

Using Differential I/O (LVDS, Sub-LVDS) in iCE40 LP/HX Devices

Technical Note

FPGA-TN-02213-1.7

February 2022

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults and associated risk the responsibility entirely of the Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice's product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Contents

1. Intro	oduction	5
2. Diffe	erential Outputs	5
3. Diffe	erential Inputs	6
4. LVDS	S and Sub-LVDS Termination	6
4.1.	Input Termination Resistor (RT)	7
4.2.	Output Parallel Resistor (RP)	7
4.3.	Output Series Resistor (RS)	7
5. Usin	g the Companion iCE40 Differential I/O Calculator Spreadsheet	8
6. Diffe	erential Clock Input	9
7. iCE4	0 Differential Signaling Board Layout Requirements	9
7.1.	Layout Recommendations to Minimize Reflection	
8. EMI	and Noise Cancellation	
8.1.	Reducing EMI Noise	
9. Defi	ning Differential I/O	
9.1.	SB_IO Primitive	
9.2.	SB_GB_IO Primitive	
9.3.	PIN_TYPE Parameter	
9.4.	IO_STANDARD Parameter	
9.5.	NEG_TRIGGER Parameter	
10. HDL	Implementation Example	
10.1.	VHDL Component Declaration	
10.2.	Differential Clock Input	
10.3.	Differential Input	
10.4.	Differential Output Pair	
11. Appl	lications	21
11.1.	Graphic Displays	
11.2.	Cameras and Imagers	23
Summary	1	24
Reference	es	25
Technical	Support Assistance	
Revision I	History	27

Figures

Figure 1.1. Differential Signaling Electrical Parameters	5
Figure 2.1. Differential Output Pair	6
Figure 4.1. iCE40 LVDS or Sub-LVDS Differential I/O Channel	7
Figure 5.1. iCE40 Differential I/O Calculator Spreadsheet	8
Figure 6.1. LVDS or LVPECL Clock Input	9
Figure 7.1. Controlled Impedance Transmission Lines	9
Figure 8.1. LVDS or LVPECL Clock Input	11
Figure 8.2. Differential Input Eliminates Common-Mode Noise	11
Figure 10.1. Differential I/O Design Example	
Figure 11.1. Portable Devices Benefit from Differential I/O	21
Figure 11.2. Example Differential I/O Solution: Flat Panel Display Interface	22
Figure 11.3. 5-Megapixel CMOS Camera to LVDS Display on iCEman40 Evaluation Board	23

Tables

Table 3.1. Maximum Differential Input Pairs Available on iCE40 FPGAs	6
Table 4.1. Compensation Resistor Equation Variables	7
Table 9.1. Differential I/O Types and Required SiliconBlue I/O Primitive	11
Table 9.2. Port Names, Signal Direction, and Description for SB_IO (SB_GB_IO) Primitive	12
Table 9.3. Additional Port Names on SB_GB_IO Primitive	
Table 9.4. Output Structures and PIN_TYPE Values	
Table 9.5. Input Structures and PIN_TYPE Values	
Table 9.6. IO_STANDARD Settings for Differential I/O	

1. Introduction

Differential I/O standards are popular in a variety of consumer applications, especially those that require highspeed data transfers such as graphic display drivers and camera interfaces. In these systems, multiple signals are typically combined onto a smaller number of time-division-multiplexed high-speed, differential serial channels.

Differential signals require two Programmable I/O (PIO) pins, working as a pair or a channel, as shown in Figure 1.1. One side of the pair represents the true polarity of the signal while the other side of the pair represents the opposite polarity. The resulting logic value is the difference between the two sides of the signal pair.

Figure 1.1. Differential Signaling Electrical Parameters

The key electrical parameters are the common mode voltage and the differential voltage. For iCE40[™] applications, the common mode voltage is essentially half the I/O Bank supply voltage. The differential voltage depends on the values of the external compensation resistors, discussed in LVDS and Sub-LVDS Termination.

Differential signaling provides many advantages. In the examples discussed here, all the differential I/O standards have reduced voltage swing, which allows faster switching speeds and potentially higher bandwidth. Reduced voltage swings also mean less dynamic power consumption and reduced electromagnetic interference (EMI).

Differential switching provides **improved noise immunity** and **reduces duty-cycle distortion** caused the differences in rise- and fall-time by the output driver.

The higher potential switching speeds of differential I/O allows data to be multiplexed onto a **reduced number of wires** at a much higher data rate per line. The reduced number of wires reduces system cost and in some cases simplifies the system design. The internal phase-locked loop (PLL) available in iCE40 FPGAs provides convenient on-chip clock multiplication or division to support such applications.

2. Differential Outputs

For some differential I/O standards, such as LVDS, the output driver is actually a current source. On iCE40 FPGAs, however, differential outputs are constructed using a pair of single-ended PIO pins as shown in Figure 4.1, and an external resistor network consisting of three resistors. Because differential outputs are built from two single-ended LVCMOS outputs, differential outputs are available in any I/O bank.

The two FPGA outputs must be part of the same I/O tile as indicated in the iCE40 data sheet. The pair choice also depends on the chosen device package as not all I/O tile pairs are bonded out in all packages. Consult the package pinout sections of the iCE40 device data sheets for additional information.

Each differential I/O output pair requires a three-resistor termination network to adjust output characteristics to match those for the specific differential I/O standard. The output characteristics depend on the values of the parallel resistor (R_P) and series resistors (R_S). These resistors should be surface mounted as close as possible to the FPGA output pins.

Figure 2.1. Differential Output Pair

3. Differential Inputs

Differential inputs are only supported in I/O Bank 3. The maximum number of differential input pairs per device is shown in Table 3.1 but the actual number available depends on the specific package used.

Table 3.1. Maximum	Differential Input P	airs Available on	iCE40 FPGAs

	iCE40HX1K	iCE40LP1K	iCE40HX4K	iCE40LP4K	iCE40LP8K	iCE40HX8K
Maximum Differential Input Pairs	11	12	12	20	23	26

Differential inputs require specific PIO pin pairs as listed in the iCE40 data sheet. Each differential input pair consists of one pin labeled DPxxA and another labeled DPxxB, where "xx" represents the differential pair number. Both pins must be in the same differential pair.

Connect the positive or true polarity side of the differential pair to the DPxxB input and the negative or complementary side of the pair to the DPxxA input. If it is easier to route the differential pair, the input pins can be swapped, which produces an inverted input value. The inverted input value can subsequently be inverted by logic within the FPGA.

An input termination resistor must be connected between the DPxxA and DPxxB pins to generate the differential signal. The resistor's value must be twice the trace impedance, as described in the following section.

Typically, the resulting signal pair is routed on the printed circuit board (PCB) using controlled impedance and delay matching.

4. LVDS and Sub-LVDS Termination

LVDS and Sub-LVDS inputs require external compensation and termination resistors for proper operation, as shown in Figure 5.1. A termination resistor, R_T, between the positive and negative inputs at the receiver forms a current loop. The current across this resistor generates the voltage detected by the receiver's differential input comparator.

Similarly, iCE40 LVDS and Sub-VLDS outputs require an external resistor network, consisting of two series resistors, R_s, and a parallel resistor, R_P. This resistor network adjusts the FPGA's output driver to provide the necessary current and voltage characteristic s required by the specification.

The signals are routed with matched trace impedance, Z_0 , on the printed circuit board, typically with 50 Ω impedance.

Figure 4.1. iCE40 LVDS or Sub-LVDS Differential I/O Channel

The resistor values for the compensation network are described below. These equations are also provided in the Differential I/O spreadsheet. The variables are defined and described in Table 4.1.

4.1. Input Termination Resistor (RT)

$$R_T = 2 \times Z_0$$

4.2. Output Parallel Resistor (RP)

$$R_{P} = 2 \times \left(\frac{Z_{0} \times VCCIO}{VCCIO - (2 \times V_{OD})}\right)$$

4.3. Output Series Resistor (RS)

$$R_{S} = \left(\frac{Z_{0} \times \frac{R_{P}}{2}}{\frac{R_{P}}{2} - Z_{0}}\right) - R_{OUTPUT}$$

Table 4.1. Compensation Resistor Equation Variables

Variable	Description
Zo	Characteristic impedance of the printed circuit board trace; data sheet values assume 50 🛛 traces
V _{CCIO}	I/O Bank supply voltage, nominal, volts
V _{OD}	Differential output voltage swing, nominal, volts
R _{OUTPUT}	iCE40 output source resistance, 30 🛛
R _P	LVDS/Sub-LVDS output source compensation parallel resistor
R _s	LVDS/Sub-LVDS output source compensation series resistor
R _T	LVDS/Sub-LVDS input termination resistor

(1)

5. Using the Companion iCE40 Differential I/O Calculator Spreadsheet

The iCE40 data sheet recommends specific values for LVDS and Sub-LVDS differential outputs but also assumes that the differential signals are routed with 50 Ω characteristic impedance (Z₀). This may not be possible in all applications. Likewise, the system may require some other slightly different I/O standard.

This technical note includes a companion spreadsheet, available for download from the Lattice website and shown in Figure 5.1, to calculate resistor values for non-standard conditions. The values in Figure 5.1 are the default conditions for the LVDS I/O standard. For other standards, simply modify the VCCIO voltage, the differential output voltage, V_{OD} , and the characteristic impedance of the printed circuit board traces, Z_0 .

iCE40[™] Differential Output Calculator (Version 2.3, 28-AUG-2012)

	I/O Bank Supply	Diff. Output Voltage	Trace Impedance	Common Mode Output Voltage	Source Series Resistor	Source Parallel Resistor	Termination Resistor	Resistor Net work Current	Termination Current	Actual Differential Voltage
Symbol	VCCIO	V _{OD}	Zo	V _{OCM}	R _s	R _P	RT	I _{RES}	I _{RT}	V _{DIFF}
Value	2.5	0.35	50	1.25	150	140	100	6.0	3.5	0.349
Units	volts	volts	ohm	volts	ohm	ohm	ohm	mA	mA	volts

Companion to Technical NoteTN1253: Using Differential I/O (LVDS, SubLVDS) in iCE40 mobileFPGAs

2.)

Directions: Enter the values for VCCIO , V_oD, and Z_O. The resulting resistor values appear under R_S, R_P, and R_T. The V_OCM voltage is also calculated.

1.) The R_s and R_P resistors should be surface mounted as close to the iCE40 mobileFPGA output balls/pins as possible.

The termination resistor, R_T , should be as close to the recieving device's differential inputs as possible.

3.) The actual differential voltage, V_{DIFF}, may vary slightly from differential output voltage due to rounding of resistor values.

Figure 5.1. iCE40 Differential I/O Calculator Spreadsheet

The spreadsheet automatically calculates the common mode output voltage, VOCM, which is half of the VCCIO supply voltage. The spreadsheet also automatically calculates the values for the resistor network.

Finally, the spreadsheet also calculates the current draw through the resistor network and for the termination resistor. The spreadsheet rounds the resistor values to the nearest 10 Ω . Consequently, the spreadsheet also calculates the actual differential voltage based on the specified resistor values.

6. Differential Clock Input

iCE40 FPGAs have eight global buffers for distributing clocks or other high fanout signals. Global buffer GBUF7, shown in Figure 6.1, is specifically designed to accept a differential clock input on the associated GBIN7/DPxxB, DPxxA differential input pair, which is part of I/O Bank 3. Connect an external 100 Ω termination resistor across the input pair. When VCCIO_3 is 2.5 V, this global buffer input accepts either LVDS or LVPECL clock inputs.

7. iCE40 Differential Signaling Board Layout Requirements

Figure 7.1 depicts several transmission line structures commonly used in printed circuit boards (PCBs). Each structure consists of a signal line and a return path with uniform cross-section along its length. The structure's dimensions along with the dielectric material properties determine the characteristic impedance of the transmission line. Figure 7.1 shows examples of edge-coupled microstrips, and edge-coupled or broad-side-coupled striplines.

To maintain constant differential impedance along the length, maintain uniform trace width and spacing, including good symmetry between the two lines.

For differential outputs, place the surface-mounted R_P and R_S resistors as close to the package balls as possible. Similarly, place the 100 Ω termination resistor, R_T , as close as possible to the differential input pair.

Figure 7.1. Controlled Impedance Transmission Lines

Typical PC board trace impedance is $Z_0 = 50$ Ohms. For a single-ended microstrip, the trace impedance is calculated by using the following equation:

^{© 2015-2022} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

Single-ended microstrip trace impedance

$$Z_0 = \frac{87}{\sqrt{\varepsilon_r + 1.41}} \ln \left[\frac{5.98H}{0.8W + T} \right]$$

Single-ended stripline trace impedance

$$Z_{0} = \frac{60}{\sqrt{\varepsilon_{r}}} \ln \left[\frac{1.9(2H+T)}{(0.8W+T)} \right]$$

For an LVDS pair, differential impedance can be determined by using the following equations for differential microstrip and differential stripline:

Differential impedance for differential microstrip

$$Z_{diff} = 2 \times Z_0 \times \left[1 - 0.48 \times e^{-0.96 \times \frac{S}{H}}\right]$$

Differential impedance for differential stripline

$$Z_{diff} = 2 \times Z_0 \times \left[1 - 0.347 \times e^{-2.9 \times \frac{S}{H}}\right]$$

Because the coupling of two traces can lower the effective impedance, use 60 Ω design rules to achieve a differential impedance of approximately 100 ohms.

7.1. Layout Recommendations to Minimize Reflection

Skew delay is introduced if the trace lengths between the signals in the differential pair are not similar. With differing trace lengths, the signals on each side of the differential pair arrive at slightly different times and reflect off the receiver termination, creating a common-mode noise source on the transmission line.

Common-mode noise degrades the receiver's eye diagram, reduces signal integrity, and creates crosstalk between neighboring signals on the board. To minimize reflections due to unmatched trace lengths, consider the following guidelines:

- Match the length of each signal within the differential signal pair to within 20 mils.
- Minimize turns and vias or feed-throughs. Route differential pairs as straight as possible from point-to-point. Do not use 90-degree turns when routing differential pairs. Instead, use 45-degree bevels or rounded curves.
- Minimize vias on or near differential trace lines as these may create additional impedance discontinuities that will increase reflections at the receiver. If vias are required, place them as close to the receiver as possible.
- Use controlled impedance PCB traces. That is, control trace spacing, width, and thickness using stripline or microstrip layout techniques.

EMI and Noise Cancellation 8.

Differential signaling offers tremendous advantages over single-ended signaling because it is less susceptible to noise. In differential signaling, two current carrying conductors are routed together, with the current in one conductor always equal in magnitude but opposite in direction to the other conductor. The result is that both electromagnetic fields cancel each other.

Common-mode noise rejection is another advantage of differential signaling. The receiver ignores any noise that couples equally on both sides of the differential signal, as shown in Figure 8.2.

Figure 8.1. LVDS or LVPECL Clock Input

Figure 8.2. Differential Input Eliminates Common-Mode Noise

8.1. **Reducing EMI Noise**

Any skew between differential signals can generate EMI noise on the board. The following are some guidelines to reduce EMI emission onboard:

- Match edge rates and signal skew between differential signals as closely as possible. Different signal rise and fall times and skew between signal pairs create common-mode noise, which generates EMI noise.
- Maintain spacing between differential signal pairs that is less than twice the PCB trace width.

Defining Differential I/O 9.

Single-ended I/O connections are automatically inferred from the top-level VHDL or Verilog circuit description during logic synthesis. However, differential I/O connections must be specifically instantiated using design primitives from the Lattice technology library for iCE40 FPGAs. Table 9.1 lists the specific I/O primitive required by differential I/O type. Documentation on the design primitives is located under the iCEcube2[™] installation directory:

C:\SbtTools\doc\SBT_ICE_Technology_Library.pdf

Table 3.1. Differentially of Types and Required Sincondide 1/0 Frinkitve							
Differential I/O Type	iCE40 Design Primitive	PIN_TYPE	IO_STANDARD				
Differential clock input	SB_GB_IO	See PIN_TYPE Parameter.	SB_LVDS_INPUT				
Differential input	SB_IO		SB_LVDS_INPUT				
Differential output	SB IO		SB LVCMOS				

Table 9.1 Differential I/O Types and Required SiliconBlue I/O Primitive

The SB IO and SB GB IO primitives also require specific parameter settings. Differential inputs always require that IO STANDARD be set to SB LVDS INPUT. Differential outputs typically require that the IO STANDARD parameter be set to SB_LVCMOS.

© 2015-2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

9.1. SB_IO Primitive

Table 9.2 lists the signal ports for the SB_IO primitive, which describes one of the Programmable I/O (PIO) pins on an iCE40 FPGA. The table also shows the signal direction for each port, relative to the PIO pin (the SB_IO primitive). These same signals also appear on the SB_GB_IO primitive, which describes a global buffer input.

Port Name	Direction	Description
PACKAGE_PIN	I/O	Connection to top-level input, output, or bidirectional signal port.
LATCH_INPUT_VALUE	Input	iCEgate latch input. When High, hold the last pad value. Used for power reduction in some PIN_TYPE modes. There is one control input per I/O Bank. 0 = Input data flows freely 1 = Last data value on pad held constant to save power
CLOCK_ENABLE	Input	Clock enable input, shared connection to all flip-flops within the SB_IO primitive. If this port is left unconnected, automatically tied High. 0 = Flip-flops hold their current value 1 = Flip-flops accept new data on the active clock edge
INPUT_CLOCK	Input	Clock for all input flip-flops. If this port is left unconnected, it is automatically tied Low.
OUTPUT_CLOCK	Input	Clock for all output flip-flops. If this port is left unconnected, it is automatically tied Low.
OUTPUT_ENABLE	Input	Enables the output buffer. 0 = Output disabled, pad is high-impedance (Hi-Z) 1 = Output enabled, actively driving
D_OUT_0	Input	Data output. For DDR output modes, this is the value clocked out on the rising edge of the OUTPUT_CLOCK.
D_OUT_1	Input	Data output used in DDR output modes. This is the value clocked out on the falling edge of the OUTPUT_CLOCK.
D_IN_0	Output	Data input. For DDR input modes, this is the value clocked into the device on the rising edge of the INPUT_CLOCK.
D_IN_1	Output	For DDR input modes, this is the value clocked into the device on the falling edge of the INPUT_CLOCK.

Table 9.2. Port Names, Signal Direction, and Description for SB_IO (SB_GB_IO) Primitive

9.2. SB_GB_IO Primitive

Global buffer inputs provide a direct connection from a PIO pin to an associated global buffer. This connection can be instantiated using an SB_GB_IO primitive. An SB_GB_IO primitive has all the ports for an SB_IO primitive, shown in Table 9.2, plus the additional connection shown in Table 9.3. Global Buffer Input 7 (GBIN7) is the only one that supports differential clock inputs. See Differential Clock Input for more information.

Table 9.3. Additional Port Names on SB_GB_IO Primitive

Port Name	Direction	Description
GLOBAL_BUFFER_OUTPUT	Output	Output from associated Global Buffer. This output is controlled by the iCE- gate latch if a control signal is connected to the iCEgate latch input (LATCH_INPUT_VALUE).

9.3. PIN_TYPE Parameter

The PIN_TYPE parameter defines the structure and the functionality of any instantiated SB_IO primitive. PIN_TYPE is a six-bit binary value. The upper four bits, PIN_TYPE[5:2], define the output structure while the lower two bits, PIN_TYPE[1:0] define the input structure. Both fields are required, but operate independently.

Global buffer inputs, defined using the SB_GB_IO primitive, are also full-featured PIO pins. However, if only the GLOBAL_BUFFER_OUTPUT is connected on the SB_GB_IO primitive, then the PIN_TYPE parameter has no real effect.

Output Field (PIN_TYPE[5:2])

Table 9.4 shows the various PIN_TYPE definitions for the output side an SB_IO or SB_GB_IO primitive.

Style	Mnemonic (Diagram)	PIN_TYPE[5:2]				
None (output disabled)	PIN_NO_OUTPUT	0	0	0	0	
	Hi-Z PAD PACKAGE_PIN					
Non-registered Output	PIN_OUTPUT	0	1	1	0	
	D_OUT_0					
	PIN_OUTPUT_TRISTATE	1	0	1	0	
	OUTPUT_ENABLE 1=Output 0=Hi-Z D_OUT_0 PAD PACKAGE_PIN					
Registered Outputs	PIN_OUTPUT_REGISTERED	0	1	0	1	
	D_OUT_0 CLOCK_ENABLE 1=Enabled 0=Hold value OUTPUT_CLK					
	PIN_OUTPUT_REGISTERED_ENABLE	1	0	0	1	
	OUTPUT_ENABLE 1=Output 0=Hi-Z D_OUT_0 CLOCK_ENABLE 1=Enabled 0=Hold value OUTPUT_CLK					
	PIN_OUTPUT_ENABLE_REGISTERED	1	1	1	0	
	OUTPUT_ENABLE 1=Output 0=Hi-Z CLOCK_ENABLE 1=Enabled 0=Hold value OUTPUT_CLK D_OUT_0 PAD PACKAGE_PIN					

Table 9.4. Output Structures and PIN_TYPE Values

Style	Mnemonic (Diagram)	PIN_TYPE[5:2] 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0			
	PIN_OUTPUT_REGISTERED_ENABLE_REGISTERED	1	1	0	1
	OUTPUT_ENABLE 1=Output 0=Hi-Z D_OUT_0 CLOC K_ENABLE 1=Enabled 0=Hold value OUTPUT_CLK				
Double Data Rage (DDR)	PIN_OUTPUT_DDR	0	1	0	0
Output	D_OUT_0 PAD PACKAGE_PIN D_OUT_1 D_OUT_1 D_OUT_1 CLOCK_ENABLE 1=Enabled 0=Hold value OUTPUT_CLK				
	PIN_OUTPUT_DDR_ENABLE	1	0	0	0
	OUTPUT_ENABLE 1=Output 0=Hi-Z D_OUT_0 D_OUT_1 CLOCK_ENABLE 1=Enabled 0=Hiold value OUTPUT_CLK				
		1	1	0	0
	D_OUT_0 D_OUT_1 D_OUT_1 CLOCK_ENABLE 1=Enabled 0=Hi-Z D_OUT_1 D_OUT_				
Registered Output, Inverted	PIN_OUTPUT_REGISTERED_INVERTED	0	1	1	1
	D_OUT_0 CLOCK_ENABLE 1=Enabled OHOId value OUTPUT_CLK				

Style	Mnemonic (Diagram)	PIN_T	YPE[5:2]	
	PIN_OUTPUT_REGISTERED_ENABLE_INVERTED	1	0	1	1
	PIN_OUTPUT_REGISTERED_ENABLE_REGISTERED_INVERTED	1	1	1	1

Input Field (PIN_TYPE[1:0])

Table 9.5 shows the various PIN_TYPE definitions for the input side of an SB_IO or SB_GB_IO primitive.

Table 9.5. Input Structures and PIN_TYPE Values

Style	Mnemonic (Diagram)	PIN_TY	PE[1:0]
Direct	PIN_INPUT	0	1
Registered	PIN_INPUT_REGISTERED	0	0
	D_IN_0 CLOCK_ENABLE 1=Enabled 0=Hold value INPUT_CLK		
Double Data Rage (DDR)	PIN_INPUT_DDR	0	0
	D_IN_0 D_IN_1 CLOCK_ENABLE 1=Enabled 0=Hold value INPUT_CLK		
iCEgate Low-Power Latch	PIN_INPUT_LATCH	1	1
	LATCH_INPUT_VALUE 1=Latch current value 0=Flow through D_IN_0		
	PIN_INPUT_REGISTERED_LATCH	1	0
	LATCH_INPUT_VALUE 1=Latch current value 0=Flow through D_IN_0 CLOCK_ENABLE 1=Enabled 0=Hold value D=Hold value		

9.4. IO_STANDARD Parameter

Differential inputs or outputs require specific settings for the IO_STANDARD parameter, as summarized in Table 9.6. Regardless of actual electrical requirements (LVDS, Sub-LVDS), the IO_STANDARD parameter on differential inputs must be set to SB_LVDS_INPUT. Again, differential inputs are only available in I/O bank 3. For differential outputs, set IO_STANDARD to SB_LVCMOS. Differential outputs are available in I/O banks 0, 1, 2, or 3.

Table 9.6. IO_STANDARD Settings for Differential I/O

	Differential Inputs (I/O Bank 3 Only)	Differential Outputs (I/O Banks 0, 1, 2, 3)
IO_STANDARD Setting	SB_LVDS_INPUT	SB_LVCMOS

9.5. NEG_TRIGGER Parameter

The optional NEG_TRIGGER parameter, when set to '1', inverts the clock polarity within the PIO pin.

10. HDL Implementation Example

Most applications that use differential I/O do so because they require very high data bandwidth. Consequently, most of these applications use also Double Data Rate (DDR) flip-flops to double the effective data rate at the PIO pin.

The design example shown in Figure 10.1 uses the DDR flip-flops embedded in every PIO pin.

Figure 10.1. Differential I/O Design Example

10.1. VHDL Component Declaration

For VHDL implementations, the SB_IO and SB_GB_IO primitives must be declared as components before they are first used. Verilog does not require this declaration.

10.2. Differential Clock Input

The following Verilog code snippets demonstrate how to instantiate a differential clock input using an SB_GB_IO primitive. The differential clock input is always connected to Global Buffer GBIN7 and always in I/O Bank. In this example, shown in Figure 10.1, the PIO pin only connects an external differential clock signal to the FPGA's GBUF7 global buffer. The only ports connected on the primitive are the PACKAGE_PIN and the GLOBAL_BUFFER_OUTPUT ports. Consequently, the PIN_TYPE setting for this SB_GB_IO primitive does not actually matter.

Set the IO_STANDARD parameter to "SB_LVDS_INPUT". Doing so also causes the iCEcube2 software to reserve a second pin for the other side of the differential input pair.

An external 100 Ω termination resistor must be connected between the two inputs. The resistor must be physically placed as close as possible to the two package balls.

For VHDL implementations, the SB_GB_IO component must be declared.

The PIN_TYPE for this primitive may be different, depending on whether only the global buffer input is used, or if the data input paths are used, or both. The example shown here is for a dedicated differential clock input.

Verilog

```
// Differential clock input example: Verilog
// IMPORTANT: The PIN TYPE is different for a regular LVDS input used as a
clock.
// This example is specifically for the differential clock input.
defparam differential clock input.PIN TYPE = 6'b000000 ; // {NO OUTPUT,
PIN INPUT REGISTERED}
defparam differential clock input.IO STANDARD = "SB LVDS INPUT";
SB GB IO differential clock input (
.PACKAGE PIN(diff clock input),
.LATCH INPUT VALUE ( ),
.CLOCK ENABLE ( ),
.INPUT CLK ( ),
.OUTPUT CLK ( ),
.OUTPUT ENABLE ( ),
.D OUT 0 ( ),
.D OUT 1 ( ),
.D IN 0 ( ),
.D IN 1 (),
.GLOBAL BUFFER OUTPUT(global clock) // Global buffer output
);
```

VHDL

Under development.

10.3. Differential Input

The following Verilog and VHDL code snippets demonstrate how to instantiate a differential input using an SB_ IO primitive. Differential inputs are always implemented in I/O Bank 3. In this example, shown in Figure 10.1, the differential input also connects to Double Data Rate (DDR) input flip-flops. There is no output connected. Consequently, set the PIN_TYPE parameter to the binary value "000000", which defines no output (see Table 9.4) and DDR input (see Table 9.5).

Set the IO_STANDARD parameter to "SB_LVDS_INPUT". Doing so also causes the iCEcube2 software to reserve a second pin for the other side of the differential input pair.

An external 100 Ω termination resistor must be connected between the two inputs. The resistor must be physically placed as close as possible to the two package balls.

For VHDL implementations, the SB_IO component must be declared.

Verilog

```
// Differential input, DDR data
defparam differential_input.PIN_TYPE = 6'b000000 ; // {NO_OUTPUT, PIN_INPUT_DDR}
defparam differential_input.IO_STANDARD = "SB_LVDS_INPUT" ;
SB_IO differential_input (
   .PACKAGE_PIN(diff_input),
   .LATCH_INPUT_VALUE (),
   .CLOCK_ENABLE (),
   .INPUT_CLK (global_clock),
   .OUTPUT_CLK (),
   .OUTPUT_ENABLE (),
   .D_OUT_0 (),
   .D_OUT_1 (),
   .D_IN_0 (input_0),
   .D_IN_1 (input_180)
);
```


VHDL

Under development.

10.4. Differential Output Pair

The following Verilog and VHDL code snippets demonstrate how to instantiate a differential output pair using an SB_IO primitive. Differential outputs are specified as two separate single-ended outputs. One output provides the non-inverted or P-side of the pair while the other output provides the inverted or N-side of the pair. In this example, shown in Figure 10.1, the differential output also connects to Double Data Rate (DDR) input flip-flops for higher output performance. There is no input connected. Consequently, set the PIN_TYPE parameter to the binary value "010000", which defines DDR output (see Table 9.4) and a benign input (see Table 9.5).

Differential outputs can be placed in any I/O bank, although the pair must be part of an I/O tile, as shown in the iCE40 or iCE40 data sheet. Because of better slew rate control, place lower-speed differential outputs in I/O Banks 0, 1, or 2. Differential I/Os in I/O Bank 3 have the best performance, but also have faster, noisier switching edges. Set the IO_STANDARD parameter to "SB_LVCMOS".

An external compensation resistor network must be connected between the two inputs. The resistors must be physically placed as close as possible to the two package balls. For VHDL implementations, the SB_ IO component must be declared.

Verilog

```
// Differential output pair, DDR data
// Non-inverting, P-side of pair
defparam differential output b.PIN TYPE = 6'b010000 ; // {PIN OUTPUT DDR,
PIN INPUT REGISTER }
defparam differential output b.IO STANDARD = "SB LVCMOS" ;
SB IO differential output b (
.PACKAGE PIN(diff output b),
.LATCH INPUT VALUE ( ),
.CLOCK ENABLE ( ),
.INPUT CLK ( ),
.OUTPUT CLK (global clock),
.OUTPUT ENABLE ( ),
.D OUT 0 (input 0), // Non-inverted
.D OUT 1 (input 180), // Non-inverted
.D IN 0 (),
.D IN 1 ()
);
// Inverting, N-side of pair
defparam differential output a.PIN TYPE = 6'b010000 ; // {PIN OUTPUT DDR,
PIN INPUT REGISTER }
defparam differential output a.IO STANDARD = "SB LVCMOS" ;
SB IO differential output a (
.PACKAGE PIN(diff output a),
.LATCH INPUT VALUE ( ),
.CLOCK ENABLE ( ),
.INPUT CLK ( ),
.OUTPUT CLK (global clock),
.OUTPUT ENABLE ( ),
.D OUT 0 (~input 0), // Inverted
.D OUT 1 (~input 180), // Inverted
.D IN 0 ( ),
.D IN 1 ()
);
```


VHDL

Under development.

11. Applications

Applications that benefit most from differential I/O are those with high bandwidth communication requirements such as graphic displays, cameras and imagers, or chip-to-chip interfaces.

While driving such displays using single-ended LVCMOS I/O is possible, portable or hand-held applications place additional physical constraints on a design, as shown in Figure 11.1. Typically, the high bandwidth device—the graphic display or camera—is separate from the main body that holds the majority of the system electronics. The main body and the high-bandwidth device are often mechanically connected by some sort of hinge mechanism. In other applications, the display and camera or cameras are folded into a compact phone, camera, or tablet body. Sending a wide, LVCMOS signal cable bundle across the hinge to the display is simply impractical. Likewise, a custom, wide, flexcable is prohibitively expensive.

The higher bandwidth possible with differential signaling allows the same data to be transported over fewer electrical connections. Few connections results in a smaller, lower-cost flexible cable. Likewise, the smaller voltage swing results in lower electromagnetic interference (EMI).

Laptop, Notebook, Mobile Internet Device (MID)

Figure 11.1. Portable Devices Benefit from Differential I/O

iCE40 FPGAs offer a broad range of possible solutions for handheld applications, primarily in bridging and format conversion applications.

- Covert RGB data to high-speed differential data and back. •
- Connect a processor without an integrated differential interface to a differential display or camera.
- Convert from one high-speed differential interface to another.
- Scale, rotate, and rebroadcast one stream onto another display format or another differential I/O format.

11.1. Graphic Displays

Graphic displays demand high data rates, especially high-resolution displays that support a broad color range. In portable or handheld applications, the challenge is to provide a high-bandwidth communications path between the graphics controller and the display that fits with the physical constraints of the hinge or the package body. There are a variety of standard interfaces that leverage differential switching. Perhaps the most widely-used example is Flat Panel Display Link (FDP-Link), shown in Figure 11.2. The example shows a 24-bit per pixel design, although there are other implementations that use fewer colors and differential pairs. A standard 24-bit RGB interface requires up to 28 singleended signals. Instead of sending a cable bundle with 24 wires across the hinge, FPD-Link serializes the 28 data/control lines onto four differential I/O pairs, plus a clock differential pair resulting in 64% fewer wires. FPD-Link uses the Low-Voltage Differential Swing (LVDS) I/O standard.

Dividing 28 lines by four differential pairs also means that the data rate across the interface is seven times higher than the output clock rate.

28 lines at 1X clock rate = 4 differential channels at 7X clock rate

Figure 11.2. Example Differential I/O Solution: Flat Panel Display Interface

At the receiving end, the differential data is de-serialized and converted back into a wider bundle of single-ended signals.

The integrated PLL in iCE40-family FPGAs simplifies this style of interface. An iCE40 FPGA can be at either end of the serial interface, either to allow a processor without an FPD-Link interface to communicate with an FPD-Link display, or to allow a processor with only an FPD-Link display interface to communicate to an RGB display or a display that uses a different format.

Figure 11.3 shows an example application running on an iCEman40 evaluation board. A 5-Megapixel camera captures live video images and provides the data to the iCE40 FPGA in RGGB format on a parallel LVTLL interface.

Figure 11.3. 5-Megapixel CMOS Camera to LVDS Display on iCEman40 Evaluation Board

11.2. Cameras and Imagers

Differential interfaces are also popular for high-resolution and high-speed cameras and imagers.

Summary

This technical note provides an overview of iCE LVDS technology, focusing on its advantages, implementation, application, and its various electrical and timing characteristics. It also includes detailed recommendations for instantiating LVDS transmitter and receivers in your design and calculating the required external terminations to guarantee optimum performance.

References

- IEEE 1596.3 Standards
- Texas Instruments, "LVDS Owner's Manual", 2008
- Jimmy Ma, "A Closer Look at LVDS Technology", Pericom, 2001
- Texas Instruments, "Application Note 1032: An Introduction to FPD-Link"
- Texas Instruments, "Application Note 1127: LVDS Display Interface (LDI) TFT Data Mapping for Interoperability with FPD-Link"

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

Revision History

Revision 1.7, February 2022

Section	Change Summary
Differential Inputs	Swapped inputs for the differential pair. The positive or true polarity side of the differential pair must be connected the DPxxB input and the negative or complementary side of the pair to the DPxxA input.

Revision 1.6, January 2022

Section	Change Summary
All	Changed document number from TN1253 to FPGA-TN-02213.
	Updated document template.
Disclaimers	Added this section.

Revision 1.5, January 2015

Section	Change Summary
Differential Outputs	Updated Differential Outputs section. Updated Figure 2.1, Differential Output Pair. Added IOL_1A and IOL_1B.

Revision 1.4, July 2014

Section	Change Summary
Introduction	Updated Figure 1.1, Differential Signaling Electrical Parameters.
LVDS and Sub-LVDS Termination	Updated Figure 4.1, iCE40 LVDS or Sub-LVDS Differential I/O Channel. Changed DPxxA and DPxxB differential input pair connections.

Revision 1.3, October 2013

Section	Change Summary
All	Changed document title to "Using Differential I/O (LVDS, Sub-LVDS) in iCE40 LP/HX Devices".

Revision 1.2, June 2013

Section	Change Summary
Introduction	Updated the Differential Signaling Electrical Parameters and the iCE40 LVDS or Sub-LVDS Differential I/O Channel figures.
Defining Differential I/O	Updated the descriptions of the INPUT_CLOCK and the OUTPUT_CLOCK ports in the Port Names, Signal Direction, and Description for SB_IO (SB_GB_IO) Primitive table.
Technical Support Assistance	Updated Technical Support Assistance information.

Revision 1.1, March 2013

Section	Change Summary
	Removed the Representative Electrical Characteristics of Various Differential I/O Standards table.
Differential Outputs	Updated information in Differential Outputs.
Applications	 Updated description of figure showing 5-Megapixel CMOS Camera to LVDS Display on iCEman40 Evaluation Board. Removed the Example FPD-Link Transmitter on iCEman40 Evaluation Board figure and description.

Revision 1.0, September 2012

Section	Change Summary
All	Initial release.

www.latticesemi.com