IEEE Std 1164-1993

IEEE Standard Multivalue Logic
System for VHDL Model
Interoperability (Std_logic_1164)

Sponsor

Design Automation Technical Committee
of the
IEEE Computer Society

Approved March 18, 1993
IEEE Standards Board

Abstract: This standard is embodied in the Std_logic_1164 package declaration and the semantics
of the Std_logic_1164 body. An annex is provided to suggest ways in which one might use this
package.

Keywords: Std_logic_1164, VHDL model interoperability

The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017-2394, USA

Copyright © 1993 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 1993. Printed in the United States of America

ISBN 1-55937-299-0

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

Authorized licensed use limited to: Carleton University. Downloaded on November 30,2014 at 08:35:42 UTC from IEEE Xplore. Restrictions apply.

IEEE Standards documents are developed within the Technical Committees of the
IEEE Societies and the Standards Coordinating Committees of the IEEE Standards
Board. Members of the committees serve voluntarily and without compensation.
They are not necessarily members of the Institute. The standards developed within
IEEE represent a consensus of the broad expertise on the subject within the Institute
as well as those activities outside of IEEE that have expressed an interest in partici-
pating in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard
does not imply that there are no other ways to produce, test, measure, purchase, mar-
ket, or provide other goods and services related to the scope of the IEEE Standard.
Furthermore, the viewpoint expressed at the time a standard is approved and issued is
subject to change brought about through developments in the state of the art and com-
ments received from users of the standard. Every IEEE Standard is subjected to
review at least every five years for revision or reaffirmation. When a document is
more than five years old and has not been reaffirmed, it is reasonable to conclude that
its contents, although still of some value, do not wholly reflect the present state of the
art. Users are cautioned to check to determine that they have the latest edition of any
IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party,
regardless of membership affiliation with IEEE. Suggestions for changes in docu-
ments should be in the form of a proposed change of text, together with appropriate
supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions
of standards as they relate to specific applications. When the need for interpretations
is brought to the attention of IEEE, the Institute will initiate action to prepare appro-
priate responses. Since IEEE Standards represent a consensus of all concerned inter-
ests, it is important to ensure that any interpretation has also received the concurrence
of a balance of interests. For this reason IEEE and the members of its technical com-
mittees are not able to provide an instant response to interpretation requests except in
those cases where the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE Standards Board
445 Hoes Lane

P.O. Box 1331

Piscataway, NJ 08855-1331

USA

IEEE Standards documents are adopted by the Institute of Electrical and Electronics
Engineers without regard to whether their adoption may involve patents on articles,
materials, or processes. Such adoption does not assume any liability to any patent
owner, nor does it assume any obligation whatever to parties adopting the standards
documents.

Authorized licensed use limited to: Carleton University. Downloaded on November 30,2014 at 08:35:42 UTC from IEEE Xplore. Restrictions apply.

Introduction

[This introduction is not a part of IEEE Std 1164-1993, IEEE Standard Multivalue Logic System for VHDL Model
Interoperability (Std_logic_1164).]

This package provides a standard datatype system for the declaration of ports and signals used in modeling
digital components in VHDL. Use of this package with its defined logic values and operators is intended to
provide a mechanism for writing VHDL component models that have well-defined behavior when connected
to other models adhering to this standard.

Development of the Std_logic_1164 package:

The work of this committee is the culmination of efforts by several groups with the same goals working over
a period of over three years. The EIA (Electronic Industries Association) and the VDEG (VHDL Design
Exchange Group) have been working on the problem of interoperable VHDL component models since the
standardization of VHDL by the IEEE in 1987. The work at the EIA has been guided by John Wilner, Jack
Kinn, and Len Finegold in their efforts to produce a specification for procuring interoperable VHDL compo-
nent models. The work at the VDEG was guided by Moe Shahdad, Ghulam Nurie, and its last chair, Victor
Berman, who merged this group with the IEEE Model Standards Group in order to promote a unified stan-
dard. The VDEG group has since disbanded. At present there is agreement by the IEEE P1164 and EIA 567
groups on this standard.

Between 1989 and this date, many individuals made valuable contributions to the development of this stan-
dard. At the time of approval of the standard, the members of the working group were:

William Billowitch, Chair

David Ackley
Gordon Adshead
Shishir Agarwal
David G. Agnew
James R. Armstrong
Daniel S. Barclay
Victor Berman
Thomas H. Borgstrom
Mark Brown

Walter H. Buckhardt
Scott Calhoun
David M. Cantwell
Steven Carlson
Harold W. Carter
Moon Jung Chung
David Coelho

Tedd Corman

Allen Dewey
Michael Dukes

Len Finegold
Jacques P. Flandrois
Alain Fonkoua
Geoffrey Frank
Gary Gaugler
Alfred S. Gilman
Emil Girczyc

Rita Glover

Brent Gregory
Brian Griffin
Lawrence T. Groves

Andrew Guyler
William A. Hanna
John Hillawi

Robert Hillman
Frederick Hinchliffe
John Hines
Elchanan Herzog
Andreas Hohl

Andy Huang
Gongwen Huang
Mitsuaki Ishikawa
Takashi Kambe
Stanley J. Krolikoski
Stephen Kun
Howard K. Lane
Rick Lazansky

Jean Lebrun

Oz Levia

Alfred Lowenstein
Joseph F.P. Luhukay
Don MacMillen
F.Eric Marschner
William S. McKinney
Paul J. Menchini
Jean Mermet
Gerald T. Michael
Gabe Moretti
Wolfgang Mueller

Zainalabedin Navabi
Sivaram Nayudu
Wolfgang W. Nebel
Lawrence J. O’Connell
Jan Pukite

Eric John Purslow
SrinivasRaghvendra
Paul Ramondetta
Deborah L. Rooney
Jacques Rouillard
Ashraf M. Salem
Larry F. Saunders
Paul Scheidt
Kenneth E. Scott
Moe Shadad

Lee A. Shombert
David W. Smith
Alec G. Stanculescu
Balsha R. Stanisic
Jose A. Torres
Joseph G. Tront
Cary Ussery

Radha Vaidyanathan
James H. Vellenga
Ranganadha Vemuri
Karen E. Watkins
Ronald Waxman
Francis Wiest

John Winkler

Alex Zamfirescu

iii

Authorized licensed use limited to: Carleton University. Downloaded on November 30,2014 at 08:35:42 UTC from IEEE Xplore. Restrictions apply.

The following persons were on the balloting committee that approved this document for submission to the
IEEE Standards Board:

David Ackley
Gordon Adshead
Shishir Agarwal
David G. Agnew
James R. Armstrong
Daniel S. Barclay
Victor Berman
Thomas H. Borgstrom
Mark Brown

Walter H. Buckhardt
Scott Calhoun
David M. Cantwell
Steven Carlson
Harold W. Carter
Moon Jung Chung
David Coelho

Tedd Corman

Allen Dewey
Michael Dukes

Len Finegold
Jacques P. Flandrois
Alain Fonkoua
Geoffrey Frank
Gary Gaugler
Alfred S. Gilman
Emil Girczyc

Rita Glover

Brent Gregory
Brian Griffin
Lawrence T. Groves

Andrew Guyler
William A. Hanna
John Hillawi

Robert Hillman
Frederick Hinchliffe
John Hines
Elchanan Herzog
Andreas Hohl

Andy Huang
Gongwen Huang
Mitsuaki Ishikawa
Takashi Kambe
Stanley J. Krolikoski
Stephen Kun
Howard K. Lane
Rick Lazansky

Jean Lebrun

Oz Levia

Alfred Lowenstein
Joseph F.P. Luhukay
Don MacMillen
F.Eric Marschner
William S. McKinney
Paul J. Menchini
Jean Mermet
Gerald T. Michael
Gabe Moretti
Wolfgang Mueller

Zainalabedin Navabi
Sivaram Nayudu
Wolfgang W. Nebel
Lawrence J. O’Connell
Jan Pukite

Eric John Purslow
SrinivasRaghvendra
Paul Ramondetta
Deborah L. Rooney
Jacques Rouillard
Ashraf M. Salem
Larry F. Saunders
Paul Scheidt
Kenneth E. Scott
Moe Shadad

Lee A. Shombert
David W. Smith
Alec G. Stanculescu
Balsha R. Stanisic
Jose A. Torres
Joseph G. Tront
Cary Ussery

Radha Vaidyanathan
James H. Vellenga
Ranganadha Vemuri
Karen E. Watkins
Ronald Waxman
Francis Wiest

John Winkler

Alex Zamfirescu

When the IEEE Standards Board approved this standard on March 18, 1993, it had the following member-

ship:

Also included are the following nonvoting IEEE Standards Board liaisons:

v

Marco W. Migliaro, Chair

Dennis Bodson

Paul L. Borrill

Clyde Camp

Donald C. Fleckenstein
Jay Forster*

David F. Franklin
Ramiro Garcia
Thomas L. Hannan

*Member Emeritus

Donald N. Heirman
Ben C. Johnson
Walter J. Karplus
Ivor N. Knight
Joseph Koepfinger*
Irving Kolodny

D. N. “Jim” Logothetis

Lawrence V. McCall

Satish K. Aggarwal
James Beall
Richard B. Engelman
David E. Soffrin
Stanley Warshaw

Adam H. Sicker

IEEE Standards Project Editor

Donald C. Loughry, Vice Chair
Andrew G. Salem, Secretary

T. Don Michael*

John L. Rankine
Wallace S. Read
Ronald H. Reimer
Gary S. Robinson
Martin V. Schneider
Terrance R. Whittemore
Donald W. Zipse

Authorized licensed use limited to: Carleton University. Downloaded on November 30,2014 at 08:35:42 UTC from IEEE Xplore. Restrictions apply.

Contents

CLAUSE PAGE
Lo OVBIVIBW ..ttt et sttt et h ettt e e et e et et e st ennesaeenesaeenesaeenneennenneene 1
Lol SCOPE ettt ettt st a e s e sae e 1

1.2 Conformance with this Standardcc.cecceeeeiriniiinenineeceeteeeeeeee e 1

2. Std_logic_1164 package declarationccccceeceeveeeeireririnienentententeneeeeteteeeeee e et neene 2
3. Std_logic_1164 package DOAYccoerieriiiiinieiiiiteeeteerert ettt ettt ettt 4
Annex A Using the Std_10giC_1164 PACKAZEcccrveviiieiiiiiriiieieeneetetese ettt st 15
AL ValUE SYSIEIMI..uiiiiiiiiiiiiieeeiteeiee ettt ettt ettt et e st e bt e sat e e be e s bt e beesabe e bt e sateessaesaneenne 15

A2 Handling Stren@thScocueiiiiiiiiiiiee ettt sttt 15

A.3 Use of the uninitialized VAlUEccevuerieiririnininirieeseset ettt 15

A.4 Behavioral modeling for 'U' propagation..........cc.cecceveeueerererientenienieneeneeneeneeenenesesseseneens 16

A5 'U'srelated to conditional @XPressionscovecverieriirienienienieneereneere e 16

A.6 Structural modeling with logical tablesccceceevervirininienininencccceeeece e 16

A.7 X-handling: assigNment Of XScc.cccruerieiiriririnineneeresestest ettt 16

A8 Modeling With dON t CATE™S ..c..cecuiruiiiiiiiiieiee et 16

A9 ReSOIUtION FUNCHOMNcouiitiriitiieieteiet ettt ettt ettt sa b sae e 17

A.10 Using Std_ulogic vS. Std_10ZIC....ccueouirterieiririeinerereetesestetetetee ettt 17

v

Authorized licensed use limited to: Carleton University. Downloaded on November 30,2014 at 08:35:42 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Carleton University. Downloaded on November 30,2014 at 08:35:42 UTC from IEEE Xplore. Restrictions apply.

IEEE Standard Multivalue Logic System for
VHDL Model Interoperability (Std_logic_1164)

1. Overview

1.1 Scope

This standard is embodied in the Std_logic_1164 package declaration and the semantics of the
Std_logic_1164 package body along with this clause 1 documentation. The information annex A is a guide
to users and is not part of this standard, but suggests ways in which one might use this package.

1.2 Conformance with this standard
The following conformance rules shall apply as they pertain to the use and implementation of this standard:

a) No modifications shall be made to the package declaration whatsoever.

b) The Std_logic_1164 package body represents the formal semantics of the implementation of the
Std_logic_1164 package declaration. Implementers of this package body may choose to simply
compile the package body as it is; or they may choose to implement the package body in the most
efficient form available to the user. Users shall not implement a semantic that differs from the formal
semantic provided herein.

1

Authorized licensed use limited to: Carleton University. Downloaded on November 30,2014 at 08:35:42 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1164-1993 IEEE STANDARD MULTIVALUE LOGIC SYSTEM FOR

2. Std_logic_1164 package declaration

- Title : Std_logic_1164 multivalue logic system
- Library : This package shall be compiled into a library
- : symbolically named IEEE.

- Developers: IEEE model standards group (par 1164)

- Purpose : This packages defines a standard for designers

- : to use in describing the interconnection data types
- : used in VHDL modeling.

- Limitation: The logic system defined in this package may

- : be insufficient for modeling switched transistors,
- : since such a requirement is out of the scope of this
- : effort. Furthermore, mathematics, primitives,

- : timing standards, etc. are considered orthogonal

- : 1issues in relation to this package and are therefore
- : beyond the scope of this effort.

- Note : No declarations or definitions shall be included in,

- : or excluded from, this package. The "package declaration"
- : defines the types, subtypes, and declarations of

- : Std_logic_1164. The Std_logic_1164 package body shall be
- : considered the formal definition of the semantics of

- : this package. Tool developers may choose to implement

- : the package body in the most efficient manner available
- : to them.

- modification history

-- version mod. date:
- v4.200 01/02/92

PACKAGE Std_logic 1164 IS

-- logic state system (unresolved)

TYPE std_ulogic IS ('U', =-- Uninitialized
'X"', -- Forcing Unknown
'0', -- Forcing O
'l1', -- Forcing 1
'z2', -- High Impedance
'W', -- Weak Unknown
'L', -- Weak 0
'H', -- Weak 1

-- Don't care

)i

-- unconstrained array of std ulogic for use with the resolution function

TYPE std ulogic_vector IS ARRAY (NATURAL RANGE <>) OF std_ulogic;

-- resolution function

FUNCTION resolved (s : std ulogic_vector) RETURN std_ulogic;

—- *** jindustry standard logic type ***

SUBTYPE std_logic IS resolved std_ulogic;

-- unconstrained array of std logic for use in declaring signal arrays

TYPE std_logic_vector IS ARRAY (NATURAL RANGE <>) OF std_logic;

-- common subtypes

SUBTYPE X01 IS resolved std_ulogic RANGE 'X' TO '1l'; -- ('X','0','1")

SUBTYPE X01Z IS resolved std ulogic RANGE 'X' TO 'z'; -- ('X','0','1','2")
SUBTYPE UXO01 IS resolved std_ulogic RANGE 'U' TO 'l'; -- ('U','X','0',"'1")
SUBTYPE UX01Z IS resolved std_ulogic RANGE 'U' TO 'Zz'; -- ('U','X','0','1"','Z2")
-- overloaded logical operators

FUNCTION "and" (1 std_ulogic; r std_ulogic) RETURN UX01;

FUNCTION "nand" (1 std_ulogic; r std_ulogic) RETURN UXO01;

FUNCTION "or" (1 std_ulogic; r std_ulogic) RETURN UXO01;

FUNCTION "nor" (1 std_ulogic; r std_ulogic) RETURN UX01;

2

Authorized licensed use limited to: Carleton University. Downloaded on November 30,2014 at 08:35:42 UTC from IEEE Xplore. Restrictions apply.

IEEE

VHDL MODEL INTEROPERABILITY (Std_logic_1164) Std 1164-1993
FUNCTION "xor" (1 std_ulogic; r : std_ulogic) RETURN UXO01;

-- FUNCTION "xnor" (1 : std ulogic; r : std_ulogic) RETURN UX01;
FUNCTION "not" (1 : std ulogic) RETURN UX01;

-- vectorized overloaded logical operators

FUNCTION "and"
FUNCTION "and"
FUNCTION "nand"
FUNCTION "nand"
FUNCTION "or"

(std_logic_vector

(

(

E
FUNCTION "or" (

(

(

(

(

std_ulogic_vector
std_logic_vector

) RETURN std_logic_vector;
) RETURN std_ulogic_vector;
B) RETURN std_logic_vector;
std_ulogic_vector) RETURN std_ulogic_vector;
std_logic_vector) RETURN std_logic_vector;
std_ulogic_vector) RETURN std_ulogic_vector;
FUNCTION "nor")
FUNCTION "nor")
FUNCTION "xor")
FUNCTION "xor")

std_logic_vector RETURN std_logic_vector;
std_ulogic_vector RETURN std_ulogic_vector;
std_logic_vector RETURN std_logic_vector;
std_ulogic_vector RETURN std_ulogic_vector;

e e e e e e
RERRRRRRRRR

Note : The declaration and implementation of the "xnor" function is
specifically commented until a time at which the VHDL language has been
officially adopted as containing such a function. At such a point,

the following comments may be removed along with this notice without
further "official" balloting of this Std_logic_ 1164 package. It is

the intent of this effort to provide such a function once it becomes
available in the VHDL standard.

FUNCTION "xnor" (1, r std_logic_vector) RETURN std_logic_vector;
FUNCTION "xnor" (1, r : std ulogic_vector) RETURN std_ulogic_vector;
FUNCTION "not" (1 std_logic_vector) RETURN std_logic_vector;
FUNCTION "not" (1 std_ulogic_vector) RETURN std_ulogic_vector;

-- conversion functions

FUNCTION To_bit (s : std_ulogic; xmap : BIT
FUNCTION To_bitvector (s : std _logic_vector ; xmap : BIT
FUNCTION To bitvector (s std_ulogic_vector; xmap : BIT

'0') RETURN BIT;
'0') RETURN BIT VECTOR;
'0') RETURN BIT VECTOR;

FUNCTION To StdULogic (b : BIT) RETURN std_ulogic;

FUNCTION To_StdLogicVector (b : BIT_VECTOR) RETURN std_logic_vector;
FUNCTION To_ StdLogicVector (s std_ulogic_vector) RETURN std_logic_vector;
FUNCTION To_StdULogicVector (b : BIT VECTOR) RETURN std_ulogic_vector;
FUNCTION To_StdULogicVector (s std_logic_vector) RETURN std_ulogic_vector;

-- strength strippers and type converters

FUNCTION To_ X01
FUNCTION To_X01

std_logic_vector
std_ulogic_vector

RETURN std_logic_vector;
RETURN std ulogic_vector;

FUNCTION To XO01 std_ulogic RETURN XO01;
FUNCTION To X01 BIT VECTOR RETURN std logic_vector;
FUNCTION To_XO01 BIT_ VECTOR RETURN std ulogic_vector;
FUNCTION To XO01 BIT RETURN XO01;

FUNCTION To X01Z
FUNCTION To X01%
FUNCTION To_X01Z
FUNCTION To X01Z
FUNCTION To X01%
FUNCTION To_X01Z
FUNCTION To_ UX01
FUNCTION To_UXO01

)

)

)

)

)

)

std_logic_vector) RETURN std_logic_vector;

std_ulogic_vector) RETURN std _ulogic_vector;

std_ulogic) RETURN X01%Z;

BIT_VECTOR) RETURN std_logic_vector;

BIT_VECTOR) RETURN std_ulogic_vector;

BIT) RETURN X01Z;

std_logic_vector) RETURN std_logic_vector;

std_ulogic_vector) RETURN std_ulogic_vector;
)
)
)
)

CoO0oCnnunooouLnLnoOoonNn®

FUNCTION To_ UXO01 std_ulogic RETURN UXO01;
FUNCTION To UXO01 BIT VECTOR RETURN std logic_vector;
FUNCTION To_UXO01 BIT_ VECTOR RETURN std ulogic_vector;
FUNCTION To_ UXO01 BIT RETURN UXO01;

-- edge detection

FUNCTION rising edge (SIGNAL s : std _ulogic) RETURN BOOLEAN;
FUNCTION falling edge (SIGNAL s : std _ulogic) RETURN BOOLEAN;

-- object contains an unknown

FUNCTION Is_X (s : std _ulogic_vector) RETURN BOOLEAN;
FUNCTION Is X (s : std logic_vector) RETURN BOOLEAN;
FUNCTION Is_X (s : std_ulogic) RETURN BOOLEAN;

END Std_logic_1164;

Authorized licensed use limited to: Carleton University. Downloaded on November 30,2014 at 08:35:42 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1164-1993 IEEE STANDARD MULTIVALUE LOGIC SYSTEM FOR

3. Std_logic_1164 package body

- Title : Std_logic_1164 multivalue logic system
- Library : This package shall be compiled into a library
- : symbolically named IEEE.

- Developers: IEEE model standards group (par 1164)

- Purpose : This package defines a standard for designers

- : to use in describing the interconnection data types
- : used in VHDL modeling.

- Limitation: The logic system defined in this package may

- : be insufficient for modeling switched transistors,
- : since such a requirement is out of the scope of this
- : effort. Furthermore, mathematics, primitives,

- : timing standards, etc., are considered orthogonal

- : 1issues in relation to this package and are therefore
- : beyond the scope of this effort.

- Note : No declarations or definitions shall be included in,

- : or excluded from this package. The "package declaration”
- : defines the types, subtypes and declarations of

- : Std_logic_1164. The Std_logic_1164 package body shall be
- : considered the formal definition of the semantics of

- : this package. Tool developers may choose to implement

- : the package body in the most efficient manner available
- : to them.

- modification history

-- version mod. date:
- v4.200 01/02/91

PACKAGE BODY Std_logic 1164 IS

-- local types

TYPE stdlogic_1d IS ARRAY (std _ulogic) OF std_ulogic;
TYPE stdlogic_table IS ARRAY(std_ulogic, std ulogic) OF std ulogic;

-- resolution function

CONSTANT resolution_table : stdlogic_table := (

-- | U X 0 1 b4 W L H - |
('v', 'u', 'v', 'v', 'v', ‘v, ‘v, ‘U, 'V), - |U
('U'I 'X'I 'X'I 'X'I 'X'I 'X'I 'X'I 'X'I RS)I - X
('U'l 'X'l 'O'l 'X'l 'O'l 'O'l 'O'l 'O'l ‘X')I - 0
('U, XY, XY, 1Y, '10, 1Y, 1Y, 1Y, XD, - |l
('U'I 'X'I 'O'I '1'1 'Z'I 'W'I 'L'I 'H'I RS)I - Z
('U'l 'X'l 'O'l '1'1 'w'l 'w'l 'w'l 'w'l ‘X')I - W
('u', X', t0', 'L, 'L, ‘W', ‘L', W', 'X'), -- | L
('U'I 'X'I 'O'I '1'1 'H'I 'W'I 'W'I 'H'I RS)I - H
('U'l 'X'l 'X'l 'X'l 'X'l 'X'l 'X'l 'X'l ‘X') - -

)i

FUNCTION resolved (s : std_ulogic_vector) RETURN std_ulogic IS

VARIABLE result : std _ulogic := 'Z'; -- weakest state default
BEGIN

-- the test for a single driver is essential; otherwise, the
-- loop would return 'X' for a single driver of '-' and that
—-- would conflict with the value of a single driver unresolved
-- signal.
IF (s'LENGTH = 1) THEN RETURN s(s'LOW);
ELSE

FOR i IN s'RANGE LOOP

result := resolution_table(result, s(i));

END LOOP;
END IF;

RETURN result;
END resolved;

4

Authorized licensed use limited to: Carleton University. Downloaded on November 30,2014 at 08:35:42 UTC from IEEE Xplore. Restrictions apply.

IEEE

Std 1164-1993

DXo-NEAm |

function
stdlogic_table := (

"and"

-- tables for logical operations

-- truth table for

VHDL MODEL INTEROPERABILITY (Std_logic_1164)
CONSTANT and_table

N S

DXONXNXNXoNXNX

L N

DXONXNXNXOoNXNX

DbhobbboDbDb

DXo-NEAm |

function
stdlogic_table

"or"

-- truth table for

CONSTANT or_ table

)i

N S

D XX XX X X

o B B B B B B B B

L N

DXOAXXodX

L N

D XX XX X X

L N

D XX XX X X

L B B B B B B B B

L N

DXOAXXodX

L N

D XX XX X X

L N

DDOD=EDDDHAD

DXo-NEAm |

function
stdlogic_table

"wor"

-- truth table for

CONSTANT xor_ table

)i

N S

D XXX X X X XX

DX O X X0 X

L N

DXOAXNXOodX

L N

D XXX X X X XX

L N

D XXX X X XXX

L N

DX O XNX—0OX

L N

DXOAXXodX

L N

D XXX X X X XX

L N

DDODDODDDDDD

2014 at 08:35:42 UTC from IEEE Xplore. Restrictions apply.

gic) RETURN UX01 IS
gic) RETURN UX01 IS
gic) RETURN UX01 IS
gic) RETURN UX01 IS

std_ulo

std_ulo

std ulogic) RETURN UX01l IS
std_ulo

r)))i

std_ulo

r
r
r
r
r

2
’
r
’
’

gic
gic
gic
gic

function

r));

stdlogic_1d
std_ulo
std_ulo
std_ulogic
std_ulo
std_ulo

"not"

1
1
1
1
1

(

RETURN (and table(1l,

(

(not_table (and_table(l, r)));

(

RETURN (or_table(l, r));

END "or";

(

(not_table (or table(1,

(

RETURN (xor_table(l, r));

END "xor";

"and"
"nand"
i
"or"
"nor"
"xor"

RETURN
"nand"

FUNCTION

BEGIN
RETURN

END "nor";

-- overloaded logical operators (with optimizing hints)

-- truth table for
CONSTANT not_ table
FUNCTION

BEGIN

END "and";
FUNCTION

BEGIN

END

FUNCTION

BEGIN

FUNCTION

BEGIN

)i

Authorized licensed use limited to: Carleton University. Downloaded on November 30

IEEE

Std 1164-1993 IEEE STANDARD MULTIVALUE LOGIC SYSTEM FOR
-- FUNCTION "xnor" (1 : std ulogic; r : std _ulogic) RETURN UXO01l is
-- begin

- return not_table(xor_table(l, r));
-- end "xnor";

FUNCTION "not" (1 : std ulogic) RETURN UX01l IS
BEGIN
RETURN (not_table(l));
END "not";
-- and
FUNCTION "and" (1,r : std_logic_vector) RETURN std_logic_vector IS

ALIAS 1lv : std_logic_vector (1 TO 1'LENGTH) IS 1;
ALIAS rv : std_logic_vector (1 TO r'LENGTH) IS r;
VARIABLE result : std _logic_vector (1 TO 1'LENGTH);
BEGIN
IF (1'LENGTH /= r'LENGTH) THEN
ASSERT FALSE
REPORT "arguments of overloaded 'and' operator are not of the same length"

SEVERITY FAILURE;

ELSE
FOR i IN result'RANGE LOOP
result(i) := and_table (lv(i), rv(i));
END LOOP;
END IF;
RETURN result;
END "and";
FUNCTION "and" (1l,r : std ulogic_vector) RETURN std_ulogic_vector IS

ALIAS 1lv : std_ulogic_vector (1 TO 1'LENGTH) IS 1;
ALIAS rv : std ulogic_vector (1 TO r'LENGTH) IS r;
VARIABLE result : std ulogic_vector (1 TO 1'LENGTH);
BEGIN
IF (1'LENGTH /= r'LENGTH) THEN
ASSERT FALSE
REPORT "arguments of overloaded 'and' operator are not of the same length"

SEVERITY FAILURE;

ELSE
FOR i IN result'RANGE LOOP
result(i) := and_table (lv(i), rv(i));
END LOOP;
END IF;
RETURN result;
END "and";
—-- nand
FUNCTION "nand" (1,r : std_logic_vector) RETURN std_logic_vector IS

ALIAS 1lv : std_logic_vector (1 TO 1'LENGTH) IS 1;
ALIAS rv : std_logic_vector (1 TO r'LENGTH) IS r;
VARIABLE result : std _logic_vector (1 TO 1'LENGTH);
BEGIN
IF (1'LENGTH /= r'LENGTH) THEN
ASSERT FALSE
REPORT "arguments of overloaded 'nand' operator are not of the same length"

SEVERITY FAILURE;

ELSE
FOR i IN result'RANGE LOOP
result(i) := not_table(and_ table (lv(i), rv(i))):
END LOOP;
END IF;

RETURN result;
END "nand";

FUNCTION "nand" (1l,r : std ulogic_vector) RETURN std ulogic_vector IS
ALIAS 1lv : std_ulogic_vector (1 TO 1'LENGTH) IS 1;
ALIAS rv : std ulogic_vector (1 TO r'LENGTH) IS r;
VARIABLE result : std ulogic_vector (1 TO 1'LENGTH);
BEGIN
IF (1'LENGTH /= r'LENGTH) THEN
ASSERT FALSE
REPORT "arguments of overloaded 'nand' operator are not of the same length"

SEVERITY FAILURE;

ELSE
FOR i IN result'RANGE LOOP
result(i) := not_table(and table (lv(i), rv(i))):;
END LOOP;
END IF;

RETURN result;
END "nand";

6

Authorized licensed use limited to: Carleton University. Downloaded on November 30,2014 at 08:35:42 UTC from IEEE Xplore. Restrictions apply.

IEEE

VHDL MODEL INTEROPERABILITY (Std_logic_1164) Std 1164-1993
-- or
FUNCTION "or" (1l,r : std logic_vector) RETURN std_logic_vector IS

ALIAS lv : std_logic_vector (1 TO 1'LENGTH) IS 1;

ALIAS rv : std_logic_vector (1 TO r'LENGTH) IS r;

VARIABLE result : std_logic_vector (1 TO 1'LENGTH);

BEGIN

IF (1'LENGTH /= r'LENGTH) THEN
ASSERT FALSE
REPORT "arguments of overloaded 'or' operator are not of the same length"
SEVERITY FAILURE;

ELSE
FOR i IN result'RANGE LOOP
result(i) := or_table (1lv(i), rv(i));
END LOOP;
END IF;
RETURN result;
END "or";
FUNCTION "or" (1l,r : std_ulogic_vector) RETURN std_ulogic_vector IS

ALIAS 1lv : std ulogic_vector (1 TO 1'LENGTH) IS 1;

ALIAS rv : std ulogic _vector (1 TO r'LENGTH) IS r;

VARIABLE result : std ulogic_vector (1 TO 1'LENGTH);

BEGIN

IF (1'LENGTH /= r'LENGTH) THEN
ASSERT FALSE
REPORT "arguments of overloaded 'or' operator are not of the same length"
SEVERITY FAILURE;

ELSE
FOR i IN result'RANGE LOOP
result(i) := or_table (lv(i), rv(i));
END LOOP;
END IF;
RETURN result;
END "or";
-- nor
FUNCTION "nor" (1l,r : std_logic_vector) RETURN std_logic_vector IS

ALIAS lv : std_logic_vector (1 TO 1'LENGTH) IS 1;

ALIAS rv : std_logic_vector (1 TO r'LENGTH) IS r;

VARIABLE result : std_logic_vector (1 TO 1'LENGTH);

BEGIN

IF (1'LENGTH /= r'LENGTH) THEN
ASSERT FALSE
REPORT "arguments of overloaded 'nor' operator are not of the same length"
SEVERITY FAILURE;

ELSE
FOR i IN result'RANGE LOOP
result(i) := not_table(or_ table (lv(i), rv(i)));
END LOOP;
END IF;

RETURN result;
END "nor";

FUNCTION "nor" (1l,r : std_ulogic_vector) RETURN std_ulogic_vector IS
ALIAS 1lv : std ulogic_vector (1 TO 1'LENGTH) IS 1;
ALIAS rv : std ulogic_vector (1 TO r'LENGTH) IS r;
VARIABLE result : std ulogic_vector (1 TO 1'LENGTH);
BEGIN
IF (1'LENGTH /= r'LENGTH) THEN
ASSERT FALSE
REPORT "arguments of overloaded 'nor' operator are not of the same length"

SEVERITY FAILURE;

ELSE
FOR i IN result'RANGE LOOP
result(i) := not_table(or_ table (lv(i), rv(i))):
END LOOP
END IF;

RETURN result;
END "nor";

7

Authorized licensed use limited to: Carleton University. Downloaded on November 30,2014 at 08:35:42 UTC from IEEE Xplore. Restrictions apply.

IEEE

Std 1164-1993 IEEE STANDARD MULTIVALUE LOGIC SYSTEM FOR
-- Xor
FUNCTION "xor" (1l,r : std_logic_vector) RETURN std_logic_vector IS

ALIAS lv : std_logic_vector (1 TO 1'LENGTH) IS 1;

ALIAS rv : std_logic_vector (1 TO r'LENGTH) IS r;

VARIABLE result : std_logic_vector (1 TO 1'LENGTH);

BEGIN

IF (1'LENGTH /= r'LENGTH) THEN
ASSERT FALSE
REPORT "arguments of overloaded 'xor' operator are not of the same length"
SEVERITY FAILURE;

ELSE
FOR i IN result'RANGE LOOP
result(i) := xor_table (lv(i), rv(i));
END LOOP;
END IF;

RETURN result;
END "xor";

FUNCTION "xor" (1l,r : std_ulogic_vector) RETURN std_ulogic_vector IS
ALIAS 1lv : std ulogic_vector (1 TO 1'LENGTH) IS 1;
ALIAS rv : std ulogic _vector (1 TO r'LENGTH) IS r;
VARIABLE result : std ulogic_vector (1 TO 1'LENGTH);
BEGIN
IF (1'LENGTH /= r'LENGTH) THEN
ASSERT FALSE
REPORT "arguments of overloaded 'xor' operator are not of the same length"
SEVERITY FAILURE;

ELSE
FOR i IN result'RANGE LOOP
result(i) := xor_ table (lv(i), rv(i));
END LOOP;
END IF;

RETURN result;
END "xor";

- --= Xnor

-- Note : The declaration and implementation of the "xnor" function is

-- specifically commented until a time at which the VHDL language has been
-- officially adopted as containing such a function. At such a point,

-- the following comments may be removed along with this notice without

-- further "official" balloting of this std logic_1164 package. It is

-- the intent of this effort to provide such a function once it becomes

-- available in the VHDL standard.

-- FUNCTION "xnor" (1l,r : std logic_vector) RETURN std logic_vector is

- alias 1lv : std_logic_vector (1 to 1l'length) is 1;

- alias rv : std_logic _vector (1 to r'length) is r;

- variable result : std_logic_vector (1 to 1l'length);

-- begin

- if (1'length /= r'length) then

- assert false

- report "arguments of overloaded 'xnor' operator are not of the same length"
- severity failure;

- else

- for i in result'range loop

- result(i) := not_table(xor_ table (lv(i), rv(i))):
- end loop;

- end if;

- return result;
-- end "xnor";

-- FUNCTION "xnor" (1l,r : std ulogic_vector) RETURN std ulogic_vector is

- alias 1lv : std ulogic_vector (1 to 1l'length) is 1;

- alias rv : std_ulogic_vector (1 to r'length) is r;

- variable result : std ulogic_vector (1 to 1l'length);

-- begin

-— if (l'length /= r'length) then

- assert false

- report "arguments of overloaded 'xnor' operator are not of the same length"
- severity failure;

- else

- for i in result'range loop

- result(i) := not_table(xor_ table (lv(i), rv(i))):;
- end loop;

- end if;

- return result;
-- end "xnor";

Authorized licensed use limited to: Carleton University. Downloaded on November 30,2014 at 08:35:42 UTC from IEEE Xplore. Restrictions apply.

IEEE

VHDL MODEL INTEROPERABILITY (Std_logic_1164) Std 1164-1993

-- not
FUNCTION "not" (1 : std _logic_vector) RETURN std_logic_vector IS

ALIAS lv : std_logic_vector (1 TO 1'LENGTH) IS 1;

VARIABLE result : std _logic_vector (1 TO 1'LENGTH) := (OTHERS => 'X');
BEGIN

FOR i IN result'RANGE LOOP

result(i) := not_table(lv(i));

END LOOP;

RETURN result;
END;
FUNCTION "not" (1 : std ulogic_vector) RETURN std _ulogic_vector IS

ALIAS 1lv : std_ulogic_vector (1 TO 1'LENGTH) IS 1;

VARIABLE result : std _ulogic_vector (1 TO 1'LENGTH) := (OTHERS => 'X'");
BEGIN

FOR i IN result'RANGE LOOP

result(i) := not_table(1lv(i));

END LOOP;

RETURN result;
END;

-- conversion tables

TYPE logic_x01 table IS ARRAY (std ulogic'LOW TO std_ulogic'HIGH) OF X01;
TYPE logic_x01lz_table IS ARRAY (std_ulogic'LOW TO std_ulogic'HIGH) OF X01Z;
TYPE logic_ux01l table IS ARRAY (std_ulogic'LOW TO std ulogic'HIGH) OF UX01;

-- table name : cvt_to_x01

-- parameters

- in : std ulogic -- some logic value

-- returns : x01 -- state value of logic value
-- purpose : to convert state-strength to state only
-- example : if (cvt_to_x01 (input_signal) = 'l') then

CONSTANT cvt_to _x01 : logic_x01_ table := (

X', g
X', o
0", = 0"
1, e
X', - g
XL e W
0, —— 'L
"1, -
g o
)i
-- table name : cvt_to_x01z
-- parameters :
-- in : std ulogic -- some logic value
-- returns : x01z -- state value of logic value
-— purpose : to convert state-strength to state only
-- example : if (cvt_to _x0l1lz (input_signal) = 'l1') then

CONSTANT cvt_to x01z : logic_x0lz_ table := (

T—

X, - U
X', -
0", - '0"
MY
gt oo g
X', e W
', - 'L
1t -
'y o
)i
-- table name : cvt_to_ux01
-- parameters :
-- in : std ulogic -- some logic value
-- returns ¢ ux01 -- state value of logic value
—-— purpose : to convert state-strength to state only
-- example : if (cvt_to_ux01l (input_signal) = 'l1') then

9

Authorized licensed use limited to: Carleton University. Downloaded on November 30,2014 at 08:35:42 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1164-1993 IEEE STANDARD MULTIVALUE LOGIC SYSTEM FOR

CONSTANT cvt_to ux0l : logic_ux0l table := (

—

'u', --'U
X', - X
0, - 0"
LM
X', —— g
X', o W
0 oo
"1, - 'H
e s
)i
-- conversion functions
FUNCTION To_bit (s : std_ulogic; xmap : BIT := '0O') RETURN BIT IS
BEGIN
CASE s IS
WHEN '0' 'L' => RETURN ('0');
WHEN '1' '"H' => RETURN ('l');
WHEN OTHERS => RETURN xmap;
END CASE;
END;
FUNCTION To_bitvector (s : std_logic_vector ; xmap : BIT := '0O') RETURN BIT_VECTOR IS

ALIAS sv : std_logic_vector (s'LENGTH-1 DOWNTO 0) IS s;
VARIABLE result : BIT VECTOR (s'LENGTH-1 DOWNTO 0);
BEGIN
FOR i IN result'RANGE LOOP
CASE sv(i) IS

WHEN '0' 'L' => result(i) := '0';
WHEN '1' 'H' => result(i) := '1';
WHEN OTHERS => result(i) := xmap;
END CASE;
END LOOP;
RETURN result;
END;
FUNCTION To bitvector (s : std ulogic_vector; xmap : BIT := '0O') RETURN BIT VECTOR IS

ALIAS sv : std ulogic_vector (s'LENGTH-1 DOWNTO 0) IS s;
VARIABLE result : BIT VECTOR (s'LENGTH-1 DOWNTO 0);
BEGIN
FOR i IN result'RANGE LOOP
CASE sv(i) IS

WHEN '0' 'L' => result(i) := '0';
WHEN '1' 'H' => result(i) := '1';
WHEN OTHERS => result(i) := xmap;
END CASE;
END LOOP;
RETURN result;
END;
FUNCTION To_StdULogic (b : BIT) RETURN std_ulogic IS
BEGIN
CASE b IS
WHEN '0' => RETURN '0';
WHEN 'l' => RETURN 'l';
END CASE;
END;
FUNCTION To_StdLogicVector (b : BIT_ VECTOR) RETURN std_logic_vector IS

ALIAS bv : BIT VECTOR (b'LENGTH-1 DOWNTO 0) IS b;
VARIABLE result : std_logic_vector (b'LENGTH-1 DOWNTO 0);
BEGIN
FOR i IN result'RANGE LOOP
CASE bv (i) IS

WHEN '0' => result(i) := '0';
WHEN 'l' => result(i) := '1';
END CASE;
END LOOP;
RETURN result;
END;
FUNCTION To_StdLogicVector (s : std ulogic_vector) RETURN std_logic_vector IS

ALIAS sv : std ulogic_vector (s'LENGTH-1 DOWNTO 0) IS s;
VARIABLE result : std logic_vector (s'LENGTH-1 DOWNTO 0);

BEGIN
FOR i IN result'RANGE LOOP
result(i) := sv(i);
END LOOP;
RETURN result;
END;

10

Authorized licensed use limited to: Carleton University. Downloaded on November 30,2014 at 08:35:42 UTC from IEEE Xplore. Restrictions apply.

IEEE
VHDL MODEL INTEROPERABILITY (Std_logic_1164) Std 1164-1993

FUNCTION To_ StdULogicVector (b : BIT VECTOR) RETURN std_ulogic_vector IS
ALIAS bv : BIT VECTOR (b'LENGTH-1 DOWNTO 0) IS b;
VARIABLE result : std_ulogic_vector (b'LENGTH-1 DOWNTO 0);
BEGIN
FOR i IN result'RANGE LOOP
CASE bv(i) IS

WHEN '0' => result(i) := '0';
WHEN 'l' => result(i) := '1';
END CASE;
END LOOP;
RETURN result;

END;

FUNCTION To_StdULogicVector (s : std_logic_vector) RETURN std_ulogic_vector IS
ALIAS sv : std_logic_vector (s'LENGTH-1 DOWNTO 0) IS s;
VARIABLE result : std_ulogic_vector (s'LENGTH-1 DOWNTO 0);

BEGIN
FOR i IN result'RANGE LOOP
result(i) := sv(i);
END LOOP;
RETURN result;
END;

-- strength strippers and type convertors

-- to_x01

FUNCTION To X01 (s : std_logic_vector) RETURN std logic_vector IS
ALIAS sv : std_logic_vector (1 TO s'LENGTH) IS s;
VARIABLE result : std_logic_vector (1 TO s'LENGTH);

BEGIN
FOR i IN result'RANGE LOOP
result(i) := cvt_to _x01 (sv(i));
END LOOP;
RETURN result;
END;
FUNCTION To_X01 (s : std_ulogic_vector) RETURN std_ulogic_vector IS

ALIAS sv : std ulogic_vector (1 TO s'LENGTH) IS s;
VARIABLE result : std ulogic_vector (1 TO s'LENGTH);

BEGIN

FOR i IN result'RANGE LOOP

result(i) := cvt_to x01 (sv(i));

END LOOP;

RETURN result;
END;
FUNCTION To_X01 (s : std ulogic) RETURN XO01 IS
BEGIN

RETURN (cvt_to_x01(s));
END;
FUNCTION To_X01 (b : BIT VECTOR) RETURN std_logic_vector IS

ALIAS bv : BIT VECTOR (1 TO b'LENGTH) IS b;
VARIABLE result : std_logic_vector (1 TO b'LENGTH);
BEGIN
FOR i IN result'RANGE LOOP
CASE bv (i) IS

WHEN '0' => result(i) := '0';
WHEN 'l' => result(i) := '1';
END CASE;
END LOOP;
RETURN result;
END;
FUNCTION To_X01 (b : BIT VECTOR) RETURN std_ulogic_vector IS

ALIAS bv : BIT VECTOR (1 TO b'LENGTH) IS b;
VARIABLE result : std ulogic_vector (1 TO b'LENGTH);
BEGIN
FOR i IN result'RANGE LOOP
CASE bv(i) IS

WHEN '0' => result(i) := '0'
WHEN 'l' => result(i) := '1';
END CASE;
END LOOP;
RETURN result;

END;

11

Authorized licensed use limited to: Carleton University. Downloaded on November 30,2014 at 08:35:42 UTC from IEEE Xplore. Restrictions apply.

IEEE

Std 1164-1993

12

Authorized licensed use limited to: Carleton University. Downloaded on November 30,2014 at 08:35:42 UTC from IEEE Xplore.

FUNCTION To X01 (b : BIT) RETURN X0l IS

BEGIN
CASE b IS
WHEN '0O' => RETURN('0');
WHEN 'l' => RETURN('1');
END CASE;
END;
-- to_x01z
FUNCTION To_X01Z (s : std_logic_vector) RETURN std_logic_vector IS

ALIAS sv : std_logic_vector (1 TO s'LENGTH) IS s;
VARIABLE result : std_logic_vector (1 TO s'LENGTH);

BEGIN
FOR i IN result'RANGE LOOP
result(i) := cvt_to x01z (sv(i));
END LOOP;
RETURN result;
END;
FUNCTION To_X01Z (s : std ulogic_vector) RETURN std_ulogic_vector IS

ALIAS sv : std ulogic_vector (1 TO s'LENGTH) IS s;

VARIABLE result : std ulogic_vector (1 TO s'LENGTH);
BEGIN

FOR i IN result'RANGE LOOP

result(i) := cvt_to x01lz (sv(i));

END LOOP;

RETURN result;
END;
FUNCTION To X01Z (s : std ulogic) RETURN X01z IS
BEGIN

RETURN (cvt_to_x01z(s));
END;
FUNCTION To_X01Z (b : BIT_VECTOR) RETURN std logic_vector IS

ALIAS bv : BIT VECTOR (1 TO b'LENGTH) IS b;
VARIABLE result : std_logic_vector (1 TO b'LENGTH);
BEGIN
FOR i IN result'RANGE LOOP
CASE bv(i) IS

WHEN '0' => result(i) := '0'
WHEN 'l' => result(i) := '1';
END CASE;
END LOOP;
RETURN result;
END;
FUNCTION To_X01Z (b : BIT_VECTOR) RETURN std ulogic_vector IS

ALIAS bv : BIT VECTOR (1 TO b'LENGTH) IS b;
VARIABLE result : std ulogic_vector (1 TO b'LENGTH);
BEGIN
FOR i IN result'RANGE LOOP
CASE bv(i) IS

WHEN '0' => result(i) := '0';
WHEN 'l' => result(i) := '1';
END CASE;
END LOOP;
RETURN result;
END;
FUNCTION To_X01Z (b : BIT) RETURN X017z IS
BEGIN
CASE b IS
WHEN '0O' => RETURN('0');
WHEN 'l' => RETURN('1');
END CASE;
END;
-- to_ux01
FUNCTION To UX01] (s : std_logic_vector) RETURN std_logic_vector IS

ALIAS sv : std_logic_vector (1 TO s'LENGTH) IS s;
VARIABLE result : std_logic_vector (1 TO s'LENGTH);

BEGIN
FOR i IN result'RANGE LOOP
result(i) := cvt_to ux01l (sv(i));
END LOOP;
RETURN result;
END;

IEEE STANDARD MULTIVALUE LOGIC SYSTEM FOR

Restrictions apply.

IEEE
VHDL MODEL INTEROPERABILITY (Std_logic_1164) Std 1164-1993

FUNCTION To UX01 (s : std ulogic_vector) RETURN std ulogic_vector IS
ALIAS sv : std_ulogic_vector (1 TO s'LENGTH) IS s;
VARIABLE result : std ulogic_vector (1 TO s'LENGTH);

BEGIN

FOR i IN result'RANGE LOOP

result(i) := cvt_to ux01l (sv(i));

END LOOP;

RETURN result;
END;
FUNCTION To UX0l (s : std ulogic) RETURN UX01l IS
BEGIN

RETURN (cvt_to_ux01l(s));
END;
FUNCTION To UX01 (b : BIT VECTOR) RETURN std_logic_vector IS

ALIAS bv : BIT VECTOR (1 TO b'LENGTH) IS b;
VARIABLE result : std_logic_vector (1 TO b'LENGTH);
BEGIN
FOR i IN result'RANGE LOOP
CASE bv(i) IS

WHEN '0' => result(i) := '0';
WHEN 'l' => result(i) := '1';
END CASE;
END LOOP;
RETURN result;
END;
FUNCTION To UX0l (b : BIT_VECTOR) RETURN std ulogic_vector IS

ALIAS bv : BIT VECTOR (1 TO b'LENGTH) IS b;
VARIABLE result : std _ulogic_vector (1 TO b'LENGTH);
BEGIN
FOR i IN result'RANGE LOOP
CASE bv (i) IS

WHEN '0' => result(i) := '0';
WHEN 'l' => result(i) := '1';
END CASE;
END LOOP;
RETURN result;
END;
FUNCTION To_UXO01 (b : BIT) RETURN UX01l IS
BEGIN
CASE b IS
WHEN '0' => RETURN('0');
WHEN 'l' => RETURN('1l');
END CASE;
END;

-- edge detection

FUNCTION rising edge (SIGNAL s : std ulogic) RETURN BOOLEAN IS

BEGIN
RETURN (s'EVENT AND (To X0l(s) = 'l') AND
(To_X01(s'LAST VALUE) = '0'));
END;
FUNCTION falling edge (SIGNAL s : std ulogic) RETURN BOOLEAN IS
BEGIN
RETURN (s'EVENT AND (To X0l(s) = '0') AND
(To_X01(s'LAST VALUE) = '1')); END;

-- object contains an unknown

FUNCTION Is X (s : std ulogic_vector) RETURN BOOLEAN IS
BEGIN
FOR i IN s'RANGE LOOP
CASE s(i) IS

WHEN 'U' | 'X' | 'z' | 'W' | '=-' => RETURN TRUE;
WHEN OTHERS => NULL;
END CASE;
END LOOP;
RETURN FALSE;

END;

13

Authorized licensed use limited to: Carleton University. Downloaded on November 30,2014 at 08:35:42 UTC from IEEE Xplore. Restrictions apply.

IEEE

Std 1164-1993 IEEE STANDARD MULTIVALUE LOGIC SYSTEM FOR
FUNCTION Is X (s : std_logic_vector) RETURN BOOLEAN IS
BEGIN

FOR i IN s'RANGE LOOP
CASE s(i) IS
WHEN 'U' | 'X' | 'z' | 'W' | '=-' => RETURN TRUE;
WHEN OTHERS => NULL;
END CASE
END LOOP;
RETURN FALSE;
END;

FUNCTION Is X (s : std_ulogic) RETURN BOOLEAN IS
BEGIN
CASE s IS
WHEN 'U' | 'X'" | '2' | 'W' | '=-' => RETURN TRUE;
WHEN OTHERS => NULL;
END CASE;
RETURN FALSE;
END;
END std_logic_1164;

14

Authorized licensed use limited to: Carleton University. Downloaded on November 30,2014 at 08:35:42 UTC from IEEE Xplore. Restrictions apply.

IEEE
VHDL MODEL INTEROPERABILITY (Std_logic_1164) Std 1164-1993

Annex A
Using the Std_logic_1164 Package

(informative)

This annex is intended to be a brief guide to using the Std_logic_1164 package. As a standard, this package
provides a means of building models that interoperate, provided that the user adheres to a set of guidelines
required by the strict typing imposed by the VHDL language.

A.1 Value system

The value system in Std_logic_1164 was developed to model a variety of digital device technologies. The
base type of the logic system is named “std_ulogic” where the “u” in the name signifies “unresolved.” Each
of the elements comprising the type have a specified semantic and a commonly used application. In order for
models to properly interoperate, one must interpret the meaning of each of the elements as provided by the
standard.

Type std _ulogic is (
‘', Uninitialized state Used as a default value
‘X', Forcing Unknown Bus contentions, error conditions, etc.
‘o', Forcing Zero Transistor driven to GND
‘1, Forcing One Transistor driven to VCC
‘2", High Impedance 3-state buffer outputs
'w', Weak Unknown Bus terminators
'L', Weak Zero Pull down resistors
'H', Weak One Pull up resistors
-t Don't Care Used for synthesis and advanced modeling

)i

A.2 Handling strengths

Behavioral modeling techniques rarely require knowledge of the strength of a signal’s value. Therefore, a
number of “strength stripper” functions have been designed to transform 'Z', 'W', 'L', 'H', and '-' into their

corresponding “forcing” strength counterparts.

Once in forcing strength, the model can simply respond to X’s, 0’s, 1’s and 'U's as the need may arise. This
strength stripping is done by using one of the following functions:

To_XO1 (...) converts 'L' and 'H' to '0' and '1' respectively. All others are converted to 'X'.
To_UXOI (...) converts 'L' and 'H' to '0' and '1' respectively. 'U's are propagated and all others are con-
verted to 'X'".

A.3 Use of the uninitialized value

The 'U' value is located in the first position of the type. Therefore, any object declared to be of this base type
will be automatically initialized to 'U" unless expressly assigned a default expression.

Uninitialized values were designed to provide a means of detecting system values that have not changed
from their uninitialized state since the time of system initialization. Hence, the logical tables for AND, OR,

NAND, NOR, XOR, XNOR, and NOT have been designed to propagate 'U' states whenever encountered.

The propagation of 'U's through a circuit gives the designer an understanding of where the system has failed
to be properly initialized. The AND gate example that follows illustrates the effect of 'U' propagation.

15

Authorized licensed use limited to: Carleton University. Downloaded on November 30,2014 at 08:35:42 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1164-1993 IEEE STANDARD MULTIVALUE LOGIC SYSTEM FOR

A.4 Behavioral modeling for 'U' propagation

For behavioral modeling where 'U' propagation is desired, the function To_UXO01 will provide a reduction in
the state system, as far as the modeler is concerned, thereby easing the modeler’s task.

A.5 'U's related to conditional expressions

Case statements, “if”” expressions, and selected signal assignments need to separately treat 'U' states and pro-
vide a path for 'U' state propagation in order to propagate 'U's.

A.6 Structural modeling with logical tables

The logical tables are designed to generate output values in the range 'U', 'X', '0', and 'l". Therefore, once an
element of the nine-state system passes through any of the logical tables, it will be converted to forcing
strength. If the need arises for a weak or floating strength to be propagated through the remainder of a circuit
or to an output port, then the model developer shall be certain to assign the appropriate value accordingly.

A.7 X-handling: assignment of X’s

In assignments, the 'X' and '-' values differ minimally. The value '-', also known as “output don’t care,’
explicitly means that synthesis tools are allowed to generate either a '0' or a '1', whichever leads to minimal
circuitry, whereas 'X' usually appears during transitions or as a result of bus contentions or to flag model
generated internal error conditions, such as in the following waveform assignment:

S <="'X"after 1 ns, '1' after 5 ns

where the current value of S becomes indeterminate after 1 ns and then reaches '1' after 5 ns have elapsed.

A.8 Modeling with don’t care’s

A.8.1 Use of the don’t care state in synthesis models

For synthesis, a VHDL program is a specification of the functionality of a design. VHDL can also be used to
model (in order to simulate) real circuits. The former deals with logical function of the circuit, while the lat-
ter is concerned with function of a circuit from an electrical point of view. The nine-state logic type usage for
synthesis is based on the assumption that the VHDL models will be logical function specifications and,
therefore, attempts to restrict the usage of the logic type to logical function. The motivation for allowing the
user to reference the values 'U' and 'X' (which do not specify the behavior of the circuit to be built, i.e., one
can not build a circuit which “drives an 'X"’) is to allow such simulation artifacts to remain in models for
synthesis for the sake of convenience. By having synthesis remove these references, the user is assuming
only the kind of usage (of 'U' and 'X") that catches error states that should never occur in hardware.

A.8.2 Semantics of '-'

In designing the resolution function and the various logic tables in the package body, '-' is almost exclusively
a syntactic shorthand for 'X', provided for compatibility with synthesis tools. This is evident from that fact
that '-' becomes 'X' as soon as it is operated upon and when it is converted to subtype X01 or UXO01. The
“output don’t care” value represents either a '1' or a '0' as the output of combinatorial circuitry, with respect
to state encoding in particular.

16

Authorized licensed use limited to: Carleton University. Downloaded on November 30,2014 at 08:35:42 UTC from IEEE Xplore. Restrictions apply.

IEEE
VHDL MODEL INTEROPERABILITY (Std_logic_1164) Std 1164-1993

A.9 Resolution function

In digital logic design, there are a number of occasions in which driving outputs of more than one device are
connected together. The most common of which is tri-state™ ! buses in which memory data ports are con-
nected to each other and to controlling microprocessors. Another common case is one in which multiple
drivers are parallel driving a heavily loaded signal path. In each of these cases, the VHDL language requires
that the signals used to interconnect those devices be “resolved” signal types.

Focusing on resolution: when two signals’ values are driving the same “wire,” some resulting value will be
observed on that wire. For example, if two parallel buffers both drive '1' onto a signal, then the signal will be
'1'. If a tri-state driver is in the high-impedance state Z' and another driver is in the forcing one 'l' state, then
the combination of those two signal values will result in a value of '1' appearing on the wire.

The resolution function built into Std_logic_1164 operates on the principal that weak values dominate over
high-impedance values and forcing values dominate over weak values.

A.10 Using Std_ulogic vs. Std_logic

In deciding whether to use the resolved signal or unresolved signal type, a number of considerations need to
be made:

a) Does the simulator run slower when using a resolved type than when using an unresolved type; or is
the simulator optimized for the std_logic data types?
b) What should be done to insure interoperability of models with other model developers?

Each of these is considered, in order, below:

Most simulator vendors, in approving this standard, voiced their strong interest in having the package body
reflect the formal semantics of the package, but wanted to be allowed to implement the package body in the
most efficient manner. Consequently, a great number of simulator vendors will optimize their environments
to maximize performance for signals declared of the resolved type.

In the case of two unity buffers, wired in parallel and driving a common signal, the driven signal shall be a
resolved signal (i.e., std_logic) and the type of the unity driver output ports may be either std_ulogic or
std_logic; either will work properly. But, suppose a user developed a model of an octal buffer and preferred
to model the input and output ports as eight element arrays of std_logic just to benefit from the ease of wir-
ing arrays rather than individually wiring each and every buffer element. In this scenario, the user must make
a choice between std_ulogic_vector and std_logic_vector as the array type of the buffer port. Since
std_logic_vector and std_ulogic_vector are TYPES, they are by definition incompatible. Therefore, if the
user chooses incorrectly, he or she will not be able to wire this array to a microprocessor address or data bus
unless that microprocessor model uses exactly the same data type for its ports. Since the user may have not
developed the microprocessor model, he or she may not know what data type was used and might prefer not
to use a type conversion function in order to have the two models interconnect. Therefore, the resolved vec-
tor type is preferred.

For scalar ports and signals, the developer may use either the std_ulogic or std_logic type.

For vector ports and signals, the developer should use the STD_LOGIC_VECTOR type.

ITri-state is a trademark of National Semiconductor.

17

Authorized licensed use limited to: Carleton University. Downloaded on November 30,2014 at 08:35:42 UTC from IEEE Xplore. Restrictions apply.

	Title Page
	Introduction
	Participants
	CONTENTS
	1. Overview
	1.1 Scope
	1.2 Conformance with this standard

	2. Std_logic_1164 package declaration
	3. Std_logic_1164 package body
	Annex A—Using the Std_logic_1164 Package

