX.Signal_Masking := POSIX.RTS_Signals)

return File_Descriptor;
function Is_Open (File : File_Descriptor)

return Boolean;
procedure Close

(File : in File_Descriptor;
Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

6 I/O Primitives 205

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

function Duplicate
(File : File_Descriptor;

Target : File_Descriptor := 0)
return File_Descriptor;

function Duplicate_And_Close
(File : File_Descriptor;

Target : File_Descriptor := 0;
Masked_Signals : POSIX.Signal_Masking := POSIX.RTS_Signals)

return File_Descriptor;
procedure Create_Pipe

(Read_End : out File_Descriptor;
Write_End : out File_Descriptor);

-- 6.1.2 I/O Buffer Type
subtype IO_Buffer is POSIX.POSIX_String; -- obsolescent
-- 6.1.3 Read from a File
procedure Read -- obsolescent

(File : in File_Descriptor;
Buffer : out IO_Buffer;
Last : out POSIX.IO_Count;
Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

procedure Read
(File : in File_Descriptor;

Buffer : out Ada_Streams.Stream_Element_Array;
Last : out Ada_Streams.Stream_Element_Offset;
Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

generic
type T is private ;

procedure Generic_Read
(File : in File_Descriptor;

Item : out T;
Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

-- 6.1.4 Write to a File
procedure Write -- obsolescent

(File : in File_Descriptor;
Buffer : in IO_Buffer;
Last : out POSIX.IO_Count;
Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

procedure Write
(File : in File_Descriptor;

Buffer : in Ada_Streams.Stream_Element_Array;
Last : out Ada_Streams.Stream_Element_Offset;
Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

generic
type T is private ;

procedure Generic_Write
(File : in File_Descriptor;

Item : in T;
Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

-- 6.1.5 File Position Operations
type Position is

(From_Beginning, From_Current_Position, From_End_Of_File);
procedure Seek

(File : in File_Descriptor;
Offset : in IO_Offset;
Result : out IO_Offset;
Starting_Point : in Position := From_Beginning);

function File_Size (File : File_Descriptor)
return POSIX.IO_Count;

206 6 I/O Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

function File_Position (File : File_Descriptor)
return IO_Offset;

-- 6.1.6 Terminal Operations
function Is_A_Terminal (File : File_Descriptor)

return Boolean;
function Get_Terminal_Name (File : File_Descriptor)

return POSIX.Pathname;
-- 6.1.7 File Control
procedure Get_File_Control

(File : in File_Descriptor;
Mode : out File_Mode;
Options : out Open_Option_Set);

procedure Set_File_Control
(File : in File_Descriptor;

Options : in Open_Option_Set);
function Get_Close_On_Exec (File : File_Descriptor)

return Boolean;
procedure Set_Close_On_Exec

(File : in File_Descriptor;

To : in Boolean := True);
-- 6.1.8 Update File Status Information
procedure Change_Permissions

(File : in POSIX_IO.File_Descriptor;
Permission : in POSIX_Permissions.Permission_Set);

-- 6.1.9 Truncate File to A Specified Length
procedure Truncate_File

(File : in POSIX_IO.File_Descriptor;
Length : in POSIX.IO_Count);

-- 6.1.10 Synchronize the State of a File
procedure Synchronize_File (File : in POSIX_IO.File_Descriptor);
-- 6.1.11 Data Synchronization
procedure Synchronize_Data (File : in POSIX_IO.File_Descriptor);
-- 6.1.12 Socket File Ownership
procedure Get_Owner

(File : in File_Descriptor;
Process : out POSIX_Process_Identification.Process_ID;
Group : out POSIX_Process_Identification.Process_Group_ID);

procedure Set_Socket_Process_Owner
(File : in File_Descriptor;

Process : in POSIX_Process_Identification.Process_ID);
procedure Set_Socket_Group_Owner

(File : in File_Descriptor;
Group : in POSIX_Process_Identification.Process_Group_ID); c

-- 6.1.13 I/O Vector Type
type IO_Vector is limited private ;
procedure Set_Buffer

(Vector : in out IO_Vector;
Buffer : in System.Address;
Length : in POSIX.IO_Count);

procedure Get_Buffer
(Vector : in IO_Vector;

Buffer : out System.Address;
Length : out POSIX.IO_Count); c

private
implementation-defined c

end POSIX_IO;

6.1 Package POSIX_IO 207

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

6.1.1 Open or Create a File

6.1.1.1 Synopsis

-- File Descriptors
type File_Descriptor is range 0 .. POSIX.Open_Files_Maxima’Last - 1;
Standard_Input : constant File_Descriptor := 0;
Standard_Output : constant File_Descriptor := 1;
Standard_Error : constant File_Descriptor := 2;
type IO_Offset is implementation-defined-integer;
-- File modes and options
type File_Mode is (Read_Only, Write_Only, Read_Write);
type Open_Option_Set is new POSIX.Option_Set;
-- Empty˙Set, ”+”, and ”-” are derived operations
Non_Blocking : constant Open_Option_Set := implementation-defined;
Append : constant Open_Option_Set := implementation-defined;
Truncate : constant Open_Option_Set := implementation-defined;
Exclusive : constant Open_Option_Set := implementation-defined;
Not_Controlling_Terminal : constant Open_Option_Set := implementation-defined;
Signal_When_Socket_Ready : constant Open_Option_Set := implementation-defined; c
File_Synchronized :

constant POSIX_IO.Open_Option_Set := implementation-defined;
Data_Synchronized :

constant POSIX_IO.Open_Option_Set := implementation-defined;
Read_Synchronized :

constant POSIX_IO.Open_Option_Set := implementation-defined;
-- Operations to open or close file descriptors
function Open

(Name : POSIX.Pathname;
Mode : File_Mode;
Options : Open_Option_Set := Empty_Set;
Masked_Signals : POSIX.Signal_Masking := POSIX.RTS_Signals)

return File_Descriptor;
function Open_Or_Create

(Name : POSIX.Pathname;
Mode : File_Mode;
Permissions : POSIX_Permissions.Permission_Set;
Options : Open_Option_Set := Empty_Set;
Masked_Signals : POSIX.Signal_Masking := POSIX.RTS_Signals)

return File_Descriptor;
function Is_Open (File : File_Descriptor)

return Boolean;
procedure Close

(File : in File_Descriptor;
Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

function Duplicate
(File : File_Descriptor;

Target : File_Descriptor := 0)
return File_Descriptor;

function Duplicate_And_Close
(File : File_Descriptor;

Target : File_Descriptor := 0;
Masked_Signals : POSIX.Signal_Masking := POSIX.RTS_Signals)

return File_Descriptor;
procedure Create_Pipe

(Read_End : out File_Descriptor;

Write_End : out File_Descriptor);

208 6 I/O Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

6.1.1.2 Description

The type File_Descriptor shall be used to represent a file or device available for
I/O operations within the system. File_Descriptor shall be an integer type whose
range is constrained by the implementation-defined value POSIX_Limits.Open_-
Files_Maxima’Last . (See 2.6.1.) There are three predefined values of type File_-
Descriptor . These values represent files normally opened by the system before the
process starts. The names of these values shall be as shown in Table 6.1:

The type IO_Offset shall be used to represent a location within a file, expressed in
terms of bytes. This type shall contain both positive and negative values because it
is possible to call Seek , or one of the POSIX_File_Locking subprograms, with a
negative IO_Offset relative to the current file offset and because negative offsets
are meaningful on some devices.

Table 6.1 – Standard File Descriptors

Standard_Input (File_Descriptor’(0))

Standard_Output (File_Descriptor’(1))

Standard_Error (File_Descriptor’(2))

The type File_Mode shall enumerate the access mode of a file, indicating whether
read and/or write operations are permitted on the file. The access modes are Read_-
Only , Write_Only , and Read_Write .

The type Open_Option_Set shall denote additional options on the file. The oper-
ations "+" , "-" , ">" , "<" , ">=" , "<=" , and Empty_Set are available on the type
Open_Option_Set via the derived type semantics of Ada, from the operations avail-
able for POSIX.Option_Set . The user can create the option set by using the appro-
priate operations to create a set containing the options needed. In the following, the
term open operation means one of the operations Open or Open_Or_Create .

The meanings of the options are as follows:

Non_Blocking

This option shall denote the behavior of the open operations on FIFO files,
and on block special files or character special files that support nonblocking
opens.
(1) For a FIFO whose file mode is Read_Only or Write_Only :

(a) When set, an open operation shall return without delay. An open
operation with file mode of Write_Only shall return an error if no
process currently has the file open for reading.

(b) When not set, an open operation with file mode of Read_Only shall
block until a process opens the file for writing. An open operation
with file mode of Write_Only shall block until a process opens the
file for reading.

(2) For a block special file or character special file that supports nonblock-
ing opens:
(a) When set, an open operation shall return without waiting for the

device to be ready or available. Subsequent behavior of the device
is device-specific.

6.1 Package POSIX_IO 209

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

(b) When not set, an open operation shall wait until the device is ready
or available before returning.

For cases not covered by the list above, the behavior of an open operation
with the Non_Blocking option shall be undefined.

Append

This option shall denote where output shall be placed in the file. When set,
the file offset in the open file description shall be reset to the end of the file
prior to each write operation. When not set, the file offset shall be updated
as described by the Write , Generic_Write (see 6.1.4 and Seek (see 6.1.5)
operations.

Exclusive

This option shall specify that Open_Or_Create shall fail if the file named
by the Nameparameter exists. The check for existence and the creation of
the file if it does not exist shall be a single atomic action, with respect to
all other processes executing Open_Or_Create naming the same file within
the same directory that are also using this option. If this option is specified
for Open, the result is undefined.

Truncate

This option shall denote whether the file shall be truncated when opened.
When set, the file shall be truncated to zero length when opened. The mode
and owner are unchanged. If not set, truncation does not occur when the file
is opened. This option shall have no effect on FIFO special files or terminal
device files. Its effect on other file types is implementation defined. The
result of applying this option on a file opened with Modespecified as Read_-
Only is undefined.

Not_Controlling_Terminal

This option shall specify whether the file shall be adopted as the termi-
nal controlling the process. (See 7.1.0.6.) If set and if the Nameparameter
identifies a terminal device, it is unspecified whether that terminal device
becomes the controlling terminal for the process.

Data_Synchronized

Write operations on the file descriptor complete as defined by synchronized
I/O data integrity completion (see 2.2.2.178).

File_Synchronized

Write operations on the file descriptor complete as defined by synchronized
I/O file integrity completion (see 2.2.2.179).

Read_Synchronized

Read operations complete at the same level of integrity as specified by
Data_Synchronized and File_Synchronized . If both Data_Synchro-
nized and Read_Synchronized are specified, all I/O operations on the file
descriptor complete as defined by synchronized I/O data integrity comple-
tion. If both File_Synchronized and Read_Synchronized are specified,
all I/O operations on the file descriptor complete as defined by synchronized
I/O file integrity completion.

210 6 I/O Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Signal_When_Socket_Ready

When input or output becomes possible on a socket, the process group is
signaled via Signal_IO . c

The Open operation shall open a file that already exists. The Open_Or_Create
operation shall either open an existing file or create a new file with the given name
if none exists. In both cases, the Nameparameter specifies the name of the file to
be opened or created. These operations shall create a new open file description, and
shall return a value of type File_Descriptor referring to that open file description.
The File_Descriptor value shall be the lowest file descriptor not currently open
for that process. The file descriptor shall have the property that it is not closed by
the system when one of the Exec family of operations is called. (See 6.1.7.) The
open file description shall not be shared by any other process in the system. The file
offset shall be set to the beginning of the file. The options in the open file description
shall be the options provided by the Options parameter. The file access mode in the
open file description shall be the value provided by the Mode parameter. The effect
of calling Open or Open_Or_Create where Namespecifies a FIFO special file and
Mode specifies Read_Write is undefined. The parameter Masked_Signals specifies
which signals shall be masked during the operation. (See 2.4.1.6.)

If Open_Or_Create creates a new file, the operation shall mark the Last Access Time,
the Last Modification Time and the Last Status Change Time for update. If an existing file
is opened and the Truncate option is requested, the operation shall mark the last
modification time and the Last Status Change Time for update. (See 2.3.10.)

If the Sockets Detailed Network Interface option is supported: If Namespecifies a path-
name naming a socket, then it is implementation defined whether

— The operation shall fail with the error code set to Socket_Type_Not_Sup-
ported .

— The operation shall have the same effect as if the POSIX_Sockets.Create
function were called with parameters appropriate to the given pathname and
the POSIX_Sockets.Connect procedure was then called specifying the path as
the destination.

If the XTI Detailed Network Interface option is supported: If the file has already been
created and is now being opened; and if Pathname specifies a pathname naming a
character special file for use with XTI calls, and the implementation supports such
pathnames, then a communications endpoint shall be established as described in
17.4.19, but need not be synchronized with the data structures of the communica-
tions library or be in the Unbound state state (see 17.2). The application should call
POSIX_XTI.Synchronize_Endpoint to synchronize such an endpoint with the data
structures of the communications library and put it into the Unbound state. The ap-
plication shall not designate a File_Mode other than Read_Write and shall not
select an option other than Non_Blocking when calling the Open or Open_Or_Cre-
ate operations with a pathname that names a character special file for use with XTI
calls. Whether such pathnames are supported is implementation defined. Applica-
tions shall not specify a character special file for use with XTI calls when issuing an
operation to create a file. c

Is_Open shall indicate whether a file descriptor is open for I/O operations. This
function shall return a Boolean value, but shall never raise an exception.

6.1 Package POSIX_IO 211

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Create_Pipe shall create a pipe (a one-way communications channel). Upon return,
the parameter Read_End shall be the File_Descriptor value associated with the
pipe for Read operations. The parameter Write_End shall be the File_Descrip-
tor value associated with the pipe for Write operations. The file descriptor values
shall be the two lowest currently unopened file descriptor values for the process. The
Non_Blocking option shall be set in both open file descriptions and both file descrip-
tors shall have the property that it is not closed by the system when one of the Exec
family of operations is called. (See 6.1.7.) Data can be written to the file descriptor
Read_End, and read from the file descriptor Write_End . A read on the file descriptor
Read_End shall access the data written to the file descriptor Write_End on a FIFO
basis. A process has the pipe open for reading if it has a file descriptor open that
refers to the open file description associated with the file descriptor Read_End. A
process has the pipe open for writing if it has a file descriptor open that refers to the
open file description associated wih the file descriptor Write_End . Upon successful
completion, the operation shall mark for update the Last Access Time, Last Modification
Time and Last Status Change Time for the pipe.

If the Sockets Detailed Network Interface option is supported:An implementation may
provide Create_Pipe sockets. In this case, sockets-related errors may be raised to
the calling application. c

Close shall free the file descriptor named by the parameter File . Upon normal
return, the descriptor is closed and may be reused by the system for a subsequent
open operation. When a file descriptor is closed, no further I/O operations may be
performed on that file descriptor. All outstanding record locks owned by the process
on the file shall be removed (that is, unlocked). (See 6.2.) If Close is interrupted by a
signal, it shall fail, raising POSIX_Error with error code Interrupted_Operation ,
and the state of the file descriptor is unspecified. When all file descriptors associated
with a pipe or FIFO special file have been closed, any data remaining in the pipe
or FIFO shall be discarded. When all file descriptors associated with an open file
description have been closed, the open file description shall be freed. When all file
descriptors associated with the file have been closed, if the link count of the file is zero
and the file is not a character special file for use with XTI calls cthe space occupied by
the file shall be freed and the file shall no longer be accessible. (See 5.2.3.) If the link
count of the file is zero and the file is a character special file for use with XTI calls,
then the behavior of Close is unspecified. c

If the Asynchronous I/O option is supported: When there is an outstanding cancelable
AIO operation against File and Close is called, that I/O operation may be canceled.
An I/O operation that is not canceled completes as if the Close operation had not yet
occurred. All operations that are not canceled shall complete as if the Close blocked
until the operations completed. The Close operation itself need not block awaiting
such I/O completion. Whether any I/O operation is canceled, and which I/O operation
may be canceled are implementation defined.

If the Memory Mapped Files option or the Shared Memory Objects option is supported: If
a memory object remains referenced at the last close (i.e., a process has it mapped),
then the entire contents of the memory object shall persist until the memory object
becomes unreferenced. If this close is the last close of a memory object, if the close
results in the memory object becoming unreferenced, and if the memory object has
been unlinked, then the memory object shall be removed.

212 6 I/O Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

When all descriptors associated with an open file description of a character special
file for use with XTI calls have been closed, any connection that may be associated
with that endpoint shall be broken. The connection may be terminated in an orderly
or an abortive manner. Protocol-specific constraints on the behavior in this case shall
be as described for Close in D.2.

When all descriptors associated with an open file description of a socket have been
closed the following apply:

(a) If the socket is in the Listening state, all pending connections to the socket shall
be aborted, whether or not the new connection was ready for return by the Ac-
cept_Connection operation. The effect of an abort in this state is protocol
specific.

(b) If the socket is connection-mode, the socket is connected, and the linger option is
not on, then the implementation shall initiate a normal disconnection. Whether
a normal disconnection causes data that have not been delivered to be discarded
is protocol-specific.

(c) If the socket is connection-mode, the socket is connected, and the linger option is
on with a linger time of zero, then the implementation shall initiate an immedi-
ate disconnection. The action and consequences of an immediate disconnection
are protocol-specific.

(d) If the socket is connection-mode, the socket is connected, and the linger option is
on with a nonzero linger time then the following apply:
— The implementation shall initiate a normal disconnection. Whether a nor-

mal disconnection causes data that have not been delivered to be discarded
is protocol specific.

— If the Non_Blocking option is not set for the descriptor, the Close oper-
ation shall block until the disconnection operation completes or until the
linger time expires.

— If the Non_Blocking option is set for the descriptor, the operation shall not
block.

(e) Whether attempts shall be made to deliver data that have not yet been delivered
after the completion of the linger time or if the function does not block is protocol
specific.

(f) All data in the receive queue of the socket shall be discarded.

(g) All other resources associated with the socket shall be freed.

(h) The Close operation shall deallocate the file descriptor. c

Duplicate shall return a new file descriptor that is the lowest numbered available
file descriptor value not currently open by the process greater than or equal the value
of the parameter Target . The new file descriptor shall refer to the same open file
description as the file descriptor named by the parameter File . The returned file
descriptor shall have the property that it is not closed by the system when one of the
Exec family of operations is called. (See 6.1.7.)

Duplicate_And_Close shall behave as follows:

— If File is not open, the exception POSIX_Error shall be raised with error code
Bad_File_Descriptor .

6.1 Package POSIX_IO 213

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

— If File is open and Target is equal to File , File shall be returned, and the
file shall not be closed.

— If File is open, Target is not equal to File , and Target is open, Target shall
be closed. Then the value that is returned shall equal Target . This file descrip-
tor is opened and shall refer to the same open file description as the parameter
File .

For example, if file descriptor 4 is open and Duplicate_And_Close(4,7) is called
the following shall happen:

— If file descriptor 7 is open, it shall be closed.

— Then the value returned shall be 7, and file descriptors 4 and 7 are now open to
the same open file description.

6.1.1.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Permission_Denied

Upon Open or Open_Or_Create , search permission is denied on a compo-
nent of the path prefix; or the file exists and the permissions specified by
Mode are denied; or the file does not exist, and write permission is denied
for the parent directory of the file to be created; or the Truncate option is
set, and write permission is denied.

Interrupted_Operation

Open, Open_Or_Create , or Close was interrupted by a signal.

Filename_Too_Long

Upon Open or Open_Or_Create : The length in POSIX characters of the
specified pathname exceeds Pathname Limit; or the length in POSIX charac-
ters of a component of the specified pathname is greater than Filename Max-
imum, and the Filename Truncation option is not supported for the pathname
prefix of that component. (See 5.4.2.)

No_Such_File_Or_Directory

Upon Open, the file does not exist.

Not_A_Directory

Upon Open or Open_Or_Create , a component of the parameter Name(except
the last component) is not a directory.

Is_A_Directory

Upon Open or Open_Or_Create , the parameter Namedenotes a directory,
and the value of Mode is either Read_Write or Write_Only .

Too_Many_Open_Files

Open, Open_Or_Create , Duplicate , or Create_Pipe would cause the
program to have more than Open Files Maximum open file descriptors.

Too_Many_Open_Files_In_System

Upon Open, Open _ Or _ Create , or Create _ Pipe , a system-wide
implementation-defined open file limit would be exceeded.

214 6 I/O Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

No_Space_Left_On_Device

Upon Open_Or_Create , the file is being created, and the device associated
with the file named by the parameter Nameis full.

No_Such_Device_Or_Address

Upon Open or Open_Or_Create , the requested mode is Write_Only for
nonblocking I/O, and the file is a FIFO special file and no process has the
FIFO open for reading.

Read_Only_File_System

Upon Open or Open_Or_Create , the file system is read-only and the value
of parameter Mode is not Read_Only .

File_Exists

Upon Open_Or_Create , the value of the parameter Options has the option
Exclusive set to True , and the file named by parameter Name already
exists.

Bad_File_Descriptor

Upon Close , Duplicate , or Duplicate_And_Close , the file associated
with the parameter File is not open.

No_Buffer_Space

The implementation attempted to create the pipe using sockets, but insuffi-
cient buffer space is available. The socket cannot be created until sufficient
resources are freed.

Socket_Type_Not_Supported

The path specified is that of a Local_Protocol socket for which Open is
not supported, and the implementation treats this condition as an error. c

Is_Open shall not raise any exceptions.

6.1.2 I/O Buffer Type

6.1.2.1 Synopsis

subtype IO_Buffer is POSIX.POSIX_String; -- obsolescent

6.1.2.2 Description

The subtype IO_Buffer is used to represent a sequence of POSIX_Character values
for some I/O operations. An I/O operation transfers a number of POSIX_Character
values to or from an IO_Buffer object, returning the number of POSIX_Character
values transferred in an object of type IO_Count .

The type IO_Buffer is obsolescent. It is preserved for compatibility with POSIX.5,
only. New applications should use Ada_Streams.Stream_Element_Array . (See
2.4.1.3.)

6.1 Package POSIX_IO 215

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

6.1.3 Read from a File

6.1.3.1 Synopsis

procedure Read -- obsolescent
(File : in File_Descriptor;

Buffer : out IO_Buffer;
Last : out POSIX.IO_Count;
Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

procedure Read
(File : in File_Descriptor;

Buffer : out Ada_Streams.Stream_Element_Array;
Last : out Ada_Streams.Stream_Element_Offset;
Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

generic
type T is private ;

procedure Generic_Read
(File : in File_Descriptor;

Item : out T;

Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

6.1.3.2 Description

The Read operation shall transfer a number of values from the file associated with
the open file descriptor parameter File into the parameter Buffer . Read shall
attempt to transfer enough data to completely fill the buffer, i.e., Read shall attempt
to read Buffer’Length values. On successful return, the parameter Last shall
contain the index of the last element of Buffer supplied by the Read operation. If
the parameter Buffer is a null array, then Last shall be Buffer’First - 1 and
Read shall have no other result. Two overloadings of Read are defined, operating on
arrays of POSIX.POSIX_Character and Ada_Streams.Stream_Element_Array .

The version of Read with argument of type IO_Buffer is obsolescent.

On a regular file or other file capable of seeking, Read shall start at the position
in the file given by the file offset in the open file description associated with the
file descriptor, File . Before a successful return from Read, the file offset shall be
incremented by the number of bytes occupied by the values actually read. On a file
not capable of seeking, Read shall start from the current position. The value of the
file offset associated with such a file is undefined.

The number of values read may be less than the number of values requested (i.e.,
the length of the Buffer parameter). The number may be less if the read request
was interrupted by a signal or if the file descriptor refers to a pipe or FIFO or other
special file that has less than the requested amount of data immediately available
for reading. For example, a terminal device may return one typed line of data, where
the number of values in the line is less than the length of the Buffer parameter. If
the Read operation transfers all data, the value of Last shall be Buffer’Last .

If Read is interrupted by a signal before it reads any data, Read shall raise POSIX_-
Error with error code Interrupted_Operation . If Read is interrupted by a signal
after it has successfully read some data, Read shall return the index of the last
value transferred to the Buffer parameter. Read shall never raise POSIX_Error
with error code Interrupted_Operation on a pipe or FIFO if the operation has
transferred any data.

216 6 I/O Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

No data transfer shall occur past the current end-of-file. If the starting position
is at or after the end-of-file, Read shall raise IO_Exceptions.End_Error . If the
parameter File refers to a device special file, the result of subsequent calls to Read
is implementation defined.

When an attempt is made to read from an empty pipe or FIFO special file the follow-
ing apply:

— If no process has the pipe open for writing Read shall raise IO_Exceptions.-
End_Error .

— If some process has the pipe open for writing and the open file description asso-
ciated with the parameter File has the Non_Blocking option, Read shall raise
POSIX_Error with error code Resource_Temporarily_Unavailable .

— If some process has the pipe open for writing and the open file description asso-
ciated with the parameter File does not have the Non_Blocking option, Read
shall block until some data are written or the pipe is closed by all processes that
had the pipe open for writing.

When an attempt is made to read a file that is other than a pipe or FIFO, supports
nonblocking reads, and has no data currently available, the following apply:

— If the open file description associated with the parameter File has the Non_-
Blocking option, Read shall raise POSIX_Error with error code Resource_-
Temporarily_Unavailable .

— If the open file description associated with the parameter File does not have
the Non_Blocking option, Read shall block until some data become available.

The Non_Blocking option shall have no effect if some data are available.

For any portion of a regular file, prior to end-of-file, that has not been written, Read
shall place the value Stream_Element’(0) or POSIX_Character’val(0) into the
appropriate position(s) in Buffer .

Upon successful completion, when Read successfully transfers any data, the Last
Access Time shall be marked for update.

The limit Pipe Length Maximum represents the number of bytes guaranteed to be trans-
ferred during a single Read operation where the parameter File represents a pipe
or a FIFO special file. An attempt to transfer quantities of values greater than this
limit may be interleaved with other I/O operations on the file or device.

The Generic_Read operation is instantiated with a user-supplied type. This opera-
tion shall execute one or more Read operations to obtain sufficient bytes to complete
the parameter Item . The number of values to be transferred shall be the size of the
parameter Item in bytes. Generic_Read shall either return, having transferred
the entire object into the parameter Item , or shall raise an exception if unable to
obtain sufficient values to complete the object. If an exception is raised, the number
of values actually transferred is unspecified, and there is no portable way for the ap-
plication to know this number. The implementation of Generic_Read shall retry if
the operation is blocked or is interrupted until either the entire object is transferred
or an implementation-defined limit on retries is reached. The effect of instantiating

6.1 Package POSIX_IO 217

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Generic_Read is unspecified if the size of the parameter Item is greater than Pipe
Length Maximum and the external file is a pipe or FIFO special file.

For any given constrained type, instantiations of Generic_Read or Generic_Write
shall be invertible in the following sense: writing an object of the type to a file and
then reading the same file into a second object of the type shall result in both objects
having the same value. Instantiations for unconstrained types may be refused by the
implementation.

Upon successful completion, when Generic_Read successfully transfers any data,
the Last Access Time shall be marked for update.

The following additional specifications apply if the Synchronized I/O option is sup-
ported, the following apply:

— If Data_Synchronized and Read_Synchronized have been specified, read
operations on the file descriptor complete as defined by synchronized I/O data
integrity completion (see 2.2.2.178).

— If File_Synchronized and Read_Synchronized have been specified, read
operations on the file descriptor complete as defined by synchronized I/O file
integrity completion (see 2.2.2.179).

— If Data_Synchronized , File_Synchronized , and Read_Synchronized have
been specified, read operations on the file descriptor complete as defined by syn-
chronized I/O file integrity completion (see 2.2.2.179).

If File refers to a shared memory object or any object other than a file, the result of
Read or Generic_Read is unspecified.

The behavior of the Read operation for a character special file for use with XTI calls
is unspecified. On a socket, the call to Read shall be equivalent to the call to Receive
with Options equal to the Empty_Set . c

6.1.3.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

The file descriptor File is not open.
The open file description associated with the file descriptor File is not open
for reading.

Interrupted_Operation

The operation was interrupted by a signal.

Input_Output_Error

The implementation supports job control, a process in a background process
group attempts to read from its controlling terminal, and either the process
group of the process is orphaned or the process ignores the signal POSIX_-
Signals.Signal_Terminal_Input .

218 6 I/O Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Resource_Temporarily_Unavailable

The Non_Blocking option is set and no data are immediately available to
be read. In this case, the operation shall fail rather than blocking.

IO_Exceptions.End_Error shall be raised by Read when an attempt is made to
read and no more values are left at the end of a file or by Generic_Read when the
number of bytes in the file is smaller than the size of the Item measured in bytes.

6.1.4 Write to a File

6.1.4.1 Synopsis

procedure Write -- obsolescent
(File : in File_Descriptor;

Buffer : in IO_Buffer;
Last : out POSIX.IO_Count;
Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

procedure Write
(File : in File_Descriptor;

Buffer : in Ada_Streams.Stream_Element_Array;
Last : out Ada_Streams.Stream_Element_Offset;
Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

generic
type T is private ;

procedure Generic_Write
(File : in File_Descriptor;

Item : in T;

Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

6.1.4.2 Description

The Write operation shall transfer a number of values from the parameter Buffer
into the file associated with the open file descriptor parameter File . Write shall
attempt to transfer the complete contents of the buffer, i.e., Write shall attempt to
transfer Buffer’Length values. On successful return, the parameter Last shall
contain the index of the last element of Buffer transferred by the Write operation.
If the Write operation transfers all data, the value of Last shall be Buffer’Last .
If the parameter Buffer is a null array, then Last shall be 0 and Write shall have
no result. Two overloadings of Write are defined, operating on arrays of POSIX.-
POSIX_Character and Ada_Streams.Stream_Element_Array .

The version of Write with parameter of type IO_Buffer is obsolescent.

On a regular file or other file capable of seeking, Write shall start at the position
in the file given by the file offset in the open file description associated with the file
descriptor given by parameter File . Before a successful return from Write , the file
offset shall be incremented by the number of bytes occupied by the values actually
written. On a regular file, if the resulting file offset value is greater than the length
of the file in bytes, the length of the file shall be set to this file offset value. On a file
not capable of seeking, Write shall start from the current position. The value of a
file offset associated with such a file is undefined.

If the Append option is set in the open file description associated with the file de-
scriptor File , then the file offset shall be set to the end of the file prior to each write,

6.1 Package POSIX_IO 219

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

and no intervening file modification operation shall be allowed between the change
to the file offset and the associated write operation.

If the Write operation requests that more values be written than there is room to
accommodate (for example, past the physical end of the medium), the Write opera-
tion shall transfer only as many values as can be written. In this case, the Write
operation shall return the index of the last element of Buffer written in the Last
parameter. For instance, if Buffer’Size is 100 (and Buffer’First is 1) and there
is room on the device for only 20 values, then Write shall transfer 20 values, and
return the value 20 for the parameter Last . The next write request (for a nonzero
number of values) would then fail (except as noted before).

If Write is interrupted by a signal before it writes any data, Write shall raise
POSIX_Error with error code Interrupted_Operation . If Write is interrupted
by a signal after it has successfully written some data, either it shall raise POSIX_-
Error with error code Interrupted_Operation or it shall return the index of the
last value transferred from the Buffer parameter. Write shall never raise POSIX_-
Error with error code Interrupted_Operation on a pipe or FIFO if the operation
has transferred any data.

After the Write operation to a regular file has returned,

— Any successful Read operation from each position in the file that was modified
by that Write operation shall return the data specified by the Write operation
for that position until such positions are again modified by another Write oper-
ation.

— Any subsequent successful Write to the same position in the file shall overwrite
the previous file data. (The phrase “subsequent successful Write operation” in
the previous sentence is intended to be viewed from a system perspective, i.e., a
Read operation followed by a system-wide subsequent Write operation.)

Write operations to a pipe or FIFO special file shall be handled in the same manner
as Write operations on a regular file, with the following exceptions:

(1) There is no file offset associated with a pipe; hence each Write operation shall
append to the end of the pipe.

(2) Write operations that transfer amounts of data less than Pipe Length Maximum
bytes shall not be interleaved with other processes performing Write opera-
tions on the same pipe. Write operations that transfer more than Pipe Length
Maximum bytes may have data interleaved, on arbitrary boundaries, with Write
operations by other processes, whether or not the open file description for the
pipe has the Non_Blocking option.

(3) If the open file description associated with the pipe does not have the Non_-
Blocking option, then the Write operation may block. On normal completion
of the Write operation, it shall set the parameter Last to be Buffer’Last .

(4) If the open file description associated with the pipe has the Non_Blocking op-
tion, then Write operations shall be handled differently, as described below:
(a) The Write operation shall not block.
(b) A Write operation where Buffer’Length is less than or equal to Pipe

Length Maximum shall do one of the following:

220 6 I/O Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

(i) If there is sufficient space available in the pipe, the operation shall
transfer all of the data and return the value Buffer’Last in the pa-
rameter Last .

(ii) If there is not sufficient space available in the pipe, the operation shall
transfer no data and raise POSIX_Error with error code Resource_-
Temporarily_Unavailable .

(c) A Write operation where Buffer’Length is greater than Pipe Length Maxi-
mum shall do one of the following:
(i) If at least one value can be transferred, the Write operation shall trans-

fer as many values as possible and return the index of the last element
of Buffer transferred in the parameter Last . When all data previously
written to the pipe have been read, it shall transfer at least Pipe Length
Maximum bytes.

(ii) If no data can be written, the Write operation shall transfer no data
and shall raise POSIX_Error with error code Resource_Temporar-
ily_Unavailable .

When an attempt is made to write to a file or device that is other than a pipe or
FIFO, is associated with the file descriptor File , and supports nonblocking writes,
but cannot accept the data immediately, the following apply:

— If the open file description associated with the file descriptor File does not have
the Non_Blocking option, the Write operation shall block until the data can be
accepted or written.

— If the open file description associated with the file descriptor File has the Non_-
Blocking option, the Write operation shall not block. If some data can be
written without blocking, the Write operation shall transfer as much data as
it can without blocking, and the index of the last value from Buffer that was
transferred shall be returned in the parameter Last . Otherwise, the Write
operation shall not transfer any data and shall raise POSIX_Error , with error
code Resource_Temporarily_Unavailable .

Upon successful completion, when Write successfully transfers any data, the Last
Access Time and Last Modification Time shall be marked for update.

The Generic_Write operation is instantiated with a user-supplied type. This op-
eration shall execute one or more Write operations to transfer sufficient bytes to
transfer the parameter Item . The number of values to be transferred shall be the
size of the parameter Item in bytes. Generic_Write shall either return, having
transferred the entire object from the parameter Item , or shall raise an exception if
unable to transfer sufficient values to complete the object. If an exception is raised,
the number of values actually transferred is unspecified, and there is no portable
way for the application to know this number. The implementation of Generic_-
Write shall retry if the operation is blocked or is interrupted until either the entire
object is transferred or an implementation-defined limit on retries is reached. The
effect of instantiating Generic_Write is unspecified if the size in bytes of the param-
eter Item is greater than the limit returned by Pipe Length Maximum and the external
file is a pipe or FIFO special file.

For any given constrained type, instantiations of Generic_Read or Generic_Write
shall be invertible in the following sense: writing an object of the type to a file and

6.1 Package POSIX_IO 221

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

then reading the same file into a second object of the type shall result in both objects
having the same value. Instantiations for unconstrained types may be refused by the
implementation.

Upon successful completion, when Generic_Write successfully transfers any data,
the Last Access Time and Last Modification Time shall be marked for update.

The following additional specifications apply if the Synchronized I/O option is sup-
ported, the following apply:

— If Data_Synchronized has been specified, write I/O operations on the file de-
scriptor complete as defined by synchronized I/O data integrity completion (see
2.2.2.178).

— If File_Synchronized has been specified, write I/O operations on the file de-
scriptor complete as defined by synchronized I/O file integrity completion (see
2.2.2.179).

— If Data_Synchronized and File_Synchronized have been specified, write
I/O operations on the file descriptor complete as defined by synchronized I/O file
integrity completion (see 2.2.2.179).

— If Data_Synchronized and Read_Synchronized have been specified, write
I/O operations on the file descriptor complete as defined by synchronized I/O
data integrity completion (see 2.2.2.178).

— If File_Synchronized and Read_Synchronized have been specified, write
I/O operations on the file descriptor complete as defined by synchronized I/O file
integrity completion (see 2.2.2.179).

— If Data_Synchronized , File_Synchronized , and Read_Synchronized have
been specified, write I/O operations on the file descriptor complete as defined by
synchronized I/O file integrity completion (see 2.2.2.179).

If File refers to a shared memory object or any object other than a file, the result of
Write or Generic_Write is unspecified.

The behavior of the Write operation for a character special file for use with XTI calls
is unspecified. On a socket, the call to Write shall be equivalent to the call to Send
with Options equal to the Empty_Set . c

6.1.4.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

The file descriptor File is not open.
The open file description associated with the file descriptor File is not open
for writing.

Input_Output_Error

The implementation supports job control, a process in a background process
group attempts to write to its controlling terminal, and either the process

222 6 I/O Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

group of the process is orphaned or the process ignores the signal POSIX_-
Signals.Signal_Terminal_Output .
A write was attempted to a terminal device and a modem disconnect was
detected by the terminal interface for that device. (See 7.1.0.13.)

Interrupted_Operation

The operation was interrupted by a signal.

Resource_Temporarily_Unavailable

If the Non_Blocking option is set in the open file description associated
with the file descriptor File and the task would be delayed in completing
the operation, the operation shall fail rather than blocking.

Broken_Pipe

The parameter File is associated with a pipe or FIFO special file whose
read end is not open.

File_Too_Large

The file size exceeds a system limit.

No_Space_Left_On_Device

No space remains on the device associated with the parameter File .

6.1.5 File Position Operations

6.1.5.1 Synopsis

type Position is
(From_Beginning, From_Current_Position, From_End_Of_File);

procedure Seek
(File : in File_Descriptor;

Offset : in IO_Offset;
Result : out IO_Offset;
Starting_Point : in Position := From_Beginning);

function File_Size (File : File_Descriptor)
return POSIX.IO_Count;

function File_Position (File : File_Descriptor)

return IO_Offset;

6.1.5.2 Description

For files and devices where a file offset exists, the system shall maintain the current
file position in the open file description associated with the file or device. The current
file position can be changed by calls to Read or Write operations or can be directly
manipulated by Seek .

Seek shall modify the current file position in the open file description associated with
the file descriptor File . The interpretation of the parameter Offset shall depend
on the value of the parameter Starting_Point as follows:

— If the value of Starting_Point is From_Beginning , the file position shall be
set to the value of Offset bytes from the beginning of the file.

— If the value of Starting_Point is From_Current_Position , the file position
shall be set to the arithmetic sum of the current value of the file position and the
value of Offset . A negative value of Offset has the effect of adjusting the file
position backwards from its current position.

6.1 Package POSIX_IO 223

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

— If the value of Starting_Point is From_End_Of_File , the file position shall be
set to the arithmetic sum of the size of the file in bytes plus the value of Offset .
A negative value of Offset has the effect of adjusting the read/write pointer
backwards from the end of the file.

It is not an error to seek past the end of a file. If a program seeks past the end of the
file, the next Read or Generic_Read operation shall find end-of-file, and the next
Write or Generic_Write operation shall extend the file.

File_Size shall return the size of the file associated with the file descriptor File
in terms of bytes. File_Position shall return the current file position, in terms of
bytes, from the open file descriptor associated with the file descriptor File .

Some devices are incapable of seeking. The value of the file offset in the open file
description associated with the file descriptor File is undefined. The behavior of
Seek , File_Position , or File_Size operations on such devices is implementation
defined.

The result of Seek , File_Position , or File_Size on shared memory objects, or on
a character special file for use with XTI calls, or on a socket, or on cany object other
than a file is unspecified.

6.1.5.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

The parameter File is not open.

Invalid_Seek

The file associated with the parameter File is a pipe or a FIFO special file.

6.1.6 Terminal Operations

6.1.6.1 Synopsis

function Is_A_Terminal (File : File_Descriptor)
return Boolean;

function Get_Terminal_Name (File : File_Descriptor)

return POSIX.Pathname;

6.1.6.2 Description

Is_A_Terminal shall return True if the external file associated with the parameter
File is a terminal device and False otherwise.

Get_Terminal_Name shall return a value of type Pathname that represents the
name of the external terminal device associated with the parameter File .

The null string shall be returned if the value of the parameter File is not a valid file
descriptor associated with a terminal or if the pathname cannot be determined.

224 6 I/O Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

6.1.6.3 Error Handling

This standard does not specify any error conditions that are required to be detected
for these operations. Errors may be reported under conditions that are unspecified
by this standard.

6.1.7 File Control

6.1.7.1 Synopsis

procedure Get_File_Control
(File : in File_Descriptor;

Mode : out File_Mode;
Options : out Open_Option_Set);

procedure Set_File_Control
(File : in File_Descriptor;

Options : in Open_Option_Set);
function Get_Close_On_Exec (File : File_Descriptor)

return Boolean;
procedure Set_Close_On_Exec

(File : in File_Descriptor;

To : in Boolean := True);

6.1.7.2 Description

The type Open_Option_Set shall be used to contain file options, as described in
6.1.1. Only the options Append and Non_Blocking are defined for use with the
operations Get_File_Control and Set_File_Control .

Get_File_Control shall obtain the file mode and file option set from the open file
description associated with parameter File . The value of the file mode shall be
returned in parameter Mode, and the value of the file option set shall be placed into
parameter Options .

The values of file options other than Append or Non_Blocking in the parameter
Options are implementation defined.

Set_File_Control shall update the option set in the open file description associated
with the file descriptor File . File options defined by this standard for use with Set_-
File_Control shall be updated. Other file options defined by this standard that are
set in the parameter Options shall be ignored. The effect of options not defined by
this standard is unspecified.

If the Shared Memory Objects option is supported: If File refers to a shared mem-
ory object or any object that other than a file, the effect of Set_File_Control is
unspecified.

When a program executes one of the Exec family of operations, files may be closed
across the call or may remain open. Each open file descriptor shall have associated
with it information indicating whether the file descriptor should be closed by the
Exec -family operation.

The value of this information shall be queried by Get_Close_On_Exec for the given
file descriptor File , and Set_Close_On_Exec shall set this value for the given file
descriptor File .

6.1 Package POSIX_IO 225

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

The application shall not designate a File_Mode other than Read_Write and shall
not select an option other than Non_Blocking when calling the Get_File_Control
and Set_File_Control operations with a pathname that names a character special
file for use with XTI calls. c

6.1.7.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

Upon Get_File_Control , Set_File_Control , Get_Close_On_Exec , or
Set_Close_On_Exec , the parameter File is not open.

Invalid_Argument

This implementation does not support synchronized I/O for this file.

6.1.8 Update File Status Information

6.1.8.1 Synopsis

procedure Change_Permissions
(File : in POSIX_IO.File_Descriptor;

Permission : in POSIX_Permissions.Permission_Set);

6.1.8.2 Description

The functionality described in this subclause is optional. If neither the Memory Mapped
Files option nor the Shared Memory Objects option is supported, the implementation may
cause all calls to the explicitly declared operations defined in this subclause to raise
POSIX_Error . Otherwise, the behavior shall be as specified in this subclause.

NOTE: It is expected that a future revision will make this interface mandatory for conform-
ing implementations and regular files. The dependence of this entire subclause on the Memory
Mapped Files option and the Shared Memory Objects option will be removed at the time the con-
templated revision is approved. Since the existence of shared memory will remain optional,
the effects of this operation on shared memory objects will remain conditional.

Change_Permissions shall change the permission set associated with the object
referred to by File . If the effective user ID of the calling process matches the file
owner or the calling process has appropriate privileges, Change_Permissions shall
change the permissions of the object specified by File to those specified in Permis-
sion . Additional implementation-defined restrictions may cause Set_Group_ID and
Set_User_ID in Permission to be ignored.

If the Shared Memory Objects option is supported: If File is a shared memory object,
Change_Permissions need only affect the Owner_Read , Owner_Write , Group_-
Read, Group_Write , Other_Read , and Other_Write permissions; other permis-
sions specified in the Permissions parameter may be ignored.

If the calling process does not have appropriate privileges, if the group ID of the file
does not match the effective group ID or one of the supplementary group IDs, if one
or more of Owner_Execute , Group_Execute , and if Others_Execute are specified

226 6 I/O Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

in Permission , and the file is a regular file, Set_Group_ID in the permission set of
the object specified by File shall be cleared upon successful return from Change_-
Permissions .

The effect on file descriptions for files open at the time of the Change_Permissions
is implementation defined.

The Last Status Change Time of the file shall be marked for update upon completion of
this operation. (See 2.3.10.)

6.1.8.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

The File parameter is invalid.

Operation_Not_Implemented

This implementation does not support the Change_Permissions proce-
dure.

Operation_Not_Permitted

The effective user ID does not match the owner of the file, and the calling
process does not have the appropriate privileges.

Read_Only_File_System

The file resides on a read-only file system.

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

File refers to a pipe, and the implementation does not support this opera-
tion for pipes.

6.1.9 Truncate File to A Specified Length

6.1.9.1 Synopsis

procedure Truncate_File
(File : in POSIX_IO.File_Descriptor;

Length : in POSIX.IO_Count);

6.1.9.2 Description

The functionality described in this subclause is optional. If neither the Memory Mapped
Files option nor the Shared Memory Objects option is supported, the implementation may
cause all calls to the explicitly declared operations defined in this subclause to raise
POSIX_Error . Otherwise, the behavior shall be as specified in this subclause.

NOTE: It is expected that a future revision will make this interface mandatory for conform-
ing implementations and regular files. The dependence of this entire subclause on the Memory
Mapped Files option and the Shared Memory Objects option will be removed at the time the con-
templated revision is approved. Since the existence of shared memory will remain optional,
the effects of this operation on shared memory objects will remain conditional.

6.1 Package POSIX_IO 227

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

If File refers to a regular file open for writing, Truncate_File shall cause the file
to be truncated to Length bytes. If the length of the file previously exceeded Length
bytes, the extra data shall be discarded. If the file previously was smaller than this
length, it is unspecified whether the file is changed or its length increased. If the file
is extended, the extended area shall appear as if it were zero-filled.

If File refers to a shared memory object, Truncate_File sets the length of the
shared memory object to Length bytes.

If the file does not refer to a regular file or a shared memory object, the result is
unspecified.

If the effect of Truncate_File is to decrease the length of a file or shared mem-
ory object and if whole pages beyond the new end were previously mapped, then the
whole pages beyond the new end shall be discarded, and references to them shall
result in generation of the signal Signal_Bus_Error , which the Ada language im-
plementation shall convert to the exception Program_Error .

The value of the seek pointer shall not be modified by a call to Truncate_File .

Upon successful completion, the Truncate_File procedure shall update the Last Sta-
tus Change Time and Last Modification Time of the file. If the Truncate_File procedure
is unsuccessful, the file is unaffected.

6.1.9.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

The File parameter is not a valid file descriptor open for writing.

Invalid_Argument

File does not refer to a file on which this operation is possible.

Read_Only_File_System

The file resides on a read-only file system.

Operation_Not_Implemented

Truncate_File is not supported by this implementation.

NOTE: The last error code is not specified by POSIX.1.

6.1.10 Synchronize the State of a File

6.1.10.1 Synopsis

procedure Synchronize_File (File : in POSIX_IO.File_Descriptor);

6.1.10.2 Description

The functionality described in this subclause is optional. If the File Synchronization op-
tion is not supported, the implementation may cause all calls to the explicitly declared

228 6 I/O Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

operations defined in this subclause to raise POSIX_Error . Otherwise, the behavior
shall be as specified in this subclause.

NOTE: It is expected that a future revision will make this interface mandatory for conforming
implementations and regular files. The text of the support condition will be removed at the
time the contemplated revision is approved. Since the Synchronized I/O option will remain
optional, the semantics relating to it will remain conditional.

Synchronize_File can be used by the application to indicate that all data for the
open file descriptor File is to be transferred to the storage device associated with
the file specified by File in an implementation defined manner. Synchronize_-
File shall not return until the system has completed that action or until an error is
detected.

The conformance document shall include sufficient information for the user to de-
termine whether it is possible to configure an application and installation to ensure
that the data is stored with the degree of required stability for the intended use. The
hardware characteristics upon which the implementation relies to assure that data
are successfully transferred are implementation defined.

If the Synchronized I/O option is supported: Synchronize_File forces all currently
queued I/O operations associated with the file indicated by File to the synchronized
I/O completion state (see 2.2.2.177). All I/O operations shall be completed as defined
for synchronized I/O file integrity completion (see 2.2.2.179).

6.1.10.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

File is not a valid file descriptor.

Invalid_Argument

The implementation does not support synchronized I/O for this file.

Operation_Not_Implemented

Synchronize_File is not supported by this implementation.

If any of the queued I/O operations fails Synchronize_File shall return the error
conditions defined for POSIX_IO.Read and POSIX_IO.Write .

6.1.11 Data Synchronization

6.1.11.1 Synopsis

procedure Synchronize_Data (File : in POSIX_IO.File_Descriptor);

6.1.11.2 Description

The functionality described in this subclause is optional. If the Synchronized I/O option
is not supported, the implementation may cause all calls to the explicitly declared
operations defined in this subclause to raise POSIX_Error . Otherwise, the behavior
shall be as specified in this subclause.

6.1 Package POSIX_IO 229

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Synchronize_Data forces all currently queued I/O operations associated with the
file indicated by File to the synchronized I/O completion state (see 2.2.2.177).

The functionality is as described for Synchronize_File (See 6.1.10) with the excep-
tion that all I/O operations shall be completed as defined for synchronized I/O data
integrity completion (see 2.2.2.178).

The hardware characteristics upon which the implementation relies to assure that
data are successfully transferred are implementation defined.

6.1.11.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

File is not a valid file descriptor open for writing.

Invalid_Argument

This implementation does not support synchronized I/O for this file.

Operation_Not_Implemented

Synchronize_Data is not supported by this implementation.

If any of the queued I/O operations fails, Synchronize_Data shall return the error
conditions defined for POSIX_IO.Read and POSIX_IO.Write .

6.1.12 Socket File Ownership

6.1.12.1 Synopsis

procedure Get_Owner
(File : in File_Descriptor;

Process : out POSIX_Process_Identification.Process_ID;
Group : out POSIX_Process_Identification.Process_Group_ID);

procedure Set_Socket_Process_Owner
(File : in File_Descriptor;

Process : in POSIX_Process_Identification.Process_ID);
procedure Set_Socket_Group_Owner

(File : in File_Descriptor;

Group : in POSIX_Process_Identification.Process_Group_ID); c

6.1.12.2 Description

Get_Owner gets the process or the process group owner for a socket. The semantics
for all other types of file descriptors are undefined.

Set_Socket_Process_Owner sets the process owner for a socket. Set_Socket_-
Group_Owner sets the process group owner for a socket. It is implementation defined
whether a process group ID may be specified. These operations apply only to socket
type file descriptors. The semantics for all other types of file descriptors are unde-
fined.

230 6 I/O Primitives

c

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

6.1.12.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

The File parameter is not a valid file descriptor.

Invalid_Argument

File does not refer to a file on which this operation is possible.

Operation_Not_Implemented

The operation is not supported by this implementation. c

6.1.13 I/O Vector Type

6.1.13.1 Synopsis

type IO_Vector is limited private ;
procedure Set_Buffer

(Vector : in out IO_Vector;
Buffer : in System.Address;
Length : in POSIX.IO_Count);

procedure Get_Buffer
(Vector : in IO_Vector;

Buffer : out System.Address;

Length : out POSIX.IO_Count); c

6.1.13.2 Description

The type IO_Vector is used to represent a buffer address and length for use with
network I/O operations (see 18.4.1.3 and 17.4.1.9). Other operations that may use
this object are implementation defined. An I/O vector has (at least) the following
attributes:

Buffer

The address of the buffer into which the data are to be read, or from which
the data are to be written.
NOTE: Buffer is a persistent reference to storage that may persist beyond an I/O
operation. The effect of deallocating or modifying the contents of the buffers in an
I/O vector before the I/O operation has completed is undefined.
NOTE: Applications may use pointers to the POSIX.Octet_Array type to ensure
proper data width for network I/O operations. When using pointers to other data
types, byte width and ordering issues (i.e., big endian, little endian) are the respon-
sibility of the application.

Length

The length of the data to be transferred, as a count of octets.

The Set_Buffer procedure shall set the Buffer attribute of the IO_Vector to point to
the storage indicated by the Buffer parameter and the Length attribute of the IO_-
Vector to Length (in octets). An IO_Vector object may be reset to indicate no data
by either a Length of zero or the Buffer parameter set to System.Null_Address .
The Length attribute may be set to less than the size of the storage allocated for
Buffer. The Get_Buffer procedure shall return the Buffer and Length attributes of the
IO_Vector . c

6.1 Package POSIX_IO 231

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

6.2 Package POSIX_File_Locking

This package contains advisory file record locking operations. File locks are advisory,
in that locking a file does not prevent other operations on the file. To determine
whether a file is locked before performing another I/O operation, the appropriate
POSIX_File_Locking operation should be called.

File locks are a property of the external file.

with POSIX,
POSIX_IO,
POSIX_Process_Identification;

package POSIX_File_Locking is
-- Lock and Unlock a Region of a File
type Lock_Kind is (Read_Lock, Write_Lock, Unlock);
type File_Lock (Whole_File : Boolean := True) is

record
Lock : Lock_Kind;
case Whole_File is

when True => null ;
when False =>

Starting_Point : POSIX_IO.Position;
Start : POSIX_IO.IO_Offset;
Length : POSIX.IO_Count;

end case ;
end record ;

procedure Get_Lock
(File : in POSIX_IO.File_descriptor;

Lock : in File_Lock;
Result : out File_Lock;
Process : out POSIX_Process_Identification.Process_ID);

procedure Set_Lock
(File : in POSIX_IO.File_Descriptor;

Lock : in File_Lock);
procedure Wait_To_Set_Lock

(File : in POSIX_IO.File_Descriptor;
Lock : in File_Lock;
Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

end POSIX_File_Locking;

6.2.1 Lock and Unlock a Region of a File

6.2.1.1 Description

The type Lock_Kind shall be used to indicate the kind of lock or lock operation
requested. Values for this type are

Read_Lock

The file is locked for multiple (shared) readers. Write locks are prohibited.

Write_Lock

The file is locked for a single (exclusive) writer. Other read and write locks
are prohibited.

Unlock

The file is unlocked.

232 6 I/O Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

The type File_Lock shall represent the lock obtained on a file. Objects of this type
shall include information to show the kind of lock, the part of the file locked (whole
file or a range of bytes), and the Process_ID of the process holding the lock.

A lock shall extend for the whole file (if Whole_File is True) or it shall start at offset
Start in the file and continue for Length bytes (if Whole_File is False). Start
is interpreted based on the value of Starting_Point . If Starting_Point has the
value From_Beginning , Start identifies a location measured from the beginning
of the file. If Starting_Point has the value From_Current_Position , Start
identifies a location measured from the current file position associated with the file.
If Starting_Point has the value From_End_Of_File , Start identifies a location
measured from the end of the file.

Get_Lock shall obtain information on the first lock associated with the parameter
File that overlaps the parameter Lock . If no process holds an overlapping lock on
the file, the value of the parameter Process shall be POSIX_Process_Identifi-
cation.Null_Process_ID ; otherwise, the value of the parameter Process shall
be the Process_ID of the process holding the lock. Upon return, if an overlapping
lock was found, its value is copied onto Result , and Starting_Point is From_Be-
ginning .

Set_Lock shall obtain a lock on the file associated with the parameter File , using
the information provided in the parameter Lock to identify the part of the file to
be locked. When Set_Lock returns, the file has been locked. If the lock cannot be
immediately granted, Set_Lock shall raise POSIX_Error . (See 6.2.1.2.)

Set_Lock with Lock_Kind equal to Unlock unlocks a file or region. Unlocking a
region leaves the specified region unlocked, but leaves lock(s) on the other part(s)
of the file that were previously locked. Unlocking a region that was not previously
locked is not an error.

Wait_To_Set_Lock shall obtain a file lock on the file associated with the parameter
File , using the information provided in the parameter Lock to identify the part of
file to be locked. When Wait_To_Set_Lock returns, the file has been locked. This
procedure shall block the caller until the lock can be granted. The caller that will
be blocked may be the whole Ada program or the calling Ada task, depending on
the value of POSIX.File_Lock_Blocking_Behavior . The parameter Masked_-
Signals specifies which signals shall be masked during the operation. (See 2.4.1.6.)

6.2.1.2 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

Upon Get_Lock , Set_Lock , or Wait_To_Set_Lock , the parameter File
is not open. This error code shall also be set by Set_Lock or Wait_To_-
Set_Lock if the parameter Lock is Read_Lock and the parameter File
is not open for a mode that supports reading, or if the parameter Lock is
Write_Lock and the parameter File is not open for a mode that supports
writing.

6.2 Package POSIX_File_Locking 233

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Interrupted_Operation

Wait_To_Set_Lock was interrupted by a signal.

Invalid_Argument

Upon Get_Lock , Set_Lock , or Wait_To_Set_Lock , the file associated with
the parameter File does not support locking (e.g., the file is a FIFO special
file).

Resource_Deadlock_Avoided

Upon Set_Lock or Wait_To_Set_Lock , the system detects that a deadlock
would occur.

Resource_Temporarily_Unavailable

Upon Set_Lock , the portion of the file associated with the parameter File
has a conflicting lock.

No_Locks_Available

Upon Set_Lock or Wait_To_Set_Lock , a system limit on the number of
locks is exceeded.

6.3 Package POSIX_Asynchronous_IO

This package provides access to services for asynchronous input and output.

The functionality described in this clause is optional. If the Asynchronous I/O option
is not supported, the implementation may cause all calls to the explicitly declared
operations defined in this clause to raise POSIX_Error . Otherwise, the behavior shall
be as specified in this clause.

with Ada_Streams,
POSIX,
POSIX_IO,
POSIX_Signals;

package POSIX_Asynchronous_IO is
-- 6.3.1 AIO Descriptor Type
type AIO_Descriptor is private ;
function Create_AIO_Control_Block

return AIO_Descriptor;
procedure Destroy_AIO_Control_Block

(AD : in out AIO_Descriptor);
-- 6.3.2 Attributes of AIO Control Blocks
type List_IO_Operations is

(No_Op,
Read,
Write);

type IO_Array_Pointer is access Ada_Streams.Stream_Element_Array;
function Get_File (AD : AIO_Descriptor)

return POSIX_IO.File_Descriptor;
procedure Set_File

(AD : in AIO_Descriptor;
File : in POSIX_IO.File_Descriptor);

function Get_Offset (AD : AIO_Descriptor) return POSIX_IO.IO_Offset;
procedure Set_Offset

(AD : in AIO_Descriptor;
Offset : in POSIX_IO.IO_Offset);

234 6 I/O Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

function Get_Buffer (AD : AIO_Descriptor) return IO_Array_Pointer;
procedure Set_Buffer

(AD : in AIO_Descriptor;
Buffer : in IO_Array_Pointer);

function Get_Length (AD : AIO_Descriptor)
return Ada_Streams.Stream_Element_Count;

procedure Set_Length
(AD : in AIO_Descriptor;

Length : in Ada_Streams.Stream_Element_Count);
function Get_Priority_Reduction (AD : AIO_Descriptor) return Natural;
procedure Set_Priority_Reduction

(AD : in AIO_Descriptor;
Priority_Reduction : in Natural);

function Get_Event (AD : AIO_Descriptor)
return POSIX_Signals.Signal_Event;

procedure Set_Event
(AD : in AIO_Descriptor;

Event : in POSIX_Signals.Signal_Event);
function Get_Operation (AD : AIO_Descriptor)

return List_IO_Operations;
procedure Set_Operation

(AD : in AIO_Descriptor;
Operation : in List_IO_Operations);

-- 6.3.3 Asynchronous Read
procedure Read (AD : in AIO_Descriptor);
-- 6.3.4 Asynchronous Write
procedure Write (AD : in AIO_Descriptor);
-- 6.3.5 List Directed I/O
type AIO_Descriptor_List is

array (Positive range <>) of AIO_Descriptor;
procedure List_IO_No_Wait

(List : in out AIO_Descriptor_List;
Event : in POSIX_Signals.Signal_Event);

procedure List_IO_Wait
(List : in out AIO_Descriptor_List;

Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);
-- 6.3.6 Retrieve Status of AIO Request
type AIO_Status is

(In_Progress,
Completed_Successfully,
Canceled);

function Get_AIO_Status
(AD : AIO_Descriptor)

return AIO_Status;
function Get_AIO_Error_Code

(AD : AIO_Descriptor)
return POSIX.Error_Code;

-- 6.3.7 Retrieve Bytes Transferred by AIO Request
function Get_Bytes_Transferred

(AD : AIO_Descriptor) return Ada_Streams.Stream_Element_Count;
-- 6.3.8 Cancel AIO Request
type Cancelation_Status is

(Canceled,
Not_Canceled,
All_Done);

function Cancel
(AD : AIO_Descriptor)

return Cancelation_Status;

6.3 Package POSIX_Asynchronous_IO 235

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

function Cancel
(File : POSIX_IO.File_Descriptor)

return Cancelation_Status;
-- 6.3.9 Wait for AIO Request to Complete
procedure Await_IO_Or_Timeout

(AD : in AIO_Descriptor;
Timeout : in POSIX.Timespec;
Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

procedure Await_IO
(AD : in AIO_Descriptor;

Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);
procedure Await_IO_Or_Timeout

(List : in AIO_Descriptor_List;
Timeout : in POSIX.Timespec;
Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

procedure Await_IO
(List : in AIO_Descriptor_List;

Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);
-- 6.3.10 Asynchronous File and Data Synchronization
procedure Synchronize_File (AD : in AIO_Descriptor);
procedure Synchronize_Data (AD : in AIO_Descriptor);

private
implementation-defined

end POSIX_Asynchronous_IO;

6.3.1 AIO Descriptor Type

6.3.1.1 Synopsis

type AIO_Descriptor is private ;
function Create_AIO_Control_Block

return AIO_Descriptor;
procedure Destroy_AIO_Control_Block

(AD : in out AIO_Descriptor);

6.3.1.2 Description

Values of the type AIO_Descriptor are used as AIO descriptors. A valid AIO de-
scriptor is a reference to an AIO control block, which is not visible. A value of type
AIO_Descriptor is a valid AIO descriptor if and only if it was returned by a call to
Create_AIO_Control_Block and has not been subsequently invalidated by a call
to Destroy_AIO_Control_Block .

The effect of assigning the value of one variable of type AIO_Descriptor to another
variable of type AIO_Descriptor is to make a copy of the reference.

The application is responsible for the creation of the reference and the allocation of
the control block using Create_AIO_Control_Block . The application is responsible
for the destruction of the reference and the deallocation of the control block using
Destroy_AIO_Control_Block .

Create_AIO_Control_Block shall allocate a control block, and return a value of
type AIO_Descriptor that refers to it. Since Create_AIO_Control_Block is a
function, the implementation shall be such that the value returned can be assigned
to a variable of type AIO_Descriptor .

236 6 I/O Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

A call to Destroy_AIO_Control_Block shall deallocate the control block to which
the ADparameter refers and destroy the reference, unless the object corresponds to
an AIO request that is still being processed.

While an AIO control block is in use by the system for an AIO operation, the appli-
cation is responsible for preserving the control block and the AIO buffer to which it
refers, unchanged. In general, the effect of performing an operation that modifies or
deallocates an AIO control block or AIO buffer while it is being used by the system,
is undefined.

If Destroy_AIO_Control_Block is called for an AIO control block that corresponds
to an AIO request that is still being processed, and if the system detects that the
request is still being processed, the call shall raise POSIX_Error with error code
Operation_Not_Permitted .

NOTE: An application can discover when the system is no longer using an AIO control block
via the functions Get_AIO_Status and Get_AIO_Error_Code , which return In_Progress
or Operation_In_Progress so long as the control block is in use.

6.3.1.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

No_Space_Left_On_Device

Upon Create_AIO_Control_Block , a resource other than memory re-
quired to initialize the AIO control block has been exhausted.

Not_Enough_Space

Upon Create_AIO_Control_Block , insufficient memory is available.

Operation_Not_Implemented

Create_AIO_Control_Block and Destroy_AIO_Control_Block are not
supported by this implementation.

If any of the following conditions is detected, the exception POSIX_Error shall be
raised with the corresponding error code:

Invalid_Argument

Upon Destroy_AIO_Control_Block , the value of AD is not a valid AIO
descriptor. For this error, the implementation under some circumstances
may instead raise Constraint_Error .

Operation_Not_Permitted

Destroy_AIO_Control_Block was invoked when the corresponding AIO
operation was in progress.

6.3.2 Attributes of AIO Control Blocks

6.3.2.1 Synopsis

type List_IO_Operations is
(No_Op,

Read,
Write);

6.3 Package POSIX_Asynchronous_IO 237

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

type IO_Array_Pointer is access Ada_Streams.Stream_Element_Array;
function Get_File (AD : AIO_Descriptor)

return POSIX_IO.File_Descriptor;
procedure Set_File

(AD : in AIO_Descriptor;
File : in POSIX_IO.File_Descriptor);

function Get_Offset (AD : AIO_Descriptor) return POSIX_IO.IO_Offset;
procedure Set_Offset

(AD : in AIO_Descriptor;
Offset : in POSIX_IO.IO_Offset);

function Get_Buffer (AD : AIO_Descriptor) return IO_Array_Pointer;
procedure Set_Buffer

(AD : in AIO_Descriptor;
Buffer : in IO_Array_Pointer);

function Get_Length (AD : AIO_Descriptor)
return Ada_Streams.Stream_Element_Count;

procedure Set_Length
(AD : in AIO_Descriptor;

Length : in Ada_Streams.Stream_Element_Count);
function Get_Priority_Reduction (AD : AIO_Descriptor) return Natural;
procedure Set_Priority_Reduction

(AD : in AIO_Descriptor;
Priority_Reduction : in Natural);

function Get_Event (AD : AIO_Descriptor)
return POSIX_Signals.Signal_Event;

procedure Set_Event
(AD : in AIO_Descriptor;

Event : in POSIX_Signals.Signal_Event);
function Get_Operation (AD : AIO_Descriptor)

return List_IO_Operations;
procedure Set_Operation

(AD : in AIO_Descriptor;

Operation : in List_IO_Operations);

6.3.2.2 Description

An AIO control block has (at least) the following attributes:

File

The file descriptor on which the AIO operation is to be performed.

Offset

The offset within the file, at which the I/O operation is to be performed, spec-
ified as a count of bytes. For a read operation, and for a write operation if
Append is not set for the File attribute, the requested operation takes place
as if Seek were called immediately prior to the operation with an Offset
equal to the Offset attribute and a Starting_Point equal to From_Begin-
ning . For a write operation, if Append is set for the file descriptor, write
operations append to the file in the same order as the calls were made. Af-
ter a successful call to enqueue an AIO operation, the value of the file offset
for the file is unspecified.

Buffer

A pointer to the buffer into which the data are to be read, or from which the
data are to be written. The value is required to designate an object of type
Streams.Stream_Element_Array . For read and write operations, the

238 6 I/O Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

designated object shall be interpreted in the same fashion as the Buffer
arguments of POSIX_IO.Read and POSIX_IO.Write , respectively.
The application is responsible for the allocation and deallocation of I/O
buffers. The effect of deallocating or modifying the contents of an I/O buffer
before the I/O operation has completed and the Bytes Transferred attribute
has been retrieved is undefined.

Length

The length of the data to be transferred, as a count of bytes.

Priority–Reduction

The difference between the process priority and the priority to be assigned
to the I/O operation.
If the Prioritized I/O option and the Priority Process Scheduling option is sup-
ported: AIO operations are queued in priority order, with the priority of
each AIO operation based on the current process priority of the calling pro-
cess. The attribute Priority–Reduction can be used to lower (but not raise) the
AIO priority of the operation and shall be within the range 0 .. Asyn-
chronous_IO_Priority_Delta_Maximum , inclusive. The order of process-
ing of requests submitted by processes whose scheduling policies are not
FIFO_Within_Priorities or Round_Robin_Within_Priorities is un-
specified. The AIO priority of an AIO request is computed as the process
priority minus the Priority–Reduction attribute of the AIO control block.
The AIO priority assigned to each AIO request is an indication of its desired
order of execution relative to other AIO requests for this file. Requests is-
sued with the same priority to a character special file shall be processed by
the underlying device in FIFO order; the order of processing of requests of
the same priority issued to files that are not character special files is un-
specified. Numerically higher priority values indicate requests of higher
priority. The value of the Priority–Reduction attribute of the AIO control block
shall have no effect on process or task scheduling priority. When prioritized
AIO requests to the same file are blocked waiting for a resource required
for the I/O operations and the resource subsequently becomes available, the
higher-priority requests shall be granted the resource before lower priority
requests are granted the resource. The relative priority of AIO reuests and
synchronous I/O requests is implementation defined.
If the Prioritized I/O option is supported: The implementation shall define for
which files I/O prioritization is supported.

Event

A specification of how the calling process is to be notified of completion of
the I/O operation. The value of the Event attribute shall be interpreted as
specified in 3.3.12. If the Notification attribute of Event equals No_Notifica-
tion , then no signal shall be generated on I/O completion, but the status of
the request shall be set appropriately.

Operation

The I/O operation to be performed. The Operaton attribute is used only by
List_IO_No_Wait and List_IO_Wait (see 6.3.5), which allow multiple AIO
operations to be submitted at a single time.

6.3 Package POSIX_Asynchronous_IO 239

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Implementations may add other attributes, as permitted in 1.3.1.1.
NOTE: Adding attributes that may change the behavior of applications with respect to this
standard when those attributes are uninitialized also requires that the extension be activated
as described in 1.3.1.1.

Values of the type List_IO_Operations are used to specify an I/O operation to be
performed, for use with the list directed I/O operations (see 6.3.5). The interpreta-
tions of values of this type, when they appear as the value of the Operation attribute
of the AIO control block associated with an entry in an AIO descriptor list, are

No_Op

The list entry shall be ignored.

Read

An I/O operation shall be submitted as if by a call to Read with ADequal to
the list entry.

Write

An I/O operation shall be submitted as if by a call to Write with ADequal
to the list entry.

The function whose name is of the form Get_X , where X is the name of one of the
attributes of an AIO control block, shall return the value of the X attribute of the
argument.

The procedure whose name is of the form Set_X shall set the X attribute of the object
specified by the first argument to the value specified by the second argument.

Implementations may add other attributes, as permitted in 1.3.1.1.
NOTE: Adding attributes that may change the behavior of applications with respect to this
standard when those attributes are uninitialized also requires that the extension be activated
as described in 1.3.1.1.

6.3.2.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Operation_Not_Implemented

The operation is not supported by this implementation.

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

The value of AD is not a valid AIO descriptor. For this error, the implemen-
tation under some circumstances may instead raise Constraint_Error .

6.3.3 Asynchronous Read

6.3.3.1 Synopsis

procedure Read (AD : in AIO_Descriptor);

240 6 I/O Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

6.3.3.2 Description

The Read operation allows the calling process to read the number of bytes specified
by the Length attribute of AD from the file specified by the File attribute, into the
buffer designated by the Buffer attribute. The procedure call returns when the read
operation has been initiated or queued to the file or device (even when the data
cannot be delivered immediately).

If the Prioritized I/O option and the Priority Process Scheduling option is supported: If Pri-
oritized I/O option is supported for this file the request is submitted with AIO priority
as specified in 6.3.2.2.

Provided that the Read request is successfully queued, AD can be used as an argu-
ment to Get_AIO_Status , Get_AIO_Error_Code , and Get_Bytes_Transferred
in order to retrieve the status of the AIO request during its lifetime (see 6.3.6).

The attributes of ADshall be interpreted as defined in 6.3.2. The Operation attribute
of the AIO control block shall be ignored.

Concurrent AIO requests using the same value of the AD parameter produce unde-
fined behavior.

If synchronized I/O is enabled for the File attribute of AD, the behavior of this proce-
dure shall be according to the definitions of file synchronization (see 6.1.10) and data
synchronization (see 6.1.11).

For any system action that changes the process memory space while an AIO opera-
tion is outstanding to the address range being changed, the result of that action is
undefined.

6.3.3.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Resource_Temporarily_Unavailable

The requested AIO operation was not queued due to system resource limi-
tations.

Operation_Not_Implemented

The Read procedure is not supported by this implementation.

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

The value of AD is not a valid AIO descriptor. For this error, the implemen-
tation under some circumstances may instead raise Constraint_Error .

Certain conditions may be detected synchronously at the time of the call to Read,
or asynchronously. If any of the following conditions is detected synchronously, the
exception POSIX_Error shall be raised, with the corresponding error code:

6.3 Package POSIX_Asynchronous_IO 241

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Bad_File_Descriptor

The File attribute of ADis not a valid file descriptor open for reading.

Invalid_Argument

The value of one or more of the Offset, Priority–Reduction, and Length attributes
of ADis invalid.

If the operation successfully queues the I/O request, but it subsequently encounters
an error, the error shall be reported via the Status Code attribute of the request, as
specified in 6.3.6.

6.3.4 Asynchronous Write

6.3.4.1 Synopsis

procedure Write (AD : in AIO_Descriptor);

6.3.4.2 Description

The Write procedure allows the calling process to write Length bytes to the file asso-
ciated with File from the buffer pointed to by Buffer (see 6.3.4), where Length, File, and
Buffer are attributes of AD. The procedure call shall return when the write request
has been initiated or, at a minimum, queued to the file or device.

If the Prioritized I/O option and the Priority Process Scheduling option is supported: If
the Prioritized I/O option is supported for this file the request is submitted with AIO
priority as specified in 6.3.2.2.

Provided that the Write request is successfully queued, ADcan be used as an argu-
ment to Get_AIO_Status , Get_AIO_Error_Code , and Get_Bytes_Transferred
in order to retrieve the status of the AIO request during its lifetime (see 6.3.6).

The attributes of ADshall be interpreted as defined in 6.3.2. The Operation attribute
of the AIO control block shall be ignored.

Concurrent AIO requests using the same value of the AD parameter produce unde-
fined behavior.

If the Synchronized I/O option and the I option is supported:f the Synchronized I/O option
is supported on the file specified by the File attribute of AD, the behavior of this proce-
dure shall be according to the definitions of file synchronization (see 6.1.10) and data
synchronization (see 6.1.11).

For any system action that changes the process memory space while an AIO opera-
tion is outstanding to the address range being changed, the result of that action is
undefined.

6.3.4.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Resource_Temporarily_Unavailable

The requested AIO request was not queued due to system resource limita-
tions.

242 6 I/O Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Operation_Not_Implemented

The Write procedure is not supported by this implementation.

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

The value of AD is not a valid AIO descriptor. For this error, the implemen-
tation under some circumstances may instead raise Constraint_Error .

Certain conditions may be detected synchronously at the time of the call to Write ,
or asynchronously. If any of the following conditions is detected synchronously, the
exception POSIX_Error shall be raised with the corresponding error code:

Bad_File_Descriptor

The File attribute of ADis not a valid file descriptor open for writing.

Invalid_Argument

The value of one or more of the Offset, Priority–Reduction, and Length attributes
of ADis invalid.

If the operation successfully queues the I/O request, but it subsequently encounters
an error, the error shall be reported via the Status Code attribute of the request, as
specified in 6.3.6.

6.3.5 List Directed I/O

6.3.5.1 Synopsis

type AIO_Descriptor_List is
array (Positive range <>) of AIO_Descriptor;

procedure List_IO_No_Wait
(List : in out AIO_Descriptor_List;

Event : in POSIX_Signals.Signal_Event);
procedure List_IO_Wait

(List : in out AIO_Descriptor_List;

Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

6.3.5.2 Description

The List_IO_No_Wait and List_IO_Wait procedures allow the calling process to
initiate a list of I/O requests with a single procedure call. The effects of the two proce-
dures differ only in whether the selected procedure returns when the I/O operations
have completed or as soon as the requests have been queued. List_IO_Wait waits
until all I/O is complete.

List_IO_Wait may be interruptible by the delivery of a signal. Masked_Signals
specifies the set of signals that shall be added to the signal mask for the duration of
this operation, as described in 3.3.6.

List_IO_No_Wait returns as soon as the requests have been queued, and signal
generation shall occur according to the Event argument when all the requested I/O
operations have completed.

6.3 Package POSIX_Asynchronous_IO 243

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Each component of List is required to be currently associated with an AIO control
block, which specifies a requested I/O operation. The I/O requests enumerated by
List shall be submitted in an unspecified order.

The Operation attribute of each List component specifies the operation to be per-
formed, as described for type List_IO_Operations in 6.3.2. If the Operation at-
tribute is Read or Write , the other attributes shall be interpreted in the same man-
ner as for the ADparameter of the asynchronous Read or Write calls, respectively.

The Event argument, used with List_IO_No_Wait , specifies a signal event structure
that defines the signal that shall be generated when the entire list of I/O requests
have been completed. If the Notification attribute of Event is No_Notification ,
then no asynchronous notification occurs. If the Notification attribute of Event equals
Signal_Notification , asynchronous notification as specified in 3.3.12 shall occur
when all the requests in List have completed.

The behavior of this function is altered for each component of List according to the
definitions of file synchronization (see 6.1.10) and data synchronization (see 6.1.11)
if synchronized I/O is enabled for the File attribute.

For both List_IO_No_Wait and List_IO_Wait , if the I/O requests contained in
the list are initiated or queued, one or more of the requests may fail. Failure of an
individual request does not prevent completion of any other individual request. To
discover the outcome of each I/O request, the application must examine the Status
Code attribute (see 6.3.6) of each AIO descriptor in List , using Get_AIO_Status ,
Get_AIO_Error_Code , and Get_Bytes_Transferred during the lifetime of the
request.

6.3.5.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Resource_Temporarily_Unavailable

The resources necessary to queue all the I/O requests were not available.
The application can check the Status Code for each value of type AIO_De-
scriptor in the List to discover the individual request(s) that failed.
The number of I/O operations indicated by List’Length would cause the
system-wide limit Asynchronous I/O Maximum to be exceeded.

Invalid_Argument

The value of List’Length is greater than List_IO_Maximum .

Interrupted_Operation

A signal was delivered during the wait for all I/O requests to complete, in a
List_IO_Wait call.
NOTE: Since each I/O operation invoked by List_IO_Wait may possibly generate
a signal when it completes, this error return may be caused by the completion of
one (or more) of the very I/O operations being awaited. Outstanding I/O requests
are not canceled, and the application must examine each list component to discover
whether the request was initiated, canceled, or completed.

244 6 I/O Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Input_Output_Error

One or more of the individual I/O operations failed during a List_IO_-
Wait operation. The application can check the Status Code for each value
of type AIO_Descriptor in the List to discover the individual request(s)
that failed.

Operation_Not_Implemented

List_IO_No_Wait and List_IO_Wait are not supported by this implemen-
tation.

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

The value of any of the components of List is not a valid AIO descriptor.
For this error, the implementation under some circumstances may instead
raise Constraint_Error .

In addition to the errors returned by the List_IO_No_Wait and List_IO_Wait ,
if List_IO_No_Wait or List_IO_Wait succeeds or fails with error codes of Re-
source_Temporarily_Unavailable , Interrupted_Operation , or Input_Out-
put_Error , then some of the I/O specified by the list may have been initiated. The
I/O request indicated by each list component can encounter errors specific to the indi-
vidual read or write function being performed. In this event, the Status Code attribute
(see 6.3.6) associated with each list component carries information about the specific
error (if any) encountered by the corresponding AIO operation. For each value of type
AIO_Descriptor in the List corresponding to an I/O operation that encountered
an error, the associated Status Code shall be as specified in 6.3.6.

6.3.6 Retrieve Status of AIO Request

6.3.6.1 Synopsis

type AIO_Status is
(In_Progress,

Completed_Successfully,
Canceled);

function Get_AIO_Status
(AD : AIO_Descriptor)

return AIO_Status;
function Get_AIO_Error_Code

(AD : AIO_Descriptor)

return POSIX.Error_Code;

6.3.6.2 Description

The lifetime of an AIO request begins when the request is queued, or initiated (if it
is initiated immediately without queueing), and ends when the corresponding AIO
descriptor is used in a call to Get_Bytes_Transferred .

During its lifetime an AIO request has the following attributes, which are collectively
termed the status of the request.

6.3 Package POSIX_Asynchronous_IO 245

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Status Code

This value of type POSIX.Error_Code indicates the stage of completion of
the operation and, if the operation failed, indicates the nature of the failure.
If the operation failed, the Status Code shall be the error code value that
would be returned by Get_Error_Code if the corresponding synchronous
operation (POSIX_IO.Read or POSIX_IO.Write) had failed for the same
reason or one of the following values:

Bad_File_Descriptor
The request was for a Read operation, and the File attribute of the
specified AIO descriptor is not a valid file descriptor open for read-
ing; or the request was for a Write operation, and the File attribute
of the specified AIO descriptor is not a valid file descriptor open for
writing.

Invalid_Argument
The file offset value implied by the Offset attribute of the specified
AIO descriptor would be invalid.

Resource_Temporarily_Unavailable
The request was part of a call to List_IO_Wait , and it was not
queued due to resource limitations.

Otherwise, if the operation has not failed, the Status Code shall be as follows:
In_Progress

The request was successfully queued, but has not yet completed.
Completed_Successfully

The AIO request has completed successfully.
Canceled

The request was successfully queued, but was canceled before the
I/O completed due to an explicit Cancel request.

Bytes Transferred

If the requested operation completed successfully or was canceled, it has an
associated count of the number of bytes actually transferred by the I/O oper-
ation. This value shall be the same as would be returned in the parameter
Last by the corresponding synchronous operation (the POSIX_IO.Read or
POSIX_IO.Write).

NOTE: The status attributes of an AIO request defined here are not to be confused with and
are not part of the attributes of an AIO control block defined in 6.3.2.

Get_AIO_Status shall raise POSIX_Error , with the Status Code of the request as
error code, if the request has failed and Get_Bytes_Transferred has not yet been
called for AD. If the request has not failed and Get_Bytes_Transferred has not
yet been called for AD, the function shall return the value of type AIO_Status corre-
sponding to the Status Code according to Table 6.2:

Get_AIO_Error_Code shall return the Status Code of the AIO request specified by
ADif Get_Bytes_Transferred has not yet been called for AD.

The AIO descriptor originally specified in the call that requests initiation of an AIO
operation can be used, thereafter, as a handle for retrieving the status of the I/O
request. It shall remain valid for this purpose during its lifetime.

246 6 I/O Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Table 6.2 – Error Codes and AIO Status Values
Status Code Value AIO_Status Value
Operation_In_Progress In_Progress
No_Error Completed_Successfully
Operation_Canceled Canceled

NOTE: An application may get status for an AIO descriptor repeatedly, but may not do so
after a call to Get_Bytes_Transferred for the AIO descriptor.

6.3.6.3 Error Handling

If the following condition occurs, the exception POSIX_Error shall be raised with
the corresponding error code:

Operation_Not_Implemented

Get_AIO_Status and Get_AIO_Error_Code are not supported by this
implementation.

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

ADdoes not refer to an AIO request whose Bytes Transferred attribute has not
yet been retrieved. In other wordsshall, either no AIO operations have been
requested via AD, or Get_Bytes_Transferred has already been called for
ADsince the last AIO request made via AD.
The value of AD is not a valid AIO descriptor. For this error, the implemen-
tation under some circumstances may instead raise Constraint_Error .

In addition, for Get_AIO_Status , if the requested AIO operation has failed with
an error code as described for POSIX_IO.Read , POSIX_IO.Write , POSIX_IO.-
Synchronize_File , or POSIX_IO.Synchronize_Data , then POSIX_Error shall
be raised with the error code associated with the I/O request.

6.3.7 Retrieve Bytes Transferred by AIO Request

6.3.7.1 Synopsis

function Get_Bytes_Transferred

(AD : AIO_Descriptor) return Ada_Streams.Stream_Element_Count;

6.3.7.2 Description

Get_Bytes_Transferred returns the Bytes Transferred attribute of the AIO request
specified by AD, as defined in 6.3.6. If the I/O request is still being processed, then
the value returned is undefined. The Get_Bytes_Transferred function shall be
callable exactly once to retrieve the Bytes Transferred attribute for a given AIO request.
Thereafter, if the same AIO descriptor is used in a call to Get_Bytes_Transferred ,
Get_AIO_Status , or Get_AIO_Error_Code , an error may be returned.

NOTE: When the same AIO descriptor is used to make another AIO request later, then Get_-
Bytes_Transferred can again be called to retrieve the status of that request.

6.3 Package POSIX_Asynchronous_IO 247

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

NOTE: It is not clear in POSIX.1 whether Get_Bytes_Transferred is required to return
the number of bytes transferred if the operation is canceled. This standard recommends that
implementations follow this practice, if possible.

6.3.7.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

ADdoes not refer to an AIO request whose Bytes Transferred attribute has not
yet been retrieved. In other words, either no AIO request has been made on
AD, or Get_Bytes_Transferred has already been called for AD since the
last request on AD.

Operation_Not_Implemented

The Get_Bytes_Transferred function is not supported by this implemen-
tation.

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

The value of AD is not a valid AIO descriptor. For this error, the implemen-
tation under some circumstances may instead raise Constraint_Error .

6.3.8 Cancel AIO Request

6.3.8.1 Synopsis

type Cancelation_Status is
(Canceled,

Not_Canceled,
All_Done);

function Cancel
(AD : AIO_Descriptor)

return Cancelation_Status;
function Cancel

(File : POSIX_IO.File_Descriptor)

return Cancelation_Status;

6.3.8.2 Description

Cancel attempts to cancel one or more AIO requests. There are two forms of the
function. The form with a AD parameter attempts to cancel the particular request
associated with AD. The form with the File parameter attempts to cancel all out-
standing cancelable AIO requests against the file descriptor File .

For AIO requests that are successfully canceled, the Status Code shall be set to Can-
celed , and the appropriate notification signal shall be generated if notification via
signal was specified in the AIO request.

For AIO requests that are not successfully canceled, the attributes of the request
are not modified by Cancel , and notification shall take place when the request com-
pletes.

248 6 I/O Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

It is implementation defined which requests are cancelable.

Cancel shall return one of the following according to the status of the I/O request.

Canceled

The AIO requests were canceled.

Not_Canceled

At least one of the requests cannot be canceled because the requested I/O
operation is in progress. In this case, the state of the other requests, if
any, referenced in the call to Cancel is not indicated by the return value of
Cancel . The application can discover the state of affairs for these requests
by using Get_AIO_Status or Get_AIO_Error_Code .

All_Done

All of the requests have already completed.

6.3.8.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

The File parameter is not a valid file descriptor.

Operation_Not_Implemented

Cancel is not supported by this implementation.

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

The value of AD is not a valid AIO descriptor. For this error, the implemen-
tation under some circumstances may instead raise Constraint_Error .

6.3.9 Wait for AIO Request to Complete

6.3.9.1 Synopsis

procedure Await_IO_Or_Timeout
(AD : in AIO_Descriptor;

Timeout : in POSIX.Timespec;
Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

procedure Await_IO
(AD : in AIO_Descriptor;

Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);
procedure Await_IO_Or_Timeout

(List : in AIO_Descriptor_List;
Timeout : in POSIX.Timespec;
Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

procedure Await_IO
(List : in AIO_Descriptor_List;

Masked_Signals : in POSIX.Signal_Masking := POSIX.RTS_Signals);

6.3 Package POSIX_Asynchronous_IO 249

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

6.3.9.2 Description

Await_IO and Await_IO_Or_Timeout shall block the caller until one of the following
occurs:

(1) The AIO request referenced by the ADargument has completed.

(2) At least one of the AIO requests referenced by the List argument has com-
pleted.

(3) The procedure is interrupted by a signal.

(4) For Await_IO_Or_Timeout , the time interval specified by Timeout has passed.

Await_IO and Await_IO_Or_Timeout may be interruptible by the delivery of a
signal. Masked_Signals specifies the set of signals that shall be added to the signal
mask for the duration of this operation, as described in 3.3.6.

The AIO descriptor specified by ADshall have been used in initiating an AIO request
via Read, Write , or List_IO_No_Wait . If it is associated with a completed AIO
request (i.e., the Status Code for the request is not equal to In_Progress at the time
of the call) the function shall return without blocking.

If any of the AIO_Descriptor values in the List correspond to completed AIO
requests (i.e., the Status Code of the request is not equal to In_Progress at the time
of the call), the function shall return without blocking the caller. The List argument
is an array of values of type AIO_Descriptor . Each value of type AIO_Descriptor
in the List shall have been used in initiating an AIO request via Read, Write , or
List_IO_No_Wait . If this array contains values of type AIO_Descriptor that have
not been used in submitting AIO requests, the effect is undefined.

NOTE: For operations with a List parameter, an application may determine which AIO
I/O request(s) completed by examining the associated Status Code using Get_AIO_Status or
Get_AIO_Error_Code for each member of the List .

If the Await_IO_Or_Timeout procedure, if the time interval specified by the Time-
out parameter passes before either the I/O request specified by AD is completed or
any of the I/O requests specified by List are completed, then Await_IO_Or_Timeout
shall raise POSIX_Error .

6.3.9.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Resource_Temporarily_Unavailable

Upon Await_IO_Or_Timeout , no specified AIO request completed in the
time interval indicated by Timeout .

Interrupted_Operation

A signal interrupted the Await_IO or Await_IO_Or_Timeout procedure.
NOTE: Since each requested AIO operation may possibly provoke a signal when it
completes, this error return may be caused by the completion of one (or more) of the
very I/O requests being awaited.

250 6 I/O Primitives

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Operation_Not_Implemented

The Await_IO and Await_IO_Or_Timeout procedures are not supported
by this implementation.

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

The value of AD or the value of any of the components of List is not a
valid AIO descriptor. For this error, the implementation under some cir-
cumstances may instead raise Constraint_Error .

6.3.10 Asynchronous File and Data Synchronization

6.3.10.1 Synopsis

procedure Synchronize_File (AD : in AIO_Descriptor);

procedure Synchronize_Data (AD : in AIO_Descriptor);

6.3.10.2 Description

The functionality described in this subclause is optional. If the Synchronized I/O option
is not supported, the implementation may cause all calls to the explicitly declared
operations defined in this subclause to raise POSIX_Error . Otherwise, the behavior
shall be as specified in this subclause.

Synchronize_File and Synchronize_Data asynchronously force all I/O requests
associated with the file specified by the AD parameter and queued at the time of
the call to the synchronized completion state. The procedure call to Synchronize_-
File or Synchronize_Data shall return when the synchronization request has been
initiated or queued to the file or device (even when the data cannot be synchronized
immediately).

For a call to Synchronize_Data , all currently queued I/O requests are completed
as if by a call to Synchronize_Data with the associated file descriptor as the File
parameter. (See 6.1.11.) For a call to Synchronize_File , all currently queued I/O
requests are completed as if by a call to Synchronize_File with the associated
file descriptor as the File parameter. (See 6.1.10.) If the Synchronize_File or
Synchronize_Data procedure fails, or if the request queued by Synchronize_-
File or Synchronize_Data fails, then, as for the forms of Synchronize_File
or Synchronize_Data with the File parameter, outstanding I/O requests are not
guaranteed to have been completed.

If Synchronize_File or Synchronize_Data succeeds, then only the I/O operations
that were queued at the time of the call to Synchronize_File or Synchronize_-
Data are guaranteed to be forced to the relevant completion state. The completion of
subsequent I/O on the file descriptor is not guaranteed to be completed in a synchro-
nized fashion.

During the lifetime of the AIO request (see 6.3.6), the ADvalue can be used as an ar-
gument to Get_AIO_Status , Get_AIO_Error_Code , and Get_Bytes_Transferred
in order to obtain information about the status of the AIO request.

6.3 Package POSIX_Asynchronous_IO 251

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

When the request is queued, the Status Code of the request shall be set to In_-
Progress . When all data have and been successfully transferred, the status shall be
reset to reflect the success or failure of the request. If the request completes success-
fully, the Status Code of the request shall be set to No_Error . If the request does not
complete successfully because it is canceled by Cancel , the Status Code of the request
shall be set to Canceled . If the requested operation does not complete successfully
for another reason, the Status Code of the request shall be set to indicate the error.

The Event attribute of AD shall determine the asynchronous notification to occur as
specified in 3.3.12 when all requested I/O operations have achieved the synchronized
I/O completion state (see 2.2.2.177).

All other attributes of the AIO control block referred to by ADshall be ignored.

If the Synchronize_File or Synchronize_Data procedure fails or there is an
error condition associated with AD, data are not guaranteed to have been successfully
transferred.

6.3.10.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Resource_Temporarily_Unavailable

The AIO request was not queued due to temporary resource limitations.

Bad_File_Descriptor

The File attribute of ADis not a valid file descriptor open for writing.

Invalid_Argument

This implementation does not support synchronized I/O for this file.

Operation_Not_Implemented

Synchronize_File and Synchronize_Data are not supported by this im-
plementation.

If any of the queued I/O requests fails, Synchronize_File and Synchronize_-
Data shall set the Status Code attribute of the request associated with ADto the error
condition defined for POSIX_IO.Read and POSIX_IO.Write .

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

The value of AD is not a valid AIO descriptor. For this error, the implemen-
tation under some circumstances may instead raise Constraint_Error .

252 6 I/O Primitives

IEEE Std 1003.5c-1998

Section 7: Device- and Class-Specific Functions

This section contains a general terminal interface for communications ports on the
system and contains operations on the controlling terminal of a process. The ter-
minal interface includes a description of its interaction with the Job Control option,
canonical input mode processing and input timer operations, and terminal special
characters. The package POSIX_Terminal_Functions provides operations to get
and set terminal characteristics and related operations on the serial line.

7.1 General Terminal Interface

This terminal interface shall be supported on any asynchronous communications
ports provided by the implementation. It is file,implementation defined whether this
interface supports network connections or synchronous ports or both. Some parts of
this interface apply when an implementation supports the Job Control option. Cer-
tain subprograms in this section apply only to the controlling terminal of a process.
Where either of these cases applyb is so noted.

7.1.0.4 Opening a Terminal Device File

When a terminal file is opened, the system causes the process to wait until a connec-
tion is established. In practice, application programs seldom open these files; they
are opened by special programs and become the standard input, output, and error
files of an application.

As noted in the description of POSIX_IO.Open (see 6.1.1), opening a terminal device
file with the option Non_Blocking set to False shall cause the process to block until
the terminal device is ready and available. The Enable_Receiver element of the
Control_Modes subrange of the Terminal_Modes_Set array in package POSIX_-
Terminal_Functions (see 7.2.4) may also affect the opening of a terminal device
file.

7.1.0.5 Process Groups

A terminal may have a foreground process group associated with it. This foreground
process group plays a special role in handling signal-generating input characters, as
discussed in 7.1.0.12. If the implementation supports the Job Control option, a com-
mand interpreter process supporting the Job Control option can allocate the terminal
to different jobs, or process groups, by placing related processes in a single process
group and associating this process group with the terminal. The foreground pro-
cess group of a terminal may be set or examined by a process, assuming the process
has appropriate privileges; see subprograms POSIX_Terminal_Functions.Get_-
Process_Group_ID and POSIX_Terminal_Functions.Set_Process_Group_ID
in 7.2.11. The terminal interface aids in this allocation by restricting access to the
terminal by processes that are not in the foreground process group. (See 7.1.0.7.)

7.1.0.6 The Controlling Terminal

A terminal may belong to a process as the controlling terminal of that process. Each
process of a session that has a controlling terminal shall have the same control-
ling terminal. A terminal may be the controlling terminal for at most one session.

7 Device- and Class-Specific Functions 253

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

The controlling terminal for a session shall be allocated by the session leader in an
implementation-defined manner. If a session leader has no controlling terminal and
opens a terminal device file that is not already associated with a session without us-
ing the POSIX_IO.Not_Controlling_Terminal option (see 6.1.1), it is implemen-
tation defined whether the terminal becomes the controlling terminal of the session
leader. If a process that is not a session leader opens a terminal file or if the POSIX_-
IO.Not_Controlling_Terminal option is used on a call to either POSIX_IO.Open
or POSIX_IO.Open_Or_Create , that terminal shall not become the controlling ter-
minal of the calling process. When a controlling terminal becomes associated with a
session, its foreground process group shall be set to the process group of the session
leader.

The controlling terminal shall be inherited by a child process during POSIX_Pro-
cess_Primitives.Start_Process , POSIX_Process_Primitives.Start_Pro-
cess_Search , and POSIX_Unsafe_Process_Primitives.Fork subprogram invo-
cations (see 3.1 and 3.2). A process shall relinquish its controlling terminal when it
creates a new session with the POSIX_Process_Identification.Create_Ses-
sion subprogram (see 4.1) or when all file descriptors associated with the controlling
terminal have been closed.

When a controlling process terminates, the controlling terminal shall be disassoci-
ated from the current session, allowing it to be acquired by a new session leader.
Subsequent access to the terminal by other processes in the earlier session may be
denied, with attempts to access the terminal treated as if modem disconnect had
been sensed. (See 7.1.0.13.)

7.1.0.7 Terminal Access Control

If a process is in the foreground process group of its controlling terminal, read op-
erations shall be allowed as described in 7.1.0.8. For implementations that support
the Job Control option, any attempts by a process in a background process group to
read from its controlling terminal shall cause its process group to be sent POSIX_-
Signals.Signal_Terminal_Input unless one of the following cases applies:

— If the reading process is ignoring or blocking Signal_Terminal_Input or if the
process group of the reading process is orphaned, the read shall raise POSIX_-
Error with error code Input_Output_Error , and no signal shall be sent. The
default action of Signal_Terminal_Input shall be to stop the process to which
it is sent. (See 3.3.4.)

— If a process is in the foreground process group of its controlling terminal, write
operations shall be allowed as described in 7.1.0.11. Attempts by a process in
a background process group to write to its controlling terminal shall cause the
process group to be sent POSIX_Signals.Signal_Terminal_Output unless
one of the following special cases applies:
— If Send_Signal_For_BG_Output is disabled, or if Send_Signal_For_-

BG_Output is enabled, if the process is ignoring or blocking Signal_Ter-
minal_Output , and if the process shall be allowed to write to the terminal
and no signal shall be sent.

— If Send_Signal_For_BG_Output is enabled and the process group of the
writing process is orphaned, and the writing process is not ignoring or block-

254 7 Device- and Class-Specific Functions

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

ing Signal_Terminal_Output , the write operation shall raise POSIX_Er-
ror with error code Input_Output_Error , and no signal shall be sent.

Certain calls that set terminal parameters shall be treated in the same fashion as
write operations, except that Send_Signal_For_BG_Output shall be ignored. In
other words, the effect shall be identical to that for terminal write operations when
Send_Signal_For_BG_Output is enabled. (See 7.2.)

7.1.0.8 Input Processing and Reading Data

A terminal device associated with a terminal device file may operate in full-duplex
mode, so that data may arrive while output is occurring. Each terminal device file
shall be associated with an input queue into which incoming data shall be stored
by the system before being read by a process. If POSIX_Configurable_File_-
Limits.Input_Queue_Is_Limited returns True , the system shall impose a limit
on the number of bytes that may be stored in the input queue. This limit is Input
Queue Maximum (see 5.4). The behavior of the system when this limit is exceeded is
implementation defined.

Two general kinds of input processing shall be available: canonical and noncanoni-
cal. These modes are described in 7.1.0.9 and 7.1.0.10. Additionally, input charac-
ters shall be processed according to the Input_Modes (see 7.2.2) and Local_Modes
(see 7.2.5) characteristics. Such processing may include echoing, which in general
means transmitting input characters immediately back to the terminal when they
are received from the terminal. Echoing is useful for terminals that can operate in
full-duplex mode.

The manner in which data are provided to a process reading from a terminal de-
vice file shall be dependent on whether the terminal device file is in canonical or
noncanonical mode.

The Non_Blocking option for POSIX_IO.Open (see 6.1.1 and POSIX_IO.Set_-
File_Control in 6.1.7) shall also affect the manner in which data are provided to a
process. If the option Non_Blocking was set to False , then any read request on the
specified file shall be blocked until data are available or a signal has been received. If
the option Non_Blocking was set to True , then the read request shall be completed,
without blocking, in one of three ways:

(1) If enough data are available to satisfy the entire request, the read operation
shall complete successfully and return the index of the last byte read.

(2) If not enough data are available to satisfy the entire request, the read operation
shall complete successfully, having read as much data as possible, and return
the index of the last byte it was able to read.

(3) If no data are available, the read operation shall instead return immediately
with Last set to Buffer’First - 1 .

When data are available depends on whether the input processing mode is canon-
ical or noncanonical. Subclauses 7.1.0.9 and 7.1.0.10 describe each of these input
processing modes.

7.1 General Terminal Interface 255

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

7.1.0.9 Canonical Mode Input Processing

In canonical mode input processing, terminal input shall be processed in units of
lines. A line is delimited by a newline character (NL), an end-of-file character (EOF),
or an end-of-line character (EOL). See 7.1.0.12 for more information on NL, EOF, and
EOL.

In other words, a read request shall not return until an entire line has been typed
(i.e., at least an NL, EOF, or EOL is entered) or a signal has been received. Also,
no matter how many POSIX characters are requested in the read call, at most one
line shall be returned. It shall not be necessary to read a whole line at once; any
number of POSIX characters, even one, may be requested in a read without losing
information.

The limit on the number of POSIX characters in a line is Input Line Maximum. The effect
if this limit is exceeded is implementation defined. If POSIX_Configurable_File_-
Limits.Input_Line_Is_Limited returns False , there shall be no such limit.
(See 5.4.) Erase and kill processing shall occur when either of two special characters
Erase and Kill (see 7.1.0.12), is received. This processing shall affect data in the
input queue that have not yet been delimited by an NL, EOF, or EOL character. This
undelimited data shall make up the current line. The Erase character shall delete
the last character in the current line, if there is any. The Kill character shall delete
all data in the current line, if there is any. The Erase and Kill characters shall have
no effect if no data are in the current line. The Erase and Kill characters themselves
shall not be placed in the input queue.

7.1.0.10 Noncanonical Mode Input Processing

In noncanonical mode input processing, input POSIX characters shall not be assem-
bled into lines, and erase and kill processing shall not occur. The values of the Mini-
mum_Input_Count and Input_Time components of the type Terminal_Character-
istics shall be used to determine how to process the POSIX characters received.

Minimum_Input_Count shall represent the minimum number of POSIX charac-
ters that should be received when the read operation function successfully returns.
Input_Time shall be a timer that is used to time out burst and short-term data
transmissions. If Minimum_Input_Count is greater than the value POSIX_Lim-
its.Input_Queue_Maxima ’Last or greater than Input Queue Maximum for the file
(see 2.4 and 5.4), the response to the request is implementation defined. The four
sets of values for Minimum_Input_Count and Input_Time and their interactions
are described as follows:

— Minimum_Input_Count > 0 , Input_Time > 0.0

In this case, Input_Time serves as an intercharacter timer and shall be ac-
tivated after the first byte is received. Since it is an intercharacter timer, it
shall be reset after a byte is received. The interaction between Minimum_-
Input_Count and Input_Time shall be as follows: as soon as one byte is re-
ceived, the intercharacter timer shall be started. If Minimum_Input_Count
bytes are received before the intercharacter timer expires (a situation that
can occur because the timer is reset upon receipt of each byte), the read re-
quest shall be satisfied. If the timer expires before Minimum_Input_Count

256 7 Device- and Class-Specific Functions

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

bytes are received, the characters received to that point shall be returned to
the user. If Input_Time expires, at least one byte value shall be returned
because the timer would not have been enabled unless a byte was received.
In this case (Minimum_Input_Count > 0 , Input_Time > 0.0), the read
operation shall block until the Minimum_Input_Count and Input_Time
mechanisms are activated by the receipt of the first byte or until a signal
is received. A process that uses this case to read record-based terminal I/O
may block indefinitely in the read operation.

— Minimum_Input_Count > 0 , Input_Time = 0.0

In this case, since the value of Input_Time is zero, the timer shall play no
role and only Minimum_Input_Count shall be significant. A pending read
request shall not be satisfied until Minimum_Input_Count bytes have been
received (i.e., the pending read request shall block until Minimum_Input_-
Count bytes have been received) or until a signal is received. A process that
uses this case to read record-based terminal I/O may block indefinitely in
the read operation.

— Minimum_Input_Count = 0 , Input_Time > 0.0

In this case, since Minimum_Input_Count = 0 , Input_Time shall no longer
represent an intercharacter timer. It shall now serve as a read timer that
shall be activated as soon as the read operation is processed. A read re-
quest shall be satisfied as soon as a single byte is received or when the read
request timer expires. In this case, if the timer expires, no bytes shall be
returned. If the timer does not expire, the only way the read request can
be satisfied is if a byte is received. In this case, the read shall not block
indefinitely waiting for a byte, if no byte is received within Input_Time sec-
onds after the read is initiated, the read operation shall return a value of
Buffer’First - in the Last parameter, and the contents of the Buffer
are undefined since no data shall have been read.

— Minimum_Input_Count = 0 , Input_Time = 0.0

The minimum of either the number of bytes requested or the number of
bytes currently available shall be returned without waiting for more bytes
to be input. If no bytes are available, the read operation shall return a
value of Buffer’First -1 in the Last parameter, and the contents of the
Buffer will be undefined since no data shall have been read. The task shall
not block.

7.1.0.11 Writing Data and Output Processing

When a process writes one or more bytes to a terminal device file, they shall be pro-
cessed according to the values of the associated Output_Modes . The implementa-
tion may provide a buffering mechanism. Therefore, when a call to a write operation
completes, all of the bytes written shall have been scheduled for transmission to the
device, but the transmission will not necessarily have completed. See also 6.1.1 and
6.1.4 for the effects of the Non_Blocking option for POSIX_IO.Open and POSIX_-
IO.Open_Or_Create functions on POSIX_IO.Write .

7.1 General Terminal Interface 257

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

7.1.0.12 Special Characters

Certain characters shall have special functions on input or output or both when op-
erating in canonical mode. These functions are summarized as follows:

Interrupt: The Interrupt special character shall be recognized on input if the En-
able_Signals mode is enabled as described in 7.2.5. The Interrupt
special character shall cause POSIX_Signals.Signal_Interrupt to
be sent to all processes in the foreground process group for which the
terminal is the controlling terminal.

Quit: The Quit special character shall be recognized on input if the Enable_-
Signals mode is enabled as described in 7.2.5. The Quit special char-
acter shall cause POSIX_Signals.Signal_Quit to be sent to all pro-
cesses in the foreground process group for which the terminal is the
controlling terminal.

Erase: The Erase special character shall be recognized on input if Canoni-
cal_Input is enabled as described in 7.2.5. The Erase special character
shall erase the last character in the current line. (See 7.1.0.9.) It shall
not erase beyond the start of a line, as delimited by an NL, EOF, or EOL
character.

Kill: The Kill special character shall be recognized on input if Canonical_-
Input is enabled as described in 7.2.5. It shall delete the entire line, as
delimited by an NL, EOF, or EOL character.

EOF: The end-of-file special character shall be recognized on input if Canon-
ical_Input is enabled as described in 7.2.5. When EOF is received, all
the bytes available to be read shall immediately be passed to the pro-
cess, without waiting for a newline, and the EOF shall be discarded. If
there are no bytes available (that is, the EOF occurred at the beginning
of a line), the read operation shall return a value of zero in the Last
parameter, and the contents of the Buffer will be undefined. Any sub-
sequent read operation shall raise the IO_Exceptions.End_Error
exception.

NL: The newline special character shall be recognized on input if Canoni-
cal_Input is enabled as described in 7.2.5. It shall be the line delim-
iter. The NL character should be the POSIX_Character translation of
ASCII.LF .

EOL: The end-of-line special character shall be recognized on input if Canon-
ical_Input is enabled as described in 7.2.5. It shall be an additional
line delimiter, like NL.

Suspend: If the Job Control option is supported (see 7.2.8), the Suspend special
character shall be recognized on input. If the Enable_Signals mode
is enabled as described in 7.2.5, receipt of the Suspend character shall
cause POSIX_Signals.Signal_Terminal_Stop to be sent to all pro-
cesses in the foreground process group for which the terminal is the
controlling terminal.

Stop: The Stop special character shall be recognized on both input and output
if the Enable_Start_Stop_Input or Enable_Start_Stop_Output

258 7 Device- and Class-Specific Functions

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

mode is enabled. The Stop character shall be used to temporarily sus-
pend output. It is useful with cathode-ray-tube (video) terminals termi-
nals to prevent output from disappearing before it can be read.

Start: The Start special character shall be recognized on both input and output
if the Enable_Start_Stop_Input or Enable_Start_Stop_Output
mode is enabled. The Start character shall be used to resume output
that has been suspended by a Stop character. The effect of a Start char-
acter in the absence of a previous Stop character is implementation de-
fined.

CR: The CR special character shall be recognized on input if the Canoni-
cal_Input mode flag is enabled. When Canonical_Input and Map_-
CR_To_LF are enabled and Ignore_CR is disabled, this character shall
be translated into an NL and shall have the same effect as an NL char-
acter.

If a special character (except NL, EOL, and CR) is recognized as described in the
preceding paragraphs, then the character shall be removed from the input stream
and discarded when it is processed. If the special character is not recognized, then it
shall be passed through the input buffer as a normal character.

The NL and CR characters cannot be changed. It is implementation defined whether
the Start and Stop characters can be changed. The values for Interrupt, Quit, Erase,
Kill, EOF, EOL, and Suspend (only if the Job Control option is supported) shall be
changeable to suit individual tastes using the procedure Define_Special_Con-
trol_Character . (See 7.2.8.)

If two or more special characters have the same value, the function performed when
that character is received is undefined.

A special character shall be recognized not only by its value, but also by its context;
for example, an implementation may define a sequence of multiple POSIX_Charac-
ter values that have a meaning different from the meaning of the POSIX_Char-
acter value when considered individually. Implementations may also define addi-
tional single POSIX_Character functions. These implementation-defined sequences
of multiple POSIX_Character values or single POSIX_Character functions shall
be recognized only if the Extended_Functions mode is enabled; otherwise, data
shall be interpreted as normal characters or as the special characters defined in this
section.

7.1.0.13 Modem Disconnect

If a modem disconnect is detected by the terminal interface for a controlling terminal
and if Ignore_Modem_Status mode is disabled for the terminal (see 7.2.4), POSIX_-
Signals.Signal_Hangup shall be sent to the controlling process associated with
the terminal. Unless other arrangements have been made (see 3.3.4) delivery of the
Signal_Hangup shall cause the controlling process to terminate. Any subsequent
read from the terminal device shall return with an EOF indication until the device
is closed. Thus, processes that read a terminal file and test for EOF can terminate
appropriately after a disconnect. Any subsequent write to the terminal device shall
raise POSIX_Error with error code Input_Output_Error until the device is closed.

7.1 General Terminal Interface 259

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

7.1.0.14 Closing a Terminal Device File

The last process to close a terminal device file shall cause any output to be sent to the
device and any input to be discarded. Then, if Hang_Up_On_Last_Close is enabled
in the control modes and the communications port supports a disconnect function,
the terminal device shall perform a disconnect.

7.2 Package POSIX_Terminal_Functions

This clause describes the subprograms that are used to control the general terminal
function. If the implementation supports the Job Control option, unless otherwise
noted for a specific command, these subprograms shall be restricted from use by
background processes. Attempts to perform these operations shall cause the process
group to be sent POSIX_Signals.Signal_Terminal_Output . If the calling process
is blocking or ignoring POSIX_Signals.Signal_Terminal_Output , the process is
allowed to perform the operation, and Signal_Terminal_Output is not sent.

In all the subprograms, File is an open file descriptor. However, the subprograms
affect the underlying terminal device file, not just the open file description associated
with the file descriptor.

with POSIX,
POSIX_IO,
POSIX_Process_Identification;

package POSIX_Terminal_Functions is
Null_POSIX_Character: constant POSIX.POSIX_Character

:= POSIX.POSIX_Character’VAL(implementation-defined);
Flag_POSIX_Character: constant POSIX.POSIX_CHARACTER

:= POSIX.POSIX_Character’VAL(implementation-defined);
-- 7.2.1 Terminal Characteristics
type Terminal_Characteristics is private ;
Invalid_Terminal_Characteristics: constant Terminal_Characteristics;
function Get_Terminal_Characteristics

(File : POSIX_IO.File_Descriptor)
return Terminal_Characteristics;

type Terminal_Action_Times is
(Immediately, After_Output, After_Output_And_Input);

procedure Set_Terminal_Characteristics
(File: in POSIX_IO.File_Descriptor;

Characteristics: in Terminal_Characteristics;
Apply: in Terminal_Action_Times := Immediately;
Masked_Signals: in POSIX.Signal_Masking := POSIX.RTS_Signals);

type Terminal_Modes is
-- Subtype Input˙Modes:
(Interrupt_On_Break, Map_CR_To_LF, Ignore_Break,

Ignore_CR, Ignore_Parity_Errors, Map_LF_To_CR,
Enable_Parity_Check, Strip_Character, Enable_Start_Stop_Input,
Enable_Start_Stop_Output, Mark_Parity_Errors,
-- Subtype Output˙Modes:
Perform_Output_Processing,
-- Subtype Control˙Modes:
Ignore_Modem_Status, Enable_Receiver, Send_Two_Stop_Bits,
Hang_Up_On_Last_Close, Parity_Enable, Odd_Parity,

260 7 Device- and Class-Specific Functions

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

-- Subtype Local˙Modes:
Echo, Echo_Erase, Echo_Kill, Echo_LF, Canonical_Input,
Extended_Functions, Enable_Signals, No_Flush,
Send_Signal_For_BG_Output);

-- 7.2.2 Input Modes
subtype Input_Modes is Terminal_Modes

range Interrupt_On_Break .. Mark_Parity_Errors;
-- 7.2.3 Output Modes
subtype Output_Modes is Terminal_Modes

range Perform_Output_Processing .. Perform_Output_Processing;
-- 7.2.4 Control Modes
subtype Control_Modes is Terminal_Modes

range Ignore_Modem_Status .. Odd_Parity;
-- 7.2.5 Local Modes
subtype Local_Modes is Terminal_Modes

range Echo .. Send_Signal_For_BG_Output;
-- 7.2.6 Retrieve and Define Terminal Modes and Bits per Character
type Terminal_Modes_Set is array (Terminal_Modes) of Boolean;
subtype Bits_Per_Character is Positive range implementation-defined;
function Terminal_Modes_Of

(Characteristics: Terminal_Characteristics)
return Terminal_Modes_Set;

procedure Define_Terminal_Modes
(Characteristics: in out Terminal_Characteristics;

Modes: in Terminal_Modes_Set);
function Bits_Per_Character_Of

(Characteristics: Terminal_Characteristics)
return Bits_Per_Character;

procedure Define_Bits_Per_Character
(Characteristics: in out Terminal_Characteristics;

Bits: in Bits_Per_Character);
-- 7.2.7 Baud Rate Subprograms
type Baud_Rate is

(B0, B50, B75, B110, B134, B150, B200, B300, B600,
B1200, B1800, B2400, B4800, B9600, B19200, B38400);

function Input_Baud_Rate_Of
(Characteristics: Terminal_Characteristics)

return Baud_Rate;
procedure Define_Input_Baud_Rate

(Characteristics: in out Terminal_Characteristics;
Input_Baud_Rate: in Baud_Rate);

function Output_Baud_Rate_Of
(Characteristics: Terminal_Characteristics)

return Baud_Rate;
procedure Define_Output_Baud_Rate

(Characteristics: in out Terminal_Characteristics;
Output_Baud_Rate: in Baud_Rate);

-- 7.2.8 Special Control Characters
type Control_Character_Selector is

(EOF_Char, EOL_Char, Erase_Char, Interrupt_Char,
Kill_Char, Quit_Char, Suspend_Char, Start_Char, Stop_Char);

function Special_Control_Character_Of
(Characteristics: Terminal_Characteristics;

Selector: Control_Character_Selector)
return POSIX.POSIX_Character;

7.2 Package POSIX_Terminal_Functions 261

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

procedure Define_Special_Control_Character
(Characteristics: in out Terminal_Characteristics;

Selector: in Control_Character_Selector;
Char: in POSIX.POSIX_Character);

procedure Disable_Control_Character
(Characteristics: in out Terminal_Characteristics;

Selector: in Control_Character_Selector);
-- 7.2.9 Noncanonical Controls
function Input_Time_Of

(Characteristics: Terminal_Characteristics)
return Duration;

procedure Define_Input_Time
(Characteristics: in out Terminal_Characteristics;

Input_Time: in Duration);
function Minimum_Input_Count_Of

(Characteristics: Terminal_Characteristics)
return Natural;

procedure Define_Minimum_Input_Count
(Characteristics: in out Terminal_Characteristics;

Minimum_Input_Count: in Natural);
-- 7.2.10 Line Control Operations
procedure Send_Break

(File: in POSIX_IO.File_Descriptor;
The_Duration: in Duration := 0.0);

procedure Drain
(File: in POSIX_IO.File_Descriptor;

Masked_Signals: in POSIX.Signal_Masking := POSIX.RTS_Signals);
type Queue_Selector is

(Received_But_Not_Read, Written_But_Not_Transmitted, Both);
procedure Discard_Data

(File: in POSIX_IO.File_Descriptor;
Selector: in Queue_Selector);

type Flow_Action is
(Suspend_Output, Restart_Output, Transmit_Stop, Transmit_Start);

procedure Flow
(File: in POSIX_IO.File_Descriptor;

Action: in Flow_Action);
-- 7.2.11 Foreground Process Group ID
function Get_Process_Group_ID

(File: POSIX_IO.File_Descriptor)
return POSIX_Process_Identification.Process_Group_ID;

procedure Set_Process_Group_ID
(File: in POSIX_IO.File_Descriptor;

Group_ID: in POSIX_Process_Identification.Process_Group_ID);
-- 7.2.12 Generate Terminal Pathname
function Get_Controlling_Terminal_Name return POSIX.Pathname;

private
implementation-defined

end POSIX_Terminal_Functions;

7.2.1 Terminal Characteristics

7.2.1.1 Synopsis

type Terminal_Characteristics is private ;
Invalid_Terminal_Characteristics: constant Terminal_Characteristics;
function Get_Terminal_Characteristics

262 7 Device- and Class-Specific Functions

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

(File : POSIX_IO.File_Descriptor)
return Terminal_Characteristics;

type Terminal_Action_Times is
(Immediately, After_Output, After_Output_And_Input);

procedure Set_Terminal_Characteristics
(File: in POSIX_IO.File_Descriptor;

Characteristics: in Terminal_Characteristics;
Apply: in Terminal_Action_Times := Immediately;
Masked_Signals: in POSIX.Signal_Masking := POSIX.RTS_Signals);

type Terminal_Modes is
-- Subtype Input˙Modes:
(Interrupt_On_Break, Map_CR_To_LF, Ignore_Break,

Ignore_CR, Ignore_Parity_Errors, Map_LF_To_CR,
Enable_Parity_Check, Strip_Character, Enable_Start_Stop_Input,
Enable_Start_Stop_Output, Mark_Parity_Errors,
-- Subtype Output˙Modes:
Perform_Output_Processing,
-- Subtype Control˙Modes:
Ignore_Modem_Status, Enable_Receiver, Send_Two_Stop_Bits,
Hang_Up_On_Last_Close, Parity_Enable, Odd_Parity,
-- Subtype Local˙Modes:
Echo, Echo_Erase, Echo_Kill, Echo_LF, Canonical_Input,
Extended_Functions, Enable_Signals, No_Flush,

Send_Signal_For_BG_Output);

7.2.1.2 Description

Programs that need to control certain terminal I/O characteristics shall do so by
using the Terminal_Characteristics private type as defined in the package
POSIX_Terminal_Functions and the operations Get_Terminal_Characteris-
tics and Set_Terminal_Characteristics on that type. All objects of type Ter-
minal_Characteristics shall be initialized to the value Invalid_Terminal_-
Characteristics . This value denotes that valid data have not been stored into the
object via a call to Get_Terminal_Characteristics . All objects of type Termi-
nal_Characteristics should be initialized by a call to Get_Terminal_Charac-
teristics before they are used. Characteristics denoted by this type include (but
are not limited to) those shown in Table 7.1.

Table 7.1 – Terminal_Characteristics Components

Component Name Used For

Terminal_Modes_Set Subdivided into Input modes, Output modes, Control
modes, and Local modes. The modes control the func-
tions of the terminal.

Input_Baud_Rate Terminal input data rate.
Output_Baud_Rate Terminal output data rate.
Control_Characters Array of terminal interface Control Characters.
Input_Time Time value for timer used in noncanonical input.
Minimum_Input_Count POSIX_Character count value used for noncanonical

input.

The characteristics defined in this package shall not take effect until they have been
set via an invocation of the procedure Set_Terminal_Characteristics . This pro-
cedure should be used to set the state specified by the parameter Characteristics .
The parameter Apply shall be used to determine when the characteristics are to be
updated, as follows:

7.2 Package POSIX_Terminal_Functions 263

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

— Immediately shall instruct the system to change the values immediately.

— After_Output shall instruct the system to wait until all output written to the
parameter File has been transmitted. This mode should be used when the
change affects output.

— After_Output_And_Input shall instruct the system to wait until all output
has been transmitted. All input received and not read shall be discarded before
the change is made.

The current state of the terminal characteristics shall be obtained via the function
Get_Terminal_Characteristics . Components of the terminal characteristics
shall be modified by subprograms defined in the following subclauses. Modifica-
tions to the terminal characteristics then shall be applied to the terminal via the
Set_Terminal_Characteristics procedure. The parameter Masked_Signals in
Set_Terminal_Characteristics specifies which signals shall be masked during
the operation. (See 2.4.1.6.)

The zero baud rate B0 shall be used to terminate the connection. If B0 is specified as
the output baud rate in the parameter Characteristics when Set_Terminal_-
Characteristics is called, the modem control lines no longer shall be asserted.
Normally, no longer asserting the modem control lines will disconnect the line.

If the input baud rate is equal to B0 in the parameter Characteristics when
Set_Terminal_Characteristics is called, the input baud rate will be changed by
Set_Terminal_Characteristics to the same value as that specified by the value
of the output baud rate, exactly as if the input rate had been set to the output rate
by a call to Define_Input_Baud_Rate . This usage of B0 is obsolescent.

Set_Terminal_Characteristics shall return successfully if it was able to per-
form any of the requested actions, even if some of the requested actions could not be
performed. It shall set all the attributes that the implementation does support as
requested and leave all the attributes not supported by the hardware unchanged. If
no part of the request can be honored, it shall raise POSIX_Error with error code
Invalid_Argument . If the input and output baud rates differ and are a combina-
tion that is not supported, neither baud rate shall be changed. A subsequent call
to Get_Terminal_Characteristics shall return the actual state of the terminal
device (reflecting both the changes made and not made in the previous call to Set_-
Terminal_Characteristics).

No actions defined by this standard, other than a call to Set_Terminal_Charac-
teristics or a call to POSIX_IO.Close on the last file descriptor in the system
associated with this terminal device, shall cause any of the terminal attributes de-
fined by this standard to change.

The type Terminal_Modes is divided into subranges Input_Modes , Output_Modes ,
Control_Modes , and Local_Modes .

7.2.1.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

264 7 Device- and Class-Specific Functions

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Bad_File_Descriptor

The parameter File is not a valid POSIX_IO.File_Descriptor .

Inappropriate_IO_Control_Operation

The file associated with the parameter File is not a terminal.

Interrupted_Operation

A signal interrupted the Set_Terminal_Characteristics procedure.

Invalid_Argument

Either the value of Characteristics was not initialized via a call to Get_-
Terminal_Characteristics , or none of the terminal characteristics re-
quested by Characteristics is supported for the terminal device associ-
ated with the parameter File .

7.2.2 Input Modes

7.2.2.1 Synopsis

subtype Input_Modes is Terminal_Modes

range Interrupt_On_Break .. Mark_Parity_Errors;

7.2.2.2 Description

Values of the subtype Input_Modes , shown in Table 7.2, shall describe the basic
terminal input control.

Table 7.2 – Terminal_Modes Values for Input Control

Value Meaning

Enable_Parity_Check Enable input parity check
Enable_Start_Stop_Input Enable start/stop input control
Enable_Start_Stop_Output Enable start/stop output control
Ignore_Break Ignore break condition
Ignore_CR Ignore CR
Ignore_Parity_Errors Ignore characters with parity errors
Interrupt_On_Break Signal interrupt on break
Map_CR_To_LF Map CRto NL on input
Map_LF_To_CR Map NL to CR on input
Mark_Parity_Errors Mark parity errors
Strip_Character Strip character

In the context of asynchronous serial data transmission, a break condition is defined
as a sequence of zero-valued bits that continues for more than the time to send one
byte. The entire sequence of zero-valued bits shall be interpreted as a single break
condition, even if it continues for a time equivalent to more than one byte. In contexts
other than asynchronous serial data transmission, the definition of a break condition
is implementation defined.

If Ignore_Break mode is enabled, a break condition detected on input shall be ig-
nored, that is, not put on the input queue and, therefore, not read by any process. If
Ignore_Break mode is disabled and Interrupt_On_Break is enabled, the break
condition shall flush the input and output queues. Furthermore, if the terminal is the

7.2 Package POSIX_Terminal_Functions 265

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

controlling terminal of a foreground process group, the break condition shall gener-
ate a single POSIX_Signals.Signal_Interrupt signal to that foreground process
group. If neither Ignore_Break nor Interrupt_On_Break mode is enabled, a break
condition shall be read as a single Null_POSIX_Character or, if Mark_Parity_-
Errors mode is enabled, as the three-character sequence Flag_POSIX_Character ,
Null_POSIX_Character , Null_POSIX_Character .

If Ignore_Parity_Errors mode is disabled, a byte with a framing or parity error
(other than break) shall be ignored.

If Mark_Parity_Errors mode is enabled and Ignore_Parity_Errors mode is
disabled, a byte with a framing or parity error (other than break) shall be given to
the application as the three-character sequence Flag_POSIX_Character , Null_-
POSIX_Character , X, where X is the data of the byte received in error. To avoid
ambiguity in this case, a valid character of Flag_POSIX_Character shall be given
to the application as the two-character sequence Flag_POSIX_Character , Flag_-
POSIX_Character . If neither Mark_Parity_Errors nor Ignore_Parity_Errors
mode is enabled, a framing or parity error (other than break) shall be given to the
application as a single character Null_POSIX_Character .

If Enable_Parity_Check mode is enabled, input parity checking shall be enabled.
If Enable_Parity_Check mode is disabled, input parity checking shall be disabled,
allowing output parity generation without input parity errors.

NOTE: Whether input parity checking is enabled or disabled is independent of whether parity
detection is enabled or disabled. (See 7.2.4.)

If parity detection is enabled but input parity checking is disabled, the hardware
to which the terminal is connected shall recognize the parity bit, but the terminal
special file shall not check whether this bit is set correctly.

If Strip_Character mode is enabled, valid input bytes first shall be stripped to
seven bits; otherwise, valid input bytes shall be processed in their entirety.

If Map_LF_To_CRmode is enabled, a received NL character shall be translated into
the CR character. If Ignore_CR mode is enabled, a received CR character shall be
ignored (discarded). If Ignore_CR mode is disabled and Map_CR_To_LF mode is
enabled, a received CR character shall be translated into the NL character.

If Enable_Start_Stop_Output mode is enabled, start/stop output control shall be
enabled. A received Stop character shall suspend output, and a received Start char-
acter shall restart output. When Enable_Start_Stop_Output mode is enabled,
Start and Stop characters shall be removed from the input stream, but merely per-
form flow control functions. When Enable_Start_Stop_Output mode is disabled,
the Start and Stop characters shall be ignored by the operating system and shall be
passed to the applications program when read.

If Enable_Start_Stop_Input mode is enabled, start/stop input control shall be
enabled. The system shall transmit one or more Stop characters, which are intended
to cause the terminal device to stop transmitting data, as needed to prevent the
number of characters in the input queue from exceeding Input Queue Maximum. The
system shall also transmit one or more Start characters, which are intended to cause
the terminal device to resume transmitting data, as soon as the device can continue

266 7 Device- and Class-Specific Functions

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

transmitting data without risk of overflowing the input queue. The precise conditions
under which Stop and Start characters are transmitted are implementation defined.

The initial input control value after a call to POSIX_IO.Open is implementation
defined.

7.2.3 Output Modes

7.2.3.1 Synopsis

subtype Output_Modes is Terminal_Modes

range Perform_Output_Processing .. Perform_Output_Processing;

7.2.3.2 Description

Values of the subtype Output_Modes , shown in Table 7.3, shall describe the basic
terminal output control.

Table 7.3 – Terminal_Modes Values for Output Control

Value Meaning

Perform_Output_Processing Perform output processing

If Perform_Output_Processing mode is enabled, output data shall be processed in
an implementation-defined fashion so that lines of text are modified to appear appro-
priately on the terminal device; otherwise, characters shall be transmitted without
change.

The initial input control value after a call to POSIX_IO.Open is implementation
defined.

7.2.4 Control Modes

7.2.4.1 Synopsis

subtype Control_Modes is Terminal_Modes

range Ignore_Modem_Status .. Odd_Parity;

7.2.4.2 Description

Values of the subtype Control_Modes , shown in Table 7.4, shall describe the basic
terminal hardware control modes.

Table 7.4 – Terminal_Modes Values for Hardware Control

Value Meaning

Enable_Receiver Enable receiver
Hang_Up_On_Last_Close Hang up on last close
Ignore_Modem_Status Ignore modem status lines
Odd_Parity Odd parity, else even
Parity_Enable Parity enable
Send_Two_Stop_Bits Send two stop bits, else one

7.2 Package POSIX_Terminal_Functions 267

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

The Bits_Per_Character type shall specify the character size in bits for both trans-
mission and reception. This size shall not include the parity bit, if any.

If Send_Two_Stop_Bits mode is enabled, two stop bits shall be used; otherwise, one
stop bit shall be used. For example, at 110 baud, two stop bits are used by convention.

If Enable_Receiver mode is enabled, the receiver shall be enabled. Otherwise, no
characters shall be received.

If Parity_Enable mode is enabled, parity generation and detection shall be enabled
and a parity bit shall be added to each character. If parity is enabled, Odd_Parity
shall specify odd parity, if enabled; otherwise, even parity shall be assumed.

If Hang_Up_On_Last_Close mode is enabled, the modem control lines for the port
shall be lowered when the last process with the port open closes the port or the
process terminates. The modem connection shall be broken.

If Ignore_Modem_Status mode is enabled, a connection shall not depend on the
state of the modem status lines. If Ignore_Modem_Status mode is disabled, the
modem status lines shall be monitored.

By default, a call to POSIX_IO.Open or POSIX_IO.Open_Or_Create shall wait for
the modem connection to complete before returning. However, if the Non_Blocking
option is True or if Ignore_Modem_Status has been enabled, POSIX_IO.Open
and POSIX_IO.Open_Or_Create shall return immediately without waiting for the
connection.

If the object for which the terminal characteristics are set is not an asynchronous
serial connection, some of the characteristics may be ignored. For example, if an at-
tempt is made to set the baud rate on a network connection to a terminal on another
host, the baud rate may or may not be set on the connection between that terminal
and the machine to which it is directly connected.

The initial hardware control value after POSIX_IO.Open is implementation defined.

7.2.5 Local Modes

7.2.5.1 Synopsis

subtype Local_Modes is Terminal_Modes

range Echo .. Send_Signal_For_BG_Output;

7.2.5.2 Description

Values of the subtype Local_Modes , shown in Table 7.5, shall describe the basic
terminal local control modes.

If Echo mode is enabled, input characters shall be echoed back to the terminal. If
Echo mode is disabled, input characters shall not be echoed.

If Echo_Erase and Canonical_Input modes are enabled, the Erase character shall
cause the terminal to erase the last character in the current line from the display, if
possible. If there is no character to erase, an implementation may echo an indication
that there was no character to erase, or do nothing.

268 7 Device- and Class-Specific Functions

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Table 7.5 – Terminal_Modes Values for Local Control Modes

Value Meaning

Canonical_Input Canonical input (erase and kill processing)
Echo Enable echo
Echo_Erase Echo Erase as an error-correcting backspace
Echo_Kill Echo Kill
Echo_LF Echo the POSIX_Character translation of ASCII.LF
Enable_Signals Enable signals
Extended_Functions Enable extended implementation-defined functions
No_Flush Disable flush after interrupt, quit, or suspend
Send_Signal_For_BG_Output Send POSIX_Signals .Signal_Terminal_Output for

background output

If Echo_Kill and Canonical_Input modes are enabled, the Kill character shall
either cause the terminal to erase the line from the display or shall echo the POSIX_-
Character translation of ASCII.LF character after the Kill character.

If Echo_LF and Canonical_Input modes are enabled, the POSIX_Character trans-
lation of ASCII.LF character shall be echoed even if Echo mode is disabled.

If Canonical_Input mode is enabled, canonical processing shall be enabled. Canon-
ical processing enables the erase and kill edit functions and the assembly of input
characters into lines delimited by NL, EOF, and EOL, as described in 7.1.0.9. If
Canonical_Input mode is disabled, read requests shall be satisfied directly from
the input queue. A read shall not be satisfied until at least Minimum_Input_Count
POSIX_Character s have been received or the timeout value Input_Time has ex-
pired between POSIX_Character s. (See 7.1.0.10.)

If Enable_Signals mode is enabled, each input character shall be checked against
the special control characters Interrupt, Quit, and Suspend (only if the Job Control op-
tion is supported). If an input character matches one of these control characters,
the function associated with that character shall be performed. If Enable_Signals
mode is disabled, no checking shall be done, and the characters shall be processed
normally. Thus, these special input functions shall be possible only if Enable_Sig-
nals mode is enabled.

If Extended_Functions mode is enabled, implementation-defined functions shall
be recognized from the input data. It is implementation defined how an enabled Ex-
tended_Functions mode interacts with Canonical_Input , Enable_Signals , En-
able_Start_Stop_Output , or Enable_Start_Stop_Input modes. If Extended_-
Functions mode is disabled, then implementation-defined functions shall not be
recognized, and the corresponding input characters shall be processed as described
for Canonical_Input , Enable_Signals , Enable_Start_Stop_Output , and En-
able_Start_Stop_Input modes.

If No_Flush mode is enabled, the normal flush of the input and output queues associ-
ated with the Interrupt, Quit, and Suspend (only if the Job Control option is supported)
characters shall not be done.

If the Job Control option is supported: If Send_Signal_For_BG_Output mode is en-

7.2 Package POSIX_Terminal_Functions 269

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

abled POSIX_Signals.Signal_Terminal_Output shall be sent to the process group
of a process that tries to write to its controlling terminal if it is not in the foreground
process group for that terminal. This signal, by default, shall stop the members of
the process group. If the process group is not stopped, the output generated by that
process shall be sent to the current output stream. Processes that are blocking or ig-
noring POSIX_Signals.Signal_Terminal_Output are excepted; output produced
by these processes shall be sent to the output stream, and the POSIX_Signals.-
Signal_Terminal_Output signal shall not be sent.

The initial local control value after POSIX_IO.Open is implementation defined.

7.2.6 Retrieve and Define Terminal Modes and Bits per Character

7.2.6.1 Synopsis

type Terminal_Modes_Set is array (Terminal_Modes) of Boolean;
subtype Bits_Per_Character is Positive range implementation-defined;
function Terminal_Modes_Of

(Characteristics: Terminal_Characteristics)
return Terminal_Modes_Set;

procedure Define_Terminal_Modes
(Characteristics: in out Terminal_Characteristics;

Modes: in Terminal_Modes_Set);
function Bits_Per_Character_Of

(Characteristics: Terminal_Characteristics)
return Bits_Per_Character;

procedure Define_Bits_Per_Character
(Characteristics: in out Terminal_Characteristics;

Bits: in Bits_Per_Character);

7.2.6.2 Description

The type Terminal_Modes_Set shall be used to establish the terminal modes that
will be set in a corresponding value of the type Terminal_Characteristics . For
an object of type Terminal_Modes_Set , if the value in the parameter Modes in-
dexed by a value of type Terminal_Modes is set to True , Define_Terminal_Modes
shall enable that mode in the parameter Characteristics . It shall be disabled
if the value is set to False . For a value of type Terminal_Modes_Set returned by
Terminal_Modes_Of , the terminal mode shall be enabled in the parameter Charac-
teristics if the value indexed by a value of type Terminal_Modes is set to True ,
and shall be disabled if the value is set to False .

The function Bits_Per_Character_Of shall be used to retrieve the number of bits
per character set in the parameter Characteristics . The procedure Define_-
Bits_Per_Character shall be used to set the number of bits per character in the
parameter Characteristics .

7.2.6.3 Error Handling

If the following condition occurs, the exception POSIX_Error shall be raised with
the corresponding error code:

270 7 Device- and Class-Specific Functions

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Invalid_Argument

Upon Define_Terminal_Modes , Terminal_Modes_Of , Define_Bits_-
Per_Character , or Bits_Per_Character_Of , the object corresponding
to the parameter Characteristics was not initialized via a call to Get_-
Terminal_Characteristics .

Define_Terminal_Modes or Terminal_Modes_Of may raise POSIX_Error for
implementation-defined conditions.

Bits_Per_Character_Of may raise Constraint_Error if the parameter Char-
acteristics contains a value that is out of range of the subtype Bits_Per_Char-
acter .

7.2.7 Baud Rate Subprograms

7.2.7.1 Synopsis

type Baud_Rate is
(B0, B50, B75, B110, B134, B150, B200, B300, B600,

B1200, B1800, B2400, B4800, B9600, B19200, B38400);
function Input_Baud_Rate_Of

(Characteristics: Terminal_Characteristics)
return Baud_Rate;

procedure Define_Input_Baud_Rate
(Characteristics: in out Terminal_Characteristics;

Input_Baud_Rate: in Baud_Rate);
function Output_Baud_Rate_Of

(Characteristics: Terminal_Characteristics)
return Baud_Rate;

procedure Define_Output_Baud_Rate
(Characteristics: in out Terminal_Characteristics;

Output_Baud_Rate: in Baud_Rate);

7.2.7.2 Description

The functions Input_Baud_Rate_Of and Output_Baud_Rate_Of shall return the in-
put and output data rate contained in the Terminal_Characteristics specified in
the function call. The procedures Define_Input_Baud_Rate and Define_Output_-
Baud_Rate shall change the data rate values in the Terminal_Characteristics
specified in the procedure call.

7.2.7.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

The value contained in the parameter Characteristics was not initial-
ized via a call to Get_Terminal_Characteristics .

Input_Baud_Rate_Of , Output_Baud_Rate_Of , Define_Input_Baud_Rate , and
Define_Output_Baud_Rate may raise POSIX_Error for implementation-defined
conditions.

7.2 Package POSIX_Terminal_Functions 271

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

7.2.8 Special Control Characters

7.2.8.1 Synopsis

type Control_Character_Selector is
(EOF_Char, EOL_Char, Erase_Char, Interrupt_Char,

Kill_Char, Quit_Char, Suspend_Char, Start_Char, Stop_Char);
function Special_Control_Character_Of

(Characteristics: Terminal_Characteristics;
Selector: Control_Character_Selector)

return POSIX.POSIX_Character;
procedure Define_Special_Control_Character

(Characteristics: in out Terminal_Characteristics;
Selector: in Control_Character_Selector;
Char: in POSIX.POSIX_Character);

procedure Disable_Control_Character
(Characteristics: in out Terminal_Characteristics;

Selector: in Control_Character_Selector);

7.2.8.2 Description

The special control character name and description in both canonical and noncanon-
ical modes are shown in Table 7.6.

Table 7.6 – Special Control Character Usage

Selector Canonical Noncanonical Description
Mode Mode

EOF_Char EOF End-of-file character

EOL_Char EOL End-of-line character

Erase_Char Erase Erase character

Interrupt_Char Interrupt Interrupt Interrupt character

Kill_Char Kill Kill character

Quit_Char Quit Quit Quit character

Suspend_Char Suspend Suspend Suspend character

Start_Char Start Start Start character

Stop_Char Stop Stop Stop character

The type Control_Character_Selector shall be used to designate control char-
acters. Define_Special_Control_Character shall define the control character
designated by the parameter Selector to the value of the parameter Char in the
parameter Characteristics . Special_Control_Character_Of shall return the
character associated with the control character designated by the parameter Selec-
tor in the parameter Characteristics . Special encodings of POSIX_Character
shall be used to represent control characters only when the control characters do not
exist in the POSIX_Character set.

Implementations that do not support the Job Control option may ignore the Suspend
control character value and deliver the value to the program.

Implementations that do not support changing the Start and Stop characters may
ignore these character values but shall return the value used when called.

272 7 Device- and Class-Specific Functions

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

The Disable_Control_Character procedure shall disable the control character.
In other words, no input data shall be recognized as the disabled special character.

The initial values of all control characters are implementation defined.

7.2.8.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Inappropriate_IO_Control_Operation

Upon Special_Control_Character_Of , the special control character is
disabled.

Operation_Not_Implemented

The operation is not supported on this device or by this system.

Invalid_Argument

The value contained in the parameter Characteristics was not initial-
ized via a call to Get_Terminal_Characteristics .

No exceptions are specified by this standard for Define_Special_Control_Char-
acter .

Define _ Special _ Control _ Character may raise POSIX _ Error for
implementation-defined conditions.

7.2.9 Noncanonical Controls

7.2.9.1 Synopsis

function Input_Time_Of
(Characteristics: Terminal_Characteristics)

return Duration;
procedure Define_Input_Time

(Characteristics: in out Terminal_Characteristics;
Input_Time: in Duration);

function Minimum_Input_Count_Of
(Characteristics: Terminal_Characteristics)

return Natural;
procedure Define_Minimum_Input_Count

(Characteristics: in out Terminal_Characteristics;

Minimum_Input_Count: in Natural);

7.2.9.2 Description

Define_Input_Time shall set the input time value used in noncanonical mode.
(See 7.1.0.10.) Input_Time_Of shall retrieve the input time value from the control
structure.

Define_Minimum_Input_Count shall set the input count value used in noncanonical
mode. (See 7.1.0.10.) Minimum_Input_Count_Of shall retrieve the input count value
from the control structure.

7.2 Package POSIX_Terminal_Functions 273

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

7.2.9.3 Error Handling

If the following condition occurs, the exception POSIX_Error shall be raised with
the corresponding error code:

Invalid_Argument

The value contained in the parameter Characteristics was not initial-
ized via a call to Get_Terminal_Characteristics .

Input_Time_Of , Define_Input_Time , Minimum_Input_Count_Of , and Define_-
Minimum_Input_Count may raise POSIX_Error for implementation-defined condi-
tions.

7.2.10 Line Control Operations

7.2.10.1 Synopsis

procedure Send_Break
(File: in POSIX_IO.File_Descriptor;

The_Duration: in Duration := 0.0);
procedure Drain

(File: in POSIX_IO.File_Descriptor;
Masked_Signals: in POSIX.Signal_Masking := POSIX.RTS_Signals);

type Queue_Selector is
(Received_But_Not_Read, Written_But_Not_Transmitted, Both);

procedure Discard_Data
(File: in POSIX_IO.File_Descriptor;

Selector: in Queue_Selector);
type Flow_Action is

(Suspend_Output, Restart_Output, Transmit_Stop, Transmit_Start);
procedure Flow

(File: in POSIX_IO.File_Descriptor;

Action: in Flow_Action);

7.2.10.2 Description

If the terminal is using asynchronous serial data transmission, the procedure Send_-
Break shall cause the transmission of a continuous stream of zero-valued bits for the
parameter The_Duration . If The_Duration is zero, it shall cause transmission of
zero-valued bits for at least 0.25 seconds and not more than 0.5 seconds.

If the terminal is not using asynchronous serial data transmission, it is implemen-
tation defined whether the Send_Break procedure sends data to generate a break
condition or returns without taking any action.

The Drain procedure shall wait until all output written to the object referred to by
the parameter File has been transmitted.

The Discard_Data procedure shall discard data written to the object referred to by
the parameter File , based on the value of the parameter Selector :

— If Written_But_Not_Transmitted , data written to the object designated by
the parameter File but not transmitted shall be discarded.

— If Received_But_Not_Read , data received from the object designated by the
parameter File but not read shall be discarded.

274 7 Device- and Class-Specific Functions

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

— If Both , data both transmitted to and received from the object designated by the
parameter File shall be discarded.

The Flow procedure shall suspend transmission or reception of data on the object
referred to by the parameter File , depending on the value of parameter Action :

— If Suspend_Output , output shall be suspended. In other words, output charac-
ters will not be sent to the output object when requested. They shall be held in
an internal buffer, and/or the write will block.

— If Restart_Output , suspended output will be restarted.

— If Transmit_Stop , the system shall transmit a Stop character, which is in-
tended to cause the terminal device to stop transmitting data to the system.

— If Transmit_Start , the system shall transmit a Start character, which is in-
tended to cause the terminal device to start transmitting data to the system.

The default upon open of a terminal file is that neither its input nor its output is
suspended.

The parameter Masked_Signals in the operation Drain specifies which signals
shall be masked during the operation. (See 2.4.1.6.)

7.2.10.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

Upon Send_Break , Drain , Discard_Data , or Flow , the parameter File is
not a valid POSIX_IO.File_Descriptor .

Inappropriate_IO_Control_Operation

Upon Send_Break , Drain , Discard_Data , or Flow , the object designated
by the parameter File is not a terminal.

Interrupted_Operation

Upon Drain , the operation was interrupted by a signal.

7.2.11 Foreground Process Group ID

7.2.11.1 Synopsis

function Get_Process_Group_ID
(File: POSIX_IO.File_Descriptor)

return POSIX_Process_Identification.Process_Group_ID;
procedure Set_Process_Group_ID

(File: in POSIX_IO.File_Descriptor;

Group_ID: in POSIX_Process_Identification.Process_Group_ID);

7.2 Package POSIX_Terminal_Functions 275

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

7.2.11.2 Description

If the Job Control option is supported: Get_Process_Group_ID shall return the value
of the process group ID of the foreground process group associated with the terminal.
The function is allowed for a process that is in a background process group; however,
the information may be subsequently changed by a process that is a member of a
foreground process group.

If the Job Control option is not supported for this implementation, the function either
shall be supported as defined or shall raise POSIX_Error with error code Opera-
tion_Not_Implemented .

If the Job Control option is supported: If the process has a controlling terminal, the
Set_Process_Group_ID shall set the foreground process group ID associated with
the terminal to the parameter Group_ID . The parameter File shall be the con-
trolling terminal of the calling process, and the controlling terminal shall be cur-
rently associated with the session of the calling process. The value of the parameter
Group_ID has to match a process group ID of a process in the same session as the
calling process.

7.2.11.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Operation_Not_Implemented

The implementation does not support the Job Control option.

Bad_File_Descriptor

The parameter File is not a valid POSIX_IO.File_Descriptor .

Inappropriate_IO_Control_Operation

(1) Upon Get_Process_Group_ID , the calling process does not have a
controlling terminal, or the object designated by the parameter File is
not the controlling terminal.

(2) Upon Set_Process_Group_ID , the calling process does not have a
controlling terminal, or the object designated by the parameter File
is not the controlling terminal, or the controlling terminal is no longer
associated with the session of the calling process.

Invalid_Argument

Upon Set_Process_Group_ID , the value of the parameter Group_ID is not
a valid process group ID.

7.2.12 Generate Terminal Pathname

7.2.12.1 Synopsis

function Get_Controlling_Terminal_Name return POSIX.Pathname;

276 7 Device- and Class-Specific Functions

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

7.2.12.2 Description

The function Get_ Controlling_ Terminal_ Name shall return a value of type
POSIX.Pathname that shall refer to the current controlling terminal of the current
process. Get_Controlling_Terminal_Name shall return an empty Pathname if
the pathname that would refer to the controlling terminal cannot be determined or
if the function is unsuccessful.

Access to the file is not guaranteed, even if Get_Controlling_Terminal_Name
returns a valid pathname.

7.2.12.3 Error Handling

No exceptions are specified by this standard for Get_Controlling_Terminal_Name .

Get_Controlling_Terminal_Name may raise POSIX_Error for implementation-
defined conditions.

7.2 Package POSIX_Terminal_Functions 277

IEEE Std 1003.5c-1998

Section 8: Language-Specific Services for Ada

This section provides additional interpretation within a POSIX context for certain
features of the Ada language. Additional interpretation is provided only in cases
where the Ada RM f1g permits implementation definition.

8.1 Interoperable Ada I/O Services

This section specifies certain aspects of I/O in the Ada binding to POSIX. Previous
sections of this standard have provided an Ada binding to the I/O facilities of the
POSIX interface. This section will provide a POSIX interpretation of the Ada I/O fa-
cilities required by Annex A of the Ada RM f1g. This interpretation does not attempt
to duplicate the capabilities of the POSIX I/O model. Instead, it interprets the Ada
model within the constraints of the POSIX model. A secondary objective is to pro-
vide interoperability (the ability to interchange data) between the Ada and POSIX
I/O models for a useful subset of I/O operations.

To accomplish these objectives, this standard requires that a POSIX-conforming Ada
compiler, runtime system, and libraries conform to additional requirements beyond
those of Annex A of the Ada RM f1g.

8.1.1 Requirements

8.1.1.1 Character Set

The implementation shall provide a correspondence between the Ada type Stan-
dard.Character and POSIX.POSIX_Character . This correspondence shall have
the characteristics described in 2.4.2.

8.1.1.2 Form Parameter

The Form parameter for Ada Text I/O operations shall be a string with the following
syntax, written in the notation used within the Ada RM f1g:

form image::=
[field name identifier => field value f, field name identifier => field valueg]

field value::= field value identifier j integer

The required values of field name identifier and field value are described in the para-
graphs that follow. The implementation is permitted to add alternatives to the syntax
of field value in order to support implementation-defined fields. All field names and
field values shall be insensitive to case.

Implementations are permitted to define additional fields of the Form parameter as
long as they conform to the syntax given above. The exception IO_Exceptions.-
Use_Error shall be raised if the Form parameter includes a field name or a field
value that is not defined by the implementation or by this standard. The Use_Error
exception shall be raised if a particular field name appears more than once within a
Form parameter.

File permissions
The field names are Owner, Group , and Other . The allowed field values
are None, Read, Write , or Execute , or any combination of the three latter

8 Language-Specific Services for Ada 279

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

names separated by underscores (for example, Read_Write). These fields
may be used only with the Create operation; use with the Open operations
shall raise Use_Error . The fields shall set the access permissions for the
created file. If a field is specified, the resulting set of permissions shall be
the logical intersection of those specified in the parameter and those granted
by POSIX_Permissions.Get_Allowed_Process_Permissions . If a field
is not specified, the default value shall be Read_Write_Execute , which
results in the set of permissions specified by the current value of POSIX_-
Permissions.Get_Allowed_Process_Permissions .

Appending to the file
The field name is Append . The field value is either True or False . If not
specified, the default value is False . This field may be used only with the
Open operation. Use with the Create operation shall raise Use_Error . Use
of Append => True means that any output shall be written to the end of
the named external file.

Blocking or nonblocking I/O
The field name is Blocking . Potential field values are the images of the
enumeration literals of type POSIX.Blocking_Behavior , i.e., Tasks Pro-
gram or Special . (See 2.4.1.5.) An implementation, however, is not re-
quired to support all of the enumerated behaviors. The supported behaviors
are those enumerated in the subtype POSIX.Text_IO_Blocking_Behav-
ior . The default value is the image of the constant POSIX.IO_Blocking_-
Behavior . Use of Blocking => Tasks , when supported, means that the
calling task, but not others, shall wait for the completion of any I/O oper-
ation on the file. Use of Blocking => Program , when supported, means
that all tasks within the active partition shall wait for the completion of
an I/O operation on the file. Use of Blocking => Special shall have
an implementation-defined effect. Use of an unsupported value shall raise
Use_Error . The file objects returned by Text_IO.Standard_Input and
Text_IO.Standard_Output shall behave as if they were opened with the
default value of Blocking .

How characters are read from the keyboard
The field name is Terminal_Input . The field value is either Lines or
Characters . If not specified, the default value is Lines . If the value Lines
is selected, the input terminal shall be processed in canonical mode. If the
value Characters is selected, noncanonical terminal input shall be per-
formed with Minimum_Input_Count = 0 and Input_Time = 0.0 . Ter-
minal_Input shall have no effect if the file is not opened for input or if the
file is not opened on a terminal. (See 7.1.0.10.)

Creation of FIFO files
The field name is File_Structure . The field value is either Regular or
FIFO . If not specified, the default value is Regular . Use of this field is
permitted only with the Create operation. Use with the Open operation
shall cause the exception Use_Error to be raised. Use of File_Structure
=> FIFO means that the file to be created shall be a named FIFO file.

Access to open POSIX files
The field name is File_Descriptor . The field value is a sequence of char-
acters that would denote a valid file descriptor value if used as the param-

280 8 Language-Specific Services for Ada

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

eter for POSIX_IO.File_Descriptor’Value . Use of this option means
that the opened Ada file object becomes associated with the external file de-
noted by the given file descriptor. The association continues until the Ada
file object is closed. The operation shall not change the state of the file. If
the integer number does not correspond to an open file descriptor, or if the
modes are incompatible, then Use_Error shall be raised. During the period
that the Ada file is open, the execution of any POSIX I/O or file operations,
except for file locking (see 6.2), on the file descriptor will have unspecified
results on the contents of the external file. Subsequent use of the Text_-
IO.Name function on this file shall raise Use_Error . This field may be used
only with Open; use with Create shall raise Use_Error .
NOTE: This mechanism permits access to the standard error file, POSIX_IO.Stan-
dard_Error .

Treatment of terminators
The field name is Page_Terminators . The field value is either True or
False . The default value is True . Use of Page_Terminators => True
means that the external representation of the terminators defined in A.10
(7-8) of the Ada RM f1g is implementation defined. Use of Page_Termina-
tors => False means that the external file shall contain no page termi-
nators. In this case, upon output, the line terminator shall be represented in
the external file by the character mapped to ASCII.LF ; the page terminator
shall be omitted from the external file; and the file terminator shall be repre-
sented by physical end of file. Upon input of a file with Page_Terminators
=> False , any occurrence of the character mapped to ASCII.FF shall not
be interpreted as a page terminator, but shall instead result in the input
of the ASCII.FF character. Upon output of a file with Page_Terminators
=> False , an explicit call to Text_IO.New_Page shall raise Use_Error ,
and an explicit call to Text_IO.Set_Line when the current line number
exceeds the value specified by the To parameter shall raise Use_Error .
NOTE: The accompanying rationale describes the effects upon other subprograms of
Text_IO . They are not specified here because they are derived from interpretation of
the Ada standard.
The file objects returned by Text_IO.Standard_Input and Text_IO.-
Standard_Output shall operate as if they were opened with Page_Termi-
nators => False .

8.1.1.3 Buffer Flushing

The implementation of Ada I/O operations may provide buffering in addition to that
provided by the underlying operating system. The package POSIX_Supplement_-
to_Ada_IO provides operations that the application may invoke in order to flush
output buffers to the operating system.

8.1.1.4 Additional Interpretation of the Ada Standard

Implementations shall conform to the following interpretations of the referenced
sections of Annex A of the Ada RM f1g. In some cases, these interpretations re-
quire specific implementations of items that otherwise would be permitted by the
the Ada RM f1g to be implementation dependent.

8.1 Interoperable Ada I/O Services 281

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

A.7 (1) of the Ada RM f1g
The identical set of external files shall be accessible via the POSIX I/O op-
erations and by the Ada I/O operations, although the results of such access
may be implementation defined except as noted elsewhere in this section.
The file names used by Ada I/O operations and by POSIX I/O operations
shall be interconvertible by applying the character mapping discussed in
2.4.2. The Ada Form parameter shall be interpreted as described elsewhere
in this section.

A.7 (2) of the Ada RM f1g
The term “external file” shall be interpreted as referring to a POSIX file
(defined in 2.2.2.64).

A.7 (6) of the Ada RM f1g
Upon the termination of an Ada active partition, all Ada file objects that
were opened by the active partition and that remain open shall be closed,
and any output buffers that the implementation has associated with the
file objects shall be flushed. This action shall occur after the completion of
the Ada main subprogram (if any) and after the termination of any tasks
dependent upon library units but prior to the termination of the POSIX
process that corresponds to the Ada active partition. Ada programs that are
abandoned due to the propagation of an unhandled exception are subject to
this interpretation.

A.8.2 (22) of the Ada RM f1g
In general, the Namefunction shall return the absolute pathname of a file.
If Text_IO.Standard_Input or Text_IO.Standard_Output is directed
to a terminal device, then the Text_IO.Name function shall return a value
that is identical to the result of applying the character set mapping to the
value returned by POSIX_IO.Get_Terminal_Name . Use of the Namefunc-
tion under circumstances where the name cannot be determined shall raise
Use_Error . These circumstances include applying Nameto a file opened us-
ing the File_Descriptor field of the Form parameter and applying Nameto
a file that has been redirected to a pipe or other facility so that a pathname
or terminal device name cannot be determined.

A.10 (2) of the Ada RM f1g
The characters appearing at the Ada I/O interface shall correspond to the
characters appearing in the external file according to the character set map-
ping described in 2.4.2.

A.10 (6) of the Ada RM f1g
The standard input file, the standard output file, and the standard error file
referenced in this paragraph shall be interpreted as the POSIX standard
input, standard output, and standard error files, respectively.

A.13 (13) of the Ada RM f1g
The phrases “input character sequence” and “value input” shall be inter-
preted as referring to the characters and values resulting from applying the
character mapping described in 2.4.2 to the data appearing in the external
file.

282 8 Language-Specific Services for Ada

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

8.1.1.5 Error Handling

The implementation shall raise all exceptions required by Annex A of the
Ada RM f1g. In addition, the implementation shall raise the exceptions listed in
the following paragraphs.

IO_Exceptions.Use_Error shall be raised under the following circumstances:

— Text_IO.Open or Text_IO.Create is called when the Form parameter
contains a field name or field value that is not defined by the implementation
or by the standard.

— Text_IO.Open or Text_IO.Create is called when a particular field name
appears more than once in the Form parameter.

— Text_IO.Open or Text_IO.Create is called when an unsupported value
for Blocking appears in the Form parameter.

— Text_IO.Open is called when the Form parameter contains an Owner field,
a Group field, an Other field, or a FIFO field.

— Text_IO.Open is called when the value given for the File_Descriptor
field does not correspond to an open file descriptor or if the modes are in-
compatible.

— Text_IO.Create is called when the Form parameter contains an Append
field.

— Text_IO.Create is called when the Form parameter contains a File_-
Descriptor field.

— Text_IO.Name is attempted upon an Ada file object that was opened with
the File_Descriptor field specified within the Form parameter, or the
operation is attempted upon a file that is redirected to a pipe or other facility
so that a pathname or terminal device name cannot be determined.

— Text_IO.New_Page is performed on an output file opened with Page_-
Terminators => False .

— Text_IO.Set_Line is performed on an output file opened with Page_-
Terminators => False , and the value specified by the To parameter is
less than the current line number.

8.1.2 Additional Interpretation of the POSIX.1 Standard

Execution of the Text_IO.Open and Text_IO.Create operations shall never result
in the Ada file object becoming associated with the controlling terminal of the POSIX
process associated with the active partition. The application may associate a file
descriptor for a controlling terminal with an object of type Text_IO.File_Type
by using the File_Descriptor field of the Text_IO.Open Form parameter. The
functionality (see 7.1.0.6) obtained in this manner is implementation defined.

8.2 Package POSIX_Supplement_to_Ada_IO

The package POSIX_Supplement_to_Ada_IO provides supplementary facilities for
applications programs within a POSIX context that perform input and output oper-
ations using the Ada model of I/O provided by Annex A of the Ada RM f1g.

8.2 Package POSIX_Supplement_to_Ada_IO 283

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

with POSIX,
POSIX_IO,
POSIX_Permissions,
IO_Exceptions,
Text_IO;

package POSIX_Supplement_to_Ada_IO is
-- 8.2.1 Parse Form Values
type File_Structure_Values is (Regular, FIFO);
type Terminal_Input_Values is (Lines, Characters);
type Possible_File_Descriptor (Valid: Boolean := False) is

record
case Valid is

when True =>
Descriptor: POSIX_IO.File_Descriptor;

when False => null ;
end case ;

end record ;
type Form_Values_for_Open is

record
Append: Boolean := False;
Blocking: POSIX.Text_IO_Blocking_Behavior

:= POSIX.IO_Blocking_Behavior;
Terminal_Input: Terminal_Input_Values := Lines;
Page_Terminators: Boolean := True;
File_Descriptor: Possible_File_Descriptor;

end record ;
type Form_Values_for_Create is

record
Permission_Mask: POSIX_Permissions.Permission_Set

:= POSIX_Permissions.Access_Permission_Set;
Blocking: POSIX.Text_IO_Blocking_Behavior

:= POSIX.IO_Blocking_Behavior;
Terminal_Input: Terminal_Input_Values := Lines;
File_Structure: File_Structure_Values := Regular;
Page_Terminators: Boolean := True;

end record ;
function Form_String (Val: Form_Values_for_Open) return String;
function Form_Value (Str: String) return Form_Values_for_Open;
function Form_String (Val: Form_Values_for_Create) return String;
function Form_Value (Str: String) return Form_Values_for_Create;
-- 8.2.2 Flush Files
procedure Flush_All;
procedure Flush_Text_IO (File: in Text_IO.File_Type);
generic

type File_Type is limited private ;
procedure Flush_Sequential_IO (File: File_Type);
generic

type File_Type is limited private ;
procedure Flush_Direct_IO (File: File_Type);

Use_Error: exception renames IO_Exceptions.Use_Error;

end POSIX_Supplement_to_Ada_IO;

8.2.1 Parse Form Values

8.2.1.1 Synopsis

type File_Structure_Values is (Regular, FIFO);

284 8 Language-Specific Services for Ada

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

type Terminal_Input_Values is (Lines, Characters);
type Possible_File_Descriptor (Valid: Boolean := False) is

record
case Valid is

when True =>
Descriptor: POSIX_IO.File_Descriptor;

when False => null ;
end case ;

end record ;
type Form_Values_for_Open is

record
Append: Boolean := False;
Blocking: POSIX.Text_IO_Blocking_Behavior

:= POSIX.IO_Blocking_Behavior;
Terminal_Input: Terminal_Input_Values := Lines;
Page_Terminators: Boolean := True;
File_Descriptor: Possible_File_Descriptor;

end record ;
type Form_Values_for_Create is

record
Permission_Mask: POSIX_Permissions.Permission_Set

:= POSIX_Permissions.Access_Permission_Set;
Blocking: POSIX.Text_IO_Blocking_Behavior

:= POSIX.IO_Blocking_Behavior;
Terminal_Input: Terminal_Input_Values := Lines;
File_Structure: File_Structure_Values := Regular;
Page_Terminators: Boolean := True;

end record ;
function Form_String (Val: Form_Values_for_Open) return String;
function Form_Value (Str: String) return Form_Values_for_Open;
function Form_String (Val: Form_Values_for_Create) return String;

function Form_Value (Str: String) return Form_Values_for_Create;

8.2.1.2 Description

The overloaded Form_String and Form_Value functions provide capability for con-
structing and parsing a Form parameter. The two record types Form_Values_for_-
Open and Form_Values_for_Create describe the allowed form values for Open and
Create operations, respectively. The function Form_String shall return a value
of type String representing a legal value for the Form parameter, as specified in
8.1.1.2. Values for the Form parameter shall be obtained from the parameter Val .
The function Form_Value shall parse the string in the parameter Str and return a
value of type Form_Values_for_Open or Form_Values_for_Create .

The Form_Value function shall ignore fields within the Form string that begin with
field names that are not specified by this standard.

Implementors may supply a package containing identically named functions to con-
struct and parse implementation-defined fields within the Form parameter.

8.2.1.3 Error Handling

POSIX_Error shall be raised, with error code Invalid_Argument , by Form_Value
if a field does not conform to the specified syntax, if a nonstandard field value is
associated with a standard field name, or if a particular field is specified more than
once.

No exceptions are specified by this standard for Form_String .

8.2 Package POSIX_Supplement_to_Ada_IO 285

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

8.2.2 Flush Files

8.2.2.1 Synopsis

procedure Flush_All;
procedure Flush_Text_IO (File: in Text_IO.File_Type);
generic

type File_Type is limited private ;
procedure Flush_Sequential_IO (File: File_Type);
generic

type File_Type is limited private ;

procedure Flush_Direct_IO (File: File_Type);

8.2.2.2 Description

Execution of Flush_Text_IO upon a value of type File_Type with mode Out_File
shall result in the output buffers being flushed to the operating system.

Execution of Flush_Text_IO upon a value of type File_Type with mode In_File
shall have no effect.

The generic procedure Flush_Sequential_ IO should be instantiated with the
generic formal type File_Type being matched by the type File_Type produced
via an instantiation of the standard package Sequential_IO . When the instantia-
tion is called with a value for the parameter File whose file mode is Out_File , the
implementation shall flush all buffers associated with the given parameter to the
operating system.

The generic procedure Flush_Direct_IO should be instantiated with the generic
formal type File_Type being matched by the type File_Type produced via an in-
stantiation of the standard package Direct_IO . When the instantiation is called
with a value for the parameter File whose file mode is Out_File , the implemen-
tation shall flush all buffers associated with the given parameter to the operating
system.

Execution of an instance of Flush_Sequential_IO or Flush_Direct_IO that was
instantiated upon a file type with mode In_File shall have no effect.

Execution of instances of Flush_Sequential_IO or Flush_Direct_IO that are not
as specified in the preceding paragraphs are implementation dependent.

Execution of Flush_All shall have the same effect as executing the appropriate
individual flush operation upon each open Ada file.

8.2.2.3 Error Handling

No exceptions are specified by this standard for any of these operations.

286 8 Language-Specific Services for Ada

IEEE Std 1003.5c-1998

Section 9: System Databases

This section contains two packages that provide access to the POSIX.1 system
databases. The Group Database contains for each group a listing of group name,
associated group ID, and a list of group members. The User Database contains a
listing of users, including login name, user and group IDs, initial working directory,
and initial user program.

9.1 Package POSIX_User_Database

This package provides the types and operations on the POSIX User Database. The
User Database is the POSIX facility for storing information about users of the sys-
tem, including the user ID, the user name, the primary group ID associated with the
user, and the initial working directory and initial program. If the initial program in
the User Database is null, the system default is used as the initial program. The
interpretation of a null initial working directory is unspecified.

There are two sets of operations in POSIX_User_Database . One set retrieves infor-
mation from a given value of type User_Database_Item , and the other set retrieves
values of the type User_Database_Item .

with POSIX,
POSIX_Process_Identification;

package POSIX_User_Database is
-- 9.1.1 Access Contents of a User Database Item
type User_Database_Item is private ;
function User_Name_Of (DB_Item: User_Database_Item)

return POSIX.POSIX_String;
function User_ID_Of (DB_Item: User_Database_Item)

return POSIX_Process_Identification.User_ID;
function Group_ID_Of (DB_Item: User_Database_Item)

return POSIX_Process_Identification.Group_ID;
function Initial_Directory_Of (DB_Item: User_Database_Item)

return POSIX.POSIX_String;
function Initial_Program_Of (DB_Item: User_Database_Item)

return POSIX.POSIX_String;
-- 9.1.2 Access User Database Items
function Get_User_Database_Item

(UID: POSIX_Process_Identification.User_ID)
return User_Database_Item;

function Get_User_Database_Item
(Name: POSIX.POSIX_String)

return User_Database_Item; private

implementation-defined
end POSIX_User_Database;

9.1.1 Access Contents of a User Database Item

9.1.1.1 Synopsis

type User_Database_Item is private ;
function User_Name_Of (DB_Item: User_Database_Item)

return POSIX.POSIX_String;
function User_ID_Of (DB_Item: User_Database_Item)

9 System Databases 287

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

return POSIX_Process_Identification.User_ID;
function Group_ID_Of (DB_Item: User_Database_Item)

return POSIX_Process_Identification.Group_ID;
function Initial_Directory_Of (DB_Item: User_Database_Item)

return POSIX.POSIX_String;
function Initial_Program_Of (DB_Item: User_Database_Item)

return POSIX.POSIX_String;

9.1.1.2 Description

The User Database contains the name of the user, the user ID, the group ID, and
pathnames for initial default directory and default program.

User_Name_Of shall return the textual name of the user associated with the param-
eter DB_Item .

User_ID_Of shall return the user ID associated with the value of the parameter
DB_Item .

Group_ID_Of shall return the primary group membership of the user that is associ-
ated with the value of the parameter DB_Item .

Initial_Directory_Of shall return the pathname to the home directory of the
user that is associated with the value of the parameter DB_Item . If this operation
returns a null POSIX.POSIX_String , the meaning is implementation defined.

Initial_Program_Of shall return the pathname of the initial program of the user
that is associated with the value of the parameter DB_Item . If the operation returns
a null POSIX.POSIX_String , the system-default user program shall be used.

9.1.1.3 Error Handling

If the following condition occurs, the exception POSIX_Error shall be raised with
the corresponding error code:

Invalid_Argument

The DB_Item parameter is not valid. The caller has to obtain a User
Database item from one of the access operations described in 9.1.2 before
calling any of these operations.

9.1.2 Access User Database Items

9.1.2.1 Synopsis

function Get_User_Database_Item
(UID: POSIX_Process_Identification.User_ID)

return User_Database_Item;
function Get_User_Database_Item

(Name: POSIX.POSIX_String)

return User_Database_Item;

9.1.2.2 Description

These operations define how to obtain a User_Database_Item . One form of Get_-
User_Database_Item shall return the value associated with the parameter UID.
The other form of Get_User_Database_Item shall return the value associated with
the parameter Name.

288 9 System Databases

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

9.1.2.3 Error Handling

If the following condition occurs, the exception POSIX_Error shall be raised with
the corresponding error code:

Invalid_Argument

There is no User Database item corresponding to the given Nameor UID
parameter.

9.2 Package POSIX_Group_Database

This package provides the types and operations on the POSIX Group Database. The
Group Database is the POSIX facility for storing information about the groups on
the system, including group ID, the group name, and a list of user names who are
members of the group. Every user is a member of at least one group.

There are three sets of operations in POSIX_Group_Database . One set retrieves
information from an object of type Group_Database_Item , the second supports
iterating through the list of user names, and the third retrieves values of the type
Group_Database_Item .

with POSIX,
POSIX_Process_Identification;

package POSIX_Group_Database is
-- 9.2.1 Access Contents of a Group Database Item
type Group_Database_Item is private ;
type Group_ID_List is private ;
function Group_Name_Of (DB_Item: Group_Database_Item)

return POSIX.POSIX_String;
function Group_ID_Of (DB_Item: Group_Database_Item)

return POSIX_Process_Identification.Group_ID;
function Group_ID_List_Of (DB_Item: Group_Database_Item)

return Group_ID_List;
-- 9.2.2 Access Elements of the Group Item List of Members
generic

with procedure Action
(ID: in POSIX.POSIX_String;

Quit: in out Boolean);
procedure For_Every_Member (List: in Group_ID_List);
function Length (Member_List: Group_ID_List)

return Natural;
-- 9.2.3 Access Group Database Items
function Get_Group_Database_Item

(GID: POSIX_Process_Identification.Group_ID)
return Group_Database_Item;

function Get_Group_Database_Item
(Name : POSIX.POSIX_String)

return Group_Database_Item;

private
implementation-defined

end POSIX_Group_Database;

9.2 Package POSIX_Group_Database 289

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

9.2.1 Access Contents of a Group Database Item

9.2.1.1 Synopsis

type Group_Database_Item is private ;
type Group_ID_List is private ;
function Group_Name_Of (DB_Item: Group_Database_Item)

return POSIX.POSIX_String;
function Group_ID_Of (DB_Item: Group_Database_Item)

return POSIX_Process_Identification.Group_ID;
function Group_ID_List_Of (DB_Item: Group_Database_Item)

return Group_ID_List;

9.2.1.2 Description

The Group Database contains the following information for each group: the group
name, the group ID, and a list of group members. The type Group_ID_List is a
private type with an operation to iterate over the members of the given group, as
described in 9.2.3.

Group_Name_Of shall return the group name associated with the value of parameter
DB_Item

Group_ID_Of shall return the group ID associated with the value of parameter DB_-
Item .

Group_ID_List_Of shall return the list of group members associated with the value
of parameter DB_Item .

9.2.1.3 Error Handling

If the following condition occurs, the exception POSIX_Error shall be raised with
the corresponding error code:

Invalid_Argument

The DB_Item parameter is not valid. The caller has to obtain a Group
Database item from one of the access operations described in 9.2.3 before
calling any of these operations.

9.2.2 Access Elements of the Group Item List of Members

9.2.2.1 Synopsis

generic
with procedure Action

(ID: in POSIX.POSIX_String;
Quit: in out Boolean);

procedure For_Every_Member (List: in Group_ID_List);
function Length (Member_List: Group_ID_List)

return Natural;

290 9 System Databases

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

9.2.2.2 Description

Length shall return the number of users that are members of the parameter Mem-
ber_List . Length shall return zero if no users are members of the parameter
Member_List . The generic procedure For_Every_Member provides a facility for
iterating over the contents of a Group_ID_List . For each member of the param-
eter List , the actual procedure associated with Action in the instantiation shall
be called, with a value of type POSIX.POSIX_String representing the name of the
group member. The exact format of the string passed as the value of the parameter
ID is not specified by this standard. It is acceptable for this string to be the string
image of the group ID. If the parameter List contains no member (i.e., Length re-
turns zero), then the actual procedure associated with the formal parameter Action
shall not be called.

9.2.2.3 Error Handling

If the following condition occurs, the exception POSIX_Error shall be raised with
the corresponding error code:

Invalid_Argument

The List parameter is not valid.

9.2.3 Access Group Database Items

9.2.3.1 Synopsis

function Get_Group_Database_Item
(GID: POSIX_Process_Identification.Group_ID)

return Group_Database_Item;
function Get_Group_Database_Item

(Name : POSIX.POSIX_String)

return Group_Database_Item;

9.2.3.2 Description

These operations define how to obtain a value of the type Group_Database_Item .
One form of Get_Group_Database_Item shall return the value of type Group_-
Database_Item associated with the parameter GID. The other form of Get_Group_-
Database_Item shall return the value associated with the parameter Name.

9.2.3.3 Error Handling

If the following condition occurs, the exception POSIX_Error shall be raised with
the corresponding error code:

Invalid_Argument

There is no Group Database item corresponding to the given GID or Name
parameter.

9.2 Package POSIX_Group_Database 291

IEEE Std 1003.5c-1998

Section 10: Data Interchange Format

This section position is reserved to preserve the correspondence of section numbers
between this standard and POSIX.1, and to allow for the possibilit of a future Ada
binding to the section on Data Interchange Format of POSIX.1.

10 Data Interchange Format 293

IEEE Std 1003.5c-1998

Section 11: Synchronization

This section describes the services that this standard provides for process and task
synchronization via counting semaphores, mutexes, and condition variables.

11.1 Package POSIX_Semaphores

This package provides access to services related to counting semaphores. Counting
semaphores are a type of synchronization object that can be used for interprocess
and intertask synchronization.

NOTE: Semaphores are provided in this standard primarily for interprocess communication.
The preferred mechanisms for intertask synchronization are those provided by the Ada lan-
guage, namely, protected objects and task entries.

The functionality described in this clause is optional. If the Semaphores option is not
supported, the implementation may cause all calls to the explicitly declared operations
defined in this clause to raise POSIX_Error . Otherwise, the behavior shall be as
specified in this clause.

with POSIX,
POSIX_IO,
POSIX_Permissions;

package POSIX_Semaphores is
-- 11.1.1 Semaphore and Semaphore Descriptor Types
type Semaphore is limited private ;
type Semaphore_Descriptor is private ;
-- 11.1.2 Initialize an Unnamed Semaphore
procedure Initialize

(Sem: in out Semaphore;
Value: in Natural;
Is_Shared: in Boolean := False);

function Descriptor_Of
(Sem: Semaphore)

return Semaphore_Descriptor;
-- 11.1.3 Finalize an Unnamed Semaphore
procedure Finalize (Sem: in out Semaphore);
-- 11.1.4 Create/Open a Named Semaphore
function Open

(Name: POSIX.POSIX_String;
Masked_Signals: POSIX.Signal_Masking:= POSIX.RTS_Signals)

return Semaphore_Descriptor;
function Open_Or_Create

(Name: POSIX.POSIX_String;
Permissions: POSIX_Permissions.Permission_Set;
Value: Natural;
Options: POSIX_IO.Open_Option_Set:= POSIX_IO.Empty_Set;
Masked_Signals: POSIX.Signal_Masking:= POSIX.RTS_Signals)

return Semaphore_Descriptor;
-- 11.1.5 Close a Named Semaphore
procedure Close (Sem: in out Semaphore_Descriptor);
-- 11.1.6 Remove a Named Semaphore
procedure Unlink_Semaphore (Name: in POSIX.POSIX_String);

11 Synchronization 295

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

-- 11.1.7 Decrement a Semaphore
procedure Wait

(Sem: in Semaphore_Descriptor;
Masked_Signals: in POSIX.Signal_Masking:= POSIX.RTS_Signals);

function Try_Wait
(Sem: Semaphore_Descriptor)

return Boolean;
-- 11.1.8 Increment a Semaphore
procedure Post (Sem: in Semaphore_Descriptor);
-- 11.1.9 Get the Value of a Semaphore
function Get_Value (Sem: Semaphore_Descriptor)

return Integer;

private
implementation-defined

end POSIX_Semaphores;

11.1.1 Semaphore and Semaphore Descriptor Types

11.1.1.1 Synopsis

type Semaphore is limited private ;

type Semaphore_Descriptor is private ;

11.1.1.2 Description

The type Semaphore is used to represent semaphore objects. Semaphores may, but
need not, be implemented within the file system, and open semaphores may use file
descriptors. Thus, the use of semaphores may reduce the number of file descriptors
available for other uses (see Open Files Maximum in 2.6.1).

Operating on copies of Semaphore objects (which may be created by returning func-
tion results of this type or by using the type as an in out parameter) results in
undefined behavior.

This standard defines two kinds of semaphores: unnamed semaphores (see 11.1.2)
and named semaphores (see 11.1.4).

Objects of type Semaphore_Descriptor are used as semaphore descriptors, that
is, handles for semaphore objects. A semaphore descriptor is valid if it is associated
with an open named semaphore or an initialized unnamed semaphore.

Copies of Semaphore_Descriptor objects shall always specify the same semaphore
object. Operating on an object of type Semaphore_Descriptor after the correspond-
ing semaphore object no longer exists results in undefined behavior, which might
affect other processes sharing the same semaphore.

This standard specifies two attributes of semaphore objects:

Value

The Value attribute of a semaphore is an integer representing the state of
the semaphore. This attribute is initialized when the semaphore is initial-
ized (unnamed semaphore) or created (named semaphore). Three operations
(Wait , Try_Wait , and Post) may be applied to semaphores and operate on
the Value attribute. (See 11.1.7 and 11.1.8.)

296 11 Synchronization

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Process Shared

The Process Shared attribute of a semaphore is a Boolean that indicates
whether the semaphore is sharable between tasks in different processes. A
task in any process that can access a sharable semaphore can safely op-
erate upon it using the operations defined in this section. For unnamed
semaphores the Process Shared attribute is initialized by the parameter Is_-
Shared (see 11.1.2). For named semaphores the Process Shared attribute
is always set to True when the semaphore is created (see 11.1.4), that is,
named semaphores are always sharable.

11.1.2 Initialize an Unnamed Semaphore

11.1.2.1 Synopsis

procedure Initialize
(Sem: in out Semaphore;

Value: in Natural;
Is_Shared: in Boolean := False);

function Descriptor_Of
(Sem: Semaphore)

return Semaphore_Descriptor;

11.1.2.2 Description

Initialize shall initialize the unnamed semaphore Sem, setting the Value attribute
to Value and the Process Shared attribute to Is_Shared . Following a normal return
from Initialize , the semaphore is initialized, meaning it can be used in subse-
quent calls to the operations defined in this section. This semaphore remains ini-
tialized until it is finalized. If Initialize is called on a semaphore that is already
initialized (without an intervening Finalize), the effect is undefined.

NOTE: In order to provide the semantics specified above it will be necessary for implementa-
tions to ensure that the parameter Semof Initialize is passed by reference.

If Is_Shared is False , then Semis shared only among tasks of the same process;
any task in this process can use Sem for performing the operations defined in this
section. The use of Semby tasks other than those created in the same process is
undefined.

NOTE: Several processes may access a sharable unnamed semaphore, if it is allocated in
shared memory.

Descriptor_Of shall return a descriptor for the semaphore object Semthat can later
be used in semaphore operations. The semaphore corresponding to Semis required to
already be initialized, otherwise the effect is undefined. If Descriptor_Of is called
again, by the same task or by another task within the same process, and Semhas not
since been finalized, the same descriptor value shall be returned.

11.1.2.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

The value parameter exceeds Semaphores Value Maximum.

11.1 Package POSIX_Semaphores 297

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

No_Space_Left_On_Device
A resource required to initialize the semaphore has been exhausted.
The limit on semaphores (Semaphores Maximum) has been reached.

Operation_Not_Implemented
Initialize is not supported by this implementation.

Operation_Not_Permitted
The process lacks the appropriate privilege to initialize the semaphore.

11.1.3 Finalize an Unnamed Semaphore

11.1.3.1 Synopsis

procedure Finalize (Sem: in out Semaphore);

11.1.3.2 Description

Finalize is used to finalize the unnamed semaphore Sem. The effect of subsequent
use of Semis undefined until the semaphore is reinitialized by another call to Ini-
tialize .

NOTE: In order to provide the semantics specified above, it will be necessary for implementa-
tions to ensure that the parameter Semof Finalize is passed by reference.

The effect of finalizing a semaphore on which other tasks are currently blocked is
undefined.

11.1.3.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument
Semis not a properly initialized semaphore object.

Operation_Not_Implemented
Finalize is not supported by this implementation.

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

Resource_Busy
There are currently tasks blocked on Sem.

11.1.4 Create/Open a Named Semaphore

11.1.4.1 Synopsis

function Open
(Name: POSIX.POSIX_String;

Masked_Signals: POSIX.Signal_Masking:= POSIX.RTS_Signals)
return Semaphore_Descriptor;

function Open_Or_Create
(Name: POSIX.POSIX_String;

Permissions: POSIX_Permissions.Permission_Set;
Value: Natural;
Options: POSIX_IO.Open_Option_Set:= POSIX_IO.Empty_Set;
Masked_Signals: POSIX.Signal_Masking:= POSIX.RTS_Signals)

return Semaphore_Descriptor;

298 11 Synchronization

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

11.1.4.2 Description

Open and Open_Or_Create establish a connection between a named semaphore and
a process. They return a semaphore descriptor that any task within the process
can use to refer to the semaphore associated with the specified name. Following a
normal return from Open or Open_Or_Create , the semaphore can be used in subse-
quent calls to the operations defined in this section. This semaphore remains usable
by any task within this process until the semaphore is closed by Close , POSIX_-
Unsafe_Process_Primitives.Exec , POSIX_Unsafe_Process_Primitives.-
Exec_Search , or POSIX_Process_Primitives.Exit_Process .

Open shall open an already existing semaphore and shall fail if the named semaphore
does not exist.

Open_Or_Create shall either open an existing semaphore, except as noted under
Exclusive below, or shall create and open a named semaphore.

After the semaphore named Namehas been created by Open_Or_Create , other tasks
(whether in the same process or in different processes) can connect to the semaphore
by calling Open or Open_Or_Create with the same value of Name.

The Nameparameter specifies a string naming a semaphore object.

It is unspecified whether the name appears in the file system and is visible to func-
tions that take pathnames as parameters.

The Nameparameter shall conform to the construction rules for a pathname. If Name
begins with the slash character, then processes calling Open or Open_Or_Create
with the same value of Nameshall refer to the same semaphore object, as long as
that name has not been removed by a call to Unlink_Semaphore . (See 11.1.6). If
Namedoes not begin with the slash character, the effect is implementation defined.
The interpretation of slash characters other than the leading slash character in Name
is implementation defined.

The Options parameter may specify either the empty set or the following value:

Exclusive

If Options includes POSIX_IO.Exclusive , Open_Or_Create shall fail if
the named semaphore already exists. If the named semaphore does not al-
ready exist, it shall be created. The check for the existence of the semaphore
and the creation of the semaphore if it does not exist shall be atomic with
respect to other processes executing Open_Or_Create naming the same
semaphore with Exclusive specified.

NOTE: This standard does not require semaphore creation to be atomic with respect to tasks,
since atomicity of this operation is not required by POSIX.1.

If Options does not include POSIX_IO.Exclusive and the named semaphore al-
ready exists, Open_Or_Create shall open the named semaphore as if Open was
called.

The effect of specifying an option other than POSIX_IO.Exclusive is unspecified.

11.1 Package POSIX_Semaphores 299

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

When a semaphore is created, its Value attribute shall be initialized to Value and
its Process Shared attribute shall be set to True . Valid initial values for semaphores
must be less than or equal to Semaphores Value Maximum. When the operation does
not create a new semaphore, the parameter Value shall be ignored.

The user ID of the semaphore shall be set to the effective user ID of the process, and
the group ID of the semaphore shall be set to a system default group ID or to the
effective group ID of the process.

The access permissions for the newly created semaphore shall be those for which the
permission is True in both Permissions and the allowed process permission set.

Open or Open_Or_Create may be interruptible by the delivery of a signal. Masked_-
Signals specifies the set of signals that shall be added to the signal mask for the
duration of this operation, as described in 3.3.6.

If a process makes multiple calls (even from different tasks within the same process)
to Open or Open_Or_Create with the same value for Name, the same Semaphore_-
Descriptor value shall be returned for each such call, provided that there have
been no calls to Unlink_Semaphore for this semaphore.

11.1.4.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Permission_Denied

The named semaphore exists, and the permissions were denied; or the
named semaphore does not exist, and permission to create the named
semaphore was denied.

File_Exists

POSIX_IO.Exclusive is specified, and the named semaphore already ex-
ists.

Interrupted_Operation

Open or Open_Or_Create was interrupted by a signal.

Invalid_Argument

Open and Open_Or_Create are not supported for Name. The implementa-
tion shall document under what circumstances this error may be returned.
Value is greater than Semaphores Value Maximum.

Too_Many_Open_Files

Too many semaphore descriptors or file descriptors are currently in use by
this process.

Too_Many_Open_Files_In_System

Too many semaphores are currently open in the system.

Filename_Too_Long

The length in POSIX characters of the specified pathname exceeds Pathname
Limit; or the length in POSIX characters of a component of the specified path-
name is greater than Filename Maximum, and the Filename Truncation option is
not supported for the pathname prefix of that component. (See 5.4.2.)

300 11 Synchronization

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

No_Such_File_Or_Directory

Upon a call to Open, the named semaphore does not exist.

No_Space_Left_On_Device

There is insufficient space for the creation of the new named semaphore.

Operation_Not_Implemented

Open and Open_Or_Create are not supported by this implementation.

11.1.5 Close a Named Semaphore

11.1.5.1 Synopsis

procedure Close (Sem: in out Semaphore_Descriptor);

11.1.5.2 Description

The procedure Close shall only be called for named semaphores and is used to indi-
cate that all tasks within the calling process are finished using the named semaphore
specified by Sem.

Close shall deallocate (that is, make available for reuse by a subsequent Open or
Open_Or_Create by this process) any system resources allocated by the system
for use by this process for this semaphore. The effect of subsequent use of Sem is
undefined. If the semaphore has not been removed by a call to Unlink_Semaphore ,
then Close shall have no effect on the state of the semaphore.

11.1.5.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

Semis not a valid semaphore descriptor.

Operation_Not_Implemented

Close is not supported by this implementation.

11.1.6 Remove a Named Semaphore

11.1.6.1 Synopsis

procedure Unlink_Semaphore (Name: in POSIX.POSIX_String);

11.1.6.2 Description

Unlink_Semaphore shall remove (i.e., make inaccessible) the semaphore named
by the string Name. If the semaphore specified by Nameis currently referenced by
other processes, then Unlink_Semaphore shall have no effect on the state of the
semaphore. If one or more processes have the semaphore open when Unlink_-
Semaphore is called, removal of the semaphore shall be postponed until all refer-
ences to the semaphore have been severed by calls to Close , POSIX_Unsafe_Pro-
cess_Primitives.Exec , POSIX_Unsafe_Process_Primitives.Exec_Search ,

11.1 Package POSIX_Semaphores 301

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

or POSIX_Process_Primitives.Exit_Process . The call to Unlink_Semaphore
shall not block the caller; it shall return immediately.

After Unlink_Semaphore is called, subsequent calls to Open or Open_Or_Create
to recreate or reconnect to the semaphore shall refer to a new semaphore object.

11.1.6.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Permission_Denied

Permission is denied to unlink the named semaphore.

Filename_Too_Long

The length in POSIX characters of the specified pathname exceeds Pathname
Limit; or the length in POSIX characters of a component of the specified path-
name is greater than Filename Maximum, and the Filename Truncation option is
not supported for the pathname prefix of that component. (See 5.4.2.)

No_Such_File_Or_Directory

The named semaphore does not exist.

Operation_Not_Implemented

Unlink_Semaphore is not supported by this implementation.

11.1.7 Decrement a Semaphore

11.1.7.1 Synopsis

procedure Wait
(Sem: in Semaphore_Descriptor;

Masked_Signals: in POSIX.Signal_Masking:= POSIX.RTS_Signals);
function Try_Wait

(Sem: Semaphore_Descriptor)

return Boolean;

11.1.7.2 Description

Wait performs the semaphore decrement operation (see 2.2.2.162) on the semaphore
specified by Sem. If the semaphore Value is currently zero, then the calling task shall
be blocked and shall not return from the call to Wait until either it decrements the
semaphore or the call is interrupted by a signal.

Try_Wait shall decrement the semaphore specified by Semand return True only if
the semaphore Value is currently positive. Otherwise, Try_Wait shall return False ,
and the semaphore Value attribute shall remain unchanged.

When Wait returns or Try_Wait returns with a value of True , the semaphore Value
has been decremented. The semaphore Value shall remain unchanged until Post is
called and returns normally.

Wait may be interruptible by the delivery of a signal. Masked_Signals specifies the
set of signals that shall be added to the signal mask for the duration of this operation,
as described in 3.3.6.

302 11 Synchronization

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

It is implementation defined whether this operation is interruptible. If the operation
is not interruptible, the Masked_Signals parameter may be ignored.

11.1.7.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

Semis not a valid semaphore descriptor.

Operation_Not_Implemented

Wait and Try_Wait are not supported by this implementation.

If any of the following conditions is detected, the exception POSIX_Error shall be
raised with the corresponding error code:

Resource_Deadlock_Avoided

The operation did not complete since a deadlock condition would have re-
sulted.

Interrupted_Operation

A signal interrupted this operation. It shall be documented in the system
documentation whether this error code is returned.

11.1.8 Increment a Semaphore

11.1.8.1 Synopsis

procedure Post (Sem: in Semaphore_Descriptor);

11.1.8.2 Description

Post performs the semaphore increment operation (see 2.2.2.163) on the semaphore
specified by Sem. If the semaphore Value resulting from this operation is positive,
then no tasks were blocked waiting to decrement the semaphore; the semaphore
Value is simply incremented.

If the Value of the semaphore resulting from this operation is zero, then one of the
tasks blocked waiting to decrement the semaphore shall be unblocked and allowed
to return from its call to Wait .

If the Priority Process Scheduling option is supported: If more than one task is blocked
waiting to decrement the semaphore, the task to be unblocked shall be selected in
a manner appropriate to the scheduling policies and parameters in effect for the
blocked tasks and their processes.

If the Priority Process Scheduling option is not supported, the selection of which task to
unblock is unspecified.

11.1 Package POSIX_Semaphores 303

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

11.1.8.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

Semis not a valid semaphore descriptor.

Operation_Not_Implemented

Post is not supported by this implementation.

11.1.9 Get the Value of a Semaphore

11.1.9.1 Synopsis

function Get_Value (Sem: Semaphore_Descriptor)

return Integer;

11.1.9.2 Description

Get_Value returns the Value attribute of the semaphore specified by Sem with-
out affecting the state of the semaphore. The value returned represents an actual
semaphore Value that occurred at some unspecified time during the call. This value
may be different from the actual Value of the semaphore when Get_Value returns.

If the Value of the semaphore specified by Semis zero, then Get_Value shall return
either zero or a negative number whose absolute value represents the number of
tasks waiting for the semaphore at an unspecified time during the call.

11.1.9.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

Semis not a valid semaphore descriptor.

Operation_Not_Implemented

Get_Value is not supported by this implementation.

11.2 Package POSIX_Mutexes

This package provides access to services related to mutexes. Mutexes are a type of
synchronization object that can be used to provide mutual exclusion between tasks.
Certain mutexes (see 11.2.4), when allocated in shared memory (see 12.4), can also
be used to provide mutual exclusion between tasks in different processes.

NOTE: Mutexes and condition variables are provided in this standard primarily for synchro-
nization between Ada tasks and C-language threads, in mixed-language applications. The
preferred mechanisms for intertask synchronization are those provided by the Ada language,
namely, protected objects and task entries.

The functionality described in this clause is optional. If the Mutexes option is not
supported, the implementation may cause all calls to the explicitly declared operations

304 11 Synchronization

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

defined in this clause to raise POSIX_Error . Otherwise, the behavior shall be as
specified in this clause.

with System;
package POSIX_Mutexes is

-- 11.2.2 Mutex and Mutex Descriptor Types
type Mutex is limited private ;
type Mutex_Descriptor is private ;
-- 11.2.3 Mutex Attributes Type
type Attributes is private ;
procedure Initialize (Attr: in out Attributes);
procedure Finalize (Attr: in out Attributes);
-- 11.2.4 Mutex Process Shared Attribute
function Get_Process_Shared (Attr: Attributes)

return Boolean;
procedure Set_Process_Shared

(Attr: in out Attributes;
Is_Shared: in Boolean:= False);

-- 11.2.5 Mutex Locking Policy Attributes
subtype Ceiling_Priority is Integer range implementation-defined;
type Locking_Policy is range implementation-defined;
No_Priority_Inheritance: constant Locking_Policy:= implementation-defined;
Highest_Blocked_Task: constant Locking_Policy:= implementation-defined;
Highest_Ceiling_Priority: constant Locking_Policy:= implementation-defined;
procedure Set_Locking_Policy

(Attr: in out Attributes;
Locking: in Locking_Policy);

function Get_Locking_Policy
(Attr: Attributes)

return Locking_Policy;
procedure Set_Ceiling_Priority

(Attr: in out Attributes;
New_Ceiling: in Ceiling_Priority);

function Get_Ceiling_Priority (Attr: Attributes)
return Ceiling_Priority;

-- 11.2.6 Initialize and Finalize a Mutex
procedure Initialize

(M: in out Mutex;
Attr: in Attributes);

procedure Initialize (M: in out Mutex);
function Descriptor_Of (M: Mutex) return Mutex_Descriptor;
procedure Finalize (M: in out Mutex);
-- 11.2.7 Change the Ceiling Priority of a Mutex
procedure Set_Ceiling_Priority

(M: in Mutex_Descriptor;
New_Ceiling: in Ceiling_Priority;
Old_Ceiling: out Ceiling_Priority);

function Get_Ceiling_Priority (M: Mutex_Descriptor)
return Ceiling_Priority;

-- 11.2.8 Lock and Unlock a Mutex
procedure Lock (M: in Mutex_Descriptor);
function Try_Lock (M: Mutex_Descriptor) return Boolean;
procedure Unlock (M: in Mutex_Descriptor);

private
implementation-defined

end POSIX_Mutexes;

11.2 Package POSIX_Mutexes 305

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

11.2.1 Mutex Ownership

A task becomes the owner of a mutex specified by the mutex descriptor M (see
2.2.2.99) when any of the following occur:

— A call to Lock with parameter Mreturns normally, or

— A call to Try_Lock with parameter Mreturns the value True , or

— A call to POSIX_Condition_Variables.Wait with parameter Mreturns nor-
mally or with an exception (except as explicitly indicated otherwise for certain
errors), or

— A call to POSIX_Condition_Variables.Timed_Wait with parameter M re-
turns normally or with an exception (except as explicitly indicated otherwise for
certain errors).

The task remains the owner of the mutex specified by the mutex descriptor Muntil it
does one of the following:

— Executes Unlock with parameter M, or

— Is blocked in a call to POSIX_Condition_Variables.Wait with parameter M,
or

— Is blocked in a call to POSIX_Condition_Variables.Timed_Wait with param-
eter M.

The implementation shall behave, at each instant in time visible to the contending
tasks, as if there is at most one owner of any mutex.

A task that becomes the owner of a mutex is said to have locked the mutex, and the
mutex is said to have become locked. When a task gives up ownership of a mutex it
is said to have unlocked the mutex, and the mutex is said to have become unlocked.

The effect of aborting or terminating a task that has locked a mutex is implementa-
tion defined, and shall be documented for each implementation.

NOTE: The user is responsible for ensuring that all mutexes owned by a task are unlocked
before the task terminates.

11.2.2 Mutex and Mutex Descriptor Types

11.2.2.1 Synopsis

type Mutex is limited private ;

type Mutex_Descriptor is private ;

11.2.2.2 Description

The type Mutex is used to represent mutex objects.

Operating on copies of Mutex objects (which may be created by returning function
results of this type or by using the type as an in out parameter) results in undefined
behavior.

Objects of type Mutex_Descriptor are used as mutex descriptors; that is, handles
for mutex objects. A mutex descriptor is valid if it is associated with a properly ini-
tialized mutex; that is, the mutex descriptor is returned by a call to Descriptor_Of

306 11 Synchronization

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

with a parameter that has been used in a prior call to Initialize and not yet used
in a call to Finalize .

Copies of Mutex_Descriptor objects shall always specify the same mutex. Operat-
ing on an object of type Mutex_Descriptor after the corresponding mutex object is
finalized results in undefined behavior, which might affect other processes sharing
the same mutex.

11.2.3 Mutex Attributes Type

11.2.3.1 Synopsis

type Attributes is private ;
procedure Initialize (Attr: in out Attributes);

procedure Finalize (Attr: in out Attributes);

11.2.3.2 Description

Objects of type Attributes are used to specify a set of mutex creation attributes.

This standard defines several attributes of mutexes:

Process Shared

Defined in 11.2.4.

Locking Policy

Defined in 11.2.5.

Ceiling Priority

Defined in 11.2.5.

Additional attributes, their default values, and the names of the associated opera-
tions to get and set those attribute values are implementation defined.

Initialize shall initialize the mutex attributes object Attr with the default value
for all of the attributes defined by the implementation.

The effect of initializing an already initialized mutex attributes object is undefined.

After a mutex attributes object has been used to initialize one or more mutexes, any
operation affecting the attributes object (including Finalize) does not affect any
previously initialized mutexes.

Finalize shall finalize the mutex attributes object Attr ; the object becomes, in
effect, uninitialized. An implementation may cause Finalize to set Attr to an
invalid value. A finalized mutex attributes object can be reinitialized using Ini-
tialize ; the results of otherwise referencing the attributes object after it has been
finalized are undefined.

11.2.3.3 Error Handling

If any of the following conditions is detected, the exception POSIX_Error shall be
raised with the corresponding error code:

11.2 Package POSIX_Mutexes 307

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Not_Enough_Space

Upon Initialize , insufficient memory exists to initialize the mutex at-
tributes object.

Invalid_Argument

Upon Finalize , Attr does not specify a properly initialized mutex at-
tributes object.

11.2.4 Mutex Process Shared Attribute

11.2.4.1 Synopsis

function Get_Process_Shared (Attr: Attributes)
return Boolean;

procedure Set_Process_Shared
(Attr: in out Attributes;

Is_Shared: in Boolean:= False);

11.2.4.2 Description

The functionality described in this subclause is optional. If the Process Shared option
is not supported, the implementation may cause all calls to the explicitly declared
operations defined in this subclause to raise POSIX_Error . Otherwise, the behavior
shall be as specified in this subclause.

The implementation shall provide a Boolean attribute called Process Shared and
the associated operations Get_Process_Shared and Set_Process_Shared . This
attribute indicates whether a newly initialized mutex can be shared between tasks
in different processes having access to that mutex.

Set_Process_Shared sets the Process Shared attribute in an initialized mutex at-
tributes object Attr to the value Is_Shared .

Get_Process_Shared returns the value of the Process Shared attribute of the mutex
attributes object Attr .

If the Process Shared attribute is True in a given mutex attributes object, a mutex
initialized with this object shall be sharable; that is, the mutex can be operated upon
by any task that has access to the memory where the mutex is allocated (even tasks
from different processes). Otherwise, the mutex object shall not be sharable, that is,
it can be operated upon only by tasks created within the same process as the task
that initialized the mutex. If tasks of other processes attempt to operate on such a
mutex, the behavior is undefined.

The default value of the attribute shall be False .

11.2.4.3 Error Handling

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

Attr does not specify a properly initialized mutex attributes object.

308 11 Synchronization

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

11.2.5 Mutex Locking Policy Attributes

11.2.5.1 Synopsis

subtype Ceiling_Priority is Integer range implementation-defined;
type Locking_Policy is range implementation-defined;
No_Priority_Inheritance: constant Locking_Policy:= implementation-defined;
Highest_Blocked_Task: constant Locking_Policy:= implementation-defined;
Highest_Ceiling_Priority: constant Locking_Policy:= implementation-defined;
procedure Set_Locking_Policy

(Attr: in out Attributes;
Locking: in Locking_Policy);

function Get_Locking_Policy
(Attr: Attributes)

return Locking_Policy;
procedure Set_Ceiling_Priority

(Attr: in out Attributes;
New_Ceiling: in Ceiling_Priority);

function Get_Ceiling_Priority (Attr: Attributes)

return Ceiling_Priority;

11.2.5.2 Description

The functionality described in this subclause is optional. If neither the Mutex Priority
Ceiling option nor the Mutex Priority Inheritance option is supported, the implementation
may cause all calls to the explicitly declared operations defined in this subclause to
raise POSIX_Error . Otherwise, the behavior shall be as specified in this subclause.

Objects of type Locking_Policy are used to specify the value of the Locking Policy
attribute or a mutex.

The implementation shall support the value No_Priority_Inheritance .

If the Mutex Priority Inheritance option is supported: The implementation shall support
the locking policy value Highest_Blocked_Task .

If the Mutex Priority Ceiling option is supported: The implementation shall support the
locking policy value Highest_Ceiling_Priority and the integer mutex attribute
Ceiling Priority, and the range of Ceiling_Priority shall include System.Priority .

If the Priority Task Scheduling option is supported: The effects of mutex Locking Policy on
scheduling of tasks shall be as specified in 13.4.

If the Priority Task Scheduling option is not supported, but the task dispatching model
of D.2.1 of the Ada RM f1g is supported, the following apply:

— When a task owns a mutex initialized with the No_Priority_Inheritance
locking policy, its active priority and scheduling are not affected by its ownership
of that mutex.

— If the implementation allows an application to specify Ceiling_Locking as
the protected object locking policy, it shall also allow the application to specify
Highest_Ceiling_Priority as the locking policy for mutexes.

— When a task owns one or more mutexes initialized with the Highest_Ceil-
ing_Priority locking policy, it shall inherit the Ceiling Priority of every mutex
owned by this task and initialized with this attribute, regardless of whether
other tasks are blocked on any of these mutexes.

11.2 Package POSIX_Mutexes 309

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

— When a task is blocking tasks with higher active priority because it owns one
or more mutexes initialized with the Highest_Blocked_Task locking policy, it
shall inherit the active priorities of all the tasks waiting on the mutexes owned
by this task and initialized with this locking policy. If a task that owns mu-
texes becomes blocked on another mutex, the same priority inheritance effect
described above shall be propagated to the owner of that mutex, in a recursive
manner.

Set_Locking_Policy shall set the Locking Policy attribute of the previously initial-
ized mutex attributes object specified by Attr to the value of Locking , provided the
specified locking policy is supported.

Get_Locking_Policy shall return the Locking Policy attribute value of the previously
initialized mutex attributes object Attr .

If the Mutex Priority Ceiling option is supported:

— Set_Ceiling_Priority shall set the Ceiling Priority attribute of the mutex at-
tributes object specified by Attr to the value of New_Ceiling .

— Get_Ceiling_Priority shall return the Ceiling Priority attribute value of Attr .

— If Set_Ceiling_Priority and Get_Ceiling_Priority are called for a mutex
attributes object whose Locking Policy attribute is not equal to Highest_Ceil-
ing_Priority , POSIX_Error shall be raised.
NOTE: In order to avoid priority inversion, the priority ceiling of a mutex should be set
to a priority equal to or greater than the anticipated maximum active priority of all tasks
that may lock the mutex.

NOTE: All the rules above governing the locking and unlocking of mutexes also apply
to the implicit locking and unlocking of mutexes through the Wait and Timed_Wait
operations on condition variables (see 3.3).

11.2.5.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Operation_Not_Implemented

Neither the Mutex Priority Inheritance option nor the Mutex Priority Ceiling option
is supported, and the implementation does not support the Get_Locking_-
Policy and Set_Locking_Policy operations.
There is no support for the Mutex Priority Ceiling option, and the implemen-
tation does not support the Set_Ceiling_Priority and Get_Ceiling_-
Priority operations.

Operation_Not_Supported

The value specified to Set_Locking_Policy by Locking is an unsupported
value.

If any of the following conditions is detected, the exception POSIX_Error shall be
raised with the corresponding error code:

310 11 Synchronization

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Invalid_Argument

Attr does not specify a properly initialized mutex attributes object.
Either Set_Ceiling_Priority or Get_Ceiling_Priority were called
on a mutex attributes object whose Locking Policy attribute is not equal to
Highest_Ceiling_Priority locking policy.

Operation_Not_Permitted

The caller does not have the appropriate privilege to perform the operation.

11.2.6 Initialize and Finalize a Mutex

11.2.6.1 Synopsis

procedure Initialize
(M: in out Mutex;

Attr: in Attributes);
procedure Initialize (M: in out Mutex);
function Descriptor_Of (M: Mutex) return Mutex_Descriptor;

procedure Finalize (M: in out Mutex);

11.2.6.2 Description

Initialize shall initialize the mutex Mwith attributes specified by Attr . If the
version of Initialize without the Attr parameter is used, the mutex Mshall be
initialized to the default mutex attributes values.

Upon return from Initialize , the mutex is in an unlocked state. If Initialize
is called again on the same mutex (without an intervening Finalize), the effect is
undefined.

Descriptor_Of shall return a descriptor for the mutex object M that can later be
used in mutex operations. If Descriptor_Of is called again, without an intervening
call to Finalize , the same descriptor value shall be returned. If the mutex object M
is not already initialized, the effect is undefined.

Finalize shall finalize the mutex M; the mutex becomes, in effect, uninitialized.
An implementation may cause Finalize to set M to an invalid value. A finalized
mutex can be reinitialized using Initialize ; the results of otherwise referencing
the mutex after it has been finalized are undefined.

Attempting to finalize a locked mutex results in undefined behavior.

NOTE: In order to provide the correct semantics, implementations must ensure that the pa-
rameter Mof Initialize and Initialize is passed by reference.

11.2.6.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Resource_Temporarily_Unavailable

The system lacked the necessary resources other than memory to initialize
another mutex.

11.2 Package POSIX_Mutexes 311

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Not_Enough_Space

Insufficient memory exists to initialize the mutex.

Operation_Not_Permitted

The caller does not have the privilege to initialize the mutex M.

If any of the following conditions is detected, the exception POSIX_Error shall be
raised with the corresponding error code:

Resource_Busy

The implementation has detected an attempt to initialize an already initial-
ized mutex.
The implementation has detected an attempt to finalize a mutex that is
locked or otherwise referenced (for example, it was specified on a pending
call to Wait or Timed_Wait on a condition variable by another task, and
that task has not been unblocked yet).

Invalid_Argument

Attr does not specify a properly initialized mutex attributes object.
Mis not a properly initialized mutex.

The Resource_Busy and Invalid_Argument error checks, if implemented, shall
act as if they were performed immediately at the beginning of the operation. If an
exception is raised, it shall be raised prior to modifying the state of the mutex M.

11.2.7 Change the Ceiling Priority of a Mutex

11.2.7.1 Synopsis

procedure Set_Ceiling_Priority
(M: in Mutex_Descriptor;

New_Ceiling: in Ceiling_Priority;
Old_Ceiling: out Ceiling_Priority);

function Get_Ceiling_Priority (M: Mutex_Descriptor)

return Ceiling_Priority;

11.2.7.2 Description

The functionality described in this subclause is optional. If the Mutex Priority Ceiling op-
tion is not supported, the implementation may cause all calls to the explicitly declared
operations defined in this subclause to raise POSIX_Error . Otherwise, the behavior
shall be as specified in this subclause.

Get_Ceiling_Priority shall return the current Ceiling Priority attribute of the mu-
tex.

Set_Ceiling_Priority shall either lock the mutex specified by Mif it is unlocked,
or cause the caller to become blocked until the mutex can be locked. Set_Ceiling_-
Priority shall then change the Ceiling Priority attribute of the mutex and unlock the
mutex. Upon a normal return, the previous value of the Ceiling Priority attribute shall
be returned in Old_Ceiling . The process of locking the mutex is not required to
adhere to the Highest_Ceiling_Priority locking policy.

312 11 Synchronization

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Whether Set_Ceiling_Priority behaves as specified above or merely returns er-
ror code Operation_Not_Implemented is implementation defined.

If Set_Ceiling_Priority and Get_Ceiling_Priority are called for a mutex that
was not initialized with the Highest_Ceiling_Priority locking policy, POSIX_-
Error may be raised.

If Set_Ceiling_Priority fails, the Ceiling Priority attribute of the mutex shall not
be changed.

11.2.7.3 Error Handling

If the following condition occurs, the exception POSIX_Error shall be raised with
the corresponding error code:

Operation_Not_Implemented

The implementation does not support the Set_Ceiling_Priority and
Get_Ceiling_Priority operations.

If any of the following conditions is detected, the exception POSIX_Error shall be
raised with the corresponding error code:

Invalid_Argument

The priority requested by New_Ceiling is an unsupported value.
Mdoes not specify a properly initialized mutex.

Operation_Not_Implemented

The implementation does not support the Highest_Ceiling_Priority
locking policy for mutexes.
The implementation does not support the operation Set_Ceiling_Prior-
ity .

Operation_Not_Permitted

The caller does not have the appropriate privilege to perform the operation.

11.2.8 Lock and Unlock a Mutex

11.2.8.1 Synopsis

procedure Lock (M: in Mutex_Descriptor);
function Try_Lock (M: Mutex_Descriptor) return Boolean;

procedure Unlock (M: in Mutex_Descriptor);

11.2.8.2 Description

Lock shall lock the mutex object specified by M. If the mutex is already locked, the
calling task is blocked until the mutex becomes available. This operation returns
with the mutex object specified by M in the locked state with the calling task as its
owner. An attempt by the owner of a mutex to relock the mutex results in undefined
behavior.

Try_Lock is identical to Lock except that it always returns immediately. If the
mutex object specified by M is currently locked by any task, including the current
task, False is returned. Otherwise, True is returned.

11.2 Package POSIX_Mutexes 313

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Unlock is called by the owner of the mutex object specified by Mto release it.

If Unlock is called by a task that is not the owner of the mutex object specified by M,
or if the mutex already is in an unlocked state, the effect is undefined.

If tasks are blocked on the mutex object specified by Mwhen Unlock is called, then
one of the blocked tasks is unblocked and allowed to return from its call to Lock , and
it becomes the owner of the mutex specified in its call to Lock .

If the Priority Task Scheduling option is supported: If more than one task is blocked wait-
ing for the mutex, the scheduling policies and parameters in effect for the blocked
tasks shall determine which task is allowed to acquire the mutex. When tasks ex-
ecuting with the policies Sched_FIFO or Sched_RR are waiting on a mutex, they
shall acquire the mutex in priority order when the mutex is unlocked. For other
scheduling policies, the selection of which task to unblock is unspecified.

If the Priority Task Scheduling option is not supported, the order in which to unblock
the tasks is unspecified.

11.2.8.3 Error Handling

If the following condition occurs, the exception POSIX_Error shall be raised with
the corresponding error code:

Invalid_Argument

Lock or Try_Lock was called for a mutex initialized with Highest_Ceil-
ing_Priority , and the calling task has a priority higher than the ceiling
of the mutex. The implementation may instead raise Program_Error .

If any of the following conditions is detected, the exception POSIX_Error shall be
raised with the corresponding error code:

Invalid_Argument

Mdoes not specify a properly initialized mutex.

Resource_Deadlock_Avoided

The task calling Lock already owns the mutex.

Operation_Not_Permitted

For Unlock , the current task does not own the mutex.

11.3 Package POSIX_Condition_Variables

This package provides access to services related to condition variables. A condition
variable is a synchronization object that can be used, in combination with a mutex,
to wait for a logical condition.

NOTE: Mutexes and condition variables are provided in this standard primarily for synchro-
nization between Ada tasks and C-language threads in mixed-language applications. The
preferred mechanisms for intertask synchronization are those provided by the Ada langauge,
namely, protected objects and task entries.

The functionality described in this clause is optional. If the Mutexes option is not
supported, the implementation may cause all calls to the explicitly declared operations

314 11 Synchronization

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

defined in this clause to raise POSIX_Error . Otherwise, the behavior shall be as
specified in this clause.

with POSIX,
POSIX_Mutexes;

package POSIX_Condition_Variables is
-- 11.3.1 Condition and Condition Descriptor Types
type Condition is limited private ;
type Condition_Descriptor is private ;
-- 11.3.2 Condition Variable Attributes Type
type Attributes is private ;
procedure Initialize (Attr: in out Attributes);
procedure Finalize (Attr: in out Attributes);
-- 11.3.3 Condition Process Shared Attribute
function Get_Process_Shared (Attr: Attributes)

return Boolean;
procedure Set_Process_Shared

(Attr: in out Attributes;
Is_Shared: in Boolean:= False);

-- 11.3.4 Initialize and Finalize a Condition
procedure Initialize

(Cond: in out Condition;
Attr: in Attributes);

procedure Initialize (Cond: in out Condition);
function Descriptor_Of (Cond: Condition)

return Condition_Descriptor;
procedure Finalize (Cond: in out Condition);
-- 11.3.5 Broadcast and Signal a Condition
procedure Signal (Cond: in Condition_Descriptor);
procedure Broadcast (Cond: in Condition_Descriptor);
-- 11.3.6 Wait on a Condition
procedure Wait

(Cond: in Condition_Descriptor;
M: in POSIX_Mutexes.Mutex_Descriptor);

procedure Timed_Wait
(Cond: Condition_Descriptor;

M: POSIX_Mutexes.Mutex_Descriptor;
Timeout: POSIX.Timespec);

private
implementation-defined

end POSIX_Condition_Variables;

11.3.1 Condition and Condition Descriptor Types

11.3.1.1 Synopsis

type Condition is limited private ;

type Condition_Descriptor is private ;

11.3.1.2 Description

The type Condition is used to represent condition variable objects.

Operating on copies of Condition objects (which may be created by returning func-
tion results of this type or by using the type as an in out parameter) results in
undefined behavior.

11.3 Package POSIX_Condition_Variables 315

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Objects of type Condition_Descriptor are used as condition variable descriptors;
that is, handles for condition variable objects. A condition variable descriptor is valid
if it is associated with a properly initialized condition variable; that is, the condition
variable descriptor is returned by a call to Descriptor_Of with a parameter that
has been used in a prior call to Initialize and not yet used in a call to Finalize .

Copies of Condition_Descriptor objects shall always specify the same condition
variable. Operating on an object of type Condition_Descriptor after the corre-
sponding condition variable object is finalized results in undefined behavior, which
might affect other processes sharing the same condition variable.

11.3.2 Condition Variable Attributes Type

11.3.2.1 Synopsis

type Attributes is private ;
procedure Initialize (Attr: in out Attributes);

procedure Finalize (Attr: in out Attributes);

11.3.2.2 Description

Objects of type Attributes specify a set of condition variable creation attributes.

Initialize shall initialize the condition variable attributes object Attr with the
default values for all of the attributes defined by the implementation.

Attempting to initialize an already initialized condition variable attributes object
results in undefined behavior.

After a condition variable attributes object has been used to initialize one or more
condition variables, any operation affecting the attributes object (including Final-
ize) does not affect any previously initialized condition variables.

Finalize shall finalize the condition variable attributes object Attr ; the object be-
comes, in effect, uninitialized. An implementation may cause Finalize to set the
object Attr to an invalid value. A finalized condition variable attributes object can
be reinitialized using Initialize ; the results of otherwise referencing the object
after it has been finalized are undefined.

This standard specifies certain attributes of condition variables (see 11.3.3). Addi-
tional attributes, their default values, and the names of the associated operations to
get and set those attribute values are implementation defined.

11.3.2.3 Error Handling

If the following condition occurs, the exception POSIX_Error shall be raised with
the corresponding error code:

Not_Enough_Space

Insufficient memory exists to initialize the condition variable attributes ob-
ject.

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

316 11 Synchronization

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Invalid_Argument

Upon Finalize , Attr does not specify a properly initialized condition at-
tributes object.

11.3.3 Condition Process Shared Attribute

11.3.3.1 Synopsis

function Get_Process_Shared (Attr: Attributes)
return Boolean;

procedure Set_Process_Shared
(Attr: in out Attributes;

Is_Shared: in Boolean:= False);

11.3.3.2 Description

The functionality described in this subclause is optional. If the Process Shared option
is not supported, the implementation may cause all calls to the explicitly declared
operations defined in this subclause to raise POSIX_Error . Otherwise, the behavior
shall be as specified in this subclause.

The implementation shall support a condition variable attribute called Process Shared
and the associated operations Get_Process_Shared and Set_Process_Shared .
This attribute indicates whether use of a newly initialized condition variable object
can be shared by tasks in different processes having access to that condition variable.

Set_Process_Shared sets the Process Shared attribute of an initialized condition
variable attributes object Attr to Is_Shared .

Get_Process_Shared returns the value of the Process Shared attribute of the condi-
tion variable attributes object Attr .

If the Process Shared attribute of a given condition variable attributes object is True ,
a condition variable initialized with this object shall be sharable; that is, the condi-
tion variable can be operated upon by any task that has access to the memory where
the condition variable is allocated (even tasks from other processes). Otherwise, the
condition variable object shall not be sharable, that is, it can be operated upon only
by tasks created within the same process as the task that initialized the condition
variable object. If tasks of other processes attempt to operate on such a condition
variable, the behavior is undefined.

The default value of the Process Shared attribute shall be False .

11.3.3.3 Error Handling

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

Attr does not specify a properly initialized condition attributes object.

11.3 Package POSIX_Condition_Variables 317

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

11.3.4 Initialize and Finalize a Condition

11.3.4.1 Synopsis

procedure Initialize
(Cond: in out Condition;

Attr: in Attributes);
procedure Initialize (Cond: in out Condition);
function Descriptor_Of (Cond: Condition)

return Condition_Descriptor;

procedure Finalize (Cond: in out Condition);

11.3.4.2 Description

Initialize shall initialize the condition variable Cond with attributes specified by
Attr . If the version of Initialize without the Attr parameter is used, Cond shall
be initialized to the default values for all condition variable attributes. If Initial-
ize is called again on the same condition variable (without an intervening Final-
ize), the effect is undefined.

Descriptor_Of shall return a descriptor for the previously initialized condition
variable object Cond that can later be used in condition variable operations. If De-
scriptor_Of is called again, without an intervening call to Finalize , the same
descriptor value shall be returned. If the condition variable object Cond is not al-
ready initialized, the effect is undefined.

NOTE: In order to provide the correct semantics, implementations must ensure that the pa-
rameter Cond of Initialize and Finalize is passed by reference.

Finalize shall finalize the condition variable Cond; the condition variable becomes,
in effect, uninitialized. An implementation may cause Finalize to set Cond to an
invalid value. A finalized condition variable can be reinitialized using Initialize ;
the results of otherwise referencing the condition variable after it has been finalized
are undefined.

Attempting to finalize a condition variable upon which tasks are currently blocked
results in undefined behavior.

11.3.4.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Resource_Temporarily_Unavailable

The system lacked the necessary resources (other than memory) to initialize
another condition variable.

Not_Enough_Space

Insufficient memory exists to initialize the condition variable.

If any of the following conditions is detected, the exception POSIX_Error shall be
raised with the corresponding error code:

318 11 Synchronization

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Resource_Busy

The implementation has detected an attempt to initialize an already initial-
ized condition variable object.
The implementation has detected an attempt to finalize the object Cond
while it is referenced (for example, while being used in a Wait or Timed_-
Wait by another task).

Invalid_Argument

Attr does not specify a properly initialized condition attributes object.
Cond is not a properly initialized condition variable.

The Resource_Busy and Invalid_Argument error checks, if implemented, shall
act as if they were performed immediately at the beginning of the operation. If an
exception is raised, it shall be raised prior to modifying the state of the condition
variable Cond.

11.3.5 Broadcast and Signal a Condition

11.3.5.1 Synopsis

procedure Signal (Cond: in Condition_Descriptor);

procedure Broadcast (Cond: in Condition_Descriptor);

11.3.5.2 Description

The procedures Signal and Broacast are used to unblock tasks that are blocked
on a condition variable.

If any tasks are blocked on the condition variable specified by Cond, Signal shall
unblock at least one of these tasks.

Broadcast shall unblock all tasks currently blocked on the condition variable spec-
ified by Cond.

If the Priority Task Scheduling option is supported: If more than one task is blocked on
the condition variable specified by Cond, the scheduling policies and parameters in
effect for the blocked tasks shall determine the order in which the tasks shall be
unblocked. Tasks executing with the scheduling policies Sched_FIFO or Sched_RR
shall be unblocked in priority order. For other scheduling policies, the order in which
to unblock the tasks is unspecified.

If the Priority Task Scheduling option is not supported, the order in which to unblock
the tasks is unspecified.

After a Signal or Broadcast operation has unblocked a given task that has called
Wait or Timed_Wait , the task shall contend for the mutex that was specified in the
Wait or Timed_Wait operation as if it had called Lock . (See 11.2.8). Upon return
from Wait or Timed_Wait , the task shall be the owner of the mutex.

Signal or Broadcast can be called by a task whether or not it is the owner of the
mutex that tasks calling Wait or Timed_Wait have associated with the condition
variable in their calls.

Signal and Broadcast shall have no effect if no tasks are currently blocked on the
condition variable specified by Cond.

11.3 Package POSIX_Condition_Variables 319

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

11.3.5.3 Error Handling

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

Cond is not a valid condition variable descriptor.

11.3.6 Wait on a Condition

11.3.6.1 Synopsis

procedure Wait
(Cond: in Condition_Descriptor;

M: in POSIX_Mutexes.Mutex_Descriptor);
procedure Timed_Wait

(Cond: Condition_Descriptor;
M: POSIX_Mutexes.Mutex_Descriptor;

Timeout: POSIX.Timespec);

11.3.6.2 Description

Wait and Timed_Wait cause the calling task to be blocked on a condition variable
until it is signaled or broadcast. The calling task is required to be the owner of the
mutex specified by M; otherwise, the effect is undefined.

These operations atomically unlock the mutex specified by Mand cause the calling
task to become blocked on the condition variable specified by Cond. In other words,
if another task is able to lock the mutex after the about-to-block task has unlocked
it, then a subsequent call to Signal or Broadcast in that task shall behave as if it
were issued after the about-to-block task has blocked.

Upon a normal return, the calling task shall, again, be the owner of the mutex spec-
ified by M.

NOTE: Since spurious wakeups from Wait or Timed_Wait may occur, an appliction that uses
condition variables for synchronization needs to have an independent way to check whether
the logical condition or event for which a task is waiting has actually occurred. Checking
is normally accomplished by enclosing each call to Wait or Timed_Wait in a while loop
that tests the logical condition and executes the wait operation repeatedly until the logical
condition is true. The test for the logical condition is normally coded as a Boolean predicate
involving shared variables that are protected by the mutex.

The effect of using more than one mutex for concurrent Wait or Timed_Wait opera-
tions on the same condition variable is undefined.

NOTE: A condition variable becomes associated with a unique mutex when a task waits on
the condition variable, and this (dynamic) association ends when the wait returns.

A condition wait (whether timed or not) is an abort completion point as defined in 9.8
(15) of the Ada RM f1g.

Timed_Wait shall behave the same as Wait except that an error occurs if and when
the absolute time specified by Timeout is reached (i.e., when the system time as mea-
sured by Clock_Realtime equals or exceeds Timeout) before the condition specified

320 11 Synchronization

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

by Cond is signaled or broadcast. If the absolute time specified by Timeout has al-
ready been reached at the time of the call, Timed_Wait shall return immediately
with an error. When this occurs, Timed_Wait shall nonetheless unlock and relock
the mutex specified by M.

The operation Wait shall not be interruptible by a signal.

11.3.6.3 Error Handling

If the following condition occurs, the exception POSIX_Error shall be raised with
the corresponding error code:

Timed_Out

The time specified by Timeout has passed.

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

Cond is not a valid condition variable descriptor.
Mis not a valid mutex descriptor.
Different mutexes were specified for concurrent Wait or Timed_Wait oper-
ations on the same condition variable.
The mutex was not owned by the current task at the time of the call.
The Timeout value cannot be interpreted as a valid Timespec value. The
implementation may instead raise Constraint_Error .

Except for Timed_Out , all these error checks shall act as if they were performed
immediately at the beginning of the operation and shall raise an exception prior to
modifying the state of the mutex specified by Mor the condition variable specified by
Cond.

11.3 Package POSIX_Condition_Variables 321

IEEE Std 1003.5c-1998

Section 12: Memory Management

This section specifies interfaces for memory management, including locking portions
of the address space of a process so that they are continually resident in memory, and
mapping files and shared memory objects to the address space of a process.

Memory range locking and memory mapping operations are defined in terms of
pages. Implementations may restrict the size and alignment of range lockings and
mappings to be on page size boundaries. The page size, as a count of storage units,
is the value of the runtime invariant limit Page Size. If an implementation has no
restrictions on size or alignment, it may specify a one-unit page size.

Memory locking guarantees the residence of portions of the address space. It is
implementation defined whether locking memory guarantees fixed translation be-
tween virtual addresses (as seen by the process) and physical addresses. Per-process
memory locks are not inherited across a POSIX_Unsafe_Process_Primitives.-
Fork , POSIX_Process_Primitives.Start_Process , and POSIX_Process_Prim-
itives.Start_Process_Search . All memory locks owned by a process are un-
locked upon POSIX_Unsafe_Process_Primitives.Exec , POSIX_Unsafe_Pro-
cess_Primitives.Exec_Search , or process termination. Unmapping of an address
range removes any memory locks established on that address range by the process.

If the Memory Mapped Files option is supported: A process may access files by directly
incorporating file data into the address space of a process. Once a file is mapped into
the address space of a process, the data can be manipulated as memory. If more than
one process map a file, its contents are shared among them. If the mappings allow
shared write access, then data written into the memory object through the address
space of one process shall appear in the address spaces of all processes that similarly
map the same portion of the memory object (see 12.4.)

If the Shared Memory Objects option is supported: Regions of storage may be created,
independent of the file system, and mapped into the address space of one or more
processes to allow them to share the associated memory.

Implementations may support the Shared Memory Objects option without supporting
the Memory Mapped Files option.

The operation POSIX_Files.Unlink of a file or the operation POSIX_Shared_Mem-
ory_Objects.Unlink_Shared_Memory of a shared memory object, while causing
the removal of the name, does not unmap any mappings established for the object.
Once the name has been removed, the contents of the memory object are preserved as
long as it is referenced. The memory object remains referenced as long as a process
has the memory object open or has some area of the memory object mapped.

The following additional specifications apply if the Memory Protection option is sup-
ported, the following apply:

— The mapping may be restricted to disallow some types of access.

— References to whole pages within the mapping but beyond the current length in
storage units of an object shall result in Signal_Bus_Error .

12 Memory Management 323

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

— Write attempts to memory that was mapped without write access, or any access
to memory mapped with Protection_Options equal to POSIX.Empty_Set ,
shall result in Signal_Segmentation_Violation .

— References to unmapped addresses shall result in Signal_Segmentati on_-
Violation .

NOTE: As specified in 3.3.3, the Ada language implementation is required to translate occur-
rences of Signal_Bus_Error and Signal_Segmentation_Violation to Program_Error ,
unless they are identifiable as corresponding to a check that requires some other exception to
be raised (such as Storage_Error or Constraint_Error).

If the Memory Protection option is not supported, the effect of references to unmapped
addresses is undefined.

In any case, the size of a memory object is unaffected by access beyond the end of the
object.

12.1 Package POSIX_Memory_Locking

This package provides access to services that a process can use to control whether all
of its address space is continually resident in memory.

The functionality described in this clause is optional. If the Memory Locking option
is not supported, the implementation may cause all calls to the explicitly declared
operations defined in this clause to raise POSIX_Error . Otherwise, the behavior shall
be as specified in this clause.

with POSIX;
package POSIX_Memory_Locking is

-- 12.1.1 Lock/Unlock the Address Space of a Process
type Memory_Locking_Options is new POSIX.Option_Set;
Current_Pages: constant Memory_Locking_Options:= implementation-defined;
Future_Pages: constant Memory_Locking_Options:= implementation-defined;
procedure Lock_All (Options: in Memory_Locking_Options);
procedure Unlock_All;

end POSIX_Memory_Locking;

12.1.1 Lock/Unlock the Address Space of a Process

12.1.1.1 Synopsis

type Memory_Locking_Options is new POSIX.Option_Set;
Current_Pages: constant Memory_Locking_Options:= implementation-defined;
Future_Pages: constant Memory_Locking_Options:= implementation-defined;
procedure Lock_All (Options: in Memory_Locking_Options);

procedure Unlock_All;

12.1.1.2 Description

Lock_All shall cause all of the pages mapped by the address space of a process
to be memory-resident until unlocked or until the process exits or issues POSIX_-
Unsafe_Process_Primitives.Exec or POSIX_Unsafe_Process_Primitives.-
Exec_Search for another process image. Options determines whether the pages to

324 12 Memory Management

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

be locked are those currently mapped by the address space of a process, those that
will be mapped in the future, or both. Options is constructed from the union ("+")
of one or more of the following constants:

Current_Pages

Lock all of the pages currently mapped into the address space of a process.
Future_Pages

Lock all of the pages that become mapped into the address space of a process
in the future when those mappings are established.

If Future_Pages is specified and the automatic locking of future mappings eventu-
ally causes the amount of locked memory to exceed the amount of available physical
memory or any other implementation-defined limit, the behavior is implementation
defined. The manner in which the implementation informs the application of these
situations is implementation defined.

Unlock_All unlocks all currently mapped pages of the address space of a process.
After a call to Unlock_All , any pages that become mapped into the address space
of the process shall not be locked, unless there was an intervening call to Lock_All
specifying Future_Pages or a subsequent call to Lock_All specifying Current_-
Pages . If pages mapped into the address space of the process are also mapped into
other processes’ address spaces and are locked by those processes, the locks estab-
lished by the other processes are unaffected by the call to Unlock_All .

Upon successful return from the Lock_All operation that specifies Current_Pages ,
all currently mapped pages of the address space of the process shall be memory-
resident and locked. Upon return from the Unlock_All operation, all currently
mapped pages of the address space of the process shall be unlocked with respect to
the process. The memory-residency of unlocked pages is unspecified.

The appropriate privilege is required to lock process memory with Lock_All .

12.1.1.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Operation_Not_Implemented

The implementation does not support this memory-locking interface.
Invalid_Argument

Options is the empty set.
Resource_Temporarily_Unavailable

Upon Lock_All , some or all of the memory identified by the operation could
not be locked when the call was made.

If any of the following conditions is detected, the exception POSIX_Error shall be
raised with the corresponding error code:

Not_Enough_Space

Upon Lock_All , locking all of the pages currently mapped into the address
space of the process would exceed an implementation-defined limit on the
amount of memory that the process can lock.

12.1 Package POSIX_Memory_Locking 325

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Operation_Not_Permitted

Upon Lock_All , the calling process does not have the appropriate privilege
to perform the requested operation.

12.2 Package POSIX_Memory_Range_Locking

This package provides access to services that a process can use to control whether
specific ranges of its address space are continually resident in memory.

The functionality described in this clause is optional. If the Memory Range Locking op-
tion is not supported, the implementation may cause all calls to the explicitly declared
operations defined in this clause to raise POSIX_Error . Otherwise, the behavior shall
be as specified in this clause.

with System_Storage_Elements,
System;

package POSIX_Memory_Range_Locking is
-- 12.2.1 Lock/Unlock a Range of Process Address Space
procedure Lock_Range

(First: in System.Address;
Length: in System_Storage_Elements.Storage_Offset);

procedure Unlock_Range
(First: in System.Address;

Length: in System_Storage_Elements.Storage_Offset);

end POSIX_Memory_Range_Locking;

12.2.1 Lock/Unlock a Range of Process Address Space

12.2.1.1 Synopsis

procedure Lock_Range
(First: in System.Address;

Length: in System_Storage_Elements.Storage_Offset);
procedure Unlock_Range

(First: in System.Address;

Length: in System_Storage_Elements.Storage_Offset);

12.2.1.2 Description

Lock_Range shall cause the whole pages containing any part of the address space
of the process starting at address First and continuing for Length storage units
to be memory-resident until unlocked or until the process exits or issues POSIX_-
Unsafe_Process_Primitives.Exec or POSIX_Unsafe_Process_Primitives.-
Exec_Search for another process image. The implementation may require that
First be a multiple of Page Size.

NOTE: It is expected that a later amendment of this standard will disallow the implementa-
tion from imposing the restriction on the alignment of First .

Unlock_Range shall unlock the whole pages containing any part of the address space
of the process starting at address First and continuing for Length storage units,
regardless of how many times Lock_Range has been called by the process for any of

326 12 Memory Management

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

the pages in the specified range. The implementation may require that First be a
multiple of Page Size.

NOTE: It is expected that a later amendment of this standard will disallow the implementa-
tion from imposing the restriction on the alignment of First

If some of the pages in the range specified by a call to Unlock_Range are also mapped
into other processes’ address spaces, any locks established on those pages by another
process are unaffected by the call to Unlock_Range . If some of the pages in the
range specified by a call to Unlock_Range are also mapped into other portions of the
address space of the calling process outside the range specified, any locks established
on those pages via the other mappings are also unaffected by this call.

Upon successful return from Lock_Range , pages in the specified range shall be
locked and memory-resident. Upon successful return from Unlock_Range , pages
in the specified range shall be unlocked with respect to the address space of the call-
ing process. Memory-residency of unlocked pages is unspecified.

The appropriate privilege is required to lock process memory with Lock_Range .

12.2.1.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Not_Enough_Space

Some or all of the address range specified by the First and Length argu-
ments does not correspond to valid mapped pages in the address space of
the calling process.

Operation_Not_Implemented

The implementation does not support this memory-locking interface.

Resource_Temporarily_Unavailable

Upon Lock_Range , some or all of the memory identified by the operation
could not be locked when the call was made.

If any of the following conditions is detected, the exception POSIX_Error shall be
raised with the corresponding error code:

Invalid_Argument

The First argument is not a multiple of Page Size, and the implementation
imposes a restriction that First be page-aligned.

Not_Enough_Space

Upon Lock_Range , locking the pages mapped by the specified range would
exceed an implementation-defined limit on the amount of memory that the
process can lock.

Operation_Not_Permitted

Upon Lock_Range , the calling process does not have the appropriate privi-
lege to perform the requested operation.

12.2 Package POSIX_Memory_Range_Locking 327

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

12.3 Package POSIX_Memory_Mapping

This package provides access to services that a process can use to map specified
portions of certain files to specified ranges of the address space of the calling process.

with POSIX,
POSIX_IO,
POSIX_Signals,
System_Storage_Elements,
SYSTEM;

package POSIX_Memory_Mapping is
-- 12.3.1 Map Process Addresses to a Memory Object
type Protection_Options is new POSIX.Option_Set;
Allow_Read: constant Protection_Options:= implementation-defined;
Allow_Write: constant Protection_Options:= implementation-defined;
Allow_Execute: constant Protection_Options:= implementation-defined;
type Mapping_Options is range implementation-defined;
Map_Shared: constant Mapping_Options:= implementation-defined;
Map_Private: constant Mapping_Options:= implementation-defined;
type Location_Options is range implementation-defined;
Exact_Address: constant Location_Options:= implementation-defined;
Nearby_Address: constant Location_Options:= implementation-defined;
function Map_Memory

(First: System.Address;
Length: System_Storage_Elements.Storage_Offset;
Protection: Protection_Options;
Mapping: Mapping_Options;
Location: Location_Options;
File: POSIX_IO.File_Descriptor;
Offset: POSIX_IO.IO_Offset)

return System.Address;
function Map_Memory

(Length: System_Storage_Elements.Storage_Offset;
Protection: Protection_Options;
Mapping: Mapping_Options;
File: POSIX_IO.File_Descriptor;
Offset: POSIX_IO.IO_Offset)

return System.Address;
-- 12.3.2 Unmap Memory
procedure Unmap_Memory

(First: in System.Address;
Length: in System_Storage_Elements.Storage_Offset);

-- 12.3.3 Change Memory Protection
procedure Change_Protection

(First: in System.Address;
Length: in System_Storage_Elements.Storage_Offset;
Protection: in Protection_Options);

-- 12.3.4 Memory Object Synchronization
type Synchronize_Memory_Options is new POSIX.Option_Set;
Wait_For_Completion: constant Synchronize_Memory_Options

:= implementation-defined;
Invalidate_Cached_Data: constant Synchronize_Memory_Options

:= implementation-defined;

328 12 Memory Management

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

procedure Synchronize_Memory
(First: in System.Address;

Length: in System_Storage_Elements.Storage_Offset;
Options: in Synchronize_Memory_Options:= Empty_Set);

end POSIX_Memory_Mapping;

12.3.1 Map Process Addresses to a Memory Object

12.3.1.1 Synopsis

type Protection_Options is new POSIX.Option_Set;
Allow_Read: constant Protection_Options:= implementation-defined;
Allow_Write: constant Protection_Options:= implementation-defined;
Allow_Execute: constant Protection_Options:= implementation-defined;
type Mapping_Options is range implementation-defined;
Map_Shared: constant Mapping_Options:= implementation-defined;
Map_Private: constant Mapping_Options:= implementation-defined;
type Location_Options is range implementation-defined;
Exact_Address: constant Location_Options:= implementation-defined;
Nearby_Address: constant Location_Options:= implementation-defined;
function Map_Memory

(First: System.Address;
Length: System_Storage_Elements.Storage_Offset;
Protection: Protection_Options;
Mapping: Mapping_Options;
Location: Location_Options;
File: POSIX_IO.File_Descriptor;
Offset: POSIX_IO.IO_Offset)

return System.Address;
function Map_Memory

(Length: System_Storage_Elements.Storage_Offset;
Protection: Protection_Options;
Mapping: Mapping_Options;
File: POSIX_IO.File_Descriptor;
Offset: POSIX_IO.IO_Offset)

return System.Address;

12.3.1.2 Description

The functionality described in this subclause is optional. If neither the Memory Mapped
Files option nor the Shared Memory Objects option is supported, the implementation may
cause all calls to the explicitly declared operations defined in this subclause to raise
POSIX_Error . Otherwise, the behavior shall be as specified in this subclause.

Two overloaded subprograms are defined for Map_Memory. The effects differ only
in how the starting point address for the mapping, within the address space of the
calling process, is determined.

The form of Map_Memory without the First and Location parameters grants the
system complete freedom in selecting the starting point address for the memory map-
ping, except that it shall never place a mapping at address zero, nor shall it replace
an extant mapping.

The other form of Map_Memory, with the First and Location parameters, requests
that the starting point be at or near the specific address First . For this form, the

12.3 Package POSIX_Memory_Mapping 329

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Location argument shall specify Exact_Address or Nearby_Address , but not
both.

For both versions, the effect of the operation is to establish a mapping between the
specified region of the address space of the calling process, from the specified starting
point and continuing for Length storage units to the specified region of the memory
object represented by the file descriptor File at offset Offset storage units and con-
tinuing for Length storage units. The starting-point address is returned by the call.
The range of addresses from the starting point and continuing for Length storage
units is required to be legitimate for the possible (not necessarily current) address
space of the process. The range of storage units starting at Offset storage units and
continuing for Length storage units shall be legitimate for the possible (not neces-
sarily current) offsets in the file or shared memory object specified by File .

The mapping established by Map_Memory shall replace any previous mappings for
the whole pages containing any part of the specified region of the address space of
the calling process.

The system performs mapping operations over whole pages. Thus, while the param-
eter Length need not meet a size or alignment constraint, the system shall include,
in any mapping operation, any partial page included in the specified region of the
address space.

If Location specifies Exact_Address , the starting point address of the mapping
shall be First exactly. First is required to be nonzero and to the same remainder,
modulo Page Size, as the Offset parameter. The implementation may require that
Offset be a multiple of Page Size. The implementation may require that First be
a multiple of Page Size.

NOTE: It is expected that a later amendment of this standard will disallow the implementa-
tion from imposing the restriction on the alignment of the Offset and First arguments.

It is implementation defined whether Exact_Address is supported.

NOTE: For implementations that support Exact_Address , its use may result in poor perfor-
mance.

If Location specifies Nearby_ Address , the system uses First in an
implementation-defined manner to arrive at the starting point address. The value
so chosen shall be an area of the address space that the system deems suitable for
a mapping of Length storage units to the specified object. First is taken to be a
suggestion of a process address near which the mapping should be placed. When the
system selects a starting point address, it shall never place a mapping at address
zero, nor shall it replace an extant mapping.

The parameter Protection determines whether read, write, execute, or some com-
bination of accesses are permitted to the data being mapped. The Protection is
required to be either Empty_Set , meaning the data cannot be accessed, or the union
("+") of one or more of the other Protection_Options with the following associated
meanings:

Allow_Read

Data can be read.

330 12 Memory Management

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Allow_Write

Data can be written.

Allow_Execute

Data can be executed.

If an implementation cannot support the combination of access types specified by
Protection , the call to Map_Memory shall fail. An implementation may permit
accesses of other than those specified by Protection , except as follows:

If the Memory Protection option is supported, the implementation shall not permit
a write to succeed where Allow_Write has not been specified, or permit any
access where Empty_Set has been specified.

If the Memory Protection option is supported: The implementation shall support at
least the following values of Protection : Empty_Set , Allow_Read , Allow_Write
and the union ("+") of Allow_Read and Allow_Write . Otherwise, if the Memory
Protection option is not supported, the result of any access that conflicts with the
specified protection is undefined.

The file descriptor File is required to have been opened previously by the application
with read permission, regardless of the protection options specified. If Allow_Write
is specified, the application is required to have opened the file descriptor File with
write permission unless Map_Private is specified in Mapping as described below.

Mapping values of type Mapping_Options describe the disposition of write refer-
ences to the memory object.

If Map_Shared is specified, write references change the underlying object. If the im-
plementation supports Map_Private and it is specified, modifications to the mapped
data by the calling process shall be visible only to the calling process and shall not
change the underlying object. It is unspecified whether modifications to the under-
lying object done after the Map_Private mapping is established are visible through
the Map_Private mapping. Mapping is required to specify either Map_Shared or
Map_Private . The type of memory mapping in effect (private or shared) for each
region of the address space is retained across POSIX_Unsafe_Process_Primi-
tives.Fork .

Implementations in which the Memory Mapped Files option is not supported are not
required to support Map_Private .

The system shall always zero-fill any partial page at the end of an object. Further,
the system shall never write out any modified portions of the last page of an object
that are beyond the end of the object.

If the Memory Protection option is supported: References to addresses that are both
within the mapped region and within whole pages that are past the end of the
mapped memory object shall result in raising Program_Error .

If the Memory Protection option is not supported, the result of such references is unde-
fined.

An implementation may raise the exception Program_Error when a reference would
cause an error in the mapped object, such as out-of-space condition.

12.3 Package POSIX_Memory_Mapping 331

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

12.3.1.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Permission_Denied

The file descriptor File is not open for read, regardless of the protection
specified.
The file descriptor File is not open for write and Allow_Write was speci-
fied for a Map_Shared mapping.

Resource_Temporarily_Unavailable

The mapping could not be locked in memory, if required by Lock_All due
to a lack of resources.

Bad_File_Descriptor

The File argument is not a valid open file descriptor.

Invalid_Argument

The value in Mapping is invalid (i.e., not equal to either Map_Private or
Map_Shared).
The value in Location is invalid (i.e., not equal to either Exact_Address
or Nearby_Address).

No_Such_Operation_On_Device

The File argument refers to an object for which Map_Memory is meaning-
less, such as a terminal.

Not_Enough_Space

Exact_Address was specified,, and the address range starting at First
and continuing for Length storage units exceeds that allowed for the ad-
dress space of a process; or Exact_Address was not specified and there is
insufficient room in the address space to effect the mapping.
The mapping could not be locked in memory, if required by Lock_All , be-
cause it would require more space than the system is able to supply.

Operation_Not_Implemented

The operation Map_Memory is not supported by this implementation.

Operation_Not_Supported

Exact_Address was specified in the Location parameter and the imple-
mentation does not support this functionality.
Map_Private was specified in the Mapping parameter, and the implemen-
tation does not support this functionality.
The implementation does not support the combination of accesses requested
in the Protection parameter.

No_Such_Device_Or_Address

The addresses in the range starting at Offset storage units and continuing
for Length storage units are invalid for the object specified by File .
Exact_Address was specified in Location , and the combination of First ,
Length , and Offset is invalid for the object specified by File .

332 12 Memory Management

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

If any of the following conditions is detected, the exception POSIX_Error shall be
raised with the corresponding error code:

Invalid_Argument

The arguments First (if Exact_Address was specified) or Offset are not
multiples of Page Size, and the implementation imposes a restriction that
these values be page-aligned.

If Map_Memory fails for reasons other than Bad_File_Descriptor , Invalid_-
Argument , or Operation_Not_Supported , some of the mappings in the address
range starting at First and continuing for Length storage units may have become
unmapped.

12.3.1.4 Required Representation Support and Shared Variable Control

If either the Memory Mapped Files option or the Shared Memory Objects option is sup-
ported, for all regions of the address space of the callig process that are currently
mapped to a memory object by Map_Memory, POSIX_Generic_Shared_Memory.-
Open_And_Map_Shared_Memory , or POSIX_Generic_Shared_Memory.Open_Or_-
Create_And_Map_Shared_Memory , the following apply::

— The implementation shall support at a minimum the recommended levels of rep-
resentation support specified by C.2 of the Ada RM f1g.

— The implementation shall support the Atomic , Atomic _ Components ,
Volatile , and Volatile_ Components pragmas specified by C.6 of the
Ada RM f1g.

12.3.2 Unmap Memory

12.3.2.1 Synopsis

procedure Unmap_Memory
(First: in System.Address;

Length: in System_Storage_Elements.Storage_Offset);

12.3.2.2 Description

The functionality described in this subclause is optional. If neither the Memory Mapped
Files option nor the Shared Memory Objects option is supported, the implementation may
cause all calls to the explicitly declared operations defined in this subclause to raise
POSIX_Error . Otherwise, the behavior shall be as specified in this subclause.

Unmap_Memoryremoves any mappings for the whole pages containing any part of
the address space of the calling process starting at First and continuing for Length
storage units. Further references to these pages shall result in the exception Pro-
gram_Error being raised. If no mappings are in the specified address range, then
Unmap_Memoryshall have no effect. The implementation may require that First be
a multiple of Page Size.

NOTE: It is expected that a later amendment of this standard will disallow the implementa-
tion from imposing the restriction on the alignment of First .

If a mapping to be removed was private, any modifications made in this address
range shall be discarded.

12.3 Package POSIX_Memory_Mapping 333

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Any memory locks (see 12.1.1 and 12.2.1) associated with this address range shall be
removed, as if by an appropriate call to Unlock_All or Unlock_Range .

The behavior of this operation is unspecified if the mapping was not established by a
call to Map_Memory.

12.3.2.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

Some of the addresses in the range starting at First and continuing for
Length storage units are outside the range allowed for the address space of
a process.

Operation_Not_Implemented

The procedure Unmap_Memoryis not supported by this implementation.

If any of the following conditions is detected, the exception POSIX_Error shall be
raised with the corresponding error code:

Invalid_Argument

The value of First is not a multiple of Page Size, and the implementation
imposes a restriction that First be page-aligned.

12.3.3 Change Memory Protection

12.3.3.1 Synopsis

procedure Change_Protection
(First: in System.Address;

Length: in System_Storage_Elements.Storage_Offset;

Protection: in Protection_Options);

12.3.3.2 Description

The functionality described in this subclause is optional. If the Memory Protection op-
tion is not supported, the implementation may cause all calls to the explicitly declared
operations defined in this subclause to raise POSIX_Error . Otherwise, the behavior
shall be as specified in this subclause.

Change_Protection changes the access protections to be that specified by Pro-
tection for the whole pages containing any part of the address space of the process
starting at address First and continuing for Length storage units. The parameter
Protection determines whether read, write, execute, or a combination of accesses
is permitted to the data being mapped. The Protection argument shall be either
the Empty_Set or the union ("+") of one or more of the other constants of type Pro-
tection_Options .

If an implementation cannot support the combination of access types specified by
Protection , the call to Change_Protection shall fail. An implementation may
permit accesses other than those specified by Protection ; however, no implemen-
tation shall permit a write to succeed where Allow_Write has not been set or permit

334 12 Memory Management

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

any access where Protection is set to the Empty_Set . The implementation shall
support at least the following values of Protection : the Empty_Set , Allow_Read ,
Allow_Write , and the union ("+") of Allow_Read and Allow_Write .

If Allow_Write is specified, the application is required to have opened the mapped
objects in the specified address range with write permission, unless Map_Private
was specified in the original mapping, regardless of whether the file descriptors used
to map the objects have since been closed.

The implementation may require that First be a multiple of Page Size.

NOTE: It is expected that a later amendment of this standard will disallow the implementa-
tion from imposing the restriction on the alignment of First .

The behavior of this operation is unspecified if the mapping was not established by a
call to Map_Memory.

12.3.3.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Permission_Denied

The memory object was not opened for read, regardless of the protection
specified.
The memory object was not opened for write, and Allow_Write was speci-
fied for a Map_Shared type mapping.

Resource_Temporarily_Unavailable

The Protection argument specifies Allow_Write on a Map_Private map-
ping and there are insufficient memory resources to reserve for locking the
private pages, if required.

Not_Enough_Space

The addresses in the range starting at First and continuing for Length
storage units are outside the range allowed for the address space of a process
or specify one or more pages that are not mapped.
The Protection argument specifies Allow_Write on a Map_Private map-
ping, and it would require more space than the system is able to supply for
locking the private pages, if required.

Operation_Not_Implemented

Change_Protection is not supported by this implementation.

Operation_Not_Supported

The implementation does not support the combination of accesses requested
in the Protection argument.

If any of the following conditions is detected, the exception POSIX_Error shall be
raised with the corresponding error code:

Invalid_Argument

The value of First is not a multiple of Page Size, and the implementation
imposes a restriction the First be page-aligned.

12.3 Package POSIX_Memory_Mapping 335

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

If Change_Protection fails for reasons other than Invalid_Argument , the pro-
tections on some of the pages in the address range starting at First and continuing
for Length storage units may have been changed.

12.3.4 Memory Object Synchronization

12.3.4.1 Synopsis

type Synchronize_Memory_Options is new POSIX.Option_Set;
Wait_For_Completion: constant Synchronize_Memory_Options

:= implementation-defined;
Invalidate_Cached_Data: constant Synchronize_Memory_Options

:= implementation-defined;
procedure Synchronize_Memory

(First: in System.Address;
Length: in System_Storage_Elements.Storage_Offset;
Options: in Synchronize_Memory_Options:= Empty_Set);

12.3.4.2 Description

The functionality described in this subclause is optional. If either the Memory Mapped
Files option or the Synchronized I/O option is not supported, the implementation may
cause all calls to the explicitly declared operations defined in this subclause to raise
POSIX_Error . Otherwise, the behavior shall be as specified in this subclause.

The Synchronize_Memory operation writes all modified data to permanent storage
locations, if any, in the whole pages containing any part of the address space of the
process, starting at address First and continuing for Length storage units. If no
such storage exists, Synchronize_Memory need not have any effect. If requested,
the Synchronize_Memory operation then invalidates cached copies of data.

The implementation may require that First be a multiple of Page Size.

NOTE: It is expected that a later amendment of this standard will disallow the implementa-
tion from imposing the restriction on the alignment of First .

For mappings to files, the Synchronize_Memory procedure shall assure that all
write operations are completed as defined for synchronized I/O data integrity com-
pletion. It is unspecified whether the implementation also writes out other file at-
tributes. When the Synchronize_Memory procedure is called on Map_Private
mappings, any modified data shall not be written to the underlying object and shall
not cause such data to be made visible to other processes. It is unspecified whether
data in Map_Private mappings have any permanent storage locations. The effect of
Synchronize_Memory on shared memory objects is unspecified.

If Wait_For_Completion is not specified in Options , Synchronize_Memory re-
turns immediately once all the write operations are initiated or queued for servicing.
When Wait_For_Completion is specified in Options , Synchronize_Memory shall
not return until all write operations are completed as defined for synchronized I/O
data integrity completion.

When Invalidate_Cached_Data is specified in Options , Synchronize_Memory
invalidates all cached copies of mapped data that are inconsistent with the perma-
nent storage locations so that subsequent references shall obtain data that was con-
sistent with the permanent storage locations sometime between the call to Synchro-
nize_Memory and the first subsequent memory reference to the data.

336 12 Memory Management

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

The behavior of this operation is unspecified if the mapping was not established by a
call to Map_Memory.

12.3.4.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Resource_Busy

Some or all of the addresses in the range starting at First and continuing
for Length storage units are locked, and Invalidate_Cached_Data is
specified in Options .

Invalid_Argument

The value in Options is invalid.

Not_Enough_Space

The addresses in the range starting at First and continuing for Length
storage units are outside the range allowed for the address space of a pro-
cess, or specify one or more pages that are not mapped.

Operation_Not_Implemented

The procedure Synchronize_Memory is not supported by this implementa-
tion.

If any of the following conditions is detected, the exception POSIX_Error shall be
raised with the corresponding error code:

Invalid_Argument

The value of First is not a multiple of Page Size, and the implementation
imposes a restriction that First be page-aligned.

12.4 Package POSIX_Shared_Memory_Objects

This package provides access to services that a process can use to create, access, and
remove memory objects that can be shared between processes.

The functionality described in this subclause is optional. If the Shared Memory Ob-
jects option is not supported, the implementation may cause all calls to the explicitly
declared operations defined in this subclause to raise POSIX_Error . Otherwise, the
behavior shall be as specified in this subclause.

with POSIX,
POSIX_IO,
POSIX_Permissions;

package POSIX_Shared_Memory_Objects is
-- 12.4.1 Open a Shared Memory Object
function Open_Shared_Memory

(Name: POSIX.POSIX_String;
Mode: POSIX_IO.File_Mode;
Options: POSIX_IO.Open_Option_Set:= POSIX_IO.Empty_Set;
Masked_Signals: POSIX.Signal_Masking:= POSIX.RTS_Signals)

return POSIX_IO.File_Descriptor;

12.4 Package POSIX_Shared_Memory_Objects 337

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

function Open_Or_Create_Shared_Memory
(Name: POSIX.POSIX_String;

Mode: POSIX_IO.File_Mode;
Permissions: POSIX_Permissions.Permission_Set;
Options: POSIX_IO.Open_Option_Set:= POSIX_IO.Empty_Set;
Masked_Signals: POSIX.Signal_Masking:= POSIX.RTS_Signals)

return POSIX_IO.File_Descriptor;
-- 12.4.2 Remove a Shared Memory Object
procedure Unlink_Shared_Memory

(Name: in POSIX.POSIX_String);

end POSIX_Shared_Memory_Objects;

12.4.1 Open a Shared Memory Object

12.4.1.1 Synopsis

function Open_Shared_Memory
(Name: POSIX.POSIX_String;

Mode: POSIX_IO.File_Mode;
Options: POSIX_IO.Open_Option_Set:= POSIX_IO.Empty_Set;
Masked_Signals: POSIX.Signal_Masking:= POSIX.RTS_Signals)

return POSIX_IO.File_Descriptor;
function Open_Or_Create_Shared_Memory

(Name: POSIX.POSIX_String;
Mode: POSIX_IO.File_Mode;
Permissions: POSIX_Permissions.Permission_Set;
Options: POSIX_IO.Open_Option_Set:= POSIX_IO.Empty_Set;
Masked_Signals: POSIX.Signal_Masking:= POSIX.RTS_Signals)

return POSIX_IO.File_Descriptor;

12.4.1.2 Description

The Open_Shared_Memory and Open_Or_Create_Shared_Memory operations es-
tablish a connection between a shared memory object and a file descriptor. Open_-
Shared_Memory shall open a shared memory object that already exists. Open_-
Or_Create_Shared_Memory shall either open an existing shared memory object or
create a new shared memory object if none exists. Both functions create an open file
description that refers to the shared memory object and a file descriptor that refers
to that open file description. The file descriptor is used by other functions to refer to
that shared memory object.

The Nameargument specifies a string naming a shared memory object. It is unspeci-
fied whether the name appears in the file system and is visible to other functions that
take pathnames as arguments. The Nameargument shall conform to the construc-
tion rules for a pathname. If Namebegins with the slash character, then processes
calling Open_Shared_Memory and Open_Or_Create_Shared_Memory with the same
value of Nameshall refer to the same shared memory object, as long as that name has
not been removed. If Namedoes not begin with the slash character, the effect is im-
plementation defined. The interpretation of slash characters other than the leading
slash character in Nameis implementation defined.

If successful, Open_Shared_Memory and Open_Or_Create_Shared_Memory re-
turn a file descriptor for the shared memory object that is the lowest numbered file

338 12 Memory Management

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

descriptor not currently open for that process. The open file description is new; there-
fore, the file descriptor does not share it with any other processes. It is unspecified
whether the file offset is set. The new file descriptor shall be marked so that POSIX_-
IO.Get_Close_On_Exec would return True .

Mode specifies the file access modes of the open file description, using some of the
values of type POSIX_IO.File_Mode . Applications shall specify exactly one of the
following two values of type POSIX_IO.File_Mode :

Read_Only

Open for read access only.

Read_Write

Open for read or write access.

Open_Shared_Memory uses only one value from POSIX_IO.Open_Option_Set in
Options . The effect of setting other values from POSIX_IO.Open_Option_Set in
Options is undefined.

Truncate

If the shared memory object is successfully opened Read_Write , the ob-
ject shall be truncated to zero length, and the mode and owner shall be
unchanged by this function call. The result of using Truncate with Read_-
Only is undefined.

Open_Or_Create_Shared_Memory either opens an existing shared memory object,
except as noted under Exclusive below, or creates the shared memory object. If the
shared memory object is created, the user ID of the shared memory object shall be
set to the effective user ID of the process; the shared memory group ID of the shared
memory object shall be set to a system default group ID or to the effective group ID
of the process. The permissions of the shared memory object shall be set to the value
of the Permissions argument except those set in the file mode creation mask of the
process. The Permissions argument does not affect whether the shared memory
object is opened for reading, for writing, or for both. The shared memory object
shall have a size of zero. Open_Or_Create_Shared_Memory uses either or both of
the following values from POSIX_IO.Open_Option_Set in Options . The effect of
setting other values from POSIX_IO.Open_Option_Set in Options is undefined:

Exclusive

If Exclusive is set, Open_Or_Create_Shared_Memory shall fail if the
shared memory object exists. The check for the existence of the shared mem-
ory object and the creation of the object if it does not exist shall be atomic
with respect to other processes executing Open_Or_Create_Shared_Mem-
ory naming the same shared memory object with Exclusive set.

Truncate

If the shared memory object exists and it is successfully opened Read_-
Write , the object shall be truncated to zero length, and the mode and owner
shall be unchanged by this function call. The result of using Truncate with
Read_Only is undefined.

12.4 Package POSIX_Shared_Memory_Objects 339

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Open_Shared_Memory and Open_Or_Create_Shared_Memory shall be interruptible
by the delivery of a signal. Masked_Signals specifies the set of signals that shall be
added to the signal mask for the duration of this operation, as described in 3.3.6.

When a shared memory object is created, the state of the shared memory object, in-
cluding all data associated with the shared memory object, shall persist until the
shared memory object is unlinked and all other references are gone. It is unspeci-
fied whether the name and shared memory object state remain valid after a system
reboot.

NOTE: The POSIX_IO.Close operation, which is specified in 6.1.1, is used to close a shared
memory object.

12.4.1.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Permission_Denied

The shared memory object exists, and the permissions specified by Permis-
sions are denied; or the shared memory object does not exist, and permis-
sion to create the shared memory object is denied; or Truncate is specified,
and write permission is denied.

File_Exists

Upon Open_Or_Create_Shared_Memory , Exclusive is specified, and the
named shared memory object already exists.

Interrupted_Operation

The Open_Shared_Memory or Open_Or_Create_Shared_Memory operation
was interrupted by a signal.

Invalid_Argument

The Open_Shared_Memory or Open_Or_Create_Shared_Memory operation
is not supported for the given name. The implementation shall document
under what circumstances this error may be returned.

Too_Many_Open_Files

Too many file descriptors are currently in use by this process.

Filename_Too_Long

The length in POSIX characters of the specified pathname exceeds Pathname
Limit; or the length in POSIX characters of a component of the specified path-
name is greater than Filename Maximum, and the Filename Truncation option is
not supported for the pathname prefix of that component. (See 5.4.2.)

Too_Many_Open_Files_In_System

Too many shared memory objects are currently open in the system.

No_Such_File_Or_Directory

Upon Open_Shared_Memory , the named shared memory object does not
exist.

340 12 Memory Management

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

No_Space_Left_On_Device

There is insufficient space for the creation of the new shared memory object.

Operation_Not_Implemented

Open_Shared_Memory and Open_Or_Create_Shared_Memory are not sup-
ported by this implementation.

12.4.2 Remove a Shared Memory Object

12.4.2.1 Synopsis

procedure Unlink_Shared_Memory

(Name: in POSIX.POSIX_String);

12.4.2.2 Description

Unlink_Shared_Memory shall remove the name of the shared memory object spec-
ified by Name. If one or more references to the shared memory object exist when
the object is unlinked, the name shall be removed before Unlink_Shared_Memory
returns. However, the removal of the memory object contents shall be postponed un-
til all open file descriptors connected to the shared memory object (see 12.4.1) have
been closed and all mappings established for the shared memory object have been
removed (see 12.3.2).

12.4.2.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Permission_Denied

Permission is denied to unlink the named shared memory object.

Filename_Too_Long

The length in POSIX characters of the specified pathname exceeds Pathname
Limit; or the length in POSIX characters of a component of the specified path-
name is greater than Filename Maximum, and the Filename Truncation option is
not supported for the pathname prefix of that component. (See 5.4.2.)

No_Such_File_Or_Directory

The named shared memory object does not exist.

Operation_Not_Implemented

Unlink_Shared_Memory is not supported by this implementation.

12.5 Package POSIX_Generic_Shared_Memory

An instantiation of the generic package POSIX_Generic_Shared_Memory provides
operations for managing shared memory objects of the actual type corresponding to
the generic formal type Object_Type . This type shall be a constrained type such
that the representation of an object X is contained within the contiguous memory
region covered by the range X’Address through X’Address + (X’Size / Sys-
tem.Storage_Unit) .

12.5 Package POSIX_Generic_Shared_Memory 341

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

The functionality described in this subclause is optional. If the Shared Memory Ob-
jects option is not supported, the implementation may cause all calls to the explicitly
declared operations defined in this subclause to raise POSIX_Error . Otherwise, the
behavior shall be as specified in this subclause.

with POSIX,
POSIX_IO,
POSIX_Permissions,
POSIX_Memory_Mapping;

generic
type Object_Type is private ;

package POSIX_Generic_Shared_Memory is
type Shared_Access is access Object_Type;

-- 12.5.1 Open Shared Memory
function Open_And_Map_Shared_Memory

(Name: POSIX.POSIX_String;
Protection: POSIX_Memory_Mapping.Protection_Options;
Masked_Signals: POSIX.Signal_Masking:= POSIX.RTS_Signals)

return POSIX_IO.File_Descriptor;
function Open_Or_Create_And_Map_Shared_Memory

(Name: POSIX.POSIX_String;
Protection: POSIX_Memory_Mapping.Protection_Options;
Permissions: POSIX_Permissions.Permission_Set;
Options: POSIX_IO.Open_Option_Set:= POSIX_IO.Empty_Set;
Masked_Signals: POSIX.Signal_Masking:= POSIX.RTS_Signals)

return POSIX_IO.File_Descriptor;
-- 12.5.2 Access Shared Memory
function Access_Shared_Memory

(File: POSIX_IO.File_Descriptor)
return Shared_Access;

-- 12.5.3 Close Shared Memory
procedure Unmap_And_Close_Shared_Memory

(File: in POSIX_IO.File_Descriptor);
-- 12.5.5 Lock/Unlock Shared Memory
procedure Lock_Shared_Memory

(File: in POSIX_IO.File_Descriptor);
procedure Unlock_Shared_Memory

(File: in POSIX_IO.File_Descriptor);

end POSIX_Generic_Shared_Memory;

12.5.1 Open Shared Memory

12.5.1.1 Synopsis

function Open_And_Map_Shared_Memory
(Name: POSIX.POSIX_String;

Protection: POSIX_Memory_Mapping.Protection_Options;
Masked_Signals: POSIX.Signal_Masking:= POSIX.RTS_Signals)

return POSIX_IO.File_Descriptor;
function Open_Or_Create_And_Map_Shared_Memory

(Name: POSIX.POSIX_String;
Protection: POSIX_Memory_Mapping.Protection_Options;
Permissions: POSIX_Permissions.Permission_Set;
Options: POSIX_IO.Open_Option_Set:= POSIX_IO.Empty_Set;
Masked_Signals: POSIX.Signal_Masking:= POSIX.RTS_Signals)

return POSIX_IO.File_Descriptor;

342 12 Memory Management

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

12.5.1.2 Description

The Open_And_Map_Shared_Memory operation and the Open_Or_Create_And_-
Map_Shared_Memory operation shall open or create a POSIX shared memory object
that holds one Ada object of the actual type corresponding to the generic formal type
Object_Type . The shared memory object is mapped into the address space of the
process at an address defined by the system. These operations shall return a file
descriptor designating the open shared memory object.

If the actual type corresponding to Object_Type has default initialization, the effect
is undefined.

The effect of Open_And_Map_Shared_Memory shall be equivalent to a sequence of
calls to the three following operations, which are defined elsewhere in this standard,
using the supplied parameter values together with the listed implicit parameter val-
ues:

— Open_Shared_Memory to open a POSIX shared memory object. If the value of
Protection is set to Allow_Write , Mode is Read_Write ; otherwise Mode is
Read_Only .

— POSIX_IO.Truncate_File to allocate enough memory within the POSIX shared
memory object to hold the shared Ada object. The File parameter corresponds
to the value returned by Open_Shared_Memory if that operation is successful.
The Length parameter shall specify a count of storage units sufficient to contain
an Ada object of the generic actual type Object_Type .

— Map_Memory to map the POSIX shared memory object into the address space of
the process. The File parameter corresponds to the value returned by Open_-
Shared_Memory if that operation is successful. The Length parameter shall be
chosen to cover the size of the Ada object of type Object_Type that is created.
The Mapping parameter is set to Map_Shared . The Location parameter is not
set to Exact_Address .

The effect of Open_Or_Create_And_Map_Shared_Memory shall be equivalent to
a sequence of calls to the three following operations that are defined elsewhere in
this standard, using the supplied parameter values together with the listed implicit
parameter values:

— Open_Or_Create_Shared_Memory to open a POSIX shared memory object. If
the value of Protection is set to Allow_Write , Mode is Read_Write ; other-
wise Mode is Read_Only . If Exclusive is specified on a call to Open_Or_Cre-
ate_And_Map_Shared_Memory , then its effect is to specify Exclusive on the
corresponding call to Open_Or_Create_Shared_Memory .

— POSIX_IO.Truncate_File to allocate enough memory within the POSIX shared
memory object to hold the shared Ada object. The File parameter corresponds
to the value returned by Open_Or_Create_Shared_Memory if that operation is
successful. The Length parameter shall specify a count of storage units suffi-
cient to contain an Ada object of the generic actual type Object_Type .

— Map_Memory to map the POSIX shared memory object into the address space of
the process. The File parameter corresponds to the value returned by Open_-
Or_Create_Shared_Memory , if that operation is successful. The First and

12.5 Package POSIX_Generic_Shared_Memory 343

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Length parameters shall be chosen to cover the virtual addresses occupied by
the Ada object of type Object_Type that is created. The Mapping parameter is
set to Map_Shared . The Location parameter is not set to Exact_Address .

Open_Or_Create_And_Map_Shared_Memory uses only one value from POSIX_IO.-
Open_Option_Set in Options . The effect of setting other values from POSIX_IO.-
Open_Option_Set in Options is undefined.

Exclusive

If Exclusive is set, Open_Or_Create_And_Map_Shared_Memory shall
fail if the shared memory object exists. The check for the existence of the
shared memory object and the creation of the object if it does not exist shall
be atomic with respect to other processes executing Open_Or_Create_-
And_Map_Shared_Memory naming the same shared memory object with
Exclusive set.

If any operation on the type POSIX_IO.File_Descriptor that is not specified in
12.5 is applied to a file descriptor returned by Open_And_Map_Shared_Memory or
Open_Or_Create_And_Map_Shared_Memory , the effect of that and subsequent
operations on that file descriptor is undefined.

Open_And_Map_Shared_Memory and Open_Or_Create_And_Map_Shared_Memory
shall be interruptible by the delivery of a signal. Masked_Signals specifies the set
of signals that shall be added to the signal mask for the duration of this operation,
as described in 3.3.6.

If the operation propagates an exception, it shall have no residual effect. In partic-
ular, no new shared memory object shall exist, no new memory mapping shall exist,
and no new file descriptor shall be allocated.

12.5.1.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Filename_Too_Long

The length in POSIX characters of the specified pathname exceeds Pathname
Limit; or the length in POSIX characters of a component of the specified path-
name is greater than Filename Maximum, and the Filename Truncation option is
not supported for the pathname prefix of that component. (See 5.4.2.)

File_Exists

Open_Or_Create_Shared_Memory was called with Exclusive specified in
Options , and the named shared memory object already exists.

Interrupted_Operation

The operation was interrupted by a signal.

Invalid_Argument

Permissions is the empty set.
The operation is not supported for the given name. The implementation
shall document under what circumstances this error may be returned.

344 12 Memory Management

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

No_Such_File_Or_Directory

Open_Shared_Memory was called, and the named shared memory object
does not exist.

No_Space_Left_On_Device

There is insufficient space for the creation of the new shared memory object.

Not_Enough_Space

There is insufficient room in the address space to effect the mapping; or the
mapping could not be locked in memory, if required by Lock_All , because
it would require more space than the system is able to supply.

Operation_Not_Implemented

The operation is not supported by this implementation.

Operation_Not_Supported

The implementation does not support the combination of accesses requested
in the Protection argument.

Permission_Denied

The shared memory object exists, and the operation requests a mode of ac-
cess that is denied; or the shared memory object does not exist, and permis-
sion to create the shared memory object is denied; or POSIX_IO.Truncate
is specified, and write permission is denied.

Resource_Temporarily_Unavailable

The mapping could not be locked in memory, if required by Lock_All , due
to a lack of resources.

Too_Many_Open_Files

Too many file descriptors are currently in use by this process.

Too_Many_Open_Files_In_System

Too many shared memory objects are currently open in the system.

12.5.2 Access Shared Memory

12.5.2.1 Synopsis

function Access_Shared_Memory
(File: POSIX_IO.File_Descriptor)

return Shared_Access;

12.5.2.2 Description

If File is an open file descriptor returned by a call to Open_And_Map_Shared_-
Memory or Open_Or_Create_And_Map_Shared_Memory , then a call to Access_-
Shared_Memory of the same generic instantiation shall return an access value that
designates the Ada object of type Object_Type within the shared memory object
designated by the file descriptor.

12.5 Package POSIX_Generic_Shared_Memory 345

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

12.5.2.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

File is not the file descriptor for an open shared memory object defined by
this generic instantiation.

12.5.3 Close Shared Memory

12.5.3.1 Synopsis

procedure Unmap_And_Close_Shared_Memory

(File: in POSIX_IO.File_Descriptor);

12.5.3.2 Description

If File is an open file descriptor returned by a call to Open_And_Map_Shared_-
Memory or Open_Or_Create_And_Map_Shared_Memory , then a call to Unmap_-
And_Close_Shared_Memory of the same generic instantiation shall unmap and
close the shared memory object designated by the file descriptor.

The effect of this operation shall correspond to a series of calls to the following oper-
ations, which are defined elsewhere in this standard:

(1) A call to Unmap_Memoryto unmap the shared object from the address space of
the process.

(2) A call to POSIX_IO .Close to close the file descriptor.

12.5.3.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

File is not the file descriptor for an open shared memory object defined by
this generic instantiation.

12.5.4 Remove Shared Memory

There is no procedure to unlink a shared memory object defined in this package. The
Unlink_Shared_Memory procedure defined in POSIX_Shared_Memory_Objects
package shall apply to these shared memory objects as well as other shared memory
objects.

12.5.5 Lock/Unlock Shared Memory

12.5.5.1 Synopsis

procedure Lock_Shared_Memory
(File: in POSIX_IO.File_Descriptor);

procedure Unlock_Shared_Memory

(File: in POSIX_IO.File_Descriptor);

346 12 Memory Management

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

12.5.5.2 Description

The functionality described in this subclause is optional. If the Memory Range Lock-
ing option is not supported, the implementation may cause all calls to the explicitly
declared operations defined in this subclause to raise POSIX_Error . Otherwise, the
behavior shall be as specified in this subclause.

If File is an open file descriptor returned by a call to Open_And_Map_Shared_Mem-
ory or Open_Or_Create_And_Map_Shared_Memory , a call to Lock_Shared_Memory
or Unlock_Shared_Memory of the same generic instantiation shall be equivalent to
a call to Lock_Range or Unlock_Range for the range of memory that is mapped to
the shared memory object designated by the file descriptor.

NOTE: These operations do not provide locking in the sense of protection against concurrent
access. The meaning of lock here is that the range of virtual addresses mapped by the shared
memory object are locked into main memory; they cannot be paged out onto a secondary stor-
age device.

12.5.5.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

File is not the file descriptor for a shared memory object defined by this
generic instantiation.

Operation_Not_Implemented

The implementation does not support this memory-locking operation.

Resource_Temporarily_Unavailable

Some or all of the memory mapped to the shared memory object could not
be locked when the call was made.

Not_Enough_Space

Locking the pages mapped by the specified shared memory object would
exceed an implementation-defined limit on the amount of memory that the
process can lock.

Operation_Not_Permitted

The calling process does not have the appropriate privilege to perform the
requested operation.

12.5 Package POSIX_Generic_Shared_Memory 347

IEEE Std 1003.5c-1998

Section 13: Execution Scheduling

This section describes the facilities available under this standard by which an appli-
cation can influence the scheduling of Ada tasks.

NOTE: This section is a thinner binding to the base standards than the rest of this standard.
See B.13 for more information.

13.1 Scheduling Concepts and Terminology

The definitions of several terms used in this section, including blocked task, environ-
ment task, priority, ready task, task, thread of control, and process, are given in 2.2.
Some other terms are defined by reference to POSIX.1.

The Scheduling Contention Scope attribute of a task shall correspond to the schedul-
ing contention scope of the associated thread of control in POSIX.1 (see Section 13 of
POSIX.1 f1g). The Scheduling Contention Scope of a task defines the set of threads of
control (not necessarily limited to Ada tasks) with which the task must compete for
use of processing resources. The scheduling contention scope names System_Wide
and Within_Process shall correspond, respectively, to the names PTHREAD–-
SCOPE–SYSTEM and PTHREAD–SCOPE–PROCESS in POSIX.1.

13.2 Package POSIX_Process_Scheduling

This package provides access to services for influencing the scheduling at the process
level.

The functionality described in this clause is optional. If the Priority Process Schedul-
ing option is not supported, the implementation may cause all calls to the explicitly
declared operations defined in this clause to raise POSIX_Error . Otherwise, the be-
havior shall be as specified in this clause.

with POSIX,
POSIX_Process_Identification;

package POSIX_Process_Scheduling is
-- 13.2.1 Scheduling Parameters
subtype Scheduling_Priority is Integer;
type Scheduling_Parameters is private ;
function Get_Priority (Parameters: Scheduling_Parameters)

return Scheduling_Priority;
procedure Set_Priority

(Parameters: in out Scheduling_Parameters;
Priority: in Scheduling_Priority);

-- 13.2.2 Scheduling Policies
type Scheduling_Policy is range implementation-defined;
Sched_FIFO: constant Scheduling_Policy:= implementation-defined;
Sched_RR: constant Scheduling_Policy:= implementation-defined;
Sched_Other: constant Scheduling_Policy:= implementation-defined;
-- 13.2.3 Modify Process Scheduling Policy and Parameters
procedure Set_Scheduling_Parameters

(Process: in POSIX_Process_Identification.Process_ID;
Parameters: in Scheduling_Parameters);

function Get_Scheduling_Parameters
(Process: POSIX_Process_Identification.Process_ID)

return Scheduling_Parameters;

13 Execution Scheduling 349

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

procedure Set_Scheduling_Policy
(Process: in POSIX_Process_Identification.Process_ID;

New_Policy: in Scheduling_Policy;
Parameters: in Scheduling_Parameters);

function Get_Scheduling_Policy
(Process: POSIX_Process_Identification.Process_ID)

return Scheduling_Policy;
-- 13.2.4 Process Yield CPU
procedure Yield;
-- 13.2.5 Get Scheduling Limits
function Get_Maximum_Priority (Policy: Scheduling_Policy)

return Scheduling_Priority;
function Get_Minimum_Priority (Policy: Scheduling_Policy)

return Scheduling_Priority;
function Get_Round_Robin_Interval

(Process: POSIX_Process_Identification.Process_ID)
return POSIX.Timespec;

private
implementation-defined

end POSIX_Process_Scheduling;

13.2.1 Scheduling Parameters

13.2.1.1 Synopsis

subtype Scheduling_Priority is Integer;
type Scheduling_Parameters is private ;
function Get_Priority (Parameters: Scheduling_Parameters)

return Scheduling_Priority;
procedure Set_Priority

(Parameters: in out Scheduling_Parameters;
Priority: in Scheduling_Priority);

13.2.1.2 Description

Values of the subtype Scheduling_Priority are used to specify the Scheduling Pri-
ority attribute of processes. The range of priority values that are valid for scheduling
processes is implementation defined.

Values of the type Scheduling_Parameters are used to specify the per-process
Scheduling Parameters required for each scheduling policy supported. This type shall
support at least one attribute, Scheduling Priority, of type Scheduling_Priority .

Set_Priority shall set the Scheduling Priority attribute of the object specified by
Parameters to the value specified by Priority .

Get_Priority shall return the Scheduling Priority attribute of the object specified by
Parameters .

Implementations may add other attributes, as permitted in 1.3.1.1.
NOTE: Adding attributes that may change the behavior of applications with respect to this
standard when those attributes are uninitialized also requires that the extension be activated
as described in 1.3.1.1.

Operations for getting and setting the values of implementation-defined attributes of
objects of the Scheduling_Parameters type may be defined in separate extension
packages. The names of these operations shall be of the form Get_X and Set_X ,
where X is the name of the attribute.

350 13 Execution Scheduling

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

13.2.2 Scheduling Policies

13.2.2.1 Synopsis

type Scheduling_Policy is range implementation-defined;
Sched_FIFO: constant Scheduling_Policy:= implementation-defined;
Sched_RR: constant Scheduling_Policy:= implementation-defined;

Sched_Other: constant Scheduling_Policy:= implementation-defined;

13.2.2.2 Description

Values of the type Scheduling_Policy are used to specify process scheduling poli-
cies. The names Sched_FIFO , Sched_RR, and Sched_Other shall correspond, re-
spectively, to the scheduling policy names SCHED–FIFO, SCHED–RR, and SCHED–-
OTHER in POSIX.1 (see 13.2 of f2g).

Other values of type Scheduling_Policy may be implementation defined. The
names of the implementation-defined policies shall begin with “Sched_ ”.

13.2.3 Modify Process Scheduling Policy and Parameters

13.2.3.1 Synopsis

procedure Set_Scheduling_Parameters
(Process: in POSIX_Process_Identification.Process_ID;

Parameters: in Scheduling_Parameters);
function Get_Scheduling_Parameters

(Process: POSIX_Process_Identification.Process_ID)
return Scheduling_Parameters;

procedure Set_Scheduling_Policy
(Process: in POSIX_Process_Identification.Process_ID;

New_Policy: in Scheduling_Policy;
Parameters: in Scheduling_Parameters);

function Get_Scheduling_Policy
(Process: POSIX_Process_Identification.Process_ID)

return Scheduling_Policy;

13.2.3.2 Description

Set_Scheduling_Parameters shall set the Scheduling Parameters of the process
specified by Process to the value specified by Parameters , provided that such a
process exists and the calling process has permission.

Set_Scheduling_Policy shall set the Scheduling Policy and scheduling parameters
of the process specified by Process to the values specified by New_Policy and Pa-
rameters , respectively, provided that such a process exists and the calling process
has permission.

The effect of Set_Scheduling_Parameters and Set_Scheduling_Policy on in-
dividual tasks within the process is dependent on the Scheduling Contention Scope of
the tasks. (See 13.1.)

— For tasks with System_Wide Scheduling Contention Scope, these operations shall
have no effect on their scheduling.

13.2 Package POSIX_Process_Scheduling 351

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

— For tasks with Within_Process scheduling contention scope, scheduling with
respect to threads of control in other processes may be dependent on the schedul-
ing policy and scheduling parameters of their process, which is governed using
these functions.

Get_Scheduling_Parameters shall return the scheduling parameters of the pro-
cess specified by Process , provided that such a process exists and the calling process
has permission.

Get_Scheduling_Policy shall return the Scheduling Policy of the process specified by
Process , provided that such a process exists and the calling process has permission.

For Set_Scheduling_Parameters and Set_Scheduling_Policy , the following
apply:

— Implementations may require that the requesting process have permission to set
its own scheduling parameters or those of another process. Additionally, imple-
mentation defined restrictions may apply to the appropriate privilege required
to set the Scheduling Policy of a process or the Scheduling Policy of another process
to a particular value.

— If the new Scheduling Policy of the process is Sched_FIFO or Sched_RR, only the
Scheduling Priority attribute is required to be supported. In this case, the Scheduling
Priority scheduling parameter is required to be within the range of valid priorities
for the new scheduling policy.

— If the new Scheduling Policy is Sched_Other , the affected scheduling parameters
are implementation defined.

— If the operation fails, it shall propagate an exception, and the Scheduling Policy
and scheduling parameters of the specified process shall not have been affected.

NOTE: A call to Set_Scheduling_Parameters or Set_Scheduling_Policy may result in
preemption of the calling task before the call returns.

13.2.3.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

One or more of the requested scheduling parameters are outside the range
defined for the specified Scheduling Policy of Process .
The value of the Policy parameter is invalid, or one or more of the at-
tributes of Parameters is outside the valid range for the specified schedul-
ing policy.

Operation_Not_Implemented

The operation is not supported by this implementation.

Operation_Not_Permitted

The requesting process does not have permission to perform the operation
for the specified process.
The requesting process does not have permission to invoke Set_Schedul-
ing_Parameters .

352 13 Execution Scheduling

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

No_Such_Process

No process can be found corresponding to that specified by Process .

13.2.4 Process Yield CPU

13.2.4.1 Synopsis

procedure Yield;

13.2.4.2 Description

The Yield operation shall cause the calling task to yield the processor to other tasks
of equal process or task priority. The specific effects are implementation defined.

NOTE: This feature is provided to allow voluntary sharing of processing resources between
cooperating processes of equal priority, under the Sched_FIFO policy, on systems where tasks
are implemented via interleaved execution of a per-process kernel entity.

NOTE: See 13.3.4 for a task-level yield operation.

13.2.4.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Operation_Not_Implemented

The Yield operation is not supported by this implementation.

13.2.5 Get Scheduling Limits

13.2.5.1 Synopsis

function Get_Maximum_Priority (Policy: Scheduling_Policy)
return Scheduling_Priority;

function Get_Minimum_Priority (Policy: Scheduling_Policy)
return Scheduling_Priority;

function Get_Round_Robin_Interval
(Process: POSIX_Process_Identification.Process_ID)

return POSIX.Timespec;

13.2.5.2 Description

Get_Maximum_Priority and Get_Minimum_Priority shall return the maximum
and minimum priority values that are valid for the policy specified by Policy .

Get_Round_Robin_Interval shall return the current round-robin-interval of the
process specified by Process . The value returned represents the quantum under the
Sched_RR policy at which a scheduling decision shall be made when another process
at the same priority is ready to execute. (See 13.2.2 of f2g.)

13.2 Package POSIX_Process_Scheduling 353

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

13.2.5.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

The value of the Policy parameter does not represent a defined scheduling
policy.

Operation_Not_Implemented

The functions Get_Maximum_Priority , Get_Minimum_Priority , and
Get_Round_Robin_Interval are not supported by this implementation.

No_Such_Process

No process can be found corresponding to that specified by Process .

13.3 Task Scheduling

The functionality described in this clause is optional. If the Priority Task Scheduling
option is not supported, the implementation may ignore or reject the pragmas defined
here, or raise POSIX_Error for tasks to which an unsupported pragma is applied.
Likewise, if the Priority Task Scheduling option is not supported, the implementation may
cause all calls to the explicitly declared operations defined in the packages specified in
this clause to raise POSIX_Error . Otherwise, the behavior shall be as specified below.

A prerequisite for support of the Priority Task Scheduling option (see 2.5.1) is support for
the priority model defined in D.1 of the Ada RM f1g and the pragmas and package
interfaces defined in D.2-D.5 of the Ada RM f1g.

13.3.1 Dynamic Priorities

NOTE: The initial base priority of a task may be specified via the Priority pragma, defined
in D.1 of the Ada RM f1g. Thereafter, the base priority may be modified by means of calls to
the procedure Set_Priority , which is defined in Ada.Dynamic_Priorities in D.5 of the
Ada RM f1g.

Implementations of this standard that support child library packages 10.1 of the
Ada RM f1g shall support the package Ada.Dynamic_Priorities and provide a
library-level renaming of that package as Ada_Dynamic_Priorities .

During transition from Ada 83 to Ada 95, implementations of this standard that
do not support child library units shall provide an equivalent library-level pack-
age named Ada_ Dynamic_ Priorities with the same visible declarations as
Ada.Dynamic_Priorities .

13.3.2 Task Dispatching Policy Pragma

The Ada implementation shall support use of the Task_Dispatching_Policy
pragma D.2.2 of the Ada RM f1g with the task dispatching policy identifier POSIX_-
Task_Dispatching . If this policy is selected for a partition, the effect shall be that
tasks are dispatched according to the scheduling policies defined in POSIX.1 (see
Section 13 of f2g) for some implementation-defined correspondence of Ada tasks to
POSIX threads.

354 13 Execution Scheduling

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

NOTE: The effect of the Task_Dispatching_Policy pragma is to specify the policy by which
all the tasks in a process are scheduled. In contrast, the effect of the Task_Creation_At-
tributes pragma is to specify the scheduling policy for tasks of just one type. Thus, although
the rules for the Ada FIFO_Within_Priorities task dispatching policy are very similar to
the rules for the POSIX Sched_FIFO task scheduling policy, one should not be confused with
the other. The former is process wide and the latter is task-specific.

13.3.3 Task Creation Attributes Pragma

The Ada implementation shall support the Task_Creation_Attributes pragma.
The Task_Creation_Attributes pragma is allowed within a task specification, in
which case it shall apply to all tasks of the specified task type. Only one occurrence
of the pragma is allowed in each task specification.

The Task_Creation_Attributes pragma shall be recognized at least for compi-
lations that have specified POSIX_Task_Dispatching as the partition wide task
dispatching policy. Otherwise, it may be rejected or not recognized.

The Task_Creation_Attributes pragma shall allow (at least) argument associ-
ations with argument identifiers Scheduling_Contention_Scope and Schedul-
ing_Policy , in any order. For the argument identifier Scheduling_Contention_-
Scope , at least the names System_Wide and Within_Process shall be recognized.
For the argument identifier Scheduling_Policy , at least the names Sched_FIFO ,
Sched_RR, and Sched_Other shall be recognized.

An implementation may support implementation-defined additional argument iden-
tifiers for the Task_Creation_Attributes pragma, and additional scheduling pol-
icy names. Scheduling policy names shall begin with “Sched_ ”.

13.3.3.1 Error Handling

If the Task_Creation_Attributes pragma is not supported, or the specified com-
bination of arguments is not supported, then the pragma shall not be recognized, or
the compilation shall be rejected, or POSIX_Error shall be raised during the creation
or activation of the task to which the pragma is applied.

If any of the following conditions is detected during the creation or activation of a
task containing the Task_Creation_Attributes pragma, the exception POSIX_-
Error shall be raised, with the corresponding error code:

Invalid_Argument

The name or expression specified for a supported argument identifier is not
valid.

Operation_Not_Supported

The combination of argument associations given in the pragma is not sup-
ported.

13.3.4 Task Yield CPU

Execution of a delay statement with duration zero shall cause the calling task to
yield the processor to other ready tasks of equal priority. The specific effects are
implementation defined.

13.3 Task Scheduling 355

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

13.4 Synchronization Scheduling

This clause specifies the interactions between the synchronization operations of Sec-
tion 11 and priority task scheduling.

When a task owns a mutex with the No_Priority_Inheritance protocol attribute
(see 11.2.5), its priority and scheduling are not affected by its mutex ownership.

When a task is blocking higher priority tasks because of owning one or more mutexes
with the Highest_Blocked_Task protocol attribute, it inherits the active priorities
of all the tasks waiting on any of the mutexes owned by this task and initialized with
this protocol.

When a task owns one or more mutexes initialized with the Highest_Ceiling_-
Priority protocol, it inherits the ceiling priorities of all the mutexes owned by this
task and initialized with this attribute, regardless of whether other tasks are blocked
on any of these mutexes. The Ceiling Priority attribute defines the ceiling priority of
initialized mutexes, which is the minimum priority level at which the critical section
guarded by the mutex is executed. In order to avoid priority inversion, the Ceiling
Priority of the mutex shall be set to a priority higher than or equal to the highest
priority of all the tasks that may lock that mutex.

If the Mutex Priority Inheritance option is supported: When a task makes a call to
POSIX_Mutexes.Lock , if the mutex was initialized with the protocol attribute hav-
ing the value Highest_Blocked_Task and the calling task is blocked because the
mutex is owned by another task, that owner task shall inherit the priority of the call-
ing task as long as it continues to own the mutex. The implementation shall update
its execution priority to the maximum of its assigned priority and all its inherited
priorities. Furthermore, if this owner task itself becomes blocked on another mutex,
the same priority inheritance effect shall be propagated to the other owner task, in a
recursive manner.

NOTE: If a task simultaneously owns several mutexes initialized with different protocols, it
will inherit all the priorities that it would have obtained by each of these protocols.

356 13 Execution Scheduling

IEEE Std 1003.5c-1998

Section 14: Clocks and Timers

‘

This section describes the high-resolution clock and timer facilities available under
this standard.

The functionality described in this section is optional. If the Timers option is not sup-
ported, the implementation may cause all calls to the explicitly declared operations
defined in this section to raise POSIX_Error . Otherwise, the behavior shall be as
specified in this section.

14.1 Package POSIX_Timers

This package provides access to services that can be used to read and set the value
of a clock, obtain the resolution of a clock, create a timer, delete a timer, arm and
disarm a timer, and obtain the state of a timer.

with POSIX,
POSIX_Signals;

package POSIX_Timers is
-- 14.1.1 Clock and Timer Types
type Clock_ID is private ;
type Timer_ID is private ;
-- 14.1.2 Realtime Clock
Clock_Realtime: constant Clock_ID;
-- 14.1.3 Timer State and Timer Options
type Timer_State is private ;
type Timer_Options is new POSIX.Option_Set;
Absolute_Timer: constant Timer_Options := implementation-defined;
procedure Set_Initial

(State: in out Timer_State;
Initial: in POSIX.Timespec);

function Get_Initial
(State: Timer_State) return POSIX.Timespec;

procedure Set_Interval
(State: in out Timer_State;

Interval: in POSIX.Timespec);
function Get_Interval

(State: Timer_State) return POSIX.Timespec;
-- 14.1.4 Clock Operations
procedure Set_Time

(Clock: in Clock_ID;
Value: in POSIX.Timespec);

function Get_Time (Clock: Clock_ID)
return POSIX.Timespec;

function Get_Resolution (Clock: Clock_ID)
return POSIX.Timespec;

-- 14.1.5 Create a Timer
function Create_Timer

(Clock: Clock_ID;
Event: POSIX_Signals.Signal_Event)

return Timer_ID;
-- 14.1.6 Delete a Timer
procedure Delete_Timer

(Timer: in out Timer_ID);

14 Clocks and Timers 357

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

-- 14.1.7 Timer Operations
procedure Arm_Timer

(Timer: in Timer_ID;
Options: in Timer_Options;
New_State: in Timer_State;
Old_State: out Timer_State);

procedure Arm_Timer
(Timer: in Timer_ID;

Options: in Timer_Options;
New_State: in Timer_State);

function Get_Timer_State
(Timer: Timer_ID) return Timer_State;

procedure Disarm_Timer
(Timer: in Timer_ID);

function Get_Timer_Overruns
(Timer: Timer_ID) return Natural;

private
implementation-defined

end POSIX_Timers;

14.1.1 Clock and Timer Types

14.1.1.1 Synopsis

type Clock_ID is private ;

type Timer_ID is private ;

14.1.1.2 Description

Clocks are used to measure the passage of time. Timers are based on clocks and can
be used to trigger signals.

Objects of type Clock_ID are used to identify clocks in clock and timer operations.

Objects of type Timer_ID are used to identify timers in timer operations.

A value of type Timer_ID is valid if it has been returned by function Create_Timer
(see 14.1.5) and not yet provided as a parameter to Delete_Timer (see 14.1.6).

14.1.2 Realtime Clock

14.1.2.1 Synopsis

Clock_Realtime: constant Clock_ID;

14.1.2.2 Description

Clocks measure the passage of time. A clock can measure real time or some other
implementation-defined concept of time, such as the processor time used by the pro-
cess.

Every conforming implementation shall provide at least one system-wide realtime
clock, having the identifier Clock_Realtime . The maximum allowable resolution
for the Clock_Realtime clock and all timers based on this clock is Portable_-
Clock_Resolution_Minimum (see 2.6). Implementations may support smaller val-
ues of resolution for the Clock_Realtime clock to provide finer granularity time

358 14 Clocks and Timers

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

bases. The actual resolution supported by an implementation for a specific clock is
obtained by use of Get_Resolution (see 14.1.4). If the actual resolution supported
for timers based on this clock differs from the resolution supported by the clock, the
implementation shall document this difference.

The minimum allowable maximum value for the Clock_Realtime clock and abso-
lute timers based on it is Seconds’Last (see 2.4.8). If the maximum value sup-
ported for timers based on this clock differs from the maximum value supported by
the clock, the implementation shall document this difference.

NOTE: Conforming POSIX.5 Applications cannot presume the system-wide realtime clock is
monotonically increasing.

A conforming implementation may declare additional constants of type Clock_ID in
this package specification, provided the names begin with “Clock_ /nobreak”.

NOTE: A future revision to this standard is expected to define other values of type Clock_ID
to represent an externally synchronized block, a monotonically increasing clock, and execution
time clocks for processes and tasks.

14.1.3 Timer State and Timer Options

14.1.3.1 Synopsis

type Timer_State is private ;
type Timer_Options is new POSIX.Option_Set;
Absolute_Timer: constant Timer_Options := implementation-defined;
procedure Set_Initial

(State: in out Timer_State;
Initial: in POSIX.Timespec);

function Get_Initial
(State: Timer_State) return POSIX.Timespec;

procedure Set_Interval
(State: in out Timer_State;

Interval: in POSIX.Timespec);
function Get_Interval

(State: Timer_State) return POSIX.Timespec;

14.1.3.2 Description

The type Timer_State shall represent the state of a timer, including an initial timer
value and a repetition interval for use by the timer operations. The state of a timer
shall include at least the following attributes.

Initial

If the Initial attribute is nonzero, it specifies the time to or the time of the
next timer expiration (for relative and absolute timers, respectively).

Interval

If the Interval attribute is positive, it specifies an interval to be used in reload-
ing the timer when it expires; that is, a periodic timer is specified. If the
value of the Interval attribute is zero, the timer shall be disarmed after its
next expiration; that is, a ”one-shot” timer is specified.

14.1 Package POSIX_Timers 359

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Implementations may add extensions to the state of a timer as permitted in 1.3.1.1,
point(2). Adding extensions that might change the behavior of the application with
respect to this standard when those members are uninitialized also requires that the
extension be enabled as required in 1.3.1.1.

Values of the Initial and Interval attributes are of type Timespec , which is defined in
2.4.8.

NOTE: Default values for the Initial and Interval timer state attributes are not specified by this
standard.

NOTE: The notes in 14.1.7 imply the existence of another hidden attribute of timer state,
namely, whether the option Absolute_Timer was specified in the Arm_Timer call that most
recently armed the timer.

Operations are provided to specify and to interrogate the value of the Initial and Interval
attributes. The Set_Initial procedure shall set the Initial attribute of the timer
state object specified by State to the value specified by Initial , and the Set_-
Interval procedure shall set the Interval attribute of the timer state object specified
by State to the value specified by Interval . The Get_Initial function shall
return the Initial attribute of the specified timer state object, and the Get_Interval
function shall return the Interval attribute of the specified timer state object.

Type Timer_Options is derived from type POSIX .Option_Set and shall include
values for each supported timer option. This standard specifies one constant, Ab-
solute_Timer , of type Timer_Options . The effect of option Absolute_Timer is
specified in 14.1.7.

14.1.4 Clock Operations

14.1.4.1 Synopsis

procedure Set_Time
(Clock: in Clock_ID;

Value: in POSIX.Timespec);
function Get_Time (Clock: Clock_ID)

return POSIX.Timespec;
function Get_Resolution (Clock: Clock_ID)

return POSIX.Timespec;

14.1.4.2 Description

Operations are provided to set and to read time values of clocks and to interrogate
clock resolution.

The Set_Time procedure shall set the time of the clock specified by Clock to Value .
Time values between two consecutive nonnegative multiples of the resolution of the
specified clock shall be truncated down to the smaller multiple of the resolution.

NOTE: The behavior of Set_Time for negative time values is not specified by this standard.

The Get_Time function shall return the current time value of the clock specified by
Clock .

360 14 Clocks and Timers

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

A clock may be system wide, that is, visible to all processes, or it may be per-process,
measuring time that is meaningful only within an individual process. For the re-
quired clock Clock_Realtime , the values returned by Get_Time and specified by
Set_Time shall represent an offset from the Epoch. (See 2.2.2.58).

An implementation may also support additional clocks. The interpretation of time
values for these clocks is unspecified.

The effect of setting a clock via Set_Time on expiration times of armed timers asso-
ciated with that clock is implementation defined.

NOTE: A future revision to this standard is expected to require that relative timers be unaf-
fected and that absolute timers expire at the new adjusted time of the clock. See the second
note in 14.1.7.

The appropriate privilege to set a particular clock is implementation defined.

The Get_Resolution function shall return the resolution of the clock specified by
Clock . Whether it is possible to set the resolution of any clock and the means of
doing so are implementation defined.

14.1.4.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

Clock is not a valid clock identifier.
The Value parameter for Set_Time is outside the range allowed for the
specified Clock .
Upon Set_Time , an argument of type Timespec cannot be interpreted as
a valid time. For this error, the implementation may instead raise Con-
straint_Error .
NOTE: For example, an invalid value of type Timespec may be obtained via an
uninitialized variable.

Operation_Not_Implemented

The operations Set_Time , Get_Time , and Get_Resolution are not sup-
ported by this implementation.

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

Permission_Denied

Upon Set_Time , the requesting process does not have the appropriate priv-
ilege to set the specified clock.

14.1.5 Create a Timer

14.1.5.1 Synopsis

function Create_Timer
(Clock: Clock_ID;

Event: POSIX_Signals.Signal_Event)

return Timer_ID;

14.1 Package POSIX_Timers 361

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

14.1.5.2 Description

An application can create a timer, associated with a specific clock, which later can be
armed to provide one-shot or periodic notifications of timer expiration. Notifications
of timer expiration are provided to the application as signal events.

Each implementation shall define a set of clocks, which shall include the system-wide
realtime clock Clock_Realtime , that can be used as timing bases for timers.

The Create_Timer function shall create a timer using the specified Clock as a
timing base and shall return the identifier of the timer, which can be used in later
timer operations. This timer identifier shall be unique within the calling process
until the timer is deleted. The timer whose identification is returned shall be in a
disarmed state upon return from Create_Timer .

The Event parameter identifies a Signal_ Event object that defines the asyn-
chronous notification that will occur when the timer expires. If the Notification at-
tribute of Event is Signal_Notification , then Event shall specify the signal
number and the application-specific data value to be sent upon timer expiration.
The Event parameter must not specify a reserved signal of the Ada language imple-
mentation. If the Notification attribute of Event is No_Notification , no notification
shall be sent upon timer expiration. The behavior for any other value of Notification is
implementation defined.

If the Event parameter specifies Signal_Notification , the Signal specified by
Event shall be generated upon timer expiration.

If the Realtime Signals option is supported: If the signal is in the range Realtime_-
Signal and if signal queueing is enabled for the specified signal, the signal shall be
queued with the Data value specified by Event . Otherwise, it is unspecified whether
the signal is queued and what Data value, if any, is queued with it.

Timers shall not be inherited by a child process created by a call to POSIX_Unsafe_-
Process_Primitives.Fork , or POSIX_Process_Primitives.Start_Process ,
POSIX_Process_Primitives.Start_Process_Search . Timers shall be disarmed
and deleted by a call to POSIX_Unsafe_Process_Primitives.Exec or POSIX_-
Unsafe_Process_Primitives.Exec_Search .

The value returned is undefined if the Create_Timer function fails.

If the Ada implementation reserves any timers, the value returned by Timers_-
Maximum(see 4.5) shall be reduced to reflect the number of timers actually available
to the application.

14.1.5.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Resource_Temporarily_Unavailable

The system lacks sufficient signal queueing resources to honor the request.
The calling process has already created all the timers it is allowed by this
implementation.

362 14 Clocks and Timers

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Invalid_Argument

Clock is not a valid clock identifier.
The application is attempting to create a timer that delivers a signal that is
reserved for the Ada implementation (see 2.2.2.155).

Operation_Not_Supported

The function Create_Timer is not supported by this implementation.

14.1.6 Delete a Timer

14.1.6.1 Synopsis

procedure Delete_Timer

(Timer: in out Timer_ID);

14.1.6.2 Description

A previously created timer can be deleted.

The Delete_Timer procedure shall delete the timer specified by Timer , previously
created by Create_Timer . If the specified timer is armed when Delete_Timer is
called, the behavior shall be as if the timer is automatically disarmed before dele-
tion. The disposition of pending signals (if any) generated by the deleted timer is
unspecified. An implementation may cause Delete_Timer to set Timer to some
invalid value. The effect of using Timer in subsequent timer operations, except in a
subsequent call to Create_Timer , is undefined.

14.1.6.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

Timer is not a valid timer identifier.

Operation_Not_Supported

The procedure Delete_Timer is not supported by this implementation.

14.1.7 Timer Operations

14.1.7.1 Synopsis

procedure Arm_Timer
(Timer: in Timer_ID;

Options: in Timer_Options;
New_State: in Timer_State;
Old_State: out Timer_State);

procedure Arm_Timer
(Timer: in Timer_ID;

Options: in Timer_Options;
New_State: in Timer_State);

function Get_Timer_State
(Timer: Timer_ID) return Timer_State;

procedure Disarm_Timer
(Timer: in Timer_ID);

function Get_Timer_Overruns

(Timer: Timer_ID) return Natural;

14.1 Package POSIX_Timers 363

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

14.1.7.2 Description

Once created, a timer must be armed in order for signals to be generated upon timer
expiration.

The Arm_Timer procedure shall set the time until next expiration of the timer spec-
ified by Timer from the Initial attribute of New_State and shall arm the timer if this
value is positive.

If Absolute_Timer is specified by Options , then the timer specified by Timer shall
be armed as an absolute timer. The time of the next timer expiration shall be set to
the value specified by the Initial attribute of New_State , provided this value is not
zero. The timer shall expire when the clock on which the timer is based reaches the
time specified by the Initial attribute of New_State .

If the Initial attribute of New_State is zero, the implementation shall detect the con-
dition, and the call to Arm_Timer shall fail.

If the Initial attribute of New_State is not zero, but is less than or equal to the current
value of the clock on which the specified timer is based, the call to Arm_Timer shall
succeed, and immediate expiration notification shall be made.

If Absolute_Timer is not specified by Options , then the timer specified by Timer
shall be armed as a relative timer. The time of the next timer expiration shall be set
as specified by the Initial attribute of New_State , provided the value is positive. The
value of the Initial attribute of New_State shall be added to the current value of the
clock on which the specified timer is based in order to obtain the future value of time
at which the timer shall expire.

If the Initial attribute of New_State is zero or negative, the implementation shall
detect the condition, and the call to Arm_Timer shall fail.

If the timer specified by Timer is already armed, Arm_Timer shall reset the time
until next expiration, as specified by Options and the Initial attribute of New_State .
The effect on pending expiration notifications of resetting the timer is unspecified.

The effect of the Interval attribute of New_State is to specify a reload value when the
timer expires. When this value is zero, a one-shot timer is armed. Upon expiration,
the timer shall not be automatically rearmed. When this value is positive, a periodic
timer is specified. Upon timer expiration, the value of the Interval attribute of New_-
State shall be added to the current value of the clock on which the timer is based to
obtain the next expiration time of the timer, and the timer shall be rearmed.

Time values that are between two consecutive nonnegative integer multiples of the
resolution of the underlying clock shall be rounded up to the next larger multiple of
the resolution. Quantization error shall not cause the timer to expire earlier than
the rounded-up time value.

If present, Old_State shall return the state of the timer prior to setting its new
state, the same as would be returned by a call to Get_Timer_State .

The function Get_Timer_State shall return the current state of the timer specified
by Timer . The Initial attribute of the return value shall return a Timespec value

364 14 Clocks and Timers

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

representing either zero, if the specified timer is not armed, or the difference between
the next expiration time of Timer and the current time of the underlying clock, if the
timer is armed. The Interval attribute of the return value shall return a Timespec
value representing either zero, if the specified timer is one-shot, or the interval value
previously specified by a call to Arm_Timer , if the timer is periodic. The values of the
Initial and Interval attributes are subject to the resolution of the underlying clock.

NOTE: The value of the Initial attribute returns a relative amount of time until the next timer
expiration, even if the timer was armed as an absolute timer.

The Disarm_Timer procedure shall cancel a previous timer arming operation for
the timer specified by Timer . The effect of Disarm_Timer on pending expiration
notifications is unspecified.

NOTE: A future revision to this standard is expected to require the following behavior:
— If the value of the realtime clock is set via Set_Time , the new value of the clock shall be

used to determine the expiration for any absolute timers based upon the realtime clock.

— If the absolute time requested at the invocation of such a time service is before the new
value of the clock, the time service shall expire immediately in the same way as if the
clock had reached the requested time normally.

— Setting the value of the realtime clock via Set_Time shall have no effect on tasks that
are blocked waiting for a relative time service based on this clock. Consequently, such
time services shall expire when the requested relative interval elapses, independently of
the new or old value of the clock.

— The effect of setting a clock via Set_Time on armed timers associated with a clock other
than the realtime clock is implemented defined.

Only a single signal shall be queued to the process for a given timer at any point in
time. When a timer for which a signal is still pending expires, no additional signal
shall be queued, and a timer overrun shall occur.

When a timer expiration signal is accepted, if the Realtime Signals option is supported,
the Get_Timer_Overruns function shall return the timer expiration overrun count
for the timer specified by Timer . The overrun count returned shall be the number of
extra timer expirations that occurred between the time the timer expiration signal
was generated and when it was accepted, up to an implementation-definedmaximum
of Timer_Overruns_Maximum . If the number of such extra timer expirations ex-
ceeds Timer_Overruns_Maximum , then the overrun count shall be set to Timer_-
Overruns_Maximum . The value returned by Get_Timer_Overruns shall apply to
the most recent expiration signal acceptance for the specified timer. If no expiration
signal has been accepted for Timer , or the Realtime Signals option is not supported,
the meaning of the overrun count returned is undefined.

14.1.7.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

Timer is not a valid timer identifier.

14.1 Package POSIX_Timers 365

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Upon Arm_Timer , Absolute_Timer is specified by Options , and the Initial
attribute of New_State is zero; or Absolute_Timer is not specified, and
the Initial attribute of New_State is zero or negative.
Upon Arm_Timer , an argument of type Timespec cannot be interpreted as
a valid time. For this error, the implementation may instead raise Con-
straint_Error .
NOTE: For example, an invalid value of type Timespec may be obtained via an
uninitialized variable.

Operation_Not_Implemented

The operations Arm_Timer , Get_Timer_State , Disarm_Timer , and Get_-
Timer_Overruns are not supported by this implementation.

14.2 High Resolution Delay

This standard specifies no new operations for high resolution delay. Rather, it places
additional requirements on the implementation of the delay statement and, if sup-
ported, the delay until statement.

If the Timers option is supported: The resolution of delays via the delay and delay
until statements shall be no coarser than for timers created for Clock_Realtime .

366 14 Clocks and Timers

IEEE Std 1003.5c-1998

Section 15: Message Passing

This section describes the facilities for interprocess communication message passing
available under this standard.

The functionality described in this section is optional. If the Message Queues option
is not supported, the implementation may cause all calls to the explicitly declared
operations defined in this section to raise POSIX_Error . Otherwise, the behavior
shall be as specified in this section.

15.1 Package POSIX_Message_Queues

This package provides access to services that can be used to create and remove mes-
sage queue objects, send messages to a message queue, and receive messages from a
message queue.

with Ada_Streams,
POSIX,
POSIX_IO,
POSIX_Permissions,
POSIX_Signals;

package POSIX_Message_Queues is
-- 15.1.1 Message Queue Attributes
type Message_Queue_Descriptor is private ;
type Attributes is private ;
type Message_Queue_Options is new POSIX.Option_Set;
Non_Blocking: constant Message_Queue_Options

:= Message_Queue_Options(POSIX_IO.Non_Blocking);
subtype Message_Priority is Integer range implementation-defined;
procedure Set_Max_Messages

(Attrs: in out Attributes;
Value: Natural);

function Get_Max_Messages
(Attrs: Attributes) return Natural;

procedure Set_Message_Length
(Attrs: in out Attributes;

Value: Natural);
function Get_Message_Length

(Attrs: Attributes) return Natural;
procedure Set_Options

(Attrs: in out Attributes;
Value: Message_Queue_Options);

function Get_Options
(Attrs: Attributes)

return Message_Queue_Options;
function Get_Message_Count

(Attrs: Attributes) return Natural;
-- 15.1.2 Open a Message Queue
function Open

(Name: POSIX.POSIX_String;
Mode: POSIX_IO.File_Mode;
Options: POSIX_IO.Open_Option_Set := POSIX_IO.Empty_Set;
Masked_Signals: POSIX.Signal_Masking:= POSIX.RTS_Signals)

return Message_Queue_Descriptor;

15 Message Passing 367

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

function Open_Or_Create
(Name: POSIX.POSIX_String;

Mode: POSIX_IO.File_Mode;
Permissions: POSIX_Permissions.Permission_Set;
Options: POSIX_IO.Open_Option_Set := POSIX_IO.Empty_Set;
Masked_Signals: POSIX.Signal_Masking:= POSIX.RTS_Signals)

return Message_Queue_Descriptor;
function Open_Or_Create

(Name: POSIX.POSIX_String;
Mode: POSIX_IO.File_Mode;
Permissions: POSIX_Permissions.Permission_Set;
Options: POSIX_IO.Open_Option_Set := POSIX_IO.Empty_Set;
Attrs: Attributes;
Masked_Signals: POSIX.Signal_Masking:= POSIX.RTS_Signals)

return Message_Queue_Descriptor;
-- 15.1.3 Close a Message Queue
procedure Close (MQ: in out Message_Queue_Descriptor);
-- 15.1.4 Remove a Message Queue
procedure Unlink_Message_Queue (Name: in POSIX.POSIX_String);
-- 15.1.5 Send a Message to a Message Queue
procedure Send

(MQ: in Message_Queue_Descriptor;
Message: in Ada_Streams.Stream_Element_Array;
Priority: in Message_Priority;
Masked_Signals: in POSIX.Signal_Masking:= POSIX.RTS_Signals);

-- 15.1.6 Receive a Message from a Message Queue
procedure Receive

(MQ: in Message_Queue_Descriptor;
Message: out Ada_Streams.Stream_Element_Array;
Last: out Ada_Streams.Stream_Element_Offset;
Priority: out Message_Priority;
Masked_Signals: in POSIX.Signal_Masking:= POSIX.RTS_Signals);

-- 15.1.7 Generic Message Passing
generic

type Message_Type is private ;
package Generic_Message_Queues is

procedure Send
(MQ: in Message_Queue_Descriptor;

Message: in Message_Type;
Priority: in Message_Priority;
Masked_Signals: in POSIX.Signal_Masking:= POSIX.RTS_Signals);

procedure Receive
(MQ: in Message_Queue_Descriptor;

Message: out Message_Type;
Priority: out Message_Priority;
Masked_Signals: in POSIX.Signal_Masking:= POSIX.RTS_Signals);

function Get_Error_Buffer return Ada_Streams.Stream_Element_Array;
end Generic_Message_Queues;
-- 15.1.8 Notify Process that a Message is Available
procedure Request_Notify

(MQ: in Message_Queue_Descriptor;
Event: in POSIX_Signals.Signal_Event);

procedure Remove_Notify (MQ: in Message_Queue_Descriptor);
-- 15.1.9 Set/Query Message Queue Attributes
procedure Set_Attributes

(MQ: in Message_Queue_Descriptor;
New_Attrs: in Attributes;
Old_Attrs: out Attributes);

368 15 Message Passing

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

procedure Set_Attributes
(MQ: in Message_Queue_Descriptor;

New_Attrs: in Attributes);
function Get_Attributes

(MQ: Message_Queue_Descriptor)
return Attributes;

private
implementation-defined

end POSIX_Message_Queues;

15.1.1 Message Queue Attributes

15.1.1.1 Synopsis

type Message_Queue_Descriptor is private ;
type Attributes is private ;
type Message_Queue_Options is new POSIX.Option_Set;
Non_Blocking: constant Message_Queue_Options

:= Message_Queue_Options(POSIX_IO.Non_Blocking);
subtype Message_Priority is Integer range implementation-defined;
procedure Set_Max_Messages

(Attrs: in out Attributes;
Value: Natural);

function Get_Max_Messages
(Attrs: Attributes) return Natural;

procedure Set_Message_Length
(Attrs: in out Attributes;

Value: Natural);
function Get_Message_Length

(Attrs: Attributes) return Natural;
procedure Set_Options

(Attrs: in out Attributes;
Value: Message_Queue_Options);

function Get_Options
(Attrs: Attributes)

return Message_Queue_Options;
function Get_Message_Count

(Attrs: Attributes) return Natural;

15.1.1.2 Description

Objects of type Message_Queue_Descriptor are used to refer to open message
queue descriptions. A value of type Message_Queue_Descriptor is valid if it was
returned by a call to the functions Open or Open_Or_Create (See 15.1.2) and not yet
used as a parameter in a call to Close (See 15.1.3).

Message queues may, but need not, be implemented within the file system, and open
message queues may use file descriptors. Thus, the use of message queues may
reduce the number of file descriptors available for other uses (see Open Files Maximum
in 2.6.1).

Objects of type Attributes are used to specify attributes of message queues. Mes-
sage queue attributes are initially set when a message queue is created or opened.
Each value of type Attributes has at least the following attributes :

15.1 Package POSIX_Message_Queues 369

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Max Messages

The number of messages that can be held in the message queue, without
causing Send or Generic_Message_Queues.Send to fail or wait due to
lack of resources. This attribute may be queried, but can only be set at the
time the message queue is created.

Message Length

The maximum size in bytes (not bits) of each message in the message queue.
This attribute may be queried, but can only be set at the time the message
queue is created.

Options

Options specific to message queues that affect message queue operations
and the state of the message queue to which they are applied. This attribute
may be both queried and set (See 15.1.9).

Message Count

The number of messages currently on the queue. This attribute may be
queried, but cannot be set.

Implementations may add other attributes, as permitted in 1.3.1.1 (2). Adding at-
tributes that may change the behavior of applications with respect to this standard
when those attributes are uninitialized also requires that the extension be enabled,
as required by 1.3.1.1.

A function whose name is of the form Get_X , where X is the name of one of the at-
tributes of a message queue, shall return the value of that attribute for the specified
Attributes object.

A procedure whose name is of the form Set_X , where X is the name of one of the
attributes of a message queue, shall set the value of that attribute for the specified
Attributes object.

NOTE: The operation to set the Message Count attribute of an Attributes object is intention-
ally omitted.

Values of type Message_Queue_Options are used to specify the Options attribute
of an Attributes object. The following value of Message_Queue_Options shall be
defined :

Non_Blocking

Calls to Send, Generic_Message_Queues.Send , Receive , and Generic_-
Message_Queues.Receive shall fail if a message queue resource is tem-
porarily unavailable (such as if the message queue is full on a Send). If
Non_Blocking is not specified, calls to these operations shall wait until the
resource becomes available.
The constant POSIX_Message_Queues.Non_Blocking is a homograph of
the constant POSIX_IO.Non_Blocking and shall have the same represen-
tation, although it is of a different type.

The interpretation of other values of Message_Queue_Options is unspecified.

The subtype Message_Priority defines the range of message priority levels sup-
ported by the implementation.

370 15 Message Passing

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

NOTE: Message_Priority’Last may be greater than Message Priority Maximum.

NOTE: Priority is an attribute of a message, not an attribute of a message queue.

15.1.1.3 Error Handling

If the following condition occurs, the exception POSIX_Error shall be raised with
the corresponding error code:

Operation_Not_Implemented

The requested message queue operation is not supported by this implemen-
tation.

15.1.2 Open a Message Queue

15.1.2.1 Synopsis

function Open
(Name: POSIX.POSIX_String;

Mode: POSIX_IO.File_Mode;
Options: POSIX_IO.Open_Option_Set := POSIX_IO.Empty_Set;
Masked_Signals: POSIX.Signal_Masking:= POSIX.RTS_Signals)

return Message_Queue_Descriptor;
function Open_Or_Create

(Name: POSIX.POSIX_String;
Mode: POSIX_IO.File_Mode;
Permissions: POSIX_Permissions.Permission_Set;
Options: POSIX_IO.Open_Option_Set := POSIX_IO.Empty_Set;
Masked_Signals: POSIX.Signal_Masking:= POSIX.RTS_Signals)

return Message_Queue_Descriptor;
function Open_Or_Create

(Name: POSIX.POSIX_String;
Mode: POSIX_IO.File_Mode;
Permissions: POSIX_Permissions.Permission_Set;
Options: POSIX_IO.Open_Option_Set := POSIX_IO.Empty_Set;
Attrs: Attributes;
Masked_Signals: POSIX.Signal_Masking:= POSIX.RTS_Signals)

return Message_Queue_Descriptor;

15.1.2.2 Description

The Open and Open_Or_Create functions establish the connection between a process
and a message queue via a message queue descriptor. They create an open message
queue description that refers to that message queue and return a message queue
descriptor that refers to the open message queue description. The open message
queue description contains information about the mode in which the process accesses
the message queue as well as a reference to the message queue itself. The message
queue descriptor is used by other operations to refer to the open message queue
description.

The Open function requires that the message queue exist at the time of the call.
Open_Or_Create will create the message queue if it does not exist. The Namepa-
rameter specifies a string naming a message queue. It is unspecified whether this
name appears in the file system and is visible to other functions that take path-
names as arguments. The Nameparameter shall conform to the construction rules

15.1 Package POSIX_Message_Queues 371

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

for a pathname. If Namebegins with the slash character, then processes calling Open
or Open_Or_Create with the same value of Nameshall refer to the same message
queue object, as long as that name has not been removed. If Namedoes not begin
with the slash character, the effect is implementation defined. The interpretation of
slash characters other than the leading slash character in Nameis implementation
defined.

The Mode parameter specifies the desired receive and/or send access to the message
queue. The requested access permission to receive or send messages is granted if the
calling process would be granted read or write access, respectively, to an equivalently
protected file. Allowed values for Mode are defined by POSIX_IO.File_Mode with
effects as follows:

Read_Only

Open the message queue for receiving messages. The process can use the re-
turned message queue descriptor as a parameter to Receive or Generic_-
Message_Queues.Receive but not Send or Generic_Message_Queues.-
Send.

Write_Only

Open the queue for sending messages. The process can use the returned
message queue descriptor as a parameter to Send and Generic_Message_-
Queues.Send but not Receive or Generic_Message_Queues.Receive .

Read_Write

Open the queue for both receiving and sending messages. The process can
use the returned message queue descriptor as a parameter to any of the
operations allowed for Read_Only and Write_Only .

A message queue may be referenced by multiple open message queue descriptions,
with (possibly) different modes, in the same or different processes.

The Open_Or_Create function can be used to create a message queue. It requires
an additional parameter, Permissions , which specifies the permissions for the mes-
sage queue, if it is created. The value of Permissions may be constructed as the
union ("+") of values from POSIX_Permissions.Permission_Set . The permis-
sions behave as described in 5.1.1 for file permissions.

If the pathname Name is not the name of an existing message queue on a call to
Open, then the call shall fail. If the pathname, Name, has already been used to create
a message queue that still exists, the effect of the Open_Or_Create call shall be the
same as Open, except as noted under Exclusive below. Otherwise, a message queue
is created as follows:

— The new message queue shall have no messages in it.

— The user ID of the message queue shall be set to the effective user ID of the
process, and the group ID of the message queue shall be set to the effective
group ID of the process.

— If the optional parameter Attrs is specified and the calling process has the ap-
propriate privilege for Name, the Max Messages and Message Length attributes of
the message queue shall be set to the values specified in Attrs .

372 15 Message Passing

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

NOTE: The blocking behavior associated with the new open message queue description
is taken from the Options parameter. The Options attribute of the Attrs parameter is
ignored by Open_Or_Create .

— If the optional parameter Attrs is specified and the calling process does not
have the appropriate privilege on Name, the Open_Or_Create function shall fail
without creating the message queue.

— If the Attrs parameter is not specified, the message queue shall be created with
implementation-defined default message queue attributes.

The parameter Options shall specify additional options for the message queue. The
meanings of the options are as follows :

Exclusive

Open_Or_Create shall fail if the message queue Nameexists. The check for
the existence of the message queue and the creation of the message queue
if it does not exist shall be atomic with respect to other processes executing
Open_Or_Create naming the same Namewith Exclusive set. If this option
is specified for Open, the result is undefined.

Non_Blocking

This option is associated with the open message queue description and de-
termines whether calls to Send, Generic_Message_Queues.Send , Re-
ceive , and Generic_Message_Queues.Receive shall fail if a message
queue resource is temporarily unavailable (such as if the message queue is
full on a Send). If Non_Blocking is not specified in Options , calls to these
operations shall wait until the resource becomes available.
The constant POSIX_IO.Non_Blocking is a homograph of the constant
POSIX_Message_Queues.Non_Blocking and shall have the same repre-
sentation, although it is of a different type.

The effect of setting other values from POSIX_IO.Open_Option_Set in the Options
parameter of Open or Open_Or_Create is undefined.

Open and Open_ Or_ Create may be interruptible by the delivery of a signal.
Masked_Signals specifies the set of signals that shall be added to the signal mask
for the duration of this operation, as described in 3.3.6.

The Open and Open_Or_Create functions shall not add or remove messages from
the message queue.

15.1.2.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Permission_Denied

The message queue exists, and the permissions specified by Mode are de-
nied; or the message queue does not exist, and permission to create the
message queue is denied.

File_Exists

The Exclusive option is specified on a call to Open_Or_Create and the
named message queue already exists.

15.1 Package POSIX_Message_Queues 373

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Interrupted_Operation

A signal interrupted the Open or Open_Or_Create operation.

Invalid_Argument

The Open or Open_Or_Create operation is not supported for the given
name. The implementation shall document under what circumstances this
error may be returned.
The Max Messages or Message Length attribute of Attrs is less than or equal
to zero.

Too_Many_Open_Files

Too many message queue descriptors or file descriptors are currently in use
by this process.

Filename_Too_Long

The length in POSIX characters of the specified pathname exceeds Pathname
Limit; or the length in POSIX characters of a component of the specified path-
name is greater than Filename Maximum, and the Filename Truncation option is
not supported for the pathname prefix of that component. (See 5.4.2.)

Too_Many_Open_Files_In_System

Too many message queues are currently open in the system.

No_Such_File_Or_Directory

The Open operation was called, and the named message queue does not
exist.

No_Space_Left_On_Device

There is insufficient space for the creation of the new message queue.

Operation_Not_Implemented

The Open and Open_Or_Create operations are not supported by this im-
plementation.

15.1.3 Close a Message Queue

15.1.3.1 Synopsis

procedure Close (MQ: in out Message_Queue_Descriptor);

15.1.3.2 Description

The Close procedure shall remove the association between the message queue de-
scriptor MQand its associated open message queue description. When all message
queue descriptors associated with an open message queue description are closed, the
open message queue description shall be freed. The results of using the message
queue descriptor value after a successful return from Close until the return of this
message queue descriptor value from a subsequent call to Open or Open_Or_Create
are undefined.

If the process has successfully attached a notification request to the message queue,
this attachment shall be removed and the message queue made available for another
process to attach for notification.

374 15 Message Passing

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

15.1.3.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor
The MQparameter is not a valid message queue descriptor.

Operation_Not_Implemented
The Close operation is not supported by this implementation.

15.1.4 Remove a Message Queue

15.1.4.1 Synopsis

procedure Unlink_Message_Queue (Name: in POSIX.POSIX_String);

15.1.4.2 Description

The Unlink_Message_Queue procedure shall remove the message queue named
by Name. After a successful call to Unlink_Message_Queue with Name, a call to
Open with Nameshall fail. If one or more processes have the message queue open
when Unlink_Message_Queue is called, destruction of the message queue shall
be postponed until all references to the message queue have been closed. Calls to
Open_Or_Create to recreate the message queue may fail until the message queue is
actually removed. However, the Unlink_Message_Queue call need not block until
all references have been closed; it may return immediately.

15.1.4.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Permission_Denied
Permission is denied to unlink the named message queue.

Filename_Too_Long
The length in POSIX characters of the specified pathname exceeds Pathname
Limit; or the length in POSIX characters of a component of the specified path-
name is greater than Filename Maximum, and the Filename Truncation option is
not supported for the pathname prefix of that component. (See 5.4.2.)

No_Such_File_Or_Directory
The named message queue does not exist.

Operation_Not_Implemented
The Unlink_Message_Queue operation is not supported by this implemen-
tation.

15.1.5 Send a Message to a Message Queue

15.1.5.1 Synopsis

procedure Send
(MQ: in Message_Queue_Descriptor;

Message: in Ada_Streams.Stream_Element_Array;
Priority: in Message_Priority;
Masked_Signals: in POSIX.Signal_Masking:= POSIX.RTS_Signals);

15.1 Package POSIX_Message_Queues 375

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

15.1.5.2 Description

The Send procedure adds the message of type Ada_Streams.Stream_Element_-
Array to the message queue specified by MQ. The call shall fail if Message’Length
is greater than the Message Length attribute of the message queue.

If the message queue specified by MQis not full, Send shall behave as if the mes-
sage is inserted into the message queue at the position indicated by the Priority
argument. The value of Priority shall be less than Message Priority Maximum.

A message with a larger numeric value for Priority is inserted before messages
with lower values for Priority . A message shall be inserted after other messages
in the queue with equal Priority , if any.

If the message queue is full, and Non_Blocking is not specified in the open message
queue description, Send shall block until space becomes available to enqueue the
message or until interrupted by a signal. If more than one task is waiting to send
when space becomes available in the message queue, one task shall be unblocked to
send its message.

If the Priority Process Scheduling option is supported: The task to be unblocked shall be
selected in a manner appropriate to the scheduling policies and parameters in effect
for the blocked tasks.

If the Priority Process Scheduling option is not supported, the selection of which task to
unblock is unspecified.

If the specified message queue is full and Non_Blocking is specified in the open
message queue description, the message is not queued and POSIX.POSIX_Error is
raised.

Send may be interruptible by the delivery of a signal. Masked_Signals specifies the
set of signals that shall be added to the signal mask for the duration of this operation,
as described in 3.3.6.

15.1.5.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Resource_Temporarily_Unavailable

Non_Blocking is specified in the open message queue description associ-
ated with MQ, and the specified message queue is full.

Bad_File_Descriptor

The MQargument is not a valid message queue descriptor open for writing.

Interrupted_Operation

A signal interrupted the call to Send.

Invalid_Argument

The value of Priority is outside of the valid range.

Message_Too_Long

Message’Length is greater than the Message Length attribute of the queue.

376 15 Message Passing

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Operation_Not_Implemented

The Send operation is not supported by this implementation.

15.1.6 Receive a Message from a Message Queue

15.1.6.1 Synopsis

procedure Receive
(MQ: in Message_Queue_Descriptor;

Message: out Ada_Streams.Stream_Element_Array;
Last: out Ada_Streams.Stream_Element_Offset;
Priority: out Message_Priority;

Masked_Signals: in POSIX.Signal_Masking:= POSIX.RTS_Signals);

15.1.6.2 Description

The Receive procedure removes the oldest of the highest priority messages from the
message queue specified by MQ. The message is stored in the Message parameter of
type Ada_Streams.Stream_Element_Array . The call shall fail if Message’Length
is less than the Message Length attribute of the message queue. Otherwise, the mes-
sage shall be removed from the queue and placed into Message , starting at the first
element of Message , and Last shall be set to the index of the last byte of the mes-
sage.

Priority shall be assigned the priority of the message removed from the message
queue.

If the specified message queue is empty and Non_Blocking is not specified in the
message queue description associated with MQ, Receive shall block until a message
is enqueued on the message queue or until interrupted by a signal.

If the Process Scheduling option is supported: The task to be unblocked shall be se-
lected in a manner appropriate to the scheduling policies and parameters in effect
for the blocked tasks.

If the Priority Process Scheduling option is not supported, the selection of which task
receives the message in unspecified.

If the specified message queue is empty and Non_Blocking is specified in the open
message queue description associated with MQ, Receive shall fail.

Receive may be interruptible by the delivery of a signal. Masked_Signals specifies
the set of signals that shall be added to the signal mask for the duration of this
operation, as described in 3.3.6.

15.1.6.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Resource_Temporarily_Unavailable

Non_Blocking is specified in the open message queue description associ-
ated with MQ, and the specified message queue is empty.

15.1 Package POSIX_Message_Queues 377

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Bad_File_Descriptor

The MQargument is not a valid message queue descriptor open for reading.

Message_Too_Long

Message’Length is less than the Message Length attribute of the message
queue.

Interrupted_Operation

A signal interrupted the call to Receive .

Operation_Not_Implemented

The Receive operation is not supported by this implementation.

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_Message

The implementation has detected a data corruption problem with the mes-
sage.

15.1.7 Generic Message Passing

15.1.7.1 Synopsis

generic
type Message_Type is private ;

package Generic_Message_Queues is
procedure Send

(MQ: in Message_Queue_Descriptor;
Message: in Message_Type;
Priority: in Message_Priority;
Masked_Signals: in POSIX.Signal_Masking:= POSIX.RTS_Signals);

procedure Receive
(MQ: in Message_Queue_Descriptor;

Message: out Message_Type;
Priority: out Message_Priority;
Masked_Signals: in POSIX.Signal_Masking:= POSIX.RTS_Signals);

function Get_Error_Buffer return Ada_Streams.Stream_Element_Array;

end Generic_Message_Queues;

15.1.7.2 Description

The Generic_Message_Queues package provides a typed interface for sending and
receiving messages through POSIX message queues. The package is instantiated
with any constrained type and is used to send and receive messages of that type.

The Send and Receive operations shall behave the same as defined for POSIX_-
Message_Queues.Send and POSIX_Message_Queues.Receive except that the type
of the Message parameter is the user specified type that was used to instantiate the
Generic_Message_Queues package. Constraint_Error may be raised by a call
to Receive if the message received cannot be interpreted as a value of the specified
type.

Send and Receive may be interruptible by the delivery of a signal. Masked_Sig-
nals specifies the set of signals that shall be added to the signal mask for the dura-
tion of this operation, as described in 3.3.6.

378 15 Message Passing

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

The Get_Error_Buffer function shall return the raw message data after a Con-
straint_Error has been raised during a Receive operation. This behavior is speci-
fied only for the period after the Constraint_Error is raised and prior to requesting
additional operations on the same instantiation of Generic_Message_Queues . The
effect of making concurrent calls to Get_Error_Buffer for the same instantiation
of Generic_Message_Queues is undefined.

NOTE: An application that uses the operations Send and Receive from an instantiation of
Generic_Message_Queues is responsible for ensuring that

— For Send, the Message Length attribute of the message queue specified by MQis equal to or
greater than the size in bytes of Message .

— For Receive , the size in bytes of Message is equal to or greater than the Message Queue
Length attribute of the message queue specified by MQ.

15.1.7.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Resource_Temporarily_Unavailable

Non_Blocking is specified in the open message queue description and one
of the following conditions occurred:
— Send was invoked, and the message queue is full.
— Receive was invoked, and the message queue is empty.
— Nno raw data are available on a call to Get_Error_Buffer . Either

Constraint_Error has not been raised from a call to Receive or
a subsequent operation involving the instantiation of Generic_Mes-
sage_Queues that raised Constraint_Error has invalidated the raw
data.

Bad_File_Descriptor

The MQargument is not a valid message queue descriptor open for writing
on a call to Send or open for reading on a call to Receive .

Interrupted_Operation

A signal interrupted the call to an instantiation of Send or Receive .

Invalid_Argument

The value of Priority specified for the Send operation is outside of the
valid range.

Message_Too_Long

The size of Message in bytes is greater than the Message Length attribute of
the queue on a Send or less than the Message Length attribute of the queue
on a Receive .

Operation_Not_Implemented

The Send, Receive and Get_Error_Buffer operations are not supported
by this implementation.

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

15.1 Package POSIX_Message_Queues 379

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Bad_Message

The implementation has detected a data corruption problem with the mes-
sage on a Receive .

In addition to the error conditions specified above, Constraint_Error may be
raised by a call to Receive if the message received cannot be interpreted as a value
of the specified type. Whenever a message has been removed from the queue, but was
not returned due to Constraint_Error having been raised, Get_Error_Buffer can
be called to gain access to the raw message data for debugging and error logging.

15.1.8 Notify Process that a Message is Available

15.1.8.1 Synopsis

procedure Request_Notify
(MQ: in Message_Queue_Descriptor;

Event: in POSIX_Signals.Signal_Event);

procedure Remove_Notify (MQ: in Message_Queue_Descriptor);

15.1.8.2 Description

The functionality described in this subclause is optional. If the Realtime Signals option
is not supported, the implementation may cause all calls to the explicitly declared
operations defined in this subclause to raise POSIX_Error . Otherwise, the behavior
shall be as specified in this subclause.

Request_Notify registers the calling process to be notified of message arrival at an
empty message queue specified by MQ. The notification specified by Event shall be
sent to the process when the message queue transitions to nonempty. At any time,
only one process may be registered to receive notification for the specified message
queue. If the calling process or any other process has already registered for noti-
fication of message arrival at the specified message queue, subsequent attempts to
register for that message queue shall fail.

The Event parameter identifies a Signal_ Event object that defines the asyn-
chronous notification that will occur when the message queue transitions to
nonempty. If the Notification attribute of Event is No_Notification , no no-
tification shall be sent when the message queue transitions to nonempty. If the No-
tification attribute of Event is Signal_Notification , then Event shall spec-
ify the signal number and the application-specific data value to be sent when the
message queue transitions to nonempty. If the signal is in the range POSIX_Sig-
nals.Realtime_Signal and signal queueing is enabled for the specified signal, the
signal shall be queued along with the Data value specified by Event . Otherwise, it is
unspecified whether the signal is queued and what Data value, if any, is queued with
it. The Event parameter shall not specify a signal reserved for the Ada language
implementation. (See 2.2.2.155.)

Remove_Notify shall have the effect of removing an existing registered notification
associated with the message queue. This removal shall make the message queue
available for registration.

When notification is sent to the registered process, its notification shall be removed.
The message queue shall then be available for registration.

380 15 Message Passing

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

If a process has registered for notification of message arrival at a message queue and
a process is blocked in Receive waiting to receive a message when a message arrives
at the queue, the arriving message shall satisfy the appropriate pending Receive
(See 15.1.6). The resulting behavior is as if the message queue stays empty, and no
notification shall be sent.

15.1.8.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

The MQargument is not a valid message queue descriptor.

Invalid_Argument

The notification signal specified by Event is one of the reserved signals.

Resource_Busy

A process is already registered for notification by the message queue.

Operation_Not_Implemented

The Request_Notify and Remove_Notify operations are not supported
by this implementation.

15.1.9 Set/Query Message Queue Attributes

15.1.9.1 Synopsis

procedure Set_Attributes
(MQ: in Message_Queue_Descriptor;

New_Attrs: in Attributes;
Old_Attrs: out Attributes);

procedure Set_Attributes
(MQ: in Message_Queue_Descriptor;

New_Attrs: in Attributes);
function Get_Attributes

(MQ: Message_Queue_Descriptor)

return Attributes;

15.1.9.2 Description

Set_Attributes is used to set the attributes associated with the open message
queue description referenced by the message queue descriptor specified by the MQ
parameter. Set_Attributes is overloaded to allow the previous attributes of the
message queue to be returned.

Only the Options attribute of the New_Attrs parameter is relevant to the Set_At-
tributes call. The values of the other attributes are ignored by Set_Attributes .

Get_Attributes is used to get status information and attributes of the message
queue and the open message queue description associated with the message queue
descriptor specified by MQ. The Max Messages and Message Length attributes of the
returned Attributes object shall have the values that were set when the message
queue was created. The Options attribute of the returned Attributes object shall

15.1 Package POSIX_Message_Queues 381

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

have the value associated with the open message queue description that was set
when the message queue was created or opened and as modified by subsequent calls
to Set_Attributes . The Message Count attribute of the returned Attributes object
shall have a value that reflects the current state of the specified message queue.

15.1.9.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

The MQargument is not a valid message queue descriptor.

Operation_Not_Implemented

The requested message queue operation is not supported by this implemen-
tation.

382 15 Message Passing

IEEE Std 1003.5c-1998

Section 16: Task Management

This section describes the services that this standard provides for task identification.

16.1 Package Ada_Task_Identification

package Ada_Task_Identification renames Ada.Task_Identification;

During transition from Ada 83 to Ada 95 the implementation is permitted to replace
this renaming declaration with the following package specification.

package Ada_Task_Identification is
-- Task Identification Type
type Task_ID is private ;
Null_Task_ID: constant Task_ID;
function Equals (Left, Right: Task_ID) return Boolean;
function Image (T: Task_ID) return String;
-- Identifying the Current Task
function Current_Task return Task_ID;
-- Aborting a Task
procedure Abort_Task (T: in out Task_ID);
-- Inquiring the State of a Task
function Is_Terminated (T: Task_ID) return Boolean;
function Is_Callable (T: Task_ID) return Boolean;

private
-- implementation-defined;

end Ada_Task_Identification;

16.1.1 Description

The semantics of the types and operations defined in this package shall satisfy the
requirements of Ada 95.

16 Task Management 383

IEEE Std 1003.5c-1998

Section 17: Detailed Network Interface - XTI

The operations in this section provide the XTI protocol-independent process- to-
process communications interface. If the implementation supports the XTI Detailed
Network Interface option, then the operations described in this section shall perform as
specified.

17.1 Introduction

17.1.1 Communications Providers

An implementation can provide one or more communications providers at the same
time. The identifier parameter of the communications provider (or pathname) passed
to the Open procedure determines the required communications provider.

NOTE: To keep the applications portable, the identifier parameter (or pathname) of the com-
munications provider should not be hard-coded into the application source code.

To manage multiple communications providers, an application shall call Open for
each provider.

NOTE: For example, a server application that is waiting for incoming connection indica-
tions from several communications providers shall open a communications endpoint for each
provider and listen for connection indications on each of the associated file descriptors.

17.1.2 Communications Endpoints

All requests to a communications provider pass through a communications endpoint.
One or more communications endpoints are provided by a communication provider.
When an application calls Open, a file descriptor that identifies a communications
endpoint is returned. This file descriptor is used as a parameter to identify the
endpoint in subsequent operations.

The Open (see 17.4.19) procedure shall succeed only if the implementation supports
pathnames that identify character special files for use with XTI calls, and the opened
character string is such a pathname. The only operations that a Conforming POSIX.5
Application shall perform on any file descriptor returned by Open are those defined
in this section and Duplicate , Duplicate_And_Close , Close , Get_File_Status ,
Poll , and Select_File . Other operations have undefined results.

To be active, a communications endpoint shall have a communications address asso-
ciated with it by the Bind procedure.

A communications endpoint can support only one established connection at a time.
A connection is characterized by the association of two active endpoints, made by
using the connection establishment operations (Connect , Confirm_Connection ,
Listen , and Accept_Connection). A communications endpoint can be associated
with another endpoint in a connection or can be used in connectionless mode.

17.1.3 Association of a Process to an Endpoint

One process can simultaneously open several file descriptors. However, when
POSIX_IO.Non_Blocking is not set, the process needs to manage the different

17 Detailed Network Interface - XTI 385

c

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

actions of the associated connections sequentially. Conversely, several processes can
share the same file descriptor (by POSIX_Process_Primitives.Start_Process
operations) but they have to synchronize themselves so as not to invoke an operation
that is unsuitable to the current state of the communications endpoint.

The communications provider shall treat all applications of a communications end-
point as a single application. If multiple processes are using the same endpoint, they
need to coordinate their activities so they do not violate the state of the endpoint.
The Synchronize_Endpoint function returns the current state of the endpoint to
the application, thereby enabling the application to verify the state before taking
further action. This coordination is only valid among cooperating processes; it is pos-
sible that a process or an incoming event could change the state of the endpoint after
a Synchronize_Endpoint is issued.

A process can listen for an incoming connection indication on one file descriptor and
accept the connection on a different file descriptor that has been bound with the
Request_Queue_Length parameter set to zero or omitted (see 17.4.5).

NOTE: The communication model described here facilitates the writing of a listener applica-
tion where the listener waits for all incoming connection indications on a given communica-
tions endpoint. The listener accepts the connection on a new file descriptor and can (using
POSIX_Process_Primitives.Start_Process) create a child process to service the request
without blocking other incoming connection indications.

17.1.4 Use of the Same Protocol Address

If several endpoints are bound to the same protocol address, only one at a time shall
be listening for incoming connections. However, others can be in data transfer state
or establishing a communications connection as initiators.

17.1.5 Addressing

All network addresses are designated using an values of type XTI_ Address_-
Pointer , described in 17.4.1.3. The protocol-specific versions of network addresses,
along with functions to convert access values designating objects of protocol-specific
address types to and from the XTI_Address_Pointer type, are described in D.2.

17.1.6 Modes of Service

The communications service interface supports two modes of service: connection
mode and connectionless mode. A single communications endpoint shall not support
both modes of service simultaneously.

17.1.7 Error Handling

Each XTI operation has one or more error returns. Failures shall be indicated by
raising the exception POSIX_Error . The XTI error code shall be returned by the
POSIX.Get_Error_Code function. The diagnostic function, POSIX.Image , shall
return error message text information for the current XTI error. The state of the
endpoint can change if an error occurs.

386 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

When an operating system service routine fails or a general error occurs, the system
error shall also be indicated by raising the exception POSIX_Error . The specific
system error can be accessed through the Get_Error_Code function.

A system error can be generated by the communications provider when a protocol
error has occurred. If the error is severe, it can cause the file descriptor and commu-
nications endpoint to be unusable. To continue in this case, all applications of the
file descriptor need to close the endpoint. Then the communications endpoint can be
reopened and initialized.

17.1.8 Execution Modes

The communications service interface is inherently asynchronous; various events
may occur that are independent of the actions of an application. For example, an
application may be sending data over a connection when a disconnection indication
arrives. The application needs to somehow be informed that the connection has been
broken.

The communications service interface supports two execution modes for handling
events.

(1) When POSIX_IO.Non_Blocking is not set, the following operations shall block
until the processing associated with them has been completed or they are inter-
rupted by an event: Connect , Listen , Receive , Confirm_Connection , Re-
ceive_Data_Unit , Receive_And_Scatter_Data , Receive_And_Scatter_-
Data_Unit , Send, Send_Data_Unit , Gather_And_Send_Data , and Gather_-
And_Send_Data_Unit .
NOTE: This mode of execution is the default. It is useful for applications that wait for
events to occur, or for application processes that maintain only a single connection. For
example, Receive is required to wait until data have arrived before returning control.

(2) When POSIX_IO.Non_Blocking is set, the above operations shall not block, but
shall initiate the processing associated with them and then return control.
NOTE: In general, the results of such processing can be obtained by a later call to another
operation. For example, the result of a call to Connect with POSIX_IO.Non_Blocking
set can be obtained by a call to Confirm_Connection . The handling of networking
events in this manner is seen as a desirable capability of the communications interface.
It enables applications to perform useful work while expecting a particular event. For ex-
ample, an operation that attempts to receive data returns control immediately if POSIX_-
IO.Non_Blocking is set and no data are available. The application can then periodically
poll for incoming data until it arrives. Polling is useful for applications that expect long
delays between events and have other tasks that they can perform in the meantime and
for applications that handle multiple connections concurrently.

The two execution modes are not provided through separate interfaces or different
operations. The desired mode is specified through the POSIX_IO.Non_Blocking
flag, which may be set when the communications provider is initially opened, or
before any specific operation or group of operations is executed using the POSIX_-
IO.Set_File_Control procedure.

17.1.8.1 Service Modes

Nine (only eight if orderly release is not supported) events are defined in the commu-
nications service interface to cover both connection mode and connectionless mode

17.1 Introduction 387

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

service. They are represented as a set of symbols of type POSIX.Option_Set , using
the following names:

Connect_Request_Received

In connection mode only, a connection request from a remote application
was received by a communications provider. For a connection request to be
received both of the following conditions shall be met:
(1) The file descriptor is bound to a valid address.
(2) No connection is established at this time.

Connect_Response_Received

In connection mode only, a connection response was received by the com-
munications provider. Receipt of a connection response can occur after a
Connect has been issued.

Normal_Data_Received

Normal data (all or part of a SDU) were received by the communications
provider.

Expedited_Data_Received

Expedited data were received by the communications provider.

Disconnect_Request_Received

In connection mode only, a disconnection request was received by the com-
munications provider.

Orderly_Release_Request_Received

An orderly release request was received by a communications provider. Re-
ceipt of a orderly release request can only occur in connection mode with
orderly release.

Error_In_Previously_Sent_Datagram

In connectionless mode only, an error was found in a previously sent data
unit (datagram).

Okay_To_Send_Normal_Data

Flow control restrictions on normal data flow that led to a Flow_Control_-
Error error have been lifted. Normal data can be sent again.

Okay_To_Send_Expedited_Data

Flow control restrictions on expedited data flow that led to a Flow_Con-
trol_Error error have been lifted. Expedited data may be sent again.

A process that issues operations with POSIX_IO.Non_Blocking clear needs to still
be able to recognize certain events and act on them if necessary. Recognition of
events that require attention is handled through a special communications error
Event_Requires_Attention , which is returned by an operation when an event is
outstanding. The Look function is then invoked to identify the specific event that
has occurred when this error is returned.

Another means to notify a process that an event has occurred is polling. The polling
capability enables processes to do useful work and periodically poll for one of the
events defined in this subclause (see the list above, and also Table 17.1). This facility
is provided by setting POSIX_IO.Non_Blocking for the appropriate primitive(s).

388 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

17.1.8.2 Events and Look

All events that occur at a communications endpoint are stored by XTI. These events
are retrievable one at a time via the Look function. If multiple events occur, it is
implementation-defined in what order Look shall return the events. An event is
outstanding on a communications endpoint until it is consumed. Every event has
a corresponding consuming operation that handles the event and clears it. Both
Normal_Data_Received and Expedited_Data_Received events are consumed
when the corresponding consuming operation has read all the corresponding data
associated with that event. As a consequence, Normal_Data_Received always indi-
cates that there are data to receive. Two events, Okay_To_Send_Normal_Data and
Okay_To_Send_Expedited_Data , are also cleared as they are returned by Look .
Table 17.1 summarizes the relationships of the events to Look .

Table 17.1 – Events and Look

Event Cleared on Look ? Consuming XTI operations

Connect Request Received No Listen

Connect Response Received No Connect(1), Confirm_Connection

Normal Data Received No Receive, Receive_Data_Unit,

Receive_And_Scatter_Data,

Receive_And_Scatter_Data_Unit

Expedited Data Received No Receive,

Receive_And_Scatter_Data

Disconnect Request Received No Retrieve_Disconnect_Info

Error In Previously Sent Datagram No Retrieve_Data_Unit_Error

Orderly Release Request Received No Acknowledge_Orderly_Release

Orderly Release Request Received No Acknowledge_Orderly_Release_-

With_Data

Okay To Send Normal Data Yes Send, Gather_And_Send_Data,

Gather_And_Send_Data_Unit

Okay To Send Expedited Data Yes Send, Gather_And_Send_Data

NOTE:
In the case of the Connect procedure, the Connect_Response_Received event is
both generated and consumed by the execution of the procedure and is, therefore,
not visible to the application.

17.1.9 Effect of Signals

With POSIX_IO.Non_Blocking either set or clear, XTI calls may be affected by
signals. Unless the descriptions of the operations specify otherwise, they behave as
described in this subclause.

If an XTI operation is interrupted by a signal while blocked under circumstances
where, if POSIX_ IO. Non_ Blocking were set, it would have returned because
no event was available, then it shall raise POSIX_Error with error code Inter-
rupted_Operation , and the state of the communications endpoint shall be un-
changed.

In addition, any XTI operation may under implementation-defined conditions raise
the exception POSIX_Error with error code Interrupted_Operation . In such a

17.1 Introduction 389

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

case, the state of the endpoint shall not have been changed, no data shall have been
sent or received, and any buffers provided by the application for return values may
have been overwritten.

17.1.10 Event Management

The XTI operations deal with one communications endpoint at a time. They do
not enable the application simultaneously to wait for several events from different
sources, in particular from several connections. An application can, however, wait for
events from different sources by using an event management service in conjunction
with XTI operations.

For an event management service to be usable in this way, it needs to be able to notify
a process of the events shown in 17.1.8.

Event management services that can be used in conjunction with XTI include Poll
(see 19.1.1) and Select_File (see 19.1.2).

17.1.11 Classification of Operations

The following operations correspond to the subset of XTI operations common to con-
nection mode and connectionless mode services; Bind , Close , Look , Open, Syn-
chronize_Endpoint , and Unbind .

The following operations are provided as part of the XTI connection mode service;
Accept_Connection , Connect , Listen , Receive , Confirm_Connection , Re-
trieve_Disconnect_Info , Receive_And_Scatter_Data , Send, Send_Discon-
nect_Request , and Gather_And_Send_Data .

The following XTI operations support connectionless mode service; Receive_Data_-
Unit , Retrieve_Data_Unit_Error , Receive_And_Scatter_Data_Unit , Send_-
Data_Unit , and Gather_And_Send_Data_Unit .

The following utility operations are also provided; Get_Protocol_Address , Get_-
Info , Get_Current_State , and Manage_Options .

The orderly release mechanism (using Initiate_Orderly_Release or Initi-
ate_Orderly_Release_With_Data and Acknowledge_Orderly_Release or Ac-
knowledge_Orderly_Release_With_Data) shall be supported only for Connec-
tion_Mode_With_Orderly_Release type providers. Use with other providers shall
cause the XTI_Operation_Not_Supported error to be returned.

NOTE: Applications that depend on orderly release will, therefore, not be portable to systems
that use the ISO Transport Protocol.

Optional mechanisms include

— The ability to manage (enqueue) more than one incoming connection indication
at any one time

— The ability to check the address of the caller passed with Accept_Connection

Table 17.2 presents all the operations defined in XTI. The character
p

indicates that
the mapping of that operation is possible onto a connection mode or connectionless
mode service. Utility operations are classified as “General”.

390 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

17.2 States and Events

This clause describes the possible states of the communications endpoint as seen
by the application, describe the incoming and outgoing events that may occur on any
connection, and identify the allowable sequence of subprogram calls. Given a current
state and event, the transition to the next state is shown as well as any actions that
shall be taken in the course of the transition.

The allowable sequence of operations is described in Table 17.4, Table 17.5, Ta-
ble 17.6, and Figure 17.1. The operations, Get_Protocol_Address , Get_Cur-
rent_State , Get_Info , Look , Manage_Options , and Synchronize_Endpoint
are excluded from the state tables because they do not affect the state of the inter-
face. Each of these operations may be issued from any state except the Uninitialized
state.

NOTE: Although the Synchronize_Endpoint function does not affect the state of the inter-
face, it may affect the visibility of that state for the calling application when multiple processes
are using the same endpoint (see 17.4.29).

17.2.1 Communications Interface States

The possible states of the communications endpoint as seen by the application are
summarized in Table 17.3. States Outgoing Release and Incoming Release are signif-
icant only if the optional orderly release mechanism is both supported and used.
The service type may be connection mode, connection mode with orderly release, or
connectionless mode.

17.2.2 Outgoing Events

Some of the outgoing events (e.g., Accept Connection1, Accept Connection2, and Accept
Connection3) are distinguished by the context in which they occur. The context is
based on the values of the following:

Outstanding Connection Count

Count of outstanding connection indications (connection indications passed
to the application, but not accepted or rejected).

Listening Communications Endpoint

File descriptor of the listening communications endpoint (i.e., the Listen-
ing_Endpoint parameter passed to Accept_Connection).

Responding Communications Endpoint

File descriptor of the communications endpoint where a connection shall be
accepted (i.e., the Responding_Endpoint parameter passed to Accept_-
Connection).

The following outgoing events correspond to the successful return or error return of
the specified communications operations causing XTI to change state, where these
operations send a request or response to the communications provider.

1) Outstanding Connection Count is only meaningful for the listening communications endpoint (Listening
Communications Endpoint).

17.2 States and Events 391

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Table 17.2 – Classification of the XTI Functions
Function Connection Connectionless General

Accept_Connection
p

Acknowledge_Orderly_Release
p

Acknowledge_Orderly_Release_With_Data
p

Bind
p p

Close
p p

Confirm_Connection
p

Connect
p

Gather_And_Send_Data
p

Gather_And_Send_Data_Unit
p

Get_Protocol_Address
p

Get_Info
p

Get_Current_State
p

Initiate_Orderly_Release
p

Initiate_Orderly_Release_With_Data
p

Listen
p

Look
p p

Open
p p

Manage_Options
p

Receive
p

Receive_Data_Unit
p

Receive_And_Scatter_Data
p

Receive_And_Scatter_Data_Unit
p

Retrieve_Data_Unit_Error
p

Retrieve_Disconnect_Info
p

Send
p

Send_Disconnect_Request
p

Send_Data_Unit
p

Synchronize_Endpoint
p

Unbind
p p

Accept Connection1

Successful return of Accept_ Connection with Outstanding Connection
Count1) = 1, and Listening Communications Endpoint = Responding Communica-
tions Endpoint. Service types: Connection_Mode , Connection_Mode_-
With_Orderly_Release

Accept Connection2

Successful return of Accept_ Connection with Outstanding Connection
Count1) = 1, and Listening Communications Endpoint = = Responding Communi-
cations Endpoint. Service types: Connection_Mode , Connection_Mode_-
With_Orderly_Release

Accept Connection3

Successful return of Accept_ Connection with Outstanding Connection
Count2) > 1. Service types: Connection_Mode , Connection_Mode_With_-
Orderly_Release

392 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Bind

Successful return of Bind . Service types: Connection_Mode , Connec-
tion_Mode_With_Orderly_Release , Connectionless_Mode

Connect

Successful return of Connect with POSIX_IO.Non_Blocking clear. Service
types: Connection_Mode , Connection_Mode_With_Orderly_Release

Connect Error

No_Data_Available error on Connect (POSIX_IO.Non_Blocking set),
or Event_Requires_Attention error due to a disconnection indication
arriving on the communications endpoint. Service types: Connection_-
Mode, Connection_Mode_With_Orderly_Release

Close

Successful return of Close . Service types: Connection_Mode , Connec-
tion_Mode_With_Orderly_Release , Connectionless_Mode

Manage Options

Successful return of Manage_Options . Service types: Connection_Mode ,
Connection_Mode_With_Orderly_Release , Connectionless_Mode

Open

Successful return of Open. Service types: Connection_Mode , Connec-
tion_Mode_With_Orderly_Release , Connectionless_Mode

Release

Successful return of Initiate_ Orderly_Release or Initiate_Or-
derly_Release_With_Data . Service types: Connection_Mode_With_-
Orderly_Release

Send

Successful return of Send or Gather_And_Send_Data . Service types: Con-
nection_Mode , Connection_Mode_With_Orderly_Release

Send Data Unit

Successful return of Send_Data_Unit or Gather_And_Send_Data_Unit .
Service types: Connectionless_Mode

Send Disconnect1

Successful return of Send_Disconnect_Request with Outstanding Connec-
tion Count <=1. Service types: Connection_Mode , Connection_Mode_-
With_Orderly_Release

Send Disconnect2

Successful return of Send_Disconnect_Request with Outstanding Connec-
tion Count >1. Service types: Connection_Mode , Connection_Mode_-
With_Orderly_Release

Unbind

Successful return of Unbind . Service types: Connection_Mode , Connec-
tion_Mode_With_Orderly_Release , Connectionless_Mode

17.2 States and Events 393

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Table 17.3 – Communication Interface States
State Description Service Type

Data Transfer Data transfer Connection_Mode,

Connection_Mode_With_Orderly_Release

Idle No connection established Connection_Mode,
Connection_Mode_With_Orderly_Release,

Connectionless_Mode

Incoming Connect Incoming connection pend-
ing for passive application

Connection_Mode,

Connection_Mode_With_Orderly_Release

Incoming Release Incoming orderly release
pending (waiting to send
orderly release request)

Connection_Mode_With_Orderly_Release

Outgoing Connect Outgoing connection pend-
ing for active application

Connection_Mode,

Connection_Mode_With_Orderly_Release

Outgoing Release Outgoing orderly release
pending (waiting for orderly
release indication)

Connection_Mode_With_Orderly_Release

Unbound Unbound Connection_Mode,
Connection_Mode_With_Orderly_Release,

Connectionless_Mode

Uninitialized Uninitialized— initial and fi-
nal state of interface

Connection_Mode,
Connection_Mode_With_Orderly_Release,

Connectionless_Mode

17.2.3 Incoming Events

The following incoming events correspond to the successful return of the specified
communications operations, where these operations retrieve data or event informa-
tion from the communications provider. One incoming event is not associated directly
with the return of an operation on a given communications endpoint.

Acknowledge Release

Successful return of Acknowledge_Orderly_Release or Acknowledge_-
Orderly_Release_With_Data . Service types: Connection_Mode_With_-
Orderly_Release

Confirm Connection

Successful return of Confirm_Connection . Service types: Connection_-
Mode, Connection_Mode_With_Orderly_Release

Listen

Successful return of Listen . Service types: Connection_Mode , Connec-
tion_Mode_With_Orderly_Release

Pass Connection

Receive a passed connection. Service types: Connection_Mode , Connec-
tion_Mode_With_Orderly_Release

Receive

Successful return of Receive or Receive_And_Scatter_Data . Service
types: Connection_Mode , Connection_Mode_With_Orderly_Release

394 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Receive Data Unit

Successful return of Receive_Data_Unit or Receive_And_Scatt er_-
Data_Unit . Service types: Connectionless_Mode

Receive Data Error

Successful return of Retrieve_Data_Unit_Error . Service types: Connec-
tionless_Mode

Receive Disconnect1

Successful return of Retrieve_Disconnect_Info with Outstanding Connec-
tion Count = 0. Service types: Connection_Mode , Connection_Mode_-
With_Orderly_Release

Receive Disconnect2

Successful return of Retrieve_Disconnect_Info with Outstanding Connec-
tion Count = 1. Service types: Connection_Mode , Connection_Mode_-
With_Orderly_Release

Receive Disconnect3

Successful return of Retrieve_Disconnect_Info with Outstanding Connec-
tion Count > 1. Service types: Connection_Mode , Connection_Mode_-
With_Orderly_Release

Pass Connection occurs when an application transfers a connection to another commu-
nications endpoint. This event occurs on the endpoint that is being passed the con-
nection, despite the fact that no operation is issued on that endpoint. Pass Connection
event is included in the state tables to describe what happens when an application
accepts a connection on another communications endpoint.

Receive Disconnect1, Receive Disconnect2 and Receive Disconnect3 are distinguished from
the other incoming events by the context in which they occur. The context is based on
the value of Outstanding Connection Count, which is the count of outstanding connection
indications on the listening communications endpoint.

17.2.4 Transition Actions

Some state transitions listed in Table 17.4 and Table 17.6 are accompanied by a list
of actions that the implementation shall take. These actions are represented by the
notation (n), where n is the number of the specific action as follows:

(1) Set Outstanding Connection Count to zero.

(2) Increment Outstanding Connection Count.

(3) Decrement Outstanding Connection Count.

(4) Pass a connection to another communications endpoint as indicated in Accept_-
Connection .

17.2.5 State Tables

The possible next states, given the current state and event, are shown in tabular form
in Table 17.4, Table 17.5,k and Table 17.6, and in diagrammatic form in Figure 17.1.
The state is that of the communications endpoint as seen by the application.

17.2 States and Events 395

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

The contents of each cell represent the next state given the current state (column)
and the current incoming or outgoing event (row). An empty cell represents a state-
event combination that is invalid. Along with the next state, each cell may include an
action list (as specified in 17.2.4). The implementation shall take the specific actions
in the order specified in the state table.

A separate table is shown for initialization/de-initialization, data transfer in connec-
tionless mode and connection/release/data transfer in connection mode.

Table 17.4 – Initialization/De-initialization State Table
State

Event
Uninitialized Unbound Idle

Open Unbound
Bind Idle(1)

Unbind Unbound
Close Uninitialized Uninitialized

NOTE:
For explanation of state transition action (1) see 17.2.4.

Table 17.5 – Data Transfer State Table for Connectionless-Mode Service
State

Event
Idle

Send Data Unit Idle
Receive Data Unit Idle
Receive Data Error Idle

17.2.6 Events and Event_Requires_Attention Error Indication

Table 17.7 describes the events that cause an XTI call to return with an Event_-
Requires_Attention error.

396 17 Detailed Network Interface - XTI

PA
R

T
1:

B
IN

D
IN

G
F

O
R

S
Y

S
T

E
M

A
P

P
L

IC
A

T
IO

N
P

R
O

G
R

A
M

IN
T

E
R

F
A

C
E

(A
P

I)
IE

E
E

S
td

1003.5c-1998

Table 17.6 – Connection/Release/Data Transfer State Table for Connection-Mode Service
State

Event Idle Outgoing Connect Incoming Connect Data Transfer Outgoing Release Incoming Release Unbound

Accept Connection1 Data Transfer(3)

Accept Connection2 Idle(3)(4)

Accept Connection3 Incoming Connect(3)(4)

Acknowledge Release Incoming Release Idle

Close Uninitialized Uninitialized Uninitialized Uninitialized Uninitialized Uninitialized Uninitialized

Confirm Connection Data Transfer

Connect Data Transfer

Connect Error Outgoing Connect

Listen Incoming Connect (2) Incoming Connect (2)

Manage Options Idle Outgoing Connect Incoming Connect Data Transfer Outgoing Release Incoming Release Unbound

Pass Connection Data Transfer Data Transfer

Receive Data Transfer Outgoing Release

Receive Disconnect1 Idle Idle Idle Idle

Receive Disconnect2 Idle (3)

Receive Disconnect3 Incoming Connect (3)

Release Outgoing Release Idle

Send Data Transfer Incoming Release

Send Disconnect1 Idle Idle(3) Idle Idle Idle

Send Disconnect2 Incoming Connect(3)

NOTE:
For explanations of state transition actions (2), (3), and (4) see 17.2.4.

17.2
S

tates
an

d
E

ven
ts

397

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Uninitialized

Unbound

Idle

Outgoing Connect Incoming Connect

Data Transfer

Incoming Release Outgoing Release

Open

Manage Options

Pass Connection

Close

Bind
Send Data Unit
Receive Data Unit
Receive Data Error
Manage Options Unbind

Close

Listen
Pass Connection
ConnectConnect Error

Close

Manage Options
Send Disconnect 1
Receive Disconnect 1

Confirm Connection

Accept Connection 2

Manage Options
Receive Disconnect 3
Send Disconnect 2
Accept Connection 3
Listen

Close

Accept Connection 1

Send
Receive
Manage Options

Send Disconnect 1
Receive Disconnect 1

Close

ReleaseAcknowledge Release

Send
Manage Options

Close

Send Disconnect 1
Receive Disconnect 1

Release

Receive
Manage Options

Close

Acknowledge Release
Receive Disconnect 1
Send Disconnect 1

Receive Disconnect 2
Send Disconnect 1

Figure 17.1 – XTI State Diagram

Once an Event_Requires_Attention error has been received on a communications
endpoint via an XTI operation, subsequent calls to that and other XTI operations,
to which the same Event_Requires_Attention error applies, shall continue to
return Event_Requires_Attention until the event is consumed. An event causing
the Event_Requires_Attention error can be determined by calling Look and then
can be consumed by calling the corresponding consuming XTI operation as defined
in Table 17.1.

398 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

17.3 The Use of Options

17.3.1 Generalities

The operations Accept_Connection , Connect , Listen , Manage_Options , Con-
firm_Connection , Receive_Data_Unit , Retrieve_Data_Unit_Error , Re-
ceive_And_Scatter_Data_Unit , Send_Data_Unit , and Gather_And_Send_-
Data_Unit use an Options argument of type Protocol_Option_List as an ex-
plicit parameter or included in a complex argument. This object is used to convey
options between the application and the communications provider.

Table 17.7 – Event_Requires_Attention Error Indications

Function Call Event(s)

Accept_Connection Disconnect_Request_Received,

Connect_Request_Received

Connect Disconnect_Request_Received,

Connect_Request_Received(1)

Listen Disconnect_Request_Received(2)

Receive Disconnect_Request_Received,

Orderly_Release_Request_Received(3)

Receive_And_Scatter_Data Disconnect_Request_Received,

Orderly_Release_Request_Received(3)

Confirm_Connection Disconnect_Request_Received

Acknowledge_Orderly_Release Disconnect_Request_Received

Acknowledge_Orderly_Release_With_Data Disconnect_Request_Received

Receive_Data_Unit Error_In_Previously_Sent_Datagram

Receive_And_Scatter_Data_Unit Error_In_Previously_Sent_Datagram

Send Disconnect_Request_Received,

Orderly_Release_Request_Received

Gather_And_Send_Data Disconnect_Request_Received,

Orderly_Release_Request_Received

Send_Data_Unit Error_In_Previously_Sent_Datagram

Gather_And_Send_Data_Unit Error_In_Previously_Sent_Datagram

Unbind Connect_Request_Received,

Normal_Data_Received(4),

Error_In_Previously_Sent_Datagram

Initiate_Orderly_Release Disconnect_Request_Received

Initiate_Orderly_Release_With_Data Disconnect_Request_Received

Send_Disconnect_Request Disconnect_Request_Received

NOTES:
(1) This event occurs only when a Connect is done on an endpoint that has been

bound with a Request_Queue_Length >0 and for which a connection indication
is pending.

(2) This event indicates a disconnection on an outstanding connection indication.
(3) This event occurs only when all pending data are read.
(4) Normal_Data_Received may only occur for the connectionless mode.

There is no general definition about the possible contents of options. There are gen-
eral XTI options and those that are specific for each communications provider. Some

17.3 The Use of Options 399

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

options allow the application to tailor its communication needs, for instance by ask-
ing for high throughput or low delay. Others allow the fine-tuning of the protocol
behavior so that communication with unusual characteristics can be handled more
effectively. Other options are for debugging.

All options have default values. Their values have meaning to and are defined by
the protocol level in which they apply. However, their values can be negotiated by
an application, the trivial form of such negotiation being when an application simply
enforces the use of a specific value for an option. Often, the communications provider
or even the remote application may have the right to negotiate a value of lesser
quality than the proposed one; i.e., a delay may become longer, or a throughput may
become lower.

It is useful to differentiate between options that have end-to-end significance and
those that do not. Options with end-to-end significance are intimately related to the
particular connection or data unit (datagram) transmission. If the calling applica-
tion specifies such an option, some ancillary information is transferred across the
network in most cases. The interpretation and further processing of this information
is protocol-specific. For instance, in an ISO connection mode communication, the
calling application may specify quality-of-service parameters on connection estab-
lishment. Quality of service parameters are first processed and possibly lowered by
the local communications provider, then sent to the remote communications provider
that may degrade them again, and finally conveyed to the called application that
makes the final selection and transmits the selected values back to the caller. Op-
tions that do not have end-to-end significance do not contain information destined for
the remote application. Some have purely local relevance, e.g., an option that enables
debugging.

Other options influence the transmission, for instance the option that sets the IP
Time To Live field or TCP No Delay (see D.2.3). Local options are negotiated solely
between the application and the local communications provider. The distinction be-
tween these two categories of option is as follows. On output, the operations Lis-
ten , Receive_Data_Unit , and Receive_And_Scatter_Data_Unit return options
with end-to-end significance only. The operations Confirm_Connection and Re-
trieve_Data_Unit_Error may return options of both categories. On input, options
of both categories may be specified with Accept_Connection , Send_Data_Unit ,
and Gather_And_Send_Data_Unit . The operations Connect and Manage_Options
can process and return both categories of options.

The communications provider shall have a default value for each option it supports.
These defaults are sufficient for the majority of communication relations. Hence,
an application should only request options actually needed to perform the task and
leave all others at their default value.

This section describes the general framework for the use of options. This framework
is obligatory for all communications providers. The specific options that are legal
for use with a specific communications provider are described in the provider-specific
annexes (see D.2). General XTI options are described in 17.4.18.

400 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

17.3.2 Options Format

Options are conveyed via a Protocol_Option_List object. Several options can be
concatenated in a protocol option list. Each option in the list is a Protocol_Option
object. Each option may have an associated Option_Value , Option_Value_Array ,
Linger_Info , or protocol-specific object.

The Option_Value , Option_Value_Array , Linger_Info , or protocol-specific ob-
ject contains the actual option value. The Protocol_Option object is described in
17.4.1.5.

A communications provider embodies a stack of protocols. The Level attribute of the
Protocol_Option object identifies the XTI level or a protocol of the communications
provider such as TCP or ISO/IEC 8073 f4g. The Name attribute identifies the option
within the level. The Status attribute is used by the XTI level or the communications
provider to indicate success or failure of a negotiation (see 17.3.2.5 and 17.4.18).

This subclause describes the general rules governing the passing and retrieving of
options and the error conditions that can occur. Unless explicitly restricted, these
rules apply to all operations that allow the exchange of options.

17.3.2.1 Multiple Options and Options Levels

When multiple options are specified in a protocol option list on input, different rules
apply to the levels that may be specified, depending on the procedure call. Multiple
options specified on input to Manage_Options shall address the same option level.
Options specified on input to Connect , Accept_Connection , Send_Data_Unit ,
and Gather_And_Send_Data_Unit can address different levels.

17.3.2.2 Illegal Options

Only legal options can be negotiated; illegal options cause failure. The legal values
are defined for each option. (See 17.4.18 and D.2.)

If an illegal option is passed to Manage_Options , then the operation shall raise the
exception POSIX_Error with error code Incorrect_Or_Illegal_Option . If an
illegal option is passed to Accept_Connection or Connect , then either the opera-
tion shall fail with error code Incorrect_Or_Illegal_Option or the connection
establishment shall fail at a later stage, depending on when the implementation de-
tects the illegal option. A call to Send_Data_Unit or Gather_And_Send_Data_Unit
shall either fail with Incorrect_Or_Illegal_Option or shall successfully return,
but a Error_In_Previously_Sent_Datagram event shall be generated to indicate
that the data unit (datagram) was not sent.

If the application passes multiple options in one call and one of them is illegal, the
operation shall fail as described above. It is, however, possible that some or even all of
the submitted legal options were successfully negotiated. The application can check
the current status by a call to Manage_Options with the Get_Current_Options
flag set (see 17.4.18).

Specifying an option level unknown to the communications provider does not cause
failure in calls to Connect , Accept_Connection , Send_Data_Unit , or Gather_-
And_Send_Data_Unit ; the option is discarded in these cases. The operation Man-

17.3 The Use of Options 401

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

age_Options fails with error code Incorrect_Or_Illegal_Option . Specifying
an option name that is unknown to or not supported by the protocol selected by the
option level does not cause failure. The option is discarded in calls to Connect ,
Accept_Connection , Send_Data_Unit , or Gather_And_Send_Data_Unit . The
operation Manage_Options returns Not_Supported as the Status attribute for the
Protocol_Option object.

17.3.2.3 Initiating an Option Negotiation

An application initiates an option negotiation when calling Connect , Send_Data_-
Unit , Gather_And_Send_Data_Unit , or Manage_Options with the flag Negoti-
ate_Options set.

The negotiation rules for these operations depend on whether an option request is
an absolute requirement. Whether an option request is an absolute requirement is
explicitly defined for each option (see 17.4.18 and D.2). In case of an ISO communi-
cations provider, for example, the option that requests use of expedited data is not an
absolute requirement. On the other hand, the option that requests protection could
be an absolute requirement.

NOTE: The notion absolute requirement originates from the quality-of-service parameters in
ISO/IEC 8072 f3g. Its use is extended in this standard to all XTI protocol options.

If the proposed option value is an absolute requirement, three outcomes are possible:

— The negotiated value is the same as the proposed one. When the result of the
negotiation is retrieved, the Status attribute for the Protocol_Option object is
set to Success .

— The negotiation is rejected if the option is supported but the proposed value can-
not be negotiated. Rejection of the negotiation leads to the following behavior:
— Manage_Options successfully returns, but the returned Protocol_Option

object has its Status attribute set to Failure .
— Any attempt to establish a connection aborts; a Disconnect_Request_Re-

ceived event occurs, and a call to Connect with POSIX_IO.Non_Blocking
clear fails with error code Event_Requires_Attention .

— Send_Data_Unit or Gather_And_Send_Data_Unit fails with Event_-
Requires_Attention or successfully returns, but an Error_In_Previ-
ously_Sent_Datagram event occurs to indicate that the data unit (data-
gram) was not sent.

If multiple options are submitted in one call and one of them is rejected, XTI be-
haves as just described. Although the connection establishment or the data unit
(datagram) transmission fails, options successfully negotiated before an option
was rejected retain their negotiated values. There is no rollback mechanism (see
17.3.3).
The operation Manage_Options attempts to negotiate each option. The Sta-
tus attribute for the returned Protocol_Option objects indicate Success or
Failure .

— If the local communications provider does not support the option at all, Man-
age_Options reports Not_Supported in the Status attribute. The operations
Connect , Send_Data_Unit , and Gather_And_Send_Data_Unit ignore this
option.

402 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

If the proposed option value is not an absolute requirement, two outcomes are possi-
ble:

— The negotiated value is of equal or lesser quality than the proposed one (e.g., a
delay may become longer).
When the result of the negotiation is retrieved, the Status attribute in Proto-
col_Option is set to Success if the negotiated value equals the proposed one
or set to Partial_Success otherwise.

— If the local communications provider does not support the option at all, Man-
age_Options reports Not_Supported in the Status attribute. The operations
Connect , Send_Data_Unit , and Gather_And_Send_Data_Unit ignore this
option.

Unsupported options do not cause operations to fail or a connection to abort since
different vendors possibly implement different subsets of options. Furthermore, fu-
ture enhancements of XTI might encompass additional options that are unknown
to earlier implementations of communications providers. The decision whether the
missing support of an option is acceptable for the communication is left to the appli-
cation.

The communications provider does not check for multiple occurrences of the same
option, possibly with different option values. It simply processes the options in the
protocol option list one after the other. However, the application shall not make any
assumption about the order of processing.

Not all options are independent of one another. A requested option value might
conflict with the value of another option that was specified in the same call or is
currently effective (see 17.3.3). These conflicts may not be detected at once, but
later they might lead to unpredictable results. If detected at negotiation time, these
conflicts are resolved within the rules stated above. The outcomes may thus be quite
different and depend on whether absolute or nonabsolute requests are involved in
the conflict.

Conflicts should be detected at the time a connection is established or a data unit
(datagram) is sent. If options are negotiated with Manage_Options , conflicts should
not be detected at this time since independent processing of the requested options
needs to allow for temporary inconsistencies.

When called, the operations Connect , Send_Data_Unit , and Gather_And_Send_-
Data_Unit initiate a negotiation of all options with end-to-end significance according
to the rules of this section. Options not explicitly specified in the subprogram calls
themselves are taken from an internal protocol option list that contains the values
of a previous negotiation (see 17.3.3).

17.3.2.4 Responding to a Negotiation Proposal

In connection mode communication, some protocols give the peer communications
applications the opportunity to negotiate characteristics of the communications con-
nection to be established. These characteristics are options with end-to-end signifi-
cance. With the connection indication, the called application receives (via Listen)
a proposal about the option values that should be effective for this connection. The

17.3 The Use of Options 403

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

called application can accept this proposal or weaken it by choosing values of lower
quality (e.g., longer delays than proposed). The called application can, of course,
refuse the connection altogether.

The called application responds to a negotiation proposal via Accept_Connection .
If the called application tries to negotiate an option of higher quality than proposed,
the outcome depends on the protocol to which that option applies. Some protocols
may reject the option. Some protocols take other appropriate action described in
D.2. If an option is rejected, the connection fails and a Disconnect_Request_Re-
ceived event occurs; it depends on timing and implementation conditions whether
Accept_Connection still succeeds or fails with error code Event_Requires_At-
tention .

If multiple options are submitted with Accept_Connection and one of them is
rejected, the connection fails as described in the paragraph above. Options that
could be successfully negotiated before the erroneous option was processed retain
their negotiated value. There is no roll-back mechanism (see 17.3.3).

The response options can be specified with the Accept_Connection call. Alter-
natively, they can be specified by calling Manage_Options with the file descriptor
(endpoint) that will subsequently be passed as Responding_Endpoint to Accept_-
Connection to identify the responding endpoint (see 17.3.3). In case of conflict be-
tween option settings made by calls to Manage_Options and Accept_Connection
at different times, the latest settings when Accept_Connection is called shall pre-
vail. The response to a negotiation proposal is activated when Accept_Connection
is called.

A Manage_Options call with erroneous option values as described above shall suc-
ceed; the connection aborts at the time Accept_Connection is called.

The connection also fails if the selected option values lead to contradictions.

The procedure Accept_Connection does not check for multiple specification of an
option (see 17.3.2.3). Unsupported options are ignored.

17.3.2.5 Retrieving Information about Options

This subclause describes how a communications application can retrieve information
about options. An application needs to be able to

— Know the result of a negotiation (e.g., at the end of a connection establishment).

— Know the proposed option values under negotiation (during connection estab-
lishment).

— Retrieve option values sent by the remote application for notification only (e.g.,
IP options).

— Check option values currently effective for the communications endpoint.

To this end, Confirm_Connection , Connect , and Listen include a Connection_-
Info argument with an Options attribute of type Protocol_Option_List , and op-
erations Manage_Options , Retrieve_Data_Unit_Error , Receive_Data_Unit ,

404 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

and Receive_And_Scatter_Data_Unit include a Protocol_Option_List param-
eter. The application shall supply the buffer where the options shall be written (see
17.4.1.6).

Which options are returned depend on the subprogram call involved:

Connect

With POSIX_IO.Non_Blocking clear, the operation returns the values of all
options with end-to-end significance that were received with the connection
response and the negotiated values of those options with end-to-end signifi-
cance that had been specified on input. However, options specified on input
in the Connect call that are not supported or refer to an unknown option
level are discarded and not returned on output.
The Status attribute of each option returned indicates whether the proposed
value (Success) or a degraded value (Partial_Success) has been negoti-
ated. The Status attribute of received ancillary information (e.g., IP options)
that is not subject to negotiation is always set to Success .

Confirm_Connection

(same as Connect)

Listen

The received options with end-to-end significance are related to the incom-
ing connection (identified by the sequence number), not to the listening end-
point.
NOTE: A call to Manage_Options with Request_Flags set to Get_Current_-
Options will thus often return different option values than a call to Listen will
since Manage_Options returns the options that are related to the endpoint. The
option values currently effective for the listening endpoint can, however, affect the
values retrieved by Listen since the communications provider might be involved in
the process of negotiating the options that are related to the connection.
The number of received options may be variable for subsequent connec-
tion indications, since many options with end-to-end significance are only
transmitted on explicit demand by the calling application (e.g., IP options or
ISO/IEC 8072 f3g throughput). It is even possible that no options at all are
returned.
The Status attribute is irrelevant.

Receive_Data_Unit

The received options with end-to-end significance are related to the incom-
ing data unit (datagram), not to the communications endpoint. Thus, if the
same options are specified in a call to Manage_Options with Request_-
Flags set to Get_Current_Options , Manage_Options usually does not
return the same values.
The number of options received may vary from call to call.
The Status attribute is irrelevant.

Receive_And_Scatter_Data_Unit

(same as Receive_Data_Unit)

Retrieve_Data_Unit_Error

The returned options are related to the options input at the previous Send_-
Data_Unit or Gather_And_Send_Data_Unit call that produced the error.

17.3 The Use of Options 405

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Which options are returned and which values they have depend on the spe-
cific error condition.
The Status attribute is irrelevant.

Manage_Options

This operation processes and returns both categories of options. It acts on
options related to the specified communications endpoint, not on options
related to a connection indication or an incoming data unit (datagram). A
detailed description is given in 17.4.18.

17.3.2.6 Privileged and Read-Only Options

Privileged options or option values are those that may be requested by privileged
applications only. The meaning of privilege is implementation defined.

Read-only options serve for information only. The application may be allowed to read
the option value, but not to change it. For instance, to select the value of a protocol
timer or the maximum length of a protocol data unit may be too subtle to leave to the
application, although the knowledge about this value might be of some interest. An
option might be read-only for all applications or solely for nonprivileged applications.
A privileged option might be inaccessible or read-only for nonprivileged applications.

An option might be negotiable in some XTI states and read-only in other XTI states.
The XTI states are defined in 17.2. For instance, the ISO quality-of-service options
are negotiable in the states Idle and Incoming Connect and read-only in all other states
(except Uninitialized).

If an application requests negotiation of a read-only option or a nonprivileged ap-
plication requests illegal access to a privileged option, the following outcomes are
possible:

— Manage_Options successfully returns, but the returned option has its Status
attribute set to Not_Supported if a privileged option was requested illegally
and to Read_Only if modification of a read-only option was requested.

— If negotiation of a read-only option is requested, Accept_Connection or Con-
nect fail with error code Insufficient_Permission ; or the connection es-
tablishment aborts, and a Disconnect_Request_Received event occurs. If
the connection aborts, a call to Connect with POSIX_IO.Non_Blocking clear
fails with Event_Requires_Attention . It depends on timing and implemen-
tation conditions whether a Accept_Connection call still succeeds or fails with
Event_Requires_Attention .
If a privileged option is illegally requested, the request shall be ignored but no
error indication shall be given. (A nonprivileged application shall not be able to
select an option that is privileged or unsupported.)

— If negotiation of a read-only option is requested, Send_Data_Unit or Gather_-
And_Send_Data_Unit may generate Event_Requires_Attention or success-
fully return, but an Error_In_Previously_Sent_Datagram event occurs to
indicate that the data unit (datagram) was not sent.
If a privileged option is illegally requested, the option is quietly ignored. (A
nonprivileged application shall not be able to select an option that is privileged
or unsupported.)

406 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

If multiple options are submitted to Connect , Accept_Connection , Send_Data_-
Unit , or Gather_And_Send_Data_Unit and a read-only option is rejected, the
connection or the data unit (datagram) transmission fails as described. Options that
could be successfully negotiated before the erroneous option was processed retain
their negotiated values. There is no roll-back mechanism (see also 17.3.3).

17.3.3 Option Management of a Communication Endpoint

This subclause describes how option management works during the lifetime of a
communications endpoint.

Each communications endpoint is (logically) associated with an internal protocol op-
tion list. When a communications endpoint is created, this list is filled with a system
default value for each supported option. Depending on the option, the default may
be “OPTION ENABLED,” “OPTION DISABLED,” or denote a time span, etc. These
default settings are appropriate for most uses. Whenever an option value is modified
in the course of an option negotiation, the modified value is written to this list and
overwrites the previous one. At any time, the protocol option list contains all option
values that are currently effective for this communications endpoint.

The current value of an option can be retrieved at any time by calling Manage_-
Options with Request_Flags set to Get_Current_Options . Calling Manage_-
Options with the Request_Flags parameter set to Get_Default_Options yields
the system default for the specified option.

An application can negotiate new option values by calling Manage_Options with
Request_Flags set to Negotiate_Options . The negotiation follows the rules in
17.3.2.

Some options may be modified only in specific XTI states and are read-only in other
XTI states. Many options with end-to-end significance, for instance, may not be
changed in the Data Transfer state, and an attempt to do so shall fail (see 17.3.2.6).

The legal states for each option are specified with its definition (see 17.4.18 and D.2).

Options with end-to-end significance take effect at the time a connection is estab-
lished or a data unit (datagram) is transmitted, for example, if they contain infor-
mation that is transmitted across the network or determines specific transmission
characteristics. If such an option is modified by a call to Manage_Options , the com-
munications provider checks whether the option is supported and negotiates a value
according to its current status. This value is written to the internal protocol option
list. The final negotiation takes place if the connection is established or the data unit
(datagram) is transmitted. This final negotiation can result in a degradation of the
option value or even in a negotiation failure. The negotiated values are written to
the internal protocol option list.

Some options may be changed in the Data Transfer state, e.g., those specifying buffer
sizes. Such changes might affect the transmission characteristics and lead to unex-
pected side effects (e.g., data loss if a buffer size was shortened).

The application can explicitly specify options in both categories discussed above on
input when calling Connect , Accept_Connection , Send_Data_Unit , or Gather_-
And_Send_Data_Unit . The options are at first locally negotiated option-by-option,

17.3 The Use of Options 407

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

and the resulting values written to the internal protocol option list. The modified
protocol option list is then used if a further negotiation step across the network is
required, as for instance in ISO COTS communication. The newly negotiated values
are then written to the internal protocol option list.

At any stage, a negotiation failure can lead to an abort of the transmission. If a
transmission aborts, the protocol option list shall preserve the content it had at the
time the failure occurred. Options that could be negotiated just before the error
occurred are written back to the protocol option list, whether the XTI operation fails
or succeeds.

It is up to the application to decide which options it explicitly specifies on input when
calling Connect , Accept_Connection , Send_Data_Unit or Gather_And_Send_-
Data_Unit . The application need not pass options at all, by omitting the Options
parameter to the procedure or by providing an empty list (i.e., using the Make_Empty
procedure on the Protocol_Option_List object). In this case the current content
of the internal protocol option list is used for negotiation without prior modification.

The negotiation procedure for options at the time of a Connect , Accept_Connec-
tion , Send_Data_Unit or Gather_And_Send_Data_Unit operation shall obey the
rules of 17.3.2.3 and 17.3.2.4, whether the options were explicitly specified during
the call or implicitly taken from the internal protocol option list.

The application shall not make assumptions about the order in which options are
processed during negotiation.

A value in the protocol option list is only modified as a result of a successful ne-
gotiation of this option. It is, in particular, not changed by a connection release.
There is no history mechanism that would restore the buffer state existing prior to
the connection establishment or the data unit (datagram) transmission. The appli-
cation needs to be aware that a connection establishment or a data unit (datagram)
transmission may change the internal protocol option list, even if each option was
originally initialized to its default value.

17.3.4 Supplements

This section contains supplementary remarks and a short summary.

17.3.4.1 The Option Value Unspecified

Some options may not have a fully specified value all the time. An ISO COTS com-
munications provider, for instance, that supports several protocol classes, might not
have a preselected preferred class before a connection establishment is initiated. At
the time of the connection request, the communications provider may conclude from
the destination address, quality-of-service parameters, and other locally available in-
formation which preferred class it should use. An application asking for the default
value of the preferred class option in the Idle state would get the value Unspeci-
fied . This value indicates that the communications provider did not yet select a
value. The application could negotiate a different value as the preferred class, e.g.,
Transport_Class_2 . The communications provider would then be forced to initiate
a connection request with class 2 as the preferred class.

408 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

An XTI implementation may also return the value Unspecified if it can currently
not access the option value, for example, in the Unbound state in systems where the
protocol stacks reside on separate controller cards and not in the host. The imple-
mentation shall never return Unspecified if the option is not supported at all.

If Unspecified is a legal value for a specific option, it may also be used by the
application on input. It is used to indicate that choosing an appropriate value is
left to the provider. Unspecified is especially useful in complex options like ISO
throughput, where the option value has an internal structure (see the Throughput XTI
option in D.2). The application may leave some attributes unspecified by selecting
this value. If the application proposes Unspecified , the communications provider
is free to select an appropriate value. The value chosen by the provider might be the
default value, some other explicit value, or Unspecified .

For each option, it is specified whether Unspecified is a legal value for negotiation
purposes.

17.3.4.2 The Communications_Provider_Info Argument

The operations Open and Get_Info return values representing characteristics of the
communications provider in an object of type Communications_Provider_Info as
the parameter Info . The Max Size Protocol Options attribute of Info is used to allocate
storage for a protocol option list to be used in an XTI operation.

In general, the Max Size Protocol Options attribute also includes the size of privileged
options, even if these are not read-only for nonprivileged applications. Alternatively,
an implementation can choose to return different values in the Max Size Protocol Op-
tions attribute for privileged and nonprivileged applications. The values of the Max
Size Connect Data, Max Size Disconnect Data, Max Size SDU, and Max Size SEDU attributes
possibly diminish as soon as the Data Transfer state is entered. Calling Manage_Op-
tions does not influence these values.

17.3.4.3 Summary

— The format of an option is defined by a Protocol_Option object. The Pro-
tocol_Option may have optionally associated with it an Option_Value , Op-
tion_Value_Array , Linger_Info , or protocol-specific object.

— On input, several options can be specified in an input parameter. Functions and
procedures are provided for manipulating the options within a protocol option
list.

— There are options that have end-to-end significance and options that do not. On
output, the operations Listen , Receive_Data_Unit , and Receive_And_Scat-
ter_Data_Unit return options with end-to-end significance only. The operations
Confirm_Connection and Retrieve_Data_Unit_Error may return options
of both categories. On input, options of both categories may be specified with
Accept_Connection , Send_Data_Unit , and Gather_And_Send_Data_Unit .
The operations Connect and Manage_Options can process and return both cat-
egories of options.

— A communications endpoint is (logically) associated with an internal protocol
option list where the currently effective values are stored. Each successful ne-

17.3 The Use of Options 409

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

gotiation of an option modifies this list, regardless of whether the call initiating
the negotiation succeeds.

— When calling Connect , Accept_Connection , Send_Data_Unit , or Gather_-
And_Send_Data_Unit , the application can choose to submit the currently ef-
fective option values by omitting the Options parameter to the procedure or by
providing an empty list (i.e., using the Make_Empty procedure on the Proto-
col_Option_List object).

— If a connection is accepted via Accept_Connection , the explicitly specified op-
tion values together with the currently effective option values of the Respond-
ing_Endpoint , not of the Listening_Endpoint , matter in this negotiation
step.

— The options returned by Retrieve_Data_Unit_Error are those negotiated with
the outgoing data unit (datagram) that produced the error. If the error occurred
during option negotiation, the returned option might represent some mixture of
partly negotiated and not-yet negotiated options.

17.4 Package POSIX_XTI

The package POSIX_XTI provides the XTI protocol independent process to process
communications interface.

The functionality described in this clause is optional. If the XTI Detailed Network Inter-
face option is not supported, the implementation may cause all calls to the explicitly
declared operations defined in this clause to raise POSIX_Error . Otherwise, the be-
havior shall be as specified in this clause.

with POSIX,
POSIX_IO,
POSIX_Limits,
System;

package POSIX_XTI is
-- 17.4.1 Common Data Types and Constants
-- 17.4.1.1 Flags
type XTI_Flags is new POSIX.Option_Set;
Expedited_Data : constant XTI_Flags := implementation-defined;
More_Data : constant XTI_Flags := implementation-defined;
Push_Data : constant XTI_Flags := implementation-defined;
type Options_Flags is private ;
Check_Options : constant Options_Flags;
Get_Current_Options : constant Options_Flags;
Get_Default_Options : constant Options_Flags;
Negotiate_Options : constant Options_Flags;
-- 17.4.1.2 Protocol-Specific Service Limits
type Communications_Provider_Info is private ;
type CP_Flags is new POSIX.Option_Set;
Orderly_Release_Data_Supported : constant CP_Flags := implementation-defined;
Zero_Length_SDU_Supported : constant CP_Flags := implementation-defined;
type Service_Type is private ;
Connection_Mode : constant Service_Type;
Connection_Mode_With_Orderly_Release : constant Service_Type;
Connectionless_Mode : constant Service_Type;

410 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

function Protocol_Addresses_Are_Valid
(Info_Item : Communications_Provider_Info)

return Boolean;
function Get_Max_Size_Protocol_Address

(Info_Item : Communications_Provider_Info)
return Positive;

function Protocol_Options_Are_Valid
(Info_Item : Communications_Provider_Info)

return Boolean;
function Get_Max_Size_Protocol_Options

(Info_Item : Communications_Provider_Info)
return Positive;

function SDU_Is_Supported
(Info_Item : Communications_Provider_Info)

return Boolean;
function SDU_Is_Infinite

(Info_Item : Communications_Provider_Info)
return Boolean;

function SDU_Is_Valid
(Info_Item : Communications_Provider_Info)

return Boolean;
function Get_Max_Size_SDU

(Info_Item : Communications_Provider_Info)
return Positive;

function SEDU_Is_Supported
(Info_Item : Communications_Provider_Info)

return Boolean;
function SEDU_Is_Infinite

(Info_Item : Communications_Provider_Info)
return Boolean;

function SEDU_Is_Valid
(Info_Item : Communications_Provider_Info)

return Boolean;
function Get_Max_Size_SEDU

(Info_Item : Communications_Provider_Info)
return Positive;

function Connect_Data_Is_Valid
(Info_Item : Communications_Provider_Info)

return Boolean;
function Get_Max_Size_Connect_Data

(Info_Item : Communications_Provider_Info)
return Positive;

function Disconnect_Data_Is_Valid
(Info_Item : Communications_Provider_Info)

return Boolean;
function Get_Max_Size_Disconnect_Data

(Info_Item : Communications_Provider_Info)
return Positive;

function Get_CP_Flags
(Info_Item : Communications_Provider_Info)

return CP_Flags;
function Get_Service_Type

(Info_Item : Communications_Provider_Info)
return Service_Type;

-- 17.4.1.3 XTI Addresses
type XTI_Address_Pointer is private ;
Null_XTI_Address : constant XTI_Address_Pointer;

17.4 Package POSIX_XTI 411

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

-- 17.4.1.4 Linger Information Objects
type Linger_Info is private ;
subtype Linger_Time is POSIX.Seconds range 1 .. POSIX.Seconds’Last;
type Linger_Option is (Linger_Off, Linger_On);
function Get_Status (Item : Linger_Info)

return Linger_Option;
procedure Set_Status

(Item : in out Linger_Info;
Linger : in Linger_Option);

function Period_Is_Infinite (Item : Linger_Info)
return Boolean;

function Period_Is_Unspecified (Item : Linger_Info)
return Boolean;

function Get_Period (Item : Linger_Info)
return Linger_Time;

procedure Set_Period_Infinite
(Item : in out Linger_Info);

procedure Set_Period_Unspecified
(Item : in out Linger_Info);

procedure Set_Period
(Item : in out Linger_Info;

Time : in Linger_Time);
-- 17.4.1.5 Protocol Option Objects
type Protocol_Option is private ;
type Option_Value is range implementation-defined;
type Option_Level is range implementation-defined;
type Option_Name is range implementation-defined;
type Option_Status is private ;
Success : constant Option_Status := implementation-defined;
Partial_Success : constant Option_Status := implementation-defined;
Failure : constant Option_Status := implementation-defined;
Read_Only : constant Option_Status := implementation-defined;
Not_Supported : constant Option_Status := implementation-defined;
type Option_Value_Array is array (Positive range <>) of Option_Value;
function Get_Level (Option_Item : Protocol_Option)

return Option_Level;
function Get_Name (Option_Item : Protocol_Option)

return Option_Name;
function Get_Status (Option_Item : Protocol_Option)

return Option_Status;
function Get_Value (Option_Item : Protocol_Option)

return Option_Value;
function Get_Value (Option_Item : Protocol_Option)

return Option_Value_Array;
function Get_Value (Option_Item : Protocol_Option)

return Linger_Info;
procedure Set_Option

(Option_Item : in out Protocol_Option;
Level : in Option_Level;
Name : in Option_Name);

procedure Set_Option
(Option_Item : in out Protocol_Option;

Level : in Option_Level;
Name : in Option_Name;
Value : in Option_Value);

412 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

procedure Set_Option
(Option_Item : in out Protocol_Option;

Level : in Option_Level;
Name : in Option_Name;
Value : in Option_Value_Array);

procedure Set_Option
(Option_Item : in out Protocol_Option;

Level : in Option_Level;
Name : in Option_Name;
Value : in Linger_Info);

-- 17.4.1.6 Protocol Option List Objects
type Protocol_Option_List is private ;
type Protocol_Option_List_Pointer is

access all Protocol_Option_List;
procedure Make_Empty

(Info_Item : in out Protocol_Option_List);
procedure Append

(Info_Item : in out Protocol_Option_List;
Option : in Protocol_Option);

type Octet_Buffer_Pointer is access all POSIX.Octet_Array;
procedure Set_Buffer

(Info_Item : in out Protocol_Option_List;
Options_Buffer : in Octet_Buffer_Pointer);

generic
with procedure Action

(Info : in Protocol_Option;
Quit : in out Boolean);

procedure For_Every_Item (Info_Item : in Protocol_Option_List);
function Number_Of_Options (Info_Item : Protocol_Option_List)

return Natural;
procedure Get_Option

(Info_Item : in Protocol_Option_List;
Option_Number : in Positive;
Option : out Protocol_Option);

-- 17.4.1.7 Disconnect Reason Codes
type Reason_Code is range implementation-defined;
-- 17.4.1.8 Connection Information Objects
type Connection_Info is limited private ;
procedure Set_Address

(Info_Item : in out Connection_Info;
Address : in XTI_Address_Pointer);

function Get_Options (Info_Item : Connection_Info)
return Protocol_Option_List;

procedure Set_Options
(Info_Item : in out Connection_Info;

Options : in Protocol_Option_List_Pointer);
procedure Set_User_Data

(Info_Item : in out Connection_Info;
User_Data : in System.Address;
Max_Length : in POSIX.IO_Count);

procedure Set_User_Data_Length
(Info_Item : in out Connection_Info;

Length : in POSIX.IO_Count);
function Get_User_Data_Length

(Info_Item : Connection_Info)
return POSIX.IO_Count;

function Get_Sequence_Number (Info_Item : Connection_Info)
return Integer;

17.4 Package POSIX_XTI 413

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

procedure Set_Sequence_Number
(Info_Item : in out Connection_Info;

Number : in Integer);
-- 17.4.1.9 Scatter/Gather Vector Objects
subtype IO_Vector_Range is Positive range

1 .. POSIX_Limits.XTI_IO_Vector_Maxima’Last;
type IO_Vector_Array is array

(IO_Vector_Range range <>) of POSIX_IO.IO_Vector;
-- 17.4.1.10 Communications Interface States
type Interface_State is private ;
Uninitialized : constant Interface_State;
Unbound : constant Interface_State;
Idle : constant Interface_State;
Outgoing_Connect : constant Interface_State;
Incoming_Connect : constant Interface_State;
Data_Transfer : constant Interface_State;
Outgoing_Release : constant Interface_State;
Incoming_Release : constant Interface_State;
-- 17.4.2 Accept a Connection Request
procedure Accept_Connection

(Listening_Endpoint : in POSIX_IO.File_Descriptor;
Responding_Endpoint : in POSIX_IO.File_Descriptor;
Call : in Connection_Info);

procedure Accept_Connection
(Listening_Endpoint : in POSIX_IO.File_Descriptor;

Responding_Endpoint : in POSIX_IO.File_Descriptor);
-- 17.4.3 Acknowledge Receipt of an Orderly Release Indication
procedure Acknowledge_Orderly_Release

(Endpoint : in POSIX_IO.File_Descriptor);
procedure Acknowledge_Orderly_Release

(Endpoint : in POSIX_IO.File_Descriptor;
Reason : out Reason_Code);

-- 17.4.4 Acknowledge Receipt of an Orderly Release Indication with Data
procedure Acknowledge_Orderly_Release_With_Data

(Endpoint : in POSIX_IO.File_Descriptor;
Reason : out Reason_Code;
User_Data : in System.Address;
Octets_Requested : in POSIX.IO_Count;
Octets_Received : out POSIX.IO_Count);

-- 17.4.5 Bind an Address to a Communications Endpoint
procedure Bind

(Endpoint : in POSIX_IO.File_Descriptor;
Request_Address : in XTI_Address_Pointer;
Request_Queue_Length : in Natural;
Response_Address : in XTI_Address_Pointer;
Response_Queue_Length : out Natural);

procedure Bind
(Endpoint : in POSIX_IO.File_Descriptor;

Request_Queue_Length : in Natural;
Response_Address : in XTI_Address_Pointer;
Response_Queue_Length : out Natural);

procedure Bind
(Endpoint : in POSIX_IO.File_Descriptor;

Request_Address : in XTI_Address_Pointer;
Request_Queue_Length : in Natural);

procedure Bind
(Endpoint : in POSIX_IO.File_Descriptor;

Response_Address : in XTI_Address_Pointer);

414 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

procedure Bind
(Endpoint : in POSIX_IO.File_Descriptor);

-- 17.4.6 Close a Communications Endpoint
procedure Close

(Endpoint : in POSIX_IO.File_Descriptor);
-- 17.4.7 Receive the Confirmation from a Connection Request
procedure Confirm_Connection

(Endpoint : in POSIX_IO.File_Descriptor;
Call : in out Connection_Info);

procedure Confirm_Connection
(Endpoint : in POSIX_IO.File_Descriptor);

-- 17.4.8 Establish a Connection with Peer
procedure Connect

(Endpoint : in POSIX_IO.File_Descriptor;
Send : in Connection_Info;
Receive : in out Connection_Info);

procedure Connect
(Endpoint : in POSIX_IO.File_Descriptor;

Send : in Connection_Info);
-- 17.4.9 Gather and send data or expedited data over a connection
procedure Gather_And_Send_Data

(Endpoint : in POSIX_IO.File_Descriptor;
Vector : in IO_Vector_Array;
Flags : in XTI_Flags;
Octets_Sent : out POSIX.IO_Count);

-- 17.4.10 Gather and Send a Data Unit
procedure Gather_And_Send_Data_Unit

(Endpoint : in POSIX_IO.File_Descriptor;
Address : in XTI_Address_Pointer;
Vector : in IO_Vector_Array);

procedure Gather_And_Send_Data_Unit
(Endpoint : in POSIX_IO.File_Descriptor;

Address : in XTI_Address_Pointer;
Vector : in IO_Vector_Array;
Options : in Protocol_Option_List);

-- 17.4.11 Get the Current State
function Get_Current_State (Endpoint : POSIX_IO.File_Descriptor)

return Interface_State;
-- 17.4.12 Get Protocol-Specific Service Information
procedure Get_Info

(Endpoint : in POSIX_IO.File_Descriptor;
Info : out Communications_Provider_Info);

-- 17.4.13 Get the Protocol Address
procedure Get_Protocol_Address

(Endpoint : in POSIX_IO.File_Descriptor;
Bound_Address : in XTI_Address_Pointer;
Peer_Address : in XTI_Address_Pointer);

-- 17.4.14 Initiate an Orderly Release
procedure Initiate_Orderly_Release

(Endpoint : in POSIX_IO.File_Descriptor);
procedure Initiate_Orderly_Release

(Endpoint : in POSIX_IO.File_Descriptor;
Reason : in Reason_Code);

17.4 Package POSIX_XTI 415

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

-- 17.4.15 Initiate an Orderly Release with Application Data
procedure Initiate_Orderly_Release_With_Data

(Endpoint : in POSIX_IO.File_Descriptor;
Reason : in Reason_Code;
User_Data : in System.Address;
Octets_To_Send : in POSIX.IO_Count);

-- 17.4.16 Listen for a Connection Indication
procedure Listen

(Endpoint : in POSIX_IO.File_Descriptor;
Call : in out Connection_Info);

-- 17.4.17 Look at the Current Event on a Communication Endpoint
type XTI_Events is new POSIX.Option_Set;
Connect_Request_Received : constant XTI_Events := implementation-defined;
Connect_Response_Received : constant XTI_Events := implementation-defined;
Disconnect_Request_Received : constant XTI_Events := implementation-defined;
Error_In_Previously_Sent_Datagram

: constant XTI_Events := implementation-defined;
Expedited_Data_Received : constant XTI_Events := implementation-defined;
Normal_Data_Received : constant XTI_Events := implementation-defined;
Okay_To_Send_Expedited_Data : constant XTI_Events := implementation-defined;
Okay_To_Send_Normal_Data : constant XTI_Events := implementation-defined;
Orderly_Release_Request_Received

: constant XTI_Events := implementation-defined;
function Look (Endpoint : POSIX_IO.File_Descriptor)

return XTI_Events;
-- 17.4.18 Manage options for a communication endpoint
XTI_Protocol_Level : constant Option_Level := implementation-defined;
Unspecified : constant Option_Value := implementation-defined;
All_Options : constant Option_Name := implementation-defined;
Enable_Debugging : constant Option_Name := implementation-defined;
Linger_On_Close_If_Data_Present

: constant Option_Name := implementation-defined;
Receive_Buffer_Size : constant Option_Name := implementation-defined;
Receive_Low_Water_Mark : constant Option_Name := implementation-defined;
Send_Buffer_Size : constant Option_Name := implementation-defined;
Send_Low_Water_Mark : constant Option_Name := implementation-defined;
procedure Manage_Options

(Endpoint : in POSIX_IO.File_Descriptor;
Request : in Protocol_Option_List;
Request_Flag : in Options_Flags;
Response : in out Protocol_Option_List;
Response_Flags : out Option_Status);

-- 17.4.19 Establish a Communication Endpoint
procedure Open

(Endpoint : out POSIX_IO.File_Descriptor;
Name : in POSIX.POSIX_String;
Mode : in POSIX_IO.File_Mode;
Options : in POSIX_IO.Open_Option_Set;
Info : in out Communications_Provider_Info);

procedure Open
(Endpoint : out POSIX_IO.File_Descriptor;

Name : in POSIX.POSIX_String;
Mode : in POSIX_IO.File_Mode;
Options : in POSIX_IO.Open_Option_Set);

416 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

-- 17.4.20 Receive Data or Expedited Data Sent Over a Connection
procedure Receive

(Endpoint : in POSIX_IO.File_Descriptor;
Buffer : in System.Address;
Octets_Requested : in POSIX.IO_Count;
Octets_Received : out POSIX.IO_Count;
Flags : out XTI_Flags);

-- 17.4.21 Receive and Scatter Data or Expedited Data Sent Over a Connection
procedure Receive_And_Scatter_Data

(Endpoint : in POSIX_IO.File_Descriptor;
Vector : in IO_Vector_Array;
Octets_Received : out POSIX.IO_Count;
Flags : out XTI_Flags);

-- 17.4.22 Receive and Scatter a Data Unit
procedure Receive_And_Scatter_Data_Unit

(Endpoint : in POSIX_IO.File_Descriptor;
Address : in XTI_Address_Pointer;
Options : in out Protocol_Option_List;
Vector : in IO_Vector_Array;
Octets_Received : out POSIX.IO_Count;
Flags : out XTI_Flags);

-- 17.4.23 Receive a Data Unit
procedure Receive_Data_Unit

(Endpoint : in POSIX_IO.File_Descriptor;
User_Data : in System.Address;
Octets_Requested : in POSIX.IO_Count;
Octets_Received : out POSIX.IO_Count;
Address : in XTI_Address_Pointer;
Options : in out Protocol_Option_List;
Flags : out XTI_Flags);

procedure Receive_Data_Unit
(Endpoint : in POSIX_IO.File_Descriptor;

User_Data : in System.Address;
Octets_Requested : in POSIX.IO_Count;
Octets_Received : out POSIX.IO_Count;
Address : in XTI_Address_Pointer;
Flags : out XTI_Flags);

-- 17.4.24 Retrieve a Unit Data Error Indication
type Unit_Data_Error_Code is implementation-defined-integer;
procedure Retrieve_Data_Unit_Error

(Endpoint : in POSIX_IO.File_Descriptor;
Address : in XTI_Address_Pointer;
Options : in out Protocol_Option_List;
Error : out Unit_Data_Error_Code);

procedure Retrieve_Data_Unit_Error
(Endpoint : in POSIX_IO.File_Descriptor;

Address : in XTI_Address_Pointer;
Error : out Unit_Data_Error_Code);

procedure Retrieve_Data_Unit_Error
(Endpoint : in POSIX_IO.File_Descriptor;

Options : in out Protocol_Option_List;
Error : out Unit_Data_Error_Code);

procedure Retrieve_Data_Unit_Error
(Endpoint : in POSIX_IO.File_Descriptor;

Error : out Unit_Data_Error_Code);

17.4 Package POSIX_XTI 417

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

-- 17.4.25 Retrieve Information from Disconnect
procedure Retrieve_Disconnect_Info

(Endpoint : in POSIX_IO.File_Descriptor;
User_Data : in System.Address;
Octets_Requested : in POSIX.IO_Count;
Octets_Retrieved : out POSIX.IO_Count;
Reason : out Reason_Code;
Sequence_Number : out Natural);

procedure Clear_Disconnect_Info
(Endpoint : in POSIX_IO.File_Descriptor);

-- 17.4.26 Send Data or Expedited Data Over a Connection
procedure Send

(Endpoint : in POSIX_IO.File_Descriptor;
Buffer : in System.Address;
Octets_To_Send : in POSIX.IO_Count;
Flags : in XTI_Flags;
Octets_Sent : out POSIX.IO_Count);

-- 17.4.27 Send a Data Unit
procedure Send_Data_Unit

(Endpoint : in POSIX_IO.File_Descriptor;
User_Data : in System.Address;
Octets_To_Send : in POSIX.IO_Count;
Address : in XTI_Address_Pointer;
Options : in Protocol_Option_List);

procedure Send_Data_Unit
(Endpoint : in POSIX_IO.File_Descriptor;

User_Data : in System.Address;
Octets_To_Send : in POSIX.IO_Count;
Address : in XTI_Address_Pointer);

-- 17.4.28 Send Application-Initiated Disconnection Request
procedure Send_Disconnect_Request

(Endpoint : in POSIX_IO.File_Descriptor;
Call : in Connection_Info);

procedure Send_Disconnect_Request
(Endpoint : in POSIX_IO.File_Descriptor);

procedure Send_Disconnect_Request
(Endpoint : in POSIX_IO.File_Descriptor;

Sequence_Number : in Natural);
procedure Send_Disconnect_Request

(Endpoint : in POSIX_IO.File_Descriptor;
User_Data : in System.Address;
Octets_To_Send : in POSIX.IO_Count);

-- 17.4.29 Synchronize Communications Endpoint
function Synchronize_Endpoint

(Endpoint : in POSIX_IO.File_Descriptor)
return Interface_State;

-- 17.4.30 Disable a Communications Endpoint
procedure Unbind

(Endpoint : in POSIX_IO.File_Descriptor);

private
implementation-defined
end POSIX_XTI;

418 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

17.4.1 Common Data Types and Constants

17.4.1.1 Flags

17.4.1.1.1 Synopsis

type XTI_Flags is new POSIX.Option_Set;
Expedited_Data : constant XTI_Flags := implementation-defined;
More_Data : constant XTI_Flags := implementation-defined;
Push_Data : constant XTI_Flags := implementation-defined;
type Options_Flags is private ;
Check_Options : constant Options_Flags;
Get_Current_Options : constant Options_Flags;
Get_Default_Options : constant Options_Flags;

Negotiate_Options : constant Options_Flags;

17.4.1.1.2 Description

The type XTI_Flags shall denote a set of XTI flags. The operations "+" , "-" , ">" ,
"<" , ">=" , "<=" , and Empty_Set are available on the type XTI_Flags via the
derived type semantics of Ada, from the operations available for POSIX.Option_Set .
The appropriate operations can be used to create and examine a set containing the
required flags. The XTI flags are used to influence the action of various function and
procedure calls. Specific usage is detailed in each operation and procedure described
in this subclause.

The type Options_Flags is used with the Manage_Options procedure to indicate
what action should be taken by the call.

17.4.1.2 Protocol-Specific Service Limits

17.4.1.2.1 Synopsis

type Communications_Provider_Info is private ;
type CP_Flags is new POSIX.Option_Set;
Orderly_Release_Data_Supported : constant CP_Flags := implementation-defined;
Zero_Length_SDU_Supported : constant CP_Flags := implementation-defined;
type Service_Type is private ;
Connection_Mode : constant Service_Type;
Connection_Mode_With_Orderly_Release : constant Service_Type;
Connectionless_Mode : constant Service_Type;
function Protocol_Addresses_Are_Valid

(Info_Item : Communications_Provider_Info)
return Boolean;

function Get_Max_Size_Protocol_Address
(Info_Item : Communications_Provider_Info)

return Positive;
function Protocol_Options_Are_Valid

(Info_Item : Communications_Provider_Info)
return Boolean;

function Get_Max_Size_Protocol_Options
(Info_Item : Communications_Provider_Info)

return Positive;
function SDU_Is_Supported

(Info_Item : Communications_Provider_Info)
return Boolean;

17.4 Package POSIX_XTI 419

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

function SDU_Is_Infinite
(Info_Item : Communications_Provider_Info)

return Boolean;
function SDU_Is_Valid

(Info_Item : Communications_Provider_Info)
return Boolean;

function Get_Max_Size_SDU
(Info_Item : Communications_Provider_Info)

return Positive;
function SEDU_Is_Supported

(Info_Item : Communications_Provider_Info)
return Boolean;

function SEDU_Is_Infinite
(Info_Item : Communications_Provider_Info)

return Boolean;
function SEDU_Is_Valid

(Info_Item : Communications_Provider_Info)
return Boolean;

function Get_Max_Size_SEDU
(Info_Item : Communications_Provider_Info)

return Positive;
function Connect_Data_Is_Valid

(Info_Item : Communications_Provider_Info)
return Boolean;

function Get_Max_Size_Connect_Data
(Info_Item : Communications_Provider_Info)

return Positive;
function Disconnect_Data_Is_Valid

(Info_Item : Communications_Provider_Info)
return Boolean;

function Get_Max_Size_Disconnect_Data
(Info_Item : Communications_Provider_Info)

return Positive;
function Get_CP_Flags

(Info_Item : Communications_Provider_Info)
return CP_Flags;

function Get_Service_Type
(Info_Item : Communications_Provider_Info)

return Service_Type;

17.4.1.2.2 Description

Communications_Provider_Info objects are used to identify protocol-specific ser-
vice limits of the communications provider. Objects of type Communications_-
Provider_Info have (at least) the following attributes:

Max Size Protocol Address

The maximum size in octets of a communications protocol address. The
Protocol_Addresses_Are_Valid function shall return False if the com-
munications provider does not provide application access to communications
protocol addresses. The Get_Max_Size_Protocol_Address function shall
return the value of this attribute.

Max Size Protocol Options

The maximum number of octets of protocol-specific options supported by
the provider. The Protocol_Options_Are_Valid function shall return
False if the communications provider does not support application-settable
options. The Get_Max_Size_Protocol_Options function shall return the
value of this attribute.

420 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Max Size SDU

The maximum size in octets of a SDU. The Get_Max_Size_SDU function
shall return the value of this attribute. The SDU_Is_Supported function
shall return False if the communications provider does not support the
concept of SDU, although it does support the sending of a data stream with
no logical boundaries preserved across a connection. The SDU_Is_Infinite
function shall return True if there is no limit on the size of an SDU. The
SDU_Is_Valid function shall return False if the transfer of normal data is
not supported by the communications provider.

Max Size SEDU

The maximum size in octets of a SEDU. The Get_Max_Size_SEDU function
shall return the value of this attribute. The SEDU_Is_Supported function
shall return False if the communications provider does not support the
concept of an SEDU, although it does support the sending of an expedited
data stream with no logical boundaries preserved across a connection. The
SEDU_Is_Infinite function shall return True if there is no limit on the
size of an SEDU. The SEDU_Is_Valid function shall return False if the
transfer of expedited data is not supported by the communications provider.
(The semantics of expedited data may be quite different for different com-
munications providers (see section D.2).)

Max Size Connect Data
The maximum number of octets of data that may be associated with con-
nection establishment operations. The Connect_Data_Is_Valid function
shall return False if the communications provider does not allow data to be
sent with connection establishment operations. The Get_Max_Size_Con-
nect_Data function shall return the value of this attribute.

Max Size Disconnect Data
The Disconnect_Data_Is_Valid function shall return False if the com-
munications provider does not allow data to be sent with the abortive re-
lease operations. If this function returns True , the Get_Max_Size_Dis-
connect_Data function shall return the value of this attribute. If the Or-
derly_Release_Data_Supported flag is clear, this value specifies the
maximum number of octets of data that may be associated with the Send_-
Disconnect_Request and Retrieve_Disconnect_Info operations. If
the Orderly_Release_Data_Supported flag is set, this value specifies
the maximum number of octets that may be associated with the Acknowl-
edge_Orderly_Release_With_Data , Initiate_Orderly_Release_-
With_Data , Send_Disconnect_Request , and Retrieve_Disconnect_-
Info operations.

Service Type
The service type supported by the communications provider. The Get_-
Service_Type function shall return the value of this attribute as follows:

Connection_Mode
The communications provider supports a connection mode service,
but does not support the optional orderly release facility.

Connection_Mode_With_Orderly_Release
The communications provider supports a connection mode service
with the optional orderly release facility.

17.4 Package POSIX_XTI 421

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Connectionless_Mode
The communications provider supports a connectionless mode ser-
vice. For this service type, Open shall set the Max Size SEDU, Max
Size Connect Data, and Max Size Disconnect Data attributes of the
Communications_Provider_Info so that Connect_Data_Is_-
Valid , Disconnect_Data_Is_Valid , and SDU_Is_Valid all re-
turn False .

CP Flags

This is an option set used to specify other information about the communica-
tions provider. If the Orderly_Release_Data_Supported flag is set, the
communications provider supports application data to be sent with an or-
derly release. If the Zero_Length_SDU_Supported flag is set, the underly-
ing communications provider supports the sending of zero-length SDUs. See
D.2 for a discussion of the separate issue of zero-length fragments within an
SDU.
If an application is concerned with protocol independence, the above sizes
may be accessed to determine how large the buffers need to be to hold each
piece of information. An error shall result if an application exceeds the
allowed data size on any operation. The value of each field may change as a
result of protocol option negotiation during connection establishment. (The
Manage_Options operation has no effect on the values returned by Get_-
Info .) These values shall only change from the values presented to Open
after the endpoint enters the Data Transfer state.
The Get_CP_Flags function shall return the value of the CP Flags attribute
as type CP_Flags . The operations "+" , "-" , ">" , "<" , ">=" , "<=" , and
Empty_Set are available on the type CP_Flags via the derived type se-
mantics of Ada, from the operations available for POSIX.Option_Set . The
appropriate operations can be used to create and examine a set containing
the required flags.

17.4.1.2.3 Error Handling

If the following condition occurs, the exception POSIX_Error shall be raised with
the corresponding error code:

Operation_Not_Implemented

The operation is not supported by this implementation.

17.4.1.3 XTI Addresses

17.4.1.3.1 Synopsis

type XTI_Address_Pointer is private ;

Null_XTI_Address : constant XTI_Address_Pointer;

17.4.1.3.2 Description

All network addresses are described using a general object called XTI_Address_-
Pointer , which references a protocol-specific network address. Each protocol im-
poses finer and more specific structure, generally defining a new object with at-
tributes specific to the protocol. The protocol-specific attributes of these objects, the

422 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

operations that manipulate them, and operations to convert access values that des-
ignate these protocol-specific objects to and from the XTI_Address_Pointer type
are described in D.2.

The constant Null_XTI_Address is a special value that does not refer to any address
(i.e., the null address). This value is used when an XTI_Address_Pointer object
can optionally be omitted by the application.

17.4.1.4 Linger Information Objects

17.4.1.4.1 Synopsis

type Linger_Info is private ;
subtype Linger_Time is POSIX.Seconds range 1 .. POSIX.Seconds’Last;
type Linger_Option is (Linger_Off, Linger_On);
function Get_Status (Item : Linger_Info)

return Linger_Option;
procedure Set_Status

(Item : in out Linger_Info;
Linger : in Linger_Option);

function Period_Is_Infinite (Item : Linger_Info)
return Boolean;

function Period_Is_Unspecified (Item : Linger_Info)
return Boolean;

function Get_Period (Item : Linger_Info)
return Linger_Time;

procedure Set_Period_Infinite
(Item : in out Linger_Info);

procedure Set_Period_Unspecified
(Item : in out Linger_Info);

procedure Set_Period
(Item : in out Linger_Info;

Time : in Linger_Time);

17.4.1.4.2 Description

Linger_Info objects are used to identify the time to wait before completing the
execution of a Close procedure when the send buffer of an endpoint still has data
that have not been sent. Objects of type Linger_Info have (at least) the following
attributes:

Linger Status

Whether the linger option is to be activated or disabled.

Linger Period

The length of time to linger in seconds.

The Linger_Info object is used with the Protocol_Option object and ultimately
passed to the Manage_Options procedure through the Protocol_Option_List
object.

The Get_Status function shall return the value of the Linger Status attribute, which
indicates whether the linger option is set for this object. The Set_Status procedure
shall set the Linger Status attribute to the Linger parameter.

17.4 Package POSIX_XTI 423

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

The Period_Is_Infinite function shall return True if the time to wait is infinite.
The Set_Period_Infinite procedure shall set the attribute to infinite. The Pe-
riod_Is_Unspecified function shall return True if the time to wait is currently set
to the communications provider default. The Set_Period_Unspecified procedure
shall set the attribute to the communications provider default.

The Get_Period function shall return the value of the Linger Period attribute (in
seconds). The Set__Period procedure shall set the Linger Period attribute to the
value of the Time parameter (in seconds). The value returned by the Get_Period
function following a Set_Period_Infinite operation is undefined.

17.4.1.4.3 Error Handling

If the following condition occurs, the exception POSIX_Error shall be raised with
the corresponding error code:

Operation_Not_Implemented

The operation is not supported by this implementation.

17.4.1.5 Protocol Option Objects

17.4.1.5.1 Synopsis

type Protocol_Option is private ;
type Option_Value is range implementation-defined;
type Option_Level is range implementation-defined;
type Option_Name is range implementation-defined;
type Option_Status is private ;
Success : constant Option_Status := implementation-defined;
Partial_Success : constant Option_Status := implementation-defined;
Failure : constant Option_Status := implementation-defined;
Read_Only : constant Option_Status := implementation-defined;
Not_Supported : constant Option_Status := implementation-defined;
type Option_Value_Array is array (Positive range <>) of Option_Value;
function Get_Level (Option_Item : Protocol_Option)

return Option_Level;
function Get_Name (Option_Item : Protocol_Option)

return Option_Name;
function Get_Status (Option_Item : Protocol_Option)

return Option_Status;
function Get_Value (Option_Item : Protocol_Option)

return Option_Value;
function Get_Value (Option_Item : Protocol_Option)

return Option_Value_Array;
function Get_Value (Option_Item : Protocol_Option)

return Linger_Info;
procedure Set_Option

(Option_Item : in out Protocol_Option;
Level : in Option_Level;
Name : in Option_Name);

procedure Set_Option
(Option_Item : in out Protocol_Option;

Level : in Option_Level;
Name : in Option_Name;
Value : in Option_Value);

424 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

procedure Set_Option
(Option_Item : in out Protocol_Option;

Level : in Option_Level;
Name : in Option_Name;
Value : in Option_Value_Array);

procedure Set_Option
(Option_Item : in out Protocol_Option;

Level : in Option_Level;
Name : in Option_Name;

Value : in Linger_Info);

17.4.1.5.2 Description

The Protocol_Option object is used to identify options, and may also include values
for those options, at either the XTI interface level or the protocol level of the commu-
nication provider. Objects of type Protocol_Option have (at least) the following
attributes:

Level

The protocol level to which this option object is related.

Name

The name of the option to be affected.

Status

The status value for this particular option object. This attribute only has
meaning when set by the implementation.

Value

The value of this option. This attribute may not be valid for some options
(i.e., some options do not have values associated with them).

The Protocol_Option object is used along with the Protocol_Option_List object
to either get or set options through the Manage_Options procedure. The Proto-
col_Option_List object is used along with the Connection_Info object to either
return or set options during the execution of the Accept_Connection , Connect ,
and Listen procedures. The Protocol_Option_List object is used to either return
options during the execution of the Receive_Data_Unit procedure or set options
during the execution of the Send_Data_Unit procedure. The Protocol_Option_-
List object is used to return options during the execution of the Retrieve_Data_-
Unit_Error procedure.

The Get_Level function shall return the value of the Level attribute, which indicates
the protocol level of this option.

The Get_Name function shall return the value of the Name attribute, which indicates
the name of the option.

The Get_Status function shall return the value of the Status attribute, which indi-
cates the present status of this option. The Status attribute shall only be meaning-
ful after a successful call to Accept_Connection , Connect , Listen , Manage_Op-
tions , Receive_Data_Unit , or Retrieve_Data_Unit_Error . The Status attribute
shall be set by the implementation and may be any of the following: Success , Par-
tial_Success , Failure , Read_Only , or Not_Supported .

17.4 Package POSIX_XTI 425

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

The Get_Value function shall return the Value attribute, which indicates the value
of this option. The Get_Value function is overloaded to accommodate different types
of the Value parameter. that exist. Each option, identified by the Level and Name
attributes, has only one Value type associated with it. Use of the wrong Value type for
a particular option shall result in an error.

The Set_Option procedure shall set the Level attribute of the Option_Item object
to the Level parameter, the Name attribute of Option_Item object to the Namepa-
rameter, and the Value attribute of the Option_Item object to the Value parameter
(if one is provided). The Set_Option procedure is overloaded to accommodate the
different Value types that may be associated with each option. Some options do not
have any Value associated with them.

17.4.1.5.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Operation_Not_Implemented

The operation is not supported by this implementation.

Operation_Not_Permitted

The Value type used for a particular option during a Get_Value function
call or Set_Option procedure call is not permitted.

17.4.1.6 Protocol Option List Objects

17.4.1.6.1 Synopsis

type Protocol_Option_List is private ;
type Protocol_Option_List_Pointer is

access all Protocol_Option_List;
procedure Make_Empty

(Info_Item : in out Protocol_Option_List);
procedure Append

(Info_Item : in out Protocol_Option_List;
Option : in Protocol_Option);

type Octet_Buffer_Pointer is access all POSIX.Octet_Array;
procedure Set_Buffer

(Info_Item : in out Protocol_Option_List;
Options_Buffer : in Octet_Buffer_Pointer);

generic
with procedure Action

(Info : in Protocol_Option;
Quit : in out Boolean);

procedure For_Every_Item (Info_Item : in Protocol_Option_List);
function Number_Of_Options (Info_Item : Protocol_Option_List)

return Natural;
procedure Get_Option

(Info_Item : in Protocol_Option_List;
Option_Number : in Positive;

Option : out Protocol_Option);

426 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

17.4.1.6.2 Description

The Protocol_Option_List object is used to identify options. The Protocol_-
Option_List object is used in the Manage_Options , Gather_And_Send_Data_-
Unit , Receive_Data_Unit , and Retrieve_Data_Unit_Error operations to convey
or obtain options to/from the interface. Additionally, the Protocol_Option_List
object is used with the Connection_Info object to convey or obtain options to/from
the interface. Objects of type Protocol_Option_List have (at least) the following
attribute:

Options Buffer

A pointer to a buffer where data are to be stored or are stored. The value is
required to designate an object of type Octet_Buffer_Pointer . Its initial
value is null .
The application is responsible for the allocation and deallocation of I/O
buffers. The effect of deallocating or modifying the contents of an I/O buffer
before the I/O operation has been completed is undefined.

Each Protocol_Option_List object shall identify an options buffer after a success-
ful Set_Buffer operation has been performed. The Set_Buffer procedure shall set
the Options Buffer attribute to point to the buffer identified by the Options_Buffer
parameter. This buffer provides storage for the Protocol_Option_List . A Set_-
Buffer operation shall result in an empty list; that is, any data previously contained
in the Octet_Buffer are ignored.

The Append procedure shall add an option to the end of the list of options represented
by the Options Buffer attribute of the Info_Item parameter. It also adds one to the
current count of options in the list. The number of options in the list of options
represented by the Options Buffer attribute of the Info_Item shall be returned by the
Number_Of_Options function. If an attempt is made to appended to a Protocol_-
Option_List an option that already exists in the list, the behavior of the procedure
is implementation defined (see 17.3.2.3).

The Make_Empty procedure shall remove all options from the Options Buffer attribute
of the Info_Item parameter, freeing any dynamically allocated storage associated
with the object.

The application program instantiates the generic procedure For_Every_Item with
an actual procedure for the generic formal procedure Action . When called, the in-
stance shall call the actual procedure supplied for Action once for each element in
the associated list.

Action shall be able to force termination of the generic instance either by setting
Quit to True or by raising an exception. Prior to calling Action , the instance shall
set Quit to False . Exceptions raised by Action shall terminate iteration and shall
be propagated back to the caller of the instance. After an exception is raised by
Action or Action returns with Quit set to True , no more calls to Action shall
occur.

The Get_Option procedure shall fill the Options parameter with the option spec-
ified by the Option_Number parameter in the list of options represented by the
Options Buffer attribute of the Info_Item parameter.

17.4 Package POSIX_XTI 427

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

17.4.1.6.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Operation_Not_Implemented

The operation is not supported by this implementation.

Invalid_Argument

The value of Options_Buffer is not a valid Octet_Buffer_Pointer . For
this error, the implementation under some circumstances may instead raise
Constraint_Error .
The value of the Option_Number parameter in the Get_Option procedure
is out of range. For this error, the implementation under some circum-
stances may instead raise Constraint_Error .

Buffer_Not_Large_Enough

An attempt to perform an Append operation on a Protocol_Option_List
object cannot be performed because the buffer represented by the Options
Buffer attribute is not large enough or has a value of null .

17.4.1.7 Disconnect Reason Codes

17.4.1.7.1 Synopsis

type Reason_Code is range implementation-defined;

17.4.1.7.2 Description

The Reason_Code type is used by the Acknowledge_Orderly_Release , Acknowl-
edge_Orderly_Release_With_Data , Initiate_Orderly_Release , Initiate_-
Orderly_Release_With_Data , and Retrieve_Disconnect_Info procedures to
specify a a protocol-specific reason code associated with disconnections.

17.4.1.8 Connection Information Objects

17.4.1.8.1 Synopsis

type Connection_Info is limited private ;
procedure Set_Address

(Info_Item : in out Connection_Info;
Address : in XTI_Address_Pointer);

function Get_Options (Info_Item : Connection_Info)
return Protocol_Option_List;

procedure Set_Options
(Info_Item : in out Connection_Info;

Options : in Protocol_Option_List_Pointer);
procedure Set_User_Data

(Info_Item : in out Connection_Info;
User_Data : in System.Address;
Max_Length : in POSIX.IO_Count);

procedure Set_User_Data_Length
(Info_Item : in out Connection_Info;

Length : in POSIX.IO_Count);

428 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

function Get_User_Data_Length
(Info_Item : Connection_Info)

return POSIX.IO_Count;
function Get_Sequence_Number (Info_Item : Connection_Info)

return Integer;
procedure Set_Sequence_Number

(Info_Item : in out Connection_Info;

Number : in Integer);

17.4.1.8.2 Description

The Connection_Info object is used to provide information about the protocol ad-
dress, options, application data, and the sequence number for a connection. The
Connection_Info object is used in the Accept_Connection , Confirm_Connec-
tion , Connect , Listen , and Send_Disconnect_Request procedures. Objects of
type Connection_Info have (at least) the following attributes:

Address

An XTI_Address_Pointer value, designating an object containing an ad-
dress.

Options

A Protocol_Option_List object, representing options.

User Data

A pointer to the application data.

Sequence

A sequence number.

The Address attribute shall contain a protocol-specific address. The Address attribute
shall be set by the Set_Address procedure and shall be obtained by the Get_-
Address procedure. The Get_Address procedure is protocol-specific (see D.2).

The Options attribute may contain options. The Options attribute shall be set by the
Set_Options procedure and shall be obtained by the Get_Options function. Set_-
Options establishes a reference to a Protocol_Option_List object so that any
subsequent changes made to the Protocol_Option_List are propagated back to
the Connection_Info object.

The User Data attribute may contain application data that are to be sent or were
sent along with the request. The User Data attribute shall be set by the Set_User_-
Data procedure and shall be obtained by the Get_User_Data function. User Data
shall include both a Max_Length and a Length component (as parameters to Set_-
User_Data). Max_Length represents the size of the User Data buffer and Length
represents the length of usable data sent or received.

The Sequence Number attribute may identify an outstanding connect indication with
which the particular operation is associated. The Sequence Number attribute shall be
set by the Set_Sequence_Number procedure and shall be obtained by the Get_-
Sequence_Number function.

Upon declaration of the Connection_Info object, the User Data attribute shall be
set to System.Null_Address and its Length and Max Length attributes shall be set to

17.4 Package POSIX_XTI 429

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

zero. The Options attribute shall be set to the null access value and shall represent
an empty protocol option list. The Address attribute shall be set to the Null_XTI_-
Address constant.

17.4.1.8.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

The Length parameter was greater than the Max_Length specified for the
Connection_Info object.

Operation_Not_Implemented

The operation is not supported by this implementation.

17.4.1.9 Scatter/Gather Vector Objects

17.4.1.9.1 Synopsis

subtype IO_Vector_Range is Positive range
1 .. POSIX_Limits.XTI_IO_Vector_Maxima’Last;

type IO_Vector_Array is array

(IO_Vector_Range range <>) of POSIX_IO.IO_Vector;

17.4.1.9.2 Description

The IO_Vector_Array object is used by Receive_And_Scatter_Data , Receive_-
And_Scatter_Data_Unit , Gather_And_Send_Data , and Gather_And_Send_-
Data_Unit to allow multiple data buffers to be received or sent in a single operation.
Each element in the IO_Vector_Array is a POSIX_IO.IO_Vector with at least the
following attributes:

Buffer

The address of the buffer into which the data are to be read, or from which
the data are to be written.
NOTE: Buffer is a reference to storage that may persist beyond an I/O operation. The
effect of deallocating or modifying the contents of the buffers in an I/O vector before
the I/O operation has completed is undefined.

NOTE: Applications may use pointers to the POSIX.Octet_Array type to ensure
proper data width for network I/O operations. When using pointers to other data
types, byte width and ordering issues (i.e., big endian, little endian) are the respon-
sibility of the application.

Length

The length of the data to be transferred or received, as a count of octets.

POSIX_Limits.XTI_IO_Vector_Maxima’Last shall indicate the maximum number
of POSIX_IO.IO_Vector objects that can be contained in the IO_Vector_Array .

Each POSIX_IO.IO_Vector shall identify a data buffer after a successful POSIX_-
IO.Set_Buffer operation has been performed. POSIX_IO.Set_Buffer shall set
the Buffer attribute of the POSIX_IO.IO_Vector to point to the storage indicated

430 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

by the Buffer parameter and the Length attribute of the POSIX_IO.IO_Vector to
Length (in octets). Any particular POSIX_IO.IO_Vector element shall be reset to
indicate no data by either a Length of zero or the Buffer parameter set to System.-
Null_Address . The Length attribute may be set to less than the size of the storage
allocated for Buffer. The POSIX_IO.Get_Buffer procedure shall return the Buffer
and Length attributes of the POSIX_IO.IO_Vector .

17.4.1.9.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Operation_Not_Implemented

The operation is not supported by this implementation.

Invalid_Argument

The Buffer parameter is not a valid System.Address . For this error,
the implementation under some circumstances may instead raise Con-
straint_Error .

17.4.1.10 Communications Interface States

17.4.1.10.1 Synopsis

type Interface_State is private ;
Uninitialized : constant Interface_State;
Unbound : constant Interface_State;
Idle : constant Interface_State;
Outgoing_Connect : constant Interface_State;
Incoming_Connect : constant Interface_State;
Data_Transfer : constant Interface_State;
Outgoing_Release : constant Interface_State;

Incoming_Release : constant Interface_State;

17.4.1.10.2 Description

These symbols shall represent the states described in Table 17.7interface states of
17.2.1. The function Get_Current_State returns the current state of an endpoint
(see 17.4.11).

17.4.2 Accept a Connection Request

17.4.2.1 Synopsis

procedure Accept_Connection
(Listening_Endpoint : in POSIX_IO.File_Descriptor;

Responding_Endpoint : in POSIX_IO.File_Descriptor;
Call : in Connection_Info);

procedure Accept_Connection
(Listening_Endpoint : in POSIX_IO.File_Descriptor;

Responding_Endpoint : in POSIX_IO.File_Descriptor);

17.4 Package POSIX_XTI 431

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

17.4.2.2 Description

The procedure Accept_Connection is used to accept a connection request indicated
by the Listen procedure. Listening_Endpoint specifies the local communications
endpoint where the connection indication arrived. Responding_Endpoint specifies
the local communications endpoint where the connection is to be established. The
Call parameter is a Connection_Info object specifying connection information for
the communications provider.

The Address attribute of Call is an XTI_Address_Pointer object that designates an
object containing the protocol address of the calling application, i.e., the local address.
Address may be set to the constant Null_XTI_Address . If not set to Null_XTI_-
Address , it may optionally be checked by XTI.

The Options attribute of Call is a Protocol_Option_List object that indicates any
protocol-specific options associated with the connection.

The User Data attribute of Call specifies application data to be returned to the remote
peer. The amount of application data shall not exceed the limits supported by the
communications provider as returned in the Max Size Connect Data attribute of the
Communications_Provider_Info parameter of Open or Get_Info . If the length
of the User Data attribute is zero, no data shall be returned to the remote peer.

The Sequence attribute of Call is the unique identifier for the connection that was
previously returned by a call to Listen .

An application may establish a connection on either the same, or on a different, local
communications endpoint than the one on which the connection indication arrived.
Before the connection can be accepted on the same endpoint (Listening_Endpoint
equals Responding_Endpoint), the application shall have responded to any previ-
ous connection indications received on that communications endpoint (via Accept_-
Connection or Send_Disconnect_Request). Otherwise, Accept_Connection
shall fail with the error Outstanding_Connection_Indications . If the applica-
tion accepts the connection on the listening endpoint, then the endpoint is said to be
bound to a protocol address and the application cannot listen for further connections
on that communications endpoint until after an Unbind on the protocol address is
issued. (In this case, it follows that Request_Queue_Length parameter submitted
to the Bind procedure was greater than zero.)

If a different communications endpoint is specified (Listening_Endpoint does not
equal Responding_Endpoint), then the application can bind the responding end-
point before the Accept_Connection is issued. If the application does not bind the
endpoint, the endpoint shall be in the Unbound state before the Accept_Connection
is issued, and the communications provider shall automatically bind it to an address
that is appropriate for the protocol concerned (see D.2). If the application does bind
the endpoint, it shall supply a Request_Queue_Length of zero to Bind or issue a
Bind procedure call without a Request_Queue_Length . The responding endpoint
shall then be in the Idle state when Accept_Connection is called. See also 17.4.5.

The call to Accept_Connection shall fail with the error Event_Requires_Atten-
tion if indications (e.g., connection or disconnection) are outstanding on Listen-
ing_Endpoint .

432 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

When the application does not indicate any option in the Options attribute of Call ,
the connection shall be accepted with the option values currently set for the Re-
sponding_Endpoint (see 17.3.2.4 and 17.3.3).

There may be communications provider-specific restrictions on address binding. See
D.2.

Some communications providers do not differentiate between a connection indica-
tion and the connection itself. If the connection has already been established after a
successful return from Listen , Accept_Connection shall assign the existing con-
nection to the communications endpoint specified by Responding_Endpoint (see
D.2).

17.4.2.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Insufficient_Permission

The application does not have the permission either to accept the connection
on the responding communications endpoint or to use a specified option.

Incorrect_Address_Format

The address specified by the application contained an incorrect protocol ad-
dress, or the protocol address was in an incorrect format.

Illegal_Data_Range

The application attempted to send an illegal amount of application data.
Unless range checks are suppressed, some conditions that correspond to Il-
legal_Data_Range may be caught first by the normal Ada-language range
check, which raises Constraint_Error for out-of-range values. However,
if the application circumvents the Ada language range checks, the system
may still catch the error, in which case it shall raise POSIX_Error with
Illegal_Data_Range .

Invalid_File_Descriptor

A bad file descriptor was specified in either Listening_Endpoint or Re-
sponding_Endpoint , or the application is illegally accepting a connection
on the same communications endpoint on which the connection indication
arrived.

Incorrect_Or_Illegal_Option

The option specified by the application contained incorrect information, or
the information was in an incorrect format.

Invalid_Sequence_Number

The application specified an incorrect sequence number.

17.4 Package POSIX_XTI 433

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Outstanding_Connection_Indications

Connection indications are outstanding on the endpoint when the applica-
tion called Accept_Connection with Listening_Endpoint equal to Re-
sponding_Endpoint . (To avoid this error an application should accept the
other connections on a different endpoint by using Accept_Connection , or
reject them with Send_Disconnect_Request .)

Event_Requires_Attention

An asynchronous event is outstanding on the communications endpoint
specified by Listening_Endpoint . (Applications can call Look to retrieve
the event.)

XTI_Operation_Not_Supported

The communications provider does not support this operation.

Operation_Not_Valid_For_State

The procedure was called with the communications provider (specified ei-
ther by Listening_Endpoint or Responding_Endpoint) in the wrong
state.

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

Communications_Provider_Mismatch

Listening_Endpoint and Responding_Endpoint do not specify the same
communications provider.

Incorrect_Surrogate_Queue_Length

An attempt was made to accept a connection on Responding_Endpoint
(where Responding_Endpoint does not equal Listening_Endpoint) with
an endpoint queue length greater than zero.

Surrogate_File_Descriptor_Mismatch

The communications provider only allows Listening_Endpoint and Re-
sponding_Endpoint to be bound to the same address.

17.4.3 Acknowledge Receipt of an Orderly Release Indication

17.4.3.1 Synopsis

procedure Acknowledge_Orderly_Release
(Endpoint : in POSIX_IO.File_Descriptor);

procedure Acknowledge_Orderly_Release
(Endpoint : in POSIX_IO.File_Descriptor;

Reason : out Reason_Code);

17.4.3.2 Description

The procedure Acknowledge_Orderly_Release is used to acknowledge receipt
of an orderly release indication or confirmation from the communications provider.
Endpoint is the file descriptor of the local communications endpoint where the con-
nection exists. The Reason parameter, if used, specifies the reason for the orderly
release through a protocol-specific reason code.

434 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

After calling this procedure, the application shall not attempt to receive more data
via Receive or Receive_And_Scatter_Data . Such an attempt shall fail with the
error Operation_Not_Valid_For_State . After the orderly release indication is
received, the Application may continue to send data over the connection but only as
long as Initiate_Orderly_Release has not been called by the application.

This procedure is one of the optional services of the communications provider and is
supported only if the Open or Get_Info call returned service type of Connection_-
Mode_With_Orderly_Release .

This procedure shallt be used from the Data Transfer state or the Outgoing Release state.

Any application data that may be associated with the orderly release indication shall
be discarded when Acknowledge_Orderly_Release is called.

17.4.3.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint.
Event_Requires_Attention

An asynchronous event is outstanding on the communications endpoint
specified by Endpoint . (The application can call Look to retrieve the event.)

No_Orderly_Release_Indication_On_Endpoint

No orderly release indication is outstanding on the communications end-
point specified by Endpoint .

XTI_Operation_Not_Supported

This operation is not supported by the current implementation of XTI.
Operation_Not_Valid_For_State

The operation was called with the communications provider in the wrong
state (bad sequence).

Protocol_Error
A communication problem has occurred, and there is no other appropriate
error number.

17.4.4 Acknowledge Receipt of an Orderly Release Indication with Data

17.4.4.1 Synopsis

procedure Acknowledge_Orderly_Release_With_Data
(Endpoint : in POSIX_IO.File_Descriptor;

Reason : out Reason_Code;
User_Data : in System.Address;
Octets_Requested : in POSIX.IO_Count;

Octets_Received : out POSIX.IO_Count);

17.4 Package POSIX_XTI 435

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

17.4.4.2 Description

The Acknowledge_Orderly_Release_With_Data procedure is used to acknowl-
edge receipt of an orderly release indication or confirmation and to retrieve any ap-
plication data sent with the release. The Endpoint parameter identifies the local
communications endpoint where the connection exists. The amount of data requested
is specified in the Octets_Requested parameter. Octets_Received returns the
number of octets of data returned on success.

After receipt of an orderly release indication, the application shall not attempt to
receive more data via Receive or Receive_And_Scatter_Data . Such an attempt
shall fail with error code Operation_Not_Valid_For_State . However, the appli-
cation can continue to send data over the connection if it has not called Initiate_-
Orderly_Release or Initiate_Orderly_Release_With_Data .

The Reason parameter specifies the reason for the orderly release through a
protocol-specific reason code, and the User_Data parameter identifies any appli-
cation data that were received with the orderly release indication.

If User_Data is set to System.Null_Address , no value shall be returned. If User_-
Data points to a buffer that is less than the length of the application data, Acknowl-
edge_Orderly_Release_With_Data shall fail with the error code Buffer_Not_-
Large_Enough .

This operation is an optional service of the communications provider and is only sup-
ported if the communications provider returned service type Connection_Mode_-
With_Orderly_Release on Open or Get_Info .

17.4.4.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint.

Buffer_Not_Large_Enough

The amount of data to be returned in one of the buffers is greater than the
buffer size specified for the User_Data parameter, and the disconnection
information to be returned in User_Data shall be discarded. The state of
the endpoint, as seen by the application, shall be changed as if the data were
successfully retrieved.

Event_Requires_Attention

An asynchronous event is outstanding on the communications endpoint
specified by Endpoint . (The application can call Look to retrieve the event.)

436 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

No_Orderly_Release_Indication_On_Endpoint

No orderly release indication is outstanding on the communications end-
point specified by Endpoint .

XTI_Operation_Not_Supported

This operation is not supported by the current implementation of XTI.

Operation_Not_Valid_For_State

The operation was called with the communications provider in the wrong
state (bad sequence).

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

17.4.5 Bind an Address to a Communications Endpoint

17.4.5.1 Synopsis

procedure Bind
(Endpoint : in POSIX_IO.File_Descriptor;

Request_Address : in XTI_Address_Pointer;
Request_Queue_Length : in Natural;
Response_Address : in XTI_Address_Pointer;
Response_Queue_Length : out Natural);

procedure Bind
(Endpoint : in POSIX_IO.File_Descriptor;

Request_Queue_Length : in Natural;
Response_Address : in XTI_Address_Pointer;
Response_Queue_Length : out Natural);

procedure Bind
(Endpoint : in POSIX_IO.File_Descriptor;

Request_Address : in XTI_Address_Pointer;
Request_Queue_Length : in Natural);

procedure Bind
(Endpoint : in POSIX_IO.File_Descriptor;

Response_Address : in XTI_Address_Pointer);
procedure Bind

(Endpoint : in POSIX_IO.File_Descriptor);

17.4.5.2 Description

The procedure Bind shall associate a protocol address with the communications end-
point specified by Endpoint and activates that communications endpoint. In con-
nection mode, this association enables the communications provider to either service
connection requests or to enqueue incoming connection indications. In connectionless
mode, the application may send or receive data units through the communications
endpoint. (The passive application would be able to determine whether the communi-
cations provider has accepted a connection indication by issuing a Listen . Similarly
the active application would be able to issue a Connect .)

The parameters Request_Address and Response_Address are XTI_Address_-
Pointer values. The Request_Address parameter specifies the requested protocol
address to be bound to the given communications endpoint. The Response_Ad-
dress parameter returns the actual protocol address bound to the communications
endpoint.

17.4 Package POSIX_XTI 437

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

On return, Response_Address contains an encoding for the address that the com-
munications provider actually bound to the communications endpoint. If an address
was specified in Request_Address , then the returned value shall be an encoding of
the same address.

Either or both Response_Address and Request_Address may be omitted by using
the appropriate overloaded Bind procedure. However, if the Request_Address is
omitted, then the communications provider shall support optional automatic gener-
ation of addresses.

NOTE: To find out whether the communications provider supports this option, the application
may specify a call to Bind without Request_Address . If not supported, the communications
provider will generate the error Could_Not_Allocate_Address .

If the requested address is not available, Bind shall raise the appropriate error. If
no request address is specified, the communications provider shall assign an appro-
priate address to be bound and shall return that address in Response_Address if
provided. If the communications provider could not allocate an address, Bind shall
fail with the error Could_Not_Allocate_Address . Similarly, no response address
is specified if the application does not care what address was bound by the provider.
The Response_Queue_Length is omitted if the application is not interested in the
negotiated response value.

The Request_ Queue_Length and Response_ Queue_Length parameters have
meaning only when initializing a connection mode service. They specify the number
of outstanding connection indications that the communications provider should sup-
port for the given communications endpoint. The provider may queue more connect
indications than Response_Queue_Length specifies, but shall ensure that there are
never more than Response_Queue_Length of them delivered to the application than
are still outstanding at any given time.

An outstanding connection indication is one that has been passed to the communi-
cations application by the communications provider, but that has not been accepted
or rejected. A value of Request_Queue_Length greater than zero is only mean-
ingful when issued by a passive application that expects other applications to call
it. The value of Request_Queue_Length shall be negotiated by the communica-
tions provider and may be changed if the communications provider cannot support
the specified number of outstanding connection indications. However, this value of
Request_Queue_Length shall never be negotiated from a requested value greater
than zero to zero. On return, the Response_Queue_Length parameter shall con-
tain the negotiated value. If Request_Queue_Length parameter is omitted, it is
assumed to be zero.

If Endpoint refers to a connection mode service, Bind allows more than one com-
munications endpoint to be bound to the same protocol address (however, for this to
work it is necessary for the communications provider to also support this capability),
but it is not possible to bind more than one protocol address to the same communi-
cations endpoint. If an application binds more than one communications endpoint
to the same protocol address, only one endpoint can be used to listen for connection
indications associated with that protocol address. In other words, only one Bind for a
given protocol address may specify a value of Request_Queue_Length greater than
zero. In this way, the communications provider can identify which communications

438 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

endpoint should be notified of an incoming connection indication. If an application
attempts to bind a protocol address to a second communications endpoint with a
value of Request_Queue_Length greater than zero, Bind shall generate the error
Address_In_Use . When an application establishes a connection on the communica-
tions endpoint that is being used as the listening endpoint (i.e., without using a new
Responding_Endpoint , see 17.4.2), the bound protocol address shall be found to
be busy for the duration of the connection, until an Unbind or Close call has been
issued. No other communications endpoints may be bound for listening on that same
protocol address while that initial listening endpoint is active (in the Data Transfer
state or in the Idle state); that is, the implementation shall prevent more than one
communications endpoint bound to the same protocol address from accepting con-
nection indications.

An implementation need not allow an application explicitly to bind more than one
communications endpoint to a single protocol address, while permitting more than
one connection to be accepted to the same protocol address. In other words, although
an attempt to bind a communications endpoint to an address with Request_Queue_-
Length = 0 might be rejected with Address_In_Use , the application can neverthe-
less use this (unbound) endpoint as a responding endpoint in a call to Accept_Con-
nection . To become independent of such implementation differences, the applica-
tion should supply unbound responding endpoints to Accept_Connection .

If Endpoint refers to a connectionless mode service, only one endpoint may be asso-
ciated with a protocol address. If an application attempts to bind a second communi-
cations endpoint to an already bound protocol address, Bind shall generate the error
Address_In_Use .

This procedure shall be used from the Unbound state.

17.4.5.3 Error Handling

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

Incorrect_Address_Format

The parameters Request_Address and Response_Address designate ob-
jects with incompatible protocol-specific address types.

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Insufficient_Permission

The application does not have the permission to use the specified address.

Address_In_Use

The requested address is in use.

17.4 Package POSIX_XTI 439

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Incorrect_Address_Format

The address specified by the application contained an incorrect protocol ad-
dress or was in an incorrect format.

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint.

Buffer_Not_Large_Enough

The type of the actual Response_Address parameter is not appropriate for
the kind of address bound. (The size of the address to be returned is greater
than the space available.)

Could_Not_Allocate_Address

An address could not be allocated by the communications provider.

Operation_Not_Valid_For_State

The operation was called with the communications provider in the wrong
state (bad sequence).

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

17.4.6 Close a Communications Endpoint

17.4.6.1 Synopsis

procedure Close

(Endpoint : in POSIX_IO.File_Descriptor);

17.4.6.2 Description

The procedure Close informs the communications provider that the application is
finished with the communications endpoint specified by Endpoint , and frees any
local resources associated with the endpoint. In addition, Close closes the file asso-
ciated with the communications endpoint.

Close should be called from the Unbound state (see 17.4.11). However, this proce-
dure does not check state information, so it may be called from any state to close a
communications endpoint. The resources associated with the endpoint shall be freed
automatically. In addition, POSIX_IO.Close shall be issued for that file descriptor.
If no other descriptors in this process or in another process reference the communi-
cation endpoint, any connection that may be associated with that endpoint shall be
broken. The connection may be terminated in an orderly or abortive manner.

A Close issued on a connection endpoint may cause data previously sent, or data
not yet received, to be lost. It is the responsibility of the application to ensure that
data are received by the remote peer.

This procedure may be used from all states except Uninitialized.

440 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

17.4.6.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint.

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

17.4.7 Receive the Confirmation from a Connection Request

17.4.7.1 Synopsis

procedure Confirm_Connection
(Endpoint : in POSIX_IO.File_Descriptor;

Call : in out Connection_Info);
procedure Confirm_Connection

(Endpoint : in POSIX_IO.File_Descriptor);

17.4.7.2 Description

The procedure Confirm_Connection is used by a calling application to determine
whether a previously issued connection request has completed on a given commu-
nications endpoint specified by Endpoint . It is used in conjunction with Connect ,
either when POSIX_IO.Non_Blocking is set, or when POSIX_IO.Non_Blocking is
clear and the call to Connect has been interrupted by a signal. Successful comple-
tion of this procedure indicates that a connection has been established.

Call is a Connection_Info object used to return information associated with the
new connection. The Address attribute returns the protocol address associated with
the responding communications endpoint. The Options attribute returns protocol spe-
cific options associated with the newly established connection. The User Data at-
tribute returns optional application data that may be returned by the destination
application during connection establishment. The Sequence attribute is not used.

The Address attribute, the Options Buffer attribute of Options and the Buffer attribute
of User Data shall be supplied by the caller to specify the buffers to be used to return
options and application data. If the size of the storage referenced by the Address
attribute, the Options Buffer attribute of Options or the length of the User Data is zero,
no information shall be returned. If the size of the storage referenced by the the
Address attribute, the Options Buffer attribute of Options, or the User Data attribute is
greater than zero and less than the length of the returned information, Confirm_-
Connection shall fail with the error Buffer_Not_Large_Enough .

17.4 Package POSIX_XTI 441

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

The application may ignore the data provided in the Connection_Info object by
omitting the Call parameter.

If POSIX_IO.Non_Blocking is clear, Confirm_Connection waits for the connection
to be established before returning. On return, the Address, Options and User Data
attributes reflect values associated with the connection.

If POSIX_IO.Non_Blocking is set, Confirm_Connection reduces to a poll for
existing connection confirmations. If none are available, Confirm_Connection fails
and returns immediately without waiting for the connection to be established. In
this case, Confirm_Connection needs to be called again to complete the connection
establishment phase and retrieve the information returned in Call .

This procedure shall be used from the Outgoing Connect state.

The type and number of supported options vary with the communications provider.
In addition, the format of the address pointed to by the Address attribute can vary
depending on whether the implementation is fully XTI compliant.

NOTE: The communications provider should provide documentation on supported options
and the formats of the protocol option lists.

17.4.7.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint.

Buffer_Not_Large_Enough

The number of octets allocated for the received information is not sufficient
to store the data, and the connection information to be returned in Call
shall be discarded. The state of the endpoint, as seen by the application,
shall be changed to Data Transfer.

Event_Requires_Attention

An asynchronous event is outstanding on the communications endpoint
specified by Endpoint . (Applications can call Look to retrieve the event.)

No_Data_Available

In nonblocking mode, no connection confirmations have arrived yet.

XTI_Operation_Not_Supported

This operation is not supported by the current implementation of XTI.

Operation_Not_Valid_For_State

The operation was called with the communications provider in the wrong
state (bad sequence).

442 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

17.4.8 Establish a Connection with Peer

17.4.8.1 Synopsis

procedure Connect
(Endpoint : in POSIX_IO.File_Descriptor;

Send : in Connection_Info;
Receive : in out Connection_Info);

procedure Connect
(Endpoint : in POSIX_IO.File_Descriptor;

Send : in Connection_Info);

17.4.8.2 Description

The procedure Connect enables an application to request a connection to the speci-
fied destination. The parameter Endpoint identifies the local communications end-
point where the connection is established. The parameter Send specifies information
needed by the communications provider to establish a connection. The parameter
Receive specifies information that is associated with the newly established connec-
tion.

The Send and Receive parameters are Connection_Info objects containing an Op-
tions attribute (a Protocol_Option_List_Pointer), a User Data attribute (defined
with an address and length pair), an Address attribute (an XTI_Address_Pointer
value), and a Sequence attribute.

In Send, the Address attribute specifies the protocol address of the destination appli-
cation. The Options attribute presents any protocol-specific information that might
be needed by the communications provider. The User Data attribute specifies optional
application data that may be passed to the destination application during connection
establishment. The Sequence attribute has no meaning for this procedure.

The Options attribute permits applications to define the options that can be passed to
the communications provider. These options are specific to the underlying protocol
of the communications provider. If the application provides an empty list by using
the Make_Empty procedure on the Options attribute, then the provider shall use the
option values currently set for the communications endpoint (see 17.3.2.3 and 17.3.3)

If used, the Options Buffer attribute of Options shall specify a buffer with the corre-
sponding options.

The User Data attribute enables the caller to pass application data to the destination
application and receive application data from the destination application during the
connection establishment. However, the amount of application data shall not exceed
the limits supported by the communications provider as returned in the Max Size
Connect Data attribute of the Communications_Provider_Info parameter of Get_-
Info or Open. If the length of the User Data attribute is zero in Send, no data shall
be sent to the destination application.

17.4 Package POSIX_XTI 443

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

On return, the Address, Options, and User Data attributes of the Receive parameter
shall be updated to reflect values associated with the connection. The Address, the
Options Buffer attributes of Options, and the Buffer attribute of User Data shall be sup-
plied by the caller to specify the storage to be used to return the address, options,
and application data. The Address, Options, and User Data attributes of the Send and
Receive parameters may point to the same storage. If connection information was
requested with the Receive parameter, and if the size of the storage referenced by
the Address or Options Buffer attribute of Options or the User Data attribute is insuffi-
cient to store the returned connection information, Connect shall fail with the error
Buffer_Not_Large_Enough .

The application may ignore the data provided in the Connection_Info object by
omitting the Receive parameter. The application may selectively ignore portions of
the data by setting individual attributes of the Connection_Info object. Address
may be set to Null_XTI_Addres , User Data may be set to System.Null_Address ,
and the Options Buffer attribute of Options may be set to the null access value.

By default, Connect waits for a response from the destination application before
returning control to the local application. A successful return indicates that the re-
quested connection has been established. However, if POSIX_IO.Non_Blocking is
set, a call to Connect shall not wait for the response of the remote application but
shall return control immediately to the local application and generate No_Data_-
Available to indicate that the connection has not yet been established (assuming
no other error indications were detected) . In this way, the operation simply initiates
the connection establishment procedure by sending a connection request to the desti-
nation application. Confirm_Connection can be used in conjunction with Connect
to determine the status of the requested connection.

When POSIX_IO.Non_Blocking is clear and a call to Connect is interrupted by
a signal, the state of the endpoint shall become Outgoing Connect, allowing a subse-
quent call to Confirm_Connection , Retrieve_Disconnect_Info or Send_Dis-
connect_Request . When POSIX_IO.Non_Blocking is set and a call to Connect is
interrupted by a signal, the endpoint shall remain in the Idle state.

The type and number of supported options vary with the communications provider.
In addition, the format of the address pointed to by the Address attribute can vary
depending on whether the implementation is fully XTI compliant. See communica-
tions provider documentation for information on supported options and the formats
of the protocol option lists.

17.4.8.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

444 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Insufficient_Permission
Either the application does not have the permission to use the specified ad-
dress or options.

Address_In_Use
The requested address is in use.

Incorrect_Address_Format
The address specified by the application contained an incorrect protocol ad-
dress or was in an incorrect format.

Illegal_Data_Range
The application attempted to send an illegal amount of data.
Unless range checks are suppressed, some conditions that correspond to Il-
legal_Data_Range may be caught first by the normal Ada-language range
check, which raises Constraint_Error for out-of-range values. However,
if the application circumvents the Ada language range checks, the system
may still catch the error, in which case it shall raise POSIX_Error with
Illegal_Data_Range .

Invalid_File_Descriptor
A bad file descriptor was specified for the communications endpoint.

Incorrect_Or_Illegal_Option
The option specified by the application contained incorrect information, or
information was in an incorrect format.

Buffer_Not_Large_Enough
The amount of data to be returned in one of the buffers is greater than the
size of the buffer.

Event_Requires_Attention
An asynchronous event is outstanding on the communications endpoint
specified by Endpoint . (The application can call Look to retrieve the event.)

No_Data_Available
In nonblocking mode, the procedure has successfully issued a connect but
did not wait for a response from the application.

XTI_Operation_Not_Supported
The communications provider does not support this operation.

Operation_Not_Valid_For_State
The operation was called with the communications provider in the wrong
state (bad sequence).

Protocol_Error
A communication problem has occurred, and there is no other appropriate
error number.

17.4.9 Gather and send data or expedited data over a connection

17.4.9.1 Synopsis

procedure Gather_And_Send_Data
(Endpoint : in POSIX_IO.File_Descriptor;

Vector : in IO_Vector_Array;
Flags : in XTI_Flags;
Octets_Sent : out POSIX.IO_Count);

17.4 Package POSIX_XTI 445

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

17.4.9.2 Description

The Gather_And_Send_Data procedure is used to send either normal or expedited
data. Endpoint shall identify the local communications endpoint over which data
are to be sent. The parameter Vector identifies an IO_Vector_Array object, which
is an array of POSIX_IO.IO_Vector objects with Buffer and Length attributes (i.e., an
array of buffer address/buffer size pairs). See 17.4.1.9 for a detailed description of
these objects, including the appropriate attribute access operations. Buffer sizes can
be zero.

The number of POSIX_IO.IO_Vector objects to send is implicit in the array or
array slice specified by the Vector parameter. The IO_Vector objects shall be sent
starting from Vector’First .

If POSIX_IO.Non_Blocking is clear (via Open or Set_File_Control), Gather_-
And_Send_Data shall return immediately if there is a permanent failure condition,
but can wait if there is a transient error condition or if flow control restrictions pre-
vent the data from being accepted by the local communications provider at the time
the call is made.

If POSIX_IO.Non_Blocking is set, Gather_And_Send_Data shall fail immediately
if there is a permanent or transient failure condition, or there are flow control re-
strictions. The process can arrange to be informed when the flow control restrictions
are cleared via either Look or via the event management operations defined in 19.1
(or another suitable interface offered by the implementation).

On successful completion, Gather_And_Send_Data shall return the number of octets
accepted by the communications provider in the Octets_Sent parameter. Normally
this number will equal the number of octets to be sent. However, it is possible that
only part of the data will actually be accepted by the communications provider. In
this case, Octets_Sent shall contain a value that is less than the total number of
octets to be sent. The application should adjust the input parameters and call Send
or Gather_And_Send_Data again in order to send the remaining octets.

If Gather_And_Send_Data is interrupted by a signal before it could transfer data
to the communications provider, it shall raise POSIX_Error with error code Inter-
rupted_Operation .

If the number of octets in Vector is zero and sending of zero octets is not sup-
ported by the underlying communications service, Gather_And_Send_Data shall
raise POSIX_Error with error code Illegal_Data_Range . The size of each SDU
or SEDU shall not exceed the limits of the communications provider as specified by
the current values in the Max Size SDU or Max Size SEDU attribute of the Communi-
cations_Provider_Info object returned by Open and Get_Info .

The error Event_Requires_Attention may be returned to inform the process that
an event (e.g., a disconnection) is outstanding.

17.4.9.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

446 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Illegal_Data_Range

The application attempted to send zero octets of data and the sending of
zero octets is not supported by the underlying communications service, or
the application attempted to send a nonzero illegal amount of data, such as
in the following cases:
— A single send was attempted specifying an SDU, an SEDU, a fragment

SDU, or a fragment SEDU greater than that specified by the current
values of Max Size SDU or Max Size SEDU,

— a send of a zero octet SDU, a zero octet SEDU, a zero octet fragment of
an SDU, or a zero octet fragment of an SEDU is not supported by the
provider (see D.2), or

— multiple sends were attempted resulting in an SDU or SEDU larger
than that specified by the current values of Max Size SDU or Max Size
SEDU - the ability of an XTI implementation to detect such an error
case is implementation dependent.

— The length of Vector was greater than POSIX_Limits.XTI_IO_Vec-
tor_Maxima’Last .

Unless range checks are suppressed, some conditions that correspond to Il-
legal_Data_Range may be caught first by the normal Ada-language range
check, which raises Constraint_Error for out-of-range values. However,
if the application circumvents the Ada language range checks, the system
may still catch the error, in which case it shall raise POSIX_Error with
Illegal_Data_Range .

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint.

Invalid_Flag

The application specified an invalid flag.

Flow_Control_Error

Flow conditions prevented the sending of data at this time in asynchronous
(nonblocking) mode.

Event_Requires_Attention

An asynchronous event is outstanding on the communications endpoint
specified by Endpoint . (The application can call Look to retrieve the event.)

XTI_Operation_Not_Supported

This operation is not supported by the current implementation of XTI.

Operation_Not_Valid_For_State

The operation was called with the communications provider in the wrong
state (bad sequence).

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

17.4 Package POSIX_XTI 447

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

17.4.10 Gather and Send a Data Unit

17.4.10.1 Synopsis

procedure Gather_And_Send_Data_Unit
(Endpoint : in POSIX_IO.File_Descriptor;

Address : in XTI_Address_Pointer;
Vector : in IO_Vector_Array);

procedure Gather_And_Send_Data_Unit
(Endpoint : in POSIX_IO.File_Descriptor;

Address : in XTI_Address_Pointer;
Vector : in IO_Vector_Array;

Options : in Protocol_Option_List);

17.4.10.2 Description

The Gather_And_Send_Data_Unit procedure is used in connectionless mode to send
a data unit to another communications application. Endpoint shall identify the
local communications endpoint through which data are to be sent. The parameter
Vector identifies an IO_Vector_Array object, which is an array of POSIX_IO.IO_-
Vector objects with Buffer and Length attributes (i.e., an array of buffer address/buffer
size pairs). See 17.4.1.9 for a detailed description of these objects, including the
appropriate attribute access operations. Buffer sizes can be zero.

The number of POSIX_IO.IO_Vector objects to send is implicit in the array or array
slice specified by the Vector parameter. The POSIX_IO.IO_Vector objects shall be
sent starting from Vector’First .

The Address parameter shall specify the protocol address of the destination applica-
tion, Options shall identify options that the application wants associated with this
request. The application need not specify what protocol options are associated with
the transfer. In this case the provider shall use the option values currently set for
this communications endpoint (see 17.3.2.3 and 17.3.3). The data to be sent shall be
contained in the POSIX_IO.IO_Vector objects in the IO_Vector_Array referenced
by Vector .

If the number of octets to send is zero and sending of zero octets is not supported by
the underlying communications service, then Gather_And_Send_Data_Unit shall
raise POSIX_Error with error code Illegal_Data_Range .

If POSIX_IO.Non_Blocking is clear (via Open or Set_File_Control), Gather_-
And_Send_Data_Unit can wait if flow control restrictions prevent the data from
being accepted by the local communications provider at the time the call is made.
However, if POSIX_IO.Non_Blocking is set, Gather_And_Send_Data_Unit shall
fail under such conditions. The process can arrange to be notified of the clearance of a
flow control restriction via either Look or the event management operations defined
in 19.1 (or another suitable interface offered by the implementation).

If the amount of data specified in Vector exceeds the SDU size as returned in the
Max Size SDU attribute of the Communications_Provider_Info object returned by
Open or Get_Info or if the amount is zero and sending of zero octets is not supported
by the communications provider, a Illegal_Data_Range error shall be generated.
If Gather_And_Send_Data_Unit is called before the destination application has
activated its communications endpoint (see Bind), the data unit may be discarded.

448 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

If it is not possible for the communications provider to immediately detect the condi-
tions that cause the errors Illegal_Data_Range and Incorrect_Or_Illegal_Op-
tion , these errors shall alternatively be detected by Retrieve_Data_Unit_Error .
Therefore, an application shall be prepared to receive these errors in both of these
ways.

If Gather_And_Send_Data_Unit is interrupted by a signal, it shall raise POSIX_-
Error with error code Interrupted_Operation , and the data unit (datagram)
shall not have been sent.

17.4.10.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Incorrect_Address_Format

The address specified by the application contained an incorrect protocol ad-
dress or was in an incorrect format.

Illegal_Data_Range

The application attempted to send a illegal amount of data.
— A single send was attempted specifying an SDU greater than that spec-

ified by the current values of Max Size SDU,
— a send of a zero octet SDU is not supported by the provider (see D.2), or
— The length of Vector was greater than POSIX_Limits.XTI_IO_Vec-

tor_Maxima’Last .
Unless range checks are suppressed, some conditions that correspond to Il-
legal_Data_Range may be caught first by the normal Ada-language range
check, which raises Constraint_Error for out-of-range values. However,
if the application circumvents the Ada language range checks, the system
may still catch the error, in which case it shall raise POSIX_Error with
Illegal_Data_Range .

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint.

Incorrect_Or_Illegal_Option

The option specified by the application contained incorrect information, or
the information was in an incorrect format.

Flow_Control_Error

Flow conditions prevented the sending of data at this time in asynchronous
(nonblocking) mode.

Event_Requires_Attention

An asynchronous event is outstanding on the communications endpoint
specified by Endpoint . (The application can call Look to retrieve the event.)

17.4 Package POSIX_XTI 449

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

XTI_Operation_Not_Supported

This operation is not supported by the current implementation of XTI.

Operation_Not_Valid_For_State

The operation was called with the communications provider in the wrong
state (bad sequence).

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

17.4.11 Get the Current State

17.4.11.1 Synopsis

function Get_Current_State (Endpoint : POSIX_IO.File_Descriptor)

return Interface_State;

17.4.11.2 Description

The Get_Current_State function returns the state of the communications endpoint
specified by Endpoint . The state returned is the current state of the endpoint as
seen by the application. This state is consistent with the processing performed by
the previous XTI calls of the application. It is not necessarily the same as the state
maintained in the provider, since the provider receives events before the application.
See Table 17.6 and Figure 17.1.

The valid states are returned with type Interface_State , and are as follows:

Idle

No connection established

Unbound

Unbound

Outgoing_Connect

Outgoing connection pending for active application

Incoming_Connect

Incoming connection pending for passive application

Data_Transfer

Data transfer

Outgoing_Release

Outgoing orderly release (waiting for orderly release indication)

Incoming_Release

Incoming orderly release (waiting to send orderly release request)

This function may be used from all states except Uninitialized.

450 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

17.4.11.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint.

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

State_Change_In_Progress

The communications provider is undergoing a state change.

17.4.12 Get Protocol-Specific Service Information

17.4.12.1 Synopsis

procedure Get_Info
(Endpoint : in POSIX_IO.File_Descriptor;

Info : out Communications_Provider_Info);

17.4.12.2 Description

Get_Info returns the current characteristics of the underlying communications pro-
tocol and/or communications connection associated with Endpoint . It enables a com-
munications application to access this information during any phase of communica-
tion.

Info is a Communications_Provider_Info object returning the default charac-
teristics of the underlying communications provider. This information has the same
structure as that obtained by Open, but not necessarily the same values. These val-
ues will differ from those returned in Open after the endpoint enters the Data Transfer
state. See 17.4.1.2 for detailed information about this object.

The Manage_Options operation has no effect on the values returned by Get_Info .

This procedure may be used from all states except Uninitialized.

17.4.12.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

17.4 Package POSIX_XTI 451

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint.
Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

17.4.13 Get the Protocol Address

17.4.13.1 Synopsis

procedure Get_Protocol_Address
(Endpoint : in POSIX_IO.File_Descriptor;

Bound_Address : in XTI_Address_Pointer;
Peer_Address : in XTI_Address_Pointer);

17.4.13.2 Description

The Get_Protocol_Address procedure returns local and remote protocol addresses
currently associated with the communications endpoint specified by Endpoint . In
Bound_Address and Peer_Address , the application specifies an XTI_Address_-
Pointer .

On return, Bound_Address contains the address, if any, currently bound to End-
point . Peer_Address contains the address, if any, currently connected to End-
point .

17.4.13.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Invalid_File_Descriptor
The specified file descriptor does not refer to a communications endpoint.

Incorrect_Address_Format

The address specified by the application contained an incorrect protocol ad-
dress, or the protocol address was in an incorrect format.

Protocol_Error

A communication problem has been detected between XTI and the commu-
nications provider for which there is no other suitable value.

17.4.14 Initiate an Orderly Release

17.4.14.1 Synopsis

procedure Initiate_Orderly_Release
(Endpoint : in POSIX_IO.File_Descriptor);

procedure Initiate_Orderly_Release
(Endpoint : in POSIX_IO.File_Descriptor;

Reason : in Reason_Code);

452 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

17.4.14.2 Description

The procedure Initiate_Orderly_Release is used to initiate an orderly release
of the connection on Endpoint or to respond to an orderly release indication. It
indicates to the communications provider that the communications application has
finished sending data. The Reason parameter specifies the reason for the orderly
release through a protocol-specific reason code.

After the orderly release indication is sent, the application may continue to receive
data as long as an orderly release indication has not been received, but no additional
data can be sent over the connection after the Initiate_Orderly_Release call.

This procedure is one of the optional services of the communications provider and is
supported only if the Open or Get_Info call returned service type of Connection_-
Mode_With_Orderly_Release .

This procedure shall be used from the Data Transfer state or the Incoming Release state.

17.4.14.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint.

Flow_Control_Error

Flow conditions prevented the sending of data at this time in asynchronous
(nonblocking) mode.

Event_Requires_Attention

An asynchronous event is outstanding on the communications endpoint
specified by Endpoint . (The application can call Look to retrieve the event.)

XTI_Operation_Not_Supported

This operation is not supported by the current implementation of XTI.

Operation_Not_Valid_For_State

The operation was called with the communications provider in the wrong
state (bad sequence).

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

17.4 Package POSIX_XTI 453

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

17.4.15 Initiate an Orderly Release with Application Data

17.4.15.1 Synopsis

procedure Initiate_Orderly_Release_With_Data
(Endpoint : in POSIX_IO.File_Descriptor;

Reason : in Reason_Code;
User_Data : in System.Address;

Octets_To_Send : in POSIX.IO_Count);

17.4.15.2 Description

The Initiate_Orderly_Release_With_Data procedure is used to initiate an or-
derly release of a connection or to respond to an orderly release indication. It permits
an application to send data with the release. Endpoint identifies the local commu-
nications endpoint where the connection exists.

After calling Initiate_Orderly_Release_With_Data , the application shall not
send any more data over the connection. However, an application can continue to
receive data if no orderly release confirmation has been received.

The Reason parameter specifies the reason for the orderly release through a
protocol-specific reason code, and User_Data identifies any application data that
is sent to the remote application with the orderly release.

The amount of application data to be sent, specified by the Octets_To_Send pa-
rameter, is limited by the Max Size Disconnect Data value returned in the Communica-
tions_Provider_Info object from Open or Get_Info . If Octets_To_Send is zero,
no data shall be sent to the remote application.

This operation is an optional service of the communications provider and is only sup-
ported if the communications provider returned service type Connection_Mode_-
With_Orderly_Release on Open or Get_Info . The flag Orderly_Release_-
Data_Supported in the CP Flags attribute of the Communications_Provider_-
Info object returned by Open or Get_Info indicates that the provider will accept
orderly release application data.

17.4.15.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Illegal_Data_Range

The application attempted to send an illegal amount of data.

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint.

454 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Flow_Control_Error

POSIX_IO.Non_Blocking was set, but the flow control mechanism pre-
vented the communications provider from accepting the operation at this
time.

Event_Requires_Attention

An asynchronous event is outstanding on the communications endpoint
specified by Endpoint . (The application can call Look to retrieve the event.)

XTI_Operation_Not_Supported

This operation is not supported by the current implementation of XTI.

Operation_Not_Valid_For_State

The operation was called with the communications provider in the wrong
state (bad sequence).

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

Unless range checks are suppressed, some conditions that correspond to Illegal_-
Data_Range may be caught first by the normal Ada-language range check, which
raises Constraint_Error for out-of-range values. However, if the application cir-
cumvents the Ada language range checks, the system may still catch the error, in
which case it shall raise POSIX_Error with Illegal_Data_Range .

17.4.16 Listen for a Connection Indication

17.4.16.1 Synopsis

procedure Listen
(Endpoint : in POSIX_IO.File_Descriptor;

Call : in out Connection_Info);

17.4.16.2 Description

The procedure Listen is called by the server (or passive application) to listen for a
connection indication from a client (or calling application). Endpoint identifies the
local communications endpoint where connection indications arrive; and, on return,
Call contains information describing the connection indication.

The Call parameter is a Connection_Info object that, on return, contains informa-
tion about the connection to the client (the active application that issued the connec-
tion request). The Address attribute is used to return the protocol address in a format
usable in future calls to Connect . However, Connect may fail for other reasons, for
example, Address_In_Use . The Options attribute is used to return protocol-specific
options associated with the connection indication. The User Data attribute returns
application data sent by the client on the connection request. The Sequence attribute
is a number that uniquely identifies the returned connection indication. The Se-
quence attribute gives the application the option of listening for multiple connection
requests before responding to any of them.

The Address attribute, the Options Buffer attribute of Options, and the User Data at-
tribute shall be supplied by the application to specify the buffers to be used to return

17.4 Package POSIX_XTI 455

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

options and application data. If the size of the storage referenced by the Address
attribute, the Options Buffer attribute of Options, or the User Data attribute is zero, no
information shall be returned. If the size of the storage referenced by any of these at-
tributes is greater than zero and less than the length of the connection information,
Listen shall fail with the error Buffer_Not_Large_Enough .

The maximum number of queued connection requests is limited by the value of the
Response_Queue_Length parameter of the Bind procedure (see 17.4.5).

By default, Listen waits for a connection indication to arrive before returning to the
application. However, if POSIX_IO.Non_Blocking is set via Open or Set_File_-
Control , Listen reduces to a poll for existing connection indications. If none is
available, it shall raise POSIX_Error with error code No_Data_Available .

Some communications providers do not differentiate between a connection indication
and the connection itself. In this case, a successful return of Listen indicates an
existing connection (see D.2).

This procedure shall be used from the Idle state or the Incoming Connect state.

17.4.16.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint.

Endpoint_Queue_Length_Is_Zero

The endpoint queue length was zero when it was expected to be greater than
zero.

Buffer_Not_Large_Enough

The amount of data to be returned in one of the buffers is greater than the
buffer size. The state of the endpoint, as seen by the application, changes to
Incoming Connect, and the connection indication information to be returned
in Call is discarded. The value of the Sequence attribute returned can be
used as a parameter to a subsequent call to Send_Disconnect_Request .

Event_Requires_Attention

An asynchronous event is outstanding on the communications endpoint
specified by Endpoint . (Applications can call Look to retrieve the event.)

No_Data_Available

In nonblocking mode, no connection indications are present.

XTI_Operation_Not_Supported

This operation is not supported by the current implementation of XTI.

456 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Operation_Not_Valid_For_State

The operation was called with the communications provider in the wrong
state (bad sequence).

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

Endpoint_Queue_Full

The maximum number of queued connection requests has been reached.

17.4.17 Look at the Current Event on a Communication Endpoint

17.4.17.1 Synopsis

type XTI_Events is new POSIX.Option_Set;
Connect_Request_Received : constant XTI_Events := implementation-defined;
Connect_Response_Received : constant XTI_Events := implementation-defined;
Disconnect_Request_Received : constant XTI_Events := implementation-defined;
Error_In_Previously_Sent_Datagram

: constant XTI_Events := implementation-defined;
Expedited_Data_Received : constant XTI_Events := implementation-defined;
Normal_Data_Received : constant XTI_Events := implementation-defined;
Okay_To_Send_Expedited_Data : constant XTI_Events := implementation-defined;
Okay_To_Send_Normal_Data : constant XTI_Events := implementation-defined;
Orderly_Release_Request_Received

: constant XTI_Events := implementation-defined;
function Look (Endpoint : POSIX_IO.File_Descriptor)

return XTI_Events;

17.4.17.2 Description

The function Look is used to return the current event on the communications end-
point specified by Endpoint . This function enables a communications provider to
notify an application of an event when the application is calling operations with
POSIX_IO.Non_Blocking not set. Certain events require immediate notification
of the application and are indicated by a specific error, Event_Requires_Atten-
tion , on the current or next operation to be executed. Details on events that cause
operations to fail with Event_Requires_Attention may be found in 17.2.6.

This operation also enables an application to poll a communications endpoint peri-
odically for events.

The type XTI_Events shall denote a set of XTI event flags. The operations "+" , "-" ,
">" , "<" , ">=" , "<=" , and Empty_Set are available on the type XTI_Events via the
derived type semantics of Ada, from the operations available for POSIX.Option_-
Set . The appropriate operations can be used to create and examine a set containing
the required event flags.

Valid events are as follows:

Connect_Request_Received

A connection indication has been received.

Connect_Response_Received

A connect confirmation has been received.

17.4 Package POSIX_XTI 457

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Normal_Data_Received
Normal data have been received.

Expedited_Data_Received
Expedited data have been received.

Disconnect_Request_Received
A disconnect request has been received.

Error_In_Previously_Sent_Datagram
An error has been detected in a previously sent datagram.

Orderly_Release_Request_Received
An orderly release request has been received.

Okay_To_Send_Normal_Data
Flow control conditions have been lifted, and normal data can again be sent.

Okay_To_Send_Expedited_Data
Flow control conditions have been lifted, and expedited data can again be
sent.

This procedure may be used from all states except Uninitialized.

17.4.17.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Invalid_File_Descriptor
A bad file descriptor was specified for the communications endpoint.

Protocol_Error
A communication problem has occurred, and there is no other appropriate
error number.

17.4.18 Manage options for a communication endpoint

17.4.18.1 Synopsis

XTI_Protocol_Level : constant Option_Level := implementation-defined;
Unspecified : constant Option_Value := implementation-defined;
All_Options : constant Option_Name := implementation-defined;
Enable_Debugging : constant Option_Name := implementation-defined;
Linger_On_Close_If_Data_Present

: constant Option_Name := implementation-defined;
Receive_Buffer_Size : constant Option_Name := implementation-defined;
Receive_Low_Water_Mark : constant Option_Name := implementation-defined;
Send_Buffer_Size : constant Option_Name := implementation-defined;
Send_Low_Water_Mark : constant Option_Name := implementation-defined;
procedure Manage_Options

(Endpoint : in POSIX_IO.File_Descriptor;
Request : in Protocol_Option_List;
Request_Flag : in Options_Flags;
Response : in out Protocol_Option_List;
Response_Flags : out Option_Status);

458 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

17.4.18.2 Description

The Manage_Options procedure enables an application to retrieve, verify, or nego-
tiate protocol options with the communications provider. The parameter Endpoint
identifies a communications endpoint.

The Request and Response parameters are Protocol_Option_List objects used
to specify the option(s) that are of interest. See 17.4.1.6 for a detailed description
of the Protocol_Option_List object. The Request_Flag parameter has the type
Options_Flags , and the Response_Flags parameter has the type Option_Sta-
tus . Request_Flag requests actions of the communications provider relative to the
option(s). See 17.4.1.1 for a description of the Options_Flags type.

The parameter Request is used to request a specific action of the provider and to
send options to the provider. The communications provider may return options and
flag values to the application through Response and Response_Flags . For Re-
sponse , the Options Buffer attribute specifies the buffer where the options are to be
placed. If the size of the Options Buffer attribute of Response is zero, then no option
values shall be returned.

NOTE: The Options Buffer attribute of the Response and Request parameters may point to
the same POSIX.Octet_Array object.

If the application specifies several options in Request , all options shall address the
same level. If any option in the options buffer does not indicate the same level as the
first option or the level specified is unsupported, then the Manage_Options request
shall fail with Incorrect_Or_Illegal_Option . If the error is detected, some
options have possibly been successfully negotiated. The application can check the
current status by calling Manage_Options with the Request_Flag parameter set
to Get_Current_Options .

See 17.3 for a detailed description of the use of options, which should be read before
using this operation.

The Request_Flag parameter shall specify one of the following actions:

Negotiate_Options

This action enables the application to negotiate option values.
The application specifies the options of interest and their values in the
Options Buffer attribute of the Request parameter. The negotiated op-
tion values are returned in the Options Buffer attribute of the Response
parameter. The Status attribute of each returned option is set to indi-
cate the result of the negotiation. The value is Success if the proposed
value was negotiated, Partial_Success if a degraded value was ne-
gotiated, Failure if the negotiation failed (according to the negotiation
rules), Not_Supported if the communications provider does not sup-
port this option or illegally requests negotiation of a privileged option,
and Read_Only if modification of a read-only option was requested. If
the status is Success , Failure , Not_Supported , or Read_Only , the
returned option value is the same as the one requested on input. If the
status is Partial_Success , the returned option value is the negoti-
ated option value.

17.4 Package POSIX_XTI 459

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

The overall result of the negotiation is returned in Response_Flags .
This attribute contains the worst single result. The rating is done
according to the order Not_Supported , Read_Only , Failure , Par-
tial_Success , Success . In other words, the value Not_Supported
is the worst result and Success is the best.
For each level, the option name All_Options can be requested on in-
put. No value is given with this option. This input requests to negotiate
all supported options of this level to their default values. The result is
returned option by option in the Options Buffer attribute of Response .
NOTE: Depending on the state of the communications endpoint, not all requests
to negotiate the default value may be successful.

Check_Options

This action enables the application to verify whether the options speci-
fied in Request are supported by the communications provider.
If an option is specified with no option value, the option is returned
with its status attribute set to Success if it is supported, Not_Sup-
ported if it is not supported or needs additional application privileges,
and Read_Only if it is read-only (in the current XTI state). No option
value is returned.
If an option is specified with an option value, the Status attribute of the
returned option has the same value as if the application had tried to ne-
gotiate this value with Negotiate_Options . If the status is Success ,
Failure , Not_Supported or Read_Only , the returned option value is
the same as the one requested on input. If the status is Partial_Suc-
cess , the returned option value is the negotiated option value.
The overall result of the option checks is returned in Response_Flags .
This value contains the worst single result of the option checks, where
worst has the same meaning as in the description of Negotiate_Op-
tions (above).

Get_Default_Options

This action enables the application to retrieve the default option values.
The application specifies the options of interest in the Options Buffer at-
tribute of the Request parameter. The option values are irrelevant and
shall be ignored; it is sufficient to specify only the Option_Level and
Option_Name part of an option. The default values are then returned
in the Options Buffer attribute of the Response parameter.
The Status attribute returned is Not_Supported if the protocol level
does not support this option or the application illegally requested a priv-
ileged option, Read_Only if the option is read-only, and Success in all
other cases. The overall result of the request is returned in Response_-
Flags . This value contains the worst single result, where worst has the
same meaning as in the description of Negotiate_Options (above).
For each level, the option name All_Options can be requested in Re-
quest . All supported options of this level with their default values are
then returned. In this case, the size of the Options Buffer attribute shall
be at least the value of the Max Size Protocol Options attribute of Commu-
nications_Provider_Info object (see Get_Info , 17.4.12 and Open,
17.4.19) before the call.

460 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Get_Current_Options

This action enables the application to retrieve the currently effective
option values. The application specifies the options of interest in the
Options Buffer attribute of Request . The option values are irrelevant
and shall be ignored; it is sufficient to specify the Option_Level and
Option_Name part of an option only. The currently effective values are
then returned in the Options Buffer attribute of Response .
The status attribute returned is Not_Supported if the protocol level
does not support this option or the application illegally requested a priv-
ileged option, Read_Only if the option is read-only, and set to Success
in all other cases. The overall result of the request is returned in Re-
sponse_Flags . This attribute contains the worst single result, where
worst has the same meaning as in the description of Negotiate_Op-
tions (above).
For each level, the option name All_Options can be requested on in-
put. All supported options of this level with their currently effective
values are then returned.

The option name All_Options be used only with Manage_Options and the actions
Negotiate_Options , Get_Default_Options , and Get_Current_Options . It can
be used with any supported level and addresses all supported options of this level.
The option has no value. Since in a Manage_Options call only options of one level
may be addressed, this option should not be requested together with other options.
The operation returns as soon as this option has been processed.

Options are independently processed in the order they appear in the input protocol
option list. If an option is multiply input, it depends on the implementation whether
it is multiply output or whether it is returned only once.

Communications providers may not be able to provide an interface capable of sup-
porting Negotiate_Options and/or Check_Options functionalities. In this case,
the error XTI_Operation_Not_Supported is generated.

Manage_Options may block under various circumstances and depending on the im-
plementation. The procedure shall block, for instance, if the protocol addressed by
the call resides on a separate controller. It may also block due to flow control con-
straints, i.e., if data sent previously across this communications endpoint have not
yet been fully processed. If the operation is interrupted by a signal, the option nego-
tiations that have been done so far may remain valid. The behavior of the operation
is not changed if POSIX_IO.Non_Blocking is set.

XTI-level options are not specific for a particular communications provider. An XTI
implementation supports none, all, or any subset of the options listed in this sub-
clause. An implementation may restrict the use of any of these options by offering
them in only the privileged or read-only mode or if Endpoint relates to specific com-
munications providers.

The subsequent options do not have end-to-end significance (see 17.3). They may be
negotiated in all XTI states except Uninitialized.

The protocol level is XTI Protocol Level . For this level, the Enable Debugging XTI
option, the Linger On Close If Data Present XTI option, the Receive Buffer Size XTI option,

17.4 Package POSIX_XTI 461

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

the Receive Low Water Mark XTI option, the Send Buffer Size XTI option, and the Send
Low Water Mark XTI option are defined.

A request for the Enable Debugging XTI option is an absolute requirement. A request
to activate the Linger On Close If Data Present XTI option is an absolute requirement;
the timeout value to this option is not. The Receive Buffer Size XTI option, the Receive
Low Water Mark XTI option, the Send Buffer Size XTI option, and Send Low Water Mark
XTI option are not absolute requirements.

The meanings of these options and the correspondance to Ada constants are as fol-
lows:

Enable_Debugging

The Enable Debugging XTI option enables debugging. The values of this op-
tion are implementation defined. Debugging is disabled if the option is spec-
ified with no value, i.e., with only an Option_Level and Option_Name part
of an option specified.

Linger_On_Close_If_Data_Present

The Linger On Close If Data Present XTI option is used to delay the execution
of a Close if send data are still queued in the send buffer. The option value
specifies the linger period. If a Close is issued and the send buffer is not
empty, the system attempts to send the pending data within the linger pe-
riod before closing the endpoint. Data still pending after the linger period
has elapsed are discarded.
Depending on the implementation, Close may either block for at maximum
the linger period, or immediately return, whereupon the system holds the
connection in existence for at most the linger period.
The option value consists of a Linger_Info object that shall contain the
Linger Status and Linger Period attributes. See 17.4.1.4 for a complete descrip-
tion of the attributes of this object. Legal values for the Linger Status attribute
are

Off

Switch option off
On

Activate option
The value Linger Status is an absolute requirement.
The attribute Linger Period determines the linger period in seconds. The ap-
plication can request the default value or set the attribute to infinite via
the procedures Set_Period_Unspecified and Set_Period_Infinite
respectively.
NOTE: The default timeout value depends on the underlying communications
provider (it is often infinite).
The Linger Period value is not an absolute requirement. The implementation
may place upper and lower limits to this value. Requests that fall short of
the lower limit are negotiated to the lower limit.
This option does not linger the execution of Send_Disconnect_Request .

462 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Receive_Buffer_Size

The Receive Buffer Size XTI option is the internal buffer size, in octets, al-
located for the receive buffer. The buffer size may be increased for high-
volume connections, or decreased to limit the possible backlog of incoming
data.
This request is not an absolute requirement. The implementation may place
upper and lower limits on the option value. Requests that fall short of the
lower limit are negotiated to the lower limit.
Legal values are all positive numbers.

Receive_Low_Water_Mark

The Receive Low Water Mark XTI option is used to set a low-water mark in
the receive buffer. The option value gives the minimal number of octets
that shall have accumulated in the receive buffer before they become visible
to the application. If and when the amount of accumulated receive data
exceeds the low-water mark, a Normal_Data_Received event is created,
an event mechanism (e.g., Poll or Select_File) indicates the data, and
the data can be read by Receive or Receive_Data_Unit .
This request is not an absolute requirement. The implementation may place
upper and lower limits on the option value. Requests that fall short of the
lower limit are negotiated to the lower limit.
Legal values are all positive numbers.
Send_Buffer_Size The Send Buffer Size XTI option is used to adjust the
internal buffer size, in octets, allocated for the send buffer.
This request is not an absolute requirement. The implementation may place
upper and lower limits on the option value. Requests that fall short of the
lower limit are negotiated to the lower limit.
Legal values are all positive numbers

Send_Low_Water_Mark

The Send Low Water Mark XTI option a low-water mark in the send buffer.
The option value gives the minimal number of octets that shall have accu-
mulated in the send buffer before they are sent.
This request is not an absolute requirement. The implementation may place
upper and lower limits on the option value. Requests that fall short of the
lower limit are negotiated to the lower limit.
Legal values are all positive numbers.

17.4.18.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint.

17.4 Package POSIX_XTI 463

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Incorrect_Or_Illegal_Option

The option specified by the application contained incorrect information, or
information was in an incorrect format.

Invalid_Flag

The application specified an invalid flag.

Buffer_Not_Large_Enough

The amount of data to be returned in one of the buffers is greater than the
size of the buffer.

XTI_Operation_Not_Supported

This operation is not supported by the current implementation of XTI.

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

17.4.19 Establish a Communication Endpoint

17.4.19.1 Synopsis

procedure Open
(Endpoint : out POSIX_IO.File_Descriptor;

Name : in POSIX.POSIX_String;
Mode : in POSIX_IO.File_Mode;
Options : in POSIX_IO.Open_Option_Set;
Info : in out Communications_Provider_Info);

procedure Open
(Endpoint : out POSIX_IO.File_Descriptor;

Name : in POSIX.POSIX_String;
Mode : in POSIX_IO.File_Mode;

Options : in POSIX_IO.Open_Option_Set);

17.4.19.2 Description

The procedure Open shall be called as the first step in the initialization of a com-
munications endpoint. This operation establishes a communications endpoint by
supplying a communications provider identifier that indicates a particular commu-
nications provider (i.e., communications protocol) and returning a file descriptor that
identifies that endpoint. The file descriptor returned, Endpoint , is used in subse-
quent procedure calls.

Nameis a string containing the name of the communications provider (for example,
”/dev/tcp ” for the TCP/IP protocol or ”/dev/cot4 ” for the OSI protocol) and speci-
fies the particular communications provider to associate with the endpoint.

Modeand Options are used to specify the file mode and whether the communications
endpoint shall operate in blocking or nonblocking mode.

The default characteristics of the communications provider are returned as Commu-
nications_Provider_Info object by the Info parameter. See 17.4.1.2 for detailed
information about this object.

If an application is concerned with protocol independence, it can use the sizes given
in the Communications_Provider_Info object to determine how large the buffers

464 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

need to be to hold each piece of information. An error shall result if an application
exceeds the allowed data size on any operation.

The Service Type attribute of Info shall specify one of the values shown in 17.4.1.2
on return. A single communications endpoint can support only one of these services
at one time.

If Info is omitted, no protocol information shall be returned.

This procedure shall be used from Uninitialized state.

17.4.19.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Invalid_Flag

The application specified an invalid flag.

Invalid_Communications_Provider

The application specified a bad name for the communications provider.

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

17.4.20 Receive Data or Expedited Data Sent Over a Connection

17.4.20.1 Synopsis

procedure Receive
(Endpoint : in POSIX_IO.File_Descriptor;

Buffer : in System.Address;
Octets_Requested : in POSIX.IO_Count;
Octets_Received : out POSIX.IO_Count;

Flags : out XTI_Flags);

17.4.20.2 Description

The procedure Receive is called to receive either normal or expedited data through
the local communications endpoint specified by Endpoint into the buffer specified
by Buffer . The amount of data requested is specified in the Octets_Requested
parameter. Octets_Received returns the number of octets of data returned on
success. The parameter Flags may be set on return from Receive and specifies
optional flags as described in this subclause. Flags has the type XTI_Flags , derived
from the type POSIX.Option_Set . See 17.4.1.1 for a description of how to create and
examine sets of these flags.

17.4 Package POSIX_XTI 465

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

If POSIX_IO.Non_Blocking is clear (via Open or Set_File_Control), Receive
shall wait for data to arrive if none is currently available. However, if POSIX_IO.-
Non_Blocking is set, Receive shall fail if no data are available. If, on return from
the operation, More_Data is set in Flags , this indicates that there is more data and
therefore the SDU or SEDU needs to be received using multiple Receive calls.

The More_Data flag may be set on return from Receive even when the number
of octets received is less than the size of the receive buffer specified, e.g.because
POSIX_IO.Non_Blocking was set and the operation was interrupted by a signal
when an Expedited_Data_Received event occurred.

Each Receive with the More_Data flag set indicates that another Receive is
needed to get more data for the current SDU. The end of the SDU is identified by
the return of a Receive operation with the More_Data flag not set. If the commu-
nications provider does not support the concept of a SDU as indicated in the Com-
munications_Provider_Info parameter on return from Open or Get_Info , the
More_Data flag is not meaningful and should be ignored. Receive shall return an
Octets_Received value of zero only if the end of an SDU is being returned to the
application.

If Receive returns with Expedited_Data set in Flags , then the data returned
are expedited data. If the number of octets of expedited data exceeds the size of the
buffer, or a signal interrupts the procedure, or (for communications protocols that
support fragmentation of SEDUs) an entire SEDU is not available, then Receive
shall set Expedited_Data and More_Data on return from the initial call. Subse-
quent calls that retrieve the remainder of the SEDU shall have Expedited_Data
set on return. The end of the SEDU is identified by the return of Receive with the
Expedited_Data flag set and the More_Data flag not set. If an entire SEDU is not
available, it is possible for normal data fragments to be returned between fragments
of the SEDU.

If a signal arrives Receive shall return, giving the application any data currently
available. If no data are available, Receive shall generate the error Interrupted_-
Operation . If some data are available, Receive shall return the number of octets
received and set the More_Data flag if the communications provider supports the
concept of an SDU.

When POSIX_IO.Non_Blocking is clear, the only way for the application to be
notified of the arrival of normal or expedited data is to issue this operation or check
for the Normal_Data_Received or the Expedited_Data_Received events using
the Look function. Additionally, the process can arrange to be notified via the event
management operations defined in 19.1 (or another suitable interface offered by the
implementation).

This procedure shall be used from the Data Transfer state or the Outgoing Release state.

17.4.20.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

466 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint.

Event_Requires_Attention

An asynchronous event is outstanding on the communications endpoint
specified by Endpoint . (The application can call Look to retrieve the event.)

No_Data_Available

In nonblocking mode, data are not available.

XTI_Operation_Not_Supported

This operation is not supported by the current implementation of XTI.

Operation_Not_Valid_For_State

The operation was called with the communications provider in the wrong
state (bad sequence).

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

17.4.21 Receive and Scatter Data or Expedited Data Sent Over a Connec-
tion

17.4.21.1 Synopsis

procedure Receive_And_Scatter_Data
(Endpoint : in POSIX_IO.File_Descriptor;

Vector : in IO_Vector_Array;
Octets_Received : out POSIX.IO_Count;

Flags : out XTI_Flags);

17.4.21.2 Description

The Receive_And_Scatter_Data procedure receives either normal or expedited
data. Endpoint identifies the communications endpoint through which data are
to arrive, and Vector identifies an IO_Vector_Array object, which is an array
of POSIX_IO.IO_Vector objects with Buffer and Length attributes (i.e., an array of
buffer address/buffer size pairs). See 17.4.1.9 for a detailed description of IO_Vec-
tor_Array objects, including the appropriate attribute access operations. Procedure
Receive_And_Scatter_Data shall receive data into these buffers, always filling
each buffer with the number of octets specified by its Length attribute before proceed-
ing to the next.

NOTE: The total size of the buffers passed may be constrained by implementation limits. In
practice, the availability of memory to an application is likely to impose a limit on the amount
of data that can be sent or received using scatter/gather operations.

The number of POSIX_IO.IO_Vector objects to receive is implicit in the array or
array slice specified by the Vector parameter. The POSIX_IO.IO_Vector objects
shall be received starting from Vector’First . Argument Flags is type XTI_Flags
and may be set on return from Receive_And_Scatter_Data .

17.4 Package POSIX_XTI 467

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

If POSIX_IO.Non_Blocking is clear, Receive_And_Scatter_Data shall wait for
data to arrive if none is currently available. However, if POSIX_IO.Non_Blocking is
set (via Open or Set_File_Control), Receive_And_Scatter_Data shall fail with
error code No_Data_Available if no data are available.

If, on return from the operation, More_Data is set in Flags , there are more data and
therefore the SDU or SEDU needs to be received using multiple Receive calls.

The More_Data flag may be set on return from the Receive_And_Scatter_Data
procedure even when the number of octets received is less than the total size of all
the receive buffers specified.

NOTE: The following are typical situations that cause less than the requested number of octets
to be received:

— POSIX_IO.Non_Blocking is set.

— The operation is interrupted by a signal.

— An Expedited_Data_Received event occurs.

Each Receive_And_Scatter_Data call with the More_Data flag set indicates that
another Receive_And_Scatter_Data call needs to be made to obtain more data for
the current SDU. The end of the SDU is identified by the return of a Receive_And_-
Scatter_Data call with the More_Data flag cleared. If the communications provider
does not support the concept of an SDU as indicated in the Communications_-
Provider_Info parameter on return from Open or Get_Info , the More_Data flag is
not meaningful and shall be ignored. If the amount of buffer space passed in Vector
is greater than zero on the call to Receive_And_Scatter_Data , then Receive_-
And_Scatter_Data shall return zero in the Octets_Received parameter only if
the end of an SDU is being returned to the application.

On return, the data returned are expedited data if Expedited_Data is set in Flags .
If the number of octets of expedited data exceeds the total number of octets available
in all the buffers passed, or a signal interrupts the operation, or (for communications
protocols that support fragmentation of SEDUs) an entire SEDU is not available,
then Receive_And_Scatter_Data shall set Expedited_Data and More_Data on
return from the initial call. Subsequent calls that retrieve the remainder of the
SEDU shall have Expedited_Data set on return. The end of the SEDU is identified
by the return of Receive_And_Scatter_Data with the Expedited_Data flag set
and the More_Data flag clear. If an entire SEDU is not available, it is possible for
normal data fragments to be returned between fragments of the SEDU.

If a signal arrives, Receive_And_Scatter_Data shall return, giving the application
any data currently available. If no data are available, Receive_And_Scatter_-
Data shall raise POSIX_Error with error code Interrupted_Operation . If some
data are available, Receive_And_Scatter_Data shall return the number of octets
received in the Octets_Received parameter and set the More_Data flag if the
communications provider supports the concept of an SDU.

When POSIX_IO.Non_Blocking is clear, the only way for the application to be
notified of the arrival of normal or expedited data is to issue this operation or check
for the Normal_Data_Received or Expedited_Data_Received events using the
Look function. Additionally, the process can arrange to be notified via the event
management operations defined in 19.1.

468 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

17.4.21.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Illegal_Data_Range

The length of the array specified by Vector was greater than the limit spec-
ified by POSIX_Limits.XTI_IO_Vector_Maxima’Last .
Unless range checks are suppressed, some conditions that correspond to Il-
legal_Data_Range may be caught first by the normal Ada-language range
check, which raises Constraint_Error for out-of-range values. However,
if the application circumvents the Ada language range checks, the system
may still catch the error, in which case it shall raise POSIX_Error with
Illegal_Data_Range .

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint.

Event_Requires_Attention

An asynchronous event is outstanding on the communications endpoint
specified by Endpoint . (The application can call Look to retrieve the event.)

No_Data_Available

In nonblocking mode, data are not available.

XTI_Operation_Not_Supported

This operation is not supported by the current implementation of XTI.

Operation_Not_Valid_For_State

The operation was called with the communications provider in the wrong
state (bad sequence).

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

17.4.22 Receive and Scatter a Data Unit

17.4.22.1 Synopsis

procedure Receive_And_Scatter_Data_Unit
(Endpoint : in POSIX_IO.File_Descriptor;

Address : in XTI_Address_Pointer;
Options : in out Protocol_Option_List;
Vector : in IO_Vector_Array;
Octets_Received : out POSIX.IO_Count;

Flags : out XTI_Flags);

17.4 Package POSIX_XTI 469

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

17.4.22.2 Description

The Receive_And_Scatter_Data_Unit procedure is used in connectionless mode
to receive a data unit from another endpoint. Endpoint identifies the local com-
munications endpoint through which data shall be received. The Address parame-
ter (an XTI_Address_Pointer value) designates an object containing the address
associated with the received data unit. The Options parameter (a Protocol_Op-
tion_List object) holds options associated with the received data unit. Vector
identifies an IO_Vector_Array object, which is an array of POSIX_IO.IO_Vector
objects with Buffer and Length attributes (i.e., an array of buffer address/buffer size
pairs). See 17.4.1.9 for a detailed description of these objects, including the appro-
priate attribute access operations. Procedure Receive_And_Scatter_Data_Unit
shall receive data into these buffers, always filling each buffer with the number of
octets specified by its Length attribute before proceeding to the next.

The number of POSIX_IO.IO_Vector objects to receive is implicit in the array or
array slice specified by the Vector parameter. The POSIX_IO.IO_Vector objects
shall be received starting from Vector’First . Octets_Received contains the
number of octets of data received. If the complete data unit was received, Flags
shall be returned as the empty option set. Otherwise, Flags shall be returned as a
nonempty option set.

The Options Buffer attribute of Options is set before this procedure is called to in-
dicate the buffer to be used to store options associated with the received data. The
Buffer and Length attributes of the IO_Vector_Array referenced by Vector are set
before Receive_And_Scatter_Data_Unit is called to define the buffers where the
application data are to be placed (see 17.4.1.9). If the size of the Options Buffer at-
tribute of Options is set to zero, then no information shall be returned in the Options
Buffer attribute for this parameter.

NOTE: The total size of the buffers passed may be constrained by implementation limits. In
practice, the availability of memory to an application is likely to impose a limit on the amount
of data that can be sent or received using scatter/gather operations.

If the value of the Address parameter is nonnull, it shall be a conversion to type
XTI_Address_Pointer of a value that designates an object of a protocol-specific
address type allocated by the application before the call (see 17.4.1.3). Alternately,
the Null_XTI_Address constant may be passed in Address causing this parameter
to be ignored.

On return from this operation, the address object designated by Address shall con-
tain the protocol address of the sending application and Options shall identify op-
tions that were associated with this data unit. The application data received shall
be located in the buffers described by Vector . Octets_Received shall contain the
number of octets of data received by the application.

If POSIX_IO.Non_Blocking is clear (via Open or Set_File_Control), Receive_-
And_Scatter_Data_Unit shall wait for a data unit to arrive (or for an error to be
detected by the communications provider or for a signal to arrive) if none is currently
available. If POSIX_IO.Non_Blocking is set, Receive_And_Scatter_Data_Unit
shall fail if no data units are available.

470 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

If the buffers referenced by Vector are not large enough to hold the current data
unit, the buffers shall be filled, and More_Data shall be set in Flags on return to in-
dicate that another Receive_And_Scatter_Data_Unit should be called to retrieve
the rest of the data unit. On subsequent calls to Receive_And_Scatter_Data_Unit
(until this full data unit has been received), an empty Protocol_Option_List (as
from Make_Empty) shall be returned, and the Address parameter shall be unde-
fined.

If Receive_And_Scatter_Data_Unit is interrupted by a signal, it shall raise the
exception POSIX_Error with error code Interrupted_Operation . Any incoming
data unit (datagram) shall not be discarded and shall remain available to be returned
by a subsequent call to Receive_And_Scatter_Data_Unit .

17.4.22.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Illegal_Data_Range

The length of the array specified by Vector was greater than the limit spec-
ified by POSIX_Limits.XTI_IO_Vector_Maxima’Last .
Unless range checks are suppressed, some conditions that correspond to Il-
legal_Data_Range may be caught first by the normal Ada-language range
check, which raises Constraint_Error for out-of-range values. However,
if the application circumvents the Ada language range checks, the system
may still catch the error, in which case it shall raise POSIX_Error with
Illegal_Data_Range .

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint.

Buffer_Not_Large_Enough

The amount of data to be returned in one of the buffers is greater than the
size of the buffer.

Event_Requires_Attention

An asynchronous event is outstanding on the communications endpoint
specified by Endpoint . (The application can call Look to retrieve the event.)

No_Data_Available

In nonblocking mode, data are not available.

XTI_Operation_Not_Supported

This operation is not supported by the current implementation of XTI.

Operation_Not_Valid_For_State

The operation was called with the communications provider in the wrong
state (bad sequence).

17.4 Package POSIX_XTI 471

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

17.4.23 Receive a Data Unit

17.4.23.1 Synopsis

procedure Receive_Data_Unit
(Endpoint : in POSIX_IO.File_Descriptor;

User_Data : in System.Address;
Octets_Requested : in POSIX.IO_Count;
Octets_Received : out POSIX.IO_Count;
Address : in XTI_Address_Pointer;
Options : in out Protocol_Option_List;
Flags : out XTI_Flags);

procedure Receive_Data_Unit
(Endpoint : in POSIX_IO.File_Descriptor;

User_Data : in System.Address;
Octets_Requested : in POSIX.IO_Count;
Octets_Received : out POSIX.IO_Count;
Address : in XTI_Address_Pointer;

Flags : out XTI_Flags);

17.4.23.2 Description

The Receive_Data_Unit procedure is used in connectionless mode to receive a data
unit from another endpoint. The Endpoint parameter identifies the local communi-
cations endpoint through which data shall be received. The User_Data parameter
identifies the buffer where the received data unit shall be stored. The Address pa-
rameter (an XTI_Address_Pointer value) designates where the address informa-
tion associated with the received data unit shall be stored. The Options parameter
(a Protocol_Option_List object) indicates where option information associated
with the received data unit shall be stored. Flags may be set on return to indi-
cate that the complete data unit was not received. Octets_Received contains the
number of octets of data received.

The Options Buffer attribute of Options shall be set before calling this procedure
to indicate the buffer to be used. If the Options Buffer attribute designates a null
Octet_Array or is the null access value, then no information shall be returned for
Options . The Options parameter may be omitted using the overloaded procedure.

If the value of the Address parameter is nonnull, it shall be a conversion to type
XTI_Address_Pointer of a value that designates an object of a protocol-specific
address type allocated by the application before the call (see 17.4.1.3). Alternately,
the Null_XTI_Address constant may be passed in Address causing this parameter
to be ignored.

On return from this operation, the the address object designated by Address con-
tains the protocol address of the sending application, Options identifies options that
were associated with this data unit, and User_Data specifies the application data
that were received.

If POSIX_IO.Non_Blocking is clear (via Open or Set_File_Control), Receive_-
Data_Unit shall wait for a data unit to arrive (or for an error to be detected by the

472 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

communications provider or for a signal to arrive) if none is currently available. If
POSIX_IO.Non_Blocking is set, Receive_Data_Unit shall fail if no data units are
available.

If the buffer defined in the User_Data parameter is not large enough to hold the
current data unit, the buffer shall be filled, and More_Data shall be set in Flags on
return to indicate that another Receive_Data_Unit should be called to retrieve the
rest of the data unit. On subsequent calls to Receive_Data_Unit (until this full
data unit has been received), an empty Protocol_Option_List (as from Make_-
Empty) shall be returned, and the Address parameter shall be undefined.

If Receive_Data_Unit is interrupted by a signal, it shall raise POSIX_Error with
error code Interrupted_Operation . Any incoming data unit (datagram) shall not
be discarded and shall remain available to be returned by a subsequent call to Re-
ceive_Data_Unit .

17.4.23.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint.

Buffer_Not_Large_Enough

The amount of data to be returned in one of the buffers is greater than the
buffer size. The unit data information to be returned shall be discarded.

Event_Requires_Attention

An asynchronous event is outstanding on the communications endpoint
specified by Endpoint . (The application can call Look to retrieve the event.)

No_Data_Available

In nonblocking mode, data are not available.

XTI_Operation_Not_Supported

This operation is not supported by the current implementation of XTI.

Operation_Not_Valid_For_State

The operation was called with the communications provider in the wrong
state (bad sequence).

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

17.4 Package POSIX_XTI 473

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

17.4.24 Retrieve a Unit Data Error Indication

17.4.24.1 Synopsis

type Unit_Data_Error_Code is implementation-defined-integer;
procedure Retrieve_Data_Unit_Error

(Endpoint : in POSIX_IO.File_Descriptor;
Address : in XTI_Address_Pointer;
Options : in out Protocol_Option_List;
Error : out Unit_Data_Error_Code);

procedure Retrieve_Data_Unit_Error
(Endpoint : in POSIX_IO.File_Descriptor;

Address : in XTI_Address_Pointer;
Error : out Unit_Data_Error_Code);

procedure Retrieve_Data_Unit_Error
(Endpoint : in POSIX_IO.File_Descriptor;

Options : in out Protocol_Option_List;
Error : out Unit_Data_Error_Code);

procedure Retrieve_Data_Unit_Error
(Endpoint : in POSIX_IO.File_Descriptor;

Error : out Unit_Data_Error_Code);

17.4.24.2 Description

The Retrieve_Data_Unit_Error procedure is used in connectionless mode to re-
ceive information concerning an error on a previously sent data unit and should only
be issued following a unit data error (as indicated by the event Error_In_Previ-
ously_Sent_Datagram retrieved by Look). It informs the application that a data
unit with a specific destination address and protocol options produced an error.

The Endpoint parameter identifies the local communications endpoint through
which the error report shall be received. The Address parameter (an XTI_Ad-
dress_Pointer value) designates where the address information associated with
the received data unit error shall be stored. The Options parameter (a Proto-
col_Option_List object) indicates where option information associated with the
received data unit error shall be stored. The Error parameter (of type Unit_Data_-
Error_Code) returns the error code associated with the received data unit error.

The Options Buffer attribute of the Options parameter shall be set before calling this
function to indicate the buffer to be used to store the options. This parameter may
be omitted. If the size of the Options Buffer is set to zero, then no information shall be
returned in the Options Buffer attribute for this parameter.

On return from this operation, the object designated by the XTI_Address_Pointer
value given by the Address parameter identifies the destination protocol address of
the erroneous data unit, the Protocol_Option_List object identified by the Op-
tions parameter identifies options that were associated with the data unit, and the
Error_Code parameter specifies a protocol-specific error code. Retrieve_Data_-
Unit_Error shall clear the unit data error indication.

17.4.24.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

474 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint.

Buffer_Not_Large_Enough

The amount of data to be returned in one of the buffers is greater than
the buffer size. The unit data error information to be returned shall be
discarded.

XTI_Operation_Not_Supported

This operation is not supported by the current implementation of XTI.

No_Unit_Data_Error_On_Endpoint

No unit data error indication currently exists on the specified communica-
tions endpoint.

Operation_Not_Valid_For_State

The operation was called with the communications provider in the wrong
state (bad sequence).

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

17.4.25 Retrieve Information from Disconnect

17.4.25.1 Synopsis

procedure Retrieve_Disconnect_Info
(Endpoint : in POSIX_IO.File_Descriptor;

User_Data : in System.Address;
Octets_Requested : in POSIX.IO_Count;
Octets_Retrieved : out POSIX.IO_Count;
Reason : out Reason_Code;
Sequence_Number : out Natural);

procedure Clear_Disconnect_Info

(Endpoint : in POSIX_IO.File_Descriptor);

17.4.25.2 Description

The Retrieve_Disconnect_Info procedure is used to identify the cause of a dis-
connection and to retrieve any application data sent with the disconnection request.
The Clear_Disconnect_Info procedure is used to clear a disconnect request from
the interface. Endpoint identifies the local communications endpoint where the con-
nection existed. Reason specifies the reason for the disconnection through a protocol-
specific reason code. User_Data identifies any application data that were sent with
the disconnection request. Sequence_Number may identify an outstanding connec-
tion indication with which the disconnection is associated. The amount of applica-
tion data requested is specified in the Octets_Requested parameter. Octets_Re-
trieved indicates the number of octets of application data returned on success.

17.4 Package POSIX_XTI 475

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Sequence_Number is only meaningful when Retrieve_Disconnect_Info is is-
sued by a passive application that has executed one or more Listen functions and
is processing the resulting connection indications. If a disconnection indication oc-
curs, Sequence_Number can be used to identify which of the outstanding connection
indications is associated with the disconnection.

If the User_Data parameter is System.Null_Address , no information shall be
returned. If Octets_Requested is greater than zero and less than the length of the
application data, Retrieve_Disconnect_Info shall fail with the error Buffer_-
Not_Large_Enough .

If Clear_Disconnect_Info is used, then no information shall be returned, and any
application data associated with the disconnection indication shall be discarded. If
an application has retrieved more than one outstanding connection indication (via
Listen) and Clear_Disconnect_Info is used, then it follows that the applica-
tion will be unable to identify with which connection indication the disconnection is
associated.

This procedure shall be used from the Data Transfer, Outgoing Connect, Outgoing Release,
Incoming Release, or Incoming Connect (when Outstanding Connection Count is greater than
zero) state.

17.4.25.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint.

Buffer_Not_Large_Enough

The buffer allocated for incoming application data is not large enough to
handle the data. If Endpoint is a passive endpoint, it remains in Incoming
Connect state, otherwise, the state of the endpoint is set to Idle.

No_Disconnect_Indication_On_Endpoint

There are no disconnect indications on the communications endpoint speci-
fied by Endpoint .

XTI_Operation_Not_Supported

This operation is not supported by the current implementation of XTI.

Operation_Not_Valid_For_State

The operation was called with the communications provider in the wrong
state (bad sequence).

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

476 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

17.4.26 Send Data or Expedited Data Over a Connection

17.4.26.1 Synopsis

procedure Send
(Endpoint : in POSIX_IO.File_Descriptor;

Buffer : in System.Address;
Octets_To_Send : in POSIX.IO_Count;
Flags : in XTI_Flags;

Octets_Sent : out POSIX.IO_Count);

17.4.26.2 Description

The Send procedure is used to send either normal or expedited data. The parameter
Endpoint identifies the local communications endpoint over which data should be
sent, Buffer points to the application data, Octets_To_Send specifies the number
of octets of application data to be sent. Flags specifies any of the following optional
flags.

Expedited_Data

If set, the data shall be sent as expedited data and shall be subject to the
interpretations of the communications provider.

More_Data

If set SDU or SEDU is being sent through multiple subprogram calls. Each
subprogram call with the More_Data flag set indicates that another subpro-
gram call should follow with more data for the current SDU or SEDU.
The end of the SDU (or SEDU) is identified by a subprogram call with the
More_Data flag not set. Use of More_Data enables an application to break
up large logical data units without losing the boundaries of those units at
the other end of the connection. The flag implies nothing about how the data
are packaged for transfer. If the communications provider does not support
the concept of SDU as indicated in the Info parameter on return from Open
or Get_Info , the More_Data flag is not meaningful and shall be ignored if
set.
The sending of a zero length fragment of an SDU or SEDU is only permitted
where this is used to indicate the end of an SDU or SEDU, i.e., when the
More_Data flag is not set. Some communications providers also forbid zero
length SDUs and SEDUs (See D.2)

Push_Data

If set, the communications provider shall send all data that are currently in
its send buffers. If this flag is not set, the behavior shall be protocol-specific.
NOTE: The communications provider is free to collect data in a send buffer until
it accumulates a sufficient amount for transmission (see Send Low Water Mark XTI
option in 17.4.18).

If POSIX_IO.Non_Blocking is clear (via Open or Set_File_Control), Send shall
return immediately if there is a permanent failure condition, but can wait if there
is a transient error condition or if flow control restrictions prevent the data from
being accepted by the local communications provider at the time the call is made. If
POSIX_IO.Non_Blocking is set, Send shall fail immediately if there is a permanent
or transient failure condition, or there are flow control restrictions. The process can

17.4 Package POSIX_XTI 477

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

arrange to be informed when the flow control restrictions are cleared via either Look
or the event management operations defined in 19.1 (or another suitable interface
offered by the implementation).

On successful completion, Send returns the number of octets accepted by the com-
munications provider in Octets_Sent . Normally this value shall equal the number
of octets specified in Octets_To_Send . However, if POSIX_IO.Non_Blocking is set
or the operation is interrupted by a signal, it is possible that only part of the data
have been accepted by the communications provider. In this case, Send shall return
a value in Octets_Sent that is less than the value of Octets_To_Send . If Send is
interrupted by a signal before it could transfer data to the communications provider,
it shall raise POSIX_Error with error code Interrupted_Operation .

If Octets_To_Send is zero and sending of zero octets is not supported by the un-
derlying communications service, Send shall raise POSIX_Error with error code
Illegal_Data_Range .

If Octets_To_Send is greater than the size of Buffer , Send shall raise POSIX_-
Error with error code Invalid_Argument .

The size of each SDU or SEDU shall not exceed the limits of the communications
provider as specified by the current values in the Max Size SDU or Max Size SEDU
attributes of the Communications_Provider_Info object returned by Get_Info .

The error Event_Requires_Attention may be returned to inform the process that
an event (e.g., a disconnection) is outstanding.

This procedure shall be used from the Data Transfer state or the Incoming Release state.

17.4.26.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Invalid_Argument

The application specified a value for Octets_To_Send greater than the size
of Buffer . For this error, the implementation under some circumstances
may instead raise Constraint_Error .

Illegal_Data_Range

The application attempted to send an illegal amount of data. The probable
cause is that an attempt was made to send a SDU or SEDU larger than the
size of SDU or SEDU returned by the Communications_Provider_Info
in Open (or Get_Info), or an attempt was made to send a zero length data
unit (or fragment). The ability of an XTI implementation to detect such an
error case is implementation dependent.

478 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Unless range checks are suppressed, some conditions that correspond to Il-
legal_Data_Range may be caught first by the normal Ada-language range
check, which raises Constraint_Error for out-of-range values. However,
if the application circumvents the Ada language range checks, the system
may still catch the error, in which case it shall raise POSIX_Error with
Illegal_Data_Range .

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint.

Invalid_Flag

The application specified an invalid flag.

Flow_Control_Error

Flow conditions prevented the sending of data at this time in asynchronous
(nonblocking) mode.

Event_Requires_Attention

An asynchronous event is outstanding on the communications endpoint
specified by Endpoint . (The application can call Look to retrieve the event.)

XTI_Operation_Not_Supported

This operation is not supported by the current implementation of XTI.

Operation_Not_Valid_For_State

The operation was called with the communications provider in the wrong
state (bad sequence).

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

17.4.27 Send a Data Unit

17.4.27.1 Synopsis

procedure Send_Data_Unit
(Endpoint : in POSIX_IO.File_Descriptor;

User_Data : in System.Address;
Octets_To_Send : in POSIX.IO_Count;
Address : in XTI_Address_Pointer;
Options : in Protocol_Option_List);

procedure Send_Data_Unit
(Endpoint : in POSIX_IO.File_Descriptor;

User_Data : in System.Address;
Octets_To_Send : in POSIX.IO_Count;

Address : in XTI_Address_Pointer);

17.4.27.2 Description

The Send_Data_Unit procedure is used in connectionless mode to send a data unit to
another communications application. The Endpoint parameter identifies the local
communications endpoint through which data shall be sent. The Address parame-
ter (an XTI_Address_Pointer value) designates an object that specifies the protocol

17.4 Package POSIX_XTI 479

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

address of the destination application. The Options parameter (a Protocol_Op-
tion_List object) identifies options that the application wants associated with this
request. The User_Data parameter specifies the application data to be sent.

The application may choose not to specify what protocol options are associated with
the transfer by providing an empty option list in the Options parameter (using the
Make_Empty procedure on the Protocol_Option_List object), or the Options
parameter may be omitted using the overloaded procedure. In this case, the provider
shall use the option values currently set for this communications endpoint.

If the Octets_To_Send parameter is zero and sending of zero octets is not supported
by the underlying communications service, Send_Data_Unit shall raise POSIX_-
Error with error code Illegal_Data_Range .

If POSIX_IO.Non_Blocking is clear (via Open or Set_File_Control), Send_Data_-
Unit can wait if flow control restrictions prevent the data from being accepted by
the local communications provider at the time the call is made. However, if POSIX_-
IO.Non_Blocking is set, Send_Data_Unit shall fail under such conditions. The
process can arrange to be notified of the clearance of a flow control restriction via
either Look or the event management operations defined in 19.1 (or another suitable
interface offered by the implementation).

If the amount of data specified in the Octets_To_Send parameter exceeds the maxi-
mum SDU size as returned in the Max Size SDU attribute of the Communications_-
Provider_Info parameter of Open or Get_Info , an Illegal_Data_Range error
shall be generated. If Send_Data_Unit is called before the destination application
has activated its communications endpoint (see 17.4.5), the data unit may be dis-
carded.

If it is not possible for the communications provider to immediately detect the condi-
tions that cause the errors Illegal_Data_Range and Incorrect_Or_Illegal_Op-
tion , these errors shall alternatively be returned by Retrieve_Data_Unit_Error .
Therefore, an application shall be prepared to receive these errors in either of these
ways.

If Send_Data_Unit is interrupted by a signal, it shall raise the exception POSIX_-
Error with error code Interrupted_Operation , and the data unit (datagram)
shall not have been sent.

17.4.27.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Incorrect_Address_Format

The address specified by the application contained an incorrect protocol ad-
dress or was in an incorrect format.

480 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Illegal_Data_Range

The application attempted to send an illegal amount of data.
Unless range checks are suppressed, some conditions that correspond to Il-
legal_Data_Range may be caught first by the normal Ada-language range
check, which raises Constraint_Error for out-of-range values. However,
if the application circumvents the Ada language range checks, the system
may still catch the error, in which case it shall raise POSIX_Error with
Illegal_Data_Range .

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint.

Incorrect_Or_Illegal_Option

The option specified by the application contained incorrect information, or
the information was in an incorrect format.

Flow_Control_Error

Flow conditions prevented the sending of data at this time in asynchronous
(nonblocking) mode.

Event_Requires_Attention

An asynchronous event is outstanding on the communications endpoint
specified by Endpoint . (The application can call Look to retrieve the event.)

XTI_Operation_Not_Supported

This operation is not supported by the current implementation of XTI.

Operation_Not_Valid_For_State

The operation was called with the communications provider in the wrong
state (bad sequence).

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

17.4.28 Send Application-Initiated Disconnection Request

17.4.28.1 Synopsis

procedure Send_Disconnect_Request
(Endpoint : in POSIX_IO.File_Descriptor;

Call : in Connection_Info);
procedure Send_Disconnect_Request

(Endpoint : in POSIX_IO.File_Descriptor);
procedure Send_Disconnect_Request

(Endpoint : in POSIX_IO.File_Descriptor;
Sequence_Number : in Natural);

procedure Send_Disconnect_Request
(Endpoint : in POSIX_IO.File_Descriptor;

User_Data : in System.Address;

Octets_To_Send : in POSIX.IO_Count);

17.4 Package POSIX_XTI 481

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

17.4.28.2 Description

The procedure Send_Disconnect_Request is used to initiate an abortive release
on an already established connection or to reject a connection request. The param-
eter Endpoint identifies the local communications endpoint of the connection, and
Call specifies information associated with the abortive release. The application can
initiate this request either during data transfer or during connection establishment.
Call is a Connection_Info object containing the attributes: Options (a Proto-
col_Option_List object), User Data, Address (an XTI_Address_Pointer value),
and Sequence Number.

The values in Call have different semantics, depending on the context of the call to
Send_Disconnect_Request .

— When rejecting a connection request, Call shall contain a valid value of Se-
quence Number to uniquely identify the rejected connection indication to the com-
munications provider. The Sequence Number attribute is only meaningful if the
connection is in the Incoming Connect state. The Address and Options attributes of
Call are ignored. Ignoring these attributes can also be accomplished by using
the overloaded version of the procedure that requires only a Sequence_Number
parameter.

— In all other cases, Call need only be used when data are being sent with the
disconnection request. The Address, Options, and Sequence attributes of the Call
object are ignored. Ignoring these attributes can also be accomplished by using
the overloaded version of the procedure that requires only a Data parameter. If
the application does not wish to send data to the remote application, Call may
be omitted.

The User Data attribute of the Call parameter (or the User_Data and Octets_To_-
Send parameter) specifies the application data to be sent to the remote application.
The amount of application data shall not exceed the limits supported by the commu-
nications provider, as indicated in the Max Size Disconnect Data value returned in the
Communications_Provider_Info object from Open or Get_Info . If the length of
the User Data attribute (or the Octets_To_Send parameter) is zero, no data shall be
sent to the remote application.

This procedure shall be used from the Data Transfer, Outgoing Connect, Outgoing Release,
Incoming Release, or Incoming Connect (when Outstanding Connection Count is greater than
zero) states.

17.4.28.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

482 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Illegal_Data_Range

The application attempted to send an illegal amount of data.
Unless range checks are suppressed, some conditions that correspond to Il-
legal_Data_Range may be caught first by the normal Ada-language range
check, which raises Constraint_Error for out-of-range values. However,
if the application circumvents the Ada language range checks, the system
may still catch the error, in which case it shall raise POSIX_Error with
Illegal_Data_Range .

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint.

Invalid_Sequence_Number

The application specified an incorrect sequence number or in the case of a
connect request being rejected, Call was wrongly omitted. Some outbound
data queued for this endpoint may be lost.

Event_Requires_Attention

An asynchronous event is outstanding on the communications endpoint
specified by Endpoint . (The application can call Look to retrieve the event.)

XTI_Operation_Not_Supported

This operation is not supported by the current implementation of XTI.

Operation_Not_Valid_For_State

The operation was called with the communications provider in the wrong
state (bad sequence).

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

17.4.29 Synchronize Communications Endpoint

17.4.29.1 Synopsis

function Synchronize_Endpoint
(Endpoint : in POSIX_IO.File_Descriptor)

return Interface_State;

17.4.29.2 Description

For the communications endpoint specified by Endpoint , Synchronize_Endpoint
synchronizes the data structures associated with the XTI implementation with infor-
mation from the underlying communications provider. In doing so, it can convert an
uninitialized file descriptor (obtained via POSIX_IO.Open or POSIX_IO.Duplicate ,
or as a result of a POSIX_Process_Primitives.Start_Process and POSIX_Pro-
cess_Primitives.Exec) to an initialized communications endpoint, assuming that
the file descriptor referenced a communications endpoint, by updating and allocating
the necessary data structures. This operation also allows two cooperating processes
to synchronize their interaction with a communications provider.

17.4 Package POSIX_XTI 483

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

For example, if a process creates a new process and issues an Exec , the new process
needs to issue a Synchronize_Endpoint to build the private data structure asso-
ciated with a communications endpoint and to synchronize the data structure with
the relevant provider information.

The function shall fail if executed while the communications provider is undergoing
a state change.

The communications provider treats all applications using a communications end-
point as a single application. If multiple processes are using the same endpoint, they
need to coordinate their activities so they do not violate the state of the communi-
cations endpoint. Synchronize_Endpoint returns the current state of the commu-
nications endpoint to the application, thereby enabling the application to verify the
state before taking further action. This coordination is only valid among cooperating
processes; it is possible that a process or an incoming event could change the state of
the endpoint after a Synchronize_Endpoint is issued.

Synchronize_Endpoint returns the communications interface state of the commu-
nications provider (type Interface_State) as defined in 17.2.1.

This procedure may be used from all states except Uninitialized.

17.4.29.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint. This
error may be returned when the Endpoint has been previously closed or
when an erroneous number may have been passed to the call.

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number.

State_Change_In_Progress

The communications provider is undergoing a state change.

17.4.30 Disable a Communications Endpoint

17.4.30.1 Synopsis

procedure Unbind

(Endpoint : in POSIX_IO.File_Descriptor);

484 17 Detailed Network Interface - XTI

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

17.4.30.2 Description

The procedure Unbind disables the communications endpoint specified by Endpoint
that was previously bound by Bind . On completion of this operation, no further data
or events destined for this communications endpoint shall be accepted by the com-
munications provider. An endpoint that is disabled by using Unbind can be enabled
by a subsequent call to Bind .

This procedure shall be used from the Idle state.

17.4.30.3 Error Handling

If an operation is called from the wrong XTI state (see Table 17.6), the exception
POSIX_Error shall be raised with error code Operation_Not_Valid_For_State .

In addition to the XTI error conditions listed below, operating system service or other
implementation defined general error conditions can also occur (see 17.1.7).

If any of the following XTI error conditions occurs, the exception POSIX_Error shall
be raised with the corresponding error code:

Invalid_File_Descriptor

A bad file descriptor was specified for the communications endpoint. This
error may be returned when the Endpoint has been previously closed or
when an erroneous number may have been passed to the call.

Event_Requires_Attention

An asynchronous event is outstanding on the communications endpoint
specified by Endpoint . (The application can call Look to retrieve the event.)

Operation_Not_Valid_For_State

The operation was called with the communications provider in the wrong
state (bad sequence).

Protocol_Error

A communication problem has occurred, and there is no other appropriate
error number. c

17.4 Package POSIX_XTI 485

IEEE Std 1003.5c-1998

Section 18: Detailed Network Interface - Socket

This section specifies services that provide the Sockets protocol-independent process-
to-process communication interface, as defined in package POSIX_Sockets .

18.1 Introduction

A socket is an endpoint for communication using the facilities described in this sec-
tion. A pair of sockets constitutes a bi-directional communication channel that en-
ables a process to exchange data with another process, called a peer, locally and over
networks. Sockets may be created in pairs or given names (addresses) in order to ex-
change data with another socket in a communications domain. A socket is accessed
via a file descriptor obtained when the socket is created. A socket exists only as long
as some process holds a file descriptor referencing it.

A socket is created with a specific socket type (see 18.1.4) and protocol (see 18.1.2).
The socket type and protocol determine whether the socket is connection-mode or
connectionless-mode.

In a connection-oriented protocol, sockets are characterized as being either active or
passive. An active socket initiates a connection with a peer socket at some known
address. A passive socket is bound to an address, which is usually associated with
some network service, and placed in a listening mode to accept connections from
active peers.

NOTE: In client/server architectures, the server socket is passive, and clients sockets are ac-
tive. In a connectionless protocol, either side can play the server or client role.

The socket and the supporting protocol implementation maintain state information
about the socket, addressing information, and protocol-independent and protocol-
specific information as described in this section and D.1.

18.1.1 Protocol Families

Each network protocol is associated with a specific protocol family. A protocol family
provides basic services to the protocol implementation to allow it to function within
a specific network environment. These services may include packet fragmentation
and reassembly, routing, addressing, and basic transport. A protocol family normally
comprises a number of protocols. Each protocol is characterized by an abstract socket
type. It is not required that a protocol family support all socket types. A protocol
family may contain multiple protocols supporting the same socket abstraction.

18.1.2 Protocols

A protocol supports one of the socket abstractions detailed in 18.1.4. A specific proto-
col may be accessed either by creating a socket of the appropriate type and protocol
family, or by requesting the protocol explicitly when creating a socket. Protocols nor-
mally accept only one specific address type (see 18.1.4), usually determined by the
addressing object inherent in the design of the protocol family/network architecture.
Certain semantics of the basic socket abstractions are protocol-specific.

All protocols are expected to support the basic model for their particular socket type,
but may, in addition, provide nonstandard facilities or extensions to a mechanism.

18 Detailed Network Interface - Socket 487

c

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Protocol mappings to the Internet and ISO protocols are described in D.1.

18.1.3 Addressing

A socket address specifies the local or remote portion of an endpoint association.
Socket addresses are represented by the general type Socket_Address_Pointer ,
described in 18.4.1.2. Protocol-specific socket address objects are described in D.1.

18.1.4 Socket Types

A socket has an abstract socket type which is specified when the socket is created. The
socket type, together with the protocol family, allows the selection of an appropriate
communication protocol for use with the socket.

Four types are defined: Stream_Socket , Sequenced_Packet_Socket , Datagram_-
Socket , and Raw_Socket .

The Stream_Socket type provides reliable, sequenced, full-duplex octet streams
between the socket and a peer to which the socket is connected. A socket of type
Stream_Socket does not exchange any data with its peer until it enters the Con-
nected state. Record boundaries are not maintained; data sent on a stream socket
using output operations of one size may be received using input operations of smaller
or larger sizes without loss of data. Data may be buffered; successful return from an
output function does not imply that the data have been delivered to the peer or even
transmitted from the local system. If data cannot be successfully transmitted within
a given time (see Socket Send Timeout socket option in 18.3), then the connection is
considered broken, and subsequent operations shall fail. POSIX_Signals.Signal_-
Pipe_Write is raised if a process sends on a broken stream (one that is no longer
connected). Support for an out-of-band data transmission facility is protocol-specific.

The Sequenced_Packet_Socket socket type is similar to the Stream_Socket type
and is also connection-oriented. The only difference between these types is that
record boundaries are maintained using the Sequenced_Packet_Socket type. A
record can be sent using one or more output operations and received using one or
more input operations, but a single operation never transfers parts of more than one
record. Record boundaries are visible to the receiver via an End_Of_Message flag
in the received message flags returned by the Receive_Message procedure. It is
protocol-specificwhether a maximum record size is imposed.

The Datagram_Socket socket type supports connectionless data transfer that is not
necessarily acknowledged or reliable. Each call to an output operation may specify
a different destination peer , and incoming datagrams may be received from multi-
ple sources. The source address of each datagram is available when receiving the
datagram. An application may also prespecify a peer address, in which case calls
to output functions shall send to the prespecified peer. If a peer has been specified,
only datagrams from that peer are received. A datagram is sent in a single output
operation and received in a single input operation. The maximum size of a datagram
is protocol-specific; with some protocols, the limit is implementation defined. Output
datagrams may be buffered within the system; thus, a successful return from an out-
put operation does not guarantee that a datagram will actually be sent or received.
However, implementations should attempt to detect any errors possible before the

488 18 Detailed Network Interface - Socket

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

return of an output function, reporting any error by raising POSIX_Error with the
appropriate error code.

The Raw_Socket socket type is similar to the Datagram_Socket type. It differs
in that it is normally used with communication providers that underlie those used
for the other socket types. For this reason the creation of a socket with type Raw_-
Socket shall require appropriate privilege. The format of datagrams sent and re-
ceived with this socket type generally include specific protocol headers, and the for-
mats are protocol-specific.

18.2 Events and States

18.2.1 Events

The state of a socket changes due to the occurrence of events. Events are caused
by operations invoked by the application, by input from the network, and internally
by the protocol machines. The set of events that can occur on a socket are protocol-
specific; i.e., not all events can occur with all protocols. The complete list of events
and their definitions is in Table 18.1. See D.1 for specific events for each protocol.

18.2.2 State

A socket and the underlying protocol engine supporting the socket both have a sub-
stantial amount of state. The state of the socket depends on the type of protocol
(connection-mode, connectionless-mode) and on the specific protocol in use. In gen-
eral, this protocol engine state includes addressing information and connection state
(for connection-mode protocols). In some states, data may be sent and/or received,
and in other states data transfer may not be possible in one or both directions. In
addition, data buffering and flow control state may be managed by the socket and the
protocol. A generalized socket state diagram is presented in this clause; the specific
states and transitions utilized by individual protocols may be subsets of this state
diagram. Separate subclauses in D.1 for each protocol define the state diagram and
transitions for that protocol.

The socket states and their definitions are listed in Table 18.2.

18.2.3 Connection-Mode Sockets

Figure 18.1 shows the generalized state diagram for connection-mode sockets (those
with type Stream_Socket or Sequenced_Packet_Socket). Each state is repre-
sented by a box. The events that cause state transitions are indicated by labels
along each arrow. The events and their definitions are listed in Table 18.1.

The operations listed in the figure shall be called only in the states shown. In the Null
state, no socket exists. It can be reached from any other state by closing the socket.

NOTE: If the socket is open in another process, it may not transition to the Null state.

A socket is first created in the Ground state.

The Connecting state is reached when a call to the Connect procedure initiates an
attempt by the protocol engine to connect to another endpoint. The endpoint remains

18.2 Events and States 489

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Table 18.1 – Socket Events
Event Definition

Create Successful return from Create .
Bind Successful return from Bind .
Close Successful return from Close .
Connect A successful blocking Connect , or successful return from a nonblock-

ing Connect in connection-mode.
Prespecify Successful return from Specify_Peer in connectionless-mode.
Connect Failure Failure of an attempt to connect using a connection-mode socket.
Unspecify Successful return from Unspecify_Peer , in connectionless-mode
Receive Connection Protocol-specific event indicating that a pending connection attempt

has completed successfully.
Accept Connection A blocking Accept_Connection , or a successful return from a non-

blocking Accept_Connection .
Data Transfer Successful return from Read, Receive , or Receive_Message where

the number of octets received is greater than zero. Successful return
from Send, Send_Message , or Write where the number of output
octets is greater than zero.

Send Confirmation Successful return from Send_Message specifying ancillary data only.
Successful return from Set_ Connection_ Confirmation_ Data .
(This option is specific to the ISO Transport Protocol. See D.1.) Re-
ceipt of an inbound connection open request where the protocol au-
tomatically accepts the connection. This case causes a blocking Ac-
cept_Connection to succeed. Call to Select_File or Poll on the
socket (19.1.1 and 19.1.2).

Read Successful return from Read.
Receive Successful return from Receive .
Receive Message Successful return from Receive_Message .
Send Successful return from Send.
Send Message Successful return from Send_Message .
Write Successful return from Write .
Shutdown0 Successful return from Shutdown with Further_Receives_Disal-

lowed , or a protocol-specific event indicating that no additional data
will be received.

Shutdown1 Successful return from Shutdown with Further_ Sends_ Disal-
lowed , or a protocol-specific event indicating that no additional data
can be sent.

Shutdown2 Successful return from Shutdown with Further_Sends_And_Re-
ceives_Disallowed , or a protocol-specific event such as connection
close or abort.

Shutdown3 Successful return from Shutdown with Further_Sends_Disallowed
or Further_ Sends_ And_ Receives_ Disallowed , or a protocol-
specific event indicating that no additional data will be sent.

Shutdown4 Successful return from Shutdown with Further_Receives_Dis-
allowed or Further_ Sends_ And_ Receives_ Disallowed , or a
protocol-specific event indicating that no additional data will be re-
ceived.

in this state until the protocol engine reports either success or failure in establishing
the connection. The Connected state is entered if the connection attempt is successful,
and the Failed state is entered if the attempt is unsuccessful.

490 18 Detailed Network Interface - Socket

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Table 18.2 – Socket States
State Definition

Null In this state the socket is not initialized.
Ground In this state the socket has just been created.
Bound In this state the socket has a local socket address associated with it.
Connecting In this state the socket is in the process of trying to open a connection

to a specified destination.
Listening In this state the socket is waiting for an inbound connection open re-

quest to be received.
Confirming In this state the socket is deciding whether to accept an inbound con-

nection open request.
Failed In this state an outbound connection open has failed.
Connected In this state an inbound open has been accepted or an outbound open

has succeeded. Data can be transferred in both directions.
Sending Only In this state the peer has indicated that it will not send any more data.

Output data can still be sent on the socket.
Receiving Only In this state the local application has indicated that it is done sending

data. Input data can still be received on the socket.
Dead In this state input and output cannot be sent on the socket. The linger

option is relevant in this state.
Open In this state, the remote socket address is fixed for both input and

output operations.

When a connection indication is received for a socket in the Listening state, a new
socket is created. The new socket is used for the new connection, and the original
socket remains in the Listening state. The descriptor for the new socket is made avail-
able to the application via the Accept_Connection procedure. In the Confirming
state the connection request has been neither confirmed nor rejected. It is protocol-
specificwhether the new socket is returned in the Confirming state or whether the
connection is confirmed and completed before the new descriptor is made available.

Not all states are necessarily supported by each protocol. The Confirming state and
the Connecting state are not used in some protocols. Applications that do not use
protocol-specificfeatures cannot depend on the existence of these states, as the next
logical state is entered immediately. For example, a socket returned by the Accept_-
Connection function is either in the Confirming state or the Connected state. An
application not using protocol-specificcalls to confirm or reject the connection would
initiate I/O on the descriptor, advancing the socket to the Connected state.

Another example is that many implementations of the Local_Protocol IPC pro-
tocol either complete or reject connection attempts, even when POSIX_IO.Non_-
Blocking is set. The Failed state may be the same as the Ground state for some
protocols or implementations; applications should not use any call other than the
Close procedure in this state. The Sending Only state and the Receiving Only state do
not necessarily cause any change in the protocol state, and thus the state transition
may not be transmitted to the remote endpoint of the connection. The interface spec-
ification for each connection-mode protocol in D.1 notes any differences between this
state diagram and that for the protocol and specifies the protocol actions taken when
the Shutdown procedure is called.

Although not shown in the diagram, a socket in the Confirming, Connected, Sending Only

18.2 Events and States 491

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Connecting

Bound

Ground

Listening

Null

ConfirmingFailed

Dead

Connected

Sending Only Receiving Only

ListenConnect

Connect

Bind

Close

Close

Close

Connect Failure

R
eceive C

onnection

Close

Close

Data Transfer
Send Confirmation

Close

Create

(old socket)Accept Connection

(new socket)

Read
Receive
Receive Message
Write
Send
Send Message

Close

Close

Shutdown1

S
hutdow

n2

Shutdown0

Send Message

Shutdown3

Close

Shutdown4

Receive Message

Close

Send
Write

Receive
Read

Figure 18.1 – Connection-Mode Sockets State Diagram

or Receiving Only states can transition to the Dead state by actions of the protocol. If
a connection is aborted by the protocol or the remote endpoint, the socket enters the
Dead state.

492 18 Detailed Network Interface - Socket

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

18.2.4 Connectionless-Mode Sockets

Figure 18.2 shows a generalized state diagram for connectionless-mode sockets (sock-
ets with type Datagram_Socket), using the same notation as in Figure 18.1. The
specification for each datagram protocol in D.1 notes any differences between this
state diagram and that for the protocol. Figure 18.2 also illustrates the state dia-
gram for sockets with type Raw_Socket . However, all uses of Raw_Socket sockets
are protocol-specific, and specific protocols may use completely different states. It is
protocol-specificwhether a call to Send or Send_Message in the Ground state causes
a transition to the Bound state.

Ground

Null

Open
(peer address
prespecified)

Bound

Prespecify

Send Message
Send
Bind

Close

Create

Send
Send Message

Unspecify

Prespecify
Close

Close

Send
Send Message
Receive
Receive Message

Receive Message
Receive

Send Message
Send

Prespecify
Write
Read

Figure 18.2 – Connectionless-Mode Sockets State Diagram

18.2.5 Socket State Elements

A socket has several state elements that are independent of the protocol, although
the use of this state may depend on the protocol. The state of a socket includes the
following items:

— I/O mode

— Owner (process or process group)

— Receive and transmit queue limits

— Error status

— Queued data that have been received

— Out-of-band state

— Connection status

— For listening connection-mode sockets, a queue of connection indications

— Socket options, defined in 18.3

18.2 Events and States 493

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

18.2.5.1 Socket I/O Mode

The I/O mode of a socket is described by two file status flags. The two flags pertain
to the open file description for the socket. Both flags are initially off when a socket is
created, but they may be set and cleared by the use of the POSIX_IO.Set_File_-
Control procedure. The two flags are POSIX_IO.Non_Blocking and POSIX_IO.-
Signal_When_Socket_Ready .

When the POSIX_IO.Non_Blocking flag is set, functions that would normally block
until they are complete either return immediately with an error, or they complete
asynchronously to the execution of the calling process. Data transfer operations (the
Read, Write , Send, and Receive functions) shall complete immediately, transfer
less than requested, and then return without blocking; or they shall return an error
indicating that no transfer could be made without blocking. The Connect procedure
initiates a connection and returns without blocking when POSIX_IO.Non_Blocking
is set; it returns the error Already_Awaiting_Connection to indicate that the
connection was initiated successfully, but that it has not yet completed.

The socket is in signal-driven mode when the POSIX_IO.Signal_When_Socket_-
Ready flag is set. This mode is generally used with POSIX_IO.Non_Blocking set. In
signal-driven mode, POSIX_Signals.Signal_IO is sent to the owner of the socket
whenever an I/O operation becomes possible (when additional data could be sent,
when new data arrive to be received, or a state transition such as connection es-
tablishment or error detection would allow a Send or Receive call to return status
without blocking).

18.2.5.2 Socket Owner

The owner of a socket is unset when a socket is created. The owner may be set to a
process ID or process group ID using the POSIX_IO.Set_Socket_Process_Owner
and POSIX_IO.Set_Socket_Group_Owner procedures. The procedure POSIX_IO.-
Get_Owner returns the process owner or the process group owner for a socket.

18.2.5.3 Socket Queue Limits

The transmit and receive queue sizes for a socket are set when the socket is created.
The default sizes used are both protocol-specificand implementation defined. The
sizes may be changed using the socket options functions.

18.2.5.4 Pending Error

Errors may occur asynchronously and be reported to the socket in response to input
from the network protocol. The socket stores the pending error to be reported to
an application using the socket at the next opportunity. The error is returned in
response to a subsequent Send, Receive , or socket option operation on the socket,
and the pending error is then cleared.

18.2.5.5 Socket Receive Queue

A socket has a receive queue that buffers data when they are received by the system
until they are removed by a receive call. Depending on the type of the socket and the

494 18 Detailed Network Interface - Socket

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

communication provider, the receive queue may also contain ancillary data such as
the addressing and other protocol data associated with the normal data in the queue
and may contain out-of-band or expedited data. (Expedited dataare the mechanism
used to bypass the flow control of normal data in the ISO protocols, and out-of-band
data are data associated with an out-of-band signal in the Internet protocols.) The
limit on the queue size includes any normal data, out-of-band data, datagram source
addresses and ancillary data in the queue. The description in this subclause applies
to all sockets, even though some elements cannot be present in some instances.

The contents of a receive buffer are logically structured as a series of data segments
with associated ancillary data and other information. A data segment may contain
normal data or out-of-band data, but never both. A data segment may complete a
record if the protocol supports records (always true for types Sequenced_Packet_-
Socket , and Datagram_Socket). A record may be stored as more than one segment.
The complete record might never be present in the receive buffer at one time, as
a portion might already have been returned to the application and another portion
might not yet have been received from the communications provider. A data segment
may contain ancillary protocol data that are logically associated with the segment.

Ancillary data are received as if they were queued along with the first normal data
octet in the segment (if any). It is possible for a segment to have ancillary data only.
For the purposes of this subclause, a datagram is considered to be a data segment
that terminates a record and that includes a source address as a special type of an-
cillary data. Data segments are placed into the queue as data are delivered to the
socket by the protocol. Normal data segments are placed at the end of the queue as
they are delivered. If a new segment contains the same type of data as the preced-
ing segment and includes no ancillary data and if the preceding segment does not
terminate a record, the segments are logically merged into a single segment.

The receive queue is logically terminated if an end-of-file indication has been received
or a connection has been terminated.

A segment shall be considered to be terminated if another segment follows it in the
queue, if the segment completes a record, or if an end-of-file or other connection
termination has been reported. The last segment in the receive queue shall also be
considered to be terminated while the socket has a pending error to be reported.

A receive operation shall never return data or ancillary data from more than one
segment.

18.2.5.6 Socket Out-of-Band Data State

The handling of received out-of-band data is protocol-specific. Out-of-band data may
be placed in the socket receive queue, either at the end of the queue or before all nor-
mal data in the queue. In this case, out-of-band data are returned to an application
program by a normal Receive call. Out-of-band data may also be queued separately
rather than being placed in the socket receive queue, in which case they shall be
returned only in response to a Receive call that requests out-of-band data. It is
protocol-specific whether an out-of-band data mark is placed in the receive queue to
demarcate data preceding the out-of-band data and following the out-of-band data.
An out-of-band data mark is logically an empty data segment that cannot be merged

18.2 Events and States 495

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

with other segments in the queue. An out-of-band data mark is never returned in
response to an input operation. The Socket_Is_At_OOB_Mark function can be used
to test whether an out-of-band data mark is the first element in the queue. If an
out-of-band data mark is the first element in the queue when Read, Receive , or Re-
ceive_Message is called without the Peek_Only option, the mark is removed from
the queue and the following data (if any) are processed as if the mark had not been
present.

18.2.5.7 Socket Connection Status

A connection-mode socket and/or its supporting protocol engine maintain generic
connection status. This status includes indications that

— A connection has been initiated.

— A connection has been established.

— An end-of-file indication has been received.

— A disconnect has been initiated.

— A disconnect has been completed.

— No additional data may be sent due to protocol connection shutdown.

D.1 specifies for each protocol the events that cause each indication to be set.

18.2.5.8 Connection Indication Queue

Sockets that are used to accept incoming connections maintain a queue of outstand-
ing connection indications. This queue is a list of connections that are awaiting ac-
ceptance by the application. The maximum size of the queue is constrained to be the
lower of the backlog parameter set by the Listen function and the Connection_-
Queue_Length_Maximum constant. If the protocol returns sockets in the Connected
state rather than the Confirming state via the Accept_Connection procedure, the im-
plementation may include incomplete connections in the queue subject to the queue
limit. The implementation may also increase the specified queue limit internally if
it includes such incomplete connections in the queue subject to this limit.

18.2.6 Signals

One category of event at the socket interface is the generation of signals. These
signals report protocol events or process errors relating to the state of the socket. The
generation or delivery of a signal does not change the state of the socket, although
the generation of the signal may have been caused by a state change.

POSIX_Signals.Signal_Pipe_Write shall be sent to a process that attempts to
send data on a socket that is no longer able to send. In addition, the send operation
fails with the error Broken_Pipe .

If a socket has an owner, POSIX_Signals.Signal_Out_Of_Band_Data is sent to the
owner of the socket when it is notified of expedited or out-of-band data. The socket
state at this time is protocol-specific, and the status of the socket is specified in D.1.1
for each protocol. Depending on the protocol, the expedited data may or may not
have arrived at the time of signal generation.

496 18 Detailed Network Interface - Socket

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

If a socket is in signal-driven mode and has an owner, POSIX_Signals.Signal_IO is
sent to the owner of the socket when new data arrive at the socket, when additional
data may be sent on the socket due to a change in flow control, when a pending er-
ror is set for the socket, or when a change of state makes further send or receive
operations impossible. A signal shall be also sent when a call to the Accept_Con-
nection procedure would succeed without blocking and when it becomes possible
to write data to a connection that was being established asynchronously. The pro-
cedures Poll and Select_File can be used for event management (see 19.1.1 and
19.1.2).

18.2.7 Asynchronous Errors

If any of the following conditions occur asynchronously for a socket, the correspond-
ing value listed below shall become the pending error for the socket:

Connection_Aborted

The connection was aborted locally.

Connection_Refused

For a connection-mode socket attempting a nonblocking connection, the at-
tempt to connect was forcefully rejected.
For a connectionless-mode socket, an attempt to deliver a datagram was
forcefully rejected.

Connection_Reset

The peer has aborted the connection.

Host_Down

The destination host has been determined to be down or disconnected.

Host_Unreachable

The destination host is not reachable.

Message_Too_Long

For a connectionless-mode socket, the size of a previously sent datagram
prevented delivery.

Network_Down

The local network connection is not operational.

Network_Reset

The connection was aborted by the network.

Network_Unreachable

The destination network is not reachable.

Timed_Out

The connection timed out during or after connection establishment.

18.2 Events and States 497

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

18.3 Use of Options

A number of socket options either specialize the behavior of a socket or provide useful
information. Some options are protocol independent; these are described in 18.4.9
along with the functions and procedures that manipulate them. Others are protocol-
specific; these options and their associated functions and procedures are described in
D.1.

All of the options have default values. The type and meaning of these values is
defined by the protocol to which they apply. Instead of using the default values, an
application program may choose to customize one or more of the options. However,
in the bulk of cases, the default values are sufficient for the application.

Some of the options are used to enable or disable certain behavior within the pro-
tocol modules (e.g., turn on debugging) while others may be used to set protocol-
specificinformation (e.g., IP time-to-live on all the outgoing packets of the applica-
tion).

18.4 Package POSIX_Sockets

The package POSIX_Sockets provides the Sockets protocol-independent process-to-
process communications interface.

The functionality described in this clause is optional. If the Sockets Detailed Network
Interface option is not supported, the implementation may cause all calls to the explic-
itly declared operations defined in this clause to raise POSIX_Error . Otherwise, the
behavior shall be as specified in this clause.

with POSIX,
POSIX_IO,
POSIX_Limits,
System;

package POSIX_Sockets is
-- 18.4.1 Common Data Types and Constants
-- 18.4.1.1 Socket Types and Protocols
type Socket_Type is range implementation-defined;
Stream_Socket : constant Socket_Type := impl-def-static-expression;
Datagram_Socket : constant Socket_Type := impl-def-static-expression;
Raw_Socket : constant Socket_Type := impl-def-static-expression;
Sequenced_Packet_Socket : constant Socket_Type := impl-def-static-expression;
Unspecified_Socket_Type : constant Socket_Type := impl-def-static-expression;
type Protocol_Family is range implementation-defined;
Unspecified_Protocol_Family :

constant Protocol_Family := impl-def-static-expression;
type Protocol_Number is range implementation-defined;
Default_Protocol : constant Protocol_Number := impl-def-static-expression;
-- 18.4.1.2 Socket Addresses
type Socket_Address_Pointer is private ;
Null_Socket_Address : constant Socket_Address_Pointer;
-- 18.4.1.3 Socket Messages
type Socket_Message is private ;
subtype IO_Vector_Range is Positive range

1 .. POSIX_Limits.Socket_IO_Vector_Maxima’Last;

498 18 Detailed Network Interface - Socket

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

type IO_Vector_Array is array
(IO_Vector_Range range <>) of POSIX_IO.IO_Vector;

procedure Set_Socket_Name
(Message : in out Socket_Message;

Name : in Socket_Address_Pointer);
type IO_Vector_Array_Pointer is access all IO_Vector_Array;
procedure Set_IO_Vector_Array

(Message : in out Socket_Message;
Pointer : in IO_Vector_Array_Pointer);

function Get_IO_Vector_Array (Message : Socket_Message)
return IO_Vector_Array_Pointer;

type Message_Option_Set is new POSIX.Option_Set;
Peek_Only : constant Message_Option_Set := implementation-defined;
Process_OOB_Data : constant Message_Option_Set := implementation-defined;
Wait_For_All_Data : constant Message_Option_Set := implementation-defined;
Do_Not_Route : constant Message_Option_Set := implementation-defined;
type Message_Status_Set is new POSIX.Option_Set;
Received_OOB_Data : constant Message_Status_Set := implementation-defined;
End_Of_Message : constant Message_Status_Set := implementation-defined;
Message_Truncated : constant Message_Status_Set := implementation-defined;
Ancillary_Data_Lost : constant Message_Status_Set := implementation-defined;
procedure Set_Message_Options

(Message : in out Socket_Message;
Options : in Message_Option_Set);

function Get_Message_Status
(Message : Socket_Message)

return Message_Status_Set;
procedure Set_Ancillary_Data

(Message : in out Socket_Message;
Data : in System.Address;
Length : in POSIX.IO_Count);

procedure Get_Ancillary_Data
(Message : in Socket_Message;

Data : out System.Address;
Length : out POSIX.IO_Count);

-- 18.4.2 Dequeue a Connection Indication on a Socket
procedure Accept_Connection

(Socket : in POSIX_IO.File_Descriptor;
Connection_Socket : out POSIX_IO.File_Descriptor;
Name : in Socket_Address_Pointer);

function Accept_Connection
(Socket : POSIX_IO.File_Descriptor)

return POSIX_IO.File_Descriptor;
-- 18.4.3 Bind a Socket Address to a Socket
procedure Bind

(Socket : in POSIX_IO.File_Descriptor;
Name : in Socket_Address_Pointer);

-- 18.4.4 Initiate a Connection on a Socket
procedure Connect

(Socket : in POSIX_IO.File_Descriptor;
Peer : in Socket_Address_Pointer);

procedure Specify_Peer
(Socket : in POSIX_IO.File_Descriptor;

Peer : in Socket_Address_Pointer);
procedure Unspecify_Peer

(Socket : in POSIX_IO.File_Descriptor);

18.4 Package POSIX_Sockets 499

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

-- 18.4.5 Create an Endpoint for Communication
function Create

(Domain : Protocol_Family;
Of_Type : Socket_Type;
Protocol : Protocol_Number := Default_Protocol)

return POSIX_IO.File_Descriptor;
-- 18.4.6 Create a Pair of Connected Sockets
procedure Create_Pair

(Peer1 : out POSIX_IO.File_Descriptor;
Peer2 : out POSIX_IO.File_Descriptor;
Domain : in Protocol_Family;
Of_Type : in Socket_Type;
Protocol : in Protocol_Number := Default_Protocol);

-- 18.4.7 Get Socket Address Information
type Socket_Address_Info is limited private ;
type Socket_Address_Info_List is limited private ;
procedure Make_Empty

(Info_Item : in out Socket_Address_Info_List);
type Address_Flags is new POSIX.Option_Set;
Use_For_Binding : constant Address_Flags := implementation-defined;
Canonical_Name : constant Address_Flags := implementation-defined;
procedure Set_Flags

(Info_Item : in out Socket_Address_Info;
Flags : in Address_Flags);

function Get_Flags (Info_Item : Socket_Address_Info)
return Address_Flags;

procedure Set_Family
(Info_Item : in out Socket_Address_Info;

Family : in Protocol_Family);
function Get_Family (Info_Item : Socket_Address_Info)

return Protocol_Family;
procedure Set_Socket_Type

(Info_Item : in out Socket_Address_Info;
To : in Socket_Type);

function Get_Socket_Type (Info_Item : Socket_Address_Info)
return Socket_Type;

procedure Set_Protocol_Number
(Info_Item : in out Socket_Address_Info;

Protocol : in Protocol_Number);
function Get_Protocol_Number (Info_Item : Socket_Address_Info)

return Protocol_Number;
function Get_Canonical_Name (Info_Item : Socket_Address_Info)

return POSIX.POSIX_String;
procedure Get_Socket_Address_Info

(Name : in POSIX.POSIX_String;
Service : in POSIX.POSIX_String;
Info : in out Socket_Address_Info_List);

procedure Get_Socket_Address_Info
(Name : in POSIX.POSIX_String;

Service : in POSIX.POSIX_String;
Request : in Socket_Address_Info;
Info : in out Socket_Address_Info_List);

generic
with procedure Action

(Info : in Socket_Address_Info;
Quit : in out Boolean);

procedure For_Every_Item (List : in Socket_Address_Info_List);

500 18 Detailed Network Interface - Socket

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

-- 18.4.8 Get Socket Information
function Get_Socket_Error_Status

(Socket : POSIX_IO.File_Descriptor)
return POSIX.Error_Code;

function Get_Socket_Type
(Socket : POSIX_IO.File_Descriptor)

return Socket_Type;
-- 18.4.9 Get and Set Options on Sockets
type Socket_Option_Value is (Enabled, Disabled);
function Get_Socket_Broadcast

(Socket : POSIX_IO.File_Descriptor)
return Socket_Option_Value;

procedure Set_Socket_Broadcast
(Socket : in POSIX_IO.File_Descriptor;

To : in Socket_Option_Value);
function Get_Socket_Debugging

(Socket : POSIX_IO.File_Descriptor)
return Socket_Option_Value;

procedure Set_Socket_Debugging
(Socket : in POSIX_IO.File_Descriptor;

To : in Socket_Option_Value);
function Get_Socket_Routing

(Socket : POSIX_IO.File_Descriptor)
return Socket_Option_Value;

procedure Set_Socket_Routing
(Socket : in POSIX_IO.File_Descriptor;

To : in Socket_Option_Value);
function Get_Socket_Keep_Alive

(Socket : POSIX_IO.File_Descriptor)
return Socket_Option_Value;

procedure Set_Socket_Keep_Alive
(Socket : in POSIX_IO.File_Descriptor;

To : in Socket_Option_Value);
subtype Linger_Time is POSIX.Seconds range 0 .. POSIX.Seconds’Last;
function Get_Socket_Linger_Time

(Socket : POSIX_IO.File_Descriptor)
return Linger_Time;

procedure Set_Socket_Linger_Time
(Socket : in POSIX_IO.File_Descriptor;

To : in Linger_Time);
function Get_Socket_OOB_Data_Inline

(Socket : POSIX_IO.File_Descriptor)
return Socket_Option_Value;

procedure Set_Socket_OOB_Data_Inline
(Socket : in POSIX_IO.File_Descriptor;

To : in Socket_Option_Value);
function Get_Socket_Receive_Buffer_Size

(Socket : POSIX_IO.File_Descriptor)
return POSIX.IO_Count;

procedure Set_Socket_Receive_Buffer_Size
(Socket : in POSIX_IO.File_Descriptor;

To : in POSIX.IO_Count);
function Get_Socket_Receive_Low_Water_Mark

(Socket : POSIX_IO.File_Descriptor)
return POSIX.IO_Count;

procedure Set_Socket_Receive_Low_Water_Mark
(Socket : in POSIX_IO.File_Descriptor;

To : in POSIX.IO_Count);

18.4 Package POSIX_Sockets 501

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

function Get_Socket_Receive_Timeout
(Socket : POSIX_IO.File_Descriptor)

return Duration;
procedure Set_Socket_Receive_Timeout

(Socket : in POSIX_IO.File_Descriptor;
To : in Duration);

function Get_Socket_Reuse_Addresses
(Socket : POSIX_IO.File_Descriptor)

return Socket_Option_Value;
procedure Set_Socket_Reuse_Addresses

(Socket : in POSIX_IO.File_Descriptor;
To : in Socket_Option_Value);

function Get_Socket_Send_Buffer_Size
(Socket : POSIX_IO.File_Descriptor)

return POSIX.IO_Count;
procedure Set_Socket_Send_Buffer_Size

(Socket : in POSIX_IO.File_Descriptor;
To : in POSIX.IO_Count);

function Get_Socket_Send_Low_Water_Mark
(Socket : POSIX_IO.File_Descriptor)

return POSIX.IO_Count;
procedure Set_Socket_Send_Low_Water_Mark

(Socket : in POSIX_IO.File_Descriptor;
To : in POSIX.IO_Count);

function Get_Socket_Send_Timeout
(Socket : POSIX_IO.File_Descriptor)

return Duration;
procedure Set_Socket_Send_Timeout

(Socket : in POSIX_IO.File_Descriptor;
To : in Duration);

-- 18.4.10 Determine Whether a File Descriptor Refers to a Socket
function Is_A_Socket (File : POSIX_IO.File_Descriptor)

return Boolean;
-- 18.4.11 Listen for Connections on a Sockets
Connection_Queue_Length_Maximum : constant := impl-def-static-expression;
subtype Connection_Queue_Length is natural

range 0 .. Connection_Queue_Length_Maximum;
procedure Listen

(Socket : in POSIX_IO.File_Descriptor;
Backlog : in Connection_Queue_Length :=

Connection_Queue_Length’Last);
-- 18.4.12 Receive Data From a Socket
procedure Receive

(Socket : in POSIX_IO.File_Descriptor;
Buffer : in System.Address;
Octets_Requested : in POSIX.IO_Count;
Octets_Received : out POSIX.IO_Count;
Masked_Signals : in POSIX.Signal_Masking;
Options : in Message_Option_Set := Empty_Set);

procedure Receive
(Socket : in POSIX_IO.File_Descriptor;

Buffer : in System.Address;
Octets_Requested : in POSIX.IO_Count;
Octets_Received : out POSIX.IO_Count;
Options : in Message_Option_Set := Empty_Set);

502 18 Detailed Network Interface - Socket

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

procedure Receive
(Socket : in POSIX_IO.File_Descriptor;

Buffer : in System.Address;
Octets_Requested : in POSIX.IO_Count;
Octets_Received : out POSIX.IO_Count;
From : in Socket_Address_Pointer;
Masked_Signals : in POSIX.Signal_Masking;
Options : in Message_Option_Set := Empty_Set);

procedure Receive
(Socket : in POSIX_IO.File_Descriptor;

Buffer : in System.Address;
Octets_Requested : in POSIX.IO_Count;
Octets_Received : out POSIX.IO_Count;
From : in Socket_Address_Pointer;
Options : in Message_Option_Set := Empty_Set);

procedure Receive_Message
(Socket : in POSIX_IO.File_Descriptor;

Message : in out Socket_Message;
Octets_Received : out POSIX.IO_Count;
Masked_Signals : in POSIX.Signal_Masking;
Options : in Message_Option_Set := Empty_Set);

procedure Receive_Message
(Socket : in POSIX_IO.File_Descriptor;

Message : in out Socket_Message;
Octets_Received : out POSIX.IO_Count;
Options : in Message_Option_Set := Empty_Set);

-- 18.4.13 Send Data Over a Socket
procedure Send

(Socket : in POSIX_IO.File_Descriptor;
Buffer : in System.Address;
Octets_To_Send : in POSIX.IO_Count;
Octets_Sent : out POSIX.IO_Count;
Masked_Signals : in POSIX.Signal_Masking;
Options : in Message_Option_Set := Empty_Set);

procedure Send
(Socket : in POSIX_IO.File_Descriptor;

Buffer : in System.Address;
Octets_To_Send : in POSIX.IO_Count;
Octets_Sent : out POSIX.IO_Count;
Options : in Message_Option_Set := Empty_Set);

procedure Send
(Socket : in POSIX_IO.File_Descriptor;

Buffer : in System.Address;
Octets_To_Send : in POSIX.IO_Count;
Octets_Sent : out POSIX.IO_Count;
To : in Socket_Address_Pointer;
Masked_Signals : in POSIX.Signal_Masking;
Options : in Message_Option_Set := Empty_Set);

procedure Send
(Socket : in POSIX_IO.File_Descriptor;

Buffer : in System.Address;
Octets_To_Send : in POSIX.IO_Count;
Octets_Sent : out POSIX.IO_Count;
To : in Socket_Address_Pointer;
Options : in Message_Option_Set := Empty_Set);

18.4 Package POSIX_Sockets 503

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

procedure Send_Message
(Socket : in POSIX_IO.File_Descriptor;

Message : in Socket_Message;
Octets_Sent : out POSIX.IO_Count;
Masked_Signals : in POSIX.Signal_Masking;
Options : in Message_Option_Set := Empty_Set);

procedure Send_Message
(Socket : in POSIX_IO.File_Descriptor;

Message : in Socket_Message;
Octets_Sent : out POSIX.IO_Count;
Options : in Message_Option_Set := Empty_Set);

-- 18.4.14 Shut Down Part of a Full-Duplex Connection
type Shutdown_Mode is

(Further_Receives_Disallowed,
Further_Sends_Disallowed,
Further_Sends_And_Receives_Disallowed);

procedure Shutdown
(Socket : in POSIX_IO.File_Descriptor;

Mode : in Shutdown_Mode);
-- 18.4.15 Determine Whether a Socket is at the Out-of-Band Mark
function Socket_Is_At_OOB_Mark (Socket : POSIX_IO.File_Descriptor)

return Boolean;

private
implementation-defined

end POSIX_Sockets;

18.4.1 Common Data Types and Constants

18.4.1.1 Socket Types and Protocols

18.4.1.1.1 Synopsis

type Socket_Type is range implementation-defined;
Stream_Socket : constant Socket_Type := impl-def-static-expression;
Datagram_Socket : constant Socket_Type := impl-def-static-expression;
Raw_Socket : constant Socket_Type := impl-def-static-expression;
Sequenced_Packet_Socket : constant Socket_Type := impl-def-static-expression;
Unspecified_Socket_Type : constant Socket_Type := impl-def-static-expression;
type Protocol_Family is range implementation-defined;
Unspecified_Protocol_Family :

constant Protocol_Family := impl-def-static-expression;
type Protocol_Number is range implementation-defined;

Default_Protocol : constant Protocol_Number := impl-def-static-expression;

18.4.1.1.2 Description

A Socket_Type indicates what type of communication service semantics will be
associated with operations on the socket. These values shall be distinct.

A Protocol_Family (see 18.1.1), together with a socket type, determine the protocol
that is used for subsequent operations on the socket. Values of type Protocol_-
Family shall be distinct. The value Unspecified_Protocol_Family indicates an
unspecified protocol family or any protocol family that can be used with a particular
name and/or service (see 18.4.7 and D.1.3.2).

504 18 Detailed Network Interface - Socket

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Protocol_Number specifies a particular protocol within a given protocol family
when creating a socket with Create or Create_Pair . Default_Protocol is the de-
fault value of parameter Protocol of function Create (18.4.5) and procedure Cre-
ate_Pair (18.4.6). It specifies the default protocol to be used for the given Socket_-
Type and Protocol_Family .

18.4.1.2 Socket Addresses

18.4.1.2.1 Synopsis

type Socket_Address_Pointer is private ;

Null_Socket_Address : constant Socket_Address_Pointer;

18.4.1.2.2 Description

Socket addresses are described using the general object Socket_Address_Pointer ,
which references a protocol-specific network address. The attributes of protocol-
specificsocket address types, the operations that manipulate them, and operations to
convert protocol-specific socket address objects to and from the Socket_Address_-
Pointer type are described in D.1.

The constant Null_Socket_Address is a special value that does not refer to any
address (i.e., the null address). This constant is used as a paremeter to certain oper-
ations when the Socket_Address_Pointer object can optionally be omitted by the
application.

18.4.1.3 Socket Messages

18.4.1.3.1 Synopsis

type Socket_Message is private ;
subtype IO_Vector_Range is Positive range

1 .. POSIX_Limits.Socket_IO_Vector_Maxima’Last;
type IO_Vector_Array is array

(IO_Vector_Range range <>) of POSIX_IO.IO_Vector;
procedure Set_Socket_Name

(Message : in out Socket_Message;
Name : in Socket_Address_Pointer);

type IO_Vector_Array_Pointer is access all IO_Vector_Array;
procedure Set_IO_Vector_Array

(Message : in out Socket_Message;
Pointer : in IO_Vector_Array_Pointer);

function Get_IO_Vector_Array (Message : Socket_Message)
return IO_Vector_Array_Pointer;

type Message_Option_Set is new POSIX.Option_Set;
Peek_Only : constant Message_Option_Set := implementation-defined;
Process_OOB_Data : constant Message_Option_Set := implementation-defined;
Wait_For_All_Data : constant Message_Option_Set := implementation-defined;
Do_Not_Route : constant Message_Option_Set := implementation-defined;
type Message_Status_Set is new POSIX.Option_Set;
Received_OOB_Data : constant Message_Status_Set := implementation-defined;
End_Of_Message : constant Message_Status_Set := implementation-defined;
Message_Truncated : constant Message_Status_Set := implementation-defined;
Ancillary_Data_Lost : constant Message_Status_Set := implementation-defined;
procedure Set_Message_Options

(Message : in out Socket_Message;
Options : in Message_Option_Set);

18.4 Package POSIX_Sockets 505

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

function Get_Message_Status
(Message : Socket_Message)

return Message_Status_Set;
procedure Set_Ancillary_Data

(Message : in out Socket_Message;
Data : in System.Address;
Length : in POSIX.IO_Count);

procedure Get_Ancillary_Data
(Message : in Socket_Message;

Data : out System.Address;

Length : out POSIX.IO_Count);

18.4.1.3.2 Description

The Send_ Message and Receive_Message operations use an object called a
Socket_Message to specify the location of multiple data segments that can be sent
or received in a single operation. (These data segments are not related to the data
segments of 18.2.5.5.) In addition, these operations may also be used to send and
receive protocol-specificancillary data. The Socket_Message consolidates all of the
necessary information into a single object, thus simplifying the parameters in the
Send_Message and Receive_Message calls.

A Socket_Message object is made up of the following attributes:

Name

In a receive operation, the address of the sending entity on a connectionless
socket. In a send operation, it is the address of the peer to which the mes-
sage is to be sent. The application shall set this attribute before the message
can be sent over a connectionless socket. If the socket destination address
has been prespecified with the Connect or Specify_Peer procedure, this
attribute shall be left unspecified when the message is sent. Get_Socket_-
Name(see D.1) shall return the protocol-specific address of the sender of a
received message if the socket is in a connectionless state. In all other cases
the returned socket address is indeterminate. Set_Socket_Name is used
to set the desired recipient of a message on a send operation for a connec-
tionless socket. Set_Socket_Name may also be used by the application to
initialize the name for a receive operation, so that the identity of the sender
will not be recorded. Normally, the name of the sender is saved and can be
retrieved with Get_Socket_Name . Any error checking on the address is not
done until the message is sent via Send_Message .

IO Vector Array

A pointer to an object with the type IO_Vector_Array containing elements
that have the type POSIX_IO.IO_Vector , each of which points to an indi-
vidual data segment. A socket message consists of a sequence of these data
segments. For a Send operation, the IO_Vector_Array specifies what data
are to be sent; in a receive operation, it specifies where the received data
are to be placed. The Set_IO_Vector_Array procedure and the Get_-
IO_Vector_Array function set and retrieve the IO Vector Array attribute of a
Socket_Message . The POSIX_IO.Set_Buffer procedure and the POSIX_-
IO.Get_Buffer function manipulate pointers of type System.Address for
each individual data segment of the IO_Vector_Array and also set the
Length of each segment.

506 18 Detailed Network Interface - Socket

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Ancillary Data

A pointer to a contiguous sequence of octets that make up protocol-
specificancillary data being sent or received with the socket message. The
format and type of the ancillary data (also referred to as control data) is
protocol-specific. A mechanism to manipulate raw ancillary data buffers is
provided by the Set_Ancillary_Data and Get_Ancillary_Data proce-
dures. Overloaded versions of these subprograms for protocol-specific ancil-
lary data formats are provided in D.1.
An application can issue a Receive_Message operation requesting ancil-
lary data only or a Send_Message operation that sends ancillary data only
by specifying a Socket_Message object that has not had any data segments
specified by Set_IO_Vector_Array . The same effect can be accomplished
by performing a POSIX_IO.Set_Buffer operation for each POSIX_IO.-
IO_Vector specifying System.Null_Address for Buffer and a Length of
zero.

Message Status

Information on attributes of the message, as well as any buffer truncation
that may have occurred (see 18.4.12). This attribute is used on received
messages only. Send_Message does not return a message status. This at-
tribute is distinct from the Options parameter used on receive and send
operations.

The following steps are needed to create and manage a Socket_Message :

— The application defines each segment of the socket message with an POSIX_-
IO.IO_Vector object using the POSIX_IO .Set_Buffer procedure.

— The segments are combined in an IO_Vector_Array . The application shall set
the address of this array in the socket message with Set_IO_Vector_Array .

— If needed, the application also sets up the Ancillary Data, Message Flags, and Name
attributes.

The constant POSIX_Limits.Socket_IO_Vector_Maxima’Last defines how many
message segments are allowed in a socket message.

NOTE: Applications may use pointers to the POSIX.Octet_Array type to ensure proper data
width for network I/O operations. When using pointers to other data types, byte width and
ordering issues (i.e., big endian, little endian) are the responsibility of the application.

18.4.2 Dequeue a Connection Indication on a Socket

18.4.2.1 Synopsis

procedure Accept_Connection
(Socket : in POSIX_IO.File_Descriptor;

Connection_Socket : out POSIX_IO.File_Descriptor;
Name : in Socket_Address_Pointer);

function Accept_Connection
(Socket : POSIX_IO.File_Descriptor)

return POSIX_IO.File_Descriptor;

18.4 Package POSIX_Sockets 507

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

18.4.2.2 Description

Accept_Connectoin is used with connection-oriented socket types.

Accept_Connection extracts the first connection request on the queue of pending
connections for a listening socket. The parameter Socket is a file descriptor re-
ferring to a socket that has been created with Create , has been bound to a local
socket address with Bind , and is listening for connections as a result of the appli-
cation having invoked Listen . Accept_Connection creates a new socket with
similar properties to the Socket parameter that was passed as input, except it is
not listening for connection requests, but instead is associated with a specific con-
nection or connection request. The new socket created for the connection is returned
by function Accept_Connection or as the Connection_Socket output parameter
by procedure Accept_Connection . If no pending connections are present on the
queue and the socket is not marked as nonblocking, Accept_Connection blocks the
caller until a connection is present. If the socket is marked nonblocking and no pend-
ing connections are present on the queue, Accept_Connection returns an error as
described below. The file descriptor for the Connection_Socket (or the socket re-
turned) can not be used to accept more connections. The original socket descriptor
Socket remains open.

Procedure Accept_Connection returns the socket address of the connecting peer,
as known to the communications layer, in the object referenced by parameter Name.
The parameter Nameshall be associated with a Socket_Address_Pointer value
that designates an address object of the specific type that corresponds to the type
and protocol family of the socket. Otherwise, Accept_Connection may return an
error. Whether this error is detected is implementation dependent.

It is possible to determine when a new request has been queued by selecting the
descriptor Socket for reading using the Select_File or Poll procedures from
POSIX_Event_Management (see 19.1.1 and 19.1.2).

For protocols that require an explicit confirmation of communication requirements,
such as ISO Transport, one should think of Accept_Connection as merely dequeu-
ing the next connection request and associating an endpoint with it; these actions do
not imply confirmation. Confirmation can be implied by an attempt to send or receive
normal data on the new file descriptor, and rejection can be implied by closing the
new socket.

An application can obtain connection request data without confirming the con-
nection by issuing a Receive_ Message operation that requests ancillary data
only. Similarly, an application can provide connection rejection information by is-
suing a Send_Message providing only the control information. (See the protocol-
specificspecifications in D.1 for details.)

18.4.2.3 Error Handling

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

Incorrect_Address_Type

The type of the address object designated by the Nameparameter is not of

508 18 Detailed Network Interface - Socket

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

the appropriate type for the address format of this socket.

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

Socket is not a valid descriptor.

Connection_Aborted

The peer closed the connection before the application processed the request.

Invalid_Argument

Socket is not in the Listening state.

Interrupted_Operation

The operation was interrupted by a signal before a connection was available
to be returned.

Too_Many_Open_Files

The per-process descriptor table is full.

Too_Many_Open_Files_In_System

The system file table is full.

No_Buffer_Space

Insufficient resources were available in the system to perform the operation.

Not_A_Socket

The file descriptor Socket does not refer to a socket.

Option_Not_Supported

Socket does not support the Accept_Connection operation.

Would_Block

Socket is marked as nonblocking and no connections are present to be ac-
cepted.

18.4.3 Bind a Socket Address to a Socket

18.4.3.1 Synopsis

procedure Bind
(Socket : in POSIX_IO.File_Descriptor;

Name : in Socket_Address_Pointer);

18.4.3.2 Description

Bind shall associate a local socket address with a socket (previously created with
Create or Create_Pair). When a socket is created, it is associated with a specific
protocol from the protocol family, but has no local socket address assigned to it.

The Bind procedure requests that the local socket address specified by Namebe as-
signed to the socket. The parameter Nameshall be associated with a Socket_Ad-
dress_Pointer value that designates an address object of a specific type that is
supported by the protocol of the socket. Otherwise, Bind may return an error.

18.4 Package POSIX_Sockets 509

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Bind assigns the default permissions of read, write, and execute by owner, group,
and others to the socket. These default permissions may be modified in protocol-
specificways.

The rules used in name binding vary between communication domains (see D.1).

18.4.3.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Permission_Denied

The requested socket address is reserved and the calling process does not
have appropriate privileges to access it.

Address_In_Use

The specified socket address is already in use.

Address_Not_Available

The specified socket address is not available from the local machine.

Incorrect_Address_Type

The type of the designated address object is incorrect for this socket.

Bad_File_Descriptor

Socket is not a valid descriptor.

Invalid_Argument

The socket is already associated with a local socket address, or the address
is not valid for the specified address type.

No_Buffer_Space

Insufficient resources were available in the system to perform the operation.

Not_A_Socket

The file descriptor Socket does not refer to a socket.

18.4.4 Initiate a Connection on a Socket

18.4.4.1 Synopsis

procedure Connect
(Socket : in POSIX_IO.File_Descriptor;

Peer : in Socket_Address_Pointer);
procedure Specify_Peer

(Socket : in POSIX_IO.File_Descriptor;
Peer : in Socket_Address_Pointer);

procedure Unspecify_Peer

(Socket : in POSIX_IO.File_Descriptor);

510 18 Detailed Network Interface - Socket

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

18.4.4.2 Description

Invoking Connect shall cause a socket, specified by the file descriptor Socket , to be
connected to a peer socket whose socket address is specified by the Peer parameter.

The Peer parameter shall designate an object having a specific type that is supported
by the protocol of the socket (see D.1).

If the socket has not been bound to a local address and its protocol family is not
Local_Protocol (see D.1.1), the socket shall be bound to a local address.

If the socket is a connection-mode socket (Stream_Socket or Sequenced_Packet_-
Socket), then this operation attempts to make a connection to the peer. For such
sockets, this call is valid only in the Ground, and Bound states.

If the socket is a connectionless-mode socket (Datagram_Socket or Raw_Socket),
the Specify_Peer operation specifies the peer with which the socket is to be as-
sociated, the socket address to which datagrams are to be sent, and the only socket
address from which datagrams are to be received. Upon successful completion, the
socket state shall be Open. Calling Specify_Peer on a connectionless-mode socket
that is already in the Open state shall change the peer with which the socket is as-
sociated. This call is valid in all states for connectionless-mode sockets. The Spec-
ify_Peer operation is equivalent to a Connect operation with a protocol-specific
socket address entered in the Peer parameter.

Procedure Unspecify_Peer dissolves the peer association of the socket. If the
connectionless-mode socket was in the Open state before the call, Unspecify_Peer
shall leave the socket in the Bound state if it was in the Bound state at any previous
time. Otherwise, it is protocol-specificwhether the socket shall be in the Bound or
Ground state. The Unspecify_Peer operation is equivalent to a Connect operation
with the constant Null_Socket_Address entered for the Peer parameter.

If the socket is of type Stream_Socket and it has not been marked as nonblock-
ing, Connect shall block until the connection has been established or an error is
detected. The time period for which attempts to make the connection will continue is
unspecified and depends upon the implementation and on the protocol. If the socket
has been marked as nonblocking, Connect shall return immediately. A call to the
Select_File or Poll function (19.1.1 and 19.1.2) shall return True for writing on
the descriptor if the connection attempt has succeeded. If the connection attempt
fails then a call to Select_File or Poll shall indicate that the file descriptor is
ready for reading and is ready for writing. The error indicating the reason for failure
becomes the pending error for the socket at the time of the failure (see 18.2.5.4).

If the socket is of type Stream_Socket , it has been marked as nonblocking, and
the connection does not complete immediately, the operation shall return the Oper-
ation_In_Progress error code and the socket state shall change to Connecting.

If the operation fails for a connection-mode socket, the state of the socket shall be
Failed.

Applications should explicitly Close the socket descriptor prior to attempting to
reinitiate the connection.

18.4 Package POSIX_Sockets 511

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

18.4.4.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Permission_Denied

The calling process does not have the appropriate privileges.

Address_In_Use

The specified socket address is already in use.

Address_Not_Available

The specified socket address is of a valid address type, but is otherwise in-
valid or not available.

Incorrect_Address_Type

The type of the designated address object is incorrect for this socket.

Already_Awaiting_Connection

The socket is nonblocking and a previous connection attempt has not yet
been completed.

Bad_File_Descriptor

Socket is not a valid descriptor.

Connection_Refused

The attempt to connect was forcefully refused.

Host_Unreachable

The host specified in the socket address is not reachable.

Operation_In_Progress

The socket is nonblocking and the connection cannot be completed immedi-
ately.

Interrupted_Operation

The operation was interrupted by a signal before a connection was com-
pleted.

Invalid_Argument

The socket address is not valid for the specified address type.

Is_Already_Connected

The socket is already connected.

Network_Down

The local network connection is not operational.

Network_Unreachable

The network is not reachable from this host.

No_Buffer_Space

Insufficient resources were available in the system to perform the operation.

Not_A_Socket

The file descriptor does not refer to a socket.

Timed_Out

Connection establishment timed out without establishing a connection.

512 18 Detailed Network Interface - Socket

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

18.4.5 Create an Endpoint for Communication

18.4.5.1 Synopsis

function Create
(Domain : Protocol_Family;

Of_Type : Socket_Type;
Protocol : Protocol_Number := Default_Protocol)

return POSIX_IO.File_Descriptor;

18.4.5.2 Description

Create shall create an endpoint for communication and return a POSIX file descrip-
tor.

Domain specifies the protocol family (see 18.1.1) of the socket and constrains specific
types of socket address parameters in subsequent calls to operations on the socket.
Of_Type specifies the type of socket that will be used in the communication.

Normally only a single protocol exists to support a particular socket type within a
given protocol family. However, it is possible that many protocols may exist, in which
case a particular protocol shall be specified in this manner. The protocol number to
use is specific to the communication domain in which communication is to take place.
When the value of the Protocol parameter is Default_Protocol , the default pro-
tocol as given in D.1 for the socket type and protocol family is used.

An implementation need not make an internal distinction between pipes and some
types of sockets.

18.4.5.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Permission_Denied

Permission to create a socket of the specified type and/or protocol is denied.

Too_Many_Open_Files

The per-process descriptor table is full.

Too_Many_Open_Files_In_System

The system file table is full.

No_Buffer_Space

Insufficient buffer space is available. The socket cannot be created until
sufficient resources are freed.

Protocol_Not_Supported

The protocol family is not supported, or the type or specified protocol is not
supported within the protocol family.

Socket_Type_Not_Supported

The type of scket specified is not supported.

18.4 Package POSIX_Sockets 513

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

18.4.6 Create a Pair of Connected Sockets

18.4.6.1 Synopsis

procedure Create_Pair
(Peer1 : out POSIX_IO.File_Descriptor;

Peer2 : out POSIX_IO.File_Descriptor;
Domain : in Protocol_Family;
Of_Type : in Socket_Type;

Protocol : in Protocol_Number := Default_Protocol);

18.4.6.2 Description

Create_Pair shall create an unnamed pair of sockets and return a pair of socket
descriptors. If the sockets are of connection-mode, on return they shall be connected
to each other and in the Connected state. If the sockets are of connectionless-mode,
on return they shall each be in the Open state with the other socket as the specified
peer.

Domain specifies the set of permissible address formats that can be supplied in later
operations on the socket where a socket address is required. Of_Type specifies the
type of socket that will be used in the communication.

When the value of the Protocol parameter is Default_Protocol , the default pro-
tocol as given in D.1 for the socket type and protocol family is used.

NOTE: Create_Pair is typically used to create a pair of connected sockets before a process
creation operation. See the rationale (B.19.4) for further information.

18.4.6.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Permission_Denied

Permission to create a socket of the specified type and/or protocol is denied.

Too_Many_Open_Files

The per-process descriptor table is full.

Too_Many_Open_Files_In_System

The system file table is full.

No_Buffer_Space

Insufficient buffer space is available. The socket cannot be created until
sufficient resources are freed.

Option_Not_Supported

The specified protocol does not support the creation of socket pairs.

Protocol_Not_Supported

The protocol domain is not supported, or the type or specified protocol is not
supported within the domain.

514 18 Detailed Network Interface - Socket

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

18.4.7 Get Socket Address Information

18.4.7.1 Synopsis

type Socket_Address_Info is limited private ;
type Socket_Address_Info_List is limited private ;
procedure Make_Empty

(Info_Item : in out Socket_Address_Info_List);
type Address_Flags is new POSIX.Option_Set;
Use_For_Binding : constant Address_Flags := implementation-defined;
Canonical_Name : constant Address_Flags := implementation-defined;
procedure Set_Flags

(Info_Item : in out Socket_Address_Info;
Flags : in Address_Flags);

function Get_Flags (Info_Item : Socket_Address_Info)
return Address_Flags;

procedure Set_Family
(Info_Item : in out Socket_Address_Info;

Family : in Protocol_Family);
function Get_Family (Info_Item : Socket_Address_Info)

return Protocol_Family;
procedure Set_Socket_Type

(Info_Item : in out Socket_Address_Info;
To : in Socket_Type);

function Get_Socket_Type (Info_Item : Socket_Address_Info)
return Socket_Type;

procedure Set_Protocol_Number
(Info_Item : in out Socket_Address_Info;

Protocol : in Protocol_Number);
function Get_Protocol_Number (Info_Item : Socket_Address_Info)

return Protocol_Number;
function Get_Canonical_Name (Info_Item : Socket_Address_Info)

return POSIX.POSIX_String;
procedure Get_Socket_Address_Info

(Name : in POSIX.POSIX_String;
Service : in POSIX.POSIX_String;
Info : in out Socket_Address_Info_List);

procedure Get_Socket_Address_Info
(Name : in POSIX.POSIX_String;

Service : in POSIX.POSIX_String;
Request : in Socket_Address_Info;
Info : in out Socket_Address_Info_List);

generic
with procedure Action

(Info : in Socket_Address_Info;
Quit : in out Boolean);

procedure For_Every_Item (List : in Socket_Address_Info_List);

18.4.7.2 Description

The functionality described in this subclause is optional. If the Network Management
option is not supported, the implementation may cause all calls to the explicitly de-
clared operations defined in this subclause to raise POSIX_Error . Otherwise, the
behavior shall be as specified in this subclause.

The Get_Socket_Address_Info procedure shall translate the name of a service lo-
cation (for example, a host name) and/or a service name and return a list of Socket_-
Address_Info objects (contained in a Socket_Address_Info_List object). This
list contains a set of socket addresses and associated information to be used in creat-
ing a socket with which to address the specified service.

The Socket_Address_Info object shall include at least the following attributes.

18.4 Package POSIX_Sockets 515

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Flags

Input flags. The function Get_Flags shall return this attribute. The proce-
dure Set_Flags shall set this attribute.

Family

Protocol family for socket. The function Get_Family shall return this at-
tribute. The procedure Set_Family shall set this attribute.

Socket Type

The socket type. The function Get_Socket_Type shall return this attribute.
The procedure Set_Socket_Type shall set this attribute.

Protocol Number

Protocol for socket. The function Get_Protocol_Number shall return this
attribute. The procedure Set_Protocol_Number shall set this attribute.

Address

Socket address for socket. The protocol-specificfunction Get_Address shall
return this attribute (see D.1).

Canonical Name

Canonical name for service location. The function Get_Canonical_Name
shall return this attribute.

The parameters Nameand Service shall either be a POSIX_String or an empty
POSIX_String . These strings be descriptive names or can be addresses in Internet
address dot notation as specified in D.1.3.2.2.

If Nameis not an empty POSIX_String , the requested service location is named by
Name; otherwise, the requested service location is local to the caller. The format of a
valid name depends on the protocol family or families. If a family is not specified and
the name could be interpreted as valid within multiple supported families, address
information may be returned for multiple families.

If POSIX_Options.Internet_Protocol_Support is True and the specified proto-
col family is POSIX_Sockets_Internet.Internet_Protocol or Unspecified_-
Protocol_Family , valid names include host names as specified in fB21g and strings
specifying an address using Internet standard dot notation as specified in D.1.3.2.2.

If Service is not an empty POSIX_String , it is the name of the requested service. If
Service is an empty POSIX_String , the call shall return network-level addresses
for the specified Name. It is an error for both Nameand Service to be an empty
POSIX_String .

Service shall be a POSIX_String identifying the service. This string can be either
a descriptive name or a numeric representation suitable for use with the protocol
family or families. For the latter to be valid the caller shall also specify value other
than Unspecified_Socket_Type for the Socket Type attribute of Request .

If POSIX_Options.Internet_Protocol_Support is True and the specified pro-
tocol family is POSIX_Sockets_Internet.Internet_Protocol (see D.1.3) or Un-
specified_Protocol_Family , the service can be specified as a string specifying a
decimal port number.

516 18 Detailed Network Interface - Socket

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

If the parameter Request is used, it shall refer to an object containing input val-
ues that may direct the operation by providing options and by limiting the returned
information to a specific socket type, protocol family, and/or protocol.

The Flags attribute of the Request parameter shall denote a set of address flags.
The operations "+" , "-" , ">" , "<" , ">=" , "<=" , and Empty_Set are available on
the type Address_Flags via the derived type semantics of Ada, from the operations
available for POSIX.Option_Set . The appropriate operations can be used to cre-
ate and examine a set containing one or more of the values Use_For_Binding and
Canonical_Name . If the flag Use_For_Binding is specified, the returned address
information shall be suitable for use in binding a socket for accepting incoming con-
nections for the specified service. Otherwise, the returned address information shall
be suitable for creating a connection to the specified service. If the flag Canoni-
cal_Name is specified and the Nameparameter is not an empty POSIX_String , the
function shall attempt to determine the canonical name corresponding to Name(for
example, if Nameis an alias or short-hand notation for a complete name).

The Socket Type attribute of Request shall specify the socket type for the service, as
defined in 18.1.4. A value of Unspecified_Socket_Type indicates that any socket
type may be returned; any other value limits the returned information to values with
the specified socket type.

If the Family attribute of the Request parameter has the value Unspecified_Pro-
tocol_Family , addresses shall be returned for use with any protocol family that
can be used with the specified name and/or service. Otherwise, addresses shall be
returned for use only with the specified protocol family (as defined in 18.4.1.2). If
Family is not Unspecified_Protocol_Family and Protocol Number is not Default_-
Protocol , then addresses shall be returned for use only with the specified protocol
family and protocol. The value of Protocol Number shall be interpreted as in a call
to the Create procedure with the corresponding values of Protocol_Family and
Protocol_Number .

The Make_Empty procedure shall remove all Socket_Address_Info objects from a
Socket_Address_Info_List , freeing any dynamically allocated storage associated
with the object.

Upon successful return, Get_Socket_Address_Info returns a list of Socket_Ad-
dress_Info objects (contained in a Socket_Address_Info_List object), each of
which specifies a socket address and information for use in creating a socket with
which to use that socket address. The application program instantiates the generic
procedure For_Every_Item with an actual procedure for the generic formal proce-
dure Action . When called, the instance shall call the actual procedure supplied for
Action once for each element in the associated list.

Action shall be able to force termination of the generic instance either by setting
Quit to True or by raising an exception. Prior to calling Action , the instance shall
set Quit to False . Exceptions raised by Action shall terminate iteration and shall
be propagated back to the caller of the instance. After an exception is raised by
Action or Action returns with Quit set to True , no more calls to Action shall
occur.

Each object on the list includes values for use with a call to the Create procedure,

18.4 Package POSIX_Sockets 517

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

and a socket address for use with the Connect procedure or, if the Use_For_Bind-
ing flag was specified, for use with the Bind procedure. The attributes Family, Socket
Type, and Protocol shall be usable as the parameters to the Create function to cre-
ate a socket suitable for use with the returned address. The Address attribute shall
be usable as a parameter to the Connect or Bind procedures with such a socket,
according to the Use_For_Binding flag. If Nameis not an empty POSIX_String ,
and if requested by the Canonical_Name flag, the Canonical Name attribute of the
first returned Socket_Address_Info object shall be a POSIX_String containing
the canonical name corresponding to the given Name; if the canonical name is not
available, Canonical_Name shall equal the given Name. The content of the Flags
attribute of the returned objects is undefined.

18.4.7.3 Error Handling

The following errors are defined for the Get_Socket_Address_Info function only.

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Unknown_Address_Type

The address found for the name was of an unsupported type.

Try_Again

The name could not be resolved at this time. Future attempts may succeed.

Invalid_Flags

The Flags parameter had an invalid value.

Name_Failed

A nonrecoverable error occurred when attempting to resolve the name.

Unknown_Protocol_Family

The protocol family was not recognized.

Memory_Allocation_Failed

There was a memory allocation failure when trying to allocate storage for
the return value.

No_Address_For_Name

A valid name was passed, but no address was associated with the name.

Name_Not_Known

The name is not known.
Neither name nor service were passed. At least one of these shall be passed.

Service_Not_Supported

The service passed was not recognized for the specified socket type.

Unknown_Socket_Type

The intended socket type was not recognized.

518 18 Detailed Network Interface - Socket

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

18.4.8 Get Socket Information

18.4.8.1 Synopsis

function Get_Socket_Error_Status
(Socket : POSIX_IO.File_Descriptor)

return POSIX.Error_Code;
function Get_Socket_Type

(Socket : POSIX_IO.File_Descriptor)

return Socket_Type;

18.4.8.2 Description

Get_Socket_Error_Status shall return any pending error on the socket as de-
fined in 18.1.4, and shall clear the error status. It returns a value of zero if there
is no pending error. This operation may be used to check for asynchronous errors
on connectionless-mode sockets in the Open state or for other types of asynchronous
errors.

Get_Socket_Type shall return the type of the socket (e.g., Stream_Socket). This
function is useful to servers that inherit sockets on startup.

The Socket parameter is an open file descriptor referring to a socket.

Protocol specific socket information operations (e.g., Get_Socket_Name , which re-
turns the name (address) associated with a socket, and Get_Peer_Name , which re-
turns the socket address of the peer connected to a socket) are described in D.1.

18.4.8.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Permission_Denied

The calling process does not have the appropriate privileges.

Bad_File_Descriptor

Socket not a valid descriptor.

No_Buffer_Space

Insufficient resources were available in the system to perform the operation.

Not_A_Socket

The file descriptor Socket does not refer to a socket.

18.4.9 Get and Set Options on Sockets

18.4.9.1 Synopsis

type Socket_Option_Value is (Enabled, Disabled);
function Get_Socket_Broadcast

(Socket : POSIX_IO.File_Descriptor)
return Socket_Option_Value;

procedure Set_Socket_Broadcast
(Socket : in POSIX_IO.File_Descriptor;

To : in Socket_Option_Value);

18.4 Package POSIX_Sockets 519

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

function Get_Socket_Debugging
(Socket : POSIX_IO.File_Descriptor)

return Socket_Option_Value;
procedure Set_Socket_Debugging

(Socket : in POSIX_IO.File_Descriptor;
To : in Socket_Option_Value);

function Get_Socket_Routing
(Socket : POSIX_IO.File_Descriptor)

return Socket_Option_Value;
procedure Set_Socket_Routing

(Socket : in POSIX_IO.File_Descriptor;
To : in Socket_Option_Value);

function Get_Socket_Keep_Alive
(Socket : POSIX_IO.File_Descriptor)

return Socket_Option_Value;
procedure Set_Socket_Keep_Alive

(Socket : in POSIX_IO.File_Descriptor;
To : in Socket_Option_Value);

subtype Linger_Time is POSIX.Seconds range 0 .. POSIX.Seconds’Last;
function Get_Socket_Linger_Time

(Socket : POSIX_IO.File_Descriptor)
return Linger_Time;

procedure Set_Socket_Linger_Time
(Socket : in POSIX_IO.File_Descriptor;

To : in Linger_Time);
function Get_Socket_OOB_Data_Inline

(Socket : POSIX_IO.File_Descriptor)
return Socket_Option_Value;

procedure Set_Socket_OOB_Data_Inline
(Socket : in POSIX_IO.File_Descriptor;

To : in Socket_Option_Value);
function Get_Socket_Receive_Buffer_Size

(Socket : POSIX_IO.File_Descriptor)
return POSIX.IO_Count;

procedure Set_Socket_Receive_Buffer_Size
(Socket : in POSIX_IO.File_Descriptor;

To : in POSIX.IO_Count);
function Get_Socket_Receive_Low_Water_Mark

(Socket : POSIX_IO.File_Descriptor)
return POSIX.IO_Count;

procedure Set_Socket_Receive_Low_Water_Mark
(Socket : in POSIX_IO.File_Descriptor;

To : in POSIX.IO_Count);
function Get_Socket_Receive_Timeout

(Socket : POSIX_IO.File_Descriptor)
return Duration;

procedure Set_Socket_Receive_Timeout
(Socket : in POSIX_IO.File_Descriptor;

To : in Duration);
function Get_Socket_Reuse_Addresses

(Socket : POSIX_IO.File_Descriptor)
return Socket_Option_Value;

procedure Set_Socket_Reuse_Addresses
(Socket : in POSIX_IO.File_Descriptor;

To : in Socket_Option_Value);
function Get_Socket_Send_Buffer_Size

(Socket : POSIX_IO.File_Descriptor)
return POSIX.IO_Count;

520 18 Detailed Network Interface - Socket

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

procedure Set_Socket_Send_Buffer_Size
(Socket : in POSIX_IO.File_Descriptor;

To : in POSIX.IO_Count);
function Get_Socket_Send_Low_Water_Mark

(Socket : POSIX_IO.File_Descriptor)
return POSIX.IO_Count;

procedure Set_Socket_Send_Low_Water_Mark
(Socket : in POSIX_IO.File_Descriptor;

To : in POSIX.IO_Count);
function Get_Socket_Send_Timeout

(Socket : POSIX_IO.File_Descriptor)
return Duration;

procedure Set_Socket_Send_Timeout
(Socket : in POSIX_IO.File_Descriptor;

To : in Duration);

18.4.9.2 Description

The following list identifies the protocol-independent options, the types of the option
value parameters associated with each option, the functions and procedures used
to manipulate the option, the default values for protocol-independent options, and
a synopsis of the meaning of the option value parameter. D.1 provides information
regarding socket options that are specific to particular protocols supported under the
sockets interface.

Socket Broadcast

This option defines whether the socket has permission to send broadcast
datagrams. Support for this option is protocol-specific(see D.1). Get_-
Socket_Broadcast shall return the state of the Socket Broadcast socket op-
tion for the socket. Set_Socket_Broadcast shall set the Socket Broadcast
socket option for the socket to the value of the To parameter. The default
value of this parameter is Disabled , and the option is only valid for sockets
of type Datagram_Socket .

Socket Debugging

This option enables debugging in the underlying protocol modules, which
can be useful for tracing the behavior of the underlying protocol modules
during normal system operation. The semantics of the debug reports are
implementation defined. Get_Socket_Debugging shall return the state
of the Socket Debugging socket option for the socket. Set_Socket_Debug-
ging sets the Socket Debugging socket option to the value specified by the To
parameter. The default value for this option is Disabled .

Socket Routing

Setting this option to Disabled requests that outgoing messages bypass
the standard routing facilities. The destination shall be on a directly con-
nected network, and messages are directed to the appropriate network in-
terface according to the destination address. It is protocol-specificwhether
this option has any effect and how the outgoing network interface is chosen.
Support for this option with each protocol is implementation defined. Get_-
Socket_Routing shall return the value of the Socket Routing socket option
for the socket. Set_Socket_Routing sets the Socket Routing socket option
for the socket to the value specified by the To parameter. The default value
for this option is Enabled .

18.4 Package POSIX_Sockets 521

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Socket Keep Alive

This option enables the periodic transmission of messages on a connected
socket. The behavior of this option is protocol-specificand defined in D.1.
Get_Socket_Keep_Alive shall return the state of the Socket Keep Alive
socket option for the socket. Set_Socket_Keep_Alive shall set the value
of the Socket Keep Alive socket option for a socket to the value specified by the
To parameter. The default value for this option is Disabled .

Socket Linger Time

This option controls the action of the interface when unsent messages are
queued on a socket and a Close is performed. The details of this option
are protocol-specific. A positive value for the Socket Linger Time socket option
indicates that the option is on and the socket will linger for the specified
number of seconds to close out unsent data. A zero value indicates the Socket
Linger Time socket option is off. Get_Socket_Linger_Time shall return the
value of the Socket Linger Time socket option for the socket. The default value
for this option is zero.

Socket OOB Data Inline

This option requests that out-of-band data be placed in the normal data
input queue as received; they will then be accessible using the Read or Re-
ceive procedures without the Process_OOB_Data flag set. The Socket OOB
Data Inline socket option is valid only on protocols that support out-of-band
data. (See D.1 for protocol-specificdetails.) Get_Socket_OOB_Data_In-
line shall return the state of the Socket OOB Data Inline socket option for the
socket. Set_Socket_OOB_Data_Inline shall set the state of the option
to the value specified by the To parameter. The default for this option is
Disabled ; that is, out-of-band data shall not be placed in the normal data
input queue.

Socket Receive Buffer Size

This option specifies the maximum buffer size, in octets, for data received
on this socket. This maximum buffer size is the receive queue limit noted
in 18.2.5.3. Applications may wish to increase buffer size for high-volume
connections or may decrease buffer size to limit the possible backlog of in-
coming data. Get_Socket_Receive_Buffer_Size shall return the size of
the receive buffer for the socket in octets. Set_Socket_Receive_Buffer_-
Size shall set the size of the receive buffer to the value specified by the To
parameter. The default value for this option is implementation dependent,
and may vary by protocol. The maximum value for this option is the value
returned by POSIX_Configurable_File_Limits.Socket_Buffer_Max-
imum.

Socket Receive Low Water Mark

This option specifies the minimum number of octets to process for socket in-
put operations. In general, receive operations will block until any (nonzero)
amount of data are received, then return the smaller of the amount available
or the amount requested. The default value of 1 does not affect the general
case. If this option is set to a larger value, blocking receive calls normally
wait until they have received the smaller of the Socket Receive Low Water Mark
socket option value or the requested amount. Receive calls may still return

522 18 Detailed Network Interface - Socket

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

less than the Socket Receive Low Water Mark socket option value if an error
occurs, a signal is caught, or the type of data next in the receive queue is
different from that returned (e.g., out of band data). It is implementation
defined whether this option can be set. Get_Socket_Receive_Low_Wa-
ter_Mark shall return the Socket Receive Low Water Mark socket option value
for the socket. Set_Socket_Receive_Low_Water_Mark shall set the Socket
Receive Low Water Mark socket option value for the socket to the value speci-
fied by the To parameter. The default value for this option is 1.

Socket Receive Timeout

This option specifies a timeout value for input operations. It accepts a pa-
rameter of type Duration specifying the limit on how long to wait for an
input operation to complete. If a receive operation has blocked for this much
time without receiving additional data, it returns with a partial count or
generates the error code Would_Block if no data were received. The de-
fault value of zero indicates that a receive operation shall not time out. It is
implementation defined whether this option can be set. Get_Socket_Re-
ceive_Timeout shall return the Socket Receive Timeout socket option for the
Socket. Set_Socket_Receive_Timeout shall set the Socket Receive Timeout
socket option for the socket to the value specified by the To parameter. The
default value for this option is zero.

Socket Reuse Addresses

This option specifies whether the rules used in validating addresses sup-
plied in a Bind should allow reuse of local addresses. Operation of this
option is protocol-specific. Get_Socket_Reuse_Addresses shall return
the state of the Socket Reuse Addresses socket option for the socket. Set_-
Socket_Reuse_Addresses shall set the Socket Reuse Addresses socket op-
tion for the socket to the value specified by the To parameter. The default
value for this option is Disabled , that is, reuse of local addresses is not
permitted.

Socket Send Buffer Size

This option specifies the maximum buffer size, in octets, for data sent on
this socket. This is the send queue limit noted in 18.2.5.3. Get_Socket_-
Send_Buffer_Size shall return the size of the Socket Send Buffer Size socket
option for the socket in octets. Set_Socket_Send_Buffer_Size shall set
the Socket Send Buffer Size socket option to the number of octets specified by
the To parameter. The default value is implementation dependent, and may
vary by protocol. The maximum value for this option is the value returned
by POSIX_Configurable_File_Limits.Socket_Buffer_Maximum .

Socket Send Low Water Mark

This option specifies the minimum number of octets to process for socket
output operations. Most output operations process all of the data supplied
by the call, delivering data to the protocol for transmission and blocking as
necessary for flow control. Nonblocking output operations shall process as
much data as permitted subject to flow control without blocking, but shall
process no data if flow control does not allow the smaller of the send low
water mark value or the entire request to be processed. A Select_File
operation (19.1.2) testing the ability to write to a socket shall return True
only if the number of octets set by the water mark could be processed. It

18.4 Package POSIX_Sockets 523

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

is implementation defined whether this option can be set. Get_Socket_-
Send_Low_Water_Mark shall return the Socket Send Low Water Mark socket
option for the socket. Set_Socket_Send_Low_Water_Mark shall set the
Socket Send Low Water Mark socket option for the socket to the value speci-
fied by the To parameter. The default value is implementation defined and
protocol-specific.

Socket Send Timeout

This option specifies a timeout value for the amount of time that an output
operation shall block because flow control prevents data from being sent.
The option value is a Duration type specifying the limit on how long to wait
for an output operation to complete. If a send operation has blocked for this
much time, it returns with a partial count or sets the error code Would_-
Block if no data were sent. It is implementation defined whether this option
can be set. Get_Socket_Send_Timeout shall return the Socket Send Timeout
socket option value for the socket. Set_Socket_Send_Timeout shall set
Socket Send Timeout socket option for the socket to the value specified by the
To parameter. The default for this option is zero, indicating that a send
operation shall not time out.

18.4.9.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Permission_Denied

The calling process does not have the appropriate privileges.

Bad_File_Descriptor

Socket is not a valid descriptor.

Not_A_Socket

The file descriptor Socket does not refer to a socket.

Is_Already_Connected

The socket is connected, and the implementation does not allow the option
to be set in the Connected state. This error code may be caused by calls to
any of the operations that set socket options.

No_Buffer_Space

A send or receive buffer of the requested size cannot be allocated. Only re-
turned on calls to Set_Socket_Receive_Buffer_Size and Set_Socket_-
Send_Buffer_Size .

Domain_Error

A time specification is too large for the socket. Only returned on calls to
Set_Socket_Receive_Timeout and Set_Socket_Send_Timeout .

18.4.10 Determine Whether a File Descriptor Refers to a Socket

18.4.10.1 Synopsis

function Is_A_Socket (File : POSIX_IO.File_Descriptor)

return Boolean;

524 18 Detailed Network Interface - Socket

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

18.4.10.2 Description

The Is_A_Socket function shall return True if the file descriptor File refers to a
socket and False otherwise.

18.4.10.3 Error Handling

If the following condition occurs, the exception POSIX_Error shall be raised with
the corresponding error code:

Bad_File_Descriptor

The File parameter is invalid.

18.4.11 Listen for Connections on a Sockets

18.4.11.1 Synopsis

Connection_Queue_Length_Maximum : constant := impl-def-static-expression;
subtype Connection_Queue_Length is natural

range 0 .. Connection_Queue_Length_Maximum;
procedure Listen

(Socket : in POSIX_IO.File_Descriptor;
Backlog : in Connection_Queue_Length :=

Connection_Queue_Length’Last);

18.4.11.2 Description

Invoking Listen indicates a willingness by a server application to accept requests
for incoming socket connections and to establish an upper limit to the number of
entries on its input queue.

To accept connections, a socket is first created with Create and bound to a local
socket address with Bind . A willingness to accept incoming connections is specified
with Listen , and connection requests are dequeued with Accept_Connection .

Listen applies only to sockets of type Stream_Socket or Sequenced_Packet_-
Socket .

Socket is an open file descriptor that refers to a socket. Connection_Que ue_-
Length specifies the maximum allowable number of pending requests for connec-
tions. It shall be implementation defined whether, when Connection_Queue_-
Length is zero, the queue limit is set to zero or an error is returned.

If a connection request arrives with the queue full, the protocol engine may report
an error causing the client to receive an error, or the protocol engine may discard the
request so that retries may succeed.

Implementations shall support values of Connection_Queue_Length up to Con-
nection_Queue_Length_Maximum . Implementations may impose a limit on Con-
nection_Queue_Length and silently reduce the specified value.

18.4 Package POSIX_Sockets 525

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

18.4.11.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Permission_Denied

The calling process does not have the appropriate privileges.

Bad_File_Descriptor

Socket os not a valid descriptor.

Not_A_Socket

The file descriptor Socket does not refer to a socket.

Option_Not_Supported

The file descriptor refers to a socket that does not support Listen.

18.4.12 Receive Data From a Socket

18.4.12.1 Synopsis

procedure Receive
(Socket : in POSIX_IO.File_Descriptor;

Buffer : in System.Address;
Octets_Requested : in POSIX.IO_Count;
Octets_Received : out POSIX.IO_Count;
Masked_Signals : in POSIX.Signal_Masking;
Options : in Message_Option_Set := Empty_Set);

procedure Receive
(Socket : in POSIX_IO.File_Descriptor;

Buffer : in System.Address;
Octets_Requested : in POSIX.IO_Count;
Octets_Received : out POSIX.IO_Count;
Options : in Message_Option_Set := Empty_Set);

procedure Receive
(Socket : in POSIX_IO.File_Descriptor;

Buffer : in System.Address;
Octets_Requested : in POSIX.IO_Count;
Octets_Received : out POSIX.IO_Count;
From : in Socket_Address_Pointer;
Masked_Signals : in POSIX.Signal_Masking;
Options : in Message_Option_Set := Empty_Set);

procedure Receive
(Socket : in POSIX_IO.File_Descriptor;

Buffer : in System.Address;
Octets_Requested : in POSIX.IO_Count;
Octets_Received : out POSIX.IO_Count;
From : in Socket_Address_Pointer;
Options : in Message_Option_Set := Empty_Set);

procedure Receive_Message
(Socket : in POSIX_IO.File_Descriptor;

Message : in out Socket_Message;
Octets_Received : out POSIX.IO_Count;
Masked_Signals : in POSIX.Signal_Masking;
Options : in Message_Option_Set := Empty_Set);

procedure Receive_Message
(Socket : in POSIX_IO.File_Descriptor;

Message : in out Socket_Message;
Octets_Received : out POSIX.IO_Count;

Options : in Message_Option_Set := Empty_Set);

526 18 Detailed Network Interface - Socket

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

18.4.12.2 Description

The Receive_Message procedure and the Receive procedure with the From param-
eter present are used to receive data from the socket specified by Socket , whether it
is a connection-mode socket.

Receive without the From parameter is normally used on a connected socket.

For the Receive procedure, the received data are placed in the object specified by
Buffer . Receive_Message shall place the received data in the data segments de-
scribed by the Socket_Message object specified by the Message parameter. The
amount of data requested is specified by the Octets_Requested parameter for Re-
ceive and the Size attribute of the socket message segment for Receive_Message .

NOTE: Applications may use pointers to the POSIX.Octet_Array type to ensure proper data
width for network I/O operations. When using pointers to other data types, byte width and
ordering issues (i.e., big endian, little endian) are the responsibility of the application.

The Socket_Address_Pointer object designated by the From parameter shall be
a conversion of an access to an object of a protocol-specific address type allocated by
the application before the call to Receive (see 18.4.1.2). Alternately, the Null_-
Socket_Address constant may be passed in From causing this parameter to be
ignored.

For a connectionless-mode socket, the From parameter in the call to Receive shall
designate an address object of a specific type that corresponds to the protocol of the
socket. Otherwise, Receive may return an error. Whether this error is detected
is implementation dependent. For a connectionless-mode socket, the address of the
peer sending the data or message is returned in the address object designated by
the From parameter. For a connection-mode socket, the value referenced by From is
undefined.

The number of octets actually received are returned in the Octets_Received pa-
rameter.

The Options parameter is a Message_Option_Set object used to specify allowable
options on calls to Receive and Receive_Message . The operations "+" , "-" , ">" ,
"<" , ">=" , "<=" , and Empty_Set are available on the type Message_Option_Set
via the derived type semantics of Ada, from the operations available for POSIX.-
Option_Set . The appropriate operations can be used to create and examine a set
containing the receive options.

Signals are masked for the duration of the call, as specified in the Masked_Signals
parameter. The original signal mask is restored when the procedure returns.

If the Peek_Only option is specified, Receive shall operate as if the option were not
specified, returning data or errors, but the state of the socket, its received queue and
any pending errors shall be unchanged by this call.

If out-of-band data are supported by the communications provider and if the socket
contains out-of-band data, a call specifying the Process_OOB_Data option requests
that out-of-band data be returned. It is an error if the Process_OOB_Data option is
set and no out-of-band data exist in the receive queue.

18.4 Package POSIX_Sockets 527

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

The Wait_For_All_Data option requests that the subprogram block until the full
amount of data requested can be returned. The subprogram may return a smaller
amount of data if a signal is caught, the connection is terminated, or an error is
pending for the socket. The effect of the Wait_For_All_Data option is similar to the
effect of setting the Receive Low Water Mark socket option for the socket temporarily to
the amount of data requested.

If the first element on a socket receive queue is an out-of-band data mark and nei-
ther the Peek_Only or Process_OOB_Data options is specified, the mark shall be
discarded, and subsequent elements in the queue (if any) shall be processed.

A call to Receive in which the Process_OOB_Data option is not specified shall
return immediately when one of the following conditions is true:

(1) A data segment containing out-of-band data is present at the beginning of the
receive queue. See 18.2.5.5 for a definition of data segment and a description of
socket buffer queuing 1).

(2) A data segment containing normal data is present at the beginning of the re-
ceive queue, and either the segment is terminated or the amount of data in the
segment is at least as much as the smaller of the amount of data requested and
the Receive Low Water Mark socket option for the socket.

(3) The socket has a pending error.

(4) For a connection-mode socket, an end-of-file (indicated by Octets_Received =
0 has been received, or the connection has been terminated.

(5) Receive is interrupted by a signal.

If none of these conditions is true and the socket is set to nonblocking, Receive
returns with the error Would_Block indicating no data are available. If none of
these conditions is true and the socket is set to blocking, Receive shall wait until
one of the conditions becomes true.

If any of the conditions is true and a data segment is present in the receive queue,
Receive shall return as much data as possible from the first segment in the queue.
Otherwise, if more than one of the conditions are true, the condition listed first shall
be processed.

If the function returns because data are available, the amount of data returned shall
be the smaller of the data available in the segment or the amount requested. If the
Peek_Only option is not specified, the data returned by Receive shall be removed
from the socket queue. Otherwise the receive queue shall not be modified.

If the socket is of type Datagram_Socket or Raw_Socket , the amount of data re-
quested is smaller than the amount of data contained in the segment, and the Peek_-
Only option is not specified, then the remainder of the data in the segment shall be
discarded.

If Receive returns because of a pending error for the socket and the Peek_Only
option is not specified, the pending error value shall be cleared.

1) This data segment is different from a TCP segment as described in RFC 793 f14g.

528 18 Detailed Network Interface - Socket

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

The Message Status attribute of a Socket_Message is a Message_Status_Set object
that is set on return from Receive_Message to indicate conditions associated with
the received data and other status information. The operations "+" , "-" , ">" , "<" ,
">=" , "<=" , and Empty_Set are available on the type Message_Status_Set via the
derived type semantics of Ada, from the operations available for POSIX.Option_-
Set . The appropriate operations can be used to examine a set containing the received
socket message status for the following values:

Received_OOB_Data

Out-of-band (expedited) data were received.

End_Of_Message

The end of a record is indicated.

Message_Truncated

Some trailing datagram data were discarded due to a lack of space or the
amount of data requested was smaller than the data contained in the seg-
ment.

Ancillary_Data_Lost

Some ancillary data were discarded due to lack of space.

The steps needed to create a Socket_Message for use in calls to Receive_Message
are described in 18.4.1.3.

18.4.12.3 Error Handling

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

Incorrect_Address_Type

The type of the address object designated by the From parameter is not of
the appropriate type for the address format of this socket.

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Would_Block

The socket is marked as nonblocking and the receive operation would block;
or the Process_OOB_Data option was selected, and the implementation
does not support blocking to await out-of-band data.

Bad_File_Descriptor

Socket os not a valid descriptor.

Interrupted_Operation

The operation was interrupted by a signal before any data were available
for the receive.

Invalid_Argument

The Process_OOB_Data option was selected, and the protocol or socket
state does not allow this operation.

18.4 Package POSIX_Sockets 529

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

No_Buffer_Space

Insufficient resources were available in the system to perform the operation.

Not_Connected

The socket is a Stream_Socket or a Sequenced_Packet_Socket and has
not been connected.

Not_A_Socket

The file descriptor Socket does not refer to a socket.

Option_Not_Supported

The socket type specified does not support one or more of the options se-
lected.

Message_Too_Long

The number of message segments in the Socket_Message object exceeds
the system limit.

18.4.13 Send Data Over a Socket

18.4.13.1 Synopsis

procedure Send
(Socket : in POSIX_IO.File_Descriptor;

Buffer : in System.Address;
Octets_To_Send : in POSIX.IO_Count;
Octets_Sent : out POSIX.IO_Count;
Masked_Signals : in POSIX.Signal_Masking;
Options : in Message_Option_Set := Empty_Set);

procedure Send
(Socket : in POSIX_IO.File_Descriptor;

Buffer : in System.Address;
Octets_To_Send : in POSIX.IO_Count;
Octets_Sent : out POSIX.IO_Count;
Options : in Message_Option_Set := Empty_Set);

procedure Send
(Socket : in POSIX_IO.File_Descriptor;

Buffer : in System.Address;
Octets_To_Send : in POSIX.IO_Count;
Octets_Sent : out POSIX.IO_Count;
To : in Socket_Address_Pointer;
Masked_Signals : in POSIX.Signal_Masking;
Options : in Message_Option_Set := Empty_Set);

procedure Send
(Socket : in POSIX_IO.File_Descriptor;

Buffer : in System.Address;
Octets_To_Send : in POSIX.IO_Count;
Octets_Sent : out POSIX.IO_Count;
To : in Socket_Address_Pointer;
Options : in Message_Option_Set := Empty_Set);

procedure Send_Message
(Socket : in POSIX_IO.File_Descriptor;

Message : in Socket_Message;
Octets_Sent : out POSIX.IO_Count;
Masked_Signals : in POSIX.Signal_Masking;
Options : in Message_Option_Set := Empty_Set);

procedure Send_Message
(Socket : in POSIX_IO.File_Descriptor;

Message : in Socket_Message;
Octets_Sent : out POSIX.IO_Count;

Options : in Message_Option_Set := Empty_Set);

530 18 Detailed Network Interface - Socket

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

18.4.13.2 Description

The Send and Send_Message procedures are used to transmit data to a peer via the
socket specified by Socket .

The peer socket address may have been specified in advance (by the use of the Con-
nect procedure or the Specify_Peer procedure), in which case no destination ad-
dress shall be specified. If the peer socket address has not been prespecified, a socket
address shall be provided by the To parameter to the Send procedure or via the
Message parameter to the Send_Message procedure.

The amount of data to send is specified by the Octets_To_Send parameter for Send
and the Size attribute of the socket message segment for Send_Message . On return
from Send, Octets_Sent indicates the number of octets accepted for transmission.

NOTE: Applications may use pointers to the POSIX.Octet_Array type to ensure proper data
width for network I/O operations. When using pointers to other data types, byte width and
ordering issues (i.e., big endian, little endian) are the responsibility of the application.

The Options parameter is a Message_Option_Set object used to specify allowable
options on calls to Send and Send_Message . The operations "+" , "-" , ">" , "<" ,
">=" , "<=" , and Empty_Set are available on the type Message_Option_Set via the
derived type semantics of Ada, from the operations available for POSIX.Option_-
Set . The appropriate operations can be used to create and examine a set containing
the send options.

Signals are masked for the duration of the call, as specified in the Masked_Signals
parameter. The original signal mask is restored when the procedure returns. No
indication of failure to deliver is implicit in the Send operation.

For connectionless-mode sockets (type Datagram_Socket or Raw_Socket) the speci-
fied data shall be transmitted as a single datagram. If the message is too long to pass
atomically through the underlying protocol, then the error Message_Too_Long shall
be returned, and the message is not transmitted. For connection-mode sockets (type
Stream_Socket or Sequenced_Packet_Socket) transmission is not necessarily
atomic, and part or all of the data may be transmitted.

If the socket has a pending error, Send shall raise the POSIX_Error exception, and
the pending error shall be cleared. No data shall be transmitted in this case.

If the message cannot be immediately accepted by the communications provider be-
cause of a transient resource constraint (such as lack of buffer space), then Send
normally blocks until all data can be transmitted, unless nonblocking has been set.
If a call to one of these functions is interrupted by delivery of a signal after trans-
mitting some data, the return status shall indicate the amount of data accepted for
transmission.

The option Process_OOB_Data is used to send out-of-band data on sockets that
support this notion (e.g., Stream_Socket); e.g., it can only be used if the underlying
protocol also supports out-of-band data. The option End_Of_Message terminates a
record for protocols that support that concept (end-of-record follows specified data).

18.4 Package POSIX_Sockets 531

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

The option Do_Not_Route specifies that the data being sent should bypass the stan-
dard routing facilities. This option may also be controlled using via Set_Socket_-
Routing .

The steps needed to create a Socket_Message for use in calls to Send_Message are
described in 18.4.1.3.

18.4.13.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Permission_Denied

The calling process does not have the appropriate privileges.

Bad_File_Descriptor

Socket os not a valid descriptor.

Interrupted_Operation

The operation was interrupted by a signal before data or other indications
were available.

Message_Too_Long

The socket requires that the message be sent atomically, and the size of the
message made this impossible.

Network_Down

The local network connection is not operational.

Network_Unreachable

The destination network is not reachable.

No_Buffer_Space

The system was unable to allocate the internal buffer. The operation may
succeed when buffers become available.

Not_Connected

The socket is not connected or otherwise has not had the peer prespecified.

Not_A_Socket

The file descriptor Socket does not refer to a socket.

Broken_Pipe

The socket is of type Stream_Socket or a Sequenced_Packet_Socket and
is no longer connected.

Would_Block

The socket is marked as nonblocking, and the request would block.

Incorrect_Address_Type

The type of the designated address object is incorrect for this socket (only on
calls to Send_Message or Send with the To parameter).

Is_Already_Connected

The socket is already connected and a destination address was specified
(only on calls to Send_Message or Send with the To parameter).

532 18 Detailed Network Interface - Socket

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Invalid_Argument

The To parameter is not valid for the specified address type (only on calls to
Send_Message or Send with the To parameter).

Message_Too_Long

The socket requires that the message be sent atomically, and the size of the
message made this impossible; or the number of segments in a multiseg-
ment message exceeds the system limit.

18.4.14 Shut Down Part of a Full-Duplex Connection

18.4.14.1 Synopsis

type Shutdown_Mode is
(Further_Receives_Disallowed,

Further_Sends_Disallowed,
Further_Sends_And_Receives_Disallowed);

procedure Shutdown
(Socket : in POSIX_IO.File_Descriptor;

Mode : in Shutdown_Mode);

18.4.14.2 Description

Shutdown shall cause all or part of a full-duplex connection on a socket to be shut
down.

The Mode parameter further qualifies how the shutdown is to occur. If Mode is Fur-
ther_Receives_Disallowed , then further receives shall be disallowed. If Mode
is Further_Sends_Disallowed , then further sends shall be disallowed. If Mode
is Further_Sends_And_Receives_Disallowed , then further sends and receives
shall be disallowed.

The effects of Shutdown are protocol-specific.

18.4.14.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

Socket os not a valid descriptor.

Invalid_Argument

Mode is not valid.

No_Buffer_Space

The system was unable to allocate the internal buffer. The operation may
succeed when buffers become available.

Not_Connected

The socket is not connected.

Not_A_Socket

The file descriptor Socket does not refer to a socket.

18.4 Package POSIX_Sockets 533

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

18.4.15 Determine Whether a Socket is at the Out-of-Band Mark

18.4.15.1 Synopsis

function Socket_Is_At_OOB_Mark (Socket : POSIX_IO.File_Descriptor)

return Boolean;

18.4.15.2 Description

If the protocol for the socket supports out-of-band data by marking the stream with
an out-of-band data mark, Socket_Is_At_OOB_Mark shall return True if all the
data preceding the out-of-band data have been read and the out-of-band data are
next in the receive queue.

The Socket_Is_At_OOB_Mark function call shall not remove the mark from the
stream. The use of this function between receive operations allows an application
to determine which received data precede the out-of-band data and which follow the
out-of-band data.

18.4.15.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

Socket os not a valid descriptor.

Inappropriate_IO_Control_Operation

The file descriptor does not refer to a socket. c

534 18 Detailed Network Interface - Socket

IEEE Std 1003.5c-1998

Section 19: Event Management

This section describes the event management facilities available under this stan-
dard.

19.1 Package POSIX_Event_Management

This package provides support for the poll event management and select event man-
agement functions.

with POSIX,
POSIX_IO,
POSIX_Limits,
POSIX_Signals;

package POSIX_Event_Management is
-- 19.1.1 Poll for File Descriptor Events
type Poll_Events is new POSIX.Option_Set;
Read_Not_High : constant Poll_Events := implementation-defined;
Read_Normal : constant Poll_Events := implementation-defined;
Read_Priority : constant Poll_Events := implementation-defined;
Read_High : constant Poll_Events := implementation-defined;
Write_Normal : constant Poll_Events := implementation-defined;
Write_Priority : constant Poll_Events := implementation-defined;
Poll_Error : constant Poll_Events := implementation-defined;
File_Not_Open : constant Poll_Events := implementation-defined;
type Poll_FD is private ;
function Get_File (Poll_Item : Poll_FD)

return POSIX_IO.File_Descriptor;
procedure Set_File

(Poll_Item : in out Poll_FD;
File : in POSIX_IO.File_Descriptor);

function Get_Events (Poll_Item : Poll_FD)
return Poll_Events;

procedure Set_Events
(Poll_Item : in out Poll_FD;

Events : in Poll_Events);
function Get_Returned_Events (Poll_Item : Poll_FD)

return Poll_Events;
procedure Set_Returned_Events

(Poll_Item : in out Poll_FD;
Events : in Poll_Events);

subtype Poll_FD_Array_Range is Positive
range 1 .. POSIX.Open_Files_Maxima’Last;

type Poll_FD_Array is array
(Poll_FD_Array_Range range <>) of Poll_FD;

Wait_Indefinitely : constant Duration := implementation-defined;
procedure Poll

(Files : in out Poll_FD_Array;
Response_Count : out Natural;
Timeout : in Duration := Wait_Indefinitely);

-- 19.1.2 Select From File Descriptor Sets
type File_Descriptor_Set is private ;
Empty_File_Descriptor_Set : constant File_Descriptor_Set;
procedure Make_Empty (Set : in out File_Descriptor_Set);
subtype Select_File_Descriptor is POSIX_IO.File_Descriptor

range POSIX_IO.File_Descriptor’First .. POSIX_IO.File_Descriptor
(POSIX_Limits.FD_Set_Maxima’Last - 1);

19 Event Management 535

c

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

procedure Add
(Set : in out File_Descriptor_Set;

File : in Select_File_Descriptor);
procedure Remove

(Set : in out File_Descriptor_Set;
File : in Select_File_Descriptor);

function In_Set
(Set : File_Descriptor_Set;

File : Select_File_Descriptor)
return Boolean;

procedure Select_File
(Read_Files : in out File_Descriptor_Set;

Write_Files : in out File_Descriptor_Set;
Except_Files : in out File_Descriptor_Set;
Files_Selected : out Natural;
Timeout : in Duration := Wait_Indefinitely);

procedure Select_File
(Read_Files : in out File_Descriptor_Set;

Write_Files : in out File_Descriptor_Set;
Except_Files : in out File_Descriptor_Set;
Files_Selected : out Natural;
Signals : in POSIX_Signals.Signal_Set;
Timeout : in Duration := Wait_Indefinitely);

generic
with procedure Action

(File : in Select_File_Descriptor;
Quit : in out Boolean);

procedure For_Every_File_In (Set : in File_Descriptor_Set);

private
implementation-defined

end POSIX_Event_Management;

19.1.1 Poll for File Descriptor Events

19.1.1.1 Synopsis

type Poll_Events is new POSIX.Option_Set;
Read_Not_High : constant Poll_Events := implementation-defined;
Read_Normal : constant Poll_Events := implementation-defined;
Read_Priority : constant Poll_Events := implementation-defined;
Read_High : constant Poll_Events := implementation-defined;
Write_Normal : constant Poll_Events := implementation-defined;
Write_Priority : constant Poll_Events := implementation-defined;
Poll_Error : constant Poll_Events := implementation-defined;
File_Not_Open : constant Poll_Events := implementation-defined;
type Poll_FD is private ;
function Get_File (Poll_Item : Poll_FD)

return POSIX_IO.File_Descriptor;
procedure Set_File

(Poll_Item : in out Poll_FD;
File : in POSIX_IO.File_Descriptor);

function Get_Events (Poll_Item : Poll_FD)
return Poll_Events;

procedure Set_Events
(Poll_Item : in out Poll_FD;

Events : in Poll_Events);
function Get_Returned_Events (Poll_Item : Poll_FD)

536 19 Event Management

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

return Poll_Events;
procedure Set_Returned_Events

(Poll_Item : in out Poll_FD;
Events : in Poll_Events);

subtype Poll_FD_Array_Range is Positive
range 1 .. POSIX.Open_Files_Maxima’Last;

type Poll_FD_Array is array
(Poll_FD_Array_Range range <>) of Poll_FD;

Wait_Indefinitely : constant Duration := implementation-defined;
procedure Poll

(Files : in out Poll_FD_Array;
Response_Count : out Natural;

Timeout : in Duration := Wait_Indefinitely);

19.1.1.2 Description

The functionality described in this subclause is optional. If the Poll option is not
supported, the implementation may cause all calls to the explicitly declared operations
defined in this subclause to raise POSIX_Error . Otherwise, the behavior shall be as
specified in this subclause.

Poll provides applications with a mechanism for multiplexing input/output over a
set of file descriptors that reference open files. It identifies and selects the files on
which an application can send or receive messages or on which certain events have
occurred. The Files parameter specifies the file descriptors to poll. The number of
files selected is returned in the Response_Count parameter. The Timeout parame-
ter provides an optional timeout mechanism.

The type Poll_FD shall be used to represent an object with at least the following
attributes:

File

The file descriptor to poll

Events

A Poll_Events object representing a set of events to examine

Returned Events

A Poll_Events object representing a set of events returned by the poll

The Files parameter specifies the file descriptors to be examined and the events of
interest for each file descriptor. It specifies an array with one element for each open
file descriptor of interest. The elements of the array are Poll_FD objects. The File
attribute specifies an open file descriptor. Attributes Events and Returned Events are
sets of event flags of type POSIX.Option_Set containing any combination of the
event flags Read_Not_High , Read_Normal , Read_High , Write_Normal , Write_-
Priority , Poll_Error , and File_Not_Open .

The functions that the application can use for input and output depend on the type
of file descriptor. For regular files, they shall include Read and Write . For character
special files for use with XTI calls, they shall include Listen , Receive , Confirm_-
Connection , Retrieve_Disconnect_Info , Acknowledge_Orderly_Release ,
Acknowledge_Orderly_Release_With_Data , Receive_Data_Unit , Retrieve_-
Data_Unit_Error , Receive_And_Scatter_Data , Receive_And_Scatter_Data_-
Unit , Send, Send_Disconnect_Request , Initiate_Orderly_Release , Initi-
ate_Orderly_Release_With_Data , Send_Data_Unit , Gather_And_Send_Data ,

19.1 Package POSIX_Event_Management 537

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Gather_And_Send_Data_Unit . For use with sockets calls, they shall include Read,
Receive , Receive_Message , Send, Send_Message , and Write .

In the this subclause, messages as well as other file type specific events (e.g., end-of-
file, disconnection indication) are referred to as data.

All data fall into one of three categories: normal data, priority data, and high priority
data. The meanings of these categories depend on the file type and can also in part
be implementation dependent. Each file type shall support at least the normal data
category.

The type Poll_Events shall denote a set of poll event flags returned for a file de-
scriptor. The operations "+" , "-" , ">" , "<" , ">=" , "<=" , and Empty_Set are avail-
able on the type Poll_Events via the derived type semantics of Ada, from the oper-
ations available for POSIX.Option_Set . The appropriate operations can be used to
create and examine a set containing the required flags. The following Poll_Events
flags shall be defined:

Read_Not_High

Data other than high-priority data can be read without blocking.

Read_Normal

Normal data can be read without blocking.

Read_Priority

Priority data or high-priority data can be read without blocking.

Read_High

High-priority data can be read without blocking.

Write_Normal

Normal data can be written without blocking.

Write_Priority

Priority data can be written without blocking.

Poll_Error

An I/O error has occurred.

File_Not_Open

The specified File attribute does not belong to an open file.

Read_Normal , Read_Priority , or Read_High shall be set in Returned_Events
when a call to an input function with POSIX_IO.Non_Blocking clear would not
block and normal data, priority data, or high-priority data (respectively) have been
received, whether or not the function would transfer data successfully.

NOTE: The data might not be returned by the input function under some circumstances. For
example, an error might be returned if an invalid parameter has been supplied.

Read_Not_High shall be set in Returned_Events when a call to an input function
with POSIX_IO.Non_Blocking clear would not block, and normal data or priority
data have been received, whether or not the function would transfer data success-
fully.

538 19 Event Management

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Write_Normal shall be set in Returned_Events when a call to an output function
with normal data and with POSIX_IO.Non_Blocking clear would not block.

NOTE: The data might not be output under some circumstances. For example, an error might
be returned if an invalid parameter has been supplied.

Write_Priority shall be set in Returned_Events when priority data have already
been output for the file descriptor and a call to an output function with priority data
and with POSIX_IO.Non_Blocking clear would not block.

Flags Poll_Error and File_Not_Open are only valid in the Returned_Events
parameter; they shall not be set in the Events parameter. Poll_Error shall be
set in Returned_Events when an error has occurred on the open file specified by
the File attribute. File_Not_Open shall be set in Returned_Events when the File
attribute does not belong to an open file.

For each element of the array specified by Files , Poll examines the given file de-
scriptor for the event(s) specified in Events .

If an event is meaningless for a particular file type, the behavior of Poll for that file
type and event is unspecified.

The results of the Poll query are stored in the Returned_Events attribute in the
Poll_FD object. Returned_Events can be examined as described above using the
operations for POSIX.Option_Set to indicate which of the requested events is true.
If none are true, Returned_Events is set to Empty_Set when Poll returns. The
event flags Poll_Error and File_Not_Open are always set in Returned_Events if
the conditions they indicate are true, even though these flags were not set in Events .

If none of the defined events has occurred on any specified file descriptor, Poll shall
wait until an event has occurred on any of the specified file descriptors or until at
least the time specified by Timeout has elapsed and should then return as soon as
possible.

NOTE: Timing accuracy varies on different systems.

If the Timeout parameter is used and the value of Timeout is zero, Poll shall
return immediately. If the Timeout parameter is used and the value of Timeout
is greater than zero, Poll shall block until a requested event occurs, the time in
Timeout elapses, or the call is interrupted. If the default Timeout value (Wait_-
Indefinitely) is used, Poll shall block until a requested event occurs or until the
call is interrupted. Poll shall not be affected by the POSIX_IO.Non_Blocking flag.

File descriptors for use with XTI and sockets shall support normal data and priority
data.

For XTI the following apply:

— Whether expedited data are normal data or priority data is implementation de-
fined for each communications provider.

— Whether Disconnect_Request_Received and Connect_Request_Received
are normal or priority data is implementation defined for each communication
provider.

19.1 Package POSIX_Event_Management 539

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

— If expedited data are priority data or if Disconnect_Request_Received and
Connect_Request_Received are priority data, then Connect_Response_-
Received shall be priority data. Otherwise, whether Connect_Response_-
Received are normal or priority data is implementation defined.

— Normal_Data_Received , Orderly_Release_Request_Received , Error_-
In_Previously_Sent_Datagram , and other data shall be normal data.

— If Events is set to Read_Normal , then Poll shall return with Read_Normal set
in Returned_Events when normal data have been received.

— If Events is set to Read_Priority , then Poll shall return with Read_Prior-
ity set in Returned_Events when priority data have been received.

— If Read_Not_High is set in Events , then Poll shall return with Read_Not_High
set in Returned_Events when any of Connect_Response_Received , Nor-
mal_Data_Received , Disconnect_Request_Received , Expedited_Data_-
Received , Connect_Request_Received , Orderly_Release_Request_Re-
ceived , or Error_In_Previously_Sent_Datagram have been received.

— If Write_Normal is set in Events , then Poll shall return with Write_Normal
set in Returned_Events unless an attempt to send normal data would block (or
return Flow_Control_Error).

— If Write_Priority is set in Events , then Poll shall return with Write_Pri-
ority set in Returned_Events if expedited data are priority data, expedited
data have been sent, and an attempt to send expedited data would not block (or
return Flow_Control_Error).

— Poll_Error may be set in Returned_Events for implementation-defined rea-
sons and the error reason shall then be returned by any XTI call that would
otherwise be valid.

— The only XTI call that can succeed once Poll_Error has been returned is Close .

— When Poll returns with Read_Not_High , Read_Normal or Read_High set in
Returned_Events , the application can determine which event has occurred by
calling Look .

For sockets the following apply:

— Whether connection indications (consumed by Accept_Connection) are normal
or priority data is implementation defined for each communications provider.

— Out-of-band data shall be priority data.

— Other data shall be normal data.

— If Read_Not_High is set in Events and the socket is in the Listening state, then
Poll shall return with Read_Not_High set in Returned_Events when an in-
coming connection indication has been received so that a call to Accept_Con-
nection would complete without blocking. If connection indications are normal
data, then Read_Normal can be used instead of Read_Not_High . If they are
priority data, then Read_Priority can be used.

— If Write_Normal is set in Events and the socket is in the Connecting state,
then Poll shall return with Write_Normal set in Returned_Events when
connection establishment is complete.

540 19 Event Management

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

— Poll_Error may be set in Returned_Events for implementation-defined rea-
sons and the error reason shall then be returned by any sockets call that would
otherwise be valid.

— The only socket call that can succeed once Poll_Error has been returned is
Shutdown .

— If Events is set to Read_Priority , then Poll shall return with Read_Prior-
ity set in Returned_Events when any of the following becomes true:
(1) Out-of-band data have been received and OOB_Data_Inline is not set.

NOTE: If OOB_Data_Inline is set, then the out-of-band data would be returned by
an input function with POSIX_IO.Non_Blocking set, and this condition is indi-
cated by Read_Normal and Read_Not_High .

(2) An out-of-band data mark is present in the receive queue.
(3) Connect has been called with POSIX_IO.Non_Blocking set, and the con-

nection attempt has failed.
(4) A connection has been broken by the peer or due to expiration of the Socket

Keep Alive timeout.

On success, Poll returns the total number of file descriptors that have been selected
in Response_Count (that is, file descriptors for which the Returned_Events field
is not Empty_Set). A value of zero indicates that the call timed out and no file
descriptors have been selected.

19.1.1.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Resource_Temporarily_Unavailable

Allocation of internal data structures failed, but the request may be at-
tempted again.

Bad_Address

A parameter points outside the allocated address space.

Interrupted_Operation

A signal was caught during the Poll system call.

19.1.2 Select From File Descriptor Sets

19.1.2.1 Synopsis

type File_Descriptor_Set is private ;
Empty_File_Descriptor_Set : constant File_Descriptor_Set;
procedure Make_Empty (Set : in out File_Descriptor_Set);
subtype Select_File_Descriptor is POSIX_IO.File_Descriptor

range POSIX_IO.File_Descriptor’First .. POSIX_IO.File_Descriptor
(POSIX_Limits.FD_Set_Maxima’Last - 1);

procedure Add
(Set : in out File_Descriptor_Set;

File : in Select_File_Descriptor);
procedure Remove

(Set : in out File_Descriptor_Set;
File : in Select_File_Descriptor);

19.1 Package POSIX_Event_Management 541

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

function In_Set
(Set : File_Descriptor_Set;

File : Select_File_Descriptor)
return Boolean;

procedure Select_File
(Read_Files : in out File_Descriptor_Set;

Write_Files : in out File_Descriptor_Set;
Except_Files : in out File_Descriptor_Set;
Files_Selected : out Natural;
Timeout : in Duration := Wait_Indefinitely);

procedure Select_File
(Read_Files : in out File_Descriptor_Set;

Write_Files : in out File_Descriptor_Set;
Except_Files : in out File_Descriptor_Set;
Files_Selected : out Natural;
Signals : in POSIX_Signals.Signal_Set;
Timeout : in Duration := Wait_Indefinitely);

generic
with procedure Action

(File : in Select_File_Descriptor;
Quit : in out Boolean);

procedure For_Every_File_In (Set : in File_Descriptor_Set);

19.1.2.2 Description

The functionality described in this subclause is optional. If the Select option is not
supported, the implementation may cause all calls to the explicitly declared operations
defined in this subclause to raise POSIX_Error . Otherwise, the behavior shall be as
specified in this subclause.

The Select_File procedure examines a set of file descriptors passed in the Read_-
Files , Write_Files , and Except_Files parameters to see whether some of the
descriptors are ready for reading, are ready for writing, or have an exceptional con-
dition pending, respectively.

The set of file descriptors is passed in an object of type File_Descriptor_Set . The
constant POSIX_Limits.FD_Set_Maxima’Last shall specify the maximum number
of file descriptors in File_Descriptor_Set . This value is implementation defined
and shall be greater than or equal to POSIX_Limits.Portable_FD_Set_Maximum .
All objects of type File_Descriptor_Set shall have the initial value Empty_File_-
Descriptor_Set . The procedure Make_Empty shall set the descriptor set indicated
by Set to the value Empty_File_Descriptor_Set , freeing any dynamically allo-
cated storage associated with the object.

Add shall add the file descriptor File to the set indicated by Set . If the file descriptor
File is already in this set, there shall be no effect on the set, nor will an error be
returned. Remove shall remove the file descriptor File from the set indicated by
Set . If File is not a member of this set, there shall be no effect on the set, nor
will an error be returned. The function In_Set shall evaluate to True if the file
descriptor File is a member of the set indicated by Set and shall evaluate to False
otherwise.

The application program instantiates the generic procedure For_Every_File_In
with an actual procedure for the generic formal procedure Action . When called,
the instance shall call the actual procedure supplied for Action once for each file

542 19 Event Management

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

descriptor in the associated File_Descriptor_Set . The order of traversal is un-
specified.

Action shall be able to force termination of the generic instance either by setting
Quit to True or by raising an exception. Prior to calling Action , the instance shall
set Quit to False . Exceptions raised by Action shall terminate iteration and shall
be propagated back to the caller of the instance. After an exception is raised by
Action or Action returns with Quit set to True , no more calls to Action shall
occur.

Select_File shall examine all file descriptors in each set. On return, Select_File
shall replace each of the three input descriptor sets with a subset of the correspond-
ing input set that includes only the descriptors that are ready for the requested op-
eration, and shall return the total number of ready descriptors in all the output sets
in the Files_Selected parameter. If a file descriptor is in more than one output
set, it is counted as many times as it occurs.

The Signals parameter is an object of type POSIX_Signals.Signal_Set . If the
Signals parameter is included, then Select_File shall replace the signal mask of
the process by the set of signals indicated by Signals before examining the descrip-
tors, and shall restore the signal mask of the process before returning.

A descriptor shall be considered ready for reading when a call to an input function
with POSIX_IO.Non_Blocking clear would not block, whether or not the function
would transfer data successfully. (The function might return data, an end-of-file
indication, or an error other than one indicating that it is blocked; and in each of
these cases the descriptor shall be considered ready for reading.)

A descriptor shall be considered ready for writing when a call to an output function
with POSIX_IO.Non_Blocking clear would not block, whether or not the function
would transfer data successfully.

If the operation is meaningless for a particular file type, Select_File shall indicate
that the descriptor is ready for read or write operations and shall indicate that the
descriptor has no exceptional condition pending.

For XTI, whether expedited data are normal data or priority data is implementation
defined for each communications provider.

A file descriptor for use with XTI calls shall be considered ready for reading when any
of the events Normal_Data_Received , Orderly_Release_Request_Received , or
Error_In_Previously_Sent_Datagram has occurred. Such a file descriptor shall
also be considered ready for reading when any of the events Connect_Response_Re-
ceived , Disconnect_Request_Received , Expedited_Data_Received , or Con-
nect_Request_Received has occurred and the event is not indicated as an ex-
ceptional condition. Whether these events are indicated as exceptional conditions is
implementation defined.

NOTE: These conditions are the same as those under which Poll returns with Read_Normal
set.

A file descriptor for use with XTI calls shall be considered ready for writing if the
output functions (Send, Initiate_Orderly_Release , Initiate_Orderly_Re-

19.1 Package POSIX_Event_Management 543

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

lease_With_Data , Send_Data_Unit , Gather_And_Send_Data , and Gather_-
And_Send_Data_Unit) would not block or return Flow_Control_Error .

NOTE: These conditions are the same as those under which Poll returns with Write_Normal
set.

A file descriptor for use with XTI calls shall be considered to have an exception con-
dition when any of the following occur:

— An implementation-defined error has occurred.

— An Expedited_Data_Received event has occurred, and this event does not set
the file descriptor ready for reading.

— Either of the events Disconnect_Request_Received or Connect_Request_-
Received has occurred, and these events do not set the file descriptor ready for
reading.

— A Connect_Response_Received event has occurred, and this event does not
set the file descriptor ready for reading.

A Connect_Response_Received event shall be indicated as an exceptional con-
dition if an Expedited_Data_Received event is indicated as an exceptional con-
dition or if a Disconnect_Request_Received or Connect_Request_Received
event is indicated as an exceptional condition. Otherwise, it is implementation de-
fined which of the Expedited_Data_Received , Disconnect_Request_Received ,
Connect_Request_Received , and Connect_Response_Received events set the
file descriptor ready for reading.

NOTE: These are the same circumstances under which Poll returns with Read_Priority or
Poll_Error set. The Select_File procedure does not detect the circumstances under which
Poll returns with Read_High or Write_Priority set.

If a descriptor refers to a socket, the implied input function is the Receive_Message
procedure with parameters requesting normal and ancillary data, such that the pres-
ence of either type shall cause the socket to be marked as readable. The presence of
out-of-band data will be checked if the socket option OOB_Data_Inline has been en-
abled, as out-of- band data are enqueued with normal data. If the socket is currently
in the Listening state, it will be marked as readable if an incoming connection request
has been received, and a call to the Accept_Connection procedure is guaranteed
to complete without blocking.

If a descriptor refers to a socket, the implied output function is the Send_Message
procedure supplying an amount of normal data equal to the current value of the
Send_Low_Water_Mark option for the socket. If a nonblocking call to the Con-
nect procedure has been made for a socket and the connection attempt has either
succeeded or failed (leaving a pending error), the socket shall be marked as writable.

A socket shall be considered to have an exceptional condition pending if a receive
operation with POSIX_IO.Non_Blocking clear for the open file description and with
the Process_OOB_Data option set would return out-of-band data without blocking.
(It is protocol-specific whether Process_OOB_Data would be used to read out-of-band
data.) A socket shall also be considered to have an exceptional condition pending
if an out-of-band data mark is present in the receive queue. Other circumstances

544 19 Event Management

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

under which a socket may be considered to have an exceptional condition pending
are protocol specific and implementation defined.

If none of the selected descriptors are ready for the requested operation, Select_-
File may block until at least one of the requested operations becomes ready. The pa-
rameter Timeout controls how long Select_File may take to complete. The Time-
out parameter specifies a maximum interval to wait for the selection to complete. If
the specified time interval expires without any requested operation becoming ready,
the procedure shall return. If the default Timeout value (Wait_Indefinitely) is
used, then the call to Select_File shall block indefinitely until at least one descrip-
tor meets the specified criteria. A Timeout parameter value of zero can be used to
effect a poll. A blocked Select_File operation may be interrupted by a signal.

Any of the parameters Read_Files , Write_Files , and Except_Files may be
empty sets if no descriptors are of interest.

19.1.2.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

One of the descriptor sets specified an invalid descriptor.

Bad_Address

One or more parameters specified an invalid address.

Interrupted_Operation

A signal was delivered before the time limit expired and before any of the
selected events occurred.

Invalid_Argument

The parameter Timeout is invalid (negative or too large). c

19.1 Package POSIX_Event_Management 545

IEEE Std 1003.5c-1998

Annex A
(informative)

Bibliography

The following documents are related to this standard in an informative manner or
were used as references in its preparation.

fB1g Adams, Douglas, The Hitchhikers Guide to the Galaxy. New York: Crown
Books, 1989.

fB2g Blair, Byron E., Editor Time and Frequency: Theory and Fundamentals. U.S.
Dept. of Commerce, National Bureau of Standards, May 1974.

fB3g ISO/IEC 7498-1:1994, Information technology—Open Systems
Interconnection—Basic Reference Model: The Basic Model.

fB4g ISO/IEC 8348/AD2, Addendum to the Network Service Definition Covering
Network Layer Addressing.

fB5g ISO/IEC 8652:1987, Programming Languages— Ada (endorsement of ANSI-
/MIL-STD 1815A-1983).

fB6g ISO/IEC 8859-1:1998, Information technology—8-bit single-byte coded graphic
character sets—Part 1: Latin alphabet No. 1.

fB7g ISO/IEC JTC 1/SC22/WG9/Ada Rapporteur Group, GET LINE for interactive
devices, Ada Issue AI-00172, August 1986.1)

fB8g ISO/IEC JTC 1/SC22/WG9/Ada Rapporteur Group, Data can be appended to
the end of an existing file, Ada Issue AI-00278, June 1989.

fB9g ISO/IEC JTC 1/SC22/WG9/Ada Rapporteur Group, NEW PAGE can raise
USE ERROR for certain FORMs of File, Ada Issue AI-00886, January 1991.

fB10g Jacobson, V., “Congestion Avoidance and Control”, ACM SIGCOMM-88, Au-
gust 1988.

fB11g McJones, Paul R., and Swart, Garret F., “Evolving the UNIX System Interface
to Support Multithreaded Programs,” Digital Equipment Corp., Palo Alto, CA,
DEC-SRC Report 21, September 1987.

fB12g IEEE Standard 1003.1b-1993, IEEE Standard for Information Technology—
Portable Operating System Interface (POSIX)—Part 1: System Application
Program Interface (API) [C Language]—Amendment 1: Realtime Extension.
2)

fB13g IEEE Std 1003.1c-1995, IEEE Standard for Information Technology—Portable
Operating System Interface (POSIX)—Part 1: System Application Program-
ming Interface (API)—Amendment 2: Threads Extension [C Language].

fB14g IEEE P1003.1g/D6.6, IEEE Standard for Information Technology—Portable
Operating System Interface (POSIX)—Part 1: System Application Program-
ming Interface (API)—Amendment xx: Protocol Independent Interfaces (PII).

1) Ada Issues can be obtained from the Ada Information Clearinghouse, c/o IIT Research Institute,
4500 Forbes Boulevard, Lanham, MD 20706-4312, USA.

2) IEEE publications can be obtained from the Institute of Electrical and Electronic Engineers, 445
Hoes Lane, P.O. Box 1331, Piscataway, JN 08855-1441, USA (http://www.standards.ieee.org/).

A Bibliography 547

c

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

fB15g IEEE Std 1003.1i-1995, IEEE Standard for Information Technology—Portable
Operating System Interface (POSIX)—Part 1: System Application Program-
ming Interface (API)—Amendment: Technical Corrigenda to Realtime Exten-
sion [C Language].

fB16g IEEE Std 1003.1i-1995, IEEE Standard for Information Technology—Portable
Operating System Interface (POSIX)—Part 2: Shell and Utilities.

fB17g IEEE Std 1003.5-1992 (R 1990), IEEE Standard for Information Technology—
POSIXR Ada Language Interfaces—Part 1: Binding for System Application
Programming Interface (API).

fB18g IEEE Std 1003.5b-1996 (R 1990), IEEE Standard for Information
Technology—POSIXR Ada Language Interfaces—Binding for System Applica-
tion Program Interface (API)—Amendment 1: Realtime Extensions.

fB19g IEEE Std 1003.13-1998, IEEE Standard for Information Technology—
Standardized Application Environment Profile—POSIX Realtime Application
Support (AEP).

fB20g Scheifler, Robert, X Window System Protocol, Version 11, Release 5 (from the
X11R5 distribution).

fB21g IETF RFC 952:1985, DoD Internet Host Table Specification.

fB22g IETF RFC 1020:1987, Internet Numbers.

fB23g IETF RFC 1983:1996, Internet Users’ Glossary. c

548 A Bibliography

IEEE Std 1003.5c-1998

Annex B
(informative)

Rationale and Notes

B.1 General

This rationale is for the POSIX/Ada binding as a whole. There is also a rationale
clause corresponding to each section of the standard. This rationale does not at-
tempt to justify or explain the choice of interfaces or functionality in the C-language
systme API standards on which this standard is based. See those standards for that
rationale.

In what follows, it is sometimes useful to distinguish between the original version
of this standard, denoted by POSIX.5, the realtime amendment of this standard, de-
noted by POSIX.5b, and the sockets/XTI amendment, which is denoted by POSIX.5c c.

B.1.1 Purpose and Audience

The purpose of the POSIX/Ada binding is to promote application portability at the
Ada source-code level. The goal is that Ada applications using this binding be
portable among POSIX-conforming Ada implementations.

Application programs that are intended to be portable to all POSIX implementations
may be checked for portability by examining their with clauses.

This binding has been designed so that it may easily be used by Ada programmers,
who do not necessarily have prior experience with either POSIX or C.

Originally, this rationale served an archival and advocacy purpose, recording the
resolution of conflicts among the developers and providing supporting arguments for
the benefit of balloters. As part of the POSIX.5b revision, the rationale was totally
rewritten to serve a new audience:

— Application programmers interested in making effective use of this standard.

— Implementors interested in subtleties and intentions of features.

— Developers of future revisions to this standard interested in preserving the over-
all approach and philosophy of this Ada language binding.

B.1.2 Relation to Other POSIX Standards

This binding is dependent on the corresponding POSIX C-language system API stan-
dards cin the sense that the semantics defined in that document must be followed by
this standard. In some cases, it might have been desirable to change the semantics of
some feature of POSIX to accommodate Ada better, but that was considered beyond
the scope of a language binding.

This standard does not require that the system support any C-language interfaces.
(See B.1.4.) In particular, the system is not required to support C-language thread
services. Ada already has multiple threads of control within a process. This standard
just defines the interactions of tasks with the facilities of POSIX. Support for tasks
is required of all implementations of the Ada language and, therefore, is required for

B Rationale and Notes 549

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

all implementations of this standard. The developers of this standard have expended
great effort to make it transparent to the Ada application whether the POSIX/C
thread interfaces are supported by the underlying system.

This standard includes a binding to the POSIX thread services in the sense that sev-
eral changes have been made from POSIX.5 to achieve semantic compatibility with
an implementation in which both Ada tasks and POSIX threads map to the same
type of entity in the underlying operating system. Moreover, some interfaces are
provided for services defined by POSIX.1 for threads, which are not defined for Ada
tasks by the Ada RM f1g but should be implementable by an Ada runtime system,
regardless of whether the system supports POSIX threads.

B.1.3 Ada Language

The original version of this standard, POSIX.5, defined a binding to Ada 83, since
that was the recognized standard for the Ada language at the time the binding was
developed. Concurrent with the revision POSIX.5b, the Ada language standard was
also being revised. It was decided to retain compatibility in the binding with Ada 83,
but also to support migration to Ada 95. This decision was taken because production
implementations of Ada 95 were not expected to be available immediately, and there
was an immediate demand for the revised POSIX/Ada binding. Moreover, implemen-
tations of Ada 83 were expected to continue to be used for maintenance of existing
applications.

In some cases, new functionality of Ada 95 conflicts with or overlaps functionality de-
fined by POSIX.1 for threads. Such cases have been resolved individually, taking into
account the degree of implementation freedom given by the Ada language. The most
extreme case is the model for thread cancelation, which is too restrictive to support
the new Ada semantics for abortion, exception propagation, and object finalization.
In this case, it was decided to regard the POSIX thread feature as specific to the
C-language binding and, therefore, to provide no Ada binding for it. In some other
cases, such as thread scheduling, the Ada language provides enough flexibility that
the POSIX.1 scheduling model can be provided as a user-selectable alternative to the
standard Ada facility, with the implementation being left to define any interaction
between the two.

In some cases, new Ada 95 features are needed to make effective use of the POSIX
interface. A good example is the extended support for the type Address in package
System and its new child package System.Storage_Elements . In this case, to
provide the capability during transition from Ada 83 to Ada 95, this standard defines
the package System_Storage_Elements to be a renaming of System.Storage_-
Elements and gives the implementation explicit permission to replace the renaming
with a package specification and body with similar functionality, as close as possible
to the Ada 95 package, without depending on any new language features.

The first few drafts of POSIX.5c used the full Ada 95 language, including child pack-
ages, general access types, access parameters, and tagged types. This decision was
made based on the expected publication date for this standard was long enough after
the adoption of Ada 95 to allow for mature Ada 95 compiler technologies.

Some ballot objections were raised concerning compatibility with some large appli-
cations that are in maintenance mode, and have frozen the compilation system at

550 B Rationale and Notes

c

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Ada 83. Apparently, the maintainers of those systems were interested in converting
from C interface code to the POSIX/Ada socket bindings.

There were also objections to the use of tagged types from balloters on grounds other
than compatibility with Ada 83. There were concerns regarding the complexity of
dynamic dispatching operations. There were also stylistic disagreements about how
tagged types should be used. The latter disagreements had a religious flavor, and
since tagged types were new enough in the Ada language that a strong community
consensus had not developed, there seemed to be no way to resolve the controversy.

Due to these objections, in Draft 4 of POSIX.5c the approach to was modified as
follows:

— Ada 95 remains the normative reference for this standard for the rationale de-
scribed above.

— Ada 83 fallback approaches are defined for all uses of Ada 95 features. These
approaches are documented in 1.3.1.1.

— The standard uses Ada 95 child packages to organize the hierarchy of proto-
col independent and protocol specific features. For compatibility with earlier
POSIX/Ada binding standards (and to avoid changing thousands of references),
the Ada 83 fallback approach for child packages is used for all package names.
In other words, packages designed to use names with the form POSIX.Foo.Bar
are renamed to use the Ada 83 form POSIX_Foo_Bar . The conformance instruc-
tions in 1.3 reflect this decision.

— All the access parameters in earlier drafts of POSIX.5c were replaced by in
parameters of an Ada 95 general access type. The Ada 83 fall back approach is to
use in parameters of an ordinary access type, dynamic allocation, or unchecked
conversion.

— The standard still uses Ada 95 general access types. The Ada 83 fall back ap-
proach is to use ordinary access types, dynamic allocation, or unchecked conver-
sion.

— After much thought and consideration, the uses of tagged types (for base com-
munications addresses) have been replaced by private pointer types. Each child
package defines a private protocol specific address type along with an Ada 95
general access type pointing to the protocol-specific address type. The Ada 83
fallback for these types are ordinary access types or the use of dynamic mem-
ory allocation or unchecked conversion. The protocol-specific child packages also
provide functions to convert the protocol-specific pointers to and from the base
package private pointer type (to be used by the base package services). One ex-
tra function for each child package is provided to perform an “Is_A_ ” operation
to query for a protocol specific address type given the base address type. c

B.1.4 Implementation Model

The POSIX/Ada binding is intended to be implementable on a variety of systems,
in a variety of ways. In particular, the binding has been developed to allow for the
following implementation possibilities:

— An implementation on a bare machine, with no underlying operating system
support (e.g., corresponding to the Minimal Realtime Profile of POSIX.13).

B General 551

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

— An implementation based on an underlying operating system conforming to
POSIX.1 but not supporting the optional –POSIX–THEADS functionality.

— An implementation based on an underlying operating system conforming to
POSIX.1, including all the optional functionalities.

The only means by which the application might distinguish between these possi-
bilities is the support or nonsupport for particular options. For example, blocking
behavior might not be per task in an implementation based on an underlying oper-
ating system that does not support the –POSIX–THREADS optional functionality of
POSIX.1. Thus, Strictly Conforming POSIX.5 applications should be portable across
all implementations.

B.1.5 Level of Binding

The developers of POSIX.5 faced a fundamental choice between a direct versus an ab-
stract binding of the POSIX.1 functions into Ada. A direct binding maps the POSIX/C
functions as closely as possible to the corresponding Ada facilities. Arguments in fa-
vor of a direct binding are that it is less expensive in time and effort to produce and
the implementation is more likely to be able to call the underlying POSIX.1 functions
directly.

An abstract binding tries to group POSIX functions into abstract data types, oper-
ations on those types, and packages of logically related operations. Arguments in
favor of an abstract binding are that it allows a more natural style and bindings may
be omitted more easily for POSIX functions that duplicate already existing features
of Ada.

The abstract binding approach was chosen for POSIX.5. Examples of ways in which
the Ada binding differs from a direct translation of C into Ada include the following:

— Using packages to organize declarations that are logically related.

— Using generics to generalize certain C functions.

— Using more expressive Ada names.

— Splitting multipurpose C functions into several Ada subprograms.

— Mapping C errno codes to the Ada exception mechanism.

— Omitting POSIX/C functions that duplicate existing Ada language features.

The model is that there is a basic abstraction, consisting of the set of POSIX types,
values, and operations. The POSIX.1 binding is one expression of the POSIX ab-
straction in the C language. This standard represents another expression of the
same POSIX abstraction, in the Ada language. The approach used to develop the
Ada binding was to uncover the basic abstraction and then to express it as well as
possible in Ada.

The POSIX.5b revision did not seriously reconsider this question. To do so would
have required a total rewrite of POSIX.5. Besides, input from the balloting group
seemed to favor continuation of the abstract binding approach.

552 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

B.1.6 Form of Document

A related, but separate, issue is the form of this document. Historically, POSIX
standards are first expressed in the C language. Bindings of these standards to other
languages then face a choice between a thin document and a thick document. A thin
binding document is one that defines only the syntax of the operations in the new
language. Readers of the language binding are referred to the POSIX/C standards
for an explanation of the required behavior. Arguments in favor of a thin binding
document are that it less expensive to produce and maintain and it is less likely to
introduce inadvertent discrepancies between the documents defining the C-language
binding and the other language bindings.

A thick binding document, on the other hand, is self-contained. The required be-
havior of each interface in the new language is fully described, so that readers need
not refer to the POSIX/C stanards. Arguments in favor of a thick document are that
users can find all the needed information in one place and it is likely to be more
understandable.

The original version of this standard is a thick binding document. The required
behavior of the POSIX/Ada interface is fully documented; users need not refer to
POSIX.1 and, therefore, need not be conversant with C.

At the time work started on POSIX.5b, the IEEE PASC officially adopted the
language-independent standards paradigm promoted by ISO. It was believed that
the development and maintenance of multilingual interfaces for POSIX would be
easier if there were a common LIS of POSIX services. Language bindings then would
be thin specifications of syntax and would refer back to the LIS for the required be-
havior of the interfaces. Considerable effort was expended within POSIX to make
this LIS paradigm work, but several difficulties were encountered.

First, the POSIX/C standards were all intended to comprise one standard, but were
being developed piecemeal. It was difficult to synchronize the development of LIS
documents with the development of extensions to C language standards. Several
extensions of POSIX.1 were being developed as C-language bindings, most of which
were already in ballot. Conversion to thin bindings and LIS would mean essentially
going back and starting over.

Second, even for new work, it was difficult to find volunteers willing and able to cre-
ate LIS documents. Most of the POSIX work is based on established practice in the
C/UNIX market, is done by individuals who are experienced in C, and is funded by
organizations who regard C as the predominate language in their markets. Finding
people willing to develop LIS documents is much harder. The notation is unfamiliar,
and the connection to practice is tenuous. Thus, progress on LIS standards has been
very slow.

A final problem is end-user hostility to the LIS model. The combination of LIS and
thin language binding is much harder to read and understand than a single self-
contained document. To understand the behavior required by such a standard, the
user must master both the LIS notation and the specific programming language,
and mentally keep track of the correspondence of names and concepts between the
two documents — using one set of names for syntax and another set of names for
semantics.

B General 553

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

The first balloted draft of POSIX.5b was the result of a good-faith effort to develop a
thin Ada binding to an LIS. Since there was no LIS for POSIX.1b or POSIX.1c, the
C-language interfaces were used in place of the LIS. The response to the first ballot of
POSIX.5b was overwhelmingly against changing over to the thin binding format. The
consensus of POSIX.5b balloting group coincided with a broader consensus within
IEEE PASC that the LIS paradigm was an impediment to the development of needed
standards, and so the LIS requirement was deleted. The next draft of POSIX.5b was
converted to the thick format consistent with POSIX.5, and this format has been
maintained through POSIX.5c.

B.1.7 Global Issues

B.1.7.1 Document Structure

The document structure of this standard closely follows that of the corresponding
POSIXC system API standards. Each section consists of one or a few Ada package
specifications, containing declarations for logically related types, constants, and op-
erations. A few operations have been moved from the section where they appear in
the C interface to a different section in the Ada binding to achieve Ada packaging
consistency; these differences date back to POSIX.5. To aid users and implemen-
tors in relating Ada binding entities to the C interface entities, Annex C provides a
C-to-Ada cross-reference.

Originally, the XI and Sockets interfaces were separated into two distinct documents.
These two documents were combined into one standard for the following reasons:

— Although the XTI and Sockets interfaces are both required for P1003.1g compli-
ance, the Ada binding continues to specify these interfaces as options. Therefore,
the separation of the two interfaces into different documents does not provide
any difference (or advantage) in the way these options are managed.

— Other than the sections containing the actual bindings for the XTI and Sockets
DNI (Section 17 and Section 18), many of the normative sections and annexes
of P1003.1g apply to both XTI and Sockets. If these sections were split into
two documents, extra time and effort would be required to coordinate changes
that apply to both. In addition, tracking any further refinements to P1003.1g is
simpler if the POSIX/Ada bindings are all in a single document.

— One standards document would reduce the risk of ballot pool fatigue. It also
eliminates coordination problems, where an objection in a common section of one
document may or may not apply to both, or where the resolution of an objection
in one document causes a new objection to be raised in the other. c

B.1.7.2 Packaging

The developers of POSIX.5 wanted to produce an object-oriented packaging for
POSIX, but could not because of the overriding decision to remain reasonably consis-
tent with the organization of the POSIX/C system API standards.

Four packaging styles received consideration:

— Single package: specify the entire binding within a single package with no sub-
packaging.

554 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

— Multiple packages: create several separate packages, each centered around a
small set of logically related types and operations.

— Subpackaged: the same as multiple packages, except that the entire binding is
wrapped by a single outer package.

— Limited subpackaged: place nearly all of the binding in a single package, but
place a few selected portions (e.g., unsafe operations) in subpackages.

After considering the arguments for and against each alternative, the multiple pack-
ages approach was selected, primarily because it could be converted easily into one
of the other styles, should that become desirable.

Arguments in favor of multiple packages include

— Clear identification of interface usage, by means of examining the with clauses
of an application; and

— Use of Ada to convey the structure of the binding, which permits understanding
of the binding in smaller, relatively independent parts.

Disadvantages of multiple packages include

— Complicated visibility rules and

— Large and segmented name space, so that it is not obvious where types, objects,
and operations are located unless fully dotted notation is used.

— Increased potential for elaboration order and compilation dependency problems

— Compartmentalization of implementation details, so that Ada visibility rules re-
quire unchecked conversion between private types in different packages that
have the same underlying representation.

For POSIX.5b, the availability of child packages in Ada 95 offered another choice.
The decision was made to take advantage of this new Ada language feature, but to
preserve compatibility with POSIX.5 and Ada 83. Therefore, the policy is that if a
package has a name of the form POSIX_XXXand the implementation supports child
packages, POSIX_XXXXshould be declared as a renaming of POSIX.XXXX, a child
package of POSIX. This renaming scheme mitigates some of the disadvantages of the
multiple packages approach.

In POSIX.5c multiple packages were originally defined, organized hierarchically
as child packages corresponding to the various POSIX implementation options.
For example, the bindings in package POSIX.Sockets are applicable when the
Sockets Detailed Network Interface option is supported. If, in addition, the Inter-
net Protocol Support option is supported, then the bindings in the child package
POSIX.Sockets.Internet are applicable. In some cases, there are additional ca-
pabilities governed by options at the lowest child package level. For example, the
TCP/IP protocol specific bindings in package POSIX.Sockets.Internet are appli-
cable only if the Internet Stream Support option is supported. In Draft 4 of POSIX.5c
this approach was modified somewhat to also accommodate Ada 83 implementations
as described in the original rationale of POSIX.5b c.

B General 555

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

B.1.7.3 Coding style

To keep consistency with previous POSIX/Ada binding standards, the same coding
style has been maintained through the amendments. In matters of taste/style that
involve subjects like spacing, punctuation, blank lines, and comments, consensus is
difficult to reach. Using a different style in some sections of an amendment could
result in further objections to that section and/or sections of the standard that were
not subject to ballot. Therefore, coding style issues were decided by the editor. Also,
to enforce a consistent style, the code sections have been test compiled using the
Ada 95 style checking options of the Gnu NYU Ada Translator (GNAT).

B.1.7.4 Package sections

The order of the Ada binding closely follows that of corresponding POSIX/C system
API standards. Functions are grouped alphabetically by major function/procedure
name. Where appropriate, data objects (and any associated access functions and
procedures) have been moved from their original location in the POSIX/C system
API standards to directly precede the subprograms that use them.

B.1.8 Naming

The POSIX name space is very large. One of the goals of POSIX.5b was to regularize
this large name space by following consistent rules for naming types, constants, and
operations.

For example, POSIX defines many optional facilities and implementation limits.
POSIX.5b introduced a simple set of rules for generating the names of these options
and limits, and the names of the associated types, constants, and inquiry functions.
However, names used in POSIX.5 do not follow these rules. They have been retained
for compatibility; therefore, duplicate names occur in package POSIX and in either
POSIX_Options or POSIX_Limits . Also, some duplication occurs within packages
POSIX_Configurable_System_Limits and POSIX_Configurable_File_Limits .

Another example is the naming of operations to retrieve, and sometimes to set,
the values of attributes of abstract objects in the interface (e.g., processes, files,
semaphores, shared memory objects). The names of such operations are always
Get_X and Set_X , respectively, where X is the name of the attribute.

Any exceptions to the consistent naming rules are carry-overs from earlier
POSIX/Ada binding standards. In some cases (e.g., Change_Owner_Restriction
does not conform to the naming rules for options), this decision was conscious. If
other cases, yet to be discovered, do not conform to the rules, it was simple oversight.

For POSIX.5c the C-language names in P1003.1g have been mapped to descriptive
Ada names using the styles defined in POSIX.5b. In certain cases, some names
that became unreasonably long were shortened using often used abbreviations and
acronyms. c

B.1.8.1 Form of Iterators

An iterator is an operator that permits all parts of a structured object to be visited.
How iterators should be presented was debated at length during development of

556 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

POSIX.5. Programs need to be able to iterate over several kinds of structures, such as
string lists (2.4.4), environment lists (4.3.2), directories (5.2.4), and group databases
(9.2.2). A form of iteration was desired that would be proper Ada style, easy to use,
and consistent among the different parts of the binding.

Two candidates emerged. One candidate consisted of a set of operations to start
the iteration, get the next item, test for end, rewind or start over, and close or stop
the iteration. The other candidate was a generic procedure. Some programming
examples were tried with both approaches, and the generic procedure was preferred.

The generic procedure takes as a parameter a user-supplied procedure and performs
iteration on the structured object, applying the user-supplied procedure to each item
that is found. This approach is conceptually elegant and results in compact code.
Other advantages of the generic iterator are that it is more tasking-safe and easier
to program finalization, for example, closing a directory or deallocating storage. The
disadvantage is that it may be unfamiliar to programmers who have not used generic
units.

Exit from the iterator was studied in detail. The two main ways to exit are via an
exception or via setting a Boolean return value. The latter approach was chosen,
since use of exceptions is generally reserved for error situations. Often, exit from
an iterator is not because of an error (for example, exiting when a search completes
successfully).

B.1.8.2 Restrictions on Implementation Extensions

The intent of this binding is to permit implementations to provide extensions that
provide Ada applications with access to specific services of each particular underlying
operating system. However, such extensions should be done in a way that does not
break an application that uses only the standard POSIX/Ada interface. To this end
restrictions are placed on the form of implementation extensions.

In order to allow with clause analysis of an application to identify the use of ex-
tensions, implementation-defined extensions are expected to be placed in separate
implementation-provided packages. No alterations of the package specifications de-
fined in this standard are permitted except those listed in 1.3.1.1.

Also, it is required that if any implementation-defined extensions alter the behavior
of interfaces defined in this standard, that effect must not happen unless the user
explicitly activates the extension.

B.1.9 Mapping C Features to Ada

B.1.9.1 Error Reporting

Upon failure, the POSIX/C functions either return the value -1 to indicate that an
error has occurred (in this case the error code that indicates the exact nature of
the error may be retrieved from errno) or eturn the error code itself. Preferred Ada
style is to use exceptions to indicate errors. Exceptions are considered to be more
reliable since they eliminate the possibility that an application may unintentionally
miss errors by forgetting to check the function return value. Thus, operations in
this POSIX/Ada binding raise an exception, rather than return an error code. The
application may call Get_Error_Code to obtain the exact error code.

B General 557

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Two design decisions are worth mentioning here. First, a single exception POSIX_-
Error is used to indicate all possible POSIX errors. Using a single exception for all
POSIX errors allows greater flexibility in writing exception handlers to treat errors
according to the needs of the application and requires minimal implementation sup-
port over and above what Ada already provides. In particular, an application can use
of a single exception handler for all POSIX errors (including any implementation-
defined errors) and use a handler for others to catch non-POSIX errors. Second,
POSIX error codes are named numbers, rather than enumeration values. The rea-
son is to facilitate the addition of new error codes and also to discourage applications
from depending upon any particular ordering of error code values.

One annoying consequence of strict adherence to this general error handling ap-
proach is that it makes a common situation rather awkward. It is common practice
when using a POSIX/C function to place the call in a loop and then to repeat the
call until it succeeds. In Ada, each POSIX call must be placed within an exception
frame (to handle POSIX_Error) and the exception frame must be placed within a
loop. Examples of error codes for which this is likely to be done (since these errno
values do not represent true errors, but rather the status of the system or of some
ongoing operation) are

— Resource_Temporarily_Unavailable

— Operation_In_Progress

— Operation_Canceled

Therefore, special provision has been made in this standard for a few operations
that are very likely to be used in such a polling mode. An alternative form of the
operation is provided in the form of a function. The return value of the function is
an enumeration type, which enumerates the expected kinds of status values that are
not actually errors.

For example, the function Try_Wait on semaphores and the function Try_Lock on
mutexes return a Boolean value, which is True if they succeed and False if the
semaphore or mutex is busy. Actual errors, such as an uninitialized semaphore or
mutex, still cause POSIX_Error to be raised. Another example is the function Get_-
AIO_Error_Code , which allows an application to poll the completion status of an
ongoing AIO operation that might have terminated in error.

In POSIX.5c C-language functions, procedures, and data structures that are catego-
rized as obsolescent in P1003.1g are omitted, including the following functions: geth-
ostbyaddr(), gethostbyname(), sethostent(), endhostent(), getservbyname(), getservby-
port(), setservent(), endservent(), and gethostname().

Certain C-language data structures have been omitted from the binding when a more
appropriate construct is available in Ada. For example, the C timespec and timeval
data structures are replaced with the Ada Duration type.

Some coarse timers from the C binding retain an integral type in the Ada binding.
They are included because the resolution of these timers is coarse (usually an inte-
gral number of seconds or minutes), or because they have an overloaded meaning in
the network interface (e.g., the IP Time To Live option is also a gateway hop count).

558 B Rationale and Notes

c

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Based on additional comments to Draft 3 of POSIX.5c, this approach was refined
further. The rationale for not using Duration for these time values still holds,
since using Duration could mislead the programmer by implying a finer control
over time values than is available for certain operations. However, these occurrences
now use subtypes of the integral time types defined in package POSIX. For example,
Socket Linger Time (which originally was of type Natural) is now implemented as type
Linger_Time , which is added to POSIX.Sockets as a subtype to POSIX.Seconds
with a natural range c.

B.1.9.2 Extensible Types

The POSIX/C system API standards consider some types to be extensible by a POSIX
implementation or by future revisions of the standard. Examples of extensible types
include error codes, signal numbers, option sets, permissions, and the character set.

Ada offers three alternatives for defining extensible types:

— Enumeration type, listing the standard values.

— Constrained integer type, with constants for the standard values.

— Private type, with constants for the standard values.

It is readily apparent that enumeration types are unsuitable. Enumeration types
cannot be extended without changing the standard package specification. Extend-
ing an enumeration type is forbidden in 1.3.1.1, because it introduces new visible
names (thus possibly breaking applications that have a use clause for the package)
and a simple with clause check for uses of implementation-dependent extensions is
no longer adequate. There was also concern that an application might depend on
the enumeration order, which would not be portable. In order to map enumeration
values directly to the representation of the underlying operating system, the order-
ing of the enumeration type would have to agree with the ordering of the underlying
representation (and, therefore, would be implementation dependent. A call to an
underlying system service might return a value that cannot be represented in the
standard enumeration type (that is, there might be holes in the standard values).
Checking for this situation (and then handling the error in a reasonable way) is a
burden on implementors and a performance penalty for users. For all these reasons,
enumeration types are seldom used in the POSIX/Ada binding.

Integer types are preferred in situations where the values may be used as indices into
arrays or for case statements. Also, integer types are convenient for values that must
be passed across language boundaries (e.g., from an Ada application to an underlying
C-based operating system). Thus, integer types are used for error codes, for signal
values, and for file descriptors. To provide some of the convenience of enumeration
types for such integer types, value and image functions are provided.

This approach has a small risk. For example, consider Error_Code . The intention is
that the implementation-defined range includes all values of the type (both POSIX-
defined and implementation-defined), but only the names of the POSIX-defined error
codes are visible. There is some risk that an application might use an integer value
that either represents an implementation extension or a value that is completely
invalid (i.e., no meaning either in POSIX or in the implementation.) However, the

B General 559

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

application programmer could only use such a value via a facility other than a pre-
defined name (e.g., an integer literal). The current approach seems to provide rea-
sonably strong typing and compile-time checking while still permitting extensions by
other POSIX standards-development groups.

Private types are preferred for situations where no functionality of discrete types is
desired. For example, array indexing by Process_ID was not thought to be common,
so this type was made private. Also, the opaque and structure types in the POSIX C-
language system API are often mapped to private types in the POSIX/Ada binding.
Thus, private types are used for option sets and for the time types timespec and
itimerspec.

B.1.9.3 Private Types

C-language structured types are usually mapped to private types in the POSIX/Ada
interface, rather than to explicit record types. The use of private types allows im-
plementors to add extension fields without changing the visible part of the standard
package specification. Use of private types prevents the application from using ag-
gregate notation to represent objects of the private types and thereby insulates the
user from implementation-defined extensions or from implementation-dependent or-
dering of the components of the structure.

The alternative of using explicit record types with record representation clauses to
map to the underlying C structures is unlikely to work in any case, since there is
no guarantee that the Ada records would have the same layout as the correspond-
ing C structures (even with the use of record representation specifications). Also,
the POSIX/C system API standards do not specify the order of the components in
structures, and allow additional implementation-defined components.

B.1.9.4 Multipurpose C Functions

Multipurpose C functions are decomposed into several Ada subprograms, each
of which performs a single, well-defined operation. Sometimes overloading was
used, resulting in two Ada subprograms with the same name, but with different
parameter-result profiles. For example, the single C function kill() is mapped to
three separate procedures in the Ada binding, all named Send_Signal .

Usually, however, different names are used to suggest the distinct operations being
performed. The use of distinct meaningful names is considered to be good Ada style
in any case and is required in situations where C functions have a variable number
of parameters or have parameter values with special meanings.

B.1.9.5 Composite Return Values

Some declarations used in the POSIX/C system API standards are awkward because
of C-language limitations (just as some Ada declarations are awkward because of
Ada language limitations). A frequent case is illustrated by the following C function:

char *getcwd(char *buf, int size)

A C program may take its return value in two ways. The call getcwd(NULL)() re-
turns a pointer to a string that contains the current directory. The returned string

560 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

is in static memory and will be overwritten by subsequent calls to getcwd(). The call
getcwd(mybuf, length) stores a copy of the current directory in the caller-supplied
buffer mybuf. The getcwd() function is declared this way apparently because of lim-
itations in C. There is no clear way in C to declare a function that returns a string.
A char* function can return either a pointer to an area allocated with malloc() or a
pointer to an area in static data. The former is considered bad C practice because it
wastes space on the heap, and the latter has the disadvantage that subsequent calls
overwrite the first value that was returned. As a result, the C declaration was made
to give users the choice of supplying a buffer or using static memory.

Unlike C, Ada allows a function to return a composite type, such as a string, without
requiring use of the heap or static storage. Thus, in the package POSIX_Process_-
Environment , Get_Working_Directory is simply a function returning a POSIX_-
String . The static buffer in getcwd() (and, in general, the use of global variables)
could cause troubles in multithreaded versions of POSIX.

B.1.9.6 Omitting C Functions

Some POSIX/C functions are omitted from the POSIX/Ada binding because they du-
plicate existing features of the Ada language. Examples include the following:

— Functionality similar to sigsuspend() is provided by the Ada binding to sigwait().

— The capability of alarm() is provided by the delay statement. Also, the Ada
runtime system may use alarm(), and the application cannot be permitted to
interfere.

— The C function time() is equivalent to the Ada function Calendar.Clock .

— The capability of sleep() and nanosleep() are provided by the delay statement.

In the case of POSIX.1c, most of the new C functions already had equivalent facilities
within Ada. Thus, the only C functions introduced by POSIX.1c that have bindings
defined by this standard are those that apply to mutexes and condition variables and
certain thread scheduling functions.

B.1.9.7 Handles

The POSIX/C interface makes extensive use of pointers. In general the POSIX/Ada
binding avoids use of Ada access types to correspond to C pointers. One reason is that
use of pointers is inherently unsafe; that is, there will always be a chance of dangling
references and storage leakage. But, more importantly, it unnecessarily constrains
implementations if handles are required to be implemented as access types.

Access types in Ada imply dynamic (heap) memory allocation. Realtime applications
avoid any use of dynamic, if possible, because of the possibility of runtime errors that
cannot be detected and removed by prior testing and because unpredictable response
times may occur due to storage recovery being performed at unexpected times.

Realtime implementations of POSIX, especially those conforming to the Minimal Re-
altime profile of POSIX.13, may avoid dynamic allocation by preallocating a limited
number of system resources in an array data structure. The C pointer would then
correspond to an index into the array in the Ada implementation.

B General 561

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Other implementations may choose to use dynamic allocation in order to avoid im-
posing such hard a priori limits on system resources. For these implementations, the
C pointer type would indeed correspond to an Ada access type.

To allow for both of these implementation choices (array indices and access types)
for handles to system objects, the Ada binding uses descriptors declared as private
types.

Every occurrence of a C pointer parameter potentially corresponds to two objects in
the Ada interface: the handle or descriptor itself, and the object being referenced
by the handle or descriptor. Sometimes, both are made visible — as in the case of
semaphores. (See B.11.1.1 for the reasons.)

type Semaphore is limited private ;
type Semaphore_Descriptor is private ;

function Descriptor_Of(Sem: Semaphore) return Semaphore_Descriptor;

If the underlying object is exposed (e.g., Semaphore), it is always an Ada limited
private type. The descriptor objects are private to allow copying. Given an object
(e.g., Semaphore), the function Descriptor_Of returns a handle that can be used
in subsequent operations to refer to the object.

At other times, only the handle is needed, as in the case of AIO control blocks. Then
the Ada binding omits the underlying object type declaration and the function De-
scriptor_Of . Thus, for AIO control blocks, only the descriptor is visible in the
interface:

type AIO_Descriptor is private ;

In some cases, such as I/O buffers, the proper semantics are achieved by mapping a
usage of a C pointer type to an Ada access type, but such cases are rare.

B.1.9.8 Avoiding Storage Leakage

The POSIX/Ada interface has been designed to try to avoid dynamic storage alloca-
tion wherever possible. In some cases, for example, AIO control blocks, the use of
dynamically allocated storage seems unavoidable. However, most instances of de-
scriptors offer the prospect of avoiding heap allocation, as discussed in B.1.9.7.

In every instance where use of dynamic storage allocation might be chosen by an
implementation, separate operations to allocate and recover storage have been pro-
vided, usually with pairs of names such as open and close , initialize and fi-
nalize , or create and destroy . An application that calls the recovery operation
(e.g., close, finalize, or destroy) before exiting the scope of any objects created using
the allocate operations (e.g., open, initialize, or create) is guaranteed that any storage
dynamically allocated by the implementation will be reclaimed.

These explicit allocator and deallocator operations are provided by the standard in
order to minimize storage leakage and to protect the integrity of implementation
data structures from inadvertent corruption by the application. However, they do
leave the possibility of dangling references. Minimizing the danger of dangling ref-
erences for the application was considered of secondary importance for two reasons.
First, disciplined programming practices can avoid the problem altogether at the ap-
plication level. Second, even if dangling references do occur and lead to erroneous

562 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

execution of the application, recovery may still be possible. However, the corruption
of implementation data structures could render effective recovery impossible.

B.1.10 Conformance

The classes of conformance and the corresponding requirements are generally the
same as in the POSIX/C system API standards, with appropriate changes in termi-
nology for Ada. However, because of the interactions of certain Ada language fea-
tures with features of the POSIX interface, support of this standard also imposes
requirements on the Ada language implementation, as are enumerated in 1.3.1.1.

B.1.11 Year 2000 Compliance

This standard is intended to contain no specifications that conflict with Year 2000
requirements. In particular, the time types and interfaces defined in this binding
are sufficient to represent times and dates within and between the 20th and 21st
centuries. Further definition or specification of Year 2000 compliant features or re-
quirements is outside the scope of this standard. c

B.2 Terminology and General Requirements

B.2.1 Conventions

This clause is similar to the corresponding clause in POSIX.1, with typographical
conventions changed to be appropriate for the Ada language.

B.2.2 Definitions

This clause is similar to the corresponding clause in POSIX.1. Some of the terms
and definitions have been revised for consistency with the terminology of the
Ada RM f1g. Some new definitions have been added, specific to the Ada language.
Several of these are repeated verbatim from the Ada RM f1g.

B.2.3 General Concepts

This clause is similar to the corresponding clause in POSIX.1, with several additions
unique to Ada.

B.2.3.1 Process/Active Partition Equivalence

The developers of POSIX.5 were confronted with a fundamental choice. Which Ada
construct corresponds most closely to a POSIX process? Two Ada 83constructs were
candidates: an entire Ada program or an individual Ada task. There were several
reasons for deciding that an entire Ada program corresponds to a POSIX process.
First, Ada tasks share some execution context, which might include process-level
attributes, such as system resources held and virtual address mappings. Requiring
this execution context to be shared across POSIX process boundaries would impose
extra overhead on task switching and might not even be possible on some systems.
Second, tasking interactions, such as rendezvous semantics, would impose extra re-
quirements on process interactions that might not be supported on some systems.
Third, existing practice for Ada implementations on UNIX systems typically equated

B Terminology and General Requirements 563

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Ada programs to processes. Thus, the model adopted by POSIX.5 was that all Ada
tasks within an Ada program appeared to execute within a single POSIX process.

This model does not prohibit implementations from creating additional hidden pro-
cesses in order to improve application performance. For example, some implementa-
tions might create a hidden I/O server process to handle all synchronous I/O opera-
tions for the Ada program so that when one task is blocked on an I/O operation, the
other tasks in the same process are still free to execute. All that is required is that
the implementation ensure that the Ada program behave as a single POSIX process
for operations of the POSIX/Ada interface.

Ada 95 requires a change to this model. An Ada program may consist of several
active partitions. Each active partition has a main subprogram and may have de-
pendent tasks. Active partitions of the same Ada program may execute concurrently,
if sufficient processing resources are available. The model adopted by POSIX.5b is
that an Ada active partition corresponds to a POSIX process and the environment
task of the active partition corresponds to the initial thread of control of the process.

B.2.3.2 Task/Thread Equivalence

POSIX.1c introduced the concept of multithreaded POSIX processes. The obvious
mapping is that an Ada task corresponds to a POSIX thread as defined by POSIX.1c.
This works at the conceptual level. However, there are significant differences in
the details of the behavior of tasks and POSIX threads, so that it is not possible
to identify these constructs with each other at the implementation level. In other
words, given the implementation freedoms allowed by the Ada language standard
and by POSIX, it is not possible to guarantee that Ada tasks having the behavior
required and permitted by the Ada RM f1g can be implemented using the facilities
for POSIX threads defined by POSIX.1.

Where there may be differences in the detailed behavior between Ada tasks and
POSIX threads, this standard regards such differences as language-specific. The
philosophy has been that tasks are the Ada expression of the POSIX abstraction of
light-weight concurrency within a process, and POSIX.1c threads are the C-language
expression of the same abstraction. It is clear then that any C threads functions that
provide facilities already present in Ada need not lead to new operations in this
binding, unless there is overriding reason to do so.

B.2.3.3 Tasking-Safe Operations

All operations in the POSIX/Ada interface are intended to be tasking safe, unless
specified as tasking unsafe. Tasking safe means that the effect of the operation shall
be as specified by this standard, even if it is executed in a multitasking environment
where other tasks are concurrently executing the same or other operations specified
by this standard.

The only operations currently marked tasking unsafe are the operations in package
POSIX_Unsafe_Process_Primitives .

The I/O operations defined in Annex A of the Ada RM f1g are not guaranteed to be
tasking safe. This standard does not address that issue.

564 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

B.2.3.4 Interruptible Operations

Some POSIX operations may return prematurely if a signal is delivered and han-
dled, whether by an application signal handler (as for C programs) or by the Ada
language implementation. In the Ada case, the interrupted operation would prop-
agate the exception POSIX_Error with the error code Interrupted_Operation .
The application would ordinarily want to recover from this exception and restart the
operation. Thus, each call to an interruptible POSIX operation would have to be
placed within an exception frame, and the exception frame would have to be placed
within a loop, as follows:

loop
begin

Some_POSIX_Interruptible_Operation(...);
exit;

exception
when POSIX_Error =>

if POSIX.Get_Error_Code /= Interrupted_Operation then
raise;

end if;
end;

end loop;

The need to provide a loop such as the one above seems awkward for the user, espe-
cially since the application must assume some signals are in use by the Ada language
implementation (i.e., reserved signals) and, therefore, every interruptible operation
is likely to be interrupted. This problem is compounded since the restarted oper-
ation may be interrupted again and again, causing the application to loop for an
unbounded amount of time. Interruptions are especially likely if the operation is one
that takes a long time to complete and if the Ada runtime system is using a periodic
alarm signal, e.g., to do time-slicing on a system that does not have direct operating
system support for time-sliced scheduling of threads.

For this reason, an extra Masked_Signals parameter has been provided for inter-
ruptible operations, which specifies the signals that are to be blocked during the
operation. (See B.2.4.6.)

B.2.3.5 Configurable Limits and Options

The POSIX/Ada interface involves a number of options and implementation limits.
(See 2.5.1 and 2.6.1.) Corresponding to each option and limit usually is a static
subtype indicating the range of implementation behavior permitted and a runtime
callable function that returns the actual implementation behavior. (See Tables 2.4,
2.6, 4.1, and 4.2.) In addition, corresponding to each limit is a compile time constant
that specifies the portable value for that limit (see Table 2.5).

Generally, the value of an option or a limit is system wide. However, for some options
and limits related to files, the option or limit is pathname-specific (see 5.4.1, 5.4.2,
and 5.4.3). In other words, the value of the option or limit may vary, depending on
the pathname of the file (i.e., where it is located in the file system).

The POSIX/Ada implementor declares the static subtype, for example, Open_-
Files_Maxima , to correspond to the lowest and highest values that might be con-
figured on the target POSIX system(s). Thus, Open_Files_Maxima’First must be

B Terminology and General Requirements 565

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

at least equal to Portable_Open_Files_Maximum , but might be greater. Open_-
Files_Maxima’Last might be the limit for the target POSIX system, if it is known,
or might be as high as Natural’Last .

A portable application may rely only on the portable limit, in this case, Portable_-
Open_Files_Maximum . Alternatively, it may query the runtime function, Open_-
Files_Maximum , and modify its behavior dynamically based on the value returned.

The implementation is required to guarantee the same portable limits as the POSIX
C-language system API standards. The treatment of limits is unlike the treatment of
signals: certain signals are reserved for the Ada language implementation, but the
Ada language is not allowed to take away from the application any resources that
would result in an actual limit being less than the specified portable limit. A con-
sequence is that the Ada runtime system is prevented from using certain features
internally on platforms that only support the minimum portable values. Then alter-
native, which is to reserve an arbitrary amount of each limited system resource for
possible use by the Ada runtime system, seems less desirable, since the amount of a
resource needed by the Ada runtime is not known, and will be zero in many cases.
Thus, the arbitrary amount reserved is likely to be either too little or too much.

The relatively straightforward approach in the POSIX/Ada binding for treating con-
figurable limits and options may appear more complicated to readers than it actually
is because of two intruding design issues: naming and packaging.

Due to the very large number of new limits and options, and the prospect that future
extensions to POSIX will add even more, POSIX.5b introduced systematic naming
rules for the constants, static subtypes, and configurable limits and options. These
naming rules are as follows:

— Static subtypes for options have the same name as the corresponding option, but
with _Support appended.

— Static subtypes for limits have the same name as the corresponding limit, but
with Maximumreplaced by Maxima .

— Configurable functions for options have the same name as the corresponding
option, but with one of the suffixes _Is_Supported or _Are_Supported .

— Configurable functions for limits have the same name as the corresponding limit.

— Constants for the portable values of limits have the same name as the corre-
sponding limit but with the prefix “Portable_ ”.

— Blanks in the names of options and limits are replaced with underscores.

Unfortunately, POSIX.5 did not follow these naming rules in all cases, so that this
standard now has duplicate names for many constants, static subtypes, and config-
urable functions. The old name was retained for compatibility with POSIX.5, but is
obsolescent; and the new name is provided for future use.

The packaging structure of POSIX.5 placed all constants and static subtypes for lim-
its and options in package POSIX. However, because of the many new limits and
options added by POSIX.5b, it was decided to split all options and limits out into
two new packages. POSIX_Options and POSIX_Limits . POSIX.5b retains the old
names in POSIX for compatibility with POSIX.5s, and places the new names for op-
tions in POSIX_Options and the new names for limits in POSIX_Limits . POSIX.5

566 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

already had placed the runtime callable functions for options and limits in sepa-
rate packages; POSIX_Configurable_System_Limits contains functions for op-
tions and limits that are not pathname-specific. POSIX_Configurable_File_Lim-
its contains functions for options and limits that are pathname-specific. POSIX.5b
merely adds the new names to these packages.

Thus, the placement rules for constants, static subtypes, and configuration functions
having to do with options and limits may be summarized as follows:

— Static subtypes for limits and constants for portable values of limits are in pack-
age POSIX_Limits .

— Static subtypes for options are in package POSIX_Options .

— Configuration functions for options and limits that are not pathname-specific are
in package POSIX_Configurable_System_Limits .

— Configuration functions for options and limits that are pathname-specific are in
package POSIX_Configurable_File_Limits .

B.2.4 Package POSIX

The package POSIXcontains a common core of declarations that are used by the other
POSIX/Ada interface packages. For implementations that support child packages,
all other POSIX/Ada interface packages are permitted to be implemented as child
packages of package POSIX. (See 1.3.1.1.)

B.2.4.1 Options and Limits

The preferred and complete interfaces for obtaining information about whether an
implementation supports an optional feature are defined in the package POSIX_-
Options .

The preferred and complete interfaces for obtaining information about implementa-
tion limits are defined in the package POSIX_Options .

However, for upward compatibility, redundant interfaces for obtaining information
about optional features and limits defined in POSIX.5 are still provided in the pack-
age POSIX. These interfaces are obsolescent.

B.2.4.2 Blocking Behavior Values

Ideally, POSIX operations that block the calling task should not block any other
tasks in the process. However, per-task blocking of all system calls is impractical
to achieve for some system calls on some operating systems. Therefore, to require
per-task blocking for all implementations of the Ada binding would prevent use of
the Ada binding on some systems.

This situation is analogous to the provision in 1.1.3(6) of the Ada RM f1g that allows
an implementation to impose implementation limitations on a particular execution
platform, providing that the implementor justify why it is impossible or impractical
to remove the limitation. Since POSIX does not have such a rule, the best approxi-
mation seems to be to require that blocking behavior be per task, wherever per-task
blocking can be implemented using the underlying system. An implementor would

B Terminology and General Requirements 567

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

be required to document the reasons for any cases in which the blocking behavior is
otherwise.

Two blocking behavior values were defined by POSIX.5 to specify the two extremes
of behavior:

— Tasks : only the calling task is blocked, reliably.

— Program : all tasks within the process are blocked, reliably.

A new blocking behavior Special was added by POSIX.5b for implementations
where several Ada tasks are executed by a single system-wide schedulable entity
(e.g., light-weight process, kernel thread, virtual processor). In this case, blocking of
the schedulable entity may block several tasks, but not all tasks, or there may be
a limit beyond which blocking of another task blocks all the remaining tasks in the
process.

The blocking behavior for classes of POSIX operations are defined in package POSIX
by either static subtypes or constants of type Blocking_Behavior . POSIX.5 defined
blocking behavior for the following classes of operations:

— Ada Text_IO operations.

— POSIX synchronous I/O operations.

— File locking.

— Wait for child.

POSIX.5b added only a new blocking behavior, subtype Realtime_Blocking_Be-
havior , which applies to all the realtime operations added by POSIX.5b. The al-
ternative was to have individual blocking behaviors for the separate options (e.g.,
semaphores and message queues). Such fine-grained control over blocking behavior
was deemed unnecessary, since applications are not likely to exploit it and implemen-
tations are not likely to provide different blocking behavior for the different realtime
options.

The anticipated ranges for subtype Realtime_ Blocking_ Behavior and their
meanings are

— Tasks ..Tasks : Realtime operations may be relied upon not to block more than
the calling task.

— Program ..Program : Some realtime operations may block all tasks within the
process; consult the conformance document for specific information.
NOTE: Some operations are required to support task blocking behavior regardless of the
range of Realtime_Blocking_Behavior .

— Tasks ..Special : Some realtime operations may block some or all tasks within
the process; consult the conformance document for specific information.

Other ranges are not anticipated since they would imply that all realtime operations
block additional tasks as well as the calling task.

568 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

B.2.4.3 Characters, Bytes, and I/O Units

POSIX and C are really based on byte-oriented file systems. The C char type, bytes,
and the I/O units upon which input/output operations are performed are really all
the same in POSIX. File names and user names are arrays of chars, and file contents
are streams of chars. POSIX.5 defined a single type POSIX_Character to represent
all these objects. The intent was that the type POSIX_Character correspond to the
C char type, and that implementations would extend it to include all possible byte
values of the underlying system.

However, in the POSIX.5 ISO fast-track ballot and in the ballot of POSIX.5b, objec-
tions were raised to the use of POSIX_Character in contexts where POSIX.1 uses
byte, mainly as a unit of untyped I/O data or or as a unit of memory. These objections
touched on several issues:

— The trend toward internationalization of character sets and the associated data
types implies that a graphic character is not always represented by a single byte
of data.

— Concerns that the mapping of POSIX_Character to a memory representation
might leave holes, i.e., bit patterns that do not correspond to characters.

— Concerns that an Ada implementation might impose some overhead on the con-
version of character values to other types of data.

— The provision in Ada 95 of standard marshalling and unmarshalling operations
(’Write and ’Read) for streams, which are based on the data type Stream_-
Element . It is clearly desirable to be able to use these operations in conjunction
with the POSIX message passing and I/O operations, especially when complex
data objects are being transmitted.

The possibility was considered of just reemphasizing the original intent of POSIX.5
that the values of the type POSIX_Character are just bytes; that is, each character
is required to fit in one byte of storage and the range of values is required to cover
all valid one-byte bit-patterns. Conversion operations between POSIX_String and
Stream_Element_Array could be added. But, the use of such conversion opera-
tions was unappealing because of the ample evidence from balloters that the word
Character in the type name led them to think of this type as a conventional char-
acter type, rather than as a byte type. There was also concern that the conversion
functions might impose execution time overhead.

Therefore, the terminology has been changed, and a new data type has been intro-
duced by POSIX.5b. Uses of POSIX character as a unit of data have been replaced
by the term byte. The new Ada type Stream_Element_Array has been taken from
Ada 95. New I/O operations (e.g., message passing and AIO) are defined only on the
new type. The I/O operations on the POSIX_String type are retained, for compati-
bility with POSIX.5, but also are overloaded on the new type.

The type POSIX_Character is retained for use in contexts where a string is needed,
such as for file names or pathnames. However, one of the main reasons for distin-
guishing this type from the standard Ada type Character no longer holds since
Ada 95 no longer restricts type Character to 7-bit ASCII values. Therefore, the
possibility of requiring the type POSIX_Character to be derived from the standard

B Terminology and General Requirements 569

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Character was considered. However, this change was not made, because it would
mean that other native character sets, such as EBCDIC, would no longer be accept-
able for POSIX_Character on Ada 95 implementations.

The lower bound of all values of type POSIX_String that are returned by explicit
operations of the POSIX/Ada interface is the value 1, except for operations on the
type POSIX_String_List . Appending a string to a POSIX_String_List preserves
the bounds of the string so that subsequent retrieval operations return the identical
string.

B.2.4.4 String Lists

A special problem occurs with command line argument lists and Environment vari-
ables. Most uses of these types just look up their values, so the binding could just
provide functions and show no visible string list type at all. But some applications
also need to build these lists, typically just before passing them to a new process.
Should there be a simpler interface for the majority of applications that just look up
values, or should there be a combined interface that allows for both looking up values
and for creating new lists? The latter course was chosen.

There is a string list type in package POSIX. There are additional declarations that
use this private type, for example, in POSIX_Process_Environment .

The string list type is not a direct mapping of the C type char **. Instead, the Ada
binding provides a limited private type POSIX_String_List ; an iterator over objects
of this type; and operations to build, search, and manipulate POSIX string lists. This
string facility is sufficient to support the needs of the POSIX/Ada interface.

The POSIX_String_List operations do not provide a more general list processing
capability because it might be desirable for a system to implement these string lists
in a way that optimizes their use with the POSIX operations, but would be less effi-
cient for general use.

B.2.4.5 Option Sets

The type Option_Set and its operations provide a general set facility for specifying
options to POSIX/Ada operations having an Options parameter. The Options pa-
rameter corresponds to the C flags parameter. The "+" operation is equivalent to the
C-language "|" operator, and the binary "-" is equivalent to the C-language "&˜"
for removing options from the set. The function Empty_Set returns a set with no
options set. Empty_Set is a function, rather than a constant, to ensure that the it is
inherited for all types derived from Option_Set .

Packages with option sets (e.g., POSIX_IO) derive a new type (e.g., Open_Option_Set ,
described in 6.1.1) from Option_Set , inheriting all the set operations from package
POSIX. They declare constants of this new type, using the constants provided in
POSIX, to represent the individual options available (e.g., Non_Blocking and Ex-
clusive) The inherited operations and constants permit the end user to write option
set expressions like the following:

Options => Non_Blocking + Exclusive;

570 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

For other examples of this technique, see type Synchronize_Memory_Options in
package POSIX_Memory_Mapping (12.3.4) and type Message_Queue_Options in
package POSIX_Message_Queues (15.1.1).

Another advantage of this approach, the primary reason for its adoption, is that it
allows implementation extensions. An implementation can define additional options
(in an implementation-defined package) by defining new constants of type POSIX_-
IO.Open_Option_Set , for example.

Option_Set is a private type in order to allow some implementation freedom. The
most likely implementation is either a fixed-length packed array of Boolean or an
integer. In the former case, the operations on Option_Set can be implemented using
predefined operations on Boolean types and arrays of Boolean values provided by
Ada. In the latter case, an implementation can use its facilities for manipulating
integers as bit masks, similar to facilities in the C language.

In order to meet the requirement that objects of type Option_Set should be implic-
itly initialized to the empty set, the underlying representation is likely to be placed
into a record type to allow use of Ada default initialization for record components.

The deferred constants with names beginning with “Option_ ” are provided to allow
implementors of other POSIX packages where types are derived from Option_Set
to define constants for singleton option sets in terms of these constants without the
need to resort to Unchecked_Conversion .

B.2.4.6 Masked Signals Parameter

A Masked_Signals parameter is added to POSIX/Ada operations that might be
interrupted by a signal in order to give the application the ability to prevent a call
from being interrupted by the reserved signals, which cannot ordinarily be masked
by the application.

For example, in package POSIX_IO , the file close operation is declared as follows:

procedure Close
(File: File_Descriptor;

Masked_Signals: POSIX.Signal_Masking:= POSIX.RTS_Signals);

Three values may be specified for Masked_Signals : No_Signals , RTS_Signals
(always the default), or All_Signals . These values have the following meanings:

— No_Signals : No signals shall be masked other than those that already have
been masked.

— RTS_Signals : Signals normally used by the Ada runtime system shall be
masked during the operation and shall not cause it to be interrupted.

— All_ Signals : All signals, including implementation-defined signals, are
masked during the operation.

A Masked_Signals attribute is also provided for process creation templates since
process creation can also involve interruptible operations.

This three-value enumeration was chosen instead of a signal set because it is not in-
tended as a substitute for the operations that block and unblock a set of signals. The

B Terminology and General Requirements 571

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

purpose is to cover signals that cannot otherwise be masked, namely, the reserved
signals. The three choices provided are adequate for most applications. If an appli-
cation needs finer-grained control (for signals that are not reserved signals), it can
use the facilities of package POSIX_Signals . Another reason for not allowing the
specification of a set of signals here is that it would require moving the declaration
of the signal and signal set types from package POSIX_Signals to package POSIX.

The POSIX/Ada operations that have the Masked_Signals parameter correspond
exactly to the POSIX/C functions that can return with errno set to [EINTR].

B.2.4.7 Time Types

The C-language type time–t is mapped to the Ada type Time in package Calendar .
The C-language type clock–t is mapped to the Ada type Tick_Count in several places
(see 4.2).

The POSIX time-zone TZ functionality included in Section 8 of POSIX.1 is placed in
Section 4 of this standard. Since TZ should not be used to modify the behavior of
the predefined Calendar package in Ada, an analog to the Ada predefined package
Calendar is provided. This package provides the same functionality, but applies the
information contained in the TZ environment variable to a value of type POSIX_-
Calendar.Time . This package also provides operations to convert between values
of Calendar.Time and POSIX_Calendar POSIX_Time .

The C-language structure timespec is mapped to the private type Timespec in the
package POSIX. This type is placed in POSIX rather than in POSIX_Timers because
it is used as the type of a parameter of function Await_Signal_Or_Timeout in pack-
age POSIX_Signals . Since POSIX_Timers depends on POSIX_Signals , putting
Timespec in POSIX_Timers would create a circular compilation dependency. More-
over, it is reasonable to expect that Timespec may find uses in future extensions of
other POSIX interfaces.

The idea of providing separate types for relative and absolute time similar to
Ada.Real_Time in Ada 95was considered. The decision to use a single type is based
on simplicity and consistency with POSIX.1.

The possibility of making Timespec a visible record type with explicit component
fields for Seconds and Nanoseconds was considered. The C-language interface
specifies timespec as such a structure. Making Timespec a visible record type was
rejected on the grounds that the underlying system representation of time might
not be the same as specified in POSIX.1b. For example, in an embedded realtime
system, it is likely to be an integer count of clock ticks. Forcing the Ada user to go
through the C-language representation might force extra type conversion and cause
significant overhead. (A prototype implementation on a 86040 single board computer
showed that the extra overhead took ten times as long as just reading the realtime
clock.) Moreover, arithmetic on the two-part C-language timespec structure is much
slower than on a 64-bit integer value. Making Timespec a private type allows the
implementation to make direct use of the best representation of time to achieve max-
imum efficiency.

Another alternative considered was to use Duration directly. Duration was not
used because of concern that it would impose too much overhead on nonrealtime ap-

572 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

plications, for some Ada implementations. If Duration is represented as a 32-bit
signed integer, it is not possible to satisfy both the POSIX requirement for nanosec-
ond precision and the Ada requirement for a range of plus or minus one day. But,
if Time and Duration are both represented as 64-bit integers, there would be extra
overhead for conversion between the Ada representation and the C representation.
Moreover, supporting such types would imply support for general 64-bit fixed-point
arithmetic, which was not yet common at the time POSIX.5 was balloted.

Operations are provided to convert between a value of the private type Timespec
and the equivalent counts of whole seconds and nanoseconds. Split and To_Time-
spec are provided as well as the operations for just seconds and just nanoseconds.
Likewise, mixed addition and subtraction are provided for Timespec with Nanosec-
onds to avoid imposing overhead of going through unnecessary widening conversions
on the operand of an operation that is expected to occur in time-constrained contexts.

The conversion functions for Calendar.Time are separated from the package POSIX,
so that the package POSIX_ Timers does not depend on Calendar . Avoiding
this dependency allows the possibility that Calendar might be implemented using
POSIX_Timers .

The Nanoseconds type was not made a fixed-point type for two reasons. First, some
Ada compilers do not permit exact specification of decimal Small values for fixed-
point types. If the compiler does not support decimal Small values there might be
error introduced in converting between true nanoseconds and the fixed-point type.
Second, the Ada semantics for fixed-point types would require the implementation
to support multiplication and division operations with greater precision than is re-
quired for time calculations, resulting in unnecessary overhead for the implementa-
tion.

The constant Portable_Clock_Resolution_Minimum is a named number, rather
than a constant of type Nanoseconds_Base , since using the type Nanoseconds_-
Base would force the declaration of the time types to precede the portable constants
in POSIX.

B.2.5 Package POSIX_Options

For POSIX.5b, the static subtypes for options were taken from POSIX and placed in
POSIX_Options because of the large number of options introduced by POSIX.1b and
POSIX.1c. The old interfaces are retained in POSIX for compatibility with POSIX.5,
but are obsolescent. POSIX_Options is the preferred interface for obtaining infor-
mation about the options supported by an implementation.

B.2.6 Package POSIX_Limits

For POSIX.5b, the portable constants and the static subtypes for limits were taken
from POSIX and placed in POSIX_Limits because of the large number of additional
implementation limits introduced by POSIX.1b and POSIX.1c. The old interfaces are
retained in POSIX for compatibility with POSIX.5, but are obsolescent. POSIX_Op-
tions is the preferred interface for obtaining information about the limits imposed
by an implementation.

B Terminology and General Requirements 573

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

B.2.7 Package Ada_Streams

Ada_ Streams is a renaming of the Ada 95 package Ada.Streams . The type
Stream_Element_Array is used in this standard to represent an array of bytes
for I/O operations.

B.2.8 Package System

To make effective use of the memory management operations defined in Section 12,
operations on the type System.Address are required, beyond those required by
Ada 83. Therefore, this standard imposes some specific requirements on this data
type from Ada 95, whether or not the Ada compilation system fully supports Ada 95.

B.2.9 Package System_Storage_Elements

Some interfaces defined in this standard, such as memory management and low-level
I/O operations, require facilities of Ada 95 that are defined in the package System.-
Storage_Elements . An implementation of this standard is required to support
these features, whether or not it fully supports Ada 95.

To provide a transition path from Ada 83, the package System.Storage_Elements
is renamed as System_Storage_Elements . Permission is given to replace this re-
naming by an implementation-provided package specification and body that provide
equivalent functionality.

B.2.10 Package POSIX_Page_Alignment

The package POSIX_Page_Alignment provides additional operations, beyond what
are available in System_Storage_Elements , that make it convenient to compute
address and file offsets that are page-aligned. These additional operations are useful
in writing portable applications because implementations may require that some of
the arguments of the memory management operations be page-aligned. Operations
are also provided to adjust a length to the exact number of pages that will need to be
locked/mapped for an object with a specified length and starting address.

For example, suppose a user wishes to map an object X. The address of X is given
by X’Address . The size of X in bits is given by X’Size . To specify the range of
addresses occupied by this object in a portable way, the address needs to be rounded
down to the nearest page boundary, and the length needs to be adjusted upward
to reflect the effect of rounding down the starting address. This is accomplished
by using Truncate_To_Page(X’Address) for the page-aligned starting address
and Adjust_Length(X’Address, X’Size/System.Storage_Unit) for the page-
aligned length of the region.

The exception Program_Error was chosen for errors in these operations, for consis-
tency with the Ada 95 treatment of errors in address arithmetic.

B.2.11 Environment Description

This section is very similar to Clause 2.6 of POSIX.1. It is important to maintain a
direct mapping of environment variables between C and Ada since environment vari-

574 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

ables are used to communicate between C and Ada programs and between programs
and shell commands.

B.2.11.1 Error Codes and Exceptions

The rationale for the general error reporting model is explained in B.1.9.1.

In POSIX.5b, linkage is made between the Exception_Message feature of Ada 95
and the POSIX error codes.

Implementations are free to raise POSIX_Error for implementation-defined reasons
and may also add additional error codes for implementation-defined errors.

In addition, no Ada name corresponds to EDOM (domain error) since that is the
C-language equivalent of the Ada exception Constraint_Error .

B.2.11.2 System Identification

These functions are a de-multiplexing of the C-language uname() function.

B.3 Process Primitives

B.3.1 Package POSIX_Process_Primitives

This standard specifies that an Ada active partition corresponds to a POSIX process
so that process-level POSIX operations affect all tasks within the active partition.
This choice seems to cause the least conflict between Ada language rules and POSIX,
and it resolves several binding issues cleanly:

— Exec and Start_Process are well- defined as producing a new active partition
execution.

— Exit_Process is well defined as ending an active partition execution.

— The current process ID is well defined.

— The bindings of file descriptors (and the descriptors of other file-like objects, e.g.,
named semaphores and message queues) are well defined over the entire active
partition.

— All process-specific state information is well- defined throughout a program, in-
cluding process environment variables and system accounting times.

This presumed correspondence between active partitions and POSIX processes does
not preclude the implementation from creating hidden processes to support more
efficient execution of applications. It merely requires that these hidden processes
not destroy the illusion that an Ada active partition is a single POSIX process with
respect to the operations defined by this standard.

To help contain some of the problems that might happen, this standard provides a
higher level template-based process creation operation, as well as an Ada binding to
the unsafe C-language operations fork() and exec().

B Process Primitives 575

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

B.3.2 Process Creation

The ability to create processes is an essential part of the POSIX interface; an Ada
binding to POSIX without process creation would be incomplete. The POSIX process
creation operations are isolated within the packages POSIX_Process_Primitives
and POSIX_Unsafe_Process_Primitives in order to allow easy detection of their
use by checking for the names of the packages in with clauses.

For creation of processes, the process template approach was chosen, in preference
to the apparently simpler

fork() ... arbitrary code ... exec()

approach, because it is necessary for semantic reliability when a process has multiple
threads of control. Permitting arbitrary Ada code to be executed after a fork() oper-
ation leads to numerous difficulties. The use of the Process_Template eliminates
such problems since the actions possible between logical Fork and Exec operations
are limited to those with clear single thread meanings. This approach was adopted
from the approach described in McJones and Swart fB11g.

Certainly, applications may require fork() and exec() operations that are not paired,
e.g., a fork()- fork()- exec() sequence to create a detached process, or an exec() without a
fork() to chain execution. Such special requirements can be satisfied using the Fork
and Exec procedures from the package POSIX_Unsafe_Process_Primitives . Use
of that package is appropriate because such applications are unlikely to be portable
across all POSIX/Ada implementations.

Likewise, some applications may require changes to the process state, between Fork
and Exec , that are not supported by the process template approach. The example
cited most often is writing a shell program. It was decided not to extend the template
model to support such applications. Few applications execute another program. Of
those few, very few do any operation other than to create a pipe to a general system
utility, which can be handled via mechanisms in file opening. Of those few that do
program execution more complex than creating a pipe, very few do the full shell-type
operations; typically, file redirection and establishing sensitivity to signals is all that
is done.

The general philosophy is that the process creation template is the preferred way to
create a new process for the simple situations that are likely to be found most com-
monly in portable Ada applications, but that it does not need to cover all situations.
The unsafe operations are available for the remaining cases. This is the reason the
templates specify only a few key process attributes. Also, since templates are not in-
tended to be reused frequently with minor variations, there is no need for operations
to extract the values of template attributes.

The procedure Set_File_Action_To_Close is needed because there is no way to
close open POSIX files except with this action. Only the parent process knows the
file descriptors and which ones of these should be open in the child process. The
child process cannot close the others because there is no query function to find out
all currently valid file descriptors. In the C-language interface the corresponding
capability is provided by the FD–CLOEXEC flag, which can be set via fcntl().

576 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

One concern when using templates is the danger of dangling references and storage
leakage. The application is responsible for finalizing templates so their storage can
be reclaimed. A negative consequence is that default values cannot be provided for
operations that take templates as arguments. The implementation is encouraged,
but not required, to detect invalid references to closed templates because it may not
be possible to perform such checks reliably.

One deviation of Start_Process from the Fork /Exec pair is that the effective user
and group IDs of the child process are taken from the real (rather than the effective)
user and group IDs of the parent. Using the real user and group IDs is done for
increased safety, e.g., to reduce the risk of accidental transmission of privileges.

In order to permit the intentional transmission of privileges, the option of keeping
the effective user and group IDs is provided as an attribute of the template that can
be set. This template feature may be overridden (independently) by the permissions
Set_User_ID and Set_Group_ID of the file. A process may actually go through
three sets of effective user and group IDs during start-up:

— The effective user and group IDs of the parent, as inherited through the Fork
operation.

— The real user and group IDs, as reset through the effect of the template (imme-
diately after the Fork and before other process-state changes specified by the
template).

— The effective user and group IDs of the file, as based on the permissions Set_-
User_ID and Set_Group_ID of the file, as part of the Exec operation.

If Fork is used to create a new process, the child can use the environment operations
to modify its environment.

One awkward aspect of Start_Process is that if initialization of the new process
fails after the Fork step, but before the Exec step, it is too late to return an error
to the creator process. For this reason, the special exit status value Failed_Cre-
ation_Exit is provided. It is not possible for Start_Process to precheck for all
error conditions that could be anticipated (e.g., insufficient memory to load the new
process image or concurrent deletion of the file to be executed).

B.3.3 Process Exit

The exit status of a process can be used to transmit information between programs
written in different languages. Therefore, the type Exit_Status is defined to be an
integer with the range 0..255 rather than a private type.

Ordinarily, exit from an Ada program is automatic due to normal completion or an
unhandled exception. Standard exit status values are defined for two cases, plus the
case of failed process creation. The choice of the value zero for Normal_Exit is tradi-
tional in UNIX systems. The choice of values for Unhandled_Exception_Exit and
Failed_Creation_Exit is arbitrary, subject to the constraint that it must not be
near zero or above 127 (but see Hitchhikers Guide fB1g). Values near zero are likely
to be already in use for special purposes. Extreme high values have the same prob-
lem as low values (since they are equivalent to negative values near zero). Values

B Process Primitives 577

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

above 127 are conventionally used by UNIX system C-language applications for pro-
cesses killed by signals. This practice is intentionally not followed by this standard
if the signal is converted by the Ada language implementation into an exception,
which propagates to the end of the active partition and causes it to terminate. In
such a case, the exception is no longer a signal. Following the C-language convention
for processes terminated by signals would, therefore, be misleading and incorrect.
Moreover, since the same exception might be raised for other reasons, it would be an
excessive burden on Ada implementations to remember whether an exception was
caused by a signal and to split the exit processing into two cases accordingly. This
information would have to be stacked and restored in the case of exceptions raised
within exception handlers.

The requirement that main subprograms be parameterless procedures reflects estab-
lished Ada practice and concern that Ada compilers should not be required to support
as main subprograms functions returning values of type Exit_Status .

The procedure Exit_Process is provided to permit an application to terminate it-
self immediately. This procedure provides a capability that is otherwise not avail-
able in Ada—to terminate all the tasks of a partition abruptly. The definition effect
of Exit_Process on tasks is intentionally not tied to Ada abortion or termination
since those terms have established meanings that are irrelevant to this operation
(which is performed by the underlying operating system rather than the Ada lan-
guage implementation). The effect of this operation is not consistent with semantics
of abort , i.e., it does not recognize abort-deferral or perform finalization of controlled
objects.

The underlying operating system can be relied upon to close any open file descrip-
tors, but cannot be relied upon to flush any output buffers that might be in use by
the application or the Ada implementation. There is no requirement that Ada output
buffers be flushed; flushing all buffers was considered to be impractical since it would
make the implementations of all output packages too dependent on the implemen-
tation of the POSIX/Ada interface, or vice versa. Also, flushing buffers is potentially
too time-consuming for situations where a fast process exit is desired. Strictly Con-
forming POSIX.5 applications should close or flush all open files before exiting, using
the operations provided for that purpose.

If the Ada language implementation creates any hidden processes to support execu-
tion of an Ada active partition, Exit_Process must terminate all such processes.
The requirement to terminate hidden processes is a consequence of the rule that an
Ada active partition execution must appear to be a single POSIX process.

B.3.4 Wait for Process Termination

The operations that request the status of a child process could have been specified
as functions, returning a value of type Termination_Status . This alternative was
rejected because the type of the result is private, and typically more than one com-
ponent from the status value are required in subsequent programming so the value
would have to be assigned to a variable anyway. Moreover, a procedure call is syntac-
tically a statement and thus similar to other blocking Ada forms, such as the delay
statement, the entry call, and the accept . Making the operation a procedure call
warns the programmer more clearly about the side effects of this operation. The

578 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

out parameter (which cannot be omitted) is in the leading position so that the other
parameters can be omitted, resulting in the default values being used.

The possibility of splitting these operations into separate procedures rather than
using the parameters Block and Trace_Stopped was considered. The resulting
increase in clarity of expression was not considered sufficient to outweigh the loss
resulting from proliferation of procedures (from two to eight).

B.3.5 Package POSIX_Unsafe_Process_Primitives

It is clearly very difficult to define fully the semantics of the POSIX/C fork() and exec()
functions in the presence of multiple Ada tasks in a way that is useful and easy to
implement. As a consequence, an application that uses these operations directly will
need to depend on special features of a particular Ada runtime system and a partic-
ular POSIX/Ada implementation and, therefore, is not likely to be portable. On the
other hand, sometimes nothing less general than fork() or exec() will do. Therefore,
the unsafe functions Fork and Exec (and Exec_Search) are provided, but their use
is made more conspicuous by putting them into a separate package, labeled unsafe.

The text in 3.2 establishes conditions under which a Strictly Conforming POSIX.5
Application may use Fork and Exec .

B.3.6 Package POSIX_Signals

Signals are a specially troublesome feature of the POSIX interface because the be-
havior defined by POSIX.1 does not map directly to the Ada language. It is nec-
essary to reserve some POSIX signals for the Ada-language implementation in or-
der to preserve Ada rules concerning the predefined exceptions Program_Error
and Constraint_Error . Also, no construct in Ada corresponds safely to the C-
language asynchronous signal catching function (also called a signal handler), nor
is one needed. Consequently, the POSIX/Ada binding restricts the view of C sig-
nal facilities accessible to Ada applications. All operations deemed useful to Ada
applications are exposed, including the ability to take default signal actions and to
wait synchronously for signals. Also, the POSIX/Ada signal interface is intended to
be sufficient to achieve whatever level of signal interoperability is possible between
Ada and C portions of a mixed-language application, depending upon the support
provided by the underlying operating system.

B.3.7 Signal Model

The original signal model of POSIX.5 was based on the POSIX.1 single threaded
signal model and the interrupt handling model of Ada 83. Since then, several things
have changed:

— POSIX.1b added functions to synchronously wait for signals.

— POSIX.1c added multithreaded processes and has redefined the process-level
signal masking operations to apply to the calling thread.

— Ada 95 has made the use of task entries as interrupt handlers obsolescent.

— It has become clear that signals are not interrupts and the POSIX/Ada binding
should not treat them as such.

B Process Primitives 579

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Due to these changes, much of the rationale for the treatment of signals in POSIX.5
no longer holds.

At the heart of the problem is how to treat sigaction(). The POSIX C interface allows
an application to install C functions as asynchronous signal handlers via sigaction().
The C application can use longjmp() out of a signal handler to an earlier setjmp()
point. This capability appears to be needed in some situations, where the desired re-
sponse to a signal is to abandon a computation abruptly. Because the Ada application
(or the Ada runtime system) is bound to need to execute some async-signal unsafe
operations after such a longjmp(), it is not safe in general to allow the Ada applica-
tion direct access to this capability. However, several Ada language constructs have
closely related semantics, i.e., propagation of an exception, abort of a task, and the
asynchronous select statement. A central goal of this binding, therefore, has been
to allow the Ada implementation to make use of signal handlers and longjmp() to
implement these Ada operations.

This standard is based on the assumption that asynchronous signal handlers are
used only by the Ada runtime system. Notification of synchronously generated sig-
nals to the Ada application is via Ada exceptions, raised by the runtime system.
Notification of other signals is via task-level blocking operations modeled after the
sigwait() interface of POSIX.1c and the sigwaitinfo() interface of POSIX.1b. The ra-
tionale for this decision is discussed further in B.3.13.

B.3.8 Signal Masking and Related Concepts

Originally, POSIX.5 was based on a model in which there is only one signal mask,
whose effect is process wide. For the signal mask to be process wide was the ex-
isting practice for Ada-language implementations on POSIX.1 systems at that time,
since the Ada language implementations provided their own user-level kernel for
scheduling multiple threads of control within a process. Since then, some operating
systems have begun to provide support for multiple threads of control within a pro-
cess, and POSIX.1c defined a standard C-language interface for such services. The
POSIX.1 multithreaded signal masking model requires that there be an individual
signal mask for each thread of control. It defines some new operations for manipulat-
ing this mask and specifies much of the behavior of signal masking on a per-thread
basis.

This standard cannot presume that the underlying operating system (if any) sup-
ports POSIX threads (see B.1.2). Therefore, the clear distinction between a thread-
level signal mask and a process-level signal mask that is made in POSIX.1 is not
possible for this POSIX/Ada binding. One fact is clear: This standard needed to be
revised to allow for the possibility that each Ada task may have its own signal mask.
Given the POSIX threads standard, it is likely that process-level signal masks will
not be supported by all the operating systems over which this standard is imple-
mented. Thus, it would be a significant burden to impose such a requirement on all
implementations of this standard. Accordingly, the process-wide effect of the effects
of the signal masking operations of POSIX.5 have now been defined to apply to the
calling task (and possibly to other tasks as well).

Other changes to the signal masking model made by POSIX.1b and POSIX.1c include
the addition of sigwait() and sigwaitinfo() operations, which allow a thread of control

580 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

to block until it accepts a signal. Since key operations introduced by POSIX.1c (which
would need to be used by an Ada runtime system, even if they are not directly ac-
cessible to Ada applications) are not safe for execution from an asynchronous signal
handler, it is clear that Ada applications should be encouraged to use a binding for
the sigwait() and sigwaitinfo().

While the effect of sigwait() is similar to a simple accept statement for a signal
entry, (or, in general, to a selective wait statement with a set of accept alternatives),
a direct mapping to Ada accept statements is not possible. The main reason is
that the Ada accept statement allows complex effects, such as combining accept
statements for normal task entries, and delay or terminate alternatives. Another
reason is that sigwait() can be called by any task for any signal, whereas only one
task may bind an entry to a given signal.

The solution chosen is to provide a direct binding for sigwait() and to allow an imple-
mentation optionally to support general signal entries in whatever fashion it chooses.
In particular, the implementation is allowed to implement signal entries by provid-
ing a hidden thread of control that uses sigwait() to accept the signal first and then
call the designated task entry via normal task-to-task entry call. Using a hidden
signal-server thread to implement signal entries allows the user the convenience of
mixing in accept statements for such entries without restrictions. However, the in-
tent of the current wording is still to allow all the implementations that were allowed
by the original POSIX.5 signal handling model (which was based on the spontaneous
generation of a new virtual task for each signal occurrence). One change made by
POSIX.5b is that use of task entries to accept signals is now controlled by the Signal
Entries option.

While using sigwait() seems desirable, or even unavoidable, where POSIX.1 multi-
threading is supported, there are the following difficulties:

— When sigwait() is called, all the signals that the thread is ready to accept need
to be masked, at least for the calling thread, or else the effect is undefined (see
3.3.8.2 of POSIX.1 f1g). Moreover, if any of the signals is unmasked in another
thread, the effect is unspecified.

— After return from sigwait(), the action associated with each of the signals that
the thread was prepared to accept is unspecified. In particular, if one wants to
have the default action, one must call sigaction() to restore the default action.
Still, unless the signal was masked before the call to sigwait(), there is a window
of vulnerability in which arrival of a signal has an undefined effect.

Thus, in general, signals for which sigwait() is going to be called must be masked
in all threads. The developers of POSIX.1c suggested that applications should rou-
tinely keep all signals masked in all threads, except for one thread per signal, that
is allowed to unmask that signal. It does not seem wise to rely on applications to
enforce this (or some more complicated) discipline, given the possible consequences.
In a large application, no matter how well written originally, the probability is too
high that routine maintenance might insert code that unmasks a signal for which
another thread does a sigwait(). Such bugs are especially dangerous, since they are
likely to remain latent for a long time. The effect will not show up very often, and
when it does, it will be hard to diagnose.

B Process Primitives 581

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

For nonreserved signals (i.e., those that a user might want to accept) only two cases
of signal masking are of interest. Either a given signal is masked in all tasks, in
which case one of the signal awaiting operations may be invoked for the signal, or
the signal is unmasked in at least one task, in which case the default action is taken.

What is needed is some combination of known starting conditions for signal masks
and known effects of signal masking and unmasking operations, so that an applica-
tion can rely upon which of these cases holds. For this reason, this binding specifies
the following:

— The environment task inherits its signal mask (for nonrealtime signals) from the
parent process. This inheritance of the signal mask allows some influence over
sensitivity to default actions by the creating process. The main subprogram can
change this signal mask and thereby alter the signal actions of the process.

— All dependent tasks are initialized with all signals that are not reserved sig-
nals or signals bound to task entries masked. This allows dependent tasks to
make free use of the signal awaiting operations for signals that are known to be
masked in the environment task.

Some comments submitted during the ballot process for this standard made a con-
vincing case that all the signals that can be accepted by an Ada application should
be initially blocked, in the environment task as well as other tasks. Initial blocking
of all signals would eliminate a window of vulnerability during which a new process
that expects to receive and handle signals cannot protect itself against unwanted
termination (which is the default action) on early arriving signals. The window is
the interval between creation of the process and the first opportunity the process has
to block the signal in the environment task.

For example, consider a library-level package that contains a task that uses some sig-
nal for notification of message arrival. Until the signal is blocked in the environment
task, arrival of a message will terminate the entire process (the default action). If the
task attempts to execute Await_Signal , the effect is undefined. The package body
can prevent unwanted termination of the environment task by calling Block_Sig-
nals and then synchronizing (e.g., by rendezvous) with the task that uses the signal.
The task that uses the signal needs to wait for this rendezvous before it attempts to
request any event notification via the signal or attempts to accept the signal. How-
ever, the logical complexity and runtime overhead of this synchronization could be
eliminated if the signal were blocked from the start.

It is not desirable to initially block all the nonreserved signals in this fashion since
one would then lose the ability to use the default signal actions for job control. Also,
there is the issue of compatibility with POSIX.5. Both of these objections can be
met, however, if only the real-time signals are required to be blocked initially in the
environment task. Initial masking of the job control signals would remain under
control of the parent process. Since real-time signals were new for POSIX.5b, there
would be no existing POSIX.5 applications that use these signals.

If a requirement for initial blocking of the realtime signals is added, it will need to
be stated in a form that does not impose any such requirement on non-Ada programs
and that is compatible with existing operating system implementations. It follows
that blocking of the signals must be allowed to be done by the new process after

582 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

creation. On the other hand, the standard needs to also be compatible with Ada-
only embedded implementations, where it may be preferable to block the realtime
signals from the first instant of the process creation. The blocking of signals cannot
be any later than the elaboration of the body of package POSIX_Signals or any other
package that depends on it since, after that point, the application may try to await a
signal or use an operation that causes a signal to be generated for event notification.
Given this dependence on the package POSIX_Signals , it may make sense that a
requirement for initially blocking realtime signals might not apply to all Ada active
partitions, but just to applications that use the package POSIX_Signals .

The suggestion of a requirement for initially blocking the realtime signals came late
in the ballot process for POSIX.5b, after consensus had been achieved. There was
some concern that it would require several ballot iterations to determine whether
there was consent for such a change and to work out an acceptable formation of the
details. Therefore, the issue was postponed until the next amendment or revision
to this standard. However, informative notes were added to the standard to warn
implementors and users that they should be prepared for the imposition of such a
requirement in the future.

The signal masking and unmasking operations are required to guarantee the follow-
ing: A task starts with the condition that the signal(s) of interest are masked in all
other tasks. It unmasks the signal (this action might have the effect of unmasking
the signal for other tasks as well). Later, the task again masks the signal. At this
point one would want the signal to be masked again in all tasks. In order to guaran-
tee this behavior, the implementation is allowed to impose a restriction that a task
may not unblock a signal that is already unblocked by another task in the same pro-
cess. The task that unblocks a signal becomes in effect the signal manager for that
signal for the entire process.

The possibility was considered of putting additional restrictions on signal blocking,
to further enforce the idea of each signal having only one manager task at a time.
For example, a task might not be allowed to block a signal unless the same task had
previously unblocked that signal. This restriction was not imposed due to problems
dealing with details, such as the proper treatment of any signals that are already
unblocked when the process starts.

NOTE: The next revision of this standard should perhaps review the possibility of defining
further restrictions on signal blocking to enforce the concept of there being only one manager
at a time for each signal.

The effect of the Masked_Signals parameter changes a little. The implementation
is required to ensure that the requested signals are masked for the calling task for
the duration of the operation, but then to restore signal masking to its prior state
upon completion of the operation. Thus, the signals specified to be masked are guar-
anteed not to cause interruption of the operation, but may or may not be blocked
from delivery to other tasks within the process.

POSIX.5 already had the operations Block_Signals and Unblock_Signals . These
operations might have been deleted from POSIX.5b, since the original effect (of
changing the process-wide signal mask) can no longer be required since POSIX.1c.
However, deleting the signal blocking operations might break some existing applica-
tions, and would reduce the utility of Ignore_Signal and Unignore_Signal for

B Process Primitives 583

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

flushing pending signals. This standard has chosen instead to redefine these oper-
ations to apply to the calling task and to allow the POSIX/Ada implementation to
restrict their use so that a task that unmasks a signal and then masks it again can
be assured that it is possible to accept the signal via Await_Signal . Thus, the
POSIX/Ada interface is implementable over a system that supports POSIX.1 mul-
tithreading. Restricting the effects of the singnal blocking operations to the calling
task is also consistent with the following ballot objection from the P1003.4 Working
Group (reproduced here verbatim), which maintains that process-wide signal mask-
ing cannot be used with predictable effects in a multithreaded process:

In a parallel processing setting, with multiple threads or tasks, per-process signal
blocking leads to inherent race conditions. In a threads context, suppose that one
thread called a primitive to block all signal delivery to the process. After returning
from this primitive, the thread might then reasonably expect that from then on no
signal handlers would be run until signals are unblocked. But then suppose that
a second thread was already one instruction into the execution of a signal handler
when a context switch occurred, allowing the first thread to block signals. Then
at some point, indefinitely far into the future, another context switch occurs which
allows the second thread to continue running after the first thread had returned
from the block signals primitive. Note that once this happens (A) a signal handler is
run (in the second thread) (B) even while all signals are blocked. Thus, per-process
signal masking can not be effectively used to deterministically block signals from
being delivered. Per-thread or per-task signal masking does not suffer from this
race condition. Thus, per-thread or per-task signal masking is a more appropriate
signal masking model.

B.3.9 Tasking Safety

When a signal handler asynchronously preempts another thread of control within a
process, the behavior of some of the operations defined by the C-language binding
is unspecified if they are called from the signal handler. This restriction extends to
the longjmp() operation and any other operations that may be performed by a thread
of control after exit via longjmp() from a signal handler. Because signals may cause
one Ada task to preempt another, directly or indirectly, and may cause asynchronous
transfer of control (like longjmp()) within a task, operations that are not async-signal
safe effectively cannot be used safely within an Ada program.

This standard requires that the interface to all POSIX operations enforce that they
be tasking safe. The Ada runtime system is required to enforce tasking safety by
exercising discipline in the way it uses async-unsafe operations and the way it does
task context-switches. However, the application also must refrain from installing
asynchronous signal handlers (which cannot be done using this standard, but might
be done using interfaces not defined by this standard, including C-language code)
that call Ada code that might call an async-unsafe operation. (See also B.2.3.3.)

B.3.10 Signal Type

After consideration of enumeration and private types, an integer type was chosen to
represent signals. The primary reason for this decision was to facilitate exchange of
signals between applications written in different languages and also to allow easy
extension to new signal numbers. (See B.1.)

584 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Declarations of both the long (Ada) names of signals and the conventional short (C)
names are provided. The use of the long identifier within Ada programs is encour-
aged.

B.3.11 Standard Signals

POSIX.1 defines four classes of signals (see 3.3.3):

— Required signals: All implementations must support the required signals.

— Job control signals: Implementations that support the Job Control option must
support the job control signals.

— Memory protection signal: Implementations that support the Memory Protection
option must support the memory protection signal.

— Realtime signals: Implementations that support the Realtime Signals option must
support the realtime signals.

Some of the standard POSIX signals are associated with events (e.g., floating point
error, illegal instruction) that in the Ada context require that predefined exceptions
be raised. Thus, these signals must be reserved to the Ada language implementation.
Signal_Alarm is almost certainly going to be used by some implementations to
implement delay operations; so this signal is also reserved. An application is not
permitted to interfere with the use of these reserved signals by the Ada language
implementation or the POSIX/Ada implementation.

In addition, the signal Signal_Abort is reserved for the use of the implementation
of Ada task abortion and asynchronous transfer of control.

The other standard signals are traditionally used in UNIX systems for interprocess
coordination. One of the most useful aspects of these signals from the point of view of
the application is the default actions that are taken when these signals are delivered.

The realtime signals are likely to prove the most useful for applications for several
reasons:

— Realtime signals are required to be distinct from the other standard signals and
do not have any uses defined by convention; thus, they may be used freely by
the application to represent application-specific events (e.g., notification of timer
expiration and message arrival).

— Realtime signals may be queued (in FIFO order) so that multiple signal occur-
rences are not lost.

— Realtime signals may carry an application-defined data value, which may be
used to distinguish between multiple occurrences of a signal.

— Notification for realtime signals is required to be in priority order (lowest signal
number first) so that some measure of predictable behavior is possible. There is
no notification order specified for other standard signals.

Constants are provided for values of the type System.Address corresponding to
each of the nonreserved nonrealtime standard signals. These constants can be used
in an address clause to bind a task entry to a particular signal. The values are given

B Process Primitives 585

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

as constants, rather than functions, because some Ada implementations might re-
quire that the address given in an address clause be a compile-time constant. No
constants are provided for the reserved signals since an application is not allowed
to accept these signals. Similarly, no constants are provided for Signal_Kill and
Signal_Stop since these signals cannot be accepted, caught, or ignored. The func-
tion Signal_Reference returns an address for each realtime signal that may be
used in a similar manner.

In contrast, signal names are defined for the reserved signals and for other signals
that cannot be accepted, caught, or ignored because an application might need to
send these signals to other (non-Ada) processes. The value Signal_Null is also
provided, even though it cannot be sent or received, because this value has other
uses. Signal_Null is a safe initial value for variables of type Signal , and may be
used as a parameter to Send_Signal for checking the validity of process and process
group identifiers.

B.3.12 Signal Sets

The type Signal_Set is a private type with operations to perform common set opera-
tions. This type might be implemented as an integer bit mask or as a Boolean array.
Implicit initialization of objects of type Signal_Set is required in 3.3.7. Initializa-
tion can be implemented by making this a record type (e.g., containing a vector) or
an access type and using the default initialization provided by Ada for these types.

This standard is more restrictive in this matter than the C-language binding in two
ways:

(1) It does not allow signals that are not defined in the standard to be members of
the empty set.

(2) It does not allow uninitialized signal sets.

B.3.13 Examine and Change Signal Action

The use of sigaction() is reserved by this standard for the Ada runtime system. The
main reason is safety. Asynchronous signal handlers have several unsafe aspects.
First, the runtime system needs to control the actions and masking of reserved sig-
nals in order to implement certain runtime checks and tasking operations. Allowing
the application to interfere would result in undefined behavior. The runtime system
requirements do not rule out the possibility of an interface that allows application
handlers for certain signals, i.e., those signals that are not reserved for the runtime
system. The main reason for not allowing application handlers for the latter signals
is that such an Ada procedure might unknowingly call an runtime system routine
that is not async-signal safe, again resulting in undefined behavior. The danger is
greater with the advent of POSIX.1c, which introduced several more operations that
are not async-signal safe. Short of narrowly specifying a particular task implementa-
tion, which would prevent implementors from taking advantage of the most efficient
primitives of a particular underlying operating system, there is no way to predict
exactly which Ada source constructs will result in calls to async-signal unsafe oper-
ations. POSIX.1c also added another strong reason for not allowing asynchronous
signal handlers: The interactions with sigwait() are undefined, and this standard
provides an Ada binding for sigwait().

586 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

A less important reason for not allowing signal handler procedures is that Ada 83
does not have procedure pointers. While Ada 95 does introduce procedure pointers,
this standard is intended to be compatible with Ada 83 as well as Ada 95, so proce-
dure pointers are not used.

The capability of blocking or ignoring certain signals was almost omitted from
POSIX.5 because it is difficult to reconcile with the Ada model of rendezvous. How-
ever, if there were no operations to block signals an application would haven no way
of limiting the rate of arrival of troublesome signals. The consequences would be
especially bad, since the default action for most signals is to terminate the process.

Because an application that is not interested in a signal may want to ignore it or
restore the default signal action, but direct access to sigaction() is not desirable, the
operations Ignore_Signal and Restore_Default_Action are provided.

For the Ignore_Signal operation, this standard requires dequeueing of any pend-
ing signals since it preserves an important invariant for programming with signals.
Specifically, it should be true that a process can discard all the deliveries of a signal
generated prior to a given point in time by ignoring the signal while the signal is not
blocked.

The flag bit SA–NOCLDSTOP of the C-language binding provides a way to specify
that the Signal_Child signal not be generated for a parent process whenever any
of its children stops. Since the Ada runtime system hides the equivalent of the sigac-
tion() function of the C-language binding, there is no direct way of translating this
feature. The ability to interrogate and turn this bit on and off is, therefore, provided
by means of separate operations, Set_Stopped_Child_Signal and Stopped_-
Child_Signal_Enabled .

B.3.14 Signal Queueing

The basic POSIX signal delivery mechanism is inherently unreliable for signal count-
ing. It only guarantees that, following posting of a signal by some process, that signal
will be delivered at least once some time after the posting. This mechanism has well-
defined properties that are quite useful as long as the user does not believe all signal
occurrences are delivered. Signals are not intended as event-counting mechanisms.
Any application that attempts to use them in that way is not portable and is probably
unreliable on most POSIX systems.

POSIX.1 does permit implementations to queue signals, but even if queueing is pro-
vided, it is not required to faithfully queue every signal. Hence, the portable use for
(nonrealtime) signals is to tell a process to “do something at least once after the time
when the signal is posted.” In order to permit efficient processing of these semantics
by the receiving task, it is desirable to have a function for clearing the queue (i.e.,
Ignore_Signal). By contrast, in light of the unreliable delivery semantics, there
does not appear to be any benefit for an operation that would ignore a signal without
clearing the queue.

POSIX.5b added a new class of signal, realtime signals, for which signal queueing
may be enabled. The sigaction() interface is also used to enable and disable signal
queueing for a given signal, and the application may need access to this capability,

B Process Primitives 587

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

but we do not want direct access to sigaction(). Therefore, the special operations
Enable_Queueing and Disable_Queueing are provided.

B.3.15 Signal Notification Model

POSIX.1 defines two delivery modes for signals. The original standard only pro-
vided the signal number. POSIX.1b extended the notification mechanism for certain
signals to provide the signal number, the source of the signal, and an application-
specified data value queued with the signal by the sender. If the Realtime Signals
option is supported, then realtime signals can be queued with data. This POSIX/Ada
binding extends the notification mechanism to include signals with data only for the
case of sigwaitinfo() and sigtimedwait(). In particular, the task entry mechanism is
intentionally not extended to include notification of signals with data.

Two new types are introduced to support signal notification for signals with data.
Type Signal_Event represents the information that must be supplied in order to
generate signals with data. An object of type Signal_Event has the attributes:

— Signal: The signal number to generate.

— Notification: Whether notification is to occur.

— Data: The application-specified data value to enqueue along with the signal
number.

Type Signal_Info represents the information obtained upon acceptance of a queued
signal occurrence. An object of type Signal_Info has the following attributes:

— Signal: The signal number of the signal occurrence.

— Source: The source of the queued signal. Five values are defined by this stan-
dard, and the implementation may define other sources.

— Data: The application-specified data value enqueued when the signal was gen-
erated.

The type of the data value, Signal_Data , is intentionally a private type. Unchecked
conversion is required with this type to make the user aware that the interface is
inherently untyped. Admittedly, there would be no need for the user to do an ex-
plicit unchecked conversion if the package defined generic operations with the signal
value type as a parameter, but the absence of a visible uncheckd conversion would be
misleading. In reality, there would still be an unchecked conversion going on. There
is no way in the underlying operating system to force the type of value passed by
the sending program to be the same as the type of value expected by the receiving
program. To ensure that the unchecked conversion can be done, a requirement is
placed on the compiler to support unchecked conversion on certain data types, with
predictable results.

In the C-language interface, the sigev–value component of a sigevent structure is large
enough to hold a pointer or integer value. The Ada binding requires type Signal_-
Data to be large enough to hold an integer or address. It is not required to be large
enough to hold an Ada access value because Ada access values may be larger than C
pointers due to extra space that may be required to represent a constraint.

588 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

B.3.16 Examine Pending Signals

The ability to examine pending signals is included to help in deciding when to un-
block a signal. Between POSIX.5 and POSIX.5b the semantics were loosened to take
into account the possibility, introduced by POSIX.1c of there being two levels of pend-
ing signals (at the process level and at the task level).

B.3.17 Send a Signal

The kill() function of the C-language binding is unfolded by means of overloading
into three distinct procedures. Since Process_ID is a private type, the C-language
practice of using a negative value to denote that the ID should be interpreted as
a process group ID could not be followed. The procedure for sending a signal to a
process group thus needs to be split apart from the procedure for sending a signal to
a process. Likewise, the C-language convention of using a null ID to indicate that the
signal should be sent to all members of the process group of the sending process could
not be followed. For this purpose, a version of Send_Signal with neither Process
nor Process_Group parameter is provided. Sending a signal to Null_Process_ID
or Null_Process_Group_ID is an error that must be detected by the POSIX/Ada
implementation.

B.3.18 Binding for sigsuspend

The capability of the sigsuspend() function of the C-language binding is mostly pro-
vided by the Await_Signal operations and by the rendezvous operations if the Signal
Entries option is supported. Therefore, there is no sigsuspend() function in this stan-
dard.

B.3.19 Synchronously Accept a Signal

The sigwaitinfo() and sigtimedwait() operations are not mapped to Ada tasking oper-
ations, such as accept statements, for two reasons:

— They may block the entire process unless POSIX.1 multithreading is supported.

— The interrupt entry mechanism is considered obsolescent for Ada 95; therefore,
use of the task entry mechanism to receive signal notification is discouraged.

— The attempt by POSIX.5 to identify POSIX signals with hardware interrupts
was misguided in any case, due to semantic differences.

POSIX.1b and POSIX.1c created potential confusion by providing a nonorthogonal
set of operations for waiting for signals with overlapping semantics. These operations
are sigwait(), which depends on the optional support for threads, and sigwaitinfo()
and sigtimedwait(), which depend on the optional support for realtime signals.

The Ada bindings for sigwaitinfo() and sigtimedwait() have two versions each, one
for the case where the info parameter is null and the other for the case where signal
information is expected to be returned.

The version of Await_Signal that does not return information has the same pa-
rameter and result type profile as one would expect for an Ada binding of sigwait().
Moreover, the semantics seem to be indistinguishable; when sigwaitinfo() is called

B Process Primitives 589

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

with a null info argument, the effect apparently is equivalent to sigwait. Therefore
Await_Signal has been chosen as the Ada binding for both operations.

After deliberation, it was decided that the form of Await_Signal that returns a
value of type Signal should not depend on whether the underlying system supports
POSIX.1 multithreading or on whether it supports the POSIX Realtime Signals option.
An Ada equivalent of sigwait() is actually simpler to support than the mechanism for
binding signals to task entries that was required by POSIX.5.

The form of Await_Signal_Or_Timeout that returns a value of type Signal also
is required to be supported, even if the Realtime Signals option is not supported. One
reason for this decision is orthogonality. Another reason is that the functionality is
already present in the C-language interface by using a timer to generate an alarm
signal, but a timeout cannot be achieved directly in this manner for Ada applications
because Signal_Alarm is reserved for the Ada implementation. A third supporting
argument is that sigwait() duplicates the functionality of a simple accept statement
on a task entry bound to a signal and POSIX.5 provided timeouts on accept state-
ments using the delay alternative on a selective wait.

Based on the assumption that the implementation of the Ada binding may choose to
map these operations to a variety of underlying system services, the error codes for
all variants of the Await_Signal operation are the union of the set of error codes
that might be returned by sigwait() and sigwaitinfo().

The signal-awaiting operations with queued information are split into a separate
section because they depend on optional functionality.

B.3.20 Queue a Signal to a Process

The binding for sigqueue() is a rather direct mapping to the C-language interface.
Signal_Null may be used to check the validity of the process ID.

B.3.21 Send a Signal to a Thread

No direct binding is provided for pthread–kill() for several reasons. First, one goal of
this standard is that it be implementable on a variety of platforms, including those
that may not support POSIX.1 multithreading, and this operation could not be sup-
ported on such systems. Second, it was decided not to support asynchronous signal
handlers for reasons discussed in B.3.13. Therefore, a thread wanting to receive
notification via a per-thread signal sent by pthread–kill() would need to accept it syn-
chronously, using Await_Signal . However, the same effect could be achieved more
naturally using a protected entry, or rendezvous. Third, the basic capability of asyn-
chronously interrupting a thread is already provided with appropriate protection
and cleanup mechanisms via the abort operation and the asynchronous transfer of
control mechanism.

The one gap discovered in the existing Ada mechanisms is where a task is blocked
on an interruptible system call and another task wishes to interrupt the call (raising
POSIX_Error with error code Interrupted_Operation in the blocked task). For
this purpose, POSIX_Signals.Interrupt_Task is provided.

590 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

B.3.22 Schedule Alarm

The capability of the alarm() function of the POSIX/C binding is provided by the
Ada delay statement. Moreover, applications cannot be provided safe access to this
functionality of the underlying operating system without risk of interfering with the
operation of the Ada runtime system. Therefore, no alarm() function is in this stan-
dard.

B.3.23 Suspend Process Execution

No direct binding is provided for the sigpause() function. The capability to wait for a
signal is provided by the signal-awaiting operations based on sigwait() and sigwait-
info() and (optionally) the task signal-entry mechanism. The capability to wait for
termination is provided in Ada when the main subprogram and all tasks not driven
by signals complete in the Ada sense. Moreover, since the pause() function of the
C-language binding never returns normally and this standard limits Ada applica-
tions to accepting signals synchronously, the only case in which pause() would return
would be if a signal is caught by the Ada runtime system. This functionality does not
appear to be very useful.

B.3.24 Delay Process Execution

The original rationale for providing no direct binding for the sleep() function of the
C-language binding was that it is provided by the Ada delay statement, and before
the multithreading extensions of POSIX.1c applications could not be provided safe
access to this functionality of the underlying operating system without risk of inter-
fering with the operation of the Ada runtime system. Even with multithreading the
delay statement still provides an adequate indirect binding. In lieu of a binding to
nanosleep(), this standard adds a requirement that the resolution of Ada delays be at
least as fine as the resolution of the system-wide realtime clock, Clock_Realtime .

The addition of an Ada binding for pthread–cond–timedwait() further reduces the
need for a binding to sleep() or nanosleep().

B.3.25 Task Signal Entries

The use of task entries to accept signals was the only signal notification interface
defined by POSIX.5. That interface was modeled after the interrupt entry interface
of Ada 83, which has been labeled obsolescent by Ada 95. The signal entry inter-
face is retained by this standard, for continued support of applications developed for
POSIX.5, but it is made optional to reflect the fact that it is based on a faulty analogy
between signals and interrupts.

A known gap in the signal entry interface definition is that it does not specify any
requirement on the parameter profile of a task entry that is bound to a signal. No
attempt has been made to specify a parameter profile because signal entries are con-
sidered obsolescent. The signal entry interface is not extended to receiving signals
with information for the same reasons.

It is becoming generally accepted that POSIX signals are not the same as hardware
interrupts and that the POSIX/Ada binding should not encourage such an identi-
fication. The Ada 95 model for hardware interrupt handling, based on protected

B Process Primitives 591

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

procedures, does not fit the POSIX.1c model of signal handling, in several respects.
First, the scope of an Ada interrupt is considered to be global, rather than per-task,
so interrupt handlers do not execute in the context of any specific task. In contrast,
in the POSIX.1c model a signal can be targeted to a specific thread and the han-
dler executes within the context of that thread. Likewise, the effect of Ada interrupt
masking is global, at least among tasks executing on the processor where the in-
terrupt is masked. In particular, the interrupt must be masked globally whenever
a handler for that interrupt is executing. In contrast, in POSIX.1c, execution of a
handler only masks the signal for the thread that the handler interrupts.

These differences reflect differences in intent. The Ada language interrupt handlers
are intended to be low-level hardware interrupt handlers, unmediated by an oper-
ating system. POSIX signals, if they originate from hardware at all, are mediated
by the operating system. This intent is supported by the proposal for a new POSIX
interface for true hardware interrupts, for which the protected procedure model may
be a better fit.

B.3.26 Composability Considerations

In general, integrating subsystems requires some discipline and coordination in de-
velopment. POSIX signals introduce one point where coordination is required. Sig-
nals are a nonsharable resource. In general it is not possible to compose subsystems
that use signals, unless it can be determined that they do not use the same signals.
The difficulty of composing subsystems that use signals is independent of the lan-
guage in whicn the subsystems are written. It is especially likely to be a problem
where off-the-shelf subsystems (libraries) are linked with an Ada program. If the
off-the-shelf subsystem is written in C, the problem is more likely, since there is no
check that the C code does not use the signals reserved for the Ada language im-
plementation (e.g., SIGALRM, for timeouts). There is also a potential problem if a
C-language subsystem calls an Ada-language subprogram, which in turn is inter-
rupted by a C-language signal handler or calls a C-language subprogram. In this
case, if the C-language subprogram calls longjmp(), storage may be lost, and Ada
runtime system data structures may be left in a chaotic state.

B.4 Process Environment

B.4.1 Organization

The organization of Section 4 of this standard was changed from POSIX.1 to improve
modularity. Specifically, the following changes were made:

— 4.1, 4.2, and 4.3 of POSIX.1 were combined into 4.1 of this standard to centralize
handling of IDs related to processes.

— 4.4 of POSIX.1 was moved to package POSIX, in Section 2 of this standard, to
centralize the system inquiry operations.

— 4.6 and 3.1.2.2 of POSIX.1 argc, argv were combined into 4.3 of this standard
since together they define the strings that provide control of a command.

— 4.7.1 of POSIX.1 was moved to Section 7 of this standard to centralize controlling
terminal functions.

592 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

— 4.7.2 of POSIX.1 was moved to Section 6 of this standard to centralize functions
related to pathnames.

— Portions of 2.6 of POSIX.1 were moved into 4.3 of this standard to centralize
environment handling.

— 5.2 of POSIX.1 was moved to Section 4 of this standard since the current working
directory is another aspect of the environment of the process.

B.4.2 Package POSIX_Process_Identification

B.4.2.1 Process ID and Process Group ID

Process_ID and Process_Group_ID are separated in this standard into two types
although cursory reading of POSIX.1 would suggest a single type was appropriate. If
one carefully reads POSIX.1, it becomes clear that although process IDs and process
group IDs share the same source of values, they are actually two distinct types with
distinct sets of allowed and disallowed values. A valid process group ID may be an
invalid process ID and vice versa.

Separating these types has the additional benefit of helping clarify the purpose and
use of functions and procedures involving these types. For example, with two distinct
types it is not possible to invert accidentally the two parameters to Set_Process_-
Group_ID .

Null_Process_ID is a constant of the Process_ID type, which is guaranteed not
to match any process in the system. Eliminating this constant was considered, as it
causes some problems when defining the action of operations that take a parameter
of type Process_ID . However, as currently defined, Fork returns Null_Process_ID
to signal that the process is the parent in the forking process, and Get_Lock returns
Null_Process_ID when a lock is not owned by any process. Several routines that
have input parameters of type Process_ID require special error checking to disallow
operations with the parameter value Null_Process_ID .

B.4.2.2 Create Session

The name Create_Session is used instead of the alternative name Set_Session_-
ID since the chosen name is far more descriptive. The named procedure actually
creates a new session (if successful) and does not allow for a process to set its own
session ID without creating a new session.

B.4.2.3 Supplementary Groups

It is unspecified in this standard whether for Get_Groups the effective group ID of
the calling process is included in the list of supplementary groups, as it is unspecified
in posix1. While requiring inclusion or requiring exclusion (arbitrarily) was consid-
ered, the resulting complication of Ada implementations was not felt to be worth the
minimal added benefit to a user.

The list of supplementary group IDs is not normally accessed by an application be-
cause the list serves no useful purpose. The effect of the supplementary group IDs
on permitting access to files occurs within the system and outside the application
program scope. An application cannot add to or delete from the system supplemen-
tary group ID list. A normal application (one without appropriate privileges) cannot
change its effective group ID to anything except its real or effective group IDs.

B Process Environment 593

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

B.4.3 Package Process_Times

B.4.3.1 Tick Count

Tick_Count was defined as a visible (integer) type so that all typical integer opera-
tions are immediately available. A private type would have required the definition of
many functions for this type whose sole purpose would have been to provide integer
operations.

The most critical issue for this type is providing sufficient resolution of time values
while also providing sufficient range. POSIX.1 provides a simple type clock–t, which
must be an integer type if it is to be used by an application. The accuracy and range
of this type is intentionally left unspecified in POSIX.1, where it is noted that for
typical clocks with only 60-100 ticks per second, the range is nearly a year. However,
it fails to address systems with higher rates other than to require that the range be
at least 24 h.

Since this standard is only a language binding for POSIX.1 it does not require
systems to have any greater accuracy or range for POSIX time values than does
POSIX.1, even though the limited range and coarse resolution of POSIX time values
was a source of considerable concern to the Ada community, where high-resolution
systems that run for years are frequently encountered. An implementation-defined
integer allows an implementation of the POSIX/Ada binding to provide an accuracy
and range that matches what the underlying operating system provides.

Using a record with components defining a fixed expression of time with extremely
fine resolution and extremely wide range was considered and rejected. Such a type
would suggest an accuracy and range that were not provided by any specific system.
Unless one of the record components was a count of ticks, the type would likely not
provide the accuracy provided by the system clock. Additionally, it would not permit
the use of 64 bit integers, which provide for the required accuracy of counting ticks
while still having sufficient range, even for systems with tick intervals under 100 ns.

B.4.3.2 Process Times

Process_Times is a private type with functions used to reference structure fields.
Since the type is private additional data elements can be declared by an implemen-
tation and accessed via another (possibly child) package supplied with the imple-
mentation. Although POSIX.1 provides elapsed time as a function return and other
times in a structure, the Ada implementation stores all times in a structure for future
reference.

Elapsed_Real_Time is provided as a separate function because it is often required
independently of other process times and because access to just-elapsed time may be
significantly more efficient that getting all process times.

Get_Process_Times and, by extension, Elapsed_Real_Time are explicitly per-
mitted to raise exceptions for implementation-defined conditions. This permission
follows POSIX.1 precisely.

594 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

B.4.3.3 System Time

The C-language time–t type and the POSIX.1 time() function have been eliminated in
this standard because they duplicate the standard Ada Calendar.Time type and the
standard Ada Calendar.Clock function, respectively. Unfortunately, the Ada time
does not fully conform to the functionality provided by POSIX.1 time, which provides
monotonicity and provides for expressing and converting times using arbitrary time
zones. Therefore, the package POSIX_Calendar has been added. (See B.4.5.)

B.4.4 Package POSIX_Process_Environment

The C main program parameters argc and argv were expressed as a POSIX.POSIX_-
String_List returned by POSIX_Process_Environment.Argument_List . Ex-
pressing these arguments in a string list provides a convenient way for programs to
parse the argument string and is essentially identical to the facility defined for C.
Although the first item in the argument list is conventionally the name of the com-
mand used to start the process, POSIX.1 does not specify or enforce that convention.
Therefore, this standard also does not.

NOTE: As of Ada 95there is a standard Ada language-defined interface for argument lists
in the package Ada.Command_Line defined in A.15 of the Ada RM f1g. This package cov-
ers most of the functionality of the argument-list operations of POSIX_Process_Environ-
ment and also contains a much-restricted form of the exit-status features of POSIX_Pro-
cess_Primitives . The next revision of this standard should consider deprecating use of the
POSIX-specific argument-list interface in favor of the standard Ada interface and consider
integration of the POSIX exit-status features with those defined by the Ada language.

Functions to provide image and value for the private type Environment are not pro-
vided. While it is usual to provide these functions for most POSIX private types, the
environment is a complex type that does not easily translate into the single strings
required by these functions. A user can easily construct a printout of an environment
for an application-specific format using an instance of the generic iterators.Similarly,
a value function that constructs an arbitrary environment can easily be constructed
from standard Ada loop and string input operations.

The character ’=’ is forbidden in environment variable names for safety, despite a
potential cost in performance; the implementation has to check each character in a
variable name. Allowing ’=’ in variable names could cause problems when building
an Ada binding on top of a POSIX system implemented in C, in which the (name,
value) pair is represented as a single string with ’=’ marking the start of the value.

This standard leaves the processing of multiple instances of environment variables
as undefined. The alternative of specifying behavior for these (erroneous) environ-
ments would be of benefit in only rare cases. Where efficiency or other concerns do
not dictate otherwise, it is suggested that the handling be as follows:

— Delete operations should ensure that all copies of a name are deleted.

— Set and access operations should reliably access the same (name, value) pair.

— Iteration operations should iterate over all copies of a name, with the first name
in a set of identical names being the same name retrieved by access functions.

B Process Environment 595

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

The semantics of set and delete operations for environment variables were defined to
be similar to formal sets, in which adding or subtracting an item ignores the previous
state of the set. It was felt that these semantics were appropriate for typical uses of
environment variables.

Adding an additional parameter to the operations that would select alternative se-
mantics wherein exceptions are raised for setting an existing name or deleting a
nonexistent name was rejected. That approach was viewed as complicating the in-
terface with little benefit to the user. If an application truly requires these alternate
semantics, the user can test existence of an environment variable using Is_Envi-
ronment_Variable prior to the delete or set operation.

The effects of one task modifying the current environment while another iterates
over a value obtained from Copy_From_Current_Environment are undefined in
order to allow for efficient implementations.

Representing the type Environment presents some awkward choices. Suppose that
for compatibility with an underlying C implementation it is desirable to represent
an environment as an array of pointers, pointing to strings, where each string repre-
sents a (name, value) pair separated by ’=’ .

Two ways to allocate space for the strings are

(1) Heap Allocation. The strings might be dynamically allocated in heap space, as
environment values are set and unset. Heap allocation imposes no special limit
on the size of an environment, but poses problems for storage recovery since the
storage of such strings cannot be automatically recovered safely.

(2) Local Allocation. The strings might be allocated within a single contiguous block
of storage associated with each object of type Environment . Local allocation
would impose a limit on the size of an environment (as is permitted in POSIX.1),
but would permit automatic storage recovery.

In neither case can assignment between objects of type Environment be done via
simple copying. For this reason, the type is made limited private. Furthermore,
to permit an implementation to handle the current process environment differently
than any user-defined environment, this standard provides the current environment
as an implicit parameter to each overloaded operation.

In order to permit an implementation to use heap allocation, the user is held respon-
sible for providing an opportunity to recover storage by calling Clear_Environment
whenever an object of type Environment is no longer needed.

Examples of code fragments using operations in POSIX_Process_Environment fol-
low:

declare
Env: POSIX_Process_Environment.Environment;

begin
POSIX_Process_Environment.Copy_From_Current_Environment(Env);
declare

FOO: constant POSIX_String:=
POSIX_Process_Environment.Environment_Value_Of("Foo",Env);
-- FOO is set null (by default) if it is not in Env

596 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

begin
-- Do processing on FOO
POSIX_Process_Environment.Clear_Environment(Env);

end;

end;

If it is important to distinguish a null FOOfrom FOOnot being defined in Env and
there is no appropriate string to use that is distinct from possible settings of FOO,
then Is_Environment_Variable can be used as illustrated by the example below.
The example eliminates the need for a local copy of the current environment and the
overhead of allocating and clearing a potentially large environment.

if POSIX_Process_Environment.Is_Environment_Variable("Foo") then
declare

foo: constant POSIX_String:=
POSIX_Process_Environment.Environment_Value_Of("Foo");

begin
-- Processing on foo, including a null foo

end ;
else

-- Processing for a nonexistent foo
end if ;

B.4.5 Package POSIX_Calendar

This package provides functionality similar to the standard Ada package Calendar .
However, dates in this package are interpreted using the time-zone information in
the TZ environment variable, defined in 2.11.1. Time values obtained from the pack-
age Calendar need not have sufficient information to permit their interpretation
using the TZ environment variable. AI-00195 fB8g requires that the function Cal-
endar.Clock “returns a value that reflects the time of day in the external environ-
ment.” It has been argued that AI-00195 explicitly does not permit values returned
by Calendar.Clock to be modified by the TZ environment variable. Furthermore,
current implementations of Calendar.Time do not contain sufficient information to
permit values of this type to be adjusted using TZ. Therefore, this standard defines
a new POSIX_Calendar package with the same functionality as the Ada predefined
Calendar , but which supports adjustment via the TZ environment variable. This
package also includes routines to convert between values of type Calendar.Time
and POSIX_Calendar.Time . A conversion from Calendar.Time to POSIX_Cal-
endar.Time may require interpretation of the value using the current time zone.
In this case, the operation POSIX_Calendar.To_POSIX_Time is equivalent to the
following code:

-- Given the Calendar.Time value Date, convert it to POSIX˙Calendar.Time:
declare

Year: Calendar.Year_Number;
Month: Calendar.Month_Number
Day: Calendar.Day_Number;
Secs: Calendar.Day_Duration;
Answer: POSIX_Calendar.Time;

begin
Calendar.Split (Date, Year, Month, Day, Secs);
Answer := POSIX_Calendar.Time_Of (Year, Month, Day,Secs);

end ;

B Process Environment 597

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

B.4.6 Package POSIX_Configurable_System_Limits

This package provides functions to retrieve options and implementation limits. Du-
plicate names of some of the functions are included, as explained in B.2.3.5. New
names are included to conform to the naming rules for options and limits established
by POSIX.5b. Old names are retained for compatibility with POSIX.5.

B.5 Files and Directories

These packages are intended to provide the functionality of Section 5 of POSIX.1.
Differences in organization from POSIX.1 are noted below.

B.5.1 Organization

In general, Section 5 of this standard contains the types and operations that pertain
to either directories or the descriptions (attributes) of files, rather than the contents
of files. Section 6 primarily pertains to manipulation of the contents of files. In terms
of the data types manipulated, Section 5 deals with files according to pathnames,
rather than with File_Descriptor s. Functionally, Section 5 operations deal with
files that are not open to the program, while Section 6 deals with open files.

The transformation from a pathname to an open file descriptor is made by Open
and Open_Or_Create . These operations were placed in Section 6 since they are
expected to be associated with Close , Read, Write , and Seek . The only exceptions
to this pattern are the functions that extract attributes of the Status value of a file
and the various functions in the package POSIX_Configurable_File_Limits that
are overloaded to accept either a pathname of a File_Descriptor . Both of these
functions belong in Section 5 because they are queries on the description of a file,
rather than on its contents.

Change_Working_Directory and Get_Working_Directory , corresponding to
chdir() and getcwd() in the C binding, were moved from their original location in
POSIX.1 to 4.3 of this standard, as the current working directory is an aspect of the
environment of a process.

B.5.2 Package POSIX_Permissions

B.5.2.1 Permission Sets

Permission_Set is defined as a Boolean array in order to allow the use of the logi-
cal operators: and , or , and not , in the construction of permission sets. Constants of
type Permission_Set are defined corresponding to owner, group, and others access.
A constant is also provided for the union of owner, group, and others access. Finally,
constants are provided for setting the group ID and the user ID.

The use of a visible array type for Permission deviates from the convention followed
nearly everywhere else in this standard; it is a relic dating back to the earliest work
on POSIX.5. Extensions to this standard are encouraged not to emulate this case.
Instead, they should follow the predominant convention, which is to use a private
type in this sort of situation. For example, see the type Option_Set , which is used
in many similar situations.

598 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

The constant approach allows implementation extension packages to add elements
to the sets that are not necessarily contiguous. Thus, conforming applications can be
written that port to extended implementations with reasonably predictable results.
For example, consider an extended package, My_Permissions , that, in addition to
the user, group, and others permissions, adds in My_Special_User_Permissions ,
My_Special_Group_Permissions , and My_Special_Other_Permissions . A
program to remove all others permissions could use the expression:

all_but_other := arbitrary_set & (not Others_Permissions_Set);

B.5.2.2 Process Permission Set

The umask() function in the C binding establishes the file mode creation mask of the
process to the value of its parameter and returns the prior value of the mask as its
result value. In Ada it is considered poor style for a function to have side effects like
this. Thus, the corresponding operation Set_Allowed_Process_Permissions is
not a function, but a pair of overloaded procedures where one returns the old value
and the other does not. Set_Allowed_Process_Permissions is overloaded with a
version that returns the old permissions as an out parameter. Like other operations,
this operation is atomic in the face of tasking, but the user is still responsible for
coordinating the use of this operation by multiple tasks.

Future extensions to this standard should attempt to abide by this stylistic rule
against using functions for side effects, even though it is apparently violated a few
places in this standard. In each of those cases there was some specific overriding
rationale. For example, the Open operation on files is a function. It might be argued
that such an operation is not called primarily for its side effect, even though it will
have a side effect of creating a new open file description. The primary effect may be
viewed as to return a handle that can be used for I/O on the specified file. An analogy
can be drawn to the Ada new operation, which has the side effect of allocating and
initializing storage, but which is still syntactically an expression. This argument
was not universally supported at the time it was originally made, and it does not
address the contrary precedent set by the use of a procedure for the open operation
in the standard Ada I/O packages. In the drafting of POSIX.5b, there was opposition
to continuing this precedent, for the open operations on new kinds of objects, such
message queues. This opposition was overcome by the argument that it would un-
necessarily surprise users of the standard if operations that are otherwise so similar
were to sometimes have the form of a procedure and sometimes have the form of a
function. Therefore, all such operations are functions, for consistency with the look
and feel established by Open in POSIX.1.

Also, in the C binding, umask() is the only way to determine the current setting of
the file mode creation mask. Being a destructive operation that requires a second
call to restore the value, this operation is not safe in the face of Ada tasking. The
function Allowed_Process_Permissions , which interrogates the current setting,
has been added to avoid these problems and to simplify the application program.

B.5.3 Package POSIX_Files

Most of the file operations are defined as a straightforward mapping from the C
binding into Ada. The primary difference is that instead of being functions who

B Files and Directories 599

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

return codes that must be interpreted, most of the operations are procedures that
can raise exceptions.

The directory iterator generic procedure is included in the package POSIX_Files
because the other operations specific to directories (which are a subtype of files) are
in this package. The structure of a directory is private and is only revealed through
use of the iterator, which provides each directory entry sequentially. An example of
iterating through a directory and printing each file name and its size follows:

package Example1 is
procedure Print_Sizes_Of_PWD;

end Example1;
with POSIX,

POSIX_IO,
POSIX_Files,
POSIX_File_Status,
POSIX_Process_Environment;

package body Example1 is
procedure Print_Dir_Entry

(D_E: in POSIX_Files.Directory_Entry;
Quit: in out Boolean) is
Size: POSIX.IO_Count;

begin
Size:= POSIX_File_Status.Size_Of

(POSIX_File_Status.Get_File_Status
(POSIX_Files.Filename_Of (D_E)));

-- Print pathname, size
end Print_Dir_Entry;
procedure Print_Sizes is new

POSIX_Files.For_Every_Directory_Entry (Print_Dir_Entry);
procedure Print_Sizes_Of_PWD is
begin

Print_Sizes (POSIX_Process_Environment.Get_Working_Directory);
end Print_Sizes_Of_PWD;

endExample1;

B.5.4 Package POSIX_File_Status

The operations in this package are a straightforward mapping from the C operations
to retrieve attributes of a file object based on its pathname or file descriptor. First, an
object of the private type Status is retrieved. Then each attribute can be retrieved
from the Status object. New functions are provided for the file-like objects added by
POSIX.5b: shared memory objects, message queues, and named semaphores.

B.5.5 Package POSIX_Configurable_File_Limits

The POSIX.5 package POSIX_Configurable_File_Limits has been made depen-
dent on POSIX_IO in order to support the POSIX.1 fpathconf() capability, which
requires an argument of type POSIX_IO.File_Descriptor .

For each of the different limits or options associated with a file or directory, two
overloaded pairs of functions are provided. One pair of functions takes an open file
descriptor as a parameter. The other pair of functions takes a pathname as a param-
eter. The first function of each pair determines whether a specific limit exists, and

600 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

the second acquires the value of the limit if a limit exists. Using a separate function
name for each limit or option (rather than a single operation like pathconf()) provides
the advantage of allowing static type checking on the return type based on the limit
or option being acquired.

An alternative design approach considered was to have a single pair of subprograms
that return a variant record whose discriminant is the specific limit or option ac-
quired. This method is used in POSIX.1, except that POSIX.1 does not have an
explicit discriminant. Using a single record type does allow arbitrary access to limits
and options with the same subprogram signature, but eliminates static type checking
on the correspondence between the limit or option and the returned value. If there
is no explicit discriminant, then there is no type checking available at all. Moreover,
implementation extensions might require modification to the record type definition,
in the standard package specification, or they would have to provide duplicate oper-
ations on a different variant record type.

An alternative approach was also considered for determining whether the parameter
exists, specifically, the approach taken by POSIX.1. It uses a single return parameter
with a reserved value that is used to signal that there is no corresponding limit. Such
values may be either negative one (-1), as in C, or a very large value.

The chosen method is a combination of a Boolean return value and the use of a re-
served value. If a particular application needs to distinguish the difference between
a very large value and the absolute lack of a limit, two calls may be required. How-
ever, it is expected that the distinction is typically unnecessary, and only a call to
acquire the limit will be used.

The special character originally in this package, Disable_Terminal_Special_-
Characters , was moved to Section 7 of this standard because it is applicable only
to terminal devices.

Again, there are duplicate names of some of the functions in package POSIX_Con-
figurable_File_Limits . New names are added to conform to the naming rules
established by POSIX.5b and old names are retained to be compatible with POSIX.5.

B.5.6 Directory Operations

The first possibility considered as an Ada binding for these functions was a sepa-
rate package, POSIX_Directories . This package contained the operations Open,
Close , For_Every_Directory_Entry , Make_Directory , Remove_Directory ,
and Rename. Since directories are only a special case of files, the operations Make_-
Directory , Remove_Directory , and Rename were moved to POSIX_Files . The
Renameoperation was the same as the POSIX_Files.Rename operation.

Because of the use of a generic procedure to implement the directory iteration opera-
tion (as opposed to other techniques described in the global rationale), the operations
Open and Close became unnecessary (their function would be included in the actions
taken by For_Every_Directory_Entry). Elimination of the Open and Close on
directories left the package POSIX_Directories with the single operation For_Ev-
ery_Directory_Entry , so the remaining operation was moved into POSIX_Files .

B Files and Directories 601

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

B.6 Input and Output Primitives

The operations in Section 6 of this standard apply in general to the contents of files
as opposed to file attributes. The synchronous I/O interface is provided in package
POSIX_IO and is modeled on the Ada I/O operations. The AIO interface added by
POSIX.5b is provided in package POSIX_Asynchronous_IO . The interface to pro-
vide advisory reader and writer locks on files is provided in package POSIX_File_-
Locking .

One significant change wrought by POSIX.5b is that the Ada 95 type Stream_Ele-
ment_Array is used for the data transferred to and retrieved from files (and other
file-like objects).

B.6.1 Package POSIX_IO

The model of a file is that it is a stream of bytes, typically on external storage. Bytes
to be transferred to and from a file are specified in terms of an offset and a count of
bytes. The offset is specified by the procedure Seek . The number of bytes to transfer
is specified as a parameter to the operation. Normally, the number of bytes actually
transferred is available as a return parameter from the operation. It is not assumed
that a byte is necessarily eight bits or that the transfer of one byte of data means
that only eight bits are transferred. Additional parity bits or other nondata bits may
be transferred.

In POSIX.5, the type POSIX_Character was used as a measurement unit for data in
the description of low-level operations on files. Some people found this use of a char-
acter type for these operations on files confusing, interpreting it as a requirement
or permission for these operations to perform some sort of character set conversion.
This was never intended, so this standard now uses the term byte wherever it needs
to specify the length of a file, an offset in a file, or an amount of data transferred.
Likewise, uses of the type POSIX_String for buffers of low-level IO operations in
POSIX.5 are being phased out in favor of the type Ada_Streams.Stream_Ele-
ment_Array , which is defined in Ada 95. For compatibility with POSIX.5, the pro-
cedures Read and Write using buffers of type POSIX_String are retained, while
overloaded Read and Write procedures using buffers of type Stream_Element_Ar-
ray are added for use by new applications. The I/O operations on POSIX_String s
are obsolescent and should be avoided in new applications.

The use of Stream_Element_Array as the buffer type of these operations allows
applications to define Ada stream objects using POSIX I/O operations without the
need for time consuming item-by-item unchecked conversion. Together with the mar-
shalling and umarshalling operations (’Read and ’Write) defined in [Ada 95 13.13],
stream objects provide a reliable way of doing I/O on complex data objects, such as
records, arrays, and even tagged objects.

A file may be opened with operations such as Open, Open_Or_Create , or Create_-
Pipe . After being opened, there is an association between an external file, a device,
or an object and a File_Descriptor . All subsequent operations use the file descrip-
tor.

A file descriptor is logically a handle for an open file description. (See B.6.1.1.)
Whether File_Descriptor should be a visible integer type or a private type was

602 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

discussed. The primary reason for making it a visible integer type was to allow an ap-
plication to have an array indexed by File_Descriptor . The main inconveniences
are that it is poor Ada style and it allows meaningless operations (e.g., + and *) on
the file descriptors.

Each open file description for a disk file has associated with it a current read-write
pointer, which denotes the position in the file at which the next read or write opera-
tion will occur. The current position is a number in the range of subtype IO_Count
and is the number of bytes from the beginning of the file. The bytes are numbered
from 0..length-1 , following the standard POSIX practice.

A POSIX convention is that processes normally start with

— File descriptor 0 open to read standard input POSIX_IO.Standard_Input from
a terminal or other data source.

— File descriptor 1 open to write standard output POSIX_IO.Standard_Output
to a terminal or other data destination.

— File descriptor 2 open to write standard error POSIX_IO.Standard_Error to a
terminal or other data destination.

By convention, many programs get their input from POSIX_IO.Standard_Input ,
put their results on POSIX_IO.Standard_Output and write unusual error messages
on POSIX_IO.Standard_Error .

B.6.1.1 File Descriptor, Open File Description, and External File

When a file is opened with Open or one of the other subprograms, three different
objects become related to one another:

— A File_Descriptor is a value that is returned by Open and used as a handle
by Read, Write , Close , and other subprograms in the Ada binding.

— An open file description is an object (not directly visible to the application) that
is traditionally managed inside operating system kernel memory, although it
might be implemented differently.

— An external file is the actual file and its contents on a storage medium such as a
disk.

It is important to understand the difference between these three objects. In the
simplest case, after a successful Open, there is one file descriptor, one file description,
and one external file. Writing a byte using the file descriptor as handle sends a
byte to the system, advances the read/write pointer by 1 in the file description, and
eventually writes the byte to disk. In slightly more complicated examples, the same
open file description may be referenced by more than one File_Descriptor , and
the same external file may be referenced by more than one open file description.

The case of more than one File_Descriptor referencing the same file descrip-
tion occurs after Duplicate , or Exec when the file is not closed upon exec. When
two File_Descriptor s reference the same file description, they share the same
read/write pointer, mode (permissions), and flags (options and access modes). For ex-
ample, Read or Seek changes the read/write pointer for both file descriptors. Reading

B Input and Output Primitives 603

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

a byte at position 5 on descriptor 1, then seeking to position 10 on descriptor 2, then
reading another byte on descriptor 1 result in reading the tenth byte.

This standard also allows two open file descriptions to reference the same external
file. The case of more than one open file description referencing the same external
file occurs when two separate Open calls are made, whether these two calls are made
by the same process or by different processes. If two open file descriptions reference
the same external file and then one is removed (i.e., deleted) with POSIX_Files.-
Unlink , the other still remains open, and the file continues to exist until the last file
description is closed. At that time the external file really is removed from the system.
Concurrent I/O operations on a single file made via different open file descriptions
will be interleaved by the system. Interleaving of I/O operations one the same file
is desirable if both open file descriptions are being used to read the file or both were
opened with the Append option and are being use to write to the file. Interleaving
may also be desirable if read and write locks are used. Otherwise, interleaved I/O on
a single file is likely to be dangerous, but this standard does nothing to prevent it.

File access modes (i.e., Read_Only , Read_Write , Write_Only) and file options (e.g.,
Append , Non_Blocking , Truncate , Exclusive) are properties of the open file de-
scription. They apply to all file descriptors referring to the open file description.
Some of these options (e.g., Non_Blocking , Append) can be read and/or set by the
..._File_Control operations. When multiple file descriptors refer to the same
open file description and an option (e.g., Append) is changed using one file descriptor,
the change applies to I/O operations on all file descriptors referring to that open file
description.

Conversely, the same process can open a file twice and obtain two different file de-
scriptors referring to two distinct open file descriptions. The file can be open with
the Non_Blocking option specified for one file description and not specified for the
other. Then blocking operations that could not complete immediately would return
error code Resource_Temporarily_Unavailable on one file descriptor, but block
the caller on the other file descriptor.

Unlike the access modes and file options, the flag that specifies that a file should be
closed on exec is a property of the file descriptor, and not the open file description.
Thus two file descriptors can refer to the same open file description, with one file
descriptor having the close-on-exec property. When an exec operation occurs, one
file descriptor will be closed, but the other will not and the open file description will
remain intact.

B.6.1.2 Open and Close

Some combinations of options to Open and Open_Or_Create probably have no logi-
cal sense; for example, Read_Only in combination with Append or Truncate . The
interface does not check these combinations; the behavior is implementation defined.
(POSIX.1 states that the behavior is implementation defined if open() is called with
the equivalent combination of flags.)

The file modes Read_Only , Write_Only , and Read_Write are provided as a specific
parameter to Open and Open_Or_Create because a file mode must be specified when
a file is open. The other file options are passed as a value of type Open_Option_-
Set , which has a default value indicating no options. The Open_Option_Set type is

604 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

derived from POSIX.Option_Set which is a private type, and can be implemented
as a bit mask. Some file open options are defined by this standard. Implementations
may define still more options. Using these options should be straightforward, using
expressions such as the following:

Options => Append + No_Controlling_Terminal + Implementation_Specific_Option

The C-language operation open() is separated into two functions: Open and Open_-
Or_Create , instead of using a flag (i.e., O–CREAT) to specify file creation. On the
other hand, the related flag O–EXCL is retained as the option Exclusive .

Close corresponds to the C-language operation close(). One design issue was
whether the File parameter of Close should be an Ada in or in out param-
eter. The argument for using in out is that a file descriptor can be set to a
conventional value (e.g., -1) upon return from Close . The inconvenience is that
Close(Standard_Output) become invalid, since Standard_Output is a constant.
The mode in was chosen because it was considered too inconvenient to require a
programmer to use a temporary variable for Close(Standard_Output) . (Inciden-
tally, this precedent set by POSIX.5 is not followed for some close operations added
by POSIX.5b, such as closing a named semaphore or closing a message queue; but
these descriptors are a private type distinct from type File_Descriptor .)

If a file is opened with Open, Open_Or_Create , or Duplicate and then is deleted
with POSIX_Files.Unlink , the contents of the file still exist until the file is closed
by all processes that have it opened. I/O operations and file locks work normally as
long as an open file description exists for the file.

The Duplicate and Duplicate_And_Close functions correspond to the C-language
operations dup(), dup2(), and fcntl() with the F–DUPFD() flag. Duplicate with
Bound equal to zero is the same as dup(), and with Bound greater than zero it is the
same as dup2(). Duplicate_And_Close is the same as fcntl() F–DUPFD).

Create_Pipe is identical to the C operation pipe(), except the parameters are de-
clared in a fashion more appropriate to Ada.

B.6.1.3 Read and Write

Read and Write use the actual length of the Buffer parameter as the I/O request
length and use an out parameter Last (rather than an out parameter Length) to
return the count of bytes actually transferred. This parameter profile mirrors that
of Text_IO.Get_Line . Generic procedures Generic_Read and Generic_Write
are provided as a user convenience. An instantiation on an unconstrained type may
be rejected by the implementation, as per the Ada rules on generics. The model is
that bytes are written, and when the file is read back, bytes equal to the size of Item
are read back and put into Item via Unchecked_Conversion . No type checking
or reconstruction of unconstrained types occurs, and no array descriptors or record
structure information is written into the external file.

The error behavior of Generic_Read and Generic_Write is, therefore, closer to
POSIX.1 fread() and fwrite(), respectively, than to POSIX.1 read() and write().

The fact that Read can raise End_Error is different from POSIX.1 semantics. In
POSIX.1 read() will just return zero and errno will not be set. This standard reflects

B Input and Output Primitives 605

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

the behavior of the language-defined Ada I/O packages in the face of an end-of-file
condition.

B.6.1.4 Seek

In early versions of the UNIX system, the C operation lseek() was called seek(). As
file sizes grew beyond 64 K bytes, the parameter changed from the C-language type
int to type long, and seek() was renamed lseek(). Here it is renamed back to Seek ,
which accurately describes the operation. The C-language operation lseek() is split
into three subprograms for convenience: Seek , File_Position , and File_Size .
File_Size might be implemented with several calls to lseek() or one call to fstat().

B.6.1.5 File Control

The C fcntl() operations for getting and setting modes and flags become more ra-
tional when separated into several functions. In other words, the Ada caller does
not have to worry about separating bits in the result that is returned from fcntl().
The file record locking operations from C fcntl() are implemented by the separate
file locking facilities in package POSIX_File_Locking . The F–DUPFD operations
are supported by Duplicate_And_Close . The current design of Open_Option_Set
will support use of the file control operations to set and query file options defined by
future POSIX standards. The operation Get_File_Control is a procedure with two
out parameters to keep the two types File_Mode and Open_Option_Set separate.

B.6.1.6 Update File Status Information

Although fchmod() is in Section 5 of POSIX.1 this binding puts the operation into
POSIX_IO (see 6.1) to preserve the invariant that only the operations that operate
on files by name are placed in POSIX_Files and the operations that operate on
files via file descriptors are in Section 6. To do otherwise would also have created a
dependence of POSIX_Files on POSIX_IO . These factors were felt to outweigh the
functional affinity with chmod().

B.6.1.7 Truncate a File to A Specified Length

Although ftruncate() is in Section 5 of POSIX.1, this binding puts the operation into
POSIX_IO (see 6.1)d, to preserve the invariant that only the operations that operate
on files by name are placed in POSIX_Files and the operations that operate on
files via file descriptors are in Section 6. It would also have created a dependence of
POSIX_Files on POSIX_IO .

B.6.1.8 File Synchronization

The interfaces for file synchronization are a very direct mapping to the corresponding
interfaces defined in POSIX.1.

B.6.2 Package POSIX_File_Locking

B.6.2.1 File Locking

POSIX file record locking is advisory. A lock held by one process keeps another pro-
cess from setting a conflicting lock. But a lock does not prevent other operations,

606 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

such as open, read, or write.

Locks may be read locks or write locks. They may cover a whole file or a portion of a
file. A lock may start or extend beyond the current end of a file, but may not extend
before the beginning of a file.

The operations of package POSIX_File_Locking in the Ada binding split out the
behavior of the C function fcntl() having to do with file locking. The use of three
separate subprograms is believed to be clearer than the corresponding multipurpose
C function.

This interface does not follow the convention of using private types to hide C struc-
tured types, which is followed elsewhere in this standard, as it makes use of a visible
discriminated record type File_Lock . This visible record has a discriminant that is
used to define two different variants, corresponding to whether the lock covers the
entire file or only a portion of the file. The rationale for this deviation from the gen-
eral practice of this standard (which is to avoid visible record types) dates back to
POSIX.5, was not documented, and has been forgotten.

In C, a file lock of length zero is used to mean the whole file. In this standard, a
variant record is used instead. The C-language record has the process ID as a field,
but since this field is only used in Get_Lock , it has been made into an out parameter.

Implementors of Get_Lock should make a local copy of the Lock parameter before
using it to guard against aliasing problems if the caller passes the same actual pa-
rameter for the Lock and Result parameters.

B.6.3 Package POSIX_Asynchronous_IO

B.6.3.1 IO Control Blocks

The use of control blocks and buffers is inherently unsafe since there is a persistent
reference to the control block for the duration of the IO operation. IN other words,
if the control block is deallocated and later reallocated for another use the behavior
of the operation is undefined. The same problem occurs with the data buffers that
are used for AIO. If the I/O operation is a write, a dangling reference may result in
writing out garbage. If the I/O operation is a read, the dangling reference may result
in overwriting arbitrary memory, and that generally leads to chaotic failure of the
program.

In order to minimize these dangers this binding uses a private type AIO_Descriptor
that is a handle or reference to an AIO control block, which is not visible. Creation
of the reference and allocation of the control block are performed using Create_-
AIO_Control_Block . Destruction of the reference and deallocation of the control
block are performed using Destroy_AIO_Control_Block . The implementation
of Destroy_AIO_Control_Block may check, and refuse to deallocate the control
block if it not safe. Whether to perform this check is up to the implementation. If the
implementation detects that the reference is to a control block of an I/O operation in
progress or does not correspond to any control block, Constraint_Error is raised.

AIO_Descriptor was made a private type instead of a limited private type to allow
values of type AIO_Descriptor to be moved into and out of arrays of type AIO_-

B Input and Output Primitives 607

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Descriptor_List . The choice of a private type is also consistent with other similar
descriptor types defined in this standard.

The solution to the dangling reference problem for buffers is to require that the buffer
pointer be of a specific type declared in a library level package so that the storage
should persist for the life of the process. If a programmer attempts to use unchecked
deallocation on such a buffer or to use unchecked conversion to obtain a value of the
IO_Array_Pointer type, it becomes the responsibility of the programmer to ensure
against dangling references. The idea was considered of providing a deallocation
operation that would check that there are no outstanding I/O operations on a buffer
that is deallocated, but there seemed to be no simple way to do this check without
kernel involvement.

B.6.3.2 Return Status and Error Status

For AIO, the aio–error() and aio–return() functions provide completion and error sta-
tus information that is provided for other POSIX operations via the POSIX_Error
exception and the Get_Error_Code function (parameterless). Get_AIO_Status
binds to aio–error(), but only returns Completed_Successfully , In_Progress , or
Canceled . All other errno values raise POSIX_Error . The error code can then be
obtained by calling POSIX.Get_Error_Code from the exception handler for POSIX_-
Error . An alternative to Get_AIO_Status is the function Get_AIO_Error_Code ,
which is a more direct binding to aio–error(). It was added in response to ballot objec-
tions that in a time-constrained situation one should not be forced to use an excep-
tion handler just to determine whether an outstanding I/O operation is in progress.
It is primarily to support use of this function that the error codes Operation_-
In_Progress , Operation_Completed , and Operation_Canceled were added to
package POSIX.

The Get_Bytes_Transferred function binds directly to aio–return() and has the
limitations documented in the C-language interface: the return value is undefined
if the I/O operation is still in progress and Get_Bytes_Transferred may be called
exactly once for a given asynchronous operation. Therefore, Get_AIO_Status or
Get_AIO_Error_Code should be invoked to ensure that a given asynchronous oper-
ation is no longer in progress before invoking Get_Bytes_Transferred .

B.6.3.3 File Status Flags

In POSIX.1, O–DSYNC or O–SYNC is passed to aio–fsync() to specify the kind of
synchronization desired. Constants corresponding to O–DSYNC and O–SYNC are
declared in POSIX_IO where they are used as option sets (i.e., flags). However, these
constants are not used as flags when they are passed as parameters to the aio–fsync()
operation. Inconsistent type usage has been avoided by splitting aio–fsync() into two
Ada operations.

B.6.3.4 Asynchronous I/O Priority

The Integer type is used for the parameter of Set_Priority_Reduction and
the return value of Get_Priority_Reduction . This value is subtracted from the
process priority to obtain the priority of the I/O operation. The type is, therefore,
required to be the same as for process priorities, which is Integer . Since the value

608 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

is required to be nonnegative, the subtype Natural is specified. No upper bound is
specified because the range of allowed priority reductions may not be determinable
until run time.

B.6.3.5 Buffers

Buffers for AIO operations are specified as explicit Ada access types to the type
Stream_Element_Array , which is an array type. Where the C-language interface
specifies a pointer to an array and a length as separate in parameters, they are re-
placed here by a pointer to an Ada unconstrained array; the Length attribute of the
array actual parameter specifies the length. The actual number of bytes transferred
is obtainable via the function Get_Bytes_Transferred .

B.6.3.6 AIO Descriptor List

AIO_Descriptor_List is defined to be an array of AIO_Descriptor s. AIO_-
Descriptor_List is the type corresponding to the C aiocb pointer array. It was
necessary to split the function aio–suspend() into two forms to handle the case of a
single control block pointer. The C-language interface only specifies a form for an
array of pointers, assuming that a single pointer can be treated as if it were an array
of length one. In the Ada binding, two distinct types are involved.

Also, it is not specified what happens if the nent parameter of aio–suspend() is zero
or negative. This issue is avoided in the Ada interface by specifying the index range
of AIO_Descriptor_List to be positive.

B.6.3.6.1 Constraint Error

Because AIO operations may require an unpredictable length of time to complete,
it is particularly important to initiate AIO operations only on values of type AIO_-
Descriptor that have been created by Create_AIO_Control_Block and not yet
destroyed by Destroy_AIO_Control_Block . Otherwise storage may be compro-
mised in an unpredictable manner. An implementor can add a measure of safety by
marking or invalidating the value of type AIO_Descriptor when the corresponding
AIO control block is successfully destroyed, though this standard does not require it
to do so.

POSIX_Error with an error code of Invalid_Argument was selected to correspond
to the detection of an attempt to initiate an AIO operation on an invalid value of type
AIO_Descriptor . However, implementations may substitute Constraint_Error
since that may be raised by the runtime system anyway if the value is invalid for the
type.

Implementors are not required to detect this condition, and there may be situations
where detection would be difficult. Particularly troublesome is the case in which the
application makes copies of a valid value of type AIO_Descriptor through assign-
ment and then passes one of the copies to Destroy_AIO_Control_Block . Depend-
ing on the implementation, an AIO operation on another copy has an unspecified
result.

B Input and Output Primitives 609

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

B.7 Device- and Class-Specific Functions

Section 7 of this standard follows very closely the same-numbered section of
POSIX.1. A large part of the text is a direct copy from that section. No functionality
changes are intended to have occurred in the translation. The model of behavior is
that a sequence of bits that constitute a unit of data transmission, called a byte in this
standard, is read in via the serial line and then converted to a POSIX_Character
before being given to the application.

One additional function, ctermid(), from 4.7.1 of POSIX.1, has also been included
in Section 7 as function Get_Controlling_Terminal_Name , since this Section 7
contains a discussion of the controlling terminal concept.

The only major change from POSIX.1 is to treat the terminal characteristics as a pri-
vate type and supply the appropriate access functions and modification procedures.
Initially, one might feel use of these access and modificaton operations will cause
much lower performance, but an inline implementation will have the same perfor-
mance as a C-language structure reference. An unsuccessful attempt was made to
develop structure modification operators (+ and -) for manipulating the Terminal_-
Characteristics type. This attempt was abandoned because not all of the compo-
nent data types were Boolean types and thus use of the same operators could cause
confusion.

Error checking of the Terminal_Characteristics modification routines is re-
quired in this standard where it is not in the C-language binding to POSIX.1. If
the system can support all the functionality of the interface, all of the checking will
not be required.

For historical reasons, the preferred values for Null_POSIX_Character and Flag_-
POSIX_Character are POSIX.POSIX_Character’VAL(0) and POSIX.POSIX_-
Character’VAL(16#FF#) , respectively, but this standard does not require that as-
signment of values.

B.8 Language-Specific Services for Ada

B.8.1 General Rationale

A compiler or library or runtime system that conforms to both the Ada RM f1g and
this standard would provide two I/O systems to the application writer:

(1) The I/O operations that are made available to the application by Section 5, Sec-
tion 6, and Section 7 of this standard, generally referred to as POSIX I/O in this
document.

(2) The Ada I/O operations that are made available to the applications by Annex A
of the Ada RM f1g, generally referred to as Ada I/O’ in this document.

The two I/O systems do not have identical objectives. The POSIX I/O system has the
objective of making the I/O model of POSIX.1 available to the Ada programmer. The
Ada I/O system has the objective of providing a more convenient and more portable
set of I/O capabilities, that are integrated with the Ada language and do not depend
on having a POSIX compliant operating system.

610 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Section 8 has the objective of rationalizing the Ada I/O model within POSIX I/O sys-
tem; it does not have the objective of incorporating all of the functionality of the
POSIX I/O model. Instead, it interprets relevant portions of the Ada RM f1g and
constrains and details some of the implementation dependencies permitted by the
the Ada RM f1g, so that Ada I/O is more completely defined in a POSIX environ-
ment. Applications needing the full functionality of the POSIX I/O model should use
the POSIX I/O system directly.

Because both sets of I/O operations are available, it is possible that a given collection
of application programs will use both sets of operations. For this reason, it is desir-
able to permit the interchange of external files so that they can be read and updated
by the use of either set of I/O operations after being created and written by the other
set of I/O operations.

Interchange of data is deemed to be useful along any one or combination of the fol-
lowing dimensions:

— Ada I/O operations and POSIX I/O operations

— Programs compiled by Ada compilers and by C compilers

— Programs produced by different Ada compilers

A complete mapping between the POSIX and Ada I/O operations is quite difficult
primarily because of a lack of underlying standardization concerning external rep-
resentations of data. It is, however, practical to provide a reconciliation for a useful
subset of I/O operations.

The approach is intended to satisfy the following objectives:

— Compatibility with currently available UNIX system Ada compilers.

— Interoperability (ability to interchange external data) between POSIX I/O and a
subset of Ada I/O so that
— Ada input operations can read data written by Ada output operations.
— POSIX input operations can read data written by Ada output operations.
— Ada input operations can read data written by POSIX output operations
— Access to POSIX standard input, output, and error files can be achieved via

Ada I/O operations.

In order to circumvent some of the shortcomings of Text_IO , the idea of providing a
POSIX_Text_IO package, which would serve as a functional replacement for Text_-
IO and which would incorporate additional or modified functionality, was considered.
This concept was rejected because of the expense it would place upon implementors.
They would still be required to implement standard Ada Text_IO as well as POSIX_-
Text_IO and the POSIX I/O facilities described in Section 5 and Section 6. Requiring
the implementation of three I/O systems seemed excessive in a language binding.
Moreover, reliance on yet another set of I/O facilities would reduce portability of Ada
code to other (non-POSIX) systems.

It remains possible to perform formatted I/O on POSIX strings by exploiting the char-
acter set mapping defined in Section 2 of tihs standard. The functions POSIX.To_-
String and POSIX.To_POSIX_String will convert between POSIX strings and the
corresponding Ada strings. The Ada strings can be processed using normal Text_IO .

B Language-Specific Services for Ada 611

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

The implementation is required to close Ada files (files opened using Text_IO or
any instantiation of Direct_IO or Sequential_IO) upon termination of the Ada
program so that the external files corresponding to the Ada file objects are in a pre-
dictable state. POSIX.1 already required that POSIX files be closed when a POSIX
process terminates. Because an Ada active partition corresponds to a POSIX process,
this additional requirement probably amounts only to flushing Ada I/O buffers upon
partition termination.

It is intended that open Ada file objects must be closed when a nonerroneous Ada ap-
plication terminates by reaching the end of the main subprogram or by terminating
due to an unhandled exception. It is desirable, but not required, that the imple-
mentation also close the file objects when an erroneous Ada application terminates
or when the corresponding POSIX process dies because it does not catch a POSIX
signal.

This standard requires that the flushing of output buffers and the closing of open
file objects must occur after the termination of the main subprogram of the partition
and after the termination of the library units, but prior to the termination of the
POSIX process. The reason for this additional standardization is to ensure that the
external files corresponding to Ada file objects are left in a predictable state whenever
possible.

In addition to the flushing required at application termination, the package POSIX_-
Supplement_to_Ada_IO provides a mechanism for the application explicitly to flush
output files. This mechanism was provided with some reluctance because of the bur-
den that it places upon implementors to deal with private types outside of the pack-
ages in which the private types were defined. Nevertheless, it is necessary because
the execution of POSIX_Process_Primitives.Start_Process may cause some
ambiguity regarding the status of data that are contained within Ada output buffers,
but that are not yet written to the underlying operating system. It is suggested that
an application should flush all output files before starting a new process.

B.8.2 Limitations on Interoperability

As mentioned in the B.8.1 the extent of interoperability is necessarily limited. The
intended limits of interoperability are described in this subclause.

It is intended that Ada Text I/O be interoperable with POSIX I/O to the extent per-
mitted by character set limitations. The character set limitations are inescapable
because the Ada RM f1g precisely defines the character set to be processed by Ada
programs. Ada character literals and strings are defined to consist of only these char-
acters. The Ada Text I/O operations are defined to operate using this character set.
POSIX.1 permits greater latitude in the character sets, and so it, in general, cannot
be assumed to correspond with the Ada character set. This problem is treated by
requiring that a core set of Ada characters and POSIX characters be placed in an
invertible mapping as described in Section 2.

In addition to characters and strings, Ada Text I/O provides operations for I/O upon
integer, fixed point, floating point, and enumeration types. Each of these types is con-
verted to or from a character representation in accordance with the rules of Ada. By
utilizing these rules, a program using POSIX I/O can exchange data with a program
using Ada Text I/O.

612 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Ada Text I/O incorporates a concept of line terminators and page terminators that
is not native to POSIX. The specifications in the Ada RM f1g allow some degree of
freedom in the implementation of these terminators. This standard defines a form
of Text I/O that restricts that freedom by defining those terminators in terms of the
Ada character set in a manner that permits Ada Text I/O to read and write text files
in the format typically expected by POSIX.

Ada also provides facilities for performing Sequential I/O and Direct I/O upon arbi-
trary types. Traditionally, these operations are implemented by using an external
representation that is identical or closely related to the internal representation. In
general, the internal representations are highly dependent upon the hardware rep-
resentation of integers, as floats, etc. The authors of the Ada RM f1g recognized this
tradition by permitting the external representation to be implementation dependent.
Fixing this problem would require a great deal of additional standardization of ex-
ternal formats. Furthermore, Sequential I/O and Direct I/O can be used to perform
I/O upon data aggregates such as arrays and records. Their representation is also
highly implementation dependent, especially in the case of unconstrained arrays and
variant records. Fixing this problem would also require substantial additional stan-
dardization. For these reasons, the interchange of data between Ada Sequential and
Direct I/O and POSIX I/O is left as implementation dependent.

Even within a given machine, defining interoperable data formats is difficult. Defin-
ing interoperable formats between Ada and POSIX is more difficult because Ada Se-
quential_IO and Direct_IO are oriented to records while POSIX I/O is oriented to
bytes. Attempts to read Ada values from an arbitrary POSIX file could be imagined
as reading the number of bytes corresponding to the internal Ada representation of
the object, but what should be done with leftover bytes at the end of a file that is
not of exactly the right length? Presumably, the leftover bytes constitute a type mis-
match that is discovered long after the first type mismatch (the first record of the file)
occurred. The only Ada model that corresponds neatly with the POSIX I/O model is
one of instantiating Sequential_IO or Direct_IO to deal with individual bytes.
Using an instantiation of either of these packages would require an execution of an
Ada Read or Write operation for every individual byte of the file. Using the POSIX
I/O system may be more satisfactory in this case.

Some other languages, of course, superimpose record structuring upon the POSIX
I/O model. Achieving interoperability with programs written in other languages is
a potentially fruitful standardization activity that falls outside the scope of an Ada
binding and, hence, is left for future standardization efforts.

Because Ada I/O operations may look ahead for the end-of- file marker, it is pos-
sible that vendors may wish to implement Ada Text I/O operations with a layer of
buffering hidden from both the application program and from the underlying oper-
ating system. So operating upon a single external file with interleaved Ada I/O data
transfers and POSIX I/O data transfers has undefined results.

B.8.3 Rationale for Form Parameter

Section 8 of this standard relies heavily upon the Form parameter to provide addi-
tional interpretation to the Open and Create procedures. This usage is specifically

B Language-Specific Services for Ada 613

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

sanctioned by A.10.1 of the Ada RM f1g to describe system-dependent characteristics
of these operations.

A typical example of the Form parameter follows:

New_File : File_Type; ...
Create

(File => New_File,
Name => "NewFile",
Mode => Out_File,
Form => "Owner => Read_Write," &

"Group => Read," &
"Other => None," &

"Blocking => Tasks");

The Form_String and Form_Value functions provide a convenient capability for
constructing and parsing Form parameters. Implementors are encouraged to supply
a package containing their own analogous functions to deal with implementation- de-
fined fields within the Form. For purposes of example, consider that these functions
are called Vendor.Form_String and Vendor.Form_Value . An application could
parse a Form_String applying both Form_Value and Vendor.Form_Value to the
string. Form_String ignores fields that are syntactically well formed, but that have
nonstandard field names; therefore, no exception is raised for the implementation-
defined fields. If the application wishes to construct a Form string, it can concatenate
the results of Form_String and Vendor.Form_String to include both standard and
implementation-defined fields.

The record types Form_Values_for_Open and Form_Values_for_Create have
default values provided for each of their components to reduce the likelihood that
instances of the records will have uninitialized components. The type Possible_-
File_Descriptor , which is used as a component of Form_Values_for_Open , is a
variant record because a POSIX.File_Descriptor value may or may not actually
be present in the field. The alternative of using an access type was considered; in
this case, the null value would be distinguished to mean that no POSIX.File_-
Descriptor is present. This alternative was rejected because the use of access
types in a binding may permit implementations that leak storage.

Despite the similarity in the names, the Blocking field of the Form parameter is not
equivalent to the O–NONBLOCK flag of POSIX.1. Nonblocking I/O in the sense of C
is not consistent with the Ada model of I/O; all Ada I/O is blocking in the sense that
C uses the term. The Blocking field provides a choice regarding how much of the
program should be blocked by an I/O operation—the entire Ada program or only the
calling task. Because of wide variations in implementations (for example, distributed
processors), it is not practical to require that all implementations support both be-
haviors. The range of functionality implemented for Text_IO may be broader than
that implemented for POSIX I/O because the Ada runtime system is an additional
resource that the implementor may exploit to synthesize additional behavior. The
type POSIX.Blocking_Behavior enumerates the behaviors defined by this stan-
dard. The constant POSIX.IO_Blocking_Behavior gives the behavior selected by
the implementation. The subtype POSIX.Text_IO_Blocking_Behavior enumer-
ates a possibly broader set of behaviors supported for Text_IO . Standard input and

614 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

standard output use the behavior selected by POSIX.IO_Blocking_Behavior . The
enumeration literal Tasks was selected in preference to Task because the latter is a
word reserved by Ada.

The Form parameter does not provide functionality equivalent to that provided by
the O–EXCL, O–NOCTTY, and O–TRUNC flags of POSIX.1 I/O. To gain that func-
tionality, an application program should use the POSIX I/O functions described in
Section 6. The reasons for not providing the functionality to the application are de-
scribed as follows:

— O–EXCL: At the time POSIX.5 was drafted, some members of the drafting com-
mittee believed that there was no need for an interface to specify the O–EXCL
flag. Their interpretation of the Ada language Create procedure was that it
must raise Use_Error if there already exists a file with the specified pathname
(similar to POSIX open with O–EXCL and O–CREAT). Apparently, this view is
not universally accepted.
NOTE: This issue may deserve further attention in the next revision to this standard.
Table B.1 indicates a rough correspondences between the two models. The two
left-hand columns indicate the settings of the O–EXCL and O–CREAT flags
when a POSIX.1 open() operation is executed. The right-hand column identifies
the Ada procedure with the same intent.

Table B.1 – Correspondence of File Creation Flags

O–EXCL O–CREAT Ada Procedure
On Off Not defined by POSIX.1
Off Off Open
On On Create
Off On No Ada equivalent

A.8.2 (3,7) of the Ada RM f1g has the effect of prohibiting the final case listed in
Table B.1. Paragraph 3 says that Create must create a new file. Paragraph 7
says that Open raises Name_Error if no external file with the given name exists.

— O–NOCTTY: According to 7.1.1.3 of POSIX.1, the initial identification and sub-
sequent replacement of the controlling terminal is implementation defined. The
only use of the O–NOCTTY flag is to prevent a terminal device file from be-
coming the controlling terminal. The intent of this standard is that a file object
opened or created by Ada I/O would never become the controlling terminal; i.e,
the Open and Create procedures are interpreted as if the O–NOCTTY flag were
set. The normative text does not totally forbid access to the controlling terminal
from the Ada I/O model. If a POSIX file descriptor is already associated with
the controlling terminal according to the rules of the implementation, then it is
possible to achieve access to the controlling terminal by associating an Ada file
object with the POSIX file descriptor. For example, one could use Standard_In-
put and/or Standard_Output to access standard input and/or standard output
if they were associated with the controlling terminal. If an arbitrary file descrip-
tor were associated with the controlling terminal, then one could use Open with
the File_Descriptor option to achieve access to the controlling terminal.

— O–TRUNC: In the Ada model of I/O, functionality similar to that provided by the
flag O–TRUNC is obtained by executing the Text_IO.Reset procedure.

B Language-Specific Services for Ada 615

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Other syntaxes were considered for the file permission fields of the Form parameter.
One alternative was similar to the conventional syntax of chmod(). Another utilized
a subset of Ada aggregate syntax. These two alternatives were rejected because they
hinted at functionality that could not be completely provided. The selected syntax
was chosen primarily because it can be efficiently parsed at run time.

Alternatives to the File_Descriptor field of the Form parameter were considered.
In particular, the use of a stylized file name to reference a file descriptor number was
considered. This solution offered some advantages but was rejected because it had
the effect of forbidding certain file names to the user. Furthermore, the inclusion of
both actual file names and POSIX file descriptors within the same type seemed to
be a subversion of the normally strong typing practices used in Ada programming.
In POSIX, it is quite clear that file names and file descriptors are distinct entities.
For example, it is possible for multiple file descriptors to refer to a single file and for
the same file descriptor to refer to different external files, all within the lifetime of a
single execution.

The use of Append on a terminal device is not regarded as an error because the
physical characteristics of the device cause implicit appending of the output. Use
of Append on a device that cannot support appending does not cause an exception
because the underlying POSIX abstraction does not provide an error code in such
circumstances. The interpretation of Create with Append => True was carefully
considered. Three alternatives were as follows:

(1) If the file exists, then append to it; if the file does not exist, then create it.

(2) Ignore the Append indication.

(3) Raise an exception.

The first option is attractive because it roughly corresponds to functionality avail-
able from POSIX I/O. Unfortunately, it violates a requirement of A.8.2 (3) of the
Ada RM f1g that Create “establishes a new external file”. The second option was
rejected because it misleadingly hints at the rejected functionality of the first option.
Therefore, the third option was adopted.

A.14 of the Ada RM f1gadarm states that it is not specified by the language whether
the same external file can be associated with more than one file object and specifies
certain requirements if file sharing is supported by the implementation. Implement-
ing file sharing is difficult because of the internal buffering implicit in the Ada I/O
model. Vendors who choose to implement concurrent access, totally or in part, may
wish to give particular consideration to the case where the external file is accessed by
one or more Ada file objects that have the file opened for append and sharing that file
with the Ada file object that created the file. In this case, an output operation upon
any of the file objects would ideally result in appending the data to the end of the file.
Vendors may also wish to give special consideration to the case where external files
are shared among separate processes.

The Form field Page_Terminators => False is provided to permit reading and
writing the typical format of text files in POSIX. Users who wish to exchange text
files with a program written in another language should use this field.

The treatment of text file terminators is a troublesome subject. The text of the
Ada RM f1g describes the processing of Text I/O subprograms in terms of line ter-

616 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

minators, page terminators, and file terminators. For example, it specifies that the
end of a text file is specified by the combination of the line terminator followed by
the page terminator and then the file terminator. A.10 (8) of the Ada RM f1g states
that the actual nature of terminators is not defined by the language. It is desir-
able for an Ada binding to POSIX to select a representation so that text files may be
interchanged between programs written in different languages.

The most obvious way to map the Ada terminators to a representation in the exter-
nal file is to map the line terminator to line feed, the page terminator to form feed,
and the file terminator to physical end of file. This mapping, however, has several
unpleasant side effects. For example, since all files written with such a mapping will
end in line feed/form feed/end of file, directly writing such a text file to a CRT would
end by immediately clearing the screen in some implementations. Furthermore, per-
forming text input of many typical POSIX text files would result in failure if each
form feed were not preceded by a line feed.

In attempting to define a mapping that would avoid such problems, it was found that
various implementors have already solved the problems, but in different ways. It
became apparent that any standardization of terminator representation would break
some existing implementations.

AI-00172 fB7g provided the solution to the problem. It says that an implemen-
tation may assume that certain external files do not contain page terminators and
may enforce this assumption by refusing to recognize any input sequence as a page
terminator. Furthermore, it invites implementations to use a field within the Form
parameter to identify such files and suggests that Text_IO.Standard_Input may
always be assumed to be such a file. The Form field Page_Terminators => False
is provided to allow the application to indicate that it will take advantage of the
interpretation provided by the AI.

AI-00172 fB7g applies only to the treatment of files when they are input to an Ada
program. It remains to define how such files may be output (see A.10 (7) of the
Ada RM f1g) requires that the end of a file is marked by the sequence line termi-
nator, page terminator, file terminator (see A.10 (7) of the Ada RM f1g) says that
the actual physical representation of the terminators is implementation defined. In
the case of a file with Page_Terminators => False , this standard chooses the
following representations: line terminator is the character mapped to Ada.Charac-
ters.Latin_1.LF ; file terminator is the physical end of file; and the page terminator
is not physically represented at all. In other words, an output file with Page_Termi-
nators => False is a single page that has a single (conceptual, but not physical)
page terminator just before the end of file. The physical representation is indistin-
guishable from a file with no page terminators whatsoever, but is still well formed
from the Ada point of view.

Additional details of files read and written with Page_Terminators => False are
specified to ensure the ability to interchange them between programs written in dif-
ferent languages. On output, the Ada page terminator is not represented in the file,
so a text file consists of sequences of characters separated by line feeds and termi-
nated with a line feed and physical end of file. This treatment of page terminators
corresponds to the structure of a typical POSIX text file. Upon input, the form feed is
not recognized as a page terminator. Any occurrence of ASCII.FF is simply input to

B Language-Specific Services for Ada 617

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

the program as a character. (Presumably, it appears in the file because it was placed
there by the writing of a ASCII.FF character.)

On files without page terminators, Text_IO.New_Page is specified to raise Use_-
Error . The alternative, of course, is simply to omit writing the page terminator to
the file; but that would mean ignoring an obvious error and would seem to contradict
directly the description of New_Page in A.10.5 (16) of the Ada RM f1g . A.13 (10)
of the Ada RM f1g sanctions the use of Use_Error when an operation is attempted
that is not possible for reasons that depend on characteristics of the external file.

For similar reasons, Use_Error is raised when Text_IO.Set_Line attempts to start
a new page.

The presumption that a file contains no page terminators has interesting effects upon
other operations of Text_IO . (These effects are described here in rationale rather
than in the normative text because they are not part of POSIX.1. Instead, they are
an interpretation of the ramifications of the Ada RM f1g in this situation.)

— Close or Reset of an output file without page terminators does not raise
Use_Error , notwithstanding the text in the Ada RM f1g. A.10.2 (3-4) of the
Ada RM f1g does not say that New_Page is actually called, it says that Close
and Reset have the effect of calling New_Page. To assume that Use_Error
would be raised would be to assume that one could never Close or Reset a file
that is intended subsequently to be read in a manner conforming to AI-00172
fB7g. This matter was submitted to the Ada Rapporteur Group for clarification
and has resulted in AI-00886 fB9g, which approves the position.

— End_of_Page operates identically with End_of_File.

— Execution of Text_IO.Set_Page_Length with any length other than zero (un-
bounded) raises Use_Error . The function Text_IO.Page_Length returns the
value of zero, meaning unbounded.

— Skip_Page on such a file would read and discard all of the characters remaining
in the file up to the file terminator. A subsequent execution of Skip_Page would
raise End_Error.

The selection of the default value caused some controversy. Text_IO.Standard_-
Input and Text_IO.Standard_Output act as if they were opened with Page_-
Terminators => False because that corresponds to the format that users expect
in the POSIX standard input and output files. It was preferable to have the default
be False for all files, but it was thought that, notwithstanding AI-00172 fB7g,
a compiler implementing this interpretation would fail the Ada Compiler Valida-
tion Capability tests that serve to certify the conformance of the compiler to the the
Ada RM f1g.

B.8.4 Unaffected Implementation Dependencies

Below is a list of some of the additional implementation dependencies that are al-
lowed by the the Ada RM f1g and that remain unaffected by this standard. They are
listed here for the convenience of the reader.

A.7 (6) of the Ada RM f1g:
“The effect of input-output for access types is implementation defined.”

618 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

A.8.2 (2) of the Ada RM f1g:
“For direct access, the size of the created file is implementation dependent.”

A.10 (8) of the Ada RM f1g:
“The effect of the input or output of control characters (other than horizontal
tabulation) is not defined by the language.”

A.10.1 of the Ada RM f1g:
“The ranges of type Count and subtype Field of package Text_IO are im-
plementation defined.”

B.8.5 Notes on Specific Topics

B.8.5.1 Alternative National Character Sets

In the development of POSIX.5 there were suggestions that provision should be made
for alternative national character sets. No such provision was made for the following
reasons:

(1) The objective of Section 8 of this standard is to interpret the requirements of An-
nex A of the Ada RM f1g in terms of POSIX. It is beyond the scope of this effort
(indeed, of the entire POSIX effort) to attempt to change the standard Ada lan-
guage. The text of the Ada RM f1g defines Text I/O operations upon characters
as acting upon the Ada type Standard.Character . It remains possible for the
user to make interpretations upon existing data types that would have the effect
of representing alternative character sets; these possibilities remain permissible
under this standard.

(2) POSIX.1 and Ada 83, which were the base standards at that time, did not have
provisions for national character sets. Provisions made in the POSIX/Ada bind-
ing would be quite vulnerable to obsolescence when alternative national charac-
ter sets are incorporated in the Ada and POSIX standards.

Ordinary and wide character types are defined based on the ISO 8859-1 and 10646
BMP international character sets in A.1 of the Ada RM f1g, and permission is given
to add child packages of Ada.Characters for symbols of the local character set in
A.3.3 (27) of the Ada RM f1g. However, the standard I/O operations defined by the
Ada language are only defined for the type Standard.Character .

B.8.5.2 Interoperability of File_Type and File_Descriptor

It has been suggested that this standard should provide a mechanism for intercon-
verting between Text_IO.File_Type and POSIX_IO.File_Descriptor . These
suggestions are not incorporated into this standard because they seem useful only
for intermixing Ada I/O and POSIX I/O data transfer operations on a single open
file. It is not a goal of the current standard to permit such practice. Such a goal was
considered and rejected on the grounds that it would be exceedingly difficult to write
this standard in a way that did not present onerous problems to implementors. How-
ever, this standard does provide a mechanism, using the Form parameter, to open
an Ada file object that is to be associated with an open POSIX file identified by a
File_Descriptor .

B Language-Specific Services for Ada 619

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

B.8.5.3 Access to standard error

It is virtually a requirement of good POSIX programming practice to use the stan-
dard error file for the output of error messages. Although A.10.1 of the Ada RM f1g
now provides the function Standard_Error to return a value of type File_Type for
the standard input and output files, this function was not available in Ada 83. The
example below illustrates how an application program may open a file type for the
standard error file, using Ada 83and this standard.

-- Example of access to standard error
with POSIX_IO;
use POSIX_IO;
with Text_IO;
use Text_IO;

...
Standard_Error : File_Type;

...
Open

(File => Standard_Error,
Mode => Out_File,
Name => "Stderr",
Form => " Append => True, " &

" Page_Terminators => False, " &
" File_Descriptor => " &

File_Descriptor’Image (POSIX_IO.Standard_Error));

NOTE: It may be advisable for the next revision of this standard to make explicit the relation-
ship of Standard_Error in POSIX_IO and Ada.Text_IO .

B.8.5.4 Data_Error on Get Procedure

It has been suggested that it is not cost-effective to check the bytes that are input
by Text I/O to assure that they satisfy the Ada type constraint on Character . In
fact, it has further been suggested that the Ada RM f1g does not require Text_-
IO.Get to check input characters to ensure that they fall within the bounds of type
Character . A.13 (13) of the Ada RM f1g includes the following: “The exception
Data_Error can be propagated by the procedure Read if the element read cannot
be interpreted as a value of the required type. This exception is also propagated by
a procedure Get (defined in the package Text_IO) if the input character sequence
fails to satisfy the required syntax, or if the value input does not belong to the range
of the required subtype.” In the the Ada RM f1g, the exception seems optional in
the case of Read. In the case of Get , it appears to be required (the Ada RM f1g uses
is in the sense of shall throughout the document). Nevertheless, this standard does
not make any presumption in this regard. It requires only that any error checking
required of Get by A.8 (13) of the Ada RM f1g be applied to the input characters
after they have been mapped in accordance with the requirements of Section 2 of this
standard. Implementors should note that the rules of Section 2 regarding character
set mapping permit the definition of a mapping that has the effect of avoiding the
occurrence of Data_Error on Get .

In particular, if the mapping is specified so that all non-Ada characters of the under-
lying character set are mapped to one or more Ada characters, then it would never

620 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

be necessary to raise IO_Exceptions.Data_Error . It would still be necessary, of
course, to perform the conversions implied by the mapping.

B.8.5.5 Stream I/O

Stream-oriented I/O operations have been introduced in Ada 95. However, there ap-
pears to be a close match between the read() and write() operations of POSIX.1 and
the Read and Write operations of Ada.Streams.Stream_IO defined in A.12.1 of
the Ada RM f1g. At the time this standard was last revised, there was not yet much
experience with this new Ada feature; therefore, no binding between the Ada stream
I/O and the POSIX I/O operations is defined. During the ballot process for POSIX.5b,
a partial connection was established by the introduction of I/O operations on the type
Stream_Element_Array .

A more thorough look at the appropriate relationship between Ada streams and
POSIX I/O would be an appropriate subject for a future revision to this standard.

B.9 System Databases

B.9.1 Requirements from POSIX.1

The group database contains the following fields:

— Group name.

— Numerical group ID.

— List of names/numbers of all users allowed in the group.

The user database contains the following fields:

— Login name.

— Numerical user ID.

— Numerical group ID.

— Initial working directory.

— Initial user program.

Both databases may contain implementation-defined fields.

POSIX.1 uses the ambiguous phrase “names/numbers” to desribe the content of the
gr–mem field of the group database structure. The type of gr–mem is a char**, im-
plying that the entries are character strings. They are strings, but they may either
contain names or consist solely of a string of digits that may be treated by the user
as numbers.

POSIX.1 does not guarantee that a value obtained from POSIX_Process_Identi-
fication.Image (given a valid value of type User_ID) can be used as the user name
provided to Get_User_Database_Item .

The initial user program is usually a shell program. This program is executed at
the end of the login sequence. If the initial user program field in the user database
contains a null string, the system default initial user program shall be used. This

B System Databases 621

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

standard (like POSIX.1) does not provide any additional definition of how the system
default is established or how the name of the system default initial program can be
obtained.

The operations on the group database are getgrgid() (group ID) and getgrnam()
(name). The operations on the user database are getpwuid() (user ID) and getpw-
nam() (name).

B.9.2 Rationale for the Current Design

B.9.2.1 Portability Versus Extensibility

One of the most fundamental agreements is that the POSIX packages in this stan-
dard should represent a completely portable interface wherever possible. POSIX.1
permits the system database type declarations to be extensible by the implemen-
tor. The developers of this standard did not see how to provide a portable interface
for accessing implementation extensions. Therefore, they decided to define packages
containing the guaranteed portable POSIX services and permit implementors to de-
fine other packages that define their extensions.

A second agreement, closely related to the first, is that the representation of a
database entry would be private, with operations to return information from the
structure. Hiding the representation of database entries is good Ada style and per-
mits substantial freedom in implementing the binding. In particular, there is no
specific requirement that the implementor construct a record containing all possible
data elements when the user only requires one specific element. Not having to store
values for unused data elements is very useful when the system database informa-
tion is not contained within a single file.

It is strongly recommended that any implementation-defined package use the same
names and types as the POSIX standard package.

B.9.2.2 Iterators

The group member list is implemented using a private type and the iteration scheme,
as described in B.1.

There is no iterator over the entire user or group database. This omission is de-
liberate in POSIX.1 and is reflected in this standard. The rationale for POSIX.1
notes that “The [UNIX linear search operations] provide a linear database search
capability that is not generally useful ... and because in certain distributed systems,
especially those with different authentication domains, it may not be possible or de-
sirable to provide an application with the ability to browse the system databases
indiscriminately.”

B.9.2.3 Pathnames, Filenames, and User and Group Names

POSIX pathnames are values of POSIX_String . Therefore, the functions that fetch
pathnames return values of type POSIX.POSIX_String . Likewise, user and group
names are specified as POSIX strings. Using the same type for all these strings
makes the interoperability between user names and other POSIX strings much sim-
pler because no type conversion is required.

622 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

At one time, consideration was given to providing distinct subtypes User_Name_-
String and Group_Name_String as unconstrained subtypes of POSIX.POSIX_-
String . This would have provided a bit of extra type naming documentation, but
only as a convention since in this case there would be no compile-time checking nor
even any runtime constraint checking.

B.10 Data Interchange Format

There is no Ada binding to Section 10 of POSIX.1. This section of POSIX.1 actually
does not fit well in the system API since it defines a data interface primarily of inter-
est to implementations of the tar file archive utility. There has been no interest in
developing an Ada-specific binding for this section of POSIX.1. However, the section
number is reserved, primarily to preserve the correspondence of section numbers
between this standard and POSIX.1.

B.11 Synchronization

Semaphores, mutexes, and condition variables are important tools for synchroniza-
tion. Semaphores are intended for use primarily between processes. Mutexes and
condition variables overlap in functionality with the rendezvous and with protected
operations. However, semaphores and (optionally) mutexes and condition variables
are useful between tasks in different processes, and are intenteded to facilitate in-
teroperability between Ada and C code.

B.11.1 Package POSIX_Semaphores

B.11.1.1 Semaphore Types

In POSIX.1 both the semaphore object and a pointer to the semaphore object are used
in the interface. The main challenge to the Ada binding was to provide equivalent
functionality, but at the same time to provide safe usage and allow implementations
the freedom to allocate the semaphore either at the point of declaration, or out of line
in user or system space.

Explicit declaration of semaphore objects was required in order to allow for shared
anonymous semaphores (which were considered an essential capability). Explicit
declaration permits the user to allocated unnamed semaphores in shared memory.
The implementation is still allowed to allocate data structures associated with the
semaphore out of line, but is responsibile for supporting access to the semaphore
object from different processes.

However, unless a handle model is adopted, complete safety is not possible due to
the loophole in Ada that allows copies of private types values (even limited) to be
created (as a result of function results and passing in out parameters). It is an
implementation choice for an Ada compiler whether in out parameters are passed
by copy or by reference. Usually, this decision is based on the size of the parameter.
For this reason, a correct implementation of this standard must arrange to pass the
Sem parameter to Initialize and Finalize by reference. Implementations (of
the binding) can arrange for this by adjusting the internal characteristics of the type
based on the Ada compiler in use.

B Data Interchange Format 623

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

The final model adopted is that all the semaphore operations operate on a handle
object, a Semaphore_Descriptor . The Semaphore type is still visible to allow for
in-line allocation of such objects (for unnamed semaphores only). But the only way
to operate on these objects is via the handle returned either by Descriptor_Of
(for unnamed semaphores) or by Open or Open_Or_Create (for named semaphores).
This approach is not completely safe since references to finalized/closed semaphores
are still possible. However, in practice such errors can be avoided by appropriate
programming conventions. Since the problem cannot be completely fixed in any case
and the other capabilities are important, the decision was to accept this trade-off.

The Semaphore_Descriptor is not a visible access type for two reasons:

(1) Requiring it to be an access type would unnecessarily limit implementations.
(2) The interesting operations on access types (e.g., allocators, dereferencing) are

not meaningful for semaphore descriptors and are, therefore, excluded.

While creating copies of semaphore objects (Semaphore) has undefined effect, copies
of semaphore handles (Semaphore_Descriptor) are allowed since they always
point to the same semaphore object.

Procedures Finalize and Close take Semas an in out parameter in order to al-
low the implementation to set the value of the parameter to some illegal value after
the operation completes, which facilitates detection of erroneous attempts to use the
finalized or closed semaphore. Since other copies of the same Semaphore_Descrip-
tor value may exist this technique will not protect against the erroneous use of such
copies. However, it is believed that some protection is better than none and that
programming conventions can address the problem of use of copies.

B.11.1.2 Semaphore Initialization and Opening

In POSIX.1 sem– init() (for unnamed semaphores) and sem– open() (for named
semaphores) differ in whether the semaphore is assumed to be shared. Named
semaphores opened via sem–open() can always be shared among processes. The sem–-
init() function has an argument pshared to tell whether the (unnamed) semaphore
can be shared. However in a single-threaded process, the meaning of pshared when
it equals zero is unspecified. Of course, in a multithreaded environment a nonshared
semaphore can be used by different threads in the same process. Since Ada requires
support for multitasking, both values of Is_Shared are always meaningful and are,
therefore, allowed.

The sem–open() function has been split into two operations, according to the value of
the oflag argument, O–CREAT; this splitting is for consistency with the treatment
in POSIX.5 of Open for files. For the same reason, the original out parameter that
returns a semaphore descriptor is changed to a function return value.

As the initial state of a semaphore is considered important to code comprehensibility,
no default is specified for Value . Thus, the initial state of a semaphore must be
explicitly provided when it is initialized or created.

B.11.1.3 Waiting on a Semaphore

The Ada operation corresponding to the C function sem–trywait does not raise an
exception corresponding to the error code EAGAIN. Try_Wait returns a Boolean

624 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

value to indicate success or failure of the waiting operation. Other sources of error
(e.g., an invalid semaphore descriptor) will cause an exception.

Try_Wait is a function, rather than a procedure; therefore, it can be used conve-
niently in while loops. Also, this operation has no Masked_Signals parameter
since (unlike Wait) it is inherently nonblocking.

B.11.1.4 Unblocking from a Wait on a Semaphore

The effect of thread priority on the selection of which task to unblock when a
semaphore is posted is intentionally less specified in the Ada binding than in
POSIX.1. One reason is that the Ada and C-language bindings were developed
and balloted concurrently by different groups of people. Successive drafts of the
C-language threads standard made subtle changes between uses of the words thread
and process that left uncertainty about whether the highest priority thread is re-
quired to be unblocked, or just the highest priority process. Rather than risk having
to back out inconsistent specifications later, the Ada binding balloting group chose
to say nothing on this subject. A second reason is to permit this standard to be
implemented over a system that does not provide kernel support for multithreaded
processes. Without kernel support for threads it may be impractical to guarantee
priority order wakeup at the thread level from blocking kernel calls. Indeed, it may
be that when a task waits on semaphore it blocks all the tasks in the process (see
B.2.4.2) c.

B.11.1.5 Semaphore Values

Intentionally, the POSIX.1 document only partially specifies the value that is re-
turned by sem–get–value() when the semaphore is locked. The value returned may
be positive (i.e., the actual value of the semaphore), or it may be a negative number
whose absolute value represents the number of tasks waiting for the semaphore at
some unspecified time during the call. For this reason, the value returned by Get_-
Value is of type Integer . On the other hand, the initial value of the semaphore is
always nonnegative (since a negative value would imply a nonempty queue of blocked
tasks already waiting on the semaphore). Therefore, Initialize and Open_Or_-
Create do not allow the initial value of a semaphore to be set to a negative value,
and consequently, the Value parameter of these operations is of subtype Natural .

B.11.2 Mutexes and Condition Variables

The interface defined in packages POSIX_Mutexes and POSIX_Condition_Vari-
ables follows quite closely the corresponding interface in POSIX.1.

Since this standard always requires support for tasks, it makes no sense to provide a
direct Ada mapping for the–POSIX–THREADS option (on which C-language support
for threads, as well as mutexes and condition variables, depends). Therefore, this
binding substitutes the Mutexes option, which controls the availability of mutex and
condition variable operations.

B.11.2.1 Intended Use of Mutexes and Condition Variables

Mutexes and condition variables do not provide any special functionality beyond the
built in task synchronization features introduced by Ada 95, which include protected

B Synchronization 625

c

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

objects (see B.11.2.5) and the package Ada.Synchronous_Task_Control . However,
at the time POSIX.5b was balloted the Ada 95 standard was not yet approved and
none of the commercial Ada compilers supported the new task synchronization prim-
itives; the only standard task synchronization mechanism available was rendezvous.

An interface to the POSIX.1 thread synchronization primitives is included in this
standard based on the assumption that (for many applications on many implemen-
tations) such primitives will be more efficient than the Ada rendezvous. This will
almost certainly be true if the Ada runtime system is layered over POSIX.1 threads
and is, therefore, forced to use mutexes and condition variables to implement ren-
dezvous. With such an implementation it would be more efficient for an application
to use mutexes and condition variables directly for situations (like simple mutual
exclusion) that do not require the full power of rendezvous.

If Ada tasking is not implemented over a system that supports POSIX.1 threads the
Ada runtime system will probably not use mutexes and condition variables inter-
nally, since there are more efficient ways of implementing Ada multitasking. With
such an implementation the mutexes and condition variables required by this stan-
dard would be implemented using the internal task synchronization mechanisms of
the particular Ada runtime system. In this case one should not assume that using
mutexes and condition variables will be any more efficient than rendezvous.

If the compiler and Ada runtime system support Ada 95 protected objects mutexes
and condition variables will probably not provide any performance advantage. If
the Ada implementation is layered over a system that supports the POSIX.1 thread
synchronization primitives there is no need for mutexes and condition variables to
be more efficient than Ada protected objects, and if the Ada tasking implementation
is not layered over POSIX.1 threads mutexes and condition variables are likely to be
less efficient.

Similarly, a good implementation of the package Synchronous_Task_Control can
be more efficient than mutexes and condition variables, since the semantics of the
operations are inherently simpler.

In any case, protected objects are much safer than mutexes and condition variables,
since the interactions with other Ada language features (e.g., exception propagation,
task abort, asynchronous transfer of control, and finalization) have been worked out
carefully. For example, protected operations are safe for use with asynchronous task
abort, but if a task is aborted while holding a mutex the application will deadlock.
(See B.11.2.5.)

The mutexes and condition variables defined by this standard might be useful for
synchronization between C and Ada components of a mixed-language application,
but not portably. This standard does not address all the issues that would need
to achieve at level of interoperability. For example, the memory representation of
an Ada Mutex object need not be the same as that of a C-language pthread–mutex–t
object (the Ada Mutex object may be a reference to the actual mutex or it may contain
additional data components), in which case calling Lock directly on an imported C
mutex object would not work.

Perhaps the best argument that can be made for the utility of POSIX mutexes and
condition variables in an Ada application is for portability of software designs. Hav-

626 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

ing semantically consistent types and primitives available to both C and Ada ap-
plications allows a component originally coded in C to be recoded in Ada, and vice
versa, without altering the design. The same virtue applies, of course, to the rest of
the interfaces defined in this standard c.

B.11.2.2 Use of Descriptors

The motivation for having the Mutex_Descriptor and Condition_Descriptor
types (and their treatment) is similar to that for the Semaphore_Descriptor type.
Mutexes and condition variables may need to be allocated in shared memory, just
like unnamed semaphores, to be useful between processes.

Type Attributes may denote the attributes object itself or a reference (index or
access) to the attributes object.

B.11.2.3 Shared Mutexes and Condition Variables

POSIX.1 specifies the Process Shared option. If this option is supported mutexes and
condition variables can be shared between processes. Otherwise, these synchroniza-
tion mechanisms may be used only among tasks in the same process. In order to be
sharable, the Process Shared option must be supported, and the mutex or condition
variable must be initialized with Is_Shared set to True .

B.11.2.4 Ceiling Priorities and Unblocking Behavior

The ceiling priorities associated with mutexes are intended to be related to Ada pri-
orities, so that support for this feature does not rely on support for Section 13 of this
standard. However, when the Priority Task Scheduling option is supported, ceiling pri-
orities also must lie within the range of priorities for the POSIX scheduling policy
FIFO_Within_Priorities for compatibility with POSIX.1.

The selection of the task to be unblocked when a mutex is unlocked and the order
of unblocking of tasks when a condition is either signaled or broadcast are specified
by POSIX.1 when Priority Task Scheduling option is supported. Otherwise, the order of
unblocking of tasks is unspecified.

POSIX.1 says that if a signal is delivered to a thread that is blocked on a mutex,
then upon return from the signal-handler, the thread is to be blocked again as if it
was not interrupted. This requirement does not appear in the Ada binding since the
application has no visibility of signals being delivered asynchronously. The same is
true of the wait operation for condition variables.

Incidentally, cond–timedwait() is the only function for which the C interface spec-
ifies error code ETIMEDOUT instead of EAGAIN. The Ada binding preserves this
distinction, specifying error code Timed_Out for a condition timed wait that expires.

B.11.2.5 Comparison to Protected Types

Ada 95 contains the protected objects, monitor-like constructs designed to provide,
among other things, data synchronization. Protected operations serve much the
same requirements as mutexes and condition variables for Ada applications, but are

B Synchronization 627

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Protected procedures provide similar functionality to mutexes. A protected procedure
can only be executed by one task at a time; other tasks attempting to call protected
operations of the same protected object cannot proceed until the executing task com-
pletes its protected action. Protected objects can be used to provide mutual exclusion
for critical sections, much as a mutex does. The only functionality of mutexes not sup-
ported is the ability of a task to unlock mutexes in an arbitrary order since protected
procedure calls must be properly nested. However, this is viewed as an advantage
of protected objects since unlocking mutexes in other than last-in-first-out order is
considered by many to be an unwise programming practice.

An important difference is that the locking mechanism used to implement protected
objects is not considered potentially blocking, in the sense that protected actions
(other than entry calls) are permitted within other protected actions but mutex lock-
ing operations are not.

Protected entries provide similar functionality to that of condition variables. In the
case of entries, the actual conditions that should be checked on returning from a
condition wait are included in the entry declaration. For the following condition wait

pthread_mutex_lock(mutex);
while (! condition) pthread_cond_wait(&condition,&mutex);

has a similar effect to calling the protected entry Wait of the following protected
object:

protected type Condition_Wait is
entry Wait;
procedure Signal;

private
Condition: Boolean:= False;

end Condition_Wait;
protected body Condition_Wait is

entry Wait when Condition is
begin

Condition:= False;
end Wait;
procedure Signal is
begin

Condition:= True;
end Signal;

end Condition_Wait;

A task making a call on an entry whose barrier is False is blocked until the barrier
becomes True . When exiting a protected procedure, a check is made to see whether
any tasks are waiting on entry queues of the same protected object. If there are, the
corresponding barrier expressions are reevaluated; if any become true, one waiting
task is made eligible to execute. The operation Signal in this case makes the barrier
true and wakes up the task in a single operation, as opposed to POSIX.1, which
separates the signal action from the state of the condition being awaited for. The
protected type interface has no equivalent to a condition variable wait without an
associated Boolean condition and loop, but that is a virtue since condition variables
are prone to spurious wakeups (which make usage without a Boolean condition and
loop unsafe).

While the function of these two code fragments is similar, there are significant dif-

628 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

ferences in semantics. For example, if a task is waiting for the Wait entry barrier
to open and another task attempts to exit the Signal procedure the task waiting
on the Wait entry will be the next task to execute in the protected object, regard-
less of whether or not higher priority tasks are waiting on other entry queues. By
contrast, when the POSIX.1 condition variable is signaled, it must contend for the
mutex again. If higher or equal priority tasks are attempting to lock the mutex,
they may get it and execute before the task that was waiting on the condition vari-
able. This difference make the behavior of protected objects more predictable and
less vulnerable to race conditions.

A significant difference between the use of mutexes and the use of protected objects is
that with bare mutexes there is no abort deferral. Thus, if a task is aborted or there
is an asynchronous transfer of control while the task is holding a mutex the mutex
may not be released, leading to deadlock or undefined behavior (if the same task later
tries to lock the mutex). For this reason, it is recommended that mutexes not be used
in tasks that are subject to abortion or asynchronous transfer of control. A similar
caution applies to the use of mutexes with code that might raise an exception.

B.11.2.6 Threads Considerations

This section defines operations that may block an entire process. As with all such
operations, POSIX.1 specifies that they need only block the calling thread (but they
may still block the whole process). As with all blocking system calls, there is a poten-
tial change of semantics when moving between a POSIX implementation that does
not support threads and one that does. In particular, using semaphores to synchro-
nize between Ada tasks within a single process may be workable if POSIX threads
are supported and Ada tasks map to POSIX threads, but otherwise it is likely to
cause deadlock within the process.

B.12 Memory Management

B.12.1 Process Memory Locking

The packages POSIX_Memory_Locking and POSIX_Memory_Range_Locking are
very direct bindings to the C interface. In the case of the operations on the whole
address space, such a direct binding seems safe and appropriate for use by an Ada
application programmer. In the case of the range locking operations, it does not seem
so appropriate.

The memory range locking operations seem awkward to use in a portable fashion.
For locking, an Ada application programmer will have difficulty determining the ex-
act correspondences between memory ranges and Ada entities. It is well known
that the Address and Size attributes are not portable, especially in the presence of
so-called dope (implicitly allocated record and array components used by the Ada im-
plementation for address computations and constraint checking). It is also the case
that the values of certain objects may reside only in registers some or all of the time;
thus, it may not be meaningful to speak of the address of some objects.

For unlocking, there also seems to be a problem determining whether two objects
occupy the same page of memory, i.e., whether the space of one can be unlocked with-

B Memory Management 629

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

out accidentally also unlocking the space of the other. (These problems are similar to
those with memory mapping, which is discussed in B.12.2.3.)

Nevertheless, the memory range locking interface is provided since, if it is needed,
nothing less may suffice. A separate package is used partly because the range locking
interface is controlled by a separate option, but mainly to isolate it from the safer
memory locking interface on the entire process address space.

The implementation is allowed to impose the restriction that the starting address
and the length in storage units (not necessarily the same as bytes) of the memory
range to be locked/unlocked must be page-aligned. POSIX_Page_Alignment is pro-
vided in Section 2 to ease the calculation of such page-aligned quantities.

B.12.2 Package POSIX_Memory_Mapping

This interface may be used to map portions of a process address space either to por-
tions of a regular file or to shared memory objects. One subtlety to keep in mind is
that the lengths of memory regions are specified in storage units (to be compatible
with Ada address arithmetic), but the lengths of file regions are specified in bytes.
Depending upon the value of System.Storage_Unit , these two may or may not be
the same.

B.12.2.1 Options

Some of the options are derived from POSIX.Option_Set , including Protection_-
Options and Synchronize_Memory_Options . Other options are defined as con-
stants of an implementation-defined type, including Mapping_Options and Loca-
tion_Options . The decision about which approach to use was based ultimately on
whether a reasonable default value could be specified or whether the user should be
forced to specify one of the possible choices.

The Protection parameter to Map_Memory and the Options parameter to Syn-
chronize_Memory have the obvious default value of Empty_Set . The possibility of
providing default values for the Mapping and Location parameters of Map_Memory
was considered, but was rejected on the grounds that no obvious reasonable default
values exist.

B.12.2.2 Map Memory

The C function mmap() has been split into two overloaded versions of the functions
Map_Memory. One version allows the user to specify a suggested starting address and
requires a location option to be specified. The other version omits the suggested start-
ing address and location option and allows the implementation complete freedom in
locating the address mapping. Splitting into two distinct operations is believed to be
clearer than the C interface convention of interpreting a suggested starting address
of zero as allowing the implementation to locate the memory mapping.

B.12.2.3 Required Representation Support and Shared Variable Control

In response to a ballot objection, this standard imposes the requirement to support
the pragmas Atomic and Volatile of Ada 95 in order to suppress unwanted com-
piler optimizations.

630 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Without some of the new features of Ada 95 memory mapping would be more unsafe
for Ada users. Such problems seem to be inherent in the semantics.

A big problem with the use of shared memory is the danger of undesired compiler
optimizations, namely the possibility that the compiler may assume that the value
of a variable can only be modified by code generated by that compiler and within
the same program. Based on this assumption and data flow analysis, the compiler
may omit loads and stores to memory, keeping the value of the variable in a register.
It may also delete entirely any code that computes values that appear to be dead,
e.g.where the value computed is assigned to a variable that is overwritten before
being read again. This kind of optimization is incorrect if the variable is in shared
memory.

To prevent such undesired (and harmful) optimizations on objects that are in shared
memory, some way is needed to inform the Ada compiler that these objects may be
read and updated concurrently by other processes. The pragmas Volatile and
Atomic , provide this capability. In the case of Ada 83, where these pragmas are
not available, several work-arounds are known. One that may work on some imple-
mentations is to use access values to denote the objects in shared memory, in order
to reduce the likelihood of data flow analysis detecting candidates for such undesired
optimizations. The other alternative is to use implementation-defined pragmas or
compilation flags to suppress optimization.

Another problem is uncertainty about what the Ada runtime system may be already
doing with shared memory; for example, if the runtime system is using multiple
POSIX processes to implement a single Ada active partition (as it may do to reduce
the blocking effect of certain system calls or to take advantage of a multiprocessor)
there is danger that the application may interfere with the Ada runtime system.
Also, there is uncertainty about the exact memory layout used by the Ada language
implementation; this problem also arises with memory range locking (see B.12.1).
Ada compilers are not uniform in the way they support the type System.Address
and address clauses. In particular, some compilers do not allow nonstatic expressions
in address clauses. Even the recommended level of representation support specified
in C.2 of the Ada RM f1g does not include support for nonstatic expressions.

In summary, to make good use of the memory-mapping and memory-region locking
capabilities, an application needs to be able to

(1) Do arithmetic on addresses. (See 2.9.)

(2) Convert addresses to usable access-type values.

(3) Specify the address of a data object via an address clause with a nonstatic ex-
pression.

(4) Insert system calls to set open files and shared memory objects and establish
mappings before the elaboration of the Ada objects that are to occupy the mapped
address ranges, including objects declared in library packages.

(5) Suppress optimizations that are not correct in the presence of concurrent access
to data from another process.

The operations provided by this standard, combined with those provided by the Ada
language, are believed to address all these requirements.

B Memory Management 631

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

B.12.3 Package POSIX_Shared_Memory_Objects

The present interface for opening shared memory objects is based on the POSIX.5
treatment of Open and Open_Or_Create for files. The functions here have “_-
Shared_Memory ” appended in order to distinguish them from the corresponding op-
erations on files in package POSIX_IO since they have identical parameter-result
profiles. The only difference between the function specifications, for overloading, is
that the shared memory functions define the File parameter to be of type POSIX.-
POSIX_String , while the POSIX_IO functions define File as type POSIX.Path-
name, which is defined as a subtype of type POSIX.POSIX_String .

Incidentally, a similar overloading problem holds for the various unlink operations.
Thus, for all unlink operations added by POSIX.5b the operation name specifies what
is being unlinked (e.g., Unlink_Shared_Memory , Unlink_Semaphore , etc.).

The option set scheme used is consistent with POSIX.5. In particular, the Exclu-
sive option is used on Open_Or_Create_Shared_Memory to specify that the oper-
ation should fail if the named object already exists. This issue also arises for named
semaphores and messages queues and is resolved in the same way.

B.12.4 Package POSIX_Generic_Shared_Memory

The generic package POSIX_Generic_Shared_Memory is intended to provide a more
abstract interface to shared memory objects than POSIX_Shared_Memory_Objects .
The operations of this package represent only a subset of the capabilities of the lower
level interfaces, but it is far easier to use. This interface appears to be adequate for
most Ada applications where shared memory is used as a fast way of sharing data
between processes.

B.12.4.1 Intended Use

The package POSIX_Generic_Shared_Memory uses a simpler parameter set than
the other packages defined in Section 12 of this standard. For example, the opera-
tions Open_And_Map_Shared_Memory and Open_Or_Create_And_Map_Shared_-
Memory have no Mode parameter as the operations Open_Shared_Memory and
Open_Or_Create_Shared_Memory have to specify Read_Only or Read_Write . In-
stead, the corresponding value is set for the generic interface according to the value
of the Protection parameter. Applications needing to specify missing parameters
will need to use the lower level operations defined in this section.

B.12.4.2 Initialization of Shared Memory

An application instantiates POSIX_Generic_Shared_Memory supplying a user-
defined type for shared memory objects, then calls the procedure Open_Or_Create_-
And_Map_Shared_Memory to obtain a file descriptor to a new shared memory object
of the user-defined type. This new shared memory object is not required to be initial-
ized, even if the actual type corresponding to the generic parameter Object_Type
has default initialization. Though this is inconsistent with the Ada language defini-
tion, requiring correct default initialization of shared memory objects was considered
too burdensome for implementers. There are several implementation problems.

632 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

One problem is the need for synchronization and mutual exclusion. If one process
has created a shared memory object and is initializing it, another process should not
be able to open and access the object between the time it is created and the time
initialization is complete. Likewise, an object should not be initialized more than
once. Initialization requires some form of synchronization and mutual exclusion, but
this is just the first instance of a need that continues for every subsequent access
to the shared memory object. As mentioned above, the user is expected to use other
features of this standard to achieve such synchronization and mutual exclusion.

Another problem is that the code for default initialization is generated implicitly by
the Ada compiler. If default initialization is required, the implementer of the body of
this generic package will need to rely on the compiler to generate the initialization
code. The known solution involves the use of an address clause for a local object of
type Object_Type . However, some Ada compilers suppress initialization for objects
with address clauses. Therefore, it is not specified whether default initialization
takes place when a shared memory object is created via this generic interface.

Some Ada language implementations may require initialization of certain types of
objects, such as those that require dope. In such cases, the implementation of this
standard must either reject the generic instantiation or provide the necessary ini-
tialization.

With Ada 95, there is an alternative way of arranging for the compiler to initialize
objects in shared memory, that should be more reliable. Shared memory objects
may be allocated and initialized via the standard new operator, using a user-defined
storage pool as defined in 13.11 of the Ada RM f1g. All that is needed is for the
user-defined allocator to return an address that is mapped to the shared memory
object.

B.12.4.3 Accessing Generic Shared Memory

Open_And_Map_Shared_Memory and Open_Or_Create_And_Map_Shared_Memory
return a file descriptor to the application for use in later operations (just as for the
nongeneric interface). One reason is that the supply of file descriptors available to
a process is generally limited. If an abstract handle type were introduced here, that
would hide the fact that each open shared memory object consumes a file descriptor,
which is not available for opening other files. Another reason for making the file de-
scriptor visible is that all the memory management operations that take file descrip-
tors as parameters can be used directly on these objects. This eliminates the need
for a special operation to unlink a (generic) shared memory object and also provides
sophisticated users with the means of achieving functionality beyond the intended
scope of the package (perhaps with some loss of portability). A third reason for using
a visible file descriptor is to permit sharing of the file descriptor with subroutines
written in other languages, such as C. Some disadvantages, however, are also ap-
parent. POSIX defines many operations on the File_Descriptor type, including
some whose effects are not defined for shared memory objects. Moreover, the use
of file descriptors obtained via this generic interface as parameters in direct calls to
the lower-level memory management operations from the POSIX_Memory_Locking ,
POSIX_Memory_Range_Locking , POSIX_Memory_Mapping , and POSIX_Shared_-
Memory_Objects packages is undefined.

B Memory Management 633

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

A generic shared memory object cannot be mapped to the region of the process ad-
dress space associated with an Ada object declaration. Instead, the interface provides
the function Access_Shared_Memory , which, given a file descriptor returned by one
of the open functions, returns a access value of type Shared_Access that may be
dereferenced to obtain access to the shared memory object.

NOTE: In a future revision to this standard it may be advisable to provide a way to map a
shared passive partition to a file or shared memory object.

B.12.4.4 Locking and Unlocking Shared Memory

The interface does not provide for locking in the sense of protecting shared memory
objects against concurrent access by more than one process. A user can provide this
capability, at whatever granularity is desired, using other features of this standard.
In particular, it is possible for Object_Type to be a composite data type that includes
one or more unnamed semaphores as components.

The lock and unlock operations provided serve to suppress and enable virtual mem-
ory paging of shared memory objects, relieving the user of the need to be concerned
with the address computation needed to apply POSIX_Memory_Range_Locking .

B.13 Execution Scheduling

While compatible and interoperable implementations of POSIX threads and Ada
tasks are possible, the scheduling models of POSIX.1 and Annex D of the Ada RM f1g
each allow implementations that would not be compatible with each other. That both
standards are loosely defined and yet different may be viewed as a sign of agreement
in the POSIX and Ada communities that the time is not yet ripe for tight standard-
ization of real-time scheduling behavior. Both POSIX and Ada try to leave consider-
able freedom to the implementation. Unfortunately, the specific freedoms allowed by
each standard do not match up exactly, nor are the conceptual models on which the
standards are based exactly the same.

In the long term, the need to support both C threads and Ada tasks on the same plat-
form may lead to consensus on the relationship between C threads and Ada tasks
and on the appropriate requirements to achieve language interoperability and ap-
plication portability. However, at the time POSIX.5b was developed there was very
little experience with implementations of POSIX.1 multithreading or Annex D of the
Ada RM f1g.

Therefore, the goals for Section 13 of this standard are as follows:

(1) To provide Ada applications access to task scheduling services analogous to those
provided for C threads by POSIX.1.

(2) To allow the Ada implementor to choose the best way of implementing Ada task
scheduling semantics using the services of the particular underlying operating
system (which may not support POSIX.1 multithreading) for an expected class
of applications.

To accomplish the former, one must define interfaces. To accomplish the latter, one
must avoid overspecifying the interactions of these interfaces with Ada tasking.

634 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

For these reasons, Section 13 is a thinner and more direct binding to POSIX.1 than
the rest of this standard. The developers of POSIX.5b believed the resulting stylistic
incongruity would be less objectionable than a self-contained binding that is inconsis-
tent with the base standards or is incompatible with the future evolution of realtime
scheduling practices. The standard in its present form requires the reader to refer to
POSIX.1 for the behavior of the interface.

B.13.1 Scheduling Concepts and Terminology

The definitions of many scheduling terms are taken verbatim from the Ada RM f1g
or from POSIX.1 (which are reasonably compatible with one another). One exception
is the concept of Scheduling Contention Scope defined in POSIX.1. This standard merely
defines constants corresponding to the C constants and refers readers to POSIX.1 for
their meanings. The reason is that POSIX.1 says very little that a portable applica-
tion can count on.

There are minor differences in terminology and behavior between the Ada RM f1g
and POSIX.1 which can cause the unwary some difficulty. For an example of a differ-
ence in terminology, see the note on the difference between the Ada term “ready” and
the POSIX term “runnable,” in 2.2.2.147. For an example of a difference in behavior,
compare the definition of the Sched_FIFO scheduling policy to the definition of the
Ada FIFO_Within_Priorities task dispatching policy. For the latter, a delay state-
ment will cause the calling task to move to the end of its scheduling queue even if the
delay is too short to block the task. The POSIX Sched_FIFO policy does not require
this unconditional round-robin effect for the POSIX operations with timeouts.

B.13.2 Package POSIX_Process_Scheduling

This package is intended to be as direct a mapping as possible of the facilities of
POSIX.1 for process scheduling.

B.13.2.1 Scheduling Parameters

The only scheduling parameter defined by POSIX.1 is priority. However, the ap-
proach taken by this standard easily supports future extensions that may add more
scheduling parameters.

B.13.2.2 Scheduling Policies

Constants are defined corresponding to the three scheduling policies defined by
POSIX.1. Readers are referred to that standard for their meanings.

B.13.2.3 Modify Process Scheduling Policy and Parameters

These operations are a direct mapping to corresponding operations in POSIX.1.

B.13.2.4 Process Yield CPU

This operation is a direct mapping to the corresponding operation in POSIX.1b,
whose effect was redefined by POSIX.1c. This standard must allow for, but can-
not require, that the underlying system support the POSIX.1 multithreading option;
therefore, the meaning of this operation is deliberately vague.

B Execution Scheduling 635

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

B.13.2.5 Get Scheduling Limits

These operations are a direct mapping to corresponding operations in POSIX.1.

Priorities here are intentionally of type Integer , for consistency with the C interface
and for consistency with the precedent established by Ada, for task priorities. The
various ranges of priorities supported by the various scheduling policies is not known
statically; therefore, defining bounds on this range is not likely to be helpful.

The anticipated practice is for a user to call the functions Get_Maximum_Priority
and Get_Minimum_Priority to obtain upper and lower bounds that can be used to
define a subtype, which is then used within the application.

B.13.3 Task Scheduling

13.3 is an attempt to harmonize the thread scheduling facilities of POSIX.1 with the
task scheduling facilities of Annex D of the Ada RM f1g.

B.13.3.1 Approach

The present approach is a compromise between two extreme positions expressed
among both the technical reviewers and the balloters. One extreme position is that
all thread scheduling facilities of POSIX.1 are specific to the C language and should
not appear in an Ada binding. The arguments against this extreme are as follows:

— It is then difficult to rationalize the scheduling effects of the mutex and condition
variable synchronization facilities, particularly in mixed-language applications.

— The task scheduling model of Annex D of the Ada RM f1g is more specific than
the POSIX.1 thread scheduling model in two respects. First, Annex D of the
Ada RM f1g requires that all tasks within an active partition be scheduled with
the same dispatching policy, whereas POSIX.1 allows each thread in a process
to be scheduled with its own policy. Second, Annex D of the Ada RM f1g de-
fines only a single task dispatching policy, roughly corresponding to Sched–FIFO,
whereas POSIX.1 also provides the policy Sched–RR.

The other extreme position is that the Ada binding should include a direct bind-
ing to POSIX.1 thread scheduling facilities as an alternative to the Annex D of the
Ada RM f1g. The main argument against this extreme is that it presents a POSIX
view of Ada tasking in conflict with the Ada RM f1g and leaves unanswered ques-
tions of interaction with other Ada language constructs.

Thus, the present binding is a compromise. It provides a binding to POSIX.1 thread
scheduling, but it is more abstract and more limited than the C language facilities.
The advantage is that it allows for the possibility that the implementor can harmo-
nize the scheduling semantics of POSIX.1 and the Ada RM f1g and achieve efficient
implementation of the POSIX task scheduling interface.

There is no binding to the multithreading option of POSIX.1 since this standard re-
quires all implementations to support Ada tasking, regardless of whether the under-
lying operating system supports POSIX.1 multithreading. The Priority Task Scheduling
option corresponds to the priority thread scheduling option of POSIX.1.

636 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

B.13.3.2 Dynamic Priorities

The thread scheduling parameters interface of POSIX.1 is mapped by this binding
to the dynamic priority facilities of Annex D of the Ada RM f1g, since priority is the
only thread scheduling parameter defined by POSIX.1. Should a future extension
add more thread scheduling parameters, this issue will have to be revisited.

B.13.3.3 Task Dispatching Policy Pragma

The thread scheduling policy interface of POSIX.1 is mapped by this binding to ex-
tensions to Annex D of the Ada RM f1g. The mapping is not a simple matter of
using the Task_Dispatching_Policy pragma to define the new POSIX schedul-
ing policies, since this pragma is a configuration pragma and applies the same task
dispatching policy to all tasks of the active partition. It was necessary to define a
two-step interface.

First, a new identifier POSIX_Task_Dispatching is defined for the Task_Dis-
patching_Policy pragma. Use of this value enables the second step. Second, a
new Task_Creation_Attributes pragma is added. This pragma applies to a task
type, and may be used to specify the scheduling policy (e.g., Sched_FIFO , Sched_RR,
Sched_Other) and the scheduling contention scope (e.g., System_Wide , Within_-
Process) for all task objects of the task type, so different tasks within the process
can have different scheduling policies and different scheduling contention scopes.

POSIX.5b intentionally left fuzzy the exact behavior of the POSIX scheduling poli-
cies because of the aforementioned differences in detail between POSIX scheduling
rules and Ada scheduling rules. It is not the intent of this binding to require dif-
ferent tasking support in the runtime system than is required for Ada validation.
Since there was no one clearly best way to rationalize in detail the POSIX thread
scheduling model with the Ada task scheduling model, without imposing unreason-
able limitations on the Ada language implementation, it is left to the implementor.

B.13.4 Synchronization Scheduling

B.13.4.1 Semaphores

POSIX.1 defines semaphores and specifies the effects on process scheduling of this
synchronization mechanism. The main provision is that when multiple threads are
blocked waiting on a semaphore, they must be unblocked in priority order for the poli-
cies Sched–FIFO and Sched–RR, but this standard must allow for implementations
that do not support Ada multitasking but do not support POSIX.1 multithreading.
It was difficult to know how this should be translated into the unblocking of tasks,
without overspecifying the interface, so the wording was left imprecise (i.e., “the task
to be unblocked shall be selected in a manner appropriate to the scheduling policies
and parameters in effect for the blocked tasks and their processes”) c.

B.13.4.2 Mutexes and Condition Variables

The mapping of synchronization effects for mutexes and condition variables is much
more direct, replacing the term “thread” by the term “task” and using the Ada names
for attributes and policies. Basically, the behavior of POSIX.1 is required:

B Execution Scheduling 637

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

(1) The inheritance effects for mutexes are the same as provided in POSIX.1.

(2) The unblocking of multiple tasks waiting on a condition variable or trying to lock
a mutex is the same as provided in POSIX.1: for the policies Sched_FIFO and
Sched_RR, tasks are unblocked in priority order.

The assumption here is that if this option is supported, either there is an underlying
operating system that supports POSIX.1 multithreading, or mutexes and condition
variables are implemented directly by the Ada runtime system.

B.13.4.3 Open Questions

The following is a partial list of the scheduling issues left open by this standard:

— Are POSIX threads supported by the underlying system? And if so, are Ada
tasks implemented using the threads facilities?

— What is the effect of process scheduling on task scheduling?

— What is the default Scheduling Policy and Priority of a process?

— Which values of the Scheduling Contention Scope attribute are recognized by the
system and what is their effect on task scheduling across an Ada application
consisting of multiple active partitions?

— Is Annex D of the Ada RM f1g supported? If so, then what are all the interac-
tions with the interfaces defined by this standard? For example,
— What is the mapping from Ada priorities (for tasks) to POSIX priorities (for

processes and for mutex ceiling priorities)?
— Do the priority inheritance effects of locking mutexes through the interface

defined by this standard affect the order of entry queue service as defined in
D.4 (11) of the Ada RM f1g? If so, how?

— For the POSIX task scheduling policies Sched_ FIFO and Sched_-
RR, which scheduling rules apply? Those of POSIX.1 or those of the
Ada RM f1g(suitably extended)?

B.13.5 Thread Scheduling Pragmas vs. Environment Variables

POSIX.1 supports thread creation with the function pthread–create(), which takes
an attribute structure describing the type of thread to be created. Task creation in
Ada is part of the language and takes place at the elaboration of the declaration or
evaluation of the allocator creating the task. The kind of task created is determined
by the declaration of the task, including pragmas in the task specification.

In POSIX.1, the result of scheduling two threads with different scheduling policies
together is generally implementation defined. Therefore, if an application wants to
use a special scheduling policy it needs to ensure that all threads in the system are
created with this policy, e.g., by modifying the initial thread using pthread–setsche-
dattr() to change the initial thread to this policy and then specifying that policy in
the attributes structure used to create all further threads.

Ensuring that all the tasks in the system are created with the same scheduling pol-
icy is more difficult to arrange for Ada tasks. By the time that the environment
task can call a procedure to affect its own scheduling attributes, other tasks may

638 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

already have been created by elaboration of task object declarations with whatever
default attributes are defined by the Ada runtime system. Thereafter, any attempt
to change the scheduling policy will result in a system of tasks with various policies
with implementation defined effects.

This standard does not directly address the problem, although two possible solutions
were considered:

(1) Provide pragmas to specify the scheduling attributes desired at task creation.

(2) Provide environment variables to specify the scheduling attributes desired for
the environment task, and make all other tasks inherit the attributes of the
task creating them.

Presumably, the Task_Creation_Attributes pragma could be extended to specify
that task attributes are to be inherited from the creator of the task being created.
However, it was felt that the alternative of explicitly specifying task creation at-
tributes for each task type was not onerous.

B.14 Clocks and Timers

Section 14 of this standard provides facilities that complement the standard timing
facilities already provided in Ada, such as the Duration type, the Calendar pack-
age, and the Ada.Real_Time package.

One central issue for Section 14 is how to reconcile these extended clock and timer
features with the standard features of Ada. In particular, it might seem nice to
require that the standard Ada time operations be implemented using the same time
source as the POSIX realtime operations, but there are differences in requirements
that make this unwise.

The main functional differences are as follows:

— Unlike the Ada real-time clock, the POSIX CLOCK–REALTIME clock is not
required to be monotonic.

— The POSIX timer interface has several capabilities not available with Ada delay
statements. (See B.14.4.)

— The POSIX clock and timer interfaces are interoperable with C-language code,
but the Ada time interfaces are not required to be so.

A second central issue is that the timer delivery mechanism may use the Signal_-
Alarm signal. POSIX.5 does not allow an application to provide a handler for this
signal since it is likely to be in use by the Ada runtime system to implement the
standard delay and Calendar.Clock operations. Any attempt to create a timer
that delivers Signal_Alarm is treated as an error. A user of timers must specify
some other signal.

The possibility of mapping the POSIX.1 clock and timer interfaces to the Ada.Real_-
Time package was considered. This mapping makes some sense, since there is con-
siderable overlap in functionality. For applications where the Ada.Real_Time is
adequate, it is recommended that that interface be used.

B Clocks and Timers 639

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

B.14.1 Types and Constants

The Timespec type is defined in the POSIX package. See the rationale in B.2.4.7.

The C-language type itimerspec is mapped to the Ada private type Timer_State
in order to allow for possible future extensions to Arm_Timer . As with other private
types in this standard, operations are provided to set and get the defined components
of the private type, namely Initial and Interval.

The expected implementation of clock and timer identifiers is as handles to the actual
clocks and timers, but it is deemed unnecessary to mention this expectation in the
normative part of this standard, since: the name ending in _ID implies that handles
are intended; all private types in this standard are intended to allow implementa-
tion as handles; whether Clock_ID and Timer_ID actually are handles makes no
difference to the interfaces defined in this standard.

Operations in this section are defined to apply to other clocks, in addition to Clock_-
Realtime . Normally, implementors are not allowed to add visible declarations to the
package specifications contained in this standard, but here, the addition of constants
of type Clock_ID is explicitly permitted. To reduce the possibility of unintended
name clashes, these names are required to begin with “Clock_ ”. The permission to
add clock identification constants to this package specification is inconsistent with
the stated intent of the standard that it always be possible to determine when an
application is using extensions by examining with clauses.

NOTE: This inconsistency apparently did not cause any objections from the balloting group
for POSIX.5b. However, it would probably be unwise for an implementor to take advantage
of this permission. There is a possibility that if the issue is raised in the next revision of this
standard, the permission might be removed, to reestablish with -clause portability.

B.14.2 Clock Operations

The Get_Time operation is more general than the Ada Calendar.Clock function
since it supports multiple clocks.

There have been complaints from many realtime application developers that Ada
provides no standard way to reset Calendar.Clock . The Calendar.Clock function
may be implemented via Get_Time for Clock_Realtime . This would then permit
applications that read Calendar.Clock to reset that clock via Set_Time .

B.14.3 Timer Creation

This standard provides no binding to the POSIX.1 function timer–create() having
no signal event parameter. In POSIX.1 if no signal event parameter is specified, a
default signal is sent upon timer expiration. Unfortunately, the default signal for
Clock_Realtime is Signal_Alarm which is reserved by this standard to the Ada
runtime system. Thus, an application must specify some other signal for Clock_-
Realtime . Furthermore, no other clocks are specified (yet) by this standard. Thus, a
portable application can make no use of a Create_Timer operation having no signal
event parameter. The rather limited functionality offered by such an interface does
not seem to compensate for the confusion it would cause.

640 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

B.14.4 Timer Operations

The C-language operation timer–settime() has a flags parameter with one defined
value TIMER–ABSTIME. The type of the parameter is mapped to type Timer_Op-
tions , which is derived from POSIX.Option_Set , and the defined value is mapped
to the constant Absolute_Timer . An overloaded procedure Arm_Timer is provided
to allow the prior timer state to be returned to the caller.

An early draft of POSIX.5b suppressed the C constant TIMER–ABSTIME and pro-
vided two separate versions of the timer-arming operation. As a result of a ballot
objection, this standard now provides a closer mapping to the original C-language in-
terface. The change was made to allow more easily for future extensions that might
add additional flags and/or additional parameters to timer–settime().

A separate operation Disarm_Timer has been added that corresponds to calling
timer–settime() with a zero value of value.it–value. Again, it seems desirable to define
a separate operation for a logically distinct function. However, there is the conse-
quence that Arm_Timer is now required to detect a zero value for the Initial attribute
of New_State and to return an error. Treating a zero as a detected error was consid-
ered preferable to possible alternatives, such as to allow the behavior to be unspeci-
fied, to detect and ignore the condition, or to allow disarming the timer (which is the
behavior specified in the C interface).

This standard requires that a timer expiration signal be caught by a task calling
Await_Signal or executing an accept statement for a task entry that is attached
to the signal of the timer. With these restrictions, timers might appear to have little
advantage over the delay statement. They are useful, however, for the following
reasons:

— Periodic timers are possible.

— A count of timer overruns is provided.

— Timers may be based on other clocks, such as CPU-time clocks, which may be
defined by future POSIX revisions.

— Timers can be used to send/queue signals.

B.14.5 High Resolution Sleep

POSIX.5 chose not to provide a binding for the sleep() function since it might suspend
the entire process and since the Ada delay statement is available. Similar reasoning
led finally to the conclusion not to provide a binding for nanosleep(), since it appears
to duplicate the Ada delay statement as well.

The decision not to provide a binding to nanosleep() was taken for the following rea-
sons:

(1) The overlap between nanosleep() and delay is deemed too great to justify a
binding.

(2) The function nanosleep() does not reliably block only the calling task.

(3) No absolute version of nanosleep() is provided by POSIX.1, similar to the Ada
delay until statement (although a further extension of POSIX.1 is under de-
velopment that may provide an absolute nanosleep()).

B Clocks and Timers 641

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

B.15 Message Passing

B.15.1 Message Queue Attributes

The attributes defined for message queues are a mixture of attributes that apply
to the message queue itself (e.g., Max Messages, Message Length, and Message Count)
and attributes that apply to an open message queue description (e.g., Options). All
applications that have message queue descriptors that refer to the same message
queue object should retrieve the same values for the attributes that apply to the
message queue itself, but each user may have its own Options attribute. The only
option defined by this standard is Non_Blocking .

Interestingly, the Options attribute of the Options parameter is ignored on a call
to Open_Or_Create . The blocking behavior of the open message queue description
created is governed by the Options parameter of type POSIX_IO.Open_Option_-
Set . The only purpose of the Options attribute is to allow changing the blocking
behavior via a call to Set_Attributes after the message queue is opened. This
rather curious interface is a faithful mapping of POSIX.1.

B.15.2 Priorities

It is assumed that the range of message priorities supported by the implementation
is not necessarily determinable at compile time. Therefore, the type Message_Pri-
ority may include more priority values than are actually supported by the imple-
mentation.

Message priorities are independent of process and task priorities.

B.15.3 Generic Message Passing

The nongeneric procedures Send and Receive are direct mappings to Ada of the
corresponding C interface to send and receive messages as untyped byte streams.

The generic package Generic_Message_Queues may be instantiated to provide
operations to send and receive messages of any (constrained) user-defined type. The
package is essentially a wrapper for an instantiation of Unchecked_Conversion ,
but also provides an error buffer that might be useful for debugging.

Since instantiations of Send and Receive may be called with any valid message
queue descriptor for the parameter MQ, it is not possible for the implementation of
this generic package to have any knowledge of the attributes of the specified message
queue. In particular, it is not possible to check at the time the package is instantiated
that the size of the actual type supplied for Message_Type is compatible with the
attribute Message Length of any message queue.

Also, it is not possible in general for this interface to enforce reliable type checking
on messages. Messages may arrive from programs that are compiled separately and
written in different languages. The generic receive procedure may receive a message
of the wrong type, but of a size and format that is indistinguishable from a message
of the anticipated type.

In situations where messages of several types are expected to be received on the same
message queue, the form of Receive with a buffer of type Stream_Element_Array

642 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

should be used. It is the responsibility of the application to parse the message to
infer its type. Unchecked conversion can then be used to convert all or portions of
the buffer into data of the desired Ada type(s).

If the implementation is able to determine that the received data do not match the
anticipated type and raises Constraint_Error , the application may (immediately)
call Get_Error_Buffer to retrieve (a portion of) the raw message data. The raw
message data returned by Get_Error_Buffer can then be parsed by the application
to perhaps determine the nature of the problem.

B.15.4 Notification

Only one process at a time may request notification of arrival of a message on any
particular message queue, so there is no question of selection of which process to
notify. Also, a pending receiver will get a new message before notification is made for
Request_Notify .

The request for notification for message arrival is limited to the next message deliv-
ery. If notification is then desired for subsequent deliveries to the message queue,
the application must re-request notification (as part of the processing in response to
the preceding message arrival).

It appears that Remove_Notify is most likely to be useful mainly as a recovery or
timeout mechanism in case the expected notification is not received.

B.16 Task Identification

This package is included in this standard because a way is needed to identify tasks,
notably for POSIX_Signals.Interrupt_Task .

The package is as nearly exact a copy as possible, for Ada 83compilers, of the
Ada.Task_Identification package of the Ada RM f1g. The semantics are by
reference.

B.17 Thread-Specific Data

No Ada interface is provided corresponding to the thread-specific data defined in
POSIX.1. The thread-specific data interface is considered to be language-specific
and, therefore, does not require a binding in this standard.

The package Ada.Task_Attributes of C.7.2 of the Ada RM f1g provides similar
capability. However, the Ada task attributes are more powerful than the thread-
specific data interface defined in POSIX.1 since it allows one task to set and query
data specific to another task using the ID of the task as key.

B.18 Detailed Network Interface - XTI

B.18.1 Error Handling

The developers of this standard were faced with a problem concerning the use of
errno for system errors and t–errno for XTI errors. In addition, the conventions of

B Task Identification 643

c

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

this standard allow for only one error handler to capture all errors. The develop-
ers were considering the use of two error handlers to resolve this problem of the
two error assignments. However, to complicate matters, earlier drafts of P1003.1g
had forbidden the use of assignments to t–errno. To resolve the P1003.1g issue, the
working group submitted a Coordination Ballot to P1003.1g that stated an objection
to the forbidding of assignments to t–errno. P1003.1g resolved to accept this objec-
tion and to modify P1003.1g to remove the prohibition on the assignment to t–errno.
The developers of this standard agreed that errno and t–errno can be unified in the
Ada binding. Therefore, in this document, the XTI error functions and system error
functions are invisible, and there is one exception (POSIX_Error) and one function
(Get_Error_Code) to return codes.

The subtype XTI_Error_Code is defined to provide discrete Error_Code ranges for
the XTI Detailed Network Interface optional services. The subtype Addrinfo_Error_-
Code is also defined to provide discrete Error_Code ranges for the Sockets Detailed
Network Interface with the Network Management optional services (i.e., to support the
Get_Socket_Address_Info procedure, which has a similar error handling diffi-
culty). The implementation has the responsibility to ensure that these error code
ranges do not overlap or collide with existing system error codes. Figure B.1 depicts
the error handling process.

B.18.2 XTI Addresses

The C-language data structures in P1003.1g use the netbuf type for numerous other
structure members. Where these members denote network addresses, they are
mapped to the tagged type XTI_Address in the Ada binding. A similar approach
is used for Socket_Address in Section 18 of this standard. The protocol-specific
instances of network addresses are detailed in D.2.

In Draft 4 of POSIX.5c, due to several general objections to dependence on Ada 95
without an Ada 83 fallback approach and several additional specific objections to the
application of tagged types the tagged type representation of network addresses was
replaced with private pointer types. A general XTI address type is provided in the
base package for use with the base package operations, and protocol-specific address
types are provide in the child packages (along with functions to convert the pointers
between the general and protocol-specific network address types).

B.18.3 Package POSIX.XTI

In P1003.1g, the C structure netbuf has multiple uses. Because of the strong data
types of Ada, this standard maps to the C binding using several private types. Pars-
ing of these data objects is done by providing separate functions and procedures.

In Draft 4 of POSIX.5c, all remaining cases of objects or attributes with the type
Network_Buffer were removed and replaced with subprogram parameters or ex-
plicit pointer types.

The following approach is used for data buffers and references to various other
objects. This rationale also applies to data buffers and private types in package
POSIX.Sockets .

644 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Exception
Handler for
POSIX_Error

Ada POSIX calls

A
da X

T
I calls

Get_Error_Code

Raise exception
POSIX_Error

Detect a POSIX
error and set

Ada XTI Binding

C XTI

Ada

Binding
POSIX

C

Binding

C
 P

O
S

IX
 calls

Get_Error_Code calls

Binding POSIX

Ada Application

Ada POSIX calls

errnoort_errno
code and raise
POSIX_Error

Detect an
XTI error
and set

t_
er

rn
o

C POSIX calls

Set_Error_Code
Set_Error_Code

calls

errno
t_errno

errno

er
rn

o

C
 X

T
I calls

Apply the

er
rn

o

Figure B.1 – t errno and errno

— Data buffers are implemented with a raw address of type System.Address and
a length of type POSIX.IO_Count . This approach may risk storage corruption.
However, to provide a more flexible and useful interface this compromise has
been made. Due to Ada 95 language restrictions, parameters with unconstrained
types cannot be passed via access parameters. The alternative, of using private
types specific to this standard for this kind of buffer, was deemed too inflexible
and inefficient for the calling application. If required, applications can build a
safe interface to the binding to perform such bounds checks.

— Pointer types are defined for certain objects using Ada 95 general access types.
General access types are used whenever a persistent reference to a private type
must be deposited into another object.

— Subprogram parameters that have an out role and are private types are passed
as in out to convey the responsibility of the application to allocate storage and
prepare certain attibutes of the object prior to the call.

B Detailed Network Interface - XTI 645

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

B.19 Detailed Network Interface - Socket

B.19.1 Socket Addresses

The C-language data structures for socket addresses in P1003.1g are protocol-specific
address types that are cast to a socket address type for use with the sockets function
calls. In this Ada binding, socket addresses are mapped to the tagged type Socket_-
Address . A similar approach is used for XTI_Address . The protocol-specific in-
stances of socket addresses are detailed in D.1.

In Draft 4 of POSIX.5c, due to several general objections to dependence on Ada 95
without an Ada 83 fallback approach and several additional objections to the specific
applications of tagged types the tagged type representations of network addresses
were replaced with private pointer types. A general socket address type is provided
in the base package for use with the base package operations, and protocol-specific
address types are provide in the child packages (along with functions to convert the
pointers between the general and protocol-specific specific network address types).

B.19.2 Endpoints and Sockets

Sockets and XTI endpoints have the type POSIX_IO.File_Descriptor . An al-
ternate approach would be to have the sockets and XTI routines use subtypes of
File_Descriptor . For example:

subtype Socket_Descriptor is POSIX_IO.File_Descriptor;

subtype XTI_Endpoint is POSIX_IO.File_Descriptor;

This change was rejected as having too much impact to other packages in this stan-
dard that operate on file descriptors.

B.19.3 Socket Options

Two methods were proposed for getting and setting socket options. The current bind-
ing uses separate “Get_ ” and “Set_ ” subprograms for each option. An alternate
approach was proposed, using a single pair of overloaded subprograms for getting
and setting all the options and a record type containing option values. This second
approach was rejected for the following reasons:

— The package implementation requires more code with this method to allocate
data structures, copy data, and so on. (The application would require similar
extra overhead.)

— An implementation may not add to a record type, since it may break code written
for the original record.

— POSIX.5b has no visible record types.

— Also, in this standard it was deemed desirable to be able to verify that only
standard packages are used in an application by checking with clauses. This
could not be verified (easily) using an extensible record type.

646 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

B.19.4 Package POSIX.Sockets

B.19.4.1 Create a Pair of Connected Sockets

Create_Pair is typically used to create a pair of connected sockets before a process
creation operation (similar to Pipe). A POSIX.5c ballot comment was received voic-
ing concerns about portability issues related to calling the unsafe process primitive
Fork . The ballot resolution group felt that the discussion of process creation using
either the Process_Template approach or Fork and Exec was complete. No new
portability issues are introduced by POSIX.5c. In particular, the safe way to create
a new process connected to its parent by a socket pair is for the parent to create the
socket pair and then call Start_Process to create the child process. The “Set_-
File_Action_ ” operations on the Process_Template permit the parent process to
control the correspondence of the sockets with file descriptors of the child process.

B.19.4.2 Get and Set Options on Sockets

The level parameter in the C-language binding for the getsockopt() and setsockopt()
functions is not a qualifier to the option. Rather, the level/optname pair itself specifies
the option. This is necessary in C because optname is an integer; therefore, some
means of partitioning the optname integer space is required. In the Ada binding,
where each option has its own “Get_ ” and “Set_ ” subprograms, no parameter is
needed for the level. Therefore all the “Get_ ” and “Set_ ” options calls in package
POSIX.Sockets occur at the socket level. Lower level protocol options are specified
in D.1.

B.19.4.3 Get Socket Type

Although it is part of the C-language API for getsockopt(), the Ada function Get_-
Socket_Type has been moved from the discussion of socket options to a separate
subclause. Putting the description of this function at the same level as Get_-
Socket_Name and Get_Peer_Name is more consistent with the functional approach
of this standard.

B.19.4.4 Receive Data From a Socket

The C function recvfrom() is named for historical reasons and also because function
names cannot be overloaded in C. “Receive From” is a misnomer; it suggests “receive
from this peer,” but it really means “receive, and tell me the identity of the peer.”
Therefore, the Ada binding simply overloads the Receive procedure with an optional
out parameter called From.

B.19.4.5 Send Data Over a Socket

Similarly, the C function sendto() is bound to the overloaded Send procedure with an
optional in parameter called To.

B.20 Network Support Functions

The network support section found in P1003.1g has been removed from this stan-
dard. The functions that it provided have been allocated to other caluses of this
standard as follows:

B Network Support Functions 647

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

— 7.2.1 - In P1003.1g this subclause contains Internet-specific information. It was
decided that all Internet specific information will be moved to D.1 of this stan-
dard.

— 7.2.3 - The function getaddrinfo() of P1003.1g maps to Get_Socket_Address_-
Info , which has been moved to a subclause in Section 18 since it relates to sock-
ets only. This new subclause is preceded with text stating that this subclause
must have the Network Management option support.

— 7.3 - These functions in Section 7 of P1003.1g are defined as obsolescent. There-
fore, they were removed from the Ada binding.

— 7.4 and 7.5 - These subclauses contains Internet-specific information. It was
agreed that all Internet specific information will be moved to D.1 of this stan-
dard.

— 7.6 and 7.7 - These functions in Section 7 of P1003.1g are defined as obsolescent.
Therefore, they were removed from the Ada binding.

— 7.8 - These functions are traditionally used to convert Internet addresses and
port numbers between host and network byte order (htonl(), htons(), ntohl(),
ntohs()). It was decided to move the responsibility for any such conversion to
the implementation of the binding. Text is added specifying that all Internet
address and port number objects are in host byte order and that any required
conversions shall be done automatically by the implementation of the binding.
Since the issue of big-endian versus little-endian storage of integer types may
still be a concern for network data buffers, general purpose types and functions
were added to package POSIX to support these conversions.

— 7.9 - This subclause contains Internet specific information. It was agreed that
all Internet specific information will be moved to D.1 of this standard.

In the C interface, the network support functions that return the Network_Info and
Protocol_Info objects are considered unsafe due to storage allocation performed
by these services. A Storage parameter is provided on these functions to permit
the calling application to allocate this storage. However, due to limitations in the
operating system services underlying this binding, no guarantees about the behavior
of these objects related to reentrancy or multitasking safety are made. Informative
notes have been added to these sections with warnings about premature deallocation
of this storage and limits to multitasking safety.

NOTE: Although multitasking-safe versions of these services are becoming available on some
commercial operating systems, no standard approach currently exists. It is expected that a
future revision of this standard may address this issue.

B.21 Protocol Mappings Annex

The protocol-specific items were originally documented in the body of the standard
as a subclause under each function. However, to remain consistent with P1003.1g,
the protocol mappings were removed from the body of the document and placed in a
normative annex. Also for consistency with P1003.1g, IBM’s System Network Archi-
tecture (SNA) was not included in the protocol mappings.

However, Annex D is not organized using the same structure as P1003.1g. The latter
is organized by protocol with interface-specific information listed as subsections. The

648 B Rationale and Notes

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

developers of this standard deemed that this organization does not lend itself to eas-
ily adding protocols because the added protocol sections would be intermixed within
existing sections. Instead, the Annex D of this standard is organized by interface
(Sockets and XTI) with protocol specific information contained within the interface
sections. This organization allows for the addition of a protocol without changing the
original structure of the document. c

B Protocol Mappings Annex 649

IEEE Std 1003.5c-1998

Annex C
(informative)

Ada/C Cross-References

This annex describes the relationship between the Ada-language names defined in
this standard and the C-language names defined in the base standards.

C.1 Ada-to-C Cross-Reference

This clause lists the C-language name or names that correspond most closely to each
Ada-language name defined by this standard. It is divided into subclauses according
to the packages in which the Ada names are declared. Ada names for which there
are no corresponding C names are not listed.

Package Ada_Task_Identifiation (16.1)

This package is specific to the Ada language.

Package Ada_Streams (2.7)

This package is specific to the Ada language.

Package POSIX (2.4)

Ada Name C Name

Address_In_Use . TADDRBUSY

Address_In_Use . EADDRINUSE

Address_Not_Available . EADDRNOTAVAIL

Already_Awaiting_Connection . EALREADY c
Argument_List_Maxima’Last . ARG–MAX

Argument_List_Too_Long . E2BIG

Bad_Address . EFAULT

Bad_File_Descriptor . EBADF

Bad_Message . EBADMSG

Broken_Pipe . EPIPE

Buffer_Not_Large_Enough . TBUFOVFLW c
Change_Owner_Restriction –POSIX–CHOWN–RESTRICTED

Child_Processes_Maxima’Last . CHILD–MAX

Communications_Provider_Mismatch TPROVMISMATCH

Connection_Aborted . ECONNABORTED

Connection_Refused . ECONNREFUSED

Connection_Reset . ECONNRESET

Could_Not_Allocate_Address . TNOADDR c
Directory_Not_Empty . ENOTEMPTY

Domain_Error . EDOM

Endpoint_Queue_Full . TQFULL

Endpoint_Queue_Length_Is_Zero . TBADQLEN

Event_Requires_Attention . TLOOK c

C Ada/C Cross-References 651

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Exec_Format_Error . ENOEXEC

File_Exists . EEXIST

File_Too_Large . EFBIG

Filename_Limit_Maxima’Last . NAME–MAX

Filename_Too_Long . ENAMETOOLONG

Filename_Truncation . –POSIX–NO–TRUNC

Flow_Control_Error . TFLOW c
Get_Error_Code . errno

Groups_Maxima’First . NGROUPS–MAX

Host_Down . EHOSTDOWN

Host_To_Network_Byte_Order . htonl()

Host_To_Network_Byte_Order . htons()

Host_Unreachable . EHOSTUNREACH

Illegal_Data_Range . TBADDATA c
Image . perror()

Improper_Link . EXDEV

Inappropriate_IO_Control_Operation . ENOTTY

Incorrect_Address_Type . EAFNOSUPPORT

Incorrect_Address_Format . TBADADDR

Incorrect_Or_Illegal_Option . TBADOPT

Incorrect_Surrogate_Queue_Length . TRESQLEN c
Input_Line_Limit_Maxima’Last . MAX–CANON

Input_Output_Error . EIO

Input_Queue_Limit_Maxima’Last . MAX–INPUT

Insufficient_Permission . TACCES c
Interrupted_Operation . EINTR

Invalid_Argument . EINVAL

Invalid_Communications_Provider . TBADNAME

Invalid_File_Descriptor . TBADF

Invalid_Flag . TBADFLAG

Invalid_Flags . EAI–BADFLAGS
c

Invalid_Seek . ESPIPE

Invalid_Sequence_Number . TBADSEQ c
Is_A_Directory . EISDIR

Is_Already_Connected . EISCONN c
Job_Control_Support . –POSIX–JOB–CONTROL

Link_Limit_Maxima’Last . LINK–MAX

Machine . uname(), machine

Memory_Allocation_Failed . EAI–MEMORY

Name_Failed . EAI–FAIL

Name_Not_Known . EAI–NONAME

Network_Down . ENETDOWN

Network_Reset . ENETRESET

Network_To_Host_Byte_Order . ntohl()

Network_To_Host_Byte_Order . ntohs()

Network_Unreachable . ENETUNREACH

652 C Ada/C Cross-References

c

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

No_Address_For_Name . EAI–NODATA

No_Buffer_Space . ENOBUFS c
Message_Too_Long . EMSGSIZE

No_Child_Process . ECHILD

No_Data_Available . TNODATA

No_Disconnect_Indication_On_Endpoint . TNODIS c
No_Locks_Available . ENOLCK

No_Orderly_Release_Indication_On_Endpoint TNOREL c
No_Space_Left_On_Device . ENOSPC

No_Such_Device_Or_Address . ENXIO

No_Such_File_Or_Directory . ENOENT

No_Such_Operation_On_Device . ENODEV

No_Such_Process . ESRCH

No_Unit_Data_Error_On_Endpoint . TNOUDERR c
Node_Name . uname(), nodename

Not_A_Directory . ENOTDIR

Not_A_Socket . ENOTSOCK

Not_Connected . ENOTCONN c
Not_Enough_Space . ENOMEM

Open_Files_Maxima’Last . OPEN–MAX

Operation_Canceled . ECANCELED

Operation_In_Progress . EINPROGRESS

Operation_Not_Implemented . ENOSYS

Operation_Not_Permitted . EPERM

Operation_Not_Supported . ENOTSUP

Operation_Not_Valid_For_State . TOUTSTATE

Option_Not_Supported . EOPNOTSUPP

Outstanding_Connection_Indications . TINDOUT c
Pathname_Limit_Maxima’Last . PATH–MAX

Permission_Denied . EACCES

Pipe_Limit_Maxima’Last . PIPE–BUF

Portable_Argument_List_Maximum . –POSIX–ARG–MAX

Portable_Child_Processes_Maximum –POSIX–CHILD–MAX

Portable_Filename_Limit_Maximum –POSIX–NAME–MAX

Portable_Groups_Maximum . –POSIX–NGROUPS–MAX

Portable_Input_Line_Limit_Maximum –POSIX–MAX–CANON

Portable_Input_Queue_Limit_Maximum –POSIX–MAX–INPUT

Portable_Link_Limit_Maximum . –POSIX–LINK–MAX

Portable_Open_Files_Maximum . –POSIX–OPEN–MAX

Portable_Pathname_Limit_Maximum –POSIX–PATH–MAX

Portable_Pipe_Limit_Maximum . –POSIX–PIPE–BUF

Portable_Stream_Maximum . –POSIX–STREAM–MAX

Portable_Time_Zone_String_Maximum –POSIX–TZNAME–MAX

POSIX_Version . –POSIX–VERSION

Protocol_Error . TPROTO

Protocol_Not_Supported . EPROTONOSUPPORT c

C Ada-to-C Cross-Reference 653

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Read_Only_File_System . EROFS

Release . uname(), release

Resource_Busy . EBUSY

Resource_Deadlock_Avoided . EDEADLK

Resource_Temporarily_Unavailable . EAGAIN

Saved_IDs_Supported . –POSIX–SAVED–IDS

Service_Not_Supported . EAI–SERVICE
c

Set_Error_Code . errno

Socket_Type_Not_Supported . ESOCKTNOSUPPORT

State_Change_In_Progress . TSTATECHNG c
Stream_Maxima’Last . STREAM–MAX

String_List . char * *

Surrogate_File_Descriptor_Mismatch . TRESADDR c
System_Name . uname(), sysname

Time_Zone_String_Maxima’Last . TZNAME–MAX

Timed_Out . ETIMEDOUT

Timespec . timespec

Too_Many_Links . EMLINK

Too_Many_Open_Files_In_System . ENFILE

Too_Many_Open_Files . EMFILE

Try_Again . EAI–AGAIN

Unknown_Address_Type . EAI–ADDRFAMILY

Unknown_Protocol_Family . EAI–FAMILY

Unknown_Socket_Type . EAI–SOCKTYPE

Unsupported_Object_Type_Requested TNOSTRUCTYPE c
Version . uname(), version

Would_Block . EWOULDBLOCK

Wrong_Protocol_Type . EPROTOTYPE

XTI_Operation_Not_Supported . TNOTSUPPORT c

Package POSIX_Asynchronous_IO (6.3)

Ada Name C Name

AIO_Descriptor . * aiocb

All_Done . AIO–ALLDONE

Await_IO_Or_Timeout . aio–suspend()

Canceled . AIO–CANCELED

Cancel . aio–cancel()

Get_Bytes_Transferred . aio–return()

Get_AIO_Error_Code . aio–error()

Get_AIO_Status . aio–error()

List_IO_No_Wait . lio–listio(), LIO–NOWAIT

List_IO_Wait . lio–listio(), LIO–WAIT

No_Op . LIO–NOP

Not_Canceled . AIO–NOTCANCELED

Read . aio–read(), LIO–READ

654 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Synchronize_Data . aio–fsync(), O–DSYNC

Synchronize_File . aio–fsync(), O–SYNC

Write . aio–write(), LIO–WRITE

Package POSIX_Calendar (4.4)

The package POSIX_Calendar is Ada-specific.

Package POSIX_Condition_Variables (11.3)

Ada Name C Name

Attributes . pthread–condattr–t

Broadcast . pthread–cond–broadcast()

Condition_Descriptor . pthread–cond–t

Finalize . pthread–cond–destroy()

Finalize . pthread–condattr–destroy()

Get_Process_Shared . pthread–condattr–getpshared()

Initialize . pthread–cond–init()

Initialize . pthread–condattr–init()

Set_Process_Shared . pthread–condattr–setpshared()

Signal . pthread–cond–signal()

Timed_Wait . pthread–cond–timedwait()

Wait . pthread–cond–wait()

Package POSIX_Configurable_File_Limits (5.4)

Ada Name C Name

Asynchronous_IO_Is_Supported fpathconf(),–PC–ASYNC–IO

Asynchronous_IO_Is_Supported pathconf(),–PC–ASYNC–IO

Change_Owner_Is_Restricted fpathconf(), –PC–CHOWN–RESTRICTED

Change_Owner_Is_Restricted pathconf(), –PC–CHOWN–RESTRICTED

Filename_Is_Limited . fpathconf(),–PC–NAME–MAX

Filename_Is_Limited . pathconf(),–PC–NAME–MAX

Filename_Is_Truncated . fpathconf(),–PC–NO–TRUNC

Filename_Is_Truncated . pathconf(),–PC–NO–TRUNC

Filename_Limit . fpathconf(),–PC–NAME–MAX

Filename_Limit . pathconf(),–PC–NAME–MAX

Input_Line_Is_Limited . fpathconf(),–PC–MAX–CANON

Input_Line_Is_Limited . pathconf(),–PC–MAX–CANON

Input_Line_Limit . fpathconf(),–PC–MAX–CANON

Input_Line_Limit . pathconf(),–PC–MAX–CANON

Input_Queue_Is_Limited . fpathconf(),–PC–MAX–INPUT

Input_Queue_Is_Limited . pathconf(),–PC–MAX–INPUT

Input_Queue_Limit . fpathconf(),–PC–MAX–INPUT

Input_Queue_Limit . pathconf(),–PC–MAX–INPUT

Links_Are_Limited . fpathconf(),–PC–LINK–MAX

Links_Are_Limited . pathconf(),–PC–LINK–MAX

Link_Is_Limited . fpathconf(),–PC–LINK–MAX

C Ada-to-C Cross-Reference 655

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Link_Is_Limited . pathconf(),–PC–LINK–MAX

Link_Limit . fpathconf(),–PC–LINK–MAX

Link_Limit . pathconf(),–PC–LINK–MAX

Pathname_Is_Limited . fpathconf(),–PC–PATH–MAX

Pathname_Is_Limited . pathconf(),–PC–PATH–MAX

Pathname_Limit . fpathconf(),–PC–PATH–MAX

Pathname_Limit . pathconf(),–PC–PATH–MAX

Pipe_Length_Is_Limited . fpathconf(),–PC–PIPE–BUF

Pipe_Length_Is_Limited . pathconf(),–PC–PIPE–BUF

Pipe_Length_Limit . fpathconf(),–PC–PIPE–BUF

Pipe_Length_Limit . pathconf(),–PC–PIPE–BUF

Prioritized_IO_Is_Supported . fpathconf(),–PC–PRIO–IO

Prioritized_IO_Is_Supported . pathconf(),–PC–PRIO–IO

Socket_Buffer_Maximum fpathconf(),–PC–SOCK–MAXBUF

Socket_Buffer_Maximum pathconf(),–PC–SOCK–MAXBUF

Socket_Buffer_Is_Limited fpathconf(),–PC–SOCK–MAXBUF

Socket_Buffer_Is_Limited pathconf(),–PC–SOCK–MAXBUF
c

Synchronized_IO_Is_Supported fpathconf(),–PC–SYNC–IO

Synchronized_IO_Is_Supported pathconf(),–PC–SYNC–IO

Package POSIX_Configurable_System_Limits (4.5)

Ada Name C Name

Argument_List_Maximum . sysconf(),–SC–ARG–MAX

Asynchronous_IO_Maximum . sysconf(),–SC–AIO–MAX

Asynchronous_IO_Priority_Delta_Maximum sysconf(), –SC–AIO–PRIO–DELTA–MAX

Child_Processes_Maximum . sysconf(),–SC–CHILD–MAX

File_Synchronization_Is_Supported sysconf(),–SC–FSYNC

Groups_Maximum . sysconf(),–SC–NGROUPS–MAX

Internet_Datagram_Is_Supported sysconf(), –SC–PII–INTERNET–DGRAM

Internet_Protocol_Is_Supported sysconf(), –SC–PII–INTERNET

Internet_Stream_Is_Supported sysconf(), –SC–PII–INTERNET–STREAM

ISO_OSI_Protocol_Is_Supported sysconf(),–SC–PII–OSI
c

Job_Control_Supported . sysconf(),–SC–JOB–CONTROL

Job_Control_Is_Supported sysconf(),–SC–JOB–CONTROL

List_IO_Maximum . sysconf(),–SC–AIO–LISTIO–MAX

Memory_Mapped_Files_Are_Supported sysconf(), –SC–MAPPED–FILES

Memory_Locking_Is_Supported sysconf(),–SC–MEMLOCK

Memory_Protection_Is_Supported sysconf(), –SC–MEMORY–PROTECTION

Memory_Range_Locking_Is_Supported sysconf(), –SC–MEMLOCK–RANGE

Message_Queues_Are_Supported sysconf(), –SC–MESSAGE–PASSING

Message_Priority_Maximum sysconf(),–SC–MQ–PRIO–MAX

Mutexes_Are_Supported . sysconf(),–SC–PTHREADS

Network_Management_Is_Supported sysconf(), –SC–POSIX–PII–NET–SUPPORT
c

Open_Files_Maximum . sysconf(),–SC–OPEN–MAX

Open_Message_Queues_Maximum sysconf(),–SC–MQ–OPEN–MAX

656 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

OSI_Connectionless_Is_Supported sysconf(), –SC–PII–OSI–CLTS

OSI_Connection_Is_Supported sysconf(),–SC–PII–OSI–COTS

OSI_Minimal_Is_Supported . sysconf(),–SC–PII–OSI–M
c

Page_Size . sysconf(),–SC–PAGESIZE

Poll_Is_Supported . sysconf(),–SC–POLL
c

Prioritized_IO_Is_Supported sysconf(), –SC–PRIORITIZED–IO

Mutex_Priority_Inheritance_Is_Supported sysconf(), –SC–THREAD–PRIO–INHERIT

Mutex_Priority_Ceiling_Is_Supported sysconf(), –SC–THREAD–PRIO–PROTECT

Priority_Process_Scheduling_Is_Supported . . . sysconf(), –SC–PRIORITY–SCHEDULING

Queued_Signals_Maximum sysconf(),–SC–SIGQUEUE–MAX

Realtime_Signals_Are_Supported sysconf(), –SC–REALTIME–SIGNALS

Realtime_Signals_Maximum . sysconf(),–SC–RTSIG–MAX

Saved_IDs_Supported . sysconf(),–SC–SAVED–IDS

Saved_IDs_Are_Supported . sysconf(),–SC–SAVED–IDS

Select_Is_Supported . sysconf(),–SC–SELECT
c

Semaphores_Are_Supported sysconf(),–SC–SEMAPHORES

Semaphores_Maximum . sysconf(),–SC–SEM–NSEMS–MAX

Semaphores_Value_Maximum sysconf(), –SC–SEM–VALUE–MAX

Shared_Memory_Objects_Are_Supported sysconf(), –SC–SHARED–MEMORY–OBJECTS

Socket_IO_Vector_Maximum sysconf(),–SC–UIO–MAXIOV

Sockets_DNI_Is_Supported . sysconf(),–SC–PII–SOCKET
c

Streams_Maximum . sysconf(),–SC–STREAM–MAX

Synchronized_IO_Is_Supported sysconf(), –SC–SYNCHRONIZED–IO

System_POSIX_Version . sysconf(),–SC–VERSION

Process_Shared_Is_Supported sysconf(), –SC–THREAD–PROCESS–SHARED

Time_Zone_String_Maximum sysconf(),–SC–TZNAME–MAX

Timer_Overruns_Maximum sysconf(),–SC–DELAYTIMER–MAX

Timers_Are_Supported . sysconf(),–SC–TIMERS

Timers_Maximum . sysconf(),–SC–TIMER–MAX

XTI_DNI_Is_Supported . sysconf(),–SC–PII–XTI

XTI_IO_Vector_Maximum . sysconf(),–SC–T–IOV–MAX
c

Package POSIX_Event_Management (19.1)

Ada Name C Name

Add . FD–SET

File_Descriptor_Set . fdset

File_Not_Open . POLLNVAL

In_Set . FD–ISSET

Initialize_File_Descriptor_Set . FD–ZERO

Poll . poll()

Poll_Error . POLLERR

Poll_FD . pollfd

Read_High . POLLPRI

Read_Normal . POLLRDNORM

Read_Not_High . POLLIN

C Ada-to-C Cross-Reference 657

c

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Read_Priority . POLLRDBAND

Remove . FD–CLR

Select_File . select()

Write_Normal . POLLOUT

Write_Normal . POLLWRNORM

Write_Priority . POLLWRBAND c

Package POSIX_File_Locking (6.2)

Ada Name C Name

File_Lock . flock

Get_Lock . fcntl(), F–GETLK

Read_Lock . F–RDLCK

Set_Lock . fcntl(), F–SETLK

Unlock . F–UNLCK

Wait_To_Set_Lock . fcntl(), F–SETLKW

Write_Lock . F–WRLCK

Package POSIX_File_Status (5.3)

Ada Name C Name

Device_ID_Of . st–dev

Device_ID . dev–t

File_ID_Of . st–ino

File_ID . ino–t

Get_File_Status . fstat()

Get_File_Status . stat()

Group_Of . st–gid

Is_Block_Special_File . S–ISBLK

Is_Character_Special_File . S–ISCHR

Is_Directory . S–ISDIR

Is_FIFO . S–ISFIFO

Is_Regular_File . S–ISREG

Is_Message_Queue . S–TYPEISMQ

Is_Semaphore . S–TYPEISSEM

Is_Shared_Memory . S–TYPEISSHM

Is_Socket . S–ISSOCK
c

Last_Access_Time_Of . st–atime

Last_Modification_Time_Of . st–mtime

Last_Status_Change_Time_Of . st–ctime

Link_Count_Of . st–nlink

Links . nlink–t

Owner_Of . st–uid

Permission_Set_Of . st–mode

Size_Of . st–size

Status . stat

658 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Package POSIX_Files (5.2)

Ada Name C Name

Accessibility . access()

Change_Owner_And_Group . chown()

Change_Permissions . chmod()

Create_Directory . mkdir()

Create_FIFO . mkfifo()

Directory_Entry . dirent

Execute_Ok . X–OK

Existence . access(), F–OK

Filename_Of . d–name()

For_Every_Directory_Entry . closedir()

For_Every_Directory_Entry . opendir()

For_Every_Directory_Entry . readdir()

For_Every_Directory_Entry . rewinddir()

Is_Accessible . access()

Is_Block_Special_File . stat(), S–ISBLK

Is_Character_Special_File . stat(), S–ISCHR

Is_Directory . stat(), S–ISDIR

Is_FIFO . stat(), S–ISFIFO

Is_File_Present . access()

Is_File . stat(), S–ISREG

Is_Message_Queue . stat(), S–TYPEISMQ

Is_Semaphore . stat(), S–TYPEISSEM

Is_Shared_Memory . stat(), S–TYPEISSHM

Is_Socket . stat(), S–ISSOCK
c

Link . link()

Read_Ok . R–OK

Remove_Directory . rmdir()

Rename . rename()

Set_File_Times . utime()

Unlink . unlink()

Write_Ok . W–OK

Package POSIX_Generic_Shared_Memory (12.5)

Ada Name . C Name
Open_And_Map_Shared_Memory . ftruncate(), shm–open()

Open_And_Map_Shared_Memory . mmap(), shm–open()

Open_Or_Create_And_Map_Shared_Memory ftruncate(), shm–open()

Open_Or_Create_And_Map_Shared_Memory mmap(), shm–open()

Unmap_and_Close_Shared_Memory . close(), munmap()

Lock_Shared_Memory . mlock()

Unlock_Shared_Memory . munlock()

Package POSIX_Group_Database (9.2)

C Ada-to-C Cross-Reference 659

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Ada Name C Name

Get_Group_Database_Item . getgrgid()

Get_Group_Database_Item . getgrnam()

Group_Database_Item . group

Group_ID_List_Of . gr–mem

Group_ID_Of . gr–gid

Group_Name_Of . gr–name

Package POSIX_IO (6.1)

Ada Name C Name

Append . O–APPEND

Change_Permissions . fchmod()

Close . close()

Create_Pipe . pipe()

Data_Synchronized . O–DSYNC

Duplicate_and_Close . dup2()

Duplicate . dup()

Duplicate . fcntl(), F–DUPFD

Exclusive . O–EXCL

File_Mode . O–RDONLY

File_Mode . O–RDWR

File_Mode . O–WRONLY

File_Position . lseek()

File_Size . lseek()

File_Synchronized . O–SYNC

From_Beginning . SEEK–SET

From_Current_Position . SEEK–CUR

From_End_Of_File . SEEK–END

Generic_Read . read

Generic_Write . write

Get_Close_On_Exec . fcntl(), F–GETFD, FD–CLOEXEC

Get_File_Control . fcntl(), F–GETFL

Get_Owner . fcntl(), F–SETOWN
c

Get_Terminal_Name . ttyname()

IO_Offset . off–t

IO_Offset . size–t

IO_Offset . ssize–t

Is_A_Terminal . isatty()

Non_Blocking . O–NONBLOCK

Not_Controlling_Terminal . O–NOCTTY

Open_Or_Create . open(), O–CREAT

Open_Or_Create . creat

Open . open()

Position . SEEK–CUR

Position . SEEK–END

660 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Position . SEEK–SET

Read_Only . O–RDONLY

Read_Synchronized . O–DSYNC

Read_Write . O–RDWR

Read . read()

Seek . lseek()

Set_Close_On_Exec . fcntl(), F–SETFD, FD–CLOEXEC

Set_File_Control . fcntl(), F–SETFL

Set_Socket_Group_Owner . fcntl(), F–SETOWN

Set_Socket_Process_Owner . fcntl(), F–SETOWN

Signal_When_Socket_Ready . O–ASYNC
c

Synchronize_Data . fdatasync()

Synchronize_File . fsync()

Truncate . O–TRUNC

Truncate_File . ftruncate()

Write_Only . O–WRONLY

Write . write()

Package POSIX_Limits (2.6)

Ada Name C Name

Portable_Argument_List_Maximum . –POSIX–ARG–MAX

Portable_Asynchronous_IO_Maximum –POSIX–AIO–MAX

Portable_Child_Processes_Maximum –POSIX–CHILD–MAX

Portable_Clock_Resolution_Minimum –POSIX–CLOCKRES–MIN

Portable_FD_Set_Maximum . –POSIX–FD–SETSIZE
c

Portable_Filename_Maximum . –POSIX–NAME–MAX

Portable_Groups_Maximum . –POSIX–NGROUPS–MAX

Portable_Input_Line_Maximum . –POSIX–MAX–CANON

Portable_Input_Queue_Maximum . –POSIX–MAX–INPUT

Portable_Links_Maximum . –POSIX–LINK–MAX

Portable_List_IO_Maximum . –POSIX–AIO–LISTIO–MAX

Portable_Message_Priority_Maximum –POSIX–MQ–PRIO–MAX

Portable_Open_Files_Maximum . –POSIX–OPEN–MAX

Portable_Open_Message_Queues_Maximum –POSIX–MQ–OPEN–MAX

Portable_Pathname_Maximum . –POSIX–PATH–MAX

Portable_Pipe_Length_Maximum . –POSIX–PIPE–BUF

Portable_Queued_Signals_Maximum –POSIX–SIGQUEUE–MAX

Portable_Realtime_Signals_Maximum –POSIX–RTSIG–MAX

Portable_Semaphores_Maximum –POSIX–SEM–NSEMS–MAX

Portable_Semaphores_Value_Maximum –POSIX–SEM–VALUE–MAX

Portable_Socket_Buffer_Maximum . –POSIX–HIWAT

Portable_Socket_Connection_Maximum –POSIX–QLIMIT

Portable_Socket_IO_Vector_Maximum –POSIX–UIO–MAXIOV
c

Portable_Streams_Maximum . –POSIX–STREAM–MAX

Portable_Timer_Overruns_Maximum –POSIX–DELAYTIMER–MAX

C Ada-to-C Cross-Reference 661

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Portable_Timers_Maximum . –POSIX–TIMER–MAX

Portable_Time_Zone_String_Maximum –POSIX–TZNAME–MAX

Argument_List_Maxima’Last . ARG–MAX

Asynchronous_IO_Maxima’Last . AIO–MAX

Asynchronous_IO_Prior īty_Delta_Maxima’Last AIO–PRIO–DELTA–MAX

Child_Processes_Maxima’Last . CHILD–MAX

FD_Set_Maxima’Last . FD–SETSIZE
c

Filename_Maxima’Last . NAME–MAX

Groups_Maxima’First . NGROUPS–MAX

Input_Line_Maxima’Last . MAX–CANON

Input_Queue_Maxima’Last . MAX–INPUT

Links_Maxima’Last . LINK–MAX

List_IO_Maxima’Last . AIO–LISTIO–MAX

Message_Priority_Maxima’Last . MQ–PRIO–MAX

Open_Files_Maxima’Last . OPEN–MAX

Open_Message_Queues_Maxima’Last . MQ–OPEN–MAX

Page_Size_Range’Last . PAGESIZE

Pathname_Maxima’Last . PATH–MAX

Pipe_Length_Maxima’Last . PIPE–BUF

Queued_Signals_Maxima’Last . SIGQUEUE–MAX

Realtime_Signals_Maxima’Last . RTSIG–MAX

Semaphores_Maxima’Last . SEM–NSEMS–MAX

Semaphores_Value_Maxima’Last . SEM–VALUE–MAX

Socket_Buffer_Maxima’Last . SOCK–MAXBUF

Socket_IO_Vector_Maxima’Last . UIO–MAXIOV
c

Streams_Maxima’Last . STREAM–MAX

Timer_Overruns_Maxima’Last . DELAYTIMER–MAX

Timers_Maxima’Last . TIMER–MAX

Time_Zone_String_Maxima’Last . TZNAME–MAX

XTI_IO_Vector_Maxima’Last . T–IOV–MAX
c

Package POSIX_Memory_Locking (12.1)

Ada Name C Name

Current_Pages . MCL–CURRENT

Future_Pages . MCL–FUTURE

Lock_All . mlockall()

Unlock_All . munlockall()

Package POSIX_Memory_Mapping (12.3)

Ada Name C Name

Allow_Execute . PROT–EXEC

Allow_Read . PROT–READ

Allow_Write . PROT–WRITE

Change_Protection . mprotect()

Empty_Set . PROT–NONE

662 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Exact_Address . MAP–FIXED

Map_Memory . mmap()

Map_Private . MAP–PRIVATE

Map_Shared . MAP–SHARED

Invalidate_Cached_Data . MS–INVALIDATE

Wait_For_Completion . MS–SYNC

Synchronize_Memory . msync()

Unmap_Memory . munmap()

Package POSIX_Memory_Range_Locking (12.2)

Ada Name C Name

Lock_Range . mlock()

Unlock_Range . munlock()

Package POSIX_Message_Queues (15.1)

Ada Name C Name

Close . mq–close()

Generic_Message_Queues.Receive . mq–receive()

Generic_Message_Queues.Send . mq–send()

Get_Attributes . mq–getattr()

Attributes . mq–attr

Message_Queue_Descriptor . mqd–t

Non_Blocking . O–NONBLOCK

Open_Or_Create . mq–open(), O–CREAT

Open . mq–open()

Receive . mq–receive()

Remove_Notify . mq–notify()

Request_Notify . mq–notify()

Send . mq–send()

Set_Attributes . mq–setattr()

Unlink_Message_Queue . mq–unlink()

Package POSIX_Mutexes (11.2)

Ada Name C Name

Attributes . pthread–mutexattr–t

Finalize . pthread–mutex–destroy()

Finalize . pthread–mutexattr–destroy()

Get_Ceiling_Priority . pthread–mutex–getprioceiling()

Get_Ceiling_Priority . pthread–mutexattr–getprioceiling()

Get_Process_Shared . PTHREAD–PROCESS–PRIVATE

Get_Process_Shared . PTHREAD–PROCESS–SHARED

Get_Process_Shared . pthread–mutexattr–getpshared()

Get_Protocol . pthread–mutexattr–getprotocol()

Highest_Blocked_Task . PTHREAD–PRIO–INHERIT

C Ada-to-C Cross-Reference 663

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Highest_Ceiling_Priority PTHREAD–PRIO–PROTECT

Initialize . pthread–mutex–init()

Initialize . pthread–mutexattr–init()

Lock . pthread–mutex–lock()

Mutex . pthread–mutex–t

No_Priority_Inheritance . PTHREAD–PRIO–NONE

Set_Ceiling_Priority . pthread–mutex–setprioceiling()

Set_Ceiling_Priority . pthread–mutexattr–setprioceiling()

Set_Process_Shared . pthread–mutexattr–setpshared()

Set_Protocol . pthread–mutexattr–setprotocol()

Try_Lock . pthread–mutex–trylock()

Unlock . pthread–mutex–unlock()

Package POSIX_Options (2.5)

Ada Name C Name

Asynchronous_IO_Support –POSIX–ASYNCHRONOUS–IO

Change_Owner_Restriction –POSIX–CHOWN–RESTRICTED

Filename_Truncation . –POSIX–NO–TRUNC

File_Synchronization_Support . –POSIX–FSYNC

Internet_Datagram_Support –POSIX–PII–INTERNET–DGRAM

Internet_Protocol_Support . –POSIX–PII–INTERNET

Internet_Stream_Support –POSIX–PII–INTERNET–STREAM

ISO_OSI_Protocol_Support . –POSIX–PII–OSI
c

Job_Control_Support . –POSIX–JOB–CONTROL

Memory_Mapped_Files_Support –POSIX–MAPPED–FILES

Memory_Range_Locking_Support –POSIX–MEMLOCK–RANGE

Memory_Locking_Support . –POSIX–MEMLOCK

Memory_Protection_Support –POSIX–MEMORY–PROTECTION

Message_Queues_Support . –POSIX–MESSAGE–PASSING

Mutex_Priority_Ceiling_Support –POSIX–THREAD–PRIO–PROTECT

Mutex_Priority_Inheritance_Support –POSIX–THREAD–PRIO–INHERIT

Network_Management_Support –POSIX–PII–NET–SUPPORT

OSI_Connection_Support . –POSIX–PII–OSI–COTS

OSI_Connectionless_Support . –POSIX–PII–OSI–CLTS

OSI_Minimal_Support . –POSIX–PII–OSI–M

Poll_Support . –POSIX–POLL
c

Prioritized_IO_Support . –POSIX–PRIORITIZED–IO

Priority_Process_Scheduling_Support –POSIX–PRIORITY–SCHEDULING

Realtime_Signals_Support –POSIX–REALTIME–SIGNALS

Saved_IDs_Support . –POSIX–SAVED–IDS

Select_Support . –POSIX–SELECT
c

Semaphores_Support . –POSIX–SEMAPHORES

Shared_Memory_Objects_Support –POSIX–SHARED–MEMORY–OBJECTS

Sockets_DNI_Support . –POSIX–PII–SOCKET
c

Synchronized_IO_Support –POSIX–SYNCHRONIZED–IO

664 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Process_Shared_Support –POSIX–THREAD–PROCESS–SHARED

Timers_Support . –POSIX–TIMERS

XTI_DNI_Support . –POSIX–PII–XTI
c

Package POSIX_Page_Alignment (2.10)

This package is specific to this standard.

Package POSIX_Permissions (5.1)

Ada Name C Name

Access_Permission_Set . file permission bits

Get_Allowed_Process_Permissions . umask()

Group_Execute . S–IXGRP

Group_Permission_Set . S–IRWXG

Group_Read . S–IRGRP

Group_Write . S–IWGRP

Others_Execute . S–IXOTH

Others_Permission_Set . S–IRWXO

Others_Read . S–IROTH

Others_Write . S–IWOTH

Owner_Execute . S–IXUSR

Owner_Permission_Set . S–IRWXU

Owner_Read . S–IRUSR

Owner_Write . S–IWUSR

Permission_Set . mode–t

Set_Allowed_Process_Permissions . umask()

Set_Group_ID_Set . S–ISGID

Set_Group_ID . S–ISGID

Set_User_ID_Set . S–ISUID

Set_User_ID . S–ISUID

Package POSIX_Process_Environment (4.3)

Ada Name C Name

Argument_List . argv

Change_Working_Directory . chdir()

Copy_From_Current_Environment . environ

Copy_To_Current_Environment . environ

Environment_Value_Of . getenv()

Get_Working_Directory . getcwd()

Is_Environment_Variable . getenv()

Package POSIX_Process_Identification (4.1)

Ada Name C Name

Create_Process_Group . setpgid()

Create_Session . setsid()

C Ada-to-C Cross-Reference 665

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Get_Effective_Group_ID . getegid()

Get_Effective_User_ID . geteuid()

Get_Groups . getgroups()

Get_Login_Name . getlogin()

Get_Parent_Process_ID . getppid()

Get_Process_Group_ID . getpgrp()

Get_Process_ID . getpid()

Get_Real_Group_ID . getgid()

Get_Real_User_ID . getuid()

Group_ID . gid–t

Group_List . gid–t

Null_Process_ID . (pid–t) 0

Process_Group_ID . pid–t

Process_ID . pid–t

Set_Group_ID . setgid()

Set_Process_Group_ID . setpgid()

Set_User_ID . setuid()

User_ID . uid–t

Package POSIX_Process_Primitives (3.1)

Ada Name C Name

Exit_Process . –exit()

Exit_Status_Of . WEXITSTATUS

Start_Process_Search . execlp()

Start_Process_Search . execvp()

Start_Process_Search . fork()

Start_Process . execle()

Start_Process . execve()

Start_Process . execv()

Start_Process . fork()

Termination_Cause_Of . WIFEXITED

Termination_Cause_Of . WIFSIGNALED

Termination_Cause_Of . WIFSTOPPED

Termination_Signal_Of . WSTOPSIG

Termination_Signal_Of . WTERMSIG

Termination_Status . stat–val

Wait_For_Child_Process . waitpid()

Wait_For_Child_Process . wait()

Package POSIX_Process_Scheduling (13.2)

Ada Name C Name

Sched_FIFO . SCHED–FIFO

Get_Maximum_Priority . sched–get–priority–max()

Get_Minimum_Priority . sched–get–priority–min()

Get_Round_Robin_Interval . sched–rr–get–interval()

666 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Get_Scheduling_Parameters . sched–getparam()

Get_Scheduling_Policy . sched–getscheduler()

Sched_Other . SCHED–OTHER

Sched_RR . SCHED–RR

Scheduling_Parameters . sched–param

Set_Scheduling_Parameters . sched–setparam()

Set_Scheduling_Policy . sched–setscheduler()

Yield . sched–yield()

Package POSIX_Process_Times (4.2)

Ada Name C Name

Descendants_System_CPU_Time_Of . tms–cstime

Descendants_User_CPU_Time_Of . tms–cutime

Elapsed_Real_Time . times()

Get_Process_Times . times()

Process_Times . tms

System_CPU_Time_Of . tms–stime

Tick_Count . clock–t

Ticks_Per_Second . CLK–TCK

Ticks_Per_Second . sysconf(),–SC–CLK–TCK

User_CPU_Time_Of . tms–utime

Package POSIX_Semaphores (11.1)

Ada Name C Name

Close . sem–close()

Finalize . sem–destroy()

Get_Value . sem–getvalue()

Initialize . sem–init()

Open_Or_Create . sem–open(), O–CREAT

Open . sem–open()

Post . sem–post()

Semaphore . sem–t

Try_Wait . sem–trywait()

Unlink_Semaphore . sem–unlink()

Wait . sem–wait()

Package POSIX_Shared_Memory_Objects (12.4)

Ada Name C Name

Open_Or_Create_Shared_Memory . shm–open()

Open_Shared_Memory . shm–open()

Unlink_Shared_Memory . shm–unlink()

Package POSIX_Signals (3.3)

Ada Name C Name

C Ada-to-C Cross-Reference 667

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Add_All_Signals . sigfillset()

Add_Signal . sigaddset()

Await_Signal . sigwaitinfo()

Await_Signal . sigwait()

Await_Signal . sigaction()

Await_Signal_Or_Timeout . sigtimedwait()

Await_Signal_Or_Timeout . sigaction()

Block_Signals . sigprocmask()

Blocked_Signals . sigprocmask()

Delete_All_Signals . sigemptyset()

Delete_Signal . sigdelset()

Disable_Queueing . sigaction(), SA–SIGINFO

Enable_Queueing . sigaction(), SA–SIGINFO

From_Asynchronous_IO . SI–ASYNCIO

From_Message_Queue . SI–MESGQ

From_Queue_Signal . SI–QUEUE

From_Timer . SI–TIMER

From_Send_Signal . SI–USER

Ignore_Signal . sigaction(), SIG–IGN

Is_Ignored . sigaction(), SIG–IGN

Is_Member . sigismember()

Notification . SIGEV–NONE

Notification . SIGEV–SIGNAL

Pending_Signals . sigpending()

Queue_Signal . sigqueue()

Realtime_Signal’First . SIGRTMIN

Realtime_Signal’Last . SIGRTMAX

Send_Signal . kill()

Set_Stopped_Child_Signal sigaction(), SA–NOCLDSTOP

Signal_Abort . SIGABRT

Signal_Alarm . SIGALRM

Signal_Bus_Error . SIGBUS

Signal_Child . SIGCHLD

Signal_Continue . SIGCONT

Signal_Event . sigevent()

Signal_Floating_Point_Error . SIGFPE

Signal_Hangup . SIGHUP

Signal_Illegal_Instruction . SIGILL

Signal_Info . siginfo–t

Signal_Interrupt . SIGINT

Signal_IO . SIGIO c
Signal_Kill . SIGKILL

Signal_Out_Of_Band_Data . SIGURG c
Signal_Pipe_Write . SIGPIPE

Signal_Quit . SIGQUIT

Signal_Segmentation_Violation . SIGSEGV

668 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Signal_Set . sigset–t

Signal_Source . SI–ASYNCIO

Signal_Source . SI–MESGQ

Signal_Source . SI–QUEUE

Signal_Source . SI–TIMER

Signal_Source . SI–USER

Signal_Stop . SIGSTOP

Signal_Terminal_Input . SIGTTIN

Signal_Terminal_Output . SIGTTOU

Signal_Terminal_Stop . SIGTSTP

Signal_Terminate . SIGTERM

Signal_User_1 . SIGUSR1

Signal_User_2 . SIGUSR2

Signal_Data . sigval

Stopped_Child_Signal_Enabled sigaction(), SA–NOCLDSTOP

Unblock_Signals . sigprocmask()

Unignore_Signal . sigaction(), SIG–IGN

Package POSIX_Sockets (18.4)

Ada Name C Name

Accept_Connection . accept()

Ancillary_Data_Lost . MSG–CTRUNC

Bind . bind()

Connect . connect()

Connection_Queue_Length_Maximum . SOMAXCONN

Control_Message . cmsghdr

Create . socket()

Create_Pair . socketpair()

Datagram_Socket . SOCK–DGRAM

Do_Not_Route . MSG–DONTROUTE

End_Of_Message . MSG–EOR

Further_Receives_Disallowed . SHUT–RD

Further_Sends_And_Receives_Disallowed SHUT–RDWR

Further_Sends_Disallowed . SHUT–WR

Get_Canonical_Name . AI–CANONNAME

Get_Peer_Name . getpeername()

Get_Socket_Address_Info . getaddrinfo()

Get_Socket_Broadcast . getsockopt(), SO–BROADCAST

Get_Socket_Debugging . getsockopt(), SO–DEBUG

Get_Socket_Error_Status . getsockopt(), SO–ERROR

Get_Socket_Keep_Alive . getsockopt(), SO–KEEPALIVE

Get_Socket_Linger_Time . getsockopt(), SO–LINGER

Get_Socket_Linger_Time . linger

Get_Socket_Name . getsockname()

Get_Socket_No_Routing . getsockopt(), SO–DONTROUTE

C Ada-to-C Cross-Reference 669

c

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Get_Socket_OOB_Data_Inline getsockopt(), SO–OOBINLINE

Get_Socket_Receive_Buffer_Size getsockopt(), SO–RCVBUF

Get_Socket_Receive_Low_Water_Mark getsockopt(), SO–RCVLOWAT

Get_Socket_Receive_Timeout getsockopt(), SO–RCVTIMEO

Get_Socket_Reuse_Addresses getsockopt(), SO–REUSEADDR

Get_Socket_Send_Buffer_Size getsockopt(), SO–SNDBUF

Get_Socket_Send_Low_Water_Mark getsockopt(), SO–SNDLOWAT

Get_Socket_Send_Timeout . getsockopt(), SO–SNDTIMEO

Get_Socket_Type . getsockopt(), SO–TYPE

IO_Vector . iovec

Is_A_Socket . isfdtype()

Listen . listen()

Message_Handle . msghdr

Message_Truncated . MSG–TRUNC

Peek_Only . MSG–PEEK

Process_OOB_Data . MSG–OOB

Raw_Socket . SOCK–RAW

Receive . recvfrom(), recv()

Receive_Message . recvmsg()

Received_OOB_Data . MSG–OOB

Send . sendto(), send()

Send_Message . sendmsg()

Sequenced_Packet_Socket . SOCK–SEQPACKET

Set_Socket_Broadcast . setsockopt(), SO–BROADCAST

Set_Socket_Debugging . setsockopt(), SO–DEBUG

Set_Socket_Keep_Alive . setsockopt(), SO–KEEPALIVE

Set_Socket_Linger_Time . linger

Set_Socket_Linger_Time . setsockopt(), SO–LINGER

Set_Socket_No_Routing . setsockopt(), SO–DONTROUTE

Set_Socket_OOB_Data_Inline setsockopt(), SO–OOBINLINE

Set_Socket_Receive_Buffer_Size setsockopt(), SO–RCVBUF

Set_Socket_Receive_Low_Water_Mark setsockopt(), SO–RCVLOWAT

Set_Socket_Receive_Timeout setsockopt(), SO–RCVTIMEO

Set_Socket_Reuse_Addresses setsockopt(), SO–REUSEADDR

Set_Socket_Send_Buffer_Size . setsockopt(), SO–SNDBUF

Set_Socket_Send_Low_Water_Mark setsockopt(), SO–SNDLOWAT

Set_Socket_Send_Timeout . setsockopt(), SO–SNDTIMEO

Shutdown . shutdown()

Shutdown_Mode . SHUT–RD

Shutdown_Mode . SHUT–RDWR

Shutdown_Mode . SHUT–WR

Socket_Address_Pointer . sockaddr

Socket_Address_Info . addrinfo

Socket_Is_At_OOB_Mark . sockatmark()

Socket_Level . SOL–SOCKET

Specify_Peer . connect()

670 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Stream_Socket . SOCK–STREAM

Unspecified_Protocol_Family . PF–UNSPEC

Unspecify_Peer . connect()

Use_For_Binding . AI–PASSIVE

Wait_For_All_Data . MSG–WAITALL

Package POSIX_Sockets_Internet (D.1.3)

Ada Name C Name

Broadcast_Internet_Address . INADDR–BROADCAST

Close_Network_Database_Connection . endnetent()

Close_Protocol_Database_Connection . endprotoent()

Get_Header_Included . getsockopt(), IP–HDRINCL

Get_Initial_Time_To_Live . getsockopt(), IP–TTL

Get_IP_Header_Options . getsockopt(), IP–OPTIONS

Get_Keep_Alive_Interval getsockopt(), TCP–KEEPALIVE

Get_Network_Info_By_Address . getnetbyaddr()

Get_Network_Info_By_Name . getnetbyname()

Get_No_Delay . getsockopt(), TCP–NODELAY

Get_Protocol_Info_By_Name . getprotobyname()

Get_Protocol_Info_By_Number . getprotobynumber()

Get_Receive_Destination_Address getsockopt(), IP–RECVDSTADDR

Get_Retransmit_Time_Maximum getsockopt(), TCP–MAXRXT

Get_Segment_Size_Maximum . getsockopt(), TCP–MAXSEG

Get_Standardized_Urgent_Data getsockopt(), TCP–STDURG

Get_Type_Of_Service . getsockopt(), IP–TOS

High_Reliability . IPTOS–RELIABILITY

High_Throughput . IPTOS–THROUGHPUT

ICMP . IPPROTO–ICMP

Internet_Address . in–addr

Internet_Address_To_String . inet–ntoa()

Internet_Port . in–port–t

Internet_Protocol . PF–INET

Internet_Socket_Address . sockaddr–in

IP_Options_Buffer . ip–opts

Is_Internet_Address . INADDR–NONE

Loopback_Internet_Address . INADDR–LOOPBACK

Low_Delay . IPTOS–LOWDELAY

Network_Info . netent

Open_Network_Database_Connection . setnetent()

Open_Protocol_Database_Connection . setprotoent()

Protocol_Info . protoent

Raw . IPPROTO–RAW

Set_Header_Included . setsockopt(), IP–HDRINCL

Set_Initial_Time_To_Live . setsockopt(), IP–TTL

Set_IP_Header_Options . setsockopt(), IP–OPTIONS

C Ada-to-C Cross-Reference 671

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Set_Keep_Alive_Interval setsockopt(), TCP–KEEPALIVE

Set_No_Delay . setsockopt(), TCP–NODELAY

Set_Receive_Destination_Address setsockopt(), IP–RECVDSTADDR

Set_Retransmit_Time_Maximum setsockopt(), TCP–MAXRXT

Set_Standardized_Urgent_Data setsockopt(), TCP–STDURG

Set_Type_Of_Service . setsockopt(), IP–TOS

String_To_Internet_Address . inet–addr()

TCP . IPPROTO–TCP

Unspecified_Internet_Address . INADDR–ANY

UDP. IPPROTO–UDP

Package POSIX_Sockets_ISO (D.1.2)

Ada Name C Name

Acknowledge_Each . TPACK–EACH

Acknowledge_Window . TPACK–WINDOW

CL_Flags . CLNPOPT–FLAGS

CL_Options . CLNPOPT–OPTS

Get_Confirmation_Data getsockopt(), TPOPT–CFRM–DATA

Get_Connection_Data . getsockopt(), TPOPT–CONN–DATA

Get_Connection_Parameters getsockopt(), TPOPT–PARAMS

Get_Disconnect_Data . getsockopt(), TPOPT–DISC–DATA

Get_TP_Flags . getsockopt(), TPOPT–FLAGS

Connection_Parameters . tp–conn–param

Connectionless_Mode_Network_Protocol ISOPROTO–CLNP

Connectionless_Mode_Transport_Protocol ISOPROTO–CLTP

Expedited_Data_Present . TPFLAG–XPD–PRES

Fast_Start . TPRX–FASTSTART

IP_Connectionless . IN–CLNS

ISO_Address . iso–addr

ISO_Connection . ISO–CONS

ISO_Connectionless . ISO–CLNS

ISO_Connectionless_Over_X25 . ISO–COSNS

ISO_Protocol . PF–ISO

ISO_Socket_Address . sockaddr–iso

ISO_Transport_Protocol . ISOPROTO–TP

No_Checksum . CLNP–NO–CKSUM

No_Segmentation . CLNP–NO–SEG

Peer_On_Same_Network . TPFLAG–PEER–ON–SAMENET

Public_Data_Network_QOS . TPFLAG–NLQOS–PDN

Retransmit_Each_Packet . TPRX–EACH

Set_Confirmation_Data setsockopt(), TPOPT–CFRM–DATA

Set_Connection_Data . setsockopt(), TPOPT–CONN–DATA

Set_Connection_Parameters setsockopt(), TPOPT–PARAMS

Set_Disconnect_Data . setsockopt(), TPOPT–DISC–DATA

Set_TP_Flags . setsockopt(), TPOPT–FLAGS

672 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Suppress_Error_PDUs . CLNP–NO–ERR

TP_Acknowledgment_Strategy . TPACK–EACH

TP_Acknowledgment_Strategy . TPACK–WINDOW

TP_Class_0 . TP–CLASS–0

TP_Class_1 . TP–CLASS–1

TP_Class_2 . TP–CLASS–2

TP_Class_3 . TP–CLASS–3

TP_Class_4 . TP–CLASS–4

TP_Retransmit_Strategy . TPRX–EACH

TP_Retransmit_Strategy . TPRX–FASTSTART

TP_Retransmit_Strategy . TPRX–USE–CW

Transport_Level . SOL–TRANSPORT

Use_Congestion_Window . TPRX–USE–CW

Package POSIX_Sockets_Local (D.1.1)

Ada Name C Name

Local_Protocol . PF–LOCAL

Local_Socket_Address . sockaddr–un
c

Package POSIX_Supplement_to_Ada_IO (8.2)

This package is specific to this standard.

Package POSIX_Terminal_Functions (7.2)

Ada Name C Name

After_Output_and_Input . TCSAFLUSH

After_Output . TCSADRAIN

B0 . B0

B110 . B110

B1200 . B1200

B134 . B134

B150 . B150

B1800 . B1800

B19200 . B19200

B200 . B200

B2400 . B2400

B300 . B300

B38400 . B38400

B4800 . B4800

B50 . B50

B600 . B600

B75 . B75

B9600 . B9600

Baud_Rate . speed–t

Bits_Per_Character . CSIZE

Both . TCIOFLUSH

C Ada-to-C Cross-Reference 673

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Canonical_Input . ICANON

Control_Character_Selector . cc–t

Control_Modes . c–cflag

Define_Input_Baud_Rate . cfsetispeed()

Define_Output_Baud_Rate . cfsetospeed()

Discard_Data . tcflush()

Drain . tcdrain()

EOF_Char . VEOF

EOL_Char . VEOL

Echo_Erase . ECHOE

Echo_Kill . ECHOK

Echo_LF . ECHONL

Echo . ECHO

Enable_Parity_Check . INPCK

Enable_Receiver . CREAD

Enable_Signals . ISIG

Enable_Start_Stop_Input . IXOFF

Enable_Start_Stop_Output . IXON

Erase_Char . VERASE

Extended_Functions . IEXTEN

Flow . tcflow()

Get_Controlling_Terminal_Name . ctermid()

Get_Process_Group_ID . tcgetpgrp()

Get_Terminal_Characteristics . tcgetattr()

Hang_Up_On_Last_Close . HUPCL

Ignore_Break . IGNBRK

Ignore_CR . IGNCR

Ignore_Modem_Status . CLOCAL

Ignore_Parity_Errors . IGNPAR

Immediately . TCSANOW

Input_Baud_Rate_Of . cfgetispeed()

Input_Modes . c–iflag

Input_Time_Of . VTIME

Interrupt_Char . VINTR

Interrupt_On_Break . BRKINT

Kill_Char . VKILL

Local_Modes . c–lflag

Map_CR_To_LF . ICRNL

Map_LF_To_CR . INLCR

Mark_Parity_Errors . PARMRK

Minimum_Input_Count_Of . VMIN

No_Flush . NOFLSH

Odd_Parity . PARODD

Output_Baud_Rate_Of . cfgetospeed()

Output_Modes . c–oflag

Parity_Enable . PARENB

674 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Perform_Output_Processing . OPOST

Quit_Char . VQUIT

Received_But_Not_Read . TCIFLUSH

Restart_Output . TCOON

Send_Break . tcsendbreak()

Send_Signal_For_BG_Output . TOSTOP

Send_Two_Stop_Bits . CSTOPB

Set_Process_Group_ID . tcsetpgrp()

Set_Terminal_Characteristics . tcsetattr()

Start_Char . VSTART

Stop_Char . VSTOP

Strip_Character . ISTRIP

Suspend_Char . VSUSP

Suspend_Output . TCOOFF

Terminal_Characteristics . termios

Terminal_Modes . tcflag–t

Transmit_Start . TCION

Transmit_Stop . TCIOFF

Written_But_Not_Transmitted . TCOFLUSH

Package POSIX_Timers (14.1)

Ada Name C Name

Absolute_Timer . TIMER–ABSTIME

Arm_Timer . timer–settime()

Clock_ID . clockid–t

Clock_Realtime . CLOCK–REALTIME

Create_Timer . timer–create()

Delete_Timer . timer–delete()

Disarm_Timer . timer–settime()

Get_Resolution . clock–getres()

Get_Timer_Overruns . timer–getoverrun()

Get_Timer_State . timer–gettime()

Get_Time . clock–gettime()

Set_Time . clock–settime()

Timer_ID . timer–t

Package POSIX_Unsafe_Process_Primitives (3.2)

Ada Name C Name

Exec_Search . execlp()

Exec_Search . execvp()

Exec . execl()

Exec . execle()

Exec . execv()

Exec . execve()

Fork . fork()

C Ada-to-C Cross-Reference 675

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Package POSIX_User_Database (9.1)

Ada Name C Name

Get_User_Database_Item . getpwnam()

Get_User_Database_Item . getpwuid()

Group_ID_Of . pw–gid

Initial_Directory_Of . pw–dir

Initial_Program_Of . pw–shell

User_Database_Item . passwd

User_ID_Of . pw–uid

User_Name_Of . pw–name

Package POSIX_XTI (17.4)

Ada Name C Name

Accept_Connection . t–accept()

Acknowledge_Orderly_Release . t–rcvrel()

Acknowledge_Orderly_Release_With_Data t–rcvreldata()

All_Options . T–ALLOPT

Bind . t–bind()

Check_Options . T–CHECK

Close . t–close()

Communications_Provider_Info . t–info

Confirm_Connection . t–rcvconnect()

Connect . t–connect()

Connect_Request_Received . T–LISTEN

Connect_Responsed_Received . T–CONNECT

Connection_Info . t–call

Connection_Mode . T–COTS

Connection_Mode_With_Orderly_Release T–COTS–ORD

Connectionless_Mode . T–CLTS

Data_Transfer . T–DATAXFER

Disconnect_Request_Received . T–DISCONNECT

Enable_Debugging . XTI–DEBUG

Expedited_Data . T–EXPEDITED

Error_In_Previously_Sent_Datagram . T–UDERR

Expedited_Data_Received . T–EXDATA

Failure . T–FAILURE

Gather_And_Send_Data . t–sndv()

Gather_And_Send_Data_Unit . t–sndvudata()

Get_Current_Options . T–CURRENT

Get_Current_State . t–getstate()

Get_Default_Options . T–DEFAULT

Get_Info . t–getinfo()

Get_Next_Option . OPT–NEXTHDR

Get_Protocol_Address . t–getprotaddr()

Idle . T–IDLE

676 C Ada/C Cross-References

c

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Incoming_Connect . T–INCON

Incoming_Release . T–INREL

Initiate_Orderly_Release . t–sndrel()

Initiate_Orderly_Release_With_Data . t–sndreldata()

Interface_State . T–DATAXFER

Interface_State . T–IDLE

Interface_State . T–INCON

Interface_State . T–INREL

Interface_State . T–OUTCON

Interface_State . T–OUTREL

Interface_State . T–UNBIND

IO_Vector . t–iovec

Linger_Info . t–linger

Linger_On_Close_If_Data_Present . XTI–LINGER

Listen . t–listen()

Look . t–look()

Manage_Options . t–optmgmt()

More_Data . T–MORE

Normal_Data_Received . T–DATA

Not_Supported . T–NOTSUPPORT

Okay_To_Send_Expedited_Data . T–GOEXDATA

Okay_To_Send_Normal_Data . T–GODATA

Open . t–open()

Option_Status . T–FAILURE

Option_Status . T–PARTSUCCESS

Option_Status . T–NOTSUPPORT

Option_Status . T–READONLY

Option_Status . T–SUCCESS

Options_Header . t–opthdr

Options_Management_Info . t–optmgmt

Orderly_Release_Data_Supported . T–ORDRELDATA

Orderly_Release_Request_Received . T–ORDREL

Outgoing_Connect . T–OUTCON

Outgoing_Release . T–OUTREL

Partial_Success . T–PARTSUCCESS

Push_Data . T–PUSH

Read_Only . T–READONLY

Receive . t–rcv()

Receive_And_Scatter_Data . t–rcvv()

Receive_And_Scatter_Data_Unit . t–rcvvudata()

Receive_Buffer_Size . XTI–RCVBUF

Receive_Data_Unit . t–rcvudata()

Retrieve_Data_Unit_Error . t–rcvuderr()

Receive_Low_Water_Mark . XTI–RCVLOWAT

Retrieve_Disconnect_Info . t–rcvdis()

Send . t–snd()

C Ada-to-C Cross-Reference 677

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Send_Buffer_Size . XTI–SNDBUF

Send_Data_Unit . t–sndudata()

Send_Disconnect_Request . t–snddis()

Send_Low_Water_Mark . XTI–SNDLOWAT

Service_Type . T–CLTS

Service_Type . T–COTS

Service_Type . T–COTS–ORD

Set_Options . T–NEGOTIATE

Success . T–SUCCESS

Synchronize_Endpoint . t–sync()

Unbind . t–unbind()

Unbound . T–UNBIND

Unit_Data_Error_Code . t–uderr

Unspecified . T–UNSPEC

XTI_Protocol_Level . XTI–GENERIC

Zero_Length_Service_Data_Unit_Supported T–SENDZERO

Package POSIX_XTI_Internet (D.2.3)

Ada Name C Name

Close_Network_Database_Connection . endnetent()

Close_Protocol_Database_Connection . endprotoent()

Critic_ECP . T–CRITIC–ECP

Do_Not_Route . IP–DONTROUTE

Flash . T–FLASH

Flash_Override . T–OVERRIDEFLASH

Get_Network_Info_By_Address . getnetbyaddr()

Get_Network_Info_By_Name . getnetbyname()

Get_Protocol_Info_By_Name . getprotobyname()

Get_Protocol_Info_By_Number . getprotobynumber()

High_Reliability . T–HIREL

High_Throughput . T–HITHRPT

Immediate . T–IMMEDIATE

Internet_Address . in–addr

Internet_Address_To_String . inet–ntoa()

Internet_Port . in–port–t

Internetwork_Control . T–INETCONTROL

IP_Level . INET–IP

IP_Options . IP–OPTIONS

Is_Internet_Address . INADDR–NONE

Keep_Alive_Interval . TCP–KEEPALIVE

Keep_Alive_Off . T–NO

Keep_Alive_On . T–YES

Keep_Alive_Status . t–kpalive

Low_Cost . T–LOCOST

Low_Delay . T–LDELAY

678 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Maximum_Segment_Size . TCP–MAXSEG

Network_Control . T–NETCONTROL

Network_Info . netent

No_Delay . TCP–NODELAY

Normal . T–NOTOS

Open_Network_Database_Connection . setnetent()

Open_Protocol_Database_Connection . setprotoent()

Permit_Broadcast . IP–BROADCAST

Priority . T–PRIORITY

Protocol_Info . protoent

Reuse_Address . IP–REUSEADDR

Routine . T–ROUTINE

Send_Garbage . T–GARBAGE

String_To_Internet_Address . inet–addr()

TCP_Level . INET–TCP

Time_To_Live . IP–TTL

Type_Of_Service . IP–TOS

UDP_Checksum . UDP–CHECKSUM

UDP_Level . INET–UDP

Package POSIX_XTI_ISO (D.2.2)

Ada Name C Name

Absolute_Requirement . T–ABSREQ

Acknowledge_Time . TCO–ACKTIME

Active_Protection . T–ACTIVEPROTECT

Alternative_Class_1 . TCO–ALTCLASS1

Alternative_Class_2 . TCO–ALTCLASS2

Alternative_Class_3 . TCO–ALTCLASS3

Alternative_Class_4 . TCO–ALTCLASS4

Class_0 . T–CLASS0

Class_1 . T–CLASS1

Class_2 . T–CLASS2

Class_3 . T–CLASS3

Class_4 . T–CLASS4

Connection_Checksum . TCO–CHECKSUM

Connection_Resilience . TCO–CONNRESIL

Connection_Transit_Delay . TCO–TRANSDEL

Connectionless_Checksum . TCL–CHECKSUM

Connectionless_Transit_Delay . TCL–TRANSDEL

Default . T–PRIDFLT

Establishment_Delay . TCO–ESTDELAY

Establishment_Fail_Probability . TCO–ESTFAILPROB

Expedited_Data . TCO–EXPD

Extended_Format . TCO–EXTFORM

Flow_Control . TCO–FLOWCTRL

C Ada-to-C Cross-Reference 679

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

High . T–PRIHIGH

ISO_TP_Level . ISO–TP

Low . T–PRILOW

Medium . T–PRIMID

Network_Expedited_Data . TCO–NETEXP

Network_Receipt_Confirmation . TCO–NETRECPTCF

No_Protection . T–NOPROTECT

Passive_Protection . T–PASSIVEPROTECT

Preferred_Class . TCO–PREFCLASS

Priority . TCL–PRIORITY

Priority . TCO–PRIORITY

Protection . TCL–PROTECTION

Protection . TCO–PROTECTION

Rate . rate

Reassignment_Time . TCO–REASTIME

Release_Delay . TCO–RELDELAY

Release_Fail_Probability . TCO–RELFAILPROB

Requested_Rate . reqvalue

Residual_Error_Rate . TCL–RESERRORRATE

Residual_Error_Rate . TCO–RESERRORRATE

Throughput . TCO–THROUGHPUT

Throughput_Rate . thrpt

Top . T–PRITOP

TPDU_Length_Maximum . TCO–LTPDU

Transfer_Fail_Probability . TCO–TRANSFFAILPROB

Transit_Delay_Rate . transdel

Package POSIX_XTI_mOSI (D.2.1)

Ada Name C Name

Aborted_By_Peer . T–AC–P–ABRT–NSPEC

Abstract_Syntax_Not_Supported T–PCL–PREJ–A–SYTX–NSUP

AC_Name_Not_Supported . T–AC–U–AARE–ACN

AP_Invocation_Id . T–OSI–AP–IID–BIT

Application_Context . T–AP–CNTX–NAME

AE_Invocation_Id . T–OSI–AE–IID–BIT

Authentication_Required T–AC–U–AARE–PEER–AUTH

Local_DCS_Limit_Exceeded T–PCL–PREJ–LMT–DCS–EXCEED

mOSI_Address . t–mosiaddr

mOSI_Address_Length_Maximum . T–AP–MAX–ADDR

mOSI_Connection_Mode . T–ISO–APCO

mOSI_Connectionless_Mode . T–ISO–APCL

No_Common_Version . T–AC–P–AARE–VERSION

OSI_Address . osi–addr

Presentation_Context . T–AP–PCL

Presentation_Context_Accepted . T–PCL–ACCEPT

680 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Presentation_Context_Item_Element . t–ap–syn–off

Presentation_Context_Item_Header . t–ap–pc–item

Presentation_Context_List . t–ap–pco–el

Presentation_Context_Rejected . T–PCL–USER–REJ

Rejected_By_Peer . T–AC–U–AARE––NONE

Rejected_No_Reason_Specified T–PCL–PREJ–RSN–NSPEC

Transfer_Syntax_Not_Supported T–PCL–PREJ–T–SYTX–NSUP

Unrecognized_AE_Qualifier . T–AC–U–AARE–AEQ

Unrecognized_AP_Title . T–AC–U–AARE–APT
c

Package System (2.8)

This package is specific to the Ada language.

Package System_Storage_Elements (2.9)

This package is specific to the Ada language.

C.2 C-to-Ada Cross-Reference

This clause lists the Ada-language name or names that correspond most closely to
each C-language name defined by the base standards.

C Name Ada Name

accept() . POSIX_Sockets.Accept_Connection c
access . POSIX_Files.Is_Accessible

access(), F–OK . POSIX_Files.Existence

access(), F–OK . POSIX_Files.Is_File_Present

addrinfo . POSIX_Sockets.Socket_Address_Info

AF–INET . C-language specific

AF–ISO . C-language specific

AF–LOCAL . C-language specific

AF–OSI . C-language specific

AF–UNSPEC . C-language specific

AI–CANONNAME POSIX_Sockets.Get_Canonical_Name

AI–PASSIVE . POSIX_Sockets.Use_For_Binding
c

<aio.h> . POSIX_Asynchronous_IO

AIO–ALLDONE . POSIX_Asynchronous_IO.All_Done

aio–cancel() . POSIX_Asynchronous_IO.Cancel

AIO–CANCELED . POSIX_Asynchronous_IO.Canceled

aiocb . C-language specific

aio–error() POSIX_Asynchronous_IO.Get_AIO_Error_Code

aio–error() . POSIX_Asynchronous_IO.Get_AIO_Status

aio–fsync() POSIX_Asynchronous_IO.Synchronize_File

AIO–LISTIO–MAX POSIX_Limits.List_IO_Maxima’Last

AIO–MAX POSIX_Limits.Asynchronous_IO_Maxima’Last

C C-to-Ada Cross-Reference 681

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

AIO–NOTCANCELED POSIX_Asynchronous_IO.Not_Canceled

AIO–PRIO–DELTA–MAX POSIX_Limits.Asynchronous_IO_Priority_Delta_Maxima

aio–read() . POSIX_Asynchronous_IO.Read

aio–return() POSIX_Asynchronous_IO.Get_Bytes_Transferred

aio–suspend() POSIX_Asynchronous_IO.Await_IO_Or_Timeout

aio–write() . POSIX_Asynchronous_IO.Write

alarm() . C-language specific

amode . POSIX_Files.Access_Mode_Set

ARG–MAX POSIX_Limits.Argument_List_Maxima’Last

argv . POSIX_Process_Environment.Argument_List

<arpa/inet.h> . POSIX_Sockets_Internet

<arpa/inet.h> . POSIX_XTI_Internet c
asctime() . C-language specific

B0 . POSIX_Terminal_Functions.B0

B110 . POSIX_Terminal_Functions.B110

B1200 . POSIX_Terminal_Functions.B1200

B134 . POSIX_Terminal_Functions.B134

B150 . POSIX_Terminal_Functions.B150

B1800 . POSIX_Terminal_Functions.B1800

B19200 . POSIX_Terminal_Functions.B19200

B200 . POSIX_Terminal_Functions.B200

B2400 . POSIX_Terminal_Functions.B2400

B300 . POSIX_Terminal_Functions.B300

B38400 . POSIX_Terminal_Functions.B38400

B4800 . POSIX_Terminal_Functions.B4800

B50 . POSIX_Terminal_Functions.B50

B600 . POSIX_Terminal_Functions.B600

B75 . POSIX_Terminal_Functions.B75

B9600 . POSIX_Terminal_Functions.B9600

bind() . POSIX_Sockets.Bind c
BRKINT POSIX_Terminal_Functions.Interrupt_On_Break

byte . Ada_Streams.Stream_Element

byte . POSIX.POSIX_Character

byte . System_Storage_Elements.Storage_Element

c–cc . C-language specific

c–cflag . POSIX_Terminal_Functions.Control_Modes

cc–t POSIX_Terminal_Functions.Control_Character_Selector

cfgetispeed() POSIX_Terminal_Functions.Input_Baud_Rate_Of

cfgetospeed() POSIX_Terminal_Functions.Output_Baud_Rate_Of

cfsetispeed() POSIX_Terminal_Functions.Define_Input_Baud_Rate

cfsetospeed() POSIX_Terminal_Functions.Define_Output_Baud_Rate

chdir() POSIX_Process_Environment.Change_Working_Directory

CHILD–MAX POSIX_Limits.Child_Processes_Maxima’Last

chmod() . POSIX_Files.Change_Permissions

chown() . POSIX_Files.Change_Owner_And_Group

c–iflag . POSIX_Terminal_Functions.Input_Modes

682 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

c–lflag . POSIX_Terminal_Functions.Local_Modes

CLK–TCK . POSIX_Process_Times.Ticks_Per_Second

CLNP–NO–CKSUM . POSIX_Sockets_ISO.No_Checksum

CLNP–NO–ERR POSIX_Sockets_ISO.Suppress_Error_PDUs

CLNP–NO–SEG . POSIX_Sockets_ISO.No_Segmentation

CLNPOPT–FLAGS . POSIX_Sockets_ISO.CL_Flags

CLNPOPT–OPTS . POSIX_Sockets_ISO.CL_Options
c

CLOCAL POSIX_Terminal_Functions.Ignore_Modem_Status

CLOCK–REALTIME . Clock_Realtime

clock–getres() . POSIX_Timers.Get_Resolution

clock–gettime() . POSIX_Timers.Get_Time

clock–settime() . POSIX_Timers.Set_Time

clock–t . C-language specific

clockid–t . POSIX_Timers.Clock_ID

closedir() . POSIX_Files.For_Every_Directory_Entry

close() . POSIX_IO.Close

close() POSIX_Generic_Shared_Memory_Mapping.Unmap_And_Close_Shared_Memory

c–oflag . POSIX_Terminal_Functions.Output_Modes

CMSG–DATA . C-language specific

CMSG–FIRSTHDR . C-language specific

CMSG–NXTHDR . C-language specific

cmsghdr . POSIX_Sockets.Control_Message

connect() . POSIX_Sockets.Connect

connect() . POSIX_Sockets.Specify_Peer

connect() . POSIX_Sockets.Unspecify_Peer c
cpio . C-language specific

CREAD . POSIX_Terminal_Functions.Enable_Receiver

creat() . POSIX_IO.Open_Or_Create

CSIZE POSIX_Terminal_Functions.Bits_Per_Character

CSTOPB POSIX_Terminal_Functions.Send_Two_Stop_Bits

ctermid() POSIX_Terminal_Functions.Get_Controlling_Terminal_Name

ctime() . C-language specific

DELAYTIMER–MAX POSIX_Limits.Timer_Overruns_Maxima’Last

dev–t . POSIX_File_Status.Device_ID

<dirent.h> . POSIX_Files

dirent . POSIX_Files.Directory_Entry

d–name() . POSIX_Files.Filename_Of

dup2() . POSIX_IO.Duplicate_and_Close

dup() . POSIX_IO.Duplicate

E2BIG . POSIX.Argument_List_Too_Long

EACCES . POSIX.Permission_Denied

EADDRINUSE . POSIX.Address_In_Use

EADDRNOTAVAIL . POSIX.Address_Not_Available

EAFNOSUPPORT . POSIX.Incorrect_Address_Type c
EAGAIN . POSIX.Resource_Temporarily_Unavailable

EAI–ADDRFAMILY . POSIX.Unknown_Address_Type

C C-to-Ada Cross-Reference 683

c

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

EAI–AGAIN . POSIX.Try_Again

EAI–BADFLAGS . POSIX.Invalid_Flags

EAI–FAIL . POSIX.Name_Failed

EAI–FAMILY . POSIX.Unknown_Protocol_Family

EAI–MEMORY . POSIX.Memory_Allocation_Failed

EAI–NODATA . POSIX.No_Address_For_Name

EAI–NONAME . POSIX.Name_Not_Known

EAI–SERVICE . POSIX.Service_Not_Supported

EAI–SOCKTYPE . POSIX.Unknown_Socket_Type

EAI–SYSTEM . C-language specific

EALREADY . POSIX.Already_Awaiting_Connection c
EBADF . POSIX.Bad_File_Descriptor

EBADMSG . POSIX.Bad_Message

EBUSY . POSIX.Resource_Busy

ECANCELED . POSIX.Operation_Canceled

ECHILD . POSIX.No_Child_Process

ECHOE . POSIX_Terminal_Functions.Echo_Erase

ECHOK . POSIX_Terminal_Functions.Echo_Kill

ECHONL . POSIX_Terminal_Functions.Echo_LF

ECHO . POSIX_Terminal_Functions.Echo

ECONNABORTED . POSIX.Connection_Aborted

ECONNREFUSED . POSIX.Connection_Refused

ECONNRESET . POSIX.Connection_Reset c

EDEADLK . POSIX.Resource_Deadlock_Avoided

EDOM . POSIX.Domain_Error c
EEXIST . POSIX.File_Exists

EFAULT . POSIX.Bad_Address

EFBIG . POSIX.File_Too_Large

EHOSTDOWN . POSIX.Host_Down

EHOSTUNREACH . POSIX.Host_Unreachable c
EINPROGRESS . POSIX.Operation_In_Progress

EINTR . POSIX.Interrupted_Operation

EINVAL . POSIX.Invalid_Argument

EIO . POSIX.Input_Output_Error

EISCONN . POSIX.Is_Already_Connected c
EISDIR . POSIX.Is_A_Directory

EMFILE . POSIX.Too_Many_Open_Files

EMLINK . POSIX.Too_Many_Links

EMSGSIZE . POSIX.Message_Too_Long

ENAMETOOLONG . POSIX.Filename_Too_Long

endhostent() . C-language specific

endnetent() POSIX_Sockets_Internet.Close_Network_Database_Connection

endnetent() POSIX_XTI_Internet.Close_Network_Database_Connection

endprotoent() POSIX_Sockets.Close_Protocol_Database_Connection

endprotoent() POSIX_XTI.Close_Protocol_Database_Connection

endservent() . C-language specific c

684 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

ENFILE . POSIX.Too_Many_Open_Files_In_System

ENETDOWN . POSIX.Network_Down

ENETRESET . POSIX.Network_Reset

ENETUNREACH . POSIX.Network_Unreachable

ENOBUFS . POSIX.No_Buffer_Space c
ENODEV . POSIX.No_Such_Operation_On_Device

ENOENT . POSIX.No_Such_File_Or_Directory

ENOEXEC . POSIX.Exec_Format_Error

ENOLCK . POSIX.No_Locks_Available

ENOMEM . POSIX.Not_Enough_Space

ENOPROTOOPT . C-language specific c
ENOSPC . POSIX.No_Space_Left_On_Device

ENOSYS . POSIX.Operation_Not_Implemented

ENOTCONN . POSIX.Not_Connected c

ENOTDIR . POSIX.Not_A_Directory

ENOTEMPTY . POSIX.Directory_Not_Empty

ENOTSOCK . POSIX.Not_A_Socket c
ENOTSUP . POSIX.Operation_Not_Supported

ENOTTY POSIX.Inappropriate_IO_Control_Operation

environ POSIX_Process_Environment.Copy_From_Current_Environment

environ POSIX_Process_Environment.Copy_To_Current_Environment

ENXIO . POSIX.No_Such_Device_Or_Address

EOPNOTSUPP . POSIX.Option_Not_Supported c
EPERM . POSIX.Operation_Not_Permitted

EPIPE . POSIX.Broken_Pipe

EPROTONOSUPPORT . POSIX.Protocol_Not_Supported

EPROTOTYPE . POSIX.Wrong_Protocol_Type c
ERANGE . Constraint_Error

EROFS . POSIX.Read_Only_File_System

<errno.h> . POSIX

errno . POSIX.Get_Error_Code

errno . POSIX.Set_Error_Code

ESOCKTNOSUPPORT POSIX.Socket_Type_Not_Supported c
ESPIPE . POSIX.Invalid_Seek

ESRCH . POSIX.No_Such_Process

ETIMEDOUT . POSIX.Timed_Out

EWOULDBLOCK . POSIX.Would_Block c
EXDEV . POSIX.Improper_Link

execle() . POSIX_Process_Primitives.Start_Process

execle() . POSIX_Unsafe_Process_Primitives.Exec

execlp() POSIX_Process_Primitives.Start_Process_Search

execlp() POSIX_Unsafe_Process_Primitives.Exec_Search

execl() . POSIX_Process_Primitives.Start_Process

execl() . POSIX_Unsafe_Process_Primitives.Exec

execve() . POSIX_Process_Primitives.Start_Process

execve() . POSIX_Unsafe_Process_Primitives.Exec

C C-to-Ada Cross-Reference 685

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

execvp() POSIX_Process_Primitives.Start_Process_Search

execvp() POSIX_Unsafe_Process_Primitives.Exec_Search

execv() . POSIX_Process_Primitives.Start_Process

execv() . POSIX_Unsafe_Process_Primitives.Exec

exec() . POSIX_Unsafe_Process_Primitives.Exec

exit() . C-language specific

–exit() . POSIX_Process_Primitives.Exit_Process

fchmod() . POSIX_IO.Change_Permissions

fcntl(), F–DUPFD . POSIX_IO.Duplicate

fcntl(), F–GETFD . POSIX_IO.Get_Close_on_Exec

fcntl(), F–GETFL . POSIX_IO.Get_File_Control

fcntl(), F–GETLK . POSIX_File_Locking.Get_Lock

fcntl(), F–GETOWN . POSIX_IO.Get_Owner
c

fcntl(), F–SETFD . POSIX_IO.Set_Close_on_Exec

fcntl(), F–SETFL . POSIX_IO.Set_File_Control

fcntl(), F–SETLK . POSIX_File_Locking.Set_Lock

fcntl(), F–SETLKW POSIX_File_Locking.Wait_To_Set_Lock

fcntl(), F–SETOWN POSIX_IO.Set_Socket_Process_Owner

fcntl(), F–SETOWN . POSIX_IO.Set_Socket_Group_Owner
c

<fcntl.h> . POSIX_IO

<fcntl.h> . POSIX_File_Locking

fdatasync() . POSIX_IO.Synchronize_Data

FD–CLOEXEC . POSIX_IO.Get_Close_On_Exec

FD–CLOEXEC . POSIX_IO.Set_Close_On_Exec

FD–CLR . POSIX_Event_Management.Remove

FD–ISSET . POSIX_Event_Management.In_Set

FD–SET . POSIX_Event_Management.Add

FD–SETSIZE . POSIX_Limits.FD_Set_Maxima’Last

FD–ZERO POSIX_Event_Management.Initialize_File_Descriptor_Set
c

fdopen() . C-language specific

fdset . POSIX_Event_Management.File_Descriptor_Set
c

file permission bits POSIX_Permissions.Access_Permission_Set

flock . POSIX_File_Locking.File_Lock

fork() . POSIX_Unsafe_Process_Primitives.Fork

fork(), exec() POSIX_Process_Primitives.Start_Process_Search

fork(), exec() POSIX_Process_Primitives.Start_Process

fpathconf(), –PC–ASYNC–IO .
POSIX_Configurable_File_Limits.Asynchronous_IO_Is_Supported

fpathconf(), –PC–POSIX–CHOWN–RESTRICTED .
POSIX_Configurable_File_Limits.Change_Owner_Is_Restricted

fpathconf(), –PC–POSIX–CHOWN–RESTRICTED .
POSIX_Configurable_File_Limits.Change_Owner_Restriction

fpathconf(), –PC–NAME–MAX . . . POSIX_Configurable_File_Limits.Filename_Is_Limited

fpathconf(), –PC–NAME–MAX POSIX_Configurable_File_Limits.Filename_Limit

fpathconf(), –PC–NO–TRUNC . . POSIX_Configurable_File_Limits.Filename_Is_Truncated

fpathconf(), –PC–MAX–CANON . POSIX_Configurable_File_Limits.Input_Line_Is_Limited

686 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

fpathconf(), –PC–MAX–CANON POSIX_Configurable_File_Limits.Input_Line_Limit

fpathconf(), –PC–MAX–INPUT . POSIX_Configurable_File_Limits.Input_Queue_Is_Limited

fpathconf(), –PC–MAX–INPUT POSIX_Configurable_File_Limits.Input_Queue_Limit

fpathconf(), –PC–LINK–MAX POSIX_Configurable_File_Limits.Link_Is_Limited

fpathconf(), –PC–LINK–MAX POSIX_Configurable_File_Limits.Link_Limit

fpathconf(), –PC–PATH–MAX . . . POSIX_Configurable_File_Limits.Pathname_Is_Limited

fpathconf(), –PC–PATH–MAX POSIX_Configurable_File_Limits.Pathname_Limit

fpathconf(), –PC–PIPE–BUF . . POSIX_Configurable_File_Limits.Pipe_Length_Is_Limited

fpathconf(), –PC–PIPE–BUF POSIX_Configurable_File_Limits.Pipe_Length_Limit

fpathconf(), –PC–PIPE–BUFPOSIX_Configurable_File_Limits.Prioritized_IO_Is_Supported

fpathconf(), –PC–SOCK–MAXBUF .
POSIX_Configurable_File_Limits.Socket_Buffer_Is_Limited

fpathconf(), –PC–SOCK–MAXBUF POSIX_Configurable_File_Limits.Socket_Buffer_Maximum
c

fpathconf(), –PC–SYNC–IOPOSIX_Configurable_File_Limits.Synchronized_IO_Is_Supported

fpathconf(), –PC–VDISABLE . C-language specific

F–RDLCK . POSIX_File_Locking.Read_Lock

freeaddrinfo() . C-language specific c
fstat() . POSIX_File_Status.Get_File_Status

fsync() . POSIX_IO.Synchronize_File

ftruncate() POSIX_Generic_Shared_Memory.Open_And_Map_Shared_Memory

ftruncate() . . . POSIX_Generic_Shared_Memory.Open_Or_Create_And_Map_Shared_Memory

ftruncate() . POSIX_IO.Truncate_File

getaddrinfo() POSIX_Sockets.Get_Socket_Address_Info c
getcwd() POSIX_Process_Environment.Get_Working_Directory

getegid() POSIX_Process_Identification.Get_Effective_Group_ID

getenv() POSIX_Process_Environment.Environment_Value_Of

getenv() POSIX_Process_Environment.Is_Environment_Variable

geteuid() POSIX_Process_Identification.Get_Effective_User_ID

getgid() POSIX_Process_Identification.Get_Real_Group_ID

getgrgid() POSIX_Group_Database.Get_Group_Database_Item

getgrnam() POSIX_Group_Database.Get_Group_Database_Item

getgroups() POSIX_Process_Identification.Get_Groups

gethostbyaddr() . C-language specific

gethostbyname() . C-language specific

gethostname() . C-language specific c
getlogin() POSIX_Process_Identification.Get_Login_Name

getnetbyaddr() POSIX_Sockets_Internet.Get_Network_Info_By_Address

getnetbyaddr() POSIX_XTI_Internet.Get_Network_Info_By_Address

getnetbyname() POSIX_Sockets_Internet.Get_Network_Info_By_Name

getnetbyname() POSIX_XTI_Internet.Get_Network_Info_By_Name

getpeername() . POSIX_Sockets.Get_Peer_Name
c

getpgrp() POSIX_Process_Identification.Get_Process_Group_ID

getpid() POSIX_Process_Identification.Get_Process_ID

getppid() POSIX_Process_Identification.Get_Parent_Process_ID

getprotobyname() POSIX_Sockets_Internet.Get_Protocol_Info_By_Name

getprotobyname() POSIX_XTI_Internet.Get_Protocol_Info_By_Name

C C-to-Ada Cross-Reference 687

c

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

getprotobynumber() POSIX_Sockets_Internet.Get_Protocol_Info_By_Number

getprotobynumber() POSIX_XTI_Internet.Get_Protocol_Info_By_Number c
getpwnam() POSIX_User_Database.Get_User_Database_Item

getpwuid() POSIX_User_Database.Get_User_Database_Item

getservbyname() . C-language specific

getservbyport() . C-language specific

getsockname() . POSIX_Sockets.Get_Socket_Name

getsockopt(), IP–HDRINCL POSIX_Sockets_Internet.Get_Header_Included

getsockopt(), IP–OPTIONS POSIX_Sockets_Internet.Get_IP_Header_Options

getsockopt(), IP–RECVDSTADDR .
POSIX_Sockets_Internet.Get_Receive_Destination_Address

getsockopt(), IP–TOS POSIX_Sockets_Internet.Get_Type_Of_Service

getsockopt(), IP–TTL POSIX_Sockets_Internet.Get_Initial_Time_To_Live

getsockopt(), SO–BROADCAST POSIX_Sockets.Get_Socket_Broadcast

getsockopt(), SO–DEBUG POSIX_Sockets.Get_Socket_Debugging

getsockopt(), SO–DONTROUTE POSIX_Sockets.Get_Socket_No_Routing

getsockopt(), SO–ERROR POSIX_Sockets.Get_Socket_Error_Status

getsockopt(), SO–KEEPALIVE POSIX_Sockets.Get_Socket_Keep_Alive

getsockopt(), SO–LINGER POSIX_Sockets.Get_Socket_Linger_Time

getsockopt(), SO–OOBINLINE POSIX_Sockets.Get_Socket_OOB_Data_Inline

getsockopt(), SO–RCVBUF POSIX_Sockets.Get_Socket_Receive_Buffer_Size

getsockopt(), SO–RCVLOWAT POSIX_Sockets.Get_Socket_Receive_Low_Water_Mark

getsockopt(), SO–RCVTIMEO POSIX_Sockets.Get_Socket_Receive_Timeout

getsockopt(), SO–REUSEADDR POSIX_Sockets.Get_Socket_Reuse_Addresses

getsockopt(), SO–SNDBUF POSIX_Sockets.Get_Socket_Send_Buffer_Size

getsockopt(), SO–SNDLOWAT POSIX_Sockets.Get_Socket_Send_Low_Water_Mark

getsockopt(), SO–SNDTIMEO POSIX_Sockets.Get_Socket_Send_Timeout

getsockopt(), SO–TYPE POSIX_Sockets.Get_Socket_Type

getsockopt(), TCP–KEEPALIVE POSIX_Sockets_Internet.Get_Keep_Alive_Interval

getsockopt(), TCP–MAXRXT POSIX_Sockets_Internet.Get_Retransmit_Time_Maximum

getsockopt(), TCP–MAXSEG POSIX_Sockets_Internet.Get_Segment_Size_Maximum

getsockopt(), TCP–NODELAY POSIX_Sockets_Internet.Get_No_Delay

getsockopt(), TCP–STDURG . . . POSIX_Sockets_Internet.Get_Standardized_Urgent_Data

getsockopt(), TPOPT–CFRM–DATA POSIX_Sockets_ISO.Get_Confirmation_Data

getsockopt(), TPOPT–CONN–DATA POSIX_Sockets_ISO.Get_Connection_Data

getsockopt(), TPOPT–DISC–DATA POSIX_Sockets_ISO.Get_Disconnect_Data

getsockopt(), TPOPT–FLAGS POSIX_Sockets_ISO.Get_TP_Flags

getsockopt(), TPOPT–PARAMS POSIX_Sockets_ISO.Get_Connection_Parameters
c

getuid() POSIX_Process_Identification.Get_Real_User_ID

gid–t . POSIX_Process_Identification.Group_ID

gid–t . POSIX_Process_Identification.Group_List

gr–gid . POSIX_Group_Database.Group_ID_Of

gr–mem . POSIX_Group_Database.Group_ID_List_Of

gr–name . POSIX_Group_Database.Group_Name_Of

group . POSIX_Group_Database.Group_Database_Item

<grp.h> . POSIX_Group_Database

688 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

h–errno . C-language specific

HOST–NOT–FOUND . C-language specific

hostent . C-language specific

htonl() . POSIX.Host_To_Network_Byte_Order

htons() . POSIX.Host_To_Network_Byte_Order c
HUPCL POSIX_Terminal_Functions.Hang_Up_On_Last_Close

ICANON POSIX_Terminal_Functions.Canonical_Input

ICRNL . POSIX_Terminal_Functions.Map_CR_To_LF

IEXTEN POSIX_Terminal_Functions.Extended_Functions

IGNBRK . POSIX_Terminal_Functions.Ignore_Break

IGNCR . POSIX_Terminal_Functions.Ignore_CR

IGNPAR POSIX_Terminal_Functions.Ignore_Parity_Errors

in–addr . POSIX_Sockets_Internet.Internet_Address

in–addr . POSIX_XTI_Internet.Internet_Address

in–addr–t . C-language specific

IN–CLNS . POSIX_Sockets_ISO.IP_Connectionless

in–port–t . POSIX_Sockets_Internet.Internet_Port

in–port–t . POSIX_XTI_Internet.Internet_Port

INADDR–ANY POSIX_Sockets_Internet.Unspecified_Internet_Address

INADDR–BROADCAST POSIX_Sockets_Internet.Broadcast_Internet_Address

INADDR–LOOPBACK POSIX_Sockets_Internet.Loopback_Internet_Address

INADDR–NONE POSIX_Sockets_Internet.Is_Internet_Address

INADDR–NONE POSIX_XTI_Internet.Is_Internet_Address

inet–addr() POSIX_Sockets_Internet.String_To_Internet_Address

inet–addr() POSIX_XTI_Internet.String_To_Internet_Address

inet–ntoa() POSIX_Sockets_Internet.Internet_Address_To_String

inet–ntoa() POSIX_XTI_Internet.Internet_Address_To_String

INET–IP . POSIX_XTI_Internet.TCP_Level

INET–TCP . POSIX_XTI_Internet.TCP_Level

INET–UDP . POSIX_XTI_Internet.TCP_Level

INFTIM . C-language specific
c

INLCR . POSIX_Terminal_Functions.Map_LF_To_CR

ino–t . POSIX_File_Status.File_ID

INPCK POSIX_Terminal_Functions.Enable_Parity_Check

iovec . POSIX_Sockets.IO_Vector

IP–BROADCAST POSIX_XTI_Internet.Permit_Broadcast

IP–DONTROUTE . POSIX_XTI_Internet.Do_Not_Route

IP–OPTIONS . POSIX_XTI_Internet.IP_Options

ip–opts . POSIX_Sockets_Internet.IP_Options_Buffer

IP–REUSEADDR . POSIX_XTI_Internet.Reuse_Address

IP–TTL . POSIX_XTI_Internet.Time_To_Live

IP–TOS . POSIX_XTI_Internet.Type_Of_Service

IPPROTO–ICMP . POSIX_Sockets_Internet.ICMP

IPPROTO–IP . C-language specific

IPPROTO–RAW . POSIX_Sockets_Internet.Raw

IPPROTO–TCP . POSIX_Sockets_Internet.TCP

C C-to-Ada Cross-Reference 689

c

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

IPPROTO–UDP . POSIX_Sockets_Internet.UDP

IPTOS–LOWDELAY POSIX_Sockets_Internet.Low_Delay

IPTOS–RELIABILITY POSIX_Sockets_Internet.High_Reliability

IPTOS–THROUGHPUT POSIX_Sockets_Internet.High_Throughput
c

isatty() . POSIX_IO.Is_A_Terminal

isfdtype() . POSIX_Sockets.Is_A_Socket
c

ISIG . POSIX_Terminal_Functions.Enable_Signals

iso–addr . POSIX_Sockets_ISO.ISO_Address

ISO–CLNS . POSIX_Sockets_ISO.ISO_Connectionless

ISO–CONS . POSIX_Sockets_ISO.ISO_Connection

ISO–COSNS POSIX_Sockets_ISO.ISO_Connectionless_Over_X25

ISO–TP . POSIX_XTI_ISO.ISO_TP_Level

ISOPROTO–CLNP POSIX_Sockets_ISO.Connectionless_Mode_Network_Protocol

ISOPROTO–CLTP POSIX_Sockets_ISO.Connectionless_Mode_Transport_Protocol

ISOPROTO–TP POSIX_Sockets_ISO.ISO_Transport_Protocol
c

ISTRIP . POSIX_Terminal_Functions.Strip_Character

IXOFF POSIX_Terminal_Functions.Enable_Start_Stop_Input

IXON POSIX_Terminal_Functions.Enable_Start_Stop_Output

kill() . POSIX_Signals.Send_Signal

<limits.h> . POSIX

<limits.h> . POSIX_Limits

linger . POSIX_Sockets.Get_Socket_Linger_Time

linger . POSIX_Sockets.Set_Socket_Linger_Time
c

link() . POSIX_Files.Link

LINK–MAX . POSIX_Limits.Link_Limit_Maxima’Last

lio–listio(), LIO–NOWAIT POSIX_Asynchronous_IO.List_IO_No_Wait

lio–listio(), LIO–WAIT POSIX_Asynchronous_IO.List_IO_Wait

LIO–NOP . POSIX_Asynchronous_IO.No_Op

LIO–READ . POSIX_Asynchronous_IO.Read

LIO–WRITE . POSIX_Asynchronous_IO.Write

listen() . POSIX_Sockets.Listen c
lseek() . POSIX_IO.File_Position

lseek() . POSIX_IO.File_Size

lseek() . POSIX_IO.Seek

MAP–FIXED . POSIX_Memory_Mapping.Exact_Address

MAP–PRIVATE . POSIX_Memory_Mapping.Map_Private

MAP–SHARED . POSIX_Memory_Mapping.Map_Shared

MAX–CANON POSIX_Limits.Input_Line_Limit_Maxima’Last

MAX–INPUT POSIX_Limits.Input_Queue_Limit_ M̄axima’Last

MCL–CURRENT POSIX_Memory_Locking.Current_Pages

MCL–FUTURE . POSIX_Memory_Locking.Future_Pages

mkdir() . POSIX_Files.Create_Directory

mkfifo() . POSIX_Files.Create_FIFO

mlockall() . POSIX_Memory_Locking.Lock_All

mlock() . POSIX_Memory_Range_Locking.Lock_Range

mlock() POSIX_Generic_Shared_Memory_Mapping.Lock_Shared_Memory

690 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

mmap() . POSIX_Memory_Mapping.Map_Memory

mmap() POSIX_Generic_Shared_Memory.Open_And_Map_Memory

mmap() POSIX_Generic_Shared_Memory.Open_Or_Create_And_Map_Memory

mode–t . POSIX_Permissions.Permission_Set

mprotect() . POSIX_Memory_Mapping.Change_Protection

mq–attr . POSIX_Message_Queues.Attributes

mq–close() . POSIX_Message_Queues.Close

mq–getattr() . POSIX_Message_Queues.Get_Attributes

mq–notify() . POSIX_Message_Queues.Remove_Notify

mq–notify() . POSIX_Message_Queues.Request_Notify

mq–open() . POSIX_Message_Queues.Open_Or_Create

mq–open() . POSIX_Message_Queues.Open

MQ–OPEN–MAX POSIX_Limits.Open_Message_Queues_Maxima’Last

MQ–PRIO–MAX POSIX_Limits.Message_Priority_Maxima’Last

mq–receive() . POSIX_Message_Queues.Receive

mq–receive() POSIX_Message_Queues.Generic_Message_Queues.Receive

mq–send() . POSIX_Message_Queues.Send

mq–send() POSIX_Message_Queues.Generic_Message_Queues.Send

mq–setattr() . POSIX_Message_Queues.Set_Attributes

mq–unlink() POSIX_Message_Queues.Unlink_Message_Queue

mqd–t POSIX_Message_Queues.Message_Queue_Descriptor

<mqueue.h> . POSIX_Message_Queues

MS–ASYNC . C-language specific

MS–INVALIDATE POSIX_Memory_Mapping.Synchronize_Memory(Invalidate_Cached_Data)

MS–SYNC POSIX_Memory_Mapping.Synchronize_Memory(Wait_For_Completion)

MSG–CTRUNC . POSIX_Sockets.Ancillary_Data_Lost

MSG–DONTROUTE . POSIX_Sockets.Do_Not_Route

MSG–EOR . POSIX_Sockets.End_Of_Message

MSG–OOB . POSIX_Sockets.Received_OOB_Data

MSG–OOB . POSIX_Sockets.Process_OOB_Data

MSG–PEEK . POSIX_Sockets.Peek_Only

MSG–TRUNC . POSIX_Sockets.Message_Truncated

MSG–WAITALL . POSIX_Sockets.Wait_For_All_Data

msghdr . POSIX_Sockets.Message_Handle c
msync() . POSIX_Memory_Mapping.Synchronize_Memory

munlockall() . POSIX_Memory_Locking.Unlock_All

munlock() . POSIX_Memory_Range_Locking.Unlock_Range

munlock() POSIX_Generic_Shared_Memory_Mapping.Unlock_Shared_Memory

munmap() . POSIX_Memory_Mapping.Unmap_Memory

munmap() . . . POSIX_Generic_Shared_Memory_Mapping.Unmap_And_Close_Shared_Memory

NAME–MAX POSIX_Limits.Filename_Limit_Maxima’Last

nanosleep() . C-language specific

netbuf . C-language specific

<netdb.h> . POSIX_Sockets

<netdb.h> . POSIX_Sockets_Internet

<netdb.h> . POSIX_XTI_Internet

C C-to-Ada Cross-Reference 691

c

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

netent . POSIX_Sockets_Internet.Network_Info

netent . POSIX_XTI_Internet.Network_Info

<netinet/in.h> . POSIX_Sockets_Internet

<netinet/tcp.h> . POSIX_Sockets_Internet

<netiso/iso.h> . POSIX_Sockets_ISO

<netiso/tp_user.h> . POSIX_Sockets_ISO c
NGROUPS–MAX . POSIX_Limits.Groups_Maxima’First

nlink–t . POSIX_File_Status.Links

NO–DATA . C-language specific

NO–RECOVERY . C-language specific
c

NOFLSH . POSIX_Terminal_Functions.No_Flush

ntohl() . POSIX.Network_To_Host_Byte_Order

ntohs() . POSIX.Network_To_Host_Byte_Order

O–ASYNC . POSIX_IO.Signal_When_Socket_Ready
c

OPEN–MAX . POSIX_Limits.Open_Files_Maxima’Last

OPOST POSIX_Terminal_Functions.Perform_Output_Processing

O–ACCMODE . POSIX_IO.Get_File_Control

O–APPEND . POSIX_IO.Append

O–CREAT . POSIX_IO.Open_Or_Create

O–CREAT . POSIX_Message_Queues.Open_Or_Create

O–DSYNC POSIX_Asynchronous_IO.Synchronize_Data

O–DSYNC . POSIX_IO.Data_Synchronized

O–EXCL . POSIX_IO.Exclusive

off–t . POSIX_IO.IO_Offset

O–NOCTTY . POSIX_IO.Not_Controlling_Terminal

O–NONBLOCK . POSIX_IO.Non_Blocking

O–NONBLOCK . POSIX_Message_Queues.Non_Blocking

open() . POSIX_IO.Open

open(), O–CREAT . POSIX_IO.Open_Or_Create

opendir() . POSIX_Files.For_Every_Directory_Entry

OPT–NEXTHDR . POSIX_XTI.Get_Next_Option
c

O–RDONLY . POSIX_IO.Read_Only

O–RDWR . POSIX_IO.Read_Write

O–RSYNC . POSIX_IO.Read_Synchronized

osi–addr . POSIX_XTI_mOSI.OSI_Address
c

O–SYNC . POSIX_Asynchronous_IO.Synchronize_File

O–SYNC . POSIX_IO.File_Synchronized

O–TRUNC . POSIX_IO.Truncate

O–WRONLY . POSIX_IO.Write_Only

PAGESIZE . POSIX_Limits.Page_Size_Range

PARENB . POSIX_Terminal_Functions.Parity_Enable

PARMRK POSIX_Terminal_Functions.Mark_Parity_Errors

PARODD . POSIX_Terminal_Functions.Odd_Parity

passwd . POSIX_User_Database.User_Database_Item

pathconf(), –PC–ASYNC–IO .
POSIX_Configurable_File_Limits.Asynchronous_IO_Is_Supported

692 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

pathconf(), –PC–POSIX–CHOWN–RESTRICTED .
POSIX_Configurable_File_Limits.Change_Owner_Is_Restricted

pathconf(), –PC–POSIX–CHOWN–RESTRICTED .
POSIX_Configurable_File_Limits.Change_Owner_Restriction

pathconf(), –PC–NAME–MAX . . . POSIX_Configurable_File_Limits.Filename_Is_Limited

pathconf(), –PC–NAME–MAX POSIX_Configurable_File_Limits.Filename_Limit

pathconf(), –PC–NO–TRUNC . . POSIX_Configurable_File_Limits.Filename_Is_Truncated

pathconf(), –PC–MAX–CANON . POSIX_Configurable_File_Limits.Input_Line_Is_Limited

pathconf(), –PC–MAX–CANON POSIX_Configurable_File_Limits.Input_Line_Limit

pathconf(), –PC–MAX–INPUT . POSIX_Configurable_File_Limits.Input_Queue_Is_Limited

pathconf(), –PC–MAX–INPUT POSIX_Configurable_File_Limits.Input_Queue_Limit

pathconf(), –PC–LINK–MAX POSIX_Configurable_File_Limits.Link_Is_Limited

pathconf(), –PC–LINK–MAX POSIX_Configurable_File_Limits.Link_Limit

pathconf(), –PC–PATH–MAX . . . POSIX_Configurable_File_Limits.Pathname_Is_Limited

pathconf(), –PC–PATH–MAX() POSIX_Configurable_File_Limits.Pathname_Limit

pathconf(), –PC–PIPE–BUF . . POSIX_Configurable_File_Limits.Pipe_Length_Is_Limited

pathconf(), –PC–PIPE–BUF POSIX_Configurable_File_Limits.Pipe_Length_Limit

pathconf(), –PC–PIPE–BUFPOSIX_Configurable_File_Limits.Prioritized_IO_Is_Supported

pathconf(), –PC–SOCK–MAXBUF .
POSIX_Configurable_File_Limits.Socket_Buffer_Is_Limited

pathconf(), –PC–SOCK–MAXBUF POSIX_Configurable_File_Limits.Socket_Buffer_Maximum
c

pathconf(), –PC–SYNC–IOPOSIX_Configurable_File_Limits.Synchronized_IO_Is_Supported

pathconf(), –PC–VDISABLE . C-language specific

PATH–MAX POSIX_Limits.Pathname_Limit_Maxima’Last

pause() . C-language specific

perror() . POSIX.Image

PF–INET POSIX_Sockets_Internet.Internet_Protocol

PF–ISO . POSIX_Sockets_ISO.ISO_Protocol

PF–LOCAL . POSIX_Sockets_Local.Local_Protocol

PF–UNSPEC POSIX_Sockets.Unspecified_Protocol_Family
c

pid–t POSIX_Process_Identification.Process_Group_ID

pid–t . POSIX_Process_Identification.Process_ID

(pid–t) 0 POSIX_Process_Identification.Null_Process_ID

pipe() . POSIX_IO.Create_Pipe

PIPE–BUF . POSIX_Limits.Pipe_Length_Maxima’Last

poll() . POSIX_Event_Management.Poll

<poll.h> . POSIX_Event_Management

POLLERR . POSIX_Event_Management.Poll_Error

pollfd . POSIX_Event_Management.Poll_FD

POLLIN . POSIX_Event_Management.Read_Not_High

POLLNVAL . POSIX_Event_Management.File_Not_Open

POLLOUT . POSIX_Event_Management.Write_Normal

POLLPRI . POSIX_Event_Management.Read_High

POLLRDBAND POSIX_Event_Management.Read_Priority

POLLRDNORM . POSIX_Event_Management.Read_Normal

POLLWRBAND POSIX_Event_Management.Write_Priority

C C-to-Ada Cross-Reference 693

c

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

POLLWRNORM POSIX_Event_Management.Write_Normal c

–POSIX–AIO–LISTIO–MAX POSIX_Limits.Portable_List_IO_Maximum

–POSIX–AIO–MAX POSIX_Limits.Portable_Asynchronous_IO_Maximum

–POSIX–ARG–MAX POSIX_Limits.Portable_Argument_List_Maximum

–POSIX–ASYNCHRONOUS–IO POSIX_Options.Asynchronous_IO_Support

–POSIX–ASYNC–IO . . POSIX_Configurable_File_Limits.Asynchronous_IO_Is_Supported

–POSIX–CHILD–MAX POSIX_Limits.Portable_Child_Processes_Maximum

–POSIX–CHOWN–RESTRICTED POSIX_Options.Change_Owner_Restricted

–POSIX–CHOWN–RESTRICTED .
POSIX_Configurable_File_Limits.Change_Owner_Restricted

–POSIX–CLOCKRES–MIN POSIX_Limits.Portable_Clock_Resolution_Minimum

–POSIX–DELAYTIMER–MAX POSIX_Limits.Portable_Timer_Overruns_Maximum

–POSIX–FD–SETSIZE POSIX_Limits.Portable_FD_Set_Maximum
c

–POSIX–FSYNC POSIX_Options.File_Synchronization_Support

–POSIX–HIWAT POSIX_Limits.Portable_Socket_Buffer_Maximum
c

–POSIX–JOB–CONTROL POSIX_Options.Job_Control_Support

–POSIX–LINK–MAX POSIX_Limits.Portable_Links_Maximum

–POSIX–MAPPED–FILES POSIX_Options.Memory_Mapped_Files_Support

–POSIX–MAX–CANON POSIX_Limits.Portable_Input_Line_Maximum

–POSIX–MAX–INPUT POSIX_Limits.Portable_Input_Queue_Maximum

–POSIX–MEMLOCK–RANGE POSIX_Options.Memory_Range_Locking_Support

–POSIX–MEMLOCK POSIX_Options.Memory_Locking_Support

–POSIX–MEMORY–PROTECTION POSIX_Options.Memory_Protection_Support

–POSIX–MESSAGE–PASSING POSIX_Options.Message_Queues_Support

–POSIX–MQ–OPEN–MAX POSIX_Limits.Portable_Open_Message_Queues_Maximum

–POSIX–MQ–PRIO–MAX POSIX_Limits.Portable_Message_Priority_Maximum

–POSIX–NAME–MAX POSIX_Limits.Portable_Filename_Maximum

–POSIX–NGROUPS–MAX POSIX_Limits.Portable_Groups_Maximum

–POSIX–NO–TRUNC POSIX_Options.Filename_Truncation

–POSIX–NO–TRUNC POSIX_Configurable_File_Limits.Filename_Is_Truncated

–POSIX–NO–TRUNC POSIX_Options.Filename_Truncation

–POSIX–OPEN–MAX POSIX_Limits.Portable_Open_Files_Maximum

–POSIX–PATH–MAX POSIX_Limits.Portable_Pathname_Maximum

–POSIX–PII . C-language specific

–POSIX–PII–INTERNET POSIX_Options.Internet_Protocol_Support

–POSIX–PII–INTERNET–DGRAM POSIX_Options.Internet_Datagram_Support

–POSIX–PII–INTERNET–STREAM POSIX_Options.Internet_Stream_Support

–POSIX–PII–NET–SUPPORT POSIX_Options.Network_Management_Support

–POSIX–PII–OSI POSIX_Options.ISO_OSI_Protocol_Support

–POSIX–PII–OSI–CLTS POSIX_Options.OSI_Connectionless_Support

–POSIX–PII–OSI–COTS POSIX_Options.OSI_Connection_Support

–POSIX–PII–OSI–M POSIX_Options.OSI_Minimal_Support

–POSIX–PII–SOCKET POSIX_Options.Sockets_DNI_Support

–POSIX–PII–XTI . POSIX_Options.XTI_DNI_Support
c

–POSIX–PIPE–BUF POSIX_Limits.Portable_Pipe_Limit_Maximum

–POSIX–POLL . POSIX_Options.Poll_Support
c

694 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

–POSIX–PRIORITIZED–IO POSIX_Options.Prioritized_IO_Support

–POSIX–PRIORITY–SCHEDULING . POSIX_Options.Priority_Process_Scheduling_Support

–POSIX–PRIO–IO POSIX_Configurable_File_Limits.Prioritized_IO_Is_Supported

–POSIX–QLIMIT POSIX_Limits.Portable_Socket_Connection_Maximum
c

–POSIX–REALTIME–SIGNALS POSIX_Options.Realtime_Signals_Support

–POSIX–REENTRANT–FUNCTIONS . C-language specific

–POSIX–RTSIG–MAX POSIX_Limits.Portable_Realtime_Signals_Maximum

–POSIX–SAVED–IDS POSIX_Options.Saved_IDs_Are_Supported

–POSIX–SELECT . POSIX_Options.Select_Support
c

–POSIX–SEMAPHORES POSIX_Options.Semaphores_Support

–POSIX–SEM–NSEMS–MAX POSIX_Limits.Portable_Semaphores_Maximum

–POSIX–SEM–VALUE–MAX POSIX_Limits.Portable_Semaphores_Value_Maximum

–POSIX–SHARED–MEMORY–OBJECTS . POSIX_Options.Shared_Memory_Objects_Support

–POSIX–SIGQUEUE–MAX POSIX_Limits.Portable_Queued_Signals_Maximum

–POSIX–SOURCE . C-language specific

–POSIX–SSIZE–MAX . C-language specific

–POSIX–STREAM–MAX POSIX_Limits.Portable_Streams_Maximum

–POSIX–SYNCHRONIZED–IO POSIX_Options.Synchronized_IO_Support

–POSIX–SYNC–IO . . POSIX_Configurable_File_Limits.Synchronized_IO_Is_Supported

–POSIX–THREADS . C-language specific

–POSIX–THREAD–ATFORK . C-language specific

–POSIX–THREAD–ATTR–STACKADDR . C-language specific

–POSIX–THREAD–ATTR–STACKSIZE . C-language specific

–POSIX–THREAD–DESTRUCTOR–ITERATIONS C-language specific

–POSIX–THREAD–KEYS–MAX . C-language specific

–POSIX–THREAD–PRIORITY–SCHEDULING C-language specific

–POSIX–THREAD–PRIO–INHERIT . POSIX_Options.Mutex_Priority_Inheritance_Support

–POSIX–THREAD–PRIO–PROTECT . . . POSIX_Options.Mutex_Priority_Ceiling_Support

–POSIX–THREAD–PROCESS–SHARED POSIX_Options.Process_Shared_Support

–POSIX–THREAD–THREADS–MAX . C-language specific

–POSIX–TIMERS . POSIX_Options.Timers_Support

–POSIX–TIMER–MAX POSIX_Limits.Portable_Timers_Maximum

–POSIX–TZNAME–MAX POSIX_Limits.Portable_Time_Zone_String_Maximum

–POSIX–UIO–MAXIOV POSIX_Limits.Portable_Socket_IO_Vector_Maximum
c

–POSIX–VDISABLE . C-language specific

–POSIX–VERSION . POSIX.POSIX_Version

PROT–EXEC . POSIX_Memory_Mapping.Allow_Execute

PROT–NONE . POSIX_Memory_Mapping.Empty_Set

PROT–READ . POSIX_Memory_Mapping.Allow_Read

PROT–WRITE . POSIX_Memory_Mapping.Allow_Write

protoent . POSIX_Sockets_Internet.Protocol_Info

protoent . POSIX_XTI_Internet.Protocol_Info

pselect() . C-language specific c
pthread–atfork() . C-language specific

pthread–attr–destroy() . C-language specific

pthread–attr–getdetachstate() . C-language specific

C C-to-Ada Cross-Reference 695

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

pthread–attr–getinheritsched() . C-language specific

pthread–attr–getschedparam() . C-language specific

pthread–attr–getschedpolicy() . C-language specific

pthread–attr–getscope() . C-language specific

pthread–attr–getstackaddr() . C-language specific

pthread–attr–getstacksize() . C-language specific

pthread–attr–init() . C-language specific

pthread–attr–setdetachstate() . C-language specific

pthread–attr–setinheritsched() . C-language specific

pthread–attr–setschedparam() . C-language specific

pthread–attr–setschedpolicy() . C-language specific

pthread–attr–setscope() . C-language specific

pthread–attr–setstackaddr() . C-language specific

pthread–attr–setstacksize() . C-language specific

pthread–attr–t . C-language specific

pthread–cancel() . C-language specific

pthread–cleanup–pop() . C-language specific

pthread–cleanup–push() . C-language specific

pthread–cond–broadcast() POSIX_Condition_Variables.Broadcast

pthread–cond–destroy() POSIX_Condition_Variables.Finalize

pthread–cond–init() POSIX_Condition_Variables.Initialize

pthread–cond–signal() POSIX_Condition_Variables.Signal

pthread–cond–timedwait() POSIX_Condition_Variables.Timed_Wait

pthread–cond–t POSIX_Condition_Variables.Condition_Descriptor

pthread–cond–wait() . POSIX_Condition_Variables.Wait

pthread–condattr–destroy() POSIX_Condition_Variables.Finalize

pthread–condattr–getpshared() POSIX_Condition_Variables.Get_Process_Shared

pthread–condattr–init() POSIX_Condition_Variables.Initialize

pthread–condattr–setpshared() POSIX_Condition_Variables.Set_Process_Shared

pthread–condattr–t POSIX_Condition_Variables.Attributes

pthread–create() . C-language specific

PTHREAD–DESTRUCTOR–ITERATIONS C-language specific

pthread–equal() . C-language specific

pthread–exit() . C-language specific

PTHREAD–EXPLICIT–SCHED . C-language specific

pthread–getschedparam() . C-language specific

pthread–getspecific() . C-language specific

PTHREAD–INHERIT–SCHED . C-language specific

pthread–join() . C-language specific

pthread–key–create() . C-language specific

pthread–key–delete() . C-language specific

pthread–key–t . C-language specific

PTHREAD–KEYS–MAX . C-language specific

pthread–kill() . C-language specific

pthread–mutex–destroy() . POSIX_Mutexes.Finalize

pthread–mutex–getprioceiling() POSIX_Mutexes.Get_Ceiling_Priority

696 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

pthread–mutex–init() . POSIX_Mutexes.Initialize

pthread–mutex–lock() . POSIX_Mutexes.Lock

pthread–mutex–setprioceiling() POSIX_Mutexes.Set_Ceiling_Priority

pthread–mutex–trylock() . POSIX_Mutexes.Try_Lock

pthread–mutex–t . POSIX_Mutexes.Mutex

pthread–mutex–unlock() . POSIX_Mutexes.Unlock

pthread–mutexattr–destroy() . POSIX_Mutexes.Finalize

pthread–mutexattr–getprioceiling() POSIX_Mutexes.Get_Ceiling_Priority

pthread–mutexattr–getprotocol() POSIX_Mutexes.Get_Protocol

pthread–mutexattr–getpshared() POSIX_Mutexes.Get_Process_Shared

pthread–mutexattr–init() . POSIX_Mutexes.Initialize

pthread–mutexattr–setprioceiling() POSIX_Mutexes.Set_Ceiling_Priority

pthread–mutexattr–setprotocol() POSIX_Mutexes.Set_Protocol

pthread–mutexattr–setpshared() POSIX_Mutexes.Set_Process_Shared

pthread–mutexattr–t . POSIX_Mutexes.Attributes

pthread–once–t . C-language specific

pthread–once() . C-language specific

PTHREAD–PRIO–NONE POSIX_Mutexes.No_Priority_Inheritance

PTHREAD–PRIO–INHERIT POSIX_Mutexes.Highest_Blocked_Task

PTHREAD–PRIO–PROTECT POSIX_Mutexes.Highest_Ceiling_Priority

PTHREAD–PROCESS–PRIVATE POSIX_Condition_Variables.Get_Process_Shared

PTHREAD–PROCESS–PRIVATE POSIX_Condition_Variables.Set_Process_Shared

PTHREAD–PROCESS–PRIVATE POSIX_Mutexes.Get_Process_Shared

PTHREAD–PROCESS–PRIVATE POSIX_Mutexes.Set_Process_Shared

PTHREAD–PROCESS–SHARED POSIX_Condition_Variables.Get_Process_Shared

PTHREAD–PROCESS–SHARED POSIX_Condition_Variables.Set_Process_Shared

PTHREAD–PROCESS–SHARED POSIX_Mutexes.Get_Process_Shared

PTHREAD–PROCESS–SHARED POSIX_Mutexes.Set_Process_Shared

PTHREAD–SCOPE–PROCESS . Within_Process

PTHREAD–SCOPE–SYSTEM . System_Wide

pthread–self() . C-language specific

pthread–setcancelstate() . C-language specific

pthread–setcanceltype() . C-language specific

pthread–setschedparam() . C-language specific

pthread–setspecific() . C-language specific

pthread–sigmask() . C-language specific

PTHREAD–STACK–MIN . C-language specific

pthread–t . C-language specific

pthread–testcancel() . C-language specific

PTHREAD–THREADS–MAX . C-language specific

pw–dir . POSIX_User_Database.Initial_Directory_Of

pw–gid . POSIX_User_Database.Group_ID_Of

pw–name . POSIX_User_Database.User_Name_Of

pw–shell . POSIX_User_Database.Initial_Program_Of

pw–uid . POSIX_User_Database.User_ID_Of

<pwd.h> . POSIX_User_Database

C C-to-Ada Cross-Reference 697

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

rate . POSIX_XTI.OSI.Rate c

readdir() . POSIX_Files.For_Every_Directory_Entry

read() . POSIX_IO.Read

read() . POSIX_IO.Generic_Read

recv() . POSIX_Sockets.Receive

recvfrom() . POSIX_Sockets.Receive

recvmsg() . POSIX_Sockets.Receive_Message c
rename() . POSIX_Files.Rename

reqvalue . POSIX_XTI.OSI.Requested_Rate c
rewinddir() . POSIX_Files.For_Every_Directory_Entry

rmdir() . POSIX_Files.Remove_Directory

R–OK . POSIX_Files.Read_Ok

RTSIG–MAX . POSIX_Limits.Realtime_Signals_Maxima

SCHED–FIFO POSIX_Process_Scheduling.Sched_FIFO

SCHED–RR . POSIX_Process_Scheduling.Sched_RR

<sched.h> . POSIX_Process_Scheduling

sched–get–priority–max() POSIX_Process_Scheduling.Get_Maximum_Priority

sched–get–priority–min() POSIX_Process_Scheduling.Get_Minimum_Priority

sched–getparam() POSIX_Process_Scheduling.Get_Scheduling_Parameters

sched–getscheduler() POSIX_Process_Scheduling.Get_Scheduling_Policy

SCHED–OTHER POSIX_Process_Scheduling.Sched_Other

sched–param POSIX_Process_Scheduling.Scheduling_Parameters

sched–rr–get–interval() POSIX_Process_Scheduling.Get_Round_Robin_Interval

sched–setparam() POSIX_Process_Scheduling.Set_Scheduling_Parameters

sched–setscheduler() POSIX_Process_Scheduling.Set_Scheduling_Policy

sched–yield() . POSIX_Process_Scheduling.Yield

SEEK–CUR . POSIX_IO.From_Current_Position

SEEK–CUR . POSIX_IO.Position

SEEK–END . POSIX_IO.From_End_Of_File

SEEK–END . POSIX_IO.Position

SEEK–SET . POSIX_IO.From_Beginning

SEEK–SET . POSIX_IO.Position

select() . POSIX_Event_Management.Select_File c
sem–close() . POSIX_Semaphores.Close

sem–destroy() . POSIX_Semaphores.Finalize

sem–getvalue() . POSIX_Semaphores.Get_Value

sem–init() . POSIX_Semaphores.Initialize

SEM–NSEMS–MAX POSIX_Limits.Semaphores_Maxima’Last

sem–open() . POSIX_Semaphores.Open_Or_Create

sem–open() . POSIX_Semaphores.Open

sem–post() . POSIX_Semaphores.Post

sem–trywait() . POSIX_Semaphores.Try_Wait

sem–t . POSIX_Semaphores.Semaphore

sem–unlink() . POSIX_Semaphores.Unlink_Semaphore

SEM–VALUE–MAX POSIX_Limits.Semaphores_Value_Maxima’Last

sem–wait() . POSIX_Semaphores.Wait

698 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

<semaphore.h> . POSIX_Semaphores

send() . POSIX_Sockets.Send

sendmsg() . POSIX_Sockets.Send_Message

sendto() . POSIX_Sockets.Send

servent . C-language specific

sethostent() . C-language specific
c

setgid() . POSIX_Process_Identification.Set_Group_ID

setnetent() POSIX_Sockets_Internet.Open_Network_Database_Connection

setnetent() POSIX_XTI_Internet.Open_Network_Database_Connection c
setpgid() POSIX_Process_Identification.Create_Process_Group

setpgid() POSIX_Process_Identification.Set_Process_Group_ID

setprotoent() POSIX_Sockets_Internet.Open_Protocol_Database_Connection

setprotoent() POSIX_XTI_Internet.Open_Protocol_Database_Connection

setservent() . C-language specific
c

setsid() POSIX_Process_Identification.Create_Session

setsid() . POSIX_Process_Identification.Set_User_ID

setsockopt(), IP–HDRINCL POSIX_Sockets_Internet.Set_Header_Included

setsockopt(), IP–OPTIONS POSIX_Sockets_Internet.Set_IP_Header_Options

setsockopt(), IP–RECVDSTADDRPOSIX_Sockets_Internet.Set_Receive_Destination_Address

setsockopt(), IP–TOS POSIX_Sockets_Internet.Set_Type_Of_Service

setsockopt(), IP–TTL POSIX_Sockets_Internet.Set_Initial_Time_To_Live

setsockopt(), SO–BROADCAST POSIX_Sockets.Set_Socket_Broadcast

setsockopt(), SO–DEBUG POSIX_Sockets.Set_Socket_Debugging

setsockopt(), SO–DONTROUTE POSIX_Sockets.Set_Socket_No_Routing

setsockopt(), SO–KEEPALIVE POSIX_Sockets.Set_Socket_Keep_Alive

setsockopt(), SO–LINGER POSIX_Sockets.Set_Socket_Linger_Time

setsockopt(), SO–OOBINLINE POSIX_Sockets.Set_Socket_OOB_Data_Inline

setsockopt(), SO–RCVBUF POSIX_Sockets.Set_Socket_Receive_Buffer_Size

setsockopt(), SO–RCVLOWAT POSIX_Sockets.Set_Socket_Receive_Low_Water_Mark

setsockopt(), SO–RCVTIMEO POSIX_Sockets.Set_Socket_Receive_Timeout

setsockopt(), SO–REUSEADDR POSIX_Sockets.Set_Socket_Reuse_Addresses

setsockopt(), SO–SNDBUF POSIX_Sockets.Set_Socket_Send_Buffer_Size

setsockopt(), SO–SNDLOWAT POSIX_Sockets.Set_Socket_Send_Low_Water_Mark

setsockopt(), SO–SNDTIMEO POSIX_Sockets.Set_Socket_Send_Timeout

setsockopt(), TCP–KEEPALIVE POSIX_Sockets_Internet.Set_Keep_Alive_Interval

setsockopt(), TCP–MAXRXT POSIX_Sockets_Internet.Set_Retransmit_Time_Maximum

setsockopt(), TCP–NODELAY POSIX_Sockets_Internet.Set_No_Delay

setsockopt(), TCP–STDURG . . . POSIX_Sockets_Internet.Set_Standardized_Urgent_Data

setsockopt(), TPOPT–CFRM–DATA POSIX_Sockets_ISO.Set_Confirmation_Data

setsockopt(), TPOPT–CONN–DATA POSIX_Sockets_ISO.Set_Connection_Data

setsockopt(), TPOPT–DISC–DATA POSIX_Sockets_ISO.Set_Disconnect_Data

setsockopt(), TPOPT–FLAGS POSIX_Sockets_ISO.Set_TP_Flags

setsockopt(), TPOPT–PARAMS POSIX_Sockets_ISO.Set_Connection_Parameters
c

shm–open() POSIX_Shared_Memory_Objects.Open_Or_Create_Shared_Memory

shm–open() POSIX_Shared_Memory_Objects.Open_Shared_Memory

shm–open() POSIX_Generic_Shared_Memory.Open_And_Map_Shared_Memory

C C-to-Ada Cross-Reference 699

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

shm–open() . . . POSIX_Generic_Shared_Memory.Open_Or_Create_And_Map_Shared_Memory

shm–unlink() POSIX_Shared_Memory_Objects.Unlink_Shared_Memory

SHUT–RD POSIX_Sockets.Further_Receives_Disallowed

SHUT–RDWR POSIX_Sockets.Further_Sends_And_Receives_Disallowed

SHUT–WR POSIX_Sockets.Further_Sends_Disallowed

shutdown() . POSIX_Sockets.Shutdown c

SI–ASYNCIO . POSIX_Signals.From_Asynchronous_IO

SI–ASYNCIO . POSIX_Signals.Signal_Source

SIGABRT . POSIX_Signals.Signal_Abort

sigaction(), SA–SIGINFO POSIX_Signals.Enable_Queueing

sigaction(), SA–SIGINFO POSIX_Signals.Disable_Queueing

sigaction(), SIG–IGN . POSIX_Signals.Ignore_Signal

sigaction(), SIG–IGN . POSIX_Signals.Unignore_Signal

sigaction(), SIG–IGN . POSIX_Signals.Is_Ignored

sigaction(), SA–NOCLDSTOP POSIX_Signals.Set_Stopped_Child_Signal

sigaction(), SA–NOCLDSTOP POSIX_Signals.Stopped_Child_Signal_Enabled

sigaddset() . POSIX_Signals.Add_Signal

SIGALRM . POSIX_Signals.Signal_Alarm

SIG–BLOCK . C-language specific

SIGBUS . POSIX_Signals.Signal_Bus_Error

SIGBUS . Standard.Program_Error

SIGCHLD . POSIX_Signals.Signal_Child

SIGCONT . POSIX_Signals.Signal_Continue

sigdelset() . POSIX_Signals.Delete_Signal

SIG–DFL . C-language specific

sigemptyset() . POSIX_Signals.Delete_All_Signals

sigevent() . POSIX_Signals.Signal_Event

sigfillset() . POSIX_Signals.Add_All_Signals

SIGFPE POSIX_Signals.Signal_Floating_Point_Error

SIGHUP . POSIX_Signals.Signal_Hangup

SIG–IGN . C-language specific

SIGILL . POSIX_Signals.Signal_Illegal_Instruction

siginfo–t . POSIX_Signals.Signal_Info

SIGINT . POSIX_Signals.Signal_Interrupt

SIGIO . POSIX_Signals.Signal_IO c
sigismember() . POSIX_Signals.Is_Member

SIGKILL . POSIX_Signals.Signal_Kill

<signal.h> . POSIX_Signals

sigpending() . POSIX_Signals.Pending_Signals

SIGPIPE . POSIX_Signals.Signal_Pipe_Write

sigprocmask() . POSIX_Signals.Block_Signals

sigprocmask() . POSIX_Signals.Blocked_Signals

sigprocmask() . POSIX_Signals.Unblock_Signals

sigqueue() . POSIX_Signals.Queue_Signal

SIGQUEUE–MAX POSIX_Limits.Queued_Signals_Maxima’Last

SIGQUIT . POSIX_Signals.Signal_Quit

700 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

SIGRTMAX . POSIX_Signals.Realtime_Signal’Last

SIGRTMIN . POSIX_Signals.Realtime_Signal’First

SIGSEGV POSIX_Signals.Signal_Segmentation_Violation

SIGSEGV . Standard.Program_Error

sigset–t . POSIX_Signals.Signal_Set

SIG–SETMASK . C-language specific

SIGSTOP . POSIX_Signals.Signal_Stop

sigsuspend() . C-language specific

SIGTERM . POSIX_Signals.Signal_Terminate

sigtimedwait() POSIX_Signals.Await_Signal_Or_Timeout

SIGTSTP . POSIX_Signals.Signal_Terminal_Stop

SIGTTIN . POSIX_Signals.Signal_Terminal_Input

SIGTTOU . POSIX_Signals.Signal_Terminal_Output

SIG–UNBLOCK . C-language specific

SIGURG . POSIX_Signals.Signal_Out_Of_Band_Data c
SIGUSR1 . POSIX_Signals.Signal_User_1

SIGUSR2 . POSIX_Signals.Signal_User_2

sigval . POSIX_Signals.Signal_Data

sigwaitinfo() . POSIX_Signals.Await_Signal

sigwaitinfo() . POSIX_Signals.Await_Signal

SI–ASYNCIO . POSIX_Signals.From_Async_IO

SI–MESGQ . POSIX_Signals.From_Message_Queue

SI–QUEUE . POSIX_Signals.From_Queue_Signal

SI–TIMER . POSIX_Signals.From_Timer

SI–USER . POSIX_Signals.From_Send_Signal

S–IRGRP . POSIX_Permissions.Group_Read

S–IROTH . POSIX_Permissions.Others_Read

S–IRUSR . POSIX_Permissions.Owner_Read

S–IRWXG . POSIX_Permissions.Group_Permission_Set

S–IRWXO . POSIX_Permissions.Others_Permission_Set

S–IRWXU POSIX_Permissions.Owner_Permission_Set

S–ISBLK . POSIX_File_Status.Is_Block_Special_File

S–ISBLK . POSIX_Files.Is_Block_Special_File

S–ISCHR POSIX_File_Status.Is_Character_Special_File

S–ISCHR . POSIX_Files.Is_Character_Special_File

S–ISDIR . POSIX_File_Status.Is_Directory

S–ISDIR . POSIX_Files.Is_Directory

S–ISFIFO . POSIX_File_Status.Is_FIFO

S–ISFIFO . POSIX_Files.Is_FIFO

S–ISGID . POSIX_Permissions.Set_Group_ID

S–ISGID . POSIX_Permissions.Set_User_ID_Set

S–ISREG . POSIX_File_Status.Is_File

S–ISREG . POSIX_Files.Is_Regular_File

S–ISUID . POSIX_Permissions.Set_Group_ID_Set

S–ISUID . POSIX_Permissions.Set_User_ID

SI–USER . POSIX_Signals.From_Send_Signal

C C-to-Ada Cross-Reference 701

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

SI–USER . POSIX_Signals.Signal_Source

S–IWGRP . POSIX_Permissions.Group_Write

S–IWOTH . POSIX_Permissions.Others_Write

S–IWUSR . POSIX_Permissions.Owner_Write

S–IXGRP . POSIX_Permissions.Group_Execute

S–IXOTH . POSIX_Permissions.Others_Execute

sleep() . C-language specific

SOCK–DGRAM . POSIX_Sockets.Datagram_Socket

SOCK–MAXBUF POSIX_Limits.Socket_Buffer_Maxima’Last

SOCK–RAW . POSIX_Sockets.Raw_Socket

SOCK–SEQPACKET POSIX_Sockets.Sequenced_Packet_Socket

SOCK–STREAM . POSIX_Sockets.Stream_Socket

sockaddr . POSIX_Sockets.Socket_Address_Pointer

sockaddr–in POSIX_Sockets_Internet.Internet_Socket_Address

sockaddr–iso . POSIX_Sockets_ISO.ISO_Socket_Address

sockaddr–un POSIX_Sockets_Local.Local_Socket_Address

sockatmark() . POSIX_Sockets.Socket_Is_At_OOB_Mark

socket() . POSIX_Sockets.Create

socketpair() . POSIX_Sockets.Create_Pair

SOL–SOCKET . POSIX_Sockets.Socket_Level

SOL–TRANSPORT POSIX_Sockets_ISO.Transport_Level

SOMAXCONN POSIX_Sockets.Connection_Queue_Length_Maximum c
speed–t . POSIX_Terminal_Functions.Baud_Rate

SSIZE–MAX . C-language specific

stat . POSIX_File_Status.Status

stat() . POSIX_Files.Is_File_Present

stat() . POSIX_File_Status.Get_File_Status

stat(), S–ISBLK . POSIX_Files.Is_Block_Special_File

stat(), S–ISCHR POSIX_Files.Is_Character_Special_File

stat(), S–ISDIR . POSIX_Files.Is_Directory

stat(), S–ISFIFO . POSIX_Files.Is_FIFO

stat(), S–ISREG . POSIX_Files.Is_File

stat(), S–TYPEISMQ . POSIX_Files.Is_Message_Queue

stat(), S–TYPEISSEM . POSIX_Files.Is_Semaphore

stat(), S–TYPEISSHM . POSIX_Files.Is_Shared_Memory

st–atime . POSIX_File_Status.Last_Access_Time_Of

stat–val POSIX_Process_Primitives.Termination_Status

st–ctime POSIX_File_Status.Last_Status_Change_Time_Of

st–dev . POSIX_File_Status.Device_ID_Of

st–gid . POSIX_File_Status.Group_Of

st–ino . POSIX_File_Status.File_ID_Of

st–mode . POSIX_File_Status.Permission_Set_Of

st–mtime POSIX_File_Status.Last_Modification_Time_Of

st–nlink . POSIX_File_Status.Link_Count_Of

STREAM–MAX . POSIX_Limits.Streams_Maxima’Last

st–size . POSIX_File_Status.Size_Of

702 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

st–uid . POSIX_File_Status.Owner_Of

S–TYPEISMQ . POSIX_File_Status.Is_Message_Queue

S–TYPEISMQ . POSIX_Files.Is_Message_Queue

S–TYPEISSEM . POSIX_File_Status.Is_Semaphore

S–TYPEISSEM . POSIX_Files.Is_Semaphore

S–TYPEISSHM . POSIX_File_Status.Is_Shared_Memory

S–TYPEISSHM . POSIX_Files.Is_Shared_Memory

SUN–LEN . C-language specific
c

<sys/mman.h> . POSIX_Memory_Locking

<sys/mman.h> . POSIX_Memory_Mapping

<sys/mman.h> . POSIX_Memory_Range_Locking

<sys/mman.h> . POSIX_Shared_Memory_Objects

<sys/select.h> . POSIX_Event_Management

<sys/socket.h> . POSIX_Sockets c
<sys/stat.h> . POSIX_File_Status

<sys/times.h> . POSIX_Calendar

<sys/times.h> . POSIX

<sys/times.h> . Standard.Calendar

<sys/times.h> . POSIX

<sys/types.h> . Standard

<sys/uio.h> . POSIX_Sockets c
<sys/utsname.h> . POSIX

<sys/wait.h> . POSIX_Process_Primitives

sysconf(), –SC–AIO–LISTIO–MAX . . POSIX_Configurable_System_Limits.List_IO_Maximum

sysconf(), –SC–AIO–MAX . POSIX_Configurable_System_Limits.Asynchronous_IO_Maximum

sysconf(), –SC–AIO–PRIO–DELTA–MAX .
POSIX_Configurable_System_Limits.Asynchronous_IO_Priority_Delta_Maximum

sysconf(), –SC–ARG–MAX . . POSIX_Configurable_System_Limits.Argument_List_Maximum

sysconf(), –SC–ASYNCHRONOUS–IO .
POSIX_Configurable_System_Limits.Asynchronous_IO_Is_Supported

sysconf(), –SC–CHILD–MAX POSIX_Configurable_System_Limits.Child_Processes_Maximum

sysconf(), –SC–CLK–TCK POSIX_Process_Times.Ticks_Per_Second

sysconf(), –SC–DELAYTIMER–MAX .
POSIX_Configurable_System_Limits.Timer_Overruns_Maximum

sysconf(), –SC–FSYNC .
POSIX_Configurable_System_Limits.File_Synchronization_Is_Supported

sysconf(), –SC–GETGR–R–SIZE–MAX . C-language specific

sysconf(), –SC–GETLOGIN–R–SIZE . C-language specific

sysconf(), –SC–GETPW–R–SIZE–MAX . C-language specific

sysconf(), –SC–JOB–CONTROL POSIX_Configurable_System_Limits.Job_Control_Supported

sysconf(), –SC–JOB–CONTROL .
POSIX_Configurable_System_Limits.Job_Control_Is_Supported

sysconf(), –SC–MAPPED–FILES .
POSIX_Configurable_System_Limits.Memory_Mapped_Files_Are_Supported

sysconf(), –SC–MEMLOCK–RANGE .
POSIX_Configurable_System_Limits.Memory_Range_Locking_Is_Supported

C C-to-Ada Cross-Reference 703

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

sysconf(), –SC–MEMLOCK .
POSIX_Configurable_System_Limits.Memory_Locking_Is_Supported

sysconf(), –SC–MEMORY–PROTECTION .
POSIX_Configurable_System_Limits.Memory_Protection_Is_Supported

sysconf(), –SC–MESSAGE–PASSING .
POSIX_Configurable_System_Limits.Message_Queues_Are_Supported

sysconf(), –SC–MQ–OPEN–MAX .
POSIX_Configurable_System_Limits.Open_Message_Queues_Maximum

sysconf(), –SC–MQ–PRIO–MAX .
POSIX_Configurable_System_Limits.Message_Priority_Maximum

sysconf(), –SC–NGROUPS–MAX POSIX_Configurable_System_Limits.Groups_Maximum

sysconf(), –SC–OPEN–MAX . . . POSIX_Configurable_System_Limits.Open_Files_Maximum

sysconf(), –SC–PAGESIZE POSIX_Configurable_System_Limits.Page_Size

sysconf(), –SC–PII–XTI POSIX_Configurable_System_Limits.XTI_DNI_Is_Supported

sysconf(), –SC–PII–SOCKET POSIX_Configurable_System_Limits.Sockets_DNI_Is_Supported

sysconf(), –SC–PII–INTERNET–DGRAM .
POSIX_Configurable_System_Limits.Internet_Datagram_Is_Supported

sysconf(), –SC–PII–INTERNET .
POSIX_Configurable_System_Limits.Internet_Protocol_Is_Supported

sysconf(), –SC–PII–INTERNET–STREAM .
POSIX_Configurable_System_Limits.Internet_Stream_Is_Supported

sysconf(), –SC–PII–OSIPOSIX_Configurable_System_Limits.ISO_OSI_Protocol_Is_Supported

sysconf(), –SC–PII–OSI–M . POSIX_Configurable_System_Limits.OSI_Minimal_Is_Supported

sysconf(), –SC–PII–OSI–COTS .
POSIX_Configurable_System_Limits.OSI_Connection_Is_Supported

sysconf(), –SC–PII–OSI–CLTS .
POSIX_Configurable_System_Limits.OSI_Connectionless_Is_Supported

sysconf(), –SC–POLL POSIX_Configurable_System_Limits.Poll_Is_Supported

sysconf(), –SC–POSIX–PII–NET–SUPPORT .
POSIX_Configurable_System_Limits.Network_Management_Is_Supported c

sysconf(), –SC–PRIORITIZED–IO .
POSIX_Configurable_System_Limits.Prioritized_IO_Is_Supported

sysconf(), –SC–PRIORITY–SCHEDULING .
POSIX_Configurable_System_Limits.Priority_Process_Scheduling_Is_Supported

sysconf(), –SC–PTHREADS . POSIX_Configurable_System_Limits.Mutexes_Are_Supported

sysconf(), –SC–REALTIME–SIGNALS .
POSIX_Configurable_System_Limits.Realtime_Signals_Are_Supported

sysconf(), –SC–REENTRANT–FUNCTIONS C-language specific

sysconf(), –SC–RTSIG–MAX POSIX_Configurable_System_Limits.Realtime_Signals_Maximum

sysconf(), –SC–SAVED–IDS . . . POSIX_Configurable_System_Limits.Saved_IDs_Supported

sysconf(), –SC–SAVED–IDS POSIX_Configurable_System_Limits.Saved_IDs_Are_Supported

sysconf(), –SC–SELECT POSIX_Configurable_System_Limits.Select_Is_Supported
c

sysconf(), –SC–SEMAPHORES .
POSIX_Configurable_System_Limits.Semaphores_Are_Supported

sysconf(), –SC–SEM–NSEMS–MAX POSIX_Configurable_System_Limits.Semaphores_Maximum

sysconf(), –SC–SEM–VALUE–MAX .
POSIX_Configurable_System_Limits.Semaphores_Value_Maximum

704 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

sysconf(), –SC–SHARED–MEMORY–OBJECTS .
POSIX_Configurable_System_Limits.Shared_Memory_Objects_Are_Supported

sysconf(), –SC–SIGQUEUE–MAX .
POSIX_Configurable_System_Limits.Queued_Signals_Maximum

sysconf(), –SC–STREAM–MAX POSIX_Configurable_System_Limits.Streams_Maximum

sysconf(), –SC–SYNCHRONIZED–IO .
POSIX_Configurable_System_Limits.Synchronized_IO_Is_Supported

sysconf(), –SC–TIMERS POSIX_Configurable_System_Limits.Timers_Are_Supported

sysconf(), –SC–TIMER–MAX POSIX_Configurable_System_Limits.Timers_Maximum

sysconf(), –SC–T–IOV–MAX . . POSIX_Configurable_System_Limits.XTI_IO_Vector_Maximum
c

sysconf(), –SC–THREAD–ATTR–STACKADDR C-language specific

sysconf(), –SC–THREAD–ATTR–STACKSIZE C-language specific

sysconf(), –SC–THREAD–ATTR–ATFORK C-language specific

sysconf(), –SC–THREAD–DESTRUCTOR–ITERATIONS C-language specific

sysconf(), –SC–THREAD–KEYS–MAX . C-language specific

sysconf(), –SC–THREAD–PRIORITY–SCHEDULING C-language specific

sysconf(), –SC–THREAD–PRIO–PROTECT .
POSIX_Configurable_System_Limits.Mutex_Priority_Ceiling_Is_Supported

sysconf(), –SC–THREAD–PRIO–INHERIT .
POSIX_Configurable_System_Limits.Mutex_Priority_Inheritance_Is_Supported

sysconf(), –SC–THREAD–PROCESS–SHARED .
POSIX_Configurable_System_Limits.Process_Shared_Is_Supported

sysconf(), –SC–THREAD–STACK–MIN . C-language specific

sysconf(), –SC–THREAD–THREADS–MAX C-language specific

sysconf(), –SC–TTYNAME–R–SIZE–MAX C-language specific

sysconf(), –SC–TZNAME–MAX .
POSIX_Configurable_System_Limits.Time_Zone_String_Maximum

sysconf(), –SC–UIO–MAXIOVPOSIX_Configurable_System_Limits.Socket_IO_Vector_Maximum
c

sysconf(), –SC–VERSION . . . POSIX_Configurable_System_Limits.System_POSIX_Version

T–ABSREQ . POSIX_XTI_ISO.Absolute_Requirement

T–AC–P–AARE–VERSION POSIX_XTI_mOSI.No_Common_Version

T–AC–P–ABRT–NSPEC POSIX_XTI_mOSI.Aborted_By_Peer

T–AC–U–AARE––NONE POSIX_XTI_mOSI.Rejected_By_Peer

T–AC–U–AARE–ACN POSIX_XTI_mOSI.AC_Name_Not_Supported

T–AC–U–AARE–AEQ POSIX_XTI_mOSI.Unrecognized_AE_Qualifier

T–AC–U–AARE–APT POSIX_XTI_mOSI.Unrecognized_AP_Title

T–AC–U–AARE–PEER–AUTH POSIX_XTI_mOSI.Authentication_Required

t–accept() . POSIX_XTI.Accept_Connection

T–ACTIVEPROTECT POSIX_XTI.OSI.Active_Protection

T–ADDR . C-language specific

T–ALIGN . C-language specific

T–ALL . C-language specific

t–alloc() . C-language specific

T–ALLOPT . POSIX_XTI.All_Options

T–AP–CNTX–NAME POSIX_XTI_mOSI.Application_Context

T–AP–MAX–ADDR POSIX_XTI_mOSI.mOSI_Address_Length_Maximum

t–ap–pc–item POSIX_XTI_mOSI.Presentation_Context_Item_Header

C C-to-Ada Cross-Reference 705

c

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

T–AP–PCL . POSIX_XTI_mOSI.Presentation_Context

t–ap–pco–el POSIX_XTI_mOSI.Presentation_Context_List

t–ap–syn–off POSIX_XTI_mOSI.Presentation_Context_Item_Element

T–BIND . C-language specific

t–bind . C-language specific

t–bind() . POSIX_XTI.Bind

T–CALL . C-language specific

t–call . POSIX_XTI.Connection_Info

T–CHECK . POSIX_XTI.Check_Options

T–CLASS0 . POSIX_XTI_ISO.Class_0

T–CLASS1 . POSIX_XTI_ISO.Class_1

T–CLASS2 . POSIX_XTI_ISO.Class_2

T–CLASS3 . POSIX_XTI_ISO.Class_3

T–CLASS4 . POSIX_XTI_ISO.Class_4

t–close() . POSIX_XTI.Close

T–CLTS . POSIX_XTI.Connectionless_Mode

T–CONNECT . POSIX_XTI.Connect_Responsed_Received

t–connect() . POSIX_XTI.Connect

T–COTS . POSIX_XTI.Connection_Mode

T–COTS–ORD POSIX_XTI.Connection_Mode_With_Orderly_Release

T–CRITIC–ECP . POSIX_XTI_Internet.Critic_ECP

T–CURRENT . POSIX_XTI.Get_Current_Options

T–DATA . POSIX_XTI.Normal_Data_Received

T–DATAXFER . POSIX_XTI.Data_Transfer

T–DEFAULT . POSIX_XTI.Get_Default_Options

T–DIS . C-language specific

t–discon . C-language specific

T–DISCONNECT POSIX_XTI.Disconnect_Request_Received

t–error() . C-language specific

t–errno . C-language specific

T–EXDATA . POSIX_XTI.Expedited_Data_Received

T–EXPEDITED . POSIX_XTI.Expedited_Data

T–FAILURE . POSIX_XTI.Failure

T–FLASH . POSIX_XTI_Internet.Flash

t–free() . C-language specific

T–GARBAGE . POSIX_XTI_Internet.Send_Garbage

t–getinfo() . POSIX_XTI.Get_Info

t–getprotaddr() . POSIX_XTI.Get_Protocol_Address

t–getstate() . POSIX_XTI.Get_Current_State

T–GODATA . POSIX_XTI.Okay_To_Send_Normal_Data

T–GOEXDATA POSIX_XTI.Okay_To_Send_Expedited_Data

T–HIREL . POSIX_XTI_Internet.High_Reliability

T–HITHRPT . POSIX_XTI_Internet.High_Throughput

T–IDLE . POSIX_XTI.Idle

T–IMMEDIATE . POSIX_XTI_Internet.Immediate

T–INCON . POSIX_XTI.Incoming_Connect

706 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

T–INETCONTROL POSIX_XTI_Internet.Internetwork_Control

T–INFINITE . C-language specific

T–INFO . C-language specific

t–info . POSIX_XTI.Communications_Provider_Info

T–INREL . POSIX_XTI.Incoming_Release

T–INVALID . C-language specific

T–IOV–MAX POSIX_Limits.XTI_IO_Vector_Maxima’Last

t–iovec . POSIX_XTI.IO_Vector

T–ISO–APCL POSIX_XTI_mOSI.mOSI_Connectionless_Mode

T–ISO–APCO . POSIX_XTI_mOSI.mOSI_Connection_Mode

t–kpalive . POSIX_XTI_Internet.Keep_Alive_Status

T–LDELAY . POSIX_XTI_Internet.Low_Delay

t–linger . POSIX_XTI.Linger_Info

T–LISTEN . POSIX_XTI.Connect_Request_Received

t–listen() . POSIX_XTI.Listen

T–LOCOST . POSIX_XTI_Internet.Low_Cost

t–look() . POSIX_XTI.Look

T–MORE . POSIX_XTI.More_Data

t–mosiaddr . POSIX_XTI_mOSI.mOSI_Address

T–NEGOTIATE . POSIX_XTI.Set_Options

T–NETCONTROL POSIX_XTI_Internet.Network_Control

T–NO . POSIX_XTI_Internet.Keep_Alive_Off

T–NOPROTECT . POSIX_XTI.OSI.No_Protection

T–NOTOS . POSIX_XTI_Internet.Normal

T–NOTSUPPORT . POSIX_XTI.Not_Supported

T–NULL . C-language specific

t–open() . POSIX_XTI.Open

T–OPT . C-language specific

T–OPT–VALEN . C-language specific

t–opthdr . POSIX_XTI.Options_Header

T–OPTMGMT . C-language specific

t–optmgmt . POSIX_XTI.Options_Management_Info

t–optmgmt() . POSIX_XTI.Manage_Options

T–ORDREL POSIX_XTI.Orderly_Release_Request_Received

T–ORDRELDATA POSIX_XTI.Orderly_Release_Data_Supported

T–OSI–AP–IID–BIT . POSIX_XTI_mOSI.AP_Invocation_Id

T–OSI–AE–IID–BIT . POSIX_XTI_mOSI.AE_Invocation_Id

T–OUTCON . POSIX_XTI.Outgoing_Connect

T–OUTREL . POSIX_XTI.Outgoing_Release

T–OVERRIDEFLASH POSIX_XTI_Internet.Flash_Override

T–PARTSUCCESS . POSIX_XTI.Partial_Success

T–PASSIVEPROTECT POSIX_XTI.OSI.Passive_Protection

T–PCL–ACCEPT POSIX_XTI_mOSI.Presentation_Context_Accepted

T–PCL–PREJ–A–SYTX–NSUP POSIX_XTI_mOSI.Abstract_Syntax_Not_Supported

T–PCL–PREJ–LMT–DCS–EXCEED POSIX_XTI_mOSI.Local_DCS_Limit_Exceeded

T–PCL–PREJ–RSN–NSPEC POSIX_XTI_mOSI.Rejected_No_Reason_Specified

C C-to-Ada Cross-Reference 707

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

T–PCL–PREJ–T–SYTX–NSUP POSIX_XTI_mOSI.Transfer_Syntax_Not_Supported

T–PCL–USER–REJ POSIX_XTI_mOSI.Presentation_Context_Rejected

T–PRIDFLT . POSIX_XTI.OSI.Default

T–PRIHIGH . POSIX_XTI.OSI.High

T–PRILOW . POSIX_XTI.OSI.Low

T–PRIMID . POSIX_XTI.OSI.Medium

T–PRIORITY . POSIX_XTI_Internet.Priority

T–PRITOP . POSIX_XTI.OSI.Top

T–PUSH . POSIX_XTI.Push_Data

t–rcv() . POSIX_XTI.Receive

t–rcvconnect() . POSIX_XTI.Confirm_Connection

t–rcvdis() . POSIX_XTI.Retrieve_Disconnect_Info

t–rcvrel() . POSIX_XTI.Acknowledge_Orderly_Release

t–rcvreldata() POSIX_XTI.Acknowledge_Orderly_Release_With_Data

t–rcvudata() . POSIX_XTI.Receive_Data_Unit

t–rcvuderr() . POSIX_XTI.Retrieve_Data_Unit_Error

t–rcvv() . POSIX_XTI.Receive_And_Scatter_Data

t–rcvvudata() POSIX_XTI.Receive_And_Scatter_Data_Unit

T–READONLY . POSIX_XTI.Read_Only

T–ROUTINE . POSIX_XTI_Internet.Routine

T–SENDZERO POSIX_XTI.Zero_Length_Service_Data_Unit_Supported

t–snd() . POSIX_XTI.Send

t–snddis() . POSIX_XTI.Send_Disconnect_Request

t–sndrel() . POSIX_XTI.Initiate_Orderly_Release

t–sndreldata() POSIX_XTI.Initiate_Orderly_Release_With_Data

t–sndudata() . POSIX_XTI.Send_Data_Unit

t–sndv() . POSIX_XTI.Gather_And_Send_Data

t–sndvudata() . POSIX_XTI.Gather_And_Send_Data_Unit

t–strerror() . C-language specific

T–SUCCESS . POSIX_XTI.Success

t–sync() . POSIX_XTI.Synchronize_Endpoint

T–UDATA . C-language specific

T–UDERR POSIX_XTI.Error_In_Previously_Sent_Datagram

t–uderr . POSIX_XTI.Unit_Data_Error_Code

T–UDERROR . C-language specific

T–UNBIND . POSIX_XTI.Unbound

t–unbind() . POSIX_XTI.Unbind

T–UNITDATA . C-language specific

t–unitdata . C-language specific

T–UNSPEC . POSIX_XTI.Unspecified

T–YES . POSIX_XTI_Internet.Keep_Alive_On

TACCES . POSIX.Insufficient_Permission

TADDRBUSY . POSIX.Address_In_Use

TBADADDR . POSIX.Incorrect_Address_Format

TBADDATA . POSIX.Illegal_Data_Range

TBADF . POSIX.Invalid_File_Descriptor

708 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

TBADFLAG . POSIX.Invalid_Flag

TBADNAME POSIX.Invalid_Communications_Provider

TBADOPT . POSIX.Incorrect_Or_Illegal_Option

TBADQLEN . POSIX.Endpoint_Queue_Length_Is_Zero

TBADSEQ . POSIX.Invalid_Sequence_Number

TBUFOVFLW . POSIX.Buffer_Not_Large_Enough c
tcdrain() . POSIX_Terminal_Functions.Drain

tcflag–t . POSIX_Terminal_Functions.Terminal_Modes

tcflow() . POSIX_Terminal_Functions.Flow

tcflush() . POSIX_Terminal_Functions.Discard_Data

tcgetattr() POSIX_Terminal_Functions.Get_Terminal_Characteristics

tcgetpgrp() POSIX_Terminal_Functions.Get_Process_Group_ID

TCIFLUSH POSIX_Terminal_Functions.Received_But_Not_Read

TCIOFF . POSIX_Terminal_Functions.Transmit_Stop

TCIOFLUSH . POSIX_Terminal_Functions.Both

TCION . POSIX_Terminal_Functions.Transmit_Start

TCL–CHECKSUM POSIX_XTI_ISO.Connectionless_Checksum

TCL–PRIORITY . POSIX_XTI_ISO.Priority

TCL–PROTECTION . POSIX_XTI_ISO.Protection

TCL–RESERRORRATE POSIX_XTI_ISO.Residual_Error_Rate

TCL–TRANSDEL POSIX_XTI_ISO.Connectionless_Transit_Delay

TCO–ACKTIME . POSIX_XTI_ISO.Acknowledge_Time

TCO–ALTCLASS1 POSIX_XTI_ISO.Alternative_Class_1

TCO–ALTCLASS2 POSIX_XTI_ISO.Alternative_Class_2

TCO–ALTCLASS3 POSIX_XTI_ISO.Alternative_Class_3

TCO–ALTCLASS4 POSIX_XTI_ISO.Alternative_Class_4

TCO–CHECKSUM POSIX_XTI_ISO.Connection_Checksum

TCO–CONNRESIL POSIX_XTI_ISO.Connection_Resilience

TCO–ESTDELAY . POSIX_XTI_ISO.Establishment_Delay

TCO–ESTFAILPROB POSIX_XTI_ISO.Establishment_Fail_Probability

TCO–EXPD . POSIX_XTI_ISO.Expedited_Data

TCO–EXTFORM . POSIX_XTI_ISO.Extended_Format

TCO–FLOWCTRL . POSIX_XTI_ISO.Flow_Control

TCO–LTPDU . POSIX_XTI_ISO.TPDU_Length_Maximum

TCO–NETEXP POSIX_XTI_ISO.Network_Expedited_Data

TCO–NETRECPTCF POSIX_XTI_ISO.Network_Receipt_Confirmation

TCO–PREFCLASS . POSIX_XTI_ISO.Preferred_Class

TCO–PRIORITY . POSIX_XTI_ISO.Priority

TCO–PROTECTION . POSIX_XTI_ISO.Protection

TCO–REASTIME . POSIX_XTI_ISO.Reassignment_Time

TCO–RELDELAY . POSIX_XTI_ISO.Release_Delay

TCO–RELFAILPROB POSIX_XTI_ISO.Release_Fail_Probability

TCO–RESERRORRATE POSIX_XTI_ISO.Residual_Error_Rate

TCO–THROUGHPUT . POSIX_XTI_ISO.Throughput

TCO–TRANSDEL POSIX_XTI_ISO.Connection_Transit_Delay

TCO–TRANSFFAILPROB POSIX_XTI_ISO.Transfer_Fail_Probability
c

C C-to-Ada Cross-Reference 709

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

TCOFLUSH POSIX_Terminal_Functions.Written_But_Not_Transmitted

TCOOFF . POSIX_Terminal_Functions.Suspend_Output

TCOON . POSIX_Terminal_Functions.Restart_Output

TCP–KEEPALIVE POSIX_XTI_Internet.Keep_Alive_Interval

TCP–MAXSEG POSIX_XTI_Internet.Segment_Size_Maximum

TCP–NODELAY . POSIX_XTI_Internet.No_Delay
c

tcsendbreak() . POSIX_Terminal_Functions.Send_Break

tcsetattr() POSIX_Terminal_Functions.Set_Terminal_Characteristics

tcsetpgrp() POSIX_Terminal_Functions.Set_Process_Group_ID

TCSADRAIN POSIX_Terminal_Functions.After_Output

TCSAFLUSH POSIX_Terminal_Functions.After_Output_and_Input

TCSANOW . POSIX_Terminal_Functions.Immediately

<termios.h> . POSIX_Terminal_Functions

termios POSIX_Terminal_Functions.Terminal_Characteristics

TFLOW . POSIX.Flow_Control_Error

thrpt . POSIX_XTI.OSI.Throughput_Rate c
time() . C-language specific

<time.h> . POSIX_Timers

TIMER–ABSTIME . POSIX_Timers.Absolute_Timer

timer–create() . POSIX_Timers.Create_Timer

timer–delete() . POSIX_Timers.Delete_Timer

timer–getoverrun() . POSIX_Timers.Get_Timer_Overruns

timer–gettime() . POSIX_Timers.Get_Timer_State

TIMER–MAX . POSIX_Limits.Timers_Maxima’Last

timer–settime . POSIX_Timers.Arm_Timer

timer–settime . POSIX_Timers.Disarm_Timer

timer–t . POSIX_Timers.Timer_ID

times() . POSIX_Process_Times.Elapsed_Real_Time

times() . POSIX_Process_Times.Get_Process_Times

timeval . C-language specific

TINDOUT POSIX.Outstanding_Connection_Indications

TLOOK . POSIX.Event_Requires_Attention c
tms–cstime POSIX_Process_Times.Descendants_System_CPU_Time_Of

tms–cutime POSIX_Process_Times.Descendants_User_CPU_Time_Of

tms–stime . POSIX_Process_Times.System_CPU_Time_Of

tms–utime . POSIX_Process_Times.User_CPU_Time_Of

tms . POSIX_Process_Times.Process_Times

TNOADDR . POSIX.Could_Not_Allocate_Address

TNODATA . POSIX.No_Data_Available

TNODIS POSIX.No_Disconnect_Indication_On_Endpoint

TNOREL POSIX.No_Orderly_Release_Indication_On_Endpoint

TNOSTRUCTYPE POSIX.Unsupported_Object_Type_Requested

TNOTSUPPORT . POSIX_XTI_Operation_Not_Supported

TNOUDERR . POSIX.No_Unit_Data_Error_On_Endpoint

TOUTSTATE . POSIX.Operation_Not_Valid_For_State c
TOSTOP POSIX_Terminal_Functions.Send_Signal_For_BG_Output

710 C Ada/C Cross-References

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

tp–conn–param POSIX_Sockets_ISO.Connection_Parameters

TPACK–EACH . POSIX_Sockets_ISO.Acknowledge_Each

TPACK–WINDOW POSIX_Sockets_ISO.Acknowledge_Window

TP–CLASS–0 . POSIX_Sockets_ISO.TP_Class_0

TP–CLASS–1 . POSIX_Sockets_ISO.TP_Class_1

TP–CLASS–2 . POSIX_Sockets_ISO.TP_Class_2

TP–CLASS–3 . POSIX_Sockets_ISO.TP_Class_3

TP–CLASS–4 . POSIX_Sockets_ISO.TP_Class_4

TPFLAG–NLQOS–PDN POSIX_Sockets_ISO.Public_Data_Network_QOS

TPFLAG–PEER–ON–SAMENET POSIX_Sockets_ISO.Peer_On_Same_Network

TPFLAG–XPD–PRES POSIX_Sockets_ISO.Expedited_Data_Present

TPROTO . POSIX.Protocol_Error

TPROVMISMATCH POSIX.Communications_Provider_Mismatch

TPRX–EACH POSIX_Sockets_ISO.Retransmit_Each_Packet

TPRX–FASTSTART . POSIX_Sockets_ISO.Fast_Start

TPRX–USE–CW POSIX_Sockets_ISO.Use_Congestion_Window

TQFULL . POSIX.Endpoint_Queue_Full

transdel . POSIX_XTI.OSI.Transit_Delay_Rate

TRESADDR POSIX.Surrogate_File_Descriptor_Mismatch

TRESQLEN POSIX.Incorrect_Surrogate_Queue_Length

TRY–AGAIN . C-language specific

TSTATECHNG . POSIX.State_Change_In_Progress

TSYSERR . C-language specific
c

ttyname() . POSIX_IO.Get_Terminal_Name

tzset() . C-language specific

TZNAME–MAX POSIX_Limits.Time_Zone_String_Maxima’Last

UDP–CHECKSUM . POSIX_XTI_Internet.UDP_Checksum
c

uid–t . POSIX_Process_Identification.User_ID

UIO–MAXIOV POSIX_Limits.Socket_IO_Vector_Maxima’Last

<un.h> . POSIX_Sockets_Local c
umask() POSIX_Permissions.Get_Allowed_Process_Permissions

umask() POSIX_Permissions.Set_Allowed_Process_Permissions

uname(), machine . POSIX.Machine

uname(), nodename . POSIX.Node_Name

uname(), release . POSIX.Release

uname(), sysname . POSIX.System_Name

uname(), version . POSIX.Version

<unistd.h> . POSIX

unlink() . POSIX_Files.Unlink

utime() . POSIX_Files.Set_File_Times

utsname . POSIX

VEOF . POSIX_Terminal_Functions.EOF_Char

VEOL . POSIX_Terminal_Functions.EOL_Char

VERASE . POSIX_Terminal_Functions.Erase_Char

VINTR . POSIX_Terminal_Functions.Interrupt_Char

VKILL . POSIX_Terminal_Functions.Kill_Char

C C-to-Ada Cross-Reference 711

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

VMIN POSIX_Terminal_Functions.Minimum_Input_Count_Of

VQUIT . POSIX_Terminal_Functions.Quit_Char

VSTART . POSIX_Terminal_Functions.Start_Char

VSTOP . POSIX_Terminal_Functions.Stop_Char

VSUSP . POSIX_Terminal_Functions.Suspend_Char

VTIME . POSIX_Terminal_Functions.Input_Time_Of

wait() POSIX_Process_Primitives.Wait_For_Child_Process

waitpid() POSIX_Process_Primitives.Wait_For_Child_Process

WEXITSTATUS POSIX_Process_Primitives.Exit_Status_Of

WIFEXITED POSIX_Process_Primitives.Termination_Cause_Of

WIFSIGNALED POSIX_Process_Primitives.Termination_Cause_Of

WIFSTOPPED POSIX_Process_Primitives.Termination_Cause_Of

WNOHANG . C-language specific

write() . POSIX_IO.Write

write() . POSIX_IO.Read

write() . POSIX_IO.Generic_Write

WSTOPSIG POSIX_Process_Primitives.Termination_Signal_Of

WTERMSIG POSIX_Process_Primitives.Termination_Signal_Of

WUNTRACED . C-language specific

W–OK . POSIX_Files.Write_Ok

X–OK . POSIX_Files.Execute_Ok

<xti.h> . POSIX_XTI

<xti.h> . POSIX_XTI_ISO

<xti.h> . POSIX_XTI_Internet

XTI–DEBUG . POSIX_XTI.Enable_Debugging

XTI–GENERIC . POSIX_XTI.XTI_Protocol_Level

XTI–LINGER POSIX_XTI.Linger_On_Close_If_Data_Present

<xti_mosi.h> . POSIX_XTI_mOSI

XTI–RCVBUF . POSIX_XTI.Receive_Buffer_Size

XTI–RCVLOWAT . POSIX_XTI.Receive_Low_Water_Mark

XTI–SNDBUF . POSIX_XTI.Send_Buffer_Size

XTI–SNDLOWAT . POSIX_XTI.Send_Low_Water_Mark
c

712 C Ada/C Cross-References

IEEE Std 1003.5c-1998

Annex D
(normative)

Protocol Mappings

This annex describes Ada mappings to facilities that support specific network proto-
cols.

D.1 Sockets Protocol Mappings

This clause describes Ada mappings to facilities that support specific sockets network
protocols.

D.1.1 Package POSIX_Sockets_Local

This package provides DNI/Socket interface mappings for local IPC. Unless other-
wise specified, all the DNI/Socket calls in package POSIX_Sockets can be used for
IPC. (See 18.4.) Only additional information relevant to IPC is highlighted here.

The functionality described in this subclause is optional. If the Sockets Detailed Network
Interface option is not supported, the implementation may cause all calls to the explic-
itly declared operations defined in this subclause to raise POSIX_Error . Otherwise,
the behavior shall be as specified in this subclause.

with POSIX,
POSIX_IO,
POSIX_Sockets;

package POSIX_Sockets_Local is
-- D.1.1.1 Local IPC Protocol Family
Local_Protocol :

constant POSIX_Sockets.Protocol_Family := impl-def-static-expression;
type Local_Socket_Address is private ;
type Local_Socket_Address_Pointer is access all Local_Socket_Address;
function "+" (Pointer : Local_Socket_Address_Pointer)

return POSIX_Sockets.Socket_Address_Pointer;
function "+" (Pointer : POSIX_Sockets.Socket_Address_Pointer)

return Local_Socket_Address_Pointer;
function Is_Local_Socket_Address

(Pointer : POSIX_Sockets.Socket_Address_Pointer)
return Boolean;

function Get_Socket_Path (Name : Local_Socket_Address)
return POSIX.Pathname;

procedure Set_Socket_Path
(Name : in out Local_Socket_Address;

Path : in POSIX.Pathname);
function Get_Socket_Name (Handle : POSIX_Sockets.Socket_Message)

return Local_Socket_Address;
function Get_Address (Info_Item : POSIX_Sockets.Socket_Address_Info)

return Local_Socket_Address;
function Get_Peer_Name (Socket : POSIX_IO.File_Descriptor)

return Local_Socket_Address;
function Get_Socket_Name (Socket : POSIX_IO.File_Descriptor)

return Local_Socket_Address;

D Protocol Mappings 713

c

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

private
implementation-defined

end POSIX_Sockets_Local;

D.1.1.1 Local IPC Protocol Family

D.1.1.1.1 Synopsis

Local_Protocol :
constant POSIX_Sockets.Protocol_Family := impl-def-static-expression;

type Local_Socket_Address is private ;
type Local_Socket_Address_Pointer is access all Local_Socket_Address;
function "+" (Pointer : Local_Socket_Address_Pointer)

return POSIX_Sockets.Socket_Address_Pointer;
function "+" (Pointer : POSIX_Sockets.Socket_Address_Pointer)

return Local_Socket_Address_Pointer;
function Is_Local_Socket_Address

(Pointer : POSIX_Sockets.Socket_Address_Pointer)
return Boolean;

function Get_Socket_Path (Name : Local_Socket_Address)
return POSIX.Pathname;

procedure Set_Socket_Path
(Name : in out Local_Socket_Address;

Path : in POSIX.Pathname);
function Get_Socket_Name (Handle : POSIX_Sockets.Socket_Message)

return Local_Socket_Address;
function Get_Address (Info_Item : POSIX_Sockets.Socket_Address_Info)

return Local_Socket_Address;
function Get_Peer_Name (Socket : POSIX_IO.File_Descriptor)

return Local_Socket_Address;
function Get_Socket_Name (Socket : POSIX_IO.File_Descriptor)

return Local_Socket_Address;

D.1.1.1.2 Description

The local IPC protocol family provides communication between processes on the
same system using the socket interface. Addresses used for sockets in local IPC
are pathnames. The family provides support for Stream_Socket and Datagram_-
Socket socket types using unspecified internal communication mechanisms.

Given a local IPC socket address, Get_Socket_Path returns the corresponding path-
name. This value is set to an empty string when a socket address is created and
needs to be set to a valid pathname by the application.

Set_Socket_Path sets the pathname in a local IPC socket address. An unspecified
address for a local IPC socket shall be indicated by an empty string as the corre-
sponding pathname.

Binding a pathname in the local domain creates a name for a socket in the file sys-
tem. The Bind procedure shall be called with a Local_Socket_Address object
containing the pathname for the socket. The Bind procedure uses the file creation
mask of POSIX_Permissions.Set_Allowed_Process_Permissions to modify
the default permissions of read/write/execute by owner/group/others. The file shall
be created as if by a call to the POSIX_Files.Create_FIFO operation, with the
exception that the resulting file shall be a socket rather than a FIFO special file.

714 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

The call shall generate the exception POSIX_Error if the corresponding call to the
POSIX_Files.Create_FIFO operation would fail, and Get_Error_Code shall re-
turn the value indicated for POSIX_Files.Create_FIFO .

If the pathname of the socket is not an absolute pathname, the results are unspeci-
fied.

If the Bind operation succeeds, a name for the socket is created in the file system.
When the application is finished with the socket, it should be removed (using the
POSIX_Files.Unlink procedure), or subsequent attempts to bind to that socket
may fail.

When connecting to a socket in the local domain, the application shall call Connect
with the Nameparameter (a Local_Socket_Address object) containing the path-
name for the socket. The pathname must name an existing socket. The name shall
be subjected to pathname resolution as for a call to the Open procedure called with
a Mode value of POSIX_IO.Write_Only ; if that open would fail for any reason other
than the type of the file with the specified name, the Connect procedure shall fail
with the corresponding value.

The type Local_Socket_Address shall be used to represent an address for this
protocol family. The type Local_Socket_Address_Pointer is an access to this
protocol-specific address type. The "+" operations shall convert a Local_Socket_-
Address_Pointer to and from the Socket_Address_Pointer type for use with
the base package operations defined for the Socket_Address_Pointer type. The
return value of the "+" operations designates the same address object as the input
parameter. The function Is_Local_Socket_Address shall return True if the ad-
dress object designated by the specified non-null Socket_Address_Pointer is a
valid Local_Socket_Address and False otherwise. The conversion operation to
Local_Socket_Address_Pointer shall succeed if and only if the corresponding
Is_Local_Socket_Address returns True . Otherwise, the results are undefined.

NOTE: The Null_Socket_Address constant corresponds to the Ada null literal for these
operations.

Get_Socket_Name shall return the name (address) associated with a socket. Get_-
Peer_Name shall return the socket address of the peer connected to a socket. For
Get_Socket_Name and Get_Peer_Name , the Socket parameter is an open file de-
scriptor referring to a socket. A call to Get_Socket_Name for a socket in the Ground
state shall return the same value as that of a new socket address returned by Cre-
ate .

Get_Address returns the Address attribute of a Socket_Address_Info object as a
Local_Socket_Address object. Get_Socket_Name returns the Name attribute of a
Socket_Message object as a Local_Socket_Address object.

D.1.1.1.3 Error Handling

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

Incorrect_Address_Type

The type of the object designated by the return value is not appropriate for

D Sockets Protocol Mappings 715

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

the address format of this socket.

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

The Socket parameter is not valid.

No_Buffer_Space

Insufficient resources were available in the system to perform the operation.

Not_Connected

The socket is not connected or otherwise has not had the peer prespecified.

Not_A_Socket

The file descriptor Socket does not refer to a socket.

Invalid_Argument

A call was made to Bind with a socket that is already bound to a pathname.

Not_A_Socket

A call was made to Connect with a pathname that exists but is not a socket.

Connection_Refused

A call was made to Connect with a pathname that exists and is a socket,
but no open file descriptor for the named socket exists.

Wrong_Protocol_Type

A call was made to Connect function with a pathname that exists and is a
socket, but the socket is not of the same type as the socket attempting the
connection.

D.1.1.2 Stream sockets for local IPC

D.1.1.2.1 Description

Local stream sockets provide a flow controlled, reliable, bidirectional connection-
based service that does not preserve message boundaries. Local stream sockets
support all states in Figure D.1. Local stream sockets are created with an empty
pathname as a local (bound) address. A protocol family of Local_Protocol and a
socket type of Stream_Socket are specified on the Create call.

Local stream socket names follow the conventions for Bind described in D.1.1.1.2.

Local stream socket names follow conventions for the Connect procedure described
in D.1.1.1.2. If the pathname exists and is a socket, but the named socket is not in the
Listening state or the connection queue for the named socket has reached its limit, the
connection attempt shall fail. The call to Connect shall complete without blocking
if the target socket exists and is in the Listening state; it shall return without waiting
for a peer process to call the Accept_Connection procedure on the listening socket.
If no local socket address has been bound to the socket, the local socket address shall
not be bound by the call to the Connect procedure.

716 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

If a socket in the Ground state connects to a Listening socket, the address returned by
Accept_Connection shall specify the peer address as an empty string. The local
address of the new socket shall be the same as that of the listening socket.

If the application makes a call to the Shutdown procedure to cease output, an end-
of-file shall be indicated to the peer socket once any pending data have been read.
If the application makes a call to Shutdown with a Shutdown_Mode of Further_-
Receives_Disallowed , no action shall be taken. When a local stream socket is
closed in the Listening state pending connections to that socket that have not been
returned by Accept_Connection function shall be aborted.

Neither an immediate disconnect nor a normal disconnect on a local stream socket
shall cause data to be discarded. Any data that have been sent shall be in the receive
queue of the peer socket. The Close procedure shall not block.

It is implementation defined whether the local stream protocol supports out-of-band
data.

No protocol options are defined for local stream sockets.

D.1.1.2.2 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Connection_Refused

A call was made to Connect with a pathname that exists and is a socket,
but the named socket is not in the Listening state or the connection queue for
the named socket has reached its limit.

Connection_Reset

A local stream socket was closed in the Listening state, and pending connec-
tions to that socket not returned by Accept_Connection were aborted.

Is_Already_Connected

A call was made to Connect with a pathname of a socket that is already
connected.

Option_Not_Supported

A send or receive function specified the Process_OOB_Data and out-of-band
data are not supported.

D.1.1.3 Datagram sockets for local IPC

D.1.1.3.1 Description

Local Datagram_Socket sockets provide a connectionless mode service that pre-
serves message boundaries, but does not necessarily provide error detection. Local
datagram sockets support all states in Figure D.2. If an application sends a data-
gram using a socket in the Ground state, the operation shall complete normally, but
the socket shall remain in the Ground state. The source address of the datagram sent
shall be an empty string. A protocol family of Local_Protocol and a socket type of
Datagram_Socket are specified on the Create call.

D Sockets Protocol Mappings 717

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Connecting

Bound

Ground

Null

Failed

Listening

Connected

Dead

Sending Only Receiving Only

ListenConnect

Connect

Bind

Close

Close

Close

Connect Failure

R
eceive C

onnection

Close

Create

Close

(old socket)

(new
 socket)

Accept Connection

Close

S
hutdow

n2

Shutdown0

Send Message

Close

Shutdown3

Close

Receive Message

Close

Write
Send

Read
Receive

Receive Message
Receive
Send Message
Send
Read
Write

Shutdown1

Shutdown4

Figure D.1 – Local IPC (and TCP) Stream Sockets State Diagram

Local datagram socket names follow the conventions for Bind described in D.1.1.1.2.

Local Datagram_Socket socket names follow the conventions for Connect described
in D.1.1.1.2. If no local socket address has been bound to the socket, the local socket
address shall not be bound by the call to Connect . A connectionless-mode socket in
the Open state can still receive datagrams from sources other than the peer.

718 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Closing a local connectionless-mode socket shall have no effect on data previously
sent.

Local connectionless-mode sockets shall not support out-of-band data.

No protocol options are defined for local connectionless-mode sockets.

D.1.1.3.2 Error Handling

If the following condition occurs, the exception POSIX_Error shall be raised with
the corresponding error code:

Option_Not_Supported

A send or receive function specified Process_OOB_Data and out-of-band
data are not supported.

Ground

Null

Open
(peer address
prespecified)

Bound

Prespecify Bind

Close

Create

Send
Send Message

Unspecify

Prespecify
Close

Close

Receive Message
Receive
Send Message
Send

Receive Message
Receive

Send Message
Send
Read
Write

Prespecify

Figure D.2 – Local IPC Datagram Sockets State Diagram

D.1.2 Package POSIX_Sockets_ISO

This package provides the DNI/Socket interface mappings for ISO transport proto-
cols. Unless otherwise specified, all the DNI/Socket calls in package POSIX_Sockets
can be used. Only additional information relevant to the ISO transport protocol is
highlighted here.

The functionality described in this subclause is optional. If either the Sockets Detailed
Network Interface option or the ISO/OSI Protocol option is not supported, the implementa-
tion may cause all calls to the explicitly declared operations defined in this subclause
to raise POSIX_Error . Otherwise, the behavior shall be as specified in this subclause.

D Sockets Protocol Mappings 719

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

with POSIX,
POSIX_IO,
POSIX_Sockets;

package POSIX_Sockets_ISO is
-- D.1.2.1 ISO Protocol Family
ISO_Protocol :

constant POSIX_Sockets.Protocol_Family := impl-def-static-expression;
ISO_Transport_Protocol :

constant POSIX_Sockets.Protocol_Number := impl-def-static-expression;
Connectionless_Mode_Transport_Protocol :

constant POSIX_Sockets.Protocol_Number := impl-def-static-expression;
Connectionless_Mode_Network_Protocol :

constant POSIX_Sockets.Protocol_Number := impl-def-static-expression;
type ISO_Socket_Address is private ;
type ISO_Socket_Address_Pointer is access all ISO_Socket_Address;
function "+" (Pointer : ISO_Socket_Address_Pointer)

return POSIX_Sockets.Socket_Address_Pointer;
function "+" (Pointer : POSIX_Sockets.Socket_Address_Pointer)

return ISO_Socket_Address_Pointer;
function Is_ISO_Socket_Address

(Pointer : POSIX_Sockets.Socket_Address_Pointer)
return Boolean;

type ISO_Address is new POSIX.Octet_Array;
type Presentation_Selector is new POSIX.Octet_Array;
type Session_Selector is new POSIX.Octet_Array;
type Transport_Selector is new POSIX.Octet_Array;
type GOSIP_Selector is new POSIX.Octet_Array;
function Get_ISO_Address (Name : ISO_Socket_Address)

return ISO_Address;
procedure Set_ISO_Address

(Name : in out ISO_Socket_Address;
Address : in ISO_Address);

function Get_Presentation_Selector (Name : ISO_Socket_Address)
return Presentation_Selector;

procedure Set_Presentation_Selector
(Name : in out ISO_Socket_Address;

Selector : in Presentation_Selector);
function Get_Session_Selector (Name : ISO_Socket_Address)

return Session_Selector;
procedure Set_Session_Selector

(Name : in out ISO_Socket_Address;
Selector : in Session_Selector);

function Get_Transport_Selector (Name : ISO_Socket_Address)
return Transport_Selector;

procedure Set_Transport_Selector
(Name : in out ISO_Socket_Address;

Selector : in Transport_Selector);
function Get_GOSIP_Selector (Name : ISO_Socket_Address)

return GOSIP_Selector;
procedure Set_GOSIP_Selector

(Name : in out ISO_Socket_Address;
Selector : in GOSIP_Selector);

function Get_Socket_Name (Handle : POSIX_Sockets.Socket_Message)
return ISO_Socket_Address;

function Get_Address (Info_Item : POSIX_Sockets.Socket_Address_Info)
return ISO_Socket_Address;

function Get_Peer_Name (Socket : POSIX_IO.File_Descriptor)
return ISO_Socket_Address;

720 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

function Get_Socket_Name (Socket : POSIX_IO.File_Descriptor)
return ISO_Socket_Address;

-- D.1.2.2 Connectionless-Mode ISO Sockets Protocols
type CL_Options is new POSIX.Octet_Array;
type CL_Flags is new POSIX.Option_Set;
No_Segmentation : constant CL_Flags := implementation-defined;
Suppress_Error_PDUs : constant CL_Flags := implementation-defined;
No_Checksum : constant CL_Flags := implementation-defined;
function Get_CL_Options

(Socket : POSIX_IO.File_Descriptor)
return CL_Options;

procedure Set_CL_Options
(Socket : in POSIX_IO.File_Descriptor;

To : in CL_Options);
function Get_CL_Flags

(Socket : POSIX_IO.File_Descriptor)
return CL_Flags;

procedure Set_CL_Flags
(Socket : in POSIX_IO.File_Descriptor;

To : in CL_Flags);
-- D.1.2.3 TP - ISO Transport Protocol
type TP_Flags is new POSIX.Option_Set;
Public_Data_Network_QOS : constant TP_Flags := implementation-defined;
Peer_On_Same_Network : constant TP_Flags := implementation-defined;
Expedited_Data_Present : constant TP_Flags := implementation-defined;
function Get_TP_Flags

(Socket : POSIX_IO.File_Descriptor)
return TP_Flags;

function Get_Connection_Data
(Socket : POSIX_IO.File_Descriptor)

return POSIX.Octet_Array;
procedure Set_Connection_Data

(Socket : in POSIX_IO.File_Descriptor;
To : in POSIX.Octet_Array);

function Get_Disconnect_Data
(Socket : POSIX_IO.File_Descriptor)

return POSIX.Octet_Array;
procedure Set_Disconnect_Data

(Socket : in POSIX_IO.File_Descriptor;
To : in POSIX.Octet_Array);

function Get_Confirmation_Data
(Socket : POSIX_IO.File_Descriptor)

return POSIX.Octet_Array;
procedure Set_Confirmation_Data

(Socket : in POSIX_IO.File_Descriptor;
To : in POSIX.Octet_Array);

type TP_Ancillary_Data_Type is
(Connection_Data, Disconnect_Data, Confirmation_Data);

type TP_Ancillary_Data (Kind : TP_Ancillary_Data_Type;
Size : Positive) is private ;

procedure Set_Ancillary_Data
(Message : in out POSIX_Sockets.Socket_Message;

Object : in TP_Ancillary_Data);
function Get_Ancillary_Data

(Message : POSIX_Sockets.Socket_Message)
return TP_Ancillary_Data;

procedure Set_Ancillary_Data_Array
(Object : in out TP_Ancillary_Data;

D Sockets Protocol Mappings 721

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Data : in POSIX.Octet_Array);
function Get_Ancillary_Data_Array

(Object : TP_Ancillary_Data)
return POSIX.Octet_Array;

type Connection_Parameters is private ;
function Get_Connection_Parameters

(Socket : POSIX_IO.File_Descriptor)
return Connection_Parameters;

procedure Set_Connection_Parameters
(Socket : in POSIX_IO.File_Descriptor;

To : in Connection_Parameters);
function Get_Retransmit_Number

(Object : Connection_Parameters)
return Natural;

procedure Set_Retransmit_Number
(Object : in out Connection_Parameters;

To : in Natural);
type Window_Size is range 128 .. 16384;
function Get_Window_Size

(Object : Connection_Parameters)
return Window_Size;

procedure Set_Window_Size
(Object : in out Connection_Parameters;

To : in Window_Size);
type TPDU_Size is range 7 .. 13;
function Get_TPDU_Size

(Object : Connection_Parameters)
return TPDU_Size;

procedure Set_TPDU_Size
(Object : in out Connection_Parameters;

To : in TPDU_Size);
type TP_Acknowledgment_Strategy is

(Acknowledge_Window, Acknowledge_Each);
function Get_Acknowledgment_Strategy

(Object : Connection_Parameters)
return TP_Acknowledgment_Strategy;

procedure Set_Acknowledgment_Strategy
(Object : in out Connection_Parameters;

To : in TP_Acknowledgment_Strategy);
type TP_Retransmit_Strategy is

(Retransmit_Each_Packet, Use_Congestion_Window, Fast_Start);
function Get_Retransmit_Strategy

(Object : Connection_Parameters)
return TP_Retransmit_Strategy;

procedure Set_Retransmit_Strategy
(Object : in out Connection_Parameters;

To : in TP_Retransmit_Strategy);
type TP_Class is new POSIX.Option_Set;
TP_Class_0 : constant TP_Class := implementation-defined;
TP_Class_1 : constant TP_Class := implementation-defined;
TP_Class_2 : constant TP_Class := implementation-defined;
TP_Class_3 : constant TP_Class := implementation-defined;
TP_Class_4 : constant TP_Class := implementation-defined;
function Get_TP_Class

(Object : Connection_Parameters)
return TP_Class;

procedure Set_TP_Class
(Object : in out Connection_Parameters;

722 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

To : in TP_Class);
function Get_Extended_Format

(Object : Connection_Parameters)
return Boolean;

procedure Set_Extended_Format
(Object : in out Connection_Parameters;

To : in Boolean);
function Get_Expedited_Service

(Object : Connection_Parameters)
return Boolean;

procedure Set_Expedited_Service
(Object : in out Connection_Parameters;

To : in Boolean);
function Get_Negotiate_Checksums

(Object : Connection_Parameters)
return Boolean;

procedure Set_Negotiate_Checksums
(Object : in out Connection_Parameters;

To : in Boolean);
function Get_Signal_Disconnections

(Object : Connection_Parameters)
return Boolean;

procedure Set_Signal_Disconnections
(Object : in out Connection_Parameters;

To : in Boolean);
function Get_Protect_Parameters

(Object : Connection_Parameters)
return Boolean;

procedure Set_Protect_Parameters
(Object : in out Connection_Parameters;

To : in Boolean);
type TP_Network_Service is implementation-defined-integer;
ISO_Connectionless : constant TP_Network_Service

:= impl-def-static-expression;
ISO_Connection : constant TP_Network_Service

:= impl-def-static-expression;
ISO_Connectionless_Over_X25 : constant TP_Network_Service

:= impl-def-static-expression;
IP_Connectionless : constant TP_Network_Service

:= impl-def-static-expression;
function Get_Network_Service

(Object : Connection_Parameters)
return TP_Network_Service;

procedure Set_Network_Service
(Object : in out Connection_Parameters;

To : in TP_Network_Service);

private
implementation-defined

end POSIX_Sockets_ISO;

D.1.2.1 ISO Protocol Family

D.1.2.1.1 Synopsis

ISO_Protocol :
constant POSIX_Sockets.Protocol_Family := impl-def-static-expression;

ISO_Transport_Protocol :

D Sockets Protocol Mappings 723

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

constant POSIX_Sockets.Protocol_Number := impl-def-static-expression;
Connectionless_Mode_Transport_Protocol :

constant POSIX_Sockets.Protocol_Number := impl-def-static-expression;
Connectionless_Mode_Network_Protocol :

constant POSIX_Sockets.Protocol_Number := impl-def-static-expression;
type ISO_Socket_Address is private ;
type ISO_Socket_Address_Pointer is access all ISO_Socket_Address;
function "+" (Pointer : ISO_Socket_Address_Pointer)

return POSIX_Sockets.Socket_Address_Pointer;
function "+" (Pointer : POSIX_Sockets.Socket_Address_Pointer)

return ISO_Socket_Address_Pointer;
function Is_ISO_Socket_Address

(Pointer : POSIX_Sockets.Socket_Address_Pointer)
return Boolean;

type ISO_Address is new POSIX.Octet_Array;
type Presentation_Selector is new POSIX.Octet_Array;
type Session_Selector is new POSIX.Octet_Array;
type Transport_Selector is new POSIX.Octet_Array;
type GOSIP_Selector is new POSIX.Octet_Array;
function Get_ISO_Address (Name : ISO_Socket_Address)

return ISO_Address;
procedure Set_ISO_Address

(Name : in out ISO_Socket_Address;
Address : in ISO_Address);

function Get_Presentation_Selector (Name : ISO_Socket_Address)
return Presentation_Selector;

procedure Set_Presentation_Selector
(Name : in out ISO_Socket_Address;

Selector : in Presentation_Selector);
function Get_Session_Selector (Name : ISO_Socket_Address)

return Session_Selector;
procedure Set_Session_Selector

(Name : in out ISO_Socket_Address;
Selector : in Session_Selector);

function Get_Transport_Selector (Name : ISO_Socket_Address)
return Transport_Selector;

procedure Set_Transport_Selector
(Name : in out ISO_Socket_Address;

Selector : in Transport_Selector);
function Get_GOSIP_Selector (Name : ISO_Socket_Address)

return GOSIP_Selector;
procedure Set_GOSIP_Selector

(Name : in out ISO_Socket_Address;
Selector : in GOSIP_Selector);

function Get_Socket_Name (Handle : POSIX_Sockets.Socket_Message)
return ISO_Socket_Address;

function Get_Address (Info_Item : POSIX_Sockets.Socket_Address_Info)
return ISO_Socket_Address;

function Get_Peer_Name (Socket : POSIX_IO.File_Descriptor)
return ISO_Socket_Address;

function Get_Socket_Name (Socket : POSIX_IO.File_Descriptor)

return ISO_Socket_Address;

724 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

D.1.2.1.2 Description

The ISO protocol family is a collection of protocols that uses the ISO address format.
The ISO family provides protocol support for the Sequenced_Packet_Socket ab-
straction through the TP protocol, (ISO/IEC 8073 f4g), for the Datagram_Socket
abstraction through the connectionless-mode transport protocol (CLTP, ISO/IEC
8602 f9g), and for the Raw_Socket abstraction by providing direct access to the
connectionless-mode network protocol (CLNP, ISO/IEC 8473-1 f7g). These protocols
are used when the Protocol parameter in the Create call is omitted and the Do-
main parameter has the value ISO_Protocol .

ISO addresses are based upon ISO/IEC 8348/AD2 fB4g. Endpoint addresses in the
ISO protocol family utilize the ISO_Socket_Address object, which includes the
following attributes.

ISO Address

The network address (NSAP) used by the endpoint shall be stored in this
attribute. ISO network addresses are limited to 20 octets in length. ISO
network addresses can take any format. Set_ISO_Address sets the ISO
network address in an ISO_Socket_Address object. Get_ISO_Address
returns the ISO address.

Presentation Selector

Set_Presentation_Selector sets the presentation selector in an ISO_-
Socket_Address object. Get_Presentation_Selector returns the cur-
rent presentation selector. The presentation selector attribute is ignored for
TP protocol sockets.

Session Selector

Set_Session_Selector sets the session selector in an ISO_Socket_-
Address object. Get_Session_Selector returns the session selector. The
session selector attribute is ignored for TP protocol sockets.

Transport Selector

An ISO transport address is similar to an Internet address in that it con-
tains a network address portion and a portion that the transport layer uses
to multiplex its services among clients. In the ISO domain, the latter portion
is called a transport selector (also known at one time as a transport suffix).
Transport selectors may be of (almost) arbitrary size. Set_Transport_-
Selector sets the transport selector in an ISO_Socket_Address object.
Get_Transport_Selector returns the transport selector.

GOSIP Selector

Set_GOSIP_Selector sets the GOSIP v2 selector in an ISO_Socket_-
Address object. Get_GOSIP_Selector returns the GOSIP v2 selector.

The type ISO_Socket_Address shall be used to represent an address for this pro-
tocol family. The type ISO_Socket_Address_Pointer is an access to this protocol-
specific address type. The "+" operations shall convert a ISO_Socket_Address_-
Pointer to and from the Socket_Address_Pointer type for use with the base
package operations defined for the Socket_Address_Pointer type. The return

D Sockets Protocol Mappings 725

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

value of the "+" operations designates the same address object as the input param-
eter. The function Is_ISO_Socket_Address shall return True if the address object
designated by the specified non-null Socket_Address_Pointer is a valid ISO_-
Socket_Address and False otherwise. The conversion operation to ISO_Socket_-
Address_Pointer shall succeed if and only if the corresponding Is_ISO_Socket_-
Address returns True . Otherwise, the results are undefined.

NOTE: The Null_Socket_Address constant corresponds to the Ada null literal for these
operations.

Get_Socket_Name shall return the name (address) associated with a socket. Get_-
Peer_Name shall return the socket address of the peer connected to a socket. For
Get_Socket_Name and Get_Peer_Name , the Socket parameter is an open file de-
scriptor referring to a socket. A call to Get_Socket_Name for a socket in the Ground
state shall return the same value as that of a new socket address returned by Cre-
ate .

Get_Address returns the Address attribute of a Socket_Address_Info object as
an ISO_Socket_Address object. Get_Socket_Name returns the Name attribute of
a Socket_Message object as an ISO_Socket_Address object.

D.1.2.1.3 Error Handling

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

Incorrect_Address_Type

The type of the object designated by the return value is not appropriate for
the address format of this socket.

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

The Socket parameter is not valid.

No_Buffer_Space

Insufficient resources were available in the system to perform the operation.

Not_Connected

The socket is not connected or otherwise has not had the peer prespecified.

Not_A_Socket

The file descriptor Socket does not refer to a socket.

D.1.2.2 Connectionless-Mode ISO Sockets Protocols

D.1.2.2.1 Synopsis

type CL_Options is new POSIX.Octet_Array;
type CL_Flags is new POSIX.Option_Set;
No_Segmentation : constant CL_Flags := implementation-defined;
Suppress_Error_PDUs : constant CL_Flags := implementation-defined;
No_Checksum : constant CL_Flags := implementation-defined;

726 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

function Get_CL_Options
(Socket : POSIX_IO.File_Descriptor)

return CL_Options;
procedure Set_CL_Options

(Socket : in POSIX_IO.File_Descriptor;
To : in CL_Options);

function Get_CL_Flags
(Socket : POSIX_IO.File_Descriptor)

return CL_Flags;
procedure Set_CL_Flags

(Socket : in POSIX_IO.File_Descriptor;

To : in CL_Flags);

D.1.2.2.2 Description

The functionality described in this subclause is optional. If the OSI Connectionless op-
tion is not supported, the implementation may cause all calls to the explicitly declared
operations defined in this subclause to raise POSIX_Error . Otherwise, the behavior
shall be as specified in this subclause.

CLNP is the connectionless-mode network protocol used by the connectionless-mode
network service. This protocol is specified in ISO/IEC 8473-1 f7g. It is accessible only
through a socket of type Raw_Socket . CLNP sockets are connectionless-mode, and
are normally used by Send with the optional To parameter and Receive with the
optional From parameter, though Connect may also be used to fix the destination
for future packets (in which case Read or Receive and Write or Send may be used).

Outgoing packets automatically have a CLNP header prefixed to them. Incoming
packets received by the application contain the full CLNP header.

CLTP is a simple unreliable datagram protocol that is accessed via the Datagram_-
Socket abstraction for the ISO protocol family. CLTP sockets are connectionless
mode and are normally used with Send with the optional To parameter and Receive
with the optional From parameter. However, Connect may also be used to fix the
destination for future packets (in which case the Receive or Read, and Send or
Write may be used).

CLTP address formats are identical to those used by TP. In particular CLTP provides
a service selector in addition to the normal ISO NSAP. The CLTP selector space is
separate from the TP selector space (i.e., a CLTP selector may not be connected to a
TP selector).

ISO CLNP and ISO CLTP support all states in Figure D.3.

Set_CL_Flags sets CLNP and CLTP option flags. Get_CL_Flags returns current
CLNP and CLTP option flags. The option flags are represented as a set of symbols of
type POSIX.Option_Set , using the following names.

No_Segmentation

Do not allow segmentation if this option is enabled.

Suppress_Error_PDUs

Suppress error PDUs if this option is enabled.

D Sockets Protocol Mappings 727

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Ground

Null

Open
(peer address
prespecified)

Bound

Prespecify

Send Message
Send
Bind

Close

Create

Unspecify

Prespecify
Close

Prespecify

Close

Send

Receive Message
Receive

Receive Message
Receive

Send Message
Send
Read
Write

Send Message

Figure D.3 – ISO (and UDP) Connectionless Sockets State Diagram

No_Checksum

Do not generate the checksum if this option is enabled.

The operations "+" , "-" , ">" , "<" , ">=" , "<=" , and Empty_Set are available on
the type CL_Flags via the derived type semantics of Ada, from the operations avail-
able for POSIX.Option_Set . The appropriate operations can be used to create and
examine a set containing the required flags.

Set_CL_Options sets the connectionless mode protocol options. The options must be
formatted exactly as specified by 7.5 of ISO/IEC 8473-1 f7g. Once an option has been
set, it will be sent on all packets until a different option is set. Get_CL_Options
returns current options. When a packet is received with the globally unique quality
of service option present in the CL_Options object and the congestion experienced bit
is set, then the transport congestion control procedure defined in ISO/IEC 8073 f4g
is called.

D.1.2.2.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Is_Already_Connected

The socket is already connected.

Not_Connected

The socket has not had the peer prespecified.

728 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

No_Buffer_Space

Insufficient memory available in the system for an internal data structure.

Address_In_Use

The specified address is already in use.

Address_Not_Available

No network interface exists for the specified network address.

D.1.2.3 TP - ISO Transport Protocol

D.1.2.3.1 Synopsis

type TP_Flags is new POSIX.Option_Set;
Public_Data_Network_QOS : constant TP_Flags := implementation-defined;
Peer_On_Same_Network : constant TP_Flags := implementation-defined;
Expedited_Data_Present : constant TP_Flags := implementation-defined;
function Get_TP_Flags

(Socket : POSIX_IO.File_Descriptor)
return TP_Flags;

function Get_Connection_Data
(Socket : POSIX_IO.File_Descriptor)

return POSIX.Octet_Array;
procedure Set_Connection_Data

(Socket : in POSIX_IO.File_Descriptor;
To : in POSIX.Octet_Array);

function Get_Disconnect_Data
(Socket : POSIX_IO.File_Descriptor)

return POSIX.Octet_Array;
procedure Set_Disconnect_Data

(Socket : in POSIX_IO.File_Descriptor;
To : in POSIX.Octet_Array);

function Get_Confirmation_Data
(Socket : POSIX_IO.File_Descriptor)

return POSIX.Octet_Array;
procedure Set_Confirmation_Data

(Socket : in POSIX_IO.File_Descriptor;
To : in POSIX.Octet_Array);

type TP_Ancillary_Data_Type is
(Connection_Data, Disconnect_Data, Confirmation_Data);

type TP_Ancillary_Data (Kind : TP_Ancillary_Data_Type;
Size : Positive) is private ;

procedure Set_Ancillary_Data
(Message : in out POSIX_Sockets.Socket_Message;

Object : in TP_Ancillary_Data);
function Get_Ancillary_Data

(Message : POSIX_Sockets.Socket_Message)
return TP_Ancillary_Data;

procedure Set_Ancillary_Data_Array
(Object : in out TP_Ancillary_Data;

Data : in POSIX.Octet_Array);
function Get_Ancillary_Data_Array

(Object : TP_Ancillary_Data)
return POSIX.Octet_Array;

type Connection_Parameters is private ;
function Get_Connection_Parameters

(Socket : POSIX_IO.File_Descriptor)
return Connection_Parameters;

D Sockets Protocol Mappings 729

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

procedure Set_Connection_Parameters
(Socket : in POSIX_IO.File_Descriptor;

To : in Connection_Parameters);
function Get_Retransmit_Number

(Object : Connection_Parameters)
return Natural;

procedure Set_Retransmit_Number
(Object : in out Connection_Parameters;

To : in Natural);
type Window_Size is range 128 .. 16384;
function Get_Window_Size

(Object : Connection_Parameters)
return Window_Size;

procedure Set_Window_Size
(Object : in out Connection_Parameters;

To : in Window_Size);
type TPDU_Size is range 7 .. 13;
function Get_TPDU_Size

(Object : Connection_Parameters)
return TPDU_Size;

procedure Set_TPDU_Size
(Object : in out Connection_Parameters;

To : in TPDU_Size);
type TP_Acknowledgment_Strategy is

(Acknowledge_Window, Acknowledge_Each);
function Get_Acknowledgment_Strategy

(Object : Connection_Parameters)
return TP_Acknowledgment_Strategy;

procedure Set_Acknowledgment_Strategy
(Object : in out Connection_Parameters;

To : in TP_Acknowledgment_Strategy);
type TP_Retransmit_Strategy is

(Retransmit_Each_Packet, Use_Congestion_Window, Fast_Start);
function Get_Retransmit_Strategy

(Object : Connection_Parameters)
return TP_Retransmit_Strategy;

procedure Set_Retransmit_Strategy
(Object : in out Connection_Parameters;

To : in TP_Retransmit_Strategy);
type TP_Class is new POSIX.Option_Set;
TP_Class_0 : constant TP_Class := implementation-defined;
TP_Class_1 : constant TP_Class := implementation-defined;
TP_Class_2 : constant TP_Class := implementation-defined;
TP_Class_3 : constant TP_Class := implementation-defined;
TP_Class_4 : constant TP_Class := implementation-defined;
function Get_TP_Class

(Object : Connection_Parameters)
return TP_Class;

procedure Set_TP_Class
(Object : in out Connection_Parameters;

To : in TP_Class);
function Get_Extended_Format

(Object : Connection_Parameters)
return Boolean;

procedure Set_Extended_Format
(Object : in out Connection_Parameters;

To : in Boolean);
function Get_Expedited_Service

(Object : Connection_Parameters)
return Boolean;

730 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

procedure Set_Expedited_Service
(Object : in out Connection_Parameters;

To : in Boolean);
function Get_Negotiate_Checksums

(Object : Connection_Parameters)
return Boolean;

procedure Set_Negotiate_Checksums
(Object : in out Connection_Parameters;

To : in Boolean);
function Get_Signal_Disconnections

(Object : Connection_Parameters)
return Boolean;

procedure Set_Signal_Disconnections
(Object : in out Connection_Parameters;

To : in Boolean);
function Get_Protect_Parameters

(Object : Connection_Parameters)
return Boolean;

procedure Set_Protect_Parameters
(Object : in out Connection_Parameters;

To : in Boolean);
type TP_Network_Service is implementation-defined-integer;
ISO_Connectionless : constant TP_Network_Service

:= impl-def-static-expression;
ISO_Connection : constant TP_Network_Service

:= impl-def-static-expression;
ISO_Connectionless_Over_X25 : constant TP_Network_Service

:= impl-def-static-expression;
IP_Connectionless : constant TP_Network_Service

:= impl-def-static-expression;
function Get_Network_Service

(Object : Connection_Parameters)
return TP_Network_Service;

procedure Set_Network_Service
(Object : in out Connection_Parameters;

To : in TP_Network_Service);

D.1.2.3.2 Description

The functionality described in this subclause is optional. If the OSI Connection option
is not supported, the implementation may cause all calls to the explicitly declared
operations defined in this subclause to raise POSIX_Error . Otherwise, the behavior
shall be as specified in this subclause.

The TP protocol provides reliable, flow-controlled, two-way transmission of data and
record boundaries. It is an octet-stream protocol and is accessed according to the
Sequenced_Packet_Socket abstraction.

Sockets utilizing the TP protocol are either active or passive. Active sockets initiate
connections to passive sockets. By default TP sockets are created active; to create a
passive socket, Listen must be used after binding the socket with Bind .

Only passive sockets may use Accept_Connection to accept incoming connections.
Only active sockets may use Connect to initiate connections.

ISO TP supports all the states in Figure 18.1.

D Sockets Protocol Mappings 731

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

The TP protocol makes use of a standard ISO address format, including a NSAP (see
2.2.3.44) and a transport service entity selector. Class 4 may also make use of the
Internet address family.

Passive sockets may underspecify their location to match incoming connection re-
quests sent to multiple network addresses that refer to the same end system. This
technique, termed wildcard addressing, allows a single server to provide service to
clients on multiple networks. To create a socket that listens on multiple network
addresses, the NSAP portion of the bound address shall not have been set via Set_-
ISO_Address . The Transport Selector may still be specified at this time via Set_-
Transport_Selector ; if the Transport Selector is not specified the system will assign
one. Once a connection has been established, the address of the socket is fixed by the
location of the peer entity. The network address assigned to the socket is an address
associated with the network interface through which packets are being transmitted
and received.

If the EOT (i.e., end of transmission) SDU is not needed, the normal Read and Write
may be used.

If the TP entity encounters asynchronous events that cause a transport connection
to be closed, such as timing out while retransmitting a connect request TPDU, or
receiving a DR TPDU, the TP entity issues a POSIX_Signals.Signal_Out_Of_-
Band_Data signal, indicating that disconnection has occurred. If the signal is issued
during a system call, the system call may be interrupted, in which case POSIX_Error
is raised with error code Interrupted_Operation . If the signal POSIX_Signals.-
Signal_Out_Of_Band_Data is being handled by reading from the socket and an
Accept_Connection timed out, the read may result in error code Not_A_Socket
because the Accept_Connection function had not yet returned a socket descriptor
when the signal was handled. Timed_Out (or some other value appropriate to the
type of error) is returned if POSIX_Signals.Signal_Out_Of_Band_Data is blocked
for the duration of the system call.

An application program should take one of the following approaches: If the program
is servicing only one connection, it can block or ignore POSIX_Signals.Signal_-
Out_Of_Band_Data during connection establishment. The advantage of this ap-
proach is that the error code returned by the exception is somewhat meaningful. The
disadvantage of this approach is that if ignored, disconnection and expedited data
indications could be missed. For some programs missed disconnection and expedited
data indications are not a problem. If the program is servicing more than one con-
nection at a time, or expedited data have arrived, or both, the program may elect
to service POSIX_Signals.Signal_Out_Of_Band_Data . It can use the Get_TP_-
Flags function to see whether the signal was due to the arrival of expedited data
(Expedited_Data_Present is set in TP_Flags) or due to a disconnection (the error
Not_Connected is generated).

TP supports several options to control such things as negotiable options in the pro-
tocol and protocol strategies.

In the following list of options, the Disconnect Data socket option and the Confirmation
Data socket option may be set after a connection is established. Other options must
be used before the connection is established, in other words, before calling Connect

732 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

or Accept_Connection . All options may be examined before or after a connection
is established.

Some of the options in the following list may be sent and received as socket message
ancillary data. The Set_Ancillary_Data procedure prepares a socket message to
send or receive ancillary data. The Get_Ancillary_Data function retrieves the
ancillary data as an object of type TP_Ancillary_Data . This object is a composite
type with a discriminant of type TP_Ancillary_Data_Type to define the category
of the ancillary data, and another discriminant that specifies the size in octets of
the ancillary data. The Set_Ancillary_Data_Array procedure and the Get_-
Ancillary_Data_Array function manipulate an Octet_Array object that contains
the ancillary data.

Connection Data

Data associated with a connection request. The value shall be an array of
octets as sent or received by the protocol implementation. Get_Connec-
tion_Data may be used to retrieve the application data of a connection
request on a passive socket, after having done Accept_Connection with-
out implying confirmation of the connection. The data may also be retrieved
by issuing a Receive_Message request for ancillary data only, without im-
plying confirmation of the connection (see 18.4.1.3). The ancillary data are
specified with a TP_Ancillary_Data_Type of Connection_Data .

Disconnect Data

Data associated with a disconnect. The value shall be an array of octets
as sent or received by the protocol implementation. Disconnect data may
be sent by the side initiating the close, but not by the passive side (passive
with respect to the closing of the connection). Therefore, there is no need to
read disconnect data after calling Close . Disconnect data may be sent by
Set_Disconnect_Data or by issuing a Send_Message request specifying
ancillary data only. The ancillary data are specified with a TP_Ancillary_-
Data_Type of Disconnect_Data .

Confirmation Data

Data associated with connection confirmation. The value shall be an array of
octets as sent or received by the protocol implementation. Confirmation data
may also be sent by a Set_Confirmation_Data or by issuing a Send_Mes-
sage request for ancillary data only. The ancillary data are specified with
a TP_Ancillary_Data_Type of Disconnect_Data . Sending of connect
confirm data will cause the connection to be confirmed rather than rejected.

TP Flags

Get_TP_Flags returns the value of the following options as type TP_Flags .
The operations "+" , "-" , ">" , "<" , ">=" , "<=" , and Empty_Set are avail-
able on the type TP_Flags via the derived type semantics of Ada, from the
operations available for POSIX.Option_Set . The appropriate operations
can be used to create and examine a set containing the following flags.

Public_Data_Network_QOS

Set when the quality of the network service is similar to that of a
public data network.

D Sockets Protocol Mappings 733

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Peer_On_Same_Network
Set when the peer TP entity is considered to be on the same net-
work as the local TP entity.

Expedited_Data_Present
Set when expedited data are present.

Connection Parameters

A group of parameters to be gotten or set for a connection. The value shall
be an object of type Connection_Parameters , which may be examined
and set by the operations Get_Connection_Parameters and Set_Con-
nection_Parameters .

The object Connection_Parameters is the parameter used with Get_Connec-
tion_Parameters and Set_Connection_Parameters for the Connection Param-
eters socket option. The attributes of the Connection_Parameters object shall be
accessed by the corresponding “Get_ ” and “Set_ ” functions and procedures defined in
package POSIX_Sockets_ISO . The Connection_Parameters object shall contain
at least the following attributes:

Retransmit Number

The number of times a TPDU will be retransmitted before the local TP entity
closes a connection. The default value is 6.

Window Size

The buffer space limits in octets for incoming and outgoing data. There is no
way to specify different limits for incoming and outgoing paths. The actual
window size at any time during the lifetime of a connection is a function of
the buffer size limit, the negotiated maximum TPDU size, and the rate at
which the application program receives data. This parameter applies only
to Class 4. The value must be between 128 and 16384. The default is 4096
octets.

TPDU Size

A value between 7 and 13 specifying the logarithm (base 2) of the maximum
TPDU size to be negotiated. The default is 12 for Class 4 and 11 for Class 0.
The TP standard (ISO/IEC 8473-1 f7g) gives an upper bound of 13 for Class
4 and 11 for Class 0.

Acknowledgment Strategy

This parameter applies only to Class 4. Two acknowledgment strategies are
supported: Acknowledge_Each means each data TPDU is acknowledged
with an AK TPDU. Acknowledge_Window means that upon receipt of the
packet that represents the high edge of the last window advertised, and AK
TPDU is generated. The default value is Acknowledge_Window .

Retransmit Strategy

The default value is either Use_Congestion_Window or Fast_Start over
connectionless network protocols. The default is Use_Congestion_Window
over connection oriented network protocols. This parameter applies only to
Class 4.
Retransmit_Each_Packet means when a retransmission timer expires, to
retransmit each packet in the send window rather than just the first unac-
knowledged packet. Use_Congestion_Window means to use a congestion

734 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

window strategy borrowed from Van Jacobson’s congestion window strategy
for TCP fB10g. The congestion window size is set to one whenever retrans-
mission occurs.
Fast_Start means to begin sending the maximum amount of data permit-
ted by the peer (subject to availability). The alternative is to start sending
slowly by pretending the window of the peer is smaller than it is and letting
it slowly grow up to the real window size of the peer, which is intended to
smooth the effect of new connections on a congested network by preventing
a transport connection from suddenly overloading the network with a burst
of packets. This strategy is also due to Van Jacobson fB10g.

TP Class

This attribute is an Option_Set for the class. The set includes one or both
of the values TP_Class_4 and TP_Class_0 . The higher class indicated
is the preferred class. If only one class is indicated, negotiation will not
occur during connection establishment. The default is TP_Class_4 or TP_-
Class_0 .

Extended Format

This attribute indicates that extended format shall be negotiated. This at-
tribute applies only to Class 4. The default is False .

Expedited Service

This attribute indicates that the expedited data transport service will be
negotiated. This attribute applies only to Class 4. The default is True .

Negotiate Checksums

This attribute indicates the the use of checksums will be negotiated. This
attribute applies only to Class 4. The default value is True .

Signal Disconnections

This attribute indicates that the local TP entity shall issue indications (sig-
nals) when a TP connection is disconnected. The default value is True .

Protect Parameters

If True , the TP entity will not override any of the other values given in this
object. If the values cannot be used, the TP entity will drop, disconnect, or
refuse to establish the connection to which this object pertains. The default
value is False .

Network Service

This attribute indicates which network service is to be used. ISO_Con-
nectionless indicates the connectionless network service provided by
CLNP (ISO/IEC 8473-1 f7g). ISO_Connection indicates the connection-
oriented network service provided by X.25 (ISO/IEC 8208 f5g) and ISO/IEC
8878 f10g. ISO_Connectionless_Over_X25 indicates the connectionless
network service running over a connection-oriented subnetwork service:
CLNP (ISO/IEC 8473-3 f8g) over X.25 (ISO/IEC 8208 f5g). IP_Connec-
tionless indicates the Internet connectionless network service provided
by IP (RFC 791 f13g). The default value is ISO_Connectionless .

D Sockets Protocol Mappings 735

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

D.1.2.3.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Is_Already_Connected

The socket is already connected.

Not_Connected

The socket has not had the peer prespecified.
The Get_TP_Flags function was called, indicating that a signal was due to
a disconnection.

D.1.3 Package POSIX_Sockets_Internet

This package provides the DNI/Socket interface mappings for Internet transport pro-
tocols. Unless otherwise specified, all the facilities in package POSIX_Sockets can
be used. Only additional information relevant to the Internet transport protocol is
highlighted here.

The functionality described in this subclause is optional. If either the Sockets Detailed
Network Interface option or the Internet Protocol option is not supported, the implementa-
tion may cause all calls to the explicitly declared operations defined in this subclause
to raise POSIX_Error . Otherwise, the behavior shall be as specified in this subclause.

with POSIX,
POSIX_IO,
POSIX_Sockets;

package POSIX_Sockets_Internet is
-- D.1.3.1 Inet - IP Protocol Family
Internet_Protocol :

constant POSIX_Sockets.Protocol_Family := impl-def-static-expression;
ICMP : constant POSIX_Sockets.Protocol_Number := impl-def-static-expression;
TCP : constant POSIX_Sockets.Protocol_Number := impl-def-static-expression;
UDP : constant POSIX_Sockets.Protocol_Number := impl-def-static-expression;
Raw : constant POSIX_Sockets.Protocol_Number := impl-def-static-expression;
type Internet_Socket_Address is private ;
type Internet_Socket_Address_Pointer is access all Internet_Socket_Address;
function "+" (Pointer : Internet_Socket_Address_Pointer)

return POSIX_Sockets.Socket_Address_Pointer;
function "+" (Pointer : POSIX_Sockets.Socket_Address_Pointer)

return Internet_Socket_Address_Pointer;
function Is_Internet_Socket_Address

(Pointer : POSIX_Sockets.Socket_Address_Pointer)
return Boolean;

type Internet_Port is implementation-defined-integer;
Unspecified_Internet_Port : constant Internet_Port;
function Get_Internet_Port (Name : Internet_Socket_Address)

return Internet_Port;
procedure Set_Internet_Port

(Name : in out Internet_Socket_Address;
Port : in Internet_Port);

type Internet_Address is private ;
Unspecified_Internet_Address : constant Internet_Address;
Loopback_Internet_Address : constant Internet_Address;

736 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Broadcast_Internet_Address : constant Internet_Address;
function Get_Internet_Address (Name : Internet_Socket_Address)

return Internet_Address;
procedure Set_Internet_Address

(Name : in out Internet_Socket_Address;
Address : in Internet_Address);

function Get_Socket_Name (Handle : POSIX_Sockets.Socket_Message)
return Internet_Socket_Address;

function Get_Address (Info_Item : POSIX_Sockets.Socket_Address_Info)
return Internet_Socket_Address;

function Get_Peer_Name (Socket : POSIX_IO.File_Descriptor)
return Internet_Socket_Address;

function Get_Socket_Name (Socket : POSIX_IO.File_Descriptor)
return Internet_Socket_Address;

-- D.1.3.2 Internet Address Support Functions
-- Internet Address Manipulation
function String_To_Internet_Address (Address : POSIX.POSIX_String)

return Internet_Address;
function Is_Internet_Address (Address : POSIX.POSIX_String)

return Boolean;
function Internet_Address_To_String (Address : Internet_Address)

return POSIX.POSIX_String;
-- Network Database Functions
type Network_Info is private ;
type Network_Number is range implementation-defined;
Unspecified_Network_Number : constant Network_Number;
type Database_Array is new POSIX.Octet_Array;
type Database_Array_Pointer is access all Database_Array;
function Get_Name (Info_Item : Network_Info)

return POSIX.POSIX_String;
generic

with procedure Action
(Alias_Name : in POSIX.POSIX_String;

Quit : in out Boolean);
procedure For_Every_Network_Alias (Info_Item : Network_Info);
function Get_Family (Info_Item : Network_Info)

return POSIX_Sockets.Protocol_Family;
function Get_Network_Number (Info_Item : Network_Info)

return Network_Number;
function Get_Network_Info_By_Address

(Number : Network_Number;
Family : POSIX_Sockets.Protocol_Family;
Storage : Database_Array_Pointer)

return Network_Info;
function Get_Network_Info_By_Name

(Name : POSIX.POSIX_String;
Storage : Database_Array_Pointer)

return Network_Info;
procedure Open_Network_Database_Connection

(Stay_Open : in Boolean);
procedure Close_Network_Database_Connection;
-- Network Protocol Database Functions
type Protocol_Info is private ;
function Get_Name (Info_Item : Protocol_Info)

return POSIX.POSIX_String;

D Sockets Protocol Mappings 737

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

generic
with procedure Action

(Alias_Name : in POSIX.POSIX_String;
Quit : in out Boolean);

procedure For_Every_Protocol_Alias (Info_Item : Protocol_Info);
function Get_Protocol_Number (Info_Item : Protocol_Info)

return POSIX_Sockets.Protocol_Number;
function Get_Protocol_Info_By_Number

(Number : POSIX_Sockets.Protocol_Number;
Storage : Database_Array_Pointer)

return Protocol_Info;
function Get_Protocol_Info_By_Name

(Name : POSIX.POSIX_String;
Storage : Database_Array_Pointer)

return Protocol_Info;
procedure Open_Protocol_Database_Connection

(Stay_Open : in Boolean);
procedure Close_Protocol_Database_Connection;
-- D.1.3.4 Internet Transmission Control Protocol
subtype Keep_Alive_Time is POSIX.Seconds range 1 .. POSIX.Seconds’Last;
function Get_Keep_Alive_Interval

(Socket : POSIX_IO.File_Descriptor)
return Keep_Alive_Time;

procedure Set_Keep_Alive_Interval
(Socket : in POSIX_IO.File_Descriptor;

To : in Keep_Alive_Time);
function Get_No_Delay

(Socket : POSIX_IO.File_Descriptor)
return POSIX_Sockets.Socket_Option_Value;

procedure Set_No_Delay
(Socket : in POSIX_IO.File_Descriptor;

To : in POSIX_Sockets.Socket_Option_Value);
subtype Socket_Retransmit_Time is POSIX.Seconds range

implementation-defined;
Wait_Forever : constant Socket_Retransmit_Time := impl-def-static-expression;
Retransmit_Time_Default

: constant Socket_Retransmit_Time := impl-def-static-expression;
function Get_Retransmit_Time_Maximum

(Socket : POSIX_IO.File_Descriptor)
return Socket_Retransmit_Time;

procedure Set_Retransmit_Time_Maximum
(Socket : in POSIX_IO.File_Descriptor;

To : in Socket_Retransmit_Time);
function Get_Segment_Size_Maximum

(Socket : POSIX_IO.File_Descriptor)
return Positive;

function Get_Standardized_Urgent_Data
(Socket : POSIX_IO.File_Descriptor)

return POSIX_Sockets.Socket_Option_Value;
procedure Set_Standardized_Urgent_Data

(Socket : in POSIX_IO.File_Descriptor;
To : in POSIX_Sockets.Socket_Option_Value);

-- D.1.3.6 Internet Protocol
function IP_Header_Options_In_Use

(Socket : POSIX_IO.File_Descriptor)
return Boolean;

procedure Reset_IP_Header_Options
(Socket : in POSIX_IO.File_Descriptor);

738 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

type IP_Options_Buffer is private ;
function Get_IP_Header_Options

(Socket : POSIX_IO.File_Descriptor)
return IP_Options_Buffer;

procedure Set_IP_Header_Options
(Socket : in POSIX_IO.File_Descriptor;

To : in IP_Options_Buffer);
function Get_First_Hop

(Options : IP_Options_Buffer)
return Internet_Address;

procedure Set_First_Hop
(Options : in out IP_Options_Buffer;

Address : in Internet_Address);
function Get_IP_Options

(Options : IP_Options_Buffer)
return POSIX.Octet_Array;

procedure Set_IP_Options
(Options : in out IP_Options_Buffer;

Buffer : in POSIX.Octet_Array);
type IP_Type_Of_Service is private ;
Low_Delay : constant IP_Type_Of_Service;
High_Throughput : constant IP_Type_Of_Service;
High_Reliability : constant IP_Type_Of_Service;
Unspecified : constant IP_Type_Of_Service;
type Time_To_Live is range 0 .. 255;
function Get_Type_Of_Service

(Socket : POSIX_IO.File_Descriptor)
return IP_Type_Of_Service;

procedure Set_Type_Of_Service
(Socket : in POSIX_IO.File_Descriptor;

To : in IP_Type_Of_Service);
function Get_Initial_Time_To_Live

(Socket : POSIX_IO.File_Descriptor)
return Time_To_Live;

procedure Set_Initial_Time_To_Live
(Socket : in POSIX_IO.File_Descriptor;

To : in Time_To_Live);
function Get_Receive_Destination_Address

(Socket : POSIX_IO.File_Descriptor)
return POSIX_Sockets.Socket_Option_Value;

procedure Set_Receive_Destination_Address
(Socket : in POSIX_IO.File_Descriptor;

To : in POSIX_Sockets.Socket_Option_Value);
type IP_Ancillary_Data is private ;
type IP_Ancillary_Data_Pointer is access all IP_Ancillary_Data;
procedure Set_Ancillary_Data

(Message : in out POSIX_Sockets.Socket_Message;
Data : in IP_Ancillary_Data_Pointer);

function Get_Destination_Address
(Data : IP_Ancillary_Data)

return Internet_Address;
function Get_Header_Included

(Socket : POSIX_IO.File_Descriptor)
return POSIX_Sockets.Socket_Option_Value;

procedure Set_Header_Included
(Socket : in POSIX_IO.File_Descriptor;

To : in POSIX_Sockets.Socket_Option_Value);

D Sockets Protocol Mappings 739

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

private
implementation-defined

end POSIX_Sockets_Internet;

D.1.3.1 Inet - IP Protocol Family

D.1.3.1.1 Synopsis

Internet_Protocol :
constant POSIX_Sockets.Protocol_Family := impl-def-static-expression;

ICMP : constant POSIX_Sockets.Protocol_Number := impl-def-static-expression;
TCP : constant POSIX_Sockets.Protocol_Number := impl-def-static-expression;
UDP : constant POSIX_Sockets.Protocol_Number := impl-def-static-expression;
Raw : constant POSIX_Sockets.Protocol_Number := impl-def-static-expression;
type Internet_Socket_Address is private ;
type Internet_Socket_Address_Pointer is access all Internet_Socket_Address;
function "+" (Pointer : Internet_Socket_Address_Pointer)

return POSIX_Sockets.Socket_Address_Pointer;
function "+" (Pointer : POSIX_Sockets.Socket_Address_Pointer)

return Internet_Socket_Address_Pointer;
function Is_Internet_Socket_Address

(Pointer : POSIX_Sockets.Socket_Address_Pointer)
return Boolean;

type Internet_Port is implementation-defined-integer;
Unspecified_Internet_Port : constant Internet_Port;
function Get_Internet_Port (Name : Internet_Socket_Address)

return Internet_Port;
procedure Set_Internet_Port

(Name : in out Internet_Socket_Address;
Port : in Internet_Port);

type Internet_Address is private ;
Unspecified_Internet_Address : constant Internet_Address;
Loopback_Internet_Address : constant Internet_Address;
Broadcast_Internet_Address : constant Internet_Address;
function Get_Internet_Address (Name : Internet_Socket_Address)

return Internet_Address;
procedure Set_Internet_Address

(Name : in out Internet_Socket_Address;
Address : in Internet_Address);

function Get_Socket_Name (Handle : POSIX_Sockets.Socket_Message)
return Internet_Socket_Address;

function Get_Address (Info_Item : POSIX_Sockets.Socket_Address_Info)
return Internet_Socket_Address;

function Get_Peer_Name (Socket : POSIX_IO.File_Descriptor)
return Internet_Socket_Address;

function Get_Socket_Name (Socket : POSIX_IO.File_Descriptor)

return Internet_Socket_Address;

D.1.3.1.2 Description

The IP family, designated by the constant Internet_Protocol , is a collection of
protocols layered atop the IP transport layer, and utilizing the Internet address for-
mat, Internet_Address . The Internet family provides protocol support for the
Stream_Socket , Datagram_Socket , and Raw_Socket socket types; the Raw_-
Socket interface provides access to the Internet protocol.

740 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

The following constants identify specific Internet protocols. These constants shall be
defined to the values used in the IP header protocol identification field when sending
a packet for that protocol. These constants may be used to identify the indicated
protocols for the Create operation. This list also indicates the default protocols when
a socket is created in the Internet family with the Protocol parameter omitted
or set to Default_Protocol . (The default protocol for sockets created with type
Sequenced_Packet_Socket is unspecified.)

ICMP

Protocol number for ICMP.

TCP

Protocol number for TCP. This protocol is the default for sockets created
with type Stream_Socket .

UDP

Protocol number for UDP. This protocol is the default for sockets created
with type Datagram_Socket .

Raw

Default Protocol number for raw IP packets. This protocol is the default for
sockets created with type Raw_Socket .

A raw interface to the Internet protocol is available by creating an Internet socket of
type Raw_Socket . The default protocol for type Raw_Socket shall be identified in
the IP header with the value Raw. Applications should not use the default protocol
when creating a socket with type Raw_Socket , but should identify a specific protocol
by value. The ICMP control protocol is accessible from a raw socket by specifying a
value of ICMP for protocol.

The format of Internet addresses is defined in RFC 791 f13g. The representations of
Internet addresses, network identifiers, and host identifiers shall be implementation
defined. Internet socket addresses are represented by an object of type Internet_-
Socket_Address .

A value of type Internet_Port forms a component of the socket address for Inter-
net sockets. Given an Internet socket address, Get_Internet_Port returns the
corresponding Internet Port. This value is set to Unspecified_Internet_Port when
a socket address is created and needs to be set to a valid port number by the applica-
tion. Set_Internet_Port sets the Internet Port value in an Internet socket address.

A value of type Internet_Address forms a component of the socket address for In-
ternet sockets. Given an Internet socket address, Get_Internet_Address returns
the corresponding Internet address. This value is set to Unspecified_Internet_-
Address when a socket address is created and must set to a valid address by the
application. Set_Internet_Address sets the Internet address value in an Internet
socket address.

NOTE: Objects of type Internet_Address and Internet_Port shall be in host byte or-
der. Any required conversion of these objects to network byte order shall be performed by the
implementation of this binding.

The Internet Address attribute of the Internet_Socket_Address object indicates an
Internet host address, which might be an individual host address, a group address, or

D Sockets Protocol Mappings 741

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

an unspecified address (indicated by the value Unspecified_Internet_Address).
Every Internet host has one or more Internet addresses that are considered to be
local to that system. The Internet_Port attribute of the Internet_Socket_-
Address object indicates a protocol port number. An endpoint is identified by an
Internet host address, a port number, and the protocol; thus, the same port number
may be used by more than one protocol without conflict.

Sockets in the Internet family shall be created with unspecified local and remote
(peer) host addresses and port numbers. An unspecified host address shall be repre-
sented by the value Unspecified_Internet_Address ; an unspecified port number
shall be represented by the constant Unspecified_Internet_Port .

An application may use the Bind procedure to bind its local address or port number
or both. The Bind procedure shall be called with a Socket_Address_Pointer pa-
rameter with the format of a Internet_Socket_Address object. If the Internet Port
attribute of the object has the value zero, the implementation shall choose an unused
port number. If the Internet Address attribute contains the value Unspecified_In-
ternet_Address , the local address for the socket shall remain unspecified. Sockets
with the local address Unspecified_Internet_Address shall receive datagrams
or connection requests sent to any Internet address for the local host system if no
socket with the same protocol and port number is bound to the specific address to
which the incoming datagram or connection request is sent. This technique, termed
wildcard addressing, allows a single server to provide service to clients connecting to
any address of a multihomed host (a host with multiple IP addresses). If a call to the
Bind procedure specifies an address other than Unspecified_Internet_Address
that is not an address for the local system, the error Address_Not_Available will
result.

When an attempt is made to bind a socket address to a socket with a type other than
Raw_Socket and the port component of the specified socket address is already in use
by another socket using the same protocol, the result shall be as shown in Table D.1.
In that table,

— “First Socket Address” is the address of an existing socket using the same pro-
tocol as the socket specified in the call. It is the address to which the socket
is bound or Unspecified_Internet_Address if neither Bind nor Connect
has been called successfully, or if Bind has been called successfully with an ad-
dress of Unspecified_Internet_Address and there has been no subsequent
connection, or if a socket has been disconnected (for UDP, by connecting to an
empty address).

— “Second Socket Bind” refers to the socket specified in the Bind call.

— Address 1 and Address 2 represent two distinct local IP addresses.

— The last two columns specify the result depending on the value of the Socket
Reuse Addresses socket option for the second socket.

If multiple sockets using the same protocol are bound to the specified port, the at-
tempt shall fail if, for any of those sockets, an error is indicated according to Ta-
ble D.1.

The Socket Reuse Addresses socket option allows a local port number to be reused
only when the port number is in use only as the local port of connected sockets. In

742 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

other words, each other socket with the same local port shall have specified local and
remote addresses and remote port number. This option allows servers to terminate
and restart their listening socket even when connections exist for their service. All
servers that listen on a specific port should issue this option to allow graceful restart.
A port can not be reused if it is already in use on an unconnected socket (a socket
that does not have the remote host address specified); therefore, two different servers
cannot both listen on the same port and produce conflicting results for applications.

NOTE: This restriction combines with the way addresses are specified (in order to make a
connection from a specified port, the local port must first be specified via Bind) to create
a subtle race condition. This race condition occurs when two processes are both trying to
connect from a specific local port to different remote ports. Only one process at a time can have
a bound but unconnected socket. If two processes both try to bind to the local port and then
create a connection, one process will succeed and the other process will fail. Because of this
race condition, bind operations that return an error should be retried a number of times.

If an Internet socket for which the Bind procedure has not been called successfully is
used in a successful call to the Send or Send_Message functions, the implementation
shall bind an unused local port to the socket. If an Internet socket for which the Bind
procedure has not been called is used in a successful call to the Connect procedure,
the implementation shall bind an unused local port to the socket and shall bind an
address for the local system to the socket.

The destination address in a call to the Connect , Send, or Send_Message functions
shall have the format of a Internet_Socket_Address object. The host address may
be specified as Unspecified_Internet_Address to mean the host where the appli-
cation is currently executing, and shall be interpreted as if it were one of the Internet
addresses for the local system. The distinguished address Broadcast_Internet_-
Address shall be interpreted as if it were the broadcast address on the primary
network if the first network configured supports broadcast (see RFC 791 f13g).

If the local address of a socket is Unspecified_Internet_Address at the time of
a call to the Send or Send_Message procedures, the implementation shall chose a
local host address as the source address for any packets sent. If the local address
of a socket is Unspecified_Internet_Address at the time of a call to the Con-
nect procedure, the implementation shall bind an address for the local system to the
socket.

The type Internet_Socket_Address shall be used to represent an address for this
protocol family. The type Internet_Socket_Address_Pointer is an access to
this protocol-specific address type. The "+" operations shall convert a Internet_-
Socket_Address_Pointer to and from the Socket_Address_Pointer type for use
with the base package operations defined for the Socket_Address_Pointer type.
The return value of the "+" operations designates the same address object as the
input parameter. The function Is_Internet_Socket_Address shall return True if
the address object designated by the specified non-null Socket_Address_Pointer
is a valid Internet_Socket_Address and False otherwise. The conversion op-
eration to Internet_Socket_Address_Pointer shall succeed if and only if the
corresponding Is_Internet_Socket_Address returns True . Otherwise, the re-
sults are undefined.

NOTE: The Null_Socket_Address constant corresponds to the Ada null literal for these
operations.

D Sockets Protocol Mappings 743

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Table D.1 – Port Number Re-Use
First First Second Second Bind Result

Socket Socket Socket Based on Socket Reuse

Address Connected Bind Addresses Option

OFF ON

Address 1 NO Address 1 ERROR ERROR
Address 1 NO Address 2 OK OK
Address 1 NO Unspecified_- ERROR OK

Internet_Address
Unspecified_- NO Address 1 ERROR OK
Internet_Address
Unspecified_- NO Unspecified_- ERROR ERROR
Internet_Address Internet_Address
Address 1 YES Address 1 ERROR OK
Address 1 YES Address 2 OK OK
Address 1 YES Unspecified_- ERROR OK

Internet_Address

Get_Socket_Name shall return the name (address) associated with a socket. Get_-
Peer_Name shall return the socket address of the peer connected to a socket. For
Get_Socket_Name and Get_Peer_Name , the Socket parameter is an open file de-
scriptor referring to a socket. A call to Get_Socket_Name for a socket in the Ground
state shall return the same value as that of a new socket address returned by Cre-
ate .

Get_Address returns the Address attribute of a Socket_Address_Info object as an
Internet_Socket_Address object. Get_Socket_Name returns the Name attribute
of a Socket_Message object as an Internet_Socket_Address object.

D.1.3.1.3 Error Handling

If the following condition is detected, the exception POSIX_Error shall be raised
with the corresponding error code:

Incorrect_Address_Type

The type of the object designated by the return value is not appropriate for
the address format of this socket.

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Bad_File_Descriptor

The Socket parameter is not valid.

No_Buffer_Space

Insufficient resources were available in the system to perform the operation.

Not_Connected

The socket is not connected or otherwise has not had the peer prespecified.

Not_A_Socket

The file descriptor Socket does not refer to a socket.

744 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Address_Not_Available
A call to Bind specified an address other than Unspecified_Internet_-
Address that is not an address for the local system.

D.1.3.2 Internet Address Support Functions

D.1.3.2.1 Synopsis

-- Internet Address Manipulation
function String_To_Internet_Address (Address : POSIX.POSIX_String)

return Internet_Address;
function Is_Internet_Address (Address : POSIX.POSIX_String)

return Boolean;
function Internet_Address_To_String (Address : Internet_Address)

return POSIX.POSIX_String;
-- Network Database Functions
type Network_Info is private ;
type Network_Number is range implementation-defined;
Unspecified_Network_Number : constant Network_Number;
type Database_Array is new POSIX.Octet_Array;
type Database_Array_Pointer is access all Database_Array;
function Get_Name (Info_Item : Network_Info)

return POSIX.POSIX_String;
generic

with procedure Action
(Alias_Name : in POSIX.POSIX_String;

Quit : in out Boolean);
procedure For_Every_Network_Alias (Info_Item : Network_Info);
function Get_Family (Info_Item : Network_Info)

return POSIX_Sockets.Protocol_Family;
function Get_Network_Number (Info_Item : Network_Info)

return Network_Number;
function Get_Network_Info_By_Address

(Number : Network_Number;
Family : POSIX_Sockets.Protocol_Family;
Storage : Database_Array_Pointer)

return Network_Info;
function Get_Network_Info_By_Name

(Name : POSIX.POSIX_String;
Storage : Database_Array_Pointer)

return Network_Info;
procedure Open_Network_Database_Connection

(Stay_Open : in Boolean);
procedure Close_Network_Database_Connection;
-- Network Protocol Database Functions
type Protocol_Info is private ;
function Get_Name (Info_Item : Protocol_Info)

return POSIX.POSIX_String;
generic

with procedure Action
(Alias_Name : in POSIX.POSIX_String;

Quit : in out Boolean);
procedure For_Every_Protocol_Alias (Info_Item : Protocol_Info);
function Get_Protocol_Number (Info_Item : Protocol_Info)

return POSIX_Sockets.Protocol_Number;
function Get_Protocol_Info_By_Number

(Number : POSIX_Sockets.Protocol_Number;
Storage : Database_Array_Pointer)

return Protocol_Info;
function Get_Protocol_Info_By_Name

(Name : POSIX.POSIX_String;
Storage : Database_Array_Pointer)

return Protocol_Info;
procedure Open_Protocol_Database_Connection

(Stay_Open : in Boolean);
procedure Close_Protocol_Database_Connection;

D Sockets Protocol Mappings 745

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

D.1.3.2.2 Description

The functionality described in this subclause is optional. If the Network Management
option is not supported, the implementation may cause all calls to the explicitly de-
clared operations defined in this subclause to raise POSIX_Error . Otherwise, the
behavior shall be as specified in this subclause.

The functions described in this subclause shall convert Internet addresses between
Internet_Address objects and strings in Internet address dot notation. Internet
address dot notation (also known as dotted decimal notation, see RFC 1020 fB22g
and RFC 1983fB23g) is the common notation for Internet addresses where portions of
the address are represented by decimal digits separated with periods (leading zeros
are allowed).

The String_To_Internet_Address function shall convert the string Address , in
Internet address dot notation, to an object of type Internet_Address .

The Internet_Address_To_String function shall convert the Internet address
specified by Address to a string in Internet address dot notation.

The Is_Internet_Address function shall return True if the string Address is a
valid Internet address in Internet address dot notation.

For the String_To_Internet_Address function, values specified in Internet ad-
dress dot notation take the following forms:

a.b.c.d
When there are four parts, each is interpreted as an octet of data, and they
are assigned to the four octets of the Internet address. The first part of the
string is assigned to the most significant octet of the address.

a.b.c
When there are three parts, each of the first two is interpreted as an octet of
data, and they are assigned to the two most significant octets of the Internet
address. The third part is interpreted as a 16-bit quantity and is assigned
to the two least significant octets of the address.
NOTE: This form is convenient for specifying a three-part Class B network address
in the form nethi.netlo.host.

a.b
When there are two parts, the first part is interpreted as an octet of data and
is assigned to the most significant octet of the network address. The second
part is interpreted as a 24-bit quantity and assigned to the least significant
three octets of the network address.
NOTE: This form is convenient for specifying a Class A network address in the form
net.host.

a
When there is only one part, it is interpreted as a 32-bit quantity and is
assigned to the whole network address without any rearrangement.

The Get_Network_Info_By_Address function and the Get_Network_Info_By_-
Name function shall return a Network_Info object, the attributes of which shall
contain information about a network. The Network_Info object shall include at
least the following attributes:

746 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Name

Name of the network. The function Get_Name shall return this attribute.

Alias Names

A list of alternative network names.
The application program instantiates the generic procedure For_Every_-
Network_Alias with an actual procedure for the generic formal procedure
Action . When called, the instance shall call the actual procedure supplied
for Action once for each element in the associated list.
Action shall be able to force termination of the generic instance either by
setting Quit to True or by raising an exception. Prior to calling Action , the
instance shall set Quit to False . Exceptions raised by Action shall termi-
nate iteration and shall be propagated back to the caller of the instance.
After an exception is raised by Action or Action returns with Quit set to
True , no more calls to Action shall occur.

Family

The protocol family of the network. The function Get_Family shall return
this attribute.

Network Number

The network number. The Get_Network_Number function shall return this
attribute.

The Get_Network_Info_By_Address function shall search for information asso-
ciated with the network specified by Number with the protocol family specified by
Family , opening a connection to the database if necessary.

The Get_Network_Info_By_Name function shall search for information about the
network name, opening a connection to the database if necessary.

The Open_Network_Database_Connection procedure shall open a connection to
the database. If the Stay_Open parameter is True , the connection to the network
database need not be closed after calls to the “Get_Network_Info_ ” functions and
the implementation may maintain an open file descriptor for the database.

The Close_Network_Database_Connection procedure shall close the connection
to the database, releasing any open file descriptor.

Get_Network_Info_By_Address and Get_Network_Info_By_Name shall return
a Network_Info object. If the search was not successful, the Network_Info object
contains empty strings for the Name and Alias Names attributes, Unspecified_-
Protocol_Family for the Family attribute, and Unspecified_Network_Number for
the Network Number attribute.

Functions Get_Protocol_Info_By_Name and Get_Protocol_Info_By_Number
shall return a Protocol_Info object, the attributes of which contain information
about a network protocol. The Protocol_Info object shall include at least the
following attributes.

Name

Official name of the protocol. The function Get_Name shall return this at-
tribute.

D Sockets Protocol Mappings 747

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Alias Names

A list of alternative protocol names.
The application program instantiates the generic procedure For_Every_-
Protocol_Alias with an actual procedure for the generic formal procedure
Action . When called, the instance shall call the actual procedure supplied
for Action once for each element in the associated list.
Action shall be able to force termination of the generic instance either by
setting Quit to True or by raising an exception. Prior to calling Action , the
instance shall set Quit to False . Exceptions raised by Action shall termi-
nate iteration and shall be propagated back to the caller of the instance.
After an exception is raised by Action or Action returns with Quit set to
True , no more calls to Action shall occur.

Protocol Number

The protocol number. The function Get_Protocol_Number shall return
this attribute.

The Get_Protocol_Info_By_Name function shall search for information associated
with a protocol specified by Name, opening a connection to the database if necessary.

The Get_Protocol_Info_By_Number function shall search for information asso-
ciated with a protocol specified by Number, opening a connection to the database if
necessary.

The Open_Protocol_Database_Connection procedure shall open a connection to
the database. If the Stay_Open parameter is true, the connection to the network
protocol database need not be closed after calls to the “Get_Protocol_Info_By_-
” functions and the implementation may maintain an open file descriptor for the
database.

The Close_Protocol_Database_Connection procedure shall close the connection
to the database, releasing any open file descriptor.

Get_Protocol_Info_By_Name and Get_Protocol_Info_By_Number shall return
a Protocol_Info object. If the search was not successful, the Protocol_Info
object contains empty strings for the Name and Alias Names attributes and Default_-
Protocol for the Protocol Number attribute.

The functions that return the Network_Info and Protocol_Info objects include
a Storage parameter, which points to a Database_Array object. This object pro-
vides static storage for the alias name lists that may be dynamically allocated by the
underlying operating system services.

NOTE: Methods to estimate the size of the storage required for the alias name list are imple-
mentation defined. In practice, these lists are usually rather short. The application should not
deallocate this extra storage before deallocating Network_Info and Protocol_Info objects.

NOTE: The storage lifetime of Network_Info and Protocol_Info objects is unspecified.
Due to limitations in the operating system services underlying this binding, no guarantees
about the behavior of these objects related to reentrancy or multithreaded safety are made.

748 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

D.1.3.3 Error Handling

Constraint_Error may be raised by the functions that return the Network_Info
and Protocol_Info objects for implementation-defined reasons, including the situ-
ation where the Database_Array object supplied via the Storage parameter is too
small to store the entire alias name list.

D.1.3.4 Internet Transmission Control Protocol

D.1.3.4.1 Synopsis

subtype Keep_Alive_Time is POSIX.Seconds range 1 .. POSIX.Seconds’Last;
function Get_Keep_Alive_Interval

(Socket : POSIX_IO.File_Descriptor)
return Keep_Alive_Time;

procedure Set_Keep_Alive_Interval
(Socket : in POSIX_IO.File_Descriptor;

To : in Keep_Alive_Time);
function Get_No_Delay

(Socket : POSIX_IO.File_Descriptor)
return POSIX_Sockets.Socket_Option_Value;

procedure Set_No_Delay
(Socket : in POSIX_IO.File_Descriptor;

To : in POSIX_Sockets.Socket_Option_Value);
subtype Socket_Retransmit_Time is POSIX.Seconds range

implementation-defined;
Wait_Forever : constant Socket_Retransmit_Time := impl-def-static-expression;
Retransmit_Time_Default

: constant Socket_Retransmit_Time := impl-def-static-expression;
function Get_Retransmit_Time_Maximum

(Socket : POSIX_IO.File_Descriptor)
return Socket_Retransmit_Time;

procedure Set_Retransmit_Time_Maximum
(Socket : in POSIX_IO.File_Descriptor;

To : in Socket_Retransmit_Time);
function Get_Segment_Size_Maximum

(Socket : POSIX_IO.File_Descriptor)
return Positive;

function Get_Standardized_Urgent_Data
(Socket : POSIX_IO.File_Descriptor)

return POSIX_Sockets.Socket_Option_Value;
procedure Set_Standardized_Urgent_Data

(Socket : in POSIX_IO.File_Descriptor;

To : in POSIX_Sockets.Socket_Option_Value);

D.1.3.4.2 Description

The functionality described in this subclause is optional. If the Internet Stream option
is not supported, the implementation may cause all calls to the explicitly declared
operations defined in this subclause to raise POSIX_Error . Otherwise, the behavior
shall be as specified in this subclause.

The TCP protocol provides reliable, flow-controlled, two-way transmission of data. It
is an octet-stream protocol used to support the Stream_Socket abstraction.

The TCP protocol service supports all of the states in Figure D.1. The receipt of a
TCP connection request (a segment with the SYN bit that matches a listening TCP

D Sockets Protocol Mappings 749

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

socket) shall cause an acknowledgment of the SYN and completion of the protocol
connection before the Accept_Connection procedure may return the connection.
If the three-way handshake does not complete and the connection does not reach
the Connected state, the connection shall not be returned as a new socket via the
Accept_Connection call; the behavior of the interface shall be as if the connection
request had never been received.

TCP uses the standard Internet endpoint address formats and conventions for con-
necting to a remote endpoint described in D.1.3.1.

If the application makes a call to Shutdown to cease output on a socket that has
established a connection, the protocol implementation shall send a FIN indication
after sending all data queued for output, indicating the shutdown event to the re-
mote endpoint. If the application makes a call to Shutdown to cease input, the TCP
protocol implementation shall take no action.

NOTE: When an application does a shutdown for input, no action is taken by the TCP protocol
implementation, as no protocol mechanism exists for this event. However, if new data are
received for a connection in the Sending Only state or the Dead state, TCP should abort the
connection with an RST indication, as the data cannot be delivered successfully.

When a TCP socket is closed in the Listening state, pending connections to that socket
that have not been returned by the Accept_Connection procedure shall be aborted
by sending a segment containing the RST flag.

An immediate disconnect that is initiated by closing a TCP socket with the Socket
Linger Time socket option enabled, a linger time of zero, and an existing connection to
a peer (in states Connected, Sending Only, or Receiving Only) shall cause the connection
to be aborted by sending a segment containing the RST flag.

A normal disconnect initiated by closing a connected TCP socket with the Socket
Linger Time socket option disabled or with a linger time other than zero shall not cause
data to be discarded. When a normal disconnect is initiated, the implementation
shall attempt to deliver any buffered data followed by a FIN indication whether the
socket blocks awaiting the completion of the disconnect.

Once the FIN has been acknowledged, the disconnect shall be considered complete.
If the Socket Linger Time socket option is disabled, the close of a socket shall return
immediately, and the protocol implementation shall continue to attempt delivery of
any buffered data and the FIN indication until they are acknowledged or the protocol
implementation times out. If the Socket Linger Time socket option is enabled with a
time other than zero, the close operation shall block until buffered data and the FIN
are acknowledged or until the linger time has expired. However, the protocol shall
continue to attempt delivery of any buffered data and FIN after the close operation
returns until any data and FIN are acknowledged or the implementation times out.
The implementation may retain protocol state from the socket to await expiration of
protocol timers after the disconnect.

The TCP protocol supports a notion of a pointer to urgent data; data preceding and
at the urgent pointer are considered to be urgent. A TCP connection for which an
urgent pointer has been received is considered to be in urgent mode until the data
at the urgent pointer have been received. However, there is no notion in TCP of out-
of-band data. Process_OOB_Data is used instead to send data in urgent mode, and

750 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

(when not using the Socket OOB Data Inline socket option) to receive a specific octet of
urgent data.

By default, when an application uses the Send or Send_Message functions and spec-
ifies Process_OOB_Data , then the TCP urgent pointer is set to the sequence number
of the octet following the data presented to the function. As TCP currently specifies
the urgent pointer as the last octet of urgent data rather than the first octet following
the urgent data, one additional octet of data after the data sent with Process_OOB_-
Data specified is also part of the urgent data. Thus, an application that wishes to
send two octets of data in urgent mode may send the first octet with Process_-
OOB_Dataspecified and then send the second octet of data in a separate call without
Process_OOB_Data specified. The interpretation of Process_OOB_Data on send op-
erations for TCP can be modified by setting the Standardized Urgent Data socket option.
Using that option, it is possible to send a single octet of data in urgent mode.

When the TCP implementation receives a new urgent pointer and the application
has set a process or process group to receive signals from the socket, the POSIX_-
Signals.Signal_Out_Of_Band_Data signal shall be generated for that process or
process group when the protocol is first notified of the new urgent pointer. Not all of
the urgent data have necessarily been received by the protocol at this time, as urgent
data are subject to normal flow control.

The subsequent handling of incoming data in urgent mode depends upon the value
of the Socket OOB Data Inline socket option for the socket. If the Socket OOB Data Inline
socket option is not set for the socket, incoming data shall be processed normally until
the octet with the sequence number one lower than the urgent pointer is received.
The implementation shall then remove that octet from the normal data stream and
shall place an out-of-band data mark in the socket receive queue in the place of
that octet. The implementation shall then make the octet removed from the data
stream available via a call to the Receive or Receive_Message function specifying
Process_OOB_Data . If the octet before the urgent pointer has not yet arrived and
if POSIX_IO.Non_Blocking is not set for the socket descriptor, it is implementation
defined whether a receive call with Process_OOB_Data specified shall fail with an
error of Would_Block or shall block. However, the call shall not block if the octet
with the sequence number one lower than the urgent pointer cannot be received due
to the flow control window.

If the Socket OOB Data Inline socket option is set for the socket, incoming data shall
be processed normally until the octet with the sequence number one lower than the
urgent pointer is received. The implementation shall then place an out-of-band data
mark in the socket receive queue immediately before that octet; it shall then continue
to place data into the receive queue normally. All data shall thus be placed into the
receive queue in the normal order.

If an application calls the Receive or Receive_Message procedure specifying Pro-
cess_OOB_Data when no out-of-band data are pending (either before any urgent
pointer is detected or after reading the most recent out-of-band data mark without
the Peek_Only) option, an error shall occur.

The result of a receive with Process_OOB_Data specified on a socket that has the
Socket OOB Data Inline socket option set and is in the urgent data condition is unde-
fined.

D Sockets Protocol Mappings 751

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Applications receiving data sent in urgent mode using TCP should use the Socket
OOB Data Inline socket option.

Because the amount of urgent data can exceed the available buffering, an applica-
tion that does not use the Socket OOB Data Inline socket option shall read all pending
urgent data in sequence, using receive calls that do not specify Process_OOB_Data .
Reading the data immediately enables the implementation to free buffer space for
additional data to be sent by the peer. After each receive operation in urgent mode,
the application shall then test whether the previously returned data reached the ur-
gent mark by calling the Socket_Is_At_OOB_Mark function. Once the mark has
been reached, the application may call Receive or Receive_Message with Pro-
cess_OOB_Data specified to receive the out-of-band octet.

Between the time that an urgent pointer is first detected and the time that the out-
of-band data mark is removed from the socket receive queue, a call to the Select_-
File procedure testing this socket descriptor for exceptional conditions shall return
an indication that an exceptional condition exists. At all other times, an exceptional
indication shall not be indicated on a socket using TCP.

For TCP sockets, the implementation shall support the Socket Debugging socket op-
tion, the Socket Reuse Addresses socket option, and the Socket OOB Data Inline socket
option. It is implementation defined whether the implementation supports the Socket
Routing socket option on sockets using TCP.

It is implementation defined whether the Socket Keep Alive socket option has effect on
sockets using TCP. It is unspecified whether the value of the Socket Broadcast socket
option has any effect on sockets using TCP. A socket using TCP shall support all
options defined for the Internet protocol except the Receive Destination Address socket
option and the Header Included socket option.

The following list identifies the TCP-specific options, the types of the option value
parameters associated with each option, the functions and procedures used to ma-
nipulate the option, the default values for the options, and a synopsis of the meaning
of the option value parameter:

Keep Alive Interval

Set_Keep_Alive_Interval specifies the amount of time in seconds be-
tween keep-alive probes. This option is effective only when the Socket Keep
Alive socket option has been enabled on the socket and the implementation
supports the use of the Socket Keep Alive socket option with TCP. The default
value of the Keep Alive Interval socket option shall be implementation defined
but shall not be less than 7200 (since the unit is seconds, 7200 means two
hours). Get_Keep_Alive_Interval returns the current value of this op-
tion.

No Delay

Under most circumstances, TCP sends data immediately (subject to flow
control) when the application calls an output function. However, when out-
standing data have not yet been acknowledged, the implementation may
gather small amounts of output to be sent in a single, larger packet once an
acknowledgment is received or a full packet can be constructed. For some

752 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

clients, such as window systems that send a stream of mouse events that re-
ceive no replies, this packetization may cause significant delays. Therefore,
the implementation shall inhibit this packetization by using Set_No_Delay
to set the No Delay socket option to Enabled .
Applications should minimize the use of this option due to possible perfor-
mance degradation. The default value for the No Delay socket option is Dis-
abled .

Retransmit Time Maximum

Set_Retransmit_Time_Maximum specifies the amount of time in seconds
before the connection is broken once TCP determines it is retransmitting
data. The implementation may round the specified value up to the next
time at which it would retransmit under the current conditions (including
the estimated round trip time and back-off values). Get_Retransmit_-
Time_Maximum returns the current value of this option. A value of Re-
transmit_Time_Default is the default and indicates the use of the system
default behavior, which may depend upon the estimated round-trip time for
the connection. A value of Wait_Forever means to wait forever.

Segment Size Maximum

Get_Segment_Size_Maximum returns the current segment size, in octets, of
the TCP connection. It is implementation defined whether the value of this
option can be set by an application, and if so, within what range of values.
The default value of this option is unspecified.

Standardized Urgent Data

Set_Standardized_Urgent_Data influences the behavior of the TCP im-
plementation when sending out-of-band (urgent) data. By default, a send
specifying Process_OOB_Data causes the urgent pointer to be set to the se-
quence number of the next octet after the data presented. The current TCP
definition of the URG field does not allow transmission of a single octet in
urgent mode. However, when the Standardized Urgent Data socket option has
a value of Enabled , a send specifying Process_OOB_Data shall cause the
urgent pointer to be set to the sequence number of the last data octet pre-
sented. The default value of the Standardized Urgent Data socket option shall
be Disabled .

If a send operation on a TCP socket specifies the Do_Not_Route flag, the results are
undefined. If the Socket Routing socket option is set to Disabled for the socket and
the implementation supports this option for TCP, the normal routing mechanism
shall be ignored for outgoing TCP packets. If the destination address refers to a
destination on a directly attached network interface, that interface shall be used to
deliver the datagram to the destination; otherwise, an error shall occur.

D.1.3.4.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Network_Unreachable

A send operation on a TCP socket specified the Do_Not_Route flag with
undefined results.

D Sockets Protocol Mappings 753

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Would_Block

A Receive procedure specified the Process_OOB_Data before the urgent
pointer has arrived, and POSIX_IO.Non_Blocking is not set for the socket
descriptor.

Invalid_Argument

An application called Receive or Receive_Message specifying Process_-
OOB_Data when no out-of-band data are pending.

D.1.3.5 User Datagram Protocol

D.1.3.5.1 Description

UDP is a simple unreliable datagram protocol that is used to support the Data-
gram_Socket abstraction for the Internet protocol family. UDP sockets are connec-
tionless mode, and are normally used by Send with the To parameter and Receive
with the From parameter.

The UDP service supports all states in Figure D.3.

UDP uses the standard Internet endpoint address formats and conventions described
in D.1.3.1 and further specified in this subclause.

In the Ground state, the local and remote addresses and ports for the endpoint shall
all be unbound (port values of zero, addresses of Unspecified_Internet_Ad-
dress).

In the Ground state, a successful call to the Bind procedure shall bind a local port
number. If the address specified with the Bind call contains a port number of zero,
an unused local port number shall be bound to the endpoint. If the host address
specified with Bind is Unspecified_Internet_Address , the local address for the
endpoint shall remain unspecified.

If the Send with the To parameter or Send_Message functions are successfully called
for a UDP socket in the Ground state, an unused local port number shall be bound to
the endpoint.

The local address for the endpoint shall remain unbound. Once a local port number
has been bound to the endpoint, it shall not be unbound until a Close event.

UDP uses the standard Internet conventions when connecting to a remote endpoint
as described in D.1.3.1 and further specified here.

When a Send with the To parameter or a Send_Message call is made in the Bound
state on a UDP socket for which no local host address has been bound, the protocol
shall select a source address for the outgoing datagram, and the local address for the
endpoint shall remain unbound. If the local address has been bound before a Send
with the To parameter or Send_Message call in the Bound state, that address shall
be used as the source address of the datagram.

When the Connect procedure is successfully called for a UDP socket, the remote
address and port number shall be set for the endpoint. If the local port has not been
bound, an unused local port number shall be bound to the endpoint. If the local

754 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

address has not been bound, a local address shall be selected and bound. In the Open
state, output operations shall not specify a destination address, and all datagrams
shall be sent to the prespecified peer. Only datagrams from the prespecified peer
shall be received.

If Connect is called for a UDP socket in the Open state, the behavior shall be as if the
socket is placed in the Bound state, the remote address and port and the local address
are set to the Unbound state, leaving the local port number unchanged. The Connect
call is then made in this state. If the Connect is unsuccessful because the address
family is invalid or because the destination port and/or address is unspecified, the
socket shall remain in the Bound state with no peer address or port and with the
local address set to Unspecified_Internet_Address . An error shall be returned
as specified for this function. The local port number shall be unchanged.

Closing a UDP socket shall have no effect on data previously sent.

UDP does not support out-of-band data; send or receive operations that specify Pro-
cess_OOB_Data shall generate the error Invalid_Argument .

The implementation shall support the Socket Broadcast socket option and the Socket
Reuse Addresses socket option on sockets using UDP. It is implementation defined
whether the implementation supports the Socket Routing socket option on sockets us-
ing UDP. It is unspecified whether the Socket Keep Alive socket option, the Socket
Debugging socket option, and the Socket OOB Data Inline socket option have any effect
on sockets using UDP. A socket using UDP shall support all options defined for the
Internet protocol (see D.1.3.6) except the IP Header Included socket option. No options
are specified for the UDP protocol.

If a send operation specifies the Do_Not_Route flag or if the Socket Routing socket
option is set to Disabled for the socket during a send operation, and if the im-
plementation supports disabling routing on sockets using UDP, the normal routing
mechanism shall be ignored for the output datagram. If the destination address
refers to a destination on a directly attached network interface, that interface shall
be used to deliver the datagram to the destination; otherwise, the operation shall
generate the error Network_Unreachable .

If a send operation attempts to send a datagram to a broadcast (see RFC 791 f13g)
address for a local network using a socket for which the Socket Broadcast socket op-
tion has not been set, the function may generate the error Permission_Denied .
If a send operation attempts to send a datagram to a broadcast address for a local
network, and the datagram cannot be sent on that network without fragmentation,
the function may generate the error Message_Too_Long .

D.1.3.5.2 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Invalid_Argument

A send or receive specified Process_OOB_Data .

Message_Too_Long

A send operation attempted to send a datagram to a broadcast address for

D Sockets Protocol Mappings 755

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

a local network, and the datagram cannot be sent on that network without
fragmentation.

Network_Unreachable

A send operation specified Do_Not_Route or the Socket Routing socket option
is set to Disabled for the socket, and the destination address does not refer
to a destination on a directly attached network interface.

Permission_Denied

A send operation attempted to send a datagram to a broadcast address for a
local network using a socket for which the Socket Broadcast socket option has
not been set.

D.1.3.6 Internet Protocol

D.1.3.6.1 Synopsis

function IP_Header_Options_In_Use
(Socket : POSIX_IO.File_Descriptor)

return Boolean;
procedure Reset_IP_Header_Options

(Socket : in POSIX_IO.File_Descriptor);
type IP_Options_Buffer is private ;
function Get_IP_Header_Options

(Socket : POSIX_IO.File_Descriptor)
return IP_Options_Buffer;

procedure Set_IP_Header_Options
(Socket : in POSIX_IO.File_Descriptor;

To : in IP_Options_Buffer);
function Get_First_Hop

(Options : IP_Options_Buffer)
return Internet_Address;

procedure Set_First_Hop
(Options : in out IP_Options_Buffer;

Address : in Internet_Address);
function Get_IP_Options

(Options : IP_Options_Buffer)
return POSIX.Octet_Array;

procedure Set_IP_Options
(Options : in out IP_Options_Buffer;

Buffer : in POSIX.Octet_Array);
type IP_Type_Of_Service is private ;
Low_Delay : constant IP_Type_Of_Service;
High_Throughput : constant IP_Type_Of_Service;
High_Reliability : constant IP_Type_Of_Service;
Unspecified : constant IP_Type_Of_Service;
type Time_To_Live is range 0 .. 255;
function Get_Type_Of_Service

(Socket : POSIX_IO.File_Descriptor)
return IP_Type_Of_Service;

procedure Set_Type_Of_Service
(Socket : in POSIX_IO.File_Descriptor;

To : in IP_Type_Of_Service);
function Get_Initial_Time_To_Live

(Socket : POSIX_IO.File_Descriptor)
return Time_To_Live;

procedure Set_Initial_Time_To_Live
(Socket : in POSIX_IO.File_Descriptor;

To : in Time_To_Live);

756 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

function Get_Receive_Destination_Address
(Socket : POSIX_IO.File_Descriptor)

return POSIX_Sockets.Socket_Option_Value;
procedure Set_Receive_Destination_Address

(Socket : in POSIX_IO.File_Descriptor;
To : in POSIX_Sockets.Socket_Option_Value);

type IP_Ancillary_Data is private ;
type IP_Ancillary_Data_Pointer is access all IP_Ancillary_Data;
procedure Set_Ancillary_Data

(Message : in out POSIX_Sockets.Socket_Message;
Data : in IP_Ancillary_Data_Pointer);

function Get_Destination_Address
(Data : IP_Ancillary_Data)

return Internet_Address;
function Get_Header_Included

(Socket : POSIX_IO.File_Descriptor)
return POSIX_Sockets.Socket_Option_Value;

procedure Set_Header_Included
(Socket : in POSIX_IO.File_Descriptor;

To : in POSIX_Sockets.Socket_Option_Value);

D.1.3.6.2 Description

The Internet Procol is the network layer protocol used by the Internet protocol fam-
ily. It may also be accessed through a raw socket when developing new protocols or
special purpose applications.

Raw IP sockets are connectionless-mode and are normally used by Send with the To
parameter and Receive with the From parameter, although Connect may also be
used to fix the destination for future packets. Raw IP sockets support all the states
in Figure 18.1.

If the Protocol parameter on the call to Create is omitted or specified as De-
fault_Protocol , the default protocol Raw is used for outgoing packets, and only
incoming packets destined for that protocol are received. If the Protocol parameter
is used, that protocol number will be used on outgoing packets and to filter incoming
packets.

Outgoing packets automatically have an IP header appended in front of them (based
on the destination address and the protocol number with which the socket is cre-
ated), unless the IP Header Included socket option has been set. Incoming packets are
received with IP header and options intact.

If a send operation specifies the Do_Not_Route flag or the Socket Routing socket
option is set to Disabled for the socket during a send operation, and the imple-
mentation supports disabling socket routing, the normal routing mechanism shall
be ignored for the output datagram. If the destination address refers to a destina-
tion on a directly attached network interface, that interface shall be used to deliver
the datagram to the destination; otherwise, the operation shall generate the error
Network_Unreachable .

Options may be set for the Internet protocol when using higher level protocols that
are based on IP (such as TCP and UDP).

D Sockets Protocol Mappings 757

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

The following list identifies the IP-specific options, the types of the option value pa-
rameters associated with each option, the functions and procedures used to manipu-
late the option, the default values for the options, and a synopsis of the meaning of
the option value parameter:

IP Header Options

This option may be used to provide Internet protocol options to be trans-
mitted in the IP header of each outgoing packet or to examine the header
options of incoming packets. The option value is set with the Set_IP_-
Header_Options procedure and retrieved with the Get_IP_Header_Op-
tions function. The option value is an IP_Options_Buffer object with
the following attributes:

First Hop

The first-hop gateway Internet address, which is used when a list
of addresses for the Source Route socket option is specified. This
attribute must be set when using the Source Route socket option.
Set_First_Hop may be used to set this attribute. The Get_-
First_Hop function shall return the first-hop IP address if a Source
Route socket option is present. Otherwise it shall return the value
Unspecified_Internet_Address .

IP Options

An array of octets to hold the IP options. The maximum number
of octets, as determined by the header format, is 40. Set_IP_-
Options and Get_IP_Options may be used to set and examine
this attribute.

The format of the IP Options attribute is that specified by the Internet proto-
col (see RFC 791 f13g), as it should be appended to the standard IP header,
with one exception: the list of addresses for the Source Route socket option
must have the First Hop attribute set to the first-hop gateway, and the be-
ginning of the IP Options attribute set to the list of gateways followed by
additional IP options. At most one Source Route socket option shall be in-
cluded in the protocol options. If a Source Route socket option is included,
the implementation shall extract and remove the first-hop gateway address
from the option list and then adjust the size accordingly before inserting the
option list into datagrams.
NOTE: For further details on IP options and source routes, see RFC 791 f13g and
RFC 1122 f18g.
The procedure Reset_IP_Header_Options disables any previous options.
Function IP_Header_Options_In_Use returns False if no options are
currently in use.

Type Of Service

Set_Type_Of_Service is used to set the type-of-service field in the IP
header for outgoing packets. The default value for the Type Of Service socket
option is Unspecified . Get_Type_Of_Service returns the current value
of this option.

Initial Time To Live

Set_Initial_Time_To_Live is used to set the time-to-live field in the
IP header for outgoing packets. The default value for the Initial Time To Live

758 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

socket option is implementation defined. Get_Initial_Time_To_Live
returns the current value of this option.

Receive Destination Address

Set_Receive_Destination_Address is used to enable a Receive_Mes-
sage call on a Datagram_Socket socket to return the destination IP ad-
dress for incoming datagrams as ancillary data. The Set_Ancillary_Data
procedure prepares a socket message to receive ancillary data by storing a
pointer to an object of type IP_Ancillary_Data . The Get_Destination_-
Address function retrieves the ancillary data as an object of type Inter-
net_Address . The default value of the Receive Destination Address socket
option shall be Disabled . Get_Receive_Destination_Address returns
the current value of this option.

IP Header Included

Set_Header_Included is used to enable the complete IP header to be in-
cluded with the data on send operations. This option shall be used only with
the Raw_Socket type. It is implementation defined whether the IP Header In-
cluded socket option is supported. If it is not supported, an attempt to set the
option shall result in an error. Get_Header_Included returns the current
value of this option.
The program must set all the fields of the IP header, including the IP version
number, the header length, the packet identification field, and the data off-
set. If the packet identification attribute is set to zero, the implementation
shall fill in an appropriate value. If the source address is set to Unspeci-
fied_Internet_Address , the implementation shall choose an appropriate
address. The default value of the IP Header Included socket option shall be
Disabled .

D.1.3.6.3 Error Handling

If any of the following conditions occurs, the exception POSIX_Error shall be raised
with the corresponding error code:

Network_Unreachable

A send operation specified Do_Not_Route or the Socket Routing socket option
is set to Disabled for the socket, and the destination address does not refer
to a destination on a directly attached network interface.

Option_Not_Supported

Set_Header_Included was called and the IP Header Included socket option
is not supported by the implementation.

D.2 XTI Protocol Mappings

This clause describes Ada mappings to facilities that support specific XTI network
protocols.

D XTI Protocol Mappings 759

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

D.2.1 Package POSIX_XTI_mOSI

This package provides the DNI/XTI interface mappings for the minimal 7-layer OSI
stack. Unless otherwise specified, all the DNI/XTI calls in package POSIX_XTI can
be used for mOSI. Only additional information relevant to this protocol is highlighted
in this subclause.

The functionality described in this subclause is optional. If either the XTI Detailed
Network Interface option or the OSI Minimal option is not supported, the implementation
may cause all calls to the explicitly declared operations defined in this subclause to
raise POSIX_Error . Otherwise, the behavior shall be as specified in this subclause.

with POSIX,
POSIX_XTI;

package POSIX_XTI_mOSI is
-- D.2.1.4 mOSI Naming and Addressing
type mOSI_XTI_Address is private ;
type mOSI_XTI_Address_Pointer is access all mOSI_XTI_Address;
function "+" (Pointer : mOSI_XTI_Address_Pointer)

return POSIX_XTI.XTI_Address_Pointer;
function "+" (Pointer : POSIX_XTI.XTI_Address_Pointer)

return mOSI_XTI_Address_Pointer;
function Is_mOSI_XTI_Address

(Pointer : POSIX_XTI.XTI_Address_Pointer)
return Boolean;

mOSI_Address_Length_Maximum : constant Natural := implementation-defined;
type AP_Invocation_Id is new POSIX.Octet_Array;
type AE_Invocation_Id is new POSIX.Octet_Array;
type AP_Title is new POSIX.Octet_Array;
type AE_Qualifier is new POSIX.Octet_Array;
type Presentation_Address is new POSIX.Octet_Array;
type mOSI_Address_Flags is new POSIX.Option_Set;
AP_Invocation_Id_Valid : constant mOSI_Address_Flags := implementation-defined;
AE_Invocation_Id_Valid : constant mOSI_Address_Flags := implementation-defined;
function Get_Flags

(Address : mOSI_XTI_Address)
return mOSI_Address_Flags;

procedure Set_Flags
(Address : in out mOSI_XTI_Address;

To : in mOSI_Address_Flags);
function Get_AP_Invocation_Id

(Address : mOSI_XTI_Address)
return AP_Invocation_Id;

procedure Set_AP_Invocation_Id
(Address : in out mOSI_XTI_Address;

To : in AP_Invocation_Id);
function Get_AE_Invocation_Id

(Address : mOSI_XTI_Address)
return AE_Invocation_Id;

procedure Set_AE_Invocation_Id
(Address : in out mOSI_XTI_Address;

To : in AE_Invocation_Id);
function Get_AP_Title

(Address : mOSI_XTI_Address)
return AP_Title;

760 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

function Get_AE_Qualifier
(Address : mOSI_XTI_Address)

return AE_Qualifier;
function Get_Presentation_Address

(Address : mOSI_XTI_Address)
return Presentation_Address;

procedure Set_OSI_Address
(Address : in out mOSI_XTI_Address;

AP : in AP_Title;
AE : in AE_Qualifier;
PA : in Presentation_Address);

procedure Get_Address
(Info_Item : in POSIX_XTI.Connection_Info;

Address : in out mOSI_XTI_Address);
-- D.2.1.5 mOSI Options
mOSI_Connection_Mode :

constant POSIX_XTI.Option_Level := implementation-defined;
mOSI_Connectionless_Mode :

constant POSIX_XTI.Option_Level := implementation-defined;
Application_Context :

constant POSIX_XTI.Option_Name := implementation-defined;
Presentation_Context :

constant POSIX_XTI.Option_Name := implementation-defined;
type Object_Identifier is new POSIX.Octet_Array;
type Application_Context_Name is new Object_Identifier;
type Presentation_Context_List is private ;
function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)

return Application_Context_Name;
procedure Set_Option

(Option_Item : in out POSIX_XTI.Protocol_Option;
Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
Value : in Application_Context_Name);

function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)
return Presentation_Context_List;

procedure Set_Option
(Option_Item : in out POSIX_XTI.Protocol_Option;

Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
Value : in Presentation_Context_List);

-- Presentation Context Definition and Result List
type Presentation_Context_Item is private ;
type Presentation_Item_Id is implementation-defined-integer;
procedure Set_Presentation_Id

(Item : in out Presentation_Context_Item;
To : in Presentation_Item_Id);

function Get_Presentation_Id
(Item : Presentation_Context_Item)

return Presentation_Item_Id;
type Negotiation_Result is private ;
Presentation_Context_Accepted : constant Negotiation_Result;
Presentation_Context_Rejected : constant Negotiation_Result;
Rejected_No_Reason_Specified : constant Negotiation_Result;
Abstract_Syntax_Not_Supported : constant Negotiation_Result;
Transfer_Syntax_Not_Supported : constant Negotiation_Result;
Local_DCS_Limit_Exceeded : constant Negotiation_Result;

D XTI Protocol Mappings 761

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

procedure Set_Negotiation_Result
(Item : in out Presentation_Context_Item;

To : in Negotiation_Result);
function Get_Negotiation_Result

(Item : Presentation_Context_Item)
return Negotiation_Result;

type Syntax_Object_List is private ;
procedure Set_Syntax_Object

(Item : in out Presentation_Context_Item;
To : in Syntax_Object_List);

function Get_Syntax_Object
(Item : Presentation_Context_Item)

return Syntax_Object_List;
Empty_Presentation_Context_List : constant Presentation_Context_List;
procedure Make_Empty (List : in out Presentation_Context_List);
procedure Add

(List : in out Presentation_Context_List;
Item : in Presentation_Context_Item);

generic
with procedure Action

(Item : in out Presentation_Context_Item;
Quit : in out Boolean);

procedure For_Every_Presentation_Context_Item
(List : in Presentation_Context_List);

function Length (List : Presentation_Context_List)
return Natural;

function Element
(List : Presentation_Context_List;

Index : Positive)
return Presentation_Context_Item;

Empty_Syntax_Object_List : constant Syntax_Object_List;
procedure Make_Empty (List : in out Syntax_Object_List);
procedure Add

(List : in out Syntax_Object_List;
Item : in Object_Identifier);

generic
with procedure Action

(Object : in Object_Identifier;
Quit : in out Boolean);

procedure For_Every_Object_Identifier
(List : in Syntax_Object_List);

function Length (List : Syntax_Object_List)
return Natural;

function Element
(List : Syntax_Object_List;

Index : Positive)
return Object_Identifier;

-- D.2.1.11 XTI Functions
Rejected_By_Peer :

constant POSIX_XTI.Reason_Code := implementation-defined;
AC_Name_Not_Supported :

constant POSIX_XTI.Reason_Code := implementation-defined;
Unrecognized_AP_Title :

constant POSIX_XTI.Reason_Code := implementation-defined;
Unrecognized_AE_Qualifier :

constant POSIX_XTI.Reason_Code := implementation-defined;
Authentication_Required :

constant POSIX_XTI.Reason_Code := implementation-defined;

762 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Aborted_By_Peer :
constant POSIX_XTI.Reason_Code := implementation-defined;

No_Common_Version :
constant POSIX_XTI.Reason_Code := implementation-defined;

private
implementation-defined

end POSIX_XTI_mOSI;

D.2.1.1 Application Contexts

An application context name identifies a set of tasks to be performed by an applica-
tion. It is exchanged during association establishment with the purpose of conveying
a common understanding of the work to be done. This parameter is exposed to offer
some negotiation capabilities to the application and to increase the chances of inter-
operability. When receiving an unsuitable or unknown value from a peer application,
the application may propose an alternate value or decide to terminate the associa-
tion prematurely. A default value (in the form of an object identifier) is provided,
identifying a generic XTI-mOSI application. Its value can be found in D.2.1.10.

D.2.1.2 Presentation Contexts

A presentation context is the association of an abstract syntax with a transfer syn-
tax. The presentation context is used by the application to identify how the data
are structured and by the OSI application layer to identify how the data should be
encoded/decoded.

A generic presentation context is defined for a stream oriented, unstructured, data
transfer service with null encoding:

— abstract syntax: The single data type of this abstract syntax is a sequence of
octets that are defined in the application protocol specification as being consecu-
tive octets on a stream oriented communications mechanism without regard for
any semantic or other boundaries.

— transfer syntax: The data value shall be represented as an octet-aligned presen-
tation data value. If two or more data values are concatenated together they
are considered to be a single (longer) data value. (The rule expressed in the
preceding sentence is called the null encoding rule.)

The object identifiers for this generic presentation context can be found in D.2.1.10.

D.2.1.3 Presentation Context Definition and Result Lists

As negotiation occurs between the peer OSI application layers, the presentation con-
text or contexts proposed by the application need not be accepted.

The Presentation Context Definition and Result List for each of the proposed presentation
contexts indicate whether it is accepted and, if it is not, provides a reason code. The
application may choose to terminate the association prematurely if it does not suit
its requirements.

D XTI Protocol Mappings 763

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

D.2.1.4 mOSI Naming and Addressing

D.2.1.4.1 Synopsis

type mOSI_XTI_Address is private ;
type mOSI_XTI_Address_Pointer is access all mOSI_XTI_Address;
function "+" (Pointer : mOSI_XTI_Address_Pointer)

return POSIX_XTI.XTI_Address_Pointer;
function "+" (Pointer : POSIX_XTI.XTI_Address_Pointer)

return mOSI_XTI_Address_Pointer;
function Is_mOSI_XTI_Address

(Pointer : POSIX_XTI.XTI_Address_Pointer)
return Boolean;

mOSI_Address_Length_Maximum : constant Natural := implementation-defined;
type AP_Invocation_Id is new POSIX.Octet_Array;
type AE_Invocation_Id is new POSIX.Octet_Array;
type AP_Title is new POSIX.Octet_Array;
type AE_Qualifier is new POSIX.Octet_Array;
type Presentation_Address is new POSIX.Octet_Array;
type mOSI_Address_Flags is new POSIX.Option_Set;
AP_Invocation_Id_Valid : constant mOSI_Address_Flags := implementation-defined;
AE_Invocation_Id_Valid : constant mOSI_Address_Flags := implementation-defined;
function Get_Flags

(Address : mOSI_XTI_Address)
return mOSI_Address_Flags;

procedure Set_Flags
(Address : in out mOSI_XTI_Address;

To : in mOSI_Address_Flags);
function Get_AP_Invocation_Id

(Address : mOSI_XTI_Address)
return AP_Invocation_Id;

procedure Set_AP_Invocation_Id
(Address : in out mOSI_XTI_Address;

To : in AP_Invocation_Id);
function Get_AE_Invocation_Id

(Address : mOSI_XTI_Address)
return AE_Invocation_Id;

procedure Set_AE_Invocation_Id
(Address : in out mOSI_XTI_Address;

To : in AE_Invocation_Id);
function Get_AP_Title

(Address : mOSI_XTI_Address)
return AP_Title;

function Get_AE_Qualifier
(Address : mOSI_XTI_Address)

return AE_Qualifier;
function Get_Presentation_Address

(Address : mOSI_XTI_Address)
return Presentation_Address;

procedure Set_OSI_Address
(Address : in out mOSI_XTI_Address;

AP : in AP_Title;
AE : in AE_Qualifier;
PA : in Presentation_Address);

procedure Get_Address
(Info_Item : in POSIX_XTI.Connection_Info;

Address : in out mOSI_XTI_Address);

764 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

D.2.1.4.2 Description

The mOSI_XTI_Address object (used in Bind , Connect , and Accept_Connection)
is a combined naming and addressing object, identifying one end or the other of
the association. The address part is a presentation address. The calling and called
addresses are required parameters while the use of a responding address is optional
(see D.2.1.12).

The type mOSI_XTI_Address shall be used to represent an address for this protocol
family. The type mOSI_XTI_Address_Pointer is an access to this protocol-specific
address type. The "+" operations shall convert a mOSI_XTI_Address_Pointer to
and from the XTI_Address_Pointer type for use with the base package operations
defined for the XTI_Address_Pointer type. The return value of the "+" operations
designates the same address object as the input parameter. The function Is_mOSI_-
XTI_Address shall return True if the address object designated by the specified non-
null XTI_Address_Pointer is a valid mOSI_XTI_Address and False otherwise.
The conversion operation to mOSI_XTI_Address_Pointer shall succeed if and only
if the corresponding Is_mOSI_XTI_Address returns True . Otherwise, the results
are undefined.

NOTE: The Null_XTI_Address constant corresponds to the Ada null literal for these oper-
ations.

The name parts AP Title and AE Qualifier are always optional.

NOTE: ISO directory facilities, when available, can relate the name parts (identifying specific
applications) to the addresses of the real locations where they can be accessed.

The mOSI_XTI_Address object has at least the following attributes:

Flags

An mOSI_Address_Flags object indicating the presence of the correspond-
ing invocation identifier in the PDU. The following flags are defined:

AP_Invocation_Id_Valid

The contents of the AP Invocation Identifier attribute is valid.
AE_Invocation_Id_Valid

The contents of the AE Invocation Identifier attribute is valid.
The operations "+" , "-" , ">" , "<" , ">=" , "<=" , and Empty_Set are avail-
able on the type mOSI_Address_Flags via the derived type semantics of
Ada, from the operations available for POSIX.Option_Set . The appropriate
operations can be used to create and examine a set containing the required
flags. Function Get_Flags returns the current value for this attribute and
procedure Set_Flags shall set this attribute.

AP Invocation Identifier

Function Get_AP_Invocation_Id returns the current value for this at-
tribute and procedure Set_AP_Invocation_Id shall set this attribute.

AE Invocation Identifier

Function Get_AE_Invocation_Id returns the current value for this at-
tribute, and procedure Set_AE_Invocation_Id shall set this attribute.

D XTI Protocol Mappings 765

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

AP Title

Function Get_AP_Title returns the current value for this attribute, and
procedure Set_AP_Title shall set this attribute.

AE Qualifier

Function Get_AE_Qualifier returns the current value for this attribute,
and procedure Set_AE_Qualifier shall set this attribute.

Presentation Address

Function Get_Presentation_Address returns the current value for this
attribute, and procedure Set_Presentation_Address shall set this at-
tribute.

D.2.1.5 mOSI Options

D.2.1.5.1 Synopsis

mOSI_Connection_Mode :
constant POSIX_XTI.Option_Level := implementation-defined;

mOSI_Connectionless_Mode :
constant POSIX_XTI.Option_Level := implementation-defined;

Application_Context :
constant POSIX_XTI.Option_Name := implementation-defined;

Presentation_Context :
constant POSIX_XTI.Option_Name := implementation-defined;

type Object_Identifier is new POSIX.Octet_Array;
type Application_Context_Name is new Object_Identifier;
type Presentation_Context_List is private ;
function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)

return Application_Context_Name;
procedure Set_Option

(Option_Item : in out POSIX_XTI.Protocol_Option;
Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
Value : in Application_Context_Name);

function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)
return Presentation_Context_List;

procedure Set_Option
(Option_Item : in out POSIX_XTI.Protocol_Option;

Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
Value : in Presentation_Context_List);

-- Presentation Context Definition and Result List
type Presentation_Context_Item is private ;
type Presentation_Item_Id is implementation-defined-integer;
procedure Set_Presentation_Id

(Item : in out Presentation_Context_Item;
To : in Presentation_Item_Id);

function Get_Presentation_Id
(Item : Presentation_Context_Item)

return Presentation_Item_Id;
type Negotiation_Result is private ;
Presentation_Context_Accepted : constant Negotiation_Result;
Presentation_Context_Rejected : constant Negotiation_Result;
Rejected_No_Reason_Specified : constant Negotiation_Result;
Abstract_Syntax_Not_Supported : constant Negotiation_Result;
Transfer_Syntax_Not_Supported : constant Negotiation_Result;
Local_DCS_Limit_Exceeded : constant Negotiation_Result;

766 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

procedure Set_Negotiation_Result
(Item : in out Presentation_Context_Item;

To : in Negotiation_Result);
function Get_Negotiation_Result

(Item : Presentation_Context_Item)
return Negotiation_Result;

type Syntax_Object_List is private ;
procedure Set_Syntax_Object

(Item : in out Presentation_Context_Item;
To : in Syntax_Object_List);

function Get_Syntax_Object
(Item : Presentation_Context_Item)

return Syntax_Object_List;
Empty_Presentation_Context_List : constant Presentation_Context_List;
procedure Make_Empty (List : in out Presentation_Context_List);
procedure Add

(List : in out Presentation_Context_List;
Item : in Presentation_Context_Item);

generic
with procedure Action

(Item : in out Presentation_Context_Item;
Quit : in out Boolean);

procedure For_Every_Presentation_Context_Item
(List : in Presentation_Context_List);

function Length (List : Presentation_Context_List)
return Natural;

function Element
(List : Presentation_Context_List;

Index : Positive)
return Presentation_Context_Item;

Empty_Syntax_Object_List : constant Syntax_Object_List;
procedure Make_Empty (List : in out Syntax_Object_List);
procedure Add

(List : in out Syntax_Object_List;
Item : in Object_Identifier);

generic
with procedure Action

(Object : in Object_Identifier;
Quit : in out Boolean);

procedure For_Every_Object_Identifier
(List : in Syntax_Object_List);

function Length (List : Syntax_Object_List)
return Natural;

function Element
(List : Syntax_Object_List;

Index : Positive)

return Object_Identifier;

D.2.1.5.2 Description

Options are formatted according to the Protocol_Option object as described in
17.3.2. The overloaded Get_Value function and Set_Option procedure are used to
examine and set attributes in the Protocol_Option object. An OSI provider com-
pliant with this specification supports all, none, or a subset of the options defined in
D.2.1.13 and D.2.1.14. An implementation may restrict the use of any of the options
by offering them in privileged or read-only mode. The following options are common
to both connection-mode and connectionless-mode service:

D XTI Protocol Mappings 767

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Application Context Name

This option defines the application context name (see D.2.1.1). Its value is
an object with type Application_Context_Name .

Presentation Context List

This option defines the Presentation Context Definition and Result List (see
D.2.1.3). Its value is a Presentation_Context_List object, which is a list
of Presentation_Context_Item s. The generic procedure For_Every_-
Presentation_Context_Item , described later in this subclause, provides
a way to iterate through this list. Each Presentation_Context_Item
includes the following attributes:

Presentation Item Id

A unique value identifying the item. The procedure Set_Presen-
tation_Id and the function Get_Presentation_Id are used to
set and retrieve the value of this attribute.

Negotiation Result

A value with type Negotiation_Result containing one of the fol-
lowing negotiation results:

Presentation_Context_Accepted

Accepted
Presentation_Context_Rejected

Rejected by peer application
Rejected_No_Reason_Specified

Provisional reject: no reason given
Abstract_Syntax_Not_Supported

Provisional reject: abstract syntax not supported
Transfer_Syntax_Not_Supported

Provisional reject: transfer syntax not supported
Local_DCS_Limit_Exceeded

Provisional reject: local limit on the DCS exceeded
The procedure Set_Negotiation_Result and the function Get_-
Negotiation_Result are used to set and retrieve the value of this
attribute.

Syntax Object Identifier List

An object with type Syntax_Object_List containing a list of object iden-
tifiers (see D.2.1.10) for the syntax elements. The procedure Set_Syntax_-
Object and the function Get_Syntax_Object are used to set and retrieve
the value of this attribute.
The first element in this list shall refer to the abstract syntax, the second
to the first transfer syntax, and so on. The generic procedure For_Every_-
Object_Identifier , described later in this subclause, provides a way to
iterate through this list.

Presentation_Context_List and Syntax_Object_List objects shall have the
initial values Empty_Presentation_Context_List and Empty_Syntax_Object_-
List , respectively. The procedure Make_Empty shall set the list indicated by List
to the appropriate initial value, freeing any dynamically allocated storage associated

768 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

with the object. The procedure Add shall add the item specified by Item to the list
indicated by List . The first item added after a Make_Empty shall be the first item in
the list. The order of subsequent items shall be the order they are added with Add.
The add order is preserved until the next Make_Empty operation. The functions
Length and Element return the length and nth item of a list, respectively.

The application program instantiates the generic procedures For_Every_Presen-
tation_Context_Item and For_Every_Object_Identifier with an actual pro-
cedure for the generic formal procedure Action . When called, the instance shall call
the actual procedure supplied for Action once for each element in the associated
list.

Action shall be able to force termination of the generic instance either by setting
Quit to True or by raising an exception. Prior to calling Action , the instance shall
set Quit to False . Exceptions raised by Action shall terminate iteration and shall
be propagated back to the caller of the instance. After an exception is raised by
Action or Action returns with Quit set to True , no more calls to Action within
this call of the generic procedure shall occur.

Some of the XTI QOS options defined for the ISO transport connection-mode or
connectionless-mode Service may be made available to mOSI applications. These
options are defined in D.2.2.2 and D.2.2.3.

The QOS parameters are passed directly by the OSI upper layers to the transport
layer. These options can thus be used to specify OSI upper layers quality of service
parameters via XTI.

This facility is implementation dependent. If an attempt is made to specify an un-
supported option, Manage_Options returns Not_Supported as the Status attribute
for the Protocol_Option object.

None of these options shall be available with an ISO-over-TCP communications
provider.

D.2.1.6 Functional Units, Versions and Protocol Mechanisms

The implementation shall negotiate:

— Session: kernel, full duplex, version 2, or version 1 if version 2 not supported, no
segmentation.
Other session protocol mechanisms are out of scope, except basic concatenation
which is mandatory and transparent to the application.

— Presentation: kernel, normal mode

— ACSE: kernel

If invalid (nonnegotiable) options are requested by the peer and detected by the
provider once the association is already established (such as the ACSE presentation
context missing in the DCS), the association shall be rejected via an A-(P)-ABORT
generated by the implementation.

D XTI Protocol Mappings 769

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

D.2.1.7 Mandatory and Optional Parameters

If the local Presentation Address is not passed to Bind in the Request_Address pa-
rameter, then it shall be returned in the Response_Address parameter.

The remote (called) Presentation Address shall be explicitly set by the application. In
Connect , this is the Address attribute of the Send parameter (Connection_Info
object).

The following parameters are mandatory for the protocol machine, but default values
shall be provided. If the application does not set the corresponding parameter, the
default value shall be used. The default value can be changed through Manage_-
Options (see D.2.1.5).

— Application Context Name

— Presentation Context List

The presentation context of ACSE is required and used. The application should
not request it as the implementation will insert it automatically in the context
list.
If the application does not specifically request an application context name via
the Option attribute of the Call parameter of Accept_Connection (that is, for
the A-ASSOCIATE response), the implementation shall use the application con-
text name that was received in the A-ASSOCIATE indication.

The following parameters are optional for the protocol. If the application does not set
them otherwise, they shall be omitted from the outgoing protocol stream.

— Local AP Title (in Bind , Address attribute of the Request parameter)

— Called AP Title (in Connect , Address attribute of the Send parameter)

— Responding AP Title (if Accept_Connection specifies a new accepting endpoint,
in the protocol address bound to Responding_Endpoint)

— Local AE Qualifier (in Bind , the Address attribute of the Request parameter)

— Called AE Qualifier (in Connect , the Address attribute of the Send parameter)

— Responding AE Qualifier (if Accept_Connection specifies a new accepting end-
point, in the protocol address bound to Responding_Endpoint)

— Local AP Invocation Identier and AE Invocation Identifier (in Bind , Address attribute of
the Request parameter)

— Called AP Invocation Identifier and AE Invocation Identifiers (in Connect , Address at-
tribute of the Send parameter)

— Responding AP Invocation Identifier and AE Invocation Identifier (if Accept_Connec-
tion specifies a new accepting endpoint, in the protocol address bound to Re-
sponding_Endpoint).

The following parameters are optional for the protocol machine and not supported
through the XTI interface. Their handling is implementation defined. Received val-
ues in the incoming protocol stream, if any, are discarded:

— ACSE Protocol Version (default = version 1)

770 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

— Presentation Protocol Version (default = version 1)

— ACSE Implementation Information

— Session Connection Identifiers

During association establishment (that is, before the XTI-mOSI provider negotiates
acceptance of a single abstract syntax/transfer syntax pair), an XTI-mOSI applica-
tion initiating the association shall only send a single presentation data value in the
application information parameter. The XTI-mOSI provider shall ensure that the
first abstract syntax and transfer syntax pair being negotiated is the one required
for its encoding.

D.2.1.8 Association Establishment

XTI shall not support the concept of a negative association establishment, i.e., the
equivalent of a negative A-ASSOCIATE response. An XTI-mOSI implementation
shall not generate an AARE-APDU.

To reject an association request, the responding application issues a Send_Discon-
nect_Request , which maps to an A-ABORT. However, a negative A-ASSOCIATE
confirm (AARE-APDU) may be received from a non-XTI OSI peer. The negative A-
ASSOCIATE confirm event is mapped to Retrieve_Disconnect_Info .

D.2.1.9 Encoding Responsibility

The application shall be responsible for encoding and decoding the AP Title and AE
Qualifier.

Where an object identifier is represented within an option, the application is respon-
sible for encoding and decoding the object identifier value.

D.2.1.10 Object Identifiers

For the default abstract syntax, transfer syntax, and application context, this annex
uses object identifiers that are specified in ISO/IEC ISP 11188-3 f11g. The descrip-
tions provided in this Annex are informative only.

— The following ASN.1 object identifier is defined in ISO/IEC ISP 11188-3 f11g for
the default abstract syntax for mOSI.
fiso(1) standard(0) culr(11188) mosi(3) default-abstract-syntax(1) version(1)g
This object identifier can be used as the abstract syntax when the application
protocol (above ACSE) can be treated as single PDVs.
Each PDV is a sequence of consecutive octets without regard for semantic or
other boundaries. The object identifier can also be used when, for pragmatic
reasons, the actual abstract syntax of the application is not identified in presen-
tation layer negotiation.

NOTE: Applications specified using ASN.1 should not use the default abstract syntax.

NOTE: As this object identifier is used by all applications using the default abstract
syntax for mOSI, it cannot be used to differentiate between applications. One of the
ACSE parameters, for example, AE Title or Presentation Address, can be used to differentiate
between applications.

D XTI Protocol Mappings 771

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

— If the default transfer syntax and the abstract syntax are identical, the ASN.1
object identifier for the default abstract syntax is used as the object identifier for
the default transfer syntax for mOSI. If they are not identical, the ASN.1 object
identifier for the default transfer syntax shall be as follows:
fiso(1) standard(0) culr(11188) mosi(3) default-transfer-syntax(2) version(1)g
In the presentation data value of the PDV list of the ISO presentation protocol
or in the encoding of User Information of the ACSE Protocol, only octet-aligned
or arbitrary shall be used for the default transfer syntax for mOSI. The syntax
single-ASN1-type shall not be used for the default transfer syntax for mOSI.

— The following ASN.1 object identifier is defined in ISO/IEC ISP 11188-3 f11g for
the default application context for mOSI.
fiso(1) standard(0) culr(11188) mosi(3) default-application-context(3) version(1)g
This application context supports the execution of any application using the de-
fault abstract syntax for mOSI.

D.2.1.11 XTI Functions

D.2.1.11.1 Synopsis

Rejected_By_Peer :
constant POSIX_XTI.Reason_Code := implementation-defined;

AC_Name_Not_Supported :
constant POSIX_XTI.Reason_Code := implementation-defined;

Unrecognized_AP_Title :
constant POSIX_XTI.Reason_Code := implementation-defined;

Unrecognized_AE_Qualifier :
constant POSIX_XTI.Reason_Code := implementation-defined;

Authentication_Required :
constant POSIX_XTI.Reason_Code := implementation-defined;

Aborted_By_Peer :
constant POSIX_XTI.Reason_Code := implementation-defined;

No_Common_Version :

constant POSIX_XTI.Reason_Code := implementation-defined;

D.2.1.11.2 Description

The meanings of the constants of type Reason_Code are as follows:

Accept_Connection

If Listening_Endpoint is not equal to Responding_Endpoint , then Re-
sponding_Endpoint should either be in the Unbound state or be in the Idle
state and be bound to the same address as Listening_Endpoint with the
endpoint queue length parameter set to zero.
The address passed to Bind in Request_Address or returned from Bind in
Response_Address when Responding_Endpoint is bound can be differ-
ent from the address corresponding to Listening_Endpoint . The Options
attribute of the Connection_Info object can be used to change the appli-
cation context name received.

Bind

The Request_Address parameter represents the local Presentation Address
and optionally the local AP Title and local AE Qualifier.

772 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

This local Address attribute shall be used, depending on the XTI primitive,
as the calling, called, or responding address. The called address is differ-
ent from the responding address only when two different file descriptors
(e.g., Listening_Endpoint , Responding_Endpoint) bound to different
addresses are used.

Close

Any connections that are still active at the endpoint shall be abnormally
terminated. The peer applications shall be informed of the disconnection
by a Disconnect_Request_Received event. The value of the disconnect
reason shall be Aborted_By_Peer .

Connect

The Address attribute of the Send parameter (Connection_Info object)
specifies the called Presentation Address. The Address attribute of the Re-
ceive parameter specifies the responding Presentation Address, and can also
be used to assign values for the called AP Title, called AE Qualifier, called AP
Invocation Identifier and called AE Invocation Identifier. The Options attribute of
the Send parameter can be used to request an application context name or
presentation context different from the default value.

Get_Address

The Address attribute returned by Get_Address from a Connection_Info
object shall be a protocol-specific mOSI_XTI_Address object.

Get_Info

The information supported by Get_Info shall reflect the characteristics
of the transport connection or, if no connection is established, the default
characteristics of the underlying OSI layers. In all possible states except
Data Transfer, the function Get_Info shall return, in parameter Communi-
cations_Provider_Info , the same information as was returned by Open.
In the Data Transfer state, however, the information returned in the Max Size
Connect Data and Max Size Disconnect Data attributes may differ.
The parameters of the Get_Info function are summarized in Table D.2.
The attribute values of the Communications_Provider_Info object for
the Get_Info function shall reflect the mOSI provider particularities. The
values returned in the Max Size Connect Data and Max Size Disconnect Data
attributes in the Data Transfer state may differ from the values returned by
Open. Negotiation takes place during association establishment; and, as a
result, these values may be reduced. For Max Size Connect Data, this change of
value may be indicated by the provider, but is of little use to the application.
Sending SDUs of zero length is not supported by mOSI. Therefore, the value
of the corresponding flag in the CP Flags attribute shall be zero.

Get_Protocol_Address

The protocol addresses are naming and addressing parameters as defined
in D.2.1.4.

Get_Current_State

There are no special considerations for mOSI providers.

Listen

The Address attribute of the Call parameter (Connection_Info object)
contains the remote calling Presentation Address, and optionally the remote

D XTI Protocol Mappings 773

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

calling AP Title and calling AE Qualifier, and the calling AP Invocation Identifier
and calling AE Invocation Identifier if received.
Incoming application data encoded as multiple presentation data values
shall generate the Illegal_Data_Range error.

Look

Since expedited data are not supported for an mOSI provider, Expedited_-
Data_Received and Okay_To_Send_Expedited_Data events cannot occur.

Open

Open shall be called as the first step in the initialization of a communica-
tions endpoint. This function shall return various default characteristics of
the underlying OSI layers.
The parameters of the Open procedure are summarized in Table D.2. The
values of the parameters in the Communications_Provider_Info object
shall reflect mOSI limitations as follows. The values returned in the Max
Size Connect Data and Max Size Disconnect Data attributes shall be limited by
the version of the session supported by the mOSI provider.
NOTE: They are generally much larger than those supported by an ISO transport or
TCP communications provider.
Sending SDUs of zero length is not supported by mOSI. Therefore, the value
of the corresponding flag in the CP Flags attribute shall be zero.
NOTE: The name (device file) parameter passed to Open will be different when the
application accesses an mOSI provider from what it is when the application accesses
an ISO transport communications provider.

Table D.2 – Communications_Provider_Info Returned by Get_Info and
Open, mOSI

Attribute Connection Mode Connectionless Mode

Max Size Protocol Address x (1) x (1)

Max Size Protocol Options x (1) x (1)

Max Size Service Data Unit infinite (2) infinite (2)

Max Size Service Expedited - invalid (3) invalid (3)

Data Unit
Max Size Connect Data x (1) invalid (3)

Max Size Disconnect Data x (1) invalid (3)

Service Type Connectionless_Mode_- Connectionless_Mode

With_Orderly_Release

CP Flags Empty_Set Empty_Set

NOTES:
(1) Either the corresponding function (Protocol_Addresses_Are_Valid , Proto-

col_Options_Are_Valid , Connect_Data_Is_Valid , Disconnect_Data_Is_-
Valid) returns False or the value of the attribute is set to an integral number x
greater than zero.

(2) The corresponding function (SDU_Is_Infinite) returns True .
(3) The corresponding function (SDU_Is_Valid , Connect_Data_Is_Valid , Discon-

nect_Data_Is_Valid) returns False .

Manage_Options

The options available with mOSI providers are described in D.2.1.5.

774 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Receive

The Flags parameter shall not be set to Expedited_Data , as expedited
data transfer is not supported.

Confirm_Connection

The Address attribute of the Call parameter (Connection_Info object)
shall specify the remote responding presentation address, the remote respond-
ing AP Title, the AE Qualifier, the AP Invocation Identifier and the AE Invocation
Identifier if present.
The Options attribute can also contain an Application Context Name and/or Pre-
sentation Context Definition and Result List.

Retrieve_Disconnect_Info

Possible values for disconnect reason codes (as returned by Retrieve_-
Disconnect_Info) are as follows:

Rejected_By_Peer

Connection rejected by peer application: no reason given
AC_Name_Not_Supported

Connection rejected: application context name not supported
Unrecognized_AP_Title

Connection rejected: AP Title not recognized
Unrecognized_AE_Qualifier

Connection rejected: AE Qualifier not recognized
Authentication_Required

Connection rejected: authentication required
Aborted_By_Peer

Aborted by peer provider: no reason given
No_Common_Version

Connection rejected: no common version

Acknowledge_Orderly_Release

With this primitive, application data cannot be received on normal release;
any application data in the received flow shall be discarded.

Receive_Data_Unit

The Address parameter shall specify the remote Presentation Address and, op-
tionally: the remote AP Title, the AE Qualifier, the AP Invocation Identifier and the
AE Invocation Identifier. If the More_Data flag is set, an additional Receive_-
Data_Unit call is needed to retrieve the entire AUNIT-DATA service unit.
Only normal data shall be returned via the Receive_Data_Unit call.

Retrieve_Data_Unit_Error

This procedure is not supported by a mOSI provider since badly formed A-
UNIT-DATA APDUs are discarded.

Send

Zero-length SDUs are not supported.
Since expedited data transfer is not supported for a mOSI provider, the
Flags parameter shall not have Expedited_Data set.

D XTI Protocol Mappings 775

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Send_Disconnect_Request

There are no special considerations for mOSI providers.

Initiate_Orderly_Release

With this primitive, application data cannot be sent on normal release.

Send_Data_Unit

The Address parameter shall specify the remote Presentation Address and, op-
tionally: the remote AP Title, the AE Qualifier, the AP Invocation Identifier, and AE
Invocation Identifiers. Only normal data shall be sent via the Send_Data_Unit
call.

Synchronize_Endpoint

There are no special considerations for mOSI providers.

Unbind

There are no special considerations for mOSI providers.

D.2.1.12 Mapping XTI Functions to ACSE/Presentation Services

The mapping of XTI functions to ACSE/Presentation services is shown in Table D.3,
Table D.4, Table D.5, and Table D.6. The entries in these tables are to be interpreted
as follows:

— The definition of which parameters are mandatory and which are optional can
be found in ISO/IEC ISP 11188-3 f11g.

— An entry fBindg in the XTI Call column indicates that the information is passed
across the API when Bind is called and is passed across the communications
interface following a subsequent call to another XTI function.

— An entry finternalg in the XTI Call column indicates that the information is not
explicitly passed across the API but affects the behavior of the implementation.

— An entry fdiscardedg in the XTI Call column indicates that the information is
discarded by the API implementation.

— The notation “req” in the Service column indicates a request.

— The notation “ind” in the Service column indicates an indication.

— The notation “rsp+” in the Service column indicates a positive response.

— The notation “rsp-” in the Service column indicates a negative response.

— The notation “cnf+” in the Service column indicates a positive confirmation.

— The notatino “cnf-” in the Service column indicates a negative confirmation.

776 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Table D.3 – XTI and ACSE/Presentation Services
XTI call Parameter Service Parameter

Connect A-ASSOCIATE
req

Send/Address Called Presentation Address

Send/Address (1) Called AP Title

Send/Address (1) Called AE Qualifier

Send/Address Called AP Invocation Identifier

Send/Address Called AE Invocation Identifier

Send/Options (2) Application Context Name

Send/Options (3) Presentation Context Definition and

Result List

Send/User Data User Information

fBindg Request&Return/Address Calling Presentation Address

fBindg Request&Return/Address Calling AP Title

fBindg Request&Return/Address Calling AE Qualifier

Listen A-ASSOCIATE
ind

Call/Address Calling Presentation Address

Call/Address (1) Calling AP Title

Call/Address (1) Calling AE Qualifier

Call/Options Application Context Name

Call/Options (4) Presentation Context Definition and

Result List

Call/User Data User Information

fBindg Request&Return/Address Called Presentation Address

fBindg Request&Return/Address (1) Called AP Title

fBindg Request&Return/Address (1) Called AE Qualifier

fBindg Request&Return/Address Calling AP Invocation Identifier

fBindg Request&Return/Address Calling AE Invocation Identifier

Accept A-ASSOCIATE
rsp+

Call/Address(not used) Calling Presentation Address

Call/Options Application Context Name

Call/Options Presentation Context Definition and

Result List

Call/User Data User Information

finternalg ::=“accepted” Result
fBindg Request&Return/Address Responding Presentation Address

fBindg Request&Return/Address (1) Responding AP Title

fBindg Request&Return/Address (1) Responding AE Qualifier

fBindg Request&Return/Address Responding AP Invocation Identifier

fBindg Request&Return/Address Responding AE Invocation Identifier

D XTI Protocol Mappings 777

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Table D.3 – XTI and ACSE/Presentation Services (continued)

fnot sentg A-ASSOCIATE
rsp-

Connect (synchronous mode) A-ASSOCIATE
cnf+

Connect (synchronous mode) A-ASSOCIATE
cnf+

Receive/Address Responding Presentation Address

Receive/Address Responding AP Title

Receive/Address Responding AE Qualifier

Receive/Address Responding AP Invocation Identifier

Receive/Address Responding AE Invocation Identifier

Receive/Options Application Context Name

Receive/Options Presentation Context Definition and

Result List

Receive/User Data User Information

finternalg ::=“accepted” Result
finternalg ::=“ACSE service-user” Result Source
Confirm -
Connection

(asynchronous mode) A-ASSOCIATE
cnf+

Call/Address Responding Presentation Address

Call/Address Responding AP Title

Call/Address Responding AE Qualifier

Call/Address Responding AP Invocation Identifier

Call/Address Responding AE Invocation Identifier

Call/Options Application Context Name

Call/Options Presentation Context Definition and

Result List

Call/User Data User Information

fdiscardedg ::=“accepted” Result
fdiscardedg ::=“ACSE service-user” Result Source-diagnostic
Retrieve -
Disconnect -
Information

A-ASSOCIATE
cnf-

Info/User Data User Information

Info/Reason (5) Result
finternalg ACSE serv-user/pres serv-prov Result Source-diagnostic
fdiscardedg Application Context Name

fdiscardedg Presentation Context Definition and

Result List

NOTES:
(1) If either the AP Title or AE Qualifier is selected for sending, the other must be se-

lected.
(2) Options attribute or, if no option specified, default value.
(3) Options attribute or, if no option specified, default value, with ACSE added by

provider.
(4) Options attribute with ACSE context removed from the list passed to application.
(5) Combines Result and Result Source-diagnostic.

778 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Table D.4 – XTI mOSI Connection-Mode Data Transfer Services
XTI call Parameter Service Parameter

Send P-DATA req
Buffer User Data

Receive P-DATA ind
Buffer User Data

Table D.5 – XTI and Association Release Services
XTI call Parameter Service Parameter

Initiate Orderly Release With Data A-RELEASE req
Info/Reason Reason
Info/User Data User Information

Acknowledge Orderly Release With Data A-RELEASE ind
Info/Reason Reason
Info/User Data User Information

Initiate Orderly Release With Data A-RELEASE rsp
Info/Reason Reason
Info/User Data User Information

Acknowledge Orderly Release With Data A-RELEASE cnf
Info/Reason Reason
Info/User Data User Information

Send Disconnect Request A-ABORT req
n/s Diagnostic
Info/User Data User Information

Retrieve Disconnect Info A-ABORT ind
Info/Reason Diagnostic
Info/User Data User Information

Retrieve Disconnect Info A-P-ABORT ind
Info/Reason Diagnostic

Table D.5 relies on the assumption that the XTI-mOSI provider supports the orderly
release facility with application data (i.e., Initiate_Orderly_Release_With_-
Data and Acknowledge_Orderly_Release_With_Data). When orderly release
is not supported, User Data shall not be sent, Reason shall be supplied via an inter-
nal mechanism with A-RELEASE request and response, and User Data and Reason
received in A-RELEASE indication and confirmation shall be discarded.

D.2.1.13 Connection-Mode Service

Figure D.4 shows the XTI state diagram for connection-mode mOSI communications
(see also Figure 17.1).

The protocol level for all subsequent options is mOSI_Connection_Mode .

All options have end-to-end significance (see 17.3). They can be negotiated in the
XTI states Idle and Incoming Connect, and shall be read-only in all other states except
Uninitialized.

The objects referenced are specified in D.2.1.5.

D XTI Protocol Mappings 779

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Table D.6 – XTI Connectionless-Mode ACSE Services
XTI call Parameter Service Parameter

Send -
Data Unit

A-UNIT-DATA source

Data/Address Called Presentation Address

Data/Address Called AP Title

Data/Address Called AE Qualifier

Data/Address Called AP Invocation Identifier

Data/Address Called AE Invocation Identifier

Data/Options (1) Application Context Name

Data/Options (2) Presentation Context Definition and

Result List

Data/User Data User Information

fBindg Request&Return/Address Calling Presentation Address

fBindg Request&Return/Address Calling AP Title

fBindg Request&Return/Address Calling AE Qualifier

fBindg Request&Return/Address Calling AP Invocation Identifier

fBindg Request&Return/Address Calling AE Invocation Identifier

Receive -
Data Unit

A-UNIT-DATA sink

Data/Address Calling Presentation Address

Data/Address Calling AP Title

Data/Address Calling AE Qualifier

Data/Address Calling AP Invocation Identifier

Data/Address Calling AE Invocation Identifier

Data/Options Application Context Name

Data/Options (3) Presentation Context Definition and

Result List

Data/User Data User Information

fBindg Request&Return/Address Called Presentation Address

fBindg Request&Return/Address Called AP Title

fBindg Request&Return/Address Called AE Qualifier

fBindg Request&Return/Address Called AP Invocation Identifier

fBindg Request&Return/Address Called AE Invocation Identifier

NOTES:
(1) Data/Options or, if no option specified, default value.
(2) Data/Options or, if no option specified, default value with ACSE added by provider.
(3) Data/Options with ACSE context removed from the list passed to application.

The following options are defined for connection-mode mOSI communications.

Application Context Name

This option shall consist of an object identifier in BER encoded form. It shall
identify the application context name.
A default value shall be provided for the Application Context Name XTI option
option. It denotes the application context name for a generic XTI-mOSI
application. It is defined in D.2.1.5.
The application can propose through the Application Context Name XTI option

780 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

option a value different from the default one. The application can also use
this option to check the value returned by the peer application and decide
whether the association should be kept or terminated.

Presentation Context List

This option is used to propose a presentation context, giving its abstract
and transfer syntax, and to hold the result of negotiation of a presentation
context. It is a variable sized option. Its format is described in D.2.1.5.
A default shall be provided for the Presentation Context List XTI option op-
tion. This default value is a list with one presentation context: the stream-
oriented, unstructured, data transfer service with null encoding. The ab-
stract syntax is the default abstract syntax and the transfer syntax is the
default transfer syntax, as specified in D.2.1.5. The codes for the result of
negotiation and reason for rejection are defined in D.2.1.5. After reading
the Presentation Context List XTI option, the responding applicatiion can ei-
ther continue or terminate the association.

Only a single abstract syntax and transfer syntax shall be used by XTI-mOSI. When
Accept_Connection is called, this syntax is assumed to be the first usable abstract
syntax and the first transfer syntax for that abstract syntax.

When initiating a connection, the application shall propose one or more presentation
contexts, each comprising an abstract syntax and one or more transfer syntaxes, in
the Presentation Context Definition and Result List XTI option (or shall omit this option to
select the defaults) and shall call Connect .

If the connection is accepted, the Presentation Context Definition and Result List XTI op-
tion shall be updated to reflect the results of negotiation for each element of the
presentation context list, and a single presentation context shall be selected.

If the responder accepts multiple presentation contexts, the XTI-mOSI provider shall
abort the connection on receipt of the A-ASSOCIATE confirm.

When responding to a connection request, the application can specifically mark pre-
sentation contexts as rejected using the Result attribute and can reorder the syntax
array to select a single transfer syntax.

When Accept_Connection is called, the first presentation context marked as ac-
cepted shall be selected, and all other contexts omitted or not marked rejected-user
are marked as by the provider as rejected (Local_DCS_Limit_Exceeded). In an
accepted context, the provider shall accept the first (or only remaining) transfer syn-
tax.

On return to the application from Listen , all supportable presentation contexts
shall be marked as accepted in the Presentation Context List XTI option, and all unsup-
portable contexts shall be marked as rejected-provider. Having the contexts already
marked as accepted or rejected-provider permits the application to return the same
option value on Accept_Connection (or leave it unchanged) in order to select the
first available abstract syntax and transfer syntax.

D XTI Protocol Mappings 781

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Uninitialized

Unbound

Idle

Outgoing Connect Incoming Connect

Data Transfer

Incoming Release Outgoing Release

Open

Manage Options

Bind

Close

Pass Connection

Manage Options

Connect Error Connect
Pass Connection

Listen

Close
Unbind

Receive Disconnect 2

Accept Connection 2
Accept Connection 3

Receive Disconnect 3
Manage Options

Close

Accept Connection 1Confirm Connection

Close

Manage Options
Send Disconnect 1
Receive Disconnect 1

Listen

Send
Receive
Manage Options

Receive Disconnect 1
Send Disconnect 1

Close

ReleaseAcknowledge Release

Send
Manage Options

Close

Send Disconnect 1

Release
Receive Disconnect 1

Acknowledge Release
Receive Disconnect 1
Send Disconnect 1

Manage Options
Receive

Close

Send Disconnect 2
Send Disconnect 1

Figure D.4 – Connection-Mode XTI State Diagram

D.2.1.14 Connectionless-Mode Service

Figure D.5 shows the XTI state diagram for connectionless-mode mOSI communica-
tions (see also Figure 17.1).

The protocol level for all subsequent options is mOSI_Connectionless_Mode .

All options have end-to-end significance (see 17.3). They may be negotiated in all
XTI states except Uninitialized. The objects referenced are specified in D.2.1.5.

The following options are defined for connectionless-mode mOSI communications:

782 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Idle

Unbound

Uninitialized

Manage Options
Receive Data Error
Receive Data Unit
Send Data Unit

Bind

Unbind

Close

Close

Manage Options

Open

Figure D.5 – Connectionless-Mode XTI State Diagram

Application Context Name

This option shall consist of an object identifier in BER encoded form. It shall
identify the application context name. Its format is described in D.2.1.5.
A default value shall be provided for the Application Context Name XTI option
option. It denotes the application context name for a generic XTI-mOSI ap-
plication. The application can propose through this option a value different
from the default one. The application can also use this option to check the
value returned by the peer application and decide whether the datagram
should be kept or discarded.
In connectionless mode, the transfer syntaxes are not negotiated. Their use
is determined by the sending application entity and must be acceptable to
the receiving application entity.

Presentation Context List

This option is used to propose a presentation context, giving its abstract
and transfer syntax. It is a variable sized option. Its format is described in
D.2.1.5.
A default value is provided for the Presentation Context List XTI option op-
tion. This default value is a list with one element, the generic presentation
context (the stream-oriented, unstructured, data transfer service with null
encoding). The corresponding abstract and transfer syntaxes are specified
in D.2.1.5. Only a single abstract syntax and transfer syntax can be used by
connectionless XTI-mOSI. If more than one presentation context is present
in the options list for Send_Data_Unit , the first shall be used.

D.2.2 Package POSIX_XTI_ISO

This package provides the DNI/XTI interface mappings for ISO transport protocols.
Unless otherwise specified, all the DNI/XTI calls in package POSIX_XTI can be used
for this protocol. Only additional information relevant to this protocol is highlighted
here.

The functionality described in this subclause is optional. If either the XTI Detailed Net-
work Interface option or the ISO/OSI Protocol option is not supported, the implementation

D XTI Protocol Mappings 783

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

may cause all calls to the explicitly declared operations defined in this subclause to
raise POSIX_Error . Otherwise, the behavior shall be as specified in this subclause.

with POSIX,
POSIX_XTI;

package POSIX_XTI_ISO is
-- D.2.2.1 ISO Transport Protocols
ISO_TP_Level : constant POSIX_XTI.Option_Level := implementation-defined;
type ISO_XTI_Address is private ;
type ISO_XTI_Address_Pointer is access all ISO_XTI_Address;
function "+" (Pointer : ISO_XTI_Address_Pointer)

return POSIX_XTI.XTI_Address_Pointer;
function "+" (Pointer : POSIX_XTI.XTI_Address_Pointer)

return ISO_XTI_Address_Pointer;
function Is_ISO_XTI_Address

(Pointer : POSIX_XTI.XTI_Address_Pointer)
return Boolean;

type ISO_Option is (Enabled,Disabled);
function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)

return ISO_Option;
procedure Set_Option

(Option_Item : in out POSIX_XTI.Protocol_Option;
Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
To : in ISO_Option);

Residual_Error_Rate : constant POSIX_XTI.Option_Name := implementation-defined;
Priority : constant POSIX_XTI.Option_Name := implementation-defined;
Protection : constant POSIX_XTI.Option_Name := implementation-defined;
type Rate is private ;
subtype Error_Rate is Positive

range implementation-defined;
Unspecified_Rate : constant Duration := implementation-defined;
type Priority_Level is private ;
Top : constant Priority_Level;
High : constant Priority_Level;
Medium : constant Priority_Level;
Low : constant Priority_Level;
Default : constant Priority_Level;
type Protection_Level is new POSIX.Option_Set;
No_Protection : constant Protection_Level := implementation-defined;
Passive_Protection : constant Protection_Level := implementation-defined;
Active_Protection : constant Protection_Level := implementation-defined;
Absolute_Requirement : constant Protection_Level := implementation-defined;
function Get_Target_Rate (Item : Rate)

return Duration;
procedure Set_Target_Rate

(Item : in out Rate;
To : in Duration);

function Get_Minimum_Acceptable_Rate (Item : Rate)
return Duration;

procedure Set_Minimum_Acceptable_Rate
(Item : in out Rate;

To : in Duration);
function Get_Target_Rate (Item : Rate)

return Error_Rate;
procedure Set_Target_Rate

(Item : in out Rate;
To : in Error_Rate);

784 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

function Get_Minimum_Acceptable_Rate (Item : Rate)
return Error_Rate;

procedure Set_Minimum_Acceptable_Rate
(Item : in out Rate;

To : in Error_Rate);
function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)

return Rate;
procedure Set_Option

(Option_Item : in out POSIX_XTI.Protocol_Option;
Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
To : in Rate);

function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)
return Priority_Level;

procedure Set_Option
(Option_Item : in out POSIX_XTI.Protocol_Option;

Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
To : in Priority_Level);

function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)
return Protection_Level;

procedure Set_Option
(Option_Item : in out POSIX_XTI.Protocol_Option;

Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
To : in Protection_Level);

procedure Get_Address
(Info_Item : in POSIX_XTI.Connection_Info;

Address : in out ISO_XTI_Address);
-- D.2.2.2 Connection-Mode Service
Throughput :

constant POSIX_XTI.Option_Name := implementation-defined;
Connection_Transit_Delay :

constant POSIX_XTI.Option_Name := implementation-defined;
Transfer_Fail_Probability :

constant POSIX_XTI.Option_Name := implementation-defined;
Establishment_Fail_Probability :

constant POSIX_XTI.Option_Name := implementation-defined;
Release_Fail_Probability :

constant POSIX_XTI.Option_Name := implementation-defined;
Establishment_Delay :

constant POSIX_XTI.Option_Name := implementation-defined;
Release_Delay :

constant POSIX_XTI.Option_Name := implementation-defined;
Connection_Resilience :

constant POSIX_XTI.Option_Name := implementation-defined;
Expedited_Data :

constant POSIX_XTI.Option_Name := implementation-defined;
type Requested_Rate is private ;
type Throughput_Rate is private ;
type Transit_Delay_Rate is private ;
function Get_Called_Rate (Item : Requested_Rate)

return Rate;
procedure Set_Called_Rate

(Item : in out Requested_Rate;
To : in Rate);

function Get_Calling_Rate (Item : Requested_Rate)
return Rate;

D XTI Protocol Mappings 785

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

procedure Set_Calling_Rate
(Item : in out Requested_Rate;

To : in Rate);
function Get_Throughput_Maximum (Item : Throughput_Rate)

return Requested_Rate;
procedure Set_Throughput_Maximum

(Item : in out Throughput_Rate;
To : in Requested_Rate);

function Get_Throughput_Average (Item : Throughput_Rate)
return Requested_Rate;

procedure Set_Throughput_Average
(Item : in out Throughput_Rate;

To : in Requested_Rate);
function Get_Transit_Delay_Maximum (Item : Transit_Delay_Rate)

return Requested_Rate;
procedure Set_Transit_Delay_Maximum

(Item : in out Transit_Delay_Rate;
To : in Requested_Rate);

function Get_Transit_Delay_Average (Item : Transit_Delay_Rate)
return Requested_Rate;

procedure Set_Transit_Delay_Average
(Item : in out Transit_Delay_Rate;

To : in Requested_Rate);
function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)

return Throughput_Rate;
procedure Set_Option

(Option_Item : in out POSIX_XTI.Protocol_Option;
Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
To : in Throughput_Rate);

function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)
return Transit_Delay_Rate;

procedure Set_Option
(Option_Item : in out POSIX_XTI.Protocol_Option;

Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
To : in Transit_Delay_Rate);

TPDU_Length_Maximum :
constant POSIX_XTI.Option_Name := implementation-defined;

Acknowledge_Time :
constant POSIX_XTI.Option_Name := implementation-defined;

Reassignment_Time :
constant POSIX_XTI.Option_Name := implementation-defined;

Preferred_Class :
constant POSIX_XTI.Option_Name := implementation-defined;

Alternative_Class_1 :
constant POSIX_XTI.Option_Name := implementation-defined;

Alternative_Class_2 :
constant POSIX_XTI.Option_Name := implementation-defined;

Alternative_Class_3 :
constant POSIX_XTI.Option_Name := implementation-defined;

Alternative_Class_4 :
constant POSIX_XTI.Option_Name := implementation-defined;

Extended_Format :
constant POSIX_XTI.Option_Name := implementation-defined;

Flow_Control :
constant POSIX_XTI.Option_Name := implementation-defined;

786 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Connection_Checksum :
constant POSIX_XTI.Option_Name := implementation-defined;

Network_Expedited_Data :
constant POSIX_XTI.Option_Name := implementation-defined;

Network_Receipt_Confirmation :
constant POSIX_XTI.Option_Name := implementation-defined;

type ISO_COTS_Option is (Enabled, Disabled, Unspecified);
type Transport_Class is private ;
Class_0 : constant Transport_Class;
Class_1 : constant Transport_Class;
Class_2 : constant Transport_Class;
Class_3 : constant Transport_Class;
Class_4 : constant Transport_Class;
Class_Unspecified : constant Transport_Class;
function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)

return ISO_COTS_Option;
procedure Set_Option

(Option_Item : in out POSIX_XTI.Protocol_Option;
Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
To : in ISO_COTS_Option);

function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)
return Transport_Class;

procedure Set_Option
(Option_Item : in out POSIX_XTI.Protocol_Option;

Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
To : in Transport_Class);

function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)
return Duration;

procedure Set_Option
(Option_Item : in out POSIX_XTI.Protocol_Option;

Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
To : in Duration);

-- D.2.2.3 Connectionless-Mode Service
Connectionless_Transit_Delay :

constant POSIX_XTI.Option_Name := implementation-defined;
Connectionless_Checksum :

constant POSIX_XTI.Option_Name := implementation-defined;

private
implementation-defined

end POSIX_XTI_ISO;

D.2.2.1 ISO Transport Protocols

D.2.2.1.1 Synopsis

ISO_TP_Level : constant POSIX_XTI.Option_Level := implementation-defined;
type ISO_XTI_Address is private ;
type ISO_XTI_Address_Pointer is access all ISO_XTI_Address;
function "+" (Pointer : ISO_XTI_Address_Pointer)

return POSIX_XTI.XTI_Address_Pointer;
function "+" (Pointer : POSIX_XTI.XTI_Address_Pointer)

return ISO_XTI_Address_Pointer;
function Is_ISO_XTI_Address

(Pointer : POSIX_XTI.XTI_Address_Pointer)
return Boolean;

D XTI Protocol Mappings 787

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

type ISO_Option is (Enabled,Disabled);
function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)

return ISO_Option;
procedure Set_Option

(Option_Item : in out POSIX_XTI.Protocol_Option;
Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
To : in ISO_Option);

Residual_Error_Rate : constant POSIX_XTI.Option_Name := implementation-defined;
Priority : constant POSIX_XTI.Option_Name := implementation-defined;
Protection : constant POSIX_XTI.Option_Name := implementation-defined;
type Rate is private ;
subtype Error_Rate is Positive

range implementation-defined;
Unspecified_Rate : constant Duration := implementation-defined;
type Priority_Level is private ;
Top : constant Priority_Level;
High : constant Priority_Level;
Medium : constant Priority_Level;
Low : constant Priority_Level;
Default : constant Priority_Level;
type Protection_Level is new POSIX.Option_Set;
No_Protection : constant Protection_Level := implementation-defined;
Passive_Protection : constant Protection_Level := implementation-defined;
Active_Protection : constant Protection_Level := implementation-defined;
Absolute_Requirement : constant Protection_Level := implementation-defined;
function Get_Target_Rate (Item : Rate)

return Duration;
procedure Set_Target_Rate

(Item : in out Rate;
To : in Duration);

function Get_Minimum_Acceptable_Rate (Item : Rate)
return Duration;

procedure Set_Minimum_Acceptable_Rate
(Item : in out Rate;

To : in Duration);
function Get_Target_Rate (Item : Rate)

return Error_Rate;
procedure Set_Target_Rate

(Item : in out Rate;
To : in Error_Rate);

function Get_Minimum_Acceptable_Rate (Item : Rate)
return Error_Rate;

procedure Set_Minimum_Acceptable_Rate
(Item : in out Rate;

To : in Error_Rate);
function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)

return Rate;
procedure Set_Option

(Option_Item : in out POSIX_XTI.Protocol_Option;
Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
To : in Rate);

function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)
return Priority_Level;

procedure Set_Option
(Option_Item : in out POSIX_XTI.Protocol_Option;

Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
To : in Priority_Level);

788 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)
return Protection_Level;

procedure Set_Option
(Option_Item : in out POSIX_XTI.Protocol_Option;

Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
To : in Protection_Level);

procedure Get_Address
(Info_Item : in POSIX_XTI.Connection_Info;

Address : in out ISO_XTI_Address);

D.2.2.1.2 Description

This subclause describes the protocol-specific information that is relevant for com-
munications providers that provide the ISO transport service. These include com-
munications providers that provide the ISO transport service over a TCP network.1)

In general, this subclause describes the characteristics that the ISO and ISO-
overTCP communications providers have in common, with notes indicating where
they differ. An ISO-over-TCP communications provider does not provide the connec-
tionless mode.

In the context of the ISO transport protocols, a SDU is a TSDU, and a SEDU is an
ETSDU, as defined in ISO/IEC 8072 f3g.

In an ISO environment, the protocol address is the transport address.

The type ISO_XTI_Address shall be used to represent an address for this protocol
family. The type ISO_XTI_Address_Pointer is an access to this protocol-specific
address type. The "+" operations shall convert a ISO_XTI_Address_Pointer to
and from the XTI_Address_Pointer type for use with the base package operations
defined for the XTI_Address_Pointer type. The return value of the "+" operations
designates the same address object as the input parameter. The function Is_ISO_-
XTI_Address shall return True if the address object designated by the specified
non-null XTI_Address_Pointer is a valid ISO_XTI_Address and False otherwise.
The conversion operation to ISO_XTI_Address_Pointer shall succeed if and only if
the corresponding Is_ISO_XTI_Address returns True . Otherwise, the results are
undefined.

NOTE: The Null_XTI_Address constant corresponds to the Ada null literal for these oper-
ations.

The transport service definition, both in connection mode and connectionless mode,
does not permit sending a TSDU of zero octets. Therefore, in connectionless mode, if
the Octets_To_Send parameter is zero, the Send_Data_Unit procedure shall raise
POSIX_Error with error code Illegal_Data_Range . In connection mode, if the
Octets_To_Send parameter is set to zero, the Send procedure shall raise POSIX_-
Error with error code Illegal_Data_Range either if the More_Data flag is set or
if the More_Data flag is not set and the preceding Send call completed a TSDU or
ETSDU (i.e., the sending of a zero byte TSDU or ETSDU was requested).

1) The mapping for ISO-over-TCP that is referred to in this subclause is defined by RFC 1006 f17g.

D XTI Protocol Mappings 789

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Options are formatted according to the Protocol_Option object as described in
17.3.2. The overloaded Get_Value function and Set_Option procedure are used to
examine and set these attributes in the Protocol_Option object. A communications
provider compliant with this specification may support none, all, or any subset of the
options defined in this subclause and in D.2.2.2 and D.2.2.3. An implementation may
restrict the use of any of these options by offering them only in the privileged or
read-only mode. An ISO-over-TCP provider supports a subset of the options defined
in D.2.2.2.

QOS options are defined in the transport service definition in ISO/IEC 8072 f3g. The
definitions are not repeated here.

QOS option values are expressed using the Rate object, which has the attributes
Target Rate and Minimum Acceptable Rate. “Get_ ” and “‘Set_ ” operations are pro-
vided to manipulate these attributes. For certain options, these Rate attributes
contain a Duration value representing a timer value (e.g., Establishment Delay XTI
option is expressed in milliseconds). For all other QOS options, Rate contains an
implementation-defined integral value of type Error_Rate . Error_Rate represents
an error ratio calculated from the formula Error Rate = � log10(ratio), where ratio
is dependent on the parameter, but is always composed of a number of failures di-
vided by a total number of samples. The implementation-defined value may be, for
example, the number of TSDUs transferred in error divided by the total number of
TSDU transfers (Residual_Error_Rate).

For certain QOS options, an application can indicate that a QOS option value is
unspecified by setting the rate attributes to the constant Unspecified_Rate .

An application can indicate whether the request is an absolute requirement or
whether a degraded value is acceptable. An absolute requirement is specified via
the attribute Minimum Acceptable Rate if that attribute is given a value different from
Unspecified_Rate .

The following options are common to both connection-mode and connectionless-mode
service:

Protection

This option defines the general level of protection. Its value is an object of
type Protection_Level . The flags in the following list are used to specify
the required level of protection:
— No_Protection : No protection feature is requested.
— Passive_Protection : Protection against passive monitoring is re-

quested.
— Active_Protection : Protection against modification, replay, addition

or deletion is requested.
— Absolute_Requirement : The requested protection level is an absolute

requirement.
The operations "+" , "-" , ">" , "<" , ">=" , "<=" , and Empty_Set are avail-
able on the type Protection_Level via the derived type semantics of Ada,
from the operations available for POSIX.Option_Set . The appropriate op-
erations can be used to create and examine a set containing the required
flags.

790 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Both flags Passive_Protection and Active_Protection may be set
simultaneously, but are exclusive with No_Protection . If the Active_-
Protection or Passive_Protection flags are set, the application may
indicate that the requested protections are an absolute requirement by also
setting the Absolute_Requirement flag.

Priority

Five priority levels are defined by XTI: Default , Low, Medium, High , and
Top. The number of priority levels is not defined by ISO/IEC 8072 f3g. The
parameter only has meaning in the context of some management entity or
object able to judge relative importance. The value specified for Priority is
never an absolute requirement.

Residual Error Rate

This option defines the residual error rate. Its value is an error ratio ex-
pressed in a Rate object (see D.2.2.1).

D.2.2.2 Connection-Mode Service

D.2.2.2.1 Synopsis

Throughput :
constant POSIX_XTI.Option_Name := implementation-defined;

Connection_Transit_Delay :
constant POSIX_XTI.Option_Name := implementation-defined;

Transfer_Fail_Probability :
constant POSIX_XTI.Option_Name := implementation-defined;

Establishment_Fail_Probability :
constant POSIX_XTI.Option_Name := implementation-defined;

Release_Fail_Probability :
constant POSIX_XTI.Option_Name := implementation-defined;

Establishment_Delay :
constant POSIX_XTI.Option_Name := implementation-defined;

Release_Delay :
constant POSIX_XTI.Option_Name := implementation-defined;

Connection_Resilience :
constant POSIX_XTI.Option_Name := implementation-defined;

Expedited_Data :
constant POSIX_XTI.Option_Name := implementation-defined;

type Requested_Rate is private ;
type Throughput_Rate is private ;
type Transit_Delay_Rate is private ;
function Get_Called_Rate (Item : Requested_Rate)

return Rate;
procedure Set_Called_Rate

(Item : in out Requested_Rate;
To : in Rate);

function Get_Calling_Rate (Item : Requested_Rate)
return Rate;

procedure Set_Calling_Rate
(Item : in out Requested_Rate;

To : in Rate);
function Get_Throughput_Maximum (Item : Throughput_Rate)

return Requested_Rate;
procedure Set_Throughput_Maximum

(Item : in out Throughput_Rate;
To : in Requested_Rate);

D XTI Protocol Mappings 791

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

function Get_Throughput_Average (Item : Throughput_Rate)
return Requested_Rate;

procedure Set_Throughput_Average
(Item : in out Throughput_Rate;

To : in Requested_Rate);
function Get_Transit_Delay_Maximum (Item : Transit_Delay_Rate)

return Requested_Rate;
procedure Set_Transit_Delay_Maximum

(Item : in out Transit_Delay_Rate;
To : in Requested_Rate);

function Get_Transit_Delay_Average (Item : Transit_Delay_Rate)
return Requested_Rate;

procedure Set_Transit_Delay_Average
(Item : in out Transit_Delay_Rate;

To : in Requested_Rate);
function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)

return Throughput_Rate;
procedure Set_Option

(Option_Item : in out POSIX_XTI.Protocol_Option;
Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
To : in Throughput_Rate);

function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)
return Transit_Delay_Rate;

procedure Set_Option
(Option_Item : in out POSIX_XTI.Protocol_Option;

Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
To : in Transit_Delay_Rate);

TPDU_Length_Maximum :
constant POSIX_XTI.Option_Name := implementation-defined;

Acknowledge_Time :
constant POSIX_XTI.Option_Name := implementation-defined;

Reassignment_Time :
constant POSIX_XTI.Option_Name := implementation-defined;

Preferred_Class :
constant POSIX_XTI.Option_Name := implementation-defined;

Alternative_Class_1 :
constant POSIX_XTI.Option_Name := implementation-defined;

Alternative_Class_2 :
constant POSIX_XTI.Option_Name := implementation-defined;

Alternative_Class_3 :
constant POSIX_XTI.Option_Name := implementation-defined;

Alternative_Class_4 :
constant POSIX_XTI.Option_Name := implementation-defined;

Extended_Format :
constant POSIX_XTI.Option_Name := implementation-defined;

Flow_Control :
constant POSIX_XTI.Option_Name := implementation-defined;

Connection_Checksum :
constant POSIX_XTI.Option_Name := implementation-defined;

Network_Expedited_Data :
constant POSIX_XTI.Option_Name := implementation-defined;

Network_Receipt_Confirmation :
constant POSIX_XTI.Option_Name := implementation-defined;

type ISO_COTS_Option is (Enabled, Disabled, Unspecified);
type Transport_Class is private ;
Class_0 : constant Transport_Class;
Class_1 : constant Transport_Class;
Class_2 : constant Transport_Class;

792 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Class_3 : constant Transport_Class;
Class_4 : constant Transport_Class;
Class_Unspecified : constant Transport_Class;
function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)

return ISO_COTS_Option;
procedure Set_Option

(Option_Item : in out POSIX_XTI.Protocol_Option;
Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
To : in ISO_COTS_Option);

function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)
return Transport_Class;

procedure Set_Option
(Option_Item : in out POSIX_XTI.Protocol_Option;

Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
To : in Transport_Class);

function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)
return Duration;

procedure Set_Option
(Option_Item : in out POSIX_XTI.Protocol_Option;

Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;

To : in Duration);

D.2.2.2.2 Description

Figure D.6 shows the XTI state diagram for the connection-mode ISO transport ser-
vice (see also Figure 17.1).

The protocol level of all subsequent options is ISO_TP_Level .

All options have end-to-end significance (see 17.3). They may be negotiated in the
XTI states Idle and Incoming Connect, and are read-only in all other states except Unini-
tialized.

The QOS and expedited data options described in this subclause are in addition to
the common options listed in D.2.2.1. The attribute elements of the objects in use
for the option values are self-explanatory. Only the following details remain to be
explained.

— If these options are returned with Listen , their values are related to the in-
coming connection and not to the communications endpoint where Listen was
issued. To give an example, the value of Protection is the value sent by the calling
application, and not the value currently effective for the endpoint (that could
be retrieved by Manage_Options with the flag Get_Current_Options set).
The option is not returned at all if the calling application did not specify it. An
analogous procedure applies for the other options. See also 17.3.

— If, in a call to Accept_Connection , the called application tries to negotiate an
option of higher quality than proposed, the option is rejected and the connection
establishment fails (see 17.3.2.4).

D XTI Protocol Mappings 793

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Uninitialized

Unbound

Idle

Outgoing Connect

Data Transfer

Incoming Connect

Open

Manage Options

Close

Bind

Pass Connection

Manage Options Unbind
Close

Listen
Pass Connection
ConnectConnect_Error

Send Disconnect 1
Receive Disconnect 1

Confirm Connection

Accept Connection 2
Send Disconnect 1

Receive Disconnect 2

Listen
Accept Connection 3
Send Disconnect 2
Receive Disconnect 3

Manage Options

Accept Connection 1

Send
Receive
Manage Options

Manage Options

Close

Send Disconnect 1
Receive Disconnect 1

Close

Close

Figure D.6 – OSI Connection-Mode Transport XTI State Diagram

— Values of the QOS options Throughput XTI option, Transit Delay XTI option, Transfer
Failure Probability XTI option, Establishment Failure Probability XTI option, Establish-
ment Delay XTI option, Release Failure Probability XTI option, Release Delay XTI
option, and Connection Resilience XTI option have a structured format. An ap-
plication requesting one of these options might leave an attribute of the object
unspecified by setting it to Unspecified_Rate . The communications provider
is then free to select an appropriate value for this attribute. The communica-
tions provider may return Unspecified_Rate in an attribute of the object to
the application to indicate that it has not yet decided on a definite value for this
attribute.

The following QOS and epedited data options are formatted according to the Proto-
col_Option object as described in 17.3.2. The overloaded Get_Value function and
Set_Option procedure are used to examine and set these attributes in the Pro-
tocol_Option object. The description for each option indicates the type of object
manipulated by the Get_Value and Set_Option operations. “Get_ ” and “Set_-
” operations are provided to manipulate the individual attributes of each of these
objects.

Throughput

The Throughput XTI option, which is in octets per second. The option value

794 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

is represented with a Throughput_Rate object. If the Throughput Average
attribute is not defined (the Called Rate and Calling Rate attributes are both
set to Unspecified_Rate), the communications provider considers that
Throughput Average has the same value as Throughput Maximum.

Connection_Transit_Delay

The Connection Transit Delay XTI option. The option value is represented with
a Transit_Delay_Rate object. ISO/IEC 8073 f4g does not differentiate
between average and maximum transit delay. Communications providers
that support this option adopt the values of the maximum delay as input for
the CR TPDU.
If the Transit Delay Average attribute is not defined (the Called Rate and Calling
Rate attributes are both set to Unspecified_Rate), the communications
provider considers that Transit Delay Average has the same value as Transit
Delay Maximum.

Transfer_Fail_Probability

The Transfer Failure Probability XTI option. Its value is an error ratio expressed
in a Rate object (see D.2.2.1).

Establishment_Fail_Probability

The Establishment Failure Probability XTI option, which is the probability of fail-
ure of an attempt to establish a connection. Its value is an error ratio ex-
pressed in a Rate object (see D.2.2.1).

Release_Fail_Probability

The Release Failiure Probability XTI option, which is the probability of failure
of an attempt to release a connection. Its value is an error ratio expressed
in a Rate object (see D.2.2.1).

Establishment_Delay

The Establishment Delay XTI option. Its value is a Duration expressed in a
Rate object (see D.2.2.1).

Release_Delay

The Release Delay XTI option. Its value is a Duration expressed in a Rate
object (see D.2.2.1).

Connection_Resilience

The Connection Resilience XTI option, which is a ratio expressed with the
Rate object. Its value is an error ratio expressed in a Rate object (see
D.2.2.1).

Expedited_Data

The Expedited Data XTI option. It is recommended that applications avoid
expedited data with an ISO-over-TCP communications provider, since the
treatment of expedited data in RFC 1006 f17g does not meet the data re-
ordering requirements specified in ISO/IEC 8072 f3g and may not be sup-
ported by the provider.
Unspecified is not a legal value for the Expedited Data XTI option.
The value of the Expedited Data XTI option is never an absolute requirement.

D XTI Protocol Mappings 795

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

The management options defined in this subclause are in addition to the common
options listed in D.2.2.1. These options are parameters of an ISO transport protocol
according to ISO/IEC 8073 f4g. They are not included in the ISO transport service
definition ISO/IEC 8072 f3g, but are additionally offered by XTI. Communications
applications wishing to be truly ISO-compliant should thus not adhere to them. The
TPDU Length Maximum XTI option is the only management option supported by an
ISO-over-TCP communications provider.

The application should avoid specifying both QOS parameters and management op-
tions at the same time.

A request for any of these options shall be considered an absolute requirement.

If these options are returned with Listen , their values are related to the incoming
connection and not to the communications endpoint where Listen was issued. That
means Manage_Options with the flag Get_Current_Options set would usually
yield a different result (see 17.3).

For management options that are subject to peer-to-peer negotiation the following
holds: If, in a call to Accept_Connection , the called application tries to negotiate
an option of higher quality than proposed, the option is rejected, and the connection
establishment fails (see 17.3.2.4).

A connection-mode communications provider may allow the application to select
more than one alternative class. The application may use options (e.g., Alternative
Class 1 XTI option and Alternative Class 2 XTI option) to denote the alternatives. A
communications provider only supports an implementation dependent limit of alter-
natives and ignores the rest.

The value Class_Unspecified is legal for all these options. It may be set by the
application to indicate that the communications provider is free to choose any ap-
propriate value. If returned by the communications provider, it indicates that the
communications provider has not yet decided on a specific value.

If a connection has been established, Preferred Class XTI option shall be set to the
selected value, and Alternative Class 1 XTI option through Alternative Class 4 XTI option
shall be set to Class_Unspecified , if these options are supported.

The management options are not independent of one another and not independent
of the QOS options defined above. An application must take care not to request
conflicting values. If conflicts are detected at negotiation time, the negotiation fails
according to the rules for absolute requirements (see 17.3). Conflicts that cannot be
detected at negotiation time can lead to unpredictable results in the course of com-
munication. Usually, conflicts are detected at the time the connection is established.

Some relations that must be obeyed are as follows:

— If Expedited Data XTI option is set to Enabled and Preferred Class XTI option is
set to Class_2 , Flow–Control XTI option must also be set to Enabled .

— If Preferred Class XTI option is set to Class_0 , Expedited Data XTI option must be
set to Disabled .

— The value in Preferred Class XTI option must not be lower than the value in Alter-
native Class 1 XTI option, Alternative Class 2 XTI option, and so on.

796 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

— Depending on the chosen QOS options, further value conflicts might occur.

The following management options are formatted according to the Protocol_Op-
tion object as described in 17.3.2. The overloaded Get_Value function and Set_-
Option procedure are used to examine and set these attributes in the Protocol_-
Option object.

TPDU_Length_Maximum

The TPDU Length Maximum XTI option, which is the maximum length of a
TPDU.
NOTE: Sensible use of the TPDU–Length–Maximum XTI option may require that the
application programmer know about system internals. Careless setting of either a
lower or a higher value than the implementation dependent default may degrade
performance.
Legal values of the TPDU Length Maximum XTI option for ISO communications
providers are Unspecified and multiples of 128 up to 128 � (232� 1) or the
largest multiple of 128 that will fit in an unsigned long (whichever is the
smaller).
NOTE: Values other than powers of 2 between 27 and 213 are supported only by
communications providers that conform to ISO/IEC 8073 f4g.
Legal values of the TPDU Length Maximum XTI option for an ISO-over-TCP
provider are Unspecified , any power of 2 between 27 and 211, and 65531.
The action taken by a communications provider is implementation depen-
dent if a value is specified that is not exactly as defined in ISO/IEC 8073 f4g
or its addenda.

Acknowledge_Time

The Acknowledge Time XTI option.

Reassignment_Time

The Reassignment Time XTI option, which is measured in seconds.

Preferred_Class

The Preferred Class XTI option. Legal values are Class_0 , Class_1 , Class_-
2, Class_3 , Class_4 , and Class_Unspecified .

Alternative_Class_1

The Alternative Class1 XTI option, which is the first alternative class. Legal
values are Class_0 , Class_1 , Class_2 , Class_3 , Class_4 , and Class_-
Unspecified .

Alternative_Class_2

The Alternative Class 2 XTI option, which is the second alternative class. Legal
values are Class_0 , Class_1 , Class_2 , Class_3 , Class_4 , and Class_-
Unspecified .

Alternative_Class_3

The Alternative Class 3 XTI option. Legal values are Class_0 , Class_1 ,
Class_2 , Class_3 , Class_4 , and Class_Unspecified .

Alternative_Class_4

The Alternative Class 4 XTI option. Legal values are Class_0 , Class_1 ,
Class_2 , Class_3 , Class_4 , and Class_Unspecified .

D XTI Protocol Mappings 797

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Extended_Format

The Extended Format XTI option, which enables extended format. Legal val-
ues for this option are Enabled , Disabled , and Unspecified .

Flow_Control

The Flow Control XTI option, which enables use of flow control. Legal values
for this option are Enabled , Disabled , and Unspecified .

Connection_Checksum

The Connection Checksum XTI option, which enables checksum computation.
Legal values for this option are Enabled , Disabled , and Unspecified .

Network_Expedited_Data

The Network Expedited Data XTI option, which enables use of network expe-
dited data. Legal values for this option are Enabled , Disabled , and Un-
specified .

Network_Receipt_Confirmation

The Network Receipt Confirmation XTI option, which enables use of network
receipt confirmation. Legal values for this option are Enabled , Disabled ,
and Unspecified .

D.2.2.3 Connectionless-Mode Service

D.2.2.3.1 Synopsis

Connectionless_Transit_Delay :
constant POSIX_XTI.Option_Name := implementation-defined;

Connectionless_Checksum :

constant POSIX_XTI.Option_Name := implementation-defined;

D.2.2.3.2 Description

Figure D.5 shows the XTI state diagram for the connectionless-mode ISO transport
service (see also Figure 17.1).

The protocol level of all subsequent options is ISO_TP_Level (as in D.2.2.2).

All options have end-to-end significance. (see 17.3). They may be negotiated in all
XTI states but Uninitialized.

The following QOS option is in addition to the common options listed in D.2.2.1. They
are all defined in ISO/IEC 8072 f3g. The definitions are not repeated here. None of
these options are supported by an ISO-over-TCP communications provider since it
does not support connectionless mode.

Connectionless_Transit_Delay

The Connectionless Transit Delay XTI option. The options Connectionless Transit
Delay XTI option and Connection Transit Delay XTI option are different. Con-
nectionless Transit Delay XTI option specifies the maximum transit delay ex-
pected during a datagram transmission. The option value is an error ratio
expressed in a Rate object (see D.2.2.1), in contrast to the Transit_De-
lay_Rate object used by Connection Transit Delay XTI option. The range of
legal option values for each attribute of object rate is the same as that of
Connection Transit Delay XTI option.

798 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

A request for this option shall be an absolute requirement.

A detailed description of QOS options is found in ISO/IEC 8072 f3g. The attribute
elements of the objects in use for the option values are self-explanatory. Only the
following details remain to be explained.

— This option is negotiated only between the local application and the local com-
munications provider.

— If this option is returned with Receive_Data_Unit its value is related to the
received datagram and not to the communications endpoint where Receive_-
Data_Unit was issued. On the other hand, Manage_Options with the flag
Get_Current_Options set returns the values that are currently effective for
outgoing datagrams.

— The procedure Retrieve_Data_Unit_Error returns the option value of the
data unit previously sent that produced the error.

The following management option is in addition to the common options listed in
D.2.2.1. It is a parameter of an ISO transport protocol, according to ISO/IEC
8602 f9g. It is not included in the ISO transport service definition in ISO/IEC
8072 f3g, but is an additional option offered by XTI. Communications applications
wishing to be truly ISO-compliant should thus not adhere to it.

The application should avoid specifying both QOS parameters and management op-
tions at the same time.

A request for this option shall be an absolute requirement.

Checksum

The Checksum XTI option enables checksum computation. Legal values for
this option are Enabled , Disabled .
If the Checksum XTI option is returned with Receive_Data_Unit , its value
shall indicate whether a checksum was present in the received datagram.

NOTE: The advisability of turning off the checksum check is controversial.

The following behavior for XTI functions is specified:ax

Accept_Connection

The length of the User Data attribute in parameter Call must be in the range
0 to 32. The application may send up to 32 octets of data when accepting the
connection.
If Listening_Endpoint is not equal to Responding_Endpoint , then Re-
sponding_Endpoint should either be in the Unbound state, or be in the Idle
state and be bound to the same address as Listening_Endpoint with the
Request_Queue_Length parameter (of the Bind procedure) set to zero. If
the protocol address bound to the new accepting endpoint (Responding_-
Endpoint) is not the same as that bound to the listening endpoint (Lis-
tening_Endpoint), then error Surrogate_File_Descriptor_Mismatch
may result.

Bind

The Request_Address parameter represents the local TSAP.

D XTI Protocol Mappings 799

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Close

If there are no other descriptors in this process or any other process that
reference this communication endpoint, Close will perform an abortive re-
lease on any connection associated with this endpoint.

Connect

The Address attribute of the Send parameter specifies the remote called
TSAP. The returned address set in Receive shall have the same value.
The setting of the User Data attribute in Send is optional for ISO connections,
but, with no data, the length of User Data must be set to 0. The Options and
Address attributes of the Receive parameter must be set before the call.

Confirm_Connection

On return, the Address attribute in Call contains the remote calling TSAP.
Since, at most, 32 octets of data shall be returned to the application, the size
of the buffer associated with the User Data attribute of the Call parameter
should be 32.

Get_Address

The Address attribute returned by Get_Address from a Connection_Info
object shall be a protocol-specific ISO_XTI_Address object.

Get_Info

The information returned by Get_Info reflects the characteristics of the
connection or, if no connection is established, the maximum characteristics
a connection could take on using the underlying communications provider.
In all possible states except Data Transfer, the function Get_Info returns in
the parameter Info the same information as was returned by Open. In the
Data Transfer state, however, the information returned may differ from that
returned by Open, depending on
— The transport class negotiated during connection establishment (ISO

communications provider only)
— The negotiation of expedited data transfer for this connection
In the Data Transfer state, the Max Size SEDU attribute in the Info parameter
is set to Invalid if no expedited data transfer was negotiated, and to 16
otherwise. The remaining attributes are set according to the characteris-
tics of the transport protocol class in use for this connection, as defined in
Table D.7.

Listen

The Address attribute of Call contains the remote calling TSAP. Since, at
most, 32 octets of data shall be returned with the connection indication,
the length of the buffer associated with the User Data attribute of the Call
parameter should be 32.
If the application has set an endpoint queue length greater than one (on the
call to Bind), the application may queue up several connection indications
before responding to any of them. The ISO communications provider may
start a timer to be sure of obtaining a response to the connection request in
a finite time.
NOTE: If the application queues the connection indications for too long before re-
sponding to them, the communications provider initiating the connection will dis-
connect it.

800 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Table D.7 – Communications_Provider_Info Returned by Get_Info and
Open, ISO

Attribute Connection Connection Connection- ISO over
Class 0 Class 1-4 less TCP

Max Size Protocol Address x (1) x (1) x (1) x (1)

Max Size Protocol Options x (1) x (1) x (1) x (1)

Max Size SDU y (2) y (2) 0 .. 63488 y (2)

Max Size SEDU invalid (3) 16 or invalid (3) 16 or

invalid (4) invalid (4)

Max Size Connect Data invalid (3) 32 invalid (3) 32 or

invalid (5)

Max Size Disconnect Data invalid (3) 64 invalid (3) 64 or

invalid (5)

Service Type Connection_- Connection_- Connection- Connection_-

Mode Mode less_Mode Mode

CP Flags Empty_Set Empty_Set Empty_Set Empty_Set

NOTES:
(1) Either the corresponding function (Protocol_Addresses_Are_Valid , Proto-

col_Options_Are_Valid) returns False or the value of the attribute is set to
an integral number x greater than zero.

(2) Either the corresponding function (SDU_Is_Valid) returns True or the value of
the attribute is set to an integral number y greater than zero.

(3) The corresponding function (SEDU_Is_Valid , Connection_Data_Is_Valid ,
Disconnect_Data_Is_Valid) returns False .

(4) The corresponding function (SEDU_Is_Valid) returns False or the value of the
attribute is set to the value shown, depending on the negotiation of expedited data
transfer.

(5) It is implementation defined whether the corresponding function (Connect_-
Data_Is_Valid , Disconnect_Data_Is_Valid) returns False or the value of
the attribute is set to the value shown.

Open

The procedure Open is called as the first step in the initialization of a com-
munications endpoint. This function returns various default characteristics
associated with the different classes. According to ISO/IEC 8073 f4g, an
OSI communications provider supports one or several out of five different
transport protocols, Class 0 through Class 4. The default characteristics
returned in the parameter Info are those of the highest-numbered proto-
col class the communications provider is able to support. If, for example, a
communications provider supports Class 2 and Class 0, the characteristics
returned are those of Class 2. If the communications provider is limited to
Class 0, the characteristics returned are those of Class 0. Table D.7 gives
the characteristics associated with the different classes.

Receive

If expedited data arrive after part of a TSDU has been retrieved, receipt of
the remainder of the TSDU shall be suspended until the ETSDU has been
processed. Only after the full ETSDU has been retrieved (More_Data not
set) shall the remainder of the TSDU be available to the application.

D XTI Protocol Mappings 801

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Retrieve_Disconnect_Info

Since at most 64 octets of data shall be returned to the application, the size
of the buffer associated with the User_Data parameter should be 64.

Receive_Data_Unit

The Address parameter specifies the remote TSAP. If the More_Data flag
is set, an additional Receive_Data_Unit call is needed to retrieve the
entire TSDU. Only normal data are returned via the Receive_Data_Unit
call. This function is not supported by an ISO-over-TCP communications
provider.

Retrieve_Data_Unit_Error

The Address parameter contains the remote TSAP.

Send

Zero-byte TSDUs are not supported. The Expedited_Data flag is not a
legal flag unless the Expedited Data XTI option has been negotiated for this
connection.

Send_Disconnect_Request

Since at most 64 octets of data may be sent with the disconnection request,
the length of the User Data attribute in Call (or the value of the Octets_-
To_Send parameter) shall have a value less than or equal to 64.

Send_Data_Unit

The Address parameter specifies the remote TSAP. The ISO connectionless
mode transport service does not support the sending of expedited data. This
function is not supported by an ISO-over-TCP communications provider.

D.2.3 Package POSIX_XTI_Internet

This package provides the DNI/XTI interface mappings for Internet transport pro-
tocols. Unless otherwise specified, all the DNI/XTI calls in package POSIX_XTI can
be used for this protocol. Only additional information relevant to this protocol is
highlighted here.

The functionality described in this subclause is optional. If either the XTI Detailed Net-
work Interface option or the Internet Protocol option is not supported, the implementation
may cause all calls to the explicitly declared operations defined in this subclause to
raise POSIX_Error . Otherwise, the behavior shall be as specified in this subclause.

with POSIX,
POSIX_XTI;

package POSIX_XTI_Internet is
-- D.2.3.1 Internet Transport Protocols
TCP_Level : constant POSIX_XTI.Option_Level := implementation-defined;
UDP_Level : constant POSIX_XTI.Option_Level := implementation-defined;
IP_Level : constant POSIX_XTI.Option_Level := implementation-defined;
type XTI_Option is (Enabled, Disabled);
function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)

return XTI_Option;
procedure Set_Option

(Option_Item : in out POSIX_XTI.Protocol_Option;
Level : in POSIX_XTI.Option_Level;

802 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Name : in POSIX_XTI.Option_Name;
To : in XTI_Option);

type Internet_XTI_Address is private ;
type Internet_XTI_Address_Pointer is access all Internet_XTI_Address;
function "+" (Pointer : Internet_XTI_Address_Pointer)

return POSIX_XTI.XTI_Address_Pointer;
function "+" (Pointer : POSIX_XTI.XTI_Address_Pointer)

return Internet_XTI_Address_Pointer;
function Is_Internet_XTI_Address

(Pointer : POSIX_XTI.XTI_Address_Pointer)
return Boolean;

type Internet_Port is implementation-defined-integer;
Unspecified_Internet_Port : constant Internet_Port;
function Get_Internet_Port (Name : Internet_XTI_Address)

return Internet_Port;
procedure Set_Internet_Port

(Name : in out Internet_XTI_Address;
Port : in Internet_Port);

type Internet_Address is private ;
Unspecified_Internet_Address : constant Internet_Address;
Loopback_Internet_Address : constant Internet_Address;
Broadcast_Internet_Address : constant Internet_Address;
function Get_Internet_Address (Name : Internet_XTI_Address)

return Internet_Address;
procedure Set_Internet_Address

(Name : in out Internet_XTI_Address;
Address : in Internet_Address);

procedure Get_Address
(Info_Item : in POSIX_XTI.Connection_Info;

Address : in out Internet_XTI_Address);
-- D.2.3.2 Internet Address Support Functions
-- Internet Address Manipulation
function String_To_Internet_Address (Address : POSIX.POSIX_String)

return Internet_Address;
function Is_Internet_Address (Address : POSIX.POSIX_String)

return Boolean;
function Internet_Address_To_String (Address : Internet_Address)

return POSIX.POSIX_String;
-- Network Database Functions
type Network_Info is private ;
type Network_Number is range implementation-defined;
type Protocol_Family is range implementation-defined;
Unspecified_Network_Number : constant Network_Number;
type Database_Array is new POSIX.Octet_Array;
type Database_Array_Pointer is access all Database_Array;
function Get_Name (Info_Item : Network_Info)

return POSIX.POSIX_String;
generic

with procedure Action
(Alias_Name : in POSIX.POSIX_String;

Quit : in out Boolean);
procedure For_Every_Network_Alias (Info_Item : Network_Info);
function Get_Family (Info_Item : Network_Info)

return Protocol_Family;
function Get_Network_Number (Info_Item : Network_Info)

return Network_Number;
function Get_Network_Info_By_Address

(Number : Network_Number;

D XTI Protocol Mappings 803

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Family : Protocol_Family;
Storage : Database_Array_Pointer)

return Network_Info;
function Get_Network_Info_By_Name

(Name : POSIX.POSIX_String;
Storage : Database_Array_Pointer)

return Network_Info;
procedure Open_Network_Database_Connection

(Stay_Open : in Boolean);
procedure Close_Network_Database_Connection;
-- Network Protocol Database Functions
type Protocol_Info is private ;
type Protocol_Number is range implementation-defined;
function Get_Name (Info_Item : Protocol_Info)

return POSIX.POSIX_String;
generic

with procedure Action
(Alias_Name : in POSIX.POSIX_String;

Quit : in out Boolean);
procedure For_Every_Protocol_Alias (Info_Item : Protocol_Info);
function Get_Protocol_Number (Info_Item : Protocol_Info)

return Protocol_Number;
function Get_Protocol_Info_By_Number

(Number : Protocol_Number;
Storage : Database_Array_Pointer)

return Protocol_Info;
function Get_Protocol_Info_By_Name

(Name : POSIX.POSIX_String;
Storage : Database_Array_Pointer)

return Protocol_Info;
procedure Open_Protocol_Database_Connection

(Stay_Open : in Boolean);
procedure Close_Protocol_Database_Connection;
-- D.2.3.3 Internet Transmission Control Protocol
TCP_Keep_Alive_Interval :

constant POSIX_XTI.Option_Name := implementation-defined;
TCP_Segment_Size_Maximum :

constant POSIX_XTI.Option_Name := implementation-defined;
TCP_No_Delay :

constant POSIX_XTI.Option_Name := implementation-defined;
type Keep_Alive_Info is private ;
type Keep_Alive_Status is private ;
subtype Keep_Alive_Time is POSIX.Minutes range 1 .. POSIX.Minutes’Last;
Keep_Alive_On : constant Keep_Alive_Status;
Keep_Alive_Off : constant Keep_Alive_Status;
Send_Garbage : constant Keep_Alive_Status;
function Get_Status (Info_Item : Keep_Alive_Info)

return Keep_Alive_Status;
procedure Set_Status

(Info_Item : in out Keep_Alive_Info;
To : in Keep_Alive_Status);

procedure Set_Keep_Alive_Interval_Default
(Info_Item : in out Keep_Alive_Info);

procedure Set_Keep_Alive_Timeout
(Info_Item : in out Keep_Alive_Info;

To : in Keep_Alive_Time);
function Get_Keep_Alive_Timeout

(Info_Item : Keep_Alive_Info)

804 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

return Keep_Alive_Time;
function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)

return Keep_Alive_Info;
procedure Set_Option

(Option_Item : in out POSIX_XTI.Protocol_Option;
Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
Value : in Keep_Alive_Info);

-- D.2.3.4 Internet User Datagram Protocol
UDP_Checksum : constant POSIX_XTI.Option_Name := implementation-defined;
-- D.2.3.5 Internet Protocol
IP_Options : constant POSIX_XTI.Option_Name := implementation-defined;
IP_Type_Of_Service : constant POSIX_XTI.Option_Name := implementation-defined;
IP_Time_To_Live : constant POSIX_XTI.Option_Name := implementation-defined;
IP_Reuse_Address : constant POSIX_XTI.Option_Name := implementation-defined;
IP_Do_Not_Route : constant POSIX_XTI.Option_Name := implementation-defined;
IP_Permit_Broadcast : constant POSIX_XTI.Option_Name := implementation-defined;
type IP_Option_List is new POSIX.Octet_Array;
procedure Get_Value

(Option_Item : POSIX_XTI.Protocol_Option;
IP_Option : out IP_Option_List;
Count : out Natural);

procedure Set_Option
(Option_Item : in out POSIX_XTI.Protocol_Option;

Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
To : in IP_Option_List);

type IP_Service_Type is private ;
Normal : constant IP_Service_Type;
Low_Delay : constant IP_Service_Type;
High_Throughput : constant IP_Service_Type;
High_Reliability : constant IP_Service_Type;
Low_Cost : constant IP_Service_Type;
type IP_Precedence_Level is private ;
Routine : constant IP_Precedence_Level;
Priority : constant IP_Precedence_Level;
Immediate : constant IP_Precedence_Level;
Flash : constant IP_Precedence_Level;
Flash_Override : constant IP_Precedence_Level;
Critic_ECP : constant IP_Precedence_Level;
Internetwork_Control : constant IP_Precedence_Level;
Network_Control : constant IP_Precedence_Level;
function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)

return IP_Service_Type;
function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)

return IP_Precedence_Level;
procedure Set_Option

(Option_Item : in out POSIX_XTI.Protocol_Option;
Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
Service : in IP_Service_Type;
Precedence : in IP_Precedence_Level);

private
implementation-defined

end POSIX_XTI_Internet;

D XTI Protocol Mappings 805

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

D.2.3.1 Internet Transport Protocols

D.2.3.1.1 Synopsis

TCP_Level : constant POSIX_XTI.Option_Level := implementation-defined;
UDP_Level : constant POSIX_XTI.Option_Level := implementation-defined;
IP_Level : constant POSIX_XTI.Option_Level := implementation-defined;
type XTI_Option is (Enabled, Disabled);
function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)

return XTI_Option;
procedure Set_Option

(Option_Item : in out POSIX_XTI.Protocol_Option;
Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
To : in XTI_Option);

type Internet_XTI_Address is private ;
type Internet_XTI_Address_Pointer is access all Internet_XTI_Address;
function "+" (Pointer : Internet_XTI_Address_Pointer)

return POSIX_XTI.XTI_Address_Pointer;
function "+" (Pointer : POSIX_XTI.XTI_Address_Pointer)

return Internet_XTI_Address_Pointer;
function Is_Internet_XTI_Address

(Pointer : POSIX_XTI.XTI_Address_Pointer)
return Boolean;

type Internet_Port is implementation-defined-integer;
Unspecified_Internet_Port : constant Internet_Port;
function Get_Internet_Port (Name : Internet_XTI_Address)

return Internet_Port;
procedure Set_Internet_Port

(Name : in out Internet_XTI_Address;
Port : in Internet_Port);

type Internet_Address is private ;
Unspecified_Internet_Address : constant Internet_Address;
Loopback_Internet_Address : constant Internet_Address;
Broadcast_Internet_Address : constant Internet_Address;
function Get_Internet_Address (Name : Internet_XTI_Address)

return Internet_Address;
procedure Set_Internet_Address

(Name : in out Internet_XTI_Address;
Address : in Internet_Address);

procedure Get_Address
(Info_Item : in POSIX_XTI.Connection_Info;

Address : in out Internet_XTI_Address);

D.2.3.1.2 Description

This subclause describes the protocol-specific information that is relevant for com-
munications providers that are TCP or UDP communications providers.

The format of Internet addresses is defined in RFC 791 f13g. The representations
of Internet addresses, network identifiers, and host identifiers is implementation
defined.

The type Internet_XTI_Address shall be used to represent an address for this
protocol family. The type Internet_XTI_Address_Pointer is an access to this
protocol-specific address type. The "+" operations shall convert a Internet_XTI_-
Address_Pointer to and from the XTI_Address_Pointer type for use with the

806 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

base package operations defined for the XTI_Address_Pointer type. The return
value of the "+" operations designates the same address object as the input param-
eter. The function Is_Internet_XTI_Address shall return True if the address
object designated by the specified non-null XTI_Address_Pointer is a valid In-
ternet_XTI_Address and False otherwise. The conversion operation to Inter-
net_XTI_Address_Pointer shall succeed if and only if the corresponding Is_In-
ternet_XTI_Address returns True . Otherwise, the results are undefined.

NOTE: The Null_XTI_Address constant corresponds to the Ada null literal for these oper-
ations.

A value of type Internet_Port forms a component of the XTI address. Given an
Internet XTI address, Get_Internet_Port returns the corresponding Internet Port.
Set_Internet_Port sets the Internet Port value in an Internet XTI address. This
value is set to Unspecified_Internet_Port when an XTI address is created and
must be set to a valid port number by the application.

A value of type Internet_Address forms a component of the XTI address. Given an
Internet XTI address, Get_Internet_Address returns the corresponding Internet
address. Set_Internet_Address sets the Internet address value in an Internet
XTI address. This value is set to Unspecified_Internet_Address when an XTI
address is created and needs to be set to a valid address by the application.

Options are formatted according to the Protocol_Option object as described in
17.3.2. The overloaded Get_Value function and Set_Option procedure are used to
examine and set these attributes in the Protocol_Option object. A communications
provider compliant to this specification shall support none, all, or any subset of the
options defined in D.2.3.3, D.2.3.4 and D.2.3.5. An implementation may restrict the
use of any of these options by offering them only in the privileged or read-only mode.

The following behavior for XTI functions is specified:

Accept_Connection

Issuing Accept_Connection assigns an already established connection to
Responding_Endpoint .
Since application data cannot be exchanged during the connection establish-
ment phase, the application shall set the length of the User Data attribute in
Call to 0 before the call, or the overloaded Accept_Connection without
the Call parameter should be used. If file descriptor Responding_End-
point is unbound, then Accept_Connection shall bind it to the same ad-
dress as Listening_Endpoint . If file descriptor Responding_Endpoint
is bound to an address other than that to which Listening_Endpoint is
bound, then Accept_Connection shall dissolve its existing binding and
shall bind it to the same address as Listening_Endpoint . If file descriptor
Responding_Endpoint is bound to the same address as Listening_End-
point , then Accept_Connection shall leave its binding unchanged.

D XTI Protocol Mappings 807

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

NOTE: TCP requires the responding address to be the same as the address given
in the connect request. This address must be supplied in Listening_Endpoint
by the application. Many implementations do not allow two endpoints to be bound
to the same address, so that the application cannot bind Responding_Endpoint
to the same address as Listening_Endpoint . The specified behavior enables an
application to bind Responding_Endpoint to any address, then to call Accept_-
Connection , and then to use Responding_Endpoint to send and receive data
over the connection. Thus the specified behavior allows an application to use TCP
with such an implementation. It follows that, if the Bind procedure can only bind
one communications endpoint to any particular protocol address, then an applica-
tion can employ either of the following alternatives for accepting a connection on a
different endpoint (Responding_Endpoint not equal to Listening_Endpoint):
(1) It can call Accept_Connection while Responding_Endpoint is in the Un-

bound state.
(2) It can bind to any unused local address and then call Accept_Connection

in the Idle state. In this case, Accept_Connection will change the Respond-
ing_Endpoint address to be the same as that of Listening_Endpoint .

For portability, the first alternative should be used.
If options with end-to-end significance (i.e.the IP Options XTI option and the
IP Type Of Service XTI option) are to be sent with the connection confirmation,
the values of these options must be set with Manage_Options before the
Connect_Request_Received event occurs. When the application detects a
Connect_Request_Received , TCP has already established the connection.
Options with end-to-end significance passed with Accept_Connection be-
come effective at once, but since the connection is already established, they
are transmitted with subsequent IP datagrams sent out in the Data Transfer
state.

Bind

The Request_Address parameter represents the address of the local end-
point, i.e., an address that specifically includes a port identifier.
In connection mode (i.e., TCP), whether the Bind procedure can bind more
than one communications endpoint to any particular protocol address is im-
plementation defined. If the Bind procedure can only bind one communi-
cations endpoint to any particular protocol address, and if that endpoint
was bound in passive mode (i.e., the endpoint queue length is greater than
zero), then other endpoints shall be bound to the protocol of the passive end-
point address via the Accept_Connection function only. In other words,
if Listening_Endpoint refers to the passive endpoint and Responding_-
Endpoint refers to the new endpoint on which the connection is to be ac-
cepted, Responding_Endpoint shall be bound to the same protocol address
as Listening_Endpoint after the successful completion of the Accept_-
Connection function.

Close

If there are no other descriptors, in this process or any other process, that
reference this communication endpoint the Close call will perform an or-
derly connection termination according to the rules of a TCP Close call as
specified in RFC 793 f14g and RFC 1122 f18g.
If the Linger On Close If Data Present XTI option is supported and is used to
enable the Linger, the linger time will affect the time that the implementa-
tion lingers in the execution of Close . A linger time of zero specified with

808 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

the Linger On Close If Data Present XTI option may cause an abortive release
of a TCP connection resulting in lost data.

Connect

The Address attribute of the Connection_Info object in Send specifies the
address of the remote endpoint. The returned address set in the Address
attribute of Receive shall have the same value.
Since application data cannot be exchanged during the connection establish-
ment phase, the application shall set the length of the User Data attribute in
Send to zero before the call. The peer TCP – and not the peer application –
confirms the connection.

Get_Address

The Address attribute returned by Get_Address from a Connection_Info
object shall be a protocol-specific Internet_XTI_Address object.

Listen

Upon successful return, Listen indicates an existing connection and not a
connection indication.
Since application data cannot be exchanged during the connection estab-
lishment phase, the length of the User Data attribute of Call must be set to
zero before the call to Listen . The Address attribute of Call contains the
address of the remote calling endpoint.

Look

As soon as a segment with the TCP urgent pointer set enters the TCP re-
ceive buffer, the event Expedited_Data_Received is indicated. Expe-
dited_Data_Received remains set until all data up to the octet pointed to
by the TCP urgent pointer have been received. If the urgent pointer is up-
dated, and the application has not yet received the octet previously pointed
to by the urgent pointer, the update is invisible to the application.

Receive

The More_Data flag shall be ignored if normal data are delivered. If an octet
in the data stream is pointed to by the TCP urgent pointer, as many octets
as possible preceding this marked octet and the marked octet itself shall be
denoted as urgent data and shall be received with the Expedited_Data flag
set. If the buffer supplied by the application is too small to hold all urgent
data, the More_Data flag shall be set, indicating that urgent data still re-
main to be read. The number of octets received with the Expedited_Data
flag set is not necessarily equal to the number of octets sent by the peer
application with the Expedited_Data flag set.

Open

Open is called as the first step in the initialization of a communications
endpoint. This function returns various default characteristics of the un-
derlying communications protocol by setting attributes in the Communica-
tions_Provider_Info object.
The values returned by calls to Open and Get_Info with the indicated com-
munications providers are as defined in Table D.8.

D XTI Protocol Mappings 809

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Table D.8 – Communications_Provider_Info Returned by Get_Info and
Open, Internet

Attribute TCP/IP UDP/IP

Max Size Protocol Address x (1) x (1)

Max Size Protocol Options x (1) x (1)

Max Size SDU zero x (1)

Max Size SEDU infinite (2) invalid (3)

Max Size Connect Data invalid (3) invalid (3)

Max Size Disconnect Data invalid (3) invalid (3)

Service Type Connection_Mode_- Connectionless_Mode

With_Orderly_Release

CP Flags Zero_Length_Service_- Zero_Length_Service_-

Data_Unit_Supported Data_Unit_Supported

NOTES:
(1) Either the corresponding function (Protocol_Addresses_Are_Valid , Proto-

col_Options_Are_Valid , SDU_Is_Valid) returns False or the value of the
attribute is set to an integral number x greater than zero.

(2) The corresponding function (SDU_Is_Infinite) returns True .
(3) The corresponding function (SEDU_Is_Valid , Connect_Data_Is_Valid , Dis-

connect_Data_Is_Valid) returns False .

Confirm_Connection

Since application data cannot be exchanged during the connection establish-
ment phase, the length of the User Data attribute of Call must be set to zero
before the call to Confirm_Connection , or the overloaded Confirm_Con-
nection without the Call parameter should be used.
On return, the Address attribute of Call contains the address of the remote
calling endpoint.

Retrieve_Disconnect_Info

Since data may not be sent with a disconnection request, the User_Data
parameter shall not be meaningful.

Send

The More_Data and Push flags shall be ignored. If Send is called with more
than one octet specified and with the Expedited_Data flag set, then the
last octet of the buffer shall be the octet that will be pointed to by the TCP
urgent pointer of the remote endpoint. If the Expedited_Data flag is set,
at least one octet shall be sent.
Data for a Send call with the Expedited_Data flag set shall not pass data
sent previously. In other words, the Expedited_Data flag shall not affect
the order in which data are transmitted to the peer application.

Send_Disconnect_Request

Since data may not be sent with a disconnection request, the length of the
User Data attribute in Call (or the Octets_To_Send parameter) must be
set to zero.
NOTE: For Send_Data_Unit the maximum size of a connectionless-mode SDU may
vary among implementations.

810 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

D.2.3.2 Internet Address Support Functions

D.2.3.2.1 Synopsis

-- Internet Address Manipulation
function String_To_Internet_Address (Address : POSIX.POSIX_String)

return Internet_Address;
function Is_Internet_Address (Address : POSIX.POSIX_String)

return Boolean;
function Internet_Address_To_String (Address : Internet_Address)

return POSIX.POSIX_String;
-- Network Database Functions
type Network_Info is private ;
type Network_Number is range implementation-defined;
type Protocol_Family is range implementation-defined;
Unspecified_Network_Number : constant Network_Number;
type Database_Array is new POSIX.Octet_Array;
type Database_Array_Pointer is access all Database_Array;
function Get_Name (Info_Item : Network_Info)

return POSIX.POSIX_String;
generic

with procedure Action
(Alias_Name : in POSIX.POSIX_String;

Quit : in out Boolean);
procedure For_Every_Network_Alias (Info_Item : Network_Info);
function Get_Family (Info_Item : Network_Info)

return Protocol_Family;
function Get_Network_Number (Info_Item : Network_Info)

return Network_Number;
function Get_Network_Info_By_Address

(Number : Network_Number;
Family : Protocol_Family;
Storage : Database_Array_Pointer)

return Network_Info;
function Get_Network_Info_By_Name

(Name : POSIX.POSIX_String;
Storage : Database_Array_Pointer)

return Network_Info;
procedure Open_Network_Database_Connection

(Stay_Open : in Boolean);
procedure Close_Network_Database_Connection;
-- Network Protocol Database Functions
type Protocol_Info is private ;
type Protocol_Number is range implementation-defined;
function Get_Name (Info_Item : Protocol_Info)

return POSIX.POSIX_String;
generic

with procedure Action
(Alias_Name : in POSIX.POSIX_String;

Quit : in out Boolean);
procedure For_Every_Protocol_Alias (Info_Item : Protocol_Info);
function Get_Protocol_Number (Info_Item : Protocol_Info)

return Protocol_Number;
function Get_Protocol_Info_By_Number

(Number : Protocol_Number;
Storage : Database_Array_Pointer)

return Protocol_Info;
function Get_Protocol_Info_By_Name

(Name : POSIX.POSIX_String;
Storage : Database_Array_Pointer)

return Protocol_Info;
procedure Open_Protocol_Database_Connection

(Stay_Open : in Boolean);

procedure Close_Protocol_Database_Connection;

D XTI Protocol Mappings 811

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

D.2.3.2.2 Description

The functionality described in this subclause is optional. If the Network Management
option is not supported, the implementation may cause all calls to the explicitly de-
clared operations defined in this subclause to raise POSIX_Error . Otherwise, the
behavior shall be as specified in this subclause.

The functions and procedures in this subclause provide optional Internet support
functions. See D.1.3.2 for a description of these facilities.

D.2.3.3 Internet Transmission Control Protocol

D.2.3.3.1 Synopsis

TCP_Keep_Alive_Interval :
constant POSIX_XTI.Option_Name := implementation-defined;

TCP_Segment_Size_Maximum :
constant POSIX_XTI.Option_Name := implementation-defined;

TCP_No_Delay :
constant POSIX_XTI.Option_Name := implementation-defined;

type Keep_Alive_Info is private ;
type Keep_Alive_Status is private ;
subtype Keep_Alive_Time is POSIX.Minutes range 1 .. POSIX.Minutes’Last;
Keep_Alive_On : constant Keep_Alive_Status;
Keep_Alive_Off : constant Keep_Alive_Status;
Send_Garbage : constant Keep_Alive_Status;
function Get_Status (Info_Item : Keep_Alive_Info)

return Keep_Alive_Status;
procedure Set_Status

(Info_Item : in out Keep_Alive_Info;
To : in Keep_Alive_Status);

procedure Set_Keep_Alive_Interval_Default
(Info_Item : in out Keep_Alive_Info);

procedure Set_Keep_Alive_Timeout
(Info_Item : in out Keep_Alive_Info;

To : in Keep_Alive_Time);
function Get_Keep_Alive_Timeout

(Info_Item : Keep_Alive_Info)
return Keep_Alive_Time;

function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)
return Keep_Alive_Info;

procedure Set_Option
(Option_Item : in out POSIX_XTI.Protocol_Option;

Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;

Value : in Keep_Alive_Info);

D.2.3.3.2 Description

The TCP service supports all the states in Figure D.4. (See also Figure 17.1.)

The notion of SDU is not supported by a TCP communications provide. Therefore,
the More_Data flag shall be ignored when TCP is used.

TCP does not have a notion of expedited data in a sense comparable to ISO expedited
data. TCP defines an urgent mechanism by which in-line data are marked for urgent
delivery.

812 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

The options listed below are defined for the TCP protocol level. These options do
not have end-to-end significance. They can be negotiated in all XTI states except
Unbound and Uninitialized. They shall be read-only in the Unbound state. See 17.3 for
the difference between options that have end-to-end significance and those that do
not.

Keep Alive Interval

If the Keep Alive Interval XTI option is set, a keep-alive timer shall be activated
to monitor idle connections that might no longer exist. If a connection has
been idle since the last keep-alive timeout, a keep-alive packet shall be sent
to check whether the connection is still alive or broken.
NOTE: Keep-alive packets are not an explicit feature of TCP, and this practice is not
universally accepted. According to RFC 1122 f18g, “a keep-alive mechanism should
only be invoked in server applications that might otherwise hang indefinitely and
consume resources unnecessarily if a client crashes or aborts a connection during a
network failure”.
Valid values for this option are:

Keep_Alive_Off

Switch the keep-alive timer off.
Keep_Alive_On

Activate the keep-alive timer.
Send_Garbage

Activate the keep-alive timer and send a fill octet.
An implementation need not support Send_Garbage (see RFC 1122 f18g);
therefore, a Set_Option to Send_Garbage may be rejected. If Send_-
Garbage is set and the implementation supports Send_Garbage , then the
keep-alive packet shall contain one garbage octet.
NOTE: The permission above is for compatibility with erroneous TCP implementa-
tions.
If Send_Garbage is not set, the implementation shall not include garbage
data in keep-alive packets.

NOTE: In most cases, the application should not set Send_Garbage .
The conditions under which keep-alive packets are to be sent are described
in RFC 1122 f18g. The Set_Option procedure determines the frequency,
in minutes. The application can request the default value with the Set_-
Keep_Alive_Interval_Default function. The default is implementation
dependent, but at least 120 minutes (see RFC 1122 f18g). Get_Value re-
turns the current timeout value.
The timeout value shall not be an absolute requirement. The implementa-
tion may impose upper and lower limits on this value. Requests that fall
short of the lower limit may be negotiated to the lower limit. The default
status for the Keep Alive Interval XTI option shall be Keep_Alive_Off .
A request to activate the Keep Alive Interval XTI option shall be an absolute
requirement.

Segment Size Maximum

The Segment Size Maximum XTI option shall be read-only. Get_Value returns
the maximum TCP segment size.

D XTI Protocol Mappings 813

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

No Delay

Under most circumstances, TCP sends data as soon as they are presented.
When outstanding data have not yet been acknowledged, small amounts of
output may be gathered to be sent in a single packet once an acknowledg-
ment is received. For some clients, such as window systems (see Scheifler-
fB20g) that send a stream of mouse events that receive no replies, this pack-
etization may cause significant delays. The No Delay XTI option is used to
defeat this algorithm. Legal option values are Enabled (do not delay) and
Disabled (delay).
Set_Option sets the No Delay XTI option. Get_Value returns the current
status. The default status shall be Disabled . A request for No Delay XTI
option shall be an absolute requirement.

D.2.3.4 Internet User Datagram Protocol

D.2.3.4.1 Synopsis

UDP_Checksum : constant POSIX_XTI.Option_Name := implementation-defined;

D.2.3.4.2 Description

The UDP service supports all the states in Figure D.5. (See also Figure 17.1.)

UDP has no urgent mechanism. See RFC 793 f14g for more detailed information.
See also the discussion of Receive in D.2.3.1. Applications can use the event man-
agement functions defined in 19.1 (or another suitable interface offered by the im-
plementation) to determine when urgent data have arrived.

The option listed below is defined for the UDP protocol level:

UDP_Checksum

The UDP Checksum XTI option, which shall control the disabling or enabling
of the UDP checksum computation. Its legal values are Enabled and Dis-
abled .
This option has end-to-end significance. It can be negotiated in all XTI states
except Unbound and Uninitialized. It shall be read-only in the Unbound state.
See 17.3 for the difference between options that have end-to-end significance
and those that do not. A request for the UDP Checksum XTI option shall be
an absolute requirement.
If the UDP Checksum XTI option is returned with Receive_Data_Unit , its
value shall indicate whether a checksum was present in the received data-
gram. Set_Option sets the UDP Checksum XTI option status. Get_Value
returns the current status. The default for UDP Checksum XTI option shall
be Enabled .
NOTE: Numerous cases of undetected errors have been reported when applications
chose to turn off checksums for efficiency. Applications should normally set UDP
Checksum XTI option to Enabled .

814 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

D.2.3.5 Internet Protocol

D.2.3.5.1 Synopsis

IP_Options : constant POSIX_XTI.Option_Name := implementation-defined;
IP_Type_Of_Service : constant POSIX_XTI.Option_Name := implementation-defined;
IP_Time_To_Live : constant POSIX_XTI.Option_Name := implementation-defined;
IP_Reuse_Address : constant POSIX_XTI.Option_Name := implementation-defined;
IP_Do_Not_Route : constant POSIX_XTI.Option_Name := implementation-defined;
IP_Permit_Broadcast : constant POSIX_XTI.Option_Name := implementation-defined;
type IP_Option_List is new POSIX.Octet_Array;
procedure Get_Value

(Option_Item : POSIX_XTI.Protocol_Option;
IP_Option : out IP_Option_List;
Count : out Natural);

procedure Set_Option
(Option_Item : in out POSIX_XTI.Protocol_Option;

Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
To : in IP_Option_List);

type IP_Service_Type is private ;
Normal : constant IP_Service_Type;
Low_Delay : constant IP_Service_Type;
High_Throughput : constant IP_Service_Type;
High_Reliability : constant IP_Service_Type;
Low_Cost : constant IP_Service_Type;
type IP_Precedence_Level is private ;
Routine : constant IP_Precedence_Level;
Priority : constant IP_Precedence_Level;
Immediate : constant IP_Precedence_Level;
Flash : constant IP_Precedence_Level;
Flash_Override : constant IP_Precedence_Level;
Critic_ECP : constant IP_Precedence_Level;
Internetwork_Control : constant IP_Precedence_Level;
Network_Control : constant IP_Precedence_Level;
function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)

return IP_Service_Type;
function Get_Value (Option_Item : POSIX_XTI.Protocol_Option)

return IP_Precedence_Level;
procedure Set_Option

(Option_Item : in out POSIX_XTI.Protocol_Option;
Level : in POSIX_XTI.Option_Level;
Name : in POSIX_XTI.Option_Name;
Service : in IP_Service_Type;

Precedence : in IP_Precedence_Level);

D.2.3.5.2 Description

The options listed below are defined for the Internet protocol level. A request for any
of these options shall be an absolute requirement.

The IP Options XTI option and Type of Service XTI option are both options that have
end-to-end significance. No other options have end-to-end significance. See 17.3 for
the difference between options that have end-to-end significance and options that do
not.

Reuse Address XTI option can be negotiated in all XTI states except Uninitialized. All
other options can be negotiated in all other XTI states except Unbound and Uninitialized;
they are read-only in the Unbound state.

D XTI Protocol Mappings 815

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

IP_Options

The IP Options XTI option, which is used to set the OPTIONS field of each
outgoing IP datagram, and to retrieve the OPTIONS field of each incoming
IP datagram. Its value has type IP_Option_List , which is a string of octets
composed of a number of IP options, whose format matches those defined in
the IP specification with one exception: the list of addresses for the source
routing options shall include the first-hop gateway at the beginning of the
list of gateways. The first-hop gateway address shall be extracted from the
option list and the size adjusted accordingly before use. The option shall be
disabled if it is specified with no value. The implementation may silently
truncate the IP_Option_List to an implementation-defined limit.
The functions Connect (when POSIX_IO.Non_Blocking is not set), Lis-
ten , Confirm_Connection , Receive_Data_Unit , and Receive_And_-
Scatter_Data_Unit shall return the OPTIONS field, if any, of a received
IP datagram. The procedure Retrieve_Data_Unit_Error shall return
the OPTIONS field of the data unit previously sent that produced the error.
The procedure Manage_Options with Get_Current_Options set shall re-
trieve the currently effective IP_Options value that is sent with outgoing
datagrams.
NOTE: Common applications never need the IP Options XTI option. It is mainly used
for network debugging and control purposes.

Type_Of_Service

The Type of Service XTI option, which is used to set the type-of-service field
of an outgoing IP datagram and to retrieve the type-of-service field of an
incoming IP datagram. This option is a combination of a precedence value
and a type-of-service value as defined in RFC 791 f13g.
The type of service value shall specify the type of service that the network
should provide for the IP datagram. Legal type-of-service values are as fol-
lows: Normal , Low_Delay , High_Throughput , High_Reliability , and
Low_Cost . The precedence values shall specify datagram precedence, allow-
ing senders to indicate the importance of each datagram as follows: Rou-
tine , Priority , Immediate , Flash , Flash_Override , Critic_ECP , In-
ternetwork_Control , and Network_Control .

NOTE: They are intended for Department of Defense applications.
Applications using Type_Of_Service , but not the precedence level, should
use the value Routine for precedence.
The functions Connect , Listen , Confirm_Connection , and Receive_-
Data_Unit shall return the type-of-service field of any received IP datagram
associated with the call. The procedure Retrieve_Data_Unit_Error shall
return the type-of-service field of the data unit previously sent that produced
the error. The procedure Manage_Options with Get_Current_Options set
shall retrieve the currently effective Type_Of_Service value that is sent
with outgoing datagrams.
Provision of the requested type-of-service is not guaranteed.
NOTE: The requested type-of-service is a hint to the routing algorithm that helps
it choose among various paths to a destination. Most hosts and gateways in the
Internet currently ignore the type-of-service field.

816 D Protocol Mappings

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Reuse_Address

The Reuse Address XTI option. Many TCP implementations do not allow the
application to bind more than one communications endpoint to addresses
with identical port numbers. If the Reuse Address XTI option is set to En-
abled this restriction shall be relaxed to allowed the application to bind a
communications endpoint to an address that has a port number and an un-
derspecified Internet address (wild card address) and to bind further end-
points to addresses that have the same port number and (mutually exclu-
sive) fully specified Internet addresses.
NOTE: A race condition can occur when two processes are both trying to connect
from a specific local port to different remote ports. Only one process at a time can
have a bound, but unconnected communications endpoint. In particular, if two pro-
cesses both try to bind to the local port and then create a connection, the Bind call
of one process will succeed but the Bind call of the other process will fail. Therefore,
a Bind call that returns an error should be retried.

Permit_Broadcast

The Permit Broadcast XTI option, which requests permission to send broad-
cast datagrams (see RFC 791 f13g).
NOTE: The Permit Broadcast XTI option was defined to make sure that broadcasts are
not generated by mistake.

IP_Do_Not_Route

The IP Do Not Route XTI option, which indicates that the destination address
shall refer to a destination on a directly attached network interface and that
interface shall be used to deliver all outgoing messages.

NOTE: The main use of the IP Do Not Route XTI option is for testing and development.

Initial_Time_To_Live

The Initial Time To Live XTI option, which is used to set the time-to-live field
in an outgoing IP datagram. It specifies how long, in seconds, the datagram
is allowed to remain in the Internet.2) The time-to-live field of an incoming
datagram is not returned by any function (since it is not an option with
end-to-end significance).

c

2) This is a simplified description. Refer to RFC 1122 f18g for precise details.

D XTI Protocol Mappings 817

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Alphabetic Topical Index

A
AARE, abbreviation . . . 34
Abbreviations, subclause . . . 34
abort completion point . . . 131, 320

definition . . . 12
abort deferred . . . 131
abort deferred operation, definition . . . 12
Aborted–By–Peer, constant . . . 763, 772-773,

775
Abort–Task, procedure . . . 383
absolute pathname, definition . . . 12
absolute requirement, definition . . . 402
absolute timer . . . 364
Absolute–Requirement, constant . . . 784,

788, 790
Absolute–Timer, constant . . . 357-791,

359-360, 364, 366, 641
abstract syntax, definition . . . 763
Abstract–Syntax–Not–Supported, constant . . .

761, 766, 768
Accept a Connection Request, subclause . . .

431
accept a signal, definition . . . 118
Accept Connection, socket event . . . 490
Accept Connection1, XTI event . . . 391
Accept Connection2, XTI event . . . 391
Accept Connection3, XTI event . . . 391-392
Accept–Connection

function . . . 499, 507
procedure . . . 66, 71, 129-130, 213, 385,

390-392, 395, 399-402, 404, 406-410,
414, 425, 429, 431-434, 439, 490-491,
496-497, 499, 507-509, 525, 540, 544,
716-717, 731-733, 750, 765, 770, 772,
781, 793, 796, 799, 807

Accept–Connectoin, procedure . . . 508
Access Contents of a Group Database Item,

subclause . . . 290
Access Contents of a User Database Item,

subclause . . . 287
Access Elements of the Group Item List of

Members, subclause . . . 290
Access File Status, subclause . . . 191
Access Group Database Items, subclause . . .

291
access mode, definition . . . 12
Access Shared Memory, subclause . . . 345
Access Status Information, subclause . . . 192
Access to standard error, subclause . . . 620
Access User Database Items, subclause . . .

288

Accessibility, function . . . 179-808, 189
Accessing Generic Shared Memory, subclause

. . . 633
Access–Mode, type . . . 179-190, 189
Access–Mode–Set, type . . . 179, 189
Access–Permission–Set, constant . . . 175
Access–Shared–Memory, function . . .

342-177, 345, 634
Acknowledge Receipt of an Orderly Release

Indication, subclause . . . 434
Acknowledge Receipt of an Orderly Release

Indication with Data, subclause . . . 435
Acknowledge Release, XTI event . . . 394
Acknowledge Time, XTI option . . . 797
Acknowledge–Each, enumeration literal . . .

722, 730, 734
Acknowledge–Orderly–Release, procedure . . .

130, 390, 394, 414, 428, 434-435, 537,
775

Acknowledge–Orderly–Release–With–Data,
procedure . . . 130, 390, 394, 414, 421,
428, 435-436, 537, 779

Acknowledge–Time, constant . . . 786, 792,
797

Acknowledge–Window, enumeration literal . . .
722, 730, 734

Acknowledgment Strategy, abstract attribute
. . . 734

AC–Name–Not–Supported, constant . . . 762,
772, 775

ACSE, abbreviation . . . 34
ACSE Implementation Information, abstract

attribute . . . 771
ACSE Protocol Version, abstract attribute . . .

770
Action

. . . 737-738, 745, 762, 767, 803-804,
811

procedure . . . 413, 426-427, 500, 515,
517, 536, 542

activated . . . 240-543, 350
activates an extension, definition . . . 4
active partition . . . 38, 103, 105, 109, 127,

280, 282-283, 564
definition . . . 24
equivalent to process . . . 38

active priority . . . 309-310
definition . . . 26

Active–Protection, constant . . . 784, 788, 790
Ada 83, abbreviation . . . 34
Ada 95, abbreviation . . . 34
Ada Character Differences, subclause . . . 38

Alphabetic Topical Index 819

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Ada I/O, definition . . . 13
Ada Language, subclause . . . 550
Ada RM, abbreviation . . . 34
Ada/C Cross-References, section . . . 651
Ada.Dynamic–Priorities, package . . . 354
Ada–Dynamic–Priorities, package . . . 354
Ada.Real–Time, package . . . 572
Ada.Streams, package . . . 574
Ada–Streams, package . . . 51-791, 57, 87,

215-216, 219, 376-377, 574, 602
Ada–Task–Identification, package . . . 38, 383
Ada.Text–IO, package . . . 620
Ada-to-C Cross-Reference, subclause . . . 651
Add, procedure . . . 536, 541-542, 762, 767,

769
Add–All–Signals, procedure . . . 116, 132
Additional Interpretation of the Ada Standard,

subclause . . . 281
Additional Interpretation of the POSIX.1

Standard, subclause . . . 283
Address

. . . 809
attribute . . . 629
abstract attribute . . . 429-430, 432,

441-444, 455-456, 482, 516, 518, 715,
726, 744, 770, 773, 775-776, 800,
809-810

address space . . . 21
definition . . . 13

Address–Flags, type . . . 500, 515, 517
Addressing, subclause . . . 386, 488
Address–In–Use, constant . . . 47, 62, 66,

439, 445, 455, 510, 512, 729
Address–Not–Available, constant . . . 47, 62,

66, 510, 512, 729, 742, 745
Addrinfo–Error–Code, type . . . 49, 64-65,

644
Add–Signal, procedure . . . 116, 132
Adjust–Length, function . . . 90
AE, abbreviation . . . 34
AE Invocation Identifier, abstract attribute . . .

765-91, 770, 773-778, 780
AE Qualifier, abstract attribute . . . 765-766,

770-773, 775-778, 780
AE Title, abstract attribute . . . 771
AE–Invocation–Id, type . . . 760, 764
AE–Invocation–Id–Valid, constant . . . 760,

764
AE–Qualifier, type . . . 760-765, 764
After–Output, enumeration literal . . . 260, 263
After–Output–And–Input, enumeration literal

. . . 260-264, 263
AIO, abbreviation . . . 34
AIO control block . . . 236
AIO Descriptor List, subclause . . . 609
AIO Descriptor Type, subclause . . . 236
AIO operation, definition . . . 13-264
AIO priority . . . 239, 241-242

definition . . . 239
AIO–Descriptor, type . . . 6, 234, 236,

244-245, 250, 607, 609
AIO–Descriptor–List, type . . . 235, 243, 608
aio–error, C function . . . 608
aio–fsync, C function . . . 608
aio–return, C function . . . 608
AIO–Status, type . . . 235-609, 245
aio–suspend, C function . . . 609
AK TPDU, abbreviation . . . 34
alarm, C function . . . 561-247, 591
Alias Names, abstract attribute . . . 747
All–Done, enumeration literal . . . 249
Allocated Storage, subclause . . . 42
allocated storage . . . 6-748, 161-162, 561,

596
All–Options, constant . . . 416, 458, 460
Allowed–Process–Permissions, function . . .

599
Allow–Execute, constant . . . 328-329, 331
Allow–Read, constant . . . 328-331, 335
Allow–Write, constant . . . 328-329, 331-332,

334-335, 343
All–Signals, enumeration literal . . . 44, 55
Already–Awaiting–Connection, constant . . .

47, 62, 66, 494, 512
Alternative Class 1, XTI option . . . 796
Alternative Class 2, XTI option . . . 796
Alternative Class 3, XTI option . . . 797
Alternative Class 4, XTI option . . . 796
Alternative Class1, XTI option . . . 797
Alternative National Character Sets, subclause

. . . 619
Alternative–Class–1, constant . . . 786-797,

792, 797
Alternative–Class–2, constant . . . 786, 792,

797
Alternative–Class–3, constant . . . 786, 792,

797
Alternative–Class–4, constant . . . 786, 792,

797
Ancillary Data, abstract attribute . . . 507
Ancillary–Data–Lost, constant . . . 499, 505,

529
ANSI/MIL-STD 1815A . . . 547
AP, abbreviation . . . 34
AP Invocation Identier, abstract attribute . . .

770
AP Invocation Identifier, abstract attribute . . .

765, 770, 773-778, 780
AP Title, abstract attribute . . . 765-766,

770-778, 780
APDU, abbreviation . . . 35
API, abbreviation . . . 34
AP–Invocation–Id, type . . . 760, 764
AP–Invocation–Id–Valid, constant . . . 760,

764-765
Append

820 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

file option . . . 604
constant . . . 205, 208, 210, 219, 225,

238, 604
I/O form parameter field name . . . 280, 283,

616
procedure . . . 44, 58-59, 413, 426

Application Conformance, subclause . . . 8-428
Application Context Name

abstract attribute . . . 770, 775, 777-778,
780

XTI option . . . 768, 780, 783
application context name, definition . . . 763
Application Contexts, subclause . . . 763
Application–Context, constant . . . 761, 766
Application–Context–Name, type . . . 761,

766, 768
Approach, subclause . . . 636
appropriate privileges . . . 26
appropritate privileges, definition . . . 13
AP–Title, type . . . 760, 764
argc, C variable . . . 592, 595
argument . . . 570
Argument List, subclause . . . 159
Argument List Maximum, limit . . . 66, 83,

86, 88, 112, 114, 174
Argument–List, function . . . 158-159, 595
Argument–List–Maxima, subtype . . . 43, 52,

82, 88
Argument–List–Maximum, function . . . 114,

169, 172, 174
Argument–List–Too–Long, constant . . . 45,

60, 66, 114, 161, 163
argv, C variable . . . 592, 595
arm a timer, definition . . . 13
Arm–Timer, procedure . . . 358, 360,

363-366, 640
ASCII, package . . . 258-641, 269, 281, 617
ASN.1, abbreviation . . . 35
Association Establishment, subclause . . . 771
Association of a Process to an Endpoint,

subclause . . . 385
Asynchronous Errors, subclause . . . 497
Asynchronous File and Data Synchronization,

subclause . . . 251
Asynchronous I/O, option . . . 77-618, 79, 81,

101, 104, 110, 113, 172, 202, 212, 234
asynchronous I/O completion, definition . . .

13
Asynchronous I/O Maximum, limit . . . 83,

86, 88, 174, 244
asynchronous I/O operation, definition . . . 13
Asynchronous I/O Priority, subclause . . . 608
Asynchronous I/O Priority Delta Maximum,

limit . . . 84, 86, 88, 174
asynchronous notification . . . 244, 252
Asynchronous Read, subclause . . . 240
Asynchronous Write, subclause . . . 242
Asynchronous–IO–Is–Supported, function . . .

168, 170, 172, 196, 202
Asynchronous–IO–Maxima, subtype . . . 82,

88
Asynchronous–IO–Maximum, function . . .

169, 172, 174
Asynchronous–IO–Priority–Delta–Maxima,

subtype . . . 82, 88
Asynchronous–IO–Priority–Delta–Maximum,

function . . . 169, 172, 174, 239
Asynchronous–IO–Support, subtype . . . 76,

81
asynchronously generated signal, definition . . .

14
Atomic, pragma . . . 333, 631
Atomic–Components, pragma . . . 333
attribute, task entry count . . . 144
Attributes, type . . . 6, 305, 307, 315-316,

367, 369-370, 381-382, 627
attributes, process . . . 102, 110, 112
Attributes of AIO Control Blocks, subclause . . .

237
Authentication–Required, constant . . . 762,

772, 775
Avoiding Storage Leakage, subclause . . . 562
Await–IO, procedure . . . 54, 128, 236, 249
Await–IO–Or–Timeout, procedure . . . 54-251,

128, 236, 249
Await–Signal, function . . . 39-251, 54,

117-118, 121, 129, 137, 140-142, 144,
582, 584, 589-590, 641

Await–Signal–Or–Timeout, function . . . 39,
54, 117-118, 129, 140-142, 144, 572, 590

B
B0, enumeration literal . . . 261, 264, 271
B110, enumeration literal . . . 261, 271
B1200, enumeration literal . . . 261, 271
B134, enumeration literal . . . 261, 271
B150, enumeration literal . . . 261, 271
B1800, enumeration literal . . . 261, 271
B19200, enumeration literal . . . 261, 271
B200, enumeration literal . . . 261, 271
B2400, enumeration literal . . . 261, 271
B300, enumeration literal . . . 261, 271
B38400, enumeration literal . . . 261, 271
B4800, enumeration literal . . . 261, 271
B50, enumeration literal . . . 261, 271
B600, enumeration literal . . . 261, 271
B75, enumeration literal . . . 261, 271
B9600, enumeration literal . . . 261, 271
background process, definition . . . 14
background process group, definition . . . 14
Bad–Address, constant . . . 45, 60, 66, 541,

545
Bad–File–Descriptor, constant . . . 45, 60, 66,

192, 201-203, 213, 215, 218, 222, 224,
226-231, 233, 242-243, 246, 249, 252,
265, 275-276, 332-333, 346-347, 375-376,

Alphabetic Topical Index 821

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

378-379, 381-382, 509-510, 512, 519,
524-526, 529, 532-534, 545, 716, 726,
744

Bad–Message, constant . . . 45, 61, 66, 378,
380

base priority . . . 354
definition . . . 26

Baud Rate Subprograms, subclause . . . 271
Baud–Rate, type . . . 261, 271
BER, abbreviation . . . 35
Bibliography, section . . . 547
Bind

enumeration literal . . . 130
procedure . . . 39, 129, 385, 390, 393,

414-415, 432, 437-439, 448, 456, 485,
490, 499, 508-510, 518, 523, 525,
714-716, 718, 731, 742-743, 745, 754,
765, 770, 772, 776, 799-800, 808, 817

abstract attribute . . . 396
socket event . . . 490
XTI event . . . 393

Bind a Socket Address to a Socket, subclause
. . . 509

Bind an Address to a Communications
Endpoint, subclause . . . 437

Binding for sigsuspend, subclause . . . 589
Bits–Per–Character, subtype . . . 261, 268,

270
Bits–Per–Character–Of, function . . . 261-271,

270
Block and Unblock Signals, subclause . . .

133-271
block special file . . . 182-183

definition . . . 14
blocked task . . . 14, 349

definition . . . 14
Blocked–Signals, function . . . 116, 133
Blocking, I/O form parameter field name . . .

280, 283, 614
blocking . . . 210, 215, 233, 255

condition variable operation . . . 319-320
condition variable . . . 319
mutex operation . . . 306, 312-314, 320
mutex . . . 312
operation . . . 104, 113, 118
semaphore operation . . . 302
semaphore . . . 303
signal . . . 128, 131-134, 136, 140, 147
task or process . . . 103, 108, 579

blocking behavior . . . 53
definition . . . 14

Blocking Behavior Values, subclause . . . 52,
567

Blocking–Behavior, type . . . 43, 52-53, 148,
280, 568, 614

Block–Signals, procedure . . . 116, 120, 131,
133, 582

Both, enumeration literal . . . 262-583, 274

Bound, socket state . . . 491-275, 493, 511,
754

Broacast, procedure . . . 319
Broadcast, procedure . . . 315-755, 319
Broadcast and Signal a Condition, subclause

. . . 319
Broadcast–Internet–Address, constant . . .

737-320, 740, 743, 803, 806
Broken–Pipe, constant . . . 45, 61, 66, 223,

496, 532
BSD, abbreviation . . . 35
Buffer, abstract attribute . . . 231, 238,

241-242, 430-431, 441, 444, 446, 448,
467, 470

buffer, flushing . . . 103, 109
Buffer Flushing, subclause . . . 281
buffering . . . 612-613, 616

discarding . . . 111
flushing . . . 578

buffering (in Ada IO operations) . . . 257
Buffer–Not–Large–Enough, constant . . . 48,

63, 66, 428, 436, 440-442, 444-445, 456,
464, 471, 473, 475

Buffers, subclause . . . 609-476
byte . . . 29, 51, 83-85, 193, 199-200, 209,

216-217, 219-221, 223-224, 228, 233,
238-239, 241-242, 246, 255-258, 265-266,
370, 379, 569, 602-603, 605, 610, 642
definition . . . 15

Bytes and I/O Counts, subclause . . . 51
Bytes Transferred, abstract attribute . . . 239,

246
Byte–Size, constant . . . 15-248, 42, 51

C
Calendar, package . . . 164-166, 561,

572-573, 595, 597, 639
Called Rate, abstract attribute . . . 795
Calling Rate, abstract attribute . . . 795
Cancel, function . . . 235-236, 246, 248-249,

252
Cancel AIO Request, subclause . . . 248
Cancelation–Status, type . . . 235, 248
Canceled, enumeration literal . . . 246-249,

252, 608
canonical input processing, definition . . . 15
Canonical Mode Input Processing, subclause

. . . 256
Canonical Name, abstract attribute . . . 516,

518
Canonical–Input, enumeration literal . . .

258-259, 261, 263, 268
Canonical–Name, constant . . . 500-269, 515,

517
carriage-return character . . . 35, 259, 265
catching a signal . . . 119
CC TPDU, abbreviation . . . 35

822 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Ceiling Priorities and Unblocking Behavior,
subclause . . . 627

Ceiling Priority, abstract attribute . . .
307-266, 309-310, 312-313, 356

Ceiling–Locking, constant . . . 309
Ceiling–Priority, subtype . . . 305, 309
Change Memory Protection, subclause . . . 334
Change Owner Restriction, option . . . 77, 81,

187
Change the Ceiling Priority of a Mutex,

subclause . . . 312
Change–Owner–And–Group, procedure . . .

77, 179, 187-188, 201
Change–Owner–Is–Restricted, function . . .

196, 201
Change–Owner–Restriction, subtype . . . 42,

76, 81, 556
Change–Permissions, procedure . . . 39, 175,

179, 187-188, 207, 226
Change–Protection, procedure . . . 328-227,

334
Change–Working–Directory, procedure . . .

159-336, 163-164, 598
char, C type . . . 569
char **, C type . . . 570
Character, type . . . 38-39, 55-56, 279,

569-570, 619
character, definition . . . 15
character differences . . . 38
character mapping . . . 56-57, 282, 611-612,

621
Character Set, subclause . . . 279
character set . . . 25, 40, 55, 57, 91-92,

569, 612
character set mapping . . . 282
character special file . . . 182-183

definition . . . 15
Characters

I/O form parameter field value . . . 280
package . . . 617, 619
enumeration literal . . . 284

Characters, Bytes, and I/O Units, subclause . . .
569

chdir, C function . . . 598
Check File Accessibility, subclause . . . 189
Check–Options, constant . . . 410-285, 419,

460-461
Checksum

constant . . . 799
XTI option . . . 799

child packages . . . 5
child process . . . 26, 100, 109

definition . . . 15, 100
unwaited-for . . . 107

Child Processes Maximum, limit . . . 84, 86,
88, 102, 111, 174

Child–Processes–Maxima, subtype . . . 43, 52,
82, 88

Child–Processes–Maximum, function . . . 102,
111, 169, 172, 174

chmod, C function . . . 606, 616
Class–0, constant . . . 787, 792, 796
Class–1, constant . . . 787-797, 792, 797
Class–2, constant . . . 787, 792, 796
Class–3, constant . . . 787-797, 793, 797
Class–4, constant . . . 787, 793, 797
Classification of Operations, subclause . . .

390
Class–Unspecified, constant . . . 787, 793,

796
Clear–Disconnect–Info, procedure . . .

418-797, 475
Clear–Environment, procedure . . . 158-476,

160-163, 596
CL–Flags, type . . . 721, 726, 728
client, definition . . . 487
CLNP . . . 727, 735

abbreviation . . . 35
definition . . . 725

Clock, function . . . 164-165, 188, 561, 595,
597, 639-640

clock . . . 15, 29, 33
definition . . . 15

Clock and Timer Types, subclause . . . 358
Clock Operations, subclause . . . 360, 640
Clock Resolution Minimum, limit . . . 84, 86,

88
Clock–ID, type . . . 357-359, 640
CLOCK–REALTIME, C constant . . . 639
Clock–Realtime, constant . . . 75, 84, 320,

357-359, 361-362, 366, 591, 640
Clocks and Timers

section . . . 357
subclause . . . 639

clock–t, C type . . . 572, 594
CL–Options, type . . . 721, 726, 728
Close

procedure . . . 103-104, 113, 128, 130,
205, 208, 212-215, 264, 295, 299, 301,
340, 346, 368-369, 374-375, 385, 390,
393, 415, 423, 439-440, 462, 490-491,
511, 522, 540, 598, 601, 603, 605, 618,
624, 717, 733, 773, 800, 808

abstract attribute . . . 396
socket event . . . 490, 754
XTI event . . . 393

close
file . . . 208
generic shared memory . . . 346
message queue . . . 374
pipe . . . 208
semaphore . . . 301
shared memory . . . 208
C function . . . 605

Close a Communications Endpoint, subclause
. . . 440

Alphabetic Topical Index 823

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Close a Message Queue, subclause . . . 374
Close a Named Semaphore, subclause . . . 301
Close Shared Memory, subclause . . . 346
Close–Network–Database–Connection,

procedure . . . 737, 745, 747, 804, 811
Close–On–Exec, pragma . . . 98, 100
Close–Protocol–Database–Connection,

procedure . . . 738, 745, 748, 804, 811
Close–Template, procedure . . . 95, 97
Closing a Terminal Device File, subclause . . .

260-99
CLTP . . . 727

abbreviation . . . 35
definition . . . 725

Coding style, subclause . . . 556
command line . . . 570
Command–Line, package . . . 595
comment . . . 5
Common Data Types and Constants, subclause

. . . 419, 504
Communications Endpoints, subclause . . .

385
Communications Interface States, subclause

. . . 391, 431
Communications Providers, subclause . . . 385
Communications–Provider–Info, type . . .

409-410, 419-420, 422, 432, 443, 446,
448, 451, 454, 460, 464, 466, 468, 478,
480, 482, 773-774, 809

Communications–Provider–Mismatch, constant
. . . 48, 63, 66, 434

Comparison to Protected Types, subclause . . .
627

Completed–Successfully, enumeration literal . . .
246-247, 608

completion of a call, definition . . . 16
Composability Considerations, subclause . . .

592
Composite Return Values, subclause . . . 560
Condition, type . . . 6, 315
Condition and Condition Descriptor Types,

subclause . . . 315
Condition Process Shared Attribute, subclause

. . . 317
condition variable

definition . . . 16
descriptor . . . 316

Condition Variable Attributes Type, subclause
. . . 316

Condition–Descriptor, type . . . 6, 315-316,
627

cond–timedwait, C function . . . 627
Configurable Limits and Options, subclause . . .

565
configuration pragma . . . 4
Confirm Connection, XTI event . . . 394
Confirmation Data, socket option . . . 732
Confirmation–Data, enumeration literal . . .

721-733, 729
Confirm–Connection, procedure . . . 130, 385,

387, 390, 394, 399-400, 404-405, 409,
415, 429, 441-442, 444, 537, 775, 800,
810, 816

Confirming, socket state . . . 491, 496
Conformance, subclause . . . 4, 563
conformance document . . . 53, 229

definition . . . 10
conforming application . . . 91
conforming implementation . . . 2, 6, 229

definition . . . 4
Conforming Implementation Options, subclause

. . . 7
Conforming POSIX.5 Application

definition . . . 8
subclause . . . 8

conforming POSIX.5 application . . . 33
Conforming POSIX.5 Application Using

Extensions, subclause . . . 8
Connect

procedure . . . 129-130, 211, 385,
387-390, 393, 399-410, 415, 425, 429,
437, 441, 443-444, 455, 489-490, 494,
499, 506, 510-511, 518, 531, 541, 544,
715-718, 727, 731-732, 742-743,
754-755, 757, 765, 770, 773, 781, 800,
809, 816

socket event . . . 490
XTI event . . . 393

Connect Error, XTI event . . . 393
Connect Failure, socket event . . . 490
Connect–Data–Is–Valid, function . . . 411,

420-422, 774, 801, 810
Connected, socket state . . . 180, 488,

490-491, 496, 514, 524, 750
Connecting, socket state . . . 489, 491, 511,

540
Connection Checksum, XTI option . . . 798
Connection Data, socket option . . . 733
Connection Indication Queue, subclause . . .

496
Connection Information Objects, subclause . . .

428
Connection Parameters, socket option . . . 734
Connection Resilience, XTI option . . . 794
Connection Transit Delay, XTI option . . .

795-795, 798
Connection–Aborted, constant . . . 47, 62, 66,

497, 509
Connection–Checksum, constant . . . 787,

792, 798
Connection–Data, enumeration literal . . . 721,

729, 733
Connection–Data–Is–Valid, function . . . 801
Connection–Info, type . . . 404, 413, 425,

427-430, 432, 441-444, 455, 482, 770,
772-773, 775, 800, 809

824 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Connectionless Transit Delay, XTI option . . .
798

Connectionless–Checksum, constant . . . 787,
798

Connectionless–Mode, constant . . . 410, 419,
422

connectionless-mode . . . 487
Connectionless-Mode ISO Sockets Protocols,

subclause . . . 726
Connectionless-Mode Service, subclause . . .

782, 798
Connectionless-Mode Sockets, subclause . . .

493
Connectionless–Mode–Network–Protocol,

constant . . . 720, 724
Connectionless–Mode–Transport–Protocol,

constant . . . 720, 724
Connectionless–Transit–Delay, constant . . .

787, 798
Connection–Mode, constant . . . 410, 419, 421
connection-mode . . . 487
Connection-Mode Service, subclause . . . 779,

791
Connection-Mode Sockets, subclause . . . 489
Connection–Mode–With–Orderly–Release,

constant . . . 390, 410, 419, 421,
435-436, 453

Connection–Parameters, type . . . 722-454,
729, 734

Connection–Queue–Length–Maximum,
constant . . . 496, 502, 525

Connection–Refused, constant . . . 47, 62, 66,
497, 512, 716

Connection–Reset, constant . . . 47-717, 62,
67, 497, 717

Connection–Resilience, constant . . . 785, 791,
795

Connection–Socket, constant . . . 508
Connection–Transit–Delay, constant . . . 785,

791, 795
Connect–Request–Received, constant . . . 388,

416, 457, 539-540, 543-544, 808
Connect–Response–Received, constant . . .

388-389, 416, 457, 540, 543
Constants and Static Subtypes, subclause . . .

50
Constraint Error, subclause . . . 609
Constraint–Error, exception . . . 57-544, 59,

75, 122, 124, 150, 153-155, 166, 237,
240-241, 243, 245, 247-249, 251-252,
271, 321, 324, 361, 366, 378-380, 428,
431, 433, 445, 447, 449, 455, 469, 471,
478-479, 481, 483, 575, 579, 607, 609,
643, 749

continuing a stopped process . . . 127
control characters . . . 272
control data, definition . . . 507
Control Modes, subclause . . . 267

Control Signal Queueing, subclause . . . 139
Control–Character–Selector, type . . .

261-128, 272
Controlling Generation of Signal for Child

Process, subclause . . . 135
controlling process . . . 103

definition . . . 16
controlling terminal . . . 283

definition . . . 16
Control–Modes, subtype . . . 253, 261, 264,

267
Conventions, subclause . . . 563
conversion operation

character . . . 57
string . . . 56

Copy–Environment, procedure . . . 158-159,
161

Copy–From–Current–Environment, procedure
. . . 158-159, 161, 163, 596

Copy–To–Current–Environment, procedure . . .
158-159, 161

Could–Not–Allocate–Address, constant . . .
48-163, 63, 67, 438, 440

Count, type . . . 619
CP Flags, abstract attribute . . . 422, 454, 773
CP–Flags, type . . . 410-774, 419, 422
cpio, utility or shell program . . . 2, 683
CPU, abbreviation . . . 35
CPU time . . . 100, 109, 157
CR, abbreviation . . . 35
CR TPDU, abbreviation . . . 35
Create

. . . 717
function . . . 211, 490, 500, 505, 513,
715-716, 726, 741, 744, 757

procedure . . . 129, 280-281, 283, 505,
508-509, 513, 517-518, 525, 613,
615-616, 725

socket event . . . 490
create

file . . . 208
generic shared memory . . . 342
message queue . . . 371
semaphore . . . 298
shared memory . . . 338

Create a Pair of Connected Sockets, subclause
. . . 514, 647

Create a Timer, subclause . . . 361
Create an Endpoint for Communication,

subclause . . . 513
Create and Remove Files, subclause . . . 179
Create Session, subclause . . . 593
Create–AIO–Control–Block, function . . . 234,

236-237, 607, 609
Create–Directory, procedure . . . 39, 177
Create–FIFO, procedure . . . 39-181, 177-181,

714
Create/Open a Named Semaphore, subclause

Alphabetic Topical Index 825

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

. . . 298
Create–Pair, procedure . . . 129-715, 500,

505, 509, 514, 647
Create–Pipe

constant . . . 212
procedure . . . 25, 206, 208, 212, 214,

602, 605
Create–Process–Group, procedure . . . 149,

151
Create–Session, procedure . . . 30-152, 149,

151-152, 254, 593
Create–Timer, function . . . 139, 357-358,

361-363, 640
Critic–ECP, constant . . . 805, 815
ctermid, C function . . . 610
C-to-Ada Cross-Reference, subclause . . . 681
CULR, abbreviation . . . 35
current working directory, definition . . . 34
Current–Pages, constant . . . 324
Current–Task, function . . . 383-325

D
Data, abstract attribute . . . 136-139, 142,

362, 380
Data Interchange Format

section . . . 293
subclause . . . 623

Data Synchronization, subclause . . . 229
Data Transfer

XTI state . . . 407, 409, 422, 435, 439,
442, 451, 453, 466, 476, 478, 482, 773,
800, 808

socket event . . . 490
Database–Array, type . . . 737, 745, 748-749,

803, 811
Database–Array–Pointer, type . . . 6, 737,

745, 803, 811
Data–Error, exception . . . 620
datagram . . . 34
Datagram sockets for local IPC, subclause . . .

717
Datagram–Socket, constant . . . 488-489, 493,

495, 498, 504, 511, 521, 528, 531, 714,
717-718, 725, 727, 740-741, 759

Data–Synchronized, constant . . . 205, 208,
210, 218, 222

Data–Transfer, constant . . . 414, 431, 450
Day, function . . . 165-167
Day–Duration

subtype . . . 165-166
type . . . 167

Day–Number, subtype . . . 165
DC TPDU, abbreviation . . . 35
DCS, abbreviation . . . 35
Dead, socket state . . . 491-492, 750
Decrement a Semaphore, subclause . . . 302
Default, constant . . . 784, 788, 791
Default Signal Actions, subclause . . . 126

Default–Protocol, constant . . . 498, 504-505,
513-514, 517, 741, 748, 757

Define–Bits–Per–Character, procedure . . .
261, 270

Define–Input–Baud–Rate, procedure . . .
261-271, 264, 271

Define–Input–Time, procedure . . . 262, 273
Define–Minimum–Input–Count, procedure . . .

262-274, 273
Define–Output–Baud–Rate, procedure . . .

261-274, 271
Define–Special–Control–Character, procedure

. . . 259, 262, 272
Define–Terminal–Modes, procedure . . .

261-273, 270
Definitions, subclause . . . 10-271, 563
Delay Process Execution, subclause . . . 591
Delete a Timer, subclause . . . 363
Delete–All–Signals, procedure . . . 116, 132
Delete–Environment–Variable, procedure . . .

158
Delete–Signal, procedure . . . 116-163, 132
Delete–Timer, procedure . . . 357-358, 363
deliver a signal, definition . . . 119
deprecated . . . 11
Dequeue a Connection Indication on a Socket,

subclause . . . 507
Descendants–System–CPU–Time–Of, function

. . . 156
Descendants–User–CPU–Time–Of, function . . .

156
Description, subclause . . . 90-157, 383
description

message queue . . . 374
open file . . . 211-212
open message queue . . . 369

descriptor
AIO . . . 250
condition variable . . . 316
file . . . 177, 194, 209, 211-212
message queue . . . 22, 101, 104, 110,
113, 369, 371-372, 374

mutex . . . 307
semaphore . . . 297, 299-300
shared memory . . . 338

Descriptor–Of, function . . . 295, 297,
305-306, 311, 315-316, 318, 562, 624

Destroy–AIO–Control–Block, procedure . . .
234, 236-237, 607, 609

detailed network interface . . . 35
Detailed Network Interface - Socket

section . . . 487
subclause . . . 646

Detailed Network Interface - XTI
section . . . 385
subclause . . . 643

Determine Whether a File Descriptor Refers to
a Socket, subclause . . . 524

826 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Determine Whether a Socket is at the
Out-of-Band Mark, subclause . . . 534

device, definition . . . 16
Device- and Class-Specific Functions

section . . . 253
subclause . . . 610

Device–ID, type . . . 191
Device–ID–Of, function . . . 191
Direct IO . . . 613
Direct–IO, package . . . 286-193, 612-613
directory

creating . . . 179
current working . . . 16
definition . . . 17
empty . . . 17
parent . . . 24
removing . . . 179
root . . . 29
type inquiries . . . 182
working . . . 34, 163

directory entry . . . 21
directory entry [link], definition . . . 17
Directory Iteration, subclause . . . 186
Directory Operations, subclause . . . 601
Directory–Entry, type . . . 178, 186
Directory–Not–Empty, constant . . . 45, 61,

67, 182, 185
Disable a Communications Endpoint, subclause

. . . 484
Disable–Control–Character, procedure . . .

262, 272
Disabled, enumeration literal . . . 501-273,

519, 521-523, 753, 755-757, 759, 784,
787-788, 792, 796, 798-799, 802, 806,
814

Disable–Queueing, procedure . . . 117, 139,
588

disarm a timer, definition . . . 17
Disarm–Timer, procedure . . . 358, 363,

365-366, 641
Discard–Data, procedure . . . 262, 274
Disconnect Data, socket option . . . 732
Disconnect Reason Codes, subclause . . . 428
Disconnect–Data, enumeration literal . . .

721-733, 729, 733
Disconnect–Data–Is–Valid, function . . . 411,

420-422, 774, 801, 810
Disconnect–Request–Received, constant . . .

388, 402, 404, 406, 416, 457-458,
539-540, 543-544, 773

DNI, abbreviation . . . 35
Document Structure, subclause . . . 554
Documentation, subclause . . . 7
documentation, system . . . 12
Domain–Error, constant . . . 47, 62, 67, 524
Do–Not–Route, constant . . . 499, 505, 532,

757, 759
dope . . . 633

definition . . . 629
dot . . . 17, 19

definition . . . 17
dot-dot . . . 17, 19, 24

definition . . . 17
dotted decimal notation, definition . . . 746
DR TPDU, abbreviation . . . 35
Drain, procedure . . . 130, 262, 274
DT TPDU, abbreviation . . . 35
dup, C function . . . 605
dup2, C function . . . 605
Duplicate, function . . . 128-275, 206, 208,

213-215, 385, 483, 603, 605
Duplicate–And–Close

function . . . 206, 208, 213, 215, 385,
605-606

procedure . . . 214
Duration, type . . . 75, 166, 572-573, 639
Dynamic Priorities, subclause . . . 354, 637
Dynamic–Priorities, package . . . 26, 354

E
E2BIG, constant . . . 45, 60
EACCES, constant . . . 46, 62
EADDRINUSE, constant . . . 47, 62
EADDRNOTAVAIL, constant . . . 47, 62
EAFNOSUPPORT, constant . . . 47, 62
EAGAIN, constant . . . 47, 62
EAI–ADDRFAMILY, constant . . . 49, 64
EAI–AGAIN, constant . . . 49, 64
EAI–BADFLAGS, constant . . . 49, 64
EAI–FAIL, constant . . . 49, 64
EAI–FAMILY, constant . . . 49, 64
EAI–MEMORY, constant . . . 49, 64
EAI–NODATA, constant . . . 49, 64
EAI–NONAME, constant . . . 49, 64
EAI–SERVICE, constant . . . 49, 64
EAI–SOCKTYPE, constant . . . 49, 64
EALREADY, constant . . . 47, 62
EBADF, constant . . . 45, 60
EBADMSG, constant . . . 45, 61
EBUSY, constant . . . 46, 62
ECANCELED, constant . . . 46, 61
ECHILD, constant . . . 46, 61
Echo, enumeration literal . . . 261, 263, 268
Echo–Erase, enumeration literal . . . 261-269,

263, 268
echoing, definition . . . 255
Echo–Kill, enumeration literal . . . 261, 263,

269
Echo–LF, enumeration literal . . . 261, 263,

269
ECONNABORTED, constant . . . 47, 62
ECONNREFUSED, constant . . . 47, 62
ECONNRESET, constant . . . 47, 62
ED TPDU, abbreviation . . . 35
EDEADLK, constant . . . 46, 62
Editorial Conventions, subclause . . . 9

Alphabetic Topical Index 827

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

EDOM
constant . . . 47, 62
C constant . . . 575

EEXIST, constant . . . 45, 61
EFAULT, constant . . . 45, 60
EFBIG, constant . . . 45, 61
Effect of Signals, subclause . . . 389
effective group ID . . . 40, 77, 98, 101-102,

112, 155
definition . . . 17

effective user ID . . . 40, 98, 101-102, 112,
145-146, 153
definition . . . 17

EHOSTDOWN, constant . . . 47, 62
EHOSTUNREACH, constant . . . 47, 62
EINPROGRESS, constant . . . 46, 61
EINTR

constant . . . 46, 61
C error status value . . . 9, 572

EINVAL, constant . . . 46, 61
EIO, constant . . . 46, 61
EISCONN, constant . . . 47, 62
EISDIR, constant . . . 46, 61
elaboration . . . 6

task . . . 144
Elapsed–Real–Time, function . . . 156-157,

594
Elapsed–Real–Time–Of, function . . . 156
Element, function . . . 762-157, 767, 769
EM, abbreviation . . . 35
EMFILE, constant . . . 47, 62
EMLINK, constant . . . 47, 62
empty directory . . . 180, 182, 184-185

definition . . . 17
empty string . . . 23
empty string [null string], definition . . . 17
Empty–File–Descriptor–Set

constant . . . 535, 541
type . . . 542

Empty–Presentation–Context–List, constant
. . . 762, 767

Empty–Set, function . . . 44-768, 59-60, 209,
218, 222, 324, 330-331, 334-335, 570

Empty–String–List, constant . . . 44, 58
Empty–Syntax–Object–List, constant . . . 762,

767
EMSGSIZE, constant . . . 46-768, 61
Enable Debugging, XTI option . . . 461
Enabled, enumeration literal . . . 501-462, 519,

521, 753, 784, 787-788, 792, 796,
798-799, 802, 806, 814, 817

Enable–Debugging, constant . . . 416, 458,
462

Enable–Parity–Check, enumeration literal . . .
260, 263, 265

Enable–Queueing, procedure . . . 117-266,
139, 588

Enable–Receiver, enumeration literal . . . 260,

263, 267
Enable–Signals, enumeration literal . . .

258-268, 261, 263, 269
Enable–Start–Stop–Input, enumeration literal

. . . 258-260, 263, 265-266, 269
Enable–Start–Stop–Output, enumeration literal

. . . 258-260, 263, 265-266, 269
ENAMETOOLONG, constant . . . 45, 61
Encoding Responsibility, subclause . . . 771
End–Error, exception . . . 217, 219, 258, 605,

618
endhostent, C function . . . 558
End–of–File, function . . . 618
end-of-file character . . . 35, 256, 258-259,

269
end-of-line character . . . 35, 256, 258-259,

269
End–Of–Message, constant . . . 488, 499,

505, 529, 531
End–of–Page, function . . . 618
endpoint . . . 15
endpoint queue length . . . 434, 456
Endpoint–Queue–Full, constant . . . 48, 63,

67, 457
Endpoint–Queue–Length, constant . . . 67
Endpoint–Queue–Length–Is–Zero, constant . . .

48, 63, 67, 456
Endpoints and Sockets, subclause . . . 646
endservent, C function . . . 558
ENETDOWN, constant . . . 47, 62
ENETRESET, constant . . . 47, 62
ENETUNREACH, constant . . . 47, 62
ENFILE, constant . . . 47, 62
ENOBUFS, constant . . . 47, 62
ENODEV, constant . . . 46, 61
ENOENT, constant . . . 46, 61
ENOEXEC, constant . . . 45, 61
ENOLCK, constant . . . 46, 61
ENOMEM, constant . . . 46, 61
ENOSPC, constant . . . 46, 61
ENOSYS, constant . . . 46, 61
ENOTCONN, constant . . . 47, 62
ENOTDIR, constant . . . 46, 61
ENOTEMPTY, constant . . . 45, 61
ENOTSOCK, constant . . . 47, 62
ENOTSUP, constant . . . 46, 62
ENOTTY, constant . . . 46, 61
Environment, type . . . 6, 158-161, 570, 595
Environment Description, subclause . . .

91-596, 574
environment task . . . 349

definition . . . 18, 24
Environment Variables, subclause . . . 159
Environment–Value–Of, function . . . 158,

160, 162
ENXIO, constant . . . 46-163, 61
EOF, abbreviation . . . 35
EOF–Char, enumeration literal . . . 261, 272

828 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

EOL, abbreviation . . . 35
EOL–Char, enumeration literal . . . 261, 272
EOPNOTSUPP, constant . . . 47, 62
EPERM, constant . . . 46, 61
EPIPE, constant . . . 45, 61
Epoch . . . 75, 166, 361

definition . . . 18
EPROTONOSUPPORT, constant . . . 47, 63
EPROTOTYPE, constant . . . 47, 63
Equals, function . . . 383
erase character . . . 256, 258-259, 266-268,

272, 275
Erase–Char, enumeration literal . . . 261, 272
EROFS, constant . . . 46, 62
errno, C variable . . . 9, 552, 557-558, 572,

605
erroneous execution . . . 12, 612

definition . . . 18
Error Code, abstract attribute . . . 64
error code . . . 39-65, 41, 65, 68, 190, 273,

275-276, 558
error code of a task, definition . . . 18
Error Codes and Exceptions, subclause . . . 60,

575
Error Handling, subclause . . . 91, 386, 643
error handling subclause . . . 65
Error Reporting, subclause . . . 557
Error–Code, type . . . 45, 60, 65, 190, 246,

559, 644
Error–In–Previously–Sent–Datagram, constant

. . . 388, 401-402, 406, 416, 457-458,
474, 540, 543

Error–Rate, type . . . 784, 788, 790
ESOCKTNOSUPPORT, constant . . . 47, 63
ESPIPE, constant . . . 46, 61
ESRCH, constant . . . 46, 61
Establish a Communication Endpoint,

subclause . . . 464
Establish a Connection with Peer, subclause . . .

443
Establishment Delay, XTI option . . . 790, 794
Establishment Failure Probability, XTI option

. . . 794
Establishment–Delay, constant . . . 785-795,

791, 795
Establishment–Fail–Probability, constant . . .

785, 791, 795
ETIMEDOUT, constant . . . 47, 62
ETSDU, abbreviation . . . 35
Event, abstract attribute . . . 239, 252
event - sockets, Close . . . 754
event - XTI

Accept Connection1 . . . 391
Accept Connection2 . . . 391
Accept Connection3 . . . 391
Pass Connection . . . 395
Receive Disconnect1 . . . 395
Receive Disconnect2 . . . 395

Receive Disconnect3 . . . 395
Event Management

section . . . 535
subclause . . . 390

Event–Requires–Attention, constant . . . 48,
63, 67, 388, 393, 396, 398, 402, 404,
406, 432, 434-436, 442, 445-447, 449,
453, 455-457, 467, 469, 471, 473,
478-479, 481, 483, 485

Events
subclause . . . 489
abstract attribute . . . 537

Events and States, subclause . . . 489
Events and =t Event–Requires–Attention

Error Indication, subclause . . . 396
Events and =t Look, subclause . . . 389
EWOULDBLOCK, constant . . . 47, 63
Exact–Address, constant . . . 328-330,

332-333, 343
Examine and Change Signal Action, subclause

. . . 586
Examine Pending Signals, subclause . . .

136-344, 589
Except–Files, constant . . . 542, 545
exception . . . 30, 39, 60, 64-65, 557

generated from signal . . . 128, 586
unsupported option . . . 11

Exception–Message, function . . . 65, 124-125,
575

Exceptions, package . . . 65, 124
Exclusive

file option . . . 570
constant . . . 205, 208, 210, 215,
299-300, 339-340, 343-344, 373, 604

EXDEV, constant . . . 46, 61
Exec, procedure . . . 18, 83, 100, 102,

108-109, 111, 113-114, 152, 159, 189,
211-213, 225, 299, 301, 323-324, 326,
362, 483-484, 575-577, 579, 603, 647

exec, C function . . . 575-576, 579
Exec family of operations, definition . . . 18
Exec–Format–Error, constant . . . 45, 61, 67,

114
Exec–Search, procedure . . . 18, 83, 102,

108-109, 111, 113-114, 152, 159, 299,
301, 323-324, 326, 362, 579

Execute, I/O form parameter field value . . . 279
execute a file . . . 111
Execute–Ok, enumeration literal . . . 179, 189
Execution Modes, subclause . . . 387
Execution Scheduling

section . . . 349
subclause . . . 634

Existence, function . . . 179, 189
Exited, enumeration literal . . . 96-190, 104
Exit–Process, procedure . . . 96-106, 103-105,

111, 299, 302, 575, 578
Exit–Status, type . . . 96, 102-103, 577

Alphabetic Topical Index 829

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Exit–Status–Of, function . . . 96-578, 104
Expedited Data, XTI option . . . 795-796, 802
expedited data . . . 496

definition . . . 495
Expedited Service, abstract attribute . . . 735
Expedited–Data, constant . . . 410, 419, 466,

468, 477, 775, 785, 791, 795, 802, 809
Expedited–Data–Present, constant . . .

721-810, 729, 732, 734
Expedited–Data–Received, constant . . .

388-389, 416, 457-458, 466, 468, 540,
543-544, 774, 809

Extended Format
abstract attribute . . . 735
XTI option . . . 798

Extended Security Controls, subclause . . . 39
extended security controls, definition . . . 39
Extended–Format, constant . . . 786, 792,

798
Extended–Functions, enumeration literal . . .

259, 261, 263, 269
extensible . . . 622
Extensible Types, subclause . . . 559
extension . . . 107
extensions . . . 4
External File . . . 603

F
Failed, socket state . . . 490-491, 511
Failed–Creation–Exit, constant . . . 96,

102-104, 577
Failure, constant . . . 402, 412, 424-425, 459
Family, abstract attribute . . . 516-518, 747
Fast–Start, enumeration literal . . . 722, 730,

734
fchmod, C function . . . 606
fcntl, C function . . . 576-735, 605
FD, abbreviation . . . 36
FD–CLOEXEC, C constant . . . 576
FD–Set–Maxima, subtype . . . 82-607, 88,

542
F–DUPFD

C constant . . . 605-606
C function . . . 605

FIFO
abbreviation . . . 36
I/O form parameter field value . . . 280
I/O form parameter field name . . . 283
enumeration literal . . . 284

fifo special file [FIFO], definition . . . 18
FIFO–Within–Priorities, identifier, pragma

parameter . . . 101, 110, 113, 239, 355,
627, 635

File, abstract attribute . . . 238, 241-244, 246,
252, 537-539

file
FIFO special . . . 18
block special . . . 14

change permissions . . . 226
character special . . . 15
close . . . 208
create pipe . . . 208
create . . . 208
creating . . . 179
definition . . . 18
descriptor . . . 208
duplicate . . . 208
format . . . 2
is–open . . . 208
locking . . . 232
memory mapped . . . 323
memory object . . . 21
model . . . 602
modifying pathnames . . . 183
offset . . . 19
open . . . 208
read . . . 216
regular . . . 29
removing . . . 179
seek . . . 223
serial number . . . 19
status . . . 192
truncate . . . 227
type inquiries . . . 182
write . . . 219

File Access Permissions, subclause . . . 39
file accessibility . . . 189
File Control, subclause . . . 225, 606
File Description . . . 603
file description, definition . . . 18
file descriptor . . . 208

definition . . . 18
File Descriptor, Open File Description, and

External File, subclause . . . 603
File Descriptor Set Maximum, limit . . . 84,

86, 88
File Execution, subclause . . . 111
file group class, definition . . . 18
File Hierarchy, subclause . . . 40
File Limits, subclause . . . 197
File Locking, subclause . . . 606
file offset . . . 238

definition . . . 19
file other class, definition . . . 19
file owner class, definition . . . 19
file permission . . . 24

definition . . . 19
File Permissions, subclause . . . 176
File Position Operations, subclause . . . 223
File Restrictions, subclause . . . 201
file serial number, definition . . . 19
file status

accessing . . . 191
updating . . . 187

File Status Flags, subclause . . . 608
File Synchronization

830 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

subclause . . . 606
option . . . 77, 80-81, 172, 228

file system
definition . . . 20
read-only . . . 28

File Times Update, subclause . . . 40
File–Descriptor

I/O form parameter field name . . . 280,
282-283, 615-616

type . . . 191-192, 205, 208-209, 211-212,
265, 275-276, 344, 598, 600, 602-603,
605, 614, 619, 633, 646

File–Descriptor–Set, type . . . 6, 535, 541
File–Exists, constant . . . 45-543, 61, 67,

181-182, 185, 215, 300, 340, 344, 373
File–ID, type . . . 191
File–ID–Of, function . . . 191
File–Lock, type . . . 232-233, 607
File–Lock–Blocking–Behavior, constant . . .

43, 53-54, 233
File–Mode

constant . . . 226
type . . . 98, 205, 208, 211, 339, 372,

606
Filename, subtype . . . 44, 56
filename . . . 24

definition . . . 19
Filename Limit, limit . . . 41
Filename Maximum, limit . . . 67, 77, 84,

86, 88, 114, 181, 184, 187, 189-190,
192, 201-203, 214, 300, 302, 340-341,
344, 374

Filename Portability, subclause . . . 40
Filename Truncation, option . . . 41-375, 67,

77, 81, 114, 181, 184, 187, 189-190,
192, 201-203, 214, 300, 302, 340-341,
344, 374

Filename–Is–Limited, function . . . 195-375,
197, 199

Filename–Is–Truncated, function . . . 196,
201

Filename–Limit, function . . . 41, 195, 198,
200

Filename–Limit–Maxima, subtype . . . 43-201,
52

Filename–Maxima, subtype . . . 52, 83, 88
Filename–Maximum, function . . . 195, 198
Filename–Of, function . . . 178-200, 186
Filename–Too–Long, constant . . . 41, 45, 61,

67, 114, 164, 181, 184, 187, 189-190,
192, 201-203, 214, 300, 302, 340-341,
344, 374

Filename–Truncation, subtype . . . 42-375,
76, 81

File–Not–Open, constant . . . 535
File–Position, function . . . 207-539, 223-224,

606
Files and Directories

section . . . 175
subclause . . . 598

File–Size, function . . . 206, 223-224, 606
File–Structure, I/O form parameter field name . . .

280
File–Structure–Values, type . . . 284
File–Synchronization–Is–Supported, function

. . . 168, 170, 172
File–Synchronization–Support, subtype . . .

76, 81
File–Synchronized, constant . . . 205, 208,

210, 218, 222
File–Too–Large, constant . . . 45, 61, 67, 223
File–Type, type . . . 283, 286, 619
FIN, abbreviation . . . 36
Finalize, procedure . . . 295-620, 297-298,

305, 307-308, 311, 315-318, 623
Finalize an Unnamed Semaphore, subclause

. . . 298
First, . . . 334
First Hop, abstract attribute . . . 758
first open, of a file, definition . . . 20
Flag–POSIX–Character, constant . . .

260-624, 266, 610
Flags

subclause . . . 419
abstract attribute . . . 69, 516-518, 765

Flash, constant . . . 805, 815
Flash–Override, constant . . . 805-816, 815
Flow, procedure . . . 262-816, 274
Flow Control, XTI option . . . 798
Flow–Action, type . . . 262-275, 274
Flow–Control

constant . . . 786, 792, 798
XTI option . . . 796

Flow–Control–Error, constant . . . 48, 63, 67,
388, 447, 449, 453, 455, 479, 481, 540,
544

Flush Files, subclause . . . 286
Flush–All, procedure . . . 284, 286
Flush–Direct–IO, generic procedure . . . 284,

286
flushing, buffer . . . 103, 109, 265, 269, 578,

612
Flush–Sequential–IO, generic procedure . . .

284, 286
Flush–Text–IO, procedure . . . 284, 286
foreground process, definition . . . 20
foreground process group . . . 253

definition . . . 20
Foreground Process Group ID, subclause . . .

275
foreground process group ID, definition . . . 20
For–Every–Current–Environment–Variable,

generic procedure . . . 159-160, 162
For–Every–Directory–Entry, generic procedure

. . . 179-163, 186-187, 601
For–Every–Environment–Variable, generic

Alphabetic Topical Index 831

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

procedure . . . 159-160, 162
For–Every–File–In, procedure . . . 536-163,

542
For–Every–Item

generic procedure . . . 44, 58-59
procedure . . . 413, 426-427, 500, 515,

517
For–Every–Member, generic procedure . . . 289
For–Every–Network–Alias, generic procedure

. . . 737-291, 745, 747, 803, 811
For–Every–Object–Identifier, generic procedure

. . . 762, 767
For–Every–Presentation–Context–Item, generic

procedure . . . 762-769, 767
For–Every–Protocol–Alias, generic procedure . . .

738-769, 745, 748, 804, 811
Fork

function . . . 26, 100, 108-110, 127, 254,
323, 331, 362, 576-577, 579, 593

procedure . . . 647
fork, C function . . . 575-576, 579
Form of Document, subclause . . . 553
Form of Iterators, subclause . . . 556
Form Parameter, subclause . . . 279
form parameter . . . 614
Form–String, function . . . 284-285, 614
Form–Value, function . . . 284-285, 614
Form–Values–for–Create, type . . . 284-285,

614
Form–Values–for–Open, type . . . 284-285,

614
fpathconf, C function . . . 600
fread, C function . . . 605
From–Async–IO, constant . . . 117, 137
From–Beginning, enumeration literal . . .

206-138, 223, 233, 238
From–Current–Position, enumeration literal . . .

206, 223, 233
From–End–Of–File, enumeration literal . . .

206, 223, 233
From–Message–Queue, constant . . . 117, 137
From–Queue–Signal, constant . . . 117-138,

137
From–Send–Signal, constant . . . 117-138, 137
From–Timer, constant . . . 117-138, 137
FSM, abbreviation . . . 36
fstat, C function . . . 606
ftruncate, C function . . . 606
Functional Units, Versions and Protocol

Mechanisms, subclause . . . 769-138
Further–Receives–Disallowed

constant . . . 717
enumeration literal . . . 490, 504, 533

Further–Sends–And–Receives–Disallowed,
enumeration literal . . . 490, 504, 533

Further–Sends–Disallowed, enumeration literal
. . . 490, 504, 533

Future–Pages, constant . . . 324

fwrite, C function . . . 605-325

G
Gather and Send a Data Unit, subclause . . .

448
Gather and send data or expedited data over a

connection, subclause . . . 445
Gather–And–Send–Data, procedure . . . 130,

387, 390, 393, 415, 430, 445-446, 537,
544

Gather–And–Send–Data–Unit, procedure . . .
130, 387, 390, 393, 399-403, 405-410,
415, 427, 430, 448-449, 538, 544

General
section . . . 1
subclause . . . 549

General Concepts, subclause . . . 38, 563
General Rationale, subclause . . . 610
General Terminal Interface, subclause . . . 253
General Terms, subclause . . . 12
Generalities, subclause . . . 399
Generate Terminal Pathname, subclause . . .

276
generated, definition . . . 118
Generic Message Passing, subclause . . . 378,

642
generic presentation context, definition . . .

763
Generic–Message–Queues, generic package . . .

54, 128, 368, 370, 372-373, 378-379, 642
Generic–Read, generic procedure . . . 206,

216-219, 221, 224, 605
Generic–Write, generic procedure . . . 206,

210, 218-219, 221-222, 224, 605
Get and Set Options on Sockets, subclause . . .

519, 647
Get Configurable System Limits, subclause . . .

172
Get Configurable System Options, subclause

. . . 170
Get Protocol-Specific Service Information,

subclause . . . 451
Get Scheduling Limits, subclause . . . 353,

636
Get Socket Address Information, subclause . . .

515
Get Socket Information, subclause . . . 519
Get Socket Type, subclause . . . 647
Get the Current State, subclause . . . 450
Get the Protocol Address, subclause . . . 452
Get the Value of a Semaphore, subclause . . .

304
Get–Acknowledgment–Strategy, function . . .

722, 730
Get–Address

function . . . 516, 713-715, 720, 724,
726, 737, 740, 744, 773, 800, 809

832 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

procedure . . . 429, 761, 764, 785, 789,
803, 806

getaddrinfo, C function . . . 648
Get–AE–Invocation–Id, function . . . 760, 764
Get–AE–Qualifier, function . . . 761-765, 764,

766
Get–AIO–Error–Code, function . . . 235, 237,

241-242, 244-247, 249-251, 558, 608
Get–AIO–Status, function . . . 235, 237,

241-242, 244-247, 249-251, 608
Get–Allowed–Process–Permissions, function . . .

175, 177-178, 280
Get–Ancillary–Data

function . . . 721, 729, 733
procedure . . . 499, 506

Get–Ancillary–Data–Array, function . . .
722-507, 729, 733

Get–AP–Invocation–Id, function . . . 760, 764
Get–AP–Title, function . . . 760-765, 764, 766
Get–Attributes, function . . . 369, 381
Get–Buffer

function . . . 235, 238, 240, 431, 506
procedure . . . 207, 231

Get–Bytes–Transferred, function . . . 235,
241-242, 244-248, 251, 608

Get–Called–Rate, function . . . 785-609, 791
Get–Calling–Rate, function . . . 785, 791
Get–Canonical–Name, function . . . 500, 515
Get–Ceiling–Priority, function . . . 305-516,

309
Get–CL–Flags, function . . . 721-313, 727
Get–CL–Options, function . . . 721, 727
Get–Close–On–Exec, function . . . 207-728,

225-226, 339
Get–Confirmation–Data, function . . . 721,

729
Get–Connection–Data, function . . . 721, 729,

733
Get–Connection–Parameters, function . . .

722, 729, 734
Get–Controlling–Terminal–Name, function . . .

262, 276-277, 610
Get–CP–Flags, function . . . 411, 420, 422
Get–Current–Options

constant . . . 401, 405, 407, 410, 419,
459, 461, 793, 796, 799, 816

function . . . 816
Get–Current–State

function . . . 390-391, 415, 431, 450, 773
procedure . . . 130

getcwd, C function . . . 561, 598
getcwd(NULL), C function . . . 560
Get–Data, function . . . 116-117, 136
Get–Default–Options, constant . . . 407-138,

410, 419, 460
Get–Destination–Address, function . . .

739-461, 757, 759
Get–Disconnect–Data, function . . . 721, 729

Get–Effective–Group–ID, function . . . 149,
154

Get–Effective–User–ID, function . . . 149-155,
153

Get–Error–Buffer, function . . . 368-154,
378-380, 643

Get–Error–Code, function . . . 39, 45, 60, 65,
73, 246, 386-387, 557, 608, 644, 715

Get–Event, function . . . 235, 238, 240
Get–Events, function . . . 535
Get–Expedited–Service, function . . . 723-536,

730
Get–Extended–Format, function . . . 723, 730
Get–Family, function . . . 500, 515-516, 737,

745, 747, 803, 811
Get–File, function . . . 234, 238, 240,

535-536
Get–File–Control

function . . . 226
procedure . . . 207, 225-226, 606

Get–File–Status, function . . . 41, 190-191,
385

Get–First–Hop, function . . . 739, 756, 758
Get–Flags, function . . . 500, 515-516, 760,

764
Get–GOSIP–Selector, function . . . 720-765,

724
getgrgid, C function . . . 622
getgrnam, C function . . . 622
Get–Group–Database–Item, function . . .

289-725, 291
Get–Groups, function . . . 150, 154-155, 593
Get–Header–Included, function . . . 739, 757,

759
gethostbyaddr, C function . . . 558
gethostbyname, C function . . . 558
gethostname, C function . . . 558
Get–Info

function . . . 390, 451, 460, 773, 800,
809

procedure . . . 130, 391, 409, 415, 422,
432, 435-436, 443, 446, 448, 451,
453-454, 466, 468, 477-478, 480, 482,
800

Get–Initial, function . . . 357, 359
Get–Initial–Time–To–Live, function . . .

739-360, 756, 759
Get–Internet–Address, function . . . 737,

740-741, 803, 806
Get–Internet–Port, function . . . 736-807,

740-741, 803, 806
Get–Interval, function . . . 357-807, 359
Get–IO–Vector–Array, function . . . 499-360,

505
Get–IP–Header–Options, function . . .

739-506, 756, 758
Get–IP–Options, function . . . 739, 756, 758
Get–ISO–Address, function . . . 720, 724

Alphabetic Topical Index 833

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Get–Keep–Alive–Interval, function . . .
738-725, 749, 752

Get–Keep–Alive–Timeout, function . . . 804,
812

Get–Length, function . . . 235, 238, 240
Get–Level, function . . . 412, 424
Get–Lock, procedure . . . 232-234, 593, 607
Get–Locking–Policy, function . . . 305, 309
Get–Login–Name, function . . . 149-310, 153
Get–Maximum–Priority, function . . . 350-154,

353-354, 636
Get–Max–Messages, function . . . 367, 369
Get–Max–Size–Connect–Data, function . . .

411-370, 420
Get–Max–Size–Disconnect–Data, function . . .

411-421, 420
Get–Max–Size–Protocol–Address, function . . .

411-421, 419
Get–Max–Size–Protocol–Options, function . . .

411-420, 419
Get–Max–Size–SDU, function . . . 411-420,

420
Get–Max–Size–SEDU, function . . . 411-421,

420
Get–Message–Count, function . . . 367-421,

369
Get–Message–Length, function . . . 367-370,

369
Get–Message–Status, function . . . 499, 506
Get–Minimum–Acceptable–Rate, function . . .

784-785, 788
Get–Minimum–Priority, function . . . 350,

353-354, 636
Get–Name, function . . . 412, 424-425, 737,

745, 747, 803-804, 811
Get–Nanoseconds, function . . . 50, 74
Get–Negotiate–Checksums, function . . .

723-75, 731
Get–Negotiation–Result, function . . . 762,

767
Get–Network–Info–By–Address, function . . .

737-768, 745-747, 803, 811
Get–Network–Info–By–Name, function . . .

737, 745-747, 804, 811
Get–Network–Number, function . . . 737, 745,

747, 803, 811
Get–Network–Service, function . . . 723, 731
Get–No–Delay, function . . . 738, 749
Get–Notification, function . . . 116, 136
Get–Offset, function . . . 234-137, 238, 240
Get–Operation, function . . . 235, 238, 240
Get–Option, procedure . . . 413, 426
Get–Options, function . . . 367-428, 369-370,

413, 428-429
Get–Owner

function . . . 230
procedure . . . 207, 230, 494

Get–Parent–Process–ID, function . . . 149

Get–Peer–Name, function . . . 129-150, 519,
647, 713-715, 720, 724, 726, 737, 740,
744

Get–Period, function . . . 412, 423
Get–Presentation–Address, function . . .

761-424, 764, 766
Get–Presentation–Id, function . . . 761, 766,

768
Get–Presentation–Selector, function . . . 720,

724
Get–Priority, function . . . 349
Get–Priority–Reduction, function . . . 235-350,

238, 240, 608
Get–Process–Group–ID, function . . . 145,

149, 151, 153, 253, 262, 275
Get–Process–ID, function . . . 149
Get–Process–Shared, function . . . 305-150,

308, 315, 317
Get–Process–Times, function . . . 156-157,

594
Get–Protect–Parameters, function . . . 723,

731
Get–Protocol–Address, procedure . . . 130,

390-391, 415, 452, 773
Get–Protocol–Info–By–Name, function . . .

738, 745, 747-748, 804, 811
Get–Protocol–Info–By–Number, function . . .

738, 745, 747-748, 804, 811
Get–Protocol–Number, function . . . 500,

515-516, 738, 745, 748, 804, 811
getpwnam, C function . . . 622
getpwuid, C function . . . 622
Get–Real–Group–ID, function . . . 149, 154
Get–Real–User–ID, function . . . 149-155, 153
Get–Receive–Destination–Address, function . . .

739-154, 757, 759
Get–Resolution, function . . . 357, 359
Get–Retransmit–Number, function . . .

722-361, 730
Get–Retransmit–Strategy, function . . . 722,

730
Get–Retransmit–Time–Maximum, function . . .

738, 749, 753
Get–Returned–Events, function . . . 535
Get–Round–Robin–Interval, function . . .

350-536, 353
Get–Scheduling–Parameters, function . . .

349-354, 351
Get–Scheduling–Policy, function . . . 350
Get–Seconds, function . . . 49-352, 74
Get–Segment–Size–Maximum, function . . .

738-75, 749, 753
Get–Sequence–Number, function . . . 413, 429
getservbyname, C function . . . 558
getservbyport, C function . . . 558
Get–Service–Type, function . . . 411, 420
Get–Session–Selector, function . . . 720-421,

724

834 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Get–Signal, function . . . 116-117, 136
Get–Signal–Disconnections, function . . .

723-138, 731
Get–Socket–Address–Info

function . . . 517-518
procedure . . . 65, 73, 500, 515, 644, 648

Get–Socket–Broadcast, function . . . 129, 501,
519, 521

Get–Socket–Debugging, function . . . 129,
501, 520

Get–Socket–Error–Status, function . . .
129-521, 501, 519

Get–Socket–Keep–Alive, function . . . 129,
501, 520, 522

Get–Socket–Linger–Time, function . . . 129,
501, 520, 522

Get–Socket–Name, function . . . 129, 506,
519, 647, 713-715, 720-721, 724, 726,
737, 740, 744

Get–Socket–No–Routing, function . . . 129
Get–Socket–OOB–Data–Inline, function . . .

129, 501, 520, 522
Get–Socket–Path, function . . . 713
Get–Socket–Receive–Buffer–Size, function . . .

129-714, 501, 520, 522
Get–Socket–Receive–Low–Water–Mark,

function . . . 129, 501, 520, 523
Get–Socket–Receive–Timeout, function . . .

129, 502, 520, 523
Get–Socket–Reuse–Addresses, function . . .

129, 502, 520, 523
Get–Socket–Routing, function . . . 501, 520
Get–Socket–Send–Buffer–Size, function . . .

129-521, 502, 520, 523
Get–Socket–Send–Low–Water–Mark, function

. . . 129, 502, 521, 524
Get–Socket–Send–Timeout, function . . . 129,

502, 521, 524
Get–Socket–Type, function . . . 129, 500-501,

515-516, 519, 647
getsockopt, C function . . . 647
Get–Source, function . . . 117, 137
Get–Standardized–Urgent–Data, function . . .

738-138, 749
Get–Status, function . . . 412, 423-425, 804,

812
Get–Syntax–Object, function . . . 762, 767
Get–Target–Rate, function . . . 784-768, 788
Get–Terminal–Characteristics, function . . .

260, 262-265, 271, 273
Get–Terminal–Name, function . . . 207-274,

224, 282
Get–Throughput–Average, function . . . 786,

792
Get–Throughput–Maximum, function . . . 786,

791
Get–Time, function . . . 357, 360-361, 640
Get–Timer–Overruns, function . . . 358, 363,

365
Get–Timer–State, function . . . 358-366,

363-364, 366
Get–TP–Class, function . . . 722, 730
Get–TPDU–Size, function . . . 722, 730
Get–TP–Flags, function . . . 721, 729,

732-733, 736
Get–Transit–Delay–Average, function . . . 786,

792
Get–Transit–Delay–Maximum, function . . .

786, 792
Get–Transport–Selector, function . . . 720,

724
Get–Type–Of–Service, function . . . 739-725,

756, 758
Get–User–Data, function . . . 429
Get–User–Database–Item, function . . .

287-288, 621
Get–User–Data–Length, function . . . 413,

429
Get–Value

function . . . 296, 304, 412, 424, 426,
625, 761, 766-767, 784-790, 792-794,
797, 802, 805-807, 812-815

procedure . . . 805, 815
Get–Window–Size, function . . . 722, 730
Get–Working–Directory, function . . . 159,

163-164, 561, 598
Global Issues, subclause . . . 554
GOSIP Selector, abstract attribute . . . 725
GOSIP–Selector, type . . . 720, 724
graphic character, definition . . . 20
Ground, socket state . . . 489, 491, 493, 511,

715, 717, 726, 744, 754
Group, I/O form parameter field name . . . 279,

283
group

background process . . . 14
name . . . 290
supplementary . . . 31

group database, accessing . . . 290-291
group ID . . . 112, 154-155

definition . . . 20
effective . . . 17, 98, 101-102
real . . . 28
saved effective . . . 102, 112
saved set- . . . 29
supplementary . . . 31, 102, 112
validity checking . . . 586

Group–Database–Item, type . . . 289
Group–Execute, enumeration literal . . .

175-177, 188, 226
Group–ID, type . . . 149, 154
Group–ID–List, type . . . 289
Group–ID–List–Of, function . . . 289
Group–ID–Of, function . . . 287
Group–List, type . . . 150-290, 154
Group–List–Index, subtype . . . 150, 154

Alphabetic Topical Index 835

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Group–Name–Of, function . . . 289
Group–Of, function . . . 191
Group–Permission–Set, constant . . . 175
Group–Read, enumeration literal . . . 175-177,

226
Groups Maximum, limit . . . 84, 86, 88, 174
Groups–Maxima, subtype . . . 43, 52, 83, 88
Groups–Maximum, function . . . 32, 169, 173
Group–Write, enumeration literal . . . 175-177,

226

H
Handles, subclause . . . 561
Hang–Up–On–Last–Close, enumeration literal

. . . 260, 263, 267
Has–Data, function . . . 117-268, 138
Header Included, socket option . . . 752
High, constant . . . 784-139, 788, 791
High Resolution Delay, subclause . . . 366
High Resolution Sleep, subclause . . . 641
Highest–Blocked–Task, constant . . . 305,

309-310, 356
Highest–Ceiling–Priority, constant . . . 305,

309-314, 356
High–Reliability, constant . . . 739, 756, 805,

815
High–Throughput, constant . . . 739-816, 756,

805, 815
HOME, environment variable . . . 10-816, 91
host byte order . . . 51, 741
Host–Down, constant . . . 47, 62, 67, 497
Host–To–Network–Byte–Order, function . . .

42, 51
Host–Unreachable, constant . . . 47, 62, 67,

497, 512
htonl, C function . . . 648
htons, C function . . . 648

I
I

option . . . 242
ICMP

abbreviation . . . 36
constant . . . 736, 740

identifier . . . 9-741, 555
Idle

constant . . . 66, 414, 431, 450
abstract attribute . . . 396
XTI state . . . 406, 408, 432, 439, 444,

456, 476, 485, 772, 779, 793, 799, 808
Idle(1), abstract attribute . . . 396
IETF, abbreviation . . . 36
ignore . . . 119, 121, 124-126, 128, 131,

134
definition . . . 119

Ignore Signals, subclause . . . 134
Ignore–Break, enumeration literal . . . 260,

263, 265

Ignore–CR, enumeration literal . . . 259-260,
263, 265

Ignore–Modem–Status, enumeration literal . . .
259-260, 263, 267

Ignore–Parity–Errors, enumeration literal . . .
260-268, 263, 265

Ignore–Signal, procedure . . . 116-266, 119,
131, 134-135, 140, 144, 583, 587

Illegal Options, subclause . . . 401
Illegal–Data–Range, constant . . . 48, 63, 68,

433, 445-449, 454-455, 469, 471,
478-481, 483, 774, 789

Image, function . . . 45, 60, 65, 73, 89, 115,
122, 149-155, 383, 386, 621

image
address . . . 89
error code . . . 65
process ID . . . 150
process group ID . . . 152
signal . . . 122
task ID . . . 383

Immediate, constant . . . 805, 815
Immediately, enumeration literal . . . 260-816,

263
Implementation Conformance, subclause . . .

4-264
implementation defined . . . 4, 7-8, 12-15,

18, 22, 24, 26, 28, 31, 33, 38-39, 41,
53-54, 57, 65-67, 75, 80, 87, 92,
100-104, 107, 110-111, 113, 120-122,
126-127, 132, 134, 138, 140, 144-146,
150, 152, 154-155, 157, 166, 178, 180,
188, 194, 209-212, 214, 217, 221,
224-227, 229-231, 239, 249, 253-256,
259, 265, 267-271, 273-274, 277,
279-283, 285, 288, 299, 303, 306-307,
313, 316, 323, 325, 327, 330, 338, 347,
350-355, 358, 361-362, 365, 372-373,
389, 406, 427, 462, 488, 494, 521,
523-525, 539-545, 557-560, 571, 575,
594, 604, 614-615, 617-619, 621-622,
630-631, 638-639, 717, 741, 748-749,
751-753, 755, 759, 770, 790, 801, 806,
808, 816
definition . . . 11

implementation dependent . . . 281, 286,
447, 478, 508, 522-523, 527, 538,
559-560, 611, 613, 618-619, 769,
796-797, 810, 813

Implementation Limits, subclause . . . 83
Implementation Model, subclause . . . 551
Implementation Options, subclause . . . 76
Improper–Link, constant . . . 46, 61, 68, 185
Inappropriate–IO–Control–Operation, constant

. . . 46, 61, 68, 265, 273, 275-276, 534
Incoming Connect, XTI state . . . 406, 456,

476, 482, 779, 793
Incoming Events, subclause . . . 394

836 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Incoming Release, XTI state . . . 391, 453,
476, 478, 482

Incoming–Connect, constant . . . 66, 414,
431, 450

Incoming–Release, constant . . . 414, 431,
450

Incorrect–Address–Format, constant . . . 48,
63, 68, 433, 439-440, 445, 449, 452, 480

Incorrect–Address–Type, constant . . . 47, 62,
68, 508, 510, 512, 529, 532, 715, 726,
744

Incorrect–Or–Illegal–Option, constant . . . 48,
63, 68, 401-402, 433, 445, 449, 459,
464, 480

Incorrect–Surrogate–Queue–Length, constant
. . . 48-481, 63, 68, 434

Increment a Semaphore, subclause . . . 303
Inet - IP Protocol Family, subclause . . . 740
Initial, abstract attribute . . . 359-360,

364-366, 640
initial signal mask . . . 120-641
Initial Time To Live

socket option . . . 758
XTI option . . . 817

Initial–Directory–Of, function . . . 287
Initialization of Shared Memory, subclause . . .

632
Initialize, procedure . . . 295-288, 297-298,

305, 307-308, 311, 315-316, 318, 623,
625

initialize
condition variable attribute . . . 316
condition variable . . . 318
mutex attribute . . . 307
mutex . . . 311
semaphore . . . 297

Initialize an Unnamed Semaphore, subclause
. . . 297

Initialize and Finalize a Condition, subclause
. . . 318

Initialize and Finalize a Mutex, subclause . . .
311

Initial–Program–Of, function . . . 287
Initial–Time–To–Live, constant . . . 817
Initiate a Connection on a Socket, subclause . . .

510
Initiate an Orderly Release, subclause . . . 452
Initiate an Orderly Release with Application

Data, subclause . . . 454
Initiate–Orderly–Release, procedure . . .

130-288, 390, 393, 415, 428, 435-436,
452-453, 537, 543, 776

Initiate–Orderly–Release–With–Data,
procedure . . . 130, 390, 393, 416, 421,
428, 436, 454, 537, 544, 779

Initiating an Option Negotiation, subclause . . .
402

In–Progress, enumeration literal . . . 237,

246-247, 250, 252, 608
Input and Output Primitives, subclause . . .

602
Input Line Maximum, limit . . . 84, 86, 88,

256
Input Modes, subclause . . . 265
Input Processing and Reading Data, subclause

. . . 255
Input Queue Maximum, limit . . . 84, 86, 88,

255-256, 266
Input–Baud–Rate–Of, function . . . 261, 271
Input–Line–Is–Limited, function . . . 195,

197, 199, 256
Input–Line–Limit, function . . . 195, 197, 199
Input–Line–Limit–Maxima, subtype . . . 43,

52
Input–Line–Maxima, subtype . . . 52, 83, 88
Input–Line–Maximum, function . . . 195, 197,

199
Input–Modes, subtype . . . 255, 261, 264
Input–Output–Error, constant . . . 46-265, 61,

68, 218, 222, 245, 254-255, 259
Input–Queue–Is–Limited, function . . . 195,

197, 199, 255
Input–Queue–Limit, function . . . 195, 197,

199
Input–Queue–Limit–Maxima, subtype . . . 43,

52
Input–Queue–Maxima, subtype . . . 52, 83,

88, 256
Input–Queue–Maximum, function . . . 195,

197, 199
Input–Time–Of, function . . . 262, 273
Inquiries on File Types, subclause . . . 182
In–Set, function . . . 536-274, 542
Install–Empty–Handler, procedure . . . 116,

134
instantiation . . . 218-135, 222
Insufficient–Permission, constant . . . 48, 63,

68, 406, 433, 439, 445
int, C type . . . 606
Integer–Address, type . . . 90
Intended Use, subclause . . . 632
Intended Use of Mutexes and Condition

Variables, subclause . . . 625
Interface–State, type . . . 414, 431, 450, 484
Internet Address, abstract attribute . . . 741
Internet Address Support Functions, subclause

. . . 745-742, 811
Internet Datagram, option . . . 77, 81, 172
Internet Port, abstract attribute . . . 741-742,

807
Internet Protocol

subclause . . . 756, 815
option . . . 77, 81, 172, 736, 802

Internet Protocol Support, option . . . 555
Internet Stream, option . . . 77, 81, 172, 749
Internet Stream Support, option . . . 555

Alphabetic Topical Index 837

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Internet Transmission Control Protocol,
subclause . . . 749, 812

Internet Transport Protocols, subclause . . .
806

Internet User Datagram Protocol, subclause . . .
814

Internet–Address, type . . . 736, 740-741,
746, 759, 803, 806

Internet–Address–To–String, function . . .
737-807, 745-746, 803, 811

Internet–Datagram–Is–Supported, function . . .
168, 170, 172

Internet–Datagram–Support, subtype . . . 76,
81

Internet–Port, type . . . 736, 740-741, 803,
806

Internet–Protocol, constant . . . 516-807, 736,
740

Internet–Protocol–Is–Supported, function . . .
168, 170, 172

Internet–Protocol–Support, subtype . . . 76,
81

Internet–Socket–Address, type . . . 736, 740
Internet–Socket–Address–Pointer, type . . .

6-744, 736, 740, 743
Internet–Stream–Is–Supported, function . . .

168, 170, 172
Internet–Stream–Support, subtype . . . 76, 81
Internetwork–Control, constant . . . 805, 815
Internet–XTI–Address, type . . . 803-816,

806-807, 809
Internet–XTI–Address–Pointer, type . . . 6,

806
interoperability . . . 611-613, 619, 622
Interoperability of =t File–Type and =t

File–Descriptor, subclause . . . 619
Interoperable Ada I/O Services, subclause . . .

279
interrupt, entry . . . 143
Interrupt a Task, subclause . . . 147
interrupt character . . . 258-259, 269
Interrupt–Char, enumeration literal . . . 261,

272
Interrupted–Operation, constant . . . 46, 61,

68, 108, 118, 131, 148, 212, 214, 216,
218, 220, 223, 234, 244-245, 250, 265,
275, 300, 303, 340, 344, 374, 376,
378-379, 389, 446, 449, 466, 468, 471,
473, 478, 480, 509, 512, 529, 532, 541,
545, 565, 590, 732

Interruptibility, subclause . . . 128
interruptibility . . . 118, 128, 131, 148, 243,

250, 300, 302, 340, 344, 373, 376-378
interruptibilty . . . 128

definition . . . 128
Interruptible Operations, subclause . . . 565
Interrupt–On–Break, enumeration literal . . .

260, 263, 265

Interrupt–Task, procedure . . . 118-266,
147-148, 590, 643

Interval, abstract attribute . . . 359-360,
364-365, 640

Introduction, subclause . . . 385, 487
invalid

AIO descriptor . . . 236
Condition descriptor . . . 316
Mutex descriptor . . . 307
address . . . 66, 332
cached data . . . 336
condition variable attribute . . . 316, 318
file descriptor attributes . . . 242
hardware instruction . . . 124
initial value for semaphore . . . 300
memory reference . . . 124
message queue descriptor . . . 369
mutex attribute value . . . 307, 311
offset . . . 332
pathname . . . 41
process ID . . . 145, 147
process group ID . . . 145, 147
scheduling policy . . . 352
semaphore descriptor . . . 296
signal . . . 122
time specification . . . 75, 143, 361
timer ID . . . 358, 363

Invalid–Argument, constant . . . 46, 61, 68,
99, 102, 106, 119, 132, 134-135,
140-148, 152, 154-155, 163, 166-167,
185, 194, 201-203, 226-231, 234, 237,
240-249, 251-252, 264-265, 271, 273-274,
276, 285, 288-291, 297-298, 300-301,
303-304, 308, 311-314, 317, 319-321,
325, 327, 332-337, 340, 344, 352,
354-355, 361, 363, 365, 374, 376, 379,
381, 428, 430-431, 478, 509-510, 512,
529, 533, 545, 609, 716, 754

Invalidate–Cached–Data, constant . . .
328-755, 336

Invalid–Communications–Provider, constant
. . . 48-337, 63, 68, 465

Invalid–File–Descriptor, constant . . . 48, 63,
68, 433, 435-436, 440-442, 445, 447,
449, 451-454, 456, 458, 463, 467, 469,
471, 473, 475-476, 479, 481, 483

Invalid–Flag, constant . . . 48-485, 63, 69,
447, 464-465, 479

Invalid–Flags, constant . . . 49, 64, 69, 518
Invalid–Seek, constant . . . 46, 61, 69, 224
Invalid–Sequence–Number, constant . . . 48,

63, 69, 433, 483
Invalid–Terminal–Characteristics, constant . . .

260, 262
I/O, abbreviation . . . 36
I/O Buffer Type, subclause . . . 215
IO Control Blocks, subclause . . . 607
I/O Primitives, section . . . 205

838 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

IO Vector Array, abstract attribute . . . 506
I/O Vector Type, subclause . . . 231
IO–Array–Pointer, type . . . 234-263, 238,

608
IO–Blocking–Behavior, constant . . . 43, 52,

54, 280, 614
IO–Buffer, subtype . . . 206-615, 215-216,

219
IO–Count, type . . . 42, 51, 215, 603
IO–Count–Maxima, subtype . . . 42, 51
IO–Exceptions, package . . . 217, 219, 258,

279, 283, 621
IO–Offset, type . . . 205, 208
IO–Vector, type . . . 85-209, 207, 231,

430-431, 446, 448, 467, 470, 506
IO–Vector–Array, type . . . 85-507, 414, 430,

446, 448, 467, 470, 499, 505
IO–Vector–Array–Pointer, type . . . 6-507,

499, 505
IO–Vector–Range, type . . . 414, 430, 498,

505
IP, abbreviation . . . 36
IP Do Not Route, XTI option . . . 817
IP Header Included, socket option . . . 755,

757, 759
IP Header Options, socket option . . . 758
IP Options

abstract attribute . . . 758
XTI option . . . 808, 815

IP Time To Live, option . . . 558
IP Type Of Service, XTI option . . . 808
IP–Ancillary–Data, type . . . 739-816, 757,

759
IP–Ancillary–Data–Pointer, type . . . 739, 757
IPC, abbreviation . . . 36
IP–Connectionless, constant . . . 723, 731,

735
IP–Do–Not–Route, constant . . . 805, 815, 817
IP–Header–Options–In–Use, function . . . 738,

756, 758
IP–Level, constant . . . 802, 806
IP–Option–List, type . . . 805, 815-816
IP–Options

constant . . . 805, 815-816
type . . . 816

IP–Options–Buffer, type . . . 739, 756, 758
IP–Permit–Broadcast, constant . . . 805, 815
IP–Precedence–Level, type . . . 805, 815
IP–Reuse–Address, constant . . . 805, 815
IP–Service–Type, type . . . 805, 815
IP–Time–To–Live, constant . . . 805, 815
IP–Type–Of–Service

constant . . . 805, 815
type . . . 739, 756

Is–Accessible, function . . . 179, 189
Is–A–Directory, constant . . . 46-190, 61, 69,

185, 214
Is–Already–Connected, constant . . . 47, 62,

69, 512, 524, 532, 717, 728, 736
Is–A–Socket, function . . . 502, 524
Is–A–Terminal, function . . . 207-525, 224
Is–Block–Special–File, function . . . 178,

182-183, 191
Is–Callable, function . . . 383
Is–Character–Special–File, function . . .

178-193, 182-183, 191
Is–Directory, function . . . 178-193, 182-183,

191
Is–Environment–Variable, function . . .

158-193, 160, 162-163, 596
Is–FIFO, function . . . 178-597, 182-183, 191
Is–File, function . . . 178-193, 182
Is–Filename, function . . . 44-183, 56
Is–File–Present, function . . . 179-57, 189
Is–Ignored, function . . . 116-190, 134
Is–Internet–Address, function . . . 737-135,

745-746, 803, 811
Is–Internet–Socket–Address, function . . . 736,

740, 743
Is–Internet–XTI–Address, function . . . 803,

806
Is–ISO–Socket–Address, function . . . 720-807,

724, 726
Is–ISO–XTI–Address, function . . . 784, 787,

789
Is–Local–Socket–Address, function . . . 713
Is–Member, function . . . 116-715, 132
Is–Message–Queue, function . . . 191
Is–mOSI–XTI–Address, function . . . 760-194,

764
ISO Address, abstract attribute . . . 725
ISO Protocol Family, subclause . . . 723
ISO Transport Protocols, subclause . . . 787
ISO–Address, type . . . 720-765, 724
ISO–Connection, constant . . . 723, 731, 735
ISO–Connectionless, constant . . . 723, 731,

735
ISO–Connectionless–Over–X25, constant . . .

723, 731, 735
ISO–COTS–Option, type . . . 787, 792
ISO/IEC 9945-1 . . . 3
ISO/IEC Conforming POSIX.5 Application,

subclause . . . 8
ISO/IEC Strictly Conforming POSIX.5

Application . . . 7
ISO–Option, type . . . 784, 788
ISO/OSI Protocol, option . . . 77-79, 81, 172,

719, 783
ISO–OSI–Protocol–Is–Supported, function . . .

168, 170, 172
ISO–OSI–Protocol–Support, subtype . . . 76,

81
Is–Open, function . . . 205, 208, 211, 215
ISO–Protocol, constant . . . 720, 723, 725
ISO–Socket–Address, type . . . 720, 724
ISO–Socket–Address–Pointer, type . . . 6-726,

Alphabetic Topical Index 839

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

725
ISO–TP–Level, constant . . . 784-726, 787,

793, 798
ISO–Transport–Protocol, constant . . . 720,

723
ISO–XTI–Address, type . . . 784, 787, 789,

800
ISO–XTI–Address–Pointer, type . . . 6, 789
Is–Pathname, function . . . 44, 56
Is–Portable–Filename, function . . . 40-57, 44,

56
Is–Portable–Pathname, function . . . 40-57,

44, 56
Is–POSIX–Error, function . . . 45-57, 60, 65,

73
Is–Regular–File, function . . . 191
Is–Semaphore, function . . . 191
Is–Shared–Memory, function . . . 191
Is–Socket, function . . . 178-194, 182-183,

191-192, 194
Is–Terminated, function . . . 383
iterator . . . 161, 186, 289-291, 556-557,

570, 595-596, 600-601, 622
POSIX string list . . . 58
directory . . . 186
environment . . . 162
group list . . . 291

Iterators, subclause . . . 622
itimerspec, C type . . . 560, 640

J
Job Control, option . . . 9, 77, 81, 103, 105,

107, 125, 151, 172, 253-254, 258-260,
269, 272, 276, 585

job control, definition . . . 21
job control signals . . . 123

definition . . . 124
Job–Control–Is–Supported, function . . . 21,

168, 170
Job–Control–Support, subtype . . . 21-172, 42,

76, 81
Job–Control–Supported, function . . . 168, 170

K
Keep Alive Interval

socket option . . . 752
XTI option . . . 813

Keep–Alive–Info, type . . . 804, 812
Keep–Alive–Off, constant . . . 804, 812
Keep–Alive–On, constant . . . 804-813, 812
Keep–Alive–Status, type . . . 804-813, 812
Keep–Alive–Time, type . . . 738, 749, 804,

812
kill, C function . . . 560, 589
kill character . . . 256, 258-259, 266-267,

269, 272, 275
Kill–Char, enumeration literal . . . 261, 272

L
LANG, environment variable . . . 92
language binding . . . 610-611, 613, 615,

617
language-independent specification . . . 1
Language-Specific Services for Ada

section . . . 279
subclause . . . 610

Last Access Time, abstract attribute . . . 32,
40, 102, 114, 180, 186, 188, 211-212,
217-218, 221-222

last close . . . 212
definition . . . 21
message queue . . . 374

Last Modification Time, abstract attribute . . .
32-375, 40, 180-181, 183-184, 188,
211-212, 221-222, 228

Last Status Change Time, abstract attribute . . .
32, 40, 180-181, 183-184, 188, 211-212,
227

Last–Access–Time–Of, function . . . 191
Last–Modification–Time–Of, function . . . 191
Last–Status–Change–Time–Of, function . . .

191
Latin–1, package . . . 617
LC–ALL, environment variable . . . 92
LC–COLLATE, environment variable . . . 92
LC–CTYPE, environment variable . . . 92
LC–MONETARY, environment variable . . . 92
LC–NUMERIC, environment variable . . . 92
LC–TIME, environment variable . . . 92-193
Length

function . . . 44, 58-59, 90, 159-160,
162-163, 289-291, 605, 762, 767, 769

abstract attribute . . . 231, 239, 241-243,
429-431, 446, 448, 467, 470

Level, abstract attribute . . . 401, 425
level, C type . . . 647
Level of Binding, subclause . . . 552-426
LF

constant . . . 258
enumeration literal . . . 269

lifetime . . . 242
of an AIO request . . . 241-242, 244-245,
251

limit . . . 8, 198, 600
Argument List Maximum . . . 66, 86, 88,
112, 114, 174

Asynchronous I/O Maximum . . . 86, 88,
174

Asynchronous I/O Priority Delta Maximum . . .
86, 88, 174

Child Processes Maximum . . . 86, 88, 102,
111, 174

Clock Resolution Minimum . . . 86, 88
File Descriptor Set Maximum . . . 86, 88
Filename Limit . . . 41

840 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Filename Maximum . . . 67, 86, 88, 114,
181, 184, 187, 189-190, 192, 201-203,
214, 300, 302, 340-341, 344, 374-375

Groups Maximum . . . 86, 88, 174
Input Line Maximum . . . 86, 88, 256
Input Queue Maximum . . . 86, 88,

255-256, 266
Links Maximum . . . 86, 88, 181, 185
List I/O Maximum . . . 86, 88, 174
Message Priority Maximum . . . 86, 88,

174, 371, 376
Open Files Maximum . . . 86, 88, 174, 187,

214, 296, 369
Open Message Queues Maximum . . . 86, 88,

174
Page Size . . . 86, 88, 90-91, 174, 323,

326-327, 330, 333-337
Pathname Limit . . . 67, 114, 181, 184,

187, 189-190, 192, 201-203, 214, 300,
302, 340-341, 344, 374-375

Pathname Maximum . . . 86, 88, 164
Pipe Length Maximum . . . 86, 88,

217-218, 220-221
Queued Signals Maximum . . . 86, 88, 174
Realtime Signals Maximum . . . 9, 86, 88,

174
Semaphores Maximum . . . 86, 88, 174,

298
Semaphores Value Maximum . . . 86, 88,

174, 297, 300
Socket Buffer Maximum . . . 86, 88
Socket IO Vector Maximum . . . 86, 88, 174
Socket Queued Connect Maximum . . . 86
Socket Queued Connection Maximum . . . 88
Streams Maximum . . . 86, 88, 174
Time Zone String Maximum . . . 86, 88, 92,

174
Timer Overruns Maximum . . . 86, 88, 174
Timers Maximum . . . 86, 88, 174
XTI IO Vector Maximum . . . 86, 88, 174
file . . . 198
pathname-specific . . . 83

Limitations on Interoperability, subclause . . .
612

Line Control Operations, subclause . . . 274
Lines

I/O form parameter field value . . . 280
enumeration literal . . . 284

Linger, abstract attribute . . . 808
linger, option . . . 213
Linger Information Objects, subclause . . . 423
Linger On Close If Data Present, XTI option . . .

461-462, 808
Linger Period, abstract attribute . . . 423-424,

462
Linger Status, abstract attribute . . . 423, 462
Linger–Info, type . . . 401, 409, 412, 423,

462

Linger–Off, enumeration literal . . . 412, 423
Linger–On, enumeration literal . . . 412, 423
Linger–On–Close–If–Data–Present, constant

. . . 416, 458, 462
Linger–Option, type . . . 412, 423
Linger–Time, type . . . 412, 423, 501, 520,

559
Link

function . . . 183
procedure . . . 178, 183-186

link
definition . . . 21
directory entry . . . 17

link count, definition . . . 21
Link–Count–Of, function . . . 191
Link–Is–Limited, function . . . 194-193, 197,

199
Link–Limit, function . . . 194, 197, 199
Link–Limit–Maxima, subtype . . . 43, 52
Links, subtype . . . 191
Links Maximum, limit . . . 84-193, 86, 88,

181, 185
Links–Are–Limited, function . . . 194, 197,

199
Links–Maxima, subtype . . . 52, 83, 88
Links–Maximum, function . . . 72, 194-195,

197, 199
LIS, abbreviation . . . 36
List Directed I/O, subclause . . . 243
List I/O Maximum, limit . . . 84, 86, 88, 174
Listen

function . . . 405
procedure . . . 129-130, 385, 387, 390,
394, 399-400, 403-405, 409, 416, 425,
429, 432-433, 437, 455-456, 476, 496,
502, 508, 525, 537, 731, 773, 781, 793,
796, 800, 809, 816

XTI event . . . 394
Listen for a Connection Indication, subclause

. . . 455
Listen for Connections on a Sockets, subclause

. . . 525
Listening, socket state . . . 213, 491, 509,

540, 544, 716-717, 750
Listening Communications Endpoint, abstract

attribute . . . 391
List–IO–Maxima, subtype . . . 83-392, 88
List–IO–Maximum, function . . . 169,

173-174, 244
List–IO–No–Wait, procedure . . . 235, 239,

243-245, 250
List–IO–Operations, type . . . 234, 237, 240,

244
List–IO–Wait, procedure . . . 54, 128, 235,

239, 243
Local IPC Protocol Family, subclause . . . 714
Local Modes, subclause . . . 268
Local–DCS–Limit–Exceeded, constant . . .

Alphabetic Topical Index 841

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

761-246, 766, 768, 781
Local–Modes, subtype . . . 255, 261, 264, 268
Local–Protocol, constant . . . 39, 215, 491,

511, 713-714, 716
Local–Socket–Address, type . . . 713
Local–Socket–Address–Pointer, type . . .

6-715, 715
Location–Options, type . . . 328-329, 630
Lock

procedure . . . 305-306, 313-314, 319, 356
type . . . 626

lock . . . 233, 604
a mutex . . . 306, 312-313, 320-321
a range of pages . . . 326
a region of a file . . . 232
all pages in memory . . . 325

Lock and Unlock a Mutex, subclause . . . 313
Lock and Unlock a Region of a File, subclause

. . . 232
Lock–All, procedure . . . 104, 110, 113,

324-326, 332, 345
Locking and Unlocking Shared Memory,

subclause . . . 634
Locking Policy, abstract attribute . . . 307, 309
Locking–Policy, type . . . 305-311, 309
Lock–Kind, type . . . 232
Lock–Range, procedure . . . 104-233, 110,

113, 326-327, 347
Lock–Shared–Memory, procedure . . . 342,

346
Lock/Unlock a Range of Process Address

Space, subclause . . . 326
Lock/Unlock Shared Memory, subclause . . .

346
Lock/Unlock the Address Space of a Process,

subclause . . . 324
login, definition . . . 21
login name, definition . . . 21
LOGNAME, environment variable . . . 91
long, C type . . . 9-347, 606
longjmp, C function . . . 119, 580, 584, 592
Look

function . . . 130, 388-391, 398, 416,
434-436, 442, 445-449, 453, 455-457,
466-469, 471, 473-474, 478-481, 483,
485, 540, 774, 809

procedure . . . 67, 389
Look at the Current Event on a

Communication Endpoint, subclause . . .
457

Loopback–Internet–Address, constant . . .
736, 740, 803, 806

Low, constant . . . 784, 788, 791
Low–Cost, constant . . . 805, 815
Low–Delay, constant . . . 739-816, 756, 805,

815
lseek, C function . . . 606-816

M
Machine, function . . . 49, 73
main program, obsolete term . . . 38
main subprogram . . . 18, 95, 578, 582,

591, 612
Make–Directory, procedure . . . 601
Make–Empty

function . . . 471, 473
procedure . . . 44, 58-59, 408, 410, 413,
426-427, 443, 480, 500, 515, 517, 535,
541-542, 762, 767

malloc, C function . . . 561
Manage Options, XTI event . . . 393
Manage options for a communication endpoint,

subclause . . . 458
Manage–Options, procedure . . . 130-769,

390-391, 393, 399-407, 409, 416, 419,
422-423, 425, 427, 451, 458-459, 461,
769-770, 774, 793, 796, 799, 808, 816

Mandatory and Optional Parameters, subclause
. . . 770

map a range of addresses, definition . . . 21
Map Memory, subclause . . . 630
Map Process Addresses to a Memory Object,

subclause . . . 329
Map–CR–To–LF

constant . . . 259
enumeration literal . . . 260, 263, 265

Map–LF–To–CR, enumeration literal . . .
260-266, 263, 265

Map–Memory, function . . . 21-266, 328-335,
337, 343, 630

Mapping C Features to Ada, subclause . . . 557
Mapping XTI Functions to ACSE/Presentation

Services, subclause . . . 776
Mapping–Options, type . . . 328-329, 331,

630
Map–Private, constant . . . 110, 328-329,

331-332, 335
Map–Shared, constant . . . 328-329, 331-332,

335, 343
Mark–Parity–Errors, enumeration literal . . .

260-344, 263, 265
Masked Signals Parameter, subclause . . . 571
Max Length, abstract attribute . . . 429
Max Messages, abstract attribute . . . 370-266,

372, 374, 381, 642
Max Size Connect Data, abstract attribute . . .

409, 421-422, 432, 443, 773
Max Size Disconnect Data, abstract attribute . . .

409-774, 421-422, 454, 482, 773
Max Size Protocol Address, abstract attribute

. . . 420
Max Size Protocol Options, abstract attribute

. . . 409-774, 420, 460
Max Size SDU, abstract attribute . . . 409,

421, 446-449, 478, 480

842 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Max Size SEDU, abstract attribute . . . 409,
421-422, 446-447, 478, 800

may, definition . . . 11
Medium, constant . . . 784, 788, 791
memory leakage . . . 42
Memory Locking, option . . . 78, 81, 101,

104, 110, 113, 172, 324
memory locking

all pages . . . 325
range . . . 326-327

Memory Management
section . . . 323
subclause . . . 629

Memory Mapped Files, option . . . 78, 81,
101, 104, 110, 113, 172, 212, 226-227,
323, 329, 331, 333, 336

memory object . . . 21, 323, 330-331, 333,
335, 337
definition . . . 21

Memory Object Synchronization, subclause . . .
336

Memory Protection, option . . . 78, 81, 125,
172, 323-324, 331, 334, 585

memory protection signal . . . 123
definition . . . 125

Memory Range Locking, option . . . 78, 81,
172, 326, 347

Memory–Allocation–Failed, constant . . . 49,
64, 69, 518

Memory–Locking–Is–Supported, function . . .
168, 170, 172

Memory–Locking–Options, type . . . 324
Memory–Locking–Support, subtype . . . 76, 81
Memory–Mapped–Files–Are–Supported,

function . . . 168, 170, 172
Memory–Mapped–Files–Support, subtype . . .

76, 81
Memory–Protection–Is–Supported, function . . .

168, 170, 172
Memory–Protection–Support, subtype . . . 76,

81
Memory–Range–Locking–Is–Supported,

function . . . 168, 170, 172
Memory–Range–Locking–Support, subtype . . .

76, 81
memory-resident . . . 21, 23

definition . . . 22
message, definition . . . 22
Message Count, abstract attribute . . . 370,

382, 642
Message Flags, abstract attribute . . . 507
Message Length, abstract attribute . . . 9, 370,

372, 374, 376-379, 381, 642
Message Passing

section . . . 367
subclause . . . 642

Message Priority Maximum, limit . . . 84, 86,
88, 174, 371, 376

message queue
close . . . 374
create . . . 371
definition . . . 22
descriptor . . . 101, 104, 110, 113
last close . . . 374-375
open . . . 371
testing a file . . . 193
valid descriptor . . . 369

Message Queue Attributes, subclause . . . 369,
642

message queue description . . . 110
message queue descriptor, definition . . . 22
Message Queue Length, abstract attribute . . .

379
Message Queues, option . . . 78, 81, 101,

104, 110, 113, 172, 367
Message Status, abstract attribute . . . 507,

529
Message–Option–Set, type . . . 499, 505, 527,

531
Message–Priority, subtype . . . 367, 369-371,

642
Message–Priority–Maxima, subtype . . . 83,

88
Message–Priority–Maximum, function . . .

169, 173
Message–Queue–Descriptor, type . . . 6-174,

367, 369
Message–Queue–Options, type . . . 367,

369-370, 571
Message–Queues–Are–Supported, function . . .

168, 170, 172
Message–Queues–Support, subtype . . . 76, 81
Message–Status–Set, type . . . 499, 505, 529
Message–Too–Long, constant . . . 46, 61, 69,

376, 378-379, 497, 530-533, 755
Message–Truncated, constant . . . 499, 505,

529
Minimum Acceptable Rate, abstract attribute

. . . 790
Minimum–Input–Count–Of, function . . . 262,

273
Minutes, type . . . 49-274, 74
mmap, C function . . . 630
mode, definition . . . 22
Modem Disconnect, subclause . . . 259
Modes of Service, subclause . . . 386
Modify File Pathnames, subclause . . . 183
Modify Process Scheduling Policy and

Parameters, subclause . . . 351, 635
Month, function . . . 165
Month–Number, subtype . . . 165
More–Data, constant . . . 410-166, 419, 466,

468, 473, 477, 789, 801-802, 809-810,
812

mOSI, abbreviation . . . 36
mOSI Naming and Addressing, subclause . . .

Alphabetic Topical Index 843

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

764
mOSI Options, subclause . . . 766
mOSI–Address–Flags, type . . . 760, 764
mOSI–Address–Length–Maximum, constant

. . . 760-765, 764
mOSI–Connectionless–Mode, constant . . .

761, 766, 782
mOSI–Connection–Mode, constant . . . 761,

766, 779
mOSI–XTI–Address, type . . . 760, 764-765,

773
mOSI–XTI–Address–Pointer, type . . . 6, 765
multihomed, definition . . . 742
Multiple Options and Options Levels, subclause

. . . 401
Multipurpose C Functions, subclause . . . 560
Mutex, type . . . 6, 305-306, 626
mutex

definition . . . 22
descriptor . . . 307
owner . . . 22, 306, 313-314, 319

Mutex and Mutex Descriptor Types, subclause
. . . 306

Mutex Attributes Type, subclause . . . 307
Mutex Locking Policy Attributes, subclause . . .

309
mutex owner, definition . . . 22-320, 306
Mutex Ownership, subclause . . . 306
Mutex Priority Ceiling, option . . . 78, 81,

172, 309-310, 312
Mutex Priority Inheritance, option . . . 78,

81, 172, 309-310, 356
Mutex Process Shared Attribute, subclause . . .

308
Mutex–Descriptor, type . . . 6, 305-307, 627
Mutexes, option . . . 78-79, 81, 101, 172,

304, 314, 625
Mutexes and Condition Variables, subclause . . .

625, 637
Mutexes–Are–Supported, function . . . 168,

170, 172
Mutexes–Support, subtype . . . 76, 81
Mutex–Priority–Ceiling–Is–Supported, function

. . . 168, 170, 172
Mutex–Priority–Ceiling–Support, subtype . . .

76, 81
Mutex–Priority–Inheritance–Is–Supported,

function . . . 168, 170, 172
Mutex–Priority–Inheritance–Support, subtype

. . . 76, 81

N
Name

function . . . 281-283
abstract attribute . . . 401, 425-426,

506-507, 715, 726, 744, 747-748
name

group . . . 290

login . . . 21
user . . . 34

Name–Error, exception . . . 615
Name–Failed, constant . . . 49, 64, 69, 518
Name–Not–Known, constant . . . 49, 64, 69,

518
Naming, subclause . . . 556
Nanoseconds, subtype . . . 49, 74, 573
Nanoseconds–Base, type . . . 49, 74, 573
nanosleep, C function . . . 561, 591, 641
<National Body> Conforming POSIX.5

Application, subclause . . . 8
Nearby–Address, constant . . . 328-330, 332
Negotiate Checksums, abstract attribute . . .

735
Negotiate–Options, constant . . . 402, 407,

410, 419, 459
Negotiation Result, abstract attribute . . . 768
Negotiation–Result, type . . . 761-461, 766,

768
netbuf, C type . . . 644
network byte order . . . 51, 741
Network Expedited Data, XTI option . . . 798
Network Management, option . . . 65, 78, 81,

172, 515, 644, 648, 746, 812
Network Number, abstract attribute . . . 747
Network Receipt Confirmation, XTI option . . .

798
Network Service, abstract attribute . . . 735
Network Support Functions, subclause . . .

647
Network–Buffer, type . . . 644
Network–Control, constant . . . 805, 815
Network–Down, constant . . . 47-816, 62, 69,

497, 512, 532
Network–Expedited–Data, constant . . . 787,

792, 798
Network–Info, type . . . 648, 737, 745-749,

803, 811
Network–Management–Is–Supported, function

. . . 168, 170, 172
Network–Management–Support, subtype . . .

76, 81
Network–Number, type . . . 737, 745, 803,

811
Network–Receipt–Confirmation, constant . . .

787, 792, 798
Network–Reset, constant . . . 47, 62, 69, 497
Network–To–Host–Byte–Order, function . . .

43, 51
Network–Unreachable, constant . . . 47, 62,

69, 497, 512, 532, 753, 756-757, 759
new process image file . . . 111

definition . . . 100
new-line character . . . 36, 256, 258-259,

265-266, 269
New–Page, procedure . . . 281, 283, 618
NL, abbreviation . . . 36

844 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

No Delay
option . . . 400
socket option . . . 752-753
XTI option . . . 814

No–Address–For–Name, constant . . . 49, 64,
69, 518

No–Buffer–Space, constant . . . 47, 62, 69,
215, 509-510, 512-514, 519, 524, 530,
532-533, 716, 726, 729, 744

No–Checksum, constant . . . 721, 726, 728
No–Child–Process, constant . . . 46, 61, 70,

107
No–Common–Version, constant . . . 763-108,

772, 775
No–Data–Available, constant . . . 48, 63, 70,

393, 442, 444-445, 456, 467-469, 471,
473

Node–Name, function . . . 49, 73
No–Disconnect–Indication–On–Endpoint,

constant . . . 48, 63, 70, 476
No–Error, constant . . . 45, 60, 65, 190, 247,

252
No–Flush, enumeration literal . . . 261, 263,

269
No–Locks–Available, constant . . . 46, 61, 70,

234
Non–Blocking

file option . . . 253, 255, 257, 268, 570
constant . . . 14, 22, 67, 205, 208-213,

217, 219-221, 223, 225-226, 253, 255,
257, 268, 367, 369-370, 373, 376-377,
379, 385, 387-389, 402, 405-406,
441-442, 444, 446, 448, 455-457, 461,
466, 468, 470, 472-473, 477-478, 480,
491, 494, 538-539, 541, 543-544, 604,
751, 816

Noncanonical Controls, subclause . . . 273
noncanonical input processing, definition . . .

23
Noncanonical Mode Input Processing,

subclause . . . 256
None, I/O form parameter field value . . . 279
No–Notification, constant . . . 116, 136, 239,

244, 362
No–Op, enumeration literal . . . 240
No–Orderly–Release–Indication–On–Endpoint,

constant . . . 48, 63, 70, 435, 437
No–Priority–Inheritance, constant . . . 305,

309, 356
No–Protection, constant . . . 784, 788, 790
Normal, constant . . . 805-791, 815
Normal–Data–Received, constant . . . 388-389,

416, 457-458, 463, 466, 468, 540, 543
Normal–Exit, constant . . . 96, 103, 577
Normative References, subclause . . . 3
No–Segmentation, constant . . . 721, 726
No–Signals, enumeration literal . . . 44-727,

55, 131, 148

No–Space–Left–On–Device, constant . . . 46,
61, 70, 181, 184, 215, 223, 237, 298,
301, 341, 345, 374

No–Such–Device–Or–Address, constant . . .
46, 61, 70, 215, 332

No–Such–File–Or–Directory, constant . . . 46,
61, 70, 114, 164, 181, 185, 187,
189-190, 192, 201-203, 214, 301-302,
340-341, 345, 374

No–Such–Operation–On–Device, constant . . .
46-375, 61, 70, 332

No–Such–Process, constant . . . 46, 61, 70,
146-147, 152, 353

Not–A–Directory, constant . . . 46-354, 61,
70, 114, 164, 181, 185, 187, 189-190,
192, 201-203, 214

Not–A–Socket, constant . . . 47, 62, 70,
509-510, 512, 519, 524, 526, 530,
532-533, 716, 726, 732, 744

Not–Canceled, enumeration literal . . . 249
Not–Connected, constant . . . 47, 62, 71, 530,

532-533, 716, 726, 728, 732, 736, 744
Not–Controlling–Terminal, constant . . . 205,

208, 210, 254
Not–Enough–Space, constant . . . 46, 61, 71,

102, 111, 114, 237, 308, 312, 316, 318,
325, 327, 332, 335, 337, 345, 347

Notes on Specific Topics, subclause . . . 619
Notification

subclause . . . 643
type . . . 116, 136-137
abstract attribute . . . 137, 239, 244, 362

Notify Process that a Message is Available,
subclause . . . 380

Not–Supported, constant . . . 402-403, 406,
412, 424-425, 459-461, 769

No–Unit–Data–Error–On–Endpoint, constant
. . . 48, 63, 70, 475

NSAP, abbreviation . . . 36
ntohl, C function . . . 648
ntohs, C function . . . 648
Null, socket state . . . 489, 491
null, constant . . . 427-428, 430, 472
null character, definition . . . 23
null encoding, definition . . . 763
null encoding rule, definition . . . 763
null string, definition . . . 17, 23
Null–Address, constant . . . 88-89, 231, 429,

431, 507
Null–POSIX–Character, constant . . . 260,

266, 610
Null–Process–Group–ID, constant . . . 589
Null–Process–ID, constant . . . 110, 149-150,

233, 589, 593
Null–Socket–Address, constant . . . 498, 505,

511, 715, 726, 743
Null–Task–ID, constant . . . 383
Null–XTI–Address, constant . . . 411,

Alphabetic Topical Index 845

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

422-423, 430, 432, 470, 472, 765, 789,
807

Number–Of–Options, function . . . 413,
426-427

O
Object Identifiers, subclause . . . 771
Object–Identifier, type . . . 761, 766
Object–Type, type . . . 632-634
obsolescent . . . 39, 50, 52, 86-87, 199-200,

215-216, 219, 567, 591
definition . . . 11

O–CREAT, C constant . . . 615
Octet, type . . . 51
octet . . . 231
Octet–Array, type . . . 51, 231, 430, 459,

507, 527, 531, 733
Octet–Buffer, type . . . 427
Octet–Buffer–Pointer, type . . . 6, 413, 426
Odd–Parity, enumeration literal . . . 260-428,

263, 267
O–DSYNC, C constant . . . 608
O–EXCL, C constant . . . 615
Off, constant . . . 462
Offset, abstract attribute . . . 238-268,

242-243, 246
offset, file . . . 19
Okay–To–Send–Expedited–Data, constant . . .

388-389, 416, 457-458, 774
Okay–To–Send–Normal–Data, constant . . .

388-389, 416, 457
Omitting C Functions, subclause . . . 561
On, constant . . . 462
O–NOCTTY, C constant . . . 615
O–NONBLOCK, C constant . . . 614
OOB, abbreviation . . . 36
OOB–Data–Inline, constant . . . 541-458, 544
Open

function . . . 54, 98, 128-129, 205,
208-211, 214-215, 253-255, 257,
267-268, 270, 295, 298-302, 367, 369,
371-375, 598-599, 601-605, 615, 624,
632

procedure . . . 130, 211, 280-281, 283,
385, 390, 393, 409, 416, 422, 432,
435-436, 443, 446, 448, 451, 453-454,
456, 460, 464, 466, 468, 470, 472,
477-478, 480, 482-483, 613, 615, 715,
773-774, 800-801, 809

abstract attribute . . . 396
socket state . . . 491, 511, 514, 519, 718,

755
XTI event . . . 393

open
file . . . 208
generic shared memory . . . 342
message queue . . . 371
semaphore . . . 298

shared memory . . . 338
C function . . . 604-605, 615

Open a Message Queue, subclause . . . 371
Open a Shared Memory Object, subclause . . .

338
Open and Close, subclause . . . 604
open description, message queue . . . 369,

371-372, 376-377, 379
open file, definition . . . 23
open file description . . . 18

definition . . . 23
Open Files Maximum, limit . . . 84, 86, 88,

174, 187, 214, 296, 369
Open Message Queues Maximum, limit . . .

84, 86, 88, 174
open operation, definition . . . 209
Open or Create a File, subclause . . . 208
Open Questions, subclause . . . 638
Open Shared Memory, subclause . . . 342
Open–And–Map–Shared–Memory, function . . .

21, 54, 128, 333, 342-347, 632
Open–Files–Maxima, subtype . . . 43-633, 52,

83, 88, 209, 565
Open–Files–Maximum, function . . . 72, 169,

173-174, 566
Opening a Terminal Device File, subclause . . .

253
Open–Message–Queues–Maxima, subtype . . .

83, 88
Open–Message–Queues–Maximum, function

. . . 169, 173
Open–Network–Database–Connection,

procedure . . . 737-174, 745, 747, 804,
811

Open–Option–Set, type . . . 205, 208-209,
225, 339, 344, 373, 570-571, 604, 606,
642

Open–Or–Create
function . . . 54, 128-129, 177, 205,
208-211, 214-215, 254, 257, 268, 295,
298-302, 368-369, 371-375, 598, 602,
604-605, 624-625, 632, 642

procedure . . . 39, 211
Open–Or–Create–And–Map–Shared–Memory,

function . . . 21, 54, 128, 333, 342-347,
632

Open–Or–Create–Shared–Memory, function . . .
54-633, 129, 338-341, 343-344, 632

Open–Protocol–Database–Connection,
procedure . . . 738, 745, 748, 804, 811

Open–Shared–Memory, function . . . 54, 129,
337-341, 343, 345, 632

Open–Template, procedure . . . 95, 97, 99
Operation, abstract attribute . . . 239-242, 244
Operation–Canceled, constant . . . 46, 61, 71,

247, 558
Operation–In–Progress, constant . . . 46, 61,

71, 237, 247, 512, 558

846 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Operation–Not–Implemented, constant . . . 7,
46, 61, 71, 142, 147, 151-152, 227-231,
237, 240-241, 243, 245, 247-249,
251-252, 273, 276, 298, 301-304, 310,
313, 325, 327, 332, 334-335, 337, 341,
345, 347, 352-354, 361, 366, 371,
374-375, 377-379, 381-382, 422, 424,
426, 428, 430

Operation–Not–Permitted, constant . . .
46-431, 61, 71, 134, 146-147, 152,
154-155, 185, 227, 237, 298, 311-314,
326-327, 347, 352, 426

Operation–Not–Supported, constant . . . 46,
62, 71, 140, 310, 332-333, 335, 345,
355, 363

Operation–Not–Valid–For–State, constant . . .
48, 64, 71, 434-437, 440, 442, 445, 447,
450, 453, 455, 457, 467, 469, 471, 473,
475-476, 479, 481, 483, 485

Operations on POSIX Times, subclause . . .
166

Operaton, abstract attribute . . . 239
Option, abstract attribute . . . 770
option . . . 7-8, 11, 13, 20-21, 29, 34, 65,

167, 198, 600
Asynchronous I/O . . . 79, 81, 101, 104,

110, 113, 172, 202, 212, 234
Change Owner Restriction . . . 81, 187
File Synchronization . . . 80-81, 172, 228
Filename Truncation . . . 41, 67, 81, 114,

181, 184, 187, 189-190, 192, 201-203,
214, 300, 302, 340-341, 344, 374-375

ISO/OSI Protocol . . . 78-79, 81, 172, 719,
783

Internet Datagram . . . 81, 172
Internet Protocol Support . . . 555
Internet Protocol . . . 77, 81, 172, 736,

802
Internet Stream Support . . . 555
Internet Stream . . . 81, 172, 749
I . . . 242
Job Control . . . 9, 81, 103, 105, 107,

125, 151, 172, 253-254, 258-260, 269,
272, 276, 585

Memory Locking . . . 78, 81, 101, 104,
110, 113, 172, 324

Memory Mapped Files . . . 78, 81, 101,
104, 110, 113, 172, 212, 226-227, 323,
329, 331, 333, 336

Memory Protection . . . 81, 125, 172,
323-324, 331, 334, 585

Memory Range Locking . . . 81, 172, 326,
347

Message Queues . . . 81, 101, 104, 110,
113, 172, 367

Mutex Priority Ceiling . . . 81, 172,
309-310, 312

Mutex Priority Inheritance . . . 81, 172,

309-310, 356
Mutexes . . . 78-79, 81, 101, 172, 304,
314, 625

Network Management . . . 81, 172, 515,
746, 812

No Delay . . . 400
OSI Connectionless . . . 79, 81, 172, 727
OSI Connection . . . 79, 81, 172, 731
OSI Minimal [for XTI only] . . . 172
OSI Minimal . . . 81, 760
Poll . . . 81, 172, 537
Prioritized I/O . . . 81, 172, 202, 239,
241-242

Priority Process Scheduling . . . 79, 81, 101,
110, 113, 172, 239, 241-242, 303, 349,
376-377

Priority Task Scheduling . . . 81, 172, 309,
314, 319, 354, 627

Process Scheduling . . . 377
Process Shared . . . 81, 172, 308, 317,
627

Realtime Signals . . . 31, 81, 120-121,
125, 136, 138-142, 146, 172, 362, 365,
380, 585, 588, 590

Saved IDs . . . 29, 40, 81, 102, 112, 146,
153-155, 172

Select . . . 81, 172, 542
Semaphores . . . 81, 101, 103, 110, 113,
172, 295

Shared Memory Objects . . . 78, 81, 172,
212, 225-227, 323, 329, 333, 337, 342

Signal Entries . . . 39, 81, 119, 143, 581,
589

Sockets DNI . . . 172
Sockets Detailed Network Interface . . . 2,
77, 81, 211-212, 498, 555, 713, 719,
736

Synchronized I/O . . . 81, 172, 202, 218,
222, 229, 242, 251, 336

Time To Live . . . 400
Timers . . . 81, 101, 110, 113, 172, 357,
366

XTI DNI . . . 172
XTI Detailed Network Interface . . . 2, 77,
81, 211, 385, 410, 760, 783, 802

indicated by “may” . . . 11
linger . . . 213
pathname-specific . . . 77
unsupported treatment . . . 11

Option Management of a Communication
Endpoint, subclause . . . 407

Option Sets, subclause . . . 59, 570
Option–1, constant . . . 44, 59
Option–10, constant . . . 45, 59
Option–11, constant . . . 45, 59
Option–12, constant . . . 45, 59
Option–13, constant . . . 45, 59
Option–14, constant . . . 45, 59

Alphabetic Topical Index 847

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Option–15, constant . . . 45, 59
Option–16, constant . . . 45, 59
Option–17, constant . . . 45, 59
Option–18, constant . . . 45, 59
Option–19, constant . . . 45, 59
Option–2, constant . . . 45, 59
Option–20, constant . . . 45, 59
Option–21, constant . . . 45, 59
Option–22, constant . . . 45, 59
Option–23, constant . . . 45, 59
Option–24, constant . . . 45, 59
Option–25, constant . . . 45, 59
Option–26, constant . . . 45, 59
Option–27, constant . . . 45, 59
Option–28, constant . . . 45, 59
Option–29, constant . . . 45, 59
Option–3, constant . . . 45, 59
Option–30, constant . . . 45, 59
Option–31, constant . . . 45, 59
Option–4, constant . . . 45, 59
Option–5, constant . . . 45, 59
Option–6, constant . . . 45, 59
Option–7, constant . . . 45, 59
Option–8, constant . . . 45, 59
Option–9, constant . . . 45, 59
Optional Facilities, subclause . . . 50
Option–Level, type . . . 412, 424, 460
Option–Name, type . . . 412-462, 424, 460
Option–Not–Supported, constant . . . 47-462,

62, 71, 509, 514, 526, 530, 717, 719,
759

Options
subclause . . . 630
abstract attribute . . . 370, 373, 381, 404,

429-430, 432-433, 441-444, 455-456,
482, 642, 772-773, 775, 778, 800

Options and Limits, subclause . . . 567
Options Buffer, abstract attribute . . . 427-428,

441, 443-444, 455-456, 459-461, 470,
472, 474

Options Format, subclause . . . 401
Option–Set, type . . . 44, 59-60, 209, 360,

388, 419, 422, 457, 465, 517, 527, 529,
531, 537-539, 570-571, 598, 605, 630,
641, 727-728, 733, 735, 765, 790

Options–Flags, type . . . 410, 419, 459
Option–Status, type . . . 412, 424, 459
Option–Value, type . . . 401, 409, 412, 424
Option–Value–Array, type . . . 401, 409, 412,

424
optname, C type . . . 647
Orderly–Release–Data–Supported, constant . . .

410, 419, 421-422, 454
Orderly–Release–Request–Received, constant

. . . 388, 416, 457-458, 540, 543
Organization, subclause . . . 592, 598
orphaned process group . . . 103, 127

definition . . . 23

OSI, abbreviation . . . 36
OSI Connection, option . . . 78-79, 81, 172,

731
OSI Connectionless, option . . . 78-79, 81,

172, 727
OSI Minimal, option . . . 79, 81, 760
OSI Minimal [for XTI only], option . . . 172
OSI–Connection–Is–Supported, function . . .

168, 170, 172
OSI–Connectionless–Is–Supported, function . . .

168, 170, 172
OSI–Connectionless–Support, subtype . . . 76,

81
OSI–Connection–Support, subtype . . . 76, 81
OSI–Minimal–Is–Supported, function . . . 168,

170, 172
OSI–Minimal–Support, subtype . . . 76, 81
O–SYNC, C constant . . . 608
Other, I/O form parameter field name . . . 279,

283
Other–Read, enumeration literal . . . 226
Others–Execute, enumeration literal . . .

175-177, 188, 226
Others–Permission–Set, constant . . . 175
Others–Read, enumeration literal . . . 175
Others–Write, enumeration literal . . . 175
Other–Write, enumeration literal . . . 226
O–TRUNC, C constant . . . 615
Out–File, enumeration literal . . . 286
Outgoing Connect, XTI state . . . 442-177,

444, 476, 482
Outgoing Events, subclause . . . 391
Outgoing Release, XTI state . . . 391, 435,

466, 476, 482
Outgoing–Connect, constant . . . 414, 431,

450
Outgoing–Release, constant . . . 414, 431,

450
out-of-band data, definition . . . 495
Output Modes, subclause . . . 267
Output–Baud–Rate–Of, function . . . 261, 271
Output–Modes, subtype . . . 257, 261, 264,

267
Outstanding Connection Count, abstract

attribute . . . 391-393, 395, 476, 482
Outstanding–Connection–Indications, constant

. . . 48, 64, 71, 432, 434
Owner, I/O form parameter field name . . . 279,

283
owner, mutex . . . 22, 306, 313-314, 319
Owner–Execute, enumeration literal . . .

175-176, 188, 226
Owner–Of, function . . . 191
Owner–Permission–Set, constant . . . 175
Owner–Read, enumeration literal . . . 175-176,

226
Owner–Write, enumeration literal . . . 175-176,

226

848 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

P
P1003.1g, abbreviation . . . 37
Package sections, subclause . . . 556
Packaging, subclause . . . 554
page, definition . . . 23
Page Size, limit . . . 84, 86, 88, 90-91, 174,

323, 326-327, 330, 333
page size, definition . . . 23
Page–Length, function . . . 618
Page–Size, function . . . 169-337, 173
Page–Size–Range, subtype . . . 83-174, 88
Page–Terminators, I/O form parameter field name

. . . 281
parent directory, definition . . . 24
parent process . . . 26, 100, 109

definition . . . 24, 100
parent process ID, definition . . . 24
Parity–Enable, enumeration literal . . . 260,

263, 267
Parse Form Values, subclause . . . 284
Partial–Success, constant . . . 403-268, 405,

412, 424-425, 459
partition, definition . . . 24
PASC, abbreviation . . . 36
Pass Connection, XTI event . . . 394
passive task, definition . . . 38
Passive–Protection, constant . . . 784-395,

788, 790
PATH, environment variable . . . 9-791, 91,

100, 111
path prefix, definition . . . 24
pathconf, C function . . . 601
Pathname, subtype . . . 44, 56
pathname . . . 282-283

definition . . . 24
modifying . . . 183
relative . . . 29

pathname component, definition . . . 24
Pathname Limit, limit . . . 67, 114, 181,

184, 187, 189-190, 192, 201-203, 214,
300, 302, 340-341, 344, 374

Pathname Maximum, limit . . . 85-86, 88,
164

Pathname Resolution, subclause . . . 41
pathname resolution . . . 12
Pathname–Is–Limited, function . . . 195, 198,

200
Pathname–Limit, function . . . 195, 198, 200
Pathname–Limit–Maxima, subtype . . . 43, 52
Pathname–Maxima, subtype . . . 52, 83, 88
Pathname–Maximum, function . . . 196, 198,

200
Pathnames, Filenames, and User and Group

Names, subclause . . . 622
pathname-specific

limit . . . 83
option . . . 77

Pathname-Specific Options, subclause . . . 202

pause, C function . . . 591
PDU, abbreviation . . . 36
PDV, abbreviation . . . 36
Peek–Only, constant . . . 496, 499, 505,

527-528, 751
peer . . . 488, 491, 497, 506, 508-509, 511,

519, 531-532, 715-716, 726, 744
definition . . . 487

Peer–On–Same–Network, constant . . . 721,
729, 734

Pending Error, subclause . . . 494
pending signal . . . 121, 140-141, 143-144,

147
Pending–Signals, function . . . 116, 136
Perform–Output–Processing, enumeration literal

. . . 260, 263, 267
Period–Is–Infinite, function . . . 412, 423
Period–Is–Unspecified, function . . . 412-424,

423
Permission, type . . . 175-178, 180, 598
permission . . . 351-352

definition . . . 24
file access . . . 19, 39, 176

permission set, process . . . 177
Permission Sets, subclause . . . 598
Permission–Denied, constant . . . 46, 62, 71,

114, 152, 164, 181, 184, 186-188, 190,
192, 201-203, 214, 300, 302, 332, 335,
340-341, 345, 361, 373, 375, 510,
512-514, 519, 524, 526, 532, 756

permissions, change . . . 226
Permission–Set, type . . . 175-176, 372, 598
Permission–Set–Of, function . . . 39, 191
Permit Broadcast, XTI option . . . 817
Permit–Broadcast, constant . . . 817
persistence, definition . . . 25-193
pipe

create . . . 208
definition . . . 25
C function . . . 605

Pipe Length Maximum, limit . . . 85-86, 88,
217-218, 220

Pipe–Length–Is–Limited, function . . .
196-221, 198, 200

Pipe–Length–Limit, function . . . 196, 198,
200

Pipe–Length–Maxima, subtype . . . 52, 83, 88
Pipe–Length–Maximum, function . . . 196,

198, 200
Pipe–Limit–Maxima, subtype . . . 43, 52
Poll

procedure . . . 385, 390, 463, 490, 497,
508, 511, 535, 537, 539-541, 543-544

option . . . 79, 81, 172, 537
Poll for File Descriptor Events, subclause . . .

536
Poll–Error, constant . . . 535-541, 544
Poll–Events, type . . . 535

Alphabetic Topical Index 849

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

Poll–FD, type . . . 535-537, 539
Poll–FD–Array, type . . . 535, 537
Poll–FD–Array–Range, type . . . 535, 537
Poll–Is–Supported, function . . . 168, 170, 172
Poll–Support, subtype . . . 76, 81
portability . . . 1-2, 12, 25, 40, 86, 91-92,

199, 549, 555, 576, 579, 587, 622
Portability Versus Extensibility, subclause . . .

622
portable filename character set, definition . . .

25
portable pathname character set, definition . . .

25
Portable–Argument–List–Maximum, constant

. . . 43, 52, 82, 86
Portable–Asynchronous–IO–Maximum,

constant . . . 82, 86
Portable–Child–Processes–Maximum, constant

. . . 43, 52, 82, 86
Portable–Clock–Resolution–Minimum, constant

. . . 75, 82, 86, 358, 573
Portable–FD–Set–Maximum, constant . . . 82,

86, 542
Portable–Filename–Limit–Maximum, constant

. . . 43, 52, 57
Portable–Filename–Maximum, constant . . .

52, 82, 86
Portable–Groups–Maximum, constant . . . 43,

52, 82, 86
Portable–Input–Line–Limit–Maximum,

constant . . . 43, 52
Portable–Input–Line–Maximum, constant . . .

52, 82, 86
Portable–Input–Queue–Limit–Maximum,

constant . . . 43, 52
Portable–Input–Queue–Maximum, constant . . .

52, 82, 86
Portable–Link–Limit–Maximum, constant . . .

43, 52
Portable–Links–Maximum, constant . . . 52,

82, 86
Portable–List–IO–Maximum, constant . . . 82,

86
Portable–Message–Priority–Maximum,

constant . . . 82, 86
Portable–Open–Files–Maximum, constant . . .

43, 52, 82, 86, 566
Portable–Open–Message–Queues–Maximum,

constant . . . 82, 86
Portable–Pathname–Limit–Maximum, constant

. . . 43, 52, 57
Portable–Pathname–Maximum, constant . . .

52, 82, 86
Portable–Pipe–Length–Maximum, constant . . .

52, 82, 86
Portable–Pipe–Limit–Maximum, constant . . .

43, 52
Portable–Queued–Signals–Maximum, constant

. . . 82, 86
Portable–Realtime–Signals–Maximum,

constant . . . 82, 86, 125
Portable–Semaphores–Maximum, constant . . .

82, 86
Portable–Semaphores–Value–Maximum,

constant . . . 82, 86
Portable–Socket–Buffer–Maximum, constant

. . . 82, 86
Portable–Socket–Connection–Maximum,

constant . . . 82, 86
Portable–Socket–IO–Vector–Maximum,

constant . . . 82, 86
Portable–Stream–Maximum, constant . . . 43,

52
Portable–Streams–Maximum, constant . . .

52, 82, 86
Portable–Timer–Overruns–Maximum, constant

. . . 82, 86
Portable–Timers–Maximum, constant . . . 82,

86
Portable–Time–Zone–String–Maximum,

constant . . . 43, 52, 82, 86
Portable–XTI–IO–Vector–Maximum, constant

. . . 82, 86
Position, type . . . 206, 223
POSIX, package . . . 42, 419, 422, 457, 517,

527, 529, 531, 537-539, 728, 733, 765,
790

POSIX Character, definition . . . 25
POSIX character . . . 41, 77, 84-85,

199-200, 256
POSIX Characters, subclause . . . 55
POSIX I/O, definition . . . 25
POSIX process . . . 15, 24, 26

definition . . . 26
Posix Signals Are Not Interrupts, subclause . . .

39
POSIX string, definition . . . 25
POSIX Strings, subclause . . . 56
POSIX thread . . . 33, 638
POSIX.1, abbreviation . . . 36
POSIX.13, abbreviation . . . 37
POSIX.1b, abbreviation . . . 36
POSIX.1c, abbreviation . . . 36
POSIX.1i, abbreviation . . . 37
POSIX.5, abbreviation . . . 37
POSIX.5b, abbreviation . . . 37
POSIX–Ada–Version, constant . . . 42, 50
POSIX–Asynchronous–IO, package . . . 6, 54,

128, 205, 234, 602
POSIX–Calendar, package . . . 92, 149, 164,

188, 572, 595, 597, 655
POSIX–Character, type . . . 5, 15, 19-20,

24-25, 39, 44, 55-57, 66, 92, 160,
215-216, 219, 258-259, 263, 269, 272,
279, 569-570, 602, 610

POSIX–Condition–Variables, package . . . 6,

850 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

53, 306, 315, 625
POSIX–Configurable–File–Limits, package . . .

7-8, 72, 80, 87, 171, 175, 194, 255-256,
522-523, 567, 598, 600

POSIX–Configurable–System–Limits, package
. . . 7-8, 21, 32, 72, 80, 87, 102,
111-112, 114, 149, 168, 567

POSIX–Error, exception . . . 6, 18, 45, 60,
64-65, 200, 558, 575, 644

POSIX.Event–Management, package . . . 5
POSIX–Event–Management, package . . . 5-6,

128, 508, 535
POSIX–File–Locking, package . . . 128, 175,

205, 209, 232, 602, 606
POSIX–Files, package . . . 39-607, 175, 178,

323, 600-601, 604-605, 714
POSIX–File–Status, package . . . 39-41, 175,

190
POSIX–Generic–Shared–Memory, generic

package . . . 54, 128, 333, 341-342, 632
POSIX–Group–Database, package . . . 289
POSIX–IO, package . . . 205, 229-230, 600,

602
POSIX–IO.Signal–When–Socket–Ready,

constant . . . 494
POSIX–Limits, package . . . 7-8, 19, 24, 32,

52, 57, 75, 82, 86-87, 125, 199-200, 209,
256, 430, 447, 449, 469, 471, 507, 542,
566-567, 573

POSIX–Memory–Locking, package . . . 104,
110, 113, 324, 629, 633

POSIX–Memory–Mapping, package . . . 110,
328, 571, 633

POSIX–Memory–Range–Locking, package . . .
104, 110, 113, 326, 629, 633

POSIX–Message–Queues, package . . . 6-634,
54, 104, 113, 128-129, 367, 370, 373,
378, 571

POSIX–Mutexes, package . . . 6, 53, 305,
356, 625

POSIX–Options, package . . . 7-8, 21, 51, 76,
80-81, 516, 566-567, 573

POSIX–Page–Alignment, package . . . 90,
574, 630

POSIX–Permissions, package . . . 175, 280,
372, 714

POSIX–Process–Environment, package . . . 6,
91, 149, 158, 561, 570, 595

POSIX–Process–Identification, package . . .
20-596, 27, 30, 34, 149, 233, 254

POSIX–Process–Primitives, package . . . 6,
18, 26, 83, 95, 109, 129, 254, 299, 323,
362, 386, 483, 576, 595, 612

POSIX–Process–Scheduling, package . . . 349
POSIX–Process–Times, package . . . 149, 156
POSIX–Semaphores, package . . . 6, 54, 103,

113, 129, 295
POSIX–Shared–Memory–Objects

generic package . . . 632
package . . . 54, 129, 323, 337, 346, 633

POSIX–Signals, package . . . 14, 31, 54, 95,
115, 118, 129, 134, 143, 218, 223, 254,
258-260, 266, 269-270, 380, 488, 494,
496-497, 543, 572, 583, 590, 643, 732,
751

POSIX.Sockets, package . . . 5, 555, 644, 647
POSIX–Sockets, package . . . 5-6, 39,

129-130, 211, 487, 498, 713, 719, 736
POSIX.Sockets.Internet, package . . . 5, 555
POSIX–Sockets–Internet, package . . . 5-6,

736
POSIX–Sockets–Internet.Internet–Protocol,

constant . . . 516
POSIX.Sockets.ISO, package . . . 5
POSIX–Sockets–ISO, package . . . 5-6, 720,

734
POSIX.Sockets.Local, package . . . 5
POSIX–Sockets–Local, package . . . 5-6, 39,

713
POSIX–String, type . . . 25, 34, 40, 44,

56-59, 91, 153, 160, 162, 191, 288, 291,
516, 518, 561, 569-570, 602, 622, 632

POSIX–String–List, type . . . 6, 44, 58-59,
159, 570, 595

POSIX–Supplement–to–Ada–IO, package . . .
81, 281, 283-284, 612

POSIX–Task–Dispatching, identifier, pragma
parameter . . . 354

POSIX–Terminal–Functions, package . . .
130-355, 253, 260, 263

–POSIX–THEADS, C constant . . . 552
–POSIX–THREADS, C constant . . . 552, 625
POSIX–Time, type . . . 164-167, 572
POSIX–Timers, package . . . 137, 357, 572
POSIX–Unsafe–Process–Primitives, package

. . . 18-573, 26, 83, 95, 100, 108, 254,
299, 301, 323-324, 326, 331, 362, 564,
576

POSIX–User–Database, package . . . 287
POSIX–Version

constant . . . 42, 50
type . . . 169, 172

POSIX.XTI, package . . . 5
POSIX–XTI, package . . . 5-6, 130-131, 211,

410, 760, 783, 802
POSIX.XTI.Internet, package . . . 5
POSIX–XTI–Internet, package . . . 5-6, 802
POSIX.XTI.ISO, package . . . 5
POSIX–XTI–ISO, package . . . 5-6, 784
POSIX.XTI.mOSI, package . . . 5
POSIX–XTI–mOSI, package . . . 5-6, 760
Possible–File–Descriptor, type . . . 284-285,

614
Post, procedure . . . 296, 302
potentially blocking operation, definition . . .

26

Alphabetic Topical Index 851

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

pragma . . . 5
Preferred Class, XTI option . . . 796
Preferred–Class, constant . . . 786-797, 792,

797
Presentation Address, abstract attribute . . .

766, 770-773, 775-778, 780
presentation address, abstract attribute . . .

775
presentation context, definition . . . 763
Presentation Context Definition and Result

List
abstract attribute . . . 763, 768, 775,

777-778, 780
XTI option . . . 781

Presentation Context Definition and Result
Lists, subclause . . . 763

Presentation Context List
abstract attribute . . . 770
XTI option . . . 768, 781, 783

Presentation Contexts, subclause . . . 763
Presentation Item Id, abstract attribute . . .

768
Presentation Protocol Version, abstract attribute

. . . 771
Presentation Selector, abstract attribute . . .

725
Presentation–Address, type . . . 760, 764
Presentation–Context, constant . . . 761, 766
Presentation–Context–Accepted, constant . . .

761, 766, 768
Presentation–Context–Item, type . . . 761,

766, 768
Presentation–Context–List, type . . . 6, 761,

766, 768
Presentation–Context–Rejected, constant . . .

761, 766, 768
Presentation–Item–Id, type . . . 761, 766
Presentation–Selector, type . . . 720, 724
Prespecify, socket event . . . 490
primary group ID . . . 287
Priorities, subclause . . . 642
Prioritized I/O, option . . . 79, 81, 172, 202,

239, 241
Prioritized–IO–Is–Supported, function . . .

168-242, 170, 172, 196, 202
Prioritized–IO–Support, subtype . . . 76, 81
Priority

constant . . . 784, 788, 805, 815-816
pragma . . . 354
subtype . . . 309
abstract attribute . . . 638, 791
XTI option . . . 791

priority . . . 349
definition . . . 26
scheduling . . . 79

priority ceilings, testing for system support . . .
78

Priority inheritance, definition . . . 26

priority inheritance, testing for system support
. . . 78

priority of an Ada task, definition . . . 26
Priority Process Scheduling, option . . . 79,

81, 101, 110, 113, 172, 239, 241-242,
303, 349, 376

Priority Task Scheduling, option . . . 79-377,
81, 172, 309, 314, 319, 354, 627, 636

Priority–Level, type . . . 784, 788
Priority–Process–Scheduling–Is–Supported,

function . . . 168, 171
Priority–Process–Scheduling–Support, subtype

. . . 76-172, 81
Priority–Reduction, abstract attribute . . . 239,

242
Priority–Task–Scheduling–Is–Supported,

function . . . 168-243, 171
Priority–Task–Scheduling–Support, subtype . . .

76-172, 81
private memory mapping . . . 110
Private Types, subclause . . . 560
privilege . . . 13, 39-40, 77, 145, 147, 188,

201, 226-227, 298, 311-312, 325-327,
347, 352, 361, 372

Privileged and Read-Only Options, subclause
. . . 406-373

process . . . 95, 349
attributes . . . 102, 110, 112-113
background . . . 14
child . . . 15
controlling . . . 16, 103
creation failed . . . 577
creation . . . 578
definition . . . 26
equivalent to active partition . . . 38
foreground . . . 20
parent . . . 24
status . . . 107
stopped . . . 107, 127-128
system . . . 33
terminate . . . 127
termination . . . 102
wait for termination . . . 106

Process Creation, subclause . . . 99, 109, 576
Process Environment

section . . . 149
subclause . . . 592

Process Exit, subclause . . . 102, 577
process group . . . 253

background . . . 14, 125
definition . . . 26
foreground . . . 20, 103, 275
leader . . . 27
lifetime . . . 27
orphaned . . . 23, 103, 127

process group ID . . . 151-152, 276
definition . . . 27, 151

Process Group Identification, subclause . . .

852 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

151
process group leader . . . 151

definition . . . 27
process group lifetime, definition . . . 27
Process Groups, subclause . . . 253
process ID

definition . . . 27
parent . . . 24

Process ID and Process Group ID, subclause . . .
593

Process Identification Operations, subclause . . .
150

process lifetime, definition . . . 27
Process Memory Locking, subclause . . . 629
Process Permission Set, subclause . . . 177,

599
Process Primitives

section . . . 95
subclause . . . 575

process priority . . . 84, 239
Process Scheduling, option . . . 377
Process Shared

abstract attribute . . . 297, 300, 307-308,
317

option . . . 79, 81, 172, 308, 317, 627
process signal mask . . . 26
Process Template, subclause . . . 97
Process Time Accounting, subclause . . . 156
Process Times, subclause . . . 594
Process Working Directory, subclause . . . 163
Process Yield CPU, subclause . . . 353, 635
Process/Active Partition Equivalence, subclause

. . . 563
Process/Active Partition Relationship,

subclause . . . 38
Process–Group–ID, type . . . 149, 151-153,

593
Process–ID, type . . . 27, 105, 110, 149-150,

157, 233, 560, 589, 593
Process–ID–Of, function . . . 96, 104
Process–OOB–Data, constant . . . 73-107, 499,

505, 527-529, 531, 544, 717, 719, 750
Process–Shared–Is–Supported, function . . .

168-755, 171
Process–Shared–Support, subtype . . . 76-172,

81
Process–Template, type . . . 6, 95, 97, 576,

647
Process–Times, type . . . 156-157, 594
Program

I/O form parameter field value . . . 280
enumeration literal . . . 43, 52-54, 568

program
definition . . . 27
executing new . . . 100, 104, 111

Program–Error, exception . . . 6, 91, 124-125,
144, 148, 228, 314, 324, 331, 333, 579

Protect Parameters, abstract attribute . . . 735

Protection
constant . . . 784, 788
abstract attribute . . . 790, 793

Protection–Level, type . . . 784, 788, 790
Protection–Options, type . . . 324, 328-330,

334, 630
Protocol, abstract attribute . . . 518
Protocol Families, subclause . . . 487
Protocol Mappings, section . . . 713
Protocol Mappings Annex, subclause . . . 648
Protocol Number, abstract attribute . . .

516-517, 748
Protocol Option List Objects, subclause . . .

426
Protocol Option Objects, subclause . . . 424
protocol specific . . . 213, 545, 555
Protocol–Addresses–Are–Valid, function . . .

411, 419-420, 774, 801, 810
Protocol–Error, constant . . . 49, 64, 71,

434-435, 437, 440-441, 443, 445, 447,
450-453, 455, 457-458, 464-465, 467,
469, 472-473, 475-476, 479, 481, 483

Protocol–Family, type . . . 498-485, 504
Protocol–Info, type . . . 648-505, 737, 745,

747-749, 804, 811
Protocol–Not–Supported, constant . . . 47, 63,

71, 513
Protocol–Number, type . . . 498-514, 504-505,

804, 811
Protocol–Option, type . . . 401-403, 409, 412,

423-425, 767, 769, 790, 794, 797, 807
Protocol–Option–List, type . . . 6, 399, 401,

404-405, 408, 410, 413, 423, 425-429,
432, 459, 470-474, 480, 482

Protocol–Option–List–Pointer, type . . . 6,
413, 426, 443

Protocol–Options–Are–Valid, function . . . 411,
419-420, 774, 801, 810

Protocols, subclause . . . 487
protocol-specific . . . 1-2, 13, 213, 386,

400-401, 409, 420, 422-423, 428-429,
432, 434, 436, 439, 443, 453-455, 470,
472, 474-475, 477, 487-491, 493-496,
498, 505-508, 510-511, 516, 521-524,
527, 533, 544, 551, 644, 646, 715, 725,
743, 765, 773, 789, 800, 806, 809

Protocol-Specific Service Limits, subclause . . .
419

pthread–cond–timedwait, C function . . . 591
pthread–create, C function . . . 638
pthread–kill, C function . . . 590
pthread–mutex–t, C constant . . . 626
PTHREAD–SCOPE–PROCESS, C constant . . .

349
PTHREAD–SCOPE–SYSTEM, C constant . . .

349
pthread–setschedattr, C function . . . 638
Public–Data–Network–QOS, constant . . . 721,

Alphabetic Topical Index 853

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

729, 733
Purpose and Audience, subclause . . . 549
Push, constant . . . 810
Push–Data, constant . . . 410, 419, 477

Q
QOS, abbreviation . . . 37
Queue a Signal, subclause . . . 146
Queue a Signal to a Process, subclause . . .

590
Queued Signals Maximum, limit . . . 85-86,

88, 174
Queued–Signals–Maxima, subtype . . . 83, 88
Queued–Signals–Maximum, function . . . 147,

169, 173
queueing, signal . . . 120
Queue–Selector, type . . . 262-174, 274
Queue–Signal, procedure . . . 118, 121,

138-139, 146
quit character . . . 258-259, 269
Quit–Char, enumeration literal . . . 261, 272

R
range check . . . 433, 445, 447, 449, 455,

469, 471, 479, 481, 483
Rate, type . . . 784, 788, 790-791, 795, 798
Rationale and Notes, section . . . 549
Rationale for Form Parameter, subclause . . .

613
Rationale for the Current Design, subclause . . .

622
Raw, constant . . . 736, 740-741, 757
Raw–Socket, constant . . . 488-489, 493, 498,

504, 511, 528, 531, 725, 727, 740-742,
759

Read
I/O form parameter field value . . . 279
enumeration literal . . . 240, 244, 246
procedure . . . 51, 87, 128, 206, 212,

216-220, 223-224, 229-230, 235,
239-241, 244, 246-247, 250, 252, 490,
494, 496, 522, 537-538, 598, 602-603,
605, 613, 620-621, 727, 732

socket event . . . 490
read, C function . . . 605, 621
Read and Write, subclause . . . 605
Read from a File, subclause . . . 216
Read–Files, constant . . . 542, 545
Read–High, constant . . . 535-538, 540, 544
Read–Lock, enumeration literal . . . 232
Read–Normal, constant . . . 535-538, 540-541,

543
Read–Not–High, constant . . . 535-538, 540
Read–Ok, enumeration literal . . . 179-541, 189
Read–Only

constant . . . 406, 412, 424-425, 459-461

enumeration literal . . . 205, 208-210, 215,
339, 343, 372, 604, 632

read-only file system, definition . . . 28
Read–Only–File–System, constant . . . 46, 62,

71, 181, 184, 215, 227
Read–Priority, constant . . . 535-536, 538,

540-541, 544
Read–Synchronized, constant . . . 205, 208,

210, 218, 222
Read–Write

I/O form parameter field value . . . 280
constant . . . 211, 226
enumeration literal . . . 205, 208-209, 211,
214, 339, 343, 372, 604, 632

Read–Write–Execute, I/O form parameter field
value . . . 280

ready task . . . 349
definition . . . 28

real group ID . . . 155
definition . . . 28

real user ID . . . 153
definition . . . 28

Real–Time, package . . . 639
Realtime Clock, subclause . . . 358
Realtime Signals, option . . . 31, 79, 81,

120-121, 125, 136, 138-142, 146, 172,
362, 365, 380, 585, 588, 590

realtime signals . . . 123, 127
definition . . . 125

Realtime Signals Maximum, limit . . . 9,
85-86, 88, 174

Realtime–Blocking–Behavior, subtype . . . 44,
53-55, 568

Realtime–Signal, subtype . . . 116, 121, 123,
125-126, 141, 362, 380

Realtime–Signals–Are–Supported, function . . .
168, 171

Realtime–Signals–Maxima, subtype . . .
83-172, 88

Realtime–Signals–Maximum, function . . .
169, 173

Realtime–Signals–Support, subtype . . .
76-174, 81

Reason, abstract attribute . . . 779
Reason–Code, type . . . 413, 428, 772
Reassignment Time, XTI option . . . 797
Reassignment–Time, constant . . . 786, 792,

797
Receive

procedure . . . 54, 128-129, 131, 218,
368, 370, 372-373, 377-381, 387, 390,
394, 417, 435-436, 463, 465-466, 468,
490, 494-496, 502-503, 522, 526-528,
537-538, 642, 647, 727, 751-752, 754,
757, 775, 801, 809, 814

socket event . . . 490
XTI event . . . 394

Receive a Data Unit, subclause . . . 472

854 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Receive a Message from a Message Queue,
subclause . . . 377

Receive and Scatter a Data Unit, subclause . . .
469

Receive and Scatter Data or Expedited Data
Sent Over a Connection, subclause . . . 467

Receive Buffer Size, XTI option . . . 461
Receive Connection, socket event . . . 490
Receive Data Error, XTI event . . . 395
Receive Data From a Socket, subclause . . .

526-463, 647
Receive Data or Expedited Data Sent Over a

Connection, subclause . . . 465
Receive Data Unit, XTI event . . . 395
Receive Destination Address, socket option . . .

752, 759
Receive Disconnect1, XTI event . . . 395
Receive Disconnect2, XTI event . . . 395
Receive Disconnect3, XTI event . . . 395
Receive Low Water Mark

socket option . . . 528
XTI option . . . 462

Receive Message, socket event . . . 490
Receive the Confirmation from a Connection

Request, subclause . . . 441
Receive–And–Scatter–Data, procedure . . .

131-463, 387, 390, 394, 417, 430,
435-436, 467-468, 537

Receive–And–Scatter–Data–Unit, procedure . . .
131, 387, 390, 395, 399-400, 405, 409,
417, 430, 469-471, 537, 816

Receive–Buffer–Size, constant . . . 416, 458,
463

Receive–Data–Error, abstract attribute . . . 396
Receive–Data–Unit

procedure . . . 131, 387, 390, 395,
399-400, 404-405, 409, 417, 425, 427,
463, 472-473, 537, 775, 799, 802, 814,
816

abstract attribute . . . 396
Received–But–Not–Read, enumeration literal . . .

262, 274
Received–OOB–Data, constant . . . 499, 505,

529
Receive–Low–Water–Mark, constant . . . 416,

458, 463
Receive–Message, procedure . . . 129, 488,

490, 496, 503, 506-508, 526-527, 529,
538, 544, 733, 751-752, 754, 759

Receiving Only, socket state . . . 180, 491-492,
750

recvfrom, C function . . . 647
referenced shared memory object, definition . . .

29
region, definition . . . 29
Regular

I/O form parameter field value . . . 280
enumeration literal . . . 284

regular file . . . 31
definition . . . 29

Rejected–By–Peer, constant . . . 762, 772, 775
Rejected–No–Reason–Specified, constant . . .

761, 766, 768
Relation to Other POSIX Standards, subclause

. . . 549
relative pathname, definition . . . 29
relative timer . . . 364
Release

function . . . 49, 73
XTI event . . . 393

Release Delay, XTI option . . . 794
Release Failiure Probability, XTI option . . .

795
Release Failure Probability, XTI option . . .

794
Release–Delay, constant . . . 785-795, 791,

795
Release–Fail–Probability, constant . . . 785,

791, 795
Remove, procedure . . . 536, 541
Remove a Message Queue, subclause . . . 375
Remove a Named Semaphore, subclause . . .

301
Remove a Shared Memory Object, subclause . . .

341
Remove Shared Memory, subclause . . . 346
Remove–Directory, procedure . . . 178-182,

601
Remove–Notify, procedure . . . 368, 380-381,

643
Rename, procedure . . . 178, 183-185, 601
rendezvous . . . 144, 587, 589
representation clause . . . 5
representation specification . . . 5
representation support . . . 333, 631
Requested–Rate, type . . . 785, 791
Request–Notify, procedure . . . 139, 368,

380-381, 643
Required Representation Support and Shared

Variable Control, subclause . . . 333, 630
required signals . . . 123

definition . . . 123
Requirements, subclause . . . 4, 279
Requirements from POSIX.1, subclause . . .

621
reserved signal . . . 14, 113, 119-121,

123-128, 131, 133, 140-141, 362, 381,
571, 582
definition . . . 29

reserved signals . . . 134, 572
Reset, procedure . . . 615, 618
Reset–IP–Header–Options, procedure . . . 738,

756, 758
Residual Error Rate, XTI option . . . 791
Residual–Error–Rate, constant . . . 784, 788,

790

Alphabetic Topical Index 855

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

resolution, pathname . . . 41
resolution, time, definition . . . 29
Resource–Busy, constant . . . 46, 62, 72, 182,

185, 298, 312, 319, 337, 381
Resource–Deadlock–Avoided, constant . . . 46,

62, 72, 234, 303, 314
Resource–Temporarily–Unavailable, constant

. . . 47, 62, 72, 102, 111, 141-142, 147,
217, 219, 221, 223, 234, 241-242,
244-246, 250, 252, 311, 318, 325, 327,
332, 335, 345, 347, 362, 376-377, 379,
541, 558, 604

Responding Communications Endpoint,
abstract attribute . . . 391

Responding to a Negotiation Proposal,
subclause . . . 403

Response, constant . . . 459
Restart–Output, enumeration literal . . .

262-392, 274
Restore–Default–Action, procedure . . .

116-275, 134, 587
Restrictions on Implementation Extensions,

subclause . . . 557
Result, abstract attribute . . . 781
Retransmit Number, abstract attribute . . . 734
Retransmit Strategy, abstract attribute . . .

734
Retransmit Time Maximum, socket option . . .

753
Retransmit–Each–Packet, enumeration literal

. . . 722, 730, 734
Retransmit–Time–Default, constant . . . 738,

749, 753
Retrieve a Unit Data Error Indication,

subclause . . . 474
Retrieve and Define Terminal Modes and Bits

per Character, subclause . . . 270
Retrieve Bytes Transferred by AIO Request,

subclause . . . 247
Retrieve Information from Disconnect,

subclause . . . 475
Retrieve Status of AIO Request, subclause . . .

245
Retrieve–Data–Unit–Error, procedure . . . 131,

390, 395, 399-400, 404-405, 409-410,
417, 425, 427, 449, 474, 480, 537, 775,
799, 802, 816

Retrieve–Disconnect–Info
function . . . 810
procedure . . . 131, 390, 395, 418, 421,

428, 444, 475-476, 537, 771, 775, 802
Retrieving Information about Options,

subclause . . . 404
Return Status and Error Status, subclause . . .

608
Returned Events, abstract attribute . . . 537
Returned–Events, procedure . . . 540
Reuse Address, XTI option . . . 815-541, 817

Reuse–Address, constant . . . 817
RFC, abbreviation . . . 37
root directory, definition . . . 29
Root–Stream–Type, type . . . 87
round-robin-interval, definition . . . 353
Round–Robin–Within–Priorities, identifier,

pragma parameter . . . 101, 110, 113, 239
Routine, constant . . . 805, 815
RST, abbreviation . . . 37
RTS–Signals, enumeration literal . . . 44-816,

55, 131, 148
running task, definition . . . 29
runtime system . . . 2, 103, 128, 167, 279,

579, 586-587, 591, 610, 614, 616, 623

S
SA–NOCLDSTOP, C constant . . . 587
Saved IDs, option . . . 29, 40, 79, 81, 102,

112, 146, 153-155, 172
saved set-group-ID . . . 20, 26, 40, 102,

112, 155
definition . . . 29, 79

saved set-user-ID . . . 26, 34, 40, 102, 112,
146, 153
definition . . . 29, 79

Saved–IDs–Are–Supported, function . . . 169,
171

Saved–IDs–Support, subtype . . . 42-172, 76,
81

Saved–IDs–Supported, function . . . 169, 171
Scatter/Gather Vector Objects, subclause . . .

430
SCHED–FIFO, C constant . . . 351
Sched–FIFO

identifier, pragma parameter . . . 355
constant . . . 314, 319, 349, 351-353, 635

SCHED–OTHER, C constant . . . 351
Sched–Other

identifier, pragma parameter . . . 355
constant . . . 349, 351

SCHED–RR, C constant . . . 351-352
Sched–RR

identifier, pragma parameter . . . 355
constant . . . 314, 319, 349, 351

Schedule Alarm, subclause . . . 591-353
scheduling . . . 349

priority . . . 79
Scheduling Concepts and Terminology,

subclause . . . 349, 635
Scheduling Contention Scope, abstract attribute

. . . 349, 351, 635, 638
Scheduling Parameters

subclause . . . 350, 635
abstract attribute . . . 350

scheduling parameters . . . 352
Scheduling Policies, subclause . . . 351-351,

635

856 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Scheduling Policy, abstract attribute . . .
351-352, 638

Scheduling Priority, abstract attribute . . . 350,
352

Scheduling–Contention–Scope, identifier,
pragma parameter . . . 355

Scheduling–Parameters, type . . . 349-350
Scheduling–Policy

identifier, pragma parameter . . . 355
type . . . 349, 351

Scheduling–Priority, subtype . . . 349
Scope, subclause . . . 1
SDU, abbreviation . . . 37
SDU–Is–Infinite, function . . . 411-350,

420-421, 774, 810
SDU–Is–Supported, function . . . 411, 419,

421
SDU–Is–Valid, function . . . 411, 420-422,

774, 801, 810
Seconds

function . . . 165-167
type . . . 49, 74, 559

security controls . . . 146
extended . . . 39

SEDU, abbreviation . . . 37
SEDU–Is–Infinite, function . . . 411, 420
SEDU–Is–Supported, function . . . 411-421,

420
SEDU–Is–Valid, function . . . 411-421,

420-421, 801, 810
Seek

subclause . . . 606
procedure . . . 69, 206, 209-210, 223-224,

238, 598, 602-603, 606
seek, C function . . . 606
Segment Size Maximum

socket option . . . 753
XTI option . . . 813

Select, option . . . 79, 81, 172, 542
Select From File Descriptor Sets, subclause . . .

541
Select–File, procedure . . . 84, 385, 390, 463,

490, 497, 508, 511, 523, 536, 542-545,
752

Select–Is–Supported, function . . . 169, 171
Select–Support, subtype . . . 76-172, 81
Semaphore, type . . . 6, 295-296, 624
semaphore . . . 30

close . . . 301
create . . . 298
definition . . . 29
descriptor . . . 297, 299-300
initialized . . . 297
initialize . . . 297
open . . . 298
testing a file . . . 193
valid descriptor . . . 296

Semaphore and Semaphore Descriptor Types,

subclause . . . 296
semaphore decrement operation . . . 30, 302

definition . . . 30
semaphore increment operation . . . 303

definition . . . 30
Semaphore Initialization and Opening,

subclause . . . 624
Semaphore Types, subclause . . . 623
Semaphore Values, subclause . . . 625
Semaphore–Descriptor, type . . . 6, 295-296,

300, 624, 627
Semaphores

subclause . . . 637
option . . . 79, 81, 101, 103, 110, 113,
172, 295

Semaphores Maximum, limit . . . 85-86, 88,
174, 298

Semaphores Value Maximum, limit . . .
85-86, 88, 174, 297, 300

Semaphores–Are–Supported, function . . .
169, 171

Semaphores–Maxima, subtype . . . 83-172, 88
Semaphores–Maximum, function . . . 169,

173
Semaphores–Support, subtype . . . 76-174, 81
Semaphores–Value–Maxima, subtype . . . 83,

88
Semaphores–Value–Maximum, function . . .

169, 173
sem–get–value, C function . . . 625
sem–init, C function . . . 624
sem–open, C function . . . 624-174
Send

procedure . . . 54, 128-129, 131, 222,
368, 370, 372-373, 375-379, 387, 390,
393, 418, 446, 477-478, 490, 493-494,
503, 506, 530-533, 537-538, 543, 642,
647, 727, 743, 751, 754, 757, 775, 789,
802, 810

socket event . . . 490
XTI event . . . 393

Send a Data Unit, subclause . . . 479
Send a Message to a Message Queue, subclause

. . . 375
Send a Signal, subclause . . . 145, 589
Send a Signal to a Thread, subclause . . . 590
Send Application-Initiated Disconnection

Request, subclause . . . 481
Send Buffer Size, XTI option . . . 462
Send Confirmation, socket event . . . 490
Send Data or Expedited Data Over a

Connection, subclause . . . 477
Send Data Over a Socket, subclause . . .

530-463, 647
Send Data Unit, XTI event . . . 393
Send Disconnect1, XTI event . . . 393
Send Disconnect2, XTI event . . . 393
Send Low Water Mark, XTI option . . .

Alphabetic Topical Index 857

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

462-463, 477
Send Message, socket event . . . 490
Send–Break, procedure . . . 262, 274
Send–Buffer–Size, constant . . . 416-275, 458,

463
Send–Data–Unit

procedure . . . 131, 387, 390, 393,
399-403, 405-410, 418, 425, 479-480,
537, 544, 776, 783, 789, 802, 810

abstract attribute . . . 396
Send–Disconnect–Request, procedure . . . 71,

131, 390, 393, 418, 421, 429, 432, 434,
444, 456, 462, 481-482, 537, 771, 776,
802, 810

Send–Garbage, constant . . . 804, 812
Sending Only, socket state . . . 180-813, 491,

750
Send–Low–Water–Mark, constant . . . 416,

458, 463, 544
Send–Message, procedure . . . 130, 490, 493,

504, 506-508, 530-532, 538, 544, 733,
743, 751, 754

Send–Signal, procedure . . . 14, 118, 121,
138, 145, 147, 560, 586, 589

Send–Signal–For–BG–Output, enumeration
literal . . . 254-255, 261, 263, 269

sendto, C function . . . 647
Send–Two–Stop–Bits, enumeration literal . . .

260, 263, 267
Sequence, abstract attribute . . . 429-268, 432,

441, 443, 455-456, 482
Sequence Number, abstract attribute . . . 429,

482
Sequenced–Packet–Socket, constant . . .

488-489, 495, 498, 504, 511, 525,
530-532, 725, 731, 741

Sequential IO . . . 613
Sequential–IO, package . . . 286, 612
serial number, of a file . . . 19
server, definition . . . 487
Service Modes, subclause . . . 387
Service Type, abstract attribute . . . 421-613,

465
Service–Not–Supported, constant . . . 49, 64,

72, 518
Service–Type, type . . . 410, 419
session

definition . . . 30
lifetime . . . 30

Session Connection Identifiers, abstract
attribute . . . 771

session leader, definition . . . 30
session lifetime, definition . . . 30
Session Selector, abstract attribute . . . 725
Session–Selector, type . . . 720, 724
Set–Acknowledgment–Strategy, procedure . . .

722, 730
Set–Address, procedure . . . 413, 428

Set–AE–Invocation–Id, procedure . . . 760-429,
764

Set–AE–Qualifier, procedure . . . 766
Set–Allowed–Process–Permissions, procedure

. . . 175-765, 177-178, 599, 714
Set–Ancillary–Data, procedure . . . 499,

506-507, 721, 729, 733, 739, 757, 759
Set–Ancillary–Data–Array, procedure . . . 721,

729, 733
Set–AP–Invocation–Id, procedure . . . 760, 764
Set–AP–Title, procedure . . . 766
Set–Attributes, procedure . . . 368-369,

381-382, 642
Set–Blocked–Signals, procedure . . . 116, 120,

133
Set–Buffer, procedure . . . 207, 231, 235,

238, 240, 413, 426-427, 430, 506
Set–Called–Rate, procedure . . . 785-507, 791
Set–Calling–Rate, procedure . . . 786, 791
Set–Ceiling–Priority, procedure . . . 305, 309
Set–CL–Flags, procedure . . . 721-313, 727
Set–CL–Options, procedure . . . 721, 727
Set–Close–On–Exec, procedure . . . 207-728,

225
Set–Confirmation–Data, procedure . . .

721-226, 729, 733
Set–Connection–Confirmation–Data, procedure

. . . 490
Set–Connection–Data, procedure . . . 721, 729
Set–Connection–Parameters, procedure . . .

722, 730, 734
Set–Creation–Signal–Masking, procedure . . .

95, 97
Set–Data, procedure . . . 117-99, 136
Set–Disconnect–Data, procedure . . . 721-138,

729, 733
Set–Environment–Variable, procedure . . .

158, 160
Set–Error–Code, procedure . . . 45-163, 60,

65, 73
Set–Event, procedure . . . 235, 238, 240
Set–Events, procedure . . . 535
Set–Expedited–Service, procedure . . .

723-536, 731
Set–Extended–Format, procedure . . . 723,

730
Set–Family, procedure . . . 500, 515
Set–File, procedure . . . 234-516, 238, 240,

535
Set–File–Action–To–Close, procedure . . .

95-536, 97-99, 576
Set–File–Action–To–Duplicate, procedure . . .

96
Set–File–Action–To–Open, procedure . . .

95-99, 97
Set–File–Control, procedure . . . 207-99,

225-226, 255, 387, 446, 448, 456, 466,
468, 470, 472, 477, 480, 494

858 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Set–File–Times, procedure . . . 179, 187
Set–First–Hop, procedure . . . 739-188, 756,

758
Set–Flags, procedure . . . 500, 515-516, 760,

764
Set–GOSIP–Selector, procedure . . . 720-765,

724-725
Set–Group–ID

enumeration literal . . . 101, 175-177, 188,
226-227

procedure . . . 29, 101-102, 112, 150,
154-155, 577

Set–Group–ID–Set
constant . . . 175-177
enumeration literal . . . 176

Set–Header–Included, procedure . . . 739,
757, 759

sethostent, C function . . . 558
Set–Initial, procedure . . . 357, 359
Set–Initial–Time–To–Live, procedure . . .

739-360, 756, 758
Set–Internet–Address, procedure . . . 737,

740-741, 803, 806
Set–Internet–Port, procedure . . . 736-807,

740-741, 803, 806
Set–Interval, procedure . . . 357-807, 359
Set–IO–Vector–Array, procedure . . . 499-360,

505
Set–IP–Header–Options, procedure . . .

739-507, 756, 758
Set–IP–Options, procedure . . . 739, 756, 758
Set–ISO–Address

procedure . . . 720, 724, 732
type . . . 725

setjmp, C function . . . 580
Set–Keep–Alive–Interval, procedure . . . 738,

749, 752
Set–Keep–Alive–Interval–Default, procedure

. . . 804, 812
Set–Keep–Alive–Timeout, procedure . . .

804-813, 812
Set–Keep–Effective–IDs, procedure . . . 95, 97
Set–Length, procedure . . . 235-99, 238, 240
Set–Line, procedure . . . 281, 283, 618
Set–Lock, procedure . . . 232
Set–Locking–Policy, procedure . . . 305-234,

309
Set–Max–Messages, procedure . . . 367-310,

369
Set–Message–Length, procedure . . . 367-370,

369
Set–Message–Options, procedure . . . 499-370,

505
Set–Minimum–Acceptable–Rate, procedure . . .

784-785, 788
Set–Nanoseconds, procedure . . . 50, 74
Set–Negotiate–Checksums, procedure . . . 723,

731

Set–Negotiation–Result, procedure . . . 762,
767

Set–Network–Service, procedure . . . 723-768,
731

Set–No–Delay, procedure . . . 738, 749, 753
Set–Notification, procedure . . . 116, 136
Set–Offset, procedure . . . 234-137, 238, 240
Set–Operation, procedure . . . 235, 238, 240
Set–Option, procedure . . . 412-413, 424-426,

761, 766-767, 784-790, 792-794, 797,
802, 805-807, 812

Set–Options, procedure . . . 367-815, 369-370,
413, 428

Set–OSI–Address, procedure . . . 761-429, 764
Set–Page–Length, procedure . . . 618
Set–Period, procedure . . . 412, 423
Set––Period, procedure . . . 424
Set–Period–Infinite, procedure . . . 412,

423-424, 462
Set–Period–Unspecified, procedure . . . 412,

423-424, 462
Set–Presentation–Address, procedure . . . 766
Set–Presentation–Id, procedure . . . 761, 766,

768
Set–Presentation–Selector, procedure . . . 720,

724
Set–Priority, procedure . . . 26-725, 349-350,

354
Set–Priority–Reduction, procedure . . . 235,

238, 240, 608
Set–Process–Group–ID, procedure . . . 27, 30,

149, 151-152, 253, 262, 275-276, 593
Set–Process–Shared, procedure . . . 305, 308,

315, 317
Set–Protect–Parameters, procedure . . . 723,

731
Set–Protocol–Number, procedure . . . 500, 515
Set/Query Message Queue Attributes,

subclause . . . 381
Set–Receive–Destination–Address, procedure

. . . 739-516, 757, 759
Set–Retransmit–Number, procedure . . . 722,

730
Set–Retransmit–Strategy, procedure . . . 722,

730
Set–Retransmit–Time–Maximum, procedure

. . . 738, 749
Set–Returned–Events, procedure . . . 535, 537
Set–Scheduling–Parameters, procedure . . .

349, 351
Set–Scheduling–Policy, procedure . . . 350
Set–Seconds, procedure . . . 50-352, 74
Set–Sequence–Number, procedure . . . 414,

429
setservent, C function . . . 558
Set–Session–Selector, procedure . . . 720, 724
Set–Signal, procedure . . . 116-117, 136
Set–Signal–Disconnections, procedure . . .

Alphabetic Topical Index 859

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

723-138, 731
Set–Signal–Mask, procedure . . . 95, 97
Set–Socket–Broadcast, procedure . . . 130-99,

501, 519, 521
Set–Socket–Debugging, procedure . . . 130,

501, 520
Set–Socket–Group–Owner, procedure . . .

207-521, 230, 494
Set–Socket–Keep–Alive, procedure . . . 130,

501, 520, 522
Set–Socket–Linger–Time, procedure . . . 130,

501, 520
Set–Socket–Name, procedure . . . 499, 505
Set–Socket–No–Routing, procedure . . . 130
Set–Socket–OOB–Data–Inline, procedure . . .

130-506, 501, 520, 522
Set–Socket–Path, procedure . . . 713
Set–Socket–Process–Owner, procedure . . .

207-714, 230, 494
Set–Socket–Receive–Buffer–Size, procedure . . .

130, 501, 520, 522, 524
Set–Socket–Receive–Low–Water–Mark,

procedure . . . 130, 501, 520, 523
Set–Socket–Receive–Timeout, procedure . . .

67, 130, 502, 520, 523
Set–Socket–Reuse–Addresses, procedure . . .

130-524, 502, 520, 523
Set–Socket–Routing, procedure . . . 501,

520-521, 532
Set–Socket–Send–Buffer–Size, procedure . . .

130, 502, 521, 523
Set–Socket–Send–Low–Water–Mark, procedure

. . . 130-524, 502, 521, 524
Set–Socket–Send–Timeout, procedure . . . 67,

130, 502, 521, 524
Set–Socket–Type, procedure . . . 500, 515
setsockopt, C function . . . 647
Set–Source, procedure . . . 117-516, 138
Set–Standardized–Urgent–Data, procedure . . .

738, 749, 753
Set–Status, procedure . . . 412, 423, 804, 812
Set–Stopped–Child–Signal, procedure . . . 116,

127, 135, 587
Set–Syntax–Object, procedure . . . 762, 767
Set–Target–Rate, procedure . . . 784-768, 788
Set–Terminal–Characteristics, procedure . . .

130, 260, 263
Set–Throughput–Average, procedure . . .

786-265, 792
Set–Throughput–Maximum, procedure . . .

786, 791
Set–Time, procedure . . . 357, 360-361, 365,

640
Set–TP–Class, procedure . . . 722, 730
Set–TPDU–Size, procedure . . . 722, 730
Set–Transit–Delay–Average, procedure . . .

786, 792
Set–Transit–Delay–Maximum, procedure . . .

786, 792
Set–Transport–Selector, procedure . . . 720,

724-725, 732
Set–Type–Of–Service, procedure . . . 739, 756,

758
Set–User–Data, procedure . . . 413, 428
Set–User–Data–Length, procedure . . .

413-429, 428
Set–User–ID

enumeration literal . . . 175-177, 188, 226
procedure . . . 29, 101-102, 112, 146,
149, 153-154, 577

set-user-ID . . . 153
Set–User–ID–Set, constant . . . 175
Set–Window–Size, procedure . . . 722-177, 730
shall, definition . . . 11
sharable . . . 308, 317

definition . . . 308, 317
shared memory

close . . . 208
descriptor . . . 338
generic close . . . 346
generic open or create . . . 342
open or create . . . 338

shared memory object . . . 21, 323, 336,
338-341, 343-347
definition . . . 30
lose . . . 340
testing a file . . . 193

Shared Memory Objects, option . . . 78-79,
81, 172, 212, 225-227, 323, 329, 333,
337, 342

Shared Mutexes and Condition Variables,
subclause . . . 627

Shared–Access, type . . . 342, 634
Shared–Memory–Objects–Are–Supported,

function . . . 169, 171
Shared–Memory–Objects–Support, subtype . . .

76-172, 81
should, definition . . . 11
Shut Down Part of a Full-Duplex Connection,

subclause . . . 533
Shutdown, procedure . . . 130, 490-491, 504,

533, 541, 717, 750
Shutdown0, socket event . . . 490
Shutdown1, socket event . . . 490
Shutdown2, socket event . . . 490
Shutdown3, socket event . . . 490
Shutdown4, socket event . . . 490
Shutdown–Mode, type . . . 504, 533
SIGABRT, constant . . . 115, 122
sigaction, C function . . . 580-581, 586-588
SIGALRM

constant . . . 115, 122
C constant . . . 592

SIGBUS, constant . . . 115, 123
SIGCHLD, constant . . . 115, 123
SIGCONT, constant . . . 115, 123

860 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

sigevent, C type . . . 588
sigev–value, C type . . . 588
SIGFPE, constant . . . 115, 123
SIGHUP, constant . . . 115, 123
SIGILL, constant . . . 115, 123
SIGINT, constant . . . 115, 123
SIGIO, constant . . . 116, 123
SIGKILL, constant . . . 115, 123
Signal

procedure . . . 315, 319-320
type . . . 115, 122, 126, 132, 143, 586,

590
abstract attribute . . . 136-138, 142, 362

signal . . . 571-572
accept . . . 118
blocking . . . 120, 133
catching . . . 119
cause, or source . . . 118, 138, 142
default action . . . 119, 126
definition . . . 30
delivery . . . 119
exception . . . 586
generation . . . 118
ignoring . . . 134
job control . . . 123
memory protection . . . 123
null . . . 145, 147
pending . . . 120, 136
queueing . . . 120
realtime . . . 123
required . . . 123
semantic model . . . 118
sending . . . 145
sockets DNI . . . 123
standard . . . 122
valid . . . 122

signal action . . . 119-121, 126-128, 134-135,
140, 144
definition . . . 119

Signal Disconnections, abstract attribute . . .
735

Signal Entries
subclause . . . 143
option . . . 39, 79, 81, 119, 143, 581,

589
Signal Event Notification, subclause . . . 136
Signal Information, subclause . . . 137
Signal Mask, abstract attribute . . . 98, 100
signal mask, definition . . . 120
Signal Masking and Related Concepts,

subclause . . . 580
Signal Masking for Interruptible Operations,

subclause . . . 55
Signal Model, subclause . . . 118, 579
Signal Notification Model, subclause . . . 588
Signal Queueing, subclause . . . 587
signal queueing . . . 121, 137, 139, 141-142,

147, 365

definition . . . 31
Signal Sets, subclause . . . 132, 586
Signal Type, subclause . . . 122, 584
Signal–Abort, constant . . . 29, 115, 122-123,

131, 585
Signal–Abort–Ref, constant . . . 117, 143
Signal–Alarm, constant . . . 29, 115, 122-123,

585, 590, 639-640
signal-awaiting operation . . . 120, 127, 139,

142
definition . . . 118

Signal–Bus–Error, constant . . . 29, 115, 123,
125, 228, 323

Signal–Child, constant . . . 103-324, 115,
119, 123-124, 127, 135, 587

Signal–Child–Ref, constant . . . 117, 143
Signal–Continue, constant . . . 103, 115, 121,

123-124, 127-128, 146
Signal–Continue–Ref, constant . . . 117, 143
Signal–Data, type . . . 116, 136-137, 588
Signal–Entries–Support, subtype . . . 76, 81
Signal–Event, type . . . 116, 136-137, 362,

380, 588
Signal–Floating–Point–Error, constant . . . 29,

115, 123
Signal–Hangup, constant . . . 103-124, 115,

123-124, 259
Signal–Hangup–Ref, constant . . . 117, 143
Signal–Illegal–Instruction, constant . . . 29,

115, 123
Signal–Info, type . . . 117-124, 137-139, 588
Signal–Interrupt, constant . . . 115, 123-124,

258, 266
Signal–Interrupt–Ref, constant . . . 117, 143
Signal–IO, constant . . . 31, 116, 123, 125,

211, 494, 497
Signal–Kill, constant . . . 115, 123-124,

126-127, 133-134, 586
Signal–Masking, type . . . 44, 55, 131, 148
Signal–Notification, constant . . . 116, 136,

244, 362
Signal–Null, constant . . . 115, 122-123, 126,

132, 145-147, 586, 590
Signal–Out–Of–Band–Data

constant . . . 116, 123, 125, 732, 751
subtype . . . 496

Signal–Pipe–Write
constant . . . 115, 123-124, 488
subtype . . . 496

Signal–Pipe–Write–Ref, constant . . . 117, 143
Signal–Quit, constant . . . 115, 123-124, 258
Signal–Quit–Ref, constant . . . 117, 143
Signal–Reference, function . . . 117, 143, 145,

586
Signals, subclause . . . 496
signals defined by this standard . . . 29

definition . . . 123
Signal–Segmentation–Violation, constant . . .

Alphabetic Topical Index 861

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

29, 115, 123-124, 324
Signal–Set, type . . . 116, 132, 543, 586
Signal–Source, type . . . 117, 137
Signal–Stop, constant . . . 115-138, 121, 123,

125-127, 133-134, 586
Signal–Terminal–Input, constant . . . 115,

121, 123, 125, 127, 218, 254
Signal–Terminal–Input–Ref, constant . . . 117,

143
Signal–Terminal–Output, constant . . . 115,

121, 123, 125, 127, 223, 254-255, 260,
269

Signal–Terminal–Output–Ref, constant . . .
117-270, 143

Signal–Terminal–Stop, constant . . . 115, 121,
123, 125, 127, 258

Signal–Terminal–Stop–Ref, constant . . . 117,
143

Signal–Terminate, constant . . . 115, 123
Signal–Terminate–Ref, constant . . . 117-124,

143
Signal–User–1, constant . . . 115, 123
Signal–User–1–Ref, constant . . . 117-124, 143
Signal–User–2, constant . . . 115, 123
Signal–User–2–Ref, constant . . . 117-124, 143
Signal–When–Socket–Ready, constant . . . 31,

205, 208, 211, 494
SIGNULL, constant . . . 115, 122
sigpause, C function . . . 591
SIGPIPE, constant . . . 115, 123
sigqueue, C function . . . 590
SIGQUIT, constant . . . 115, 123
SIGSEGV, constant . . . 115, 123
SIGSTOP, constant . . . 115, 123
sigsuspend, C function . . . 561, 589
SIGTERM, constant . . . 115, 123
sigtimedwait, C function . . . 588
SIGTSTP, constant . . . 115-589, 123
SIGTTIN, constant . . . 115, 123
SIGTTOU, constant . . . 115, 123
SIGURG, constant . . . 116, 123
SIGUSR1, constant . . . 115, 123
SIGUSR2, constant . . . 115, 123
sigwait, C function . . . 561, 580-581, 586,

589
sigwaitinfo, C function . . . 580-581, 588-591
Size

attribute . . . 629
abstract attribute . . . 527, 531

Size–Of, function . . . 191
Skip–Page, procedure . . . 618-194
slash . . . 299, 338, 372

definition . . . 31
sleep, C function . . . 561, 591, 641
Small, attribute . . . 573
socket, definition . . . 487
Socket Addresses, subclause . . . 505, 646
Socket Broadcast, socket option . . . 521, 752,

755
Socket Buffer Maximum, limit . . . 85-86, 88
Socket Connection Status, subclause . . . 496
Socket Debugging, socket option . . . 521, 752,

755
Socket File Ownership, subclause . . . 230
Socket I/O Mode, subclause . . . 494
Socket IO Vector Maximum, limit . . . 85-86,

88, 174
Socket Keep Alive

option . . . 541
socket option . . . 522, 752, 755

Socket Linger Time
abstract attribute . . . 559
socket option . . . 522, 750

Socket Messages, subclause . . . 505
Socket OOB Data Inline, socket option . . .

522, 751-752, 755
socket option

Confirmation Data . . . 732
Connection Parameters . . . 734
Disconnect Data . . . 732
Header Included . . . 752
IP Header Included . . . 755, 757, 759
Initial Time To Live . . . 759
Keep Alive Interval . . . 752
No Delay . . . 753
Receive Destination Address . . . 752, 759
Receive Low Water Mark . . . 528
Socket Broadcast . . . 521, 752, 755-756
Socket Debugging . . . 521, 752, 755
Socket Keep Alive . . . 522, 752, 755
Socket Linger Time . . . 522, 750
Socket OOB Data Inline . . . 522, 751-752,
755

Socket Receive Low Water Mark . . . 522-523
Socket Receive Timeout . . . 523
Socket Reuse Addresses . . . 523, 742, 752,
755

Socket Routing . . . 521, 752-753, 755-757,
759

Socket Send Buffer Size . . . 523
Socket Send Low Water Mark . . . 524
Socket Send Timeout . . . 488, 524
Source Route . . . 758
Standardized Urgent Data . . . 751, 753
Type Of Service . . . 758

Socket Options, subclause . . . 646
Socket Out-of-Band Data State, subclause . . .

495
Socket Owner, subclause . . . 494
Socket Queue Limits, subclause . . . 494
Socket Queued Connect Maximum, limit . . .

86
Socket Queued Connection Maximum, limit . . .

85, 88
Socket Receive Buffer Size, socket option . . .

522

862 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Socket Receive Low Water Mark, socket option
. . . 522

Socket Receive Queue, subclause . . . 494
Socket Receive Timeout, socket option . . . 523
Socket Reuse Addresses, socket option . . .

523-523, 742, 752, 755
Socket Routing, socket option . . . 521,

752-753, 755-757, 759
Socket Send Buffer Size, socket option . . . 523
Socket Send Low Water Mark, socket option . . .

523
Socket Send Timeout, socket option . . .

488-524, 524
Socket State Elements, subclause . . . 493
Socket Type, abstract attribute . . . 516-518
socket type . . . 487, 504, 513, 516-518, 530

definition . . . 488
Socket Types, subclause . . . 488
Socket Types and Protocols, subclause . . . 504
Socket–Address, type . . . 644, 646
Socket–Address–Info, type . . . 69, 500, 515,

517-518, 715, 726, 744
Socket–Address–Info–List, type . . . 6, 500,

515, 517
Socket–Address–Pointer, type . . . 488, 498,

505, 508-509, 527, 715, 725-726, 742
Socket–Buffer–Is–Limited, function . . .

196-743, 198, 200
Socket–Buffer–Limit, function . . . 196, 198,

200
Socket–Buffer–Maxima, subtype . . . 83, 88
Socket–Connection–Maxima, subtype . . . 83,

88
Socket–IO–Vector–Maxima, subtype . . . 83,

88, 507
Socket–IO–Vector–Maximum, function . . .

169, 173
Socket–Is–At–OOB–Mark, function . . .

130-174, 496, 504, 534, 752
Socket–Message, type . . . 498, 505-507, 527,

529-530, 532, 715, 726, 744
Socket–Option–Value, type . . . 501, 519
Socket–Retransmit–Time, type . . . 738, 749
Sockets Detailed Network Interface, option . . .

2, 65, 77, 80-81, 211-212, 498, 555, 644,
713, 719, 736

Sockets DNI, option . . . 172
Sockets DNI signals . . . 127

definition . . . 125
Sockets Protocol Mappings, subclause . . . 713
Sockets–Blocking–Behavior, constant . . . 43,

53, 55
Sockets–DNI–Is–Supported, function . . . 169,

171
Sockets–DNI–Support, subtype . . . 76-172,

81
Socket–Type, type . . . 498, 504
Socket–Type–Not–Supported, constant . . .

47-505, 63, 72, 211, 215, 513
Source, abstract attribute . . . 138, 142
Source Route, socket option . . . 758
Special

I/O form parameter field value . . . 280
enumeration literal . . . 43, 52-54, 568

Special Characters, subclause . . . 258
Special Control Characters, subclause . . . 272
Special–Control–Character–Of, function . . .

261, 272
Specify–Peer, procedure . . . 490-273, 499,

506, 510-511, 531
Split, procedure . . . 50, 74-75, 165-167, 573
Standard, package . . . 6, 39, 50, 56, 279,

619
standard error . . . 620
Standard input . . . 614
Standard output . . . 614
Standard Signals, subclause . . . 122, 585
Standard–Error

constant . . . 205, 208-209, 281, 603
function . . . 620

Standard–Input
constant . . . 205, 208-209, 603
function . . . 280-282, 615, 617

Standardized Urgent Data, socket option . . .
751-618, 753

Standard–Output
constant . . . 205, 208-209, 603, 605
function . . . 280-282, 615, 618

Start–Char, enumeration literal . . . 261, 272
Start–Process, procedure . . . 18, 26, 83,

96-97, 99-100, 102, 114, 152, 159, 189,
254, 323, 362, 386, 483, 575, 577, 612,
647

Start–Process–Search, procedure . . . 18, 26,
83, 96-97, 99-100, 102, 114, 152, 159,
254, 323, 362

start/stop input control, definition . . . 266
start/stop output control, definition . . . 266
State, subclause . . . 489
state - sockets

Bound . . . 493, 511, 754-755
Confirming . . . 491, 496
Connected . . . 180, 488, 490-491, 496,
514, 524, 750

Connecting . . . 489, 491, 511, 540
Dead . . . 492, 750
Failed . . . 490-491, 511
Ground . . . 489, 491, 493, 511, 715,
717, 726, 744, 754

Listening . . . 213, 491, 509, 540, 544,
716-717, 750

Null . . . 489
Open . . . 511, 514, 519, 718, 755
Receiving Only . . . 180, 491-492, 750
Sending Only . . . 180, 491, 750
Unbound . . . 755

Alphabetic Topical Index 863

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

state - XTI
Data Transfer . . . 407, 409, 422, 435,

439, 442, 451, 453, 466, 476, 478, 482,
773, 800, 808

Idle . . . 406, 408, 432, 439, 444, 456,
476, 485, 772, 779, 793, 799, 808

Incoming Connect . . . 406, 456, 476, 482,
779, 793

Incoming Release . . . 391, 453, 476, 478,
482

Outgoing Connect . . . 442, 444, 476, 482
Outgoing Release . . . 391, 435, 466, 476,

482
Unbound . . . 211, 409, 432, 439-440,

772, 799, 808, 813-815
Uninitialized . . . 391, 406, 440, 450-451,

458, 461, 465, 484, 779, 782, 793, 798,
813

State Tables, subclause . . . 395
State–Change–In–Progress, constant . . .

49-815, 64, 72, 451, 484
States and Events, subclause . . . 391
Status

type . . . 190-191, 193, 598, 600
abstract attribute . . . 401-403, 405-406,

425, 459-460, 769
status

file . . . 192
of an AIO request . . . 245, 251
process . . . 107

Status Code, abstract attribute . . . 242-248,
250, 252

Status–Available, function . . . 96, 104-106,
108

Stop–Char, enumeration literal . . . 261, 272
stopped process . . . 105, 107

continuing . . . 128
stopping . . . 127

Stopped–By–Signal, enumeration literal . . . 96,
104

Stopped–Child–Signal–Enabled, function . . .
116-106, 135, 587

Stopping–Signal–Of, function . . . 96, 104,
106

Storage, type . . . 648, 748-749
storage

allocation . . . 97-98
reclamation . . . 97, 577

storage unit . . . 23, 84, 323, 326, 330,
332-337, 343
definition . . . 31

storage units . . . 84
Storage–Array, type . . . 89
Storage–Count, subtype . . . 89
Storage–Element, type . . . 89
Storage–Elements, package . . . 23, 84, 550,

574
Storage–Error, exception . . . 6, 324

Storage–Offset, type . . . 89
Storage–Unit, constant . . . 31
Stream, type . . . 51
Stream I/O, subclause . . . 621
Stream sockets for local IPC, subclause . . .

716
Stream–Element, type . . . 87, 569
Stream–Element–Array, type . . . 51, 57, 87,

215-216, 219, 238, 376-377, 569, 574,
602, 609, 621, 642

Stream–Element–Count, subtype . . . 87
Stream–Element–Offset, type . . . 87
Stream–IO, package . . . 621
Stream–Maxima, subtype . . . 43, 52
Stream–Maximum, function . . . 169, 173
Streams, package . . . 238, 621
Streams Maximum, limit . . . 85-86, 88, 174
Streams–Maxima, subtype . . . 52, 83, 88
Streams–Maximum, function . . . 169, 173
Stream–Socket, constant . . . 180-174,

488-489, 498, 504, 511, 519, 525,
530-532, 714, 716, 740-741, 749

Strictly Conforming POSIX.5 Application . . .
2, 4, 11, 76, 83, 95, 109, 131, 140
subclause . . . 8

String, type . . . 57, 285
String Lists, subclause . . . 58, 570
String–To–Internet–Address, function . . .

737, 745-746, 803, 811
Strip–Character, enumeration literal . . . 260,

263, 265
Success, constant . . . 402-403, 405, 412,

424-425, 459-461
successfully transferred . . . 32

definition . . . 31
Summary, subclause . . . 409
supplementary group ID . . . 18, 20, 26, 32,

77, 84, 102, 112, 149, 155, 201
definition . . . 31

Supplementary Groups, subclause . . . 593
Supplements, subclause . . . 408
supported, definition . . . 11
Suppress–Error–PDUs, constant . . . 721, 726
Surrogate–File–Descriptor–Mismatch, constant

. . . 49-727, 64, 72, 434, 799
suspend character . . . 258-259, 269, 272
Suspend Process Execution, subclause . . . 591
Suspend–Char, enumeration literal . . . 261,

272
Suspend–Output, enumeration literal . . . 262,

274
SYN, abbreviation . . . 37-275
Synchronization

section . . . 295
subclause . . . 623

synchronization point, task abortion . . . 320
Synchronization Scheduling, subclause . . .

356, 637

864 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Synchronize Communications Endpoint,
subclause . . . 483

Synchronize the State of a File, subclause . . .
228

Synchronized I/O, option . . . 80-81, 172,
202, 218, 222, 229, 242, 251, 336

synchronized I/O completion . . . 230, 252
definition . . . 32

synchronized I/O data integrity completion . . .
32, 80, 210, 218, 222, 230, 251
definition . . . 32

synchronized I/O file integrity completion . . .
32, 80, 210, 218, 222, 229, 251
definition . . . 32

synchronized I/O operation, definition . . . 32
Synchronize–Data, procedure . . . 207,

229-230, 236, 247, 251
Synchronized–IO–Is–Supported, function . . .

169-252, 171-172, 196, 202
Synchronized–IO–Support, subtype . . . 76, 81
Synchronize–Endpoint

function . . . 211, 386, 390-391, 418,
483-484, 776

procedure . . . 131
Synchronize–File, procedure . . . 207,

228-230, 236, 247, 251
Synchronize–Memory, procedure . . . 329-252,

336-337, 630
Synchronize–Memory–Options, type . . . 328,

336, 571, 630
synchronous I/O operation . . . 32

definition . . . 32
Synchronously Accept a Signal, subclause . . .

589
Synchronous–Task–Control, package . . . 626
Syntax Object Identifier List, XTI option . . .

768
Syntax–Object–List, type . . . 6, 762, 767
sys/stat.h, C header file . . . 9
System, package . . . 23-768, 31, 84, 88,

231, 429, 431
system

definition . . . 33
C function . . . 9

System Call Exception Errors, subclause . . .
39

system crash . . . 25
definition . . . 33

System Databases
section . . . 287
subclause . . . 621

system documentation, definition . . . 12
System Identification, subclause . . . 73, 575
System Limits, subclause . . . 52
system process, definition . . . 33
system reboot . . . 25

definition . . . 33
system resources, definition . . . 26

System Time, subclause . . . 595
System–CPU–Time–Of, function . . . 156
System–CPU–Time–of, function . . . 157
System–Name, function . . . 49-157, 73
System–POSIX–Ada–Version, function . . .

169, 172
System–POSIX–Version, function . . .

169-173, 172
System–Process–ID, constant . . . 149
System–Storage–Elements, package . . .

89-150, 550, 574
System–Wide, identifier, pragma parameter . . .

349, 351, 355

T
TACCES, constant . . . 48, 63
TADDRBUSY, constant . . . 49, 64
tar, utility or shell program . . . 2
Target Rate, abstract attribute . . . 790
task . . . 33, 349, 599

abortion synchronization point . . . 320
definition . . . 33
equivalent to thread . . . 38
interaction with fork . . . 109
running . . . 29
unsafe Ada I/O . . . 564

Task Creation Attributes Pragma, subclause
. . . 355

task dispatching policy . . . 354
task dispatching policy identifier . . . 354
Task Dispatching Policy Pragma, subclause . . .

354, 637
Task Identification, subclause . . . 643
Task Management, section . . . 383
Task Scheduling, subclause . . . 354, 636
Task Signal Entries, subclause . . . 591
Task Yield CPU, subclause . . . 355
Task–Attributes, package . . . 643
Task–Creation–Attributes, pragma . . . 355
Task–Dispatching–Policy, pragma . . . 354
Task–ID, type . . . 38-355, 148, 383
tasking safe . . . 564
Tasking Safety, subclause . . . 127, 584
tasking unsafe . . . 564
Tasking-Safe Operations, subclause . . . 564
Tasks

I/O form parameter field value . . . 280, 615
enumeration literal . . . 43, 52-54, 568

Task/Thread Equivalence, subclause . . . 564
Task/Thread Relationship, subclause . . . 38
TBADADDR, constant . . . 48, 63
TBADDATA, constant . . . 48, 63
TBADF, constant . . . 48, 63
TBADFLAG, constant . . . 48, 63
TBADNAME, constant . . . 48, 63
TBADOPT, constant . . . 48, 63
TBADQLEN, constant . . . 48, 63
TBADSEQ, constant . . . 48, 63

Alphabetic Topical Index 865

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

TBUFOVFLW, constant . . . 48, 63
TCP, constant . . . 736, 740
TCP–Keep–Alive–Interval, constant . . .

804-741, 812
TCP–Level, constant . . . 802, 806
TCP–No–Delay, constant . . . 804, 812
TCP–Segment–Size–Maximum, constant . . .

804, 812
template, process . . . 97
TERM, environment variable . . . 92
terminal . . . 224, 282-283, 615-616

baud rates . . . 271
control modes . . . 267
controlling . . . 16
defining modes . . . 270
generating pathname . . . 276
input modes . . . 265
line control . . . 274
local modes . . . 268
output modes . . . 267
retrieving modes . . . 270

Terminal Access Control, subclause . . . 254
Terminal Characteristics, subclause . . . 262
terminal device . . . 255, 257, 259-260,

264-266, 275
definition . . . 33

Terminal Operations, subclause . . . 224
terminal [terminal device], definition . . . 33
Terminal–Action–Times, type . . . 260, 263
Terminal–Characteristics, type . . . 256, 260,

262-263, 270-271, 610
Terminal–Input, I/O form parameter field name

. . . 280
Terminal–Input–Values, type . . . 284
Terminal–Modes, type . . . 260-285, 263-264,

270
Terminal–Modes–Of, function . . . 261, 270
Terminal–Modes–Set, type . . . 253-271, 261,

270
Terminated–By–Signal, enumeration literal . . .

96, 104
termination, process . . . 105-106, 127
Termination Status, subclause . . . 104
Termination–Cause, type . . . 96, 104
Termination–Cause–Of, function . . . 96-105,

104
Termination–Signal–Of, function . . . 96-106,

104
Termination–Status, type . . . 96-106,

104-105, 578
Terminology, subclause . . . 10
Terminology and General Requirements

section . . . 9
subclause . . . 563

text file . . . 613
Text–IO, package . . . 280-283, 568, 605,

611-612, 614-615, 617
Text–IO–Blocking–Behavior, subtype . . .

43-620, 52, 54, 81, 280
TFLOW, constant . . . 48, 63
The Controlling Terminal, subclause . . . 253
The Option Value =t Unspecified, subclause . . .

408
The =t Communications–Provider–Info

Argument, subclause . . . 409
The Use of Options, subclause . . . 399
thread, equivalent to task . . . 38
thread of control . . . 33, 349

definition . . . 33
Thread Scheduling Pragmas vs. Environment

Variables, subclause . . . 638
Threads Considerations, subclause . . . 629
Thread-Specific Data, subclause . . . 643
Throughput

constant . . . 785, 791, 794
XTI option . . . 409, 794

Throughput Average, abstract attribute . . .
795

Throughput Maximum, abstract attribute . . .
795

Throughput–Rate, type . . . 785, 791, 795
Tick Count, subclause . . . 594
Tick–Count, type . . . 156-157, 572, 594
Ticks–Per–Second, constant . . . 156
Time, type . . . 165-166, 572-573, 595, 597
time

CPU . . . 100, 109, 157
accounting . . . 109
last access . . . 102, 114
C function . . . 561, 595

Time Information, subclause . . . 165
Time To Live, option . . . 400
Time Types, subclause . . . 74, 572
time zone . . . 92-93, 164, 166-167, 597
Time Zone String Maximum, limit . . . 85-86,

88, 92, 174
Timed–Out, constant . . . 47, 62, 72, 321,

497, 512, 732
Timed–Wait, procedure . . . 306, 310, 312,

315, 319
Time–Error, exception . . . 166
Time–Of, function . . . 165-167
timer . . . 13, 17, 29, 33

arm . . . 13
definition . . . 33
disarm . . . 17

Timer Creation, subclause . . . 640
Timer Operations, subclause . . . 363, 641
timer overrun, definition . . . 33
Timer Overruns Maximum, limit . . . 85-86,

88, 174
Timer State and Timer Options, subclause . . .

359
TIMER–ABSTIME, C constant . . . 641
timer–create, C function . . . 640
Timer–ID, type . . . 137, 357-358, 640

866 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Timer–Options, type . . . 357, 359-360, 641
Timer–Overruns–Maxima, subtype . . . 83, 88
Timer–Overruns–Maximum, function . . . 170,

173-174, 365
Timers, option . . . 80-81, 101, 110, 113,

172, 357, 366
Timers Maximum, limit . . . 85-86, 88, 174
Timers–Are–Supported, function . . . 169, 171
timer–settime, C function . . . 641
Timers–Maxima, subtype . . . 83-172, 88
Timers–Maximum, function . . . 170, 173-174,

362
Timers–Support, subtype . . . 76, 81
Timer–State, type . . . 357, 359, 640
Timespec, type . . . 49, 74-75, 165-166, 321,

360-361, 364-366, 572-573, 640
timespec, C type . . . 558, 560, 572
time–t, C type . . . 572, 595
Time–To–Live, type . . . 739, 756
timeval, C type . . . 558
Time-Zone Information, subclause . . . 92
Time–Zone–String–Maxima, subtype . . . 43,

52, 83, 88
Time–Zone–String–Maximum, function . . .

170, 173
TINDOUT, constant . . . 48-174, 64
TLOOK, constant . . . 48, 63
/tmp, file or path name . . . 9
TNOADDR, constant . . . 48, 63
TNODATA, constant . . . 48, 63
TNODIS, constant . . . 48, 63
TNOREL, constant . . . 48, 63
TNOSTRUCTYPE, constant . . . 49, 64
TNOTSUPPORT, constant . . . 49, 64
TNOUDERR, constant . . . 48, 63
To–Address, function . . . 89
To–Duration, function . . . 50-90, 74
To–Integer, function . . . 90
Too–Many–Links, constant . . . 47-75, 62, 72,

181, 185
Too–Many–Open–Files, constant . . . 47, 62,

72, 187, 214, 300, 340, 345, 374, 509,
513

Too–Many–Open–Files–In–System, constant . . .
47-514, 62, 72, 187, 214, 300, 340, 345,
374, 509, 513

Top, constant . . . 784-514, 788, 791
To–POSIX–String, function . . . 44, 56-57,

611
To–POSIX–Time, function . . . 164-166, 597
To–Stream–Element–Array, function . . . 44,

56
To–String, function . . . 44-57, 56-57, 611
To–Time, function . . . 164
To–Timespec, function . . . 50-166, 74-75,

164-166, 573
TOUTSTATE, constant . . . 48, 64
To–Wide–String, function . . . 44, 56

TP, abbreviation . . . 37
TP - ISO Transport Protocol, subclause . . .

729
TP Class, abstract attribute . . . 735
TP Flags, socket option . . . 733
TP–Acknowledgment–Strategy, type . . .

722-57, 730
TP–Ancillary–Data, type . . . 721, 729, 733
TP–Ancillary–Data–Type, type . . . 721, 729,

733
TP–Class, type . . . 722, 730
TP–Class–0, constant . . . 722, 730, 735
TP–Class–1, constant . . . 722, 730
TP–Class–2, constant . . . 722, 730
TP–Class–3, constant . . . 722, 730
TP–Class–4, constant . . . 722, 730, 735
TPDU, abbreviation . . . 37
TPDU Length Maximum, XTI option . . . 796
TPDU Size, abstract attribute . . . 734-797
TPDU–Length–Maximum

constant . . . 786, 792, 797
XTI option . . . 797

TPDU–Size, type . . . 722, 730
TP–Flags, type . . . 721, 729, 733
TP–Network–Service, type . . . 723, 731
TP–Retransmit–Strategy, type . . . 722, 730
TPROTO, constant . . . 49, 64
TPROVMISMATCH, constant . . . 48, 63
TQFULL, constant . . . 48, 63
Transfer Failure Probability, XTI option . . .

794
transfer syntax, definition . . . 763
Transfer–Fail–Probability, constant . . .

785-795, 791
Transfer–Syntax–Not–Supported, constant . . .

761, 766, 768
Transit Delay, XTI option . . . 794
Transit Delay Average, abstract attribute . . .

795
Transit Delay Maximum, abstract attribute . . .

795
Transit–Delay–Rate, type . . . 785, 791, 795,

798
Transition Actions, subclause . . . 395
Transmit–Start, enumeration literal . . . 262,

274
Transmit–Stop, enumeration literal . . .

262-275, 274
Transport Selector, abstract attribute . . .

725-275, 732
transport selector, abstract attribute . . . 725
Transport–Class, type . . . 787, 792
Transport–Class–2, constant . . . 408
Transport–Selector, type . . . 720, 724
TRESADDR, constant . . . 49, 64
TRESQLEN, constant . . . 48, 63
Truncate

constant . . . 205, 208, 210-211, 339-340,

Alphabetic Topical Index 867

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

345, 604
enumeration literal . . . 214

Truncate a File to A Specified Length,
subclause . . . 606

Truncate File to A Specified Length, subclause
. . . 227

Truncate–File, procedure . . . 207, 227-228,
343

Truncate–To–Page, function . . . 90
Try–Again, constant . . . 49, 64, 72, 518
Try–Lock, function . . . 305-306, 313-314, 558
Try–Wait, function . . . 296, 302-303, 558,

624
TSAP, abbreviation . . . 37
TSDU, abbreviation . . . 37
TSTATECHNG, constant . . . 49-625, 64
Type Of Service, socket option . . . 758
Type of Service, XTI option . . . 815-816
Type–Of–Service

constant . . . 816
type . . . 816

Types and Constants, subclause . . . 640
TZ, environment variable . . . 85, 92, 164-167,

572, 597

U
UDP, constant . . . 736, 740
UDP Checksum, XTI option . . . 814
UDP–Checksum, constant . . . 805-741, 814
UDP–Level, constant . . . 802, 806
umask, C function . . . 599
Unaffected Implementation Dependencies,

subclause . . . 618
uname, C function . . . 575
Unbind

procedure . . . 131, 390, 393, 418, 432,
439, 484-485, 776

abstract attribute . . . 396
XTI event . . . 393

Unblocking from a Wait on a Semaphore,
subclause . . . 625

Unblock–Signals, procedure . . . 116, 120,
133, 583

Unbound
constant . . . 414, 431, 450
abstract attribute . . . 396
socket state . . . 755
XTI state . . . 211, 409, 432, 439-440,

772, 799, 808, 813
Unchecked–Conversion, generic function . . .

51-815, 57, 137, 571, 605, 642
undefined . . . 7, 14, 23, 33, 58, 65, 93,

101, 109, 119, 125, 138, 140, 142, 161,
163, 210-211, 216, 219, 224, 231, 237,
239, 241-242, 247, 250, 257-259,
296-298, 301, 306-308, 311, 313-318,
320, 324, 331, 339, 343-344, 362-363,
365, 373-374, 379, 385, 424, 427, 430,

471, 473, 518, 527, 581, 586, 607-608,
624, 633, 751, 753
definition . . . 12

unhandled exception . . . 105, 282, 577, 612
Unhandled–Exception–Exit, constant . . . 96,

103-104, 577
Unignore–Signal, procedure . . . 116, 119,

134-135, 140, 583
Uninitialized

constant . . . 414, 431
abstract attribute . . . 396
XTI state . . . 391, 406, 440, 450-451,
458, 461, 465, 484, 779, 782, 793, 798,
813

Unit–Data–Error–Code, type . . . 417-815,
474

Unknown–Address–Type, constant . . . 49, 64,
72, 518

Unknown–Protocol–Family, constant . . . 49,
64, 72, 518

Unknown–Socket–Type, constant . . . 49, 64,
73, 518

Unlink, procedure . . . 178-182, 323, 604-605,
715

Unlink–Message–Queue, procedure . . . 368,
375

Unlink–Semaphore, procedure . . . 295,
299-302, 632

Unlink–Shared–Memory, procedure . . . 323,
338, 341, 346, 632

Unlock
enumeration literal . . . 232-233
procedure . . . 305-306, 313-314

unlock
a mutex . . . 311-312, 314, 320-321
a range of pages . . . 327
all pages in memory . . . 325

Unlock–All, procedure . . . 324-325, 334
Unlock–Range, procedure . . . 326-327, 334,

347
Unlock–Shared–Memory, procedure . . . 342,

346
Unmap Memory, subclause . . . 333
Unmap–And–Close–Shared–Memory, procedure

. . . 342-347, 346
Unmap–Memory, procedure . . . 328, 333-334,

346
Unrecognized–AE–Qualifier, constant . . . 762,

772, 775
Unrecognized–AP–Title, constant . . . 762,

772, 775
Unspecified

constant . . . 408-409, 416, 458, 739,
756, 758, 797

enumeration literal . . . 787, 792, 795, 798
unspecified . . . 7-8, 15, 21, 32-33, 41, 89,

92, 107, 109-110, 113, 119-121, 125,
136, 139-141, 144, 147, 161-162, 182,

868 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

185-186, 193, 199-202, 210, 212,
217-218, 221-222, 224-225, 228, 238-239,
244, 281, 287, 299, 303-304, 314, 319,
325, 327, 331, 334-340, 361-365,
370-371, 376-377, 380, 511, 539, 543,
581, 609, 624-625, 714-715, 741-742,
748, 752-753, 755
definition . . . 12

Unspecified–Internet–Address, constant . . .
736, 740-743, 745, 758-759, 803, 806

Unspecified–Internet–Port, constant . . .
736-807, 740-742, 803, 806

Unspecified–Network–Number, constant . . .
737-807, 745, 747, 803, 811

Unspecified–Protocol–Family, constant . . .
498, 504, 516-517, 747

Unspecified–Rate, constant . . . 784, 788,
790, 794

Unspecified–Socket–Type, constant . . .
498-795, 504, 516

Unspecify, socket event . . . 490
Unspecify–Peer, procedure . . . 490-517, 499,

510
Unsupported–Object–Type–Requested, constant

. . . 49-511, 64, 73
unwaited-for child process . . . 107
Update File Status Information, subclause . . .

187, 226, 606
URG, abbreviation . . . 37
Use of Descriptors, subclause . . . 627
Use of Options, subclause . . . 498
Use of the Same Protocol Address, subclause

. . . 386
Use–Congestion–Window, enumeration literal

. . . 722, 730, 734
Use–Error, exception . . . 279-283, 615, 618
Use–For–Binding, constant . . . 500, 515, 517
User and Group Identification, subclause . . .

154
User Data, abstract attribute . . . 429-518,

432, 441-444, 455-456, 482, 779,
799-800, 802, 807, 809

user database, accessing . . . 287
User Datagram Protocol, subclause . . .

754-288
user ID . . . 112, 153-154

definition . . . 34
effective . . . 17, 98, 101-102
real . . . 28
saved effective . . . 102, 112
saved set- . . . 29

User Identification, subclause . . . 153
User Information, abstract attribute . . . 772,

777
user name, definition . . . 34
User–CPU–Time–Of, function . . . 156
User–Database–Item, type . . . 287
User–ID, type . . . 34-288, 149, 153-154, 621

User–ID–Of, function . . . 287
User–Name–Of, function . . . 287-288

V
valid AIO descriptor, definition . . . 236
Value

function . . . 44, 58-59, 89, 115, 122,
149-155

abstract attribute . . . 296-297, 300,
302-304, 425

Version, function . . . 49-426, 73
Version Identification, subclause . . . 50
visibility . . . 555, 560, 570, 603
Volatile, pragma . . . 333, 631
Volatile–Components, pragma . . . 333

W
Wait, procedure . . . 54, 129, 296, 302-303,

306, 310, 312, 315, 319-321, 625
Wait for AIO Request to Complete, subclause

. . . 249
Wait for Process Termination, subclause . . .

106, 578
Wait for Signal, subclause . . . 140
Wait for Signal with Information, subclause . . .

142
Wait on a Condition, subclause . . . 320
Wait–For–All–Data, constant . . . 499, 505,

528
Wait–For–Child–Blocking–Behavior, constant

. . . 43, 53-54, 108
Wait–For–Child–Process, procedure . . . 27,

70, 96-97, 103, 106-108, 129, 157
Wait–For–Completion, constant . . . 328, 336
Wait–Forever, constant . . . 738, 749
Wait–Indefinitely, constant . . . 535, 537,

539, 545
Waiting on a Semaphore, subclause . . . 624
Wait–To–Set–Lock, procedure . . . 232
Wait–to–Set–Lock, procedure . . . 128
Wide–Character, type . . . 39-234, 56
Wide–String, type . . . 50, 57
wildcard addressing, definition . . . 732, 742
Window Size, abstract attribute . . . 734
Window–Size, type . . . 722, 730
with clause . . . 5, 549, 555
Within–Process, identifier, pragma parameter . . .

349, 352, 355
Word–Size, constant . . . 89
working directory . . . 16, 163
working directory [current working directory],

definition . . . 34
Would–Block, constant . . . 47, 63, 73, 509,

529, 532, 751, 754
Write

I/O form parameter field value . . . 279
enumeration literal . . . 240, 244, 246

Alphabetic Topical Index 869

IEEE Std 1003.5c-1998 IEEE STANDARD FOR INFORMATION TECHNOLOGY – POSIX ADA INTERFACES

procedure . . . 51, 87, 128, 206, 210,
212, 219-224, 229-230, 235, 239-240,
242-244, 246-247, 250, 252, 257, 490,
494, 537-538, 598, 602-603, 605, 613,
621, 727, 732

socket event . . . 490
write, C function . . . 605, 621
Write to a File, subclause . . . 219
Write–Files, constant . . . 542, 545
Write–Lock, enumeration literal . . . 232
Write–Normal, constant . . . 535-540, 544
Write–Ok, enumeration literal . . . 179, 189
Write–Only, enumeration literal . . . 205,

208-209, 214-215, 372, 604, 715
Write–Priority, constant . . . 535-540, 544
Writing Data and Output Processing, subclause

. . . 257
Written–But–Not–Transmitted, enumeration

literal . . . 262, 274
Wrong–Protocol–Type, constant . . . 47, 63,

73, 716

X
XTI, abbreviation . . . 37
XTI Addresses, subclause . . . 422, 644
XTI Detailed Network Interface, option . . . 2,

65, 77, 80-81, 211, 385, 410, 644, 760,
783, 802

XTI DNI, option . . . 172
XTI Functions, subclause . . . 772
XTI IO Vector Maximum, limit . . . 85-86, 88,

174
XTI option

Acknowledge Time . . . 797
Alternative Class 1 . . . 796
Alternative Class 2 . . . 796-797
Alternative Class 3 . . . 797
Alternative Class 4 . . . 796-797
Alternative Class1 . . . 797
Application Context Name . . . 780, 783
Checksum . . . 799
Connection Checksum . . . 798
Connection Resilience . . . 794-795
Connection Transit Delay . . . 795, 798
Connectionless Transit Delay . . . 798
Enable Debugging . . . 461-462
Establishment Delay . . . 790, 794-795
Establishment Failure Probability . . .

794-795
Expedited Data . . . 795-796, 802
Extended Format . . . 798
Flow Control . . . 798
Flow–Control . . . 796
IP Do Not Route . . . 817
IP Options . . . 808, 815-816
IP Type Of Service . . . 808
Initial Time To Live . . . 817
Keep Alive Interval . . . 813

Linger On Close If Data Present . . . 461-462,
808-809

Network Expedited Data . . . 798
Network Receipt Confirmation . . . 798
No Delay . . . 814
Permit Broadcast . . . 817
Preferred Class . . . 796-797
Presentation Context Definition and Result List
. . . 781

Presentation Context List . . . 781, 783
Reassignment Time . . . 797
Receive Buffer Size . . . 461-463
Receive Low Water Mark . . . 462-463
Release Delay . . . 794-795
Release Failiure Probability . . . 795
Release Failure Probability . . . 794
Reuse Address . . . 815, 817
Segment Size Maximum . . . 813
Send Buffer Size . . . 462-463
Send Low Water Mark . . . 462-463, 477
TPDU Length Maximum . . . 796-797
TPDU–Length–Maximum . . . 797
Throughput . . . 409, 794
Transfer Failure Probability . . . 794-795
Transit Delay . . . 794
Type of Service . . . 815-816
UDP Checksum . . . 814

XTI Protocol Level, constant . . . 461
XTI Protocol Mappings, subclause . . . 759
XTI–Address, type . . . 644, 646
XTI–Address–In–Use, constant . . . 49, 64, 73
XTI–Address–Pointer, type . . . 386, 411,

422-423, 429, 432, 437, 443, 452, 470,
472, 474, 479, 482, 765, 789, 806

XTI–Blocking–Behavior, constant . . . 43-807,
53

XTI–DNI–Is–Supported, function . . . 169-54,
171

XTI–DNI–Support, subtype . . . 76-172, 81
XTI–Error–Code, type . . . 48, 63, 65, 644
XTI–Events, type . . . 416, 457
XTI–Flags, type . . . 410, 419, 465, 467
XTI–IO–Vector–Maxima, subtype . . . 83, 88
XTI–IO–Vector–Maxima’Last, constant . . .

430, 447, 449, 469, 471
XTI–IO–Vector–Maximum, function . . . 170,

173
XTI–Operation–Not–Supported, constant . . .

49-174, 64, 73, 390, 434-435, 437, 442,
445, 447, 450, 453, 455-456, 461, 464,
467, 469, 471, 473, 475-476, 479, 481,
483

XTI–Option, type . . . 802, 806
XTI–Protocol–Level, constant . . . 416, 458

Y
Year, function . . . 165
Year 2000 . . . 2-167, 563

870 Alphabetic Topical Index

PART 1: BINDING FOR SYSTEM APPLICATION PROGRAM INTERFACE (API) IEEE Std 1003.5c-1998

Year 2000 Compliance, subclause . . . 563
Year–Number, subtype . . . 164, 166
Yield, procedure . . . 350, 353

Z
Zero–Length–SDU–Supported

constant . . . 410, 419, 422

Alphabetic Topical Index 871

	Title Page
	Introduction
	Participants
	CONTENTS
	1. General
	1.1 Scope
	1.2 Normative References
	1.3 Conformance

	2. Terminology and General Requirements
	2.1 Editorial Conventions
	2.2 Definitions
	2.3 General Concepts
	2.4 Package POSIX
	2.5 Package POSIX_Options
	2.6 Package POSIX_Limits
	2.7 Package Ada_Streams
	2.8 Package System
	2.9 Package System_Storage_Elements
	2.10 Package POSIX_Page_Alignment
	2.11 Environment Description

	3. Process Primitives
	3.1 Package POSIX_Process_Primitives
	3.2 Package POSIX_Unsafe_Process_Primitives
	3.3 Package POSIX_Signals

	4. Process Environment
	4.1 Package POSIX_Process_Identification
	4.2 Package POSIX_Process_Times
	4.3 Package POSIX_Process_Environment
	4.4 Package POSIX_Calendar
	4.5 Package POSIX_Configurable_System_Limits

	5. Files and Directories
	5.1 Package POSIX_Permissions
	5.2 Package POSIX_Files
	5.3 Package POSIX_File_Status
	5.4 Package POSIX_Configurable_File_Limits

	6. I/O Primitives
	6.1 Package POSIX_IO
	6.2 Package POSIX_File_Locking
	6.3 Package POSIX_Asynchronous_IO

	7. Device- and Class-Specific Functions
	7.1 General Terminal Interface
	7.2 Package POSIX_Terminal_Functions

	8. Language-Specific Services for Ada
	8.1 Interoperable Ada I/O Services
	8.2 Package POSIX_Supplement_to_Ada_IO

	9. System Databases
	9.1 Package POSIX_User_Database
	9.2 Package POSIX_Group_Database

	10. Data Interchange Format
	11. Synchronization
	11.1 Package POSIX_Semaphores
	11.2 Package POSIX_Mutexes
	11.3 Package POSIX_Condition_Variables

	12. Memory Management
	12.1 Package POSIX_Memory_Locking
	12.2 Package POSIX_Memory_Range_Locking
	12.3 Package POSIX_Memory_Mapping
	12.4 Package POSIX_Shared_Memory_Objects
	12.5 Package POSIX_Generic_Shared_Memory

	13. Execution Scheduling
	13.1 Scheduling Concepts and Terminology
	13.2 Package POSIX_Process_Scheduling
	13.3 Task Scheduling
	13.4 Synchronization Scheduling

	14. Clocks and Timers
	14.1 Package POSIX_Timers
	14.2 High Resolution Delay

	15. Message Passing
	15.1 Package POSIX_Message_Queues

	16. Task Management
	16.1 Package Ada_Task_Identification

	17. Detailed Network Interface - XTI
	17.1 Introduction
	17.2 States and Events
	17.3 The Use of Options
	17.4 Package POSIX_XTI

	18. Detailed Network Interface - Socket
	18.1 Introduction
	18.2 Events and States
	18.3 Use of Options
	18.4 Package POSIX_Sockets

	19. Event Management
	19.1 Package POSIX_Event_Management

	Annex A—Bibliography
	Annex B—Rationale and Notes
	Annex C—Ada/C Cross-References
	Annex D—Protocol Mappings
	Index

	Desig 1: IEEE Std 1003.5, 1999 Edition
	Desig 2: (Incorporates IEEE Std 1003.5-1992,
	Running head: IEEE Std 1003.5, 1999 Edition POSIX ADA INTERFACES—PART 1: BINDING FOR SYSTEM API
	COVER:
	blank 1:
	Blank 2:
	Blank 3:
	Blank 4:
	Blank 5:
	Blank 6:
	Blank 7:
	Blank 8:
	Blank 9:
	Blank 10:
	Blank 11:
	Desig 3: IEEE Std 1003.5b-1996, and
	Desig 4: IEEE Std 1003.5c-1998)
	Cover 2:
	Cover 3:
	Cover 4:
	Cover 6:
	Cover 7:
	Cover 8:
	Cover 9:
	Cover 10:
	Cover 11:
	Cover 12:
	Cover 13:
	Disclaimer: (This introduction is not a part of IEEE Std 1003.5, 1999 Edition, IEEE Standard for Information Technology—
	Disclaimer 2: POSIX Ada Language Interfaces—Part 1: Binding for System Application Program Interface (API)—Amendment 2:
	Disclaimer 3: Protocol-Independent Interfaces, but is included for information only.)
	error: Accept_Connection
	gh:
	sd: Ronald C. Petersen

