

Recognized as an

American National Standard (ANSI)

The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017-2394, USA

Copyright © 1996 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 1996. Printed in the United States of America

ISBN 1-55937-727-5

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

IEEE Std 1364-1995

IEEE Standard Hardware Description
Language Based on the Verilog

¨

Hardware Description Language

Sponsor

Design Automation Standards Committee
of the
IEEE Computer Society

Approved 12 December 1995

IEEE Standards Board

Approved 1 August 1996

American National Standards Institute

Abstract:

The Verilog

¨

 Hardware Description Language (HDL) is defined. Verilog HDL is a formal
notation intended for use in all phases of the creation of electronic systems. Because it is both ma-
chine readable and human readable, it supports the development, verification, synthesis, and test-
ing of hardware designs; the communication of hardware design data; and the maintenance,
modification, and procurement of hardware. The primary audiences for this standard are the imple-
mentors of tools supporting the language and advanced users of the language.

Keywords:

computer, computer languages, electronic systems, digital systems, hardware, hard-
ware design, hardware description languages, HDL, programming language interface, PLI, Verilog
HDL, Verilog PLI, Verilog

¨

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE Standards

 documents are developed within the Technical Committees of the IEEE Societies
and the Standards Coordinating Committees of the IEEE Standards Board. Members of the com-
mittees serve voluntarily and without compensation. They are not necessarily members of the Insti-
tute. The standards developed within IEEE represent a consensus of the broad expertise on the
subject within the Institute as well as those activities outside of IEEE that have expressed an inter-
est in participating in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply
that there are no other ways to produce, test, measure, purchase, market, or provide other goods and
services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the
time a standard is approved and issued is subject to change brought about through developments in
the state of the art and comments received from users of the standard. Every IEEE Standard is sub-
jected to review at least every Þve years for revision or reafÞrmation. When a document is more
than Þve years old and has not been reafÞrmed, it is reasonable to conclude that its contents,
although still of some value, do not wholly reßect the present state of the art. Users are cautioned to
check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of
membership afÞliation with IEEE. Suggestions for changes in documents should be in the form of a
proposed change of text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as
they relate to speciÞc applications. When the need for interpretations is brought to the attention of
IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards rep-
resent a consensus of all concerned interests, it is important to ensure that any interpretation has
also received the concurrence of a balance of interests. For this reason IEEE and the members of its
technical committees are not able to provide an instant response to interpretation requests except in
those cases where the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

Authorization to photocopy portions of any individual standard for internal or personal use is
granted by the Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate
fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact
Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA;
(508) 750-8400. Permission to photocopy portions of any individual standard for educational class-
room use can also be obtained through the Copyright Clearance Center.

Note: Attention is called to the possibility that implementation of this standard may
require use of subject matter covered by patent rights. By publication of this standard,
no position is taken with respect to the existence or validity of any patent rights in
connection therewith. The IEEE shall not be responsible for identifying all patents for
which a license may be required by an IEEE standard or for conducting inquiries into
the legal validity or scope of those patents that are brought to its attention.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

iii

Introduction

(This introduction is not a part of IEEE Std 1364-1995, IEEE Standard Hardware Description Language Based on the
Verilog

¨

 Hardware Description Language.)

The Verilog

¨

 Hardware Description Language (Verilog HDL) was designed to be simple, intuitive, and
effective at multiple levels of abstraction in a standard textual format for a variety of design tools, including
veriÞcation simulation, timing analysis, test analysis, and synthesis. The Verilog HDL was designed by Phil
Moorby during the winter of 1983Ð1984, and it was introduced into the EDA market in 1985 as the corner-
stone of a veriÞcation simulator product.

The Verilog HDL contains a rich set of built-in primitives, including logic gates, user-deÞnable primitives,
switches, and wired logic. It also has device pin-to-pin delays and timing checks. The mixing of abstract lev-
els is essentially provided by the semantics of two data types: nets and registers. Continuous assignments, in
which expressions of both registers and nets can continuously drive values onto nets, provide the basic struc-
tural construct. Procedural assignments, in which the results of calculations involving register and net values
can be stored into registers, provide the basic behavioral construct. A design consists of a set of modules,
each of which has an I/O interface and a description of its function, which can be structural, behavioral, or a
mix. These modules are formed into a hierarchy and are interconnected with nets.

The Verilog language is extensible via the Programming Language Interface (PLI). The PLI is a collection of
routines that allows foreign functions to access information contained in a Verilog HDL description of the
design and facilitates dynamic interaction with simulation. Applications of PLI include connecting to a Ver-
ilog HDL simulator with other simulation and CAD systems, customized debugging tasks, delay calculators,
and annotators.

The language that inßuenced Verilog HDL the most was HILO-2, which was developed at Brunel University
in England under a contract to produce a test generation system for the British Ministry of Defense. HILO-2
successfully combined the gate and register transfer levels of abstraction and supported veriÞcation simula-
tion, timing analysis, fault simulation, and test generation.

In 1990, Cadence Design Systems placed the Verilog HDL into the public domain and the independent Open
Verilog International (OVI) was formed to manage and promote Verilog HDL.

In 1992, the Board of Directors of OVI began an effort to establish Verilog HDL as an IEEE standard. With
many designers all over the world designing electronic circuits with Verilog HDL, this idea was enthusiasti-
cally received by the Verilog user community. When the Project Authorization Request (1364) was approved
by the IEEE in 1993, a working group was formed and the Þrst meeting was held on October 14, 1993.

Objective

The starting point for the IEEE P1364 Working Group were the OVI LRM version 2.0 and OVI PLI versions
1.0 and 2.0. The standardization process started with the clear objective of making it easier for the user to
understand and use Verilog. The IEEE P1364 standard had to be clear, unambiguous, implementable, and not
overly constraining. Since Verilog HDL has been in use for some time, it was quite robust enough to be pre-
sented to the user community without a great deal of enhancements. The working group, therefore, decided
not to spend a lot of time extending the language, but, for the purpose of this standardization, to concentrate
on clarifying the language.

Since Verilog HDL has been in widespread use and a number of ASIC vendors have built extensive libraries
in Verilog HDL, it was very important to maintain the integrity of these existing models. With this in mind, it

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

iv

was decided that the intent of the working group would be to maintain the integrity of the standard and every
care would be taken not to invalidate existing models.

The standardization process

In order to clarify the language, many changes were proposed from a number of sources. The working group
met 15 times over a period of 18 months and voted on nearly 400 motions. Four drafts of the document were
generated and reviewed. It is a tribute to the hard work and dedication put forward by all the members of the
working group that this standard was completed in the short span of 18 months.

Many new sections were created, one of which is the section on scheduling semantics. A number of sections
were merged to form new sections. The two annexes containing compiler directives and system tasks were
moved into main text as two sections. Every effort has been made to clarify all ambiguities, add explana-
tions, and delete references that were deemed unnecessary.

Changes also included removing product speciÞc references and restrictions. The minimum product require-
ments for implementing this standard were clariÞed. A number of examples, Þgures, and tables were
retained in order to provide better context and explanation.

The PLI Task Force provided a clear and accurate description of OVI PLI 1.0 implementations already in
existence, and revisited the OVI PLI 2.0 speciÞcation to ensure its accuracy and completeness. The baseline
for the access routines and the task/function routines was the OVI PLI 1.0 speciÞcation. As there are a large
number of OVI PLI 1.0 routines in widespread use that were not included in the OVI PLI 1.0 document, it
was decided to consider additions to this document from the pool of existing OVI PLI 1.0 implementations.
The access routines and the task/function routines provide full backwards compatibility with Verilog HDL
software tools and PLI applications.

The baseline for the VPI routines was the existing OVI PLI 2.0 document. To this, the task force brought
new experience from the implementations in progress, which helped prove the worthiness of the previously
untested speciÞcation.

Acknowledgments

This standard is based on work originally developed by Cadence Design Systems, Inc. (in their Verilog LRM
1.6 and 2.0 and PLI documents) and Open Verilog International (in their Verilog LRM 2.0 and PLI 1.0 and
2.0). The IEEE is grateful to Cadence Design Systems and Open Verilog International for permission to use
their materials as the basis for this standard.

The IEEE Std 1364-1995 working group organization

Many individuals from many different organizations participated directly or indirectly in the standardization
process. The main body of the IEEE P1364 working group is located in the United States, with a subgroup in
Japan. Over a period of 18 months many task forces were created, of which the PLI task force was
prominent.

The members of the IEEE P1364 working group had voting privileges, and all motions had to be approved
by this group to be implemented. All task forces and subgroups focused on some speciÞc areas, and their
recommendations were eventually voted on by the IEEE P1364 working group.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

v

At the time this document was approved, the IEEE P1364 working group had the following membership:

Maqsoodul (Maq) Mannan,

Chair

Yoshiharu Furui,

Vice Chair (Japan)

Alec G. Stanculescu,

Vice Chair (USA)

Lynn A. Horobin,

Secretary

Yatin Trivedi,

Technical Editor

Victor Berman John Mancini John Sanguinetti
Leigh Brady Michael McNamara Joseph P. Skudlarek
Clifford E. Cummings Elliot Mednick Stuart Sutherland
Peter Eichenberger Phil Moorby John R. Williamson
Andrew T. Lynch Gabe Moretti Alex N. ZamÞrescu

The PLI task force consisted of the following members:

Andrew T. Lynch,

PLI Task Force Leader

Stuart Sutherland,

Technical Editor

Charles A. Dawson Joel Paston Marco Zelado
Rajeev Madhavan Sathyam K. Pattanam Guoqing Zhang

David Roberts

The IEEE P1364 Japan subgroup consisted of the following members:

Yoshiharu Furui,

Vice-Chair, IEEE-1364 Working Group

Takaaki Akashi Junichi Murayama Toshiyuki Sakamoto
Kasumi Hamaguchi Masaharu Nakamura Hitomi Sato
Masato Ikeda Shouhei Oda Katsushida Seo
Masaru Kakimoto Fujio Otsuka Mitsuhiro Yasuda
Kazuya Morii Kazuhiro Yoshinaga

The following persons were members of the balloting group:

Guy Adam
H. Gordon Adshead
Unmesh Agarwala
Anant Agrawal
John Ainscough
Takaaki Akashi
Tom Albers
Glen Anderson
Lawrence F. Arnstein
Michael Atkin
Venkata Atluri
Rick Bahr
Jim Ball
Jose Baradiaran
Daniel S. Barclay
David L. Barton
Jean-Michel Berge
Victor Berman
J. Bhasker
Ron Bianchini
William D. Billowitch
Ronald D. Blanton

Miriam Blatt
James Brandt
Dennis B. Brophy
Randal E. Bryant
John A. Busco
Ben Buzonas
L. Richard Carley
Thomas Chao
Daniel Chapiro
Clive R. Charlwood
Chin-Fu Chen
Mojy C. Chian
Kai Moon Chow
Michael D. Ciletti
Joseph C. Circello
Luc Claesen
George M. Cleveland
Edmond S. Cooley
Tedd Corman
David Crohn
Clifford E. Cummings
Godfrey Paul D'Souza
Brian A. Dalio

Carlos Dangelo
Hal Daseking
Timothy R. Davis
Charles A. Dawson
Willem De Lange
Rajiv Deshmukh
Caroline DeVore-Kenney
Allen Dewey
Bill Doss
Douglas D. Dunlop
Peter Eichenberger
Hazem El Tahawy
John A. Eldon
Bassam N. Elkhoury
Ted Elkind
Brian Erickson
Robert A. Flatt
Bob Floyd
Alain Blaise Fonkoua
Douglas W. Forehand
Paul Franzon
Bill Fuchs

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

vi

Yoshiharu Furui
Vassilios Gerousis
Emil Girczyc
Rita A. Glover
Timothy G. Goldsbury
Alan Goodrum
Suresh Gopalakrishnan
Harutaka Goto
Kenji Goto
Brian GrifÞn
Steve Grout
Kazuyuki Hagiwara
Michael J. Haney
James P. Hanna
Anne C. Harris
Akira Hasegawa
Stuart Hecht
Shankar Hemmady
John Hillawi
Chris N. Hinds
Kazuyuki Hirakawa
Fumiyasu Hirose
Lynn A. Horobin
Tamio Hoshino
May Huang
Sylvie Hurat
Masaharu Imai
Ann Irza
Mitsuaki Ishikawa
Yoshi Ishizaka
David Jakopac
Paul Jeffs
Roger Jennings
Eugene E. Jones
Richard Jones
Tetsuro Kage
Masaru Kakimoto
Osamu Karatsu
Jake Karrfalt
Kaoru Kawamura
Masamichi Kawarabayashi
Pratibha Kelapure
Khozema Khambati
Bruce Kim
Choon B. Kim
Tsutomu Kimoto
Chris Kingsley
Masayuki Koyama
Tokinori Kozawa
Sarangan K. Kumar
Ramachandra P. Kunda
Douglas Laird
Jean Lebrun
Bill Ledbetter
Hung-Yi Lee
Shawn Leonard
Oz Levia
George Lippincott

Herbert Lopez-Aguado
Jin-Qin Lu
Andrew T. Lynch
Viranjit S. Madan
Rajeev Madhavan
Naotaka Maeda
Serge Maginot
James Magro
Wojciech P. Maly
Maqsoodul Mannan
Guillermo Maturana
Michael McNamara
Paul J. Menchini
Jean Mermet
Gerald T. Michael
Glen S. Miranker
Shankha Mitra
Kristan Monsen
John T. Montague
Patrick Moore
Gabe Moretti
David S. Morris
Chandra Moturu
Wolfgang Mueller
Shankar Ranjan Mukherjee
Yoshiaki Nagashima
David Nagle
Hiroshi Nakamura
Hiroshi Nakamura
Seiji Nakamura
Zainalabedin Navabi
Sivaram K. Nayudu
Robert N. Newshutz
Jun Numata
John W. OÕLeary
Tetsuya Okabe
Vincent Olive
Yoichi Onishi
Samir Palnitkar
Mark Papamarcos
David M. Parry
Rajesh Patil
Robert A. Pease
Mitchell Perilstein
Bruce Petrick
John Petry
Robert Piloty
Juan Pineda
Ron Poon
Jan Pukite
Selliah Rathnam
David Rich
John P. Ries
Hemant G. Rotithor
Jacques Rouillard
Paul Rowbottom
Jon Rubinstein
Stefan Rusu

Rob A. Rutenbar
Karem A. Sakallah
Toshiyuki Sakamoto
John Sanguinetti
Hitomi Sato
Larry F. Saunders
Quentin Schmierer
Michael L. Seavey
Alex Seibulescu
Shailesh Shah
Moe Shahdad
Ravi Shankar
Charles Shelor
John P. Shen
Hiroshi Shiraishi
Toru Shonai
Alexander A. Silbey
Supreet Singh
Joseph P. Skudlarek
David M. Smith
David R. Smith
William Bong H. Soon
Larry P. Soule
John Spittal
Chakra R. Srivatsa
Joseph J. Stanco
Alec G. Stanculescu
Jay K. Strosnider
Stuart Sutherland
Kinya Tabuchi
Atsushi Takahara
Donald Thomas
Partha Tirumalai
Jose A. Torres
Paul Traynar
Richard Trihy
Yatin Trivedi
Shunjen Tsay
Radha Vaidyanathan
Arie van Rhijn
Kerry Veenstra
Venkat V. Venkataraman
Sanjay Vishin
Robert A. Walker
Tsu-Hua Wang
John J. Watters
Ronald Waxman
J. Richard Weger
Paul Weil
John R. Williamson
John C. Willis
Claudia H. Ye
William R. Young
Tetsuo Yutani
Alex N. ZamÞrescu
Guoqing Zhang

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

vii

When the IEEE Standards Board approved this standard on 12 December 1995, it had the following mem-
bership:

E. G. ÒAlÓ Kiener,

 Chair

Donald C. Loughry,

Vice Chair

Andrew G. Salem,

Secretary

*Member Emeritus

Also included are the following nonvoting IEEE Standards Board liaisons:

Satish K. Aggarwal
Steve Sharkey
Robert E. Hebner
Chester C. Taylor

Mary Lynne Nielsen

IEEE Standards Project Editor

Verilog is a registered trademark of Cadence Design Systems, Inc.

Gilles A. Baril
Clyde R. Camp
Joseph A. Cannatelli
Stephen L. Diamond
Harold E. Epstein
Donald C. Fleckenstein
Jay Forster*
Donald N. Heirman
Richard J. Holleman

Jim Isaak
Ben C. Johnson
Sonny Kasturi
Lorraine C. Kevra
Ivor N. Knight
Joseph L. KoepÞnger*
D. N. ÒJimÓ Logothetis
L. Bruce McClung

Marco W. Migliaro
Mary Lou Padgett
John W. Pope
Arthur K. Reilly
Gary S. Robinson
Ingo R�sch
Chee Kiow Tan
Leonard L. Tripp
Howard L. Wolfman

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

viii

Contents

Section 1 Overview.. 1

Section 2 Lexical conventions ... 5

Section 3 Data types... 13

Section 4 Expressions .. 27

Section 5 Scheduling semantics... 45

Section 6 Assignments... 50

Section 7 Gate and switch level modeling... 55

Section 8 User-defined primitives (UDPs) .. 87

Section 8 Behavioral modeling.. 98

Section 10 Tasks and functions.. 125

Section 11 Disabling of named blocks and tasks... 132

Section 12 Hierarchical structures ... 135

Section 13 Specify blocks.. 152

Section 14 System tasks and functions .. 172

Section 15 Value change dump (VCD) file ... 207

Section 16 Compiler directives.. 219

Section 17 PLI TF and ACC interface mechanism.. 228

Section 18 Using ACC routines... 234

Section 19 ACC routine definitions... 270

Section 20 Using TF routines .. 444

Section 21 TF routine definitions .. 449

Section 22 Using VPI routines... 525

Section 23 VPI routine definitions... 554

Annex A Formal syntax definition .. 594

Annex B List of keywords .. 604

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

ix

Annex C The acc_user.h file ... 605

Annex D The veriuser.h file .. 615

Annex E The vpi_user.h file ... 622

Annex F System tasks and functions .. 635

Annex G Compiler directives.. 642

Annex H Bibliography .. 644

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

Section 1 1

IEEE Standard Hardware Description
Language Based on the Verilog

¨

Hardware Description Language

Section 1

Overview

1.1 Objectives of this standard

The intent of this standard is to serve as a complete speciÞcation of the Verilog

¨

 Hardware Description Language
(HDL). This document contains

Ñ The formal syntax and semantics of all Verilog HDL constructs
Ñ Simulation system tasks and functions, such as text output display commands
Ñ Compiler directives, such as text substitution macros and simulation time scaling
Ñ The Programming Language Interface (PLI) binding mechanism
Ñ The formal syntax and semantics of access routines, task/function routines, and Verilog procedural interface

routines
Ñ Informative usage examples
Ñ Listings of header Þles for PLI

1.2 Conventions used in this standard

This standard is organized into sections, each of which focuses on some speciÞc area of the language. There are sub-
clauses within each section to discuss individual constructs and concepts. The discussion begins with an introduction
and an optional rationale for the construct or the concept, followed by syntax and semantic descriptions, followed by
some examples and notes.

The verb ÒshallÓ is used through out this standard to indicate mandatory requirements, whereas the verb ÒcanÓ is used
to indicate optional features. These verbs denote different meanings to different readers of this standard:

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

2 Section 1

a) To the developers of tools that process the Verilog HDL, the verb ÒshallÓ denotes a requirement that the
standard imposes. The resulting implementation is required to enforce the requirements and to issue an error
if the requirement is not met by the input.

b) To the Verilog HDL model developer, the verb ÒshallÓ denotes that the characteristics of the Verilog HDL are
natural consequences of the language deÞnition. The model developer is required to adhere to the constraint
implied by the characteristic. The verb ÒcanÓ denotes optional features that the model developer can exercise
at discretion. If used, however, the model developer is required to follow the requirements set forth by the
language deÞnition.

c) To the Verilog HDL model user, the verb ÒshallÓ denotes that the characteristics of the models are natural
consequences of the language deÞnition. The model user can depend on the characteristics of the model
implied by its Verilog HDL source text.

1.3 Syntactic description

The formal syntax of the Verilog HDL is described using Backus-Naur Form (BNF). The following conventions are
used:

a) Lowercase words, some containing embedded underscores, are used to denote syntactic categories. For
example:

module_declaration

b) Boldface words are used to denote reserved keywords, operators, and punctuation marks as a required part of
the syntax. These words appear in a larger font for distinction. For example:

module

=>

;

c) A vertical bar separates alternative items unless it appears in boldface, in which case it stands for itself. For
example:

unary_operator ::=

+

|

 -

|

 !

|

 ~

|

 &

|

 ~&

|

 |

|

 ~|

|

 ^

|

 ~^

|

 ^~

d) Square brackets enclose optional items. For example:

input_declaration ::=

input

 [range] list_of_variables

;

e) Braces enclose a repeated item unless it appears in boldface, in which case it stands for itself. The item may
appear zero or more times; the repetitions occur from left to right as with an equivalent left-recursive rule.
Thus, the following two rules are equivalent:

list_of_param_assignments ::= param_assignment

{

,

param_assignment }

list_of_param_assignments ::=
 param_assignment
| list_of_param_assignment

,

 param_assignment

f) If the name of any category starts with an italicized part, it is equivalent to the category name without the
italicized part. The italicized part is intended to convey some semantic information. For example,

msb_

constant_expression and

lsb_

constant_expression are equivalent to constant_expression.

The main text uses

italicized

 font when a term is being deÞned, and

constant-width

 font for examples, Þle
names, and while referring to constants, especially

0

,

1

,

x

, and

z

 values.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 1 3

1.4 Contents of this standard

A synopsis of the sections and annexes is presented as a quick reference. There are 23 sections and 7 annexes. All the
sections and annexes A through E are normative parts of this standard. Annexes F and G are included for informative
purposes only.

1)

Overview

This section discusses the conventions used in this standard and its contents.
2)

Lexical conventions

This section describes how to specify and interpret the lexical tokens.
3)

Data types

This section describes net and reg data types. This section also discusses the parameter data type for con-
stant values and describes drive and charge strength of the values on nets.

4)

Expressions

This section describes the operators and operands that can be used in expressions.
5)

Scheduling semantics

This section describes the scheduling semantics of the Verilog HDL.
6)

Assignments

This section compares the two main types of assignment statements in the Verilog HDLÑcontinuous
assignments and procedural assignments. It describes the continuous assignment statement that drives
values onto nets.

7)

Gate and switch level modeling

This section describes the gate and switch level primitives and logic strength modeling.
8)

User-defined primitives (UDPs)

This section describes how a primitive can be deÞned in the Verilog HDL and how these primitives are
included in Verilog HDL models.

9)

Behavioral modeling

This section describes procedural assignments, procedural continuous assignments, and behavioral lan-
guage statements.

10)

Tasks and functions

This section describes tasks and functionsÑprocedures that can be called from more than one place in a
behavioral model. It describes how tasks can be used like subroutines and how functions can be used to
deÞne new operators.

11)

Disabling of named blocks and tasks

This section describes how to disable the execution of a task and a block of statements that has a speci-
Þed name.

12)

Hierarchical structures

This section describes how hierarchies are created in the Verilog HDL and how parameter values
declared in a module can be overridden.

13)

Specify blocks

This section describes how to specify timing relationships between input and output ports of a module.
14)

System tasks and functions

This section describes the system tasks and functions.
15)

Value change dump (VCD) Þle

This section describes the system tasks associated with Value Change Dump (VCD) Þle, and the format
of the Þle.

16)

Compiler directives

This section describes the compiler directives.
17)

PLI TF and ACC interface mechanism

This section describes the interface mechanism that provides a means for users to link PLI task/function
(TF) routine and access (ACC) routine applications to Verilog software tools.

18)

Using ACC routines

This section describes the ACC routines in general, including how and why to use them.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

4 Section 1

19)

ACC routine definitions

This section describes the speciÞc ACC routines, explaining their function, syntax, and usage.

20)

Using TF routines

This section provides an overview of the types of operations that are done with the TF routines.

21)

TF routine definitions

This section describes the speciÞc TF routines, explaining their function, syntax, and usage.

22)

Using VPI routines

This section provides an overview of the types of operations that are done with the Verilog Programming
Interface (VPI) routines.

23)

VPI routine definitions

This section describes the VPI routines.

A

Formal syntax definition

This normative annex describes, using BNF, the syntax of the Verilog HDL.

B)

List of keywords

This normative annex lists the Verilog HDL keywords.

C)

The acc_user.h file

This normative annex provides a listing of the contents of the

acc_user.h

 Þle.

D)

The veriuser.h file

This normative annex provides a listing of the contents of the

veriuser.h

 Þle.

E)

The vpi_user.h file

This normative annex provides a listing of the contents of the

vpi_user.h

 Þle.

F)

System tasks and functions

This informative annex describes system tasks and functions that are frequently used, but that are not
part of the standard.

G)

Compiler directives

This informative annex describes compiler directives that are frequently used, but that are not part of the
standard.

H)

Bibliography

This informative annex contains bibliographic entries pertaining to this standard.

1.5 Header file listings

The header Þle listings included in the annexes C, D, and E for

veriuser.h

,

acc_user.h

 and

vpi_user.h

are a normative part of this standard. All compliant software tools should use the same function declarations, constant
deÞnitions, and structure deÞnitions contained in these header Þle listings.

1.6 Examples

Several small examples in the Verilog HDL and the C programming language are shown throughout this standard.
These examples are

informative

Ñthey are intended to illustrate the usage of Verilog HDL constructs and PLI func-
tions in a simple context and do not deÞne the full syntax.

1.7 Prerequisites

Sections 17 through 23 and annexes C through E presuppose a working knowledge of the C programming language.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

Section 2 5

Section 2

Lexical conventions

This section describes the lexical tokens used in Verilog HDL source text and their conventions.

2.1 Lexical tokens

Verilog HDL source text Þles shall be a stream of lexical tokens. A

lexical token

 shall consist of one or more charac-
ters. The layout of tokens in a source Þle shall be free formatÑthat is, spaces and newlines shall not be syntactically
signiÞcant other than being token separators, except for escaped identiÞers (see 2.7.1).

The types of lexical tokens in the language are as follows:

Ñ White space
Ñ Comment
Ñ Operator
Ñ Number
Ñ String
Ñ IdentiÞer
Ñ Keyword

2.2 White space

White space shall contain the characters for spaces, tabs, newlines, and formfeeds. These characters shall be ignored
except when they serve to separate other lexical tokens. However, blanks and tabs shall be considered signiÞcant
characters in strings (see 2.6).

2.3 Comments

The Verilog HDL has two forms to introduce comments. A

one-line comment

 shall start with the two characters

//

and end with a newline. A

block comment

 shall start with

/*

 and end with

*/

. Block comments shall not be nested.
The one-line comment token

//

 shall not have any special meaning in a block comment.

2.4 Operators

Operators are single-, double-, or triple-character sequences and are used in expressions. Section 4 discusses the use
of operators in expressions.

Unary operators

 shall appear to the left of their operand.

Binary operators

 shall appear between their operands. A

conditional operator

 shall have two operator characters that separate three operands.

2.5 Numbers

Constant numbers

 can be speciÞed as integer constants or real constants.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

6 Section 2

Syntax 2-1ÑSyntax for integer and real numbers

2.5.1 Integer constants

Integer constants

 can be speciÞed in decimal, hexadecimal, octal, or binary format.

There are two forms to express integer constants. The Þrst form is a simple decimal number, which shall be speciÞed
as a sequence of digits

0

 through

9

, optionally starting with a plus or minus unary operator. The second form speciÞes
a

sized constant

, which shall be composed of up to three tokensÑan optional size constant, a single quote followed
by a base format character, and the digits representing the value of the number.

number ::=
 decimal_number
| octal_number
| binary_number
| hex_number
| real_number

decimal_number ::=
 [sign] unsigned_number
| [size] decimal_base unsigned_number

binary_number ::=
[size] binary_base binary_digit { _ | binary_digit }

octal_number ::=
[size] octal_base octal_digit { _ | octal_digit }

hex_number ::=
[size] hex_base hex_digit { _ | hex_digit }

real_number ::=
 [sign] unsigned_number . unsigned_number
| [sign] unsigned_number [. unsigned_number] e [sign] unsigned_number
| [sign] unsigned_number [. unsigned_number] E [sign] unsigned_number

sign ::=
+ | -

size ::=
unsigned_number

unsigned_number ::=
decimal_digit { _ | decimal_digit }

decimal_base ::=
'd | 'D

binary_base ::=
'b | 'B

octal_base ::=
'o | 'O

hex_base ::=
'h | 'H

decimal_digit ::=
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

binary_digit ::=
x | X | z | Z | 0 | 1

octal_digit ::=
x | X | z | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

hex_digit ::=
x | X | z | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e | f | A | B | C | D | E | F

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 2 7

The Þrst token, a size constant, shall specify the size of the constant in terms of its exact number of bits. It shall be
speciÞed as an unsigned decimal number. For example, the size speciÞcation for two hexadecimal digits is 8, because
one hexadecimal digit requires 4 bits.

The second token, a base_format, shall consist of a letter specifying the base for the number, preceded by the single
quote character (Õ). Legal base speciÞcations are d, D, h, H, o, O, b, or B, for the bases decimal, hexadecimal, octal,
and binary respectively.

The use of x and z in deÞning the value of a number is case insensitive.

The single quote and the base format character shall not be separated by any white space.

The third token, an unsigned number, shall consist of digits that are legal for the speciÞed base format. The unsigned
number token shall immediately follow the base format, optionally preceded by white space. The hexadecimal digits
a to f shall be case insensitive.

Simple decimal numbers without the size and the base format shall be treated as signed integers, whereas the numbers
speciÞed with the base format shall be treated as unsigned integers.

A plus or a minus operator preceding the size constant is a sign for the constant number; the size constant does not
take a sign. A plus or minus operator between the base format and the number is an illegal syntax.

Negative numbers shall be represented in 2Õs complement form.

An x represents the unknown value in hexadecimal, octal, and binary constants. A z represents the high-impedance
value. See 3.1 for a discussion of the Verilog HDL value set. An x shall set 4 bits to unknown in the hexadecimal base,
3 bits in the octal base, and 1 bit in the binary base. Similarly, a z shall set 4 bits, 3 bits, and 1 bit, respectively, to the
high-impedance value.

If the size of the unsigned number is smaller than the size speciÞed for the constant, the unsigned number shall be
padded to the left with zeros. If the leftmost bit in the unsigned number is an x or a z, then an x or a z shall be used
to pad to the left respectively.

When used in a number, the question-mark (?) character is a Verilog HDL alternative for the z character. It sets 4
bits to the high-impedance value in hexadecimal numbers, 3 bits in octal, and 1 bit in binary. The question mark can
be used to enhance readability in cases where the high-impedance value is a donÕt-care condition. See the discussion
of casez and casex in 9.5.1. The question-mark character is also used in user-deÞned primitive state table. See 8.1.4.

The underscore character (_) shall be legal anywhere in a number except as the Þrst character. The underscore charac-
ter is ignored. This feature can be used to break up long numbers for readability purposes.

Examples:

Unsized constant numbers

Sized constant numbers

659 // is a decimal number
Õh 837FF // is a hexadecimal number
Õo7460 // is an octal number
4af // is illegal (hexadecimal format requires Õh)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

8 Section 2

Using sign with constant numbers

Automatic left padding

Using underscore character in numbers

NOTES

1ÑA sized negative number is not sign-extended when assigned to a register data type.

2ÑEach of the three tokens for specifying a number may be macro substituted.

3ÑThe number of bits that make up an unsized number (which is a simple decimal number or a number without the size speciÞca-
tion) shall be at least 32.

2.5.2 Real constants

The real constant numbers shall be represented as described by IEEE Std 754-1985 [B1],1 an IEEE standard for dou-
ble-precision ßoating-point numbers.

Real numbers can be speciÞed in either decimal notation (for example, 14.72) or in scientiÞc notation (for example,
39e8, which indicates 39 multiplied by 10 to the eighth power). Real numbers expressed with a decimal point shall
have at least one digit on each side of the decimal point.

Examples:

1.2
0.1
2394.26331

1The numbers in brackets correspond to those of the bibliography in Annex H.

4Õb1001 // is a 4-bit binary number
5 ÕD 3 // is a 5-bit decimal number
3Õb01x // is a 3-bit number with the least

// significant bit unknown
12Õhx // is a 12-bit unknown number
16Õhz // is a 16-bit high-impedance number

8 Õd -6 // this is illegal syntax
-8 Õd 6 // this defines the twoÕs complement of 6,

 // held in 8 bitsÑequivalent to -(8Õd 6)

reg [11:0] a, b, c, d;
initial begin

a = Õh x; // yields xxx
b = Õh 3x; // yields 03x
c = Õh z3; // yields zz3
d = Õh 0z3; // yields 0z3

end

27_195_000
16Õb0011_0101_0001_1111
32 Õh 12ab_f001

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 2 9

1.2E12 (the exponent symbol can be e or E)
1.30e-2
0.1e-0
23E10
29E-2
236.123_763_e-12 (underscores are ignored)

The following are invalid forms of real numbers because they do not have at least one digit on each side of the deci-
mal point:

.12
9.
4.E3
.2e-7

2.5.3 Conversion

Real numbers shall be converted to integers by rounding the real number to the nearest integer, rather than by truncat-
ing it. Implicit conversion shall take place when a real number is assigned to an integer. The ties shall be rounded
away from zero.

Examples:

The real numbers 35.7 and 35.5 both become 36 when converted to an integer and 35.2 becomes 35.

Converting -1.5 to integer yields -2, converting 1.5 to integer yields 2.

2.6 Strings

A string is a sequence of characters enclosed by double quotes (ÒÓ) and contained on a single line. Strings used as
operands in expressions and assignments shall be treated as unsigned integer constants represented by a sequence of
8-bit ASCII values, with one 8-bit ASCII value representing one character.

2.6.1 String variable declaration

String variables are variables of register type (see 3.2) with width equal to the number of characters in the string mul-
tiplied by 8.

Example:

To store the twelve-character string ÒHello world!Ó requires a register 8 * 12, or 96 bits wide

2.6.2 String manipulation

Strings can be manipulated using the Verilog HDL operators. The value being manipulated by the operator is the
sequence of 8-bit ASCII values.

reg [8*12:1] stringvar;
initial begin
 stringvar = "Hello world!";
end

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

10 Section 2

Example:

The output is:

Hello world is stored as 00000048656c6c6f20776f726c64
Hello world!!! is stored as 48656c6c6f20776f726c64212121

NOTEÑWhen a variable is larger than required to hold a value being assigned, the contents on the left are padded with zeros after
the assignment. This is consistent with the padding that occurs during assignment of nonstring values. If a string is larger than the
destination string variable, the string is truncated to the left, and the leftmost characters will be lost.

2.6.3 Special characters in strings

Certain characters can only be used in strings when preceded by an introductory character called an escape character.
Table 2-1 lists these characters in the right-hand column, with the escape sequence that represents the character in the
left-hand column.

2.7 Identifiers, keywords, and system names

An identiÞer is used to give an object a unique name so it can be referenced. An identiÞer shall be any sequence of let-
ters, digits, dollar signs ($), and underscore characters (_).

The Þrst character of an identiÞer shall not be a digit or $; it can be a letter or an underscore. IdentiÞers shall be case
sensitive.

Examples:

shiftreg_a
busa_index
error_condition

Table 2-1ÑSpecifying special characters in string

Escape
string

Character produced by
escape string

\n New line character

\t Tab character

\\ \ character

\" " character

\ddd A character speciÞed in 1Ð3 octal digits
(0 £ d £ 7)

module string_test;
reg [8*14:1] stringvar;
initial begin

stringvar = "Hello world";
$display("%s is stored as %h", stringvar,stringvar);
stringvar = {stringvar,"!!!"};
$display("%s is stored as %h", stringvar,stringvar);

end
endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 2 11

merge_ab
_bus3
n$657

NOTEÑImplementations may set a limit on the maximum length of identiÞers, but they shall at least be 1024 characters. If an
identiÞer exceeds the implementation-speciÞed length limit, an error shall be reported.

2.7.1 Escaped identiÞers

Escaped identiÞers shall start with the backslash character (\) and end with white space (space, tab, newline). They
provide a means of including any of the printable ASCII characters in an identiÞer (the decimal values 33 through
126, or 21 through 7E in hexadecimal).

Neither the leading backslash character nor the terminating white space is considered to be part of the identiÞer.
Therefore, an escaped identiÞer \cpu3 is treated the same as a nonescaped identiÞer cpu3.

Examples:

\busa+index
\-clock
error-condition
\net1/\net2
\{a,b}
\a*(b+c)

2.7.2 Keywords

Keywords are predeÞned nonescaped identiÞers that are used to deÞne the language constructs. A Verilog HDL key-
word preceded by an escape character is not interpreted as a keyword.

All keywords are deÞned in lowercase only. Annex B gives a list of all deÞned keywords.

2.7.3 System tasks and functions

The $ character introduces a language construct that enables development of user-deÞned tasks and functions. A
name following the $ is interpreted as a system task or a system function.

The syntax for a system task or function is given in Syntax 2-2.

Syntax 2-2ÑSyntax for system tasks and functions

The $identiÞer system task or function can be deÞned in three places:

Ñ A standard set of $identiÞer system tasks and functions, as deÞned in Section 14.

system_task_or_function ::=
$system_task_identifier [(list_of_arguments)] ;
| $system_function_identifier [(list_of_arguments)] ;

list_of_arguments ::=
argument { , [argument] }

argument ::=
expression

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

12 Section 2

Ñ Additional $identiÞer system tasks and functions deÞned using the PLI, as described in sections 17, 23, and
25.

Ñ Additional $identiÞer system tasks and functions deÞned by software implementations.

Any valid identiÞer, including keywords already in use in contexts other than this construct, can be used as a system
task or function name. The system tasks and functions described in Section 14 are part of this standard. Additional
system tasks and functions with the $identiÞer construct are not part of this standard.

Examples:

$display ("display a message");
$finish;

2.7.4 Compiler directives

The ` character (the ASCII value 60, called open quote or accent grave) introduces a language construct used to
implement compiler directives. The compiler behavior dictated by a compiler directive shall take effect as soon as the
compiler reads the directive. The directive shall remain in effect for the rest of the compilation unless a different com-
piler directive speciÞes otherwise. A compiler directive in one description Þle can therefore control compilation
behavior in multiple description Þles.

The `identiÞer compiler directive construct can be deÞned in two places:

Ñ A standard set of `identiÞer compiler directives deÞned in Section 16.
Ñ Additional `identiÞer compiler directives deÞned by software implementations.

Any valid identiÞer, including keywords already in use in contexts other than this construct, can be used as a compiler
directive name. The compiler directives described in Section 16 are part of this standard. Additional compiler direc-
tives with the `identiÞer construct are not part of this standard.

Example:

`define wordsize 8

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

Section 3 13

Section 3

Data types

The set of Verilog HDL data types is designed to represent the data storage and transmission elements found in digital
hardware.

3.1 Value set

The Verilog HDL value set consists of four basic values:

0 - represents a logic zero, or a false condition
1 - represents a logic one, or a true condition
x - represents an unknown logic value
z - represents a high-impedance state

The values

0

 and

1

 are logical complements of one another.

When the

z

 value is present at the input of a gate, or when it is encountered in an expression, the effect is usually the
same as an

x

 value. Notable exceptions are the metal-oxide semiconductor (MOS) primitives, which can pass the

z

value.

Almost all of the data types in the Verilog HDL store all four basic values. The exception is the

event

 type (see 9.7.3),
which has no storage. All bits of vectors can be independently set to one of the four basic values.

The language includes

strength

 information in addition to the basic value information for net variables. This is
described in detail in Section 7.

3.2 Nets and registers

There are two main groups of data types: the register data types and the net data types. These two groups differ in the
way that they are assigned and hold values. They also represent different hardware structures.

3.2.1 Nets

The

net

 data types shall represent physical connections between structural entities, such as gates. A net shall not store
a value (except for the trireg net). Instead, its value shall be determined by the values of its drivers, such as a continu-
ous assignment or a gate. See Section 6 and Section 7 for deÞnitions of these constructs. If no driver is connected to a
net, its value shall be high-impedance (

z

) unless the net is a trireg, in which case it shall hold the previously driven
value.

The syntax for net declarations is given in Syntax 3-1.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

14 Section 3

Syntax 3-1ÑSyntax for net declaration

The Þrst two forms of net declaration are described in this section. The third form, called net assignment, is described
in Section 6.

3.2.2 Registers

A

register

 is an abstraction of a data storage element. The keyword for the register data type is

reg

. A register shall
store a value from one assignment to the next. An assignment statement in a procedure acts as a trigger that changes
the value in the data storage element. The default initialization value for a

reg

 data type shall be the unknown value,

x

.

The syntax for reg declarations is given in Syntax 3-2.

Syntax 3-2ÑSyntax for reg declaration

net_declaration ::=
 net_type [vectored | scalared] [range] [delay3] list_of_net_identifiers ;
| trireg [vectored | scalared] [charge_strength] [range] [delay3]
list_of_net_identifiers ;
| net_type [vectored | scalared] [drive_strength] [range] [delay3]
 list_of_net_decl_assignments ;

net_type ::= wire | tri | tri1 | supply0 | wand | triand | tri0 | supply1 | wor | trior
range ::= [msb_constant_expression : lsb_constant_expression]
drive_strength ::=

 (strength0 , strength1)
| (strength1 , strength0)
| (strength0 , highz1)
| (strength1 , highz0)
| (highz1 , strength0)
| (highz0 , strength1)

strength0 ::= supply0 | strong0 | pull0 | weak0
strength1 ::= supply1 | strong1 | pull1 | weak1
charge_strength ::= (small) | (medium) | (large)
delay3 ::= # delay_value | # (delay_value [, delay_value [, delay_value]])
delay_value ::= unsigned_number | parameter_identifier |

constant_mintypmax_expression
list_of_net_decl_assignments ::= net_decl_assignment { , net_decl_assignment }
net_decl_assignment ::= net_identifier = expression

reg_declaration ::= reg [range] list_of_register_identifiers ;
time_declaration ::= time list_of_register_identifiers ;
integer_declaration ::= integer list_of_register_identifiers ;
real_declaration ::= real list_of_real_identifiers ;
realtime_declaration ::= realtime list_of_real_identifiers ;
list_of_register_identifiers ::= register_name { , register_name }
register_name ::=

register_identifier
| memory_identifier [upper_limit_constant_expression :
lower_limit_constant_expression]

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 3 15

If a set of nets or registers share the same characteristics, they can be declared in the same declaration statement.

3.3 Vectors

A net or reg declaration without a range speciÞcation shall be considered 1 bit wide and is known as a scalar. Multi-
ple bit net and reg data types shall be declared by specifying a range, which is known as a vector.

3.3.1 Specifying vectors

The range speciÞcation gives addresses to the individual bits in a multibit net or register. The most signiÞcant bit
speciÞed by the msb constant expression is the left-hand value in the range and the least signiÞcant bit speciÞed by
the lsb constant expression is the right-hand value in the range.

Both msb constant expression and lsb constant expression shall be constant expressions. The msb and lsb constant
expressions can be any valueÑpositive, negative, or zero. The lsb constant expression can be a greater, equal, or
lesser value than msb constant expression.

Vector nets and registers shall obey laws of arithmetic modulo 2 to the power n (2n), where n is the number of bits in
the vector. Vector nets and registers shall be treated as unsigned quantities.

Examples:

wand w; // a scalar net of type ÒwandÓ
tri [15:0] busa; // a tri-state 16-bit bus
trireg (small) storeit; // a charge storage node of strength small
reg a; // a scalar register
reg[3:0] v; // a 4-bit vector register made up of (from most to

// least signiÞcant) v[3], v[2], v[1], and v[0]
reg [-1:4] b; // a 6-bit vector register
wire w1, w2; // declares two wires
reg [4:0] x, y, z; // declares three 5-bit registers

NOTES

1ÑImplementations may set a limit on the maximum length of a vector, but they will at least be 65536 (216) bits.

2ÑImplementations do not have to detect overßow of integer operations.

3.3.2 Vector net accessibility

Vectored and scalared shall be optional advisory keywords to be used in vector net or reg declaration. If these key-
words are implemented, certain operations on vectors may be restricted. If the keyword vectored is used, bit and part

CAUTION

Registers can be assigned negative values, but
when a register is an operand in an expression, its
value shall be treated as an unsigned (positive)
value. For example, a minus one (-1) in a 4-bit
register shall function as the number 15 if the
register is an expression operand. See 4.1.3 for
more information on numeric conventions in
expressions.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

16 Section 3

selects and strength speciÞcations may not be permitted, and the PLI may consider the object unexpanded. If the key-
word scalared is used, bit and part selects of the object shall be permitted, and the PLI shall consider the object
expanded.

Examples:

tri1 scalared [63:0] bus64; //a bus that will be expanded
tri vectored [31:0] data; //a bus that may or may not be expanded

3.4 Strengths

There are two types of strengths that can be speciÞed in a net declaration. They are as follows:

charge strength Shall be used when declaring a net of type trireg

drive strength Shall be used when placing a continuous assignment on a net in the same statement that declares
the net

Gate declarations can also specify a drive strength. See Section 7 for more information on gates and for information
on strengths.

3.4.1 Charge strength

The charge strength speciÞcation shall be used only with trireg nets. A trireg net shall be used to model charge stor-
age; charge strength shall specify the relative size of the capacitance indicated by one of the following keywords:

Ñ Small
Ñ Medium
Ñ Large

The default charge strength of a trireg net shall be medium.

A trireg net can model a charge storage node whose charge decays over time. The simulation time of a charge decay
shall be speciÞed in the delay speciÞcation for the trireg net (see 7.15.2).

3.4.2 Drive strength

The drive strength speciÞcation allows a continuous assignment to be placed on a net in the same statement that
declares that net. See Section 6 for more details. Net strength properties are described in detail in Section 7.

3.5 Implicit declarations

The syntax shown in 3.2 shall be used to declare nets and registers explicitly. In the absence of an explicit declaration
of a net or a register, statements for gate, user-deÞned primitive, and module instantiations shall assume an implicit
net declaration. This happens when a name is used in the terminal list of an instance of a gate, a user-deÞned primi-
tive, or a module that has not been explicitly declared previously in one of the declaration statements of the instantiat-
ing module. See 7.9.

These implicitly declared nets shall be treated as scalar nets of type wire. See Section 16 for a discussion of control of
the type for implicitly declared nets with the `default_nettype compiler directive.

3.6 Net initialization

The default initialization value for a net shall be the value z. Nets with drivers shall assume the output value of their

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 3 17

drivers. The trireg net is an exception. The trireg net shall default to the value x, with the strength speciÞed in the net
declaration (small, medium, or large).

3.7 Net types

There are several distinct types of nets, as shown in Table 3-1.

3.7.1 Wire and tri nets

The wire and tri nets connect elements. The net types wire and tri shall be identical in their syntax and functions; two
names are provided so that the name of a net can indicate the purpose of the net in that model. A wire net can be used
for nets that are driven by a single gate or continuous assignment. The tri net type can be used where multiple drivers
drive a net.

Logical conßicts from multiple sources on a wire or a tri net result in unknown values unless the net is controlled by
logic strength.

Table 3-2 is a truth table for resolving multiple drivers on wire and tri nets. Note that it assumes equal strengths for
both drivers. Please refer to 7.10 for a discussion of logic strength modeling.

3.7.2 Wired nets

Wired nets are of type wor, wand, trior, and triand, and are used to model wired logic conÞgurations. Wired nets use
different truth tables to resolve the conßicts that result when multiple drivers drive the same net. The wor and trior
nets shall create wired or conÞgurations, such that when any of the drivers is 1, the resulting value of the net is 1. The
wand and triand nets shall create wired and conÞgurations, such that if any driver is 0, the value of the net is 0.

The net types wor and trior shall be identical in their syntax and functionality. The net types wand and triand shall be
identical in their syntax and functionality. Tables 3-3 and 3-4 give the truth tables for wired nets. Note that they
assume equal strengths for both drivers. See 7.10 for a discussion of logic strength modeling.

Table 3-1ÑNet types

wire tri tri0 supply0

wand triand tri1 supply1

wor trior trireg

Table 3-2ÑTruth table for wire and tri nets

wire/
tri 0 1 x z

0 0 x x 0

1 x 1 x 1

x x x x x

z 0 1 x z

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

18 Section 3

3.7.3 Trireg net

The trireg net stores a value and is used to model charge storage nodes. A trireg net can be in one of two states:

driven state When at least one driver of a trireg net has a value of 1, 0, or x, the resolved value propagates into
the trireg net and is the driven value of the trireg net.

capacitive state When all the drivers of a trireg net are at the high-impedance value (z), the trireg net retains its last
driven value; the high-impedance value does not propagate from the driver to the trireg.

The strength of the value on the trireg net in the capacitive state can be small, medium, or large, depending on the
size speciÞed in the declaration of the trireg net. The strength of a trireg net in the driven state can be supply, strong-
code, pull, or weak, depending on the strength of the driver.

Example:

Figure 3-1 shows a schematic that includes a trireg net whose size is medium, its driver, and the simulation results.

Table 3-3ÑTruth tables for wand and triand nets

wand/
triand 0 1 x z

0 0 0 0 0

1 0 1 x 1

x 0 x x x

z 0 1 x z

Table 3-4ÑTruth tables for wor and trior nets

wor/
trior 0 1 x z

0 0 1 x 0

1 1 1 1 1

x x 1 x x

z 0 1 x z

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 3 19

Figure 3-1ÑSimulation values of a trireg and its driver

a) At simulation time 0, wire a and wire b have a value of 1. A value of 1 with a strong strength propagates
from the and gate through the nmos switches connected to each other by wire c into trireg net d.

b) At simulation time 10, wire a changes value to 0, disconnecting wire c from the and gate. When wire c is no
longer connected to the and gate, the value of wire c changes to HiZ. The value of wire b remains 1 so wire
c remains connected to trireg net d through the nmos2 switch. The HiZ value does not propagate from wire
c into trireg net d. Instead, trireg net d enters the capacitive state, storing its last driven value of 1. It stores
the 1 with a medium strength.

3.7.3.1 Capacitive networks

A capacitive network is a connection between two or more trireg nets. In a capacitive network whose trireg nets are in
the capacitive state, logic and strength values can propagate between trireg nets.

Examples:

Figure 3-2 shows a capacitive network in which the logic value of some trireg nets change the logic value of other
trireg nets of equal or smaller size.

nmos1 nmos2
wire c

trireg d

wire a wire b

simulation time wire a wire b wire c trireg d

1 1 strong 1 strong 1

0 1 HiZ medium 110

0

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

20 Section 3

Figure 3-2ÑSimulation results of a capacitive network

In Figure 3-2, the capacitive strength of trireg_la net is large, trireg_me1 and trireg_me2 are medium,
and trireg_sm is small. Simulation reports the following sequence of events:

a) At simulation time 0, wire a and wire b have a value of 1. The wire c drives a value of 1 into trireg_la
and trireg_sm; wire d drives a value of 1 into trireg_me1 and trireg_me2.

b) At simulation time 10, the value of wire b changes to 0, disconnecting trireg_sm and trireg_me2
from their drivers. These trireg nets enter the capacitive state and store the value 1, their last driven value.

c) At simulation time 20, wire c drives a value of 0 into trireg_la.

d) At simulation time 30, wire d drives a value of 0 into trireg_me1.

e) At simulation time 40, the value of wire a changes to 0, disconnecting trireg_la and trireg_me1
from their drivers. These trireg nets enter the capacitive state and store the value 0.

40 0 0 0 0 0 1 0 1

trireg_smtrireg_la

trireg_me2trireg_me1

wire a

wire b

wire c

wire d

simulation
time wire a wire b wire c wire d trireg_la trireg_sm trireg_me1 trireg_me2

0 1 1 1 1 1 1 1 1

10 0 1 111 1 11

20 1 0 1 110 0 1

30 1 0 0 0 0 1 0 1

nmos_1

nmos_2 tranif1_2

50 0 1 0 0 0 0 x x

tranif1_1

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 3 21

f) At simulation time 50, the value of wire b changes to 1.

This change of value in wire b connects trireg_sm to trireg_la; these trireg nets have different sizes
and stored different values. This connection causes the smaller trireg net to store the value of the larger trireg
net, and trireg_sm now stores a value of 0.

This change of value in wire b also connects trireg_me1 to trireg_me2; these trireg nets have the
same size and stored different values. The connection causes both trireg_me1 and trireg_me2 to
change value to x.

In a capacitive network, charge strengths propagate from a larger trireg net to a smaller trireg net. Figure 3-3 shows a
capacitive network and its simulation results.

Figure 3-3ÑSimulation results of charge sharing

In Figure 3-3, the capacitive strength of trireg_la is large and the capacitive strength of trireg_sm is small.
Simulation reports the following results:

a) At simulation time 0, the values of wire a, wire b, and wire c are 1, and wire a drives a strong 1 into
trireg_la and trireg_sm.

b) At simulation time 10, the value of wire b changes to 0, disconnecting trireg_la and trireg_sm from
wire a. The trireg_la and trireg_sm nets enter the capacitive state. Both trireg nets share the large
charge of trireg_la because they remain connected through tranif1_2.

tranif1_2

trireg_sm

simulation
time

wire a

wire b wire c

tranif1_1

wire a wire b trireg_la trireg_sm

0 strong 1

wire c

strong 1 strong 111

0 1 large 1 large 1strong 110

20 00 small 1large 1strong 1

30 1 large 1large 1strong 1 0

40 00 small 1large 1strong 1

trireg_la

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

22 Section 3

c) At simulation time 20, the value of wire c changes to 0, disconnecting trireg_sm from trireg_la. The
trireg_sm no longer shares large charge of trireg_la and now stores a small charge.

d) At simulation time 30, the value of wire c changes to 1, connecting the two trireg nets. These trireg nets now
share the same charge.

e) At simulation time 40, the value of wire c changes again to 0, disconnecting trireg_sm from
trireg_la. Once again, trireg_sm no longer shares the large charge of trireg_la and now stores a
small charge.

3.7.3.2 Ideal capacitive state and charge decay

A trireg net can retain its value indeÞnitely or its charge can decay over time. The simulation time of charge decay is
speciÞed in the delay speciÞcation of the trireg net. See 7.15.2 for charge decay explanation.

3.7.4 Tri0 and tri1 nets

The tri0 and tri1 nets model nets with resistive pulldown and resistive pullup devices on them. When no driver drives
a tri0 net, its value is 0. When no driver drives a tri1 net, its value is 1. The strength of this value is pull. See Section
7 for a description of strength modeling.

A truth table for tri0 is shown in Table 3-5. A truth table for tri1 is shown in Table 3-6.

3.7.5 Supply nets

The supply0 and supply1 nets may be used to model the power supplies in a circuit. These nets shall have supply
strengths.

3.8 Memories

An array of registers can be used to model read-only memories (ROMs), random access memories (RAMs), and reg-

Table 3-5ÑTruth table for tri0 net

tri0 0 1 x z

0 0 x x 0

1 x 1 x 1

x x x x x

z 0 1 x 0

Table 3-6ÑTruth table for tri1 net

tri1 0 1 x z

0 0 x x 0

1 x 1 x 1

x x x x x

z 0 1 x 1

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 3 23

ister Þles. Each register in the array is known as an element or word and is addressed by a single array index. There
shall be no arrays with multiple dimensions.

Memories shall be declared in register declaration statements by specifying the element address range after the
declared identiÞer. See 3.2.2. The expressions that specify the indices of the array shall be constant expressions. The
value of the constant expression can be a positive integer, a negative integer, or zero.

One declaration statement can be used for declaring both registers and memories. This makes it convenient to declare
both a memory and some registers that will hold data to be read from and written to the memory in the same declara-
tion statement.

An n-bit register can be assigned a value in a single assignment, but a complete memory cannot. To assign a value to
a memory word, an index shall be speciÞed. The index can be an expression. This option provides a mechanism to
reference different memory words, depending on the value of other registers and nets in the circuit. For example, a
program counter register could be used to index into a RAM.

Examples:

Example 1ÑMemory declaration

Example 2ÑA memory of n 1-bit registers is different from an n-bit vector register

Example 3ÑAssignment to memory words

NOTEÑImplementations may limit the maximum size of a register array, but they will at least be 16777216 (224).

3.9 Integers, reals, times, and realtimes

In addition to modeling hardware, there are other uses for registers in an HDL model. Although reg variables can be

reg [7:0] mema[0:255]; // declares a memory mema of 256 8-bit
 // registers. The indices are 0 to 255

parameter // parameters are run-time constants - see 3.10
wordsize = 16,
memsize = 256;

// Declare 256 words of 16-bit memory plus two regs
reg [wordsize-1:0] writereg, // equivalent to [15:0]

readreg,
mem [memsize-1:0];// equivalent to [255:0]

reg [1:n] rega; // An n-bit register is not the same
reg mema [1:n]; // as a memory of n 1-bit registers

rega = 0; // Legal syntax
mema = 0; // Illegal syntax
mema[1] = 0; //Assigns 0 to the first element of mema

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

24 Section 3

used for general purposes such as counting the number of times a particular net changes value, the integer and time
register data types are provided for convenience and to make the description more self-documenting.

The syntax for declaring integer, time, real, and realtime registers is given in Syntax 3-3 (from Syntax 3-2).

Syntax 3-3ÑSyntax for integer, time, real, and realtime declarations

The syntax for list of register variables is deÞned in 3.2.2.

An integer is a general-purpose register used for manipulating quantities that are not regarded as hardware registers.

A time register is used for storing and manipulating simulation time quantities in situations where timing checks are
required and for diagnostics and debugging purposes. This data type is typically used in conjunction with the $time
system function (see Section 14).

Arrays of integer and time registers shall be declared in the same manner as arrays of reg type (see 3.8).

The integer and time registers shall be assigned values in the same manner as reg. Procedural assignments shall be
used to trigger their value changes.

The time registers shall behave the same as a register of at least 64 bits. They shall be unsigned quantities, and
unsigned arithmetic shall be performed on them. In contrast, integer registers shall be treated as signed quantities.
Arithmetic operations performed on integer registers shall produce 2Õs complement results.

The Verilog HDL supports real number constants and real register data types in addition to integer and time register
data types. Except for the following restrictions, registers declared as real can be used in the same places that integers
and time registers are used:

Ñ Not all Verilog HDL operators can be used with real number values. See Table 4-3 for lists of valid and invalid
operators for real numbers and real registers.

Ñ Real registers shall not use range in the declaration
Ñ Real registers shall default to an initial value of zero.

The realtime declarations shall be treated synonymously with real declarations and can be used interchangeably.

Examples:

integer a[1:64]; // an array of 64 integer values
time chng_hist[1:1000]; // an array of 1000 time values
real float ; // a register to store real value
realtime rtime ; // a register to store time as a real value

integer_declaration ::= integer list_of_register_identifiers ;
time_declaration ::= time list_of_register_identifiers ;
real_declaration ::= real list_of_real_identifiers ;
realtime_declaration ::= realtime list_of_real_identifiers ;
list_of_register_identifiers ::= register_name { , register_name }
register_name ::=

register_identifier
| memory_identifier [upper_limit_constant_expression :
lower_limit_constant_expression]

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 3 25

NOTEÑImplementations may limit the maximum size of an integer variable, but they shall at least be 32 bits.

3.9.1 Operators and real numbers

The result of using logical or relational operators on real numbers and real registers is a single-bit scalar value. Not all
Verilog HDL operators can be used with expressions involving real numbers and real registers. Table 4-3 lists the
valid operators for use with real numbers and real registers. Real number constants and real registers are also prohib-
ited in the following cases:

Ñ Edge descriptors (posedge, negedge) applied to real registers
Ñ Bit-select or part-select references of variables declared as real
Ñ Real number index expressions of bit-select or part-select references of vectors
Ñ Declaration of memories (arrays of real registers)

3.9.2 Conversion

Real numbers shall be converted to integers by rounding the real number to the nearest integer, rather than by truncat-
ing it. Implicit conversion shall take place when a real number is assigned to an integer. The ties shall be rounded
away from zero.

Implicit conversion shall take place when a net or register is assigned to a real. Individual bits that are x or z in the net
or the register shall be treated as zero upon conversion.

See Section 14 for a discussion of system tasks that perform explicit conversion.

3.10 Parameters

Verilog HDL parameters do not belong to either the register or the net group. Parameters are not variables, they are
constants.

The syntax for parameter declarations is given in Syntax 3-4.

Syntax 3-4ÑSyntax for parameter declaration

The list of param assignments shall be a comma-separated list of assignments, where the right-hand side of the
assignment shall be a constant expression; that is, an expression containing only constant numbers and previously
deÞned parameters.

Parameters represent constants; hence, it is illegal to modify their value at runtime. However, parameters can be mod-
iÞed at compilation time to have values that are different from those speciÞed in the declaration assignment. This
allows customization of module instances. A parameter can be modiÞed with the defparam statement or in the mod-
ule instance statement. Typical uses of parameters are to specify delays and width of variables. See Section 12 for
details on parameter value assignment.

Examples:

parameter msb = 7; // defines msb as a constant value 7
parameter e = 25, f = 9; // defines two constant numbers

parameter_declaration ::= parameter list_of_param_assignments ;
list_of_param_assignments ::= param_assignment { , param_assignment }
param_assignment ::= parameter_identifier = constant_expression

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

26 Section 3

parameter r = 5.7; // declares r as a real parameter
parameter byte_size = 8,

byte_mask = byte_size - 1;
parameter average_delay = (r + f) / 2;

3.11 Name spaces

In Verilog HDL, there are six name spaces; two are global and four are local. The global name spaces are deÞnitions
and text macros. The deÞnitions name space uniÞes all the module (see 12.1), macromodule (see 12.1), and primi-
tive (see 8.1) deÞnitions. That is, a module and a macromodule or a primitive cannot have the same name.

The text macro name space is global. Since text macro names are introduced and used with a leading ` character, they
remain unambiguous with any other name space (see 16.3). The text macro names are deÞned in the linear order of
appearance in the set of input Þles that make up the description of the design unit. Subsequent deÞnitions of the same
name override the previous deÞnitions for the balance of the input Þles.

There are four local name spaces: block, module, port, and specify block.

The block name space is introduced by the named block (see 9.8), function (see 10.3), and task (see 10.2) constructs.
It uniÞes the deÞnitions of the named blocks, functions, tasks, and the register type of declaration (see 3.2.2). The reg-
ister type of declaration includes the reg, integer, time, real, realtime, event, and parameter declarations.

The module name space is introduced by the module, macromodule, and primitive constructs. It uniÞes the deÞni-
tion of functions, tasks, named blocks, instance names, net type of declaration, and register type of declaration. The
net type of declaration includes wire, wor, wand, tri, trior, triand, tri0, tri1, trireg, supply0, and supply1 (see 3.7).

The port name space is introduced by the module, macromodule, primitive, function, and task constructs. It pro-
vides a means of structurally deÞning connections between two objects that are in two different name spaces. The
connection can be unidirectional (either input or output) or bidirectional (inout). The port name space overlaps the
module and the block name spaces. Essentially, the port name space speciÞes the type of connection between names
in different name spaces. The port type of declarations include input, output, and inout (see 12.3). A port name
introduced in the port name space may be reintroduced in the module name space by declaring a register or a wire
with the same name as the port name.

The specify block name space is introduced by the specify construct (see 13.2). A specparam name can be deÞned
and used only in the specify block name space. Any other type of name cannot be deÞned in this name space.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

Section 4 27

Section 4

Expressions

This section describes the operators and operands available in the Verilog HDL and how to use them to form expres-
sions.

An

expression

 is a construct that combines

operands

 with

operators

 to produce a result that is a function of the values
of the operands and the semantic meaning of the operator. Any legal operand, such as a net bit-select, without any
operator is considered an expression. Wherever a value is needed in a Verilog HDL statement, an expression can be
used.

Some statement constructs require an expression to be a

constant expression

. The operands of a constant expression
consist of constant numbers, parameter names, constant bit-selects of parameters, and constant part-selects of param-
eters only, but they can use any of the operators deÞned in Table 4-1.

A

scalar expression

 is an expression that evaluates to a scalar (single-bit) result. If the expression evaluates to a vector
(multibit) result, then the least signiÞcant bit of the result is used as the scalar result.

The data types

reg

,

integer

,

time

,

real

, and

realtime

 are all register data types. Descriptions pertaining to register
usage apply to all of these data types.

An

operand

 can be one of the following:

Ñ Constant number (including real)
Ñ Net
Ñ Register variables of type reg, integer, time, real, and realtime
Ñ Net bit-select
Ñ Bit-select of type reg, integer, and time
Ñ Net part-select
Ñ Part-select of type reg, integer, and time
Ñ Memory word
Ñ A call to a user-deÞned function or system-deÞned function that returns any of the above

4.1 Operators

The symbols for the Verilog HDL operators are similar to those in the C programming language. Table 4-1 lists these
operators.

Table 4-1ÑOperators in the Verilog HDL

{}, {{}} Concatenation, replication

+ - * / Arithmetic

% Modulus

> >= < <= Relational

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

28 Section 4

4.1.1 Operators with real operands

The operators shown in Table 4-2 shall be legal when applied to real operands. All other operators shall be considered
illegal when used with real operands.

! Logical negation

&& Logical and

|| Logical or

== Logical equality

!= Logical inequality

=== Case equality

!== Case inequality

~ Bit-wise negation

& Bit-wise and

| Bit-wise inclusive or

^ Bit-wise exclusive or

^~ or ~^ Bit-wise equivalence

& Reduction and

~& Reduction nand

| Reduction or

~| Reduction nor

^ Reduction xor

~^ or ^~ Reduction xnor

<< Left shift

>> Right shift

? : Conditional

or Event or

Table 4-2ÑLegal operators for use in real expressions

unary + unary - Unary operators

+ - * / Arithmetic

> >= < <= Relational

! && || Logical

== != Logical equality

Table 4-1ÑOperators in the Verilog HDL

(continued)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 4 29

The result of using logical or relational operators on real numbers is a single-bit scalar value.

Table 4-3 lists operators that shall not be used to operate on real numbers.

See 3.9.1 for more information on use of real numbers.

4.1.2 Binary operator precedence

The precedence order of

binary operators

 and the

conditional operator

 (

?:

) is shown in Table 4-4. The Verilog HDL
has two equality operators. They are discussed in 4.1.8.

Operators shown on the same row in Table 4-4 shall have the same precedence. Rows are arranged in order of
decreasing precedence for the operators. For example,

*

,

/

, and

%

 all have the same precedence, which is higher than
that of the binary

+

 and

-

 operators.

?: Conditional

or Event or

Table 4-3ÑOperators not allowed for real expressions

{}, {{}} Concatenate, replicate

% Modulus

===, !== Case equality

~, &, |
^, ^~, ~^

Bit-wise

^, ^~, ~^
&, ~&, |, ~|

Reduction

<<, >> Shift

Table 4-4ÑPrecedence rules for operators

+ - ! ~ (unary) Highest precedence

* / %

+ - (binary)

 << >>

 < <= > >=

 == != === !==

 & ~&

 ^ ^~ ~^

 | ~|

 &&

 ||

 ?: (conditional operator) Lowest precedence

Table 4-2ÑLegal operators for use in real expressions

(continued)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

30 Section 4

All operators shall associate left to right with the exception of the conditional operator, which shall associate right to
left. Associativity refers to the order in which the operators having the same precedence are evaluated. Thus, in the
following example

B

 is added to

A

 and then

C

 is subtracted from the result of

A+B

.

A + B - C

When operators differ in precedence, the operators with higher precedence shall associate Þrst. In the following
example,

B

 is divided by

C

 (division has higher precedence than addition) and then the result is added to

A

.

A + B / C

Parentheses can be used to change the operator precedence.

(A + B) / C // not the same as A + B / C

4.1.3 Using integer numbers in expressions

Integer numbers can be used as operands in expressions. An integer number can be expressed as

Ñ An unsized, unbased integer (e.g., 12)

Ñ An unsized, based integer (e.g., Õd12)

Ñ A sized, based integer (e.g., 16Õd12)

A negative value for an integer with no base speciÞer shall be interpreted differently than for an integer with a base
speciÞer. An integer with no base speciÞer shall be interpreted as a signed value in 2Õs complement form. An integer
with a base speciÞer shall be interpreted as an unsigned value.

Example:

This example shows two ways to write the expression Òminus 12 divided by 3.Ó Note that

-12

 and

-Õd12

 both eval-
uate to the same 2Õs complement bit pattern, but, in an expression, the

-Õd12

 loses its identity as a signed negative
number.

4.1.4 Expression evaluation order

The operators shall follow the associativity rules while evaluating an expression as described in 4.1.2. However, if the
Þnal result of an expression can be determined early, the entire expression need not be evaluated. This is called

short-
circuiting

 an expression evaluation.

Example:

reg

 regA, regB, regC, result ;
result = regA & (regB | regC) ;

If regA is known to be zero, the result of the expression can be determined as zero without evaluating the sub-expres-
sion

regB | regC

.

integer IntA;
IntA = -12 / 3; // The result is -4.

IntA = -Õd 12 / 3; // The result is 1431655761.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 4 31

4.1.5 Arithmetic operators

The binary arithmetic operators are given in Table 4-5.

The integer division shall truncate any fractional part toward zero. The modulus operator, for example

y % z

, gives
the remainder when the Þrst operand is divided by the second, and thus is zero when

z

 divides

y

 exactly. The result of
a modulus operation shall take the sign of the Þrst operand.

The unary arithmetic operators shall take precedence over the binary operators. The unary operators are given in
Table 4-6.

For the arithmetic operators, if any operand bit value is the unknown value

x

 or the high-impedance value

z

, then the
entire result value shall be

x

.

Example:

Table 4-7 gives examples of modulus operations.

4.1.6 Arithmetic expressions with registers and integers

An arithmetic operation on a reg type register shall be treated differently than an arithmetic operation on an integer
data type. A reg data type shall be treated as an

unsigned

 value and an integer data type shall be treated as a

signed

value. Thus, if a sized constant with a negative value is stored in a reg type register, a positive constant, which is a 2Õs
complement of the sized constant, shall be the value stored in the reg type register. When this register is used in an

Table 4-5ÑArithmetic operators deÞned

a + b a plus b

a - b a minus b

a * b a multiply by b

a / b a divide by b

a % b a modulo b

Table 4-6ÑUnary operators deÞned

+

m Unary plus m (same as m)

-

m Unary minus m

Table 4-7ÑExamples of modulus operations

Modulus expression Result Comments

10 % 3 1 10/3 yields a remainder of 1

11 % 3 2 11/3 yields a remainder of 2

12 % 3 0 12/3 yields no remainder

-10 % 3 -1 The result takes the sign of the first operand

11 % -3 2 The result takes the sign of the first operand

-4Õd12 % 3 1 -4Õd12 is seen as a large, positive number that leaves a
remainder of 1 when divided by 3

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

32 Section 4

arithmetic expression, the positive constant shall be used as the value of the register. In contrast, if a sized constant
with a negative value is stored in an integer type register and used in an arithmetic expression, the expression shall
evaluate using signed arithmetic.

Table 4-8 lists how arithmetic operators interpret each data type.

Example:

The following example shows various ways to divide

Òminus twelve by threeÓÑusing

integer

 and

reg

 data types in
expressions.

4.1.7 Relational operators

Table 4-9 lists and deÞnes the relational operators.

An expression using these

relational operators

 shall yield the scalar value

0

 if the speciÞed relation is

false

 or the
value

1

 if it is

true

. If, due to unknown or high-impedance bits in the operands, the relation is

ambiguous

, then the

Table 4-8ÑData type interpretation by arithmetic operators

Data type Interpretation

net Unsigned

reg Unsigned

integer Signed, 2Õs complement

time Unsigned

real, realtime Signed, ßoating point

Table 4-9ÑDeÞnitions of the relational operators

a < b a less than b

a > b a greater than b

a <= b a less than or equal to b

a >= b a greater than or equal to b

integer intA;
reg [15:0] regA;

intA = -4Õd12;
regA = intA / 3; // expression result is -4,

// intA is an integer data type, regA is 65532

regA = -4Õd12; // regA is 65524
intA = regA / 3; // expression result is 21841,

// regA is a reg data type

intA = -4Õd12 / 3;// expression result is 1431655761.
// -4Õd12 is effectively a 32-bit reg data type

regA = -12 / 3; // expression result is -4, -12 is effectively
// an integer data type. regA is 65532

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 4 33

result shall be a 1-bit unknown value (x).

When two operands of unequal bit lengths are used, the smaller operand shall be zero Þlled on the most signiÞcant bit
side to extend to the size of the larger operand.

All the relational operators shall have the same precedence. Relational operators shall have lower precedence than
arithmetic operators.

Examples:

The following examples illustrate the implications of this precedence rule:

a < foo - 1 // this expression is the same as
a < (foo - 1) // this expression, but . . .
foo - (1 < a) // this one is not the same as
foo - 1 < a // this expression

When foo - (1 < a) evaluates, the relational expression evaluates Þrst and then either zero or one is subtracted
from foo. When foo - 1 < a evaluates, the value of foo operand is reduced by one and then compared with a.

4.1.8 Equality operators

The equality operators shall rank lower in precedence than the relational operators. Table 4-10 lists and deÞnes the
equality operators.

All four equality operators shall have the same precedence. These four operators compare operands bit for bit, with
zero Þlling if the two operands are of unequal bit length. As with the relational operators, the result shall be 0 if com-
parison fails, 1 if it succeeds.

For the logical equality and logical inequality operators (== and !=), if either operand contains an x or a z, then the
result shall be the unknown value (x).

For the case equality and case inequality operators(=== and !==), the comparison shall be done just as it is in the
procedural case statement (see 9.5). Bits that are x or z shall be included in the comparison and shall match for the
result to be considered equal. The result of these operators shall always be a known value, either 1 or 0.

4.1.9 Logical operators

The operators logical and (&&) and logical or (||) are logical connectives. The result of the evaluation of a logical
comparison shall be 1 (deÞned as true), 0 (deÞned as false), or, if the result is ambiguous, the unknown value (x).
The precedence of && is greater than that of ||, and both are lower than relational and equality operators.

A third logical operator is the unary logical negation operator (!). The negation operator converts a nonzero or true
operand into 0 and a zero or false operand into 1. An ambiguous truth value remains as x.

Examples:

Table 4-10ÑDeÞnitions of the equality operators

a ===b a equal to b, including x and z

a !==b a not equal to b, including x and z

a ==b a equal to b, result may be unknown

a !=b a not equal to b, result may be unknown

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

34 Section 4

Example 1ÑIf register alpha holds the integer value 237 and beta holds the value zero, then the following exam-
ples perform as described:

regA = alpha && beta; // regA is set to 0
regB = alpha || beta; // regB is set to 1

Example 2ÑThe following expression performs a logical and of three subexpressions without needing any parenthe-
ses:

a < size-1 && b != c && index != lastone

However, it is recommended for readability purposes that parentheses be used to show very clearly the precedence
intended, as in the following rewrite of this example:

(a < size-1) && (b != c) && (index != lastone)

Example 3ÑA common use of ! is in constructions like the following:

if (!inword)

In some cases, the preceding construct makes more sense to someone reading the code than this equivalent construct:

if (inword == 0)

4.1.10 Bit-wise operators

The bit-wise operators shall perform bit-wise manipulations on the operandsÑthat is, the operator shall combine a
bit in one operand with its corresponding bit in the other operand to calculate one bit for the result. Logic tables 4-11
through 4-15 show the results for each possible calculation.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 4 35

When the operands are of unequal bit length, the shorter operand is zero-Þlled in the most signiÞcant bit positions.

4.1.11 Reduction operators

The unary reduction operators shall perform a bit-wise operation on a single operand to produce a single bit result.
For reduction and, reduction or, and reduction xor operators, the Þrst step of the operation shall apply the operator
between the Þrst bit of the operand and the second using logic tables 4-16 through 4-18. The second and subsequent
steps shall apply the operator between the 1-bit result of the prior step and the next bit of the operand using the same
logic table. For reduction nand, reduction nor, and reduction xnor operators, the result shall be computed by inverting
the result of the reduction and, reduction or, and reduction xor operation respectively.

Table 4-15ÑBit-wise unary negation operator

~

0 1

1 0

x x

z x

Table 4-11ÑBit-wise binary and
operator

& 0 1 x z

0 0 0 0 0

1 0 1 x x

x 0 x x x

z 0 x x x

Table 4-12ÑBit-wise binary or
operator

| 0 1 x z

0 0 1 x x

1 1 1 1 1

x x 1 x x

z x 1 x x

Table 4-13ÑBit-wise binary exclu-
sive or operator

^ 0 1 x z

0 0 1 x x

1 1 0 x x

x x x x x

z x x x x

Table 4-14ÑBit-wise binary exclu-
sive nor operator

^~
~^ 0 1 x z

0 1 0 x x

1 0 1 x x

x x x x x

z x x x x

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

36 Section 4

Example:

Table 4-19 shows the results of applying reduction operators on different operands.

4.1.12 Shift operators

The shift operators, << and >>, shall perform left and right shifts of their left operand by the number of bit positions
given by the right operand. Both shift operators shall Þll the vacated bit positions with zeroes. If the right operand has
an unknown or high-impedance value, then the result shall be unknown. The right operand is always treated as an
unsigned number.

Table 4-18ÑReduction unary exclusive or operator

^ 0 1 x z

0 0 1 x x

1 1 0 x x

x x x x x

z x x x x

Table 4-19ÑResults of unary reduction operations

Operand & ~& | ~| ^ ~^ Comments

4Õb0000 0 1 0 1 0 1 No bits set

4Õb1111 1 0 1 0 0 1 All bits set

4Õb0110 0 1 1 0 0 1 Even number of bits
set

4Õb1000 0 1 1 0 1 0 Odd number of bits set

Table 4-16ÑReduction unary and
operator

& 0 1 x z

0 0 0 0 0

1 0 1 x x

x 0 x x x

z 0 x x x

Table 4-17ÑReduction unary or
operator

| 0 1 x z

0 0 1 x x

1 1 1 1 1

x x 1 x x

z x 1 x x

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 4 37

Example:

In this example, the register result is assigned the binary value 0100, which is 0001 shifted to the left two posi-
tions and zero-Þlled.

4.1.13 Conditional operator

The conditional operator, also known as ternary operator, shall be right associative and shall be constructed using
three operands separated by two operators in the format given in Syntax 4-1.

Syntax 4-1ÑSyntax for conditional operator

The evaluation of a conditional operator shall begin with the evaluation of expression1. If expression1 evaluates to
false (0), then expression3 shall be evaluated and used as the result of the conditional expression. If expression1 eval-
uates to true (known value other than 0), then expression2 is evaluated and used as the result. If expression1 evaluates
to ambiguous value (x or z), then both expression2 and expression3 shall be evaluated and their results shall be com-
bined, bit by bit, using Table 4-20 to calculate the Þnal result unless expression2 or expression3 is real, in which case
the result shall be 0. If the lengths of expression2 and expression3 are different, the shorter operand shall be length-
ened to match the longer and zero-Þlled from the left (the high-order end).

Example:

The following example of a tri-state output bus illustrates a common use of the conditional operator.

 wire [15:0] busa = drive_busa ? data : 16Õbz;

The bus called data is driven onto busa when drive_busa is 1. If drive_busa is unknown, then an unknown
value is driven onto busa. Otherwise, busa is not driven.

Table 4-20ÑAmbiguous condition results for conditional operator

?: 0 1 x z

0 0 x x x

1 x 1 x x

x x x x x

z x x x x

module shift;
reg [3:0] start, result;
initial begin

start = 1;
result = (start << 2);

end
endmodule

conditional_expression ::= expression1 ? expression2 : expression3

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

38 Section 4

4.1.14 Concatenations

A concatenation is the joining together of bits resulting from two or more expressions. The concatenation shall be
expressed using the brace characters { and }, with commas separating the expressions within.

Unsized constant numbers shall not be allowed in concatenations. This is because the size of each operand in the con-
catenation is needed to calculate the complete size of the concatenation.

Examples:

This example concatenates four expressions:

{a, b[3:0], w, 3Õb101}

and it is equivalent to the following example:

{a, b[3], b[2], b[1], b[0], w, 1Õb1, 1Õb0, 1Õb1}

Concatenations can be expressed using a repetition multiplier as shown in this example:

{4{w}} // This is equivalent to {w, w, w, w}

If a repetition multiplier is used on a function call operand, the function need not be evaluated multiple times. For
example:

result = {4{func(w)}}

may be computed as

result = {func(w), func(w), func(w), func(w)}

or

y = func(w) ;
result = {y, y, y, y}

This is another form of expression evaluation short-circuiting.

The next example illustrates nested concatenations:

{b, {3{a, b}}} // This is equivalent to {b, a, b, a, b, a, b}

The repetition multiplier shall be a constant expression.

4.1.15 Event or

The event or operator shall perform an or of events. See 9.7 for events and triggering of events.

Example:

The following example shows an assignment to rega when an event (change) occurs on trig or enable.

@(trig or enable) rega = regb ;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 4 39

4.2 Operands

There are several types of operands that can be speciÞed in expressions. The simplest type is a reference to a net or
register in its complete formÑthat is, just the name of the net or register is given. In this case, all of the bits making
up the net or register value shall be used as the operand.

If a single bit of a vector net or register is required, then a bit-select operand shall be used. A part-select operand shall
be used to reference a group of adjacent bits in a vector net or register.

A memory word can be referenced as an operand. A concatenation of other operands (including nested concatena-
tions) can be speciÞed as an operand. A function call is an operand.

4.2.1 Net and register bit-select and part-select addressing

Bit-selects extract a particular bit from a vector net or register. The bit can be addressed using an expression. If the bit-
select is out of the address bounds or the bit-select is x or z, then the value returned by the reference shall be x.

Several contiguous bits in a vector register or net can be addressed and are known as part-selects. A part-select of a
vector register or net is given with the following syntax:

vect[msb_expr:lsb_expr]

Both expressions shall be constant expressions. The Þrst expression has to address a more signiÞcant bit than the sec-
ond expression. If the part-select is out of the address bounds or the part-select is x or z, then the value returned by
the reference shall be x.

The bit-select or part-select of a register declared as real or realtime shall be considered illegal.

Examples:

Example 1ÑThe following example speciÞes the single bit of acc vector that is addressed by the operand index.

acc[index]

The actual bit that is accessed by an address is, in part, determined by the declaration of acc. For instance, each of
the declarations of acc shown in the next example causes a particular value of index to access a different bit:

reg [15:0] acc;
reg [1:16] acc;

Example 2ÑThe next example and the bullet items that follow it illustrate the principles of bit addressing. The code
declares an 8-bit register called vect and initializes it to a value of 4. The list describes how the separate bits of that
vector can be addressed.

reg [7:0] vect;
vect = 4;// fills vect with the pattern 00000100

// msb is bit 7, lsb is bit 0

Ñ If the value of addr is 2, then vect[addr] returns 1
Ñ If the value of addr is out of bounds, then vect[addr] returns x
Ñ If addr is 0, 1, or 3 through 7, vect[addr] returns 0
Ñ vect[3:0] returns the bits 0100
Ñ vect[5:1] returns the bits 00010
Ñ vect[expression that returns x] returns x
Ñ vect[expression that returns z] returns x
Ñ If any bit of addr is x or z, then the value of addr is x

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

40 Section 4

NOTES

1ÑPart-select indices that evaluate to x or z may be ßagged as a compile time error.

2ÑBit-select or part-select indices that are outside of the declared range may be ßagged as a compile time error.

4.2.2 Memory addressing

Declaration of memory is discussed in 3.8. This subclause discusses memory addressing.

Examples:

The next example declares a memory of 1024 8-bit words:

reg [7:0] mem_name[0:1023];

The syntax for a memory address shall consist of the name of the memory and an expression for the address, speciÞed
with the following format:

mem_name[addr_expr]

The addr_expr can be any expression; therefore, memory indirections can be speciÞed in a single expression. The
next example illustrates memory indirection:

mem_name[mem_name[3]]

In this example, mem_name[3]addresses word three of the memory called mem_name. The value at word three is
the index into mem_name that is used by the memory address mem_name[mem_name[3]]. As with bit-selects,
the address bounds given in the declaration of the memory determine the effect of the address expression. If the index
is out of the address bounds or if any bit in the address is x or z, then the value of the reference shall be x.

NOTEÑThere is no mechanism to express bit-selects or part-selects of memory words directly. If this is required, then the mem-
ory word has to be Þrst transferred to an appropriately sized temporary register.

4.2.3 Strings

String operands shall be treated as constant numbers consisting of a sequence of 8-bit ASCII codes, one per character.
Any Verilog HDL operator can manipulate string operands. The operator shall behave as though the entire string were
a single numeric value.

When a variable is larger than required to hold the value being assigned, the contents after the assignment shall be
padded on the left with zeros. This is consistent with the padding that occurs during assignment of nonstring values.

Example:

The following example declares a string variable large enough to hold 14 characters and assigns a value to it. The
example then manipulates the string using the concatenation operator.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 4 41

The result of simulating the above description is

4.2.3.1 String operations

The common string operations copy, concatenate, and compare are supported by Verilog HDL operators. Copy is pro-
vided by simple assignment. Concatenation is provided by the concatenation operator. Comparison is provided by the
equality operators.

When manipulating string values in vector variables, at least 8 * n bits shall be required in the vector, where n is the
number of characters in the string.

4.2.3.2 String value padding and potential problems

When strings are assigned to variables, the values stored shall be padded on the left with zeros. Padding can affect the
results of comparison and concatenation operations. The comparison and concatenation operators shall not distin-
guish between zeros resulting from padding and the original string characters (\0, ASCII NULL).

Examples:

The following example illustrates the potential problem.

The comparison in this example fails because during the assignment the string variables are padded as illustrated in
the next example:

s1 = 000000000048656c6c6f
s2 = 00000020776f726c6421

The concatenation of s1 and s2 includes the zero padding, resulting in the following value:

module string_test;
reg [8*14:1] stringvar;

initial begin
stringvar = "Hello world";
$display("%s is stored as %h", stringvar, stringvar);
stringvar = {stringvar,"!!!"};
$display("%s is stored as %h", stringvar, stringvar);

end
endmodule

 Hello world is stored as 00000048656c6c6f20776f726c64
Hello world!!! is stored as 48656c6c6f20776f726c64212121

reg [8*10:1] s1, s2;
initial begin

s1 = "Hello";
s2 = " world!";
if ({s1,s2} == "Hello world!")

$display("strings are equal");
end

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

42 Section 4

000000000048656c6c6f00000020776f726c6421

Since the string ÒHello world!Ó contains no zero padding, the comparison fails, as shown in the following example:

This comparison yields a result of zero, which is equivalent to false.

4.2.3.3 Null string handling

The null string (ÒÓ) shall be considered equivalent to the ASCII NULL (Ò\0Ó) which has a value zero (0), which is
different from a string Ò0Ó.

4.3 Minimum, typical, and maximum delay expressions

Verilog HDL delay expressions can be speciÞed as three expressions separated by colons. This is intended to repre-
sent minimum, typical, and maximum valuesÑin that order. The syntax is given in Syntax 4-2.

Syntax 4-2ÑSyntax for mintypmax expression

Verilog HDL models typically specify three values for delay expressions. The three values allow a design to be tested
with minimum, typical, or maximum delay values.

Values expressed in min:typ:max format can be used in expressions. The min:typ:max format can be used wherever
expressions can appear.

Examples:

Example 1ÑThis example shows an expression that deÞnes a single triplet of delay values. The minimum value is the
sum of a+d; the typical value is b+e; the maximum value is c+f, as follows:

(a:b:c) + (d:e:f)

Example 2ÑThe next example shows some typical expressions that are used to specify min:typ:max format val-
ues:

val - (32Õd 50: 32Õd 75: 32Õd 100)

000000000048656c6c6f00000020776f726c6421
48656c6c6f20776f726c6421

 "Hello" " world!"

s1 s2

mintypmax_expression ::=
expression
| expression : expression : expression

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 4 43

4.4 Expression bit lengths

Controlling the number of bits that are used in expression evaluations is important if consistent results are to be
achieved. Some situations have a simple solution; for example, if a bit-wise and operation is speciÞed on two 16-bit
registers, then the result is a 16-bit value. However, in some situations it is not obvious how many bits are used to
evaluate an expression, or what size the result should be.

For example, should an arithmetic add of two 16-bit values perform the evaluation using 16 bits, or should the evalu-
ation use 17 bits in order to allow for a possible carry overßow? The answer depends on the type of device being
modeled, and whether that device handles carry overßow. The Verilog HDL uses the bit length of the operands to
determine how many bits to use while evaluating an expression. The bit length rules are given in 4.4. In the case of the
addition operator, the bit length of the largest operand, including the left-hand side of an assignment, shall be used.

Examples:

reg [15:0] a, b; // 16-bit registers
reg [15:0] sumA; // 16-bit register
reg [16:0] sumB; // 17-bit register

sumA = a + b; // expression evaluates using 16 bits
sumB = a + b; // expression evaluates using 17 bits

4.4.1 Rules for expression bit lengths

The rules governing the expression bit lengths have been formulated so that most practical situations have a natural
solution.

The number of bits of an expression (known as the size of the expression) shall be determined by the operands
involved in the expression and the context in which the expression is given.

A self-determined expression is one where the bit length of the expression is solely determined by the expression
itselfÑfor example, an expression representing a delay value.

A context-determined expression is one where the bit length of the expression is determined by the bit length of the
expression and by the fact that it is part of another expression. For example, the bit size of the right-hand side expres-
sion of an assignment depends on itself and the size of the left-hand side.

Table 4-21 shows how the form of an expression shall determine the bit lengths of the results of the expression. In
Table 4-21, i, j, and k represent expressions of an operand, and L(i) represents the bit length of the operand repre-
sented by i.

Table 4-21ÑBit lengths resulting from expressions

 Expression Bit length Comments

Unsized constant number Same as integer

Sized constant number As given

i op j, where op is:
+ - / % & | ^ ^~ ~^

max(L(i),L(j))

i * j L(i) + L(j)

op i, where op is:
+, -, ~

L(i)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

44 Section 4

4.4.2 An example of an expression bit-length problem

During the evaluation of an expression, interim results shall take the size of the largest operand (in case of an assign-
ment, this also includes the left-hand side). Care has to be taken to prevent loss of a signiÞcant bit during expression
evaluation. The example below describes how the bit lengths of the operands could result in the loss of a signiÞcant
bit.

Given the following declarations

reg [15:0] a, b, answer; // 16-bit registers

The intent is to evaluate the expression

answer = (a + b) >> 1; //will not work properly

where a and b are to be added, which may result in an overßow, and then shifted right by 1 bit to preserve the carry
bit in the 16-bit answer.

A problem arises, however, because all operands in the expression are of a 16-bit width. Therefore, the expression (a
+ b) produces an interim result that is only 16 bits wide, thus losing the carry bit before the evaluation performs the
1-bit right shift operation.

The solution is to force the expression (a + b) to evaluate using at least 17 bits. For example, adding an integer
value of 0 to the expression will cause the evaluation to be performed using the bit size of integers. The following
example will produce the intended result:

answer = (a + b + 0) >> 1; //will work correctly

i op j, where op is:
=== !== == != && || > >= < <=

1 bit All operands are self-determined

op i, where op is:
& ~& | ~| ^ ~^ ^~

1 bit All operands are self-determined

i op j, where op is:
>>, <<

L(i) j is self-determined

i ? j : k max(L(j),L(k)) i is self-determined

{i,...,j} L(i)+..+L(j) All operands are self-determined

{i{j,..,k}} i * (L(j)+..+L(k)) All operands are self-determined

Table 4-21ÑBit lengths resulting from expressions (continued)

 Expression Bit length Comments

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

Section 5 45

Section 5

Scheduling semantics

5.1 Execution of a model

The balance of the sections of this standard describe the behavior of each of the elements of the language. This sec-
tion gives an overview of the interactions between these elements, especially with respect to the scheduling and exe-
cution of events.

The elements that make up the Verilog HDL can be used to describe the behavior, at varying levels of abstraction, of
electronic hardware. An HDL has to be a parallel programming language. The execution of certain language con-
structs is deÞned by parallel execution of blocks or processes. It is important to understand what execution order is
guaranteed to the user, and what execution order is indeterminate.

Although the Verilog HDL is used for more than simulation, the semantics of the language are deÞned for simulation,
and everything else is abstracted from this base deÞnition.

5.2 Event simulation

The Verilog HDL is deÞned in terms of a discrete event execution model. The discrete event simulation is described in
more detail in this section to provide a context to describe the meaning and valid interpretation of Verilog HDL con-
structs. These resulting deÞnitions provide the standard Verilog reference model for simulation, which all compliant
simulators shall implement. Note, though, that there is a great deal of choice in the deÞnitions that follow, and differ-
ences in some details of execution are to be expected between different simulators. In addition, Verilog HDL simula-
tors are free to use different algorithms than those described in this section, provided the user-visible effect is
consistent with the reference model.

A design consists of connected threads of execution or processes. Processes are objects that can be evaluated, that
may have state, and that can respond to changes on their inputs to produce outputs. Processes include primitives,
modules, initial and always procedural blocks, continuous assignments, asynchronous tasks, and procedural assign-
ment statements.

Every change in value of a net or register in the circuit being simulated, as well as the named event, is considered an

update event

.

Processes are sensitive to update events. When an update event is executed, all the processes that are sensitive to that
event are evaluated in an arbitrary order. The evaluation of a process is also an event, known as an

evaluation event

.

In addition to events, another key aspect of a simulator is time. The term

simulation time

 is used to refer to the time
value maintained by the simulator to model the actual time it would take for the circuit being simulated. The term

time

 is used interchangeably with simulation time in this section.

Events can occur at different times. In order to keep track of the events and to make sure they are processed in the cor-
rect order, the events are kept on an

event queue

, ordered by simulation time. Putting an event on the queue is called

scheduling an event

.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

46 Section 5

5.3 The stratified event queue

The Verilog event queue is logically segmented into Þve different regions. Events are added to any of the Þve regions
but are only removed from the

active

 region.

1) Events that occur at the current simulation time and can be processed in any order. These are the

active

events.

2) Events that occur at the current simulation time, but that shall be processed after all the active events are
processed. These are the

inactive

 events.

3) Events that have been evaluated during some previous simulation time, but that shall be assigned at this
simulation time after all the active and inactive events are processed. These are the

nonblocking assign update

events.

4) Events that shall be processed after all the active, inactive, and nonblocking assign update events are
processed. These are the

monitor

 events.

5) Events that occur at some future simulation time. These are the

future

 events. Future events are divided into

future inactive events

, and

future nonblocking assignment update events

.

The processing of all the active events is called a

simulation cycle

.

The freedom to choose any active event for immediate processing is an essential source of nondeterminism in the Ver-
ilog HDL.

An

explicit zero delay

 (#0) requires that the process be suspended and added as an inactive event for the current time
so that the process is resumed in the next simulation cycle in the current time.

A nonblocking assignment (see 9.2.2) creates a nonblocking assign update event, scheduled for current or a later sim-
ulation time.

The

$monitor

 and

$strobe

 system tasks (see 14.1) create monitor events for their arguments. These events are contin-
uously re-enabled in every successive time step. The monitor events are unique in that they cannot create any other
events.

The call back procedures scheduled with PLI routines such as

tf_synchronize()

 (see 21.58) or

vpi_register_cb(cb_readwrite)

 (see 23.24) shall be treated as inactive events.

5.4 The Verilog simulation reference model

In all the examples that follow, T refers to the current simulation time, and all events are held in the event queue,
ordered by simulation time.

while (there are events) {
if (no active events) {

if (there are inactive events) {
activate all inactive events;

} else if (there are nonblocking assign update events) {
activate all nonblocking assign update events;

} else if (there are monitor events) {
activate all monitor events;

} else {
advance T to the next event time;
activate all inactive events for time T;

}
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 5 47

E = any active event;
if (E is an update event) {

update the modiÞed object;
add evaluation events for sensitive processes to event queue;

} else { /* shall be an evaluation event */
evaluate the process;
add update events to the event queue;

}
}

5.4.1 Determinism

This standard guarantees a certain scheduling order.

1) Statements within a

begin-end

 block shall be executed in the order in which they appear in that

begin-
end

 block. Execution of statements in a particular

begin-end

 block can be suspended in favor of other
processes in the model; however, in no case shall the statements in a

begin-end

 block be executed in any
order other than that in which they appear in the source.

2) Nonblocking assignments shall be performed in the order the statements were executed. Consider the
following example:

When this block is executed, there will be two events added to the nonblocking assign update queue. The
previous rule requires that they be entered on the queue in source order; this rule requires that they be taken
from the queue and performed in source order as well. Hence, at the end of time step

1

, the variable

a

 will be
assigned

0

 and then

1

.

5.4.2 Nondeterminism

One source of nondeterminism is the fact that active events can be taken off the queue and processed in any order.
Another source of nondeterminism is that statements without time-control constructs in behavioral blocks do not have
to be executed as one event. Time control statements are the # expression and @ expression constructs (see 9.7). At
any time while evaluating a behavioral statement, the simulator may suspend execution and place the partially com-
pleted event as a pending active event on the event queue. The effect of this is to allow the interleaving of process exe-
cution. Note that the order of interleaved execution is nondeterministic and not under control of the user.

5.5 Race conditions

Because the execution of expression evaluation and net update events may be intermingled, race conditions are
possible:

assign

 p = q;

initial

begin

q = 1;
#1 q = 0;

$display

(p);

end

The simulator is correct in displaying either a

1

 or a

0

. The assignment of

0

 to

q

 enables an update event for

p

. The

initial begin
a <= 0;
a <= 1;

end

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

48 Section 5

simulator may either continue and execute the $display task or execute the update for

p

, followed by the $display
task.

5.6 Scheduling implication of assignments

Assignments are translated into processes and events as follows.

5.6.1 Continuous assignment

A continuous assignment statement (Section 6) corresponds to a process, sensitive to the source elements in the
expression. When the value of the expression changes, it causes an active update event to be added to the event queue,
using current values to determine the target.

5.6.2 Procedural continuous assignment

A procedural continuous assignment (which are the

assign

 or

force

 statement; see 9.3) corresponds to a process that
is sensitive to the source elements in the expression. When the value of the expression changes, it causes an active
update event to be added to the event queue, using current values to determine the target.

A

deassign

 or a

release

 statement deactivates any corresponding

assign

 or

force

 statement(s).

5.6.3 Blocking assignment

A blocking assignment statement with a delay computes the right-hand side value using the current values, then
causes the executing process to be suspended and scheduled as a future event. If the delay is 0, the process is sched-
uled as an inactive event for the current time.

When the process is returned (or if it returns immediately if no delay is speciÞed), the process performs the assign-
ment to the left-hand side and enables any events based upon the update of the left-hand side. The values at the time
the process resumes are used to determine the target(s). Execution may then continue with the next sequential state-
ment or with other active events.

5.6.4 Nonblocking assignment

A nonblocking assignment statement always computes the updated value and schedules the update as a nonblocking
assign update event, either in this time step if the delay is zero or as a future event if the delay is nonzero. The values
in effect when the update is placed on the event queue are used to compute both the right-hand value and the left-hand
target.

5.6.5 Switch (transistor) processing

The event-driven simulation algorithm described in 5.4 depends on unidirectional signal ßow and can process each
event independently. The inputs are read, the result is computed, and the update is scheduled.

The Verilog HDL provides switch-level modeling in addition to behavioral and gate-level modeling. Switches provide
bi-directional signal ßow and require coordinated processing of nodes connected by switches.

The Verilog HDL source elements that model switches are various forms of transistors, called

tran

,

tranif0

,

tranif1

,

rtran

,

rtranif0

, and

rtranif1

.

Switch processing shall consider all the devices in a bidirectional switch-connected net before it can determine the
appropriate value for any node on the net, because the inputs and outputs interact. A simulator can do this using a
relaxation technique. The simulator can process tran at any time. It can process a subset of tran-connected events at a
particular time, intermingled with the execution of other active events.

Further reÞnement is required when some transistors have gate value

x

. A conceptually simple technique is to solve

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 5 49

the network repeatedly with these transistors set to all possible combinations of fully conducting and nonconducting
transistors. Any node that has a unique logic level in all cases has steady-state response equal to this level. All other
nodes have steady-state response

x

.

5.6.6 Port connections

Ports connect processes through implicit continuous assignment statements or implicit bidirectional connections.
Bidirectional connections are analogous to an always-enabled tran connection between the two nets, but without any
strength reduction. Port connection rules require that a value receiver be a net or a structural net expression.

Ports can always be represented as declared objects connected as follows:

Ñ If an input port, then a continuous assignment from an outside expression to a local (input) net
Ñ If an output port, then a continuous assignment from a local output expression to an outside net
Ñ If an inout, then a nonstrength-reducing transistor connecting the local net to an outside net

Port connection rules are given in 12.3.7. Modules can have the following declaration:

module

 foo (.a(p), .b(p));

which makes

a

 and

b

 the external names of the ports and

p

 the internal name of the port. This means

a

,

b

, and

p

 are
connected bidirectionally; hence, they always have the same value at the end of the time step.

5.6.7 Functions and tasks

Task and function parameter passing is by value, and it copies in on invocation and copies out on return. The copy out
on the return function behaves in the same manner as does any blocking assignment.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

50 Section 6

Section 6

Assignments

The assignment is the basic mechanism for placing values into nets and registers. There are two basic forms of assign-
ments:

Ñ The

continuous

assignment

, which assigns values to

nets

Ñ The

procedural

assignment

, which assigns values to

registers

There are two additional forms of assignments, called

procedural continuous assignments

, described in 9.3.

An assignment consists of two parts, a left-hand side and a right-hand side, separated by the equals (

=

) character. The
right-hand side can be any expression that evaluates to a value. The left-hand side indicates the variable to which the
right-hand side value is to be assigned. The left-hand side can take one of the forms given in Table 6-1, depending on
whether the assignment is a continuous assignment or a procedural assignment.

6.1 Continuous assignments

Continuous assignments shall drive values onto nets, both vector and scalar. This assignment shall occur whenever
the value of the right-hand side changes. Continuous assignments provide a way to model combinational logic with-
out specifying an interconnection of gates. Instead, the model speciÞes the logical expression that drives the net.

The syntax for continuous assignments is given in Syntax 6-1.

Table 6-1ÑLegal left-hand side forms in assignment statements

Statement type Left-hand side (LHS)

Continuous assignment Net (vector or scalar)
Constant bit select of a vector net
Constant part select of a vector net
Concatenation of any of the above three LHS

Procedural assignment Register (vector or scalar)
Bit-select of a vector register
Constant part select of a vector register
Memory word
Concatenation of any of the above four LHS

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 6 51

Syntax 6-1ÑSyntax for continuous assignment

6.1.1 The net declaration assignment

The Þrst two alternatives in the net declaration are discussed in Section 3 (see 3.2). The third alternative, the net dec-
laration assignment, allows a continuous assignment to be placed on a net in the same statement that declares the net.

Example:

The following is an example of the net declaration form of a continuous assignment:

wire

 (

strong1

,

pull0

) mynet = enable ;

NOTEÑBecause a net can be declared only once, only one net declaration assignment can be made for a particular net. This con-
trasts with the continuous assignment statement; one net can receive multiple assignments of the continuous assignment form.

6.1.2 The continuous assignment statement

The continuous assignment statement shall place a continuous assignment on a net that has been previously declared,
either explicitly by declaration or implicitly by using its name in the terminal list of a gate, user-deÞned primitive, or
module instance (see 3.5).

Assignments on nets shall be continuous and automatic. This means that whenever an operand in the right-hand side
expression changes value, the whole right-hand side shall be evaluated and assigned to the left-hand side.

Examples:

Example 1Ñ

The following is an example of a continuous assignment to a net that has been previously declared:

wire

 mynet ;

assign

 (

strong1

,

pull0

) mynet = enable ;

Example 2Ñ

The following is an example of the use of a continuous assignment to model a 4-bit adder with carry. The
assignment could not be speciÞed directly in the declaration of the nets because it requires a concatenation on the left-
hand side.

net_declaration ::=
 net_type [vectored | scalared] [range] [delay3] list_of_net_identifiers ;
| trireg [vectored | scalared] [charge_strength] [range] [delay3]
list_of_net_identifiers ;
| net_type [vectored | scalared] [drive_strength] [range] [delay3]
list_of_net_assignments ;

continuous_assignment ::=
assign [drive_strength] [delay3] list_of_net_assignments ;

list_of_net_assignments ::= net_assignment { , net_assignment }
net_assignment ::= net_lvalue = expression

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

52 Section 6

Example 3Ñ

The following example describes a module with one 16-bit output bus. It selects between one of four
input busses and connects the selected bus to the output bus.

The following sequence of events is experienced during simulation of this example:

a) The value of

s

, a bus selector input variable, is checked in the assign statement. Based on the value of

s

, the
net

data

 receives the data from one of the four input buses.

b) The setting of

data

 net triggers the continuous assignment in the net declaration for

busout

. If

enable

 is
set, the contents of

data

 are assigned to

busout

; if

enable

 is

0

, the contents of

Zee

 are assigned to

busout

.

6.1.3 Delays

A delay given to a continuous assignment shall specify the time duration between a right-hand side operand value
change and the assignment made to the left-hand side. If the left-hand side references a scalar net, then the delay shall
be treated in the same way as for gate delaysÑthat is, different delays can be given for the output rising, falling, and
changing to high impedance (see Section 7).

If the left-hand side references a vector net, then up to three delays can be applied. The following rules determine
which delay controls the assignment:

Ñ If the right-hand side makes a transition from nonzero to zero, then the falling delay shall be used.

module adder (sum_out, carry_out, carry_in, ina, inb);
output [3:0] sum_out;
output carry_out;
input [3:0] ina, inb;
input carry_in;
wire carry_out, carry_in;
wire [3:0] sum_out, ina, inb;
assign {carry_out, sum_out} = ina + inb + carry_in;
endmodule

module select_bus(busout, bus0, bus1, bus2, bus3, enable, s);
parameter n = 16;
parameter Zee = 16Õbz;
output [1:n] busout;
input [1:n] bus0, bus1, bus2, bus3;
input enable;
input [1:2] s;
tri [1:n] data; // net declaration
// net declaration with continuous assignment
tri [1:n] busout = enable ? data : Zee;
// assignment statement with four continuous assignments
assign

data = (s == 0) ? bus0 : Zee,
data = (s == 1) ? bus1 : Zee,
data = (s == 2) ? bus2 : Zee,
data = (s == 3) ? bus3 : Zee;

endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 6 53

Ñ If the right-hand side makes a transition to

z

, then the turn-off delay shall be used.
Ñ For all other cases, the rising delay shall be used.

Specifying the delay in a continuous assignment that is part of the net declaration shall be treated differently from
specifying a net delay and then making a continuous assignment to the net. A delay value can be applied to a net in a
net declaration, as in the following example:

wire

 #10 wireA;

This syntax, called a

net delay

, means that any value change that is to be applied to

wireA

 by some other statement
shall be delayed for ten time units before it takes effect. When there is a continuous assignment in a declaration, the
delay is part of the continuous assignment and is

not

 a net delay. Thus, it shall not be added to the delay of other driv-
ers on the net. Furthermore, if the assignment is to a vector net, then the rising and falling delays shall not be applied
to the individual bits if the assignment is included in the declaration.

In situations where a right-hand side operand changes before a previous change has had time to propagate to the left-
hand side, then the latest value change shall be the only one to be applied. That is, only one assignment shall occur.

6.1.4 Strength

The driving strength of a continuous assignment can be speciÞed by the user. This applies only to assignments to sca-
lar nets of the following types:

wire tri trireg
wand triand tri0
wor trior tri1

Continuous assignments driving strengths can be speciÞed in either a net declaration or in a stand-alone assignment,
using the

assign

 keyword. The strength speciÞcation, if provided, shall immediately follow the keyword (either the
keyword for the net type or

assign

) and precede any delay speciÞed. Whenever the continuous assignment drives the
net, the strength of the value shall be simulated as speciÞed.

A drive strength speciÞcation shall contain one strength value that applies when the value being assigned to the net is

1 and a second strength value that applies when the assigned value is 0. The following keywords shall specify the
strength value for an assignment of 1:

supply1 strong1 pull1 weak1 highz1

The following keywords shall specify the strength value for an assignment of 0:

supply0 strong0 pull0 weak0 highz0

The order of the two strength speciÞcations shall be arbitrary. The following two rules shall constrain the use of drive
strength speciÞcations:

Ñ The strength speciÞcations (highz1, highz0) and (highz0, highz1) shall be treated as illegal constructs.
Ñ If drive strength is not speciÞed, it shall default to (strong1, strong0).

6.2 Procedural assignments

The primary discussion of procedural assignments is in 9.2. However, a description of the basic ideas in this clause
highlights the differences between continuous assignments and procedural assignments.

As stated in 6.1, continuous assignments drive nets in a manner similar to the way gates drive nets. The expression on
the right-hand side can be thought of as a combinatorial circuit that drives the net continuously. In contrast, proce-

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

54 Section 6

dural assignments put values in registers. The assignment does not have duration; instead, the register holds the value
of the assignment until the next procedural assignment to that register.

Procedural assignments occur within procedures such as always, initial (see Section 9), task, and function (see Sec-
tion 10) and can be thought of as ÒtriggeredÓ assignments. The trigger occurs when the ßow of execution in the simu-
lation reaches an assignment within a procedure. Reaching the assignment can be controlled by conditional
statements. Event controls, delay controls, if statements, case statements, and looping statements can all be used to
control whether assignments are evaluated. Section 9 gives details and examples.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

Section 7 55

Section 7

Gate and switch level modeling

This section describes the syntax and semantics of these built-in primitives and how a hardware design can be
described using these primitives.

There are 14 logic gates and 12 switches predeÞned in the Verilog HDL to provide the

 gate

 and

switch

 level modeling
facility. Modeling with logic gates and switches has the following advantages:

Ñ Gates provide a much closer one-to-one mapping between the actual circuit and the model.
Ñ There is no continuous assignment equivalent to the bidirectional transfer gate.

7.1 Gate and switch declaration syntax

Syntax 7-1 shows the gate and switch declaration syntax.

A gate or a switch instance declaration shall have the following speciÞcations:

Ñ The keyword that names the type of gate or switch primitive
Ñ An optional

drive strength

Ñ An optional

propagation delay

Ñ An optional identiÞer that names each gate or switch instance
Ñ An optional range for

array of instances

Ñ The terminal connection list

Multiple instances of the one type of gate or switch primitive can be declared as a comma-separated list. All such
instances shall have the same drive strength and delay speciÞcation.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

56 Section 7

Syntax 7-1ÑSyntax for gate instantiation

gate_instantiation ::=
 n_input_gatetype [drive_strength] [delay2]
 n_input_gate_instance { , n_input_gate_instance } ;
| n_output_gatetype [drive_strength] [delay2]
 n_output_gate_instance { , n_output_gate_instance } ;
| enable_gatetype [drive_strength] [delay3] enable_gate_instance { ,
enable_gate_instance } ;
| mos_switchtype [delay3] mos_switch_instance { , mos_switch_instance } ;
| pass_switchtype pass_switch_instance { , pass_switch_instance } ;
| pass_en_switchtype [delay3] pass_en_switch_instance { , pass_en_switch_instance
} ;
| cmos_switchtype [delay3] cmos_switch_instance { , cmos_switch_instance } ;
| pullup [pullup_strength] pull_gate_instance { , pull_gate_instance } ;
| pulldown [pulldown_strength] pull_gate_instance { , pull_gate_instance } ;

n_input_gate_instance ::=
[name_of_gate_instance] (output_terminal , input_terminal { , input_terminal })

n_output_gate_instance ::=
[name_of_gate_instance] (output_terminal { , output_terminal } , input_terminal)

enable_gate_instance ::=
[name_of_gate_instance] (output_terminal , input_terminal , enable_terminal)

mos_switch_instance ::=
[name_of_gate_instance] (output_terminal , input_terminal , enable_terminal)

pass_switch_instance ::=
[name_of_gate_instance] (inout_terminal , inout_terminal)

pass_enable_switch_instance ::=
[name_of_gate_instance] (inout_terminal , inout_terminal , enable_terminal)

cmos_switch_instance ::=
[name_of_gate_instance] (output_terminal , input_terminal ,
 ncontrol_terminal , pcontrol_terminal)

pull_gate_instance ::=
[name_of_gate_instance] (output_terminal)

name_of_gate_instance ::= gate_instance_identifier [range]
delay2 ::=

 # delay_value | # (delay_value [, delay_value])
pullup_strength ::=

 (strength0 , strength1) | (strength1 , strength0) | (strength1)
pulldown_strength ::=

 (strength0 , strength1) | (strength1 , strength0) | (strength0)
input_terminal ::= scalar_expression
enable_terminal ::= scalar_expression
ncontrol_terminal ::= scalar_expression
pcontrol_terminal ::= scalar_expression
output_terminal ::= terminal_identifier | terminal_identifier [constant_expression]
inout_terminal ::= terminal_identifier | terminal_identifier [constant_expression]
n_input_gatetype ::= and | nand | or | nor | xor | xnor
n_output_gatetype ::= buf | not
enable_gatetype ::= bufif0 | bufif1 | notif0 | notif1
mos_switchtype ::= nmos | pmos | rnmos | rpmos
pass_switchtype ::= tran | rtran
pass_en_switchtype ::= tranif0 | tranif1 | rtranif1 | rtranif0

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 7 57

7.1.1 The gate type speciÞcation

A gate or switch instance declaration shall begin with the keyword that speciÞes the gate or switch primitive being
used by the instances that follow in the declaration. Table 7-1 lists the keywords that shall begin a gate or a switch
instance declaration.

Explanations of the built-in gates and switches shown in Table 7-1 begin in 7.2.

7.1.2 The drive strength speciÞcation

An optional drive strength speciÞcation shall specify the strength of the logic values on the output terminals of the
gate instance. Only the instances of the gate primitives shown in Table 7-2 can have the drive strength speciÞcation.

The drive strength speciÞcation for a gate instance, with the exception of pullup and pulldown, shall have a strength1
speciÞcation and a strength0 speciÞcation. The strength1 speciÞcation shall specify the strength of signals with a
logic value 1, and the strength0 speciÞcation shall specify the strength of signals with a logic value 0. The strength
speciÞcation shall follow the gate type keyword and precede any delay speciÞcation. The strength0 speciÞcation can
precede or follow the strength1 speciÞcation. The strength1 and strength0 speciÞcations shall be separated by a
comma and enclosed within a pair of parentheses.

The pullup gate can have only strength1 speciÞcation; strength0 speciÞcation shall be optional. The pulldown gate
can have only strength0 speciÞcation; strength1 speciÞcation shall be optional.

The strength1 speciÞcation shall be one of the following keywords:

supply1 strong1 pull1 weak1

The strength0 speciÞcation shall be one of the following keywords:

supply0 strong0 pull0 weak0

Specifying highz1 as strength1 shall cause the gate or switch to output a logic value z in place of a 1. Specifying
highz0 shall cause the gate to output a logic value z in place of a 0. The strength speciÞcations (highz0, highz1) and
(highz1, highz0) shall be considered invalid.

Table 7-1ÑBuilt-in gates and switches

n_input gates n_output gates tristate gates pull gates MOS switches bidirectional
switches

and buf buÞf0 pulldown cmos rtran

nand not buÞf1 pullup nmos rtranif0

nor notif0 pmos rtranif1

or notif1 rcmos tran

xnor rnmos tranif0

xor rpmos tranif1

Table 7-2ÑValid gate types for strength speciÞcations

and nand buf not pulldown

or nor buÞf0 notif0 pullup

xor xnor buÞf1 notif1

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

58 Section 7

In the absence of a strength speciÞcation, the instances shall have the default strengths strong1 and strong0.

Example:

The following example shows a drive strength speciÞcation in a declaration of an open collector nor gate:

nor (highz1,strong0) n1(out1,in1,in2);

In this example, the nor gate outputs a z in place of a 1.

Logic strength modeling is discussed in more detail in 7.10 through 7.14.

7.1.3 The delay speciÞcation

An optional delay speciÞcation shall specify the propagation delay through the gates and switches in a declaration.
Gates and switches in declarations with no delay speciÞcation shall have no propagation delay. A delay speciÞcation
can contain up to three delay values, depending on the gate type. The pullup and pulldown instance declarations
shall not include delay speciÞcations. Delays are discussed in more detail in 7.15.

7.1.4 The primitive instance identiÞer

An optional name can be given to a gate or switch instance. If multiple instances are declared as an array of instances,
an identiÞer shall be used to name the instances.

7.1.5 The range speciÞcation

There are many situations when repetitive instances are required. These instances shall differ from each other only by
the index of the vector to which they are connected.

In order to specify an array of instances, the instance name shall be followed by the range speciÞcation. The range
shall be speciÞed by two constant expressions, left-hand index (lhi) and right-hand index (rhi), separated by a
colon and enclosed within a pair of square brackets. A [lhi:rhi] range speciÞcation shall represent an array of
abs(lhi-rhi)+1 instances. Neither of the two constant expressions are required to be zero, and lhi is not
required to be larger than rhi. If both constant expressions are equal, only one instance shall be generated.

An array of instances shall have a continuous range. One instance identiÞer shall be associated with only one range to
declare an array of instances.

The range speciÞcation shall be optional. If no range speciÞcation is given, a single instance shall be created.

Example:

A declaration shown below is illegal:

nand #2 t_nand[0:3] (...), t_nand[4:7] (...);

It could be declared correctly as one array of eight instances, or two arrays with unique names of four elements each:

nand #2 t_nand[0:7](...);
nand #2 x_nand[0:3] (...), y_nand[4:7] (...);

7.1.6 Primitive instance connection list

The terminal list describes how the gate or switch connects to the rest of the model. The gate or switch type can limit
these expressions. The connection list shall be enclosed in a pair of parentheses, and the terminals shall be separated
by commas. The output or bidirectional terminals shall always come Þrst in the terminal list, followed by the input

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 7 59

terminals.

The terminal connections for an array of instances shall follow these rules:

Ñ The bit length of each port expression in the declared instance-array shall be compared with the bit length of
each single-instance port or terminal in the instantiated module or primitive.

Ñ For each port or terminal where the bit length of the instance-array port expression is the same as the bit
length of the single-instance port, the instance-array port expression shall be connected to each single-
instance port.

Ñ If bit lengths are different, each instance shall get a part-select of the port expression as speciÞed in the range,
starting with the right-hand index.

Ñ Too many or too few bits to connect to all the instances shall be considered an error.

An individual instance from an array of instances shall be referenced in the same manner as referencing an element of
an array of registers.

Examples:

Example 1ÑThe following declaration of nand_array declares four instances that can be referenced by
nand_array[1], nand_array[2], nand_array[3], and nand_array[4] respectively.

nand #2 nand_array[1:4](...) ;

Example 2ÑThe two module descriptions that follow are equivalent except for indexed instance names, and they
demonstrate the range speciÞcation and connection rules for declaring an array of instances:

Example 3ÑThe two module descriptions that follow are equivalent except for indexed instance names, and they
demonstrate how different instances within an array of instances are connected when the port sizes do not match.

module driver (in, out, en);
input [3:0] in;
output [3:0] out;
input en;

bufif0 ar[3:0] (out, in, en); // array of tri-state buffers

endmodule

module driver_equiv (in, out, en);
input [3:0] in;
output [3:0] out;
input en;

bufif0 ar3 (out[3], in[3], en); // each buffer declared separately
bufif0 ar2 (out[2], in[2], en);
bufif0 ar1 (out[1], in[1], en);
bufif0 ar0 (out[0], in[0], en);

endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

60 Section 7

Example 4ÑThis example demonstrates how a series of modules can be chained together. Figure 7-1 shows an equiv-
alent schematic interconnection of DFF instances.

module busdriver (busin, bushigh, buslow, enh, enl);
input [15:0] in;
output [7:0] bushigh, buslow;
input enh, enl;

driver busar3 (busin[15:12], bushigh[7:4], enh);
driver busar2 (busin[11:8], bushigh[3:0], enh);
driver busar1 (busin[7:4], buslow[7:4], enl);
driver busar0 (busin[3:0], buslow[3:0], enl);

endmodule

module busdriver_equiv (busin, bushigh, buslow, enh, enl);
input [15:0] busin;
output [7:0] bushigh, buslow;
input enh, enl;

driver busar[3:0] (.out({bushigh, buslow}), .in(busin),
 .en({enh, enh, enl, enl}));

endmodule

module dffn (q, d, clk);
parameter bits = 1;
input [bits-1:0] d;
output [bits-1:0] q;
input clk ;

DFF dff[bits-1:0] (q, d, clk); // create a row of D flip-flops

endmodule

module MxN_pipeline (in, out, clk);
parameter M = 3, N = 4; // M=width,N=depth
input [M-1:0] in;
output [M-1:0] out;
input clk;
wire [M*(N-1):1] t;

// #(M) redefines the bits parameter for dffn
// create p[1:N] columns of dffn rows (pipeline)

dffn #(M) p[1:N] ({out, t}, {t, in}, clk);

endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 7 61

Figure 7-1ÑSchematic diagram of interconnections in array of instances

7.2 And, nand, nor, or, xor, and xnor gates

The instance declaration of a multiple input logic gate shall begin with one of the following keywords:

and nand nor or xor xnor

The delay speciÞcation shall be zero, one, or two delays. If the speciÞcation contains two delays, the Þrst delay shall
determine the output rise delay, the second delay shall determine the output fall delay, and the smaller of the two
delays shall apply to output transitions to x. If only one delay is speciÞed, it shall specify both the rise delay and the
fall delay. If there is no delay speciÞcation, there shall be no propagation delay through the gate.

These six logic gates shall have one output and one or more inputs. The Þrst terminal in the terminal list shall connect
to the output of the gate and all other terminals connect to its inputs.

The truth tables for these gates, showing the result of two input values, appear in Table 7-3.

in[2:0]

clk

out[2:0]

p[4] p[3] p[2] p[1]

dff[2] dff[2]dff[2]dff[2]

dff[1] dff[1]dff[1]dff[1]

dff[0] dff[0] dff[0] dff[0]

t[3] t[6] t[9]

t[2] t[5] t[8]

t[1] t[4] t[7]

out[2]

out[1]

out[0]

in[2]

in[1]

in[0]

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

62 Section 7

Versions of these six logic gates having more than two inputs shall have a natural extension, but the number of inputs
shall not alter propagation delays.

Example:

The following example declares a two input and gate:

and a1 (out, in1, in2);

The inputs are in1 and in2. The output is out. The instance name is a1.

7.3 Buf and not gates

The instance declaration of a multiple output logic gate shall begin with one of the following keywords:

buf not

The delay speciÞcation shall be zero, one, or two delays. If the speciÞcation contains two delays, the Þrst delay shall
determine the output rise delay, the second delay shall determine the output fall delay, and the smaller of the two
delays shall apply to output transitions to x. If only one delay is speciÞed, it shall specify both the rise delay and the
fall delay. If there is no delay speciÞcation, there shall be no propagation delay through the gate.

These two logic gates shall have one input and one or more outputs. The last terminal in the terminal list shall connect
to the input of the logic gate, and the other terminals shall connect to the outputs of the logic gate.

Table 7-3ÑTruth tables for multiple input logic gates

and 0 1 x z

0 0 0 0 0

1 0 1 x x

x 0 x x x

z 0 x x x

nand 0 1 x z

0 1 1 1 1

1 1 0 x x

x 1 x x x

z 1 x x x

nor 0 1 x z

0 1 0 x x

1 0 0 0 0

x x 0 x x

z x 0 x x

xor 0 1 x z

0 0 1 x x

1 1 0 x x

x x x x x

z x x x x

xnor 0 1 x z

0 1 0 x x

1 0 1 x x

x x x x x

z x x x x

or 0 1 x z

0 0 1 x x

1 1 1 1 1

x x 1 x x

z x 1 x x

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 7 63

Truth tables for these logic gates with one input and one output are shown in Table 7-4.

Example:

The following example declares a two output buf:

buf b1 (out1, out2, in);

The input is in. The outputs are out1 and out2. The instance name is b1.

7.4 Bufif1, bufif0, notif1, and notif0 gates

The instance declaration of a tri-state logic gate shall begin with one of the following keywords:

bufif0 bufif1 notif1 notif0

These four logic gates model three-state drivers. In addition to logic values 1 and 0, these gates can output z.

The delay speciÞcation shall be zero, one, two, or three delays. If the delay speciÞcation contains three delays, the
Þrst delay shall determine the rise delay, the second delay shall determine the fall delay, the third delay shall deter-
mine the delay of transitions to z, and the smallest of the three delays shall determine the delay of transitions to x. If
the speciÞcation contains two delays, the Þrst delay shall determine the output rise delay, the second delay shall deter-
mine the output fall delay, and the smaller of the two delays shall apply to output transitions to x and z. If only one
delay is speciÞed, it shall specify the delay for all output transitions. If there is no delay speciÞcation, there shall be
no propagation delay through the gate.

Some combinations of data input values and control input values can cause these gates to output either of two values,
without a preference for either value (see 7.11.2). These logic tables for these gates include two symbols representing
such unknown results. The symbol L shall represent a result that has a value 0 or z. The symbol H shall represent a
result that has a value 1 or z. Delays on transitions to H or L shall be treated the same as delays on transitions to x.

These four logic gates shall have one output, one data input, and one control input. The Þrst terminal in the terminal
list shall connect to the output, the second terminal shall connect to the data input, and the third terminal shall connect
to the control input.

Table 7-4ÑTruth tables for multiple output logic gates

buf

input output

0 0

1 1

x x

z x

not

input output

0 1

1 0

x x

z x

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

64 Section 7

Table 7-5 presents the logic tables for these gates.

Example:

The following example declares an instance of bufif1:

bufif1 bf1 (outw, inw, controlw);

The output is outw, the input is inw, and the control is controlw. The instance name is bf1.

7.5 MOS switches

The instance declaration of a MOS switch shall begin with one of the following keywords:

cmos nmos pmos rcmos rnmos rpmos

The cmos and rcmos switches are described in 7.7.

The pmos keyword stands for the P-type metal-oxide semiconductor (PMOS) transistor and the nmos keyword
stands for the N-type metal-oxide semiconductor (NMOS) transistor. PMOS and NMOS transistors have relatively
low impedance between their sources and drains when they conduct. The rpmos keyword stands for resistive PMOS
transistor and the rnmos keyword stands for resistive NMOS transistor. Resistive PMOS and resistive NMOS transis-
tors have signiÞcantly higher impedance between their sources and drains when they conduct than PMOS and NMOS
transistors have. The load devices in static MOS networks are examples of rpmos and rnmos transistors. These four
switches are unidirectional channels for data similar to the bufif gates.

Table 7-5ÑTruth tables for tristate logic gates

buÞf0
CONTROL

0 1 x z

D 0 0 z L L

A 1 1 z H H

T x x z x x

A z x z x x

buÞf1
CONTROL

0 1 x z

D 0 z 0 L L

A 1 z 1 H H

T x z x x x

A z z x x x

notif0
CONTROL

0 1 x z

D 0 1 z H H

A 1 0 z L L

T x x z x x

A z x z x x

notif1
CONTROL

0 1 x z

D 0 z 1 H H

A 1 z 0 L L

T x z x x x

A z z x x x

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 7 65

The delay speciÞcation shall be zero, one, two, or three delays. If the delay speciÞcation contains three delays, the
Þrst delay shall determine the rise delay, the second delay shall determine the fall delay, the third delay shall deter-
mine the delay of transitions to z, and the smallest of the three delays shall determine the delay of transitions to x. If
the speciÞcation contains two delays, the Þrst delay shall determine the output rise delay, the second delay shall deter-
mine the output fall delay, and the smaller of the two delays shall apply to output transitions to x and z. If only one
delay is speciÞed, it shall specify the delay for all output transitions. If there is no delay speciÞcation, there shall be
no propagation delay through the switch.

Some combinations of data input values and control input values can cause these switches to output either of two val-
ues, without a preference for either value. The logic tables for these switches include two symbols representing such
unknown results. The symbol L represents a result that has a value 0 or z. The symbol H represents a result that has a
value 1 or z. Delays on transitions to H and L shall be the same as delays on transitions to x.

These four switches shall have one output, one data input, and one control input. The Þrst terminal in the terminal list
shall connect to the output, the second terminal shall connect to the data input, and the third terminal shall connect to
the control input.

The nmos and pmos switches shall pass signals from their inputs and through their outputs with a change in the
strength of the signal in only one case, as discussed in 7.12. The rnmos and rpmos switches shall reduce the strength
of signals that propagate through them, as discussed in 7.13.

Table 7-6 presents the logic tables for these switches.

Example:

The following example declares a pmos switch:

pmos p1 (out, data, control);

The output is out, the data input is data, and the control input is control. The instance name is p1.

7.6 Bidirectional pass switches

The instance declaration of a bidirectional pass switch shall begin with one of the following keywords:

tran tranif1 tranif0
rtran rtranif1 rtranif0

The bidirectional pass switches shall not delay signals propagating through them. When tranif0, tranif1, rtranif0, or
rtranif1 devices are turned off they shall block signals, and when they are turned on they shall pass signals. The tran

Table 7-6ÑTruth tables for MOS switches

pmos
rpmos

CONTROL

0 1 x z

D 0 0 z L L

A 1 1 z H H

T x x z x x

A z z z z z

 nmos
rnmos

CONTROL

0 1 x z

D 0 z 0 L L

A 1 z 1 H H

T x z x x x

A z z z z z

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

66 Section 7

and rtran devices cannot be turned off, and they shall always pass signals.

The delay speciÞcations for tranif1, tranif0, rtranif1, and rtranif0 devices shall be zero, one, or two delays. If the
speciÞcation contains two delays, the Þrst delay shall determine the turn-on delay, and the second delay shall deter-
mine the turn-off delay, and the smaller of the two delays shall apply to output transitions to x and z. If only one
delay is speciÞed, it shall specify both the turn-on and the turn-off delays. If there is no delay speciÞcation, there shall
be no turn-on or turn-off delay for the bidirectional pass switch.

The bidirectional pass switches tran and rtran shall not accept delay speciÞcation.

The tranif1, tranif0, rtranif1, and rtranif0 devices shall have three items in their terminal lists. The Þrst two shall be
bidirectional terminals that conduct signals to and from the devices, and the third terminal shall connect to a control
input. The tran and rtran devices shall have terminal lists containing two bidirectional terminals. Both bidirectional
terminals shall unconditionally conduct signals to and from the devices, allowing signals to pass in either direction
through the devices. The bidirectional terminals of all six devices shall be connected only to scalar nets or bit-selects
of vector nets.

The tran, tranif0, and tranif1 devices shall pass signals with an alteration in their strength in only one case, as dis-
cussed in 7.12. The rtran, rtranif0, and rtranif1 devices shall reduce the strength of the signals passing through
them according to rules discussed in 7.13.

Example:

The following example declares an instance of tranif1:

tranif1 t1 (inout1,inout2,control);

The bidirectional terminals are inout1 and inout2. The control input is control. The instance name is t1.

7.7 CMOS switches

The instance declaration of a CMOS switch shall begin with one of the following keywords:

cmos rcmos

The delay speciÞcation shall be zero, one, two, or three delays. If the delay speciÞcation contains three delays, the
Þrst delay shall determine the rise delay, the second delay shall determine the fall delay, the third delay shall deter-
mine the delay of transitions to z, and the smallest of the three delays shall determine the delay of transitions to x.
Delays in transitions to H or L are the same as delays in transitions to x. If the speciÞcation contains two delays, the
Þrst delay shall determine the output rise delay, the second delay shall determine the output fall delay, and the smaller
of the two delays shall apply to output transitions to x and z. If only one delay is speciÞed, it shall specify the delay
for all output transitions. If there is no delay speciÞcation, there shall be no propagation delay through the switch.

The cmos and rcmos switches shall have a data input, a data output, and two control inputs. In the terminal list, the
Þrst terminal shall connect to the data output, the second terminal shall connect to the data input, the third terminal
shall connect to the n-channel control input, and the last terminal shall connect to the p-channel control input.

The cmos gate shall pass signals with an alteration in their strength in only one case, as discussed in 7.12. The rcmos
gate shall reduce the strength of signals passing through it according to rules described in 7.13.

The cmos switch shall be treated as the combination of a pmos switch and an nmos switch. The rcmos switch shall
be treated as the combination of an rpmos switch and an rnmos switch. The combined switches in these conÞgura-
tions shall share data input and data output terminals, but they shall have separate control inputs.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 7 67

Example:

The equivalence of the cmos gate to the pairing of an nmos gate and a pmos gate is shown in the following example:

7.8 Pullup and pulldown sources

The instance declaration of a pullup or a pulldown source shall begin with one of the following keywords:

pullup pulldown

A pullup source shall place a logic value 1 on the nets connected in its terminal list. A pulldown source shall place a
logic value 0 on the nets connected in its terminal list. The signals that these sources place on nets shall have pull
strength in the absence of a strength speciÞcation. If conßicting strength speciÞcation is declared, it shall be ignored.
There shall be no delay speciÞcations for these sources.

Example:

The following example declares two pullup instances:

pullup (strong1) p1 (neta), p2 (netb);

In this example, the p1 instance drives neta and the p2 instance drives netb.

7.9 Implicit net declarations

Including a previously unused identiÞer in a terminal list shall implicitly declare a new net of type wire, or of type
deÞned by the compiler directive `default_nettype (see 16.2), with zero delay.

Each implicitly declared net shall connect to one or more of the following:

Ñ Gate output
Ñ Bidirectional terminal
Ñ Module output port

7.10 Logic strength modeling

The Verilog HDL provides for accurate modeling of signal contention, bidirectional pass gates, resistive MOS
devices, dynamic MOS, charge sharing, and other technology-dependent network conÞgurations by allowing scalar
net signal values to have a full range of unknown values and different levels of strength or combinations of levels of
strength. This multiple-level logic strength modeling resolves combinations of signals into known or unknown values
to represent the behavior of hardware with improved accuracy.

cmos (w, datain, ncontrol, pcontrol);

is equivalent to:

nmos (w, datain, ncontrol);

nmos

pmos

ncontrol

pcontrol

w datain

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

68 Section 7

A strength speciÞcation shall have two components:

a) The strength of the 0 portion of the net value, called strength0, designated as one of the following:

supply0 strong0 pull0 weak0 highz0

b) The strength of the 1 portion of the net value, called strength1, designated as one of the following:

supply1 strong1 pull1 weak1 highz1

The combinations (highz0, highz1) and (highz1, highz0) shall be considered illegal.

Despite this division of the strength speciÞcation, it is helpful to consider strength as a property occupying regions of
a continuum in order to predict the results of combinations of signals.

Table 7-7 demonstrates the continuum of strengths. The left column lists the keywords used in specifying strengths.
The right column gives correlated strength levels.

In Table 7-7, there are four driving strengths:

supply strong pull weak

Signals with driving strengths shall propagate from gate outputs and continuous assignment outputs.

In Table 7-7, there are three charge storage strengths:

Table 7-7ÑStrength levels for scalar net signal values

Strength name Strength level

supply0 7

strong0 6

pull0 5

large0 4

weak0 3

medium0 2

small0 1

highz0 0

highz1 0

small1 1

medium1 2

weak1 3

large1 4

pull1 5

strong1 6

supply1 7

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 7 69

large medium small

Signals with the charge storage strengths shall originate in the trireg net type.

It is possible to think of the strengths of signals in the preceding table as locations on the scale in Figure 7-2.

Figure 7-2ÑScale of strengths

Discussions of signal combinations later in this section employs graphics similar to those used in Figure 7-2.

If the signal value of a net is known, all of its strength levels shall be in either the strength0 part of the scale repre-
sented by Figure 7-2, or all strength levels shall be in its strength1 part. If the signal value of a net is unknown, it shall
have strength levels in both the strength0 and the strength1 parts. A net with a signal value z shall have a strength
level only in one of the 0 subdivisions of the parts of the scale.

7.11 Strengths and values of combined signals

In addition to a signal value, a net shall have either a single unambiguous strength level or an ambiguous strength
consisting of more than one level. When signals combine, their strengths and values shall determine the strength and
value of the resulting signal in accordance with the principles in 7.11.1 through 7.11.4.

7.11.1 Combined signals of unambiguous strength

This subclause deals with combinations of signals in which each signal has a known value and a single strength level.

If two or more signals of unequal strength combine in a wired net conÞguration, the stronger signal shall dominate all
the weaker drivers and determine the result. The combination of two or more signals of like value shall result in the
same value with the greater of all the strengths. The combination of signals identical in strength and value shall result
in the same signal.

The combination of signals with unlike values and the same strength can have three possible results. Two of the
results occur in the presence of wired logic and the third occurs in its absence. Wired logic is discussed in 7.11.4. The
result in the absence of wired logic is the subject of Figure 7-4.

Example:

Figure 7-3ÑCombining unequal strengths

In Figure 7-3, the numbers in parentheses indicate the relative strengths of the signals. The combination of a pull 1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Pu1(5)

St0(6)
St0(6)

Su1(7)

La1(4)
Su1(7)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

70 Section 7

and a strong 0 results in a strong 0, which is the stronger of the two signals.

7.11.2 Ambiguous strengths: sources and combinations

There are several classiÞcations of signals possessing ambiguous strengths:

Ñ Signals with known values and multiple strength levels

Ñ Signals with a value x, which have strength levels consisting of subdivisions of both the strength1 and the
strength0 parts of the scale of strengths in Figure 7-2

Ñ Signals with a value L, which have strength levels that consist of high impedance joined with strength levels
in the strength0 part of the scale of strengths in Figure 7-2

Ñ Signals with a value H, which have strength levels that consist of high impedance joined with strength levels
in the strength1 part of the scale of strengths in Figure 7-2

Many conÞgurations can produce signals of ambiguous strength. When two signals of equal strength and opposite
value combine, the result shall be a value x, along with the strength levels of both signals and all the smaller strength
levels.

Examples:

Figure 7-4 shows the combination of a weak signal with a value 1 and a weak signal with a value 0 yielding a signal
with weak strength and a value x.

Figure 7-4ÑCombination of signals of equal strength and opposite values

This output signal is described in Figure 7-5.

Figure 7-5ÑWeak x signal strength

An ambiguous signal strength can be a range of possible values. An example is the strength of the output from the tri-
state drivers with unknown control inputs as shown in Figure 7-6.

We1

We0

WeX

7 6 5 4 3 2 1 0 76543210

strength0 strenght1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 7 71

Figure 7-6ÑBufifs with control inputs of x

The output of the bufif1 in Figure 7-6 is a strong H, composed of the range of values described in Figure 7-7.

Figure 7-7ÑStrong H range of values

The output of the bufif0 in Figure 7-6 is a strong L, composed of the range of values described in Figure 7-8.

Figure 7-8ÑStrong L range of values

The combination of two signals of ambiguous strength shall result in a signal of ambiguous strength. The resulting
signal shall have a range of strength levels that includes the strength levels in its component signals. The combination
of outputs from two tri-state drivers with unknown control inputs, shown in Figure 7-9, is an example.

X

St1

X

We0

StH

StL

bufif1

bufif0

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

72 Section 7

Figure 7-9ÑCombined signals of ambiguous strength

In Figure 7-9, the combination of signals of ambiguous strengths produces a range that includes the extremes of the
signals and all the strengths between them, as described in Figure 7-10.

Figure 7-10ÑRange of strengths for an unknown signal

The result is a value x because its range includes the values 1 and 0. The number 35, which precedes the x, is a con-
catenation of two digits. The Þrst is the digit 3, which corresponds to the highest strength0 level for the result. The
second digit, 5, corresponds to the highest strength1 level for the result.

Switch networks can produce a ranges of strengths of the same value, such as the signals from the upper and lower
conÞgurations in Figure 7-11.

X

X

Pu1

We0

PuH

WeL

35X

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 7 73

Figure 7-11ÑAmbiguous strengths from switch networks

In Figure 7-11, the upper combination of a register, a gate controlled by a register of unspeciÞed value, and a pullup
produces a signal with a value of 1 and a range of strengths (651) described in Figure 7-12.

Figure 7-12ÑRange of two strengths of a defined value

In Figure 7-11, the lower combination of a pulldown, a gate controlled by a register of unspeciÞed value, and an and
gate produces a signal with a value 0 and a range of strengths (530) described in Figure 7-13.

Figure 7-13ÑRange of three strengths of a defined value

When the signals from the upper and lower conÞgurations in Figure 7-11 combine, the result is an unknown with a
range (56x) determined by the extremes of the two signals shown in Figure 7-14.

reg a

reg b Vcc

reg g

reg d

reg e

651

530

56X

pullup=x

=1

=x

=0

=0

pulldown ground

and
We0 (3)

Pu0 (5)

Pu1

(6)

(5)

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

74 Section 7

Figure 7-14ÑUnknown value with a range of strengths

In Figure 7-11, replacing the pulldown in the lower conÞguration with a supply0 would change the range of the
result to the range (StX) described in Figure 7-15.

The range in Figure 7-15 is strong x, because it is unknown and the extremes of both its components are strong. The
extreme of the output of the lower conÞguration is strong because the lower pmos reduces the strength of the
supply0 signal. This modeling feature is discussed in 7.12.

Figure 7-15ÑStrong X range

Logic gates produce results with ambiguous strengths as well as tri-state drivers. Such a case appears in Figure 7-16.
The and gate N1 is declared with highz0 strength, and N2 is declared with weak0 strength.

Figure 7-16ÑAmbiguous strength from gates

In Figure 7-16, register b has an unspeciÞed value, so input to the upper and gate is strong x. The upper and gate has
a strength speciÞcation including highz0. The signal from the upper and gate is a strong H composed of the values as
described in Figure 7-17.

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

StH

36X

We0

a=1

b=X

c=0

d=0

N1

N2

and (strong1,highz0) N1(a,b);

and (strong1, weak0) N2(c,d);

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 7 75

Figure 7-17ÑAmbiguous strength signal from a gate

HiZ0 is part of the result, because the strength speciÞcation for the gate in question speciÞed that strength for an out-
put with a value 0. A strength speciÞcation other than high impedance for the 0 value output results in a gate output
value x. The output of the lower and gate is a weak 0 as described in Figure 7-18.

Figure 7-18ÑWeak 0

When the signals combine, the result is the range (36x) as described in Figure 7-19.

Figure 7-19ÑAmbiguous strength in combined gate signals

Figure 7-19 presents the combination of an ambiguous signal and an unambiguous signal. Such combinations are the
topic of 7.11.3.

7.11.3 Ambiguous strength signals and unambiguous signals

The combination of a signal with unambiguous strength and known value with another signal of ambiguous strength
presents several possible cases. To understand a set of rules governing this type of combination, it is necessary to con-
sider the strength levels of the ambiguous strength signal separately from each other and relative to the unambiguous
strength signal. When a signal of known value and unambiguous strength combines with a component of a signal of
ambiguous strength, these shall be the effects:

a) The strength levels of the ambiguous strength signal that are greater than the strength level of the
unambiguous signal shall remain in the result.

b) The strength levels of the ambiguous strength signal that are smaller than or equal to the strength level of the
unambiguous signal shall disappear from the result, subject to rule c.

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

76 Section 7

c) If the operation of rule a and rule b results in a gap in strength levels because the signals are of opposite value,
the signals in the gap shall be part of the result.

The following Þgures show some applications of the rules.

Figure 7-20ÑElimination of strength levels

In Figure 7-20, the strength levels in the ambiguous strength signal that are smaller than or equal to the strength level
of the unambiguous strength signal disappear from the result, demonstrating rule b.

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Combining the two signals above results in the following signal:

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 7 77

Figure 7-21ÑResult demonstrating a range and the elimination of strength levels of two values

In Figure 7-21, rules a, b, and c apply. The strength levels of the ambiguous strength signal that are of opposite value
and lesser strength than the unambiguous strength signal disappear from the result. The strength levels in the ambigu-
ous strength signal that are less than the strength level of the unambiguous strength signal, and of the same value, dis-
appear from the result. The strength level of the unambiguous strength signal and the greater extreme of the
ambiguous strength signal deÞne a range in the result.

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Combining the two signals above results in the following signal:

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

78 Section 7

Figure 7-22ÑResult demonstrating a range and the elimination of strength levels of one value

In Figure 7-22, rules a and b apply. The strength levels in the ambiguous strength signal that are less than the strength
level of the unambiguous strength signal disappear from the result. The strength level of the unambiguous strength
signal and the strength level at the greater extreme of the ambiguous strength signal deÞne a range in the result.

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Combining the two signals above results in the following signal:

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 7 79

Figure 7-23ÑA range of both values

In Figure 7-23, rules a, b, and c apply. The greater extreme of the range of strengths for the ambiguous strength signal
is larger than the strength level of the unambiguous strength signal. The result is a range deÞned by the greatest
strength in the range of the ambiguous strength signal and by the strength level of the unambiguous strength signal.

7.11.4 Wired logic net types

The net types triand, wand, trior, and wor shall resolve conßicts when multiple drivers have the same strength.
These net types shall resolve signal values by treating signals as inputs of logic functions.

Examples:

Consider the combination of two signals of unambiguous strength in Figure 7-24.

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Combining the two signals above results in the following signal:

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

80 Section 7

Figure 7-24ÑWired logic with unambiguous strength signals

The combination of the signals in Figure 7-24, using wired and logic, produces a result with the same value as the
result produced by an and gate with the value of the two signals as its inputs. The combination of signals using wired
or logic produces a result with the same value as the result produced by an or gate with the values of the two signals
as its inputs. The strength of the result is the same as the strength of the combined signals in both cases. If the value of
the upper signal changes so that both signals in Figure 7-24 possess a value 1, then the results of both types of logic
have a value 1.

When ambiguous strength signals combine in wired logic, it is necessary to consider the results of all combinations of
each of the strength levels in the Þrst signal with each of the strength levels in the second signal, as shown in
Figure 7-25.

wired AND logic value result: 0
wired OR logic value result: 1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 7 81

Figure 7-25ÑWired logic and ambiguous strengths

signal1 signal2 result

strength value strength value strength value

5 0 5 1 5 1

6 0 5 1 6 0

signal1 signal2 result

strength value strength value strength value

5 0 5 1 5 0

6 0 5 1 6 0

Signal 1

Signal 2

The result is the following signal:

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

The combinations of strength levels for or logic appear in the
following chart:

The result is the following signal:

The combinations of strength levels for and logic appear in the
following chart:

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

82 Section 7

7.12 Strength reduction by nonresistive devices

The nmos, pmos, and cmos switches shall pass the strength from the data input to the output, except that a supply
strength shall be reduced to a strong strength.

The tran, tranif0, and tranif1 switches shall not affect signal strength across the bidirectional terminals, except that
a supply strength shall be reduced to a strong strength.

7.13 Strength reduction by resistive devices

The rnmos, rpmos, rcmos, rtran, rtranif1, and rtranif0 devices shall reduce the strength of signals that pass
through them according to Table 7-8.

7.14 Strengths of net types

The tri0, tri1, supply0, and supply1 net types shall generate signals with speciÞc strength levels. The trireg declara-
tion can specify either of two signal strength levels other than a default strength level.

7.14.1 Tri0 and tri1 net strengths

The tri0 net type models a net connected to a resistive pulldown device. In the absence of an overriding source, such
a signal shall have a value 0 and a pull strength. The tri1 net type models a net connected to a resistive pullup device.
In the absence of an overriding source, such a signal shall have a value 1 and a pull strength.

7.14.2 Trireg strength

The trireg net type models charge storage nodes. The strength of the drive resulting from a trireg net that is in the
charge storage state (that is, a driver charged the net and then went to high impedance) shall be one of these three
strengths: large, medium, or small. The speciÞc strength associated with a particular trireg net shall be speciÞed by
the user in the net declaration. The default shall be medium. The syntax of this speciÞcation is described in 3.4.1.

7.14.3 Supply0 and supply1 net strengths

The supply0 net type models ground connections. The supply1 net type models connections to power supplies. The
supply0 and supply1 net types shall have supply driving strengths.

Table 7-8ÑStrength reduction rules

Input strength Reduced strength

Supply drive Pull drive

Strong drive Pull drive

Pull drive Weak drive

Large capacitor Medium capacitor

Weak drive Medium capacitor

Medium capacitor Small capacitor

Small capacitor Small capacitor

High impedance High impedance

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 7 83

7.15 Gate and net delays

Gate and net delays provide a means of more accurately describing delays through a circuit. The gate delays specify
the signal propagation delay from any gate input to the gate output. Up to three values per output representing rise,
fall, and turn-off delays can be speciÞed (see 7.2 through 7.8).

Net delays refer to the time it takes from any driver on the net changing value to the time when the net value is
updated and propagated further. Up to three delay values per net can be speciÞed.

For both gates and nets, the default delay shall be zero when no delay speciÞcation is given. When one delay value is
given, then this value shall be used for all propagation delays associated with the gate or the net. When two delays are
given, the Þrst delay shall specify the rise delay and the second delay shall specify the fall delay. The delay when the
signal changes to high impedance or to unknown shall be the lesser of the two delay values.

For a three-delay speciÞcation:

Ñ The Þrst delay refers to the transition to the 1 value (rise delay)
Ñ The second delay refers to the transition to the 0 value (fall delay)
Ñ The third delay refers to the transition to the high-impedance value

When a value changes to the unknown (x) value, the delay is the smallest of the three delays. The strength of the input
signal shall not affect the propagation delay from an input to an output.

Table 7-9 summarizes the from-to propagation delay choice for the two- and three-delay speciÞcations.

Examples:

Example 1ÑThe following is an example of a delay speciÞcation with one, two, and three delays:

and #(10) a1 (out, in1, in2); // only one delay

Table 7-9ÑRules for propagation delays

Delay used if there are

From value: To value: 2 delays 3 delays

0 1 d1 d1

0 x min(d1, d2) min(d1, d2, d3)

0 z min(d1, d2) d3

1 0 d2 d2

1 x min(d1, d2) min(d1, d2, d3)

1 z min(d1, d2) d3

x 0 d2 d2

x 1 d1 d1

x z min(d1, d2) d3

z 0 d2 d2

z 1 d1 d1

z x min(d1, d2) min(d1, d2, d3)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

84 Section 7

and #(10,12) a2 (out, in1, in2); // rise and fall delays
bufif0 #(10,12,11) b3 (out, in, ctrl);// rise, fall, and turn-off delays

Example 2ÑThe following example speciÞes a simple latch module with tri-state outputs, where individual delays
are given to the gates. The propagation delay from the primary inputs to the outputs of the module will be cumulative,
and it depends on the signal path through the network.

7.15.1 Min:typ:max delays

The syntax for delays on gate primitives (including user-deÞned primitives; see Section 8), nets, and continuous
assignments shall allow three values each for the rising, falling, and turn-off delays. The minimum, typical, and max-
imum values for each delay shall be speciÞed as constant expressions separated by colons. There shall be no required
relation (e.g., min £ typ £ max) between the expressions for minimum, typical, and maximum delays. These can be
any three constant expressions.

Examples:

The following example shows min:typ:max values for rising, falling, and turn-off delays:

The syntax for delay controls in procedural statements (see 9.7) also allows minimum, typical, and maximum values.
These are speciÞed by expressions separated by colons. The following example illustrates this concept.

module tri_latch (qout, nqout, clock, data, enable);
output qout, nqout;
input clock, data, enable;
tri qout, nqout;

not #5 n1 (ndata, data);
nand #(3,5) n2 (wa, data, clock),

 n3 (wb, ndata, clock);
nand #(12,15) n4 (q, nq, wa),

n5 (nq, q, wb);
bufif1 #(3,7,13) q_drive (qout, q, enable),

nq_drive (nqout, nq, enable);

endmodule

module iobuf (io1, io2, dir);
. . .

bufif0 #(5:7:9, 8:10:12, 15:18:21) b1 (io1, io2, dir);
bufif1 #(6:8:10, 5:7:9, 13:17:19) b2 (io2, io1, dir);

. . .
endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 7 85

7.15.2 Trireg net charge decay

Like all nets, the delay speciÞcation in a trireg net declaration can contain up to three delays. The Þrst two delays
shall specify the delay for transition to the 1 and 0 logic states when the trireg net is driven to these states by a driver.
The third delay shall specify the charge decay time instead of the delay in a transition to the z logic state. The charge
decay time speciÞes the delay between when the drivers of a trireg net turn off and when its stored charge can no
longer be determined.

A trireg net does not need a turn-off delay speciÞcation because a trireg net never makes a transition to the z logic
state. When the drivers of a trireg net make transitions from the 1, 0, or x logic states to off, the trireg net shall retain
the previous 1, 0, or x logic state that was on its drivers. The z value shall not propagate from the drivers of a trireg
net to a trireg net. A trireg net can only hold a z logic state when z is the initial logic state of the trireg net or when
the trireg net is forced to the z state with a force statement (see 9.3.2).

A delay speciÞcation for charge decay models a charge storage node that is not idealÑa charge storage node whose
charge leaks out through its surrounding devices and connections.

The following subclauses describe the charge decay process and the delay speciÞcation for charge decay.

7.15.2.1 The charge decay process

Charge decay is the cause of transition of a 1 or 0 that is stored in a trireg net to an unknown value (x) after a speci-
Þed delay. The charge decay process shall begin when the drivers of the trireg net turn off and the trireg net starts to
hold charge. The charge decay process shall end under the following two conditions:

a) The delay speciÞed by charge decay time elapses and the trireg net makes a transition from 1 or 0 to x.

b) The drivers of trireg net turn on and propagate a 1, 0, or x into the trireg net.

7.15.2.2 The delay speciÞcation for charge decay time

The third delay in a trireg net declaration shall specify the charge decay time. A three-valued delay speciÞcation in a
trireg net declaration shall have the following form:

#(d1, d2, d3) // (rise_delay, fall_delay, charge_decay_time)

The charge decay time speciÞcation in a trireg net declaration shall be preceded by a rise and a fall delay speciÞca-
tion.

Examples:

Example 1ÑThe following example shows a speciÞcation of the charge decay time in a trireg net declaration:

trireg (large) #(0,0,50) cap1;

This example declares a trireg net named cap1. This trireg net stores a large charge. The delay speciÞcations for
the rise delay is 0, the fall delay is 0, and the charge decay time speciÞcation is 50 time units.

parameter min_hi = 97, typ_hi = 100, max_hi = 107;
reg clk;

always begin
#(95:100:105) clk = 1;
#(min_hi:typ_hi:max_hi) clk = 0;

end

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

86 Section 7

Example 2ÑThe next example presents a source description Þle that contains a trireg net declaration with a charge
decay time speciÞcation. Figure 7-26 shows an equivalent schematic for the source description.

Figure 7-26ÑTrireg net with capacitance

data

gate

nmos1
trireg

module capacitor;
reg data, gate;

// trireg declaration with a charge decay time of 50 time units
trireg (large) #(0,0,50) cap1;

nmos nmos1 (cap1, data, gate); // nmos that drives the trireg

initial begin
$monitor("%0d data=%v gate=%v cap1=%v", $time, data, gate, cap1);
data = 1;
// Toggle the driver of the control input to the nmos switch

 gate = 1;
#10 gate = 0;
#30 gate = 1;
#10 gate = 0;
#100 $finish;

end
endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

Section 8 87

Section 8

 User-deÞned primitives (UDPs)

This section describes a modeling technique to augment the set of predeÞned gate primitives by designing and speci-
fying new primitive elements called user-deÞned primitives (UDPs). Instances of these new UDPs can be used in
exactly the same manner as the gate primitives to represent the circuit being modeled.

The following two types of behavior can be represented in a user-deÞned primitive:

a) CombinationalÑmodeled by a combinational UDP
b) SequentialÑmodeled by a sequential UDP

A combinational UDP uses the value of its inputs to determine the next value of its output. A sequential UDP uses the
value of its inputs and the current value of its output to determine the value of its output. Sequential UDPs provide a
way to model sequential circuits such as ßip-ßops and latches. A sequential UDP can model both level-sensitive and
edge-sensitive behavior.

Each UDP has exactly one output, which can be in one of three states:

0

,

1

, or

x

. The tri-state value

z

 is not sup-
ported. In sequential UDPs, the output always has the same value as the internal state.

The

z

 values passed to UDP inputs shall be treated the same as

x

 values.

8.1 UDP definition

UDP deÞnitions are independent of modules; they are at the same level as module deÞnitions in the syntax hierarchy.
They can appear anywhere in the source text, either before or after they are instantiated inside a module. They shall
not appear between the keywords

module

 and

endmodule

.

NOTE

Ñ

Implementations may limit the maximum number of UDP deÞnitions in a model, but they shall allow at least 256.

The formal syntax of the UDP deÞnition is given in Syntax 8-1.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

88 Section 8

Syntax 8-1ÑSyntax for user-defined primitives

8.1.1 UDP header

A UDP deÞnition shall begin with the keyword

primitive

, followed by an identiÞer, which is the name of the UDP.
This in turn is followed by a comma-separated list of ports enclosed in parentheses, which is followed by a semico-
lon. The UDP deÞnition header is followed by port declarations and a state table. The UDP deÞnition shall be termi-
nated by the keyword

endprimitive

.

UDPs have multiple input ports and exactly one output port; bidirectional inout ports are not permitted on UDPs. All
ports of a UDP shall be scalar; vector ports are not permitted.

The output port shall be the Þrst port in the port list.

8.1.2 UDP port declarations

UDPs shall contain input and output port declarations. The output port declaration begins with the keyword

output

,
followed by one output port name. The input port declaration begins with the keyword

input

, followed by one or
more input port names.

Sequential UDPs shall contain a

reg

 declaration for the output port. Combinational UDPs cannot contain a

reg

 decla-
ration. The initial value of the output port can be speciÞed in an

initial

 statement in a sequential UDP (see 8.1.3).

udp_declaration ::=
 primitive udp_identifier (udp_port_list) ;
 udp_port_declaration { udp_port_declaration }
 udp_body
 endprimitive

udp_port_list ::= output_port_identifier , input_port_identifier { , input_port_identifier }
udp_port_declaration ::=

 output_declaration
| input_declaration
| reg_declaration

udp_body ::= combinational_body | sequential_body
combinational_body ::= table combinational_entry { combinational_entry } endtable
combinational_entry ::= level_input_list : output_symbol ;
sequential_body ::= [udp_initial_statement] table sequential_entry { sequential_entry }

endtable
udp_initial_statement ::= initial udp_output_port_identifier = init_val ;
init_val ::= 1Õb0 | 1Õb1 | 1Õbx | 1ÕbX | 1ÕB0 | 1ÕB1 | 1ÕBx | 1ÕBX | 1 | 0
sequential_entry ::= seq_input_list : current_state : next_state ;
seq_input_list ::= level_input_list | edge_input_list
level_input_list ::= level_symbol { level_symbol }
edge_input_list ::= { level_symbol } edge_indicator { level_symbol }
edge_indicator ::= (level_symbol level_symbol) | edge_symbol
current_state ::= level_symbol
next_state ::= output_symbol | -
output_symbol ::= 0 | 1 | x | X
level_symbol ::= 0 | 1 | x | X | ? | b | B

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 8 89

NOTE

Ñ

Implementations may limit the maximum number of inputs to a UDP, but they shall allow at least 9 inputs for sequential
UDPs and 10 inputs for combinational UDPs.

8.1.3 Sequential UDP initial statement

The sequential UDP initial statement speciÞes the value of the output port when simulation begins. This statement
begins with the keyword

initial

. The statement that follows shall be an assignment statement that assigns a single-bit
literal value to the output port.

8.1.4 UDP state table

The state table deÞnes the behavior of a UDP. It begins with the keyword

table

 and is terminated with the keyword

endtable

. Each row of the table is terminated by a semicolon.

Each row of the table is created using a variety of characters (see Table 8-1), which indicate input values and output
state. Three statesÑ

0

,

1

, and

x

Ñare supported. The

z

 state is explicitly excluded from consideration in user-deÞned
primitives. A number of special characters are deÞned to represent certain combinations of state possibilities. These
are described in Table 8-1.

The order of the input state Þelds of each row of the state table is taken directly from the port list in the UDP deÞni-
tion header. It is not related to the order of the input port declarations.

Combinational UDPs have one Þeld per input and one Þeld for the output. The input Þelds are separated from the out-
put Þeld by a colon (:). Each row deÞnes the output for a particular combination of the input values (see 8.2).

Sequential UDPs have an additional Þeld inserted between the input Þelds and the output Þeld. This additional Þeld
represents the current state of the UDP and is considered equivalent to the current output value. It is delimited by
colons. Each row deÞnes the output based on the current state, particular combinations of input values, and at most
one input transition (see 8.4). A row such as the one shown below is illegal:

(01) (10) 0 : 0 : 1 ;

If all input values are speciÞed as

x

, then the output state shall be speciÞed as

x

.

It is not necessary to explicitly specify every possible input combination. All combinations of input values that are not
explicitly speciÞed result in a default output state of

x

.

It is illegal to have the same combination of inputs, including edges, speciÞed for different outputs.

8.1.5 Z values in UDP

The

z

 value in a table entry is not supported, and it is considered illegal. The z values passed to UDP inputs shall be
treated the same as

x

 values.

8.1.6 Summary of symbols

To improve the readability and to ease writing of the state table, several special symbols are provided. Table 8-1 sum-
marizes the meaning of all the value symbols that are valid in the table part of a UDP deÞnition.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

90 Section 8

8.2 Combinational UDPs

In combinational UDPs, the output state is determined solely as a function of the current input states. Whenever an
input state changes, the UDP is evaluated and the output state is set to the value indicated by the row in the state table
that matches all the input states. All combinations of the inputs that are not explicitly speciÞed will drive the output
state to the unknown value

x

.

Examples:

The following example deÞnes a multiplexer with two data inputs and a control input.

Table 8-1ÑUDP table symbols

Symbol Interpretation Comments

0 Logic 0

1 Logic 1

x Unknown Permitted in the input Þelds of all
UDPs and in the current state Þeld
of sequential UDPs. Not permitted
in the output Þeld.

? Iteration of 0, 1, and x Not permitted in output Þeld.

b Iteration of 0 and 1 Permitted in the input Þelds of all
UDPs and in the current state Þeld
of sequential UDPs. Not permitted
in the output Þeld.

- No change Permitted only in the output Þeld of
a sequential UDP.

(vw) Value change from v to w v and w can be any one of 0,
1, x, ?, or b, and are only permitted
in the input field.

* Same as (??) Any value change on input.

r Same as (01) Rising edge on input.

f Same as (10) Falling edge on input.

p Iteration of (01), (0 x) and (x1) Potential positive edge on the input.

n Iteration of (10), (1x)and (x0 Potential negative edge on the input.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 8 91

The Þrst entry in this example can be explained as follows: when

control

 equals

0

, and

dataA

 equals

1

, and
dataB equals 0, then output mux equals 1.

The input combination 0xx (control=0, dataA=x, dataB=x) is not speciÞed. If this combination occurs
during simulation, the value of output port mux will become x.

Using ?, the description of a multiplexer can be abbreviated as

8.3 Level-sensitive sequential UDPs

Level-sensitive sequential behavior is represented the same way as combinational behavior, except that the output is
declared to be of type reg, and there is an additional Þeld in each table entry. This new Þeld represents the current
state of the UDP. The output Þeld in a sequential UDP represents the next state.

Example:

primitive multiplexer (mux, control, dataA, dataB);
output mux;
input control, dataA, dataB;
table
// control dataA dataB mux

0 1 0 : 1 ;
0 1 1 : 1 ;
0 1 x : 1 ;
0 0 0 : 0 ;
0 0 1 : 0 ;
0 0 x : 0 ;
1 0 1 : 1 ;
1 1 1 : 1 ;
1 x 1 : 1 ;
1 0 0 : 0 ;
1 1 0 : 0 ;
1 x 0 : 0 ;
x 0 0 : 0 ;
x 1 1 : 1 ;

endtable
endprimitive

primitive multiplexer (mux, control, dataA, dataB);
output mux;
input control, dataA, dataB;
table
// control dataA dataB mux

0 1 ? : 1 ; // ? = 0 1 x
0 0 ? : 0 ;
1 ? 1 : 1 ;
1 ? 0 : 0 ;
x 0 0 : 0 ;
x 1 1 : 1 ;

endtable
endprimitive

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

92 Section 8

Consider the example of a latch:

This description differs from a combinational UDP model in two ways. First, the output identiÞer q has an additional
reg declaration to indicate that there is an internal state q. The output value of the UDP is always the same as the
internal state. Second, a Þeld for the current state, which is separated by colons from the inputs and the output, has
been added.

8.4 Edge-sensitive sequential UDPs

In level-sensitive behavior, the values of the inputs and the current state are sufÞcient to determine the output value.
Edge-sensitive behavior differs in that changes in the output are triggered by speciÞc transitions of the inputs. This
makes the state table a transition table.

Each table entry can have a transition speciÞcation on at most one input. A transition is speciÞed by a pair of values in
parenthesis such as (01) or a transition symbol such as r. Entries such as the following are illegal:

(01)(01)0 : 0 : 1 ;

All transitions that do not affect the output shall be explicitly speciÞed. Otherwise, such transitions cause the value of
the output to change to x. All unspeciÞed transitions default to the output value x.

If the behavior of the UDP is sensitive to edges of any input, the desired output state shall be speciÞed for all edges of
all inputs.

Example:

The following example describes a rising edge D ßip-ßop:

primitive latch (q, clock, data);
output q; reg q;
input clock, data;
table
// clock data q q+

0 1 : ? : 1 ;
0 0 : ? : 0 ;
1 ? : ? : - ; // - = no change

endtable
endprimitive

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 8 93

The terms such as (01) represent transitions of the input values. SpeciÞcally, (01) represents a transition from 0 to
1. The Þrst line in the table of the preceding UDP deÞnition is interpreted as follows: when clock changes value from
0 to 1, and data equals 0, the output goes to 0 no matter what the current state

The transition of clock from 0 to x with data equal to 0 and current state equal to 1 will result in the output q going to
x.

8.5 Sequential UDP initialization

The initial value on the output port of a sequential UDP can be speciÞed with an initial statement that provides a pro-
cedural assignment. The initial statement is optional.

Like initial statements in modules, the initial statement in UDPs begin with the keyword initial. The valid contents of
initial statements in UDPs and the valid left-hand and right-hand sides of their procedural assignment statements dif-
fer from initial statements in modules. A partial list of differences between these two types of initial statements is
described in Table 8-2.

Examples:

Example 1ÑThe following example shows a sequential UDP that contains an initial statement.

Table 8-2ÑInitial statements in UDPs and modules

Initial statements in UDPs Initial statements in modules

Contents limited to one procedural assignment
statement

Contents can be one procedural statement of
any type or a block statement that contains
more than one procedural statement

The procedural assignment statement shall
assign a value to a reg whose identiÞer
matches the identiÞer of an output terminal

Procedural assignment statements in initial
statements can assign values to a reg whose
identiÞer does not match the identiÞer of an
output terminal

The procedural assignment statement shall
assign one of the following values: 1Õb1, 1Õb0,
1Õbx, 1, 0

Procedural assignment statements can assign
values of any size, radix, and value

primitive d_edge_ff (q, clock, data);
output q; reg q;
input clock, data;
table
// clock data q q+

// obtain output on rising edge of clock
(01) 0 : ? : 0 ;
(01) 1 : ? : 1 ;
(0?) 1 : 1 : 1 ;
(0?) 0 : 0 : 0 ;
// ignore negative edge of clock
(?0) ? : ? : - ;
// ignore data changes on steady clock
 ? (??) : ? : - ;

endtable
endprimitive

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

94 Section 8

The output q has an initial value of 1 at the start of the simulation; a delay speciÞcation on an instantiated UDP does
not delay the simulation time of the assignment of this initial value to the output. When simulation starts, this value is
the current state in the state table. Delays are not permitted in a UDP initial statement.

Example 2ÑThe following example and Þgure show how values are applied in a module that instantiates a sequential
UDP with an initial statement.

The UDP dff1 contains an initial statement that sets the initial value of its output to 1. The module dff contains an
instance of UDP dff1.

Figure 8-1 shows the schematic of the preceding module and the simulation propagation times of the initial value of
the UDP output.

primitive srff (q, s, r);
output q; reg q;
input s, r;
initial q = 1Õb1;
table
// s r q q+
 1 0 : ? : 1 ;
 f 0 : 1 : - ;
 0 r : ? : 0 ;
 0 f : 0 : - ;
 1 1 : ? : 0 ;
endtable
endprimitive

primitive dff1 (q, clk, d);
input clk, d;
output q; reg q;
initial q = 1Õb1;
table
// clk d q q+

 r 0 : ? : 0 ;
 r 1 : ? : 1 ;
 f ? : ? : - ;
 ? * : ? : - ;

endtable
endprimitive

module dff (q, qb, clk, d);
input clk, d;
output q, qb;

dff1 g1 (qi, clk, d);
buf #3 g2 (q, qi);
not #5 g3 (qb, qi);

endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 8 95

Figure 8-1ÑModule schematic and simulation times of initial value propagation

In Figure 8-1, the fanout from the UDP output qi includes nets q and qb. At simulation time 0, qi changes value to
1. That initial value of qi does not propagate to net q until simulation time 3, and it does not propagate to net qb until
simulation time 5.

8.6 UDP instances

The syntax for creating a UDP instance is shown in Syntax 8-2.

Syntax 8-2ÑSyntax for UDP instances

Instances of user-deÞned primitives are speciÞed inside modules in the same manner as gates (see 7.1). The instance
name is optional, just as for gates. The port connection order is as speciÞed in the UDP deÞnition. Only two delays
can be speciÞed because z is not supported for UDPs. An optional range may be speciÞed for an array of UDP
instances. The port connection rules remain the same as outlined in 7.1.

Example:

qi
UDP dff1 g1

buf g2

not g3

d

clk

q

qb

module dff

#3

#5

0

1

0

1

0

1

0 3 5

qi

q

qb

simulation time

udp_instantiation ::= udp_identifier [drive_strength] [delay2] udp_instance { ,
udp_instance } ;

udp_instance ::= [name_of_udp_instance] (output_port_connection ,
input_port_connection

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

96 Section 8

The following example creates an instance of the D-type ßip-ßop d_edge_ff (deÞned in 8.4).

8.7 Mixing level-sensitive and edge-sensitive descriptions

UDP deÞnitions allow a mixing of the level-sensitive and the edge-sensitive constructs in the same table. When the
input changes, the edge-sensitive cases are processed Þrst, followed by level-sensitive cases. Thus, when level-sensi-
tive and edge-sensitive cases specify different output values, the result is speciÞed by the level-sensitive case.

Example:

In this example, the preset and clear logic is level-sensitive. Whenever the preset and clear combination is 01, the out-
put has value 1. Similarly, whenever the preset and clear combination has value 10, the output has value 0.

module flip;
reg clock, data;
parameter p1 = 10;
parameter p2 = 33;
parameter p3 = 12;

d_edge_ff #p3 d_inst (q, clock, data);

initial begin
data = 1;
clock = 1;
#(20 * p1) $finish;

end
always #p1 clock = ~clock;
always #p2 data = ~data;
endmodule

primitive jk_edge_ff (q, clock, j, k, preset, clear);
output q; reg q;
input clock, j, k, preset, clear;
table
// clock jk pc state output/next state

 ? ?? 01 : ? : 1 ; // preset logic
 ? ?? *1 : 1 : 1 ;
 ? ?? 10 : ? : 0 ; // clear logic
 ? ?? 1* : 0 : 0 ;
 r 00 00 : 0 : 1 ; // normal clocking cases
 r 00 11 : ? : - ;
 r 01 11 : ? : 0 ;
 r 10 11 : ? : 1 ;
 r 11 11 : 0 : 1 ;
 r 11 11 : 1 : 0 ;
 f ?? ?? : ? : - ;
 b *? ?? : ? : - ; // j and k transition cases
 b ?* ?? : ? : - ;

endtable
endprimitive

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 8 97

The remaining logic is sensitive to edges of the clock. In the normal clocking cases, the ßip-ßop is sensitive to the ris-
ing clock edge, as indicated by an r in the clock Þeld in those entries. The insensitivity to the falling edge of clock is
indicated by a hyphen (-) in the output Þeld (see Table 8-1) for the entry with an f as the value of clock. Remember
that the desired output for this input transition shall be speciÞed to avoid unwanted x values at the output. The last
two entries show that the transitions in j and k inputs do not change the output on a steady low or high clock.

8.8 Level-sensitive dominance

Table 8-3 shows level-sensitive and edge-sensitive entries in the example from 8.7, their level-sensitive or edge-sensi-
tive behavior, and a case of input values that each includes.

The included cases specify opposite next state values for the same input and current state combination. The level-sen-
sitive included case speciÞes that when the inputs clock, jk, and pc values are 0, 00, and 01 and the current state
is 0, the output changes to 1. The edge-sensitive included case speciÞes that when clock falls from 1 to 0, the other
inputs jk and pc are 00 and 01, and the current state is 0, then the output changes to 0.

When the edge-sensitive case is processed Þrst, followed by the level-sensitive case, the output changes to 1.

Table 8-3ÑMixing of level-sensitive and edge-sensitive entries

Entry Included case Behavior

? ?? 01: ?: 1; 0 00 01: 0: 1; Level-sensitive

f ?? ??: ?: -; f 00 01: 0: 0; Edge-sensitive

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

98 Section 9

Section 9

Behavioral modeling

The language constructs introduced so far allow hardware to be described at a relatively detailed level. Modeling a
circuit with logic gates and continuous assignments reßects quite closely the logic structure of the circuit being mod-
eled; however, these constructs do not provide the power of abstraction necessary for describing complex high-level
aspects of a system. The procedural constructs described in this section are well suited to tackling problems such as
describing a microprocessor or implementing complex timing checks.

This section starts with a brief overview of a behavioral model to provide a context for many types of behavioral
statements in the Verilog HDL.

9.1 Behavioral model overview

Verilog

behavioral models

 contain

procedural statements

 that control the simulation and manipulate variables of the
data types previously described. These statements are contained within procedures. Each procedure has an activity
ßow associated with it.

The activity starts at the control constructs

initial

 and

always

. Each

initial

 construct and each

always

 construct starts
a separate activity ßow. All of the activity ßows are concurrent to model the inherent concurrence of hardware. These
constructs are formally described in 9.9.

The following example shows a complete Verilog behavioral model.

During simulation of this model, all of the ßows deÞned by the initial and always constructs start together at simula-
tion time zero. The initial constructs execute once, and the always constructs execute repetitively.

In this model, the register variables

a

 and

b

 initialize to 1 and 0 respectively at simulation time zero. The initial con-
struct is then complete and does not execute again during this simulation run. This initial construct contains a

begin-
end block

 (also called a

sequential block

) of statements. In this begin-end block

a

 is initialized Þrst, followed by

b

.

module behave;
reg [1:0] a, b;

initial begin
a = Õb1;
b = Õb0;

end
always begin

#50 a = ~a;
end
always begin

#100 b = ~b;
end

endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 9 99

The always constructs also start at time zero, but the values of the variables do not change until the times speciÞed by
the delay controls (introduced by

#

) have elapsed. Thus, register

a

 inverts after 50 time units and register

b

 inverts
after 100 time units. Since the always constructs repeat, this model will produce two square waves. The register

a

 tog-
gles with a period of 100 time units, and register

b

 toggles with a period of 200 time units. The two always constructs
proceed concurrently throughout the entire simulation run.

9.2 Procedural assignments

As described in Section 6, procedural assignments are used for updating

reg

,

integer

,

time

,

real

,

realtime

, and mem-
ory data types. There is a signiÞcant difference between procedural assignments and continuous assignments:

Ñ

Continuous assignments

 drive nets and are evaluated and updated whenever an input operand changes value.

Ñ

Procedural assignments

 update the value of registers under the control of the procedural ßow constructs that
surround them.

The right-hand side of a procedural assignment can be any expression that evaluates to a value. The left-hand side
shall be a register that receives the assignment from the right-hand side. The left-hand side of a procedural assignment
can take one of the following forms:

Ñ

reg, integer, real, realtime,

or

 time

 register data type:

an assignment to the name reference of one of these
data types.

Ñ Bit-select of a

 reg, integer,

or

 time

register data type: an assignment to a single bit that leaves the other bits
untouched.

Ñ Part-select of a

reg, integer,

or

 time

register data type: a part-select of one or more contiguous bits that leaves
the rest of the bits untouched. Only

constant

 expressions shall be legal for specifying the part-select index.

Ñ Memory word: a single word of a memory.

Ñ Concatenation of any of the above: a concatenation of any of the previous four forms can be speciÞed, which
effectively partitions the result of the right-hand side expression and assigns the partition parts, in order, to the
various parts of the concatenation.

NOTEÑAssignment to a

reg

 data type differs from assignment to a

real

,

realtime

,

time

, or

integer

 variable when the right-hand
side evaluates to fewer bits than the left-hand side. Assignment to a

reg

 shall not sign-extend.

The Verilog HDL contains two types of procedural assignment statements:

Ñ Blocking procedural assignment statements

Ñ Nonblocking procedural assignment statements

Blocking and nonblocking procedural assignment statements specify different procedural ßows in sequential blocks.

9.2.1 Blocking procedural assignments

A

blocking procedural assignment

 statement shall be executed before the execution of the statements that follow it in
a sequential block (see 9.8.1). A blocking procedural assignment statement shall not prevent the execution of state-
ments that follow it in a parallel block (see 9.8.2).

The syntax for a blocking procedural assignment is given in Syntax 9-1.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

100 Section 9

Syntax 9-1ÑSyntax for blocking assignments

In this syntax, reg_lvalue is a data type that is valid for a procedural assignment statement,

=

 is the assignment opera-
tor, and delay_or_event_control is the optional intra-assignment timing control. The control can be either a delay con-
trol (e.g.,

#6

) or an event_control (e.g.,

@(

posedge

clk)

). The expression is the right-hand side value that shall be
assigned to the left-hand side. If reg_lvalue requires an evaluation, it shall be evaluated at the time speciÞed by the
intra-assignment timing control.

The

=

 assignment operator used by blocking procedural assignments is also used by procedural continuous assign-
ments and continuous assignments.

Example:

The following examples show blocking procedural assignments.

9.2.2 The nonblocking procedural assignment

The

nonblocking procedural assignment

 allows assignment scheduling without blocking the procedural ßow. The
nonblocking procedural assignment statement can be used whenever several register assignments within the same
time step can be made without regard to order or dependance upon each other.

blocking assignment ::=
reg_lvalue = [delay_or_event_control] expression

delay_or_event_control ::=
 delay_control
| event_control
| repeat (expression) event_control

reg_lvalue ::=
 reg_identifier
| reg_identifier [expression]
| reg_identifier [msb_constant_expression : lsb_constant_expression]
| reg_concatenation

delay_control ::=
 # delay_value
| # (mintypmax_expression)

event_control ::=
 @ event_identifier
| @ (event_expression)

event_expression ::=
 expression
| event_identifier
| posedge expression
| negedge expression
| event_expression or event_expression

rega = 0;
rega[3] = 1; // a bit-select
rega[3:5] = 7; // a part-select
mema[address] = 8Õhff; // assignment to a mem element
{carry, acc} = rega + regb; // a concatenation

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 9 101

The syntax for a nonblocking procedural assignment is given in Syntax 9-2.

Syntax 9-2ÑSyntax for nonblocking assignments

In this syntax, reg_lvalue is a data type that is valid for a procedural assignment statement,

<=

 is the nonblocking
assignment operator, and delay_or_event_control is the optional intra-assignment timing control. If reg_lvalue
requires an evaluation, it shall be evaluated at the same time as the expression on the right-hand side. The order of
evaluation of the reg_lvalue and the expression on the right-hand side is undeÞned if timing control is not speciÞed.

The nonblocking assignment operator is the same operator as the less-than-or-equal-to relational operator. The inter-
pretation shall be decided from the context in which

<=

 appears. When

<= is used in an expression, it shall be inter-
preted as a relational operator, and when it is used in a nonblocking procedural assignment, it shall be interpreted as
an assignment operator.

The nonblocking procedural assignments shall be evaluated in two steps as discussed in Section 5. These two steps
are shown in the following example.

Example 1:

At the end of the time step means that the nonblocking assignments are the last assignments executed in a time stepÑ
with one exception. Nonblocking assignment events can create blocking assignment events. These blocking assign-
ment events shall be processed after the scheduled nonblocking events.

Unlike an event or delay control for blocking assignments, the nonblocking assignment does not block the procedural
ßow. The nonblocking assignment evaluates and schedules the assignment, but it does not block the execution of sub-
sequent statements in a begin-end block.

non-blocking assignment ::=
reg_lvalue <= [delay_or_event_control] expression

module evaluates2 (out);
output out;
reg a, b, c;

initial begin
a = 0;
b = 1;
c = 0;

end

always c = #5 ~c;

always @(posedge c) begin
a <= b; // evaluates, schedules,
b <= a; // and executes in two steps

end
endmodule

The simulator evaluates the
right-hand side of the non-
blocking assignments and
schedules the assignments of
the new values at posedge c.

Step 1:

a = 0

b = 1Step 2:
At posedge c, the simulator
updates the left-hand side of
each nonblocking assignment
statement.

Nonblocking
assignment
schedules
changes at
time 5

a = 1

b = 0

Assignment
values are:

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

102 Section 9

Example 2:

As shown in the previous example, the simulator evaluates and schedules assignments for the end of the current time
step and can perform swapping operations with the nonblocking procedural assignments.

Example 3:

When multiple nonblocking assignments are scheduled to occur in the same register in a particular time slot, the order
in which the assignments are evaluated is not guaranteedÑthe Þnal value of the register is indeterminate. As shown in
the following example, the value of register a is not known until the end of time step 4.

//non_block1.v
module non_block1;
reg a, b, c, d, e, f;

//blocking assignments
initial begin

a = #10 1; // a will be assigned 1 at time 10
b = #2 0; // b will be assigned 0 at time 12
c = #4 1; // c will be assigned 1 at time 16

end
//non-blocking assignments
initial begin

d <= #10 1; // d will be assigned 1 at time 10
e <= #2 0; // e will be assigned 0 at time 2
f <= #4 1; // f will be assigned 1 at time 4

end
endmodule

scheduled
changes at

time 2

e = 0

f = 1

d = 1

scheduled
changes at

time 4

scheduled
changes at

time 10

//non_block1.v
module non_block1;
reg a, b;
initial begin

a = 0;
b = 1;
a <= b; // evaluates, schedules, and
b <= a; // executes in two steps

end
initial begin

$monitor ($time, ,"a = %b b = %b", a, b);
#100 $finish;

end
endmodule

The simulator evaluates the right-
hand side of the nonblocking
assignments and schedules the
assignments for the end of the cur-
rent time step.

Step 1:

Step 2:

At the end of the current time step,
the simulator updates the left-hand
side of each nonblocking assign-
ment statement.

a = 1

b = 0

assignment values are:

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 9 103

Example 4:

If the simulator executes two procedural blocks concurrently, and if these procedural blocks contain nonblocking
assignment operators to the same register, the Þnal value of that register is indeterminate. For example, the value of
register a is indeterminate in the following example.

Example 5:

When multiple nonblocking assignments with timing controls are made to the same register, the assignments are
made without cancelling nonblocking assignments scheduled at other times. Scheduling an assignment to a register at
the same time as a previously scheduled assignment to the same register shall result in an arbitrary order of assign-
ment to that register, and, hence, the Þnal value of that register cannot be predicted.

The following example shows how the value of i[0] is assigned to r1 and how the assignments are scheduled to
occur after each time delay.

module multiple2 (out);
output out;
reg a;

initial a = 1;
// The assigned value of the register is indeterminate
initial begin

a <= #4 0; // schedules a = 0 at time 4
a <= #4 1; // schedules a = 1 at time 4

end // At time 4, a = ??
endmodule

module multiple3 ;
reg a;

initial a = 1;
initial a <= #4 0; // schedules 0 at time 4
initial a <= #4 1; // schedules 1 at time 4

// At time 4, a = ??
endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

104 Section 9

Example 6:

9.3 Procedural continuous assignments

The procedural continuous assignments (using keywords assign and force) are procedural statements that allow
expressions to be driven continuously onto registers or nets. The syntax for these statements is given in Syntax 9-3.

Syntax 9-3ÑSyntax for procedural continuous assignments

The left-hand side of the assignment in the assign statement shall be a register reference or a concatenation of regis-
ters. It shall not be a memory word (array reference) or a bit-select or a part-select of a register.

In contrast, the left-hand side of the assignment in the force statement can be a register reference or a net reference. It
can be a concatenation of any of the above. Bit-selects and part-selects of vector registers or vector nets are not
allowed.

9.3.1 The assign and deassign procedural statements

The assign procedural continuous assignment statement shall override all procedural assignments to a register. The
deassign procedural statement shall end a procedural continuous assignment to a register. The value of the register
shall remain the same until the register is assigned a new value through a procedural assignment or a procedural con-
tinuous assignment. The assign and deassign procedural statements allow, for example, modeling of asynchronous

module multiple;
reg r1;
reg [2:0] i;

initial begin
// starts at time 0, does not hold the block

r1 = 0;
// makes assignments to r1 without cancelling previous assignments

for (i = 0; i <= 5; i = i+1)
r1 <= # (i*10) i[0];

end
endmodule

r1
10 20 30 40 500

procedural_continuous_assignments ::=
 assign reg_assignment ;
| deassign reg_lvalue ;
| force reg_assignment ;
| force net_assignment ;
| release reg_lvalue ;
| release net_lvalue ;

reg_assignment ::=
reg_lvalue = expression

net_assignment ::=
net_lvalue = expression

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 9 105

clear/preset on a D-type edge-triggered ßip-ßop, where the clock is inhibited when the clear or preset is active.

If the keyword assign is applied to a register for which there is already a procedural continuous assignment, then this
new procedural continuous assignment shall deassign the register before making the new procedural continuous
assignment.

Example:

The following example shows a use of the assign and deassign procedural statements in a behavioral description of a
D-type ßip-ßop with preset and clear inputs.

If either clear or preset is low, then the output q will be held continuously to the appropriate constant value and
a positive edge on the clock will not affect q. When both the clear and preset are high, then q is deassigned.

9.3.2 The force and release procedural statements

Another form of procedural continuous assignment is provided by the force and release procedural statements. These
statements have a similar effect to the assign-deassign pair, but a force can be applied to nets as well as to registers.
The left-hand side of the assignment can be a register, a net, a constant bit-select of a vector net, a part-select of a vec-
tor net, or a concatenation. It cannot be a memory word (array reference) or a bit-select or a part-select of a vector
register.

A force statement to a register shall override a procedural assignment or procedural continuous assignment that takes
place on the register until a release procedural statement is executed on the register. After the release procedural state-
ment is executed, the register shall not immediately change value (as would a net that is forced). The value speciÞed
in the force statement shall be maintained in the register until the next procedural assignment takes place, except in
the case where a procedural continuous assignment is active on the register.

A force procedural statement on a net overrides all drivers of the netÑgate outputs, module outputs, and continuous
assignmentsÑuntil a release procedural statement is executed on the net.

Releasing a register that currently has an active procedural continuous assignment shall re-establish that assignment.

module dff (q, d, clear, preset, clock);
output q;
input d, clear, preset, clock;
reg q;

always @(clear or preset)
if (!clear)

assign q = 0;
else if (!preset)

assign q = 1;
else

deassign q;

always @(posedge clock)
q = d;

endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

106 Section 9

Example:

In this example, an and gate instance and1 is ÒpatchedÓ as an or gate by a force procedural statement that forces its
output to the value of its logical or inputs, and an assign procedural statement of logical and values is ÒpatchedÓ as an
assign procedural statement of logical or values.

The right-hand side of a procedural continuous assignment or a force statement can be an expression. This shall be
treated just as a continuous assignment; that is, if any variable on the right-hand side of the assignment changes, the
assignment shall be re-evaluated while the assign or force is in effect. For example:

force a = b + f(c) ;

Here, if b changes or c changes, a will be forced to the new value of the expression b+f(c).

9.4 Conditional statement

The conditional statement (or if-else statement) is used to make a decision as to whether a statement is executed or
not. Formally, the syntax is given in Syntax 9-4.

Syntax 9-4ÑSyntax of if statement

module test;
reg a, b, c, d;
wire e;

and and1 (e, a, b, c);

initial begin
$monitor("%d d=%b,e=%b", $stime, d, e);
assign d = a & b & c;
a = 1;
b = 0;
c = 1;
#10;
force d = (a | b | c);
force e = (a | b | c);
#10 $stop;
release d;
release e;
#10 $finish;

end
endmodule

Results:
 0 d=0,e=0
10 d=1,e=1
20 d=0,e=0

conditional_statement ::=
 if (expression) statement_or_null [else statement_or_null]

statement_or_null ::= statement | ;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 9 107

If the expression evaluates to true (that is, has a nonzero known value), the Þrst statement shall be executed. If it eval-
uates to false (has a zero value or the value is x or z), the Þrst statement shall not execute. If there is an else statement
and expression is false, the else statement shall be executed.

Since the numeric value of the if expression is tested for being zero, certain shortcuts are possible. For example, the
following two statements express the same logic:

if (expression)
if (expression != 0)

Because the else part of an if-else is optional, there can be confusion when an else is omitted from a nested if
sequence. This is resolved by always associating the else with the closest previous if that lacks an else. In the example
below, the else goes with the inner if, as shown by indentation.

If that association is not desired, a begin-end block statement shall be used to force the proper association, as shown
below.

9.4.1 If-else-if construct

The following construction occurs so often that it is worth a brief separate discussion:

Syntax 9-5ÑSyntax of if-else-if construct

This sequence of if statements (known as an if-else-if construct) is the most general way of writing a multiway deci-
sion. The expressions shall be evaluated in order; if any expression is true, the statement associated with it shall be
executed, and this shall terminate the whole chain. Each statement is either a single statement or a block of state-
ments.

The last else part of the if-else-if construct handles the none-of-the-above or default case where none of the other con-
ditions were satisÞed. Sometimes there is no explicit action for the default; in that case, the trailing else statement can
be omitted or it can be used for error checking to catch an impossible condition.

if (index > 0)
if (rega > regb)

result = rega;
else // else applies to preceding if

result = regb;

if (index > 0) begin
if (rega > regb)

result = rega;
end
else result = regb;

if_else_if_statement ::=
if (expression) statement_or_null
{ else if (expression) statement_or_null }
else statement

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

108 Section 9

Example:

The following module fragment uses the if-else statement to test the variable index to decide whether one of three
modify_segn registers has to be added to the memory address, and which increment is to be added to the index
register. The Þrst ten lines declare the registers and parameters.

9.5 Case statement

The case statement is a multiway decision statement that tests whether an expression matches one of a number of
other expressions and branches accordingly. The case statement has the syntax shown in Syntax 9-6.

Syntax 9-6ÑSyntax for case statement

The default statement shall be optional. Use of multiple default statements in one case statement shall be illegal.

// declare registers and parameters
reg [31:0] instruction, segment_area[255:0];
reg [7:0] index;
reg [5:0] modify_seg1,

modify_seg2,
modify_seg3;

parameter
segment1 = 0, inc_seg1 = 1,
segment2 = 20, inc_seg2 = 2,
segment3 = 64, inc_seg3 = 4,
data = 128;

// test the index variable
if (index < segment2) begin

instruction = segment_area [index + modify_seg1];
index = index + inc_seg1;

end
else if (index < segment3) begin

instruction = segment_area [index + modify_seg2];
index = index + inc_seg2;

end
else if (index < data) begin

instruction = segment_area [index + modify_seg3];
index = index + inc_seg3;

end
else

instruction = segment_area [index];

case_statement ::=
| case (expression) case_item { case_item } endcase
| casez (expression) case_item { case_item } endcase
| casex (expression) case_item { case_item } endcase

case_item ::=
 expression { , expression } : statement_or_null
| default [:] statement_or_null

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 9 109

The case expression and the case item expression can be computed at runtime; neither expression is required to be a
constant expression.

Examples:

A simple example of the use of the case statement is the decoding of register rega to produce a value for result as
follows:

The case item expressions shall be evaluated and compared in the exact order in which they are given. During the lin-
ear search, if one of the case item expressions matches the case expression given in parentheses, then the statement
associated with that case item shall be executed. If all comparisons fail and the default item is given, then the default
item statement shall be executed. If the default statement is not given and all of the comparisons fail, then none of the
case item statements shall be executed.

Apart from syntax, the case statement differs from the multiway if-else-if construct in two important ways:

a) The conditional expressions in the if-else-if construct are more general than comparing one expression with
several others, as in the case statement.

b) The case statement provides a deÞnitive result when there are x and z values in an expression.

In a case expression comparison, the comparison only succeeds when each bit matches exactly with respect to the val-
ues 0, 1, x, and z. As a consequence, care is needed in specifying the expressions in the case statement. The bit
length of all the expressions shall be equal so that exact bit-wise matching can be performed. The length of all the
case item expressions, as well as the case expression in the parentheses, shall be made equal to the length of the
longest case expression and case item expression.

NOTEÑThe default length of x and z is same as the default length of an integer.

The reason for providing a case expression comparison that handles the x and z values is that it provides a mecha-
nism for detecting such values and reducing the pessimism that can be generated by their presence.

Examples:

Example 1ÑThe following example illustrates the use of a case statement to handle x and z values properly.

reg [15:0] rega;
reg [9:0] result;

case (rega)
 16Õd0: result = 10Õb0111111111;
 16Õd1: result = 10Õb1011111111;
 16Õd2: result = 10Õb1101111111;
 16Õd3: result = 10Õb1110111111;
 16Õd4: result = 10Õb1111011111;
 16Õd5: result = 10Õb1111101111;
 16Õd6: result = 10Õb1111110111;
 16Õd7: result = 10Õb1111111011;
 16Õd8: result = 10Õb1111111101;
 16Õd9: result = 10Õb1111111110;
 default result = Õbx;
endcase

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

110 Section 9

In this example, if select[1] is 0 and flaga is 0, then whether the value of select[2] is x or z, result
should be 0Ñwhich is resolved by the third case.

Example 2ÑThe following example shows another way to use a case statement to detect x and z values.

9.5.1 Case statement with donÕt-cares

Two other types of case statements are provided to allow handling of donÕt-care conditions in the case comparisons.
One of these treats high-impedance values (z) as donÕt-cares, and the other treats both high-impedance and unknown
(x) values as donÕt-cares.

These case statements can be used in the same way as the traditional case statement, but they begin with keywords
casez and casex respectively.

DonÕt-care values (z values for casez, z and x values for casex) in any bit of either the case expression or the case
items shall be treated as donÕt-care conditions during the comparison, and that bit position shall not be considered.
The donÕt-care conditions in case expression can be used to control dynamically which bits should be compared at
any time.

The syntax of literal numbers allows the use of the question mark (?) in place of z in these case statements. This
provides a convenient format for speciÞcation of donÕt-care bits in case statements.

Examples:

Example 1ÑThe following is an example of the casez statement. It demonstrates an instruction decode, where values
of the most signiÞcant bits select which task should be called. If the most signiÞcant bit of ir is a 1, then the task
instruction1 is called, regardless of the values of the other bits of ir.

case (select[1:2])
2Õb00: result = 0;
2Õb01: result = flaga;
2Õb0x,
2Õb0z: result = flaga ? Õbx : 0;
2Õb10: result = flagb;
2Õbx0,
2Õbz0: result = flagb ? Õbx : 0;
default result = Õbx;

endcase

case (sig)
1Õbz: $display("signal is floating");
1Õbx: $display("signal is unknown");
default: $display("signal is %b", sig);

endcase

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 9 111

Example 2ÑThe following is an example of the casex statement. It demonstrates an extreme case of how donÕt-care
conditions can be dynamically controlled during simulation. In this case, if r = 8«b01100110, then the task
stat2 is called.

9.5.2 Constant expression in case statement

A constant expression can be used for case expression. The value of the constant expression shall be compared
against case item expressions.

Example:

The following example demonstrates the usage by modeling a 3-bit priority encoder.

Note that the case expression is a constant expression (1). The case items are expressions (bit-selects) and are com-
pared against the constant expression for a match.

9.6 Looping statements

There are four types of looping statements. These statements provide a means of controlling the execution of a state-
ment zero, one, or more times.

reg [7:0] ir;

casez (ir)
8Õb1???????: instruction1(ir);
8Õb01??????: instruction2(ir);
8Õb00010???: instruction3(ir);
8Õb000001??: instruction4(ir);

endcase

reg [7:0] r, mask;

mask = 8Õbx0x0x0x0;
casex (r ^ mask)

8Õb001100xx: stat1;
8Õb1100xx00: stat2;
8Õb00xx0011: stat3;
8Õbxx010100: stat4;

endcase

reg [2:0] encode ;

case (1)
encode[2] : $display(ÒSelect Line 2Ó) ;
encode[1] : $display(ÒSelect Line 1Ó) ;
encode[0] : $display(ÒSelect Line 0Ó) ;
default $display(ÒError: One of the bits expected ONÓ);

endcase

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

112 Section 9

forever Continuously executes a statement.

repeat Executes a statement a Þxed number of times. If the expression evaluates to unknown or high
impedance, it shall be treated as zero, and no statement shall be executed.

while Executes a statement until an expression becomes false. If the expression starts out false, the
statement shall not be executed at all.

for Controls execution of its associated statement(s) by a three-step process, as follows:

a) Executes an assignment normally used to initialize a register that controls the number of loops
executed.

b) Evaluates an expressionÑif the result is zero, the for-loop shall exit, and if it is not zero, the
for-loop shall execute its associated statement(s) and then perform step c. If the expression
evaluates to an unknown or high-impedance value, it shall be treated as zero.

c) Executes an assignment normally used to modify the value of the loop-control register, then
repeats step b.

Syntax 9-7 shows the syntax for various looping statements.

Syntax 9-7ÑSyntax for the looping statements

The rest of this clause presents examples for three of the looping statements. The forever loop should only be used in
conjunction with the timing controls or the disable statement, therefore, this example is presented in 9.7.2.

Examples:

Example 1ÑRepeat statement: In the following example of a repeat loop, add and shift operators implement a
multiplier.

looping_statements ::=
 forever statement
| repeat (expression) statement
| while (expression) statement
| for (reg_assignment ; expression ; reg_assignment) statement

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 9 113

Example 2ÑWhile statement: The following example counts the number of logic 1 values in rega.

Example 3ÑFor statement: The for statement accomplishes the same results as the following pseudo-code that is
based on the while loop:

The for loop implements this logic while using only two lines, as shown in the pseudo-code below.

parameter size = 8, longsize = 16;
reg [size:1] opa, opb;
reg [longsize:1] result;

begin : mult
reg [longsize:1] shift_opa, shift_opb;
shift_opa = opa;
shift_opb = opb;
result = 0;
repeat (size) begin

if (shift_opb[1])
result = result + shift_opa;

shift_opa = shift_opa << 1;
shift_opb = shift_opb >> 1;

end
end

begin : count1s
reg [7:0] tempreg;
count = 0;
tempreg = rega;
while (tempreg) begin

if (tempreg[0])
count = count + 1;

tempreg = tempreg >> 1;
end

end

begin
initial_assignment;
while (condition) begin

statement
step_assignment;

end
end

for (initial_assignment; condition; step_assignment)
statement

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

114 Section 9

9.7 Procedural timing controls

The Verilog HDL has two types of explicit timing control over when procedural statements can occur. The Þrst type is
a delay control, in which an expression speciÞes the time duration between initially encountering the statement and
when the statement actually executes. The delay expression can be a dynamic function of the state of the circuit, but it
can be a simple number that separates statement executions in time. The delay control is an important feature when
specifying stimulus waveform descriptions. It is described in 9.7.1 and 9.7.6.

The second type of timing control is the event expression, which allows statement execution to be delayed until the
occurrence of some simulation event occurring in a procedure executing concurrently with this procedure. A simula-
tion event can be a change of value on a net or register (an implicit event) or the occurrence of an explicitly named
event that is triggered from other procedures (an explicit event). Most often, an event control is a positive or negative
edge on a clock signal. Event control is discussed in 9.7.2 through 9.7.6.

The procedural statements encountered so far all execute without advancing simulation time. Simulation time can
advance by one of the following three methods:

Ñ A delay control, which is introduced by the symbol #
Ñ An event control, which is introduced by the symbol @
Ñ The wait statement, which operates like a combination of the event control and the while loop

Syntax 9-8 describes timing control in procedural statements.

Syntax 9-8ÑSyntax for procedural timing control

The gate and net delays also advance simulation time, as discussed in Section 6. The next subclauses discuss the three
procedural timing control methods.

9.7.1 Delay control

A procedural statement following the delay control shall be delayed in its execution with respect to the procedural
statement preceding the delay control by the speciÞed delay. If the delay expression evaluates to an unknown or high-
impedance value, it shall be interpreted as zero delay. If the delay expression evaluates to a negative value, it shall be
interpreted as a 2Õs complement unsigned integer of the same size as a time variable.

procedural_timing_control_statement ::=
delay_or_event_control statement_or_null

delay_or_event_control ::=
 delay_control
| event_control

delay_control ::=
 # delay_value
| # (mintypmax_expression)

event_control ::=
 @ event_identifier
| @ (event_expression)

event_expression ::=
 expression
| event_identifier
| posedge expression
| negedge expression
| event_expression or event_expression

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 9 115

Examples:

Example 1ÑThe following example delays the execution of the assignment by 10 time units:

#10 rega = regb;

Example 2ÑThe next three examples provide an expression following the number sign (#). Execution of the assign-
ment is delayed by the amount of simulation time speciÞed by the value of the expression.

#d rega = regb; // d is defined as a parameter
#((d+e)/2) rega = regb;// delay is average of d and e
#regr regr = regr + 1; // delay is the value in regr

9.7.2 Event control

The execution of a procedural statement can be synchronized with a value change on a net or register or the occur-
rence of a declared event. The value changes on nets and registers can be used as events to trigger the execution of a
statement. This is known as detecting an implicit event. The event can also be based on the direction of the changeÑ
that is, towards the value 1 (posedge) or towards the value 0 (negedge). The behavior of posedge and negedge event
is shown in Table 9-1 and can be described as follows:

Ñ A negedge shall be detected on the transition from 1 to x, z, or 0, and from x or z to 0

Ñ A posedge shall be detected on the transition from 0 to x, z, or 1, and from x or z to 1

If the expression evaluates to more than a 1-bit result, the edge transition shall be detected on the least signiÞcant bit
of the result. The change of value in any of the operands without a change in the value of the least signiÞcant bit of the
expression result shall not be detected as an edge.

Example:

The following example shows illustrations of edge-controlled statements.

Table 9-1ÑDetecting posedge and negedge

To 0 1 x z

From

0 No edge posedge posedge posedge

1 negedge No edge negedge negedge

x negedge posedge No edge No edge

z negedge posedge No edge No edge

@r rega = regb; // controlled by any value change in the register r

@(posedge clock) rega = regb; // controlled by posedge on clock

forever @(negedge clock) rega = regb; // controlled by negative edge

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

116 Section 9

9.7.3 Named events

A new data type, in addition to net and register, called ÒeventÓ can be declared. An identiÞer declared as an event data
type is called a named event. A named event can be triggered explicitly. It can be used in an event expression to con-
trol the execution of procedural statements in the same manner as event control described in 9.7.1. Named events can
be made to occur from a procedure. This allows control over the enabling of multiple actions in other procedures.

An event name shall be declared explicitly before it is used. Syntax 9-9 gives the syntax for declaring events.

Syntax 9-9ÑSyntax for event declaration

An event shall not hold any data. The following are the characteristics of a named event:

Ñ It can be made to occur at any particular time
Ñ It has no time duration
Ñ Its occurrence can be recognized by using the event control syntax described in 9.7

A declared event is made to occur by the activation of an event triggering statement with the syntax given in Syntax 9-
10.

Syntax 9-10ÑSyntax for event trigger

An event-controlled statement (for example, @trig rega = regb;) shall cause simulation of its containing pro-
cedure to wait until some other procedure executes the appropriate event-triggering statement (for example,
-> trig).

Named events and event control give a powerful and efÞcient means of describing the communication between, and
synchronization of, two or more concurrently active processes. A basic example of this is a small waveform clock
generator that synchronizes control of a synchronous circuit by signalling the occurrence of an explicit event periodi-
cally while the circuit waits for the event to occur.

9.7.4 Event or operator

The logical or of any number of events can be expressed such that the occurrence of any one of the events triggers the
execution of the procedural statement that follows it. The keyword or is used as an event logical or operator.

Examples:

The next two examples show the logical or of two and three events respectively.

@(trig or enable) rega = regb; // controlled by trig or enable
@(posedge clk_a or posedge clk_b or trig) rega = regb;

event_declaration ::=
event event_identifier { , event_identifier } ;

event_trigger ::= -> event_identifier ;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 9 117

9.7.5 Level-sensitive event control

The execution of a procedural statement can also be delayed until a condition becomes true. This is accomplished
using the wait statement, which is a special form of event control. The nature of the wait statement is level-sensitive,
as opposed to basic event control (speciÞed by the @ character), which is edge-sensitive.

The wait statement shall evaluate a condition, and, if it is false, the procedural statements following the wait statement
shall remain blocked until that condition becomes true before continuing. The wait statement has the form given in
Syntax 9-11.

Syntax 9-11ÑSyntax for wait statement

Example:

The following example shows the use of the wait statement to accomplish level-sensitive event control.

If the value of enable is 1 when the block is entered, the wait statement will delay the evaluation of the next state-
ment (#10 a = b;) until the value of enable changes to 0. If enable is already 0 when the begin-end
block is entered, then the assignment Òa = b;Ó is evaluated after a delay of 10 and no additional delay occurs.

9.7.6 Intra-assignment timing controls

The delay and event control constructs previously described precede a statement and delay its execution. In contrast,
the intra-assignment delay and event controls are contained within an assignment statement and modify the ßow of
activity in a different way. This subclause describes the purpose of intra-assignment timing controls and the repeat
timing control that can be used in intra-assignment delays.

An intra-assignment delay or event control shall delay the assignment of the new value to the left-hand side, but the
right-hand side expression shall be evaluated before the delay, instead of after the delay. The syntax for intra-assign-
ment delay and event control is given in Syntax 9-12.

Syntax 9-12ÑSyntax for intra-assignment delay and event control

wait_statement ::=
wait (expression) statement_or_null

begin
wait (!enable) #10 a = b;
#10 c = d;

end

intra_assignment_timing_control_statement ::=
 reg_lvalue = [intra_assignment_timing_control] expression ;
| reg_lvalue <= [intra_assignment_timing_control] expression ;

intra_assignment_timing_control ::=
 delay_control
| event_control
| repeat_event_control

repeat_event_control ::=
 repeat (expression) @ (event_expression)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

118 Section 9

The intra-assignment delay and event control can be applied to both blocking assignments and nonblocking assign-
ments. The event expression shall be resolved to a 1-bit value. The repeat event control shall specify an intra-assign-
ment delay of a speciÞed number of occurrences of an event. This construct is convenient when events have to be
synchronized with counts of clock signals.

Examples:

Table 9-2 illustrates the philosophy of intra-assignment timing controls by showing the code that could accomplish
the same timing effect without using intra-assignment.

The next three examples use the fork-join behavioral construct. All statements between the keywords fork and join
execute concurrently. This construct is described in more detail in 9.8.2.

The following example shows a race condition that could be prevented by using intra-assignment timing control:

fork
#5 a = b;
#5 b = a;

join

The code in this example samples and sets the values of both a and b at the same simulation time, thereby creating a
race condition. The intra-assignment form of timing control used in the next example prevents this race condition.

fork // data swap
a = #5 b;
b = #5 a;

join

Intra-assignment timing control works because the intra-assignment delay causes the values of a and b to be evalu-
ated before the delay, and the assignments to be made after the delay. Some existing tools that implement intra-
assignment timing control use temporary storage in evaluating each expression on the right-hand side.

Intra-assignment waiting for events is also effective. In the following example, the right-hand side expressions are
evaluated when the assignment statements are encountered, but the assignments are delayed until the rising edge of
the clock signal.

Table 9-2ÑIntra-assignment timing control equivalence

Intra-assignment timing control

With intra-assignment construct Without intra-assignment construct

a = #5 b;
begin
temp = b;
#5 a = temp;
end

a = @(posedge clk) b;
begin
temp = b;
@(posedge clk) a = temp;
end

a = repeat(3)
 @(posedge clk) b;

begin
temp = b;
@(posedge clk);
@(posedge clk);
@(posedge clk) a = temp;
end

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 9 119

fork // data shift
a = @(posedge clk) b;
b = @(posedge clk) c;

join

The following is an example of a repeat event control as the intra-assignment delay of a nonblocking assignment:

a <= repeat(5) @(posedge clk) data;

Figure 9-1 illustrates the activities that result from this repeat event control.

Figure 9-1ÑRepeat event control utilizing a clock edge

In this example, the value of data is evaluated when the assignment is encountered. After Þve occurrences of
posedge clk, a is assigned the value of data.

The following is an example of a repeat event control as the intra-assignment delay of a procedural assignment:

a = repeat(num) @(clk) data;

In this example, the value of data is evaluated when the assignment is encountered. After the number of transitions
of clk equals the value of num, a is assigned the value of data.

The following is an example of a repeat event control with expressions containing operations to specify both the num-
ber of event occurrences and the event that is counted:

a <= repeat(a+b) @(posedge phi1 or negedge phi2) data;

In this example, the value of data is evaluated when the assignment is encountered. After the sum of the positive
edges of phi1 and the negative edges of phi2 equals the sum of a and b, a is assigned the value of data. Even if
posedge phi1 and negedge phi2 occurred at the same simulation time, each will be detected separately.

9.8 Block statements

The block statements are a means of grouping two or more statements together so that they act syntactically like a sin-
gle statement. There are two types of blocks in the Verilog HDL:

Ñ Sequential block, also called begin-end block

Ñ Parallel block, also called fork-join block

clk

data

a

data is evaluated

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

120 Section 9

The sequential block shall be delimited by the keywords begin and end. The procedural statements in sequential
block shall be executed sequentially in the given order.

The parallel block shall be delimited by the keywords fork and join. The procedural statements in parallel block shall
be executed concurrently.

9.8.1 Sequential blocks

A sequential block shall have the following characteristics:

Ñ Statements shall be executed in sequence, one after another
Ñ Delay values for each statement shall be treated relative to the simulation time of the execution of the previous

statement
Ñ Control shall pass out of the block after the last statement executes

Syntax 9-13 gives the formal syntax for a sequential block.

Syntax 9-13ÑSyntax for the sequential block

Examples:

Example 1ÑA sequential block enables the following two assignments to have a deterministic result:

The Þrst assignment is performed and areg is updated before control passes to the second assignment.

Example 2ÑDelay control can be used in a sequential block to separate the two assignments in time.

seq_block ::=
begin [: block_identifier { block_item_declaration }] { statement } end

block_item_declaration ::=
 parameter_declaration
| reg_declaration
| integer_declaration
| real_declaration
| time_declaration
| realtime_declaration
| event_declaration

begin
areg = breg;
creg = areg; // creg stores the value of breg

end

begin
areg = breg;
@(posedge clock) creg = areg; // assignment delayed until

end // posedge on clock

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 9 121

Example 3ÑThe following example shows how the combination of the sequential block and delay control can be
used to specify a time-sequenced waveform.

9.8.2 Parallel blocks

A parallel block shall have the following characteristics:

Ñ Statements shall execute concurrently
Ñ Delay values for each statement shall be considered relative to the simulation time of entering the block
Ñ Delay control can be used to provide time-ordering for assignments
Ñ Control shall pass out of the block when the last time-ordered statement executes

Syntax 9-14 gives the formal syntax for a parallel block.

Syntax 9-14ÑSyntax for the parallel block

The timing controls in a fork-join block do not have to be ordered sequentially in time.

Example:

The following example codes the waveform description shown in example 3 of 9.8.1 by using a parallel block instead
of a sequential block. The waveform produced on the register is exactly the same for both implementations.

9.8.3 Block names

Both sequential and parallel blocks can be named by adding : name_of_block after the keywords begin or fork.

parameter d = 50; // d declared as a parameter and
reg [7:0] r; // r declared as an 8-bit register

begin // a waveform controlled by sequential delay
#d r = Õh35;
#d r = ÕhE2;
#d r = Õh00;
#d r = ÕhF7;
#d -> end_wave;//trigger an event called end_wave

end

par_block ::=
fork [: block_identifier { block_item_declaration }] { statement } join

fork
#50 r = Õh35;
#100 r = ÕhE2;
#150 r = Õh00;
#200 r = ÕhF7;
#250 -> end_wave;

join

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

122 Section 9

The naming of blocks serves several purposes:

Ñ It allows local registers to be declared for the block.
Ñ It allows the block to be referenced in statements such as the disable statement (Section 11).

All registers shall be staticÑthat is, a unique location exists for all registers and leaving or entering blocks shall not
affect the values stored in them.

The block names give a means of uniquely identifying all registers at any simulation time.

9.8.4 Start and Þnish times

Both sequential and procedural blocks have the notion of a start and Þnish time. For sequential blocks, the start time
is when the Þrst statement is executed, and the Þnish time is when the last statement has been executed. For parallel
blocks, the start time is the same for all the statements, and the Þnish time is when the last time-ordered statement has
been executed.

Sequential and parallel blocks can be embedded within each other, allowing complex control structures to be
expressed easily and with a high degree of structure. When blocks are embedded within each other, the timing of
when a block starts and Þnishes is important. Execution shall not continue to the statement following a block until the
Þnish time for the block has been reachedÑthat is, until the block has completely Þnished executing.

Examples:

Example 1ÑThe following example shows the statements from the example in 9.8.2 written in the reverse order and
still producing the same waveform.

Example 2ÑWhen an assignment is to be made after two separate events have occurred, known as the joining of
events, a fork-join block can be useful.

The two events can occur in any order (or even at the same simulation time) and the fork-join block will com-
plete and the assignment will be made. In contrast to this, if the fork-join block was a begin-end block and the
Bevent occurred before the Aevent, then the block would be waiting for the next Bevent.

Example 3ÑThis example shows two sequential blocks, each of which will execute when its controlling event occurs.
Because the event controls are within a fork-join block, they execute in parallel and the sequential blocks can

fork
#250 -> end_wave;
#200 r = ÕhF7;
#150 r = Õh00;
#100 r = ÕhE2;
#50 r = Õh35;

join

begin
fork

@Aevent;
@Bevent;

join
areg = breg;

end

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 9 123

therefore also execute in parallel.

9.9 Structured procedures

All procedures in the Verilog HDL are speciÞed within one of the following four statements:

Ñ initial construct

Ñ always construct

Ñ Task

Ñ Function

The initial and always constructs are enabled at the beginning of a simulation. The initial construct shall execute only
once and its activity shall cease when the statement has Þnished. In contrast, the always construct shall execute
repeatedly. Its activity shall cease only when the simulation is terminated. There shall be no implied order of execu-
tion between initial and always constructs. The initial constructs need not be scheduled and executed before the
always constructs. There shall be no limit to the number of initial and always constructs that can be deÞned in a mod-
ule.

Tasks and functions are procedures that are enabled from one or more places in other procedures. Tasks and functions
are described in Section 10.

9.9.1 Initial construct

The syntax for the initial construct is given in Syntax 9-15.

Syntax 9-15ÑSyntax for initial construct

Examples:

The following example illustrates use of the initial construct for initialization of variables at the start of simulation.

fork
@enable_a

begin
#ta wa = 0;
#ta wa = 1;
#ta wa = 0;

end
@enable_b

begin
#tb wb = 1;
#tb wb = 0;
#tb wb = 1;

end
join

initial_construct ::=
initial statement

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

124 Section 9

Another typical usage of the initial construct is speciÞcation of waveform descriptions that execute once to provide
stimulus to the main part of the circuit being simulated.

9.9.2 Always construct

The always construct repeats continuously throughout the duration of the simulation. Syntax 9-16 shows the syntax
for the always construct.

Syntax 9-16ÑSyntax for always construct

The always construct, because of its looping nature, is only useful when used in conjunction with some form of tim-
ing control. If an always construct has no control for simulation time to advance, it will create a simulation deadlock
condition. The following code, for example, creates a zero-delay inÞnite loop.

always areg = ~areg;

Providing a timing control to the above code creates a potentially useful description as shown in the following:

always #half_period areg = ~areg;

initial begin
areg = 0; // initialize a register
for (index = 0; index < size; index = index + 1)

 memory[index] = 0; //initialize memory word
end

initial begin
inputs = Õb000000; //initialize at time zero
#10 inputs = Õb011001; // first pattern
#10 inputs = Õb011011; // second pattern
#10 inputs = Õb011000; // third pattern
#10 inputs = Õb001000; // last pattern

end

always_construct ::=
always statement

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

Section 10 125

Section 10

Tasks and functions

Tasks and functions provide the ability to execute common procedures from several different places in a description.
They also provide a means of breaking up large procedures into smaller ones to make it easier to read and debug the
source descriptions. This section discusses the differences between tasks and functions, describes how to deÞne and
invoke tasks and functions, and presents examples of each.

10.1 Distinctions between tasks and functions

The following rules distinguish tasks from functions:

Ñ A function shall execute in one simulation time unit; a task can contain time-controlling statements.
Ñ A function cannot enable a task; a task can enable other tasks and functions.
Ñ A function shall have at least one

input

 type argument and shall not have an

output

 or

inout

 type argument; a
task can have zero or more arguments of any type.

Ñ A function shall return a single value; a task shall not return a value.

The purpose of a

function

 is to respond to an input value by returning a single value. A

task

 can support multiple goals
and can calculate multiple result values. However, only the

output

 or

inout

 type arguments pass result values back
from the invocation of a task. A function is used as an operand in an expression; the value of that operand is the value
returned by the function.

Example:

Either a task or a function can be deÞned to switch bytes in a 16-bit word. The task would return the switched word in
an output argument, so the source code to enable a task called

switch_bytes

 could look like the following exam-
ple:

switch_bytes (old_word, new_word);

The task

switch_bytes

 would take the bytes in

old_word

, reverse their order, and place the reversed bytes in

new_word

.

A word-switching function would return the switched word as the return value of the function. Thus, the function call
for the function

switch_bytes

 could look like the following example:

new_word = switch_bytes (old_word);

10.2 Tasks and task enabling

A task shall be enabled from a statement that deÞnes the argument values to be passed to the task and the registers
that receive the results. Control shall be passed back to the enabling process after the task has completed. Thus, if a
task has timing controls inside it, then the time of enabling a task can be different from the time at which the control
is returned. A task can enable other tasks, which in turn can enable still other tasksÑwith no limit on the number of
tasks enabled. Regardless of how many tasks have been enabled, control shall not return until all enabled tasks have
completed.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

126 Section 10

10.2.1 DeÞning a task

The syntax for deÞning tasks is given in Syntax 10-1.

Syntax 10-1ÑSyntax for task declaration

The task declaration shall begin with the keyword

task

, followed by a name for the task and a semicolon, and ending
with the keyword

endtask

. Task item declarations can specify the following:

Ñ Input arguments
Ñ Output arguments
Ñ Inout arguments
Ñ All data types that can be declared in a procedural block

These declarations have the same syntax as the corresponding declarations in a module deÞnition (see Section 12).
The task declaration shall not declare a net data type. The body of the task shall contain zero or more behavioral state-
ments (see Section 9).

10.2.2 Task enabling and argument passing

The task enabling statement shall pass arguments as a comma-separated list of expressions enclosed in parentheses.
The formal syntax of the task enabling statement is given in Syntax 10-2.

Syntax 10-2ÑSyntax of the task enabling statement

The list of arguments for a task enabling statement shall be optional. If the list of arguments is provided, the list shall
be an ordered list of expressions that has to match the order of the list of arguments in the task deÞnition.

task_declaration ::=
 task task_identifier ;
 { task_item_declaration }
 statement_or_null
 endtask

task_item_declaration ::=
 block_item_declaration
| input_declaration
| output_declaration
| inout_declaration

block_item_declaration ::=
 parameter_declaration
| reg_declaration
| integer_declaration
| real_declaration
| time_declaration
| realtime_declaration
| event_declaration

task_enable ::= task_identifier [(expression { , expression })] ;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 10 127

If an argument in the task is declared as an

input

, then the corresponding expression can be any expression. The order
of evaluation of the expressions in the argument list is undeÞned. If the argument is declared as an

output

 or an

inout

,
then the expression shall be restricted to an expression that is valid on the left-hand side of a procedural assignment
(see 9.2). The following items satisfy this requirement:

Ñ reg, integer, real, realtime, and time registers
Ñ Memory references
Ñ Concatenations of reg, integer, real, realtime and time registers
Ñ Concatenations of memory references
Ñ Bit-selects and part-selects of reg, integer, and time registers

The execution of the task enabling statement shall pass input values from the registers listed in the enabling statement
to the arguments speciÞed within the task. Execution of the return from the task shall pass values from the task

out-
put

 and

inout

 type arguments to the corresponding registers in the task enabling statement. All arguments to the task
shall be passed by

value

 rather than by reference (that is, a

pointer

 to the value).

Examples:

Example 1Ñ

The following example illustrates the basic structure of a task deÞnition with Þve arguments.

The following statement enables the task:

my_task (v, w, x, y, z);

The task enabling arguments

(v,

w,

x,

y,

 and

z)

 correspond to the arguments

(a,

b,

c,

d,

 and

e)

 deÞned by
the task. At task enabling time, the

input

 and

inout

 type arguments

(a,

b,

 and

c)

 receive the values passed in

v,
w,

 and

x

. Thus, execution of the task enabling call effectively causes the following assignments:

a = v;
b = w;
c = x;

As part of the processing of the task, the task deÞnition for

my_task

 shall place the computed result values into

c

,

d

, and

e

. When the task completes, the following assignments to return the computed values to the calling process are
performed:

x = c;
y = d;
z = e;

Example 2Ñ

The following example illustrates the use of tasks by describing a trafÞc light sequencer.

task my_task;
input a, b;
inout c;
output d, e;
begin
 . . . // statements that perform the work of the task

. . .
c = foo1; // the assignments that initialize result registers
d = foo2;
e = foo3;

end
endtask

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

128 Section 10

10.2.3 Task memory usage and concurrent activation

A task may be enabled more than once concurrently. A task (or function) may contain the deÞnition of local registers
of type

reg

,

integer

,

time

,

real

,

realtime

, or

event

. These registers shall be static in that there shall be a single regis-
ter corresponding to each declared local register, regardless of the number of concurrent activations of the task. Thus,
if a task is enabled more than once concurrently, all instances of the task would share the same local registers.

Because tasks can have nonzero time durations, each active task has a point of control. This point of control is unique
to each active task instance. Thus, it is possible to write a recursive task (or function), but all local data shall remain
static.

10.3 Functions and function calling

The purpose of a function is to return a value that is to be used in an expression. The rest of this clause explains how
to deÞne and use functions.

module traffic_lights;
reg clock, red, amber, green;
parameter on = 1, off = 0, red_tics = 350,

amber_tics = 30, green_tics = 200;

// initialize colors.
initial red = off;
initial amber = off;
initial green = off;

always begin // sequence to control the lights.
red = on; // turn red light on
light(red, red_tics); // and wait.
green = on; // turn green light on
light(green, green_tics); // and wait.
amber = on; // turn amber light on
light(amber, amber_tics); // and wait.

end

// task to wait for ÕticsÕ positive edge clocks
// before turning ÕcolorÕ light off.
task light;
output color;
input [31:0] tics;
begin

repeat (tics) @ (posedge clock);
color = off; // turn light off.

end
endtask

always begin // waveform for the clock.
#100 clock = 0;
#100 clock = 1;

end
endmodule // traffic_lights.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 10 129

10.3.1 DeÞning a function

The syntax for deÞning a function is given in Syntax 10-3.

Syntax 10-3ÑSyntax for function declaration

A function declaration shall begin with the keyword function, followed by the range or type of the return value from
the function, followed by the name of the function and a semicolon, and shall end with the keyword endfunction. The
use of range or type shall be optional. A function speciÞed without a range or a type defaults to a one-bit register for
the return value. If used, range_or_type shall specify that the return value of the function is a real, an integer, a time,
a realtime, or a value with a range of [n:m] bits. A function shall have at least one input declared.

Example:

The following example deÞnes a function called getbyte, using a range speciÞcation.

10.3.2 Returning a value from a function

The function deÞnition shall implicitly declare a register, internal to the function, with the same name as the function.
This register either defaults to a 1-bit register or is the same type as the type speciÞed in the function declaration. The
function deÞnition initializes the return value from the function by assigning the function result to the internal register
with the same name as the function. The following line from the example in 10.3.1 illustrates this concept:

getbyte = result_expression;

function_declaration ::=
 function [range_or_type] function_identifier ;
 function_item_declaration { function_item_declaration }
 statement
 endfunction

range_or_type ::= range | integer | real | realtime | time
function_item_declaration ::=

 input_declaration
| block_item_declaration

block_item_declaration ::=
| parameter_declaration
| reg_declaration
| integer_declaration
| real_declaration
| time_declaration
| realtime_declaration
| event_declaration

function [7:0] getbyte;
input [15:0] address;
begin

// code to extract low-order byte from addressed word
. . .
getbyte = result_expression;

end
endfunction

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

130 Section 10

10.3.3 Calling a function

A function call is an operand within an expression. The function call has the syntax given in Syntax 10-4.

Syntax 10-4ÑSyntax for function call

The order of evaluation of the arguments to a function call is undeÞned.

Example:

The following example creates a word by concatenating the results of two calls to the function getbyte (deÞned in
10.3.1).

word = control ? {getbyte(msbyte), getbyte(lsbyte)}:0;

10.3.4 Function rules

Functions are more limited than tasks. The following Þve rules govern their usage:

a) A function deÞnition shall not contain any time-controlled statementsÑthat is, any statements introduced
with #, @, or wait.

b) Functions shall not enable tasks.

c) A function deÞnition shall contain at least one input argument.

d) A function deÞnition shall not have any argument declared as output or inout.

e) A function deÞnition shall include an assignment of the function result value to the internal register that has
the same name as the function name.

Example:

This example deÞnes a function called factorial that returns a 32-bit register value. The factorial function is
called iteratively and the results are printed.

function_call ::= function_identifier (expression { , expression })

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 10 131

The simulation results are as follows:

module tryfact;

// define the function
function [31:0] factorial;
input [3:0] operand;
reg [3:0] i;
begin

factorial = 1;
for (i = 2; i <= operand; i = i + 1)

factorial = i * factorial;
end
endfunction

// test the function
integer result;
integer n;
initial begin

for (n = 0; n <= 7; n = n+1) begin
result = factorial(n);
$display("%0d factorial=%0d", n, result);

end
end
endmodule // tryfact

0 factorial=1
1 factorial=1
2 factorial=2
3 factorial=6
4 factorial=24
5 factorial=120
6 factorial=720
7 factorial=5040

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

132 Section 11

Section 11

Disabling of named blocks and tasks

The

disable

 statement provides the ability to terminate the activity associated with concurrently active procedures,
while maintaining the structured nature of Verilog HDL procedural descriptions. The disable statement gives a mech-
anism for terminating a task before it executes all its statements, breaking from a looping statement, or skipping state-
ments in order to continue with another iteration of a looping statement. It is useful for handling exception conditions
such as hardware interrupts and global resets.

The disable statement has the syntax form shown in Syntax 11-1.

Syntax 11-1ÑSyntax of disable statement

Either form of disable statement shall terminate the activity of a task or a named block. Execution shall resume at the
statement following the block or following the task enabling statement. All activities enabled within the named block
or task shall be terminated as well. If task enable statements are nestedÑthat is, one task enables another, and that
one enables yet anotherÑthen disabling a task within the chain shall disable all tasks downward on the chain. If a
task is enabled more than once, then disabling such a task shall disable all activations of the task.

The results of the following activities that may be initiated by a task are not speciÞed if the task is disabled:

Ñ Results of output and inout arguments
Ñ Scheduled, but not executed, nonblocking assignments
Ñ Procedural continuous assignments (

assign

 and

force

 statements)

The disable statement can be used within blocks and tasks to disable the particular block or task containing the dis-
able statement. The disable statement cannot be used to disable functions.

Examples:

Example 1Ñ

This example illustrates how a block disables itself.

Example 2Ñ

This example shows the disable statement being used within a named block in a manner similar to a for-

disable_statement ::=
 disable task_identifier ;
| disable block_identifier ;

begin : block_name
rega = regb;
disable block_name;
regc = rega; // this assignment will never execute

end

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 11 133

ward

goto

. The next statement executed after the disable statement is the one following the named block.

Example 3Ñ

This example shows the disable statement being used as an early return from a task. However, a task dis-
abling itself using a disable statement is not a short-hand for the

return

 statement found in programming languages.

Example 4Ñ

This example shows the disable statement being used in an equivalent way to the two statements

con-
tinue

 and

break

 in the C programming language. The example illustrates control code that would allow a named block
to execute until a loop counter reaches

n

 iterations or until the variable

a

 is set to the value of

b

. The named block

break

 contains the code that executes until

a == b

, at which point the

disable break;

 statement terminates
execution of that block. The named block

continue

 contains the code that executes for each iteration of the

for

loop. Each time this code executes the

disable continue;

 statement, the

continue

 block terminates and exe-
cution passes to the next iteration of the

fo

r loop. For each iteration of the

continue

 block, a set of statements exe-
cutes if

(a != 0

). Another set of statements executes

if(a!=b)

.

begin : block_name
...
...
if (a == 0)

disable block_name;
...

end // end of named block
// continue with code following named block

...

task proc_a;
begin

...

...
if (a == 0)

disable proc_a; // return if true
...
...

end
endtask

begin : break
for (i = 0; i < n; i = i+1) begin : continue

@clk
if (a == 0) // "continue" loop

disable continue;
statements
statements

@clk
if (a == b) // "break" from loop

disable break;
statements
statements

end
end

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

134 Section 11

Example 5Ñ

This example shows the disable statement being used to disable concurrently a sequence of timing con-
trols and the task

action

, when the

reset

 event occurs. The example shows a

fork

/

join

 block within which is
a named sequential block (

event_expr

) and a disable statement that waits for occurrence of the event

reset

. The
sequential block and the wait for

reset

 execute in parallel. The

event_expr

 block waits for one occurrence of
event

ev1

 and three occurrences of event

trig

. When these four events have happened, plus a delay of

d

 time units,
the task

action

 executes. When the event

reset

 occurs, regardless of events within the sequential block, the

fork

/

join

 block terminatesÑincluding the task

action

.

Example 6Ñ

The next example is a behavioral description of a retriggerable monostable. The named event

retrig

restarts the monostable time period. If

retrig

 continues to occur within 250 time units, then

q

 will remain at

1.

fork
begin : event_expr

@ev1;
repeat (3) @trig;
#d action (areg, breg);

end
@reset disable event_expr;

join

always begin : monostable
#250 q = 0;

end

always @retrig begin
disable monostable;
q = 1;

end

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

Section 12 135

Section 12

Hierarchical structures

The Verilog HDL supports a hierarchical hardware description structure by allowing modules to be embedded within
other modules. Higher-level modules create instances of lower-level modules and communicate with them through
input, output, and bidirectional ports. These module input/output ports can be scalar or vector.

As an example of a module hierarchy, consider a system consisting of printed circuit boards (PCBs). The system
would be represented as the top-level module and would create instances of modules that represent the boards. The
board modules would, in turn, create instances of modules that represent ICs, and the ICs could, in turn, create
instances of modules such as ßip-ßops, muxÕs, and aluÕs.

To describe a hierarchy of modules, the user provides textual deÞnitions of the various modules. Each module deÞni-
tion stands alone; the deÞnitions are not nested. Statements within the module deÞnitions create instances of other
modules, thus describing the hierarchy.

12.1 Modules

This clause gives the formal syntax for a module deÞnition and then gives the syntax for module instantiation, along
with an example of a module deÞnition and a module instantiation.

A module deÞnition shall be enclosed between the keywords

module

 and

endmodule

. The identiÞer following the
keyword

module

 shall be the name of the module being deÞned. The optional list of ports shall specify an ordered list
of the ports of the module. The order used can be signiÞcant when instantiating the module (see 12.1.2). The identiÞ-
ers in this list shall be declared in input, output, and inout statements within the module deÞnition. The module items
deÞne what constitutes a module, and they include many different types of declarations and deÞnitions; many of them
have already been introduced.

The keyword

macromodule

 can be used interchangeably with the keyword

module

 to deÞne a module. An imple-
mentation can choose to treat module deÞnitions beginning with

macromodule

 keyword differently.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

136 Section 12

Syntax 12-1ÑSyntax for module

See 12.3 for the deÞnitions of ports.

12.1.1 Top-level modules

Top-level modules

 are modules that are included in the source text but are not instantiated, as described in 12.1.2.

12.1.2 Module instantiation

Instantiation allows one module to incorporate a copy of another module into itself. Module deÞnitions do not nest.
That is, one module deÞnition shall not contain the text of another module deÞnition within its

module

-

endmodule

keyword pair. A module deÞnition nests another module by

instantiating

 it. The

module instantiation statement

 cre-

module_declaration ::=
 module_keyword module_identifier [list_of_ports] ; { module_item }
endmodule

module_keyword ::= module | macromodule
list_of_ports ::= (port { , port })
port ::= [port_expression]

| . port_identifier ([port_expression])
port_expression ::=

 port_reference
| { port_reference { , port_reference } }

port_reference ::=
 port_identifier
| port_identifier [constant_expression]
| port_identifier [msb_constant_expression : lsb_constant_expression]

module_item ::=
 module_item_declaration
| parameter_override
| continuous_assign
| gate_instantiation
| udp_instantiation
| module_instantiation
| specify_block
| initial_construct
| always_construct

module_item_declaration ::=
 parameter_declaration
| input_declaration
| output_declaration
| inout_declaration
| net_declaration
| reg_declaration
| integer_declaration
| real_declaration
| time_declaration
| realtime_declaration
| event_declaration
| task_declaration
| function_declaration

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 12 137

ates one or more named

instances

 of a deÞned module.

For example, a counter module might instantiate a D ßip-ßop module to create multiple instances of the ßip-ßop.

Syntax 12-2 gives the syntax for specifying instantiations of modules.

Syntax 12-2ÑSyntax for module instantiation

The instantiations of modules can contain a range speciÞcation. This allows an array of instances to be created. The
array of instances are described in 7.1. The syntax and semantics of arrays of instances deÞned for gates and primi-
tives apply for modules as well.

One or more module instances (identical copies of a module) can be speciÞed in a single module instantiation state-
ment.

The list of module connections shall be provided only for modules deÞned with ports. The parentheses, however, are
always required. When a list of module connections is given, the Þrst element in the list shall connect to the Þrst port,
the second to the second port, and so on. See 12.3 for a more detailed discussion of ports and port connection rules.

A connection can be a simple reference to a register or a net identiÞer, an expression, or a blank. An expression can be
used for supplying a value to a module input port. A blank module connection shall represent the situation where the
port is not to be connected.

When connecting ports by name, an unconnected port can be indicated either by omitting it in the port list, or by pro-
viding no expression in the parentheses [i.e.,

.port_name ()

].

Examples:

Example 1Ñ

The following example illustrates a circuit (the lower-level module) being driven by a simple waveform
description (the higher-level module) where the circuit module is instantiated inside the waveform module.

module_instantiation ::=
 module_identifier [parameter_value_assignment] module_instance { ,
module_instance } ;

parameter_value_assignment ::= # (expression { , expression })
module_instance ::= name_of_instance ([list_of_module_connections])
name_of_instance ::= module_instance_identifier [range]
list_of_module_connections ::=

 ordered_port_connection { , ordered_port_connection }
| named_port_connection { , named_port_connection }

ordered_port_connection ::= [expression]
named_port_connection ::= . port_identifier ([expression])

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

138 Section 12

Example 2Ñ

The following example creates two instances of the ßip-ßop module

ffnand

 deÞned in example 1. It
connects only to the

q

 output in one instance and only to the

qbar

 output in the other instance.

// Lower level module:
// module description of a nand flip-flop circuit
module ffnand (q, qbar, preset, clear);
output q, qbar; //declares 2 circuit output nets
input preset, clear; //declares 2 circuit input nets

// declaration of two nand gates and their interconnections
nand g1 (q, qbar, preset),

 g2 (qbar, q, clear);
endmodule

// Higher-level module:
// a waveform description for the nand flip-flop
module ffnand_wave;
wire out1, out2; //outputs from the circuit
reg in1, in2; //variables to drive the circuit
parameter d = 10;

// instantiate the circuit ffnand, name it ÒffÓ,
// and specify the IO port interconnections
ffnand ff(out1, out2, in1, in2);

// define the waveform to stimulate the circuit
initial begin

#d in1 = 0; in2 = 1;
#d in1 = 1;
#d in2 = 0;
#d in2 = 1;

end
endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 12 139

12.2 Overriding module parameter values

When one module instantiates another module, it can alter the values of any parameters declared within the instanti-
ated module. There are two ways to alter parameter values: the

defparam statement

, which allows assignment to
parameters using their hierarchical names, and the

 module instance parameter value assignment

, which allows values
to be assigned inline during module instantiation. The next two subclauses describe these two methods.

12.2.1 Defparam statement

Using the

defparam statement

, parameter values can be changed in any module instance throughout the design using
the hierarchical name of the parameter. See 12.4 for hierarchical names.

The expression on the right-hand side of the defparam assignments shall be a constant expression involving only
numbers and references to parameters. The referenced parameters (on the right-hand side of the

defparam

) shall be
declared in the same module as the defparam statement.

The defparam statement is particularly useful for grouping all of the parameter value override assignments together in
one module.

// a waveform description for testing
// the nand flip-flop, without the output ports
module ffnand_wave;
reg in1, in2; //variables to drive the circuit
parameter d = 10;
// make two copies of the circuit ffnand
// ff1 has qbar unconnected, ff2 has q unconnected
ffnand ff1(out1, , in1, in2),

 ff2(.qbar(out2), .clear(in2), .preset(in1), .q());
// ff3(.q(out3),.clear(in1),,,); is illegal

// define the waveform to stimulate the circuit
initial begin

#d in1 = 0; in2 = 1;
#d in1 = 1;
#d in2 = 0;
#d in2 = 1;

end
endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

140 Section 12

Example:

The module

annotate

 has the defparam statement yjsy overrides

size

 and

delay

 parameter values for instances

m1

 and

m2

 in the top-level module top. The modules top and annotate would both be considered top-level
modules.

12.2.2 Module instance parameter value assignment

An alternative method for assigning values to parameters within module instances is similar in appearance to the
assignment of delay values to gate instances. It supplies values for particular instances of a module to any parameters
that have been speciÞed in the deÞnition of that module.

The order of the assignments in the module instance parameter value assignment shall follow the order of declaration
of the parameters within the module. It is not necessary to assign values to all of the parameters within a module
when using this method. However, it is not possible to skip over a parameter. Therefore, to assign values to a subset of
the parameters declared within a module, the declarations of the parameters that make up this subset shall precede the
declarations of the remaining parameters. An alternative is to assign values to all of the parameters, but to use the
default value (the same value assigned in the declaration of the parameter within the module deÞnition) for those
parameters that do not need new values.

module top;
reg clk;
reg [0:4] in1;
reg [0:9] in2;
wire [0:4] o1;
wire [0:9] o2;

vdff m1 (o1, in1, clk);
vdff m2 (o2, in2, clk);
endmodule

module vdff (out, in, clk);
parameter size = 1, delay = 1;
input [0:size-1] in;
input clk;
output [0:size-1] out;
reg [0:size-1] out;

always @(posedge clk)
delay out = in;

endmodule

module annotate;
defparam

top.m1.size = 5,
top.m1.delay = 10,
top.m2.size = 10,
top.m2.delay = 20;

endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 12 141

Example:

Consider the following example, where the parameters within module instance mod_a are changed during instantia-
tion.

In this example, the name of the module being instantiated is vdff. The construct #(10,15) assigns values to
parameters used in the mod_a instance of vdff. The parameter size is assigned the value 10 and the parameter
delay is assigned the value 15 for the instance of module vdff called mod_a.

12.2.3 Parameter dependence

A parameter (for example, memory_size) can be deÞned with an expression containing another parameter (for
example, word_size). Since memory_size depends on the value of word_size, a modiÞcation of
word_size changes the value of memory_size. For example, in the following parameter declaration, an update
of word_size, whether by defparam statement or in an instantiation statement for the module that deÞned these
parameters, automatically updates memory_size.

parameter
 word_size = 32,
 memory_size = word_size * 4096;

12.3 Ports

Ports provide a means of interconnecting a hardware description consisting of modules, primitives, and macromod-
ules. For example, module A can instantiate module B, using port connections appropriate to module A. These port
names can differ from the names of the internal nets and registers speciÞed in the deÞnition of module B.

12.3.1 Port deÞnition

The syntax for a port is given in Syntax 12-3 (this is the completion of the syntax presented in 12.1).

module m;
reg clk;
wire[1:10] out_a, in_a;
wire[1:5] out_b, in_b;

// create an instance and set parameters
vdff #(10,15) mod_a(out_a, in_a, clk);
// create an instance leaving default values
vdff mod_b(out_b, in_b, clk);
endmodule

module vdff (out, in, clk);
parameter size = 1, delay = 1;
input [0:size-1] in;
input clk;
output [0:size-1] out;
reg [0:size-1] out;

always @(posedge clk)
delay out = in;

endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

142 Section 12

Syntax 12-3ÑSyntax for port

The port expression in the port deÞnition can be one of the following:

Ñ A simple identiÞer

Ñ A bit-select of a vector declared within the module

Ñ A part-select of a vector declared within the module

Ñ A concatenation of any of the above

The two types of module port deÞnitions shall not be mixed; the ports of a particular module deÞnition shall all be
deÞned by order or all by name. The port expression is optional because ports can be deÞned that do not connect to
anything internal to the module.

12.3.2 Port declarations

Each port listed in the list of ports for the module deÞnition shall be declared in the body of the module as an input,
output, or inout (bidirectional). This is in addition to any other declaration for a particular portÑ for example, a reg
or wire. The syntax for port declarations is given in Syntax 12-4.

Syntax 12-4ÑSyntax for port declarations

A port can be declared in both a port declaration and a net or register declaration. If a port is declared as a vector, the
range speciÞcation between the two declarations of a port shall be identical.

NOTEÑImplementations may limit maximum number of ports in a module deÞnition, but they will at least be 256.

12.3.3 Connecting module ports by ordered list

One method of making the connection between the ports listed in a module instantiation and the ports deÞned by the
instantiated module is the ordered listÑthat is, the ports listed for the module instance shall be in the same order as
the ports listed in the module deÞnition.

port ::=
 [port_expression]
| . port_identifier ([port_expression])

port_expression ::=
 port_reference
| { port_reference { , port_reference} }

port_reference ::=
 port_identifier
| port_identifier [constant_expression]
| port_identifier [msb_constant_expression : lsb_constant_expression]

input_declaration ::= input [range] list_of_port_identifiers ;
output_declaration ::= output [range] list_of_port_identifiers ;
inout_declaration ::= inout [range] list_of_port_identifiers ;
list_of_port_identifiers ::= port_identifier { , port_identifier }

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 12 143

Example:

The following example illustrates a top-level module (topmod) that instantiates a second module (modB). Module
modB has ports that are connected by an ordered list. The connections made are as follows:

Ñ Port wa in the modB deÞnition connects to the bit-select v[0] in the topmod module.

Ñ Port wb connects to v[3].

Ñ Port c connects to w.

Ñ Port d connects to v[4].

In the modB deÞnition, ports wa and wb are declared as inouts while ports c and d are declared as input.

During simulation of the b1 instance of modb, the and gate g2 activates Þrst to produce a value on int. This value
triggers the not gate n1 to produce output on cinvert, which then activates the tranif1 gate g1.

12.3.4 Connecting module ports by name

The second way to connect module ports consists of explicitly linking the two names for each side of the connec-
tionÑthe name used in the module deÞnition, followed by the name used in the instantiating module. This compound
name is then placed in the list of module connections. The name of port shall be the name speciÞed in the module def-
inition. The name of port cannot be a bit-select, a part-select, or a concatenation of ports.

The port expression shall be the name used by the instantiating module and can be one of the following:

Ñ A simple identiÞer

Ñ A bit-select of a vector declared within the module

Ñ A part-select of a vector declared within the module

Ñ A concatenation of any of the above

The port expression is optional so that the instantiating module can document the existence of the port without con-
necting it to anything. The parentheses are required.

The two types of module port connections shall not be mixed; connections to the ports of a particular module instance
shall be all by order or all by name.

module topmod;
wire [4:0] v;
wire a,b,c,w;

modB b1 (v[0], v[3], w, v[4]);
endmodule

module modB (wa, wb, c, d);
inout wa, wb;
input c, d;

tranif1 g1 (wa, wb, cinvert);
not #(2, 6) n1 (cinvert, int);
and #(6, 5) g2 (int, c, d);
endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

144 Section 12

Examples:

Example 1ÑIn the following example, the instantiating module connects its signals topA and topB to the ports In1
and Out deÞned by the module ALPHA. At least one port provided by ALPHA is unused; it is named In2. There
could be other unused ports not mentioned in the instantiation.

ALPHA instance1 (.Out(topB),.In1(topA),.In2());

Example 2ÑThis example deÞnes the modules modB and topmod, and then topmod instantiates modB using ports
connected by name.

Since these connections are made by name, the order in which they appear is irrelevant.

12.3.5 Real numbers in port connections

The real data type shall not be directly connected to a port. It shall be connected indirectly, as shown in the follow-
ing example. The system functions $realtobits and $bitstoreal shall be used for passing the bit patterns across mod-
ule ports. (See 14.9 for a description of these system tasks.)

Example:

module topmod;
wire [4:0] v;
wire a,b,c,w;

modB b1 (.wb(v[3]),.wa(v[0]),.d(v[4]),.c(w));
endmodule

module modB(wa, wb, c, d);
inout wa, wb;
input c, d;

tranif1 g1(wa, wb, cinvert);
not #(6, 2) n1(cinvert, int);
and #(5, 6) g2(int, c, d);
endmodule

module driver (net_r);
output net_r;
real r;
wire [64:1] net_r = $realtobits(r);
endmodule

module receiver (net_r);
input net_r;
wire [64:1] net_r;
real r;

initial assign r = $bitstoreal(net_r);

endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 12 145

12.3.6 Connecting dissimilar ports

A port of a module can be viewed as providing a link or connection between two items (nets, registers, expressions,
etc.)Ñone internal to the module instance and one external to the module instance.

Examination of the port connection rules described in 12.3.7 will show that the item receiving the value through the
port (the internal item for inputs, the external item for outputs) shall be a structural net expression. The item that pro-
vides the value can be any expression.

NOTEÑA port that is declared as input (output) but used as an output (input) or inout may be coerced to inout. If not coerced to
inout, a warning has to be issued.

12.3.7 Port connection rules

The following rules shall govern the way module ports are declared and the way they are interconnected.

12.3.7.1 Rule 1

An input or inout port shall be of type net.

12.3.7.2 Rule 2

Each port connection shall be a continuous assignment of source to sink, where one connected item shall be a signal
source and the other shall be a signal sink. The assignment shall be a continuous assignment from source to sink for
input or output ports. The assignment is a nonstrength reducing transistor connection for inout ports. Only nets or
structural net expressions shall be the sinks in an assignment.

A structural net expression is a port expression whose operands can be the following:

Ñ A scalar net
Ñ A vector net
Ñ A constant bit-select of a vector net
Ñ A part-select of a vector net
Ñ A concatenation of structural net expressions

The following external items shall not be connected to the output or inout ports of modules:

Ñ Registers
Ñ Expressions other than
Ñ A scalar net
Ñ A vector net
Ñ A constant bit-select of a vector net
Ñ A part-select of a vector net
Ñ A concatenation of the expressions listed above

12.3.8 Net types resulting from dissimilar port connections

When different net types are connected through a module port, the nets on both sides of the port can take on the same
type. The resulting net type can be determined as shown in Table 12-1. In the table, external net means the net speci-
Þed in the module instantiation, and internal net means the net speciÞed in the module deÞnition. The net whose type
is used is said to be the dominating net. The net whose type is changed is said to be the dominated net. It is permissi-
ble to merge the dominating and dominated nets into a single net, whose type shall be that of the dominating net. The
resulting net is called the simulated net, and the dominated net is called a collapsed net.

The simulated net shall take the delay speciÞed for the dominating net. If the dominating net is of the type trireg, any
strength value speciÞed for the trireg net shall apply to the simulated net.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

146 Section 12

12.3.8.1 Net type resolution rule

When the two nets connected by a port are of different net type, the resulting single net can be assigned one of the fol-
lowing:

Ñ The dominating net type if one of the two nets is dominating, or
Ñ The net type external to the module

When a dominating net type does not exist, the external net type shall be used.

12.3.8.2 Net type table

Table 12-1 shows the net type dictated by net type resolution rule.

The simulated net shall take the net type speciÞed in the table and the delay speciÞed for that net. If the simulated net
selected is a trireg, any strength value speciÞed for the trireg net applies to the simulated net.

12.4 Hierarchical names

Every identiÞer in a Verilog HDL description shall have a unique hierarchical path name. The hierarchy of modules
and the deÞnition of items such as tasks and named blocks within the modules shall deÞne these names. The hierar-
chy of names can be viewed as a tree structure, where each module instance, task, function, or named begin-end
or fork-join block deÞnes a new hierarchical level, or scope, in a particular branch of the tree.

Table 12-1ÑNet types resulting from dissimilar port connections

Internal
net

External net

wire,
 tri

wand,
 triand

wor,
trior trireg tri0 tri1 supply0 supply1

wire,
tri

ext ext ext ext ext ext ext ext

wand,
triand

int ext warn warn warn warn ext ext

wor,
trior

int int ext warn warn warn ext ext

trireg int int warn ext ext ext ext ext

tri0 int int warn int ext warn ext ext

tri1 int int warn int warn ext ext ext

supply0 int int int int int int ext warn

supply1 int int int int int int warn ext

KEY
ext = The external net type is used
int = The internal net type is used
warn = A warning is issued and the external net type is used

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 12 147

At the top of the name hierarchy are the names of modules of which no instances have been created. It is the root of
the hierarchy. Inside any module, each module instance, task deÞnition, function deÞnition, and named begin-end
or fork-join block shall deÞne a new branch of the hierarchy. Named blocks within named blocks and within
tasks and functions shall create new branches.

Each node in the hierarchical name tree shall be a separate scope with respect to identiÞers. A particular identiÞer can
be declared at most once in any scope. See 12.5 for a discussion of scope rules and 3.11 for a discussion of name
spaces.

Any named Verilog object can be referenced uniquely in its full form by concatenating the names of the modules,
tasks, functions, or blocks that contain it. The period character shall be used to separate each of the names in the hier-
archy. The complete path name to any object shall start at a top-level module. This path name can be used from any
level in the description. The Þrst node name in a path name can also be the top of a hierarchy that starts at the level
where the path is being used.

Examples:

Example 1ÑThe code in this example deÞnes a hierarchy of module instances and named blocks. Figure 12-1 illus-
trates the hierarchy implicit in this Verilog code. Figure 12-2 is a list of the hierarchical forms of the names of all the
objects deÞned in the code.

module mod (in); module cct (stim1, stim2);
input in; input stim1, stim2;

always @(posedge in) begin : keep // instantiate mod
reg hold; mod amod(stim1), bmod(stim2);

hold = in; endmodule
end
endmodule

module wave;
reg stim1, stim2;

cct a(stim1, stim2); // instantiate cct

initial begin :wave1
#100 fork :innerwave

reg hold;
join

#150 begin
stim1 = 0;

end
end
endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

148 Section 12

Figure 12-1ÑHierarchy in a model

Figure 12-2ÑHierarchical path names in a model

Hierarchical name referencing allows free data access to any object from any level in the hierarchy. If the unique hier-
archical path name of an item is known, its value can be sampled or changed from anywhere within the description.

Example 2ÑThe next example shows how a pair of named blocks can refer to items declared within each other.

wave1 a

amod bmod

keep keep

innerwave

wave

wave wave.a.bmod
wave.stim1 wave.a.bmod.in
wave.stim2 wave.a.bmod.keep
wave.a wave.a.bmod.keep.hold
wave.a.stim1wave.wave1
wave.a.stim2wave.wave1.innerwave
wave.a.amod wave.wave1.innerwave.hold
wave.a.amod.in
wave.a.amod.keep
wave.a.amod.keep.hold

begin
fork :mod_1

reg x;
mod_2.x = 1;

join

fork :mod_2
reg x;
mod_1.x = 0;

join
end

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 12 149

12.4.1 Upwards name referencing

A lower-level module can reference items in a module above it in the hierarchy if the name of the higher-level module
is known. The syntax for an upward reference is given in Syntax 12-5.

Syntax 12-5ÑSyntax for upward name referencing

Upwards name references can also be done with names of the form

module_instance_name.item_name

A name of this form shall be resolved as follows:

a) Look in the current module for a module instance named module_instance_name. If found, this name
reference shall be treated as a downward reference, and the item name shall be resolved in the corresponding
module.

b) Look in the parent module for a module instance named module_instance_name. If found, the item
name shall be resolved from that instance, which is the sibling of the module containing the reference.

c) Repeat step b), going up the hierarchy.

There shall be no spaces within the hierarchical name reference.

Example:

In this example, there are four modules, a, b, c, and d. Each module contains an integer i. The highest-level mod-
ules in this segment of a model hierarchy are a and d. There are two copies of module b because module a and d
instantiate b. There are four copies of c.i because each of the two copies of b instantiates c twice.

upward_name_reference ::=
module_identifier.item_name

item_name ::=
 port_identifier
| reg_identifier
| net_identifier
| parameter_identifier
| function_identifier
| task_identifier
| named_block_identifier

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

150 Section 12

12.5 Scope rules

The following four elements deÞne a new scope in Verilog:

Ñ Modules

Ñ Tasks

Ñ Functions

Ñ Named blocks

An identiÞer shall be used to declare only one item within a scope. This rule means it is illegal to declare two or more
variables that have the same name, or to name a task the same as a variable within the same module, or to give a gate
instance the same name as the name of the net connected to its output.

If an identiÞer is referenced directly (without a hierarchical path) within a task, function, or named block, it shall be
declared either locally within the task, function, or named block, or within a module, task or named block that is
higher in the same branch of the name tree that contains the task, function, or named block. If it is declared locally,
then the local item shall be used; if not, the search shall continue upward until an item by that name is found or until
a module boundary is encountered. The search shall cross named block, task, and function boundaries but not module

module a;
integer i;
b a_b1();
endmodule

module b;
integer i;
c b_c1(), b_c2();
initial // downward path references two copies of i:

#10 b_c1.i = 2;// a.a_b1.b_c1.i, d.d_b1.b_c1.i
endmodule

module c;
integer i;
initial begin // local name references four copies of i:

i = 1; // a.a_b1.b_c1.i, a.a_b1.b_c2.i,
// d.d_b1.b_c1.i, d.d_b1.b_c2.i

b.i = 1; // upward path references two copies of i:
// a.a_b1.i, d.d_b1.i

end
endmodule

module d;
integer i;
b d_b1();
initial begin // full path name references each copy of i

a.i = 1; d.i = 5;
a.a_b1.i = 2; d.d_b1.i = 6;
a.a_b1.b_c1.i = 3; d.d_b1.b_c1.i = 7;
a.a_b1.b_c2.i = 4; d.d_b1.b_c2.i = 8;

end
endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 12 151

boundaries. This fact means that tasks and functions can use and modify the variables within the containing module
by name, without going through their ports.

Because of the upward searching, path names that are not strictly on a downward path can be used.

Example:

Example 1ÑIn Figure 12-3, each rectangle represents a local scope. The scope available to upward searching extends
outward to all containing rectanglesÑwith the boundary of the module A as the outer limit. Thus block G can directly
reference identiÞers in F, E, and A; it cannot directly reference identiÞers in H, B, C, and D.

Figure 12-3ÑScopes available to upward name referencing

Example 2ÑThe following example shows an incompletely deÞned downward reference that can be accessed.

block B

task C

func D

task E

block F

block G

block H

module A

Scopes available
to block G

Scopes not
available to
block G

task t;
reg r, s;
begin : b

// redundant assignments to reg r
t.b.r = 0; // poorly defined but found by upward search
t.s = 0; // fully defined downward reference

end
endtask

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

152 Section 13

Section 13

Specify blocks

Two types of HDL constructs are often used to describe delays for structural models such as ASIC cells. They are

Ñ

Distributed delays

, which specify the time it takes events to propagate through gates and nets inside the mod-
ule (see 7.15)

Ñ

Module path delays

, which describe the time it takes an event at a source (input port or inout port) to propa-
gate to a destination (output port or inout port)

This section describes how paths are speciÞed in a module and how delays are assigned to these paths.

13.1 Specify block declaration

A block statement called the

specify block

 is the vehicle for describing paths between a source and a destination and
for assigning delays to these paths. The syntax for specify block is shown in Syntax 13-1.

Syntax 13-1ÑSyntax of specify block

The specify block shall be bounded by the keywords

specify

 and

endspecify

, and it shall appear inside a module dec-
laration. The specify block can be used to perform the following tasks:

Ñ Describe various paths across the module.

Ñ Assign delays to those paths.

Ñ Perform timing checks to ensure that events occurring at the module inputs satisfy the timing constraints of
the device described by the module. See 14.5.

The paths described in the specify block, called

module paths

, pair a signal source with a signal destination. The
source may be unidirectional (an input port) or bidirectional (an inout port) and is referred to as the

module path
source

. Similarly, the destination may be unidirectional (an output port) or bidirectional (an inout port) and is referred
to as the

module path destination

.

specify_block ::= specify [specify_item] endspecify
specify_item ::=

 specparam_declaration
| path_declaration
| system_timing_check

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 13 153

Example:

The Þrst two lines following the keyword

specify

 declare specify parameters, which are discussed in 13.2. The line
following the declarations of specify parameters describes a module path and assigns delays to that module path. The
specify parameters determine the delay assigned to the module path. Specifying module paths is presented in 13.3.
Assigning delays to module paths is discussed in 13.4. The line preceding the keyword

endspecify

 instantiates one of
the system timing checks, which are discussed further in 14.5.

13.2 Declaring parameters in specify blocks

The keyword

specparam

 declares parameters within specify blocksÑcalled

specify parameters

 or

specparams

,

to
distinguish them from

module parameters

. The syntax for declaring specify parameters is shown in Syntax 13-2.

Syntax 13-2ÑSyntax of the specparam declaration

A specify parameter shall be declared and used only within the specify block. The value assigned to a specify param-
eter can be any constant expression. A specify parameter declared in the specify block can be used to construct a con-
stant expression for a subsequent specify parameter declaration. A specify parameter shall not be visible outside the
specify block in which it is declared.

The specify parameters and module parameters shall not be interchangeable. Table 13-1 summarizes the differences
between the two types of parameter declarations.

Table 13-1ÑDifferences between specparams and parameters

Specparams
(Specify parameter)

Parameters
(Module parameter)

Use keyword

specparam

Use keyword

parameter

Shall be declared

inside

 specify blocks Shall be declared

outside

 specify blocks

May only be used inside specify blocks May not be used inside specify blocks

Cannot use

defparam

 to override values Use

defparam

to override values

specify
specparam tRise_clk_q = 150, tFall_clk_q = 200;
specparam tSetup = 70;

(clk => q) = (tRise_clk_q, tFall_clk_q);

$setup(d, posedge clk, tSetup);
endspecify

specparam_declaration ::= specparam list_of_specparam_assignments ;
list_of_specparam_assignments ::= specparam_assignment { , specparam_assignment }
specparam_assignment ::=

 specparam_identifier = constant_expression
| pulse_control_specparam

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

154 Section 13

Example:

The lines between the keywords

specify

 and

endspecify

 declare four specify parameters. The Þrst line declares spec-
ify parameters called

tRise_clk_q

 and

tFall_clk_q

 with values

150

 and

200

 respectively; the second line
declares

tRise_control

 and

tFall_control

 specify parameters with values

40

 and

50

 respectively.

13.3 Module path declarations

There are two steps required to set up module path delays in a specify block:

a) Describe the module paths

b) Assign delays to those paths (see 13.4)

The syntax of the module path declaration is described in Syntax 13-3.

Syntax 13-3ÑSyntax of the module path declaration

A module path may be described as a

simple path

, an

edge sensitive path

, or a

state dependent path

. A module path
shall be deÞned inside a specify block as a connection between a source signal and a destination signal. Module paths
can connect any combination of vectors and scalars.

Example:

Figure 13-1 illustrates a circuit with module path delays. More than one source (

A

,

B

,

C

, and

D

) may have a module
path to the same destination (

Q

), and different delays may be speciÞed for each input to output path.

specify
specparam tRise_clk_q = 150, tFall_clk_q = 200;
specparam tRise_control = 40, tFall_control = 50;

endspecify

path_declaration ::=
 simple_path_declaration ;
| edge_sensitive_path_declaration ;
| state-dependent_path_declaration ;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 13 155

Figure 13-1ÑModule path delays

13.3.1 Module path restrictions

Module paths have the following restrictions:

Ñ The module path source shall be a net that is connected to a module input port or inout port.
Ñ The module path destination shall be a net or register that is connected to a module output port or inout port.
Ñ The module path destination shall have only one driver inside the module.

13.3.2 Simple module paths

The syntax for specifying a simple module path is given in Syntax 13-4.

Syntax 13-4ÑSyntax for simple module path

MODULE PATHS:
from A to Q
from B to Q
from C to Q
from D to Q

= module path delay
n

A

B

C
D

Q

22

10

12

18

simple_path_declaration ::=
 parallel_path_description = path_delay_value
| full_path_description = path_delay_value

parallel_path_description ::=
 (specify_input_terminal_descriptor [polarity_operator] =>
 specify_output_terminal_descriptor)

full_path_description ::=
(list_of_path_inputs [polarity_operator] *> list_of_path_outputs)

list_of_path_inputs ::= specify_input_terminal_descriptor { ,
specify_input_terminal_descriptor }

list_of_path_outputs ::= specify_output_terminal_descriptor { ,
specify_output_terminal_descriptor }

specify_input_terminal_descriptor ::=
 input_identifier
| input_identifier [constant_expression]
| input_identifier [msb_constant_expression : lsb_constant_expression]

specify_output_terminal_descriptor ::=
 output_identifier
| output_identifier [constant_expression]
| output_identifier [msb_constant_expression : lsb_constant_expression]

input_identifier ::= input_port_identifier | inout_port_identifier

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

156 Section 13

Simple path can be declared in one of the two forms:

Ñ source *> destination
Ñ source => destination

The symbols *> and => each represent a different kind of connection between the module path source and the mod-
ule path destination. The operator *> establishes a full connection between source and destination. The operator =>
establishes a parallel connection between source and destination. Refer to 13.3.5 for a description of full connection
and parallel connection paths.

Example:

The following three examples illustrate valid simple module path declarations.

13.3.3 Edge-sensitive paths

When a module path is described using an edge transition at the source, it is called an edge-sensitive path. The edge-
sensitive path construct is used to model the timing of input to output delays, which only occur when a speciÞed edge
occurs at the source signal.

The syntax of the edge-sensitive path declaration is shown in Syntax 13-5.

Syntax 13-5ÑSyntax of the edge-sensitive path declaration

The edge identiÞer may be one of the keywords posedge or negedge, associated with an input terminal descriptor,
which may be any input port or inout port. If a vector port is speciÞed as the input terminal descriptor, the edge tran-
sition shall be detected on the least signiÞcant bit. If the edge transition is not speciÞed, the path shall be considered
active on any transition at the input terminal.

An edge-sensitive path may be speciÞed with full connections (*>) or parallel connections (=>). For parallel connec-
tions (=>), the destination shall be any scalar output or inout port or one of its bit-selects. For full connections (*>),
the destination shall be a list of one or more of the vector or scalar output and inout ports, and bit-selects or part-
selects of those ports. Refer to 13.3.5 for a description of parallel paths and full connection paths.

The data source expression is an arbitrary expression, which serves as a description of the ßow of data to the path des-
tination. This arbitrary data path description does not affect the actual propagation of data or events through the

(A => Q) = 10;
(B => Q) = (12);
(C, D *> Q) = 18;

edge_sensitive_path_declaration ::=
 parallel_edge_sensitive_path_description = path_delay_value
| full_edge_sensitive_path_description = path_delay_value

parallel_edge_sensitive_path_description ::=
 ([edge_identifier] specify_input_terminal_descriptor =>
 specify_output_terminal_descriptor [polarity_operator] :
data_source_expression))

full_edge_sensitive_path_description ::=
 ([edge_identifier] list_of_path_inputs *>
 list_of_path_outputs [polarity_operator] : data_source_expression))

data_source_expression ::= expression

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 13 157

model; how an event at the data path source propagates to the destination depends on the internal logic of the module.
The polarity operator describes whether the data path is inverting or noninverting.

Examples:

Example 1ÑThe following example demonstrates an edge-sensitive path declaration with a positive polarity operator:

(posedge clock => (out +: in)) = (10, 8);

In this example, at the positive edge of clock, a module path extends from clock to out using a rise delay of 10
and a fall delay of 8. The data path is from in to out, and in is not inverted as it propagates to out.

Example 2ÑThe following example demonstrates an edge-sensitive path declaration with a negative polarity
operator:

(negedge clock[0] => (out -: in)) = (10, 8);

In this example, at the negative edge of clock[0], a module path extends from clock[0] to out using a rise
delay of 10 and a fall delay of 8. The data path is from in to out, and in is inverted as it propagates to out.

Example 3ÑThe following example demonstrates an edge-sensitive path declaration with no edge identiÞer:

(clock => (out : in)) = (10, 8);

In this example, at any change in clock, a module path extends from clock to out.

13.3.4 State-dependent paths

A state-dependent path makes it possible to assign a delay to a module path that affects signal propagation delay
through the path only if speciÞed conditions are true.

A state-dependent path description includes the following items:

Ñ A conditional expression that, when evaluated true, enables the module path
Ñ A module path description
Ñ A delay expression that applies to the module path

The syntax for the state-dependent path declaration is shown in Syntax 13-6.

Syntax 13-6ÑSyntax of state-dependent paths

13.3.4.1 Conditional expression

The operands in the conditional expression shall be constructed from the following:

Ñ Scalar or vector module input ports or inout ports or their bit-selects or part-selects
Ñ Locally deÞned registers or nets or their bit-selects or part-selects

state_dependent_path_declaration ::=
 if (conditional_expression) simple_path_declaration
| if (conditional_expression) edge_sensitive_path_declaration
| ifnone simple_path_declaration

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

158 Section 13

Ñ Compile time constants (constant numbers and specify parameters)

Table 13-2 contains a list of valid operators that may be used in conditional expressions:

A conditional expression shall evaluate to true (1) for the state-dependent path to be assigned a delay value. If the
conditional expression evaluates to x or z, it shall be treated as true. If the conditional expression evaluates to multi-
ple bits, the least signiÞcant bit shall represent the result. The conditional expression can have any number of oper-
ands and operators.

13.3.4.2 Simple state-dependent paths

If the path description of a state-dependent path is a simple path, then it is called a simple state-dependent path. The
simple path description is discussed in 13.3.2.

Examples:

Example 1ÑThe following example uses state-dependent paths to describe the timing of an XOR gate.

Table 13-2ÑList of valid operators in state dependent path delay expression

Operator Description Operator Description

~ bit-wise negation & reduction and

& bit-wise and | reduction or

| bit-wise or ^ reduction xor

^ bit-wise xor ~& reduction nand

^~ ~^ bit-wise xnor ~| reduction nor

== logical equality ^~ ~^ reduction xnor

!= logical inequality {} concatenation

&& logical and { {} } replication

|| logical or ?: conditional

! logical not

module XORgate (a, b, out);
input a, b:
output out;

xor x1 (out, a, b);

specify
specparam noninvrise = 1, noninvfall = 2
specparam invertrise = 3, invertfall = 4;
if (a) (b => out) = (invertrise, invertfall);
if (b) (a => out) = (invertrise, invertfall);
if (~a)(b => out) = (noninvrise, noninvfall);
if (~b)(a => out) = (noninvrise, noninvfall);

endspecify
endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 13 159

In this example, Þrst two state-dependent paths describe a pair of output rise and fall delay times when the XOR gate
(x1) inverts a changing input. The last two state-dependent paths describe another pair of output rise and fall delay
times when the XOR gate buffers a changing input.

Example 2ÑThe following example models a partial ALU. The state-dependent paths specify different delays for dif-
ferent ALU operations.

In the preceding example, the Þrst three path declarations declare paths extending from operand inputs i1 and i2 to
the o1 output. The delays on these paths are assigned to operations on the basis of the operation speciÞed by the
inputs on opcode. The last path declaration declares a path from the opcode input to the o1 output.

13.3.4.3 Edge-sensitive state-dependent paths

If the path description of a state-dependent path describes an edge-dependent path, then the state-dependent path is
called an edge-sensitive state-dependent path. The edge-sensitive paths are discussed in 13.3.3.

Different delays can be assigned to the same edge-sensitive path as long as the following criteria are met:

Ñ The edge, condition, or both make each declaration unique.

Ñ The port is referenced in the same way in all path declarations (entire port, bit-select, or part-select).

Examples:

Example 1

In this example, if the positive edge of clock occurs when reset and clear are low, and a module path extends
from clock to out using a rise delay of 10 and a fall delay of 8.

Example 2ÑThe following example shows four edge-sensitive path declarations. Note that each path has a unique
edge or condition.

module ALU (o1, i1, i2, opcode);
input [7:0] i1, i2;
input [2:1] opcode;
output [7:0] o1;

//functional description omitted
specify

// add operation
if (opcode == 2Õb00) (i1,i2 *> o1) = (25.0, 25.0);
// pass-through i1 operation
if (opcode == 2Õb01) (i1 => o1) = (5.6, 8.0);
// pass-through i2 operation
if (opcode == 2Õb10) (i2 => o1) = (5.6, 8.0);
// delays on opcode changes
(opcode => o1) = (6.1, 6.5);

endspecify
endmodule

if (!reset && !clear)
(posedge clock => (out +: in)) = (10, 8) ;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

160 Section 13

Example 3ÑThe two state-dependent path declarations shown below are not legal because even though they have dif-
ferent conditions, the destinations are not speciÞed in the same way: the Þrst destination is a part-select, the second is
a bit-select.

13.3.4.4 The ifnone condition

The ifnone keyword is used to specify a default state-dependant path delay when all other conditions for the path are
false. The ifnone condition shall specify the same module path source and destination as the state-dependent module
paths. The following rules apply to module paths speciÞed with the ifnone condition:

Ñ Only simple module paths may be described with an ifnone condition.
Ñ The state-dependent paths that correspond to the ifnone path may be either simple module paths or edge-sen-

sitive paths.
Ñ If there are no corresponding state-dependent module paths to the ifnone module path, then the ifnone mod-

ule path shall be treated the same as an unconditional simple module path.
Ñ It is illegal to specify both an ifnone condition for a module path and an unconditional simple module path for

the same module path.

Examples:

Example 1ÑThe following are valid state-dependent path combinations.

specify
(posedge clk => (q[0] : data)) = (10, 5);
(negedge clk => (q[0] : data)) = (20, 12);

if (reset)
(posedge clk => (q[0] : data)) = (15, 8);

if (!reset && cntrl)
(posedge clk => (q[0] : data)) = (6, 2);

endspecify

specify
if (reset)

(posedge clk => (q[3:0]:data)) = (10,5);
if (!reset)

(posedge clk => (q[0]:data)) = (15,8);
endspecify

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 13 161

Example 2ÑThe following module path description combination is illegal because it combines a state-dependent path
using an ifnone condition and an unconditional path for the same module path.

13.3.4.5 State-dependent and unconditional path precedence

A simple module path with no edge-sensitive or state-dependent conditions is an unconditional path. If both an
unconditional path and a state-dependent path are speciÞed for the same module path, then the unconditional path
delay shall take precedence over the state-dependent path delay.

13.3.5 Full connection and parallel connection paths

The operator *> shall be used to establish a full connection between source and destination. In a full connection,
every bit in the source shall connect to every bit in the destination. The module path source need not have the same
number of bits as the module path destination.

The full connection can handle most types of module paths, since it does not restrict the size or number of source sig-
nals and destination signals. The following situations require the use of full connections:

Ñ To describe a module path between a vector and a scalar
Ñ To describe a module path between vectors of different sizes
Ñ To describe a module path with multiple sources or multiple destinations in a single statement (see 13.3.6)

The operator => shall be used to establish a parallel connection between source and destination. In a parallel connec-
tion, each bit in the source shall connect to one corresponding bit in the destination. Parallel module paths can be cre-
ated only between sources and destinations that contain the same number of bits.

Parallel connections are more restrictive than full connections. They only connect one source to one destination,
where each signal contains the same number of bits. Therefore, a parallel connection may only be used to describe a
module path between two vectors of the same size. Since scalars are one bit wide, either *> or => may be used to set
up bit-to-bit connections between two scalars.

Examples:

if (C1) (IN => OUT) = (1,1);
ifnone (IN => OUT) = (2,2);

// add operation
if (opcode == 2Õb00) (i1,i2 *> o1) = (25.0, 25.0);
// pass-through i1 operation
if (opcode == 2Õb01) (i1 => o1) = (5.6, 8.0);
// pass-through i2 operation
if (opcode == 2Õb10) (i2 => o1) = (5.6, 8.0);
// all other operations
ifnone (i2 => o1) = (15.0, 15.0);

(posedge CLK => (Q +: D)) = (1,1);
ifnone (CLK => Q) = (2,2);

if (a) (b => out) = (2,2);
if (b) (a => out) = (2,2);
ifnone (a => out) = (1,1);
(a => out) = (1,1);

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

162 Section 13

Example 1ÑFigure 13-2 illustrates how a parallel connection differs from a full connection between two 4-bit
vectors.

Figure 13-2ÑThe difference between parallel and full connection paths

Example 2ÑThe following example shows module paths for a 2:1 multiplexor with two 8-bit inputs and one 8-bit
output.

The module path from s to q uses a full connection (*>) because it connects a scalar sourceÑthe 1-bit select lineÑ
to a vector destinationÑthe 8-bit output bus. The module paths from both input lines in1 and in2 to q use a parallel
connection (=>) because they set up parallel connections between two 8-bit buses.

13.3.6 Declaring multiple module paths in a single statement

Multiple module paths may be described in a single statement by using the symbol *> to connect a comma-separated
list of sources to a comma-separated list of destinations. When describing multiple module paths in one statement, the
lists of sources and destinations may contain a mix of scalars and vectors of any size.

The connection in a multiple module path declaration is always a full connection.

 Parallel module path

0

1

2

3

0

1

2

3

Input bits Output bits
0

1

2

3

0

1

2

3

Input bits Output bits

N = number of bits = 4

Number of paths = N =

Use => to define path

4

bit-to-bit connections

Full module path

Number of paths = N * N =

Use to define path

16

bit-to-vector connections

*>

module mux8 (in1, in2, s, q) ;
output [7:0] q;
input [7:0] in1, in2;
input s;
// Functional description omitted ...
specify

(in1 => q) = (3, 4) ;
(in2 => q) = (2, 3) ;
(s *> q) = 1;

endspecify
endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 13 163

Example:

(a, b, c *> q1, q2) = 10;

is equivalent to the following six individual module path assignments:

13.3.7 Module path polarity

The polarity of a module path is an arbitrary speciÞcation indicating whether or not the direction of a signal transition
is inverted as it propagates from the input to the output. This arbitrary polarity description does not affect the actual
propagation of data or events through the model; how a rise or a fall at the source propagates to the destination
depends on the internal logic of the module.

Module paths may specify any of three polarities:

Ñ Unknown polarity
Ñ Positive polarity
Ñ Negative polarity

13.3.7.1 Unknown polarity

By default, module paths shall have unknown polarityÑthat is, a transition at the path source may propagate to the
destination in an unpredictable way, as follows:

Ñ A rise at the source may cause either a rise transition, a fall transition, or no transition at the destination.
Ñ A fall at the source may cause either a rise transition, a fall transition, or no transition at the destination.

A module path speciÞed either as a full connection or a parallel connection, but without a polarity operator + or -,
shall be treated as a module path with unknown polarity.

13.3.7.2 Positive polarity

For module paths with positive polarity, any transition at the source may cause the same transition at the destination,
as follows:

Ñ A rise at the source may cause either a rise transition or no transition at the destination.
Ñ A fall at the source may cause either a fall transition or no transition at the destination.

A module path with positive polarity shall be speciÞed by preÞxing the + polarity operator to => or *>.

13.3.7.3 Negative polarity

For module paths with negative polarity, any transition at the source may cause the opposite transition at the destina-
tion, as follows:

Ñ A rise at the source may cause either a fall transition or no transition at the destination.
Ñ A fall at the source may cause either a rise transition or no transition at the destination.

(a *> q1) = 10 ;
(b *> q1) = 10 ;
(c *> q1) = 10 ;
(a *> q2) = 10 ;
(b *> q2) = 10 ;
(c *> q2) = 10 ;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

164 Section 13

A module path with negative polarity shall be speciÞed by preÞxing the - polarity operator to => or *>.

Examples:

The following examples show each type of path polarity:

13.4 Assigning delays to module paths

The delays that occur at the module outputs where paths terminate shall be speciÞed by assigning delay values to the
module path descriptions. The syntax for specifying delay values is shown in Syntax 13-7.

Syntax 13-7ÑSyntax for path delay value

In module path delay assignments, a module path description (see 13.3) is speciÞed on the left-hand side, and one or
more delay values are speciÞed on the right-hand side. The delay values may be optionally enclosed in a pair of
parentheses. There may be one, two, three, six, or twelve delay values assigned to a module path, as described in
13.4.1. The delay values shall be constant expressions containing literals or specparams, and there may be a delay
expression of the form min:typ:max.

// Positive polarity
(In1 +=> q) = In_to_q ;
(s +*> q) = s_to_q ;

// Negative polarity
(In1 -=> q) = In_to_q ;
(s -*> q) = s_to_q ;

// Unknown polarity
(In1 => q) = In_to_q ;
(s *> q) = s_to_q ;

path_delay_value ::=
 list_of_path_delay_expressions
| (list_of_path_delay_expressions)

list_of_path_delay_expressions ::=
 t_path_delay_expression
| trise_path_delay_expression , tfall_path_delay_expression
| trise_path_delay_expression , tfall_path_delay_expression ,
tz_path_delay_expression
| t01_path_delay_expression , t10_path_delay_expression ,
t0z_path_delay_expression ,
 tz1_path_delay_expression , t1z_path_delay_expression ,
tz0_path_delay_expression
| t01_path_delay_expression , t10_path_delay_expression ,
t0z_path_delay_expression ,

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 13 165

Example:

In the example above, the specify parameters declared following the specparam keyword specify values for the mod-
ule path delays. The module path assignments assign those module path delays to the module paths.

13.4.1 Specifying transition delays on module paths

Each path delay expression may be a single valueÑrepresenting the typical delayÑor a colon-separated list of three
valuesÑrepresenting a minimum, typical, and maximum delay, in that order. If the path delay expression results in a
negative value, it shall be treated as zero. Table 13-3 describes how different path delay values shall be associated
with various transitions. The path delay expression names refer to the names used in Syntax 13-7.

Table 13-3ÑAssociating path delay expressions with transitions

Number of path delay expressions speciÞed

Transitions 1 2 3 6 12

0 -> 1 t trise trise t01 t01

1 -> 0 t tfall tfall t10 t10

0 -> z t trise tz t0z t0z

z -> 1 t trise trise tz1 tz1

1 -> z t tfall tz t1z t1z

z -> 0 t tfall tfall tz0 tz0

0 -> x * * * * t0x

x -> 1 * * * * tx1

1 -> x * * * * t1x

x -> 0 * * * * tx0

x -> z * * * * txz

z -> x * * * * tzx

* See 13.4.2.

specify
// Specify Parameters
specparam tRise_clk_q = 45:150:270, tFall_clk_q=60:200:350;
specparam tRise_Control = 35:40:45, tFall_control=40:50:65;

// Module Path Assignments
(clk => q) = (tRise_clk_q, tFall_clk_q);
(clr, pre *> q) = (tRise_control, tFall_control);

endspecify

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

166 Section 13

Example:

13.4.2 Specifying x transition delays

If the x transition delays are not explicitly speciÞed, the calculation of delay values for x transitions is based on the
following two pessimistic rules:

Ñ Transitions from a known state to x shall occur as quickly as possibleÑthat is, the shortest possible delay
shall be used for any transition to x.

Ñ Transitions from x to a known state shall take as long as possibleÑthat is, the longest possible delay shall be
used for any transition from x.

Table 13-4 presents the general algorithm for calculating delay values for x transitions, along with speciÞc examples.
The following two groups of x transitions are represented in the table:

a) Transition from a known state s to x: s → x

b) Transition from x to a known state s: x → s

// one expression specifies all transitions
(C => Q) = 20;
(C => Q) = 10:14:20;

// two expressions specify rise and fall delays
specparam tPLH1 = 12, tPHL1 = 25;
specparam tPLH2 = 12:16:22, tPHL2 = 16:22:25;
(C => Q) = (tPLH1, tPHL1) ;
(C => Q) = (tPLH2, tPHL2) ;

// three expressions specify rise, fall, and z transition delays
specparam tPLH1 = 12, tPHL1 = 22, tPz1 = 34;
specparam tPLH2 = 12:14:30, tPHL2 = 16:22:40, tPz2 = 22:30:34;
(C => Q) = (tPLH1, tPHL1, tPz1);
(C => Q) = (tPLH2, tPHL2, tPz2);

// six expressions specify transitions to/from 0, 1, and z
specparam t01 = 12, t10 = 16, t0z = 13,

 tz1 = 10, t1z = 14, tz0 = 34 ;
(C => Q) = (t01, t10, t0z, tz1, t1z, tz0) ;
specparam T01 = 12:14:24, T10 = 16:18:20, T0z = 13:16:30 ;
specparam Tz1 = 10:12:16, T1z = 14:23:36, Tz0 = 15:19:34 ;
(C => Q) = (T01, T10, T0z, Tz1, T1z, Tz0) ;

// twelve expressions specify all transition delays explicitly
specparam t01=10, t10=12, t0z=14, tz1=15, t1z=29, tz0=36,

 t0x=14, tx1=15, t1x=15, tx0=14, txz=20, tzx=30 ;
(c => Q) = (t01, t10, t0z, tz1, t1z, tz0,

t0x, tx1, t1x, tx0, txz, tzx) ;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 13 167

13.5 Mixing module path delays and distributed delays

If a module contains module path delays and distributed delays (delays on primitive instances within the module), the
larger of the two delays for each path shall be used.

Examples:

Example 1ÑFigure 13-3 illustrates a simple circuit modeled with a combination of distributed delays and path delays
(only the D input to Q output path is illustrated). Here, the delay on the module path from input D to output Q = 22,
while the sum of the distributed delays = 0 + 1 = 1. Therefore, a transition on Q caused by a transition on D will occur
22 time units after the transition on D.

Table 13-4ÑCalculating delays for x transitions

X transition Delay value

General algorithm

s → x minimum (s → other known signals)

x → s maximum (other known signals → s)

SpeciÞc transitions

0 → x minimum (0 → z delay, 0 → 1 delay)

1 → x minimum (1 → z delay, 1 → 0 delay)

z → x minimum (z → 1 delay, z → 0 delay)

x → 0 maximum (z → 0 delay, 1 → 0 delay)

x → 1 maximum (z → 1 delay, 0 → 1 delay)

x → z maximum (1 → z delay, 0 → z delay)

Usage: (C => Q) = (5, 12, 17, 10, 6, 22) ;

0 → x minimum (17, 5) = 5

1 → x minimum (6, 12) = 6

z → x minimum (10, 22) = 10

x → 0 maximum (22, 12) = 22

x → 1 maximum (10, 5) = 10

x → z maximum (6, 17) = 17

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

168 Section 13

Figure 13-3ÑModule path delays longer than distributed delays

Example 2ÑIn Figure 13-4, the delay on the module path from D to Q = 22, but the distributed delays along that mod-
ule path now add up to 10 + 20 = 30. Therefore, an event on Q caused by an event on D will occur 30 time units after
the event on D.

Figure 13-4ÑModule path delays shorter than distributed delays

13.6 Driving wired logic

Module path output nets shall not have more than one driver within the module. Therefore, wired logic is not allowed
at module path outputs.

Figure 13-6 illustrates a violation of this wired-output rule and a method of avoiding the rule violation.

A

B

C

D

Q1

0

0

22

 = distributed delayn

= module path delay
n

A

B

C

D

Q = distributed delay
20

10

10

n

22
= module path delay

n

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 13 169

Figure 13-5ÑLegal and illegal module paths

In Figure 13-5 (a), any module path to S is illegal because the path destination has two drivers.

Assuming signal S in Figure 13-5 (a) is a wired-and, this limitation can be circumvented by replacing wired logic
with gated logic to create a single driver to the output. Figure 13-5 (b) shows how adding a third and gateÑthe
shaded gateÑsolves the problem for the module in Figure 13-5 (a).

The example in Figure 13-6 is also illegal. In this example, when the outputs Q and R are wired together, it creates a
condition where both paths have multiple drivers from within the same module.

Figure 13-6ÑIIllegal module paths

Although multiple output drivers to a path destination are prohibited inside the same module, they are allowed outside
the module. The example in Figure 13-7 is legal since Q and R each have only one driver within the module in which
the module paths are speciÞed.

E
F

G
H

S

(a) (b)

E
F

G
H

S

A
B

C
D

R

Q

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

170 Section 13

Figure 13-7ÑLegal module paths

13.7 Controlling pulses on module paths with PATHPULSE$

A pulse is made up of two scheduled transitions on a module path destination that occur in a shorter period of time
than the delay speciÞed for that module path. By default, pulses on a path destination are rejected. That is, only tran-
sitions that are the same as or longer than the module path delay will propagate to the path destination. This is analo-
gous to the inertial delay model of pulse propagation.

A special specparam, PATHPULSE$, is used to specify a range of pulse widths that will propagate to the path desti-
nation. The following pulse width ranges are speciÞed using PATHPULSE$:

Ñ A pulse width range for which a pulse shall be rejected
Ñ A pulse width range for which a pulse shall be allowed to propagate to the path destination
Ñ A pulse width range for which a pulse shall generate a logic x on the path destination

The syntax for specifying pulse control ranges is given in Syntax 13-8.

Syntax 13-8ÑSyntax for PATHPULSE$ pulse control

The reject limit value deÞnes a reject limit for the pulse control range. A pulse that is less than the reject limit shall
not propagate to the module path destination. Any pulse that is greater than the reject limit shall propagate to the path
destination as determined by the error limit value.

A
B

C
D

E
F

G
H

R

Q

pulse_control_specparam ::=
 PATHPULSE$ = (reject_limit_value [, error_limit_value]) ;
| PATHPULSE$specify_input_terminal_descriptor$specify_output_terminal_descriptor
 = (reject_limit_value [, error_limit_value]) ;

limit_value ::= constant_mintypmax_expression

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 13 171

The error limit value deÞnes an error limit for the pulse control range. A pulse that is less than the error limit but
greater than or equal to the reject limit shall generate a logic x on the path destination. Any pulse that is greater than
the error limit shall propagate to the path destination.

If only the reject limit value is speciÞed, that value shall apply to both the reject limit and the error limit.

The reject limit and error limit may be speciÞed for a speciÞc module path. When no module path is speciÞed, then
the reject limit and error limit shall apply to all module paths deÞned in a module. If both path-speciÞc PATH-
PULSE$ specparams and a non-path-speciÞc PATHPULSE$ specparam appear in the same module, then the path-
speciÞc specparams shall take precedence for the speciÞed paths.

The module path input terminals and output terminals shall conform to the rules for module path inputs and outputs,
with the following restriction: the terminals may not be a bit-select or part-select of a vector.

If a module path declaration declares multiple paths, then the PATHPULSE$ specparam shall only be speciÞed for the
Þrst path input terminal and the Þrst path output terminal. The reject limit and error limit speciÞed shall apply to all
other paths in the multiple path declaration.

Example:

In the following example, the path (clk=>q) acquires a reject limit of 2 and an error limit of 9, as deÞned by the
Þrst PATHPULSE$ declaration. The paths (clr*>q) and (pre*>q) receive a reject limit of 0 and an error limit of
4, as speciÞed by the second PATHPULSE$ declaration. The path (data=>q) is not explicitly deÞned in any of the
PATHPULSE$ declarations, and so it acquires reject and error limit of 3, as deÞned by the last PATHPULSE$ decla-
ration.

specify
(clk => q) = 12;
(data => q) = 10;
(clr, pre *> q) = 4;

specparam
PATHPULSEclkq = (2,9),
PATHPULSEclrq = (0,4),
PATHPULSE$ = 3;

endspecify

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

172 Section 14

Section 14

System tasks and functions

This section describes system tasks and functions that are considered part of the Verilog HDL. These system tasks and
functions are divided into ten categories as follows:

These utility tasks and functions provide some broadly useful capabilities. The following clauses describe the behav-
ior of these tasks and functions. Additional tasks for value change dump (VCD) are described in Section 15.

Display tasks [14.1]
$display $strobe
$displayb $strobeb
$displayh $strobeh
$displayo $strobeo
$monitor $write
$monitorb $writeb
$monitorh $writeh
$monitoro $writeo
$monitoroff $monitoron

File I/O tasks [14.2]
$fclose $fopen
$fdisplay $fstrobe
$fdisplayb $fstrobeb
$fdisplayh $fstrobeh
$fdisplayo $fstrobeo
$fmonitor $fwrite
$fmonitorb $fwriteb
$fmonitorh $fwriteh
$fmonitoro $fwriteo
$readmemb $readmemh

Timescale tasks [14.3]
$printtimescale $timeformat

Simulation control tasks [14.4]
$Þnish $stop

Timing check tasks [14.5]
$hold $nochange
$period $recovery
$setup $setuphold
$skew $width

PLA modeling tasks [14.6]
$async$and$array $sync$and$plane
$async$nand$array $sync$nand$plane
$async$or$array $sync$or$plane
$async$nor$array $sync$nor$plane
$async$and$array $sync$and$plane
$async$nand$array $sync$nand$plane
$async$or$array $sync$or$plane
$async$nor$array $sync$nor$plane

Stochastic analysis tasks [14.7]
$q_initialize $q_add
$q_remove $q_full
$q_exam $random

Simulation time functions [14.8]
$realtime $stime
$time

Conversion functions for reals [14.9]
$bitstoreal $realtobits
$itor $rtoi

Probabilistic distribution functions [14.10]
$dist_chi_square $dist_erlang
$dist_exponential $dist_normal
$dist_poisson $dist_t
$dist_uniform

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 14 173

14.1 Display system tasks

The display group of system tasks are divided into three categories: the display and write tasks, strobed monitoring
tasks, and continuous monitoring tasks.

14.1.1 The display and write tasks

Syntax 14-1ÑSyntax for $display and $write system tasks

These are the main system task routines for displaying information. The two sets of tasks are identical except that

$display

 automatically adds a newline character to the end of its output, whereas the

$write

 task does not.

The

$display

 and

$write

 tasks display their arguments in the same order as they appear in the argument list. Each
argument can be a quoted string, an expression that returns a value, or a null argument.

The contents of string arguments are output literally except when certain escape sequences are inserted to display spe-
cial characters or to specify the display format for a subsequent expression.

Escape sequences are inserted into a string in three ways:

Ñ The special character \ indicates that the character to follow is a literal or nonprintable character (see Table 14-
1).

Ñ The special character

%

 indicates that the next character should be interpreted as a format speciÞcation that
establishes the display format for a subsequent expression argument (see Table 14-2). For each

%

 character
that appears in a string, a corresponding expression argument shall be supplied after the string.

Ñ The special character string

%%

 indicates the display of the percent sign character

%

 (see Table 14-1).

Any null argument produces a single space character in the display. (A null argument is characterized by two adjacent
commas in the argument list.)

The

$display

 task, when invoked without arguments, simply prints a newline character. A

$write

 task supplied with-
out parameters prints nothing at all.

14.1.1.1 Escape sequences for special characters

The escape sequences given in Table 14-1, when included in a string argument, cause special characters to be
displayed.

Table 14-1ÑEscape sequences for printing special characters

\n The newline character

\t The tab character

\\ The \ character

display_tasks ::= display_task_name (list_of_arguments) ;
display_task_name ::=

 $display | $displayb | $displayo | $displayh
| $write | $writeb | $writeo | $writeh

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

174 Section 14

Example:

14.1.1.2 Format speciÞcations

Table 14-2 shows the escape sequences used for format speciÞcations. Each escape sequence, when included in a
string argument, speciÞes the display format for a subsequent expression. For each

%

 character (except

%m

) that
appears in a string, a corresponding expression shall follow the string in the argument list. The value of the expression
replaces the format speciÞcation when the string is displayed.

Any expression argument that has no corresponding format speciÞcation is displayed using the default decimal for-
mat in

$display

 and

$write

, binary format in

$displayb

 and

$writeb

, octal format in

$displayo

 and

$writeo

, and
hexadecimal format in

$displayh

 and

$writeh

.

The format speciÞcations in Table 14-3 are used with real numbers and have the full formatting capabilities available
in the C language. For example, the format speciÞcation

%10.3g

 speciÞes a minimum Þeld width of 10 with 3 frac-
tional digits.

\" The " character

\ddd A character speciÞed by 1 to 3 octal digits

%% The % character

Table 14-2ÑEscape sequences for format speciÞcations

%h or %H Display in hexadecimal format

%d or %D Display in decimal format

%o or %O Display in octal format

%b or %B Display in binary format

%c or %C Display in ASCII character format

%v or %V Display net signal strength

%m or %M Display hierarchical name

%s or %S Display as a string

%t or %T Display in current time format

Table 14-1ÑEscape sequences for printing special characters

(continued)

module disp;
initial begin
 $display("\\\t\\\n\"\123");
end
endmodule

\ \
"S

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 14 175

The net signal strength, hierarchical name, and string format speciÞcations are described in 14.1.1.5 through 14.1.1.7.

The

%t

 format speciÞcation works with the

$timeformat

 system task to specify a uniform time unit, time precision,
and format for reporting timing information from various modules that use different time units and precisions. The

$timeformat

 task is described in 14.3.2.

Example:

14.1.1.3 Size of displayed data

For expression arguments, the values written to the output Þle (or terminal) are sized automatically.

For example, the result of a 12-bit expression would be allocated three characters when displayed in hexadecimal for-
mat and four characters when displayed in decimal format, since the largest possible value for the expression is FFF
(hexadecimal) and 4095 (decimal).

When displaying decimal values, leading zeros are suppressed and replaced by spaces. In other radices, leading zeros
are always displayed.

The automatic sizing of displayed data may be overridden by inserting a zero between the

%

 character and the letter

Table 14-3ÑFormat speciÞcations for real numbers

%e or %E Display ÔrealÕ in an exponential format

%f or %F Display ÔrealÕ in a decimal format

%g or %G Display ÔrealÕ in exponential or decimal format, which-
ever format results in the shorter printed output

module disp;
reg [31:0] rval;
pulldown (pd);
initial begin
 rval = 101;
 $display("rval = %h hex %d decimal",rval,rval);
 $display("rval = %o octal\nrval = %b bin",rval,rval);
 $display("rval has %c ascii character value",rval);
 $display("pd strength value is %v",pd);
 $display("current scope is %m");
 $display("%s is ascii value for 101",101);
 $display("simulation time is %t", $time);
end
endmodule

rval = 00000065 hex 101 decimal
rval = 00000000145 octal
rval = 00000000000000000000000001100101 bin
rval has e ascii character value
pd strength value is StX
current scope is disp
e is ascii value for 101
simulation time is 0

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

176 Section 14

that indicates the radix, as shown in the following example.

$display

("d=%0h a=%0h", data, addr);

Example:

In this example, the result of a 12-bit expression is displayed. The Þrst call to

$display

 uses the standard format spec-
iÞer syntax and produces results requiring four and three columns for the decimal and hexadecimal radices, respec-
tively. The second

$display

 call uses the

%0

 form of the format speciÞer syntax and produces results requiring two
columns and one column, respectively.

14.1.1.4 Unknown and high impedance values

When the result of an expression contains an unknown or high impedance value, the following rules apply to display-
ing that value.

In decimal (

%d

) format:

Ñ If all bits are at the unknown value, a single lowercase ÒxÓ character is displayed.

Ñ If all bits are at the high impedance value, a single lowercase ÒzÓ character is displayed.

Ñ If some, but not all, bits are at the unknown value, the uppercase ÒXÓ character is displayed.

Ñ If some, but not all, bits are at the high impedance value, the uppercase ÒZÓ character is displayed.

Ñ Decimal numerals always appear right-justiÞed in a Þxed-width Þeld.

In hexadecimal (

%h

) and octal (

%o

) formats:

Ñ Each group of 4 bits is represented as a single hexadecimal digit; each group of 3 bits is represented as a sin-
gle octal digit.

Ñ If all bits in a group are at the unknown value, a lowercase ÒxÓ is displayed for that digit.

Ñ If all bits in a group are at a high impedance state, a lowercase ÒzÓ is printed for that digit.

Ñ If some, but not all, bits in a group are unknown, an uppercase ÒXÓ is displayed for that digit.

Ñ If some, but not all, bits in a group are at a high impedance state, then an uppercase ÒZÓ is displayed for that
digit.

In binary (

%b

) format, each bit is printed separately using the characters 0, 1, x, and z.

module printval;
reg [11:0] r1;
initial begin
 r1 = 10;
 $display("Printing with maximum size - :%d: :%h:", r1,r1);
 $display("Printing with minimum size - :%0d: :%0h:", r1,r1);
end
endmodule

Printing with maximum size - : 10: :00a:
Printing with minimum size - :10: :a:

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 14 177

Example:

14.1.1.5 Strength format

The %v format speciÞcation is used to display the strength of scalar nets. For each %v speciÞcation that appears in a
string, a corresponding scalar reference shall follow the string in the argument list.

The strength of a scalar net is reported in a three-character format. The Þrst two characters indicate the strength. The
third character indicates the current logic value of the scalar and may be any one of the values given in Table 14-4.

The Þrst two charactersÑthe strength charactersÑare either a two-letter mnemonic or a pair of decimal digits. Usu-
ally, a mnemonic is used to indicate strength information; however, in less typical cases, a pair of decimal digits may
be used to indicate a range of strength levels. Table 14-5 shows the mnemonics used to represent the various strength
levels.

Table 14-4ÑLogic value component of strength format

0 For a logic 0 value

1 For a logic 1 value

X For an unknown value

Z For a high impedance value

L For a logic 0 or high impedance value

H For a logic 1 or high impedance value

Table 14-5ÑMnemonics for strength levels

Mnemonic Strength name Strength level

Su Supply drive 7

St Strong drive 6

Pu Pull drive 5

La Large capacitor 4

We Weak drive 3

Me Medium capacitor 2

Sm Small capacitor 1

Hi High impedance 0

STATEMENT RESULT
 $display("%d", 1Õbx); x
 $display("%h", 14Õbx01010); xxXa
 $display("%h %o", 12Õb001xxx101x01,
 12Õb001xxx101x01); XXX 1x5X

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

178 Section 14

Note that there are four driving strengths and three charge storage strengths. The driving strengths are associated with
gate outputs and continuous assignment outputs. The charge storage strengths are associated with the trireg type net.
(See Section 7 for strength modeling.)

For the logic values 0 and 1, a mnemonic is used when there is no range of strengths in the signal. Otherwise, the
logic value is preceded by two decimal digits, which indicate the maximum and minimum strength levels.

For the unknown value, a mnemonic is used when both the 0 and 1 strength components are at the same strength
level. Otherwise, the unknown value X is preceded by two decimal digits, which indicate the 0 and 1 strength levels
respectively.

The high impedance strength cannot have a known logic value; the only logic value allowed for this level is Z.

For the values L and H, a mnemonic is always used to indicate the strength level.

Examples:

always
#15 $display($time,,"group=%b signals=%v %v %v",{s1,s2,s3}, s1, s2, s3);

The example below shows the output that might result from such a call, while Table 14-6 explains the various strength
formats that appear in the output.

14.1.1.6 Hierarchical name format

The %m format speciÞer does not accept an argument. Instead, it causes the display task to print the hierarchical name
of the module, task, function, or named block that invokes the system task containing the format speciÞer. This is use-

Table 14-6ÑExplanation of strength formats

St1 Means a strong driving 1 value

Pu0 Means a pull driving 0 value

HiZ Means the high-impedance state

Me0 Means a 0 charge storage of medium capacitor strength

StX Means a strong driving unknown value

PuH Means a pull driving strength of 1 or high-impedance value

65X Means an unknown value with a strong driving 0 component
and a pull driving 1 component

520 Means an 0 value with a range of possible strength from pull
driving to medium capacitor

 0 group=111 signals=St1 Pu1 St1
15 group=011 signals=Pu0 Pu1 St1
30 group=0xz signals=520 PuH HiZ
45 group=0xx signals=Pu0 65X StX
60 group=000 signals=Me0 St0 St0

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 14 179

ful when there are many instances of the module that calls the system task. One obvious application is timing check
messages in a ßip-ßop or latch module; the %m format speciÞer will pinpoint the module instance responsible for gen-
erating the timing check message.

14.1.1.7 String format

The %s format speciÞer is used to print ASCII codes as characters. For each %s speciÞcation that appears in a string,
a corresponding parameter shall follow the string in the argument list. The associated argument is interpreted as a
sequence of 8-bit hexadecimal ASCII codes, with each 8 bits representing a single character. If the argument is a vari-
able, its value should be right-justiÞed so that the rightmost bit of the value is the least-signiÞcant bit of the last char-
acter in the string. No termination character or value is required at the end of a string, and leading zeros are never
printed.

14.1.2 Strobed monitoring

Syntax 14-2ÑSyntax for $strobe system tasks

The system task $strobe provides the ability to display simulation data at a selected time. That time is the end of the
current simulation time, when all the simulation events that have occurred for that simulation time, just before simu-
lation time is advanced. The arguments for this task are speciÞed in exactly the same manner as for the $display sys-
tem taskÑincluding the use of escape sequences for special characters and format speciÞcations (see 14.1.1).

Example:

forever @(negedge clock)
$strobe ("At time %d, data is %h",$time,data);

In this example, $strobe will write the time and data information to the standard output and the log Þle at each nega-
tive edge of the clock. The action will occur just before simulation time is advanced and after all other events at that
time have occurred, so that the data written is sure to be the correct data for that simulation time.

14.1.3 Continuous monitoring

Syntax 14-3ÑSyntax for $monitor system tasks

The $monitor task provides the ability to monitor and display the values of any variables or expressions speciÞed as
arguments to the task. The arguments for this task are speciÞed in exactly the same manner as for the $display system
taskÑincluding the use of escape sequences for special characters and format speciÞcations (see 14.1.1).

strobe_tasks ::= strobe_task_name (list_of_arguments) ;
strobe_task_name ::=

$strobe | $strobeb | $strobeo | $strobeh

monitor_tasks ::=
monitor_task_name [(list_of_arguments)] ;
| $monitoron ;
| $monitoroff ;

monitor_task_name ::=
$monitor | $monitorb | $monitoro | $monitorh

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

180 Section 14

When a $monitor task is invoked with one or more arguments, the simulator sets up a mechanism whereby each time
a variable or an expression in the argument list changes valueÑwith the exception of the $time, $stime or $realtime
system functionsÑthe entire argument list is displayed at the end of the time step as if reported by the $display task.
If two or more arguments change value at the same time, only one display is produced that shows the new values.

Only one $monitor display list can be active at any one time; however, a new $monitor task with a new display list
may be issued any number of times during simulation.

The $monitoron and $monitoroff tasks control a monitor ßag that enables and disables the monitoring. Use $moni-
toroff to turn off the ßag and disable monitoring. The $monitoron system task can be used to turn on the ßag so that
monitoring is enabled and the most recent call to $monitor can resume its display. A call to $monitoron shall pro-
duce a display immediately after it is invoked, regardless of whether a value change has taken place; this is used to
establish the initial values at the beginning of a monitoring session. By default, the monitor ßag is turned on at the
beginning of simulation.

14.2 File input-output system tasks

The system tasks and functions for Þle-based operations are divided into three categories:

Ñ Tasks that open and close Þles
Ñ Tasks that output values into Þles
Ñ Tasks that read values from Þles and load into memory

14.2.1 Opening and closing Þles

Syntax 14-4ÑSyntax for $fopen and $fclose system tasks

The function $fopen opens the Þle speciÞed as an argument and returns a 32-bit unsigned multichannel descriptor
that is uniquely associated with the Þle. It returns 0 if the Þle could not be opened for writing.

The multichannel descriptor should be thought of as a set of 32 ßags, where each ßag represents a single output chan-
nel. The least signiÞcant bit (bit 0) of a multichannel descriptor always refers to the standard output. The standard
output is also called channel 0. The other bits refer to channels that have been opened by the $fopen system function.

The Þrst call to $fopen opens channel 1 and returns a multichannel descriptor value of 2Ñthat is, bit 1 of the descrip-
tor is set. A second call to $fopen opens channel 2 and returns a value of 4Ñthat is, only bit 2 of the descriptor is set.
Subsequent calls to $fopen open channels 3, 4, 5, and so on and return values of 8, 16, 32, and so on, up to a maxi-
mum of 32 open channels. Thus, a channel number corresponds to an individual bit in a multichannel descriptor.

The $fclose system task closes the channels speciÞed in the multichannel descriptor and does not allow any further
output to the closed channels. The $fopen task will reuse channels that have been closed.

NOTEÑThe number of simultaneous output channels that may be active at any one time is dependent on the operating system.

file_open_function ::=
integer multi_channel_descriptor = $fopen (" file_name ") ;

file_close_task ::=
$fclose (multi_channel_descriptor) ;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 14 181

14.2.2 File output system tasks

Syntax 14-5ÑSyntax for file output system tasks

Each of the four formatted display tasksÑ$display, $write, $monitor, and $strobeÑhas a counterpart that writes to
speciÞc Þles as opposed to the standard output. These counterpart tasksÑ$fdisplay, $fwrite, $fmonitor, and
$fstrobeÑaccept the same type of arguments as the tasks upon which they are based, with one exception: The Þrst
parameter shall be a multichannel descriptor that indicates where to direct the Þle output. A multichannel descriptor is
either a variable or the result of an expression that takes the form of a 32-bit unsigned integer value. The value of the
multichannel descriptor determines to which open Þles the task will write.

The $fstrobe and $fmonitor system tasks work just like their counterparts, $strobe and $monitor, except that they
write to Þles using the multichannel descriptor for control. Unlike $monitor, any number of $fmonitor tasks can be
set up to be simultaneously active. However, there is no counterpart to $monitoron and $monitoroff tasks.

Example:

This example shows how to set up multichannel descriptors. In this example, three different channels are opened
using the $fopen function. The three multichannel descriptors that are returned by the function are then combined in
a bit-wise or operation and assigned to the integer variable messages. The messages variable can then be
used as the Þrst parameter in a Þle output task to direct output to all three channels at once. To create a descriptor that
directs output to the standard output as well, the messages variable is a bit-wise logical or with the constant 1,
which effectively enables channel 0.

The following Þle output tasks show how the channels opened in the preceding example might be used:

file_output_tasks ::=
file_output_task_name (multi_channel_descriptor , list_of_arguments) ;

file_output_task_name ::=
 $fdisplay | $fdisplayb | $fdisplayh | $fdisplayf
| $fwrite | $fwriteb | $fwriteh | $fwritef
| $fstrobe | $fstrobebb | $fstrobeh | $fstrobef
| $fmonitor | $fmonitorb | $fmonitorh | $fmonitorf

integer
messages, broadcast,
cpu_chann, alu_chann, mem_chann;

initial begin
cpu_chann = $fopen("cpu.dat");
if (cpu_chann == 0) $finish;
alu_chann = $fopen("alu.dat");
if (alu_chann == 0) $finish;
mem_chann = $fopen("mem.dat");
if (mem_chann == 0) $finish;
messages = cpu_chann | alu_chann | mem_chann;
// broadcast includes standard output
broadcast = 1 | messages;

end
endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

182 Section 14

14.2.3 Loading memory data from a Þle

Syntax 14-6ÑSyntax for memory load system tasks

Two system tasksÑ$readmemb and $readmemhÑread and load data from a speciÞed text Þle into a speciÞed
memory. Either task may be executed at any time during simulation. The text Þle to be read shall contain only the fol-
lowing:

Ñ White space (spaces, new lines, tabs, and form-feeds)
Ñ Comments (both types of comment are allowed)
Ñ Binary or hexadecimal numbers

The numbers shall have neither the length nor the base format speciÞed. For $readmemb, each number shall be
binary. For $readmemh, the numbers shall be hexadecimal. The unknown value (x or X), the high impedance value
(z or Z), and the underscore (_) can be used in specifying a number as in a Verilog HDL source description. White
space and/or comments shall be used to separate the numbers.

In the following discussion, the term ÒaddressÓ refers to an index into the array that models the memory.

As the Þle is read, each number encountered is assigned to a successive word element of the memory. Addressing is
controlled both by specifying start and/or Þnish addresses in the system task invocation and by specifying addresses
in the data Þle.

When addresses appear in the data Þle, the format is an ÒatÓ character (@) followed by a hexadecimal number as fol-
lows:

 @hh...h

Both uppercase and lowercase digits are allowed in the number. No white space is allowed between the @ and the
number. As many address speciÞcations as needed within the data Þle may be used. When the system task encounters
an address speciÞcation, it loads subsequent data starting at that memory address.

If no addressing information is speciÞed within the system task, and no address speciÞcations appear within the data
Þle, then the default start address is the left-hand address given in the declaration of the memory. Consecutive words
are loaded until either the memory is full or the data Þle is completely read. If the start address is speciÞed in the task
without the Þnish address, then loading starts at the speciÞed start address and continues towards the right-hand

$fdisplay(broadcast, "system reset at time %d",$time);

$fdisplay(messages, "Error occurred on address bus",
" at time %d, address = %h", $time, address);

forever @(posedge clock)
 $fdisplay(alu_chann, "acc= %h f=%h a=%h b=%h", acc, f, a, b);

load_memory_tasks ::=
 $readmemb (" file_name " , memory_name [, start_addr [, finish_addr]]) ;
| $readmemh (" file_name " , memory_name [, start_addr [, finish_addr]]) ;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 14 183

address given in the declaration of the memory.

If both start and Þnish addresses are speciÞed as parameters to the task, then loading begins at the start address and
continues toward the Þnish address, regardless of how the addresses are speciÞed in the memory declaration.

When addressing information is speciÞed both in the system task and in the data Þle, the addresses in the data Þle
shall be within the address range speciÞed by the system task parameters; otherwise, an error message is issued and
the load operation is terminated.

A warning message is issued if the number of data words in the Þle differs from the number of words in the range
implied by the start through Þnish addresses.

Example:

reg [7:0] mem[1:256];

Given this declaration, each of the following statements will load data into mem in a different manner:

initial $readmemh("mem.data", mem);
initial $readmemh("mem.data", mem, 16);
initial $readmemh("mem.data", mem, 128, 1);

The Þrst statement will load up the memory at simulation time 0 starting at the memory address 1. The second state-
ment will begin loading at address 16 and continue on towards address 256. For the third and Þnal statement, loading
will begin at address 128 and continue down towards address 1.

In the third case, when loading is complete, a Þnal check is performed to ensure that exactly 128 numbers are con-
tained in the Þle. If the check fails, a warning message is issued.

14.3 Timescale system tasks

The following system tasks display and set timescale information:

a) $printtimescale

b) $timeformat

14.3.1 $printtimescale

The $printtimescale system task displays the time unit and precision for a particular module.

Syntax:

$printtimescale [(hierarchical_name)] ;

This system task can be speciÞed with or without an argument.

Ñ When no argument is speciÞed, $printtimescale displays the time unit and precision of the module that is the
current scope.

Ñ When an argument is speciÞed, $printtimescale displays the time unit and precision of the module passed to
it.

The timescale information appears in the following format:

Time scale of (module_name) is unit / precision

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

184 Section 14

Example:

In this example, module a_dat invokes the $printtimescale system task to display timescale information about
another module c_dat, which is instantiated in module b_dat.

The information about c_dat is displayed in the following format:

Time scale of (b_dat.c1) is 1ns / 1ns

14.3.2 $timeformat

Syntax:

$timeformat [(units_number , precision_number , suffix_string , minimum_field_width)] ;

The $timeformat system task performs the following two functions:

Ñ It speciÞes how the %t format speciÞcation reports time information for the $write, $display, $strobe,
$monitor, $fwrite, $fdisplay, $fstrobe, and $fmonitor group of system tasks.

Ñ It speciÞes the time unit for delays entered interactively.

The units number argument shall be an integer in the range from 0 to -15. This argument represents the time unit as
shown in Table 14-7.

Table 14-7Ñ$timeformat units_number arguments

Unit number Time unit Unit number Time unit

0 1 s -8 10 ns

-1 100 ms -9 1 ns

-2 10 ms -10 100 ps

-3 1 ms -11 10 ps

`timescale 1 ms / 1 us
module a_dat;
initial

$printtimescale(b_dat.c1);
endmodule

`timescale 10 fs / 1 fs
module b_dat;

c_dat c1 ();
endmodule

`timescale 1 ns / 1 ns
module c_dat;

.

.

.
endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 14 185

The $timeformat system task performs the following two operations:

Ñ It sets the time unit for all later-entered delays entered interactively.
Ñ It sets the time unit, precision number, sufÞx string, and minimum Þeld width for all %t formats speciÞed in

all modules that follow in the source description until another $timeformat system task is invoked.

The default $timeformat system task arguments are given in Table 14-8.

Example:

The following example shows the use of %t with the $timeformat system task to specify a uniform time unit, time
precision, and format for timing information.

-4 100 us -12 1 ps

-5 10 us -13 100 fs

-6 1 us -14 10 fs

-7 100 ns -15 1 fs

Table 14-8Ñ$timeformat default value for arguments

Argument Default

units_number The smallest time precision argument of all the `timescale compiler
directives in the source description

precision_number 0

sufÞx_string A null character string

minimum_Þeld_width 20

Table 14-7Ñ$timeformat units_number arguments (continued)

Unit number Time unit Unit number Time unit

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

186 Section 14

The contents of Þle a1.dat are as follows:

a1_dat: 0.00000 ns in1= x o1=x
a1_dat: 10.00000 ns in1= 0 o1=x
a1_dat: 20.00000 ns in1= 1 o1=0
a1_dat: 30.00000 ns in1= 1 o1=1

The contents of Þle a2.dat are as follows:

a2_dat: 0.00000 ns in2=x o2=x
a2_dat: 10.00000 ns in2=0 o2=x
a2_dat: 20.00000 ns in2=1 o2=0
a2_dat: 30.00000 ns in2=1 o2=1

In this example, the times of events written to the Þles by the $fmonitor system task in modules a1_dat and
a2_dat are reported as multiples of 1 nsÑeven though the time units for these modules are 1 fs and 1 ps respec-
tivelyÑbecause the Þrst argument of the $timeformat system task is -9 and the %t format speciÞcation is included
in the arguments to $fmonitor. This time information is reported after the module names with Þve fractional digits,
followed by an ÒnsÓ character string in a space wide enough for 10 ASCII characters.

`timescale 1 ms / 1 ns
module cntrl;
initial

$timeformat(-9, 5, " ns", 10);
endmodule

`timescale 1 fs / 1 fs
module a1_dat;
reg in1;
integer file;
buf #10000000 (o1,in1);
initial begin

file = $fopen("a1.dat");
#00000000 $fmonitor(file,"%m: %t in1=%d o1=%h", $realtime,in1,o1);
#10000000 in1 = 0;
#10000000 in1 = 1;

end
endmodule

`timescale 1 ps / 1 ps
module a2_dat;
reg in2;
integer file2;
buf #10000 (o2,in2);
initial begin

file2=$fopen("a2.dat");
#00000 $fmonitor(file2,"%m: %t in2=%d o2=%h",$realtime,in2,o2);
#10000 in2 = 0;
#10000 in2 = 1;

end
endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 14 187

14.4 Simulation control system tasks

There are two simulation control system tasks:

a) $finish

b) $stop

14.4.1 $Þnish

Syntax:

$finish [(n)] ;

The $finish system task simply makes the simulator exit and pass control back to the host operating system. If an
expression is supplied to this task, then its value determines the diagnostic messages that are printed before the
prompt is issued. If no argument is supplied, then a value of 1 is taken as the default.

14.4.2 $stop

Syntax:

$stop [(n)] ;

The $stop system task causes simulation to be suspended. This task takes an optional expression argument (0, 1, or 2)
that determines what type of diagnostic message is printed. The amount of diagnostic messages output increases with
the value of the optional argument passed to $stop.

14.5 Timing check system tasks

The timing check tasks may be invoked in specify blocks to verify the timing performance of a design by making sure
critical events occur within given time limits.

Timing checks perform the following steps:

a) Determine the elapsed time between two events.

b) Compare the elapsed time to a speciÞed limit.

c) Report a timing violation (if the elapsed time does not fall within the speciÞed time window).

The following system tasks may be used for performing timing checks:

$setup $hold $setuphold $period
$skew $recovery $width $nochange

Table 14-9ÑDiagnostic messages for $stop and $Þnish

Parameter value Diagnostic message

0 Prints nothing

1 Prints simulation time and location

2 Prints simulation time, location, and statistics about the memory
and CPU time used in simulation

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

188 Section 14

Table 14-10 describes the arguments to these system tasks, which are explained with individual system task as well.

14.5.1 $setup

Syntax:

$setup (data_event , reference_event , limit [, notifier]) ;

Table 14-11 deÞnes the $setup system task arguments.

The $setup timing check reports a timing violation in the following case:

(time of reference event) - (time of data event) < limit

If the reference event and data event occur at the same simulation time, $setup performs the timing check before it
records the new data event value; therefore, no violation occurs.

14.5.2 $hold

Syntax:

$hold (reference_event , data_event , limit [, notifier]) ;

Table 14-10ÑTiming check arguments

Argument Description Type

reference_event The transition at a control signal that
establishes the reference time for tracking
timing violations on the data_event

Module input or inout
that is scalar or vector net

data_event The signal change that initiates the timing
check and is monitored for violations

Module input or inout
that is scalar or vector net

limit A time limit used to detect timing viola-
tions on the data_event

Constant expression or
specparam

threshold The largest pulse width that is ignored by
the timing check $width

Constant expression or
specparam

setup_limit A time limit used to detect timing viola-
tions on the data_event for $setup

Constant expression or
specparam

hold_limit A time limit used to detect timing viola-
tions on the data_event for $hold

Constant expression or
specparam

notiÞer (optional) An optional argument that ÒnotiÞesÓ the
simulator when a timing violation occurs

Register

Table 14-11Ñ$setup arguments

data_event Lower bound event

reference_event Upper bound event

limit Positive constant expression or specparam

notiÞer (optional) Register

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 14 189

Table 14-12 deÞnes the $hold system task arguments.

$hold system task reports a violation in the following case:

(time of data event) - (time of reference event) < limit

$hold always records the new reference event time before it performs the timing check. Therefore, if reference and
data events occur at the same simulation time, there will be a violation.

14.5.3 $setuphold

Syntax:

$setuphold (reference_event , data_event , setup_limit , hold_limit , [notifier]) ;

Table 14-13 deÞnes the $setuphold system task arguments.

Besides being a constant expression or a specparam, the setup limit and hold limit shall follow an additional restric-
tion. Although individually each limit may be negative, the sum of the limits shall be positive. That is:

setup_limit + hold_limit > 0

The $setuphold timing check is a shorthand way to combine the functionality of $setup and $hold into one system
task call. Therefore, the following invocation:

$setuphold(posedge clk, data, tSU, tHLD);

is equivalent in functionality to the following, if tSU and tHLD are not negative:

$setup(data, posedge clk, tSU);
$hold(posedge clk, data, tHLD);

Table 14-12Ñ$hold arguments

reference_event Lower bound event

data_event Upper bound event

limit Positive constant expression or specparam

notiÞer (optional) Register

Table 14-13Ñ$setuphold arguments

reference_event $hold lower bound event
$setup upper bound event

data_event $hold upper bound event
$setup lower bound event

setup_limit Constant expression or specparam

hold_limit Constant expression or specparam

notiÞer (optional) Register

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

190 Section 14

14.5.4 $width

Syntax:

$width (reference_event , limit , threshold [, notifier]) ;

Table 14-14 deÞnes the $width system task arguments.

The $width timing check monitors the width of signal pulses by timing the duration of signal levels from one clock
edge to the opposite clock edge. Since a data event is not passed to $width, it is derived from the reference event, as
follows:

data event = reference event signal with opposite edge

Because of the way the data event is derived for $width, an edge triggered event has to be passed as the reference
event. A compilation error will occur if the reference event is not an edge speciÞcation.

The $width timing check reports a violation in the following case:

threshold < (time of data event) - (time of reference event) < limit

In other words, the pulse width has to be greater than or equal to limit in order to avoid a timing violation.

The data event and the reference event will never occur at the same simulation time because these events are triggered
by opposite transitions.

The null arguments for $width are not accepted. Therefore, the threshold argument shall be passed if the notiÞer
argument is required. It is permissible, however, to drop both the threshold and notiÞer arguments when invoking
$width.

Example:

The following example demonstrates some examples of legal and illegal calls:

Table 14-14Ñ$width arguments

reference_event Edge triggered event

limit Positive constant expression or specparam

threshold (optional) Positive constant expression or specparam

notiÞer (optional) Register

// Legal Calls
$width (negedge clr, lim);
$width (negedge clr, lim, thresh, notif);
$width (negedge clr, lim, 0, notif);

// Illegal Calls
$width (negedge clr, lim, , notif);
$width (negedge clr, lim, notif);

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 14 191

14.5.5 $period

Syntax:

$period (reference_event , limit [, notifier]) ;

Table 14-15 deÞnes the $period system task arguments.

Since the data event is not passed as an argument to $period, it is derived from the reference event, as follows:

data event = reference event signal with the same edge

Because of the way the data event is derived for $period, an edge triggered event has to be passed as the reference
event. A compilation error will occur if the reference event is not an edge speciÞcation.

The $period timing check reports a violation in the following case:

(time of data event) - (time of reference event) < limit

14.5.6 $skew

Syntax:

$skew (reference_event , data_event , limit [, notifier]) ;

Table 14-16 deÞnes the $skew system task arguments.

The $skew timing check reports a violation in the following case:

(time of data event) - (time of reference event) > limit

The $skew timing check always records the new time of reference event before it performs the timing check. If the
data event and the reference event occur at the same simulation time, $skew does not report a timing violation.

14.5.7 $recovery

Syntax:

$recovery (reference_event , data_event , limit , [notifier]) ;

Table 14-15Ñ: $period arguments

reference_event Edge triggered event

limit Positive constant expression or specparam

notiÞer (optional) Register

Table 14-16Ñ$skew arguments

reference_event Lower bound event

data_event Upper bound event

limit Positive constant expression or specparam

notiÞer (optional) Register

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

192 Section 14

Table 14-17 deÞnes the $recovery system task arguments.

The reference event shall be speciÞed as an edge triggered event using either the posedge or the negedge keyword.
Not specifying an edge results in illegal speciÞcation of the reference event.

The $recovery timing check system task reports a timing violation in the following case:

(time of data event) - (time of reference event) < limit

The $recovery system task records the new reference event time before performing the timing check, so if a data
event and a reference event occur at the same simulation time, a violation occurs.

14.5.8 $nochange

Syntax:

$nochange (reference_event , data_event , start_edge_offset , end_edge_offset [, notifier]) ;

Table 14-18 deÞnes the $nochange system task arguments.

The $nochange timing check system task reports a timing violation if the data event occurs during the speciÞed level
of the control signal (the reference event). The reference event may be speciÞed with the posedge or the negedge key-
word, but the edge control speciÞers (see 14.5.9) can not be used.

The start edge and end edge offsets can expand or shrink the timing violation region, which is deÞned by the duration
of the reference event signal edge. A positive offset for start edge extends the region by starting the timing violation
region earlier; a negative offset for start edge shrinks the region by starting the region later. Similarly, a positive offset
for the end edge extends the timing violation region by ending it later, while a negative offset for the end edge shrinks
the region by ending it earlier. If both the offsets are zero, the size of the region will not change.

Example:

$nochange(posedge clk, data, 0, 0) ;

In this example, $nochange system task will report a violation if the data signal changes while clk is high.

Table 14-17Ñ$recovery arguments

reference_event Edge triggered event

data_event Upper bound event

limit Positive constant expression or specparam

notiÞer (optional) Register

Table 14-18Ñ$nochange arguments

reference_event Edge triggered event

data_event Upper bound event

start_edge_offset Any constant expression or specparam

end_edge_offset Any constant expression or specparam

notiÞer (optional) Register

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 14 193

14.5.9 Edge-control speciÞers

The edge-control speciÞers may be used to control events in timing checks based on speciÞc edge transitions between
0, 1, and x.

Syntax 14-7ÑSyntax for edge control specifier

Edge-control speciÞers contain the keyword edge followed by a square bracketed list of from one to six pairs of edge
transitions between 0, 1 and x, as follows:

01 Transition from 0 to 1
0x Transition from 0 to x
10 Transition from 1 to 0
1x Transition from 1 to x
x0 Transition from x to 0
x1 Transition from x to 1

Edge transitions involving z are treated the same way as edge transitions involving x.

The posedge and negedge keywords may be used as a shorthand for certain edge-control speciÞers. For example, the
construct:

posedge clr

is equivalent to the following:

edge[01, 0x, x1] clr

Similarly, the construct:

negedge clr

is the same as the following:

edge[10, x0, 1x] clr

However, edge-control speciÞers offer the ßexibility to declare edge transitions other than posedge and negedge.

14.5.10 NotiÞers: user-deÞned responses to timing violations

Timing check notiÞers detect timing check violations behaviorally, and, therefore, take an action as soon as a viola-
tion occurs. Such notiÞers may be used to print an informative error message describing the violation or to propagate
an x value at the output of the device that reported the violation.

The notiÞer is a registerÑdeclared in the module where timing check tasks are invokedÑthat is passed as the last
argument to a system timing check. Whenever a timing violation occurs, the system task updates the value of the noti-
Þer.

edge_control_speciÞer ::= edge [transition_pair { , transition_pair }]

transition_pair ::= 01 | 0x | 10 | 1x | x0 | x1

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

194 Section 14

The notiÞer is an optional argument to all system timing checks and can be omitted from the system task call without
adversely affecting its operation.

Table 14-19 shows how the notiÞer values are toggled when timing violations occur.

Examples:

Example 1

Example 2ÑConsider a more complex example of how to use notiÞers in a behavioral model. The example that fol-
lows uses a notiÞer to set the D ßip-ßop output to x when a timing violation occurs in an edge-sensitive UDP.

Table 14-19ÑNotiÞer value changes

BEFORE violation AFTER violation

x 0

0 1

1 0

z z

$setup(data, posedge clk, 10, notify_reg) ;
$width(posedge clk, 16, notify_reg) ;

primitive posdff_udp(q, clock, data, preset, clear, notifier);
output q; reg q;
input clock, data, preset, clear, notifier;
table
//clock data p c notifier state q
//-------------------------------------

 r 0 1 1 ? : ? : 0 ;
 r 1 1 1 ? : ? : 1 ;

 p 1 ? 1 ? : 1 : 1 ;
 p 0 1 ? ? : 0 : 0 ;

 n ? ? ? ? : ? : - ;
 ? * ? ? ? : ? : - ;

 ? ? 0 1 ? : ? : 1 ;
 ? ? * 1 ? : 1 : 1 ;

 ? ? 1 0 ? : ? : 0 ;
 ? ? 1 * ? : 0 : 0 ;
 ? ? ? ? * : ? : x ; // At any notifier event
 // output x

endtable
endprimitive

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 14 195

NOTEÑThis model applies to edge-sensitive UDPs only; for level-sensitive models, an additional UDP for x propagation has to
be generated.

14.5.11 Enabling timing checks with conditioned events

A construct called a conditioned event ties the occurrence of timing checks to the value of a conditioning signal.

module dff(q, qbar, clock, data, preset, clear);
output q, qbar;
input clock, data, preset, clear;
reg notifier;

and (enable, preset,clear);
not (qbar, ffout);
buf (q, ffout);
posdff_udp (ffout, clock, data, preset, clear, notifier);

specify
// Define timing check specparam values
specparam tSU = 10, tHD = 1, tPW = 25, tWPC = 10, tREC = 5;
// Define module path delay rise and fall min:typ:max values
specparam tPLHc = 4:6:9 , tPHLc = 5:8:11;
specparam tPLHpc = 3:5:6 , tPHLpc = 4:7:9;

// Specify module path delays
(clock *> q,qbar) = (tPLHc, tPHLc);
(preset,clear *> q,qbar) = (tPLHpc, tPHLpc);

// Setup time : data to clock, only when preset and clear are 1
$setup(data, posedge clock &&& enable, tSU, notifier);

// Hold time:clock to data,only when preset and clear are 1
$hold(posedge clock, data &&& enable, tHD, notifier);

// Clock period check
$period(posedge clock, tPW, notifier);
// Pulse width : preset, clear
$width(negedge preset, tWPC, 0, notifier);
$width(negedge clear, tWPC, 0, notifier);

// Recovery time: clear or preset to clock
$recovery(posedge preset, posedge clock, tREC, notifier);
$recovery(posedge clear, posedge clock, tREC, notifier);

endspecify
endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

196 Section 14

Syntax 14-8ÑSyntax for controlled timing check event

The comparisons used in the condition may be deterministic, as in ===, !==, ~, or no operation, or nondeterministic,
as in == or !=. When comparisons are deterministic, an x value on the conditioning signal will not enable the timing
check. For nondeterministic comparisons, an x on the conditioning signal will enable the timing check.

The conditioning signal shall be a scalar net; if a vector net or an expression resulting in a multi-bit value is used, then
the least signiÞcant bit of the vector net or the expression value is used.

If more than one conditioning signal is required for conditioning timing checks, appropriate logic shall be combined
in a separate signal outside the specify block, which may be used as the conditioning signal.

Examples:

Example 1ÑTo illustrate the difference between conditioned and unconditioned timing check events, consider the fol-
lowing example with unconditioned timing check:

$setup(data, posedge clk, 10);

Here, a setup timing check will occur every time there is a positive edge on the signal clk.

To trigger the setup check on the positive edge on the signal clk only when the signal clr is high, rewrite the com-
mand as:

$setup(data, posedge clk &&& clr, 10) ;

Example 2ÑThis example shows two ways to trigger the same timing check as in example 1 (on the positive clk
edge) only when clr is low. The second method uses the === operator, which makes the comparison deterministic.

$setup(data, posedge clk &&& (~clr), 10) ;
$setup(data, posedge clk &&& (clr===0), 10);

Example 3ÑTo perform the previous sample setup check on the positive clk edge only when clr and set are high,
add the following statement outside the specify block:

and new_gate(clr_and_set, clr, set);

Then add the condition to the timing check using the signal clr_and_set as follows:

$setup(data, posedge clk &&& clr_and_set, 10);

controlled_timing_check_event ::=
timing_check_event_control specify_terminal_descriptor [&&&
timing_check_condition]

timing_check_condition ::=
 scalar_expression
| ~scalar_expression
| scalar_expression == scalar_constant
| scalar_expression === scalar_constant
| scalar_expression != scalar_constant
| scalar_expression !== scalar_constant

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 14 197

14.6 PLA modeling system tasks

The modeling of PLA devices is provided in the Verilog HDL by a group of system tasks. This clause describes the
syntax and use of these system tasks and the formats of the logic array personality Þle.

Syntax 14-9ÑSyntax for PLA modeling system task

The PLA syntax allows for the system tasks as shown in Table 14-20.

14.6.1 Array types

The modeling of both synchronous and asynchronous arrays is provided by the PLA system tasks. The synchronous
forms control the time at which the logic array will be evaluated and the outputs will be updated. For the asynchro-
nous forms, the evaluations are automatically performed whenever an input term changes value or any word in the
personality memory is changed.

For both the synchronous and asynchronous forms, the output terms are updated without any delay.

Examples:

An example of an asynchronous system call is as follows:

$async$and$array(mem,{a1,a2,a3,a4,a5,a6,a7},{b1,b2,b3});

An example of a synchronous system call is as follows:

$sync$or$plane(mem,{a1,a2,a3,a4,a5,a6,a7}, {b1,b2,b3});

Note that the input terms and the output terms are always represented as concatenations.

14.6.2 Array logic types

The logic arrays are modeled with and, or, nand, and nor logic planes. This applies to all array types and formats.

Table 14-20ÑPLA system tasks

$async$and$array $sync$and$array $async$and$plane $sync$and$plane

$async$nand$array $sync$nand$array $async$nand$plane $sync$nand$plane

$async$or$array $sync$or$array $async$or$plane $sync$or$plane

$async$nor$array $sync$nor$array $async$nor$plane $sync$nor$plane

pla_system_task ::= $ array_type $ logic $ format (memory_name , input_terms ,
output_terms) ;

array_type ::= sync | async
logic ::= and | or | nand | nor
format ::= array | plane
memory_name ::= memory_identifier
input_terms ::= { scalar_variables }
output_terms ::= { scalar_variables }
scalar_variables ::= scalar_variable { , scalar_variable }

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

198 Section 14

Examples:

An example of a nor plane system call is as follows:

$async$nor$array(mem,{a1,a2,a3,a4,a5,a6,a7},{b1,b2,b3});

An example of a nand plane system call is as follows:

$sync$nand$plane(mem,{a1,a2,a3,a4,a5,a6,a7}, {b1,b2,b3});

14.6.3 Logic array personality declaration and loading

The logic array personality is declared as an array of registers that is as wide as the number of input terms and as deep
as the number of output terms.

The personality of the logic array is normally loaded into the memory from a text data Þle using the system tasks
$readmemb or $readmemh. Alternatively, the personality data may be written directly into the memory using the
procedural assignment statements. PLA personalities may be changed dynamically at any time during simulation
simply by changing the contents of the memory. The new personality will be reßected on the outputs of the logic
array at the next evaluation.

Example:

The following example shows a logic array with n input terms and m output terms.

reg [1:n] mem[1:m];

NOTEÑPut PLA input terms, output terms, and memory in ascending order, as shown in examples in this clause.

14.6.4 Logic array personality formats

Two separate personality formats are supported by the Verilog HDL and are differentiated by using either an array
system call or a plane system call. The array system call allows for a 1 or 0 in the memory that has been declared. A
1 means take the input value and a 0 means do not take the input value.

The plane system call complies with the University of California at Berkeley format for Espresso. Each bit of the data
stored in the array has the following meaning:

 0 Take the complemented input value

 1 Take the true input value

 x Take the Òworst caseÓ of the input value

 z DonÕt-care; the input value is of no signiÞcance

 ? Same as z

Examples:

Example 1ÑThe following example illustrates an array with logic equations:

b1 = a1 & a2
b2 = a3 & a4 & a5
b3 = a5 & a6 & a7

The PLA personality is as follows:

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 14 199

1100000 in mem[1]
0011100 in mem[2]
0000111 in mem[3]

The module for the PLA is as follows:

Where the Þle array.dat contains the binary data for the PLA personality:

 1100000
 0011100
 0000111

Example 2ÑAn example of the usage of the plane format tasks follows. The logical function of this PLA is shown
Þrst, followed by the PLA personality in the new format, the Verilog HDL description using the $async$and$plane
system task, and Þnally the result of running the simulation.

The logical function of the PLA is as follows:

b[1] = a[1] & ~a[2];
b[2] = a[3];
b[3] = ~a[1] & ~a[3];
b[4] = 1;

The PLA personality is as follows:

3Õb10?
3Õb??1
3Õb0?0
3Õb???

module async_array(a1,a2,a3,a4,a5,a6,a7,b1,b2,b3);
input a1, a2, a3, a4, a5, a6, a7 ;
output b1, b2, b3;
reg [1:7] mem[1:3]; // memory declaration for array personality
reg b1, b2, b3;
initial begin

// setup the personality from the file array.dat
$readmemb("array.dat", mem);
// setup an asynchronous logic array with the input
// and output terms expressed as concatenations
$async$and$array(mem,{a1,a2,a3,a4,a5,a6,a7},{b1,b2,b3});

end
endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

200 Section 14

The output is as follows:

111 -> 0101
000 -> 0011
xxx -> xxx1
101 -> 1101

14.7 Stochastic analysis tasks

This clause describes a set of system tasks and functions that manage queues and generate random numbers with spe-
ciÞc distributions. These tasks facilitate implementation of stochastic queueing models.

The set of tasks and functions that create and manage queues follow:

$q_initialize (q_id, q_type, max_length, status) ;
$q_add (q_id, job_id, inform_id, status) ;
$q_remove (q_id, job_id, inform_id, status) ;
$q_full (q_id, status) ;
$q_exam (q_id, q_stat_code, q_stat_value, status) ;

module pla;
`define rows 4
`define cols 3
reg [1:`cols] a, mem[1:`rows];
reg [1:`rows] b;
initial begin

// PLA system call
$async$and$plane(mem,{a[1],a[2],a[3]},{b[1],b[2],b[3],b[4]});
mem[1] = 3Õb10?;
mem[2] = 3Õb??1;
mem[3] = 3Õb0?0;
mem[4] = 3Õb???;
// stimulus and display
#10 a = 3Õb111;
#10 $displayb(a, " -> ", b);
#10 a = 3Õb000;
#10 $displayb(a, " -> ", b);
#10 a = 3Õbxxx;
#10 $displayb(a, " -> ", b);
#10 a = 3Õb101;
#10 $displayb(a, " -> ", b);

end
endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 14 201

14.7.1 $q_initialize

The $q_initialize system task creates new queues. The q_id parameter is an integer input that shall uniquely identify
the new queue. The q_type parameter is an integer input. The value of the q_type parameter speciÞes the type of the
queue as shown in Table 14-21.

The maximum length parameter is an integer input that speciÞes the maximum number of entries that will be allowed
on the queue. The success or failure of the creation of the queue is returned as an integer value in status. The error
conditions and corresponding values of status are described in Table 14-23.

14.7.2 $q_add

The $q_add system task places an entry on a queue. The q_id parameter is an integer input that indicates to which
queue to add the entry. The job_id parameter is an integer input that identiÞes the job.

The inform_id parameter is an integer input that is associated with the queue entry. Its meaning is user-deÞned. For
example, inform_id parameter can represent execution time for an entry in a CPU model. The status parameter reports
on the success of the operation or error conditions as described in Table 14-23.

14.7.3 $q_remove

The $q_remove system task receives an entry from a queue. The q_id parameter is an integer input that indicates
from which queue to remove. The job_id parameter is an integer output that identiÞes the entry being removed. The
inform_id parameter is an integer output that the queue manager stored during $q_add. Its meaning is user-deÞned.
The status parameter reports on the success of the operation or error conditions as described in Table 14-23.

14.7.4 $q_full

The $q_full system function checks whether there is room for another entry on a queue. It returns 0 when the queue
is not full and 1 when the queue is full.

14.7.5 $q_exam

The $q_exam system task provides statistical information about activity at the queue q_id. It returns a value in
q_stat_value depending on the information requested in q_stat_code. The values of q_stat_code and the correspond-
ing information returned in q_stat_value are described in Table 14-22.

Table 14-21Ñq_type parameter value

q_type value Type of queue

1 Þrst-in, Þrst-out

2 last-in, Þrst-out

Table 14-22ÑThe information received in q_stat_value

Value requested in
q_stat_code

 Information received back
from q_stat_value

1 Current queue length

2 Mean interarrival time

3 Maximum queue length

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

202 Section 14

14.7.6 Status codes

All of the queue management tasks and functions return an output status parameter. The status parameter values and
corresponding information are described in Table 14-23.

.

14.8 Simulation time system functions

The following system functions provide access to current simulation time:

$time $stime $realtime

14.8.1 $time

Syntax:

integer $time

The $time system function returns an integer that is a 64-bit time, scaled to the timescale unit of the module that
invoked it.

4 Shortest wait time ever

5 Longest wait time for jobs still in the
queue

6 Average wait time in the queue

Table 14-23ÑThe status parameter values and corresponding information

Status parameter
Values What it means

0 OK

1 Queue full, cannot add

2 UndeÞned q_id

3 Queue empty, cannot remove

4 Unsupported queue type, cannot create queue

5 SpeciÞed length <= 0, cannot create queue

6 Duplicate q_id, cannot create queue

7 Not enough memory, cannot create queue

Table 14-22ÑThe information received in q_stat_value (continued)

Value requested in
q_stat_code

 Information received back
from q_stat_value

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 14 203

Example:

In this example, the reg set is assigned the value 0 at simulation time 16 ns, and the value 1 at simulation time 32 ns.
Note that these times do not match the times reported by $time. The time values returned by the $time system func-
tion are determined by the following steps:

a) The simulation times 16ns and 32 ns are scaled to 1.6 and 3.2 because the time unit for the module is 10 ns, so
time values reported by this module are multiples of 10 ns.

b) The value 1.6 is rounded to 2, and 3.2 is rounded to 3 because the $time system function returns an integer.
The time precision does not cause rounding of these values.

14.8.2 $stime

Syntax:

integer $stime

The $stime system function returns an unsigned integer that is a 32-bit time, scaled to the timescale unit of the mod-
ule that invoked it. If the actual simulation time does not Þt in 32 bits, the low order 32 bits of the current simulation
time are returned.

14.8.3 $realtime

Syntax:

real $realtime

The $realtime system function returns a real number time that, like $time, is scaled to the time unit of the module
that invoked it.

`timescale 10 ns / 1 ns
module test;
reg set;
parameter p = 1.55;
initial begin

$monitor($time,,"set=",set);
#p set = 0;
#p set = 1;

end
endmodule

// The output from this example is as follows:
// 0 set=x
// 2 set=0
// 3 set=1

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

204 Section 14

Example:

In this example, the event times in the register set are multiples of 10 ns because 10 ns is the time unit of the mod-
ule. They are real numbers because $realtime returns a real number.

14.9 Conversion functions for reals

The following functions handle real values:

Syntax:

integer $rtoi(real_val) ;
real $itor(int_val) ;
[63:0] $realtobits(real_val) ;
real $bitstoreal(bit_val) ;

$rtoi converts real values to integers by truncating the real value (for example, 123.45 becomes 123)

$itor converts integers to real values (for example, 123 becomes 123.0)

$realtobits passes bit patterns across module ports; converts from a real number to the 64-bit representation (vector)
of that real number

$bitstoreal is the reverse of $realtobits; converts from the bit pattern to a real number.

The real numbers accepted or generated by these functions shall conform to the IEEE Std 754-1985 [B1] representa-
tion of the real number. The conversion shall round the result to the nearest valid representation.

Example:

The following example shows how the $realtobits and $bitstoreal functions are used in port connections.

`timescale 10 ns / 1 ns
module test;
reg set;
parameter p = 1.55;
initial begin

$monitor($realtime,,"set=",set);
#p set = 0;
#p set = 1;

end
endmodule

// The output from this example is as follows:
// 0 set=x
// 1.6 set=0
// 3.2 set=1

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 14 205

14.10 Probabilistic distribution functions

There are a set of random number generators that return integer values distributed according to standard probabilistic
functions.

14.10.1 $random function

Syntax:

$random [(seed)] ;

The system function $random provides a mechanism for generating random numbers. The function returns a new 32-
bit random number each time it is called. The random number is a signed integer; it can be positive or negative. For
further information on probabilistic random number generators, see 14.10.2.

The seed parameter controls the numbers that $random returns. The seed parameter shall be either a register, an
integer, or a time variable. The seed value should be assigned to this variable prior to calling $random.

Examples:

Example 1ÑWhere b is greater than 0, the expression ($random % b) gives a number in the following range: [(-
b+1): (b-1)]. The following code fragment shows an example of random number generation between -59 and 59:

reg [23:0] rand;
rand = $random % 60;

Example 2ÑThe following example shows how adding the concatenation operator to the preceding example gives
rand a positive value from 0 to 59.

reg [23:0] rand;
rand = {$random} % 60;

module driver (net_r);
output net_r;
real r;
wire [64:1] net_r = $realtobits(r);
endmodule

module receiver (net_r);
input net_r;
wire [64:1] net_r;
real r;
initial assign r = $bitstoreal(net_r);
endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

206 Section 14

14.10.2 $dist_ functions

Syntax 14-10ÑSyntax for the probabilistic distribution functions

All parameters to the system functions are integer values. For the exponential, poisson, chi-square, t, and
erlang functions, the parameters mean, degree of freedom, and k_stage shall be greater than 0.

Each of these functions returns a pseudo-random number whose characteristics are described by the function name.
That is, $dist_uniform returns random numbers uniformly distributed in the interval speciÞed by its parameters.

For each system function, the seed parameter is an in-out parameter; that is, a value is passed to the function and a dif-
ferent value is returned. The system functions will always return the same value given the same seed. This facilitates
debugging by making the operation of the system repeatable. The argument for the seed parameter should be an inte-
ger variable that is initialized by the user and only updated by the system function. This will ensure that the desired
distribution is achieved.

In the $dist_uniform function, the start and end parameters are integer inputs that bound the values returned. The
start value should be smaller than the end value.

The mean parameter, used by $dist_normal, $dist_exponential, $dist_poisson, and $dist_erlang, is an integer input
that causes the average value returned by the function to approach the value speciÞed.

The standard deviation parameter used with the $dist_normal function is an integer input that helps determine the
shape of the density function. Larger numbers for standard deviation will spread the returned values over a wider
range.

The degree of freedom parameter used with the $dist_chi_square and $dist_t functions is an integer input that helps
determine the shape of the density function. Larger numbers will spread the returned values over a wider range.

$dist_uniform (seed, start, end) ;
$dist_normal (seed, mean, standard_deviation) ;
$dist_exponential (seed, mean) ;
$dist_poisson (seed, mean) ;
$dist_chi_square (seed, degree_of_freedom) ;
$dist_t (seed, degree_of_freedom) ;
$dist_erlang (seed, k_stage, mean) ;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

Section 15 207

Section 15

Value change dump (VCD) Þle

A

value change dump (VCD) Þle

 contains information about value changes on selected variables in the design stored
by value change dump system tasks.

This section describes how to generate a VCD Þle and its format.

15.1 Creating the value change dump file

The steps involved in creating the VCD Þle are listed below and illustrated in Figure 15-1.

Figure 15-1ÑCreating the VCD file

a) Insert the VCD system tasks in the Verilog source Þle to deÞne the dump Þle name and to specify the
variables to be dumped.

b) Run the simulation.

A VCD Þle is an ASCII Þle that contains header information, variable deÞnitions, and the value changes for all vari-
ables speciÞed in the task calls.

Several system tasks can be inserted in the source description to create and control the VCD Þle.

15.1.1 Specifying the name of the dump Þle ($dumpÞle)

The

$dumpfile

 task shall be used to specify the name of the VCD Þle. The syntax for the task is as follows:

$dumpfile (

 Þlename

) ;

The

Þlename

 is optional.

initial

$dumpfile(Òdump1.dumpÓ);
 .
 .
 .
$dumpvars(...)
 .
 .
 .

simulation

Verilog Source File VCD File
dump1.dump

(Header
Information)

(Node
Information)

(Value
Changes)

User
Postprocessing

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

208 Section 15

Example:

initial

$dumpfile

("module1.dump") ;

15.1.2 Specifying the variables to be dumped ($dumpvars)

The

$dumpvars

 task shall be used to list which variables to dump into the Þle speciÞed by

$dumpfile

. The

$dump-
vars

 task may be invoked as often as desired throughout the model (for example, within various blocks), but the exe-
cution of all the

$dumpvars

 tasks shall be at the same simulation time.

The

$dumpvars

 task may be used with or without arguments. The syntax for the task without arguments is as fol-
lows:

$dumpvars ;

When invoked with no arguments,

$dumpvars

 task dumps all the variables in the model to the VCD Þle.

The syntax for the task with arguments is given in Syntax 15-1.

Syntax 15-1ÑSyntax for $dumpvars system task

When the

$dumpvars

 task is speciÞed with arguments, the Þrst argument indicates how many

levels

 of the hierarchy
below each speciÞed module instance to dump to the VCD Þle. Subsequent arguments specify which scopes of the
model to dump to the VCD Þle. These arguments may specify entire modules or individual variables within a module.

Setting the Þrst argument to

0

 causes a dump of all variables in the speciÞed module and in all module instances
below the speciÞed module. The argument

0

 applies only to subsequent arguments that specify module instances, and
not to individual variables.

Examples:

Example 1

$dumpvars

 (1, top);

Because the Þrst argument is a 1, this invocation dumps all variables within the module

top

; it does not dump vari-
ables in any of the modules instantiated by module

top

.

Example 2

$dumpvars

 (0, top);

In this example, the

$dumpvars

 task will dump all variables in the module

top

 and in all module instances below
module

top

 in the hierarchy.

Example 3

This example shows how the

$dumpvars

 task can specify both modules and individual variables:

$dumpvars (levels [, list_of_modules_or_variables]);
list_of_modules_or_variables ::= module_or_variable { , module_or_variable }
module_or_variable ::= module_identifier | variable_identifier

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 15 209

$dumpvars

 (0, top.mod1, top.mod2.net1);

This call will dump all variables in module

mod1

 and in all module instances below

mod1

, along with variable

net1

in module

mod2

. The argument 0 applies only to the module instance

top.mod1

 and not to the individual variable

top.mod2.net1

.

15.1.3 Stopping and resuming the dump ($dumpoff/$dumpon)

Executing the

$dumpvars

 task causes the value change dumping to start at the end of the current simulation time
unit. To suspend the dump, the

$dumpoff

 task may be invoked. To resume the dump, the

$dumpon

 task may be
invoked. The syntax of these two tasks is as follows:

$dumpoff ;

$dumpon ;

When the

 $dumpoff

 task is executed, a checkpoint is made in which every selected variable is dumped as an

x

 value.
When the

 $dumpon

 task is later executed, each variable is dumped with its value at that time. In the interval between

$dumpoff

and

$dumpon

, no value changes are dumped.

The

$dumpoff

 and

$dumpon

 tasks provide the mechanism to control the simulation period during which the dump
will take place.

Example:

This example starts the value change dump after 10 time units, stops it 200 time units later (at time 210), restarts it
again 800 time units later (at time 1010), and stops it 900 time units later (at time 1910).

15.1.4 Generating a checkpoint ($dumpall)

The

$dumpall

 task creates a checkpoint in the VCD Þle that shows the current value of all selected variables. The
syntax is as follows:

$dumpall ;

When dumping is enabled, the value change dumper records the values of the variables that change during each time
increment. Values of variables that do not change during a time increment are not dumped.

15.1.5 Limiting the size of the dump Þle ($dumplimit)

The

$dumplimit

 task may be used to set the size of the VCD Þle. The syntax for this task is as follows:

$dumplimit (

Þlesize

) ;

initial begin
 #10 $dumpvars(. . .);

 #200 $dumpoff;

 #800 $dumpon;

 #900 $dumpoff;
end

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

210 Section 15

The

Þlesize

 argument that speciÞes the maximum size of the VCD Þle in bytes. When the size of VCD Þle reaches
this number of bytes, the dumping stops and a comment is inserted in the VCD Þle indicating that the dump limit was
reached.

15.1.6 Reading the dump Þle during simulation ($dumpßush)

The

$dumpflush

 task may be used to empty the VCD Þle buffer of the operating system to ensure that all the data in
that buffer is stored in the VCD Þle. After executing a

$dumpflush

task, dumping is resumed as before so that no
value changes are lost.

The syntax is as follows:

$dumpflush ;

A common application is to call $dumpflush to update the dump Þle so that an application program can read the
VCD Þle during a simulation.

Examples:

Example 1ÑThis example shows how the $dumpflush task may be used in a Verilog HDL source Þle:

Example 2ÑThe following is a simple source description example to produce a VCD Þle.

In this example, the name of the dump Þle is verilog.dump. It dumps value changes for all variables in the model.
Dumping begins when an event do_dump occurs. The dumping continues for 500 clock cycles, then stops and waits
for the event do_dump to be triggered again. At every 10000 time steps, the current values of all VCD variables are
dumped.

initial begin
$dumpvars ;

 .
 .
 .

$dumpflush ;

$(applications program) ;

end

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 15 211

15.2 Format of the VCD file

The dump Þle is structured in a free format. White space is used to separate commands and to make the Þle easily
readable by a text editor.

15.2.1 Syntax of the VCD Þle

The syntax of the VCD Þle is given in Syntax 15-2.

module dump;
 event do_dump;

initial $dumpfile("verilog.dump");
initial @do_dump

 $dumpvars; //dump variables in the design

always @do_dump //to begin the dump at event do_dump
begin

$dumpon; //no effect the first time through
repeat (500) @(posedge clock); //dump for 500 cycles

 $dumpoff; //stop the dump
end

initial @(do_dump)
forever #10000 $dumpall; //checkpoint all variables

endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

212 Section 15

Syntax 15-2ÑSyntax of the output VCD file

The VCD Þle starts with header information giving the date, the version number of the simulator used for the simula-
tion, and the timescale used. Next, the Þle contains deÞnitions of the scope and type of variables being dumped, fol-
lowed by the actual value changes at each simulation time increment. Only the variables that change value during a
time increment are listed.

The simulation time recorded in VCD Þle is the absolute value of the simulation time for the changes in variable val-
ues that follow.

Value changes for real variables are speciÞed by real numbers.Value changes for all other variables are speciÞed in
binary format by 0, 1, x, or z values. Strength information and memories are not dumped.

A real number is dumped using a %.16g printf() format. This preserves the precision of that number by output-
ting all 53 bits in the mantissa of a 64-bit IEEE Std 754-1985 [B1] double-precision number. Application programs
can read a real number using a %g format to scanf().

The value change dumper generates character identiÞer codes to represent variables. The identiÞer code is a code
composed of the printable characters that are in the ASCII character set from ! to ~ (decimal 33 to 126).

NOTES

1ÑThe VCD format does not support a mechanism to dump part of a vector. For example, bits 8 to 15 (8:15) of a 16-bit vector
cannot be dumped in VCD Þle; instead, the entire vector (0:15) has to be dumped. In addition, expressions, such as a + b, cannot be
dumped in the VCD Þle.

2Ñ Data in the VCD Þle is case sensitive.

value_change_dump_definitions ::=
{ declaration_command } { simulation_command }

declaration_command ::= declaration_keyword [command_text] $end
simulation_command ::=

simulation_keyword { value_change } $end
| $comment [comment_text] $end
| simulation_time
| value_change

declaration_keyword ::=
$comment | $date | $enddefinitions | $scope | $timescale | $upscope | $var |
$version

simulation_keyword ::=
$dumpall | $dumpoff | $dumpon | $dumpvars

simulation_time ::= # decimal_number
value_change ::=

scalar_value_change
| vector_value_change

scalar_value_change ::=
value indentifier_code

value ::= 0 | 1 | x | X | z | Z
vector_value_change ::=

b binary_number identifier_code
| B binary_number identifier_code
| r real_number identifier_code
| R real_number identifier_code

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 15 213

15.2.2 Formats of variable values

Variables may be either scalars or vectors. Each type is dumped in its own format. Dumps of value changes to scalar
variables shall not have any white space between the value and the identiÞer code.

Dumps of value changes to vectors shall not have any white space between the base letter and the value digits, but
they shall have one white space between the value digits and the identiÞer code.

The output format for each value is right-justiÞed. Vector values appear in the shortest form possible: redundant bit
values that result from left-extending values to Þll a particular vector size are eliminated.

The rules for left-extending vector values are given in Table 15-1.

Table 15-2 shows how the VCD may shorten values.

Events are dumped in the same format as scalars; for example, 1*%. For events, however, the value (1 in this exam-
ple) is irrelevant. Only the identiÞer code (*% in this example) is signiÞcant. It appears in the VCD Þle as a marker to
indicate that the event was triggered during the time step.

Examples:

1*@ No space between the value 1 and the identifier code *@

b1100x01z (k No space between the b and 1100x01z,
but a space between b1100x01z and (k

Table 15-1ÑRules for left-extending vector values

When the value is VCD left-extends with

1 0

0 0

Z Z

X X

Table 15-2ÑHow the VCD may shorten values

The binary value Extends to Þll a
4-bit register as

Appears in the
VCD Þle as

10 0010 b10

X10 XX10 bX10

ZX0 ZZX0 bZX0

0X10 0X10 b0X10

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

214 Section 15

15.2.3 Description of keyword commands

The general information in the VCD Þle is presented as a series of sections surrounded by keywords. Keyword com-
mands provide a means of inserting information in the VCD Þle. Keyword commands can be inserted either by the
dumper or manually.

This subclause deals with the keyword commands given in Table 15-3.

15.2.3.1 $comment

The $comment section provides a means of inserting a comment in the VCD Þle.

Syntax:

$comment comment_text $end

Examples:

$comment This is a single-line comment $end
$comment This is a
multiple-line comment
$end

15.2.3.2 $date

The $date section indicates the date on which the VCD Þle was generated.

Syntax:

$date date_text $end

Example:

$date
 June 25, 1989 09:24:35
$end

15.2.3.3 $enddeÞnitions

The $enddefinitions section marks the end of the header information and deÞnitions.

Syntax:

$enddefinitions $end

Table 15-3ÑKeyword commands

Declaration keywords Simulation keywords

$comment $timescale $dumpall

$date $upscope $dumpoff

$enddeÞnitions $var $dumpon

$scope $version $dumpvars

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 15 215

15.2.3.4 $scope

The $scope section deÞnes the scope of the variables being dumped.

Syntax:

$scope scope_type scope_identifier $end

scope_type ::= module | task | function | begin | fork

The scope type indicates one of the following scopes:

module Top-level module and module instances
task Tasks
function Functions
begin Named sequential blocks
fork Named parallel blocks

Example:

$scope
 module top
$end

15.2.3.5 $timescale

The $timescale keyword speciÞes what timescale was used for the simulation.

Syntax:

$timescale number time_unit $end
number ::= 1 | 10 | 100
time_unit ::= s | ms | us | ns | ps | fs

Example:

$timescale 10 ns $end

15.2.3.6 $upscope

The $upscope section indicates a change of scope to the next higher level in the design hierarchy.

Syntax:

$upscope $end

15.2.3.7 $version

The $version section indicates which version of the VCD writer was used to produce the VCD Þle.

Syntax:

$version version_text $end

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

216 Section 15

Example:

$version
 VERILOG-SIMULATOR 1.0a
$end

15.2.3.8 $var

The $var section prints the names and identiÞer codes of the variables being dumped.

Syntax:

$var var_type size identifier_code reference $end

var_type ::=
event | integer | parameter | real | reg | supply0 | supply1 | time
| tri | triand | trior | trireg | tri0 | tri1 | wand | wire | wor

size ::= decimal_number

reference ::=
 identifier
| identifier [bit_select_index]
| identifier [msb_index : lsb_index]

index ::= decimal_number

Size speciÞes how many bits are in the variable.

The identiÞer code speciÞes the name of the variable using printable ASCII characters, as previously described.

a) The msb index indicates the most signiÞcant index; the lsb index indicates the least signiÞcant index.

b) More than one reference name may be mapped to the same identiÞer code. For example, net10 and net15 may
be interconnected in the circuit and therefore may have the same identiÞer code.

c) The individual bits of vector nets may be dumped individually.

d) The identiÞer is the name of the variable being dumped in the model.

Example:

$var
 integer 32 (2 index
$end

15.2.3.9 $dumpall

The $dumpall keyword speciÞes current values of all variables dumped.

Syntax:

$dumpall { value_changes } $end

Example:

$dumpall 1*@ x*# 0*$ bx (k $end

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 15 217

15.2.3.10 $dumpoff

The $dumpoff keyword indicates all variables dumped with X values.

Syntax:

$dumpoff { value_changes } $end

Example:

$dumpoff x*@ x*# x*$ bx (k $end

15.2.3.11 $dumpon

The $dumpon keyword indicates resumption of dumping and lists current values of all variables dumped.

Syntax:

$dumpon { value_changes } $end

Example:

$dumpon x*@ 0*# x*$ b1 (k $end

15.2.3.12 $dumpvars

The section beginning with $dumpvars keyword lists initial values of all variables dumped.

Syntax:

$dumpvars { value_changes } $end

Example:

$dumpvars x*@ z*$ b0 (k $end

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

218 Section 15

15.2.4 VCD Þle format example

The following example illustrates the format of the VCD Þle.

$date
 June 26, 1989 10:05:41
$end
$version
 VERILOG-SIMULATOR 1.0a
$end
$timescale
 1 ns
$end
$scope module top $end
$scope module m1 $end
$var trireg 1 *@ net1 $end
$var trireg 1 *# net2 $end
$var trireg 1 *$ net3 $end
$upscope $end
$scope task t1 $end
$var reg 32 (k accumulator[31:0] $end
$var integer 32 {2 index $end
$upscope $end
$upscope $end
$enddefinitions $end
$comment
 Note: $dumpvars was executed at time Õ#500Õ.
 All initial values are dumped at this time.
$end

#500
$dumpvars
x*@
x*#
x*$
bx (k
bx {2
$end
#505
0*@
1*#
1*$
b10zx1110x11100 (k
b1111000101z01x {2
#510
0*$
#520
1*$
#530
0*$
bz (k
#535
$dumpall 0*@ 1*# 0*$

bz (k
b1111000101z01x {2
$end
#540
1*$
#1000
$dumpoff
x*@
x*#
x*$
bx (k
bx {2
$end
#2000
$dumpon
z*@
1*#
0*$
b0 (k
bx {2
$end
#2010
1*$(Continued in right column)

(Continued from left column)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

Section 16 219

Section 16

Compiler directives

All Verilog compiler directives are preceded by the (

`

) character. This character is called accent grave. It is different
from the character (Õ), which is the single quote character. The scope of compiler directives extends from the point
where it is processed, across all Þles processed, to the point where another compiler directive supersedes it or the pro-
cessing completes.

This section describes the following compiler directives:

`celldeÞne [16.1]
`default_nettype [16.2]
`deÞne [16.3]
`else [16.4]
`endcelldeÞne [16.1]
`endif [16.4]
`ifdef [16.4]
`include [16.5]
`nounconnected_drive [16.8]
`resetall [16.6]
`timescale [16.7]
`unconnected_drive [16.8]
`undef [16.3]

16.1 `celldefine and `endcelldefine

The directives

`celldefine

 and

`endcelldefine

 tag modules as cell modules. Cells are used by certain PLI routines for
applications, such as delay calculations. It is advisable to pair each

`celldefine

 with an

`endcelldefine

. More than one
of these pairs may appear in a single source description.

These directives may appear anywhere in the source description, but it is recommended that the directives be speci-
Þed outside the module deÞnition.

16.2 `default_nettype

The directive

`default_nettype

 controls the net type created for implicit net declarations (see 3.5). It can be used only
outside of module deÞnitions. It affects all modules that follow the directive, even across source Þle boundaries. Mul-
tiple

`default_nettype

 directives are allowed. The latest occurrence of this directive in the source controls the type of
nets that will be implicitly declared. Syntax 16-1 contains the syntax of the directive.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

220 Section 16

Syntax 16-1ÑSyntax for default nettype compiler directive

When no

`default_nettype

 directive is present, implicit nets are of type

wire

.

16.3 `define and `undef

A text macro substitution facility has been provided so that meaningful names can be used to represent commonly
used pieces of text. For example, in the situation where a constant number is repetitively used throughout a descrip-
tion, a text macro would be useful in that only one place in the source description would need to be altered if the value
of the constant needed to be changed.

16.3.1 `deÞne

The directive

`define

 creates a macro for text substitution. This directive can be used both inside and outside module
deÞnitions. After a text macro is deÞned, it can be used in the source description by using the (`) character, followed
by the macro name. The compiler shall substitute the text of the macro for the string

`macro_name

. All compiler
directives shall be considered predeÞned macro names; it shall be illegal to redeÞne a compiler directive as a macro
name.

A text macro can be deÞned with arguments. This allows the macro to be customized for each use individually.

The syntax for text macro deÞnitions is given in Syntax 16-2.

Syntax 16-2ÑSyntax for text macro definition

The macro text can be any arbitrary text speciÞed on the same line as the text macro name. If more than one line is
necessary to specify the text, the newline shall be preceded by a backslash (\). The Þrst newline not preceded by a
backslash shall end the macro text. The newline preceded by a backslash shall be replaced in the expanded macro
with a newline (but without the preceding backslash character).

When formal arguments are used to deÞne a text macro, the scope of the formal argument shall extend up to the end
of the macro text. A formal argument can be used in the macro text in the same manner as an identiÞer.

If a one-line comment (that is, a comment speciÞed with the characters //) is included in the text, then the comment
shall not become part of the substituted text. The macro text can be blank, in which case the text macro is deÞned to
be empty, and no text is substituted when the macro is used.

The syntax for using a text macro is given in Syntax 16-3.

default_nettype_compiler_directive ::=
`default_nettype net_type

net_type ::=
wire | tri | tri0 | wand | triand | tri1 | wor | trior | trireg

text_macro_definition ::=
`define text_macro_name macro_text

text_macro_name ::=
text_macro_identifier [(list_of_formal_arguments)]

list_of_formal_arguments ::=
formal_argument_identifier { , formal_argument_identifier }

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 16 221

Syntax 16-3ÑSyntax for text macro usage

For a macro without arguments, the text shall be substituted Òas isÓ for every occurrence of `text_macro. However, a
text macro with one or more arguments shall be expanded by substituting each formal argument with the expression
used as the actual argument in the macro usage.

Once a text macro name has been deÞned, it can be used anywhere in a source description; that is, there are no scope
restrictions. Text macros can be deÞned and used interactively.

The text speciÞed for macro text shall not be split across the following lexical tokens:

Ñ Comments
Ñ Numbers
Ñ Strings
Ñ IdentiÞers
Ñ Keywords
Ñ Operators

Examples:

The following is illegal syntax because it is split across a string:

`define

 first_half "start of string

$display

(`first_half end of string");

NOTES

1ÑEach actual argument is substituted for the corresponding formal argument literally. Therefore, when an expression is used as
an actual argument, the expression will be substituted in its entirety. This may cause an expression to be evaluated more than once
if the formal argument was used more than once in the macro text. For example,

`define

 max(a,b)((a) > (b) ? (a) : (b))
n =

`

max(p+q, r+s) ;

will expand as

n = ((p+q) > (r+s)) ? (p+q) : (r+s) ;

text_macro_usage ::=
`text_macro_identifier [(list_of_actual_arguments)]

list_of_actual_arguments ::=
actual_argument { , actual_argument }

actual_argument ::=
expression

`define wordsize 8
reg [1:`wordsize] data;

//define a nand with variable delay
`define var_nand(dly) nand #dly

`var_nand(2) g121 (q21, n10, n11);
`var_nand(5) g122 (q22, n10, n11);

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

222 Section 16

Here, the larger of the two expressions p + q and r + s will be evaluated twice.

2ÑThe word deÞne is known as a compiler directive keyword, and it is not part of the normal set of keywords. Thus, normal iden-
tiÞers in a Verilog HDL source description can be the same as compiler directive keywords (although this is not recommended).
The following problems should be considered:

a) Text macro names may not be the same as compiler directive keywords.

b) Text macro names can re-use names being used as ordinary identiÞers. For example,

signal_name

 and

`signal_name

are different.

c) RedeÞnition of text macros is allowed; the latest deÞnition of a particular text macro read by the compiler prevails when
the macro name is encountered in the source text.

16.3.2 `undef

The directive

`undef

 shall undeÞne a previously deÞned text macro. An attempt to undeÞne a text macro that was not
previously deÞned using a

`define

 compiler directive can result in a warning. The syntax for

`undef

 compiler direc-
tive is given in Syntax 16-4.

Syntax 16-4ÑSyntax for undef compiler directive

An undeÞned text macro has no value.

16.4 `ifdef, `else, `endif

These conditional compilation compiler directives are used to include optionally lines of a Verilog HDL source
description during compilation. The

`ifdef

 compiler directive checks for the deÞnition of a variable name. If the vari-
able name is deÞned, then the lines following the

`ifdef

 directive are included. If the variable name is not deÞned and
an

`else

 directive exists, then this source is compiled.

These directives may appear anywhere in the source description.

Situations where the

`ifdef

,

`else

, and

`endif

 compiler directives may be useful include:

Ñ Selecting different representations of a module such as behavioral, structural, or switch level
Ñ Choosing different timing or structural information
Ñ Selecting different stimulus for a given run

The

`ifdef

,

`else

, and

`endif

 compiler directives have the syntax shown in Syntax 16-5.

undefine_compiler_directive ::=
`undef text_macro_name

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 16 223

Syntax 16-5ÑSyntax for conditional compilation directives

The text macro name is a Verilog HDL identiÞer. The Þrst group of lines and the second group of lines are parts of a
Verilog HDL source description. The

 `else

 compiler directive and the second group of lines are optional.

The

`ifdef

,

`else

, and

`endif

 compiler directives work in the following manner:

Ñ When an

`ifdef

 is encountered, the text macro name is tested to see if it is deÞned as a text macro name using

`define

 within the Verilog HDL source description.

Ñ If the text macro name is deÞned, the Þrst group_of_lines is compiled as part of the description. If there is an

`else

 compiler directive, the second group of lines is ignored.

Ñ If the text macro name has not been deÞned, the Þrst group of lines is ignored. If there is an

`else

 compiler
directive, the second group of lines is compiled.

NOTES

1ÑAny group of lines that the compiler ignores still has to follow the Verilog HDL lexical conventions for white space, comments,
numbers, strings, identiÞers, keywords, and operators.

2ÑThese compiler directives

may be nested.

Examples:

Example 1Ñ

The example below shows a simple usage of an `ifdef directive for conditional compilation. If the identi-
Þer

behavioral

 is deÞned, a continuous net assignment will be compiled in; otherwise, an

and

 gate will be instan-
tiated.

Example 2Ñ

The following example shows usage of nested conditional compilation directives.

conditional_compilation_directive ::=
`ifdef text_macro_name
 first_group_of_lines
[`else
second_group_of_lines
`endif]

module and_op (a, b, c);
output a;
input b, c;

`ifdef behavioral
wire a = b & c;

`else
and a1 (a,b,c);

`endif

endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

224 Section 16

16.5 `include

The Þle inclusion (`include) compiler directive is used to insert the entire contents of a source Þle in another Þle dur-
ing compilation. The result is as though the contents of the included source Þle appear in place of the `include com-
piler directive. The `include compiler directive can be used to include global or commonly used deÞnitions and tasks
without encapsulating repeated code within module boundaries.

Advantages of using the `include compiler directive include the following:

Ñ Providing an integral part of conÞguration management
Ñ Improving the organization of Verilog HDL source descriptions
Ñ Facilitating the maintenance of Verilog HDL source descriptions

The syntax for the `include compiler directive is given in Syntax 16-6.

Syntax 16-6ÑSyntax for include compiler directive

The compiler directive `include can be speciÞed anywhere within the Verilog HDL description. The Þlename is the
name of the Þle to be included in the source Þle. The Þlename can be a full or relative path name.

module test(out);
output out;
`define wow
`define nest_one
`define second_nest
`define nest_two

`ifdef wow
initial $display(Òwow is definedÓ);
`ifdef nest_one
initial $display(Ònest_one is definedÓ);

`ifdef nest_two
initial $display(Ònest_two is definedÓ);

`else
initial $display(Ònest_two is not definedÓ);

`endif
`else

initial $display(Ònest_one is not definedÓ);
`endif

`else
initial $display(Òwow is not definedÓ);
`ifdef second_nest

initial $display(Ònest_two is definedÓ);
`else

initial $display(Ònest_two is not definedÓ);
`endif

`endif
endmodule

include_compiler_directive ::=
`include "filename"

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 16 225

Only white space or a comment may appear on the same line as the `include compiler directive.

A Þle included in the source using the `include compiler directive may contain other `include compiler directives.
The number of nesting levels for included Þles shall be Þnite.

Examples:

Examples of legal comments for the `include compiler directive are as follows:

`include "parts/count.v"
`include "fileB"
`include "fileB" // including fileB

NOTEÑImplementations may limit the maximum number of levels to which include Þles can be nested, but the limit shall be at
least 15.

16.6 `resetall

When `resetall compiler directive is encountered during compilation, all compiler directives are set to the default val-
ues. This is useful for ensuring that only those directives that are desired in compiling a particular source Þle are
active.

The recommended usage is to place `resetall at the beginning of each source text Þle, followed immediately by the
directives desired in the Þle.

16.7 `timescale

This directive speciÞes the time unit and time precision of the modules that follow it. The time unit is the unit of mea-
surement for time values such as the simulation time and delay values.

To use modules with different time units in the same design, the following timescale constructs are useful:

Ñ The `timescale compiler directive to specify the unit of measurement for time and precision of time in the
modules in the design

Ñ The $printtimescale system task to display the time unit and precision of a module
Ñ The $time and $realtime system functions, the $timeformat system task, and the %t format speciÞcation to

specify how time information is reported

The `timescale compiler directive speciÞes the unit of measurement for time and delay values and the degree of accu-
racy for delays in all modules that follow this directive until another `timescale compiler directive is read.

The syntax for the `timescale directive is given in Syntax 16-7.

Syntax 16-7ÑSyntax for timescale compiler directive

The time_unit argument speciÞes the unit of measurement for times and delays.

timescale_compiler_directive ::=
`timescale time_unit / time_precision

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

226 Section 16

The time_precision argument speciÞes how delay values are rounded before being used in simulation. The val-
ues used are accurate to within the unit of time that is speciÞed here. The smallest time_precision argument of
all the `timescale compiler directives in the design determines the time unit of the simulation.

The time_precision argument shall be at least as precise as the time_unit argument; it cannot specify a
longer unit of time than time_unit.

The integers in these arguments specify an order of magnitude for the size of the value; the valid integers are 1, 10,
and 100. The character strings represent units of measurement; the valid character strings are s, ms, us, ns, ps, and fs.

The units of measurement speciÞed by these character strings are given in Table 16-1.

Examples:

The following example shows how this directive is used:

`timescale 1 ns / 1 ps

Here, all time values in the modules that follow the directive are multiples of 1 ns because the time_unit argument
is Ò1 nsÓ. Delays are rounded to real numbers with three decimal placesÑor precise to within one thousandth of a
nanosecondÑbecause the time_precision argument is Ò1 ps,Ó or one thousandth of a nanosecond.

Consider the following example:

`timescale 10 us / 100 ns

The time values in the modules that follow this directive are multiples of 10 µs because the time_unit argument is
Ò10 usÓ. Delays are rounded to within one tenth of a microsecond because the time_precision argument is Ò100
ns,Ó or one tenth of a microsecond.

The following example shows a `timescale directive in the context of a module:

Table 16-1ÑArguments of time_precision

Character
string Unit of measurement

s seconds

ms milliseconds

us microseconds

ns nanoseconds

ps picoseconds

fs femtoseconds

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 16 227

The `timescale 10 ns / 1 ns compiler directive speciÞes that the time unit for module test is 10 ns. As a result,
the time values in the module are multiples of 10 ns, rounded to the nearest 1 ns and, therefore, the value stored in
parameter d is scaled to a delay of 16 ns. This means that the value 0 is assigned to reg set at simulation time 16 ns
(1.6 ´ 10 ns), and the value 1 at simulation time 32 ns.

Parameter d retains its value no matter what timescale is in effect.

These simulation times are determined as follows:

a) The value of parameter d is rounded from 1.55 to 1.6 according to the time precision.

b) The time unit of the module is 10 ns, and the precision is 1 ns, so the delay of parameter d is scaled from 1.6
to 16.

c) The assignment of 0 to reg set is scheduled at simulation time 16 ns and the assignment of 1 at simulation
time 32 ns. The time values are not rounded when the assignments are scheduled.

16.8 `unconnected_drive and `nounconnected_drive

All unconnected input ports of a module appearing between the directives `unconnected_drive and
`nounconnected_drive are pulled up or pulled down instead of the normal default.

The directive `unconnected_drive takes one of two argumentsÑpull1 or pull0. When pull1 is speciÞed, all uncon-
nected input ports are automatically pulled up. When pull0 is speciÞed, unconnected ports are pulled down. These
directives shall be speciÞed in pairs, and outside of the module declarations.

`timescale 10 ns / 1 ns
module test;
reg set;
parameter d = 1.55;

initial begin
#d set = 0;
#d set = 1;

end
endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

228 Section 17

Section 17

PLI TF and ACC interface mechanism

The interface mechanism described in this section provides a means for users to link applications based on PLI task/
function (TF) routines and access (ACC) routines to Verilog software products. Through the interface mechanism, a
user can

Ñ Specify a user-deÞned system task or function name that can be included in Verilog HDL source descriptions;
the user-deÞned system task or function name shall begin with a dollar sign ($), such as

$get_vector

Ñ Provide one or more PLI C applications to be called by a software product (such as a logic simulator)
Ñ DeÞne which PLI C applications are to be calledÑand when the applications should be calledÑwhen the

user-deÞned system task or function name is encountered in the Verilog HDL source description
Ñ DeÞne whether the PLI applications should be treated as

function

s (which return a value) or

task

s (analogous
to subroutines in other programming languages)

Ñ DeÞne a data argument to be passed to the PLI applications each time they are called

NOTEÑThe PLI interface mechanism described in this section does not apply to applications that use the Verilog Procedural
Interface (VPI) routines; these routines use the VPI registry mechanism described in sections 22 and 23.

17.1 PLI purpose and history

Sections 17 through 23 and annexes C through E describe the C-language procedural interface standard and interface
mechanisms that are part of the Verilog HDL. This procedural interface, known as the Programming Language
Interface, or PLI, provides a means for Verilog HDL users to access and modify data in an instantiated Verilog HDL
data structure dynamically. An instantiated Verilog HDL data structure is the result of compiling Verilog HDL source
descriptions and generating the hierarchy modeled by module instances, primitive instances, and other Verilog HDL
constructs that represent scope. The PLI procedural interface provides a library of C-language functions that can
directly access data within an instantiated Verilog HDL data structure.

A few of the many possible applications for the PLI procedural interface are

Ñ C-language delay calculators for Verilog model libraries that can dynamically scan the data structure of a Ver-
ilog software product and then dynamically modify the delays of each instance of models from the library

Ñ C-language applications that dynamically read test vectors or other data from a Þle and pass the data into a
Verilog software product

Ñ Custom graphical waveform and debugging environments for Verilog software products
Ñ Source code decompilers that can generate Verilog HDL source code from the compiled data structure of a

Verilog software product
Ñ Simulation models written in the C language and dynamically linked into Verilog HDL simulations
Ñ Interfaces to actual hardware, such as a hardware modeler, that dynamically interact with simulations

This document standardizes a public-domain Verilog PLI that has been in use since the mid-1980s. This standard
comprises three primary generations of public-domain PLI routines.

a)

Task/function

 routines, called

TF

 routines, make up the Þrst generation of the PLI. These routines, most of
which start with the characters

tf_

, are primarily used for operations involving user-deÞned task/function
arguments, along with utility functions, such as setting up call-back mechanisms and writing data to output
devices. The TF routines are sometimes referred to as

utility

 routines

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 17 229

b)

Access

 routines, called

ACC

 routines, form the second generation of the PLI. These routines, which all start
with the characters

acc_

, provide an object-oriented access directly into a Verilog HDL structural description.
ACC routines are used to access and modify information, such as delay values and logic values on a wide
variety of objects that exist in a Verilog HDL description. There is some overlap in functionality between
ACC routines and TF routines.

c)

Verilog Procedural Interface

 routines, called

VPI

 routines, are the third generation of the PLI. These routines,
all of which start with the characters

vpi_

, provide an object-oriented access for both Verilog HDL structural
and behavioral objects. The VPI routines are a superset of the functionality of the TF routines and ACC
routines.

17.2 User-deÞned task or function names

A user-deÞned task or function name is the name that will be used within a Verilog HDL source Þle to invoke speciÞc
PLI applications. The name shall adhere to the following rules:

Ñ The Þrst character of the name shall be the dollar sign character ($)
Ñ The remaining characters shall be letters, digits, the underscore character (_), or the dollar character ($)
Ñ Uppercase and lowercase letters shall be considered to be uniqueÑthe name is case sensitive
Ñ The name can be any size, and all characters are signiÞcant

17.3 Overloading built-in system task and function names

Section 14 deÞnes a number of built-in system tasks and functions that are part of the Verilog language. In addition,
software products can include other built-in system tasks and functions speciÞc to the product. These built-in system
task and function names begin with the dollar sign character ($), just as user-deÞned system task and function
names.

If a user-provided PLI application is associated with the same name as a built-in system task or function (using the
PLI interface mechanism), the user-provided C application shall overload the built-in system task/function, replacing
its functionality with that of the user-provided C application. For example, a user could write a random number
generator as a PLI application and then associate the application with the name

$random

, thereby overriding the
built-in

$random

 function with the userÕs application.

17.4 User-supplied PLI applications

User-supplied PLI applications are C-language functions that utilize the library of PLI C functions to access and
interact dynamically with Verilog HDL software implementations as the Verilog HDL source code is executed.

These PLI applications are not independent C programs. They are C functions, which are linked into a software
product, and become part of the product. This allows the PLI application to be called when the user-deÞned system
task or function

$

 name is compiled or executed in the Verilog HDL source code.

The PLI interface mechanism provides a means to have PLI applications called for various reasons when the
associated system task or function

$

 name is encountered in the Verilog HDL source description. For example, when
a Verilog HDL simulator Þrst compiles the Verilog HDL source description, a speciÞc PLI application can be called
that performs syntax checking to ensure the user-deÞned system task or function is being used correctly. Then, as
simulation is executing, a different PLI application can be called to perform the operations required by the PLI
application. Other PLI applications can be automatically called by the simulator for miscellaneous reasons, such as
the end of a simulation time step or a logic value change on a speciÞc signal.

The PLI interface mechanism for TF and ACC routines provides Þve classes of user-supplied PLI applications:

checktf

 applications,

sizetf

 applications,

calltf

 applications,

misctf

 applications, and

consumer

 applications. The
purpose of each of the PLI application classes is explained in the following subclauses.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

230 Section 17

17.4.1 The calltf class of PLI applications

A

calltf

 PLI application shall be called each time the associated user-deÞned system task or function is executed
within the Verilog HDL source code. For example, the following Verilog loop would call the PLI calltf application
that is associated with the $get_vector user-deÞned system task name 1024 times:

for (i = 1; i <= 1024; i = i + 1)
 @(posedge clk) $get_vector("test_vector.pat", input_bus);

In this example, the user-supplied PLI calltf application might read a test vector from a Þle called

test_vector.pat

(the Þrst task/function argument), perhaps manipulate the vector to put it in a proper format
for Verilog, and then assign the vector value to the second task/function argument called input_bus.

17.4.2 The checktf class of PLI applications

A

checktf

 PLI application shall be called when the user-deÞned system task or function name is encountered during
parsing or compiling the Verilog HDL source code. This application is typically used to check the correctness of any
arguments used with the system task in the Verilog HDL source code. The checktf PLI application shall be called one
time for each instance of a system task or function in the source description. Providing a checktf application is
optional, but it is recommended that any arguments used with the system task or function be checked for correctness
to avoid problems when the calltf or other PLI applications read and perform operations on the arguments.

17.4.3 The sizetf class of PLI applications

A

sizetf

 PLI application can be used in conjunction with user-deÞned system

functions

. A function shall return a
value, and software products that execute the system function may need to determine how many bits wide that return
will be. The sizetf application shall be called one time for each instance of a system task or function in the source
description, typically when the Verilog HDL source code is compiled; when called, the sizetf application shall return
the number of bits of the system function return value. The sizetf application shall not be called for PLI system tasks.

17.4.4 The misctf class of PLI applications

A

misctf

 PLI application shall be called by a Verilog software product for miscellaneous reasons while the Verilog
HDL source description is being executed. Among these reasons can be the end of a simulation time step, a logic
value change on a user-deÞned system task/function argument, or the execution of the

$stop

 and

$Þnish

 built-in
system functions. When the software product calls the misctf PLI application, it shall pass in a reason argument,
which can be used within the misctf application to determine why the application was called. The reason argument
shall be a predeÞned integer constant. Table 17-1 lists the reasons the misctf application can be called. Note that the
misctf application associated with a speciÞc instance of a user-deÞned task or function

$

 name shall not be activated
until the instance of the task/function has been executed the Þrst time.

17.4.5 The consumer class of PLI applications

A

consumer

 PLI application shall be called through a PLI callback mechanism referred to as the Value Change Link
(VCL). Using the VCL, another PLI application, typically the calltf application, can place VCL ßags on objects
within the Verilog HDL data structure, such as a speciÞc net. Whenever an object with a VCL ßag changes value
during a simulation, the consumer PLI application shall be called and passed information about the change.

17.5 Associating PLI applications to a class and system task/function name

Each user-provided PLI application is a standard C-language function that makes use of the library of PLI functions.
These user-provided PLI applications shall be associated with both the class of application (such as calltf or checktf)
and the user-deÞned system task or function $ name. In addition, the user-deÞned name shall be declared as either a
system task or a system function.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 17 231

The method of associating PLI applications with a class and system task/function name is not deÞned as part of this
standard. Each software product vendor shall deÞne an association mechanism speciÞc to their product. Refer to the
documentation provided by the vendor for instructions on associating PLI applications to classes and system task/
function names and then linking the PLI applications into the software products of the vendor.

17.6 PLI application arguments

When the calltf, checktf, and sizetf PLI applications are called by a Verilog software implementation, they shall be
passed two C arguments,

data

 and

reason

, in that order. When the misctf application is called, it shall be passed three
C arguments,

data

,

reason

, and

paramvc

, in that order. These arguments are deÞned in more detail in the following
subclauses.

17.6.1 The data C argument

The

data

 C argument shall be an integer value. The value is deÞned by the user at the time the PLI applications are
associated with a user-deÞned system task/function name. This value can be used to allow several different system
task/function names to use the same calltf, checktf, sizetf, or misctf applications. To do this, each system task/
function name would be associated with the same PLI applications, but each would have a different value for the user-
deÞned data argument. When a PLI application is called, it can then check the value of the data argument to determine
which system task/function name was used to call the application.

17.6.2 The reason C argument

The

reason

 C argument shall be a predeÞned integer constant that is passed to the calltf, checktf, sizetf, and misctf
applications each time the applications are called. Generally, the calltf, checktf, and sizetf applications do not need to
check the reason argument, since these applications can only be called under speciÞc circumstances. The misctf
application, however, can be called for a wide variety of reasons, and therefore it should always examine the reason
argument to determine why the application was called. The value for the reason argument is deÞned in the PLI
include Þle veriuser.h. The predeÞned constants that can be passed to the reason argument are listed in Table 17-1.

17.6.3 The paramvc C argument

The

paramvc

 C argument shall be an integer value passed to the misctf application. The value of paramvc shall
indicate which task/function argument changed value when the misctf application was called back after activating the
utility routine

tf_asynchon()

. This routine shall cause the misctf application to be called with a reason argument of

reason_paramvc

 or

reason_paramdrc

.

Table 17-1ÑPredeÞned reason integer constants

Reason value passed to PredeÞned integer constant

calltf applications

reason_calltf

checktf applications

reason_checktf

sizetf applications

reason_sizetf

misctf applications

for the end of Verilog source compilation/start of execution

reason_endofcompile

for a change of value on a user-deÞned system task or function
argument parameter

reason_paramvc

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

232 Section 17

17.7 User-deÞned system task and function arguments

When a user-deÞned system task or function is used in a Verilog HDL source Þle, it can have arguments that can be
used by the PLI applications associated with the system task or function. In the following example, the user-deÞned
system task

$get_vector

 has two arguments:

$get_vector("test_vector.pat", input_bus);

The arguments to a system task or function are referred to as

task/function arguments

 (often abbreviated as

tfargs

) by
ACC routines, and as task/function

 parameters

 by TF routines. These arguments are not the same as C-language
arguments. When the PLI applications associated with a user-deÞned system task or function are called, the task/
function arguments are not passed to the PLI application. Instead, a number of PLI routines are provided that allow
the PLI applications to read and write to the task/function arguments. Refer to the sections on ACC routines and TF
routines for information on speciÞc routines that work with task/function arguments.

Note that when PLI applications are called, they are passed two or three C arguments: data, reason, and paramvc.
These arguments are not the same as the task/function arguments that appear in the Verilog HDL source code.

for a value change on the driver of a user-deÞned system task or
function argument parameter

reason_paramdrc

for a the end of a time step ßagged by

tf_synchronize()

reason_synch

for a the end of a time step ßagged by

tf_rosynchronize()

reason_rosynch

for a simulation event scheduled by

tf_setdelay()

reason_reactiviate

for the execution of a procedural force or procedural continuous
assignment on any net, register, or variable

reason_force

for the execution of a procedural release or procedural deassign
on any net, register, or variable

reason_release

for the execution of a procedural disable statement

reason_disable

for the execution of the

$stop()

 built-in system task

reason_interactive

for the execution of the

$scope()

 built-in system task

reason_scope

for the start of execution of the

$save()

 built-in system task

reason_startofsave

for the completion of execution of the

$save()

 built-in system
task

reason_save

for the execution of the

$restart()

 built-in system task

reason_restart

for the start of execution of the

$reset()

 built-in system task

reason_reset

for the completion of execution of the

$reset()

 built-in system
task

reason_endofreset

for the

$Þnish()

 built-in system task executed

reason_Þnish

Table 17-1ÑPredeÞned reason integer constants

(continued)

Reason value passed to PredeÞned integer constant

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 17 233

17.8 PLI include Þles for TF and ACC routines

PLI applications that use the TF routines shall include the Þle

veriuser.h

. PLI applications that use the ACC
routines shall include the Þle

acc_user.h

. These Þles deÞne constants, structures, and other data used by the
library of PLI routines and the interface mechanism. The Þles are listed in annexes C and D.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

234 Section 18

Section 18

Using ACC routines

This section presents a general discussion of how and why to use PLI ACC routines. Section 19 deÞnes the ACC
routine syntax, listed in alphabetical order.

18.1 ACC routine deÞnition

ACC routines are C programming language functions that provide procedural access to information within the
Verilog HDL.

ACC routines perform one of two functions:

a) Read data about particular objects in the Verilog HDL description directly from internal data structures.

b) Write new information about certain objects in the Verilog HDL description into the internal data structures.

ACC routines shall read information about the following objects:

Ñ Module instances
Ñ Module ports
Ñ Module paths
Ñ Intermodule paths
Ñ Top-level modules
Ñ Primitive instances
Ñ Primitive terminals
Ñ Nets
Ñ Registers
Ñ Parameters
Ñ Specparams
Ñ Timing checks
Ñ Named events
Ñ Integer, real, and time variables

ACC routines shall read and write information on the following objects:

Ñ Intermodule path delays
Ñ Module path delays
Ñ Module input port delays (MIPDs)
Ñ Primitive instance delays
Ñ Timing check limits
Ñ Register logic values
Ñ Sequential UDP logic values

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 18 235

18.2 The handle data type

A

handle

 is a predeÞned data type that is a pointer to a speciÞc object in the design hierarchy. Each handle conveys
information to ACC routines about a unique instance of an

accessible objectÑinformation about the type of the
object, plus how and where to Þnd data about the object.

Most ACC routines require a handle argument to indicate the objects about which they need to read or write
information. The PLI provides two categories of ACC routines that return handles for objects: handle routines, which
begin with the preÞx

acc_handle_

, and next routines, which begin with the preÞx

acc_next_

. Refer to 18.4.2 for a
discussion of handle routines and 18.4.3 for more information about next routines.

Handles shall be passed to and from ACC routines through

handle variables

. To declare a handle variable, the
keyword

handle

 (all lowercase) shall be used, followed by the variable name, as in this example:

handle net_handle;

After declaring a handle variable, it can be passed to any ACC routine that requires a handle argument or be used to
receive a handle returned by an ACC routine. The following C-language code fragment uses the variable

net_handle

to store the handle returned by the ACC routine

acc_handle_object()

:

handle net_handle;
net_handle = acc_handle_object("top.mod1.w3");

18.3 Using ACC routines

18.3.1 Header Þles

The header Þle

acc_user.h

 shall be included in any C-language source Þle containing an application program that
calls ACC routines. The

acc_user.h

 Þle is listed in annex C.

18.3.2 Initializing ACC routines

The ACC routine

acc_initialize()

 shall initialize the environment for ACC routines and shall be called from the C-
language application program before the program invokes any other ACC routines.

18.3.3 Setting the development version

After initializing ACC routines, the conÞguration parameter

accDevelopmentVersion

 can be set to indicate which
version of ACC routines was used to develop the application. ConÞguring the

accDevelopmentVersion

 parameter
can ensure that future releases of ACC routines can run PLI application code the same as when the code was written.

To set this parameter, call

acc_conÞgure()

 after calling

acc_initialize()

. The following example sets

accDevelopmentVersion

 to the IEEE Std 1364-1995 PLI version of ACC routines:

acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

18.3.4 Exiting ACC routines

Before exiting a C-language application program that calls ACC routines, the ACC routine

acc_close()

 should be
called. This routine shall reset ACC routine conÞguration parameters back to their defaults, and it shall also free
memory allocated by the ACC routines.

18.4 List of ACC routines by major category

The ACC routines are divided into the following major categories:

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

236 Section 18

Ñ

Fetch

 routines
Ñ

Handle

 routines
Ñ

Next

 routines
Ñ

Modify

 routines
Ñ

VCL

 routines
Ñ

Miscellaneous

 routines

This clause contains a summary list of each major category. The ACC routines sorted by the types of objects they
work with are listed in 18.5. Section 19 presents an alphabetical list of all ACC routines, with their functions, syntax,
and usage.

18.4.1 Fetch routines

Fetch routines shall return a variety of information about different objects in the design hierarchy. The name of each
routine begins with the preÞx

acc_fetch_

 and indicates the type of information desired. For example,

acc_fetch_fullname()

 retrieves the full hierarchical path name for any named object, while

acc_fetch_paramval()

retrieves the value of a parameter or specparam.

Table 18-1ÑList of fetch routines

ACC routine Description

acc_fetch_argc()

Get the number of invocation command line arguments

acc_fetch_argv()

Get the invocation command line arguments

acc_fetch_attribute()

Get the value of a Verilog attribute, parameter or specparam

acc_fetch_defname()

Get the deÞnition name of a module or primitive

acc_fetch_delays()

Get the existing delays for a primitive, module path, timing check, intermod-
ule path, or module input port

acc_fetch_delay_mode()

Get the delay mode of a module instance

acc_fetch_direction()

Get the direction of a module port or primitive terminal

acc_fetch_edge()

Get the edge speciÞer of module path input terminal

acc_fetch_fullname()

Get the full hierarchical name of an object

acc_fetch_fulltype()

Get the full type description of an object as a predeÞned integer constant

acc_fetch_index()

Get the index number of a port or terminal

acc_fetch_location()

Get the location of an object in a Verilog source Þle

acc_fetch_name()

Get the local name of an object

acc_fetch_paramtype()

Get the data type of a parameter or specparam

acc_fetch_paramval()

Get the value of a parameter or specparam

acc_fetch_polarity()

Get the polarity of a module path or data path

acc_fetch_precision()

Get the simulation time precision

acc_fetch_pulsere()

Get the current pulse handling values of a module path

acc_fetch_range()

Get the range of a vector

acc_fetch_size()

Get the bit size of a vector or port

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 18 237

18.4.2 Handle routines

Handle routines can return handles to a variety of objects in the design hierarchy. The name of each routine begins
with the preÞx

acc_handle_

 and indicates the type of handle desired. For example,

acc_handle_object()

 retrieves a
handle for a named object, while

acc_handle_conn()

 retrieves a handle for a net connected to a particular terminal.
Each handle routine shall return a handle to an object. This handle can, in turn, be passed as an argument to other
ACC routines.

acc_fetch_tfarg()

Get the value of a system task/function argument as a double

acc_fetch_tfarg_int()

Get the value of a system task/function argument as an integer

acc_fetch_tfarg_str()

Get the value of a system task/function argument as a string

acc_fetch_timescale_info()

Get the timescale information for an object

acc_fetch_type()

Get the general type classiÞcation of an object as an integer constant

acc_fetch_type_str()

Get the string representation of a type or fulltype integer constant

acc_fetch_value()

Get the logic or strength value of a net, register, or variable

Table 18-2ÑList of handle routines

ACC routine Description

acc_handle_by_name()

Get the handle to any named object

acc_handle_condition()

Get the handle to the condition of a module path, data path, or timing check

acc_handle_conn()

Get the handle to the net connected to a primitive, path, or timing check ter-
minal

acc_handle_datapath()

Get the handle to a data path

acc_handle_hiconn()

Get the handle to the hierarchically higher net connected to a module port bit

acc_handle_interactive_scope()

Get the handle to the current simulation interactive scope

acc_handle_itfarg()

Get the handle to an argument of a speciÞc system task/function instance

acc_handle_loconn()

Get the handle to the hierarchically lower net connected to a module port bit

acc_handle_modpath()

Get the handle to a module path delay

acc_handle_notiÞer()

Get the handle to the notiÞer argument of a timing check

acc_handle_object()

Get the handle to any named object

acc_handle_parent()

Get the handle to the parent of an object

acc_handle_path()

Get the handle to an intermodule path

acc_handle_pathin()

Get the handle to the Þrst net connected to a module path source

acc_handle_pathout()

Get the handle to the Þrst net connected to a module path destination

acc_handle_port()

Get the handle to a module port based on the port index

Table 18-1ÑList of fetch routines

(continued)

ACC routine Description

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

238 Section 18

18.4.3 Next routines

When used inside a C loop construct, next routines shall Þnd each object of a given type that is related to a particular
reference object in the design hierarchy. The name of each routine begins with the preÞx

acc_next_

 and indicates the
type of object desired, known as the target object. For example,

acc_next_net()

 retrieves each net in a module, while

acc_next_driver()

 retrieves each terminal driving a net. Each call to a next routine returns a handle to the object it
Þnds.

Most next routines require

two

arguments:

Ñ The Þrst argument shall be a handle to a

reference object

.

Ñ The second argument shall be a handle that indicates whether to retrieve the Þrst or next

target object

.

The

reference object

 shall indicate where the next routine shall look for the target object. The

target object

 is the type
of object to be returned by a next routine.

Table 18-3 summarizes how next routines shall Þnd each target object associated with a given reference object.

Each call to a next routine shall return only one handle. Therefore, to retrieve all target objects for a particular
reference object, the following process can be used:

a) Chose an appropriate ACC routine to retrieve the handle of the desired reference object.

acc_handle_scope()

Get the handle to the scope containing an object

acc_handle_simulated_net()

Get the handle to the net associated with a collapsed net

acc_handle_tchk()

Get the handle to a timing check

acc_handle_tchkarg1()

Get the handle to the Þrst argument of a timing check

acc_handle_tchkarg2()

Get the handle to the second argument of a timing check

acc_handle_terminal()

Get the handle to terminal of a primitive based on the terminal index

acc_handle_tfarg()

Get a handle to the object named in a system task/function argument

acc_handle_tÞnst()

Get the handle the current instance of a system task/function

Table 18-3ÑHow next routines use the target object argument

When A next routine shall return

The

target object

 is

null

 A handle to the Þrst

target object

 related to the

reference object

The target object is a handle to the last target object
returned

A handle to the next target object related to the reference object

No target objects remain for the reference object A null handle

No target objects are found initially for the reference object A null handle

An error occurs A null handle

NOTEÑObjects can be returned in an arbitrary order.

Table 18-2ÑList of handle routines (continued)

ACC routine Description

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 18 239

b) Set the target object handle variable to null. When a next routine is called with a null target handle, it
shall return the Þrst target associated with the reference.

c) Call the next routine, assigning the return value to the same variable as the target object argument. This
automatically updates the target object argument to point to the last object found.

d) Place the next routine call inside a C while loop that terminates when the loop control value is null. When
a next routine cannot access any more target objects, it shall return a null.

The following example, display_net_names, uses a next routine to display the names of all nets in a module.

Table 18-4ÑList of next routines

ACC routine Description

acc_next() Get handles to all objects of a set of types

acc_next_bit() Get handles to all bits of a port or vector

acc_next_cell() Get handles to all cell modules in the current hierarchy and below

acc_next_cell_load() Get handles to all cell loads on a net

acc_next_child() Get handles to all module instances within a module

acc_next_driver() Get handles to all primitive terminals that drive a net

acc_next_hiconn() Get handles to all nets connected hierarchically higher to a module port

acc_next_input() Get handles to all input terminals of a module path or data path

acc_next_load() Get handles to all primitive terminals driven by a net

acc_next_loconn() Get handles to all nets connected hierarchically lower to a module port

acc_next_modpath() Get handles to all path delays in a module

acc_next_net() Get handles to all nets in a module

#include "acc_user.h"

display_net_names()
{

handle module_handle;
handle net_handle;

/*initialize environment for access routines*/
acc_initialize();

/*set the development version*/
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*get handle for module*/
module_handle = acc_handle_tfarg(1);

/*display names of all nets in the module*/
net_handle = null;
while(net_handle = acc_next_net(module_handle, net_handle))

io_printf("Net name is: %s\n", acc_fetch_fullname(net_handle));

acc_close();
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

240 Section 18

18.4.4 Modify routines

Modify routines shall alter the values of a variety of objects in the design hierarchy. Table 18-5 lists the types of
values that shall be modiÞed for particular objects.

More details on using the acc_append_delays() and acc_fetch_delays() ACC routines are provided in 18.8.

acc_next_output() Get handles to all output terminals of a module path or data path

acc_next_parameter() Get handles to all parameters in a module

acc_next_port() Get handles to all ports of a module or connected to a net

acc_next_portout() Get handles to all output ports of a module

acc_next_primitive() Get handles to all primitive instances in a module

acc_next_scope() Get handles to all hierarchy scopes within a scope

acc_next_specparam() Get handles to all specify block parameters in a module

acc_next_tchk() Get handles to all timing checks in a module

acc_next_terminal() Get handles to all terminals of a primitive

acc_next_topmod() Get handles to all top-level modules

Table 18-5ÑValues that can be modiÞed

Modify routines alter For these objects

Delay values Primitives
Module paths

Intermodule paths
Module input ports

Timing checks

Logic values Register data types
Net data types

Sequential UDPs

Pulse handling values Module paths

Table 18-6ÑList of modify routines

ACC routine Description

acc_append_delays() Add delays to existing delays on primitives, module paths, timing checks,
and module input ports

acc_append_pulsere() Add to existing pulse control values of a module path

acc_replace_delays() Replace existing delays on primitives, module paths, timing checks, inter-
module paths, and module input ports

Table 18-4ÑList of next routines (continued)

ACC routine Description

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 18 241

18.4.5 Miscellaneous routines

Miscellaneous routines shall perform a variety of operations, such as initializing and conÞguring the ACC routine
environment.

18.4.6 VCL routines

The VCL shall allow a PLI application to monitor simulation value changes of selected objects. It consists of two
ACC routines that instruct a Verilog simulator to start or stop informing an application when an object changes value.
How the VCL routine is used is discussed is 18.10.

acc_replace_pulsere() Replace existing values on pulse control values of a module path

acc_set_pulsere() Set pulse control values of a module path as a percentage of path delay

acc_set_value() Set and propagate a logic value onto a register, variable or sequential UDP;
continuously assign/deassign a register;
force/release a net or register

Table 18-7ÑList of miscellaneous routines

ACC routine Description

acc_close() Close ACC routine environment

acc_collect() Collect an array of handles for a reference object

acc_compare_handles() Determine if two handles are for the same object

acc_conÞgure() Set the ACC routine environment parameters

acc_count() Count the number of objects related to a reference object

acc_free() Free up memory allocated by acc_collect()

acc_initialize() Initialize the ACC routine environment

acc_object_in_typelist() Determine if an object matches a set of types, fulltypes, or special properties

acc_object_of_type() Determine if an object matches a speciÞc type, fulltype, or special property

acc_product_type() Get the type of software product being used

acc_product_version() Get the version of software product being used

acc_release_object() Release memory allocated by acc_next_input() or acc_next_output()

acc_reset_buffer() Reset the string buffer

acc_set_interactive_scope() Set the interactive scope of a software implementation

acc_set_scope() Set the scope used by acc_handle_object()

acc_version() Get the version of the ACC routines being used

Table 18-6ÑList of modify routines (continued)

ACC routine Description

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

242 Section 18

18.5 Accessible objects

ACC routines shall access information about the following objects:

Ñ Module instances

Ñ Module ports

Ñ Individual bits of a port

Ñ Module or data paths

Ñ Intermodule paths

Ñ Top-level modules

Ñ Primitive instances

Ñ Primitive terminals

Ñ Nets (scalars, vectors, and bit- or part-selects of vectors)

Ñ Registers (scalars, vectors, and bit- or part-selects of vectors)

Ñ Parameters

Ñ Specparams

Ñ Timing checks

Ñ Named events

Ñ Integer variables (and bit- or part-selects of integers)

Ñ Real and time variables

The following tables summarize the operations that can be performed for each of the above object types.

18.5.1 ACC routines that operate on module instances

Table 18-8ÑList of VCL routines

ACC routine Description

acc_vcl_add() Add a value change callback on an object

acc_vcl_delete() Remove a value change callback

Table 18-9ÑOperations on module instances

To Use

Obtain handles for module instances tagged as cells within a hierarchi-
cal scope and below

acc_next_cell()

Obtain handles for module instances within a particular module
instance

acc_next_child()

Obtain a handle to the parent (the module that contains the instance) acc_handle_parent()

Get the instance name acc_fetch_name()

Get the full hierarchical name acc_fetch_fullname()

Get the module deÞnition name acc_fetch_defname()

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 18 243

18.5.2 ACC routines that operate on module ports

Get the fulltype of a module instance (cell instance, module instance, or
top-level module)

acc_fetch_fulltype()

Get the delay mode of a module instance (none, zero, unit, distributed,
or path)

acc_fetch_delay_mode()

Get timescale information for a module instance acc_fetch_timescale_info()

Table 18-10ÑOperations on module ports

To Use

Obtain handles for ports of a module instance acc_next_port()

Obtain a handle for a particular port acc_handle_port()

Obtain a handle to the parent (the module instance that contains the
port)

acc_handle_parent()

Obtain handles to hierarchically higher-connected nets acc_next_hiconn()

Obtain handles to hierarchically lower-connected nets acc_next_loconn()

Obtain a handle to the hierarchically higher-connected net of a scalar
module port or bit of a vector port

acc_handle_hiconn()

Obtain a handle to the hierarchically lower-connected net of a scalar
module port or bit of a vector port

acc_handle_loconn()

Get the instance name acc_fetch_name()

Get the full hierarchical name acc_fetch_fullname()

Get the port direction acc_fetch_direction()

Get the port index number acc_fetch_index()

Get the fulltype of a module port acc_fetch_fulltype()

Add VCL value change callback monitors acc_vcl_add()

Delete VCL value change callback monitors acc_vcl_delete()

Table 18-9ÑOperations on module instances (continued)

To Use

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

244 Section 18

18.5.3 ACC routines that operate on bits of a port

18.5.4 ACC routines that operate on module paths or data paths

Table 18-11ÑOperations on bits of a port

To Use

Obtain handles for bits of a module port acc_next_bit()

Get the port name acc_fetch_name()

Get the full hierarchical name acc_fetch_fullname()

Get the fulltype of a portÕs bit acc_fetch_fulltype()

Read MIPD acc_fetch_delays()

Append to existing MIPD acc_append_delays()

Replace existing MIPD acc_replace_delays()

Add VCL value change callback monitors acc_vcl_add()

Delete VCL value change callback monitors acc_vcl_delete()

Table 18-12ÑOperations on module paths and data paths

To Use

Obtain handles for module paths within a scope acc_next_modpath()

Obtain a handle to the Þrst connected nets acc_handle_pathin()
acc_handle_pathout()

Obtain a handle to a module path acc_handle_modpath()

Obtain a handle to a datapath acc_handle_datapath()

Obtain a handle to a conditional expression for a path acc_handle_condition()

Obtain handles for input terminals of a module path or data path acc_next_input()

Obtain handles for output terminals of a module path or data path acc_next_output()

Get the path name acc_fetch_name()

Get the full hierarchical name acc_fetch_fullname()

Get the polarity of a path acc_fetch_polarity()

Get the edge speciÞed for a path terminal acc_fetch_edge()

Read path delays acc_fetch_delays()

Append to existing path delays acc_append_delays()

Replace existing path delays acc_replace_delays()

Read path pulse handling acc_fetch_pulsere()

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 18 245

18.5.5 ACC routines that operate on intermodule paths

18.5.6 ACC routines that operate on top-level modules

18.5.7 ACC routines that operate on primitive instances

Append to existing path pulse control values acc_append_pulsere()

Specify path pulse control values acc_set_pulsere()

Free memory allocated by acc_next_input() or acc_next_output() acc_release_object()

Table 18-13ÑOperations on intermodule paths

To Use

Obtain a handle for an intermodule path acc_handle_path()

Get the fulltype of an intermodule path acc_fetch_fulltype()

Read intermodule path delays acc_fetch_delays()

Modify intermodule path delays acc_replace_delays()

Table 18-14ÑOperations on top-level modules

To Use

Obtain handles for top-level modules in a design acc_next_topmod()

Get the module name acc_fetch_name()
acc_fetch_fullname()
acc_fetch_defname()

Table 18-15ÑOperations on primitive instances

To Use

Obtain handles for primitive instances within a module instance acc_next_primitive()

Obtain a handle to the parent (the module that contains the primitive) acc_handle_parent()

Get the instance name acc_fetch_name()

Get the full hierarchical name acc_fetch_fullname()

Get the deÞnition name acc_fetch_defname()

Get the primitive fulltype acc_fetch_fulltype()

Table 18-12ÑOperations on module paths and data paths

To Use

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

246 Section 18

18.5.8 ACC routines that operate on primitive terminals

18.5.9 ACC routines that operate on nets

Read delays acc_fetch_delays()

Append to existing primitive delays acc_append_delays()

Replace existing primitive delays acc_replace_delays()

Table 18-16ÑOperations on primitive terminals

To Use

Obtain handles for terminals of a primitive instance acc_next_terminal()

Obtain a handle to the net connected to the terminal acc_handle_conn()

Obtain a handle to the parent (primitive instance containing the
terminal)

acc_handle_parent()

Get the direction (input, output, inout) acc_fetch_direction()

Get the terminal index number acc_fetch_index()

Get the fulltype acc_fetch_fulltype()

Add VCL value change callback monitors acc_vcl_add()

Delete VCL value change callback monitors acc_vcl_delete()

Table 18-17ÑOperations on nets

To Use

Obtain handles for nets within a module instance acc_next_net()

Obtain a handle to the parent (the module instance that contains the net) acc_handle_parent()

Determine if net is scalar, vector, collapsed, or expanded acc_object_of_type()

Obtain handles to bits of a vector net acc_next_bit()

Obtain handles to driving terminals of the net acc_next_driver()

Obtain handles to load terminals of the net acc_next_load()

Obtain handles to connected load terminals; only one per driven cell
port

acc_next_cell_load()

Obtain a handle to the simulated net of a collapsed net acc_handle_simulated_net()

Get the net name acc_fetch_name()

Get the full hierarchical name acc_fetch_fullname()

Table 18-15ÑOperations on primitive instances

To Use

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 18 247

18.5.10 ACC routines that operate on registers

18.5.11 ACC routines that operate on integer, real, and time variables

Get the net vector size acc_fetch_size()

Get the msb and lsb vector range acc_fetch_range()

Get the net fulltype acc_fetch_fulltype()

Get the net logic or strength value acc_fetch_value()

Force or release the net logic value acc_set_value()

Add VCL value change callback monitors acc_vcl_add()

Delete VCL value change callback monitors acc_vcl_delete()

Table 18-18ÑOperations on registers

To Use

Obtain handles to registers within a given scope acc_next()

Obtain handles to bits of a vector register acc_next_bit()

Obtain a handle to the parent (module instance containing the register) acc_handle_parent()

Obtain handles to load terminals of the register acc_next_load()

Determine if register is scalar or vector acc_object_of_type()

Get the register name acc_fetch_name()

Get the full hierarchical name acc_fetch_fullname()

Get the register size acc_fetch_size()

Get the msb and lsb vector range acc_fetch_range()

Get the register value acc_fetch_value()

Set the register value acc_set_value()

Add VCL value change callback monitors acc_vcl_add()

Delete VCL value change callback monitors acc_vcl_delete()

Table 18-19ÑOperations on integer, real, and time variables

To Use

Obtain handles to variables within a given scope acc_next()

Obtain a handle to the parent (module instance containing the variable) acc_handle_parent()

Get the variable name acc_fetch_name()

Table 18-17ÑOperations on nets

To Use

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

248 Section 18

18.5.12 ACC routines that operate on named events

18.5.13 ACC routines that operate on parameters and specparams

Get the full hierarchical name acc_fetch_fullname()

Get the variable value acc_fetch_value()

Set the variable value acc_set_value()

Add VCL value change callback monitors acc_vcl_add()

Delete VCL value change callback monitors acc_vcl_delete()

Table 18-20ÑOperations on named events

To Use

Obtain handles to named events within a given scope acc_next()

Obtain a handle to the parent (module instance containing the named
event)

acc_handle_parent()

Get the named-event name acc_fetch_name()

Get the full hierarchical name acc_fetch_fullname()

Add VCL value change callback monitors acc_vcl_add()

Delete VCL value change callback monitors acc_vcl_delete()

Table 18-21ÑOperations on parameters and specparams

To Use

Obtain handles for parameters within a module instance acc_next_parameter()

Obtain handles for specparams within a module instance acc_next_specparam()

Obtain a handle to the parent (the module instance that contains the
parameter)

acc_handle_parent()

Get the parameter or specparam name acc_fetch_name()

Get the full hierarchical name acc_fetch_fullname()

Get the parameter value data type (integer, ßoating point, string) acc_fetch_paramtype()
acc_fetch_fulltype()

Get the value of a parameter acc_fetch_paramval()

Get the attribute value of a parameter deÞned with an attribute name acc_fetch_attribute()
acc_fetch_attribute_int()
acc_fetch_attribute_str()

Table 18-19ÑOperations on integer, real, and time variables

To Use

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 18 249

18.5.14 ACC routines that operate on timing checks

18.5.15 ACC routines that operate on timing check terminals

18.5.16 ACC routines that operate on user-deÞned system task/function arguments

18.6 ACC routine types and fulltypes

Many objects in the Verilog HDL can have both a type and a fulltype associated with them. A type shall be a general
classiÞcation of an object, whereas a fulltype shall be a speciÞc classiÞcation. The type and fulltype for a given object

Table 18-22ÑOperations on timing checks

To Use

Obtain handles for timing checks within a module instance acc_next_tchk()

Obtain a handle to a speciÞc timing check acc_handle_tchk()

Obtain a handle to a timing check terminal acc_handle_tchkarg1()
acc_handle_tchkarg2()

Get the timing check fulltype acc_fetch_fulltype()

Get a timing check limit acc_fetch_delays()

Append to an existing timing check limit acc_append_delays()

Replace to an existing timing check limit acc_replace_delays()

Table 18-23ÑOperations on timing check terminals

To Use

Obtain a handle to the net attached to timing check terminals acc_handle_conn()

Obtain a handle to the condition on a timing check terminal acc_handle_condition()

Get edge information on a timing check terminal acc_fetch_edge()

Table 18-24ÑOperations on user-deÞned system task/function arguments

To Use

Obtain a handle for an object named in a task/function argument acc_handle_tfarg()
acc_handle_itfarg()

Get the value of a task/function argument as a double acc_fetch_tfarg()
acc_fetch_itfarg()

Get the value of a task/function argument as an integer acc_fetch_tfarg_int()
acc_fetch_itfarg_int()

Get the value of a task/function argument as a string pointer acc_fetch_tfarg_str()
acc_fetch_itfarg_str()

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

250 Section 18

can be different constants, or they can be the same constant. For example, an and logic gate has a type of
accPrimitive and a fulltype of accAndPrimitive. The type and fulltype are predeÞned integer constants in the Þle
acc_user.h. Several ACC routines either return a type or fulltype value, or use a type or fulltype value as an
argument. Table 18-25 lists all type and fulltype constants that shall be supported by ACC routines.

Table 18-25ÑList of all predeÞned type and fulltype constants

type constant fulltype constant Description

accConstant accConstant Object is a constant

accDataPath accDataPath Object is a data path in a path delay

accNamedEvent accNamedEvent Object is declared as an event data type

accFunction accFunction Object is a Verilog HDL function

accIntegerVar accIntegerVar Object is declared as an integer data type

accModule Object is a module instance

accModuleInstance Object is a module instance

accCellInstance Object is a module instance that has been deÞned as
an ASIC cell

accTopModule Object is a top-level module

accNet Object is declared as a net data type

accSupply0 Object is declared as a supply0 net data type

accSupply1 Object is declared as a supply1 net data type

accTri Object is declared as a tri net data type

accTriand Object is declared as a triand net data type

accTrior Object is declared as a trior net data type

accTrireg Object is declared as a trireg net data type

accTri0 Object is declared as a tri0 net data type

accTri1 Object is declared as a tri1 net data type

accWand Object is declared as a wand net data type

accWire Object is declared as a wire net data type

accWor Object is declared as a wor net data type

accNetBit accNetBit Object is a bit-select of a net data type

accOperator accOperator Object is a Verilog HDL operator

accParameter Object is a parameter

accIntegerParam Object is a parameter with an integer value

accRealParam Object is a parameter with a real value

accStringParam Object is a parameter with a string value

accPartSelect accPartSelect Object is a part-select of a vector

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 18 251

accPath Object is a path

accInterModPath Object is an intermodule path

accModPath Object is a module path

accPathTerminal Object is a terminal of a module path

accPathInput Object is an input terminal of a module path

accPathOutput Object is an output terminal of a module path

accPort Object is a module port

accConcatPort Object is a module port concatenation

accScalarPort Object is a scalar module port

accBitSelectPort Object is a bit-select of a module port

accPartSelectPort Object is a part-select of a module port

accVectorPort Object is a vector module port

accPortBit accPortBit Object is a bit of a module port

Table 18-25ÑList of all predeÞned type and fulltype constants (continued)

type constant fulltype constant Description

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

252 Section 18

accPrimitive Object is a primitive

accAndGate Object is an and primitive

accBufGate Object is a buf primitive

accBuÞf0Gate Object is a buÞf0 primitive

accBuÞf1Gate Object is a buÞf1 primitive

accCmosGate Object is a cmos primitive

accCombPrim Object is a combinational logic UDP

accNandGate Object is a nand primitive

accNmosGate Object is an nmos primitive

accNorGate Object is a nor primitive

accNotGate Object is a not primitive

accNotif0Gate Object is a notif0 primitive

accNotif1Gate Object is a notif1 primitive

accOrGate Object is an or primitive

accPmosGate Object is a pmos primitive

accPulldownGate Object is a pulldown primitive

accPullupGate Object is a pullup primitive

accRcmosGate Object is an rcmos primitive

accRnmosGate Object is an rnmos primitive

accRpmosGate Object is an rpmos primitive

accRtranGate Object is an rtran primitive

accRtranif0Gate Object is an rtranif0 primitive

accRtranif1Gate Object is an rtranif1 primitive

accSeqPrim Object is a sequential logic UDP

accTranGate Object is a tran primitive

accTranif0Gate Object is a tranif0 primitive

accTranif1Gate Object is a tranif1 primitive

accXnorGate Object is an xnor primitive

accXorGate Object is an xor primitive

accRealVar accRealVar Object is declared as a real data type

accReg accReg Object is declared as a reg data type

accRegBit accRegBit Object is a bit-select of a reg data type

Table 18-25ÑList of all predeÞned type and fulltype constants (continued)

type constant fulltype constant Description

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 18 253

accSpecparam Object is a specparam

accIntegerParam Object is a specparam with an integer value

accRealParam Object is a specparam with a real value

accStringParam Object is a specparam with a string value

accStatement accStatement Object is a procedural statement

accNamedBeginStat Object is a named begin statement

accNamedForkStat Object is a named fork statement

accSystemTask accSystemTask Object is a built-in system task

accSystemFunction accSystemFunction Object is a built-in system function with a scalar or
vector return

accSystemRealFunction accSystemRealFunction Object is a built-in system function with a real
value return

accTask accTask Object is a Verilog HDL task

accTchk Object is a timing check

accHold Object is a $hold timing check

accNochange Object is a $nochange timing check

accPeriod Object is a $period timing check

accRecovery Object is a $recovery timing check

accSetup Object is a $setup timing check

accSetuphold Object is a $setuphold timing check

accSkew Object is a $skew timing check

accWidth Object is a $width timing check

accTchkTerminal accTchkTerminal Object is a timing check terminal

accTerminal Object is a primitive terminal

accInputTerminal Object is a primitive input terminal

accOutputTerminal Object is a primitive output terminal

accInoutTerminal Object is a primitive inout terminal

accTimeVar accTimeVar Object is declared as a time data type

accUserTask accUserTask Object is a user-deÞned system task

accUserFunction accUserFunction Object is a user-deÞned system function with a sca-
lar or vector return

accUserRealFunction accUserRealFunction Object is a user-deÞned system function with a real
value return

accWirePath accIntermodPath Object is an intermodule path (from a module out-
put to a module input)

Table 18-25ÑList of all predeÞned type and fulltype constants (continued)

type constant fulltype constant Description

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

254 Section 18

18.7 Error handling

When an ACC routine detects an error, it shall perform the following operations:

a) Set the global error ßag acc_error_ßag to non-zero

b) Display an error message at run time to standard output

c) Return an exception value

When an ACC routine is called, it automatically resets acc_error_ßag to 0.

18.7.1 Suppressing error messages

By default, ACC routines shall display error messages. Error messages can be suppressed using the ACC routine
acc_conÞgure() to set the conÞguration parameter accDisplayErrors to ÒfalseÓ.

18.7.2 Enabling warnings

By default, ACC routines shall not display warning messages. To enable warning messages, use the ACC routine
acc_conÞgure() to set the conÞguration parameter accDisplayWarnings to ÒtrueÓ.

18.7.3 Testing for errors

If automatic error reporting is suppressed, error handling can be performed by checking the acc_error_ßag explicitly
after calling an ACC routine. This procedure is described in Figure 18-1.

Figure 18-1ÑUsing acc_error_ßag to detect errors

18.7.4 Example

The following example shows a C-language application that performs error checking for ACC routines. This example
uses acc_conÞgure() to suppress automatic error reporting. Instead, it checks acc_error_ßag explicitly and displays
its own specialized error message.

no

yes perform
error

processing

continue
normal

processing

acc_error_flag
is

set?

call
access
routine

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 18 255

18.7.5 Exception values

ACC routines shall return one of three exception values when an error occurs, unless speciÞed differently in the
syntax of a speciÞc ACC routine.

Because ACC routines can return valid values that are the same as exception values, the only deÞnitive way to detect
errors explicitly is to check acc_error_ßag.

Note that null and false are predeÞned constants, declared in acc_user.h.

Table 18-26ÑException values returned by ACC routines on errors

When routine returns The exception value shall be

int or double values 0.0

pointers or handles null

bool (boolean) values false

#include "acc_user.h"

check_new_timing()
{

handle gate_handle;

/* initialize and configure access routines */
acc_initialize();

/* suppress error reporting by access routines */
acc_configure(accDisplayErrors, "false");

/* set development version */
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/* check type of first argument, the object */
gate_handle = acc_handle_tfarg(1);

/* check for valid argument */
if (acc_error_flag)

tf_error("Cannot derive handle from argument\n");
else
/* argument is valid */
/* make sure it is a primitive */
 if (acc_fetch_type(gate_handle) != accPrimitive)

 tf_error("Invalid argument type:not a primitive\n");
acc_close();

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

256 Section 18

18.8 Reading and writing delay values

This clause explains how ACC routines that read and modify delays are used. The ACC routines acc_fetch_delays(),
acc_replace_delays(), and acc_append_delays() can read or modify delay values in a Verilog software
implementation data structure. Refer to Section 19 for the complete syntax of each of these routines.

18.8.1 Number of delays for Verilog HDL objects

There are a variety of objects in a Verilog HDL source description that can model delays. These objects can have a
single delay that represents all possible logic transitions, or multiple delays that represent different logic transitions.
Table 18-27 lists the objects that can have delays and the number of different delays for each object.

In addition to the number of delays, each delay can be represented as a single delay for each transition or as a
minimum:typical:maximum delay set for each transition. Thus, a module path with 1 delay might have one value or
three values, and a module path with 12 delays can have 12 delay values or 36 delay values.

18.8.2 ACC routine conÞguration

The PLI shall use conÞguration parameters to set up the delay ACC routines to work with the variations of Verilog
objects and the number of possible delays. These parameters shall be set using the routine acc_conÞgure(). The

Table 18-27ÑNumber of possible delays for Verilog HDL objects

Verilog HDL Objects Number of
delays Description

2-state primitives
1 One delay for: all transitions

2 Separate delays for: rise, fall

3-state primitives

1 One delay for: all transitions

2 Separate delays for: rise, fall

3 Separate delays for: rise, fall, toZ

Module path delays

1 One delay for: all transitions

2 Separate delays for: rise, fall

3 Separate delays for: rise, fall, toZ

6 Separate delays for: 0->1, 1->0, 0->Z, Z->1, 1->Z, Z->0

12 Separate delays for: 0->1, 1->0, 0->Z, Z->1, 1->Z, Z->0,
0->X, X->1, 1->X, X->0, X->Z, Z->X

Module ports
Module port bits

Intermodule paths
3 Separate delays for: rise, fall, toZ

Timing checks 1 One delay for: timing limit

NOTEÑThe routine acc_append_delays() does not support intermodule path delays.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 18 257

parameters that conÞgure the delay ACC routines are summarized in Table 18-28. How these conÞguration
parameters are used is presented in 18.8.3. Refer to 19.6 for details on using acc_conÞgure().

18.8.3 Determining the number of arguments for ACC delay routines

The ACC routines acc_fetch_delays(), acc_replace_delays(), and acc_append_delays() shall require a different
number of arguments based on

Ñ The type of object handle
Ñ The setting of conÞguration parameters

The following subclauses discuss how these factors affect the number of arguments for delay ACC routines.

18.8.3.1 Single delay value mode

When the conÞguration parameter accMinTypMaxDelays is ÒfalseÓ (the default), a single value shall be used for
each delay transition. In this mode, the routines acc_fetch_delays(), acc_replace_delays(), and
acc_append_delays() shall require each delay value as a separate argument. For acc_replace_delays() and
acc_append_delays(), the arguments shall be a literal value of type double or variables of type double. For
acc_fetch_delays(), the arguments shall be pointers to variables of type double.

The number of arguments required is determined by the type of object handle passed to the delay ACC routine, as
shown in Table 18-29.

Table 18-28ÑConÞguration parameters for delay ACC routines

ConÞguration parameter Description

accMinTypMaxDelays
When ÒfalseÓ, each delay shall be represented by one value.
When ÒtrueÓ, each delay shall be represented by a min:typ:max value.
The default shall be ÒfalseÓ.

accToHiZDelay

Set to ÒaverageÓ, ÒmaxÓ, ÒminÓ, or Òfrom userÓ, which allows the
delay modify ACC routines to calculate the toZ delay for 3-state objects when
accPathDelayCount is set to Ò2Ó. The default shall be Òfrom userÓ,
which means the toZ delay shall not be calculated. Note that this parameter
shall be ignored when accMinTypMaxDelays is set to ÒtrueÓ.

accPathDelayCount
Sets the number of delay arguments to be used by the ACC routines for mod-
ule path delays. Shall be set to Ò1Ó, Ò2Ó, Ò3Ó, Ò6Ó, or Ò12Ó. The default
shall be Ò6Ó.

Table 18-29ÑNumber of delay arguments in single delay mode

Object handle type ConÞguration parameters Number and order of delay arguments

Timing check 1 argument: timing check limit

2-state primitive 2 arguments: rise, fall transitions

3-state primitive
Module port

Module port bit
Intermodule path

accToHiZDelay set to
ÒminÓ , ÒmaxÓ, or ÒaverageÓ

2 arguments: rise, fall transitions
(toZ delay is calculated; see 18.8.3.3)

accToHiZDelay set to Òfrom_userÓ 3 arguments: rise, fall, toZ transitions

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

258 Section 18

18.8.3.2 Min:typ:max delay value mode

When the conÞguration parameter accMInTypMaxDelays is ÒtrueÓ, a three-value set shall be used for each delay
transition. In this mode, the routines acc_fetch_delays(), acc_replace_delays(), and acc_append_delays() shall
require the delay argument to be a pointer of an array of variables of type double. The number of elements in the array
shall be determined by the type of object handle passed to the delay ACC routine, as shown in Table 18-30.

Module path

accPathDelayCount set to Ò1Ó 1 argument: all transitions

accPathDelayCount set to Ò2Ó 2 arguments: rise, fall transitions

accPathDelayCount set to Ò3Ó 3 arguments: rise, fall, toZ transitions

accPathDelayCount set to Ò6Ó 6 arguments:
 0->1, 1->0, 0->Z, Z->1, 1->Z, Z->0

accPathDelayCount set to Ò12Ó 12 arguments:
 0->1, 1->0, 0->Z, Z->1, 1->Z, Z->0
 0->X, X->1, 1->X, X->0, X->Z, Z->X

Table 18-30ÑNumber of delay elements in min:typ:max delay mode

 Object handle type ConÞguration parameters Size and order of the delay array

Timing check

3 elements:
 array[0] = min limit
 array[1] = typ limit
 array[2] = max limit

2-state primitive
3-state primitive

Module port
Module port bit

Intermodule path

9 elements:
 array[0] = min rise delay
 array[1] = typ rise delay
 array[2] = max rise delay
 array[3] = min fall delay
 array[4] = typ fall delay
 array[5] = max fall delay
 array[6] = min toZ delay
 array[7] = typ toZ delay
 array[8] = max toZ delay
(an array of size 9 shall be declared, even if toZ
delays are not used by the object)

Table 18-29ÑNumber of delay arguments in single delay mode (continued)

Object handle type ConÞguration parameters Number and order of delay arguments

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 18 259

Module path

accPathDelayCount set to Ò1Ó 3 elements:
 array[0] = min delay
 array[1] = typ delay
 array[2] = max delay

accPathDelayCount set to Ò2Ó 6 elements:
 array[0] = min rise delay
 array[1] = typ rise delay
 array[2] = max rise delay
 array[3] = min fall delay
 array[4] = typ fall delay
 array[5] = max fall delay

accPathDelayCount is set to Ò3Ó 9 elements:
 array[0] = min rise delay
 array[1] = typ rise delay
 array[2] = max rise delay
 array[3] = min fall delay
 array[4] = typ fall delay
 array[5] = max fall delay
 array[6] = min toZ delay
 array[7] = typ toZ delay
 array[8] = max toZ delay

accPathDelayCount set to Ò6Ó 18 elements:
 array[0] = min 0->1 delay
 array[1] = typ 0->1 delay
 array[2] = max 0->1 delay
 array[3] = min 1->0 delay
 array[4] = typ 1->0 delay
 array[5] = max 1->0 delay
 array[6] = min 0->Z delay
 array[7] = typ 0->Z delay
 array[8] = max 0->Z delay
 array[9] = min Z->1 delay
 array[10] = typ Z->1 delay
 array[11] = max Z->1 delay
 array[12] = min 1->Z delay
 array[13] = typ 1->Z delay
 array[14] = max 1->Z delay
 array[15] = min Z->0 delay
 array[16] = typ Z->0 delay
 array[17] = max Z->0 delay

Table 18-30ÑNumber of delay elements in min:typ:max delay mode (continued)

 Object handle type ConÞguration parameters Size and order of the delay array

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

260 Section 18

18.8.3.3 Calculating turn-off delays from rise and fall delays

In single delay mode (accMinTypMaxDelays set to ÒfalseÓ), the routines acc_replace_delays() and
acc_append_delays() can be instructed to calculate automatically the turn-off delays from rise and fall delays. How
the calculation shall be performed is controlled by the conÞguration parameter accToHiZDelay, as shown in Table
18-31.

Module path
(continued)

accPathDelayCount set to Ò12Ó 36 elements:
 array[0] = min 0->1 delay
 array[1] = typ 0->1 delay
 array[2] = max 0->1 delay
 array[3] = min 1->0 delay
 array[4] = typ 1->0 delay
 array[5] = max 1->0 delay
 array[6] = min 0->Z delay
 array[7] = typ 0->Z delay
 array[8] = max 0->Z delay
 array[9] = min Z->1 delay
 array[10] = typ Z->1 delay
 array[11] = max Z->1 delay
 array[12] = min 1->Z delay
 array[13] = typ 1->Z delay
 array[14] = max 1->Z delay
 array[15] = min Z->0 delay
 array[16] = typ Z->0 delay
 array[17] = max Z->0 delay
 array[18] = min 0->X delay
 array[19] = typ 0->X delay
 array[20] = max 0->X delay
 array[21] = min X->1 delay
 array[22] = typ X->1 delay
 array[23] = max X->1 delay
 array[24] = min 1->X delay
 array[25] = typ 1->X delay
 array[26] = max 1->X delay
 array[27] = min X->0 delay
 array[28] = typ X->0 delay
 array[29] = max X->0 delay
 array[30] = min X->Z delay
 array[31] = typ X->Z delay
 array[32] = max X->Z delay
 array[33] = min Z->X delay
 array[34] = typ Z->X delay
 array[35] = max Z->X delay

Table 18-30ÑNumber of delay elements in min:typ:max delay mode (continued)

 Object handle type ConÞguration parameters Size and order of the delay array

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 18 261

18.9 String handling

18.9.1 ACC routines share an internal string buffer

ACC routines that return pointers to strings can share an internal buffer to store string values. These routines shall
return a pointer to the location in the buffer that contains the Þrst character of the string, as illustrated in Figure 18-2.
In this example, mod_name points to the location in the buffer where top.m1 (the name of the module associated
with module_handle) is stored.

Figure 18-2ÑHow ACC routines store strings in the internal buffer

Table 18-31ÑConÞguring accToHiZDelay to determine the toZ delay

ConÞguration of accToHiZDelay Value of the toZ delay

ÒaverageÓ The toZ turn-off delay shall be the average of the
rise and fall delays.

ÒminÓ The toZ turn-off delay shall be the smaller of the
rise and fall delays.

ÒmaxÓ The toZ turn-off delay shall be the larger of the rise
and fall delays.

Òfrom_userÓ
(the default)

The toZ turn-off delay shall be set to the value
passed as a user-supplied argument.

ÕdÕ
ÕfÕ

ÕfÕ

Õ\0Õ
ÕtÕ
ÕoÕ
ÕpÕ
Õ.Õ
ÕmÕ
Õ1Õ
Õ\0Õ

mod_name = acc_fetch_name(module_handle);

THE INTERNAL STRING BUFFER

end of a previous string

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

262 Section 18

18.9.2 String buffer reset

ACC routines shall place strings at the next available sequential location in the string buffer, which stores at least
4096 characters. If there is not enough room to store an entire string starting at the next location, a condition known as
buffer reset shall occur.

When buffer reset occurs, ACC routines shall place the next string starting at the beginning of the buffer, overwriting
data already stored there. The result can be a loss of data, as illustrated in Figure 18-3.

Figure 18-3ÑBuffer reset causes data in the string buffer to be overwritten

18.9.2.1 The buffer reset warning

ACC routines shall issue a warning whenever the internal string buffer resets. To view the warning message, the
conÞguration parameter accDisplayWarnings shall be set to true, using the ACC routine acc_conÞgure().

ÕdÕ

ÕfÕ
ÕfÕ

Õ\0Õ

ÕtÕ
ÕoÕ

ÕpÕ
Õ.Õ

ÕmÕ
Õ1Õ
Õ\0Õ

mod_name = acc_fetch_fullname(module_handle);

THE INTERNAL STRING BUFFER

net_name = acc_fetch_fullname(net_handle);

mod_name

ÕtÕ
ÕoÕ

ÕpÕ
Õ.Õ

ÕmÕ
Õ1Õ

Õ.Õ
ÕwÕ
Õ4Õ
Õ\0Õ
Õ\0Õ

THE INTERNAL STRING BUFFER

mod_name

net_name

Action: Results:

mod_name points to the string
Òtop.m1Ó.

The string happens to be stored
near the end of the buffer.

acc_fetch_fullname() cannot
place the next string at the end
of the buffer. Therefore, a
buffer reset occurs.

net_name points to the string
Òtop.m1.w4Ó

The data at the beginning of the
buffer is overwritten; The old
mod_name pointer now points
to corrupted data, which in this
example is Òm1.w4Ó.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 18 263

18.9.3 Preserving string values

Applications that use strings immediatelyÑfor example, to print names of objectsÑdo not need to be concerned
about overwrites after a string buffer reset. Applications that have to preserve string values while calling other ACC
routines that write to the string buffer should preserve the string value before it is overwritten. To preserve a string
value, the C routine strcpy can be used to copy the string to a local character array.

18.9.4 Example of preserving string values

The following example code illustrates preserving string values. If the module in this example contains many cells,
one of the calls to acc_fetch_name() could eventually overwrite the module name in the string buffer with a cell
name. To preserve the module name, strcpy is used to store it locally in an array called mod_name.

18.10 Using VCL ACC routines

The VCL routines add or delete value change monitors on a speciÞed object. Then, whenever the object changes logic
value or strength, a PLI consumer routine shall be called.

The ACC routine acc_vcl_add() adds a value change monitor on an object in the Verilog HDL source description.
The arguments for acc_vcl_add() specify

Ñ A handle to an object in the Verilog HDL structure
Ñ The name of a consumer routine
Ñ A user_data value
Ñ A VCL reason_ßag

The following example illustrates the usage of acc_vcl_add().

acc_vcl_add(net, netmon_consumer, net_name, vcl_verilog_logic);

The purpose of each of these arguments is described in the following paragraphs. Refer to 19.97 for the full syntax
and usage of acc_vcl_add() and its arguments.

The handle argument shall be a handle to any object type in the list in 18.10.1.

#include "acc_user.h"

#define NAME_SIZE 256

void display_cells_in_module(mod)
handle mod;
{

handle cell;
char mod_name[NAME_SIZE];

/*save the module name in local buffer mod_name*/

strcpy(mod_name, acc_fetch_fullname(mod));

cell = null;
while (cell = acc_next_cell(mod, cell))

io_printf("%s.%s\n", mod_name, acc_fetch_name(cell));
}

the ACC routine call
is passed as the second
argument to strcpy

strcpy saves the full module
name in array mod_name

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

264 Section 18

The consumer routine argument shall be the name of a C application that shall be called for the reasons speciÞed by
the reason_ßag, such as a logic value change. When a consumer routine is called, it shall be passed a pointer to a C
record, called vc_record. This record shall contain information about the object, including the simulation time of
the change and the new logic value of the object. The vc_record is deÞned in the Þle acc_user.h and is listed
in Figure 18-4.

The user_data argument shall be a character pointer. The value of the user_data argument shall be passed to the
consumer routine as part of the vc_record. The user_data argument can be used to pass a single value to the
consumer routine, or it can be used to pass a pointer to information. For example, the name of the object could be
stored in a global character string array, and a pointer to that array could be passed as the user_data argument. The
consumer routine could then have access to the object name. Another example is to create a global user-deÞned
structure with several values that need to be passed to the consumer routine. A pointer to a variable using the user-
deÞned structure is then passed as the user_data argument. Note that the user_data argument is deÞned as a character
pointer; therefore, any other data type should be cast to a character pointer.

The VCL reason_ßag argument is one of two predeÞned constants that sets up the VCL callback mechanism to call
the consumer routine under speciÞc circumstances. The constant vcl_verilog_logic sets up the VCL to call the
consumer routine whenever the monitored object changes logic value. The constant vcl_verilog_strength sets up the
VCL to call the consumer routine when the monitored object changes logic value or logic strength.

An object can have any number of VCL monitors associated with it, as long as each monitor is unique in some way.
VCL monitors can be deleted using the ACC routine acc_vcl_delete().

18.10.1 VCL objects

The VCL shall monitor value changes for the following objects:

Ñ Scalar, vector, and bit-selects of registers
Ñ Scalar, vector, and bit-selects of nets
Ñ Integer, real, and time variables
Ñ Module ports
Ñ Primitive output or inout terminals
Ñ Events

18.10.2 The VCL record deÞnition

Each time a consumer routine is called, it shall be passed a pointer to a record structure called vc_record. This
structure shall contain information about the most recent change that occurred on the monitored object. The
vc_record structure is deÞned in acc_user.h and is listed in Figure 18-4.

Figure 18-4ÑThe VCL s_vc_record structure

typedef struct t_vc_record
{
 int vc_reason;
 int vc_hightime;
 int vc_lowtime;
 char *user_data;
 union {
 unsigned char logic_value;
 double real_value;
 handle vector_handle;
 s_strengths strengths_s;
 } out_value;
} s_vc_record, *p_vc_record;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 18 265

The vc_reason Þeld of vc_record shall contain a predeÞned integer constant that shall describe what type of
change occurred. The constants that can be passed in the vc_reason Þeld are described in Table 18-32.

The vc_hightime and vc_lowtime Þelds of vc_record shall be 32-bit integers that shall contain the simulation time
the change occurred, as follows:

The user_data Þeld of vc_record shall be a character pointer, and it shall contain the value speciÞed as the
user_data argument in the acc_vcl_add() ACC routine.

The out_value Þeld of vc_record shall be a union of several data types. Only one data type shall be passed in the
structure, based on the reason the callback occurred, as shown Table 18-33.

Table 18-32ÑPredeÞned vc_reason constants

PredeÞned vc_reason constant Description

logic_value_change A scalar net or bit-select of a vector net changed logic value.

strength_value_change A scalar net or bit-select of a vector net changed logic value or strength.

vector_value_change A vector net or part-select of a vector net changed logic value.

sregister_value_change A scalar register changed logic value.

vregister_value_change A vector register or part-select of a vector register changed logic value.

integer_value_change An integer variable changed value.

real_value_change A real variable changed value.

time_value_change A time variable changed value.

event_value_change An event variable changed.

Table 18-33ÑPredeÞned out_value constants

If vc_reason is The out_value shall
be a type of

Description

logic_value_change unsigned char A predeÞned constant, from the following: vcl0 vcl1
vclX vclx vclZ vclz

strength_value_change s_strengths
structure pointer

A structure with logic and strength, as shown in Figure
18-5

vector_value_change handle A handle to a vector net or part-select of a vector net

sregister_value_change unsigned char A predeÞned constant, from the following: vcl0 vcl1
vclX vclx vclZ vclz

vregister_value_change handle A handle to a vector register or part-select of a vector
register

 vc_hightime vc_lowtime

0313264

lsbmsb

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

266 Section 18

When the vc_reason Þeld of the vc_record is strength_value_change, a pointer to an s_strengths
structure shall be passed in the out_value Þeld of vc_record. This structure shall contain three Þelds, as shown
in Figure 18-5.

Figure 18-5ÑThe VCL s_strengths structure

The values of the s_strengths structure Þelds are deÞned in Table 18-34.

The strength1 and strength2 Þelds of the s_strengths structure can represent

a) A known strengthÑwhen strength1 and strength2 contain the same value, the signal strength shall be that
value.

b) An ambiguous strength with a known logic_valueÑwhen strength1 and strength2 contain different values
and the logic_value contains either vcl0 or vcl1, the signal strength shall be an ambiguous strength, where the
strength1 value shall be the maximum possible strength and strength2 shall be the minimum possible
strength.

c) An ambiguous strength with an unknown logic_valueÑwhen strength1 and strength2 contain different values
and the logic_value contains vclX, the signal strength shall be an ambiguous strength, where the strength1
value shall be the logic 1 component and strength2 shall be the logic 0 component.

integer_value_change handle A handle to an integer variable

real_value_change double The value of a real variable

time_value_change handle A handle to a time variable

event_value_change none Event types have no value

Table 18-34Ñ PredeÞned out_value constants

If s_strengths is C data type Description

logic_value unsigned char A predeÞned constant, from the following:
vcl0 vcl1 vclX vclx vclZ vclz

strength1
strength2

unsigned char A predeÞned constant, from the following:
vclSupply vclWeak
vclStrong vclMedium
vclPull vclSmall
vclLarge vclHighZ

Table 18-33ÑPredeÞned out_value constants (continued)

If vc_reason is The out_value shall
be a type of

Description

typedef struct t_strengths
{
 unsigned char logic_value;
 unsigned char strength1;
 unsigned char strength2;
} s_strengths;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 18 267

18.10.3 Affects of acc_initialize() and acc_close() on VCL consumer routines

The ACC routines acc_initialize() and acc_close() shall reset all conÞguration parameters set by the routine
acc_conÞgure() back to default values. Care should be taken to ensure that the VCL consumer routine does not
depend on any conÞguration parameters, as these parameters might not have the same value when a VCL callback
occurs. Refer to 19.6 on acc_conÞgure() for a list of routines that are affected by conÞguration parameters.

18.10.4 An example of using VCL ACC routines

The following example contains three PLI routines: a checktf application, a calltf application, and a consumer
routine. The example is based on the checktf and calltf applications both being associated with two user-deÞned
system tasks, using the PLI interface mechanism described in Section 17.

$net_monitor(<net_name>,<net_name>*);
$net_monitor_off(<net_name>,<net_name>*);

The checktf application, netmon_checktf, is shown below. This application performs syntax checking on
instances of the user-deÞned system tasks to ensure there is at least one argument and that the arguments are valid net
names.

#include "veriuser.h"
#include "acc_user.h"

int netmon_checktf()
{
 int i;
 int arg_cnt = tf_nump();

 /* initialize the environment for access routines */
 acc_initialize();

 /* set the development version */
 acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

 /* check number and type of task/function arguments */
 if (tf_nump() == 0)
 tf_error(Ò$net_monitor[_off] must have at least one argumentÓ);
 else
 for (i = 1; i <= arg_cnt; i++)
 if (acc_fetch_type(acc_handle_tfarg(1)) != accNet)
 tf_error("$net_monitor[_off] arg %d is not a net type",i);

 acc_close();
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

268 Section 18

The calltf application, netmon_calltf, follows. This application gets a handle to each task function argument and
either adds or deletes a VCL monitor on the net. The application checks the data C argument associated with each
system task name to determine whether the application was called by $net_monitor or $net_monitor_off.

#include "veriuser.h"
#include "acc_user.h"
#include <malloc.h>

int netmon_calltf(data)
int data;
{
 handle net;
 int netmon_consumer();
 char *net_name;
 int tfnum;

 #define ADD 0 /* data value associated with $net_monitor */
 #define DELETE 1 /* data value associated with $net_monitor_off */

 /* initialize the environment for access routines */
 acc_initialize();

 /* set the development version */
 acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

 switch (data) /* see which system task name called this application */
 {
 case ADD: /* called by $net_monitor */
 /* add a VCL flag to each net in the task/function argument list */
 tfnum = 1;
 while ((net = acc_handle_tfarg(tfnum++)) != null)
 {
 /* allocate memory for the net name of this argument */
 net_name = malloc(strlen+1(acc_fetch_name(net)));

 /* preserve the net name in a character string */
 strcpy(net_name, acc_fetch_name(net));

 /* add a VCL monitor; pass net name pointer as user_data argument*/
 acc_vcl_add(net, netmon_consumer, net_name, vcl_verilog_logic);
 }
 break;

 case DELETE: /* called by $net_monitor_off */
 tfnum = 1;
 while ((net = acc_handle_tfarg(tfnum++)) != null)
 {
 /* delete the VCL monitor */
 acc_vcl_delete(net, netmon_consumer, net_name, vcl_verilog);
 }
 break;
 }
 acc_close();
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 18 269

The consumer routine, netmon_consum, is shown in the following example. The consumer routine is called by the
VCL callback mechanism. Since the checktf application only permits net data types to be used, the consumer routine
only needs to check for scalar and vector net value changes when it is called.

#include "veriuser.h"
#include "acc_user.h"

int netmon_consumer(vc_record)
p_vc_record vc_record; /* record type passed to consumer routine */
{
 char net_value, value;
 handle vector_value;

 /* check reason VCL call-back occurred */
 switch (vc_record->vc_reason)
 {
 case logic_value_change : /* scalar signal changed logic value */
 {
 net_value = vc_record->out_value.logic_value;
 /* convert logic value constant to a character for printing */
 switch (net_value)
 {
 case vcl0 : value = Õ0Õ; break;
 case vcl1 : value = Õ1Õ; break;
 case vclX : value = ÕXÕ; break;
 case vclZ : value = ÕZÕ; break;
 }
 io_printf(Ò%d : %s = %c\nÓ,
 vc_record->vc_lowtime, vc_record->user_data, value);
 break;
 }
 case vector_value_change :/* vector signal changed logic value */
 {
 vector_value = vc_record->out_value.vector_handle;
 io_printf("%d : %s = %s\n",
 vc_record->vc_lowtime, vc_record->user_data,
 acc_fetch_value(vector_value, "%b"));
 break;
 }
 }
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

270 Section 19

Section 19

ACC routine deÞnitions

This section describes the PLI access (ACC) routines, explaining their function, syntax, and usage. The routines are
listed in alphabetical order.

The following conventions are used in the deÞnitions of the PLI routines described in sections 19, 21, and 23.

Synopsis:

 A brief description of the PLI routine functionality, intended to be used as a quick reference when
searching for PLI routines to perform speciÞc tasks.

Syntax:

The exact name of the PLI routine and the order of the arguments passed to the routine.

Returns:

 The deÞnition of the value returned when the PLI routine is called, along with a brief description of what
the value represents. The return deÞnition contains the Þelds

Ñ

Type:

 The data type of the C value that is returned. The data type is either a standard ANSI C type or a special
type deÞned within the PLI.

Ñ

Description:

A brief description of what the value represents.

Arguments:

 The deÞnition of the arguments passed with a call to the PLI routine. The argument deÞnition contains
the Þelds

Ñ

Type:

 The data type of the C values that are passed as arguments. The data type is either a standard ANSI C
type, or a special type deÞned within the PLI.

Ñ

Name:

 The name of the argument used in the Syntax deÞnition.

Ñ

Description:

 A brief description of what the value represents.

All arguments shall be considered mandatory unless speciÞcally noted in the deÞnition of the PLI routine. Two tags
are used to indicate arguments that may not be required:

Ñ Conditional: Arguments tagged as conditional shall be required only if a previous argument is set to a speciÞc
value, or if a call to another PLI routine has conÞgured the PLI to require the arguments. The PLI routine def-
inition explains when conditional arguments are required.

Ñ Optional: Arguments tagged as optional may have default values within the PLI, but they may be required if a
previous argument is set to a speciÞc value, or if a call to another PLI routine has conÞgured the PLI to require
the arguments. The PLI routine deÞnition explains the default values and when optional arguments are
required.

Related routines:

 A list of PLI routines that are typically used with, or provide similar functionality to, the PLI
routine being deÞned. This list is provided as a convenience to facilitate Þnding information in this standard. It is not
intended to be all-inclusive, and it does not imply that the related routines have to be used.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 271

19.1 acc_append_delays()

acc_append_delays()

for single delay values (accMinTypMaxDelays set to "false")

Synopsis:

Add delays to existing delay on primitives, module paths, timing checks, and module input ports.

Syntax:

Primitives
Ports
Port bits

acc_append_delays(object_handle, rise_delay, fall_delay, z_delay)

Module paths

acc_append_delays(object_handle,
 d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12)

Timing checks

acc_append_delays(object_check_handle, limit)

Type Description

Returns:

bool 1 if successful; 0 if an error occurred

Type Name Description

Arguments:

handle object_handle Handle of a primitive, module path, timing check, module
input port or bit of a module input port

double rise_delay
fall_delay

Rise and fall transition delay for 2-state primitives, 3-state
primitives, module input ports, and module input port bits

Conditional double z_delay If

accToHiZDelay

 is set to "from_user":
turn-off (to Z) transition delay for 3-state primitives, module
input ports, and module input port bits

double d1 If

accPathDelayCount

 is set to "1":
delay for all transitions for module paths

If

accPathDelayCount

 is set to "2" or "3":
rise transition delay for module paths

If

accPathDelayCount

 is set to "6" or "12":

0

->

1

 transition delay for module paths

Conditional double d2 If

accPathDelayCount

 is set to "2" or "3":
fall transition delay for module paths

If

accPathDelayCount

 is set to "6" or "12":

1

->

0

 transition delay for module paths

Conditional double d3 If

accPathDelayCount

 is set to "3":
turn-off transition delay for module paths

If

accPathDelayCount

 is set to "6" or "12":

0

->

Z

 transition delay for module paths

Conditional double d4
d5
d6

If

accPathDelayCount

 is set to "6" or "12":

d4

 is

Z

->

1

 transition delay for module paths

d5

 is

1

->

Z

 transition delay for module paths

d6

 is

Z

->

0

 transition delay for module paths

Conditional double d7
d8
d9
d10
d11
d12

If

accPathDelayCount

 is set to "12":

d7

 is

0

->

X

 transition delay for module paths

d8

 is

X

->

1

 transition delay for module paths

d9

 is

1

->

X

 transition delay for module paths

d10

 is

X

->

0

 transition delay for module paths

d11

 is

X

->

Z

 transition delay for module paths

d12

 is

Z

->

X

 transition delay for module paths

double limit Limit of timing check

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

272 Section 19

The ACC routine

acc_append_delays()

 shall work differently depending on how the conÞguration parameter

accMinTypMaxDelays

 is set. When this parameter is set to

false

, a single delay per transition shall be assumed,
and delays shall be passed as individual arguments. For this single delay mode, the Þrst syntax table in this clause
shall apply.

When

accMinTypMaxDelays

 is set to

true

,

acc_append_delays()

 shall pass one or more sets of
minimum:typical:maximum delays contained in an array, rather than single delays passed as individual arguments.
For this min:typ:max delay mode, the second syntax table in this clause shall apply.

The number delay values appended by

acc_append_delays()

 shall be determined by the type of object and the setting
of conÞguration parameters. Refer to 18.8 for a description of how the number of delay values are determined.

The

 acc_append_delays()

 routine shall write delays in the timescale of the module that contains the object_handle.

The example shown in Figure 19-1 is an example of backannotation. It reads new delay values from a Þle called

primdelay.dat

 and uses

acc_append_delays()

 to add them to the current delays on a gate. The format of the Þle is
shown below.

acc_append_delays()

for min:typ:max delays (accMinTypMaxDelays set to "true")

Synopsis:

Add min:typ:max delay values to existing delay values for primitives, module paths, timing checks or
module input ports; the delay values are contained in an array.

Syntax:

acc_append_delays(object_handle, array_ptr)

Type Description

Returns:

bool 1 if successful; 0 if an error is encountered

Type Name Description

Arguments:

handle object_handle Handle of a primitive, module path, timing check, module
input port or bit of a module input port

double address array_ptr Pointer to array of min:typ:max delay values;
the size of the array depends on the type of object and the
setting of

accPathDelayCount

 (see 18.8)

.

.
top.m1.buf4 10.5 15.0 20.7

.

.
name of gate

rise delay
turn-off delay

fall delay

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 273

Figure 19-1ÑUsing acc_append_delays() in single delay value mode

The example shown in Figure 19-2 shows how to append min:typ:max delays for a 2-state primitive (no high-
impedance state). The C application follows these steps:

a) Declares an array of nine double-precision ßoating-point values to hold three sets of min:typ:max values, one
set each for rising transitions, falling transitions, and transitions to Z.

b) Sets the conÞguration parameter

accMinTypMaxDelays

 to

true

 to instruct

acc_append_delays()

 to write
delays in min:typ:max format.

c) Calls

acc_append_delays()

 with a valid primitive handle and the array pointer.

Since the primitive to be used in this example does not have a high-impedance state,

acc_append_delays()

automatically appends just the rise and fall delay value sets. The last three array elements for the toZ delay values are
not used. However, even though the last three array elements are not used with a 2-state primitive, the syntax for using
min:typ:max delays requires that the array contain all nine elements.

#include <stdio.h>
#include "acc_user.h"

write_gate_delays()
{

FILE *infile;
char full_gate_name[NAME_SIZE];
double rise,fall,toz;
handle gate_handle;

/*initialize the environment for ACC routines*/
acc_initialize();

/*set development version*/
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*read delays from file - "r" means read only*/
infile = fopen("primdelay.dat","r");
while(fscanf(infile, Ò%s %lf %lf %lfÓ,

 full_gate_name,rise,fall,toz) != EOF)
{

/*get handle for the gate*/
gate_handle = acc_handle_object(full_gate_name);

/*add new delays to current values for the gate*/
acc_append_delays(gate_handle, rise, fall, toz);

}
acc_close();

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

274 Section 19

For this example, the C application,

append_mintypmax_delays

, is associated through the ACC interface
mechanism with a user-deÞned system task called

$appendprimdelays

. A primitive with no Z state and new
delay values are passed as task/function arguments to

$appendprimdelays

 as follows:

Figure 19-2ÑUsing acc_append_delays() in min:typ:max mode

$appendprimdelays(g1, 3.0, 5.0, 6.7, 2.4, 8.1, 9.1);

minimum
rise delay

a 2-state primitive

typical
rise delay

maximum
rise delay

minimum
fall delay

typical
fall delay

maximum
fall delay

#include "acc_user.h"

append_mintypmax_delays()
{

handle prim;
double delay_array[9];
int i;

acc_configure(accMinTypMaxDelays, "true");

/* get handle for primitive */
prim = acc_handle_tfarg(1);

/* store new delay values in array */
for (i = 0; i < 9; i++)

delay_array[i] = acc_fetch_tfarg(i+2);

/* append min:typ:max delays */
acc_append_delays(prim, delay_array);

}

delay_array has to be
large enough to hold
nine values to handle
both 2-state primitives
and 3-state primitives

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 275

19.2 acc_append_pulsere()

The ACC routine acc_append_pulsere() shall add to an existing pulse handling reject_limit value and e_limit value
for a module path. The reject_limit and e_limit values are used to control how pulses are propagated through module
paths.

A pulse is deÞned as two transitions on the same path that occur in a shorter period of time than the path delay. Pulse
control values determine whether a pulse should be rejected, propagated through to the output, or considered an error.
The pulse control values consist of a reject_limit and an e_limit pair of values, where

Ñ The reject_limit shall set a threshold for determining when to reject a pulseÑany pulse less than the
reject_limit shall not propagate to the output of the path.

Ñ The e_limit shall set a threshold for determining when a pulse is considered to be an errorÑany pulse less
than the e_limit and greater than or equal to the reject_limit shall propagate a logic x to the path output.

Ñ A pulse that is greater than or equal to the e_limit shall propagate through to the path output.

Table 19-1 illustrates the relationship between the reject_limit and the e_limit.

The following rules shall apply when specifying pulse handling values:

a) The value of reject_limit shall be less than or equal to the value of e_limit.

acc_append_pulsere()

Synopsis: Add delays to existing pulse handling reject_value and e_value for a module path.

Syntax: acc_append_pulsere(path,r1,e1, r2,e2, r3,e3, r4,e4, r5,e5, r6,e6,
 r7,e7, r8,e8, r9,e9, r10,e10, r11,e11, r12,e12)

Type Description

Returns: bool 1 if successful; 0 if an error is encountered

Type Name Description

Arguments: handle path Handle of module path

double r1...r12 reject_limit values; the number of arguments is determined
by accPathDelayCount

double e1...e12 e_limit values; the number of arguments is determined by
accPathDelayCount

Related
routines:

Use acc_fetch_pulsere() to get current pulse handling values
Use acc_replace_pulsere() to replace existing pulse handling values
Use acc_set_pulsere() to set pulse handling values as a percentage of the path delay

Table 19-1ÑPath pulse control example

When The pulse on a module path output shall be

reject_limit = 10.5
e_limit = 22.6

Rejected if < 10.5

An error if ³ 10.5 and < 22.6

Passed if ³ 22.6

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

276 Section 19

b) The reject_limit and e_limit shall not be greater than the path delay.

The number of pulse control values that acc_append_pulsere() sets shall be controlled using the ACC routine
acc_conÞgure() to set the delay count conÞguration parameter accPathDelayCount, as shown in Table 19-2.

The minimum number of pairs of reject_limit and e_limit arguments to pass to acc_append_pulsere() has to equal
the value of accPathDelayCount. Any unused reject_limit and e_limit argument pairs shall be ignored by
acc_append_pulsere() and can be dropped from the argument list.

If accPathDelayCount is not set explicitly, it shall default to six; therefore, six pairs of pulse reject_limit and e_limit
arguments have to be passed when acc_append_pulsere() is called. Note that the value assigned to
accPathDelayCount also affects acc_append_delays(), acc_fetch_delays(), acc_replace_delays(),
acc_fetch_pulsere(), and acc_replace_pulsere().

Pulse control values shall be appended using the timescale of the module that contains the path.

Table 19-2ÑHow the value of accPathDelayCount affects acc_append_pulsere()

When accPathDelayCount is acc_append_pulsere() shall write

"1" One pair of reject_limit and e_limit values:
one pair for all transitions, r1 and e1

"2"
Two pairs of reject_limit and e_limit values:

one pair for rise transitions, r1 and e1
one pair for fall transitions, r2 and e2

"3"

Three pairs of reject_limit and e_limit values:
one pair for rise transitions, r1 and e1
one pair for fall transitions, r2 and e2
one pair for turn-off transitions, r3 and e3

"6"
(the default)

Six pairs of reject_limit and e_limit valuesÑa different pair
for each possible transition among 0, 1, and Z:

one pair for 0->1 transitions, r1 and e1
one pair for 1->0 transitions, r2 and e2
one pair for 0->Z transitions, r3 and e3
one pair for Z->1 transitions, r4 and e4
one pair for 1->Z transitions, r5 and e5
one pair for Z->0 transitions, r6 and e6

"12"

Twelve pairs of reject_limit and e_limit valuesÑa different
pair for each possible transition among 0, 1, X, and Z:

one pair for 0->1 transitions, r1 and e1
one pair for 1->0 transitions, r2 and e2
one pair for 0->Z transitions, r3 and e3
one pair for Z->1 transitions, r4 and e4
one pair for 1->Z transitions, r5 and e5
one pair for Z->0 transitions, r6 and e6
one pair for 0->X transitions, r7 and e7
one pair for X->1 transitions, r8 and e8
one pair for 1->X transitions, r9 and e9
one pair for X->0 transitions, r10 and e10
one pair for X->Z transitions, r11 and e11
one pair for Z->X transitions, r12 and e12

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 277

19.3 acc_close()

The ACC routine acc_close() shall free internal memory used by ACC routines and reset all conÞguration parameters
to default values. No other ACC routines should be called after calling acc_close(); in particular, ACC routines that
are affected by acc_conÞgure() should not be called.

Potentially, multiple PLI applications running in the same simulation session can interfere with each other because
they share the same set of conÞguration parameters. To guard against application interference, both acc_initialize()
and acc_close() reset all conÞguration parameters to their default values.

The example shown in Figure 19-3 presents a C-language routine that calls acc_close() before exiting.

Figure 19-3ÑUsing acc_close()

acc_close()

Synopsis: Free internal memory used by ACC routines; reset all conÞguration parameters to default values.

Syntax: acc_close()

Type Description

Returns: void No return

Type Name Description

Arguments: None

Related
routines:

Use acc_initialize() to initialize the ACC routine environment

#include "acc_user.h"

 show_versions()
{

handle module_handle;

/*initialize environment for ACC routines*/
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*show version of ACC routines and simulator */
io_printf("Running %s with %s\n",acc_version(),acc_product_version());

acc_close();
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

278 Section 19

19.4 acc_collect()

The ACC routine acc_collect() shall scan through a reference object, such as a module, and collect handles to all
occurrences of a speciÞc target object. The collection of handles shall be stored in an array, which can then be used by
other ACC routines.

The object associated with object_handle shall be a valid type of handle for the reference object required by the
acc_next routine to be called.

The routine acc_collect() should be used in the following situations:

Ñ To retrieve data that can be used more than once

Ñ Instead of using nested or concurrent calls to acc_next_loconn(), acc_next_hiconn(), acc_next_load(), and
acc_next_cell_load() routines

Otherwise, it can be more efÞcient to use the an acc_next_ routine directly.

The routine acc_collect() shall allocate memory for the array of handles it returns. When the handles are no longer
needed, the memory can be freed by calling the routine acc_free().

The ACC routine acc_next_topmod() does not work with acc_collect(). However, top-level modules can be collected
by passing acc_next_child() with a null reference object argument. For example:

acc_collect(acc_next_child, null, &count);

The example shown in Figure 19-4 presents a C-language routine that uses acc_collect() to collect and display all
nets in a module.

acc_collect()

Synopsis: Obtain an array of handles for all objects related to a particular reference object; get the number of objects
collected.

Syntax: acc_collect(acc_next_routine_name, object_handle, number_of_objects)

Type Description

Returns: handle array
address

An address pointer to an array of handles of the objects collected

Type Name Description

Arguments: pointer to
acc_next_

routine

acc_next_routine_name Actual name (unquoted) of the acc_next_ routine that Þnds
the objects to be collected

handle object_handle Handle of the reference object for acc_next_ routine

int * number_of_objects Integer pointer where the count of objects collected shall be
written

Related
routines:

All acc_next_ routines
Use acc_free() to free memory allocated by acc_collect()

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 279

Figure 19-4ÑUsing acc_collect()

#include "acc_user.h"

display_nets()
{

handle *list_of_nets, module_handle;
int net_count, i;

/*initialize environment for ACC routines*/
acc_initialize();

/*set development version*/
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*get handle for the module*/
module_handle = acc_handle_tfarg(1);

/*collect all nets in the module*/
list_of_nets = acc_collect(acc_next_net, module_handle, &net_count);

/*display names of net instances*/
for(i=0; i < net_count; i++)

io_printf("Net name is: %s\n", acc_fetch_name(list_of_nets[i]));

/*free memory used by array list_of_nets*/
acc_free(list_of_nets);

acc_close();
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

280 Section 19

19.5 acc_compare_handles()

The ACC routine acc_compare_handles() shall determine if two handles refer to the same object. In some cases, two
different handles might reference the same object if each handle is retrieved in a different wayÑfor example, if an
acc_next routine returns one handle and acc_handle_object() returns the other.

The C == operator cannot be used to determine if two handles reference the same object.

if (handle1 == handle2) /* this does not work */

The example shown in Figure 19-5 uses acc_compare_handles() to determine if a primitive drives the speciÞed
output of a scalar port of a module.

Figure 19-5ÑUsing acc_compare_handles()

acc_compare_handles()

Synopsis: Determine if two handles refer to the same object.

Syntax: acc_compare_handles(handle1, handle2)

Type Description

Returns: bool true if handles refer to the same object; false if different objects

Type Name Description

Arguments: handle handle1 Handle to any objects

handle handle2 Handle to any objects

#include "acc_user.h"

bool prim_drives_scalar_port(prim, mod, port_num)
handle prim, mod;
int port_num;
{

/* retrieve net connected to scalar port */
handle port = acc_handle_port(mod, port_num);
handle port_conn = acc_next_loconn(port, null);

/* retrieve net connected to primitive output */
handle out_term = acc_handle_terminal(prim, 0);
handle prim_conn = acc_handle_conn(out_term);

/* compare handles */
if (acc_compare_handles(port_conn, prim_conn))

return(true);
else

return(false);
}

If port_conn and prim_conn
refer to the same connection,
then the prim drives port

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 281

19.6 acc_conÞgure()

The ACC routine acc_conÞgure() shall set parameters that control the operation of various ACC routines. Tables
19-3 through 19-12 describe each parameter and its set of values. Note that a call to either acc_initialize() or
acc_close() shall set each conÞguration parameter back to its default value.

acc_conÞgure()

Synopsis: Set parameters that control the operation of various ACC routines.

Syntax: acc_configure(configuration_parameter, configuration_value)

Type Description

Returns: bool 1 if successful; 0 if an error occurred

Type Name Description

Arguments: integer constant conÞguration_parameter One of the following predeÞned
constants:

accDefaultAttr0
accDevelopmentVersion
accDisplayErrors
accDisplayWarnings
accEnableArgs
accMapToMipd
accMinTypMaxDelays

quoted string conÞguration_value One of a Þxed set of string values for
the conÞguration_parameter

Related
routines:

For accDefaultAttr0
acc_fetch_attribute()

For accDevelopmentVersion
all ACC routines

For accDisplayErrors
all ACC routines

For accDisplayWarnings
all ACC routines

For accEnableArgs
acc_handle_modpath()
acc_handle_tchk()
acc_set_scope()

For accMapToMipd
acc_append_delays()
acc_replace_delays()

For accMinTypMaxDelays
acc_append_delays()
acc_fetch_delays()
acc_replace_delays()

For accPathDelayCount
acc_append_delays()
acc_fetch_delays()
acc_replace_delays()
acc_append_pulsere()
acc_fetch_pulsere()

For accPathDelimStr
acc_fetch_attribute()
acc_fetch_fullname()
acc_fetch_name()

For accToHiZDelay
acc_append_delays()
acc_replace_delays()

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

282 Section 19

Table 19-3ÑaccDefaultAttr0 conÞguration parameter

accDefaultAttr0

Set of values Effect Default

"true" acc_fetch_attribute() shall return zero
when it does not Þnd the attribute
requested and shall ignore the
default_value argument

"false"

"false" acc_fetch_attribute() shall return the
value passed as the default_value argu-
ment when it does not Þnd the attribute
requested

Table 19-4ÑaccDevelopmentVersion conÞguration parameter

accDevelopmentVersion

Set of values Effect Default

Quoted string of letters,
numbers, and the period
character that form a valid
PLI version, such as:
ÒIEEE 1364 PLIÓ

Software vendors can
deÞne version strings spe-
ciÞc to their products

Can help ensure backward compat-
ibility by indicating which version
of ACC routines was used to
develop a PLI application

Current version
of ACC routines

Table 19-5ÑaccDisplayErrors conÞguration parameter

accDisplayErrors

Set of values Effect Default

"true" ACC routines shall display error
messages

"true"

"false" ACC routines shall not display error
messages

Table 19-6ÑaccDisplayWarnings conÞguration parameter

accDisplayWarnings

Set of values Effect Default

"true" ACC routines shall display warning mes-
sages

"false"

"false" ACC routines shall not display warning
messages

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 283

Table 19-7ÑaccEnableArgs conÞguration parameter

accEnableArgs

Set of values Effect Default

"acc_handle_modpath" acc_handle_modpath() shall
recognize its optional argu-
ments

"no_acc_handle_modpath"

"no_acc_handle_tchk"

"no_acc_set_scope""no_acc_handle_modpath" acc_handle_modpath() shall
ignore its optional arguments

"acc_handle_tchk" acc_handle_tchk() shall rec-
ognize its optional arguments

"no_acc_handle_tchk" acc_handle_tchk() shall
ignore its optional arguments

"acc_set_scope" acc_set_scope() shall recog-
nize its optional arguments

"no_acc_set_scope" acc_set_scope() shall ignore
its optional arguments

Table 19-8ÑaccMapToMipd conÞguration parameter

accMapToMipd

Set of values Effect Default

"max" acc_replace_delays() shall map the long-
est intermodule path delay to the MIPD

"max"

"min" acc_replace_delays() shall map the
shortest intermodule path delay to the
MIPD

"latest" acc_replace_delays() shall map the last
intermodule path delay to the MIPD

Table 19-9ÑaccMinTypMaxDelays conÞguration parameter

accMinTypMaxDelays

Set of values Effect Default

"true" acc_append_delays(), acc_fetch_delays(),
acc_replace_delays(), acc_append_pulsere(),
acc_fetch_pulsere(), and acc_replace_pulsere()
shall use min:typ:max delay sets

"false"

"false" acc_append_delays(), acc_fetch_delays(),
acc_replace_delays(), acc_append_pulsere(),
acc_fetch_pulsere(), and acc_replace_pulsere()
shall use a single delay value

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

284 Section 19

Table 19-10ÑaccPathDelayCount conÞguration parameter

accPathDelayCount

Set of values Effect Default

"1" acc_append_delays(), acc_fetch_delays(),
acc_replace_delays(), acc_append_pulsere(),
acc_fetch_pulsere(), and acc_replace_pulsere()
 shall use 1 delay value or value set

"6"

"2" acc_append_delays(), acc_fetch_delays(),
acc_replace_delays(), acc_append_pulsere(),
acc_fetch_pulsere(), and acc_replace_pulsere()
 shall use 2 delay values or value sets

"3" acc_append_delays(), acc_fetch_delays(),
acc_replace_delays(), acc_append_pulsere(),
acc_fetch_pulsere(), and acc_replace_pulsere()
 shall use 3 delay values or value sets

"6" acc_append_delays(), acc_fetch_delays(),
acc_replace_delays(), acc_append_pulsere(),
acc_fetch_pulsere(), and acc_replace_pulsere()
 shall use 6 delay values or value sets

"12" acc_append_delays(), acc_fetch_delays(),
acc_replace_delays(), acc_append_pulsere(),
acc_fetch_pulsere(), and acc_replace_pulsere()
 shall use 12 delay values or value sets

Table 19-11ÑaccPathDelimStr conÞguration parameter

accPathDelimStr

Set of values Effect Default

Quoted string of
letters, numbers, $
or _

acc_fetch_name(), acc_fetch_fullname(),
and acc_fetch_attribute() shall use the
string literal as the delimiter separating the
source and destination in module path
names

"$"

Table 19-12ÑaccToHiZDelay conÞguration parameter

accToHiZDelay

Set of values Effect Default

"average" acc_append_delays() and
acc_replace_delays() shall derive turn-off
delays from the average of the rise and fall
delays

"from_user"

"max" acc_append_delays() and
acc_replace_delays() shall derive turn-off
delays from the larger of the rise and fall
delays

"min" acc_append_delays() and
acc_replace_delays() shall derive turn-off
delays from the smaller of the rise and fall
delays

"from_user" acc_append_delays() and
acc_replace_delays() shall derive turn-off
delays from user-supplied argument(s)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 285

The example shown in Figure 19-6 presents a C-language application that obtains the load capacitance of all scalar
nets connected to the ports in a module. This application uses acc_conÞgure() to direct acc_fetch_attribute() to
return zero if a load capacitance is not found for a net; as a result, the third argument, default_value, can be dropped
from the call to acc_fetch_attribute().

Figure 19-6ÑUsing acc_conÞgure() to set accDefaultAttr0

#include "acc_user.h"

display_load_capacitance()
{

handle module_handle, port_handle, net_handle;
double cap_val;

/*initialize environment for ACC routines*/
acc_initialize();

/*set development version*/
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*configure acc_fetch_attribute to return 0 when it does not find*/
/* the attribute*/
acc_configure(accDefaultAttr0, "true");

/*get handle for module*/
module_handle = acc_handle_tfarg(1);

/*scan all ports in module; display load capacitance*/
port_handle = null;
while(port_handle = acc_next_port(module_handle, port_handle))
{

/*ports are scalar, so pass "null" to get single net connection*/
net_handle = acc_next_loconn(port_handle, null);

/*since accDefaultAttr0 is "true", drop default_value argument*/
cap_val = acc_fetch_attribute(net_handle,"LoadCap_");

if (!acc_error_flag)
io_printf("Load capacitance of net #%d = %1f\n",

acc_fetch_index(port_handle), cap_val);
}
acc_close();

}

default_value
argument is dropped

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

286 Section 19

The example shown in Figure 19-7 presents a C-language application that displays the name of a module path. It uses
acc_conÞgure() to set accEnableArgs and, therefore, forces acc_handle_modpath() to ignore its null name
arguments and recognize its optional handle arguments, src_handle and dst_handle.

Figure 19-7ÑUsing acc_conÞgure() to set accEnableArgs

The example shown in Figure 19-8 fetches the rise and fall delays of each path in a module and backannotates the
maximum delay value as the delay for all transitions. The value of accPathDelayCount speciÞes the minimum
number of arguments that have to be passed to routines that read or write delay values. By setting
accPathDelayCount to the minimum number of arguments needed for acc_fetch_delays() and again for
acc_replace_delays(), all unused arguments can be eliminated from each call.

#include "acc_user.h"

get_path()
{

handle path_handle,mod_handle,src_handle,dst_handle;

/*initialize the environment for ACC routines*/
acc_initialize();

/*set development version*/
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*set accEnableArgs for acc_handle_modpath*/
acc_configure(accEnableArgs, "acc_handle_modpath");

/*get handles to the three system task arguments:*/
/* arg 1 is module name */
/* arg 2 is module path source */
/* arg 3 is module path destination*/
mod_handle = acc_handle_tfarg(1);
src_handle = acc_handle_tfarg(2);
dst_handle = acc_handle_tfarg(3);

/*display name of module path*/
path_handle = acc_handle_modpath(mod_handle,

null, null,
src_handle, dst_handle);

io_printf("Path is %s \n", acc_fetch_fullname(path_handle));

acc_close();
}

acc_handle_modpath() uses
optional handle arguments
src_handle and
dst_handle because:

accEnableArgs is set

the name arguments are null
and

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 287

Figure 19-8ÑUsing acc_conÞgure() to set accPathDelayCount

#include "acc_user.h"

set_path_delays()
{

handle mod_handle;
handle path_handle;
double rise_delay,fall_delay,max_delay;

/*initialize environment for ACC routines*/
acc_initialize();

/*set development version*/
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*get handle to module*/
mod_handle = acc_handle_tfarg(1);

/*fetch rise delays for all paths in module "top.m1"*/
path_handle = null;
while(path_handle = acc_next_modpath(mod_handle, path_handle))
{

/*configure accPathDelayCount for rise and fall delays only*/
acc_configure(accPathDelayCount, "2");
acc_fetch_delays(path_handle, &rise_delay, &fall_delay);

/*find the maximum of the rise and fall delays*/
max_delay = (rise_delay > fall_delay) ? rise_delay : fall_delay;

/*configure accPathDelayCount to apply one delay for all transitions*/
acc_configure(accPathDelayCount, "1");
acc_replace_delays(path_handle, max_delay);

}
acc_close();

}

only 1 delay
argument is needed

only 2 delay
arguments are needed

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

288 Section 19

The example shown in Figure 19-9 shows how accToHiZDelay is used to direct acc_replace_delays() to derive the
turn-off delay for a Z-state primitive automatically as the larger of its rise and fall delays.

Figure 19-9ÑUsing acc_conÞgure() to set accToHiZDelay

#include "acc_user.h"

set_buf_delays()
{

handle primitive_handle;
handle path_handle;
double added_rise, added_fall;

/*initialize environment for ACC routines*/
acc_initialize();

/*set development version*/
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*configure accToHiZDelay so acc_append_delays derives turn-off */
/* delay from the smaller of the rise and fall delays*/
acc_configure(accToHiZDelay, "min");

/*get handle to Z-state primitive*/
primitive_handle = acc_handle_tfarg(1);

/*get delay values*/
added_rise = tf_getrealp(2);
added_fall = tf_getrealp(3);

acc_append_delays(primitive_handle, added_rise, added_fall);

acc_close();
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 289

19.7 acc_count()

The ACC routine acc_count() shall Þnd the number of objects that exist for a speciÞc acc_next_ routine with a given
reference object. The object associated with object_handle shall be a valid reference object for the type acc_next_
routine to be called.

Note that the ACC routine acc_next_topmod() does not work with acc_count(). However, top-level modules can be
counted using acc_next_child() with a null reference object argument. For example:

acc_count(acc_next_child, null);

The example shown in Figure 19-10 uses acc_count() to count the number of nets in a module.

Figure 19-10ÑUsing acc_count()

acc_count()

Synopsis: Count the number of objects related to a particular reference object.

Syntax: acc_count(acc_next_routine_name, object_handle)

Type Description

Returns: int Number of objects

Type Name Description

Arguments: pointer to an
acc_next_

routine

acc_next_routine_name Actual name (unquoted) of the acc_next_ routine that Þnds
the objects to be counted

handle object_handle Handle of the reference object for the acc_next_ routine

Related
routines:

All acc_next_ routines except acc_next_topmod()

#include "acc_user.h"
count_nets()
{

handle module_handle;
int number_of_nets;

/*initialize environment for ACC routines*/
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*get handle for module*/
module_handle = acc_handle_tfarg(1);

/*count and display number of nets in the module*/
number_of_nets = acc_count(acc_next_net, module_handle);
io_printf("number of nets = %d\n", number_of_nets);

acc_close();
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

290 Section 19

19.8 acc_fetch_argc()

The ACC routine acc_fetch_argc() shall obtain the number of command-line arguments given on a Verilog software
product invocation command line.

The example shown in Figure 19-11 uses acc_fetch_argc() to determine the number of invocation arguments used.

Figure 19-11ÑUsing acc_fetch_argc()

acc_fetch_argc()

Synopsis: Get the number of command-line arguments supplied with a Verilog software tool invocation.

Syntax: acc_fetch_argc()

Type Description

Returns: int Number of command-line arguments

Type Name Description

Arguments: None

Related
routines:

Use acc_fetch_argv() to get a character string array of the invocation options

#include "acc_user.h"
#include <string.h> /* string.h is implementation dependent */

char* my_scan_plusargs(str)
 char *str;
{
 int i;
 int length = strlen(str);
 char *curStr;
 char **argv = acc_fetch_argv();

 for (i = acc_fetch_argc()-1; i>0; i--)
 {
 curStr = argv[i];
 if ((curStr[0] == Õ+Õ) && (!strncmp(curStr+1,str,length)))
 {
 char *retVal;

 length = strlen(&(curStr[length]) + 1);
 retVal = (char *)malloc(sizeof(char) * length);
 strcpy(retVal, &(curStr[length]));
 return(retVal);
 }
 }
 return(null);
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 291

19.9 acc_fetch_argv()

The ACC routine acc_fetch_argv() shall obtain an array of character pointers that make up the command-line
arguments.

The example shown in Figure 19-12 uses acc_fetch_argv() to retrieve the invocation arguments used.

Figure 19-12ÑUsing acc_fetch_argv()

acc_fetch_argv()

Synopsis: Get an array of character pointers that make up the command-line arguments for a Verilog software product
invocation.

Syntax: acc_fetch_argv()

Type Description

Returns: char ** An array of character pointers that make up the command-line arguments

Type Name Description

Arguments: None

Related
routines:

Use acc_fetch_argc() to get a count of the number of invocation arguments

#include "acc_user.h"
#include <string.h> /* string.h is implementation dependent */

char* my_scan_plusargs(str)
 char *str;
{
 int i;
 int length = strlen(str);
 char *curStr;
 char **argv = acc_fetch_argv();

 for (i = acc_fetch_argc()-1; i>0; i--)
 {
 curStr = argv[i];
 if ((curStr[0] == Õ+Õ) && (!strncmp(curStr+1,str,length)))
 {
 char *retVal;

 length = strlen(&(curStr[length]) + 1);
 retVal = (char *)malloc(sizeof(char) * length);
 strcpy(retVal, &(curStr[length]));
 return(retVal);
 }
 }
 return(null);
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

292 Section 19

19.10 acc_fetch_attribute()

The ACC routine acc_fetch_attribute() shall obtain the value of a parameter or specparam that is declared as an
attribute in the Verilog HDL source description. The value shall be returned as a double.

Any parameter or specparam can be an attribute by naming it in one of the following ways:

Ñ As a general attribute associated with more than one object in the module where the parameter or specparam
attribute is declared

Ñ As a speciÞc attribute associated with a particular object in the module where the parameter or specparam
attribute is declared

Each of these methods uses its own naming convention, as described in Table 19-13. For either convention,
attribute_string shall name the attribute and shall be passed as the second argument to acc_fetch_attribute(). The
object_name shall be the actual name of a design object in a Verilog HDL source description.

acc_fetch_attribute()

Synopsis: Get the value of a parameter or specparam named as an attribute in the Verilog source description.

Syntax: acc_fetch_attribute(object_handle, attribute_string, default_value)

Type Description

Returns: double Value of the parameter of specparam

Type Name Description

Arguments: handle object_handle Handle of a named object

quoted string or
char *

attribute_string Literal string or character string pointer with the attribute
portion of the parameter or specparam declaration

Optional double default_value Double-precision value to be returned if the attribute is not
found (depends on accDefaultAttr0)

Related
routines:

Use acc_fetch_attribute_int() to get an attribute value as an integer
Use acc_fetch_attribute_str() to get an attribute value as a string
Use acc_conÞgure(accDefaultAttr0...) to set default value returned when attribute is not found
Use acc_fetch_paramtype() to data type of the parameter value
Use acc_fetch_paramval() to get parameters or specparam values not declared in attribute/object format

Table 19-13ÑNaming conventions for attributes

For Naming convention Example

A general attribute

attribute_string

A mnemonic name that describes
the attribute

specparam DriveStrength$ = 2.8;

attribute_string is DriveStrength$

A speciÞc attribute
associated with a
particular object

attribute_stringÑobject_name

Concatenate a mnemonic name that
describes the attribute with the name
of the object

specparam DriveStrength$g1 = 2.8;

attribute_string is DriveStrength$
object_name is g1

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 293

The ACC routine acc_fetch_attribute() shall identify module paths in terms of their sources and destinations in the
following format:

The acc_fetch_attribute() routine shall look for module path names in this format, and acc_fetch_name() and
acc_fetch_fullname() shall return names of module paths in this format. Therefore, the same naming convention
should be used when associating an attribute with a module path. Note that names of module paths with multiple
sources or destinations shall be derived from the Þrst source or destination only.

By default, the path_delimiter used in path names is the Ò$Ó character. This default can be changed by using the ACC
routine acc_conÞgure() to set the delimiter parameter accPathDelimStr to another character string.

The examples in Table 19-14 show how to name module paths using different delimiter strings.

The following example shows an attribute name for a particular module path object:

Given the module path: (a => q) = 10;

An attribute name is: specparam RiseStrengthaq = 20;

In this example, the attribute_string is RiseStrength$, the object_name is a$q, and the path_delimiter is $ (the
default path delimiter).

Table 19-14ÑExample module path names using delimiter strings

For module path If accPathDelimStr is Then the module path name is

(a => q) = 10; "$" a$q

(b *> q1,q2) = 8; "_$_" b_$_q1

(d,e,f *> r,s)= 8; "_" d_r

source path_delimiter destination

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

294 Section 19

The following ßowchart illustrates how acc_fetch_attribute() shall work:

This ßowchart shows that when acc_fetch_attribute() Þnds the attribute requested, it returns the value of the
attribute as a double-precision ßoating-point number.

1) The routine shall Þrst look for the attribute name that concatenates attribute_string with the name associated
with object_handle. For example, to Þnd an attribute InputLoad$ for a net n1, acc_fetch_attribute()
would search for InputLoad$n1.

2) If acc_fetch_attribute() does not Þnd the attribute associated with the object speciÞed with object_handle,
the routine shall then search for a name that matches attribute_string. Assume that, in the previous example,
acc_fetch_attribute() does not Þnd InputLoad$n1. It would then look for InputLoad$. Other variants
of that name, such as InputLoad$n3 or InputLoad$n, shall not be considered matches.

3) Failing both search attempts, the routine acc_fetch_attribute() shall return a default value. The default value
is controlled by using the ACC routine acc_conÞgure() to set or reset the conÞguration parameter
accDefaultAttr0 as shown in Table 19-15.

The example shown in Figure 19-13 presents a C-language application that uses acc_fetch_attribute() to obtain the
load capacitance of all scalar nets connected to the ports in a module. Note that acc_fetch_attribute() does not
require its third argument, default_value, because acc_conÞgure() is used to set accDefaultAttr0 to true.

Table 19-15ÑControlling the default value returned by acc_fetch_attribute()

When accDefaultAttr0 is acc_fetch_attribute() shall return

"true" Zero when the attribute is not found; the
default_value argument can be dropped

"false" The value passed as the default_value argument
when the attribute is not found

yes

no

found?

search for attribute
associated with
specified object

return attributeÕs value
as a double-precision
floating-point number

search for attribute
without an associated

yes

no

found?

return default value

object

1)

2)

3)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 295

Figure 19-13ÑUsing acc_fetch_attribute()

#include "acc_user.h"
display_load_capacitance()
{

handle module_handle, port_handle, net_handle;
double cap_val;

/*initialize environment for ACC routines*/
acc_initialize();

/*set development version*/
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*configure acc_fetch_attribute to return 0 when it does not find*/
/*the attribute*/
acc_configure(accDefaultAttr0, "true");

/*get handle for module*/
module_handle = acc_handle_tfarg(1);

/*scan all ports in module; display load capacitance*/
port_handle = null;
while(port_handle = acc_next_port(module_handle, port_handle))
{

/*ports are scalar, so pass "null" to get single net connection*/
net_handle = acc_next_loconn(port_handle, null);

/*since accDefaultAttr0 is "true", drop default_value argument*/
cap_val = acc_fetch_attribute(net_handle,"LoadCap_");

if (!acc_error_flag)
io_printf("Load capacitance of net #%d = %1f\n",

acc_fetch_index(port_handle), cap_val);
}
acc_close();

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

296 Section 19

19.11 acc_fetch_attribute_int()

The ACC routine acc_fetch_attribute_int() shall obtain the value of a parameter or specparam that is declared as an
attribute in the Verilog HDL source description. The value shall be returned as an integer.

Any parameter or specparam can be an attribute. Refer to 19.10 for a description of attribute naming and how
attribute values are fetched.

acc_fetch_attribute_int()

Synopsis: Get the integer value of a parameter or specparam named as an attribute in the Verilog source description.

Syntax: acc_fetch_attribute_int(object_handle, attribute_string, default_value)

Type Description

Returns: int Value of the parameter of specparam

Type Name Description

Arguments: handle object_handle Handle of a named object

quoted string or
char *

attribute_string Literal string or character string pointer with the attribute
portion of the parameter or specparam declaration

Optional int default_value Integer value to be returned if the attribute is not found
(depends on accDefaultAttr0)

Related
routines:

Use acc_fetch_attribute() to get an attribute value as a double
Use acc_fetch_attribute_str() to get an attribute value as a string
Use acc_conÞgure(accDefaultAttr0...) to set default value returned when attribute is not found
Use acc_fetch_paramtype() to get the data type of the parameter value
Use acc_fetch_paramval() to get parameters or specparam values not declared in attribute/object format

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 297

19.12 acc_fetch_attribute_str()

The ACC routine acc_fetch_attribute_str() shall obtain the value of a parameter or specparam that is declared as an
attribute in the Verilog HDL source description. The value shall be returned as a pointer to a character string. The
return value for this routine is placed in the ACC internal string buffer. See 18.9 for explanation of strings in ACC
routines.

Any parameter or specparam can be an attribute. Refer to 19.10 for a description of attribute naming and how
attribute values are fetched.

acc_fetch_attribute_str()

Synopsis: Get the integer value of a parameter or specparam named as an attribute in the Verilog source description.

Syntax: acc_fetch_attribute_str(object_handle, attribute_string, default_value)

Type Description

Returns: char * Value of the parameter of specparam

Type Name Description

Arguments: handle object_handle Handle of a named object

quoted string or
char *

attribute_string Literal string or character string pointer with the attribute
portion of the parameter or specparam declaration

Optional quoted string or
char *

default_value Character string value to be returned if the attribute is not
found (depends on accDefaultAttr0)

Related
routines:

Use acc_fetch_attribute() to get an attribute value as a double
Use acc_fetch_attribute_int() to get an attribute value as an integer
Use acc_conÞgure(accDefaultAttr0...) to set default value returned when attribute is not found
Use acc_fetch_paramtype() to get the data type of the parameter value
Use acc_fetch_paramval() to get parameters or specparam values not declared in attribute/object format

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

298 Section 19

19.13 acc_fetch_defname()

The ACC routine acc_fetch_defname() shall obtain the deÞnition name of a module instance or primitive instance.
The deÞnition name is the declared name of the object as opposed to the instance name of the object. In the
illustration shown below, the deÞnition name is ÒdffÓ, and the instance name is Òi15Ó.

The return value for this routine is placed in the ACC internal string buffer. See 18.9 for explanation of strings in ACC
routines.

The example shown in Figure 19-14 presents a C-language application that uses acc_fetch_defname() to display the
deÞnition names of all primitives in a module.

Figure 19-14ÑUsing acc_fetch_defname()

acc_fetch_defname()

Synopsis: Get the deÞnition name of a module instance or primitive instance.

Syntax: acc_fetch_defname(object_handle)

Type Description

Returns: char * Pointer to a character string containing the deÞnition name

Type Name Description

Arguments: handle object_handle Handle of the module instance or primitive instance

Related
routines

Use acc_fetch_name() to display the instance name of an object

dff i15 (q, clk, d); //instance of a module or primitive

definition name

instance name

#include "acc_user.h"

get_primitive_definitions(module_handle)
handle module_handle;
{

handle prim_handle;

/*get and display defining names of all primitives in the module*/
prim_handle = null;
while(prim_handle = acc_next_primitive(module_handle,prim_handle))

io_printf("primitive definition is %s\n",
acc_fetch_defname(prim_handle));

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 299

19.14 acc_fetch_delay_mode()

The ACC routine acc_fetch_delay_mode() shall return the delay mode of a module or cell instance. The delay mode
determines how delays are stored for primitives and paths within the module or cell. The routine shall return one of
the predeÞned constants given in Table 19-16.

acc_fetch_delay_mode()

Synopsis: Get the delay mode of a module instance.

Syntax: acc_fetch_delay_mode(module_handle)

Type Description

Returns: int A predeÞned integer constant representing the delay mode of the module instance:
accDelayModeNone accDelayModeZero accDelayModeUnit
accDelayModePath accDelayModeDistrib accDelayModeMTM

Type Name Description

Arguments: handle module_handle Handle to a module instance

Table 19-16ÑPredeÞned constants used by acc_fetch_delay_mode()

PredeÞned constant Description

accDelayModeNone No delay mode speciÞed.

accDelayModeZero All primitive delays are zero; all path delays are ignored.

accDelayModeUnit All primitive delays are one; all path delays are ignored.

accDelayModeDistrib If a logical path has both primitive delays and path
delays speciÞed, the primitive delays shall be used.

accDelayModePath If a logical path has both primitive delays and path
delays speciÞed, the path delays shall be used.

accDelayModeMTM

If this property is true, Minimum:Typical:Maximum
delay sets for each transition are being stored; if this
property is false, a single delay for each transition is
being stored.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

300 Section 19

Figure 19-15 uses acc_fetch_delay_mode() to retrieve the delay mode of all children of a speciÞed module.

Figure 19-15ÑUsing acc_fetch_delay_mode()

#include "acc_user.h"
display_delay_mode()
{

handle mod, child;

/*reset environment for ACC routines*/
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*get module passed to user-defined system task*/
mod = acc_handle_tfarg(1);

/*find and display delay mode for each module instance*/
child = null;
while(child = acc_next_child(mod, child))
{

io_printf("Module %s set to: ",acc_fetch_fullname(child);
switch(acc_fetch_delay_mode(child))
{

case accDelayModePath:
io_printf(" path delay mode\n");
break;

case accDelayModeDistrib:
io_printf(" distributed delay mode\n");
break;

. . .
}

}
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 301

19.15 acc_fetch_delays()

acc_fetch_delays() for single delay values (accMinTypMaxDelays set to "false")

Synopsis: Get existing delays for primitives, module paths, timing checks, module input ports, and intermodule
paths.

Syntax:

Primitives
Ports
Port bits
Intermodule paths

acc_fetch_delays(object_handle, rise_delay, fall_delay, z_delay)

Module paths acc_fetch_delays(object_handle,
 d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12)

Timing checks acc_fetch_delays(object_check_handle, limit)

Type Description

Returns: bool 1 if successful; 0 if an error occurred

Type Name Description

Arguments: handle object_handle Handle of a primitive, module path, timing check, module
input port, bit of a module input port, or intermodule path

double * rise_delay
fall_delay

Rise and fall delay for 2-state primitive, 3-state primitive,
module input port, module input port bit, or intermodule path

Conditional double * z_delay Turn-off (to Z)) transition delay for 3-state primitives, module
input ports, module input port bits, or intermodule paths

double * d1 If accPathDelayCount is set to "1":
delay for all transitions for module paths

If accPathDelayCount is set to "2" or "3":
rise transition delay for module paths

If accPathDelayCount is set to "6" or "12":
0->1 transition delay for module paths

Conditional double * d2 If accPathDelayCount is set to "2" or "3":
fall transition delay for module paths

If accPathDelayCount is set to "6" or "12":
1->0 transition delay for module paths

Conditional double * d3 If accPathDelayCount is set to "3":
turn-off transition delay for module paths

If accPathDelayCount is set to "6" or "12":
0->Z transition delay for module paths

Conditional double * d4
d5
d6

If accPathDelayCount is set to "6" or "12":
d4 is Z->1 transition delay for module paths
d5 is 1->Z transition delay for module paths
d6 is Z->0 transition delay for module paths

Conditional double * d7
d8
d9
d10
d11
d12

If accPathDelayCount is set to "12":
d7 is 0->X transition delay for module paths
d8 is X->1 transition delay for module paths
d9 is 1->X transition delay for module paths
d10 is X->0 transition delay for module paths
d11 is X->Z transition delay for module paths
d12 is Z->X transition delay for module paths

double * limit Limit of timing check

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

302 Section 19

The ACC routine acc_fetch_delays() shall work differently depending on how the conÞguration parameter
accMinTypMaxDelays is set. When this parameter is set to ÒfalseÓ, a single delay per transition shall be
assumed, and each delay shall be fetched into variables pointed to as individual arguments. For this single delay
mode, the Þrst syntax table in this clause shall apply.

When accMinTypMaxDelays is set to ÒtrueÓ, acc_fetch_delays() shall fetch one or more sets of
minimum:typical:maximum delays into an array, rather than single delays fetched as individual arguments. For this
min:typ:max delay mode, the second syntax table in this clause shall apply.

The number delay values that shall be fetched by acc_fetch_delays() is determined by the type of object and the
setting of conÞguration parameters. Refer to 18.8 for a description of how the number of delay values are determined.

The ACC routine acc_fetch_delays() shall retrieve delays in the timescale of the module that contains the
object_handle.

The example shown in Figure 19-16 presents a C-language application that uses acc_fetch_delays() to retrieve the
rise, fall, and turn-off delays of all paths through a module.

acc_fetch_delays() for min:typ:max delays (accMinTypMaxDelays set to "true")

Synopsis: Get existing delay values for primitives, module paths, timing checks, module input ports, or intermod-
ule paths; the delay values are contained in an array.

Syntax: acc_append_delays(object_handle, array_ptr)

Type Description

Returns: bool 1 if successful; 0 if an error is encountered

Type Name Description

Arguments: handle object_handle Handle of a primitive, module path, timing check, module
input port, bit of a module input port, or intermodule path

double address array_ptr Pointer to array of min:typ:max delay values;
the size of the array depends on the type of object and the
setting of accPathDelayCount (see 18.8)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 303

Figure 19-16ÑUsing acc_fetch_delays() in single delay mode

The example shown in Figure 19-17 is a C-language code fragment of an application that shows how to fetch
min:typ:max delays for the intermodule paths. The example follows these steps:

a) Declares an array of nine double-precision ßoating-point values as a buffer for storing three sets of
min:typ:max values, one set each for rise, fall, and turn-off delays.

b) Sets the conÞguration parameter accMinTypMaxDelays to ÒtrueÓ to instruct acc_fetch_delays() to
retrieve delays in min:typ:max format.

c) Calls acc_fetch_delays() with a valid intermodule path handle and the array pointer.

#include "acc_user.h"

display_path_delays()
{

handle mod_handle;
handle path_handle;
double rise_delay,fall_delay,toz_delay;

/*initialize environment for ACC routines*/
acc_initialize();

/*set development version*/
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*set accPathDelayCount to return rise, fall and turn-off delays */
acc_configure(accPathDelayCount, "3");

/*get handle to module*/
mod_handle = acc_handle_tfarg(1);

/*fetch rise delays for all paths in module "top.m1"*/
path_handle = null;
while(path_handle = acc_next_modpath(mod_handle, path_handle))
{

acc_fetch_delays(path_handle,
&rise_delay,&fall_delay,&toz_delay);

/*display rise, fall and turn-off delays for each path*/
io_printf("For module path %s,delays are:\n",

acc_fetch_fullname(path_handle));
io_printf("rise = %lf, fall = %lf, turn-off = %lf\n",

rise_delay,fall_delay,toz_delay);
}
acc_close();

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

304 Section 19

Figure 19-17ÑUsing acc_fetch_delays() in min:typ:max delay mode

#include "acc_user.h"
fetch_mintypmax_delays(port_output, port_input)
handle port_output, port_input;
{

.

.

.
handle intermod_path;
double delay_array[9];

.

.

.
acc_configure(accMinTypMaxDelays, "true");

.

.

.
intermod_path = acc_handle_path(port_output, port_input);
acc_fetch_delays(intermod_path, delay_array);

.

.

.
}

acc_handle_path
returns a handle to a wire
path that represents the
connection from an output
(or inout) port to an input
(or inout) port

acc_fetch_delays places the
following values in delay_array:
 delay_array[0] =
 delay_array[1] =
 delay_array[2] =

 delay_array[3] =
 delay_array[4] =
 delay_array[5] =

 delay_array[6] =
 delay_array[7] =
 delay_array[8] =

min:typ:max

min:typ:max

min:typ:max
rise delay

fall delay

turn-off delay

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 305

19.16 acc_fetch_direction()

The ACC routine acc_fetch_direction() shall return a predeÞned integer constant indicating the direction of a module
port or primitive terminal. The values returned are given in Table 19-17.

The example shown in Figure 19-18 presents a C-language application that uses acc_fetch_direction() to determine
whether or not a port is an input.

Figure 19-18ÑUsing acc_fetch_direction()

acc_fetch_direction()

Synopsis: Get the direction of a port or terminal.

Syntax: acc_fetch_direction(object_handle)

Type Description

Returns: int A predeÞned integer constant representing the direction of a port or terminal
 accInput accOutput accInout accMixedIo

Type Name Description

Arguments: handle object_handle Handle of a port or terminal

Table 19-17ÑThe operation of acc_fetch_direction()

When direction is acc_fetch_direction() shall return

Input only accInput

Output only accOutput

Bidirectional (input and output) accInout

A concatenation of input ports and output
ports

accMixedIo

#include "acc_user.h"

bool is_port_input(port_handle)
handle port_handle;
{

int direction;

direction = acc_fetch_direction(port_handle);
if (direction == accInput || direction == accInout)

return(true);
else

return(false);
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

306 Section 19

19.17 acc_fetch_edge()

The ACC routine acc_fetch_edge() shall return a value that is a masked integer representing the edge speciÞer for a
module path delay terminal.

Table 19-18 lists the predeÞned edge speciÞers as they are speciÞed in acc_user.h.

The integer mask returned by acc_fetch_edge() is usually either accPosedge or accNegedge. Occasionally, however,
the mask is a hybrid mix of speciÞers that is equal to neither. The example shown in Figure 19-19 illustrates how to
check for these hybrid edge speciÞers. The value accNoEdge is returned if no edge is found.

The example takes a path input or output and returns the string corresponding to its edge speciÞer. It provides
analogous functionality to that of acc_fetch_type_str() in that it returns a string corresponding to an integer value
that represents a type.

acc_fetch_edge()

Synopsis: Get the edge speciÞer of a module path input terminal.

Syntax: acc_fetch_edge(pathio_handle)

Type Description

Returns: int A predeÞned integer constant representing the edge speciÞer of a path input or output ter-
minal:

accNoedge accEdge01 accEdgex1
accPosedge accEdge10 accEdge1x
accNegedge accEdge0x accEdgex0

Type Name Description

Arguments: handle pathio_handle Handle to a module path input or output, or handle to a tim-
ing check terminal

Table 19-18ÑEdge speciÞers constants

Edge type DeÞned constant Binary value

None accNoedge 0

Positive edge (0®1,0®x,x®1) accPosedge 00001011

Negative edge (1®0,1®x,x®0) accNegedge 01100010

0®1 edge accEdge01 00000001

1®0 edge accEdge10 00000010

0®x edge accEdge0x 00000100

x®1 edge accEdgex1 00001000

1®x edge accEdge1x 00010000

x®0 edge accEdgex0 00100000

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 307

This example Þrst checks to see whether the returned mask is equal to accPosedge or accNegedge, which are the
most likely cases. If it is not, the application does a bitwise AND with the returned mask and each of the other edge
speciÞers to Þnd out which types of edges it contains. If an edge type is encoded in the returned mask, the
corresponding edge type string sufÞx is appended to the string ÒaccEdgeÓ.

Figure 19-19ÑUsing acc_fetch_edge()

char *acc_fetch_edge_str(pathio)
handle pathio;
{

int edge = acc_fetch_edge(pathio);
static char edge_str[32];

if (! acc_error_flag)
{

if (edge == accNoEdge)
strcpy(edge_str, "accNoEdge");

/* accPosedge == (accEdge01 & accEdge0x & accEdgex1) */
else if (edge == accPosEdge)

strcpy(edge_str, "accPosEdge");

/* accNegedge == (accEdge10 & accEdge 1x & accEdgex0) */
else if (edge == accNegEdge)

strcpy(edge_str, "accNegEdge");

/* edge is neither posedge nor negedge, but some combination
of other edges */

else {
strcpy(edge_str, "accEdge");
if (edge & accEdge01) strcat(edge_str, "_01");
if (edge & accEdge10) strcat(edge_str, "_10");
if (edge & accEdge0x) strcat(edge_str, "_0x");
if (edge & accEdgex1) strcat(edge_str, "_x1");
if (edge & accEdge1x) strcat(edge_str, "_1x");
if (edge & accEdgex0) strcat(edge_str, "_x0");

}

return(edge_str);
}
else

return(null);
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

308 Section 19

19.18 acc_fetch_fullname()

The ACC routine acc_fetch_fullname() shall obtain the full hierarchical name of an object. The full hierarchical
name is the name that uniquely identiÞes an object. In Figure 19-20, the top-level module, top1, contains module
instance mod3, which contains net w4. In this example, the full hierarchical name of the net is top1.mod3.w4.

Figure 19-20ÑA design hierarchy; the fullname of net w4 is "top1.mod.w4"

Table 19-19 lists the objects in a Verilog HDL description for which acc_fetch_fullname() shall return a name.

acc_fetch_fullname()

Synopsis: Get the full hierarchical name of any named object or module path.

Syntax: acc_fetch_fullname(object_handle)

Type Description

Returns: char * Character pointer to a string containing the full hierarchical name of the object

Type Name Description

Arguments: handle object_handle Handle of the object

Related
routines:

Use acc_fetch_name() to Þnd the lowest-level name of the object
Use acc_conÞgure(accPathDelimStr...) to set the delimiter string for module path names

Table 19-19ÑNamed objects supported by acc_fetch_fullname()

Modules Variables

Module ports Named events

Module paths Parameters

Data paths Specparams

Primitives Named blocks

Nets Verilog HDL tasks

Registers Verilog HDL functions

top1
mod3

w4

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 309

Module path names shall be derived from their sources and destinations in the following format:

By default, the path_delimiter shall be the character $. However, the delimiter can be changed by using the ACC
routine acc_conÞgure() to set the delimiter parameter accPathDelimStr to another character string.

The following examples show names of paths within a top-level module m3, as returned by acc_fetch_fullname()
when the path_delimiter is $. Note that names of module paths with multiple sources or destinations shall be derived
from the Þrst source and destination only.

If a Verilog software product creates default names for unnamed instances, acc_fetch_fullname() shall return the full
hierarchical default name. Otherwise, the routine shall return null for unnamed instances.

Using acc_fetch_fullname() with a module port handle shall return the full hierarchical implicit name of the port.

The routine acc_fetch_fullname() shall store the returned string in a temporary buffer. To preserve the string for later
use in an application, it should be copied to another variable (refer to 18.9).

In the example shown in Figure 19-21, the routine uses acc_fetch_fullname() to display the full hierarchical name of
an object if the object is a net.

Figure 19-21ÑUsing acc_fetch_fullname()

Table 19-20ÑModule path names returned by acc_fetch_fullname()

For paths in module m3 acc_fetch_fullname() returns a pointer to

(a => q) = 10; m3.a$q

(b *> q1,q2) = 8; m3.b$q1

(d,e,f *> r,s)= 8; m3.d$r

source path_delimiter destination

#include "acc_user.h"

display_if_net(object_handle)
handle object_handle;
{
 /*get and display full name if object is a net*/

if (acc_fetch_type(object_handle) == accNet)
io_printf("Object is a net: %s\n",

 acc_fetch_fullname(object_handle));
else

io_printf("Object is not a net: %s\n",
 acc_fetch_fullname(object_handle));

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

310 Section 19

19.19 acc_fetch_fulltype()

The ACC routine acc_fetch_fulltype() shall return the fulltype of an object. The fulltype is a speciÞc classiÞcation of
a Verilog HDL object, represented as a predeÞned constant (deÞned in acc_user.h). Table 18-25 lists all of the
fulltype constants that can be returned by acc_fetch_fulltype().

Many Verilog HDL objects have both a type and a fulltype. The type of an object is its general Verilog HDL type
classiÞcation. The fulltype is the speciÞc type of the object. The examples in Table 19-21 illustrate the difference
between the type of an object and the fulltype of the same object for selected objects.

acc_fetch_fulltype()

Synopsis: Get the fulltype of an object.

Syntax: acc_fetch_fulltype(object_handle)

Type Description

Returns: int A predeÞned integer constant from the list shown in 18.6

Type Name Description

Arguments: handle object_handle Handle of the object

Related
routines:

Use acc_fetch_type() to get the general type classiÞcation of an object
Use acc_fetch_type_str() to get the fulltype as an character string

Table 19-21ÑThe difference between the type and the fulltype of an object

For a handle to acc_fetch_type() shall return acc_fetch_fulltype() shall return

A setup timing check accTchk accSetup

An and gate primitive accPrimitive accAndGate

A sequential UDP accPrimitive accSeqPrim

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 311

The example shown in Figure 19-22 uses acc_fetch_fulltype() to Þnd and display the fulltypes of timing checks. This
application is called by a higher-level application, display_object_type, presented as the usage example for
acc_fetch_type().

Figure 19-22ÑUsing acc_fetch_fulltype() to display the fulltypes of timing checks

#include "acc_user.h"

display_timing_check_type(tchk_handle)
handle tchk_handle;
{

/*display timing check type*/
io_printf("Timing check is");
switch(acc_fetch_fulltype(tchk_handle))

{
case accHold:

io_printf(" hold\n");
break;

case accNochange:
io_printf(" nochange\n");
break;

case accPeriod:
io_printf(" period\n");
break;

case accRecovery:
io_printf(" recovery\n");
break;

case accSetup:
io_printf(" setup\n");
break;

case accSkew:
io_printf(" skew\n");
break;

case accWidth:
io_printf(" width\n");

}
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

312 Section 19

The example shown in Figure 19-23 uses acc_fetch_fulltype() to Þnd and display the fulltypes of primitive objects
passed as input arguments. This application is called by a higher-level application, display_object_type,
presented as the usage example for acc_fetch_type().

Figure 19-23ÑUsing acc_fetch_fulltype() to display the fulltypes of primitives

#include "acc_user.h"

display_primitive_type(primitive_handle)
handle primitive_handle;
{

/*display primitive type*/
io_printf("Primitive is");
switch(acc_fetch_fulltype(primitive_handle))

{
case accAndGate:

io_printf(" and gate\n"); break;
case accBufGate:

io_printf(" buf gate\n"); break;
case accBufif0Gate:case accBufif1Gate:

io_printf(" bufif gate\n"); break;
case accCmosGate:case accNmosGate:case accPmosGate:
case accRcmosGate:case accRnmosGate:case accRpmosGate:

io_printf(" MOS or Cmos gate\n"); break;
case accCombPrim:

io_printf(" combinational UDP\n"); break;
case accSeqPrim:

io_printf(" sequential UDP\n"); break;
case accNotif0Gate:case accNotif1Gate:

io_printf(" notif gate\n"); break;
case accRtranGate:

io_printf(" rtran gate\n"); break;
case accRtranif0Gate:case accRtranif1Gate:

io_printf(" rtranif gate\n"); break;
case accNandGate:

io_printf(" nand gate\n"); break;
case accNorGate:

io_printf(" nor gate\n"); break;
case accNotGate:

io_printf(" not gate\n"); break;
case accOrGate:

io_printf(" or gate\n"); break;
case accPulldownGate:

io_printf(" pulldown gate\n"); break;
case accPullupGate:

io_printf(" pullup gate\n"); break;
case accXnorGate:

io_printf(" xnor gate\n"); break;
case accXorGate:

io_printf(" xor gate\n");
}

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 313

19.20 acc_fetch_index()

The ACC routine acc_fetch_index() shall return the index number for a module port or primitive terminal. Indices are
integers that shall start at zero and increase from left to right.

Ñ The index of a port shall be its position in a module deÞnition in the Verilog HDL source description.
Ñ The index of a terminal shall be its position in a gate, switch, or UDP instance.

Table 19-22 shows how indices shall be derived.

acc_fetch_index()

Synopsis: Get the index number for a port or terminal.

Syntax: acc_fetch_index(object_handle)

Type Description

Returns: int Integer index for a port or terminal, starting with zero

Type Name Description

Arguments: handle object_handle Handle of the port or terminal

Table 19-22ÑDeriving indices

For Indices are

Terminals:
 nand g1(out, in1, in2);

0 for terminal out
1 for terminal in1
2 for terminal in2

Implicit ports:
 module A(q, a, b);

0 for port q
1 for port a
2 for port b

Explicit ports:
 module top;
 reg ra,rb;
 wire wq;
 explicit_port_mod epm1(.b(rb), .a(ra), .q(wq));
 endmodule

 module explicit_port_mod(q, a, b);
 input a, b;
 output q;
 nand (q, a, b);
 endmodule

0 for explicit port epm1.q
1 for explicit port epm1.a
2 for explicit port epm1.b

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

314 Section 19

The example shown in Figure 19-24 presents a C-language application that uses acc_fetch_index() to Þnd and
display the input ports of a module.

Figure 19-24ÑUsing acc_fetch_index()

#include "acc_user.h"

display_inputs(module_handle)
handle module_handle;
{

handle port_handle;
int direction;

/*get handle for the module and each of its ports*/
port_handle = null;
while (port_handle = acc_next_port(module_handle, port_handle))
{

/*determine if port is an input*/
direction = acc_fetch_direction(port_handle);
/*give the index of each input port*/
if (direction == accInput)

io_printf("Port #%d of %s is an input\n",
acc_fetch_index(port_handle),
acc_fetch_fullname(module_handle));

}
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 315

19.21 acc_fetch_location()

The ACC routine acc_fetch_location() shall return the Þle name and line number in the Þle for the speciÞed object.
The Þle name and line number shall be returned in an s_location data structure. This data structure is deÞned in
acc_user.h, and listed in Figure 19-25.

Figure 19-25Ñs_location data structure

Þlename Þeld is a character pointer.

line_no Þeld is a nonzero positive integer.

Table 19-23 lists the objects that shall be supported by acc_fetch_location().

acc_fetch_location()

Synopsis: Get the location of an object in a Verilog-HDL source Þle.

Syntax: acc_fetch_location(loc_p, object_handle)

Type Description

Returns: void None

Type Name Description

Arguments: p_location loc_p Pointer to a predeÞned location structure

handle object_handle Handle to an object

Table 19-23ÑObjects supported by acc_fetch_location()

Object type Location returned

Modules Module deÞnition

Module ports Module deÞnition

Module paths Module path line

Data paths Module path line

Primitives Instantiation line

Explicit nets DeÞnition line

Implicit nets Line where Þrst used

Registers DeÞnition line

typedef struct t_location
{

int line_no; /* line number in the file */
char *filename; /* file name */

} s_location, *p_location;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

316 Section 19

The return value for Þlename is placed in the ACC internal string buffer. See 18.9 for an explanation of strings in ACC
routines.

The example shown in Figure 19-26 uses acc_fetch_location() to print the Þle name and line number for an object.

Figure 19-26ÑUsing acc_fetch_location()

Variables DeÞnition line

Named events DeÞnition line

Parameters DeÞnition line

Specparams DeÞnition line

Named blocks DeÞnition line

Verilog HDL tasks DeÞnition line

Verilog HDL functions DeÞnition line

Table 19-23ÑObjects supported by acc_fetch_location() (continued)

Object type Location returned

void find_object_location (object)
handle object;

{
s_location s_loc;
p_location loc_p = &s_loc;
acc_fetch_location(loc_p, object); /*get the filename and line_no*/
if (! acc_error_flag) /* On success */

io_printf (ÒObject located in file %s on line %d \nÓ,
loc_p->filename, loc_p->line_no);

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 317

19.22 acc_fetch_name()

The ACC routine acc_fetch_name() shall obtain the name of an object. The name of an object is its lowest-level
name. In the following example, the top-level module, top1, contains module instance mod3, which contains net
w4, as shown in Figure 19-27. In this example, the name of the net is w4.

Figure 19-27ÑA design hierarchy; the name of net w4 is Òw4Ó

The return value for this routine is placed in the ACC internal string buffer. See 18.9 for an explanation of strings in
ACC routines.

Table 19-24 lists the objects in a Verilog HDL description for which acc_fetch_name() shall return a name.

acc_fetch_name()

Synopsis: Get the instance name of any named object or module path.

Syntax: acc_fetch_name(object_handle)

Type Description

Returns: char * Character pointer to a string containing the instance name of the object

Type Name Description

Arguments: handle object_handle Handle of the named object

Related
routines:

Use acc_fetch_fullname() to get the full hierarchical name of the object
Use acc_fetch_defname() to get the deÞnition name of the object
Use acc_conÞgure(accPathDelimStr...) to set the naming convention for module paths

Table 19-24ÑNamed objects supported by acc_fetch_name()

Modules Variables

Module ports Named events

Module paths Parameters

Data paths Specparams

Primitives Named blocks

Nets Verilog HDL tasks

Registers Verilog HDL functions

top1
mod3

w4

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

318 Section 19

Module path names shall be derived from their sources and destinations in the following format:

By default, the path_delimiter is the character $. However, the delimiter can be changed by using the ACC routine
acc_conÞgure() to set the delimiter parameter accPathDelimStr to another character string.

Table 19-25 shows names of paths within a top-level module m3, as returned by acc_fetch_name() when the
path_delimiter is $. Note that names of module paths with multiple sources or destinations shall be derived from the
Þrst source and destination only.

If a Verilog software implementation creates default names for unnamed instances, acc_fetch_name() shall return the
default name. Otherwise, the routine shall return null for unnamed instances.

Using acc_fetch_name() with a module port handle shall return the implicit name of the port.

The routine acc_fetch_name() shall store the returned string in a temporary buffer. To preserve the string for later use
in an application, it should be preserved (refer to 18.9).

The following example uses acc_fetch_name() to display the names of top-level modules.

Figure 19-28ÑUsing acc_fetch_name()

Table 19-25ÑModule path names returned by acc_fetch_name()

For paths in module m3 acc_fetch_name() returns a pointer to

(a => q) = 10; a$q

(b *> q1,q2) = 8; b$q1

(d,e,f *> r,s)= 8; d$r

source path_delimiter destination

#include "acc_user.h"
show_top_mods()
{

handle module_handle;

/*initialize environment for ACC routines*/
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*scan all top-level modules*/
io_printf("The top-level modules are:\n");
module_handle = null;
while (module_handle = acc_next_topmod(module_handle))

io_printf(" %s\n",acc_fetch_name(module_handle));

acc_close();
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 319

19.23 acc_fetch_paramtype()

The ACC routine acc_fetch_paramtype() shall return an integer constant that represents the data type of a value that
has been assigned to a parameter or specparam.

Figure 19-29 uses acc_fetch_paramtype() to display the values of all parameters within a module.

Figure 19-29ÑUsing acc_fetch_paramtype()

acc_fetch_paramtype()

Synopsis: Get the data type of a parameter or specparam.

Syntax: acc_fetch_paramtype(parameter_handle)

Type Description

Returns: int A predeÞned integer constant representing the data type of a parameter:
accIntParam accIntegerParam accRealParam accStringParam

Type Name Description

Arguments: handle parameter_handle Handle to a parameter or specparam

Related
routines:

Use acc_next_parameter() to get all parameters within a module
Use acc_next_specparam() to get all specparams within a module

#include "acc_user.h"
print_parameter_values()
{
 handle module_handle, param_handle;

 /*initialize environment for ACC routines*/
 acc_initialize();
 acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

 module_handle = acc_handle_tfarg(1);
 param_handle = null;
 while(param_handle = acc_next_parameter(module_handle,param_handle))
 {
 io_printf("Parameter %s has value: ",acc_fetch_fullname(param_handle));
 switch(acc_fetch_paramtype(param_handle))
 {
 case accRealParam:
 io_printf("%lf\n", acc_fetch_paramval(param_handle)); break;
 case accIntegerParam:
 io_printf("%d\n", (int)acc_fetch_paramval(param_handle)); break;
 case accStringParam:
 io_printf("%s\n",(char*)(int)acc_fetch_paramval(param_handle)); break;
 }
 }
 acc_close();
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

320 Section 19

19.24 acc_fetch_paramval()

The ACC routine acc_fetch_paramtype() shall return the value stored in a parameter or specparam. The value shall
be returned as a double-precision ßoating-point number.

A parameter value can be stored as one of three data types:

Ñ A double-precision ßoating-point number

Ñ An integer value

Ñ A string

Therefore, it can be necessary to call acc_fetch_paramtype() to determine the data type of the parameter value, as
shown in the example in Figure 19-30.

The routine acc_fetch_paramval() returns values as type double. The values can be converted back to integers or
character pointers using the C-language cast mechanism, as shown in Table 19-26. Note that some C-language
compilers do not allow casting a double-precision value directly to a character pointer; it is therefore necessary to use
a two-step cast to Þrst convert the double value to an integer and then convert the integer to a character pointer.

If a character string is returned, it is placed in the ACC internal string buffer. See 18.9 for explanation of strings in
ACC routines.

acc_fetch_paramval()

Synopsis: Get the value of a parameter or specparam.

Syntax: acc_fetch_paramval(parameter_handle)

Type Description

Returns: double The value of a parameter or specparam

Type Name Description

Arguments: handle parameter_handle Handle to a parameter or specparam

Related
routines:

Use acc_fetch_paramtype() to retrieve the data type of a parameter
Use acc_next_parameter() to scan all parameters within a module
Use acc_next_specparam() to scan all specparams within a module

Table 19-26ÑCasting acc_fetch_paramval() return values

To convert to Follow these steps

Integer Cast the return value to the integer data type using the C-language cast oper-
ator (int):

int_val= (int) acc_fetch_paramval(...);

String Cast the return value to a character pointer using the C-language cast opera-
tors (char*)(int):

str_ptr= (char*)(int) acc_fetch_paramval(...);

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 321

The example shown in Figure 19-30 presents a C-language application, print_parameter_values, that uses
acc_fetch_paramtype() to display the values of all parameters within a module.

Figure 19-30ÑUsing acc_fetch_paramval()

#include "acc_user.h"

print_parameter_values()
{

handle module_handle;
handle param_handle;

/*initialize environment for ACC routines*/
acc_initialize();

/*set development version*/
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*get handle for module*/
module_handle = acc_handle_tfarg(1);

/*scan all parameters in the module and display their values*/
/* according to type*/
param_handle = null;
while(param_handle = acc_next_parameter(module_handle,param_handle))
{

io_printf("Parameter %s has value: ",acc_fetch_fullname(param_handle));
switch(acc_fetch_paramtype(param_handle))
{

case accRealParam:
io_printf("%lf\n", acc_fetch_paramval(param_handle));
break;

case accIntegerParam:
io_printf("%d\n", (int)acc_fetch_paramval(param_handle));
break;

case accStringParam:
io_printf("%s\n",(char*)(int)acc_fetch_paramval(param_handle));
break;

}
}
acc_close();

}
two-step cast

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

322 Section 19

19.25 acc_fetch_polarity()

The ACC routine acc_fetch_polarity() shall return an integer constant that represents the polarity of the speciÞed
path. The polarity of a path describes how a signal transition at its source propagates to its destination in the absence
of logic simulation events. The return value shall be one of the predeÞned integer constant polarity types listed in
Table 19-27.

The example shown in Figure 19-31 takes a path argument and returns the string corresponding to its polarity.

Figure 19-31ÑUsing acc_fetch_polarity()

acc_fetch_polarity()

Synopsis: Get the polarity of a path.

Syntax: acc_fetch_polarity(path_handle)

Type Description

Returns: int A predeÞned integer constant representing the polarity of a path:
accPositive accNegative accUnknown

Type Name Description

Arguments: handle path_handle Handle to a module path or data path

Table 19-27ÑPolarity types returned by acc_fetch_polarity()

Integer constant Description

accPositive A rise at the source causes a rise at the destination.
A fall at the source causes a fall at the destination.

accNegative A rise at the source causes a fall at the destination.
A fall at the source causes a rise at the destination.

accUnknown Unpredictable; a rise or fall at the source causes either a rise or fall
at the destination.

char *fetch_polarity_str(path)
{

switch (acc_fetch_polarity(path)) {
case accPositive: return(ÒaccPositiveÓ);
case accNegative: return(ÒaccNegativeÓ);
case accUnknown: return(ÒaccUnknownÓ);
default: return(null);

}
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 323

19.26 acc_fetch_precision()

The ACC routine acc_fetch_precision() shall return the smallest time precision argument speciÞed in all
`timescale compiler directives for a given design. The value returned shall be the order of magnitude of one
second, as shown in Table 19-28.

If there are no `timescale compiler directives speciÞed for a design, acc_fetch_precision() shall return a value of
0 (1 s).

acc_fetch_precision()

Synopsis: Get the smallest time precision argument specified in all `timescale compiler directives in a given design.

Syntax: acc_fetch_precision()

Type Description

Returns: int An integer value that represents a time precision

Type Name Description

Arguments: None

Related
routines:

Use acc_fetch_timescale_info() to get the timescale and precision of a speciÞc object

Table 19-28ÑValue returned by acc_fetch_precision()

Integer value returned Simulation time precision
represented

2 100 s

1 10 s

0 1 s

-1 100 ms

-2 10 ms

-3 1 ms

-4 100 µs

-5 10 µs

-6 1 µs

-7 100 ns

-8 10 ns

-9 1 ns

-10 100 ps

-11 10 ps

-12 1 ps

-13 100 fs

-14 10 fs

-15 1 fs

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

324 Section 19

19.27 acc_fetch_pulsere()

The ACC routine acc_fetch_pulsere() shall obtain the current values controlling how pulses are propagated through
module paths.

A pulse is deÞned as two transitions on the same path that occur in a shorter period of time than the path delay. Pulse
control values determine whether a pulse should be rejected, propagated through to the output, or considered an error.
The pulse control values consist of a reject_limit and an e_limit pair of values, where

Ñ The reject_limit shall set a threshold for determining when to reject a pulseÑany pulse less than the
reject_limit shall not propagate to the output of the path

Ñ The e_limit shall set a threshold for determining when a pulse is an errorÑany pulse less than the e_limit and
greater than or equal to the reject_limit shall propagate a logic x to the path output

Ñ A pulse that is greater than or equal to the e_limit shall propagate through to the path output

Table 19-29 illustrates the relationship between the reject_limit and the e_limit.

acc_fetch_pulsere()

Synopsis: Get current pulse handling reject_value and e_value for a module path.

Syntax: acc_fetch_pulsere(path,r1,e1, r2,e2, r3,e3, r4,e4, r5,e5, r6,e6,
 r7,e7, r8,e8, r9,e9, r10,e10, r11,e11, r12,e12)

Type Description

Returns: bool 1 if successful; 0 if an error is encountered

Type Name Description

Arguments: handle path Handle of module path

double * r1...r12 reject_limit values; the number of arguments is determined
by accPathDelayCount

double * e1...e12 e_limit values; the number of arguments is determined by
accPathDelayCount

Related
routines:

Use acc_append_pulsere() to add to the existing pulse handling values
Use acc_replace_pulsere() to replace existing pulse handling values
Use acc_set_pulsere() to set pulse handling values as a percentage of the path delay

Table 19-29ÑPath pulse control example

When The pulse on a module path output shall be

reject_limit = 10.5
e_limit = 22.6

Rejected if < 10.5

An error if ³ 10.5 and < 22.6

Passed if ³ 22.6

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 325

The number of pulse control values that acc_fetch_pulsere() shall retrieve is controlled using the ACC routine
acc_conÞgure() to set the delay count conÞguration parameter accPathDelayCount, as shown in Table 19-30.

The minimum number of pairs of reject_limit and e_limit arguments to pass to acc_fetch_pulsere() shall equal the
value of accPathDelayCount. Any unused reject_limit and e_limit argument pairs shall be ignored by
acc_fetch_pulsere() and can be dropped from the argument list.

If accPathDelayCount is not set explicitly, it shall default to 6, and therefore six pairs of pulse reject_limit and
e_limit arguments have to be used when acc_fetch_pulsere() is called. Note that the value assigned to
accPathDelayCount also affects acc_append_delays(), acc_fetch_delays(), acc_replace_delays(),
acc_append_pulsere(), and acc_replace_pulsere().

Pulse control values shall be retrieved using the timescale of the module that contains the path.

Table 19-30ÑHow the accPathDelayCount affects acc_fetch_pulsere()

When accPathDelayCount is acc_fetch_pulsere() shall retrieve

"1" One pair of reject_limit and e_limit values:
one pair for all transitions, r1 and e1

"2"
Two pairs of reject_limit and e_limit values:

one pair for rise transitions, r1 and e1
one pair for fall transitions, r2 and e2

"3"

Three pairs of reject_limit and e_limit values:
one pair for rise transitions, r1 and e1
one pair for fall transitions, r2 and e2
one pair for turn-off transitions, r3 and e3

"6"
(the default)

Six pairs of reject_limit and e_limit valuesÑa different pair
for each possible transition among 0, 1, and Z:

one pair for 0->1 transitions, r1 and e1
one pair for 1->0 transitions, r2 and e2
one pair for 0->Z transitions, r3 and e3
one pair for Z->1 transitions, r4 and e4
one pair for 1->Z transitions, r5 and e5
one pair for Z->0 transitions, r6 and e6

"12"

Twelve pairs of reject_limit and e_limit valuesÑa different
pair for each possible transition among 0, 1, X, and Z:

one pair for 0->1 transitions, r1 and e1
one pair for 1->0 transitions, r2 and e2
one pair for 0->Z transitions, r3 and e3
one pair for Z->1 transitions, r4 and e4
one pair for 1->Z transitions, r5 and e5
one pair for Z->0 transitions, r6 and e6
one pair for 0->X transitions, r7 and e7
one pair for X->1 transitions, r8 and e8
one pair for 1->X transitions, r9 and e9
one pair for X->0 transitions, r10 and e10
one pair for X->Z transitions, r11 and e11
one pair for Z->X transitions, r12 and e12

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

326 Section 19

The example shown in Figure 19-32 shows how an application, get_pulsevals, uses acc_fetch_pulsere() to
retrieve rise and fall pulse handling values of paths listed in a Þle called path.dat. The format of the Þle is shown
in the following diagram.

Figure 19-32ÑUsing acc_fetch_pulsere()

¥
¥

top.m1 in out
¥
¥

path source

name of module path destination

 #include <stdio.h>
 #include "acc_user.h"

 #define NAME_SIZE 256
get_pulsevals()
{
 FILE *infile;
 char mod_name[NAME_SIZE];
 char pathin_name[NAME_SIZE], pathout_name[NAME_SIZE];
 handle mod, path;
 double rise_reject_limit,rise_e_limit,fall_reject_limit,fall_e_limit;

/*initialize environment for ACC routines*/
acc_initialize();

/*set accPathDelayCount to return two pairs of pulse handling values,*/
 /* one each for rise and fall transitions*/

acc_configure(accPathDelayCount, "2");

 /*read all module path specifications from file "path.dat"*/
infile = fopen("path.dat", "r");
while(fscanf(infile,"%s %s %s"

mod_name,pathin_name,pathout_name)!=EOF)
{

mod=acc_handle_object(mod_name);
path=acc_handle_modpath(mod,pathin_name,pathout_name);
if(acc_fetch_pulsere(path,

&rise_reject_limit,&rise_e_limit,
&fall_reject_limit, &fall_e_limit))

{
io_printf("rise reject limit = %lf, rise e limit = %lf\n",

rise_reject_limit, rise_e_limit);
io_printf("fall reject limit = %lf, fall e limit = %lf\n",

fall_reject_limit, fall_e_limit);
 }

}
acc_close();

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 327

19.28 acc_fetch_range()

The ACC routine acc_fetch_range() shall obtain the most signiÞcant bit (msb) and least signiÞcant bit (lsb) numbers
of a vector.

The msb shall be the left range element, while the lsb shall be the right range element in the Verilog HDL source code.

The example shown in Figure 19-33 takes a handle to a module instance as its input. It then uses acc_fetch_range()
to display the name and range of each vector net found in the module as: <name>[<msb>:<lsb>].

Figure 19-33ÑUsing acc_fetch_range()

acc_fetch_range()

Synopsis: Get the most signiÞcant bit and least signiÞcant bit range values for a vector.

Syntax: acc_fetch_range(vector_handle, msb, lsb)

Type Description

Returns: bool Zero if successful; nonzero upon error

Type Name Description

Arguments: handle vector_handle Handle to a vector net or register

int * msb Pointer to an integer variable to hold the most signiÞcant
bit of vector_handle

int * lsb Pointer to an integer variable to hold the least signiÞcant bit
of vector_handle

Related
routines

Use acc_fetch_size() to get the number of bits in a vector

display_vector_nets()
{

handle mod = acc_handle_tfarg(1);
handle net;
int msb, lsb;

io_printf (ÒVector nets in module %s:\n:Ó,
acc_fetch_fullname (mod));

net = null;
while (net = acc_next_net(mod, net))

if (acc_object_of_type(net, accVector))
{

acc_fetch_range(net, &msb, &lsb);
io_printf(Ò %s[%d:%d]\nÓ,

acc_fetch_name(net), msb, lsb);
}

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

328 Section 19

19.29 acc_fetch_size()

The ACC routine acc_fetch_size() shall return the number of bits of a net, register, or port.

The example shown in Figure 19-34 uses acc_fetch_size() to display the size of a vector net.

Figure 19-34ÑUsing acc_fetch_size()

acc_fetch_size()

Synopsis: Get the bit size of a net, register, or port.

Syntax: acc_fetch_size(object_handle)

Type Description

Returns: int Number of bits in the net, register, or port

Type Name Description

Arguments: handle object_handle Handle to a net, register, port or integer, or a bit-select
thereof

#include "acc_user.h"

void display_vector_size()
{

handle net_handle;
int size_in_bits;

/* reset environment for ACC routines */
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*get first argument passed to user-defined system task*/
/* associated with this routine*/
net_handle = acc_handle_tfarg(1);

/*if net is a vector, find and display its size in bits*/
if (acc_object_of_type(net_handle, accVector))
{

size_in_bits = acc_fetch_size(net_handle);
io_printf("Net %s is a vector of size %d\n",

 acc_fetch_fullname(net_handle),size_in_bits);
}
else

io_printf("Net %s is not a vector net\n",
 acc_fetch_fullname(net_handle));

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 329

19.30 acc_fetch_tfarg(), acc_fetch_itfarg()

The ACC routine acc_fetch_tfarg() shall return the value of arguments passed to the current instance of a user-
deÞned system task or function. The ACC routine acc_fetch_itfarg() shall return the value of arguments passed to a
speciÞc instance of a user-deÞned system task or function, using a handle to the other task or function. The value is
returned as a double-precision ßoating-point number.

Argument numbers shall start at one and increase from left to right in the order that they appear in the system task or
function call.

If an argument number is passed in that is out of range for the number of arguments in the user-deÞned system task/
function call, acc_fetch_tfarg() and acc_fetch_itfarg() shall return a value of 0.0 and generate a warning message
if warnings are enabled. Note that the acc_error_flag is not set for an out-of-range index number.

If a user-deÞned system task/function argument that does not represent a valued object is referenced,
acc_fetch_tfarg() and acc_fetch_itfarg() shall return a value of 0.0 and generate a warning message if warnings are
enabled. Literal numbers, nets, registers, integer variables, and real variables all have values. Objects such as module
instance names do not have a value. Note that the acc_error_flag is not set when a nonvalued argument is
referenced.

acc_fetch_tfarg(), acc_fetch_itfarg()

Synopsis: Get the value of the speciÞed argument of the system task or function associated with the PLI application; the
value is returned as a double-precision number.

Syntax: acc_fetch_tfarg(argument_number)
acc_fetch_itfarg(argument_number, tfinst)

Type Description

Returns: double The value of the task/function argument, returned as a double-precision number

Type Name Description

Arguments: int argument_number Integer number that references the system task or function
argument by its position in the argument list

handle tÞnst Handle to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use acc_fetch_tfarg_int() or acc_fetch_itfarg_int() to get the task/function argument value as an integer
Use acc_fetch_tfarg_str() or acc_fetch_itfarg_str() to get the task/function argument value as a string
Use acc_handle_tÞnst() to get a handle to a speciÞc instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

330 Section 19

The example shown in Figure 19-35 uses acc_fetch_tfarg(), acc_fetch_tfarg_int(), and acc_fetch_tfarg_str() to
return the value of the Þrst argument of a user-deÞned system task or function.

Figure 19-35ÑUsing acc_fetch_tfarg(), acc_fetch_tfarg_int(), and acc_fetch_tfarg_str()

#include "acc_user.h"
#include "veriuser.h"

display_arg_value()
{

int arg_type;

/*initialize environment for ACC routines*/
acc_initialize();

/*set development version*/
acc_configure(accDevelopmentVersion, "1.5b.3");

/*check type of argument*/
io_printf("Argument value is ");

switch(tf_typep(1))
{

case tf_readonlyreal:case tf_readwritereal:
io_printf("%1f\n", acc_fetch_tfarg(1));
break;

case tf_readonly:case tf_readwrite:
io_printf("%d\n", acc_fetch_tfarg_int(1));
break;

case tf_string:
io_printf("%s\n", acc_fetch_tfarg_str(1));
break;

default:
io_printf("Error in argument specification\n");
break;

}
acc_close();

}

returns value as a
double-precision
floating-point number

returns value as a
pointer to a
character string

returns value as an
 integer number

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 331

19.31 acc_fetch_tfarg_int(), acc_fetch_itfarg_int()

The ACC routine acc_fetch_tfarg_int() shall return the value of arguments passed to the current user-deÞned system
task or function. The ACC routine acc_fetch_itfarg_int() shall return the value of arguments passed to a speciÞc
instance of a user-deÞned system task and function, using a handle to the task or function. The value is returned as an
integer number.

Argument numbers shall start at one and increase from left to right in the order that they appear in the system task or
function call.

If an argument number is passed in that is out of range for the number of arguments in the user-deÞned system task/
function call, acc_fetch_tfarg_int() and acc_fetch_itfarg_int() shall return a value of 0 and generate a warning
message if warnings are enabled. Note that the acc_error_flag is not set for an out-of-range index number.

If a user-deÞned system task/function argument that does not represent a valued object is referenced,
acc_fetch_tfarg_int() and acc_fetch_itfarg_int() shall return a value of 0 and generate a warning message if
warnings are enabled. Literal numbers, nets, registers, integer variables, and real variables all have values. Objects
such as module instance names do not have a value. Note that the acc_error_flag is not set when a nonvalued
argument is referenced.

Refer to Figure 19-35 in 19.30 for an example of using acc_fetch_tfarg_int().

acc_fetch_tfarg_int(), acc_fetch_itfarg_int()

Synopsis: Get the value of the speciÞed argument of the system task or function associated with the PLI application; the
value is returned as an integer number.

Syntax: acc_fetch_tfarg_int(argument_number)
acc_fetch_itfarg_int(argument_number, tfinst)

Type Description

Returns: int The value of the task/function argument, returned as an integer number

Type Name Description

Arguments: int argument_number Integer number that references the system task or function
argument by its position in the argument list

handle tÞnst Handle to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use acc_fetch_tfarg() or acc_fetch_itfarg() to get the task/function argument value as a double
Use acc_fetch_tfarg_str() or acc_fetch_itfarg_str() to get the task/function argument value as a string
Use acc_handle_tÞnst() to get a handle to a speciÞc instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

332 Section 19

19.32 acc_fetch_tfarg_str(), acc_fetch_itfarg_str()

The ACC routine acc_fetch_tfarg_str() shall return the value of arguments passed to the current instance of a user-
deÞned system task or function. The ACC routine acc_fetch_itfarg_str() shall return the value of arguments passed
to a speciÞc instance or a user-deÞned system task or function, using a handle to the task or function. The value shall
be returned as a pointer to a character string. The return value for this routine is placed in the ACC internal string
buffer. See 18.9 for explanation of strings in ACC routines.

Argument numbers shall start at one and increase from left to right in the order that they appear in the system task or
function call.

If an argument number is passed in that is out of range for the number of arguments in the user-deÞned system task/
function call, acc_fetch_tfarg_str() and acc_fetch_itfarg_str() shall return a value of null and generate a warning
message if warnings are enabled. Note that the acc_error_flag is not set for an out-of-range index number.

If a user-deÞned system task/function argument that does not represent a valued object is referenced,
acc_fetch_tfarg_str() and acc_fetch_itfarg_str() shall return a value of null and generate a warning message if
warnings are enabled. Literal numbers, nets, registers, integer variables, and real variables all have values. Objects
such as module instance names do not have a value. Note that the acc_error_flag is not set when a nonvalued
argument is referenced.

Refer to Figure 19-35 in 19.30 for an example of using acc_fetch_tfarg_str().

acc_fetch_tfarg_str(), acc_fetch_itfarg_str()

Synopsis: Get the value of the speciÞed argument of the system task or function associated with the PLI application; the
value is returned as a pointer to a character string.

Syntax: acc_fetch_tfarg_str(argument_number)
acc_fetch_itfarg_str(argument_number, tfinst)

Type Description

Returns: char * The value of the task/function argument, returned as a pointer to a character string

Type Name Description

Arguments: int argument_number Integer number that references the system task or function
argument by its position in the argument list

handle tÞnst Handle to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use acc_fetch_tfarg() or acc_fetch_itfarg() to get the task/function argument value as a double
Use acc_fetch_tfarg_int() or acc_fetch_itfarg_int() to get the task/function argument value as an integer
Use acc_handle_tÞnst() to get a handle to a speciÞc instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 333

19.33 acc_fetch_timescale_info()

The ACC routine acc_fetch_timescale_info() shall obtain the timescale information for an object or for an active
$timeformat built-in system task invocation. The timescale returned shall be based on the type of object handle,
as deÞned in Table 19-31.

The routine acc_fetch_timescale_info() shall return a value to an s_timescale_info structure pointed to by the
timescale_p argument. This structure is declared in the Þle acc_user.h, as shown in Figure 19-36.

Figure 19-36Ñs_timescale_info data structure

Ñ The term unit is a short integer that shall represent the timescale unit in all cases of object

Ñ The term precision is a short integer that shall represent the timescale precision. In the case of a null object
handle, precision shall be the number of decimal points speciÞed in the active $timeformat system task
invocation.

acc_fetch_timescale_info()

Synopsis: Get timescale information for an object or for an active $timeformat system task invocation.

Syntax: acc_fetch_timescale_info(object_handle, timescale_p)

Type Description

Returns: void

Type Name Description

Arguments: handle object_handle Handle of a module instance, module deÞnition, PLI user-
deÞned system task/function call, or null

p_timescale_info timescale_p Pointer to a variable deÞned as a s_timescale_info
structure

Related
routines:

Use acc_fetch_precision() to fetch the smallest timescale precision in a design

Table 19-31ÑReturn values from acc_fetch_timescale_info()

If the object_handle is acc_fetch_timescale_info() shall return

A handle to a module instance or module
deÞnition

The timescale for the corresponding module definition

A handle to a user-deÞned system task or
function

The timescale for the corresponding module definition
that represents the parent module instance of the object

null The timescale for an active $timeformat system task
invocation

typedef struct t_timescale_info {
short unit;
short precision;
} s_timescale_info, *p_timescale_info;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

334 Section 19

The value returned for unit and precision shall be the order of magnitude of 1 s, as shown in Table 19-32.

For example, a call to

acc_fetch_timescale_info(obj, timescale_p)

Where obj is deÞned in a module that has `timescale 1us/1ns speciÞed for its deÞnition, shall return

timescale_p->unit: -6
timescale_p->precision: -9

Table 19-32ÑValue returned by acc_fetch_timescale_info()

Integer value returned Time unit r

2 100 s

1 10 s

0 1 s

-1 100 ms

-2 10 ms

-3 1 ms

-4 100 µs

-5 10 µs

-6 1 µs

-7 100 ns

-8 10 ns

-9 1 ns

-10 100 ps

-11 10 ps

-12 1 ps

-13 100 fs

-14 10 fs

-15 1 fs

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 335

19.34 acc_fetch_type()

The ACC routine acc_fetch_type() shall return the type of an object. The type is a general classiÞcation of a Verilog
HDL object, represented as a predeÞned constant (deÞned in acc_user.h). Refer to 18.6 for a list of all of the type
constants that can be returned by acc_fetch_type().

Many Verilog HDL objects can have a type and a fulltype. The type of an object is its general Verilog HDL type
classiÞcation. The fulltype is the speciÞc type of the object. Table 19-33 illustrates the difference between the type of
an object and the fulltype of the same object.

The example shown in Figure 19-37 uses acc_fetch_type() to identify the type of an object (the functions
display_primitive_type and display_timing_check_type used in this example are presented in the
usage examples in 19.19).

acc_fetch_type()

Synopsis: Get the type of an object.

Syntax: acc_fetch_type(object_handle)

Type Description

Returns: int A predeÞned integer constant from the list shown in 18.6

Type Name Description

Arguments: handle object_handle Handle of the object

Related
routines:

Use acc_fetch_type() to get the general type classiÞcation of an object
Use acc_fetch_type_str() to get the type as an character string

Table 19-33ÑThe difference between the type and the fulltype of an object

For a handle to acc_fetch_type() shall return acc_fetch_fulltype() shall return

A setup timing check accTchk accSetup

An and gate primitive accPrimitive accAndGate

A sequential UDP accPrimitive accSeqPrim

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

336 Section 19

Figure 19-37ÑUsing acc_fetch_type()

#include "acc_user.h"

display_object_type()
{

handle object_handle;

/*initialize environment for ACC routines*/
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

object_handle = acc_handle_tfarg(1);

/*display object type*/
switch(acc_fetch_type(object_handle))

{
case accModule:

io_printf("Object is a module\n");
break;

case accNet:
io_printf("Object is a net\n");
break;

case accPath:
io_printf("Object is a module path\n");
break;

case accPort:
io_printf("Object is a module port\n");
break;

case accPrimitive:
 display_primitive_type(object_handle);

break;
case accTchk:

display_timing_check_type(object_handle);
break;

case accTerminal:
io_printf("Object is a primitive terminal\n");
break;

}
acc_close();

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 337

19.35 acc_fetch_type_str()

The ACC routine acc_fetch_type_str() shall return the character string that speciÞes the type of its argument. The
argument passed to acc_fetch_type_str() should be an integer value returned from either acc_fetch_type() or
acc_fetch_fulltype().

The return value for this routine is placed in the ACC internal string buffer. See 18.9 for explanation of strings in ACC
routines.

In the example shown in Figure 19-38, a handle to an argument is passed to a C application. The application displays
the name of the object and the type of the object.

Figure 19-38ÑUsing acc_fetch_type_str()

In this example, if the application is passed a handle to an object named top.param1, the application shall produce
the following output:

Object top.param1 is of type accParameter

The output string, accParameter, is the name of the integer constant that represents the parameter type.

acc_fetch_type_str()

Synopsis: Get a string that indicates the type of its argument.

Syntax: acc_fetch_type_str(type)

Type Description

Returns: char * Pointer to a character string

Type Name Description

Arguments: integer type A predeÞned integer constant that stands for an object type
or fulltype

Related
routines:

Use acc_fetch_type() to get the type of an object as an integer constant
Use acc_fetch_fulltype() to get the fulltype of an object as an integer constant

#include "acc_user.h"
void display_object_type(object)
handle object;
{
 int type = acc_fetch_type(object);

 io_printf("Object %s is of type %s \n",
acc_fetch_fullname(object),
acc_fetch_type_str(type));

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

338 Section 19

19.36 acc_fetch_value()

The ACC routine acc_fetch_value() shall return logic simulation values for scalar or vector nets, registers, and
variables; acc_fetch_value() shall return strength values for scalar nets and scalar registers only.

The routine acc_fetch_value() shall return the logic and strength values in one of two ways:

Ñ The value can be returned as a string

Ñ The value can be returned as an aval/bval pair in a predeÞned structure.

The return method used by acc_fetch_value() shall be controlled by the format_string argument, as shown in Table
19-34.

Note that strings are placed in a temporary buffer, and they should be preserved if not used immediately. Refer to 18.9
for details on preserving strings.

acc_fetch_value()

Synopsis: Get the logic or strength value of a net, register, or variable.

Syntax: acc_fetch_value(object_handle, format_string, value)

Type Description

Returns: char * Pointer to a character string

Type Name Description

Arguments: handle object_handle

quoted string or
char *

format_string A literal string or character string pointer with one of the
following speciÞers for formatting the return value:

"%b" "%d" "%h" "%o" "%v" "%%"

Optional s_acc_value * value Pointer to a structure with the retrieved logic values and
strength; used when format string is "%%" (should be set
to null when not used)

Related
routines:

Use acc_fetch_size() to determine how bits wide the object is
Use acc_set_value() to put a logic value on the object

Table 19-34ÑHow acc_fetch_value() returns values

format_speciÞer Return format Description

"%b" binary Value shall be retrieved as a string, and a character pointer to the
string shall returned

"%d" decimal

"%h" hexadecimal

"%o" octal

"%v" strength

"%%" aval/bval pair Value shall retrieved and placed in a structure variable pointed to
by the optional value argument

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 339

When a format_string of Ò%%Ó is speciÞed, acc_fetch_value() shall retrieve the logic value and strength to a
predeÞned structure, s_acc_value, which is deÞned in acc_user.h and is shown below [note that this structure
deÞnition is also used with the acc_set_value() routine].

.

Figure 19-39Ñs_acc_value structure

To use the "%%" format_string to retrieve values to a structure requires the following steps:

a) A structure variable shall Þrst be declared of type s_acc_value.

b) The format Þeld of the structure has to be set to a predeÞned constant. The format controls which Þelds in the
s_acc_value structure shall be used when acc_fetch_value() returns the value. The predeÞned constants
for the format shall be one of the constants shown in Table 19-35.

c) The structure variable has to be passed as the third argument to acc_fetch_value().

For example, calling acc_fetch_value() with the following setup would return a string in the value.str Þeld.
(This is essentially the same as using acc_fetch_value() with a %b format string.)

s_acc_value value;
value.format = accBinStrVal;

Table 19-35ÑFormat constants for the s_acc_value structure

Format constant acc_fetch_value() shall return the
value to the s_acc_value union Þeld

accBinStrVal str

accOctStrVal str

accDecStrVal str

accHexStrVal str

accScalarVal scalar

accIntVal integer

accRealVal real

accStringVal str

accVectorVal vector

typedef struct t_setval_value
{
 int format;
 union
 {
 char *str;
 int scalar;
 int integer;
 double real;
 p_acc_vecval vector;
 } value;
} s_setval_value, *p_setval_value, s_acc_value, *p_acc_value;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

340 Section 19

(void)acc_fetch_value(Net,"%%", &value);

If the format Þeld for acc_fetch_value() is set to accVectorVal, then the value shall be placed in the record(s) pointed
to by the value Þeld. The value Þeld shall be a pointer to an array of one or more s_acc_vecval structures. The
s_acc_vecval structure is deÞned in the acc_user.h Þle and is listed in Figure 19-40. The structure shall
contain two integers: aval and bval. Each s_acc_vecval record shall represent 32 bits of a vector. The encoding
for each bit value is shown in Table 19-36.

.

Figure 19-40Ñs_acc_vecval structure

The array of s_acc_vecval structures shall contain a record for every 32 bits of the vector, plus a record for any
remaining bits. If a vector has N bits, then there shall be ((N-1)/32)+1 s_acc_vecval records. The routine
acc_fetch_size() can be used to determine the value of N. The lsb of the vector shall be represented by the lsb of the
Þrst record of s_acc_vecval array. The 33rd bit of the vector shall be represented by the lsb of the second record
of the array, and so on. See Figure 19-42 for an example of acc_fetch_value() used in this way.

Note that when using aval/bval pairs, the s_acc_value record and the appropriately sized s_acc_vecval array
shall Þrst be declared. Setting the second parameter to acc_fetch_value() to Ò%%Ó and the third parameter to
null shall be an error.

Table 19-36ÑEncoding of bits in the s_acc_vecval structure

aval bval Value

0 0 0

1 0 1

0 1 Z

1 1 X

typedef struct t_acc_vecval
{
 int aval;
 int bval;
} s_acc_vecval, *p_acc_vecval;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 341

The example application shown in Figure 19-41 uses acc_fetch_value() to retrieve the logic values of all nets in a
module as strings.

Figure 19-41ÑUsing acc_fetch_value() to retrieve the logic values as strings

#include "acc_user.h"
display_net_values()
{
 handle mod, net;

/*initialize environment for ACC routines*/
acc_initialize();

/*get handle for module*/
mod = acc_handle_tfarg(1);

/*get all nets in the module and display their values*/
/* in binary format*/
net = null;
while(net = acc_next_net(mod, net))

io_printf("Net value: %s\n",acc_fetch_value(net,"%b", null));

acc_close();
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

342 Section 19

The example in Figure 19-42 uses acc_fetch_value() to retrieve a value into a structure, and then prints the value. The
example assumes the application, my_fetch_value, is called from the following user-deÞned system task:

Figure 19-42ÑUsing acc_fetch_value() to retrieve values into a data structure

$my_fetch_value(R);

#include "acc_user.h"

int my_fetch_value()
{
 handle reg = acc_handle_tfarg(1);
 int size = ((acc_fetch_size(reg) - 1) / 32) + 1;
 s_acc_value value;
 int index1, min_size;
 static char table[4] = {Õ0Õ,Õ1Õ,ÕzÕ,ÕxÕ};
 static char outString[33];

 io_printf("The value of %s is ",acc_fetch_name(reg));

 value.format = accVectorVal;
 value.value.vector = (p_acc_vecval)malloc(size * sizeof(s_acc_vecval));

 (void)acc_fetch_value(reg, Ò%%Ó,&value);

 for (index1 = size - 1; index1 >= 0; index1--)
 {
 register int index2;
 register int abits = value.value.vector[index1].aval;
 register int bbits = value.value.vector[index1].bval;

 if (index1 == size - 1)
 {
 min_size = (acc_fetch_size(reg) % 32);
 if (!min_size)
 min_size = 32;
 }
 else
 min_size = 32;
 outString[min_size] = Õ\0Õ;
 min_size--;
 outString[min_size] = table[((bbits & 1) << 1) | (abits & 1)];
 abits >>= 1;

 for (index2 = min_size - 1; index2 >= 0; index2--)
 {
 outString[index2] = table[(bbits & 2) | (abits & 1)];
 abits >>= 1;
 bbits >>= 1;
 }
 io_printf("%s",outString);
 {
 io_printf("\n");
 return(0);
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 343

19.37 acc_free()

The ACC routine acc_free() shall deallocate memory that was allocated by the routine acc_collect().

The example shown in Figure 19-43 uses acc_free() to deallocate memory allocated by acc_collect() to collect
handles to all nets in a module.

Figure 19-43ÑUsing acc_free()

acc_free()

Synopsis: Frees memory allocated by acc_collect().

Syntax: acc_free(handle_array_pointer)

Type Description

Returns: void No return

Type Name Description

Arguments: handle * Handle_array_pointer Pointer to the array of handles allocated by acc_collect()

Related
routines:

Use acc_collect() to collect handles returned by acc_next_ routines

#include "acc_user.h"

display_nets()
{

handle *list_of_nets, module_handle;
int net_count, i;

/*initialize environment for ACC routines*/
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*get handle for module*/
module_handle = acc_handle_tfarg(1);

/*collect and display all nets in the module*/
list_of_nets = acc_collect(acc_next_net, module_handle, &net_count);
for(i=0; i < net_count; i++)

io_printf("Net name is: %s\n", acc_fetch_name(list_of_nets[i]));

/*free memory used by array list_of_nets*/
acc_free(list_of_nets);

acc_close();
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

344 Section 19

19.38 acc_handle_by_name()

The ACC routine acc_handle_by_name() shall return the handle to any named object based on its speciÞed name
and scope. The routine can be used in two ways, as shown in Table 19-37.

The routine acc_handle_by_name() combines the functionality of acc_set_scope() and acc_handle_object(),
making it possible to obtain handles for objects that are not in the local scope without having to Þrst change scopes.

Table 19-38 lists the objects in a Verilog HDL description for which acc_handle_by_name() shall return a handle.

acc_handle_by_name()

Synopsis: Get the handle to any named object based on its name and scope.

Syntax: acc_handle_by_name(object_name, scope_handle)

Type Description

Returns: handle A handle to the speciÞed object

Type Name Description

Arguments: quoted string or
char *

object_name Literal name of an object or a character string pointer to the
object name

handle scope_handle Handle to scope, or null

Related
Routines

Use acc_set_scope() to set a local scope in which acc_handle_by_name() shall search
Use acc_handle_object() to get a handle based on the local instance name of an object

Table 19-37ÑHow acc_handle_by_name() works

When the scope_handle is acc_handle_by_name() shall

A valid scope handle Search for the object_name in the scope speciÞed

null Treat the object_name as a full hierarchical name

Table 19-38ÑNamed objects supported by acc_handle_by_name()

Modules Parameters

Primitives Specparams

Nets Named blocks

Registers Verilog HDL tasks

Variables Verilog HDL functions

Named events

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 345

The routine acc_handle_by_name() does not return handles for module paths, intermodule paths, data paths, or
ports. Use an appropriate acc_next_ or other ACC routines for these objects.

The example shown in Figure 19-44 uses acc_handle_by_name() to set the scope and get the handle to an object if
the object is in the module.

Figure 19-44ÑUsing acc_handle_by_name()

Note that in this example

net_handle = acc_handle_by_name(net_name, module_handle);

could also have been written as follows:

acc_set_scope(module_handle);
net_handle = acc_handle_object(net_name);

#include "acc_user.h"

is_net_in_module(module_handle, net_name)
handle module_handle;
char *net_name;
{

handle net_handle;
handle load_handle, load_net_handle;

/*set scope to module and get handle for net */
net_handle = acc_handle_by_name(net_name, module_handle);

if (net_handle)
io_printf("Net %s found in module %s\n",

net_name,
acc_fetch_fullname(module_handle));

else
io_printf("Net %s not found in module %s\n",

net_name,
acc_fetch_fullname(module_handle));

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

346 Section 19

19.39 acc_handle_calling_mod_m()

The ACC routine acc_handle_calling_mod_m() shall return a handle to the module that contains the instance of the
user-deÞned system task or function that called the PLI application.

acc_handle_calling_mod_m()

Synopsis: Get a handle to the module containing the instance of the user-deÞned system task or function that called the
PLI application.

Syntax: acc_handle_calling_mod_m()

Type Description

Returns: handle Handle to a module

Type Name Description

Arguments: None

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 347

19.40 acc_handle_condition()

The ACC routine acc_handle_condition() shall return a handle to a conditional expression for the speciÞed module
path, data path, or timing check terminal. The routine shall return null when

Ñ The module path, data path, or timing check terminal has no condition speciÞed

Ñ The module path has an ifnone condition speciÞed

To determine if a module path has an ifnone condition speciÞed, use the ACC routine acc_object_of_type() to check
for the property type of accModPathHasIfnone.

The example shown in Figure 19-45 provides functionality to see if a path is conditional, and, if it is, whether it is
level-sensitive or edge-sensitive. The application assumes that the input is a valid handle to a module path.

Figure 19-45ÑUsing acc_handle_condition()

acc_handle_condition()

Synopsis: Get a handle to the conditional expression of a module path, data path, or timing check terminal.

Syntax: acc_handle_condition(path_handle)

Type Description

Returns: handle Handle to a conditional expression

Type Name Description

Arguments: handle path_handle Handle to a module path, data path, or timing check
terminal

bool is_path_conditional(path)
{

if (acc_handle_condition(path))
return(TRUE);

else
return(FALSE);

}

bool is_level_sensitive(path)
{

bool flag;
handle path_in = acc_next_input(path, null);

if (is_path_conditional(path) && acc_fetch_edge(path_in))
flag = FALSE; /* path is edge-sensitive */

else
flag = TRUE; /* path is level_sensitive */

acc_release_object(path_in);

return (flag);
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

348 Section 19

19.41 acc_handle_conn()

The ACC routine acc_handle_conn() shall return a handle to the net connected to a primitive terminal, path terminal,
or timing check terminal. This handle can then be passed to other ACC routines to traverse a design hierarchy or to
extract information about the design.

The example shown in Figure 19-46 displays the net connected to the output terminal of a gate.

Figure 19-46ÑUsing acc_handle_conn()

acc_handle_conn()

Synopsis: Get the handle to the net connected to a primitive terminal, path terminal, or timing check terminal.

Syntax: acc_handle_conn(terminal_handle)

Type Description

Returns: handle Handle of a net

Type Name Description

Arguments: handle terminal_handle Handle of the primitive terminal, path terminal, or timing
check terminal

Related
routines:

Use acc_handle_terminal() or acc_next_terminal() to obtain a terminal_handle

#include "acc_user.h"

display_driven_net()
{

 handle gate_handle, terminal_handle, net_handle;

/*initialize environment for ACC routines*/
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*get handle for the gate*/
gate_handle = acc_handle_tfarg(1);

/*get handle for the gateÕs output terminal*/
terminal_handle = acc_handle_terminal(gate_handle, 0);

/*get handle for the net connected to the output terminal*/
net_handle = acc_handle_conn(terminal_handle);

/*display net name*/
io_printf("Gate %s drives net %s\n",

acc_fetch_fullname(gate_handle),
acc_fetch_name(net_handle));

acc_close();
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 349

19.42 acc_handle_datapath()

The ACC routine acc_next_datapath() shall return a handle to the data path associated with an edge-sensitive
module path. If there is no data path, null shall be returned.

A data path is part of the Verilog HDL description for edge-sensitive module paths, as illustrated below:

The example shown in Figure 19-47 uses acc_handle_datapath() to Þnd the data path corresponding to the speciÞed
module path and displays the source and destination port names for the data path.

Figure 19-47ÑUsing acc_handle_datapath()

acc_handle_datapath()

Synopsis: Get a handle to a data path for an edge-sensitive module path.

Syntax: acc_handle_datapath(modpath_handle)

Type Description

Returns: handle Handle of a data path

Type Name Description

Arguments: handle modpath_handle Handle to a module path

posedge (clk => (q +: d)) = (3,2);

module path

data path

display_datapath_terms(modpath)
handle modpath;
{

handle datapath = acc_handle_datapath(modpath);
handle pathin = acc_next_input(datapath, null);
handle pathout = acc_next_output(datapath, null);

/* there is only one input and output to a datapath */
io_printf("DATAPATH INPUT: %s\n", acc_fetch_fullname(pathin));
io_printf("DATAPATH OUTPUT: %s\n", acc_fetch_fullname(pathout));
acc_release_object(pathin);
acc_release_object(pathout);

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

350 Section 19

19.43 acc_handle_hiconn()

The ACC routine acc_handle_hiconn() shall return the hierarchically higher net connection for a scalar port or a bit-
select of one of the following:

Ñ Vector port
Ñ Part-select of a port
Ñ Concatenation of scalar ports, vector ports, part-selects of ports, or other concatenations

The hiconn is the net connected one level above the hierarchical scope of a module port, as illustrated below:

acc_handle_hiconn()

Synopsis: Get the hierarchically higher net connection to a scalar module port or a bit-select of a vector port.

Syntax: acc_handle_hiconn(port_ref_handle)

Type Description

Returns: handle Handle of a net

Type Name Description

Arguments: handle port_ref_handle Handle to a scalar port or a bit-select of a vector port

Related
routines:

Use acc_next_hiconn() to Þnd all nets connected to a scalar port or bit-select of a port
Use acc_handle_loconn() to get the hierarchically lower net connection of a port

module

loconn hiconn

(lower net connection) (higher net connection)

module port bit

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 351

The example shown in Figure 19-48 uses acc_handle_hiconn() and acc_handle_loconn() to display the higher and
lower connections of a module port.

Figure 19-48ÑUsing acc_handle_hiconn() and acc_handle_loconn()

display_port_info(mod, index)
handle mod;
int index;
{

handle port = acc_handle_port (mod, index);
handle hiconn, loconn, port_bit;

if (acc_fetch_size(port) = 1) {
hiconn = acc_handle_hiconn (port);
loconn = acc_handle_loconn (port);
io_printf (" hi: %s lo: %s\n",

acc_fetch_fullname(hiconn), acc_fetch_fullname(loconn));
}
else {

port_bit = null;
while (port_bit = acc_next_bit (port, port_bit))
{

hiconn = acc_handle_hiconn (port_bit);
loconn = acc_handle_loconn (port_bit);
io_printf (" hi: %s lo: %s\n",

acc_fetch_fullname(hiconn), acc_fetch_fullname(loconn));
}

}
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

352 Section 19

19.44 acc_handle_interactive_scope()

The ACC routine acc_handle_interactive_scope() shall return a handle to the Verilog HDL design scope where the
interactive mode of a software product is currently pointing.

A scope shall be

Ñ A top-level module
Ñ A module instance
Ñ A named begin-end block
Ñ A named fork-join block
Ñ A Verilog HDL task
Ñ A Verilog HDL function

acc_handle_interactive_scope()

Synopsis: Get a handle to the current interactive scope of the software tool.

Syntax: acc_handle_interactive_scope()

Type Description

Returns: handle Handle of a Verilog hierarchy scope

Type Name Description

Arguments: None

Related
routines:

Use acc_fetch_type() or acc_fetch_fulltype() to determine the scope type returned
Use acc_set_interactive_scope() to change the interactive scope

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 353

19.45 acc_handle_loconn()

The ACC routine acc_handle_loconn() shall return the hierarchically lower net connection for a scalar port or a bit-
select of one of the following:

Ñ Vector port
Ñ Part-select of a port
Ñ Concatenation of scalar ports, vector ports, part-selects of ports, or other concatenations

The loconn is the net connected within the hierarchical scope of a module port, as illustrated below:

Refer to the usage example in 19.43 for an example of using acc_handle_loconn().

acc_handle_loconn()

Synopsis: Gets the hierarchically lower net connection to a scalar module port or a bit-select of a vector port.

Syntax: acc_handle_loconn(port_ref_handle)

Type Description

Returns: handle Handle of a net

Type Name Description

Arguments: handle port_ref_handle Handle to a scalar port or a bit-select of a vector port

Related
routines:

Use acc_next_loconn() to Þnd all nets connected to a scalar port or bit-select of a port
Use acc_handle_hiconn() to get the hierarchically higher net connection of a port

module

loconn hiconn

(lower net connection) (higher net connection)

module port bit

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

354 Section 19

19.46 acc_handle_modpath()

The ACC routine acc_handle_modpath() shall return a handle to a module path. The routine shall be used in one of
two ways, controlled by the conÞguration of the parameter accEnableArgs, as shown in Table 19-39.

acc_handle_modpath()

Synopsis: Gets a handle to a module path.

Syntax: acc_handle_modpath(module_handle, source_name, destination_name,
 source_handle, destination_handle)

Type Description

Returns: handle Handle of a module path

Type Name Description

Arguments: handle module_handle Handle of the module

quoted string or
char *

source_name Literal string or character string pointer with the name of a
net connected to a module path source

quoted string or
char *

destination_name Literal string or character string pointer with the name of a
net connected to a module path destination

Optional handle source_handle Handle of a net connected to a module path source (used
when accEnableArgs is set and source_name is null)

Optional handle destination_handle Handle of a net connected to a module path destination
(used when accEnableArgs is set and destination_name
is null)

Related
routines:

Use acc_conÞgure(accEnableArgs, Òacc_handle_modpathÓ) to use the source_handle and destination_handle

Table 19-39ÑHow acc_handle_modpath() works

Setting of accEnableArgs acc_handle_modpath() shall

Òno_acc_handle_modpathÓ (the default setting) Use the name arguments and ignore both handle argu-
ments (the handle arguments can be dropped)

"acc_handle_modpath" and either source_name or
destination_name is null

Use the handle argument of the null name argument; if
the name argument is not null, the name shall be used
and the associated handle argument ignored

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 355

A module path is the specify block path for delays in the Verilog HDL description. For example:

The example shown in Figure 19-49 uses acc_handle_modpath() to obtain handles for paths that connect the
sources and destinations listed in the Þle pathconn.dat. The format of pathconn.dat is shown below.

Figure 19-49ÑUsing acc_handle_modpath()

(in *> out) = 1.8;

posedge (clk => (q +: d)) = (3,2);

module path

module path

¥
¥

top.mod1 in out
¥
¥

path source

path destination

module name

#include <stdio.h>
#include "acc_user.h"

#define NAME_SIZE 256

get_paths()
{

FILE *infile;
char mod_name[NAME_SIZE], src_name[NAME_SIZE], dest_name[NAME_SIZE];
handle path_handle, mod_handle;

/*initialize the environment for ACC routines*/
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*set accPathDelimStr to "_"*/
acc_configure(accPathDelimStr, "_");

/*read delays from file - "r" means read only*/
infile = fopen("pathconn.dat","r");
while (fscanf(infile,"%s %s %s",mod_name,src_name,dest_name) != EOF)
{

/*get handle for module mod_name*/
mod_handle = acc_handle_object(mod_name);
path_handle = acc_handle_modpath(mod_handle, src_name, dest_name);
if (!acc_error_flag)

io_printf("Path %s was found\n",
acc_fetch_fullname(path_handle));

else
io_printf("Path %s_%s was not found\n",src_name,dest_name);

}
acc_close();

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

356 Section 19

19.47 acc_handle_notiÞer()

The ACC routine acc_handle_notiÞer() shall return a handle to the notiÞer register associated with a timing check.

The example shown in Figure 19-50 uses acc_handle_notiÞer() to display the name of a notiÞer associated with a
timing check.

Figure 19-50ÑUsing acc_handle_notiÞer()

acc_handle_notiÞer()

Synopsis: Get the notiÞer register associated with a particular timing check.

Syntax: acc_handle_notifier(tchk)

Type Description

Returns: handle Handle to a timing check notiÞer

Type Name Description

Arguments: handle tchk Handle of a timing check

Related
routines:

Use acc_handle_tchk() to get a handle to a speciÞc timing check
Use acc_next_tchk() to get handles to all timing checks in a module

display_notifier(tchk)
handle tchk;
{

handle ntfy;

ntfy = acc_handle_notifier(tchk);
if (ntfy)

io_printf("Tchk notifier: %s\n", acc_fetch_fullname(ntfy));
else

io_printf("Tchk has no notifier\n");
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 357

19.48 acc_handle_object()

The ACC routine acc_handle_object() shall return a handle to a named object. The object_name argument shall be a
quoted string or pointer to a string. The object_name can include a Verilog hierarchy path. The routine shall search for
the object using the rules given in Table 19-40.

The ACC routine acc_handle_object() shall use the current PLI scope as a basis for searching for objects. The PLI
scope shall default to the Verilog scope of the system task/function that called the C application of the user, and it can
be changed from within the application using acc_set_scope().

Table 19-41 lists the objects in a Verilog HDL description for which acc_handle_object() shall return a handle.

acc_handle_object

Synopsis: Get a handle for any named object.

Syntax: acc_handle_object(object_name)

Type Description

Returns: handle Handle to an object

Type Name Description

Arguments: quoted string or
char *

object_name Literal string or character string pointer with the full or rel-
ative hierarchical path name of an object

Related
routines:

Use acc_set_scope() to set the scope when using relative path names for an object

Table 19-40ÑHow acc_handle_object() works

If object_name contains acc_handle_object() shall

A full hierarchical path name
(a full hierarchical path begins with a top-level module)

Return a handle to the object; no search is performed

No path name
or

a relative path name

Search for object starting in the current PLI scope, fol-
lowing search rules deÞned in 12.5

Table 19-41ÑNamed objects

Modules Variables

Module ports Named events

Module paths Parameters

Data paths Specparams

Primitives Named blocks

Nets Verilog HDL tasks

Registers Verilog HDL functions

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

358 Section 19

The example shown in Figure 19-51 uses acc_handle_object() to retrieve handles for net names read from a Þle
called primdelay.dat. The format of the Þle is shown below. Note that this example assumes that each net is
driven by only one primitive.

Figure 19-51ÑUsing acc_handle_object()

¥
¥

top.m1.net7 10.4 8.5
¥
¥name of net

rise delay

fall delay

#include <stdio.h>
#include "acc_user.h"
#define NAME_SIZE 256

write_prim_delays()
{

FILE *infile;
char full_net_name[NAME_SIZE];
double rise,fall;
handle net_handle, driver_handle, prim_handle;

/*initialize the environment for ACC routines*/
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*set accPathDelayCount parameter for rise and fall delays only*/
acc_configure(accPathDelayCount, "2");

/*read delays from file - "r" means read only*/
infile = fopen("primdelay.dat","r");
while (fscanf(infile,"%s %lf %lf",full_net_name,&rise,&fall) != EOF)
{

/*get handle for the net*/
net_handle = acc_handle_object(full_net_name);

/*get primitive connected to first net driver*/
driver_handle = acc_next_driver(net_handle, null);
prim_handle = acc_handle_parent(driver_handle);

/*replace delays with new values*/
acc_replace_delays(prim_handle, rise, fall);

}
acc_close();

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 359

19.49 acc_handle_parent()

The ACC routine acc_handle_parent() shall return a handle to the parent of any object. A parent is an object that
contains another object.

Ñ The parent of a terminal shall be the primitive that contains the terminal.
Ñ The parent of any other object (except a top-level module) shall be the module instance that contains the

object.
Ñ Top-level modules do not have parents. When a top-level module handle is passed to acc_handle_parent(), it

shall return null.

The example shown in Figure 19-52 uses acc_handle_parent() to determine which terminals of a primitive drive a
net.

Figure 19-52ÑUsing acc_handle_parent()

acc_handle_parent()

Synopsis: Get a handle for the parent primitive instance or module instance of an object.

Syntax: acc_handle_parent(object_handle)

Type Description

Returns: handle Handle of a primitive or module

Type Name Description

Arguments: handle object_handle Handle of an object

#include "acc_user.h"

get_primitives(net_handle)
handle net_handle;
{

handle primitive_handle;
handle driver_handle;

/*get primitive that owns each terminal that drives the net*/
driver_handle = null;
while (driver_handle = acc_next_driver(net_handle, driver_handle))
{

primitive_handle = acc_handle_parent(driver_handle);
io_printf("Primitive %s drives net %s\n",

acc_fetch_fullname(primitive_handle),
acc_fetch_fullname(net_handle));

}
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

360 Section 19

19.50 acc_handle_path()

The ACC routine acc_handle_path() shall return a handles to an intermodule path. An intermodule path shall be a
net path that connects an output or inout port of one module to an input or inout port of another module.

The example shown in Figure 19-53 is a C-code fragment that uses acc_handle_path() to fetch min:typ:max delays
for the intermodule path referenced by intermod_path.

Figure 19-53ÑUsing acc_handle_path()

acc_handle_path()

Synopsis: Get a handle to an intermodule path that represents the connection from an output or inout port to an input or
inout port.

Syntax: acc_handle_path(port_output_handle, port_input_handle)

Type Description

Returns: handle Handle of the intermodule path

Type Name Description

Arguments: handle port_output_handle Handle to one of the following:
¥ A scalar output port
¥ A scalar bidirectional port
¥ 1 bit of a vector output port
¥ 1 bit of a vector bidirectional port

handle port_input_handle Handle to one of the following:
¥ A scalar input port
¥ A scalar bidirectional port
¥ 1 bit of a vector input port
¥ 1 bit of a vector bidirectional port

Related
routines:

Use acc_next_port() or acc_handle_port() to retrieve a handle to a scalar port
Use acc_next_bit() to retrieve a handle to a bit of a vector port or a bit of a concatenated port
Use acc_fetch_direction() to determine whether a port is an input, an output, or bidirectional

#include "acc_user.h"
fetch_mintypmax_delays(port_output, port_input)
handle port_output, port_input;
{

. . .
handle intermod_path;
double delay_array[9];
. . .
acc_configure(accMinTypMaxDelays, "true");
. . .
intermod_path = acc_handle_path(port_output, port_input);
acc_fetch_delays(intermod_path, delay_array);
. . .

}

acc_handle_path() returns a handle
to a net path that represents the
connection from an output or inout
port to an input (or inout) port

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 361

19.51 acc_handle_pathin()

The ACC routine acc_handle_pathin() shall return a handle to the net connected to the Þrst source in a module path.
If a module path has more than one input source, only the handle to the net connected to the Þrst source shall be
returned. For example:

The example shown in Figure 19-54 uses acc_handle_pathin() to Þnd the net connected to the input of a path.

Figure 19-54ÑUsing acc_handle_pathin()

acc_handle_pathin()

Synopsis: Get a handle for the Þrst net connected to a module path source.

Syntax: acc_handle_pathin(path_handle)

Type Description

Returns: handle Handle to a net

Type Name Description

Arguments: handle path_handle Handle of the module path

Related
routines:

Use acc_next_modpath() or acc_handle_modpath() to get path_handle

(posedge clk => (q +: d)) = (3,2);

(a,b,c *> d,e,f) = 1.8;

pathin is first terminal

pathin

#include "acc_user.h"

get_path_nets(path_handle)
handle path_handle;
{

handle pathin_handle, pathout_handle;

pathin_handle = acc_handle_pathin(path_handle);
pathout_handle = acc_handle_pathout(path_handle);
io_printf("Net connected to input is: %s\n",

acc_fetch_name(pathin_handle));
io_printf("Net connected to output is: %s\n",

acc_fetch_name(pathout_handle));
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

362 Section 19

19.52 acc_handle_pathout()

The ACC routine acc_handle_pathout() shall return a handle to the net connected to the Þrst destination in a module
path. If a module path has more than one output destination, only the handle to the net connected to the Þrst
destination shall be returned. For example:

The example shown in Figure 19-55 uses acc_handle_pathout() to Þnd the net connected to the output of a path.

Figure 19-55ÑUsing acc_handle_pathout()

acc_handle_pathout()

Synopsis: Get a handle for the Þrst net connected to a module path destination.

Syntax: acc_handle_pathout(path_handle)

Type Description

Returns: handle Handle to a net

Type Name Description

Arguments: handle path_handle Handle of the module path

Related
routines:

Use acc_next_modpath() or acc_handle_modpath() to get path_handle

(posedge clk => (q +: d)) = (3,2);

(a,b,c *> d,e,f) = 1.8;

pathout is first terminal

pathout

#include "acc_user.h"

get_path_nets(path_handle)
handle path_handle;
{

handle pathin_handle, pathout_handle;

pathin_handle = acc_handle_pathin(path_handle);
pathout_handle = acc_handle_pathout(path_handle);
io_printf("Net connected to input is: %s\n",

acc_fetch_name(pathin_handle));
io_printf("Net connected to output is: %s\n",

acc_fetch_name(pathout_handle));
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 363

19.53 acc_handle_port()

The ACC routine acc_handle_port() shall return a handle to a speciÞc port of a module, based on the position of the
port in the module declaration.

The index of a port shall be its position in a module deÞnition in the source description. The indices shall be integers
that start at 0 and increase from left to right. Table 19-42 shows how port indices are derived.

acc_handle_port()

Synopsis: Get a handle for a module port, based on the position of the port.

Syntax: acc_handle_port(module_handle, port_index)

Type Description

Returns: handle Handle to a module port

Type Name Description

Arguments: handle module_handle Handle of a module

int port_index An integer index of the desired port

Related
routines:

Use acc_next_port() to get handles to all ports of a module

Table 19-42ÑDeriving port indices

For Indices shall be

Implicit ports:
 module A(q, a, b);

0 for port q
1 for port a
2 for port b

Explicit ports:
 module top;

 reg ra, rb;
 wire wq;
 explicit_port_mod epm1(.b(rb), .a(ra), .q(wq));

 endmodule

 module explicit_port_mod(q, a, b);
 input a, b;
 output q;
 nand (q, a, b);

 endmodule

0 for explicit port epm1.q
1 for explicit port epm1.a
2 for explicit port epm1.b

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

364 Section 19

The example shown in Figure 19-56 uses acc_handle_port() to identify whether a particular module port is an
output.

Figure 19-56ÑUsing acc_handle_port()

#include "acc_user.h"

bool is_port_output(module_handle,port_index)
handle module_handle;
int port_index;
{

handle port_handle;
int direction;

/*check port direction*/
port_handle = acc_handle_port(module_handle, port_index);
direction = acc_fetch_direction(port_handle);
if (direction == accOutput || direction == accInout)

return(true);
else

return(false);
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 365

19.54 acc_handle_scope()

The ACC routine acc_handle_scope() shall return the handle to the scope of an object. A scope shall be

Ñ A top-level module
Ñ A module instance
Ñ A named begin-end block
Ñ A named fork-join block
Ñ A Verilog HDL task
Ñ A Verilog HDL function

The example shown in Figure 19-57 uses acc_handle_scope() to display the scope that contains an object.

Figure 19-57ÑUsing acc_handle_scope()

acc_handle_scope()

Synopsis: Get a handle to the scope that contains an object.

Syntax: acc_handle_scope(object_handle)

Type Description

Returns: handle Handle of a scope

Type Name Description

Arguments: handle object_handle Handle to an object

Related
routines:

Use acc_fetch_type() or acc_fetch_fulltype() to determine the scope type returned

get_scope(obj)
handle obj;
{

handle scope = acc_handle_scope(obj);

io_printf ("Scope %s contains object %s\n",
acc_fetch_fullname(scope), acc_fetch_name(obj);

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

366 Section 19

19.55 acc_handle_simulated_net()

The ACC routine acc_handle_simulated_net() shall return a handle to the simulated net that is associated with a
speciÞed collapsed net. If a handle to a net that is not collapsed is passed into the routine, a handle to that same net
shall be returned.

When a Verilog HDL source description connects modules together, a chain of nets with different scopes and names
are connected, as is illustrated in the following simple diagram:

In this small circuit, nets out1, w5, and in1 are all tied together, effectively becoming the same net. Software
products can collapse nets that are connected together within the data structure of the product. The resultant net after
collapsing is referred to as the simulated net; the other nets are referred to as collapsed nets. The ACC routines can
obtain a handle to any net, whether it is collapsed or not. The routine acc_object_of_type() can be used to determine
if a net has been collapsed, and the routine acc_handle_simulated_net() can be used to Þnd the resultant net from the
net collapsing process.

The example shown in Figure 19-58 uses acc_handle_simulated_net() to Þnd all simulated nets within a particular
scope. The application then displays each collapsed net, along with the simulated net. The ACC routine
acc_object_of_type() is used with the property accCollapsedNet to determine whether a net has been collapsed onto
another net.

acc_handle_simulated_net()

Synopsis: Get the simulated net associated with the collapsed net passed as an argument.

Syntax: acc_handle_simulated_net(collapsed_net_handle)

Type Description

Returns: handle Handle of the simulated net

Type Name Description

Arguments: handle collapsed_net_handle Handle of a collapsed net

Related
routines:

Use acc_object_of_type() to determine if a net has been collapsed

module instance i1 module instance i2

out1 in1w5

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 367

Figure 19-58ÑUsing acc_handle_simulated_net()

#include "acc_user.h"

void display_simulated_nets()
{

handle mod_handle;
handle simulated_net_handle;
handle net_handle;

/*reset environment for ACC routines*/
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*get scope-first argument passed to user-defined system task*/
/* associated with this routine*/
mod_handle = acc_handle_tfarg(1);
io_printf("In module %s:\n",acc_fetch_fullname(mod_handle));
net_handle = null;

/*display name of each collapsed net and its net of origin*/
while(net_handle = acc_next_net(mod_handle,net_handle))
{

if (acc_object_of_type(net_handle, accCollapsedNet))
{

simulated_net_handle = acc_handle_simulated_net(net_handle);
io_printf(" net %s was collapsed onto net %s\n",

 acc_fetch_name(net_handle),
 acc_fetch_name(simulated_net_handle));

}
}

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

368 Section 19

19.56 acc_handle_tchk()

The ACC routine acc_handle_tchk() shall return a handle to a timing check based on arguments that describe the
type of timing check, signals used, and edge qualiÞers for the signals. The signals used to describe the timing check
shall be passed as either signal names (passed as either a quoted string or a character string pointer) or signal handles.
The number of signal arguments required by acc_handle_tchk() shall depend on the type of timing check.

acc_handle_tchk()

Synopsis: Get a handle for the speciÞed timing check of a module (or cell).

Syntax: acc_handle_tchk(module_handle, timing_check_type,
 first_arg_conn_name, first_arg_edge_type,
 second_arg_conn_name, second_arg_edge_type,
 first_arg_conn_handle, second_arg_conn_handle)

Type Description

Returns: handle Handle to a timing check

Type Name Description

Arguments: handle module_handle Handle of the module

integer constant timing_check_type One of the following predeÞned constants:
accHold accSetup
accNochange accSkew
accPeriod accWidth
accRecovery

quoted string or
char *

Þrst_arg_conn_name Name of the net connected to Þrst timing check argument

integer constant Þrst_arg_edge_type Edge of the net connected to Þrst timing check argument

One of the following predeÞned constants:
accNegedge accNoedge accPosedge

or a list of the following constants, separated by +:
accEdge01 accEdge0x accEdgex1

or a list of the following constants, separated by +:
accEdge10 accEdge1x accEdgex0

Conditional quoted string or
char *

second_arg_conn_name Name of the net connected to second timing check argu-
ment (depends on type of timing check)

Conditional integer constant second_arg_edge_type Edge of the net connected to second timing check argu-
ment (depends on type of timing check)

Uses same constants as Þrst_arg_edge_type

Optional handle Þrst_arg_conn_handle Handle of the net connected to Þrst timing check argu-
ment (required if accEnableArgs is set and
Þrst_arg_conn_name is null)

Optional handle second_arg_conn_handle Handle of the net connected to second timing check argu-
ment (required if accEnableArgs is set and
second_arg_conn_name is null)

Related
routines:

Use acc_conÞgure(accEnableArgs, Òacc_handle_tchkÓ) to enable the optional Þrst_arg_conn_handle and
second_arg_conn_handle arguments

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 369

Table 19-43 shows how the number of arguments for acc_handle_tchk() is determined.

NOTEÑUnused arguments can be dropped if they do not precede any required arguments; otherwise, the unused arguments
should be speciÞed as null.

The routine acc_handle_tchk() shall use predeÞned edge group constants to represent groups of transitions among 0,
1, and X edge values, as described in Table 19-44. The routine shall treat transitions to or from a logic Z as transitions
to or from a logic X.

Table 19-43ÑHow acc_handle_tchk() works

If acc_handle_tchk() shall

tchk_type is accWidth or accPeriod ignore arguments: second_arg_conn_name,
second_arg_edge_type, and optional
second_arg_conn_handle

tchk_type is accHold, accNochange, accRecovery, accSetup, or
accSkew

use arguments: second_arg_conn_name,
second_arg_edge_type, and optional
second_arg_conn_handle

Default mode, or
acc_conÞgure(accEnableArgs,"no_acc_handle_tchk")

has been called

Use the name arguments and ignore both optional
handle arguments

The routine
acc_conÞgure(accEnableArgs, "acc_handle_tchk")

has been called, and either Þrst_arg_conn_name or
second_arg_conn_name is null

Use the associated handle argument of the null of
the name argumentÑif the name argument is not
null, the name shall be used and the associated
handle argument ignored

Table 19-44ÑEdge group constants

Edge group constant Description of edge trigger

accPosedge
accPosEdge

Any positive transition:
0 to 1
0 to x
x to 1

accNegedge
accNegEdge

Any negative transition:
1 to 0
1 to x
x to 0

accNoedge
accNoEdge

Any transition:
0 to 1
1 to 0
0 to x
x to 1
1 to x
x to 0

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

370 Section 19

The routine acc_handle_tchk() shall recognize predeÞned edge-speciÞc constants that represent individual
transitions among 0, 1, and X edge values that trigger timing checks, as described in Table 19-45.

The Verilog HDL allows multiple edges to be speciÞed for timing checks. The routine acc_handle_tchk() shall
recognize multiple edges using edge sums. Edge sums are lists of edge-speciÞc constants connected by plus (+) signs.
They represent the Verilog-HDL edge-control speciÞers used by particular timing checks. Figure 19-59 shows a call
to acc_handle_tchk() that accesses a $width timing check containing edge-control speciÞers.

Figure 19-59ÑEdge sums model edge-control speciÞers

The example shown in Figure 19-60 uses acc_handle_tchk() to identify all cells in a module that contain either or
both of the following timing checks:

Ñ A $period timing check triggered by a positive edge on the clock signal clk

Ñ A $setup timing check triggered on signal d by any transition and on signal clk by either of these clock
edge transitions: 1 to 0 or X to 0

Note that in this example:

a) Both calls to acc_handle_tchk() supply names for all relevant connections; therefore, the optional handle
arguments are not supplied.

b) For $period timing checks, acc_handle_tchk() ignores the second_arg_conn_name and
second_arg_edge_type arguments; therefore, these arguments are not supplied.

Table 19-45ÑEdge speciÞc constants

Edge speciÞc constant Description of edge trigger

accEdge01 Transition from 0 to 1

accEdge0x Transition from 0 to x

accEdgex1 Transition from x to 1

accEdge10 Transition from 1 to 0

accEdge1x Transition from 1 to x

accEdgex0 Transition from x to 0

This ACC routine call Accesses this timing check

acc_handle_tchk(cell_handle,
 accWidth,
 "clk",
 accEdge10+accEdgex0);

$width(edge[10,x0]clk, limit);

edge sum
models
edge-control specifier

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 371

Figure 19-60ÑUsing acc_handle_tchk()

#include "acc_user.h"

get_ps_tchks()
{

handle module_handle, port_handle, net_handle, cell_handle;

/*initialize environment for ACC routines*/
acc_initialize();

/*set development version*/
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*get handle for module*/
module_handle = acc_handle_tfarg(1);
io_printf("Module is %s\n", acc_fetch_name(module_handle));

/*scan all cells in module for: */
/* period timing checks triggered by a positive clock edge */
/* setup timing checks triggered by 1->0 and x->0 clock edges */
cell_handle = null;
while(cell_handle = acc_next_cell(module_handle, cell_handle))
{
 if(acc_handle_tchk(cell_handle,accPeriod,"clk",accPosedge))
 io_printf("positive clock edge triggers period check in cell %s\n",

 acc_fetch_fullname(cell_handle));
 if(acc_handle_tchk(cell_handle,accSetup,"d",accNoedge,

 "clk",accEdge10+accEdgex0))
 io_printf("10 and x0 edges trigger setup check in cell %s\n",

 acc_fetch_fullname(cell_handle));
}
acc_close();

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

372 Section 19

19.57 acc_handle_tchkarg1()

The ACC routine acc_handle_tchkarg1() shall return a handle to the timing check terminal associated with the Þrst
argument of a timing check.

In order to trace a timing check terminal in the Verilog HDL description, or to display the name of the terminal, it is
Þrst necessary to obtain a handle to the net connected to the terminal. The routine acc_handle_conn() with the timing
check terminal handle as the argument can be used to obtain the net handle.

The example shown in Figure 19-61 uses acc_handle_tchkarg1() and acc_handle_tchkarg2() to obtain the nets
connected to the Þrst and second arguments of each setup timing check in each cell under a module.

acc_handle_tchkarg1()

Synopsis: Get a handle for the timing check terminal connected to the Þrst argument of a timing check.

Syntax: acc_handle_tchkarg1(tchk_handle)

Type Description

Returns: handle Handle of a timing check terminal

Type Name Description

Arguments: handle tchk_handle Handle of a timing check

Related
routines:

Use acc_handle_conn() to get the net connected to a timing check terminal

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 373

Figure 19-61ÑUsing acc_handle_tchkarg1() and acc_handle_tchkarg2()

#include "acc_user.h"

show_check_nets()
{

handle module_handle,cell_handle;
handle tchk_handle,tchkarg1_handle,tchkarg2_handle;
int tchk_type,counter;

/*initialize environment for ACC routines*/
acc_initialize();

/*set development version*/
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*get handle for module*/
module_handle = acc_handle_tfarg(1);
io_printf("module is %s\n", acc_fetch_fullname(module_handle));

/*scan all cells in module for timing checks*/
cell_handle = null;
while (cell_handle = acc_next_cell(module_handle, cell_handle))
{

io_printf("cell is: %s\n", acc_fetch_fullname(cell_handle));
counter = 0;
while (tchk_handle = acc_next_tchk(cell_handle, tchk_handle))
{

/*get nets connected to timing check arguments*/
tchk_type = acc_fetch_type(tchk_handle);
if (tchk_type == accSetup)
{
counter++;
io_printf(" for setup check #%d:\n",counter);
tchkarg1_handle = acc_handle_tchkarg1(tchk_handle);
tchkarg2_handle = acc_handle_tchkarg2(tchk_handle);
io_printf(" data net is %s\n reference net is %s\n",
 acc_fetch_name(acc_handle_conn(tchkarg1_handle)),

 acc_fetch_name(acc_handle_conn(tchkarg2_handle)));
}

}
}
acc_close();

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

374 Section 19

19.58 acc_handle_tchkarg2()

The ACC routine acc_handle_tchkarg2() shall return a handle to the timing check terminal associated with the
second argument of a timing check.

In order to trace a timing check terminal in the Verilog HDL description, or to display the name of the terminal, it is
Þrst necessary to obtain a handle to the net connected to the terminal. The routine acc_handle_conn() with the timing
check terminal handle as the argument can be used to obtain the net handle.

Refer to Figure 19-61 for an example of using acc_handle_tchkarg2().

acc_handle_tchkarg2()

Synopsis: Get a handle for the timing check terminal connected to the second argument of a timing check.

Syntax: acc_handle_tchkarg2(tchk_handle)

Type Description

Returns: handle Handle to a timing check terminal

Type Name Description

Arguments: handle tchk_handle Handle of a timing check

Related
routines:

Use acc_handle_conn() to get the net connected to a timing check terminal

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 375

19.59 acc_handle_terminal()

The ACC routine acc_handle_terminal() shall return a handle of a primitive terminal based on the position of the
terminal in the Verilog HDL source description.

The index of a terminal shall be its position in a gate, switch, or UDP declaration. The indices shall be integers that
start at zero and increase from left to right. Table 19-46 shows how terminal indices are derived.

The example shown in Figure 19-62 uses acc_handle_terminal() to identify the name of a net connected to a
primitive terminal.

Figure 19-62ÑUsing acc_handle_terminal()

acc_handle_terminal()

Synopsis: Get a handle for a primitive terminal based on the position of the primitive terminal.

Syntax: acc_handle_terminal(primitive_handle, terminal_index)

Type Description

Returns: handle Handle of a primitive terminal

Type Name Description

Arguments: handle primitive_handle Handle of a primitive

int terminal_index Integer index of the desired terminal

Related
routines

Use acc_handle_conn() to get the net connected to a primitive terminal

Table 19-46ÑDeriving terminal indices

For Indices shall be

nand g1(out, in1, in2);
0 for terminal out
1 for terminal in1
2 for terminal in2

#include "acc_user.h"

print_terminal_net(gate_handle, term_index)
handle gate_handle;
int term_index;
{

handle term_handle;
term_handle = acc_handle_terminal(gate_handle, term_index);
io_printf("%s terminal net #%d is %s\n",

acc_fetch_name(gate_handle), term_index,
acc_fetch_name(acc_handle_conn(term_handle)));

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

376 Section 19

19.60 acc_handle_tfarg(), acc_handle_itfarg()

The ACC routine acc_handle_tfarg() shall return a handle to an argument in the current instance of a user-deÞned
system task/function. The ACC routine acc_handle_itfarg() shall return a handle to an argument in a speciÞc
instance of a user-deÞned system task/function.

Argument numbers shall start at 1 and increase from left to right in the order that they appear in the system task or
function call.

The system task/function argument can be an unquoted identiÞer name of

Ñ A module instance
Ñ A net

The system task/function argument can be a quoted string containing the name of

Ñ A module instance
Ñ A primitive instance
Ñ A net, register, or variable
Ñ A legal bit select of a net, register, or variable

acc_handle_tfarg(), acc_handle_itfarg()

Synopsis: Get a handle for the speciÞed argument of a user-deÞned system task or function.

Syntax: acc_handle_tfarg(argument_number)
acc_handle_itfarg(argument_number, instance_handle)

Type Description

Returns: handle Handle to an object

Type Name Description

Arguments: int argument_number Integer number that references an argument in the system
task or function call by its position in the argument list

handle instance_handle Handle to an instance of a system task/function

Related
routines:

Use acc_fetch_tfarg() and related routines to get the value of a system task/function argument

Table 19-47ÑHow acc_handle_tfarg() operates

When acc_handle_tfarg() shall

The system task or function argument is an
unquoted Verilog HDL identiÞer for a net or mod-
ule instance

Return a handle to the object

The system task or function argument is a quoted
string name of any object

Function similar to acc_handle_object() by searching for an
object matching the string and, if found, returning a handle to
the object.

The object shall be searched for in the following order:
a) The current PLI scope [as set by acc_set_scope()]
b) The scope of the system task/function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 377

The example shown in Figure 19-63 uses acc_handle_tfarg() in a C-language application that has the following
characteristics:

a) It changes the rise and fall delays of a gate.

b) It takes three argumentsÑthe Þrst is a Verilog HDL gate and the others are double-precision ßoating-point
constants representing rise and fall delay values.

c) It associates through the PLI interface mechanism with a Verilog HDL system task called $timing_task.

To invoke the application, the system task $timing_task is called from the Verilog HDL source description, as in
the following sample call:

$timing_task(top.g12, 8.4, 9.2);

When Verilog encounters this call, it executes new_timing. A handle to the Þrst argument, the gate top.g12, is
retrieved using acc_handle_tfarg(), while the other two argumentsÑthe delay valuesÑare retrieved using
acc_fetch_tfarg().

Figure 19-63ÑUsing acc_handle_tfarg()

#include "acc_user.h"

new_timing()
{

handle gate_handle;
double new_rise, new_fall;

/*initialize and configure ACC routines*/
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);
acc_configure(accToHiZDelay, "max");

/*get handle to gate*/
gate_handle = acc_handle_tfarg(1);

/* get new delay values */
new_rise = acc_fetch_tfarg(2);
new_fall = acc_fetch_tfarg(3);

/*place new delays on the gate*/
acc_replace_delays(gate_handle,new_rise,new_fall);

/* report action */
io_printf("Primitive %s has new delays %d %d\n",

 acc_fetch_fullname(gate_handle),
 new_rise, new_fall);

acc_close();
}

9.2

8.4

top.g12

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

378 Section 19

19.61 acc_handle_tÞnst()

The ACC routine acc_handle_tÞnst() is used to obtain a handle of the user-deÞned system task/function call that
invoked the current PLI application.

acc_handle_tÞnst()

Synopsis: Get a handle to the current user-deÞned system task or function call.

Syntax: acc_handle_tfinst()

Type Description

Returns: handle Handle of a user-deÞned system task or function

Type Name Description

Arguments: None

Related
routines:

Use acc_fetch_type() or acc_fetch_fulltype() to determine the type of the handle returned

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 379

19.62 acc_initialize()

The ACC routine acc_initialize() shall perform the following functions:

Ñ Initialize all conÞguration parameters to their default values

Ñ Allocate memory for string handling and other internal uses

The routine acc_initialize() should be called in a C-language application before invoking any other ACC routines.
Potentially, multiple PLI applications running in the same simulation session can interfere with each other because
they share the same set of conÞguration parameters. To guard against application interference, both acc_initialize()
and acc_close() reset any conÞguration parameters that have changed from their default values.

The example shown in Figure 19-64 uses acc_initialize() to initialize the environment for ACC routines.

Figure 19-64ÑUsing acc_initialize()

acc_initialize()

Synopsis: Initializes the environment for ACC routines.

Syntax: acc_initialize()

Type Description

Returns: void

Type Name Description

Arguments: None

Related
routines:

Use acc_conÞgure() to set conÞguration parameter after calling acc_initialize()
Use acc_close() at the end of a routine that called acc_initialize()

#include "acc_user.h"
append_mintypmax_delays()
{

handle prim;
double delay_array[9];
int i;

/*initialize environment for ACC routines*/
acc_initialize();

/*configure ACC routine environment*/
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);
acc_configure(accMinTypMaxDelays, "true");

/* append delays for primitive as specified in task/function args*/
prim = acc_handle_tfarg(1);
for (i = 0; i < 9; i++)

delay_array[i] = acc_fetch_tfarg(i+2);
acc_append_delays(prim, delay_array);

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

380 Section 19

19.63 acc_next()

The ACC routine acc_next() shall scan for and return handles to one or more types of objects within a scope. This
routine performs a more general function than the object-speciÞc acc_next_ routines, such as acc_next_net() and
acc_next_primitive(), which scan only one type of object within a scope.

The objects for which acc_next() is to scan shall be listed as an array of object types or fulltypes in a static integer
array. The array shall contain any number and combination of the predeÞned integer constants listed in Table 19-48.
The array list shall be terminated by a 0. The routine acc_next() can return objects in an arbitrary order.

The following C-language statement is an example of declaring an array of object types called net_reg_list:

static int net_reg_list[3] = {accNet,accRegister,0};

When this array is passed to acc_next(), the ACC routine shall return handles to nets and registers within the
reference object.

Note that a Verilog HDL function contains an object with the same name, size, and type as the function. If the
function is scanned for objects of the type of the function, a handle to this object shall be returned.

The objects for which acc_next() shall obtain handles are listed in Table 19-48.

acc_next()

Synopsis: Get handles to objects of each type speciÞed in an array within the reference scope.

Syntax: acc_next(object_type_array, reference_handle, object_handle)

Type Description

Returns: handle Handle of the object found

Type Name Description

Arguments: static int array object_type_array Static integer array containing one or more predeÞned inte-
ger constants that represent the types of objects desired; the
last element has to be 0

handle reference_handle Handle of a scope

handle object_handle Handle of the previous object found; initially null

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 381

Table 19-48ÑType and fulltype constants supported by acc_next()

Description PredeÞned integer constant

General object types Integer variable accIntegerVar

Module accModule

Named event accNamedEvent

Net accNet

Primitive accPrimitive

Real variable accRealVar

Register accRegister

Time variable accTimeVar

Module fulltypes Top-level module accTopModule

Module instance accModuleInstance

Cell module instance accCellInstance

Net fulltypes Wire nets accWire
accTri

Wired-AND nets accWand
accTriand

Wired-OR nets accWor
accTrior

Pulldown, pullup nets accTri0
accTri1

Supply nets accSupply0
accSupply1

Storage nets accTrireg

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

382 Section 19

Primitive fulltypes N-input, 1-output gates accAndGate
accNandGate
accNorGate
accOrGate

accXnorGate
accXorGate

1-input, N-output gates accBufGate
accNotGate

Tri-state gates accBuÞf0
accBuÞf1
accNotif0
accNotif1

MOS gates accNmosGate
accPmosGate

accRnmosGate
accRpmosGate

CMOS gates accCmosGate
accRcmosGate

Bidirectional pass gates accRtranGate
accRtranif0Gate
accRtranif1Gate

accTranGate
accTranif0Gate
accTranif1Gate

Pulldown, pullup gates accPulldownGate
accPullUpGate

Combinational
UDP

accCombPrim

Sequential
UDP

accSeqPrim

Table 19-48ÑType and fulltype constants supported by acc_next() (continued)

Description PredeÞned integer constant

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 383

The example shown in Figure 19-65 uses acc_next() to Þnd all nets and registers in a module. The application then
displays the names of these nets and registers.

Figure 19-65ÑUsing acc_next()

#include Òacc_user.hÓ

void display_nets_and_registers()
{

static int net_reg_list[3] = {accNet,accRegister,0};
handle mod_handle, obj_handle;

/*reset environment for ACC routines*/
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*get handle for module-first argument passed to*/
/* user-defined system task associated with this routine*/
mod_handle = acc_handle_tfarg(1);
io_printf("Module %s contains these nets and registers:\n",

acc_fetch_fullname(mod_handle));

/*display names of all nets and registers in the module*/
obj_handle = null;
while (obj_handle = acc_next(net_reg_list,mod_handle,obj_handle))

io_printf(" %s\n", acc_fetch_name(obj_handle));
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

384 Section 19

19.64 acc_next_bit()

The ACC routine acc_next_bit() shall obtain handles to the bits of a vector port or an expanded vector net.

An expanded vector is vector for which a software product shall permit access to the discrete bits of the vector. The
routine acc_object_of_type() can be used to determine if a vector reference handle is expanded before calling
acc_next_bit() with the vector handle. For example:

if (acc_object_of_type(net_handle, accExpandedVector))
 while (bit_handle = acc_next_bit(net_handle, bit_handle))
 ...

When the reference_handle object is a vector, the Þrst call to acc_next_bit() shall return the handle to the msb
(leftmost bit) of the object. Subsequent calls shall return the handles to the remaining bits down to the lsb (rightmost
bit). The call after the return of the handle to the lsb returns null. When the reference_handle is scalar,
acc_next_bit() shall treat the object as a 1-bit vector.

acc_next_bit()

Synopsis: Get handles to bits in a port or expanded vector net.

Syntax: acc_next_bit(reference_handle, bit_handle)

Type Description

Returns: handle Handle of a port or net bit

Type Name Description

Arguments: handle reference_handle Handle of a port or net

handle bit_handle Handle of the previous bit found; initially null

Related
routines:

Use acc_next_port() to return the next port of a module
Use acc_handle_port() to return the handle for a module port
Use acc_object_of_type() to determine if a vector net is expanded

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 385

The example shown in Figure 19-66 uses acc_next_bit() to display the lower connection of each bit of a port.

Figure 19-66ÑUsing acc_next_bit() with module ports

The example shown in Figure 19-67 uses acc_next_bit() to assign a VCL monitor ßag to each bit of a vector net.

Figure 19-67ÑUsing acc_next_bit() with a vector net

#include "acc_user.h"
display_port_bits(module_handle, port_number)
handle module_handle;
int port_number;
{

handle port_handle, bit_handle;

/* get handle for port */
port_handle = acc_handle_port(module_handle, port_number);

/* display port number and module instance name */
io_printf("Port %d of module %s contains the following bits: \n",
 port_number, acc_fetch_fullname(module_handle));
/* display lower hierarchical connection of each bit */
bit_handle = null;
while (bit_handle = acc_next_bit(port_handle, bit_handle))
 io_printf(" %s\n",acc_fetch_fullname(bit_handle));

}

#include "acc_user.h"
void monitor_bits()
{

handle bit_handle, net_handle, mod_handle;

/* reset environment for ACC routines */
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/* get handle for system task argument associated with this routine */
mod_handle = acc_handle_tfarg(1);

/* get handles to all nets in the module */
net_handle = null;
while (net_handle = acc_next_net(mod_handle, net_handle))
{

/* add VCL monitor each bit of expanded vector nets */
if (acc_object_of_type(net_handle, accExpandedVector))
{

bit_handle = null;
while (bit_handle = acc_next_bit(net_handle, bit_handle))

acc_vcl_add(bit_handle, net_consumer, null, vcl_verilog_logic);
}

 }
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

386 Section 19

19.65 acc_next_cell()

The ACC routine acc_next_cell() shall return handles to the cell module instances in the reference scope and all
module instance scopes below the reference scope. The routine shall not Þnd cells that are instantiated inside other
cells.

A cell instance shall be a module instance that has either of these characteristics:

Ñ The module deÞnition appears between the compiler directives `celldefine and `endcelldefine.

Ñ The module deÞnition is in a model library, where a library is a collection of module deÞnitions in a Þle or
directory that are read by library invocation options.

The example shown in Figure 19-68 uses acc_next_cell() to list all cell instances at or below a given hierarchy scope.

Figure 19-68ÑUsing acc_next_cell()

acc_next_cell()

Synopsis: Get handles to cell instances within a region that includes the entire hierarchy below a module.

Syntax: acc_next_cell(reference_handle, cell_handle)

Type Description

Returns: handle Handle of a cell module

Type Name Description

Arguments: handle reference_handle Handle of a module

handle cell_handle Handle of the previous cell found; initially null

#include "acc_user.h"
list_cells()
{

handle module_handle, cell_handle;

/*initialize environment for ACC routines*/
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*get handle for module*/
module_handle = acc_handle_tfarg(1);
io_printf("%s contains the following cells:\n",

acc_fetch_fullname(module_handle));

/*display names of all cells in the module*/
cell_handle = null;
while(cell_handle = acc_next_cell(module_handle,cell_handle))

io_printf(" %s\n",acc_fetch_fullname(cell_handle));

acc_close();
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 387

19.66 acc_next_cell_load()

The ACC routine acc_next_cell_load() shall return handles to the cell module instances that are driven by a net. The
handle for a cell load shall be a primitive input terminal connected to an input or inout port of the cell load instance.

The routines acc_next_load() and acc_next_cell_load() have different functionalities. The routine acc_next_load()
shall return every primitive input terminal driven by a net, whether it is inside a cell or a module instance. The routine
acc_next_cell_load() shall return only one primitive input terminal per cell input or inout port driven by a net. Figure
19-69 illustrates the difference, using a circuit in which net1 drives primitive gates in cell1, cell2, and
module1. For this circuit, acc_next_load() returns four primitive input terminals as loads on net1, while
acc_next_cell_load() returns two primitive input terminals as loads on net1.

Figure 19-69ÑThe difference between acc_next_load() and acc_next_cell_load()

acc_next_cell_load()

Synopsis: Get handles for cell loads on a net.

Syntax: acc_next_cell_load(reference_handle, load_handle)

Type Description

Returns: handle Handle of a primitive input terminal

Type Name Description

Arguments: handle reference_handle Handle of the net

handle load_handle Handle of the previous load found; initially null

Related
routines:

Use acc_next_load() to get a handle to all primitive input terminal loads

net1

cell1

cell2

module1

3

2

2

1

4

acc_next_cell_load()
returns two primitive
input terminals

acc_next_load()
returns four primitive
input terminals

1

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

388 Section 19

The example shown in Figure 19-70 uses acc_next_cell_load() to Þnd all cell loads on a net.

Figure 19-70ÑUsing acc_next_cell_load()

#include "acc_user.h"

get_cell_loads()
{

handle net_handle;
handle load_handle,load_net_handle;

/*initialize environment for ACC routines*/
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*get handle for net*/
net_handle = acc_handle_tfarg(1);

/*display names of all cell loads on the net*/
load_handle = null;
while(load_handle = acc_next_cell_load(net_handle,load_handle))
{

load_net_handle = acc_handle_conn(load_handle);
io_printf("Cell load is connected to: %s\n",

 acc_fetch_fullname(load_net_handle));
}
acc_close();

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 389

19.67 acc_next_child()

The ACC routine acc_next_child() shall return handles to the module instances (children) within the reference
module. The routine shall also return handles to top-level modules, as shown in Table 19-49.

The ACC routine acc_next_topmod() does not work with acc_collect() or acc_count(), but acc_next_child() with a
null reference handle argument can be used in place of acc_next_topmod(). For example:

 acc_count(acc_next_child, null); /* counts top-level modules */

 acc_collect(acc_next_child, null, &count); /* collect top-level modules */

Figure 19-71 shows the use of acc_next_child() to display the names of all modules instantiated within a module.

Figure 19-71ÑUsing acc_next_child()

acc_next_child()

Synopsis: Get handles for children of a module.

Syntax: acc_next_child(reference_handle, child_handle)

Type Description

Returns: handle Handle of a module instance

Type Name Description

Arguments: handle reference_handle Handle of a module

handle child_handle Handle of the previous child found; initially null

Table 19-49ÑHow acc_next_child() works

When acc_next_child() shall

The reference_handle is not null Scan for modules instantiated inside the module associated
with reference_handle

The reference_handle is null Scan for top-level modules (same as acc_next_topmod())

#include "acc_user.h"
print_children(module_handle)
handle module_handle;
{

handle child_handle;
io_printf("Module %s contains the following module instances:\n",

 acc_fetch_fullname(module_handle));
child_handle = null;
while(child_handle = acc_next_child(module_handle, child_handle))

io_printf(" %s\n",acc_fetch_name(child_handle));
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

390 Section 19

19.68 acc_next_driver()

The ACC routine acc_next_driver() shall return handles to the primitive output or inout terminals that drive a net.

The example shown in Figure 19-72 uses acc_next_driver() to determine which terminals of a primitive drive a net.

Figure 19-72ÑUsing acc_next_driver()

acc_next_driver()

Synopsis: Get handles to primitive terminals that drive a net.

Syntax: acc_next_driver(reference_handle, driver_handle)

Type Description

Returns: handle Handle of a primitive terminal

Type Name Description

Arguments: handle reference_handle Handle of a net

handle driver_handle Handle of the previous driver found; initially null

#include "acc_user.h"

print_drivers(net_handle)
handle net_handle;
{

handle primitive_handle;
handle driver_handle;

io_printf("Net %s is driven by the following primitives:\n",
 acc_fetch_fullname(net_handle));

/*get primitive that owns each terminal that drives the net*/
driver_handle = null;
while (driver_handle = acc_next_driver(net_handle, driver_handle))
{

primitive_handle = acc_handle_parent(driver_handle);
io_printf(" %s\n",

acc_fetch_fullname(primitive_handle));
}

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 391

19.69 acc_next_hiconn()

The ACC routine acc_next_hiconn() shall return handles to the hierarchically higher net connections to a module
port. A hierarchically higher connection shall be the part of the net that appears outside the module, as shown in the
following diagram:

When the reference handle passed to acc_next_hiconn() is a vector port, the routine shall return the hiconn nets bit-
by-bit, starting with the msb (leftmost bit) and ending with the lsb (rightmost bit).

The example shown in Figure 19-73 uses acc_next_hiconn() and acc_next_loconn() to Þnd and display all net
connections made externally (hiconn) and internally (loconn) to a module port.

acc_next_hiconn()

Synopsis: Get handles for hierarchically higher net connections to a module port.

Syntax: acc_next_hiconn(reference_handle, net_handle)

Type Description

Returns: handle Handle of a net

Type Name Description

Arguments: handle port_handle Handle of a port

handle net_handle Handle of the previous net found; initially null

Related
routines:

Use acc_handle_hiconn() to get a handle to hierarchically higher connection of a speciÞc port bit
Use acc_next_loconn() to get handles to the hierarchically lower connection

module

loconn hiconn

(lower net connection) (higher net connection)

module port

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

392 Section 19

Figure 19-73ÑUsing acc_next_hiconn() and acc_next_loconn()

#include "acc_user.h"

display_connections(module_handle, port_handle)
handle module_handle, port_handle;
{

handle hiconn_net, loconn_net;

/*get and display low connections*/
io_printf("For module %s, port #%d internal connections are:\n",

 acc_fetch_fullname(module_handle),
 acc_fetch_index(port_handle));

loconn_net = null;
while (loconn_net = acc_next_loconn(port_handle, loconn_net))

io_printf(" %s\n", acc_fetch_fullname(loconn_net));

/*get and display high connections*/
io_printf("For module %s, port #%d external connections are:\n",

 acc_fetch_fullname(module_handle),
 acc_fetch_index(port_handle));

hiconn_net = null;
while (hiconn_net = acc_next_hiconn(port_handle, hiconn_net))

io_printf(" %s\n", acc_fetch_fullname(hiconn_net));
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 393

19.70 acc_next_input()

The ACC routine acc_next_input() shall return handles to the input path terminals of a module path or the source
terminals of a data path. The routine acc_handle_conn() can be passed the input path terminal handle to derive the
net connected to the terminal.

A module path is the specify block path for delays in the Verilog HDL description. A data path is part of the Verilog
HDL description for edge-sensitive module paths, as shown in the following diagram:

The example shown in Figure 19-74 uses acc_next_input(). It accepts a handle to a scalar net or a net bit-select, and
a module path. The application returns true if the net is connected to the input of the path.

acc_next_input()

Synopsis: Get handles to input path terminals of a module path or source terminals of a data path.

Syntax: acc_next_input (reference_handle, terminal_handle)

Type Description

Returns: handle Handle of a module path terminal or a data path terminal

Type Name Description

Arguments: handle reference_handle Handle to a module path or data path

handle terminal_handle Handle of the previous terminal found; initially null

Related
routines:

Use acc_handle_conn() to get the net attached to the path terminal
Use acc_release_object() to free memory allocated by acc_next_input()

posedge (clk => (q +: d)) = (3,2);

module path data path source

data path

module path input

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

394 Section 19

Figure 19-74ÑUsing acc_next_input()

bool is_net_on_path_input(net, path)
handle net; /* scalar net or bit-select of vector net */
handle path;
{

handle port_in, port_conn, bit;

/* scan path input terminals */
port_in = null;
while (port_in = acc_next_input(path, port_in))
{

/* retrieve net connected to path terminal */
port_conn = acc_handle_conn (port_in);

bit = null;
if (acc_object_of_type (port_conn, accExpandedVector))
{

bit = null;
while (bit = acc_next_bit (port_conn, bit))

if (acc_compare_handles (bit, net))
return (true);

}
else

if (acc_compare_handles(bit, net))
return (true);

}

return (false);
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 395

19.71 acc_next_load()

The ACC routine acc_next_load() shall return handles to the primitive loads that are being driven by a net. The
handle for a load shall be a primitive input terminal.

The routines acc_next_load() and acc_next_cell_load() have different functionalities. The routine acc_next_load()
shall return every primitive input terminal driven by a net, whether it is inside a cell or a module instance. The routine
acc_next_cell_load() shall return only one primitive input terminal per cell input or inout port driven by a net. Figure
19-75 illustrates the difference, using a circuit in which net1 drives primitive gates in cell1, cell2, and
module1. For this circuit, acc_next_load() returns four primitive input terminals as loads on net1, while
acc_next_cell_load() returns two primitive input terminals as loads on net1.

Figure 19-75ÑThe difference between acc_next_load() and acc_next_cell_load()

acc_next_load()

Synopsis: Get handles to primitive terminals driven by a net.

Syntax: acc_next_load(reference_handle, load_handle)

Type Description

Returns: handle Handle of a primitive terminal

Type Name Description

Arguments: handle reference_handle Handle of a net

handle load_handle Handle of the previous load found; initially null

Related
routines:

Use acc_next_cell_load() to get cell module loads

net1

cell1

cell2

module1

3

2

2

1

4

acc_next_cell_load()
returns two primitive
input terminals

acc_next_load()
returns four primitive
input terminals

1

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

396 Section 19

The example shown in Figure 19-76 uses acc_next_load() to Þnd all terminals driven by a net.

Figure 19-76ÑUsing acc_next_load()

#include "acc_user.h"

get_loads()
{

handle net_handle, load_handle, load_net_handle;

/*initialize the environment for ACC routines*/
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*get handle for net*/
net_handle = acc_handle_tfarg(1);
io_printf("Net %s is driven by:\n",acc_fetch_fullname(net_handle));

/*get primitive that owns each terminal driven by the net*/
load_handle = null;
while (load_handle = acc_next_load(net_handle, load_handle))
{

load_net_handle = acc_handle_conn(load_handle);
io_printf(" %s ",

acc_fetch_fullname(load_net_handle));
}
acc_close();

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 397

19.72 acc_next_loconn()

The ACC routine acc_next_loconn() shall return handles to the hierarchically lower net connections to a module
port. A hierarchically lower connection shall be the part of the net that appears inside the module, as shown in the
following diagram:

When the reference handle passed to acc_next_loconn() is a vector port, the routine shall return the loconn nets bit-
by-bit, starting with the msb (leftmost bit) and ending with the lsb (rightmost bit).

Refer to Figure 19-73 for an example of using acc_next_loconn().

acc_next_loconn()

Synopsis: Get handles to hierarchically lower net connections to a port of a module.

Syntax: acc_next_loconn(reference_handle, net_handle)

Type Description

Returns: handle Handle of a net

Type Name Description

Arguments: handle reference_handle Handle of a port

handle net_handle Handle of the previous net found; initially null

Related
routines:

Use acc_handle_loconn() to get a handle to hierarchically lower connection of a speciÞc port bit
Use acc_next_hiconn() to get handles to the hierarchically higher connection

module

loconn hiconn

(lower net connection) (higher net connection)

module port

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

398 Section 19

19.73 acc_next_modpath()

The ACC routine acc_next_modpath() shall return handles to the module paths in a module. A module path is the
specify block path for delays in the Verilog HDL description. For example:

The example in Figure 19-77 uses acc_next_modpath() to list the nets connected to all module paths in a module.

Figure 19-77ÑUsing acc_next_modpath()

acc_next_modpath()

Synopsis: Get handles to module paths of a module.

Syntax: acc_next_modpath(reference_handle, path_handle)

Type Description

Returns: handle Handle of a module path

Type Name Description

Arguments: handle reference_handle Handle of a module

handle path_handle Handle of the previous path found; initially null

(in *> out) = 1.8;

(posedge clk => (q +: d)) = (3,2);

module path

module path

#include "acc_user.h"
get_path_nets(module_handle)
handle module_handle;
{
 handle path_handle, pathin_handle, pathout_handle;

 /*scan all paths in the module */
 io_printf("For module %s:\n",acc_fetch_fullname(module_handle));
 path_handle = null;
 while (path_handle = acc_next_modpath(module_handle, path_handle))
 {
 io_printf(" path %s connections are:\n",acc_fetch_name(path_handle));
 pathin_handle = acc_handle_pathin(path_handle);
 pathout_handle = acc_handle_pathout(path_handle);
 io_printf("net %s connected to input\n",acc_fetch_name(pathin_handle));
 io_printf("net %s connected to output\n",acc_fetch_name(pathout_handle));
 }
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 399

19.74 acc_next_net()

The ACC routine acc_next_net() shall return handles to the nets within a module scope. The routine shall return a
handle to a vector net as a whole; it does not return a handle to each individual bit of a vector net. The routine
acc_object_of_type() can be used to determine if a net is vector or scalar and if it is expanded or unexpanded. The
routine acc_next_bit() can be used to retrieve a handle for each bit of an expanded vector net.

The example shown in Figure 19-78 uses acc_next_net() to display the names of all nets in a module.

Figure 19-78ÑUsing acc_next_net()

acc_next_net()

Synopsis: Get handles to nets in a module.

Syntax: acc_next_net(reference_handle, net_handle)

Type Description

Returns: handle Handle of a net

Type Name Description

Arguments: handle reference_handle Handle of a module

handle net_handle Handle of the previous net found; initially null

Related
routines:

Use acc_object_of_type() to determine if a net is scalar or vector, expanded or unexpanded
Use acc_next_bit() to get handles to all bits of an expanded vector net

#include Òacc_user.hÓ

display_net_names()
{

handle mod_handle, net_handle;

/*initialize environment for ACC routines*/
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*get handle for module*/
mod_handle = acc_handle_tfarg(1);
io_printf("Module %s contains the following nets:\n",

acc_fetch_fullname(mod_handle));

/*display names of all nets in the module*/
net_handle = null;
while (net_handle = acc_next_net(mod_handle, net_handle))

io_printf(" %s\n", acc_fetch_name(net_handle));

acc_close();
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

400 Section 19

19.75 acc_next_output()

The ACC routine acc_next_output() shall return handles to the output path terminals of a module path or a data path.
The routine acc_handle_conn() can be passed the output path terminal handle to derive the net connected to the
terminal.

A module path is the specify block path for delays in the Verilog HDL description. A data path is part of the Verilog
HDL description for edge-sensitive module paths, as shown in the following illustration:

The example shown in Figure 19-79 uses acc_next_output(). It accepts a handle to a scalar net or a net bit-select, and
a module path. The application returns true if the net is connected to the output of the path.

acc_next_output()

Synopsis: Get handles to output path terminals of a module path or data path.

Syntax: acc_next_output(reference_handle, terminal_handle)

Type Description

Returns: handle Handle to a module path terminal or data path terminal

Type Name Description

Arguments: handle reference_handle Handle to a module path or data path

handle terminal_handle Handle of the previous terminal found; initially null

Related
routines:

Use acc_handle_conn() to get the net attached to the path terminal
Use acc_release_object() to free memory allocated by acc_next_output()

posedge clk => (q +: d)) = (3,2);

module path output path terminal

data path

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 401

Figure 19-79ÑUsing acc_next_output()

bool is_net_on_path_output(net, path)
handle net; /* scalar net or bit-select of vector net */
handle path;
{

handle port_out, port_conn, bit;

/* scan path output terminals */
port_out = null;
while (port_out = acc_next_output(path, port_out))
{

/* retrieve net connected to path terminal */
port_conn = acc_handle_conn (port_out);

bit = null;
if (acc_object_of_type (port_conn, accExpandedVector))
{

bit = null;
while (bit = acc_next_bit (port_conn, bit))

if (acc_compare_handles (bit, net))
return (true);

}
else

if (acc_compare_handles (port_conn, net))
return (true);

}

return (false);
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

402 Section 19

19.76 acc_next_parameter()

The ACC routine acc_next_parameter() shall return handles to the parameters in a module. This handle can be
passed to acc_fetch_paramtype() and acc_fetch_paramval() to retrieve the data type and value of the parameter.

The example shown in Figure 19-80 uses acc_next_parameter() to scan for all parameters in a module.

Figure 19-80ÑUsing acc_next_parameter()

acc_next_parameter()

Synopsis: Get handles to parameters within a module.

Syntax: acc_next_parameter(reference_handle, parameter_handle)

Type Description

Returns: handle Handle of a parameter

Type Name Description

Arguments: handle reference_handle Handle of a module

handle parameter_handle Handle of the previous parameter found; initially null

Related
routines:

Use acc_fetch_paramtype() to determine the parameter data type
Use acc_fetch_paramval() to retrieve the parameter value
Use acc_next_specparam() to get handles to specify block parameters

#include "acc_user.h"
print_parameter_values(module_handle)
handle module_handle;
{

handle param_handle;
/*scan all parameters in the module and display values according to type*/
param_handle = null;
while (param_handle = acc_next_parameter(module_handle,param_handle))
{
 io_printf("Parameter %s = ",acc_fetch_fullname(param_handle));
 switch (acc_fetch_paramtype(param_handle))
 {

case accRealParam:
 io_printf("%lf\n", acc_fetch_paramval(param_handle));
 break;
case accIntegerParam:
 io_printf("%d\n", (int)acc_fetch_paramval(param_handle));
 break;
case accStringParam:
 io_printf("%s\n",(char*)(int)acc_fetch_paramval(param_handle));

 }
}

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 403

19.77 acc_next_port()

The ACC routine acc_next_port() shall return handles to the input, output, and inout ports of a module. The handles
shall be returned in the order speciÞed by the port list in the module declaration, working from left to right.

The routine acc_next_port() shall be used two ways, as shown in Table 19-50.

The example shown in Figure 19-81 uses acc_next_port() to Þnd and display the input ports of a module.

acc_next_port()

Synopsis: Get a handle to input, output, or inout ports of a module or connected to a net.

Syntax: acc_next_port(reference, port_handle)

Type Description

Returns: handle Handle of a module port

Type Name Description

Arguments: handle reference_handle Handle of a module or net

handle object_handle Handle of the previous port found; initially null

Related
routines:

Use acc_fetch_direction() to determine the direction of a port
Use acc_next_portout() to get handles to just output and inout ports

Table 19-50ÑHow acc_next_port() works

If the reference handle is acc_next_port() shall return

A handle to a module All ports of the module

A handle to a net All ports connected to the net within the
scope of the net

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

404 Section 19

Figure 19-81ÑUsing acc_next_port() with a module handle

The example shown in Figure 19-82 uses acc_next_port() to Þnd the port that is connected to a net, and then to
display information about other nets connected to each bit of the same port.

Figure 19-82ÑUsing acc_next_port() with a net handle

#include "acc_user.h"

display_inputs(module_handle)
handle module_handle;
{

handle port_handle;
int direction;

/*get handle for each module port*/
port_handle = null;
while (port_handle = acc_next_port(module_handle, port_handle))
{

/*give the index of each input port*/
if (acc_fetch_direction(port_handle) == accInput)

io_printf("Port #%d of %s is an input\n",
acc_fetch_index(port_handle),
acc_fetch_fullname(module_handle));

}
}

display_port_connections()
{

handle net = acc_handle_tfarg(1);
handle port, bit;

port = bit = null;
while (port = acc_next_port(net, port))

if (acc_object_of_type(port, accVectorPort))
while (bit = acc_next_bit(port, bit))

io_printf("PORTBIT: %s LOCONN: %s HICONN: %s/n",
acc_fetch_fullname(bit),
acc_fetch_fullname(acc_handle_loconn(bit)),
acc_fetch_fullname(acc_handle_hiconn(bit)));

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 405

19.78 acc_next_portout()

The ACC routine acc_next_portout() shall return handles to the output and inout ports of a module. The handles
shall be returned in the order speciÞed by the port list in the module declaration, working from left to right.

The example shown in Figure 19-83 uses acc_next_portout() to Þnd the output and inout ports of a module.

Figure 19-83ÑUsing acc_next_portout()

acc_next_portout()

Synopsis: Get handles to output or inout ports of a module.

Syntax: acc_next_portout(reference_handle, port_handle)

Type Description

Returns: handle Handle of a module port

Type Name Description

Arguments: handle reference_handle Handle of a module

handle port_handle Handle of the previous port found; initially null

Related
routines:

Use acc_fetch_direction() to determine the direction of a port
Use acc_next_port() to get handles to input, output, and inout ports

#include "acc_user.h"

display_outputs(module_handle)
handle module_handle;
{

handle port_handle;

/*get handle for each module port*/
port_handle = null;
while (port_handle = acc_next_portout(module_handle, port_handle))
{

/*give the index of each output or inout port*/
io_printf("Port #%d of %s is an output or inout\n",

acc_fetch_index(port_handle),
acc_fetch_fullname(module_handle));

}
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

406 Section 19

19.79 acc_next_primitive()

The ACC routine acc_next_primitive() shall return handles to the built-in and UDPs within a module.

The example shown in Figure 19-84 uses acc_next_primitive() to display the deÞnition names of all primitives in a
module.

Figure 19-84ÑUsing acc_next_primitive()

acc_next_primitive()

Synopsis: Get handles to gates, switches, or user-deÞned primitives (UDPs) within a module.

Syntax: acc_next_primitive(reference_handle, primitive_handle)

Type Description

Returns: handle Handle of a primitive

Type Name Description

Arguments: handle reference_handle Handle of a module

handle primitive_handle Handle of the previous primitive found; initially null

#include "acc_user.h"

get_primitive_definitions()
{

handle module_handle, prim_handle;

/*initialize environment for ACC routines*/
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*get handle for module*/
module_handle = acc_handle_tfarg(1);

io_printf("Module %s contains the following types of primitives:\n",
 acc_fetch_fullname(module_handle));

/*get and display defining names of all primitives in the module*/
prim_handle = null;
while (prim_handle = acc_next_primitive(module_handle,prim_handle))

io_printf(" %s\n",
acc_fetch_defname(prim_handle));

acc_close();
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 407

19.80 acc_next_scope()

The ACC routine acc_next_scope() shall return the handles to the internal scopes within a given scope. Internal
scopes shall be the immediate children of the reference_handle. The reference scope and the internal scopes shall be
on of the following:

Ñ A top-level module
Ñ A module instance
Ñ A named begin-end block
Ñ A named fork-join block
Ñ A Verilog HDL task
Ñ A Verilog HDL function

acc_next_scope()

Synopsis: Get handles to hierarchy scopes within a scope.

Syntax: acc_next_scope(reference_handle, scope_handle)

Type Description

Returns: handle Handle to a hierarchy scope

Type Name Description

Arguments: handle reference_handle Handle of a scope

handle scope_handle Handle of the previous scope found; initially null

Related
routines:

Use acc_fetch_type() and acc_fetch_fulltype() to determine the type of scope object found
Use acc_next_topmod() to get handles to top-module scopes

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

408 Section 19

19.81 acc_next_specparam()

The ACC routine acc_next_specparam() shall return handles to the specify block parameters in a module. This
handle can be passed to acc_fetch_paramtype() and acc_fetch_paramval() to retrieve the data type and value.

The example shown in Figure 19-85 uses acc_next_specparam() to scan for all specparams in a module.

Figure 19-85ÑUsing acc_next_specparam()

acc_next_specparam()

Synopsis: Get handles to specify block parameters within a module.

Syntax: acc_next_specparam(reference_handle, specparam_handle)

Type Description

Returns: handle Handle of a specparam

Type Name Description

Arguments: handle module_handle Handle of a module

handle specparam_handle Handle of the previous specparam found; initially null

Related
routines:

Use acc_fetch_paramtype() to determine the parameter data type
Use acc_fetch_paramval() to retrieve the parameter value
Use acc_next_parameter() to get handles to module parameters

#include "acc_user.h"
print_specparam_values(module_handle)
handle module_handle;
{

handle sparam_handle;
/*scan all parameters in the module and display values according to type*/
sparam_handle = null;
while (sparam_handle = acc_next_specparam(module_handle,sparam_handle))
{

io_printf("Specparam %s = ", acc_fetch_fullname(sparam_handle));
switch (acc_fetch_paramtype(sparam_handle))
{

case accRealParam:
io_printf("%lf\n", acc_fetch_paramval(sparam_handle));
break;

case accIntegerParam:
io_printf("%d\n", (int)acc_fetch_paramval(sparam_handle));
break;

case accStringParam:
io_printf("%s\n",(char*)(int)acc_fetch_paramval(sparam_handle));

}
}

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 409

19.82 acc_next_tchk()

The ACC routine acc_next_tchk() shall return handles to the timing checks within a module. The handles can be
passed to other ACC routines to get the nets or notiÞer in the time check, and to read or modify timing check values.

The example shown in Figure 19-86 uses acc_next_tchk() to display information about setup timing checks.

acc_next_tchk()

Synopsis: Get handles to timing checks within a module.

Syntax: acc_next_tchk(reference_handle, timing_check_handle)

Type Description

Returns: handle Handle of a timing check

Type Name Description

Arguments: handle reference_handle Handle of a module

handle timing_check_handle Handle of the previous timing check found; initially null

Related
routines:

Use acc_handle_tchk() to get a timing check handle using the timing check description
Use acc_handle_tchkarg1() and acc_handle_tchkarg2() to get handles of the timing check arguments
Use acc_handle_notiÞer() to get a handle to the timing check notiÞer register
Use acc_fetch_delays(), acc_append_delays(), and acc_replace_delays() to read or modify timing check
values

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

410 Section 19

Figure 19-86ÑUsing acc_next_tchk()

#include "acc_user.h"
show_setup_check_nets()
{

handle mod_handle,cell_handle;
handle tchk_handle,tchkarg1_handle,tchkarg2_handle;
int tchk_type,counter;

/*initialize environment for ACC routines*/
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*get handle for module*/
mod_handle = acc_handle_tfarg(1);

/*scan all cells in module for timing checks*/
cell_handle = null;
while (cell_handle = acc_next_cell(mod_handle, cell_handle))
{

io_printf(Òcell is: %s\nÓ, acc_fetch_name(cell_handle));
counter = 0;
tchk_handle = null;
while (tchk_handle = acc_next_tchk(cell_handle, tchk_handle))
{

/*get nets connected to timing check arguments*/
tchk_type = acc_fetch_fulltype(tchk_handle);
if (tchk_type == accSetup)
{
 counter++;
 io_printf(Ò for setup check #%d:\nÓ,counter);
 tchkarg1_handle = acc_handle_tchkarg1(tchk_handle,mod_handle);
 tchkarg2_handle = acc_handle_tchkarg2(tchk_handle,mod_handle);
 io_printf(" 1st net is %s\n 2nd net is %s\n",

acc_fetch_name(acc_handle_conn(tchkarg1_handle)),
acc_fetch_name(acc_handle_conn(tchkarg2_handle)));

}
}

}
acc_close();

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 411

19.83 acc_next_terminal()

The ACC routine acc_next_terminal() shall return handles to the terminals on a primitive. The handles shall be
returned in the order of the primitive instance statement, starting at terminal 0 (the leftmost terminal).

The example shown in Figure 19-87 uses acc_next_terminal() together with acc_handle_conn() to retrieve all nets
connected to a primitive.

Figure 19-87ÑUsing acc_next_terminal()

acc_next_terminal()

Synopsis: Get handles to terminals of a gate, switch, or user-deÞned primitive (UDP).

Syntax: acc_next_terminal(reference_handle, terminal_handle)

Type Description

Returns: handle Handle of a primitive terminal

Type Name Description

Arguments: handle reference_handle Handle of a gate, switch or UDP

handle terminal_handle Handle of the previous terminal found; initially null

#include "acc_user.h"

display_terminals()
{
 handle prim_handle,term_handle;

 /*initialize environment for ACC routines*/
 acc_initialize();

/*set development version*/
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*get handle for primitive*/
prim_handle = acc_handle_tfarg(1);

io_printf("Connections to primitive %s:\n",
 acc_fetch_fullname(prim_handle));

/*scan all terminals of the primitive
/* and display their nets*/
term_handle = null;
while (term_handle = acc_next_terminal(prim_handle,term_handle))

 io_printf(" %s\n",
 acc_fetch_name(acc_handle_conn(term_handle)));

acc_close();
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

412 Section 19

19.84 acc_next_topmod()

The ACC routine acc_next_topmod() shall return handles to the top-level modules in a design.

The ACC routine acc_next_topmod() does not work with acc_collect() or acc_count(), but acc_next_child() with a
null reference handle argument can be used in place of acc_next_topmod(). For example:

 acc_count(acc_next_child, null); /* counts top-level modules */

 acc_collect(acc_next_child, null, &count); /* collect top-level modules */

The example shown in Figure 19-88 uses acc_next_topmod() to display the names of all top-level modules.

Figure 19-88ÑUsing acc_next_topmod()

acc_next_topmod()

Synopsis: Get handles to top-level modules.

Syntax: acc_next_topmod(module_handle)

Type Description

Returns: handle Handle of a top-level module

Type Name Description

Arguments: handle module_handle Handle of the previous top-level module found; initially
null

Related
routines:

Use acc_next_child() with a null reference_handle to collect or count top-level modules with acc_collect()
and acc_count()

#include "acc_user.h"

show_top_modules()
{

handle module_handle;

/*initialize environment for ACC routines*/
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*scan all top-level modules*/
io_printf("The top-level modules are:\n");
module_handle = null;
while (module_handle = acc_next_topmod(module_handle))

/*display the instance name of each module*/
io_printf(" %s\n", acc_fetch_name(module_handle));

acc_close();
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 413

19.85 acc_object_in_typelist()

The ACC routine acc_object_in_typelist() shall determine whether an object Þts one of a list of types, fulltypes, or
special properties. The properties for which acc_object_in_typelist() is to check shall be listed as an array of
constants in a static integer array. The array can contain any number and combination of the predeÞned integer
constants, and it shall be terminated by a 0.

The following C-language statement shows an example of how to declare an array of object types called
wired_nets:

static int wired_nets[5]={accWand,accWor,accTriand,accTrior,0};

When this array is passed to acc_object_in_typelist(), the ACC routine shall return true if its object_handle
argument is a wired net.

All type and fulltype constants shall be supported by acc_object_in_typelist(). These constants are listed in
Table 18-25.

The special property constants supported by acc_object_in_typelist() are listed in Table 19-51.

The example shown in Figure 19-89 uses acc_object_in_typelist() to determine if a net is a wired net. The
application then displays the name of each wired net found.

acc_object_in_typelist()

Synopsis: Determine whether an object Þts a type or fulltype, or special property, as speciÞed in an input array.

Syntax: acc_object_in_typelist(object_handle, object_type_array)

Type Description

Returns: bool true if the type, fulltype, or property of an object matches one speciÞed in the array;
false if there is no match

Type Name Description

Arguments: handle object_handle Handle of an object

static integer
array

object_type_array Static integer array containing one or more predeÞned inte-
ger constants that represent the types and properties of
objects desired; the last element shall be 0

Related
routines:

Use acc_object_of_type() to check for a match to a single predeÞned constant

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

414 Section 19

Figure 19-89ÑUsing acc_object_in_typelist()

#include Òacc_user.hÓ

display_wired_nets()
{

static int wired_nets[5]={accWand,accWor,accTriand,accTrior,0};
handle net_handle;

/*reset environment for ACC routines*/
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*get handle for net*/
net_handle = acc_handle_tfarg(1);

/*if a wired logic net, display its name*/
if (acc_object_in_typelist(net_handle,wired_nets))

io_printf("Net %s is a wired net\n",acc_fetch_name(net_handle));
else

io_printf("Net %s is not a wired net\n",acc_fetch_name(net_handle));
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 415

19.86 acc_object_of_type()

The ACC routine acc_object_of_type() shall determine whether an object Þts a speciÞed type, fulltype, or special
property. The type, fulltype, or property is an integer constant, deÞned in acc_user.h. All type and fulltype
constants shall be supported by acc_object_of_type(). These constants are listed in Table 18-25. The special property
constants supported by acc_object_of_type() are listed in Table 19-51.

Simulated nets and collapsed nets are deÞned as follows. When a Verilog HDL source description connects modules
together, a chain of nets with different scopes and names are connected, as is illustrated in the following simple
diagram:

acc_object_of_type()

Synopsis: Determine whether an object Þts a speciÞed type or fulltype, or special property.

Syntax: acc_object_of_type(object_handle, object_type)

Type Description

Returns: bool true if the type, fulltype, or property of an object matches the object_type argument
false if there is no match

Type Name Description

Arguments: handle object_handle Handle of an object

int object_type An integer constant that represents a type, fulltype, or spe-
cial property

Related
routines:

Use acc_object_in_typelist() to check for a match to any of several predeÞned constants

Table 19-51ÑSpecial object properties

Property of object PredeÞned integer constant

Scalar accScalar

Vector accVector

Collapsed net accCollapsedNet

Expanded vector accExpandedVector

Unexpanded vector accUnexpandedVector

Hierarchy scope accScope

Module path with ifnone condition accModPathHasIfnone

module instance i1 module instance i2

out1 in1w5

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

416 Section 19

In this small circuit, nets out1, w5, and in1 are all tied together, effectively becoming the same net. Software
products can collapse nets that are connected together within the data structure of the product. The resultant net after
collapsing is referred to as a simulated net; the other nets are referred to as collapsed nets. The ACC routines can
obtain a handle to any net, whether it is collapsed or not. The routine acc_object_of_type() can be used to determine
if a net has been collapsed. The routine acc_handle_simulated_net() can be used to Þnd the resultant net from the
net collapsing process.

Expanded and unexpanded vectors determine if ACC routines can access a vector as a whole or access the bits within
a vector. If a vector has the property accExpandedVector, then access to the discrete bits of the vector shall be
permitted. This property has to be true in order for certain ACC routines, such as acc_next_bit(), to access each bit
of a vector. If a vector has the property accUnexpandedVector, then access to the vector as a whole shall be
permitted. This property has to be true in order for certain ACC routines to access the complete vector. A vector
object can have just one of these properties true, or both can be true.

The example shown in Figure 19-90 uses acc_object_of_type() to determine whether nets are collapsed nets. The
application then displays each collapsed net, along with the simulated net.

Figure 19-90ÑUsing acc_object_of_type()

#include "acc_user.h"

void display_collapsed_nets()
{

handle mod_handle;
handle net_handle;
handle simulated_net_handle;

/*reset environment for ACC routines*/
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*get scope-first argument passed to user-defined system task*/
/* associated with this routine*/
mod_handle = acc_handle_tfarg(1);
io_printf("In module %s:\n",acc_fetch_fullname(mod_handle));
net_handle = null;

/*display name of each collapsed net and its net of origin*/
while (net_handle = acc_next_net(mod_handle,net_handle))
{

if (acc_object_of_type(net_handle,accCollapsedNet))
{

simulated_net_handle = acc_handle_simulated_net(net_handle);
io_printf(" net %s was collapsed onto net %s\n",

 acc_fetch_name(net_handle),
 acc_fetch_name(simulated_net_handle));

}
}

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 417

19.87 acc_product_type()

The ACC routine acc_product_type() shall return a predeÞned integer constant that identiÞes the class of software
product that is calling the PLI application. This information can be useful when a PLI application needs to customize
the routine to speciÞc types of software implementations. For example, a delay calculator might use typical delays for
logic simulation and min:typ:max delays for timing analysis.

The integer constant values returned by acc_product_type() are listed in Table 19-52.

The example shown in Figure 19-91 uses acc_product_type() to identify and display the product type being used.

acc_product_type()

Synopsis: Get the software product type that is calling the PLI application.

Syntax: acc_product_type()

Type Description

Returns: int A predeÞned integer constant representing the software product type

Type Name Description

Arguments: None

Table 19-52ÑProduct types returned by acc_product_type()

If the product is acc_product_type() returns

A logic simulator accSimulator

A timing analyzer accTimingAnalyzer

A fault simulator accFaultSimulator

Some other product accOther

NOTEÑSoftware product vendors can deÞne additional integer constants speciÞc to
their products.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

418 Section 19

Figure 19-91ÑUsing acc_product_type()

#include "acc_user.h"
show_application()
{
 /* reset environment for ACC routines */
 acc_initialize();
 acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

 /* show application type and ACC routine version */
 switch (acc_product_type())
 {
 case accSimulator:
 io_printf("Running logic simulation with PLI version %s\n",acc_version());
 break;
 case accTimingAnalyzer:
 io_printf("Running timing analysis with PLI version %s\n",acc_version());
 break;
 case accFaultSimulator:
 io_printf("Running fault simulation with PLI version %s\n",acc_version());
 break;
 default:
 io_printf("Running other product with PLI version %s\n",acc_version());
 }
 acc_close();
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 419

19.88 acc_product_version()

The ACC routine acc_product_version() shall return a pointer to a character string that indicates the version of the
software product that called the PLI application. The return value for this routine is placed in the ACC internal string
buffer. See 18.9 for explanation of strings in ACC routines.

The character string shall be in the following format:

<product_name> Version <version_number>

For example:

ÒVerilog Simulator Version OVIsim 1.0"

The string returned by acc_product_version() shall be deÞned by the software tool vendor.

The example shown in Figure 19-92 uses acc_product_version() to identify the version of the software product that
is linked to ACC routines.

Figure 19-92ÑUsing acc_product_version()

acc_product_version()

Synopsis: Get the version of the software product that is linked to the ACC routines.

Syntax: acc_product_version()

Type Description

Returns: char * Pointer to a character string

Type Name Description

Arguments: None

Related
routines:

Use acc_product_type() to get the type of software product
Use acc_version() to get the version of PLI ACC routines

#include "acc_user.h"

show_versions()
{

/*initialize environment for ACC routines*/
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*show version of ACC routines*/
/* and version of Verilog that is linked to ACC routines*/
io_printf("Running %s with %s\n",acc_version(),acc_product_version());

acc_close();
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

420 Section 19

19.89 acc_release_object()

The ACC routine acc_release_object() shall deallocate memory that was allocated by a call to acc_next_input() or
acc_next_output(). The routine should be called after using these ACC routines under the following circumstances:

Ñ Not all inputs or outputs were scanned.
Ñ The input or output path had only one terminal.
Ñ An error was returned.

The example shown in Figure 19-93 Þnds the data path corresponding to an input module path, and it displays the
source and destination port names for the data path. The example calls acc_next_input() and acc_next_output() to
get the Þrst input and output, respectively, for a given path. Since these routines are only called once,
acc_release_object() is called to free the memory allocated for the input and output handles.

Figure 19-93ÑUsing acc_release_object()

acc_release_object()

Synopsis: Deallocate memory allocated by calls to acc_next_input() and acc_next_output().

Syntax: acc_release_object(object_handle)

Type Description

Returns: void

Type Name Description

Arguments: handle object_handle Handle to an input or output terminal path

Related
routines:

Use acc_next_input() to get handles to module path inputs and data path inputs
Use acc_next_output() to get handles to module path outputs and data path outputs

void display_datapath_terms(modpath)
handle modpath;
{

handle datapath = acc_handle_datapath(modpath);
handle pathin = acc_next_input(datapath, null);
handle pathout = acc_next_output(datapath, null);
/* there is only one input and output to a data path */
io_printf("DATAPATH INPUT: %s\n", acc_fetch_fullname(pathin));
io_printf("DATAPATH OUTPUT: %s\n", acc_fetch_fullname(pathout));
acc_release_object(pathin);
acc_release_object(pathout);

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 421

19.90 acc_replace_delays()

acc_replace_delays() for single delay values (accMinTypMaxDelays set to "false")

Synopsis: Replace existing delays for primitives, module paths, timing checks, module input ports, and inter-
module paths.

Syntax:

Primitives
Ports
Port bits
Intermodule paths

acc_replace_delays(object_handle, rise_delay, fall_delay, z_delay)

Module paths acc_replace_delays(object_handle,
 d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12)

Timing checks acc_replace_delays(object_check_handle, limit)

Type Description

Returns: bool 1 if successful; 0 if an error occurred

Type Name Description

Arguments: handle object_handle Handle of a primitive, module path, timing check, module
input port, bit of a module input port, or intermodule path

double rise_delay
fall_delay

Rise and fall delay for 2-state primitive, 3-state primitive,
module input port, module input port bit, or intermodule path

Conditional double z_delay If accToHiZDelay is set to Òfrom_userÓ:
turn-off (to Z) transition delay for 3-state primitives, module
input ports, module input port bits, or intermodule paths

double d1 If accPathDelayCount is set to Ò1Ó:
delay for all transitions for module paths

If accPathDelayCount is set to Ò2Ó or Ò3Ó:
rise transition delay for module paths

If accPathDelayCount is set to Ò6Ó or Ò12Ó:
0->1 transition delay for module paths

Conditional double d2 If accPathDelayCount is set to Ò2Ó or Ò3Ó:
fall transition delay for module paths

If accPathDelayCount is set to Ò6Ó or Ò12Ó:
1->0 transition delay for module paths

Conditional double d3 If accPathDelayCount is set to Ò3Ó:
turn-off transition delay for module paths

If accPathDelayCount is set to Ò6Ó or Ò12Ó:
0->Z transition delay for module paths

Conditional double d4
d5
d6

If accPathDelayCount is set to Ò6Ó or Ò12Ó:
d4 is Z->1 transition delay for module paths
d5 is 1->Z transition delay for module paths
d6 is Z->0 transition delay for module paths

Conditional double d7
d8
d9
d10
d11
d12

If accPathDelayCount is set to Ò12Ó:
d7 is 0->X transition delay for module paths
d8 is X->1 transition delay for module paths
d9 is 1->X transition delay for module paths
d10 is X->0 transition delay for module paths
d11 is X->Z transition delay for module paths
d12 is Z->X transition delay for module paths

double limit Limit of timing check

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

422 Section 19

The ACC routine acc_replace_delays() shall work differently depending on how the conÞguration parameter
accMinTypMaxDelays is set. When this parameter is set to false, a single delay per transition shall be assumed,
and delays shall be passed as individual arguments. For this single delay mode, the Þrst syntax table in this clause
shall apply.

When accMinTypMaxDelays is set to true, acc_replace_delays() shall pass one or more sets of
minimum:typical:maximum delays contained in an array, rather than single delays passed as individual arguments.
For this min:typ:max delay mode, the second syntax table in this clause shall apply.

The number of delay values replaced by acc_replace_delays() shall be determined by the type of object and the
setting of conÞguration parameters. Refer to 18.8 for a description of how the number of delay values are determined.

The routine acc_replace_delays() shall write delays in the timescale of the module that contains the object_handle.

The example shown in Figure 19-94 uses acc_replace_delays() to replace the current delays on a path with new
delay values read from a Þle called pathdelay.dat. The format of the Þle is shown in the following diagram:

acc_replace_delays() for min:typ:max delays (accMinTypMaxDelays set to "true")

Synopsis: Replace min:typ:max delay values for primitives, module paths, timing checks, module input ports, or
intermodule paths; the delay values are contained in an array .

Syntax: acc_append_delays(object_handle, array_ptr)

Type Description

Returns: bool 1 if successful; 0 if an error is encountered

Type Name Description

Arguments: handle object_handle Handle of a primitive, module path, timing check, module
input port, bit of a module input port, or intermodule path

double address array_ptr Pointer to array of min:typ:max delay values;
the size of the array depends on the type of object and the
setting of accPathDelayCount (see 18.8)

¥
¥

top.m1 in out 10.4 8.5
¥
¥

rise delay

fall delay

path source

path destinationname of module

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 423

Figure 19-94ÑUsing acc_replace_delays() in single delay mode

The example shown in Figure 19-95 uses acc_replace_delays() to scale the min:typ:max delays on all primitive
delays inside cells within a given scope. The application fetches the existing delays for an object, multiplies the
delays by a scale factor, and replaces the delays with the new, scaled values. This example assumes that the user
application is associated through the PLI interface mechanism with a user-deÞned system task called
$scaleprimdelays. The scope and scale factors are passed as arguments as follows:

#include <stdio.h>
#include "acc_user.h"

write_path_delays()
{

FILE *infile;
char full_module_name[NAME_SIZE];
char pathin_name[NAME_SIZE], pathout_name[NAME_SIZE];
double rise,fall;
handle mod_handle, path_handle;

/*initialize the environment for ACC routines*/
acc_initialize();

/*set development version*/
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*set accPathDelayCount parameter to return rise and fall delays only*/
acc_configure(accPathDelayCount, "2");

/*read delays from file - "r" means read only*/
infile = fopen("pathdelay.dat","r");
fscanf(infile, Ò%s %s %s %lf %lfÓ,

 full_module_name,pathin_name,pathout_name,&rise,&fall);

/*get handle for the module and the path*/
mod_handle = acc_handle_object(full_module_name);
path_handle = acc_handle_modpath(mod_handle,pathin_name,pathout_name);

/*replace delays with new values*/
acc_replace_delays(path_handle, rise, fall);

acc_close();
}

$scaleprimdelays(mychip, 0.4, 1.0, 1.6);

scale factor
for

scope

minimum delay
scale factor
for maximum delay

scale factor
for typical delay

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

424 Section 19

Figure 19-95ÑUsing acc_replace_delays() in min:typ:max delays mode

#include "acc_user.h"
#include "veriuser.h"

void scale_prim_delays()
{
 handle top, cell, prim;
 int i;
 double da[9];
 double min_scale_factor, typ_scale_factor, max_scale_factor;

 acc_initialize();
 acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);
 acc_configure(accMinTypMaxDelays,"true");

 top = acc_handle_tfarg(1);
 min_scale_factor = acc_fetch_tfarg(2);
 typ_scale_factor = acc_fetch_tfarg(3);
 max_scale_factor = acc_fetch_tfarg(4);

 io_printf("Scale min:typ:max delays for primitives in cells below %s\n",
 acc_fetch_fullname(top));
 io_printf("Scaling factors-min:typ:max-%4.2f:%4.2f:%4.2f\n",
 min_scale_factor, typ_scale_factor, max_scale_factor);
 cell = null;
 while (cell = acc_next_cell(top, cell))
 {
 prim = null;
 while (prim = acc_next_primitive(cell, prim))
 {
 acc_fetch_delays(prim,da);
 for (i=0; i<9; i+=3)
 da[i] = da[i]*min_scale_factor;
 for (i=1; i<9; i+=3)
 da[i] = da[i]*typ_scale_factor;
 for (i=2; i<9; i+=3)
 da[i] = da[i]*max_scale_factor;
 acc_replace_delays(prim,da);
 }
 }
}

scale
delays

array has to hold three sets
of min:typ:max values for
rise, fall, and turn-off delays

replace min:typ:max
delays with scaled values

argument #1: Scope
argument #2: Scale factor for minimum delay

argument #3: Scale factor for typical delay
argument #4: Scale factor for maximum delay

fetch min:typ:max
delays and store
in array da as follows:

 da[0]
 da[1]
 da[2]

typical
rise
delay

 da[3]
 da[4]
 da[5]

typical
fall
delay

 da[6]
 da[7]
 da[8]

typical
turn-off
delay

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 425

19.91 acc_replace_pulsere()

The ACC routine acc_replace_pulsere() shall replace existing pulse handling reject_limit and e_limit values for a
module path. The reject_limit and e_limit values are used to control how pulses are propagated through module paths.

A pulse is deÞned as two transitions on the same path that occur in a shorter period of time than the path delay. Pulse
control values determine whether a pulse should be rejected, propagated through to the output, or considered an error.
The pulse control values consist of a reject_limit and an e_limit pair of values, where:

Ñ The reject_limit shall set a threshold for determining when to reject a pulseÑany pulse less than the
reject_limit shall not propagate to the output of the path

Ñ The e_limit shall set a threshold for determining when a pulse is considered to be an errorÑany pulse less
than the e_limit and greater than or equal to the reject_limit shall propagate a logic x to the path output

Ñ A pulse that is greater than or equal to the e_limit shall propagate through to the path output

The example in Table 19-53 illustrates the relationship between the reject_limit and the e_limit.

The following rules shall apply when specifying pulse handling values:

a) The value of reject_limit shall be less than or equal to the value of e_limit.

b) The reject_limit and e_limit shall not be greater than the path delay.

acc_replace_pulsere()

Synopsis: Replace existing pulse handling reject_value and e_value for a module path.

Syntax: acc_replace_pulsere(path,r1,e1, r2,e2, r3,e3, r4,e4, r5,e5, r6,e6,
 r7,e7, r8,e8, r9,e9, r10,e10, r11,e11, r12,e12)

Type Description

Returns: bool 1 if successful; 0 if an error is encountered

Type Name Description

Arguments: handle path Handle of module path

double r1...r12 reject_limit values; the number of arguments is determined
by accPathDelayCount

double e1...e12 e_limit values; the number of arguments is determined by
accPathDelayCount

Related
routines:

Use acc_fetch_pulsere() to get current pulse handling values
Use acc_append_pulsere() to append existing pulse handling values
Use acc_set_pulsere() to set pulse handling values as a percentage of the path delay

Table 19-53ÑPath pulse control example

When The pulse on a module path output shall be

reject_limit = 10.5
e_limit = 22.6

Rejected if < 10.5

An error if ³ 10.5 and < 22.6

Passed if ³ 22.6

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

426 Section 19

The number of pulse control values that acc_replace_pulsere() sets shall be controlled using the ACC routine
acc_conÞgure() to set the delay count conÞguration parameter accPathDelayCount, as shown in Table 19-54.

The minimum number of pairs of reject_limit and e_limit arguments to pass to acc_replace_pulsere() shall equal the
value of accPathDelayCount. Any unused reject_limit and e_limit argument pairs shall be ignored by
acc_replace_pulsere() and can be dropped from the argument list.

If accPathDelayCount is not set explicitly, it shall default to 6, and therefore six pairs of pulse reject_limit and
e_limit arguments have to be passed when acc_replace_pulsere() is called. Note that the value assigned to
accPathDelayCount also affects acc_append_delays(), acc_fetch_delays(), acc_replace_delays(),
acc_append_pulsere(), and acc_fetch_pulsere().

Pulse control values shall be replaced using the timescale of the module that contains the path.

Table 19-54ÑHow the value of accPathDelayCount affects acc_append_pulsere()

When accPathDelayCount is acc_replace_pulsere() shall write

"1" One pair of reject_limit and e_limit values:
one pair for all transitions, r1 and e1

"2"
Two pairs of reject_limit and e_limit values:

one pair for rise transitions, r1 and e1
one pair for fall transitions, r2 and e2

"3"

Three pairs of reject_limit and e_limit values:
one pair for rise transitions, r1 and e1
one pair for fall transitions, r2 and e2
one pair for turn-off transitions, r3 and e3

"6"
(the default)

Six pairs of reject_limit and e_limit valuesÑa different pair
for each possible transition among 0, 1, and Z:

one pair for 0->1 transitions, r1 and e1
one pair for 1->0 transitions, r2 and e2
one pair for 0->Z transitions, r3 and e3
one pair for Z->1 transitions, r4 and e4
one pair for 1->Z transitions, r5 and e5
one pair for Z->0 transitions, r6 and e6

"12"

Twelve pairs of reject_limit and e_limit valuesÑa different
pair for each possible transition among 0, 1, X and Z:

one pair for 0->1 transitions, r1 and e1
one pair for 1->0 transitions, r2 and e2
one pair for 0->Z transitions, r3 and e3
one pair for Z->1 transitions, r4 and e4
one pair for 1->Z transitions, r5 and e5
one pair for Z->0 transitions, r6 and e6
one pair for 0->X transitions, r7 and e7
one pair for X->1 transitions, r8 and e8
one pair for 1->X transitions, r9 and e9
one pair for X->0 transitions, r10 and e10
one pair for X->Z transitions, r11 and e11
one pair for Z->X transitions, r12 and e12

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 427

The example shown in Figure 19-96 uses acc_replace_pulsere() to replace rise and fall pulse handling values of
paths listed in a Þle path.dat.

Figure 19-96ÑUsing acc_replace_pulsere()

#include <stdio.h>
#include "acc_user.h"

 #define NAME_SIZE 256

replace_halfpulsevals()
{
 FILE *infile;
 char mod_name[NAME_SIZE];
 char pathin_name[NAME_SIZE], pathout_name[NAME_SIZE];
 handle mod, path;
 double rise_reject_limit,rise_e_limit,fall_reject_limit,fall_e_limit;

 /*initialize environment for ACC routines*/
acc_initialize();

 /*set accPathDelayCount to return two pairs of pulse handling values;*/
 /* one each for rise and fall transitions*/

acc_configure(accPathDelayCount, "2");

 /*read all module path specifications from file "path.dat"*/
infile = fopen("path.dat", "r");
while(fscanf(infile,"%s %s %s",mod_name,pathin_name,pathout_name)!=EOF)
{

mod=acc_handle_object(mod_name);
path=acc_handle_modpath(mod,pathin_name,pathout_name);
rise_reject_limit = .05;
if(acc_replace_pulsere(path, &rise_reject_limit, &rise_e_limit,

&fall_reject_limit, &fall_e_limit))
{

io_printf("rise reject limit = %lf, rise e limit = %lf\n",
rise_reject_limit, rise_e_limit);

io_printf("fall reject limit = %lf, fall e limit = %lf\n",
fall_reject_limit, fall_e_limit);

}
}
acc_close();

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

428 Section 19

19.92 acc_reset_buffer()

The ACC routine acc_reset_buffer() shall reset the string buffer to its beginning. The string buffer shall be used as
temporary storage by other ACC routines that return a pointer to a character string. Refer to 18.9 for more information
on the character string buffer.

acc_reset_buffer()

Synopsis: Reset the string buffer to the beginning.

Syntax: acc_reset_buffer()

Type Description

Returns: void

Type Name Description

Arguments None

Related
routines:

All ACC routines that return a pointer to a character string

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 429

19.93 acc_set_interactive_scope()

The ACC routine acc_set_interactive_scope() shall set the Verilog HDL design scope where the interactive mode of
the software product is operating.

A scope shall be

Ñ A top-level module
Ñ A module instance
Ñ A named begin-end block
Ñ A named fork-join block
Ñ A Verilog HDL task
Ñ A Verilog HDL function

acc_set_interactive_scope()

Synopsis: Set the interactive scope of a software tool.

Syntax: acc_handle_interactive_scope()

Type Description

Returns: handle Handle of a Verilog hierarchy scope

Type Name Description

Arguments: None

Related
routines:

Use acc_handle_interactive_scope() to get a handle for the current interactive scope

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

430 Section 19

19.94 acc_set_pulsere()

The ACC routine acc_set_pulsere() shall set the pulse handling values reject_percentage and e_percentage for a
module path, speciÞed as a percentage multiplier of the path delay.

A pulse is deÞned as two transitions on the same path that occur in a shorter period of time than the path delay. Pulse
control values determine whether a pulse should be rejected, propagated through to the output, or considered an error.
The pulse control values consist of a reject_percentage and an e_percentage pair of values, where

Ñ The reject_percentage shall set a threshold for determining when to reject a pulseÑany pulse less than the
reject_percentage shall not propagate to the output of the path

Ñ The e_percentage shall set a threshold for determining when a pulse is considered to be an errorÑany pulse
less than the e_percentage and greater than or equal to the reject_percentage shall propagate a logic x to the
path output

Ñ A pulse that is greater than or equal to the e_percentage shall propagate through to the path output

The example in Table 19-55 illustrates the relationship between the reject_percentage and the e_percentage.

The following rules shall apply when specifying pulse handling values:

a) The reject_percentage and e_percentage shall be greater than or equal to 0.0 and less than or equal to 1.0.

acc_set_pulsere()

Synopsis: Set the pulse handling values for a module path as a percentage of the path delay.

Syntax: acc_set_pulsere(path_handle, reject_percentage, e_percentage)

Type Description

Returns: void No return

Type Name Description

Arguments: handle path_handle Handle of a module path

double reject_percentage Multiplier of the delay value that forms the upper limit for
rejecting a path output pulse

double e_percentage Multiplier of the delay value that forms the upper
limit for setting a path output pulse to x.

Related
routines:

Use acc_fetch_pulsere() to get current pulse handling values
Use acc_append_pulsere() to append existing pulse handling values
Use acc_replace_pulsere() to replace existing pulse handling values

Table 19-55ÑPath pulse control example

Given a path with a delay of 5.0

When A pulse on a module path output shall be

reject_percentage = 0.5
e_percentage = 1.0

Rejected if < 2.5 (50% of path delay)

An error if ³ 2.5 and < 5.0 (between 50% and 100% of path delay)

Passed if ³ 5.0 (greater than or equal to 100% of path delay)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 431

b) The value of reject_percentage shall be less than or equal to the value of e_percentage.

The example shown in Figure 19-97 uses acc_set_pulsere() to set pulse control values for each path in a module such
that all pulses between 0 and the path delay generate an X at the path output.

Figure 19-97ÑUsing acc_set_pulsere()

#include "acc_user.h"

set_pulse_control_e(module)
handle module;

{
handle path;

/*set pulse control values for all paths in the module*/
path = null;
while (path = acc_next_modpath(module, path))

acc_set_pulsere(path, 0.0, 1.0);
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

432 Section 19

19.95 acc_set_scope()

The ACC routine acc_set_scope() shall set the scope and search rules for the routine acc_handle_object(). The way
that acc_set_scope() functions shall be dependent on the setting of conÞguration parameters as shown in Table 19-56.

acc_set_scope()

Synopsis: Set a scope for acc_handle_object() to use when searching in the design hierarchy.

Syntax: acc_set_scope(module_handle, module_name)

Type Description

Returns: char * Pointer to a character string containing the full hierarchical name of the scope set; null if
an error occurred

Type Name Description

Arguments: handle module_handle A handle to a module

Optional quoted string or
char *

module_name Quoted string or pointer to a character string with the name
of a module instance (optional: used when accEnableArgs
is set and module_handle is null)

Related
routines:

Use acc_handle_object() to get a handle to any named object
Use acc_conÞgure(accEnableArgs,"acc_set_scope") to use the module_name argument
Use acc_set_interactive_scope() to set the interactive scope

Table 19-56ÑHow acc_set_scope() works

If acc_set_scope() shall

Default mode, or
acc_conÞgure(accEnableArgs, "no_acc_set_scope")

is called, and
module_handle is a valid handle

Set the scope to the level of module_handle in the design
hierarchy and ignore the optional module_name argument

Default mode, or
acc_conÞgure(accEnableArgs, "no_acc_set_scope")

is called, and
module_handle is null

Set the scope to the top-level module that appears Þrst in
the source description

The routine
acc_conÞgure(accEnableArgs, "acc_set_scope")

has been called, and
module_handle is a null

Set scope to the level of module_name in the design
hierarchy

The routine
acc_conÞgure(accEnableArgs, "acc_set_scope")

has been called, and
module_handle is a valid handle

Set scope to the level of module_handle in the design hier-
archy and ignore the optional module_name argument

The routine
acc_conÞgure(accEnableArgs, "acc_set_scope")

has been called, and
module_handle and module_name are both null

Set scope to the top-level module that appears Þrst in the
source description

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 433

To use the optional module_name argument, the conÞguration parameter accEnableArgs Þrst has to be set by calling
acc_conÞgure() as follows:

acc_configure(accEnableArgs, Òacc_set_scopeÓ);

If accEnableArgs is not set for acc_set_scope(), the routine shall ignore its optional argument. When the optional
argument is not required for a call to acc_set_scope(), the argument can be dropped.

The example shown in Figure 19-98 uses acc_set_scope() to set a scope for the ACC routine acc_handle_object() to
determine if a net is in a module.

Figure 19-98ÑUsing acc_set_scope()

#include Òacc_user.hÓ

is_net_in_module(module_handle,net_name)
handle module_handle;
char *net_name;
{

handle net_handle;
handle load_handle, load_net_handle;

/*set scope to module*/
acc_set_scope(module_handle);

/*get handle for net*/
net_handle = acc_handle_object(net_name);

if (net_handle)
io_printf("Net %s found in module %s\n",

net_name,
acc_fetch_fullname(module_handle));

else
io_printf("Net %s not found in module %s\n",

net_name,
acc_fetch_fullname(module_handle));

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

434 Section 19

19.96 acc_set_value()

The ACC routine acc_set_value() shall set and propagate a value onto a register, variable, or a sequential UDP. The
routine shall also perform procedural assign/deassign or a procedural force/release functions.

The logic value and propagation delay information shall be placed in separate structures. To use acc_set_value() to
propagate a value, follow these basic steps:

a) Allocate memory for the structures s_setval_value, s_setval_delay, and if using vectors,
s_acc_vecval.

b) Set the appropriate Þelds in each structure to the desired values.

c) Call acc_set_value() with an object handle and pointers to the s_setval_value and s_setval_delay
structures.

The structure s_setval_value shall contain the value to be written. A value can be entered into this structure as a
string, scalar, integer, real, or as an aval/bval pair. The s_setval_value structure is deÞned in acc_user.h and
listed in Figure 19-99 (note that this structure is also used with acc_fetch_value() routine).

The format Þeld in the s_setval_value structure shall indicate the value type. The format shall be a predeÞned
integer constant, listed in Table 19-57.

The value union in the s_setval_value structure shall be the value to be written. The value is placed in the
appropriate Þeld within the union for the format selected.

acc_set_value()

Synopsis: Set and propagate a value on a register, variable, or a sequential UDP; procedurally assign a register or vari-
able; force a register, variable, or net.

Syntax: acc_set_value(object_handle, value_p, delay_p)

Type Description

Returns: int Zero if no errors; nonzero if an error occurred

Type Name Description

Arguments: handle object_handle Handle to a register or sequential UDP

p_setval_value value_p Pointer to a structure containing value to be set

p_setval_delay delay_p Pointer to a structure containing delay before value is set

Related
routines:

Use acc_fetch_value() to retrieve a logic value
Use acc_fetch_size() to get the number of bits in a vector

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 435

Figure 19-99ÑThe s_setval_value structure used by acc_set_value()

When the format Þeld of the s_acc_vecval structure is set to accVectorVal, the value union Þeld used shall be
vector. The vector Þeld is set to a pointer or an array of s_acc_vecval structures that contain aval/bval pairs for
each bit of the vector. The s_acc_vecval structure is listed in Figure 19-100.

.

Figure 19-100Ñs_acc_vecval structure

Table 19-57ÑPredeÞned constants for the format Þeld of s_setval_value

Value format DeÞnition

accScalarVal One of: acc0, acc1, accZ, accX

accVectorVal aval and bval bit groups, with each group being an integer quantity

accIntVal An integer quantity

accRealVal A real-valued quantity

accStringVal For integers and appropriately sized registers, any ASCII string;
for real-valued objects, any string that represents a real number

accBinStrVal A base 2-bit representation as a string

accOctStrVal A base 8-bit representation as a string

accDecStrVal A base 10-bit representation as a string

accHexStrVal A base 16-bit representation as a string

typedef struct t_setval_value
{
 int format;
 union
 {
 char *str;
 int scalar;
 int integer;
 double real;
 p_acc_vecval vector;
 } value;
} s_setval_value, *p_setval_value, s_acc_value, *p_acc_value;

typedef struct t_acc_vecval
{
 int aval;
 int bval;
} s_acc_vecval, *p_acc_vecval;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

436 Section 19

The array of s_acc_vecval structures shall contain a record for every 32 bits of the vector, plus a record for any
remaining bits. Memory has to be allocated by the user for array of s_acc_vecval structures. If a vector has N
bits, the size of the array shall be ((N-1)/32)+1 s_acc_vecval records. The routine acc_fetch_size() can be used
to determine the value of N.

The lsb of the vector shall be represented by the lsb of the Þrst record of s_acc_vecval array. The 33rd bit of the
vector shall be represented by the lsb of the second record of the array, and so on. Each bit of the vector shall be
encoded as an aval/bval pair. The encoding for each bit is shown in Table 19-36.

The structure s_setval_delay shall control how values are to be propagated into the Verilog HDL data structure.
The structure is deÞned in acc_user.h and is listed in Figure 19-101.

The time Þeld in the s_setval_delay structure shall indicate the delay that shall take place before a register value
assignment. The time Þeld shall be of type s_acc_time structure, as shown in Figure 19-101.

The model Þeld in the s_setval_delay structure shall determine how the delay shall be applied, and how other
simulation events scheduled for the same object shall be affected. The delay model shall be speciÞed using predeÞned
integer constants, listed in Table 19-59. Note that the constants listed in Table 19-59 can also be used.

Figure 19-101ÑThe s_setval_delay structure for acc_set_value()

Table 19-58ÑEncoding of bits in the s_acc_vecval structure

aval bval Value

0 0 0

1 0 1

0 1 Z

1 1 X

typedef struct t_setval_delay
{
 s_acc_time time;
 int model;
} s_setval_delay, *p_setval_delay;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 437

When setting the value of a sequential UDP, the model Þeld shall be accNoDelay, and the new value shall be assigned
with no delay even if the UDP instance has a delay.

The s_acc_time structure shall hold the delay value that shall be used by acc_set_value(). The s_acc_time
structure is deÞned in acc_user.h and is listed in Figure 19-101.

The type Þeld in the s_acc_time structure shall indicate the data type of the delay that shall be stored in the
structure. The type shall be speciÞed using predeÞned integer constants, listed in Table 19-60.

The low Þeld shall be an integer that represents the lower 32 bits of a 64-bit delay value.

The high Þeld shall be an integer that represents the upper 32 bits of a 64-bit delay value.

The real Þeld shall be a double that represents the delay as a real number value.

Figure 19-102ÑThe s_acc_time structure for acc_set_value()

Table 19-59ÑPredeÞned delay constants for the model Þeld of s_setval_delay

Integer constant Delay model Description

accNoDelay
No delay Sets a register or sequential UDP to the indi-

cated value with no delay; other events sched-
uled for the object are not affected

accInertialDelay

Inertial delay Sets a register to the indicated value after the
speciÞed delay; all scheduled events on the
object are removed before this event is sched-
uled

accTransportDelay

ModiÞed transport delay Sets a register to the indicated value after the
speciÞed delay; all scheduled events on the
object for times later than this event are
removed

accPureTransportDelay
Pure transport delay Sets a register to the indicated value after the

speciÞed delay; no scheduled events on the
object are removed

typedef struct t_acc_time
{
 int type;
 int low,
 high;
 double real;
} s_acc_time, *p_acc_time;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

438 Section 19

The routine acc_set_value() shall be used to perform a procedural continuous assignment of a value to a register or to
deassign the register. This shall be the same functionality as the procedural assign and deassign keywords in the
Verilog HDL.

The routine acc_set_value() shall also be used to perform a procedural force of value onto a register or net, or to
release the register or net. This shall be the same functionality as the procedural force and release keywords in the
Verilog HDL.

When an object is deassigned or released using acc_set_value(), the current value of the object shall be returned to
the s_setval_value structure.

To assign, deassign, force, or release an object using acc_set_value(), the s_setval_value and
s_setval_delay structures shall be allocated and the Þelds shall be set to the appropriate values. For the model
Þeld of the s_setval_delay structure, one of the predeÞned constants listed in Table 19-61 shall be used.

The example shown in Figure 19-103 uses acc_set_value() to set and propagate a value onto a register. This example
assumes the application is linked to a user-deÞned system task (using the PLI interface mechanism) called
$my_set_value(), which has the following usage for a four bit register, r1:

$my_set_value(r1, Òx011Ó, 2.4);

Table 19-60ÑPredeÞned time constants for the type Þeld of s_acc_time

Integer constant Description

accTime Delay is a 64-bit integer; time shall be scaled to the timescale in effect
for the module containing the object.

accSimTime Delay is a 64-bit integer; time shall be scaled to the time units being
used by the simulator

accRealTime Delay is a real number; time shall be scaled to the timescale in effect for
the module containing the object.

Table 19-61ÑPredeÞned assign/force constants for the model Þeld of s_setval_delay

Integer constant Description

accAssignFlag
Continuously assigns a register to the indicated value with no delay;
other events scheduled for the object are overridden.
Same functionality as the Verilog HDL procedural assign keyword.

accDeassignFlag
Deassigns a continuously assigned register; other events scheduled for
the object are no longer overridden. Same functionality as the Verilog
HDL procedural deassign keyword.

accForceFlag
Forces a value onto a register or net; other events scheduled for the
object are overridden. Same functionality as the Verilog HDL proce-
dural force keyword.

accReleaseFlag

Releases a forced register or net; other events scheduled for the object
are no longer overridden, and nets immediately return to the current
driven value. Same functionality as the Verilog HDL procedural release
keyword.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 439

Figure 19-103ÑUsing acc_set_value()

int my_set_value()
{

static s_setval_delay delay_s = {{accRealTime},accInertialDelay};

static s_setval_value value_s = {accBinStrVal};

handle reg = acc_handle_tfarg(1);

value_s.value.str = acc_fetch_tfarg_str(2);

delay_s.time.real= acc_fetch_tfarg(3);

acc_set_value(reg, &value_s, &delay_s);
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

440 Section 19

19.97 acc_vcl_add()

The ACC routine acc_vcl_add() shall set up a callback monitor on an object that shall call a user-deÞned consumer
routine when the object changes value. The consumer routine shall be passed logic value information or logic value
and strength information about the object.

The acc_vcl_add() routine requires four arguments, as described in the following paragraphs.

The object_handle argument is a handle to the object to be monitored by an application. The VCL shall monitor value
changes for the following objects:

Ñ Scalar, vector, and bit-selects of registers
Ñ Scalar, vector, and bit-selects of nets
Ñ Integer, real and time variables
Ñ Module ports
Ñ Primitive output or inout terminals
Ñ Events

The object_handle passed to acc_vcl_add() is not returned when the consumer routine is called. However, the handle
can be passed using the user_data argument.

The consumer_routine argument is a pointer to a C application. This application shall be called whenever the object
changes value. When a value change callback occurs, the consumer_routine shall be passed the user_data argument
and a pointer to a vc_record structure, which shall contain information about the change.

Refer to 18.10 for a full description of consumer routines and the vc_record structure.

The user_data argument is user-deÞned data, such as the object name, the object handle, the object value, or a pointer
to a data structure. The value of the user_data argument shall be passed to the consumer routine each time a callback
occurs. Note that the user_data argument is deÞned as character string pointer, and therefore any other type should be
cast to a char*.

acc_vcl_add()

Synopsis: Set a callback to a consumer routine with value change information whenever an object changes value.

Syntax: acc_vcl_add(object_handle,consumer_routine,user_data, vcl_flag)

Type Description

Returns: void

Type Name Description

Arguments: handle object_handle Handle to an object to be monitored (such as a register or
net)

C routine pointer consumer_routine Unquoted name of the C routine to be called when the
object changes value

char * user_data User-deÞned data that is passed back to the consumer rou-
tine when the object changes value

int vcl_ßag PredeÞned integer constant that selects the type of change
information reported to the consumer routine

Related
routines:

Use acc_vcl_delete() to remove a VCL callback monitor

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 441

The vcl_ßag argument shall set the type of information the callback mechanism shall report. There are two types of
ßags, as shown in Table 19-62.

If an application calls acc_vcl_add() with the same arguments more than once, the VCL callback mechanism shall
only call the consumer routine once when the object changes value. If any of the VCL arguments, including the
user_data, are different, the VCL callback mechanism shall call the consumer routine multiple times, once for each
unique acc_vcl_add().

If multiple PLI applications monitor the same object at the same time, each application shall receive a separate call
whenever that object changes value. Typically, multiple applications have distinct consumer routines and user_data
pointers. These different consumer routines allow the value change information to be processed in different ways.

Refer to 18.10 for an example of using acc_vcl_add().

Table 19-62Ñvcl_ßag constants used in acc_vcl_add()

vcl_ßag What it does

vcl_verilog_logic Indicates the VCL callback mechanism shall report
information on logic value changes

vcl_verilog_strength Indicates the VCL callback mechanism shall report
information on logic value and strength changes

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

442 Section 19

19.98 acc_vcl_delete()

The ACC routine acc_vcl_delete() shall remove a VCL callback monitor previously requested with a call to
acc_vcl_add(). The acc_vcl_delete() routine requires four arguments, as described in the following paragraphs.
When multiple PLI applications are monitoring the same object, acc_vcl_delete() shall stop monitoring the object
only for the application associated with a speciÞc acc_vcl_add() call.

The object_handle argument is a handle to the object for which the VCL callback monitor is to be removed. This has
to be a handle to the same object that was used when acc_vcl_add() was called.

The consumer_routine argument is the unquoted name of the C application called by the VCL callback monitor. This
has to be the same C application that was speciÞed when acc_vcl_add() was called.

The user_data argument is user-deÞned data that is passed to the consumer routine each time the object changes
value. This has to be the same value that was speciÞed when acc_vcl_add() was called.

The vcl_ßag argument is a predeÞned integer constant and has to be vcl_verilog. This constant shall be used in place
of the vcl_ßag values used with acc_vcl_add().

Refer to 18.10 for an example of using acc_vcl_delete().

acc_vcl_delete()

Synopsis: Removes a VCL callback monitor.

Syntax: acc_vcl_delete(object_handle, consumer_routine, user_data, vcl_flag)

Type Description

Returns: void

Type Name Description

Arguments: handle object_handle Handle to the object to be monitored speciÞed in the call to
acc_vcl_add()

C routine pointer consumer_routine Unquoted name of the C routine speciÞed in the call to
acc_vcl_add()

char * user_data User-deÞned data speciÞed in the call to acc_vcl_add()

int vcl_ßag PredeÞned integer constant; vcl_verilog

Related
routines:

Use acc_vcl_add() to place a VCL callback monitor on an object

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 19 443

19.99 acc_version()

The ACC routine acc_version() shall return a pointer to a character string that indicates the version of the ACC
routines used in the software product that called the PLI application. The return value for this routine is placed in the
ACC internal string buffer. See 18.9 for explanation of strings in ACC routines.

The character string shall be in the following format:

Access routines Version <version_number>

For example, if the software product is using the IEEE Std 1364-1995 PLI version of ACC routines, acc_version()
would return a pointer to the following string:

ÒAccess routines Version IEEE 1364 PLIÓ

NOTEÑThe string returned by acc_version() shall be deÞned by the software product vendor.

The example shown in Figure 19-104 uses acc_version() to identify the version of ACC routines linked to the
application.

Figure 19-104ÑUsing acc_version()

acc_version()

Synopsis: Get a pointer to a character string that indicates version number of the ACC routine software.

Syntax: acc_version()

Type Description

Returns: char * Character string pointer

Type Name Description

Arguments: None

Related
routines:

Use acc_product_version() to get the version of the software product in use
Use acc_product_type() to get the type of software product in use

#include "acc_user.h"

show_versions()
{

/*initialize environment for ACC routines*/
acc_initialize();
acc_configure(accDevelopmentVersion, ÒIEEE 1364 PLIÓ);

/*show version of ACC routines*/
/* and version of Verilog that is linked to ACC routines*/
io_printf("Running %s with %s\n",acc_version(),acc_product_version());

acc_close();
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

444 Section 20

Section 20

Using TF routines

This section provides an overview of the types of operations that are done with the PLI task/function (TF) routines.
Detailed descriptions of the routines are provided in the next section.

20.1 TF routine deÞnition

The PLI TF routines, sometimes referred to as

utility routines

, provide a mechanism to manipulate the arguments of
user-deÞned system tasks and functions and to synchronize interaction between a task and the simulator. Appropriate
applications include stimulus generation, error checking, and interfaces to C models.

20.2 TF routine parameters

In the context of TF routines, the term

parameter

 shall refer to the arguments of user-deÞned system tasks and
functionsÑit does

not

 refer to Verilog HDL parameters.

The number of parameters passed to a system task shall be returned by

tf_nump()

. A type for each parameter shall be
returned by

tf_typep()

 and is primarily used to determine if a parameter is writable.

A parameter shall be considered

read-only

 if, in the Verilog HDL source description, the parameter cannot be used on
the left-hand side of a procedural assignment statement. Signals declared as one of the net data types or the event data
type, or bit-selects, part-selects, or concatenations of net data types, shall be read-only. A module instance name or a
primitive instance name shall also be read-only.

Parameters shall be considered

writable

 from the PLI if the parameters can be used on the left-hand side of procedural
assignment in the Verilog HDL source description. Signals declared as reg, integer, time, or real shall be writable, as
well as bit-selects, part-selects, and concatenations of these data types.

20.3 Reading and writing parameter values

User-deÞned system task and function parameter values can be determined and altered in a number of ways with the
TF routines, depending on factors such as value type, data size, and desired format.

20.3.1 Reading and writing 2-state parameter values

To access the 2-state (logic 0 and 1) value of a parameter of size less than or equal to 32 bits, the routine

tf_getp()

can
be used. To set the 2-state value of a parameter of size less than or equal to 32 bits,

tf_putp()

 can be used. If the
parameter is 33Ð64 bits,

tf_getlongp()

 and

tf_putlongp()

 can be used. For parameters of type real,

tf_getrealp()

 and

tf_putrealp()

 can be used.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 20 445

20.3.2 Reading and writing 4-state values

If 4-states (logic 0, 1, X, and Z) are required and a string representation of the value is appropriate,

tf_strgetp()

 can
be used to access the value. The routines

tf_strdelputp()

,

tf_strlongdelputp()

, and

tf_strrealdelputp()

 can be used
to write 4-state values to writable parameters. For applications with a high frequency of PLI calls, the overhead of
these string-based routines can be excessive. The following paragraph describes an alternative.

4-state values can also be accessed with the routine

tf_exprinfo()

. This routine shall create a persistent structure that
contains the 4-state value of a parameter encoded in a

s_vecval

 structure. After

tf_exprinfo()

 has been called once
for a parameter, the pointer to the

s_vecval

 structure can be saved. The parameter value can be changed using that
structure along with routines

tf_propagatep()

 to send the value in the structure into a simulation and

tf_evaluatep()

to update the value in the structure to the current simulation value.

20.3.3 Reading and writing strength values

Strength values on scalar net parameters can accessed with the routine

tf_nodeinfo()

.

20.3.4 Reading and writing to memories

Memory array values can be accessed with the routine

tf_nodeinfo()

. This routine returns pointer to a

memval

structure that represents the array in the Verilog HDL software product. Setting a value in the

memval

 structure
shall make it available for the software tool access, but this does not automatically cause the value to be propagated to
any right-hand-side memory references.

20.3.5 Reading and writing string values

The routine

tf_getcstringp()

 shall return the string representation of a string constant or a vector parameter. If the
parameter is not a string value or vector, the results of

tf_getcstringp()

 are not predictable. There is no direct method
to write string values using TF routines, but it can be accomplished by writing character values to 8-bit register
elements in a vector register using the

tf_exprinfo()

 value structure.

20.3.6 Writing return values of user-deÞned functions

2-state values can be set as the return value of a user-deÞned function using

tf_putp()

 and

tf_putrealp()

 with a
parameter value of

0

.

20.3.7 Writing the correct C data types

It is important to ensure that the data type of the argument to any of the tf_put routines is consistent with the data type
required by the routine and speciÞed parameter. There is no inherent data type checking in the C language.

The following examples illustrate what cautions should be taken.

If the second parameter of a system task/function instance is of type

tf_readwritereal

, meaning the parameter is
declared as a real register in the Verilog HDL source description, the following tf_put routines shall produce valid
results:

int i = 5;
tf_putp(2, i); /* write an integer value to 2nd parameter */

This example sets the second task/function parameter to 5.0Ñassigning an integer value to a real variable is
legal in the Verilog HDL.

double d = 5.7;
tf_putrealp(2, d); /* write a real value to 2nd parameter */

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

446 Section 20

This example sets the second task/function parameter to 5.7.

The following routines, however, shall produce invalid results for the following reasons:

int i = 5;
tf_putrealp(2, i); /* invalid result */

The statement

int i = 5

 passes a 32-bit integer to

tf_putrealp()

, which expects a 64-bit double value type.
Since there is no data type checking,

tf_putrealp()

 shall read 32 bits of undeÞned data and try to use it as if it
were valid data. The result is unpredictable.

float f = 5;
tf_putrealp(2, f); /* invalid result */

The ßoat statement passes a 32-bit ßoat to

tf_putrealp()

, which is expecting a 64-bit double value type. The
result is unpredictable.

double d = 5.7;
tf_putp(2, d); /* invalid result */

The

tf_putp()

 routine shall take only the lower 32 bits of the 64-bit double passed to it by the statement

double d = 5.7

.

20.4 Value change detection

Value changes on parameters can be detected by enabling asynchronous callbacks with

tf_asynchon()

. The callbacks
can be disabled with

tf_asynchoff()

. When parameter change callbacks are enabled with

tf_asynchon()

, whenever a
parameter changes value, the misctf application associated with the user-deÞned system task/function shall be called
back with three integer arguments:

data

,

reason

, and

paramvc

. Argument

reason

 shall be

reason_paramvc

 if the
parameter changed value, or

reason_paramdrc

 if a driver of the parameter changed value but the parameter did not
change. The value change can be examined immediately, or a second callback can be requested later in the same time
step (as described in 20.6). By setting a second callback at the end of the time step, an application can process all
parameter value changes within in a time step at once. The routines

tf_copypvc_ßag()

,

tf_movepvc_ßag()

,

tf_testpvc_ßag()

, and

tf_getpchange()

 can be used to determine all the parameters that changed in a time step.

20.5 Simulation time

TF routines are provided to read simulation time and to scale delays to simulation time scales.

The routines

tf_gettime()

 and

tf_getlongtime()

 shall return the current simulation time in unsigned format. These
times shall be scaled to the timescale of the module where the system task or function is invoked. The routine

tf_strgettime()

 shall return unscaled simulation time in a string format.

PLI TF routines that involve time shall automatically scale delay values to the timescale of the module containing the
instance of the user-deÞned task or function.

The routines

tf_gettimeunit()

 and

tf_gettimeprecision()

 can be used to obtain the timescale unit and precision of a
module. These routines can also be used to obtain the internal simulation time unit, which is the smallest precision of
all modules within a simulation. The routines

tf_scale_delay()

,

tf_scale_longdelay()

,

tf_scale_realdelay()

,

tf_unscale_delay()

,

tf_unscale_longdelay()

, and

tf_unscale_realdelay()

 can be used to convert between scaled
delays and internal simulation time.

20.6 Simulation synchronization

There are TF routines that allow synchronized calling of the misctf application associated with a user-deÞned system
task or function. The misctf application can be called at the end of the current time step or at some future time step.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 20 447

The routines

tf_synchronize()

 and

tf_rosynchronize()

 shall cause the misctf application associated with a user-
deÞned system task to be called back in the current simulation time step.

The

tf_synchronize()

 routine shall place the callback at the end of the inactive event queue for the current time step.
The misctf application shall be called with

reason_synch

. It is possible for subsequent events to be added to the
current time step after the

tf_synchronize()

 callback (for this reason, when the callback occurs, the next scheduled
time step cannot be determined). The PLI application can propagate new values from the misctf call in

reason_synch

mode.

The

tf_rosynchronize()

 callback shall occur after all active, inactive, and nonblocking assign events for a time step
have been processed. The misctf application shall be called with

reason_rosynch

. With

reason_rosynch

, it is
possible to determine the time of the next scheduled time step using

tf_getnextlongtime()

. Values cannot be written
to parameters during a

reason_rosynch

 callback (the

 'ro'

 indicates read-only).

The routine

tf_setdelay()

 and its variations shall schedule the misctf application to be called back at a speciÞed time
with reason argument

reason_reactivate

. The routine

tf_clearalldelays()

 shall remove any previously scheduled
callbacks of this type.

20.7 Instances of user-deÞned task or functions

The routine

tf_getinstance()

 shall return a unique identiÞer for each instance of a user-deÞned system task or
function in the Verilog HDL source description. This value can then be used as the

instance_p

 argument to all the

tf_i*

 routines so that the parameters of one instance can be manipulated from another task or function instance.

20.8 Module and scope instance names

The full hierarchical path name of the module that contains an instance shall be returned by the routine

tf_mipname(). The full name of the containing scope, which can be an Verilog HDL task or function, a named block,
or a module instance, shall be returned by tf_spname().

20.9 Saving information from one system TF call to the next

The PLI TF routines tf_setworkarea() and tf_getworkarea() shall provide a special storage work area that can be
used for:

Ñ Saving data during one call to a PLI application that can be retrieved during a subsequent call to the applica-
tion.

Ñ Passing data from one type of PLI application to another, such as from a checktf application to a calltf appli-
cation.

20.10 Displaying output messages

The routine io_printf() can be used in place of the C printf() statement. This routine has essentially the same syntax
and semantics as printf(), but it displays the output message to both the standard output of the software product and
to the log Þle of the software product.

The routine io_mcdprintf() is also similar to the C printf(), but permits writing information to Þles that were opened
within the Verilog HDL source description using the $fopen() built-in system function.

The routines tf_warning(), tf_error(), tf_message(), and tf_text() can be used to display warning and error
messages that are automatically formatted to a similar format as the warning and error messages for the software
product. The routines tf_error() and tf_message() shall also provide control for aborting the software product
execution when an error is detected.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

448 Section 20

20.11 Stopping and Þnishing

The routines tf_dostop() and tf_doÞnish() are the PLI equivalents to the built-in system tasks $stop() and $Þnish().

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

Section 21 449

Section 21

TF routine deÞnitions

This section deÞnes the PLI TF routines, explaining their function, syntax, and usage. The routines are listed in
alphabetical order. See Section 19 for conventions that are used in the deÞnitions of the PLI routines.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

450 Section 21

21.1 io_mcdprintf()

The TF routine

io_mcdprintf()

 shall write a formatted message to one or more open Þles, pointed to by the mcd
(multichannel descriptor). The functionality is similar to the C fprintf() function.

The

mcd

 value uses the Þle descriptors created by the

$fopen

 built-in Verilog HDL system task. The value of the mcd
generated by one or more calls to

$fopen

 shall be passed to the PLI application using a task/function argument.

The

format

 control string uses the same formatting controls as the C printf() function (for example, %d).

The maximum number of arguments that can be used in the format control string is 12.

io_mcdprintf()

Synopsis:

Write a formatted message to one or more Þles.

Syntax:

io_mcdprintf(mcd, format, arg1,...arg12)

Type Description

Returns:

void

Type Name Description

Arguments:

int mcd An integer multichannel descriptor value representing one
or more open Þles

quoted string or
char *

format A quoted character string or pointer to a character string
that controls the message to be written

arg1...arg12 1 to 12 arguments used in the format control string; the
type of each argument should be consistent with how it is
used in the format string

Related
routines:

Use io_printf() to write messages to standard output and to a Verilog product log Þle

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 451

21.2 io_printf()

The TF routine

 io_printf()

 shall write a formatted message as text output. The functionality is similar to the C
printf() function However,

io_printf()

 differs from printf() because it ensures the message is written to both the
standard output text window of the product and the output log Þle of the product.

The

format

 control string uses the same formatting controls as the C printf() function (for example, %d).

The maximum number of arguments that can be used in the format control string is 12.

io_printf()

Synopsis:

Print a formatted message to the standard output of a product and to the log Þle of a product.

Syntax:

io_printf(format, arg1,...arg12)

Type Description

Returns:

void

Type Name Description

Arguments:

quoted string or
char *

format A quoted character string or pointer to a character string
that controls the message to be written

arg1...arg12 1 to 12 arguments used in the format control string; the
type of each argument should be consistent with how it is
used in the format string

Related
routines:

Use io_mcdprintf() to write a formatted message to one or more open Þles
Use tf_message(), tf_error(), or tf_warning() to write error or warning messages

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

452 Section 21

21.3 mc_scan_plusargs()

The TF routine

mc_scan_plusargs()

 shall scan all software product invocation command options and match a given
string to a plus argument. The match is case sensitive.

The routine

mc_scan_plusargs()

 shall

Ñ Return

null

 if

startarg

 is not found

Ñ Return the remaining part of command argument if

startarg

 is found (e.g., if the invocation option string is

Ò+siz64Ó

, and

startarg

 is

ÒsizÓ

, then

Ò64Ó

 is returned)

Ñ Return a pointer to a C string with a

null

 terminator if there is no remaining part of a found plus argument

mc_scan_plusargs()

Synopsis:

Scan software product invocation command line for plus (+) options.

Syntax:

mc_scan_plusargs(startarg)

Type Description

Returns:

char * Pointer to a string with the result of the search

Type Name Description

Arguments:

quoted string or
char *

startarg A quoted string or pointer to a character string with the Þrst
part of the invocation option to search for

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 453

21.4 tf_add_long()

The TF routine

tf_add_long()

 shall add two 64-bit values. After calling

tf_add_long()

, the variables used to pass the
Þrst operand shall contain the results of the addition. Figure 21-1 shows the high and low 32 bits of two long integers
and how

tf_add_long()

 shall add them.

Figure 21-1ÑAdding with tf_add_long()

tf_add_long()

Synopsis:

Add two 64-bit integers.

Syntax:

tf_add_long(&aof_low1, &aof_high1, low2, high2)

Type Description

Returns:

void

Type Name Description

Arguments:

int * aof_low1 Pointer to least signiÞcant 32 bits of Þrst operand

int * aof_high1 Pointer to most signiÞcant 32 bits of Þrst operand

int low2 Least signiÞcant 32 bits of second operand

int high2 Most signiÞcant 32 bits of second operand

Related
routines:

Use tf_subtract_long() to subtract two 64-bit integers
Use tf_multiply_long() to multiply two 64-bit integers
Use tf_divide_long() to divide two 64-bit integers
Use tf_compare_long() to compare two 64-bit integers

high2 low2

high1 low1

high 32 bits low 32 bits

integer2

integer1

integer1 = integer1 + integer2

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

454 Section 21

21.5 tf_asynchoff(), tf_iasynchoff()

The TF routines

tf_asynchoff()

 and

tf_iasynchoff()

 shall disable further calling of the misctf application for

reason_paramvc

 for the current instance or a speciÞc instance of a user-deÞned system task or function.

Asynchronous calling is Þrst enabled by the routines

tf_asynchon()

 or

tf_iasynchon()

.

tf_asynchoff(), tf_iasynchoff()

Synopsis:

Disable asynchronous calling of the misctf application.

Syntax:

tf_asynchoff()
tf_iasynchoff(instance_p)

Type Description

Returns:

void

Type Name Description

Arguments:

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_asynchon() or tf_iasynchon() to enable asynchronous calling of the misctf application
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 455

21.6 tf_asynchon(), tf_iasynchon()

The TF routines

tf_asynchon()

 and

tf_iasynchon()

shall enable a misctf user application to be called asynchronously
whenever a parameter value changes in the current instance or in a speciÞc instance of a user-deÞned system task or
function. After enabling, the routine speciÞed by misctf in the PLI interface mechanism shall be called with a reason
of

reason_paramvc

 each time any task/function parameter changes value, or

reason_paramdrc

 each time any task/
function parameter changes strength. The parameter index number of the parameter that changed value is passed to
the misctf application as a third C argument,

paramvc

.

The value change can be examined immediately, or a second callback can be requested later in the same time step (as
described in 20.6). By setting a second callback at the end of the time step, an application can process all parameter
value changes within in a time step at once. The routines

tf_copypvc_ßag()

,

tf_movepvc_ßag()

,

tf_testpvc_ßag()

,
and

tf_getpchange()

 can be used to determine all the parameters that changed in a time step.

Task/function parameter index numbering shall proceed from left to right, and the leftmost parameter shall be number
1.

tf_asynchon(), tf_iasynchon()

Synopsis:

Enable asynchronous calling of the misctf application for parameter value changes.

Syntax:

tf_asynchon()
tf_iasynchon(instance_p)

Type Description

Returns:

void

Type Name Description

Arguments:

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_asynchoff() or tf_iasynchoff() to disable asynchronous calling of the misctf application
Use tf_getpchange() or tf_igetpchange() to get the index number of the parameter that changed
Use tf_copypvc_ßag() or tf_icopypvc_ßag() to copy pvc ßags
Use tf_movepvc_ßag() or tf_imovepvc_ßag() to move a pvc ßag to the saved pvc ßag
Use tf_testpvc_ßag() or tf_itestpvc_ßag() to get the value of a saved pvc ßag
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

456 Section 21

21.7 tf_clearalldelays(), tf_iclearalldelays()

The TF routines

tf_clearalldelays()

 and

tf_iclearalldelays()

 shall clear all reactivation delays, which shall remove
the effect of all previous

 tf_setdelay()

 or

tf_isetdelay()

 calls for the current instance or speciÞc instance of a user-
deÞned system task or function.

tf_clearalldelays(), tf_iclearalldelays()

Synopsis:

Clear all scheduled reactivations by tf_setdelay() or tf_isetdelay().

Syntax:

tf_clearalldelays()
tf_iclearalldelays(instance_p)

Type Description

Returns:

void

Type Name Description

Arguments:

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_setdelay() or tf_isetdelay() to schedule a reactivation
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 457

21.8 tf_compare_long()

The TF routine

tf_compare_long()

 shall compare two 64-bit integers and return one of the values given in Table 21-
1.

tf_compare_long()

Synopsis:

Compare two 64-bit integer values.

Syntax:

tf_compare_long(low1, high1, low2, high2)

Type Description

Returns:

int An integer ßag indicating the result of the comparison

Type Name Description

Arguments:

int low1 Least signiÞcant 32 bits of Þrst operand

int high1 Most signiÞcant 32 bits of Þrst operand

int low2 Least signiÞcant 32 bits of second operand

int high2 Most signiÞcant 32 bits of second operand

Related
routines:

Use tf_add_long() to add two 64-bit integers
Use tf_subtract_long() to subtract two 64-bit integers
Use tf_multiply_long() to multiply two 64-bit integers
Use tf_divide_long() to divide two 64-bit integers

Table 21-1ÑReturn values for tf_compare_long()

When tf_compare_long() shall
return

operand1 < operand2

-1

operand1 = operand2

0

operand1 > operand 2 1

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

458 Section 21

21.9 tf_copypvc_ßag(), tf_icopypvc_ßag()

The TF routines tf_copypvc_ßag() and tf_icopypvc_ßag() shall copy the current pvc ßag to the saved pvc ßag and
return the value of the ßag that was copied. The argument nparam is the index number of a parameter in the current
instance or a speciÞc instance of a user-deÞned system task or function. Task/function parameter index numbering
shall proceed from left to right, with the leftmost parameter being number 1. If nparam is -1, then all parameter pvc
ßags shall be copied and the logical OR of all saved ßags returned.

Parameter Value Change (pvc) ßags shall be used to indicate whether a particular user-deÞned system task or function
parameter has changed value. Each parameter shall have two pvc ßags: a current pvc ßag, which shall be set by a
software product when the change occurs, and a saved pvc ßag, which shall be controlled by the user.

NOTEÑPVC ßags shall not be set by the software product until tf_asynchon() or tf_iasynchon() has been called.

tf_copypvc_ßag(), tf_icopypvc_ßag()

Synopsis: Copy parameter value change flags.

Syntax: tf_copypvc_flag(nparam)
tf_icopypvc_flag(nparam, instance_p)

Type Description

Returns: int The value of the pvc ßag

Type Name Description

Arguments: int nparam Index number of the user-deÞned system task or function
parameter, or -1

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_asynchon() or tf_iasynchon() to enable pvc ßags
Use tf_getpchange() or tf_igetpchange() to get the index number of the parameter that changed
Use tf_movepvc_ßag() or tf_imovepvc_ßag() to move a pvc ßag to the saved pvc ßag
Use tf_testpvc_ßag() or tf_itestpvc_ßag() to get the value of a saved pvc ßag
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 459

21.10 tf_divide_long()

The TF routine tf_divide_long() shall divide two 64-bit values. After calling tf_divide_long(), the variables used to
pass the Þrst operand shall contain the result of the division.

The operands shall be assumed to be in twoÕs complement form. Figure 21-2 shows the high and low 32 bits of
two long integers and how tf_divide_long() shall divide them.

Figure 21-2ÑDividing with tf_divide_long()

tf_divide_long()

Synopsis: Divide two 64-bit integers.

Syntax: tf_divide_long(&aof_low1, &aof_high1, low2, high2)

Type Description

Returns: void

Type Name Description

Arguments: int * aof_low1 Pointer to least signiÞcant 32 bits of Þrst operand

int * aof_high1 Pointer to most signiÞcant 32 bits of Þrst operand

int low2 Least signiÞcant 32 bits of second operand

int high2 Most signiÞcant 32 bits of second operand

Related
routines:

Use tf_add_long() to add two 64-bit integers
Use tf_subtract_long() to subtract two 64-bit integers
Use tf_multiply_long() to multiply two 64-bit integers
Use tf_compare_long() to compare two 64-bit integers

high2 low2

high1 low1

high 32 bits low 32 bits

integer2

integer1

integer1 = integer1 / integer2

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

460 Section 21

21.11 tf_doÞnish()

The TF routine tf_doÞnish() shall Þnish the software product execution the same as if a $Þnish() built-in system task
had been executed in the Verilog HDL source description.

tf_doÞnish()

Synopsis: Exit software product execution.

Syntax: tf_dofinish()

Type Description

Returns: void

Type Name Description

Arguments: None

Related
routines:

Use tf_dostop() to cause a product to enter interactive mode

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 461

21.12 tf_dostop()

The TF routine tf_dostop() shall cause a software product to enter into its interactive mode as if a $stop() built-in
system task had been executed in the Verilog HDL source description.

tf_dostop()

Synopsis: Cause software product to enter interactive mode.

Syntax: tf_dostop()

Type Description

Returns: void

Type Name Description

Arguments: None

Related
routines:

Use tf_doÞnish() exit software product execution

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

462 Section 21

21.13 tf_error()

The TF routine tf_error() shall provide an error reporting mechanism compatible with error messages generated by
the software product.

Ñ The format control string uses the same formatting controls as the C printf() function (for example, %d).

Ñ The maximum number of arguments that can be used in the format control string is Þve.

Ñ The location information (Þle name and line number) of the current instance of the user-deÞned system task or
function is appended to the message using a format compatible with error messages generated by the software
product.

Ñ The message is written to both the standard output text window and the output log Þle of the product.

If tf_error() is called by the checktf application associated with the user-deÞned system task or function, the
following rules shall apply:

Ñ If the checktf application is called when the Verilog HDL source code was being parsed or compiled, parsing
or compilation shall be aborted after the error is reported.

Ñ If the checktf application is called when the user-deÞned task or function was invoked on the interactive com-
mand line, the interactive command shall be aborted.

tf_error()

Synopsis: Report an error message.

Syntax: tf_error(format, arg1,...arg5)

Type Description

Returns: void

Type Name Description

Arguments: quoted string or
char *

format A quoted character string or pointer to a character string
that controls the message to be written

arg1...arg5 One to Þve arguments used in the format control string; the
type of each argument should be consistent with how it is
used in the format string

Related
routines:

Use tf_message() to write error messages with additional format control
Use tf_warning() to write a warning message
Use io_printf() or io_mcdprintf() to write a formatted message

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 463

21.14 tf_evaluatep(), tf_ievaluatep()

The TF routines tf_evaluatep() and tf_ievaluatep() shall evaluate the current value of the speciÞed parameter in the
current instance or a speciÞc instance of a user-deÞned system task or function. The current value shall be returned to
the value cell in the tf_exprinfo structure returned from a previous call to the routine tf_exprinfo() or
tf_iexprinfo(). This can be a more efÞcient way to obtain the current value of an expression than to call tf_exprinfo()
or tf_iexprinfo() repeatedly.

The argument nparam shall be the index number of a parameter in a user-deÞned system task or function. Task/
function parameter index numbering shall proceed from left to right, with the leftmost parameter being number 1.

tf_evaluatep(), tf_ievaluatep()

Synopsis: Evaluate a parameter expression.

Syntax: tf_evaluatep(nparam)
tf_ievaluatep(nparam, instance_p)

Type Description

Returns: void

Type Name Description

Arguments: int nparam Index number of the user-deÞned system task or function
parameter

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_exprinfo() or tf_iexprinfo() to get a pointer to the s_tfexprinfo structure
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

464 Section 21

21.15 tf_exprinfo(), tf_iexprinfo()

The TF routines tf_exprinfo() and tf_iexprinfo() shall return a pointer to a structure containing general information
about the speciÞed parameter in the current instance or a speciÞc instance of a user-deÞned system task or function.
The information shall be stored in the C structure s_tfexprinfo.

Memory space shall Þrst be allocated to hold the information before calling tf_exprinfo() or tf_iexprinfo(). For
example:

{
s_tfexprinfo info; /* declare a variable of the structure type */
tf_exprinfo(n, &info); /* pass tf_exprinfo a pointer to the variable */
...
}

This routine shall return the second argument, which is the pointer to the information structure. If nparam is out of
range, or if some other error is found, then 0 shall be returned. The argument nparam shall be the index number of a
parameter in a user-deÞned system task or function. Task/function parameter index numbering shall proceed from left
to right, with the leftmost parameter being number 1.

tf_exprinfo(), tf_iexprinfo()

Synopsis: Get parameter expression information.

Syntax: tf_exprinfo(nparam, exprinfo_p)
tf_iexprinfo(nparam, exprinfo_p, instance_p)

Type Description

Returns: struct t_tfexprinfo * Pointer to a structure containing the value of the second argument if successful;
0 if an error occurred

Type Name Description

Arguments: int nparam Index number of the user-deÞned system task or
function parameter

struct t_tfexprinfo * exprinfo_p Pointer to a variable declared as a
t_tfexprinfo structure type

char * instance_p Pointer to a speciÞc instance of a user-deÞned
system task or function

Related
routines:

Use tf_nodeinfo() or tf_inodeinfo() for additional information on writable parameters
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 465

The the s_tfexprinfo structure is deÞned in veriuser.h and is listed in Figure 21-3.

Figure 21-3ÑThe s_tfexprinfo structure deÞnition

The expr_type of the s_tfexprinfo structure shall indicate the Verilog HDL data type of the parameter, and it
shall be one of the predeÞned constants as given in Table 21-2 and deÞned in veriuser.h.

If the expression type is tf_readonly, tf_readwrite, tf_rwbitselect, tf_rwpartselect, or tf_rwmemselect, the
expr_value_p of the s_tfexprinfo structure shall be a pointer to an array of s_vecval structures that shall
contain the resultant value of the expression. The s_vecval structure for representing vector values is deÞned in
veriuser.h and is listed in Figure 21-4.

Table 21-2ÑPredeÞned constants used with tf_exprinfo()

PredeÞned constant Description

tf_nullparam For null or non-existent parameters

tf_string For string parameters

tf_readonly For integer parameters

tf_readonlyreal For real parameters

tf_readwrite For integer parameters

tf_readwritereal For real parameters

tf_rwbitselect Bit-select parameters

tf_rwpartselect Part-select parameters

tf_rwmemselect Memory-select parameters

typedef struct t_tfexprinfo
{

short expr_type;
short padding;
struct t_vecval *expr_value_p;
double real_value
char *expr_string;
int expr_ngroups;
int expr_vec_size;
int expr_sign;
int expr_lhs_select;
int expr_rhs_select;

} s_tfexprinfo, *p_tfexprinfo;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

466 Section 21

Figure 21-4ÑThe s_vecval structure deÞnition

If the number of bits in the vector (deÞned by the expr_vec_size Þeld of the s_tfexprinfo structure) is less than
or equal to 32, then there shall only be one s_vecval group in the expr_value_p array. For 33 bits to 64 bits,
there shall be two groups in the array, and so on. The number of groups shall also be given by the value of the
expr_ngroups Þeld of the s_tfexprinfo structure. The components avalbits and bvalbits of the s_vecval
structure shall hold the bit patterns making up the value of the parameter. The lsb in the value shall be represented by
the lsbÕs in the avalbits and bvalbits components, and so on. The bit coding shall be as given in Table 21-3.

If the expression type is tf_readonlyreal or tf_readwritereal, the real_value Þeld of the s_tfexprinfo structure
shall contain the value.

If the expression is of type tf_string, the expr_string Þeld of the s_tfexprinfo structure shall point to the string.

If the expression type is tf_readonly, tf_readwrite, tf_rwbitselect, tf_rwpartselect, or tf_rwmemselect, the
expr_ngroups of the s_tfexprinfo structure shall indicate the number of groups for the parameter expression
value and determine the array size of the expr_value_p value structure pointer. If the expression type is
tf_readonlyreal or tf_readwritereal, expr_ngroups shall be 0.

If the expression type is tf_readonly, tf_readwrite, tf_rwbitselect, tf_rwpartselect, or tf_rwmemselect, the
expr_vec_size Þeld of the s_tfexprinfo structure shall indicate the total number of bits in the array of
expr_value_p value structures. If the expression type is tf_readonlyreal or tf_readwritereal, expr_vec_size shall
be 0.

The expr_sign Þeld of the s_tfexprinfo structure shall indicate the sign type of the expression. It shall be 0 for
unsigned or nonzero for signed.

Table 21-3Ñavalbits/bvalbits encoding

aval / bval Logic value

00 0

10 1

01 High impedance

11 Unknown

typedef struct t_vecval
{

int avalbits;
int bvalbits;

} s_vecval, *p_vecval;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 467

21.16 tf_getcstringp(), tf_igetcstringp()

The TF routines tf_getcstringp() and tf_igetcstringp() shall return a character string representing the value of the
speciÞed parameter in the current instance or a speciÞc instance of a user-deÞned system task or function. If the
parameter identiÞed by nparam is a literal string, a variable, or an expression, then tf_getcstringp() or
tf_igetcstringp() shall convert its value to a C-language ASCII string by

a) Eliminating leading zeros

b) Converting each group of 8 bits to an ASCII character

c) Adding a Ò\0Ó string termination character to the end.

If the parameter identiÞed by nparam is null or if nparam is out of range, then a null shall be returned.

The argument nparam shall be the index number of a parameter in a user-deÞned system task or function. Task/
function parameter index numbering shall proceed from left to right, with the leftmost parameter being number 1.

tf_getcstringp(), tf_igetcstringp()

Synopsis: Get parameter value as a string.

Syntax: tf_getcstringp(nparam)
tf_igetcstringp(nparam, instance_p)

Type Description

Returns: char * Pointer to a character string

Type Name Description

Arguments: int nparam Index number of the user-deÞned system task or function
parameter

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_getp() or tf_igetp() to get a parameter value as a 32-bit integer
Use tf_getlongp() or tf_igetlongp() to get a parameter value as a 64-bit integer
Use tf_getrealp() or tf_igetrealp() to get a parameter value as a double
Use tf_strgetp() or tf_istrgetp() to get a parameter value as a formatted string
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

468 Section 21

21.17 tf_getinstance()

The TF routine tf_getinstance() shall return a pointer that identiÞes the current instance of the user-deÞned task or
function in the Verilog HDL source code. The pointer returned by tf_getinstance() can be used later in other TF
routine calls to refer to this instance of the task or function. Many of the TF routines are in two forms. One deals with
the current task or function instance. The other deals with some other instance of the task or function, where the
instance pointer for the other instance was previously obtained using tf_getinstance() during a call to a user routine
initiated by that instance.

tf_getinstance()

Synopsis: Get a pointer to the current instance of a user-deÞned system task or function.

Syntax: tf_getinstance()

Type Description

Returns: char * Pointer to a system task or function instance

Type Name Description

Arguments: None

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 469

21.18 tf_getlongp(), tf_igetlongp()

The TF routines tf_getlongp() and tf_igetlongp() shall return a 64-bit integer value for the parameter speciÞed by
nparam in the current instance or a speciÞc instance of a user-deÞned system task or function. If nparam is out of
range or the parameter is null, then 0 shall be returned.

The argument nparam shall be the index number of a parameter in a user-deÞned system task or function. Task/
function parameter index numbering shall proceed from left to right, with the leftmost parameter being number 1.

tf_getlongp(), tf_igetlongp()

Synopsis: Get parameter value as a 64-bit integer.

Syntax: tf_getlongp(aof_highvalue, nparam)
tf_igetlongp(aof_highvalue, nparam, instance_p)

Type Description

Returns: int Least signiÞcant (rightmost) 32 bits of the parameter value

Type Name Description

Arguments: int * aof_highvalue Pointer to most signiÞcant (leftmost) 32 bits of the parame-
ter value

int nparam Index number of the user-deÞned system task or function
parameter

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_getp() or tf_igetp() to get a parameter value as a 32-bit integer
Use tf_getrealp() or tf_igetrealp() to get a parameter value as a double
Use tf_getcstringp() or tf_igetcstringp() to get a parameter value as a string
Use tf_strgetp() or tf_istrgetp() to get a parameter value as a formatted string
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

470 Section 21

21.19 tf_getlongtime(), tf_igetlongtime()

The TF routines tf_getlongtime() and tf_igetlongtime() shall return the simulation time as a 64-bit integer. The high
32 bits of simulation time shall be assigned to the aof_hightime argument, and the low 32 bits of time shall be
returned.

Time shall be expressed in the timescale unit of the module containing the current instance or a speciÞc instance of
the user-deÞned system task or function.

tf_getlongtime(), tf_igetlongtime()

Synopsis: Get current simulation time as a 64-bit integer.

Syntax: tf_getlongtime(aof_hightime)
tf_igetlongtime(aof_hightime, instance_p)

Type Description

Returns: int Least signiÞcant (rightmost) 32 bits of simulation time

Type Name Description

Arguments: int * aof_hightime Pointer to most signiÞcant (leftmost) 32 bits of simulation
time

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_gettime() to get the simulation time as a 32-bit integer
Use tf_strgettime() to get the simulation time as a character string
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 471

21.20 tf_getnextlongtime()

The TF routine tf_getnextlongtime() shall assign the 64-bit time of the next simulation event to aof_lowtime and
aof_hightime, and it shall return an integer value that indicates the meaning of the time assigned. The time shall
expressed in the timescale units of the module containing the current user-deÞned system task or function instance.

The tf_getnextlongtime() routine shall only return the time for the next simulation event when it is called in a read-
only synchronize mode. A read-only synchronize mode occurs when the misctf user application has been called with
reason_rosynch. If tf_getnextlongtime() is not called in read-only synchronize mode, then the current simulation
time shall be assigned.

Table 21-4 summarizes the functions of tf_getnextlongtime().

tf_getnextlongtime()

Synopsis: Get next time at which a simulation event is scheduled.

Syntax: tf_getnextlongtime(aof_lowtime, aof_hightime)

Type Description

Returns: int Integer value representing the meaning of the next event time obtained

Type Name Description

Arguments: int * aof_lowtime Pointer to least signiÞcant (rightmost) 32 bits of simulation
time

int * aof_hightime Pointer to most signiÞcant (leftmost) 32 bits of simulation
time

Table 21-4ÑReturn values for tf_getnextlongtime()

When tf_getnextlongtime()
shall return

tf_getnextlongtime()
shall assign to aof_lowtime

and aof_hightime

tf_getnextlongtime() was called from a
misctf application that was called with
reason_rosynch

0 The next simulation time for
which an event is scheduled

There are no more future events sched-
uled

1 0

tf_getnextlongtime() was not called
from a misctf application that was called
with reason_rosynch

2 The current simulation time

NOTEÑCase 2 shall take precedence over case 1.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

472 Section 21

21.21 tf_getp(), tf_igetp()

The TF routines tf_getp() and tf_igetp() shall return a value of the parameter speciÞed by nparam in the current
instance or a speciÞc instance of a user-deÞned system task or function. If the value of the parameter is an integer or
a real number, the routines shall return an integer value. If the parameter is a literal string, then the routines shall
return a pointer to a ÒCÓ type string (a string terminated by a Ò\0Ó character). If nparam is out of range or the
parameter is null, then 0 shall be returned.

The argument nparam shall be the index number of a parameter in a user-deÞned system task or function. Task/
function parameter index numbering shall proceed from left to right, with the leftmost parameter being number 1.

The routines tf_getp() and tf_getrealp() differ in the value returned, as shown by the following example.

If the fourth parameter in the user-deÞned system task or function has a value of 9.6 (a real value), then

int ivalue = tf_getp(4)

would set ivalue to 10, whereas

double dvalue = tf_getrealp(4)

would set dvalue to 9.6.

In the Þrst example, note that the int conversion rounds off the value of 9.6 to 10 (rather than truncating it to 9). In the
second example, note that the real value has to be declared as a ÒdoubleÓ (not as a ÒßoatÓ). Rounding is performed
following the Verilog HDL rules.

tf_getp(), tf_igetp()

Synopsis: Get a parameter value as an integer or character string pointer.

Syntax: tf_getp(nparam)
tf_igetp(nparam, instance_p)

Type Description

Returns: int Integer value of a parameter or character string pointer of parameter string value

Type Name Description

Arguments: int nparam Index number of the user-deÞned system task or function
parameter

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_getlongp() or tf_igetlongp() to Get a parameter value as a 64-bit integer
Use tf_getrealp() or tf_igetrealp() to get a parameter value as a double
Use tf_getcstringp() or tf_igetcstringp() to get a parameter value as a string
Use tf_strgetp() or tf_istrgetp() to get a parameter value as a formatted string
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 473

21.22 tf_getpchange(), tf_igetpchange()

The TF routines tf_getpchange() and tf_igetpchange() shall return the number of the next parameter with a number
greater than nparam that changed value for the current instance or for a speciÞc instance of a user-deÞned system task
or function. The nparam argument shall be 0 the Þrst time this routine is called within a given user routine invocation.
The routines shall return the parameter number if there is a change in a parameter with a number greater than nparam,
and they shall return 0 if there are no changes in parameters greater than nparam or if an error is detected. The routine
shall use the saved pvc ßags, so it is necessary to execute tf_movepvc_ßag(-1) prior to calling the routine.

The argument nparam shall be the index number of a parameter in a user-deÞned system task or function. Task/
function parameter index numbering shall proceed from left to right, with the leftmost parameter being number 1.

PVC ßags shall indicate whether a particular user-deÞned system task or function parameter has changed value. Each
parameter shall have two pvc ßags: a current pvc ßag, which shall be set by a software product when the change
occurs, and a saved pvc ßag, which shall be controlled by the user.

NOTEÑPVC ßags shall not be set by the software product until tf_asynchon() or tf_iasynchon() has been called.

tf_getpchange(), tf_igetpchange()

Synopsis: Get the index number of the next parameter that changed value.

Syntax: tf_getpchange(nparam)
tf_igetpchange(nparam, instance_p)

Type Description

Returns: int Index number of the parameter that changed

Type Name Description

Arguments: int nparam Index number of the user-deÞned system task or function
parameter

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_asynchon() or tf_iasynchon() to enable pvc ßags
Use tf_imovepvc_ßag(-1) to save pvc ßags before calling tf_getpchange()
Use tf_copypvc_ßag() or tf_icopypvc_ßag() to copy pvc ßags
Use tf_testpvc_ßag() or tf_itestpvc_ßag() to get the value of a saved pvc ßag
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

474 Section 21

21.23 tf_getrealp(), tf_igetrealp()

The TF routines tf_getrealp() and tf_igetrealp() shall return a double-precision value of the parameter speciÞed by
nparam in the current instance or a speciÞc instance of a user-deÞned system task or function. If nparam is out of
range or the parameter is null, then 0 shall be returned.

The routines tf_getrealp() and tf_igetrealp() cannot handle literal strings. Therefore, before calling these routines,
tf_typep() or tf_itypep() should be called to check the type of the parameter.

The argument nparam shall be the index number of a parameter in a user-deÞned system task or function. Task/
function parameter index numbering shall proceed from left to right, with the leftmost parameter being number 1.

tf_getrealp(), tf_igetrealp()

Synopsis: Get a parameter value as a double-precision value.

Syntax: tf_getrealp(nparam)
tf_igetrealp(nparam, instance_p)

Type Description

Returns: double Double-precision value of a parameter

Type Name Description

Arguments: int nparam Index number of the user-deÞned system task or function
parameter

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_getp() or tf_igetp() to get a parameter value as a 32-bit integer
Use tf_getlongp() or tf_igetlongp() to get a parameter value as a 64-bit integer
Use tf_getcstringp() or tf_igetcstringp() to get a parameter value as a string
Use tf_strgetp() or tf_istrgetp() to get a parameter value as a formatted string
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 475

21.24 tf_getrealtime(), tf_igetrealtime()

The TF routines tf_getrealtime() and tf_igetrealtime() shall return the simulation time as a real number in double-
precision format.

Time shall be expressed in the timescale unit of the module containing the current instance or a speciÞc instance of a
user-deÞned system task or function.

tf_getrealtime(), tf_igetrealtime()

Synopsis: Get the current simulation time in double-precision format.

Syntax: tf_getrealtime()
tf_igetrealtime(instance_p)

Type Description

Returns: double Current simulation time

Type Name Description

Arguments: char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_gettime() to get the lower 32-bits of simulation time as an integer
Use tf_gettime() to get the full 64-bits of simulation time as an integer
Use tf_strgettime() to get simulation time as a character string
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

476 Section 21

21.25 tf_gettime(), tf_igettime()

The TF routines tf_gettime() and tf_igettime() shall return the lower 32 bits of simulation time as an integer.

Time shall be expressed in the timescale unit of the module containing the current instance or a speciÞc instance of a
user-deÞned system task or function.

tf_gettime(), tf_igettime()

Synopsis: Get the current simulation time as a 32-bit integer.

Syntax: tf_gettime()
tf_igettime(instance_p)

Type Description

Returns: int Least signiÞcant 32 bits of simulation time

Type Name Description

Arguments: char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_getlongtime() to get the full 64 bits of simulation time
Use tf_getrealtime() to get the simulation time as a double-precision real number
Use tf_strgettime() to get simulation time as a character string
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 477

21.26 tf_gettimeprecision(), tf_igettimeprecision()

The TF routines tf_gettimeprecision() and tf_igettimeprecision() shall return the timescale precision for the module
that contains the current instance or a speciÞc instance of a user-deÞned system task or function. The time precision
is set by the `timescale Verilog HDL compiler directive in effect when the module was compiled. The routines
shall return an integer code representing the time precision, as shown in Table 21-5.

When tf_igettimeprecision() is called with a null instance pointer, the routine shall return the simulation time unit,
which is the smallest time precision used by all modules in a design.

tf_gettimeprecision(), tf_igettimeprecision()

Synopsis: Get the timescale precision of a module or a simulation.

Syntax: tf_gettimeprecision()
tf_igettimeprecision(instance_p)

Type Description

Returns: int An integer value that represents a time precision

Type Name Description

Arguments: char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function or null to represent the simulation

Related
routines:

Use tf_gettimeunit() or tf_igettimeunit() to get the timescale time units
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Table 21-5ÑCode returned by tf_gettimeprecision() and tf_igettimeprecision()

Integer code returned Simulation time precision

2 100 s

1 10 s

0 1 s

-1 100 ms

-2 10 ms

-3 1 ms

-4 100 µs

-5 10 µs

-6 1 µs

-7 100 ns

-8 10 ns

-9 1 ns

-10 100 ps

-11 10 ps

-12 1 ps

-13 100 fs

-14 10 fs

-15 1 fs

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

478 Section 21

21.27 tf_gettimeunit(), tf_igettimeunit()

The TF routines tf_gettimeunit() and tf_igettimeunit() shall return the timescale time units for the module that
contains the current instance or a speciÞc instance of a user-deÞned system task or function. The time unit for a
module is set by the `timescale Verilog HDL compiler directive in effect when the module was compiled. The
routines shall return an integer code representing the time unit, as shown in Table 21-6.

When tf_igettimeunit() is called with a null instance pointer, the routines shall return the simulation time unit,
which is the smallest time precision used by all modules in a design.

tf_gettimeunit(), tf_igettimeunit()

Synopsis: Get the timescale unit of a module or a simulation.

Syntax: tf_gettimeunit()
tf_igettimeunit(instance_p)

Type Description

Returns: int An integer value that represents a time unit

Type Name Description

Arguments: char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function or null to represent the simulation

Related
routines:

Use tf_gettimeprecision() or tf_igettimeprecision() to get the timescale time precision
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Table 21-6ÑCode returned by tf_gettimeunit() and tf_igettimeunit()

Integer code returned Simulation time unit

2 100 s

1 10 s

0 1 s

-1 100 ms

-2 10 ms

-3 1 ms

-4 100 µs

-5 10 µs

-6 1 µs

-7 100 ns

-8 10 ns

-9 1 ns

-10 100 ps

-11 10 ps

-12 1 ps

-13 100 fs

-14 10 fs

-15 1 fs

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 479

21.28 tf_getworkarea(), tf_igetworkarea()

The TF routines tf_getworkarea() and tf_igetworkarea() shall return the work area pointer value of the current
instance or a speciÞc instance of a user-deÞned system task or function. The value of the work area pointer shall be
placed there by a previous call to the routine tf_setworkarea() or tf_isetworkarea(). These routines can be used as a
means for two user applications to share information. For example, a checktf user application might open a Þle and
then place the Þle pointer into the workarea using tf_setworkarea(). Later, the calltf user application can retrieve the
Þle pointer using tf_getworkarea().

tf_getworkarea(), tf_igetworkarea()

Synopsis: Get work area pointer.

Syntax: tf_getworkarea()
tf_igetworkarea(instance_p)

Type Description

Returns: char * Pointer to a work area shared by all routines for a speciÞc task/function instance

Type Name Description

Arguments: char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_setworkarea() or tf_isetworkarea() to put a value into the work area pointer
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

480 Section 21

21.29 tf_long_to_real()

The TF routine tf_long_to_real() shall convert a 64-bit long integer to a real (double-precision ßoating-point)
number. The variable pointed to by aof_real shall contain the converted number upon return from this routine.

tf_long_to_real()

Synopsis: Convert a long integer to a real number.

Syntax: tf_long_to_real(low, high, aof_real)

Type Description

Returns: void

Type Name Description

Arguments: int low Least signiÞcant (rightmost) 32 bits of a 64-bit integer

int high Most signiÞcant (leftmost) 32 bits of a 64-bit integer

double * aof_real Pointer to a double-precision variable

Related
routines:

Use tf_real_to_long() to convert a real number to a 64-bit integer
Use tf_longtime_tostr() to convert a long integer to a character string

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 481

21.30 tf_longtime_tostr()

The TF routine tf_longtime_tostr() shall convert a 64-bit integer time value to a character string. The time value
shall be unsigned.

tf_longtime_tostr()

Synopsis: Convert 64-bit integer time value to a character string.

Syntax: tf_longtime_tostr(lowtime, hightime)

Type Description

Returns: char * Pointer to a character string representing the simulation time value

Type Name Description

Arguments: int lowtime Least signiÞcant (rightmost) 32 bits of simulation time

int hightime Most signiÞcant (leftmost) 32 bits of simulation time

Related
routines:

Use tf_getlongtime() to get the current simulation time as a 64-bit integer

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

482 Section 21

21.31 tf_message()

The TF routine tf_message() shall display warning or error message information using the warning and error
message format for a software product. The location information (Þle name and line number) of the current instance
of the user-deÞned system task or function shall be appended to the message using a format compatible with warning
and error messages generated by the software product, and the message shall be written to both the standard output
text window and the output log Þle of the product.

The level Þeld shall indicate the severity level of the error, speciÞed as a predeÞned constant. There shall be Þve
levels: ERR_ERROR, ERR_SYSTEM, ERR_INTERNAL, ERR_MESSAGE, and ERR_WARNING. If tf_message() is
called by the checktf application associated with the user-deÞned system task or function, the following rules shall
apply:

Ñ If the checktf application is called when the Verilog HDL source code was being parsed or compiled, and the
level is ERR_ERROR, ERR_SYSTEM, or ERR_INTERNAL, then parsing or compilation shall be aborted after
an error message is reported.

Ñ If the checktf application is called when the Verilog HDL source code was being parsed or compiled, and the
level is ERR_WARNING or ERR_MESSAGE, then parsing or compilation shall continue after a warning mes-
sage is reported.

Ñ If the checktf application is called when the user-deÞned task or function was invoked on the interactive com-
mand line, the interactive command shall be aborted after a warning message or error message is reported.

The facility and code Þelds shall be string arguments that can be used in the Verilog software product message syntax.
These strings shall be less than 10 characters in length.

tf_message()

Synopsis: Report an error or warning message with software product interruption control.

Syntax: tf_message(level, facility, code, message, arg1,...arg5)

Type Description

Returns: void

Type Name Description

Arguments: int level A predeÞned constant indicating the severity level of the
error

quoted string or
char *

facility A quoted character string or pointer to a character string
used in the output message

quoted string or
char *

code A quoted character string or pointer to a character string
used in the output message

quoted string or
char *

message A quoted character string or pointer to a character string
that controls the message to be written

arg1...arg5 One to Þve arguments used in the format control string; the
type of each argument should be consistent with how it is
used in the message string

Related
routines:

Use tf_text() to store error information prior to calling tf_message
Use tf_error() to report error messages
Use tf_warning() to report warning messages

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 483

The message argument shall be a user-deÞned control string containing the message to be displayed. The control
string shall use the same formatting controls as the C printf() function (for example, %d). The message shall use
up to a maximum of Þve variable arguments. There shall be no limit to the length of a variable argument. Formatting
characters, such as \n, \t, \b, \f, or \r, do not need to be included in the messageÑthe software product shall
automatically format each message.

An example of a tf_message() call and the output generated are shown below. Note that the format of the output shall
be deÞned by the software product.

Calling tf_message() with the arguments:

tf_message(ERR_ERROR, "User", TFARG",
"Argument number %d is illegal in task %s", argnum, taskname);

Might produce the output:

ERROR! Argument number 2 is illegal in task [User-TFARG]
$usertask

The routine tf_message() provides more control over the format and severity of error or warning messages than the
routines tf_error() and tf_warning() can provide. In addition, the routine tf_message() can be used in conjunction
with tf_text(), which shall allow an error or warning message to be stored while a PLI application executes additional
code before the message is printed and parsing or compilation of Verilog HDL source possibly aborted.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

484 Section 21

21.32 tf_mipname(), tf_imipname()

The TF routine tf_mipname() shall return the Verilog HDL hierarchical path name to the module instance containing
the call to the current instance or a speciÞc instance of a user-deÞned system task or function.

The string obtained shall be stored in a temporary buffer. If the string is needed across multiple calls to the PLI
application, the string should be preserved.

tf_mipname(), tf_imipname()

Synopsis: Get the hierarchical module instance path name as a string.

Syntax: tf_mipname()
tf_imipname(instance_p)

Type Description

Returns: char * Pointer to a string containing the hierarchical path name

Type Name Description

Arguments: char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_spname() or tf_ispname() to get the scope path name
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 485

21.33 tf_movepvc_ßag(), tf_imovepvc_ßag()

The TF routines tf_movepvc_ßag() and tf_movepvc_ßag() shall move the current pvc ßag to the saved pvc ßag and
clear the current ßag for the current instance or a speciÞc instance of a user-deÞned system task or function. The
routine shall return the value of the ßag that was moved.

The argument nparam shall be the index number of a parameter in a speciÞc instance of a user-deÞned system task or
function. Task/function parameter index numbering shall proceed from left to right, with the leftmost parameter
being number 1. If nparam is -1, then all parameter pvc ßags shall be moved and the logical OR of all saved ßags
returned.

PVC ßags shall be used to indicate whether a particular user-deÞned system task or function parameter has changed
value. Each parameter shall have two pvc ßags: a current pvc ßag, which shall be set by a software product when the
change occurs, and a saved pvc ßag, which shall be controlled by the user.

NOTEÑPVC ßags shall not be set by the software product until tf_asynchon() or tf_iasynchon() has been called.

tf_movepvc_ßag(), tf_imovepvc_ßag()

Synopsis: Move parameter value change flags.

Syntax: tf_movepvc_flag(nparam)
tf_imovepvc_flag(nparam, instance_p)

Type Description

Returns: int The value of the pvc ßag

Type Name Description

Arguments: int nparam Index number of the user-deÞned system task or function
parameter, or -1

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_asynchon() or tf_iasynchon() to enable pvc ßags
Use tf_getpchange() or tf_igetpchange() to get the index number of the parameter that changed
Use tf_copypvc_ßag() or tf_icopypvc_ßag() to copy a pvc ßag to the saved pvc ßag
Use tf_testpvc_ßag() or tf_itestpvc_ßag() to get the value of a saved pvc ßag
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

486 Section 21

21.34 tf_multiply_long()

The TF routine tf_multiply_long() shall add two 64-bit values. After calling tf_multiply_long(), the variables used
to pass the Þrst operand shall contain the results of the multiplication. Figure 21-5 shows the high and low 32 bits of
two long integers and how tf_multiply_long() shall multiply them.

Figure 21-5ÑMultiplying with tf_multiply_long()

tf_multiply_long()

Synopsis: Multiply two 64 bit integers.

Syntax: tf_multiply_long(&aof_low1, &aof_high1, low2, high2)

Type Description

Returns: void

Type Name Description

Arguments: int * aof_low1 Pointer to least signiÞcant 32 bits of Þrst operand

int * aof_high1 Pointer to most signiÞcant 32 bits of Þrst operand

int low2 Least signiÞcant 32 bits of second operand

int high2 Most signiÞcant 32 bits of second operand

Related
routines:

Use tf_add_long() to add two 64-bit integers
Use tf_subtract_long() to subtract two 64-bit integers
Use tf_divide_long() to divide two 64-bit integers
Use tf_compare_long() to compare two 64-bit integers

high2 low2

high1 low1

high 32 bits low 32 bits

integer2

integer1

integer1 = integer1 * integer2

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 487

21.35 tf_nodeinfo(), tf_inodeinfo()

The TF routines tf_nodeinfo() and tf_inodeinfo() shall obtain information about the speciÞed writable parameter in
the current instance or a speciÞc instance of a user-deÞned system task or function.

The information shall be stored in the C structure s_tfnodeinfo as deÞned in the Þle veriuser.h. The routine
shall only be called for parameters that are writable (e.g., Verilog HDL register data types). For parameters that are
read only, the TF routines tf_exprinfo() or tf_iexprinfo() can be used.

Memory space shall Þrst be allocated to hold the information before calling tf_nodeinfo() or tf_inodeinfo(). For
example:

{
s_tfnodeinfo info; /* declare a variable of the structure type */
tf_nodeinfo(n, &info); /* pass tf_nodeinfo a pointer to the variable */
...
}

The routines shall return the second argument, which is the pointer to the information structure. If nparam is out of
range, or if some other error is found, then 0 shall be returned.

The argument nparam shall be the index number of a parameter in a user-deÞned system task or function. Task/
function parameter index numbering shall proceed from left to right, with the leftmost parameter being number 1.

The s_tfnodeinfo structure is deÞned in veriuser.h and is listed in Figure 21-6.

tf_nodeinfo(), tf_inodeinfo()

Synopsis: Get parameter node information.

Syntax: tf_nodeinfo(nparam, nodeinfo_p)
tf_inodeinfo(nparam, nodeinfo_p, instance_p)

Type Description

Returns: struct t_tfnodeinfo * The value of the second argument if successful; 0 if an error occurred

Type Name Description

Arguments: int nparam Index number of the user-deÞned system task or
function parameter

struct t_tfnodeinfo * nodeinfo_p Pointer to a variable declared as the
t_tfnodeinfo structure type

char * instance_p Pointer to a speciÞc instance of a user-deÞned
system task or function

Related
routines:

Use tf_exprinfo() or tf_iexprinfo() for general information on parameters
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

488 Section 21

Figure 21-6ÑThe s_tfnodeinfo structure deÞnition

The following paragraphs deÞne the Þeld of the s_tfnodeinfo structure.

The node_type Þeld of the s_tfnodeinfo structure shall indicate the Verilog HDL data type of the parameter, and
is one of the predeÞned constants as given in Table 21-7 and deÞned in veriuser.h.

Table 21-7ÑPredeÞned constants for node_type

PredeÞned constant Description

tf_null_node Not a writable parameter

tf_reg_node Parameter references a register variable

tf_integer_node Parameter references an integer variable

tf_real_node Parameter references a real variable

tf_time_node Parameter references a time variable

tf_netvector_node Parameter references a vector net

tf_netscalar_node Parameter references a scalar net

tf_memory_node Parameter references a memory

typedef struct t_tfnodeinfo
{

short node_type;
short padding;
union
{

struct t_vecval *vecval_p;
struct t_strengthval *strengthval_p;
char *memoryval_p;
double *real_val_p;

} node_value;
char *node_symbol;
int node_ngroups;
int node_vec_size;
int node_sign;
int node_ms_index;
int node_ls_index;
int node_mem_size;
int node_lhs_element;
int node_rhs_element;
int *node_handle;

} s_tfnodeinfo, *p_tfnodeinfo;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 489

The node_value Þeld of the s_tfnodeinfo structure shall be a union of pointers to value structures deÞning the
current value on the node referenced by the parameter. The union member accessed shall depends on the node_type.
The union members are given in Table 21-8.

If the node_type is tf_reg_node, tf_integer_node, tf_time_node, or tf_netvector_node, then node_value shall be a
pointer to an array of s_vecval structures that gives the resultant value of the node. The s_vecval structure for
representing vector values is deÞned in veriuser.h and is listed in Figure 21-7.

Figure 21-7ÑThe s_vecval structure deÞnition

If the number of bits in the vector (deÞned by the node_vec_size Þeld of the s_tfnodeinfo structure) is less than
or equal to 32, then there shall only be one s_vecval group in the node_value_p array. For 33 bits to 64 bits,
two groups shall be in the array, and so on. The number of groups shall also given by the value of node_ngroups. The
Þelds for avalbits and bvalbits of the s_vecval structure shall hold the bit patterns making up the value of the
parameter. The lsb in the value shall be represented by the lsbÕs in the avalbits and bvalbits components, and so on.
The bit coding shall be as given in Table 21-9.

If the node_type Þeld of the s_tfnodeinfo structure is tf_netscalar_node, then the node_value.strengthval_p
Þeld of the s_tfnodeinfo structure shall point to an s_strengthval structure of the form given in Figure
21-8.

Table 21-8ÑHow the node_value union is used

When the node_type is The union member used is

tf_reg_node, tf_integer_node, tf_time_node,
or tf_netvector_node

vecval_p

tf_real_node real_value_p

tf_netscalar_node strengthval_p

tf_memory_node memoryval_p

Table 21-9Ñavalbits/bvalbits encoding

aval / bval Logic value

00 0

10 1

01 High impedance

11 Unknown

typedef struct t_vecval
{

int avalbits;
int bvalbits;

} s_vecval, *p_vecval;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

490 Section 21

Figure 21-8ÑThe s_strengthval structure deÞnition

In the s_strengthval structure, strength0 shall give the 0-strength bit pattern for the value, and strength1 shall
give the 1-strength bit pattern. Refer to 7.10 for details about these bit patterns.

If the node_type Þeld of the s_tfnodeinfo structure is tf_memory_node, then node_value.memoryval_p shall
point to a memval structure giving the total contents of the memory. The structure is organized as shown in Figure
21-9.

Figure 21-9ÑThe memval structure deÞnition

Note that a pointer to the memval structure data structure cannot be represented in C, so the
node_value.memoryval_p Þeld of the s_tfnodeinfo structure is declared as a pointer to a char type. The
memory element addressed by the left-hand-side index given in the memory declaration shall be located in the Þrst
group of bytes, which is the byte group represented by memval[0].

The node_symbol Þeld of the s_tfnodeinfo structure shall be a string pointer to the identiÞer of the parameter.

If the node_type Þeld of the s_tfnodeinfo structure is tf_reg_node, tf_integer_node, tf_time_node, or
tf_netvector_node, then the node_ngroups Þeld of the s_tfnodeinfo structure shall indicate the number of
groups for the parameter nodevalue and shall determine the array size of the node_value.vecval_p value structure. If
the node_type is tf_real_node, then node_ngroups shall be 0.

If the node_type Þeld of the s_tfnodeinfo structure is tf_reg_node, tf_integer_node, tf_time_node, or
tf_netvector_node, then the node_vec_size Þeld of the s_tfnodeinfo structure shall indicate the total number of
bits in the array of the node_value.vecval_p structure. If the node_type is tf_real_node, then node_vec_size shall be
0.

The node_sign Þeld of the s_tfnodeinfo structure shall indicate the sign type of the node as follows: 0 for
unsigned, nonzero for signed.

If the node_type is tf_memory_node, then node_mem_size shall indicate the number of elements in the
node_value.memoryval_p structure.

typedef struct t_strengthval
{
 int strength0;
 int strength1;
} s_strengthval, *p_strengthval;

struct
{
 char avalbits[node_ngroups];
 char bvalbits[node_ngroups];
} memval[node_mem_size];

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 491

21.36 tf_nump(), tf_inump()

The TF routines tf_nump() and tf_inump() shall return the number of parameters (task/function arguments)
speciÞed in the current instance or a speciÞc instance of a user-deÞned task or function statement in the Verilog
source description. The number returned shall be greater than or equal to zero.

tf_nump(), tf_inump()

Synopsis: Get number of task or function parameters.

Syntax: tf_nump()
tf_inump(instance_p)

Type Description

Returns: int The number of parameters

Type Name Description

Arguments: char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

492 Section 21

21.37 tf_propagatep(), tf_ipropagatep()

The TF routines tf_ipropagatep() and tf_ipropagatep() shall write a value to a parameter node of the current
instance or a speciÞc instance of a user-deÞned system task or function, and then propagate the value to any
continuous assignments that read the value of the node.

In order to write values back into a Verilog software product data structure using tf_ipropagatep() and
tf_ipropagatep(), the value shall Þrst be placed into the value structure pointed to by the component
expr_value_p as allocated by calling tf_exprinfo() or tf_iexprinfo(). The structure for tf_exprinfo() and
tf_iexprinfo() shall be used for all parameter types except memories. For memories, the value to be propagated shall
be placed in the structure used with tf_nodeinfo() or tf_inodeinfo().

tf_propagatep(), tf_ipropagatep()

Synopsis: Propagate a parameter value.

Syntax: tf_propagatep(nparam)
tf_ipropagatep(nparam, instance_p)

Type Description

Returns: void

Type Name Description

Arguments: int nparam Index number of the user-deÞned system task or function
parameter

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_exprinfo() or tf_iexprinfo() to get a parameter expression value
Use tf_nodeinfo() or tf_inodeinfo() to get a parameter node value
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 493

21.38 tf_putlongp(), tf_iputlongp()

The TF routines tf_putlongp() and tf_iputlongp() shall write a 64-bit integer value to the parameter speciÞed by
nparam of the current instance or a speciÞc instance of a user-deÞned system task. If nparam is 0, tf_putlongp() and
tf_iputlongp() shall write the value as the return of a user-deÞned system function. If nparam is out of range or the
parameter cannot be written to, then the routines shall do nothing.

The argument nparam shall be the index number of a parameter in a user-deÞned system task or function. Task/
function parameter index numbering shall proceed from left to right, with the leftmost parameter being number 1.

The data type of value should be consistent with the type of put routine and the type of the parameter to which the
value shall be written. Refer to 20.3 for more details on proper data type selection with put routines.

tf_putlongp(), tf_iputlongp()

Synopsis: Write a 64-bit integer value to a parameter or function return.

Syntax: tf_putlongp(nparam, lowvalue, highvalue)
tf_iputlongp(nparam, lowvalue, highvalue, instance_p)

Type Description

Returns: void

Type Name Description

Arguments: int nparam Index number of the user-deÞned system task or function
parameter or 0 to return a function value

int lowvalue Least significant (rightmost) 32 bits of value

int highvalue Most significant (leftmost) 32 bits of value

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_putp() or tf_iputp() to put a parameter value as a 32-bit integer
Use tf_putrealp() or tf_iputrealp() to get a parameter value as a double
Use tf_strdelputp() to put a value as a formatted string with delay
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

494 Section 21

21.39 tf_putp(), tf_iputp()

The TF routine tf_putp() and tf_iputp() shall write an integer value to the parameter speciÞed by nparam of the
current instance or a speciÞc instance of a user-deÞned system task. If nparam is 0, tf_putp() or tf_iputp() shall write
the value as the return of a user-deÞned system function. If nparam is out of range or the parameter cannot be written
to, then the routines shall do nothing.

The argument nparam shall be the index number of a parameter in a user-deÞned system task or function. Task/
function parameter index numbering shall proceed from left to right, with the leftmost parameter being number 1.

The data type of value should be consistent with the type of put routine and the type of the parameter to which the
value shall be written. Refer to 20.3 for more details on proper data type selection with put routines.

tf_putp(), tf_iputp()

Synopsis: Put an integer value to a parameter or function return.

Syntax: tf_putp(nparam, value)
tf_iputp(nparam, value, instance_p)

Type Description

Returns: void

Type Name Description

Arguments: int nparam Index number of the user-deÞned system task or function
parameter or 0 to return a function value

int value An integer value

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_putlongp() or tf_iputlongp() to put a parameter value as a 64-bit integer
Use tf_putrealp() or tf_iputrealp() to get a parameter value as a double
Use tf_strdelputp() to put a value as a formatted string with delay
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 495

21.40 tf_putrealp(), tf_iputrealp()

The TF routines tf_putrealp() and tf_iputrealp() shall write a double-precision real value to the parameter speciÞed
by nparam of the current instance or a speciÞc instance of a user-deÞned system task. If nparam is 0, tf_putrealp()
and tf_iputrealp() shall write the value as the return of a user-deÞned system function. If nparam is out of range or
the parameter cannot be written to, then the routines shall do nothing.

The argument nparam shall be the index number of a parameter in a user-deÞned system task or function. Task/
function parameter index numbering shall proceed from left to right, with the leftmost parameter being number 1.

The data type of value should be consistent with the type of put routine and the type of the parameter to which the
value shall be written. Refer to 20.3 for more details on proper data type selection with put routines.

tf_putrealp(), tf_iputrealp()

Synopsis: Write a real value to a parameter or function return.

Syntax: tf_putrealp(nparam, value)
tf_iputrealp(nparam, value, instance_p)

Type Description

Returns: void

Type Name Description

Arguments: int nparam Index number of the user-deÞned system task or function
parameter or 0 to return a function value

double value A double-precision value

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_putp() or tf_iputp() to put a parameter value as a 32-bit integer
Use tf_putlongp() or tf_iputlongp() to put a parameter value as a 64-bit integer
Use tf_strdelputp() to put a value as a formatted string with delay
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

496 Section 21

21.41 tf_read_restart()

The TF routine tf_read_restart() shall read back a block of memory that was saved with tf_write_save(). This
routine shall only be called from the misctf application when the misctf routine is invoked with reason_restart.

The argument blockptr shall be a pointer to an allocated block of memory to which the saved data shall be restored.

The argument blocklen shall be the length in bytes of the allocated block of memory. Exactly as many bytes have to
be restored as were written with tf_write_save().

If any user task instance pointers have been saved (for use with tf_i* calls), tf_getinstance() has to be used to get new
instance pointer values after the restart. If pointers to user data were saved, the application of the user has to
implement a scheme to reconnect them properly.

tf_read_restart()

Synopsis: Get a block of data from a previously written save Þle.

Syntax: tf_read_restart(blockptr, blocklen)

Type Description

Returns: int Nonzero if successful; zero if an error occurred

Type Name Description

Arguments: char * blockptr Pointer to block of saved data

int blocklen Length of block

Related
routines:

Use tf_write_save() to save a block of data

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 497

21.42 tf_real_to_long()

The TF routine tf_real_to_long() shall convert a double-precision ßoating-point number to a long (64-bit) integer.
The converted value shall be returned in the variables pointed to by aof_low and aof_high.

tf_real_to_long()

Synopsis: Convert a real number to a 64-bit integer.

Syntax: tf_real_to_long(realvalue, aof_int_lo, aof_int_hi)

Type Description

Returns: void

Type Name Description

Arguments: double realvalue Value to be converted

int * aof_low Pointer to an integer variables for storing the least signiÞ-
cant (rightmost) 32 bits of the converted value

int * aof_high Pointer to an integer variables for storing the most signiÞ-
cant (leftmost) 32 bits of the converted value

Related
routines:

Use tf_long_to_real() to convert a 64-bit integer to a real number

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

498 Section 21

21.43 tf_rosynchronize(), tf_irosynchronize()

The TF routine tf_rosynchronize() and tf_irosynchronize() shall schedule a callback to the misctf application
associated with the current instance or a speciÞc instance of a user-deÞned system task or function. The misctf
application shall be called with a reason of reason_rosynch at the end of the current simulation time step.

The routines tf_synchronize() and tf_rosynchronize() have different functionality. The routine tf_synchronize()
shall call the associated misctf application at the end of the current simulation time step with reason_synch, and the
misctf application shall be allowed to schedule additional simulation events using routines such as tf_strdelputp().

The routine tf_rosynchronize() shall call the associated misctf application at the end of the current simulation time
step with reason_rosynch, and the PLI shall not be allowed to schedule any new events. This guarantees that all
simulation events for the current time are completed. Calls to routines such as tf_strdelputp() and tf_setdelay() are
illegal during processing of the misctf application with reason reason_rosynch.

The routine tf_getnextlongtime() shall only return the next simulation time for which an event is scheduled when
used in conjunction with the routines tf_rosynchronize() and tf_irosynchronize().

tf_rosynchronize(), tf_irosynchronize()

Synopsis: Synchronize to end of simulation time step.

Syntax: tf_rosynchronize()
tf_irosynchronize(instance_p)

Type Description

Returns: void

Type Name Description

Arguments: char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function
Use tf_synchronize() to synchronize to end of simulation time step
Use tf_getnextlongtime() to get next time at which a simulation event is scheduled

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 499

21.44 tf_scale_longdelay()

The TF routine tf_scale_longdelay() shall convert a long (64-bit) integer delay into the timescale of the module
containing the instance of the user-deÞned system task or function pointed to by instance_p. The arguments
aof_delay_lo and aof_delay_hi shall contain the address of the converted delay returned by the routine.

tf_scale_longdelay()

Synopsis: Convert a 64-bit integer delay to internal simulation time units.

Syntax: tf_scale_longdelay(instance_p, delay_lo, delay_hi,
 &aof_delay_lo, &aof_delay_hi)

Type Description

Returns: void

Type Name Description

Arguments: char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

int delay_lo Least signiÞcant (rightmost) 32 bits of the delay to be con-
verted

int delay_hi Most signiÞcant (leftmost) 32 bits of the delay to be con-
verted

int * aof_delay_lo Pointer to a variable to store the least signiÞcant (right-
most) 32 bits of the conversion result

int * aof_delay_hi Pointer to a variable to store the most signiÞcant (leftmost)
32 bits of the conversion result

Related
routines:

Use tf_scale_realdelay() to scale real number delays
Use tf_unscale_longdelay() to convert a delay to the time unit of a module
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

500 Section 21

21.45 tf_scale_realdelay()

The TF routine tf_scale_realdelay() shall convert a double-precision ßoating-point delay into the timescale of the
module containing the instance of the user-deÞned system task or function pointed to by instance_p. The argument
aof_realdelay shall contain the address of the converted delay returned by the routine.

tf_scale_realdelay()

Synopsis: Convert a double-precision ßoating-point delay to internal simulation time units.

Syntax: tf_scale_realdelay(instance_p, realdelay, &aof_realdelay)

Type Description

Returns: void

Type Name Description

Arguments: char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

double realdelay Value of the delay to be converted

double * aof_realdelay Pointer to a variable to store the conversion result

Related
routines:

Use tf_scale_longdelay() to scale 64-bit integer delays
Use tf_unscale_realdelay() to convert a delay to the time unit of a module
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 501

21.46 tf_setdelay(), tf_isetdelay()

The TF routines tf_setdelay() and tf_isetdelay() shall schedule a callback to the misctf application associated with
the current instance or a speciÞc instance of a user-deÞned system task or function. The misctf application shall be
called at a future reactivation time. The reactivation time shall be the current simulation time plus the speciÞed delay.
The misctf application shall be called at the reactivation time with a reason of reason_reactivate. The tf_setdelay()
and tf_isetdelay() routines can be called several times with different delays, and several reactivations shall be
scheduled.

The delay argument shall be a 32-bit integer and shall be greater than or equal to 0. The delay shall assume the
timescale units speciÞed for the module containing the speciÞc system task call.

tf_setdelay(), tf_isetdelay()

Synopsis: Activate the misctf application at a particular simulation time.

Syntax: tf_setdelay(delay)
tf_isetdelay(delay, instance_p)

Type Description

Returns: int 1 if successful; 0 if an error occurred

Type Name Description

Arguments: int delay 32-bit integer delay time

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_setlongdelay() or tf_isetlongdelay() for 64-bit integer reactivation delays
Use tf_setrealdelay() or tf_isetrealdelay() for real number reactivation delays
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

502 Section 21

21.47 tf_setlongdelay(), tf_isetlongdelay()

The TF routines tf_setlongdelay() and tf_isetlongdelay() shall schedule a callback to the misctf application
associated with the current instance or a speciÞc instance of a user-deÞned system task or function. The misctf
application shall be called at a future reactivation time. The reactivation time shall be the current simulation time plus
the speciÞed delay. The misctf routine shall be called at the reactivation time with a reason of reason_reactivate. The
tf_setlongdelay() and tf_isetlongdelay() routines can be called several times with different delays, and several
reactivations shall be scheduled.

The delay argument shall be a 64-bit integer and shall be greater than or equal to 0. The delay shall assume the
timescale units speciÞed for the module containing the speciÞc system task call.

tf_setlongdelay(), tf_isetlongdelay()

Synopsis: Activate the misctf application at a particular simulation time.

Syntax: tf_setlongdelay(lowdelay, highdelay)
tf_isetlongdelay(lowdelay, highdelay, instance_p)

Type Description

Returns: int 1 if successful; 0 if an error occurred

Type Name Description

Arguments: int lowdelay Least signiÞcant (rightmost) 32 bits of the delay time to
reactivation

int highdelay Most signiÞcant (leftmost) 32 bits of the delay time to reac-
tivation

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_setdelay() or tf_isetdelay() for 32-bit integer reactivation delays
Use tf_setrealdelay() or tf_isetrealdelay() for real number reactivation delays
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 503

21.48 tf_setrealdelay(), tf_isetrealdelay()

The TF routines tf_setrealdelay() and tf_isetrealdelay() shall schedule a callback to the misctf application
associated with the current instance or a speciÞc instance of a user-deÞned system task or function. The misctf
application shall be called at a future reactivation time. The reactivation time shall be the current simulation time plus
the speciÞed delay. The misctf application shall be called at the reactivation time with a reason of reason_reactivate.
The tf_setrealdelay() and tf_isetrealdelay() routines can be called several times with different delays, and several
reactivations shall be scheduled.

The delay argument shall be a double-precision value and shall be greater than or equal to 0.0. The delay shall assume
the timescale units speciÞed for the module containing the speciÞc system task call.

tf_setrealdelay(), tf_isetrealdelay()

Synopsis: Activate the misctf application at a particular simulation time.

Syntax: tf_setrealdelay(realdelay)
tf_isetrealdelay(realdelay, instance_p)

Type Description

Returns: int 1 if successful; 0 if an error occurred

Type Name Description

Arguments: double realdelay Double-precision delay time to reactivation

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_setdelay() or tf_isetdelay() for 32-bit integer reactivation delays
Use tf_setlongdelay() or tf_isetlongdelay() for 64-bit integer reactivation delays
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

504 Section 21

21.49 tf_setworkarea(), tf_isetworkarea()

The TF routines tf_setworkarea() and tf_isetworkarea() shall store a pointer to user data in the work area of the
current instance or a speciÞc instance of a user-deÞned system task or function. The pointer that is stored can be
retrieved by calling tf_getworkarea() or tf_igetworkarea().

The work area can be used for

Ñ Saving information during one call to a PLI routine, which can be retrieved upon a subsequent invocation of
the routine

Ñ Passing information from type of PLI application to another, such as from a checktf application to a calltf
application

Note that the workarea pointer is a char * type. If the memory allocated for the user data is of some other type, it
should be cast to char *.

tf_setworkarea(), tf_isetworkarea()

Synopsis: Store user data pointer in work area.

Syntax: tf_setworkarea(workarea)
tf_isetworkarea(workarea, instance_p)

Type Description

Returns: void

Type Name Description

Arguments: char * workarea Pointer to user data

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_getworkarea() or tf_igetworkarea() to retrieve the user data pointer
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 505

21.50 tf_sizep(), tf_isizep()

The TF routines tf_sizep() and tf_isizep() shall return the value size in bits of the speciÞed parameter in the current
instance or a speciÞc instance of a user-deÞned system task or function.

If the speciÞed parameter is a literal string, tf_sizep() and tf_isizep() shall return the string length.

If the speciÞed parameter is real or if an error is detected, tf_sizep() and tf_isizep() shall return 0.

The argument nparam shall be the index number of a parameter in a user-deÞned system task or function. Task/
function parameter index numbering shall proceed from left to right, with the leftmost parameter being number 1.

tf_sizep(), tf_isizep()

Synopsis: Get the bit length of a parameter.

Syntax: tf_sizep(nparam)
tf_isizep(nparam, instance_p)

Type Description

Returns: int The number of bits of the parameter

Type Name Description

Arguments: int nparam Index number of the user-deÞned system task or function
parameter

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

506 Section 21

21.51 tf_spname(), tf_ispname()

The TF routines tf_spname() and tf_ispname() shall return a pointer to the Verilog HDL hierarchical path name to
the scope containing the call of a speciÞc instance of a user-deÞned system task or function.

A scope shall be

Ñ A top-level module
Ñ A module instance
Ñ A named begin-end block
Ñ A named fork-join block
Ñ A Verilog HDL task
Ñ A Verilog HDL function

The string obtained shall be stored in a temporary buffer. If the string is needed across multiple calls to the PLI
application, the string should be preserved.

tf_spname(), tf_ispname()

Synopsis: Get scope hierarchical path name as a string.

Syntax: tf_spname()
tf_ispname(instance_p)

Type Description

Returns: char * Pointer to a character string with the hierarchical path name

Type Name Description

Arguments: char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 507

21.52 tf_strdelputp(), tf_istrdelputp()

The TF routines tf_strdelputp() and tf_istrdelputp() shall write a string value to the speciÞed parameter of the
current instance or a speciÞc instance of a user-deÞned system task. The actual change to the parameter shall be
scheduled as an event on the parameter in the Verilog model at a future simulation time.

The bitlength argument shall deÞne the value size in bits.

The format shall deÞne the format of the value speciÞed by value_p and shall be one of the characters given in Table
21-10.

tf_strdelputp(), tf_istrdelputp()

Synopsis: Write a value to a parameter from string value speciÞcation, using a 32-bit integer delay.

Syntax: tf_strdelputp(nparam, bitlength, format, value_p,delay, delaytype)
tf_istrdelputp(nparam, bitlength, format, value_p,delay, delaytype,
 instance_p)

Type Description

Returns: int 1 if successful; 0 if an error is detected

Type Name Description

Arguments: int nparam Index number of the user-deÞned system task or function
parameter

int bitlength Number of bits the value represents

int format A character in single quotes representing the radix (base) of
the value

quoted string or
char *

value_p Quoted character string or pointer to a character string with
the value to be written

int delay Integer value representing the time delay before the value
should be written to the parameter

int delaytype Integer code representing the delay mode for applying the
value

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_strlongdelputp() or tf_istrlongdelputp() for 64-bit integer delays
Use tf_strrealdelputp() or tf_istrrealdelputp() for real number delays
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Table 21-10ÑFormat characters

Format character Description

ÕbÕ or ÕBÕ Value is in binary

ÕoÕ or ÕOÕ Value is in octal

ÕdÕ or ÕDÕ Value is in decimal

ÕhÕ or ÕHÕ Value is in hexadecimal

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

508 Section 21

The delay argument shall represent the amount of time before the value shall be applied to the parameter, and it shall
be greater than or equal to 0. The delay shall assume the timescale units of the module containing the instance of the
user-deÞned system task or function.

The delaytype argument shall determine how the value shall be scheduled in relation to other simulation events on the
same register. The delaytype shall be one of integer values shown in Table 21-11.

Table 21-11Ñdelaytype codes

delaytype code DeÞnition Description

0 Inertial delay All scheduled events on the output parameter in the Ver-
ilog model are removed before scheduling a new event

1 ModiÞed transport delay All events that are scheduled for times later than the new
event on the output parameter in the Verilog model are
removed before scheduling a new event

2 Pure transport delay No scheduled events on the output parameter in the Ver-
ilog model are removed before scheduling a new eventÑ
the last event to be scheduled is not necessarily the last
one to occur

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 509

21.53 tf_strgetp(), tf_istrgetp()

The TF routines tf_strgetp() and tf_istrgetp() shall return a pointer to a string that contains the value of the
parameter expression of the current instance or a speciÞc instance of a user-deÞned system task or function.

The string format is speciÞed by format, and shall be one of the following characters shown in Table 21-12.

The string value returned shall have the same form as output from the formatted built-in system task $display() in
terms of value lengths and value characters used. The length shall be of arbitrary size (not limited to 32 bits as with
the tf_getp() routine), and unknown and high-impedance values shall be obtained.

The referenced parameter can be a string, in which case a pointer to the string shall be returned (the format shall be
ignored in this case). The string obtained shall be stored in a temporary buffer. If the string is needed across multiple
calls to the PLI application, the string should be preserved.

A null pointer shall be returned for errors.

tf_strgetp(), tf_istrgetp()

Synopsis: Get formatted parameter values.

Syntax: tf_strgetp(nparam, format)
tf_istrgetp(nparam, format, instance_p)

Type Description

Returns: char * Pointer to a character string with the parameter value

Type Name Description

Arguments: int nparam Index number of the user-deÞned system task or function
parameter

char format Character in single quotes controlling the return value
format

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_getp() or tf_igetp() to get a parameter value as a 32-bit integer
Use tf_getlongp() or tf_igetlongp() to get a parameter value as a 64-bit integer
Use tf_getrealp() or tf_igetrealp() to get a parameter value as a double
Use tf_getcstringp() or tf_igetcstringp() to get a parameter value as a string
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Table 21-12ÑFormat characters

Format character Description

ÕbÕ or ÕBÕ Value is in binary

ÕoÕ or ÕOÕ Value is in octal

ÕdÕ or ÕDÕ Value is in decimal

ÕhÕ or ÕHÕ Value is in hexadecimal

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

510 Section 21

21.54 tf_strgettime()

The TF routine tf_strgettime() shall return a pointer to a string, which shall be the ASCII representation of the
current simulation time. The string obtained shall be stored in a temporary buffer. If the string is needed across
multiple calls to the PLI application, the string should be preserved.

tf_strgettime()

Synopsis: Get the current simulation time as a string.

Syntax: tf_strgettime()

Type Description

Returns: char * Pointer to a character string with the simulation time

Type Name Description

Arguments: No arguments

Related
routines:

Use tf_gettime() to get simulation time as a 32-bit integer value
Use tf_getlongtime() to get simulation time as a 64-bit integer value
Use tf_getrealtime() to get simulation time as a real value

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 511

21.55 tf_strlongdelputp(), tf_istrlongdelputp()

The TF routines tf_strlongdelputp() and tf_istrlongdelputp() shall write a string value to the speciÞed parameter of
the current instance or a speciÞc instance of a user-deÞned system task. The actual change to the parameter shall be
scheduled as an event on the parameter in the Verilog model at a future simulation time.

The bitlength argument shall deÞne the value size in bits.

The format shall deÞne the format of the value speciÞed by value_p and shall be one of the characters shown in Table
21-13.

tf_strlongdelputp(), tf_istrlongdelputp()

Synopsis: Write a value to a parameter from string value speciÞcation, using a 64-bit integer delay.

Syntax: tf_strlongdelputp(nparam, bitlength, format, value_p, lowdelay,
 highdelay, delaytype)
tf_istrlongdelputp(nparam, bitlength, format, value_p, lowdelay,
 highdelay, delaytype, instance_p)

Type Description

Returns: int 1 if successful; 0 if an error is detected

Type Name Description

Arguments: int nparam Index number of the user-deÞned system task or function
parameter

int bitlength Number of bits the value represents

int format A character in single quotes representing the radix (base) of
the value

quoted string or
char *

value_p Quoted character string or pointer to a character string with
the value to be written

int lowdelay Least signiÞcant (rightmost) 32 bits of delay before the
value is be written to the parameter

int highdelay Most signiÞcant (leftmost) 32 bits of delay before the value
is be written to the parameter

int delaytype Integer code representing the delay mode for applying the
value

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_strdelputp() or tf_istrdelputp() for 32-bit integer delays
Use tf_strrealdelputp() or tf_istrrealdelputp() for real number delays
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

512 Section 21

The delay argument shall represent the amount of time before the value shall be applied to the parameter, and it shall
be greater than or equal to 0. The delay shall assume the timescale units of the module containing the instance of the
user-deÞned system task or function.

The delaytype argument shall determine how the value shall be scheduled in relation to other simulation events on the
same register. The delaytype shall be one of integer values shown in Table 21-14.

Table 21-13ÑFormat characters

Format character Description

ÕbÕ or ÕBÕ Value is in binary

ÕoÕ or ÕOÕ Value is in octal

ÕdÕ or ÕDÕ Value is in decimal

ÕhÕ or ÕHÕ Value is in hexadecimal

Table 21-14Ñdelaytype codes

delaytype code DeÞnition Description

0 Inertial delay All scheduled events on the output parameter in the Ver-
ilog model are removed before scheduling a new event

1 ModiÞed transport delay All events that are scheduled for times later than the new
event on the output parameter in the Verilog model are
removed before scheduling a new event

2 Pure transport delay No scheduled events on the output parameter in the Ver-
ilog model are removed before scheduling a new eventÑ
the last event to be scheduled is not necessarily the last
one to occur

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 513

21.56 tf_strrealdelputp(), tf_istrrealdelputp()

The TF routines tf_strrealdelputp() and tf_istrrealdelputp() shall write a string value to the speciÞed parameter of
the current instance or a speciÞc instance of a user-deÞned system task. The actual change to the parameter shall be
scheduled as an event on the parameter in the Verilog model at a future simulation time.

The bitlength argument shall deÞne the value size in bits.

The format shall deÞne the format of the value speciÞed by value_p and shall be one of the characters given in Table
21-15.

tf_strrealdelputp(), tf_istrrealdelputp()

Synopsis: Write a value to a parameter from string value speciÞcation, using a real number delay.

Syntax: tf_strrealdelputp(nparam, bitlength, format, value_p, realdelay,
 delaytype)
tf_istrrealdelputp(nparam, bitlength, format, value_p, realdelay,
 delaytype, instance_p)

Type Description

Returns: int 1 if successful; 0 if an error is detected

Type Name Description

Arguments: int nparam Index number of the user-deÞned system task or function
parameter

int bitlength Number of bits the value represents

int format A character in single quotes representing the radix (base) of
the value

quoted string or
char *

value_p Quoted character string or pointer to a character string with
the value to be written

double realdelay Double-precision value representing the time delay before
the value shall be written to the parameter

int delaytype Integer code representing the delay mode for applying the
value

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_strdelputp() or tf_istrdelputp() for 32-bit integer delays
Use tf_strlongdelputp() or tf_istrlongdelputp() for 64-bit integer delays
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Table 21-15ÑFormat characters

Format character Description

ÕbÕ or ÕBÕ Value is in binary

ÕoÕ or ÕOÕ Value is in octal

ÕdÕ or ÕDÕ Value is in decimal

ÕhÕ or ÕHÕ Value is in hexadecimal

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

514 Section 21

The delay argument shall represent the amount of time before the value shall be applied to the parameter, and it shall
be greater than or equal to 0. The delay shall assume the timescale units of the module containing the instance of the
user-deÞned system task or function.

The delaytype argument shall determine how the value shall be scheduled in relation to other simulation events on the
same register. The delaytype shall be one of integer values shown in Table 21-16.

Table 21-16Ñdelaytype codes

delaytype code DeÞnition Description

0 Inertial delay All scheduled events on the output parameter in the Ver-
ilog model are removed before scheduling a new event

1 ModiÞed transport delay All events that are scheduled for times later than the new
event on the output parameter in the Verilog model are
removed before scheduling a new event

2 Pure transport delay No scheduled events on the output parameter in the Ver-
ilog model are removed before scheduling a new eventÑ
the last event to be scheduled is not necessarily the last
one to occur

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 515

21.57 tf_subtract_long()

The TF routine tf_subtract_long() shall subtract two 64-bit values. After calling tf_subtract_long(), the variables
used to pass the Þrst operand shall contain the results of the subtraction. The operands shall be assumed to be in
twoÕs complement form. Figure 21-10 shows the high and low 32 bits of two long integers and how
tf_subtract_long() shall subtract them.

Figure 21-10ÑSubtracting with tf_subtract_long()

The example program fragment shown in Figure 21-11 uses tf_subtract_long() to calculate the relative time from the
current time to the next event time (this example assumes that the code is executed during a misctf application call
with reason of reason_rosynch).

tf_subtract_long()

Synopsis: Subtract two 64-bit integers.

Syntax: tf_subtract_long(&aof_low1, &aof_high1, low2, high2)

Type Description

Returns: void

Type Name Description

Arguments: int * aof_low1 Pointer to least signiÞcant 32 bits of Þrst operand

int * aof_high1 Pointer to most signiÞcant 32 bits of Þrst operand

int low2 Least signiÞcant 32 bits of second operand

int high2 Most signiÞcant 32 bits of second operand

Related
routines:

Use tf_add_long() to add two 64-bit integers
Use tf_multiply_long() to multiply two 64-bit integers
Use tf_divide_long() to divide two 64-bit integers
Use tf_compare_long() to compare two 64-bit integers

high2 low2

high1 low1

high 32 bits low 32 bits

integer2

integer1

integer1 = integer1 - integer2

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

516 Section 21

The text message generated by this example is split off the io_printf() calls. If done in a single io_printf(), the
second call to tf_longtime_tostr() would overwrite the string from the Þrst call, since the string is placed in a
temporary buffer.

Figure 21-11ÑUsing tf_subtract_long()

{
 int currlow, currhigh;
 int relalow, relahigh;

 currlow = tf_getlongtime(&currhigh);
 io_printf("At time %s: ", tf_longtime_tostr(currlow, currhigh));
 if(tf_getnextlongtime(&relalow, &relahigh) == 0)

 {
 tf_subtract_long(&relalow, &relahigh, currlow, currhigh);
 io_printf ("relative time to next event is %s",
 tf_longtime_tostr(relalow, relahigh));

 }
 else
 printf("there are no future events");
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 517

21.58 tf_synchronize(), tf_isynchronize()

The TF routines tf_synchronize() and tf_isynchronize() shall schedule a callback to the misctf application
associated with the current instance or a speciÞc instance of a user-deÞned system task or function. The misctf
application shall be called with a reason of reason_synch at the end of the current simulation time step.

The routines tf_synchronize() and tf_rosynchronize() have different functionality. The routine tf_synchronize()
shall call the associated misctf application at the end of the current simulation time step with reason_synch, and the
misctf application shall be allowed to schedule additional simulation events using routines such as tf_strdelputp().

The routine tf_rosynchronize() shall call the associated misctf application at the end of the current simulation time
step with reason_rosynch, and the PLI shall not be allowed to schedule any new events. This guarantees that all
simulation events for the current time are completed. Calls to routines such as tf_strdelputp() and tf_setdelay() are
illegal during processing of the misctf application with reason reason_rosynch.

The routine tf_getnextlongtime() shall only return the next simulation time for which an event is scheduled when
used in conjunction with the routines tf_rosynchronize() and tf_irosynchronize().

tf_synchronize(), tf_isynchronize()

Synopsis: Synchronize to end of simulation time step.

Syntax: tf_synchronize()
tf_isynchronize(instance_p)

Type Description

Returns: void

Type Name Description

Arguments: char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_rosynchronize() for read-only synchronization
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function
Use tf_getnextlongtime() to get next time at which a simulation event is scheduled

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

518 Section 21

21.59 tf_testpvc_ßag(), tf_itestpvc_ßag()

The TF routines tf_testpvc_ßag() and tf_itestpvc_ßag() shall return value of the saved pvc ßag. The argument
nparam shall be the index number of a parameter in a speciÞc instance of a user-deÞned system task or function.
Task/function parameter index numbering shall proceed from left to right, with the leftmost parameter being number
1. If nparam is -1, then all parameter pvc ßags shall be tested and the logical OR of all saved ßags returned.

PVC ßags shall be used to indicate whether a particular user-deÞned system task or function parameter has changed
value. Each parameter shall have two pvc ßags: a current pvc ßag, which shall be set by a software product when the
change occurs, and a saved pvc ßag, which shall be controlled by the user.

NOTEÑPVC ßags shall not be set by the software product until tf_asynchon() or tf_iasynchon() has been called.

tf_testpvc_ßag(), tf_itestpvc_ßag()

Synopsis: Test parameter value change flags.

Syntax: tf_testpvc_flag(nparam)
tf_itestpvc_flag(nparam, instance_p)

Type Description

Returns: int The value of the saved pvc ßag

Type Name Description

Arguments: int nparam Index number of the user-deÞned system task or function
parameter, or -1

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_asynchon() or tf_iasynchon() to enable pvc ßags
Use tf_getpchange() or tf_igetpchange() to get the index number of the parameter that changed
Use tf_copypvc_ßag() or tf_icopypvc_ßag() to copy a pvc ßag to the saved pvc ßag
Use tf_movepvc_ßag() or tf_imovepvc_ßag() to move a pvc ßag to the saved pvc ßag
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 519

21.60 tf_text()

The TF routine tf_text() shall store text messages about an error in a buffer, which will be printed when the routine
tf_message() is called. The routine shall provide a method for a PLI application to store information about one or
more errors before it calls the tf_message() TF routine. This allows an application to process all of a routine, such as
syntax checking, before calling tf_message(), which can be set to abort processing after printing messages. An
application shall be able to call tf_text() any number of times before it calls tf_message().

When the application calls tf_message(), the information stored by tf_text() shall be displayed before the
information in the call to tf_message(). Each call to tf_message() shall clear the buffer where tf_text() stores its
information.

The message argument is a user-deÞned control string containing the message to be displayed. The control string
uses the same formatting controls as the C printf() function (for example, %d). The message shall use up to a
maximum of Þve variable arguments. There shall be no limit to the length of a variable argument. Formatting
characters, such as \n, \t, \b, \f, or \r, do not need to be included in the messageÑthe software product shall
automatically format each message.

An example of using tf_text() and tf_message() calls and the output generated follow. Note that the format of the
output shall be deÞned by the software product.

Calling tf_text() and tf_message() with the arguments:

tf_text ("Argument number %d", argnum);
...
tf_message(ERR_ERROR, "User", TFARG",

" is illegal in task %s", taskname);

Might produce the output:

ERROR! Argument number 2 is illegal in task [User-TFARG]
$usertask

tf_text()

Synopsis: Store error message information.

Syntax: tf_text(message, arg1,...arg5)

Type Description

Returns: void

Type Name Description

Arguments: quoted string or
char *

message A quoted character string or pointer to a character string
with a message to be stored

arg1...arg5 One to Þve arguments used in the format control string; the
type of each argument should be consistent with how it is
used in the message string

Related
routines:

Use tf_message() to display the stored error message

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

520 Section 21

21.61 tf_typep(), tf_itypep()

The TF routines tf_typep() and tf_itypep() shall return an integer constant indicating the type of a parameter for the
current instance or a speciÞc instance of a user-deÞned system task or function. The integer constants shall be as
shown in Table 21-17.

Ñ A read only expression shall be any expression that would be illegal as a left-hand-side construct in a Verilog
HDL procedural assignment (e.g., an expression using net data types or event data types)

Ñ A read/write expression shall be any expression that would be legal as a left-hand-side construct in a Verilog
HDL procedural assignments (e.g., an expression using reg, integer, time, or real data types)

The argument nparam shall be the index number of a parameter in a user-deÞned system task or function. Task/
function parameter index numbering shall proceed from left to right, with the leftmost parameter being number 1.

tf_typep(). tf_itypep()

Synopsis: Get a parameter type.

Syntax: tf_typep(nparam)
tf_itypep(nparam, instance_p)

Type Description

Returns: int A predeÞned integer constant representing the Verilog HDL data type for the parameter

Type Name Description

Arguments: int nparam Index number of the user-deÞned system task or function
parameter

char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

Related
routines:

Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Table 21-17ÑPredeÞned tf_typep() constants

PredeÞned constant Description

tf_nullparam The parameter is a null expression (where no text has been given as the param-
eter), or nparam is out of range

tf_string The parameter is a literal string

tf_readonly The parameter is a vector expression with a value that can be read but not written

tf_readwrite The parameter is a vector expression with a value that can be read and written

tf_readonlyreal The parameter is a real number expression with a value that can be read but not written

tf_readwritereal The parameter is a real number expression with a value that can be read and writ-
ten

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 521

21.62 tf_unscale_longdelay()

The TF routine tf_unscale_longdelay() shall convert a long (64-bit) integer delay expressed in internal simulation
time into the time units of the module containing the user-deÞned system task or function referenced by the
instance_p pointer. The argument aof_delay_lo and aof_delay_hi shall contain the address of the converted delay
returned by the routine.

tf_unscale_longdelay()

Synopsis: Convert a delay from internal simulation time units to the timescale of a particular module.

Syntax: tf_unscale_longdelay(instance_p, delay_lo, delay_hi,
 &aof_delay_lo, &aof_delay_hi)

Type Description

Returns: void

Type Name Description

Arguments: char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

int delay_lo Least signiÞcant (rightmost) 32 bits of the delay to be con-
verted

int delay_hi Most signiÞcant (leftmost) 32 bits of the delay to be con-
verted

int * aof_delay_lo Pointer to a variable to store the least signiÞcant (right-
most) 32 bits of the conversion result

int * aof_delay_hi Pointer to a variable to store the most signiÞcant (leftmost)
32 bits of the conversion result

Related
routines:

Use tf_unscale_realdelay() to unscale real number delays
Use tf_scale_longdelay() to convert a delay to the simulation time unit
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

522 Section 21

21.63 tf_unscale_realdelay()

The TF routine tf_unscale_realdelay() shall convert a double-precision delay expressed in internal simulation time
into the time units of the module containing the user-deÞned system task or function referenced by the instance_p
pointer. The argument aof_realdelay shall contain the address of the converted delay returned by the routine.

tf_unscale_realdelay()

Synopsis: Convert a delay expressed in internal simulation time units to the timescale of a particular module.

Syntax: tf_unscale_realdelay(instance_p, realdelay, &aof_realdelay)

Type Description

Returns: void

Type Name Description

Arguments: char * instance_p Pointer to a speciÞc instance of a user-deÞned system task
or function

double delay Value of the delay to be converted

double * aof_realdelay Pointer to a variable to store the conversion result

Related
routines:

Use tf_unscale_longdelay() to unscale 64-bit integer delays
Use tf_scale_realdelay() to convert a delay to the simulation time unit
Use tf_getinstance() to get a pointer to an instance of a user-deÞned system task or function

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 21 523

21.64 tf_warning()

The TF routine tf_warning() shall provide a warning reporting mechanism compatible with warning messages
generated by the software product.

Ñ The format control string shall use the same formatting controls as the C printf() function (for example, %d).

Ñ The maximum number of arguments that shall be used in the format control string is 5.

Ñ The location information (Þle name and line number) of the current instance of the user-deÞned system task or
function shall be appended to the message using a format compatible with error messages generated by the
software product.

Ñ The message shall be written to both the standard output text window and the output log Þle of the product.

The tf_warning() routine shall not abort parsing or compilation of Verilog HDL source code.

tf_warning()

Synopsis: Report a warning message.

Syntax: tf_warning(format, arg1,...arg5)

Type Description

Returns: void

Type Name Description

Arguments: quoted string or
char *

format A quoted character string or pointer to a character string
that controls the message to be written

arg1...arg5 One to Þve arguments used in the format control string; the
type of each argument should be consistent with how it is
used in the format string

Related
routines:

Use tf_message() to write warning messages with additional format control
Use tf_error() to write a warning message
Use io_printf() or io_mcdprintf() to write a formatted message

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

524 Section 21

21.65 tf_write_save()

The TF routine tf_write_save() shall write user-deÞned data to the end of a save Þle being written by the $save built-
in system task. This routine shall be called from the misctf application when misctf is invoked with reason_save.

The argument blockptr shall be a pointer to an allocated block of memory containing the data to be saved.

The argument blocklen shall be the length in bytes of the allocated block of memory. Note that exactly as many bytes
shall be restored using tf_read_restore() as were written with tf_write_save().

tf_write_save()

Synopsis: Append a block of data to a save file.

Syntax: tf_write_save(blockptr, blocklen)

Type Description

Returns: int Nonzero value if successful, zero if an error is encountered

Type Name Description

Arguments: char * blockptr Pointer to the first byte of the block of data to be saved

int blocklen Number of bytes are to be saved

Related
routines:

Use tf_read_restore() to retrieve the data saved

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

Section 22 525

Section 22

Using VPI routines

Sections 22 and 23 specify the Verilog Procedural Interface (VPI) for the Verilog HDL. This section describes how
the VPI routines are used, and Section 23 deÞnes each of the routines in alphabetical order.

22.1 The VPI interface

The VPI interface provides routines that allow Verilog product users to access information contained in a Verilog
design, and that allow facilities to interact dynamically with a software product. Applications of the VPI interface can
include delay calculators and annotators, connecting a Verilog simulator with other simulation and CAE systems, and
customized debugging tasks.

The functions of the VPI interface can be grouped into two main areas:

Ñ Dynamic software product interaction using VPI callbacks

Ñ Access to Verilog HDL objects and simulation speciÞc objects

22.1.1 VPI callbacks

Dynamic software product interaction shall be accomplished with a registered callback mechanism. VPI callbacks
shall allow a user to request that a Verilog HDL software product, such as a logic simulator, call a user-deÞned
application when a speciÞc activity occurs. For example, the user can request that the user application

my_monitor()

 be called when a particular net changes value, or that

my_cleanup()

 be called when the
software product execution has completed.

The VPI callback facility shall provide the user with the means to interact dynamically with a software product,
detecting the occurrence of value changes, advancement of time, end of simulation, etc. This feature allows
applications such as integration with other simulation systems, specialized timing checks, complex debugging
features, etc.

The reasons for which callbacks shall be provided can be separated into four categories:

Ñ

Simulation event

 (e.g., a value change on a net or a behavioral statement execution)

Ñ

Simulation time

 (e.g., the end of a time queue or after certain amount of time)

Ñ

Simulator action/feature

 (e.g., the end of compile, end of simulation, restart, or enter interactive mode)

Ñ

User-deÞned system task or function execution

VPI callbacks shall be registered by the user with the functions

vpi_register_cb()

 and

vpi_register_systf()

. These
routines indicate the speciÞc reason for the callback, the application to be called, and what system and user data shall
be passed to the callback application when the callback occurs. A facility is also provided to call the callback
functions when a Verilog HDL product is Þrst invoked. A primary use of this facility shall be for registration of user-
deÞned system tasks and functions.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

526 Section 22

22.1.2 VPI access to Verilog HDL objects and simulation objects

Accessible Verilog HDL objects and simulation objects and their relationships and properties are described using data
model diagrams. These diagrams are presented in 22.5. The data diagrams indicate the routines and constants that are
required to access and manipulate objects within an application environment. An associated set of routines to access
these objects is deÞned in Section 23.

The VPI interface also includes a set of utility routines for functions such as handle comparison, Þle handling, and
redirected printing, which are described in 23.12.

VPI routines provide access to objects in an

instantiated

 Verilog design. An instantiated design is one where each
instance of an object is uniquely accessible. For instance, if a module

m

 contains wire

w

 and is instantiated twice as

m1

 and

m2

, then

m1.w

 and

m2.w

 are two distinct objects, each with its own set of related objects and properties.

The VPI interface is designed as a

simulation

 interface, with access to both Verilog HDL objects and speciÞc
simulation objects. This simulation interface is different from a hierarchical language interface, which would provide
access to HDL information but would not provide information about simulation objects.

22.1.3 Error handling

To determine if an error occurred, the routine

vpi_chk_error()

 shall be provided. The

 vpi_chk_error()

 routine shall
return a nonzero value if an error occurred in the previously called VPI routine. Callbacks can be set up for when an
error occurs as well. The

 vpi_chk_error()

 routine can provide detailed information about the error.

22.2 VPI object classiÞcations

VPI objects are classiÞed with data model diagrams. These diagrams provide a graphical representation of those
objects within a Verilog design to which the VPI routines shall provide access. The diagrams shall show the
relationships between objects and the properties of each object. Objects with sufÞcient commonality are placed in
groups. Group relationships and properties apply to all the objects in the group.

As an example, this simpliÞed diagram shows that there is a

one-to-many relationships

 from objects of type

module

to objects of type

net

, and a

one-to-one relationship

 from objects of type

net

 to objects of type

module

. Objects of
type

net

 have properties

vpiName

,

vpiVector

, and

vpiSize

, with C data types string, Boolean, and integer
respectively.

The VPI object data diagrams are presented in 22.5.

22.2.1 Accessing object relationships and properties

The VPI interface deÞnes the C data type of

vpiHandle

. All objects are manipulated via a

vpiHandle

 variable. Object
handles can be accessed from a relationship with another object, or from a hierarchical name, as the following
example demonstrates:

module net
-> name

str: vpiName
str: vpiFullName

-> vector
bool: vpiVector

-> size
int: vpiSize

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 22 527

vpiHandle net;
net = vpi_handle_by_name(Òtop.m1.w1Ó, NULL);

This example call retrieves a handle to wire

top.m1.w1

 and assigns it to the

vpiHandle

 variable

net

. The

NULL

second argument directs the routine to search for the name from the top level of the design.

The VPI interface provides generic functions for tasks, such as traversing relationships and determining property
values. One-to-one relationships are traversed with routine

vpi_handle()

. In the following example, the module that
contains

net

 is derived from a handle to that net:

vpiHandle net, mod;
net = vpi_handle_by_name(Òtop.m1.w1Ó, NULL);
mod = vpi_handle(vpiModule, net);

The call to

vpi_handle()

 in the above example shall return a handle to module

top.m1

.

Properties of objects shall be derived with routines in the vpi_get family. The routine

vpi_get()

 returns integer and
Boolean properties. The routine

vpi_get_str()

 accesses string properties. To retrieve a pointer to the full hierarchical
name of the object referenced by handle

mod

, the following call would be made:

char *name = vpi_get_str(vpiFullName, mod);

In the above example, character pointer

name

 shall now point to the string

Òtop.m1Ó

.

One-to-many relationships are traversed with an iteration mechanism. The routine

vpi_iterate()

 creates an object of
type

vpiIterator

, which is then passed to the routine

vpi_scan()

 to traverse the desired objects. In the following
example, each net in module

top.m1

 is displayed:

vpiHandle itr;
itr = vpi_iterate(vpiNet,mod);
while (net = vpi_scan(itr))

 vpi_printf(Ò\t%s\nÓ, vpi_get_str(vpiFullName, net));

As the above examples illustrate, the routine naming convention is a

ÔvpiÕ

 preÞx with

Ô_Õ

 word delimiters (with the
exception of callback-related deÞned values, which use the

ÔcbÕ

 preÞx). Macro-deÞned types and properties have the

ÔvpiÕ

 preÞx, and they use capitalization for word delimiters.

The routines for traversing Verilog HDL structures and accessing objects are described in Section 23.

22.2.2 Delays and values

Most properties are of type integer, Boolean, or string. Delay and logic value properties, however, are more complex
and require specialized routines and associated structures. The routines

vpi_get_delays()

 and

vpi_put_delays()

 use
structure pointers, where the structure contains the pertinent information about delays. Similarly, simulation values
are also handled with the routines

vpi_get_value()

 and

vpi_put_value()

, along with an associated set of structures.

The routines and C structures for handling delays and logic values are presented in Section 23.

22.3 List of VPI routines by functional category

The VPI routines can be divided into groups based on primary functionality.

Ñ VPI routines for simulation-related callbacks
Ñ VPI routines for system task/function callbacks
Ñ VPI routines for traversing Verilog HDL hierarchy
Ñ VPI routines for accessing properties of objects
Ñ VPI routines for accessing objects from properties
Ñ VPI routines for delay processing

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

528 Section 22

Ñ VPI routines for logic and strength value processing
Ñ VPI routines for simulation time processing
Ñ VPI routines for miscellaneous utilities

Tables 22-1 through 22-9 list the VPI routines by major category. Section 23 deÞnes each of the VPI routines, listed in
alphabetical order.

Table 22-1ÑVPI routines for simulation related callbacks

To Use

Register a simulation-related callback

vpi_register_cb()

Remove a simulation-related callback

vpi_remove_cb()

Get information about a simulation-related callback

vpi_get_cb_info()

Table 22-2ÑVPI routines for system task/function callbacks

To Use

Register a system task/function callback

vpi_register_systf()

Get information about a system task/function callback

vpi_get_systf_info()

Table 22-3ÑVPI routines for traversing Verilog HDL hierarchy

To Use

Obtain a handle for an object with a one-to-one relationship

vpi_handle()

Obtain handles for objects in a one-to-many relationship

vpi_iterate()
vpi_scan()

Obtain a handles for an object in a many-to-one relationship

vpi_handle_multi()

Table 22-4ÑVPI routines for accessing properties of objects

To Use

Get the value of objects with types of

int

 or

bool

vpi_get()

Get the value of objects with types of string

vpi_get_str()

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 22 529

Table 22-5ÑVPI routines for accessing objects from properties

To Use

Obtain a handle for a named object

vpi_handle_by_name()

Obtain a handle for an indexed object

vpi_handle_by_index()

Table 22-6ÑVPI routines for delay processing

To Use

Retrieve delays or timing limits of an object

vpi_get_delays()

Write delays or timing limits to an object vpi_put_delays()

Table 22-7ÑVPI routines for logic and strength value processing

To Use

Retrieve logic value or strength value of an object vpi_get_value()

Write logic value or strength value to an object vpi_put_value()

Table 22-8ÑVPI routines for simulation time processing

To Use

Find the current simulation time or the scheduled time of future events vpi_get_time()

Table 22-9ÑVPI routines for miscellaneous utilities

To Use

Write to stdout and the current log Þle vpi_printf()

Open a Þle for writing vpi_mcd_open()

Close one or more Þles vpi_mcd_close()

Write to one or more Þles vpi_mcd_printf()

Retrieve the name of an open Þle vpi_mcd_name()

Retrieve data about product invocation options vpi_get_vlog_info()

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

530 Section 22

22.4 Key to object model diagrams

This clause contains the keys to the symbols used in the object model diagrams. Keys are provided for objects and
classes, traversing relationships, and accessing properties.

22.4.1 Diagram key for objects and classes

See if two handles refer to the same object vpi_compare_objects()

Obtain error status and error information about the previous call to a
VPI routine

vpi_chk_error()

Free memory allocated by VPI routines vpi_free_object()

Table 22-9ÑVPI routines for miscellaneous utilities (continued)

To Use

class defn

obj defn

class

object

obj defn

object

class

obj1

obj2

Object DeÞnition:

Bold letters in a solid enclosure indicate an object deÞnition. The
properties of the object are deÞned in this location.

Unnamed Class:

A dotted enclosure with no name is an unnamed class. It is sometimes
convenient to group objects although they shall not be referenced as a
group elsewhere, so a name is not indicated.

Object Reference:

Normal letters in a solid enclosure indicate an object reference.

Class DeÞnition:

Bold italic letters in a dotted enclosure indicate a class deÞnition,
where the class groups other objects and classes. Properties of the
class are deÞned in this location. The class deÞnition can contain an
object deÞnition.

Class Reference:

Italic letters in a dotted enclosure indicate a class reference.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 22 531

22.4.2 Diagram key for accessing properties

obj

obj

object

String properties are accessed with routine vpi_get_str().

Example:

 char name[nameSize];
 vpi_get_str(vpiName, obj_h);

Integer and Boolean properties are accessed with the routine
vpi_get().

Example: Given a vpiHandle obj_h to an object of type vpiObj, get
the size of the object.

 bool vect_flag = vpi_get(vpivector, obj_h);
 int size = vpi_get_size(vpiSize, obj_h);

Complex properties for time and logic value are accessed with the
indicated routines. See the descriptions of the routines for usage.

-> vector
bool: vpiVector

-> size
int: vpiSize

-> complex
func1()
func2()

-> name
str: vpiName
str: vpiFullName

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

532 Section 22

22.4.3 Diagram key for traversing relationships

ref

obj

ref

obj
vpiTag

ref

obj

ref

obj
vpiTag

obj

obj

A single arrow indicates a one-to-one relationship accessed
with the routine vpi_handle().

Example: Given vpiHandle variable ref_h of type ref,
access obj_h of type vpiObj:

 obj_h = vpi_handle(vpiObj, ref_h);

A tagged one-to-one relationship is traversed similarly, using
vpiTag instead of vpiObj:

Example:

 obj_h = vpi_handle(vpiTag, ref_h);

A top-level one-to-one relationship is traversed similarly, using
NULL instead of ref_h:

Example:

 obj_h = vpi_handle(vpiObj, NULL);

A double arrow indicates a one-to-many relationship accessed
with the routine vpi_scan().

Example: Given vpiHandle variable ref_h of type ref, scan
objects of type vpiObj:

 itr = vpi_iterate(vpiObj, ref_h);
 while (obj_h = vpi_scan(itr))
 /* process Ôobj_hÕ */

A tagged one-to-many relationship is traversed similarly, using
vpiTag instead of vpiObj:

Example:

 itr = vpi_iterate(vpiTag, ref_h);
 while (obj_h = vpi_scan(itr))
 /* process Ôobj_hÕ */

A top-level one-to-many relationship is traversed similarly,
using NULL instead of ref_h:

Example:

 itr = vpi_iterate(vpiObj, NULL);
 while (obj_h = vpi_scan(itr))
 /* process Ôobj_hÕ */

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 22 533

22.5 Object data model diagrams

Subclauses 22.5.1 through 22.5.21 contain the data model diagrams that deÞne the accessible objects and groups of
objects, along with their relationships and properties.

22.5.1 Module

NOTES

1ÑTop-level modules shall be accessed using vpi_iterate() with a NULL reference object.

2ÑPassing a NULL handle to vpi_get() with types vpiTimePrecision or vpiTimeUnit shall return the smallest time
precision of all modules in the instantiated design.

net

reg

variables

mod path

tchk

memory

scope

process

module

 cont assign

port

module

io decl

vpiInternalScope

def param

param assign

primitive

parameter

spec param

-> cell
bool: vpiCellInstance

-> decay time
int: vpiDefDecayTime

-> default net type
int: vpiDefNetType

-> deÞnition location
int: vpiDefLineNo
str: vpiDefFile

-> deÞnition name
str: vpiDefName

-> delay mode
int: vpiDefDelayMode

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> protected
bool: vpiProtected

-> timeprecision
int: vpiTimePrecision

-> timeunit
int: vpiTimeUnit

-> top module
bool: vpiTopModule

-> unconnected drive
int: vpiUnconnDrive

named event

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

534 Section 22

22.5.2 Scope, task, function, IO declaration

scope

module

named event

variables

memory

taskfunc

scope

def param

taskfunc

task

function

expr

io decl

vpiInternalScope

reg

named begin

named fork
stmt

expr

vpiRightRange

vpiLeftRange

udp defn

module

reg

net

variables
vpiExpr

-> name
str: vpiName
str: vpiFullName

-> location
int: vpiLineNo
str: vpiFile

-> direction
int: vpiDirection

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName

-> scalar
bool: vpiScalar

-> size
int: vpiSize

-> vector
bool: vpiVector

parameter

NOTEÑA Verilog HDL function shall contain an object with the same name, size, and type as the function.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 22 535

22.5.3 Ports

vpiHighConn

vpiBit

vpiParent

vpiLowConn

module

port

port bit

ports

NOTES

1ÑvpiHighConn shall indicate the hierarchically higher (closer to the top module) port connection.

2ÑvpiLowConn shall indicate the lower (further from the top module) port connection.

3ÑProperties scalar and vector shall indicate if the port is 1 bit or more than 1 bit. They shall not indicate anything about what
is connected to the port.

4ÑProperties index and name shall not apply for port bits.

5ÑIf a port is explicitly named, then the explicit name shall be returned. If not, and a name exists, then that name shall be
returned. Otherwise, NULL shall be returned.

6ÑvpiPortIndex can be used to determine the port order.

expr

expr

-> connected by name
bool: vpiConnByName

-> delay (mipd)
vpi_get_delays()
vpi_put_delays()

-> direction
int: vpiDirection

-> explicitly named
bool: vpiExplicitName

-> index
int: vpiPortIndex

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> scalar
bool: vpiScalar

-> size
int: vpiSize

-> vector
bool: vpiVector

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

536 Section 22

22.5.4 Nets

NOTES

1ÑFor vectors, net bits shall be available regardless of vector expansion.

2ÑContinuous assignments and primitive terminals shall be accessed regardless of hierarchical boundaries.

3ÑContinuous assignments and primitive terminals shall only be accessed from scalar nets or bit selects.

4ÑFor vpiPortInst and vpiPort, if the reference handle is a bit or the entire vector, the relationships shall return a handle to
either a port bit or the entire port, respectively.

5ÑFor implicit nets, vpiLineNo shall return 0, and vpiFile shall return the Þlename where the implicit net is Þrst referenced.

6ÑOnly active forces and assign statements shall be returned for vpiLoad.

7ÑOnly active forces shall be returned for vpiDriver.

8ÑvpiDriver shall also return ports that are driven by objects other than nets and net bits.

vpiBit

vpiParent

nets

net

net bit

module

vpiPortInst

vpiHighConn

ports

vpiLowConn

prim term

path term

tchk term

vpiDriver

vpiLoad

vpiDelay

vpiLeftRange

vpiRightRange

vpiIndex

cont assign

expr

expr

expr

expr

ports

ports

force

assign stmt

-> delay
vpi_get_delays()

-> expanded
bool: vpiExpanded

-> implicitly declared
bool: vpiImplicitDecl

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> net decl assign
bool: vpiNetDeclAssign

-> net type
int: vpiNetType

-> scalar
bool: vpiScalar

-> scalared declaration
bool: vpiExplicitScalared

-> size
int: vpiSize

-> strength
int: vpiStrength0
int: vpiStrength1
int: vpiChargeStrength

-> value
vpi_get_value()
vpi_put_value()

-> vector
bool: vpiVector

-> vectored declaration
bool: vpiExplicitVectored

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 22 537

22.5.5 Regs

vpiBit

vpiParent

regs

reg

reg bit

scope

vpiPortInst
ports

vpiHighConnvpiLowConn

NOTES

1ÑContinuous assignments and primitive terminals shall be accessed regardless of hierarchical boundaries.

2ÑContinuous assignments and primitive terminals shall only be accessed from scalar regs and bit selects.

3ÑOnly active forces and assign statements shall be returned for vpiLoad and vpiDriver.

vpiLeftRange

vpiRightRange

vpiIndex

expr

ports

prim term

cont assign

force

assign stmt

vpiLoad

vpiDriver

expr

expr

tchk term

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> scalar
bool: vpiScalar

-> size
int: vpiSize

-> value
vpi_get_value()
vpi_put_value()

-> vector
bool: vpiVector

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

538 Section 22

22.5.6 Variables, named event

vpiParent

variables

integer var

var select

real var

time var

scope

vpiPortInst
ports

vpiHighConnvpiLowConn

vpiParent

scope named event

expr

expr

vpiLeftRange

vpiRightRange

expr
vpiIndex

ports

NOTEÑvpiLeftRange and vpiRightRange shall be invalid for reals, since there cannot be arrays of reals.

-> array
bool: vpiArray

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> size
int: vpiSize

-> value
vpi_get_value()
vpi_put_value()

-> location
int: vpiLineNo
str: vpiFile

-> value
vpi_get_value()
vpi_put_value()

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 22 539

22.5.7 Memory

scope

memory
vpiParent

memory word

vpiLeftRange

vpiRightRange

vpiLeftRange

vpiRightRange

expr

expr

expr

expr

NOTES

1ÑvpiSize for a memory shall return the number of words in the memory.

2ÑvpiSize for a memory word shall return the number of bits in the word.

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> size
int: vpiSize

-> value
vpi_get_value()
vpi_put_value()

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> size
int: vpiSize

expr
vpiIndex

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

540 Section 22

22.5.8 Parameter, specparam

module

parameterscope

def parammodule

param assignmodule

vpiRhs
expr

vpiLhs
parameter

spec param

vpiRhs
expr

vpiLhs
parameter

expr

expr

NOTES

1ÑObtaining the value from the object parameter shall return the Þnal value of the parameter after all module instantiation
overrides and defparams have been resolved.

2ÑvpiLhs from a param assign object shall return a handle to the overridden parameter.

-> constant type
int: vpiConstType

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> value
vpi_get_value()

-> constant type
int: vpiConstType

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> value
vpi_get_value()

-> location
int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 22 541

22.5.9 Primitive, prim term

prim term

module

primitive

gate

switch

udpudp defn

vpiDelay

expr

expr

-> deÞnition name
str: vpiDefName

-> delay
vpi_get_delays()
vpi_put_delays()

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> primitive type
int: vpiPrimType

-> number of inputs
int: vpiSize

->strength
int: vpiStrength0
int: vpiStrength1

-> value
vpi_get_value()
vpi_put_value()

-> direction
int: vpiDirection

-> index
int: vpiTermIndex

-> location
int: vpiLineNo
str: vpiFile

-> value
vpi_get_value()

NOTES

1ÑvpiSize shall return the number of inputs.

2ÑFor primitives, vpi_put_value() shall only be used with sequential UDP primitives.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

542 Section 22

22.5.10 UDP

udp defn

udp

table entry

initial

NOTEÑOnly string (decompilation) and vector (ASCII values) shall be obtained for table entry objects using vpi_get_value().
Refer to the deÞnition of vpi_get_value() for additional details.

io decl
-> deÞnition name

str: vpiDefName

-> location
int: vpiLineNo
str: vpiFile

-> number of inputs
int: vpiSize

-> protected
bool: vpiProtected

-> type
int: vpiPrimType

-> location
int: vpiLineNo
str: vpiFile

-> number of symbol entries
int: vpiSize

-> value
vpi_get_value()

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 22 543

22.5.11 Module path, timing check, intermodule path

NOTES

1ÑThe vpiTchkRefTerm is the Þrst terminal for all tchks except $setup, where vpiTchkDataTerm is the Þrst terminal and
vpiTchkRefTerm is the second terminal.

2ÑTo get to an intermodule path, vpi_handle_multi(vpiInterModPath, port1, port2) can be used.

path term
vpiModPathIn
vpiModPathOut

module
expr

expr

vpiModDataPathIn

mod path

module

tchk tchk term
vpiTchkRefTerm

vpiTchkNotifier

regs

expr

vpiCondition
expr

vpiTchkDataTerm

expr
vpiDelay

expr
vpiDelay

-> delay
vpi_get_delays()
vpi_put_delays()

-> location
int: vpiLineNo
str: vpiFile

-> path type
int: vpiPathType

-> polarity
int: vpiPolarity
int: vpiDataPolarity

-> hasIfNone
bool: vpiModPathHasIfNone

-> direction
int: vpiDirection

-> edge
int: vpiEdge

-> location
int: vpiLineNo
str: vpiFile

-> limit
vpi_get_delays()
vpi_put_delays()

-> location
int: vpiLineNo
str: vpiFile

-> tchk type
int: vpiTchkType

-> edge
int: vpiEdge

-> location
int: vpiLineNo
str: vpiFile

inter mod path ports
-> delay

vpi_get_delay()
vpi_put_delay()

vpiCondition

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

544 Section 22

22.5.12 Task and function call

tf call

sys task call

sys func call

task call

func call

expr

task

function

vpiArgument

user systf

NOTES

1ÑThe system task or function that invoked an application shall be accessed with vpi_handle(vpiSysTfCall, NULL)

2Ñvpi_get_value() shall return the current value of the system function.

3ÑIf the vpiUserDefn property of a system task or function call is true, then the properties of the corresponding systf object
shall be obtained via vpi_get_systf_info().

4ÑAll user-deÞned system tasks or functions shall be retrieved using vpi_iterate(), with vpiUserSystf as the type argument,
and a NULL reference argument.

vpiSysTfCall

-> tf name
str: vpiName

-> location
int: vpiLineNo
str: vpiFile

-> systf info
p_vpi_systf_data:
 vpi_get_systf_info()-> user deÞned

bool: vpiUserDefn

-> value
vpi_put_value()
vpi_get_value()

-> sys func type
int: vpiSysFuncType

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 22 545

22.5.13 Continuous assignment

cont assign
vpiRhs

expr

vpiLhs
expr

module

expr
vpiDelay

-> delay
vpi_get_delays()

-> location
int: vpiLineNo
str: vpiFile

-> net decl assign
bool: vpiNetDeclAssign

-> strength
int: vpiStrength0
int: vpiStrength1

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

546 Section 22

22.5.14 Simple expressions

simple expr

variables

expr

nets

regs

memory word

var select

vpiUse prim term

stmt

port

path term

tchk term

NOTES

1ÑFor vectors, the vpiUse relationship shall access any use of the vector or part-selects or bit-selects thereof.

2ÑFor bit-selects, the vpiUse relationship shall access any speciÞc use of that bit, any use of the parent vector, and any part-
select that contains that bit.

cont assign

vpiIndex

parameter

-> name
str: vpiName
str: vpiFullName

memory

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 22 547

22.5.15 Expressions

expr

operation

constant

simple expr

part select

vpiParent

vpiOperand

func call

sys func call

expr

expr

vpiLeftRange

vpiRightRange

expr

NOTEÑFor an operator whose type is vpiMultiConcat, the Þrst operand shall be the multiplier expression.

-> location
int: vpiLineNo
str: vpiFile

-> size
int: vpiSize

-> value
vpi_get_value()

-> operation type
int: vpiOpType

-> location
int: vpiLineNo
str: vpiFile

-> constant type
int:
vpiConstType

-> location
int: vpiLineNo

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

548 Section 22

22.5.16 Process, block, statement, event statement

module

initial

process

always

block

stmt

atomic stmt

block stmt

atomic stmt

assignment

deassign

case

for

delay control

event control

event stmt

assign stmt

if

if else

while

repeat

wait

tf call

disable

force

release

null stmt

forever

begin

fork

named begin

named fork

scope

-> location
int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile

event stmt Ô->Õ named event
-> location

int: vpiLineNo
str: vpiFile

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 22 549

22.5.17 Assignment, delay control, event control, repeat control

assignment
vpiRhs

expr

vpiLhs
expr

delay control

event control

repeat control

delay control Ô#Õ stmt

vpiCondition

expr

stmt

event control Ô@Õ

named event

expr
vpiDelay

NOTEÑFor delay control and event control associated with assignment, the statement shall always be NULL.

repeat control expr

event control

-> location
int: vpiLineNo
str: vpiFile

-> blocking
bool: vpiBlocking

-> location
int: vpiLineNo
str: vpiFile

-> delay
vpi_get_delays()

-> location
int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

550 Section 22

22.5.18 While, repeat, wait, for, forever

vpiCondition
expr

stmt

while

repeat

wait

stmt

for
vpiForInitStmt

stmt

vpiCondition
expr

vpiForIncStmt
stmt

forever stmt
-> location

int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 22 551

22.5.19 If, if-else, case

vpiElseStmt
stmt

if

if else

vpiCondition
expr

stmt

case
vpiCondition

expr

case item expr

vpiStmt
stmt

NOTES

1ÑThe case item shall group all case conditions that branch to the same statement.

2Ñvpi_iterate() shall return NULL for the default case item since there is no expression with the default case.

-> location
int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile

-> case type
int: vpiCaseType

-> location
int: vpiLineNo
str: vpiFile

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

552 Section 22

22.5.20 Assign statement, deassign, force, release, disable

deassign

vpiLhs
expr

vpiRhs
expr

vpiLhs
expr

function

task

named fork

disable
vpiScope

named begin

release

force

assign stmt

-> location
int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 22 553

22.5.21 Callback, time queue

callback

prim term

time queue
vpiParent

NOTES

1ÑTo get information about the callback object, the routine vpi_get_cb_info() can be used.

2ÑTo get callback objects not related to the above objects, the second argument to vpi_iterate() shall be NULL.

3ÑThe time queue objects shall be returned in increasing order of simulation time.

4Ñvpi_iterate() shall return NULL if there is nothing left in the simulation queue.

5ÑIf any events after read only sync remain in the current queue, then it shall not be returned as part of the iteration.

stmt

expr
-> cb info

p_cb_data:
 vpi_get_cb_info()

time queue
-> time

vpi_get_time()

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

554 Section 23

Section 23

VPI routine deÞnitions

This section describes the Verilog Procedural Interface (VPI) routines, explaining their function, syntax, and usage.
The routines are listed in alphabetical order. See Section 19 for the conventions used in the deÞnitions of the PLI
routines.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 23 555

23.1 vpi_chk_error()

The VPI routine

vpi_chk_error()

 shall return

true

 if the previous call to a VPI routine resulted in an error. If an
error occurred, the

s_vpi_error_info

 structure shall contain information about the error. If the error
information is not needed, a

NULL

 can be passed to the routine.

The

s_vpi_error_info

 structure used by

vpi_chk_error()

 is deÞned in

vpi_user.h

 and is listed in Figure
23-1.

Figure 23-1ÑThe s_vpi_error_info structure deÞnition

vpi_chk_error()

Synopsis:

Retrieve information about VPI routine errors.

Syntax:

vpi_chk_error(error_info_p)

Type Description

Returns:

bool

true

on success and

false

 on failure

Type Name Description

Arguments:

p_vpi_error_info error_info_p Pointer to a structure containing error information

typedef struct t_vpi_error_info {
int state; /* vpi[Compile,PLI,Run] */
int level; /* vpi[Notice, Warning, Error, System, Internal] */
char *message;
char *product;
char *code;
char *file;
int line;

} s_vpi_error_info, *p_vpi_error_info;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

556 Section 23

23.2 vpi_compare_objects()

The VPI routine

vpi_compare_objects()

 shall return

true

 if the two handles refer to the same object. Otherwise,

false

 shall be returned. Handle equivalence cannot be determined with a C Ô

==

Õ comparison.

vpi_compare_objects()

Synopsis:

Compare two handles to determine if they reference the same object.

Syntax:

vpi_compare_objects(obj1, obj2)

Type Description

Returns:

bool

true

 if the two handles refer to the same object. Otherwise,

false

Type Name Description

Arguments:

vpiHandle obj1 Handle to an object

vpiHandle obj2 Handle to an object

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 23 557

23.3 vpi_free_object()

The VPI routine

vpi_free_object()

 shall free memory allocated for objects. It shall generally be used to free memory
created for iterator objects. The iterator object shall automatically be freed when

vpi_scan()

 returns

NULL

 either
because it has completed an object traversal or encountered an error condition. If neither of these conditions occur
(which can happen if the code breaks out of an iteration loop before it has scanned every object),

vpi_free_object()

should be called to free any memory allocated for the iterator. This routine can also optionally be used for
implementations that have to allocate memory for objects. The routine shall return

true

 on success and

false

 on
failure.

vpi_free_object()

Synopsis:

Free memory allocated by VPI routines.

Syntax:

vpi_free_object(obj)

Type Description

Returns:

bool

true

 on success and

false

 on failure

Type Name Description

Arguments:

vpiHandle obj Handle of an object

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

558 Section 23

23.4 vpi_get()

The VPI routine

vpi_get()

 shall return the value of object properties, for properties of type

int

 and

bool

 (

bool

 shall be
deÞned to

int

). Object properties of type

bool

 shall return

1

 for true and

0

 for false. For object properties of type

int

such as

vpiSize

, any integer shall be returned. For object properties of type

int

 that return a deÞned value, refer to
Annex E for the value that shall be returned. Note for object property

vpiTimeUnit

, if the object is

NULL

, then the
simulation time unit shall be returned.

vpi_get()

Synopsis:

Get the value of an integer or Boolean property of an object.

Syntax:

vpi_get(prop, obj)

Type Description

Returns:

int Value of an integer or Boolean property

Type Name Description

Arguments:

int prop An integer constant representing the property of an object
for which to obtain a value

vpiHandle obj Handle to an object

Related
routines:

Use vpi_get_str() to get string properties

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 23 559

23.5 vpi_get_cb_info()

The VPI routine

vpi_get_cb_info()

 shall return information about a simulation-related callback in an

s_cb_data

structure. The memory for this structure shall be allocated by the user.

The

s_cb_data

 structure used by

vpi_get_cb_info()

 is deÞned in

vpi_user.h

 and is listed in Figure 23-2.

Figure 23-2ÑThe s_cb_data structure deÞnition

vpi_get_cb_info()

Synopsis:

Retrieve information about a simulation-related callback.

Syntax:

vpi_get_cb_info(obj, cb_data_p)

Type Description

Returns:

void

Type Name Description

Arguments:

vpiHandle obj Handle to a simulation-related callback

p_cb_data cb_data_p Pointer to a structure containing callback information

Related
routines:

Use vpi_get_systf_info() to retrieve information about a system task/function callback

typedef struct t_cb_data {
int reason;
int (*cb_rtn)();
vpiHandle obj;
p_vpi_time time; /* structure with simulation time info */
p_vpi_value value;/* structure with simulation value info */
char *user_data; /* user data to be passed to callback function */

} s_cb_data, *p_cb_data;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

560 Section 23

23.6 vpi_get_delays()

The VPI routine

vpi_get_delays()

 shall retrieve the delays or pulse limits of an object and place them in an

s_vpi_delay

 structure that has been allocated by the user. The format of the delay information shall be controlled
by the

time_type

 ßag in the

s_vpi_delay

 structure. This routine shall ignore the value of the

type

 ßag in the

s_vpi_time

 structure.

The

s_vpi_delay

 and

s_vpi_time

 structures used by both

vpi_get_delays()

 and

vpi_put_delays()

 are deÞned
in vpi_user.h and are listed in Figures 23-3 and 23-4.

Figure 23-3ÑThe s_vpi_delay structure deÞnition

Figure 23-4ÑThe s_vpi_time structure deÞnition

The da Þeld of the s_vpi_delay structure shall be a user-allocated array of s_vpi_time structures. This array
shall store delay values returned by vpi_get_delays(). The number of elements in this array shall be determined by

Ñ The number of delays to be retrieved

vpi_get_delays()

Synopsis: Retrieve the delays or pulse limits of an object.

Syntax: vpi_get_delays(obj, delay_p)

Type Description

Returns: void

Type Name Description

Arguments: vpiHandle obj Handle to an object

p_vpi_delay delay_p Pointer to a structure containing delay information

Related
routines:

Use vpi_put_delays() to set the delays or timing limits of an object

typedef struct t_vpi_delay {
struct t_vpi_time *da; /* ptr to user allocated array of delay

values */
int no_of_delays; /* number of delays */
int time_type; /* [vpiScaledRealTime, vpiSimTime] */
bool mtm_flag; /* true for mtm */
bool append_flag; /* true for append, false for replace */
bool pulsere_flag; /* true for pulsere values */

} s_vpi_delay, *p_vpi_delay;

typedef struct t_vpi_time
{

int type; /* [vpiScaledRealTime, vpiSimTime] */
unsigned int high, low; /* for vpiSimTime */
double real; /* for vpiScaledRealTime */

} s_vpi_time, *p_vpi_time;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 23 561

Ñ The mtm_ßag setting
Ñ The pulsere_ßag setting

The number of delays to be retrieved shall be set in the no_of_delays Þeld of the s_vpi_delay structure. Legal
values for the number of delays shall be determined by the type of object.

Ñ For primitive objects, the no_of_delays value shall be 2 or 3.
Ñ For path delay objects, the no_of_delays value shall be 1, 2, 3, 6, or 12.
Ñ For timing check objects, the no_of_delays value shall match the number of limits existing in the timing

check.

The user allocated s_vpi_delay array shall contain delays in the same order in which they occur in the Verilog
HDL description. The number of elements for each delay shall be determined by the ßags mtm_ßag and
pulsere_ßag, as shown in Table 23-1.

The delay structure has to be allocated before passing a pointer to vpi_get_delays(). In the following example, a
static structure, prim_da, is allocated for use by each call to the vpi_get_delays() function.

display_prim_delays(prim)
vpiHandle prim;t2

{
static s_vpi_time prim_da[3];
static s_vpi_delay delay_s = {NULL, 3, vpiScaledRealTime};
static p_vpi_delay delay_p = &delay_s;

delay_s.da = &prim_da;
vpi_get_delays(prim, delay_p);
vpi_printf(ÒDelays for primitive %s: %6.2f %6.2f %6.2f\nÓ,

Table 23-1ÑSize of the s_vpi_delay->da array

Flag values Number of s_vpi_time array elements
required for s_vpi_delay->da

Order in which delay elements
shall be Þlled

mtm_ßag = false
pulsere_ßag = false no_of_delays

1st delay: da[0] -> 1st delay
2nd delay: da[1] -> 2nd delay
...

mtm_ßag = true
pulsere_ßag = false 3 * no_of_delays

1st delay: da[0] -> min delay
 da[1] -> typ delay
 da[2] -> max delay
2nd delay: ...

mtm_ßag = false
pulsere_ßag = true 3 * no_of_delays

1st delay: da[0] -> delay
 da[1] -> reject limit
 da[2] -> error limit
2nd delay element: ...

mtm_ßag = true
pulsere_ßag = true 9 * no_of_delays

1st delay: da[0] -> min delay
 da[1] -> typ delay
 da[2] -> max delay
 da[3] -> min reject
 da[4] -> typ reject
 da[5] -> max reject
 da[6] -> min error
 da[7] -> typ error
 da[8] -> max error
2nd delay: ...

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

562 Section 23

vpi_get_str(vpiFullName, prim)
delay_p->da[0].real, delay_p->da[1].real, delay_p->da[2].real);

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 23 563

23.7 vpi_get_str()

The VPI routine vpi_get_str() shall return string property values. The string shall be placed in a temporary buffer that
shall be used by every call to this routine. If the string is to be used after a subsequent call, the string should be copied
to another location. Note that a different string buffer shall be used for string values returned through the
s_vpi_value structure.

The following example illustrates the usage of vpi_get_str().

char *str;
vpiHandle mod = vpi_handle_by_name(Òtop.mod1Ó,NULL);
vpi_printf (ÒModule top.mod1 is an instance of %s\nÓ,

vpi_get_str(vpiDefName, mod));

vpi_get_str()

Synopsis: Get the value of a string property of an object.

Syntax: vpi_get_str(prop, obj)

Type Description

Returns: char * Pointer to a character string containing the property value

Type Name Description

Arguments: int prop An integer constant representing the property of an object
for which to obtain a value

vpiHandle obj Handle to an object

Related
routines:

Use vpi_get() to get integer and Boolean properties

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

564 Section 23

23.8 vpi_get_systf_info()

The VPI routine vpi_get_systf_info() shall return information about a user-defined system task or function callback
in an s_vpi_systf_data structure. The memory for this structure shall be allocated by the user.

The s_vpi_systf_data structure used by vpi_get_systf_info() is deÞned in vpi_user.h and is listed in
Figure 23-5.

Figure 23-5ÑThe s_vpi_systf_data structure deÞnition

vpi_get_systf_info()

Synopsis: Retrieve information about a user-deÞned system task/function-related callback.

Syntax: vpi_get_systf_info(obj, systf_data_p)

Type Description

Returns: void

Type Name Description

Arguments: vpiHandle obj Handle to a system task/function-related callback

p_vpi_systf_data systf_data_p Pointer to a structure containing callback information

Related
routines:

Use vpi_get_cb_info() to retrieve information about a simulation-related callback

typedef struct t_vpi_systf_data {
int type; /* vpiSys[Task,Function] */
int sysfunctype; /* vpiSysFunc[Int,Real,Time,Sized] */
char *tfname; /* first character must be Ò$Ó */
int (*calltf)();
int (*compiletf)();
int (*sizetf)(); /* for vpiSysFuncSized system functions only */
char *user_data;

} s_vpi_systf_data, *p_vpi_systf_data;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 23 565

23.9 vpi_get_time()

The VPI routine vpi_get_time() shall retrieve the current simulation time, using the time scale of the object. If obj is
NULL, the simulation time is retrieved using the simulation time unit. The time_p->type field shall be set to indicate
if scaled real or simulation time is desired. The memory for the time_p structure shall be allocated by the user.

The s_vpi_time structure used by vpi_get_time() is deÞned in vpi_user.h and is listed in Figure 23-6 [this is
the same time structure as used by vpi_put_value()].

Figure 23-6ÑThe s_vpi_time structure deÞnition

vpi_get_time()

Synopsis: Retrieve the current simulation.

Syntax: vpi_get_time(obj, time_p)

Type Description

Returns: void

Type Name Description

Arguments: vpiHandle obj Handle to an object

p_vpi_time time_p Pointer to a structure containing time information

Related
routines:

typedef struct t_vpi_time {
int type; /* for vpiScaledRealTime, vpiSimTime */
unsigned int high, low; /* for vpiSimTime */
double real; /* for vpiScaledRealTime */

} s_vpi_time, *p_vpi_time;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

566 Section 23

23.10 vpi_get_value()

The VPI routine vpi_get_value() shall retrieve the simulation value of VPI objects. The value shall be placed in an
s_vpi_value structure, which has been allocated by the user. The format of the value shall be set by the format
Þeld of the structure.

When the format Þeld is vpiObjTypeVal, the routine shall Þll in the value and change the format Þeld based on the
object type, as follows:

Ñ For an integer, vpiIntVal
Ñ For a real, vpiRealVal
Ñ For a scalar, either vpiScalar or vpiStrength
Ñ For a time variable, vpiTimeVal with vpiSimTime
Ñ For a vector, vpiVectorVal

The buffer this routine uses for string values shall be different from the buffer that vpi_get_str() shall use.

The s_vpi_value, s_vpi_vecval and s_vpi_strengthval structures used by vpi_get_value() are
deÞned in vpi_user.h and are listed in Figures 23-7, 23-8, and 23-9.

Figure 23-7ÑThe s_vpi_value structure deÞnition

vpi_get_value()

Synopsis: Retrieve the simulation value of an object.

Syntax: vpi_get_value(obj, value_p)

Type Description

Returns: void

Type Name Description

Arguments: vpiHandle obj Handle to an expression

p_vpi_value value_p Pointer to a structure containing value information

Related
routines:

Use vpi_put_value() to set the value of an object

typedef struct t_vpi_value {
int format; /* vpi[[Bin,Oct,Dec,Hex]Str,Scalar,Int,Real,String,

Time,Vector,Strength,ObjType]Val*/
union {

char *str;
int scalar; /* vpi[0,1,X,Z] */
int integer;
double real;
struct t_vpi_time *time;
struct t_vpi_vecval *vector;
struct t_vpi_strengthval *strength;
char *misc;

} value;
} s_vpi_value, *p_vpi_value;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 23 567

Figure 23-8ÑThe s_vpi_vecval structure deÞnition

Figure 23-9ÑThe s_vpi_strengthval structure deÞnition

For vectors, the p_vpi_vecval Þeld shall point to an array of s_vpi_vecval structures. The size of this array shall
be determined by the size of the vector, where array_size = ((vector_size-1)/32 + 1). The lsb of the vector shall be
represented by the lsb of the 0-indexed element of s_vpi_vecval array. The 33rd bit of the vector shall be
represented by the lsb of the 1-indexed element of the array, and so on. The memory for the union members str, time,
vector, strength, and misc of the value union in the s_vpi_value structure shall be provided by the routine
vpi_get_value(). This memory shall only be valid until the next call to vpi_get_value(). [Note that the user must
provide the memory for these members when calling vpi_put_value()]. When a value change callback occurs for a
value type of vpiVectorVal, the system shall create the associated memory (an array of s_vpi_vecval structures)
and free the memory upon the return of the callback.

Table 23-2ÑReturn value Þeld of the s_vpi_value structure union

Format Union member Return description

vpiBinStrVal str String of binary char(s) [1, 0, x, z]

vpiOctStrVal str String of octal char(s) [0Ð7, x, X, z, Z]
x When all the bits are x
X When some of the bits are x
z When all the bits are z
Z When some of the bits are z

vpiDecStrVal str String of decimal char(s) [0Ð9]

vpiHexStrVal str String of hex char(s) [0Ðf, x, X, z, Z]
x When all the bits are x
X When some of the bits are x
z When all the bits are z
Z When some of the bits are z

vpiScalarVal scalar vpi1, vpi0, vpiX, vpiZ, vpiH, vpiL

vpiIntVal integer Integer value of the handle. Any bits x or z in the value
of the object are mapped to a 0

vpiRealVal real Value of the handle as a double

vpiStringVal str A string where each 8-bit group of the value of the
object is assumed to represent an ASCII character

typedef struct t_vpi_vecval {
int aval, bval; /* bit encoding: ab: 00=0, 10=1, 11=X, 01=Z */

} s_vpi_vecval, *p_vpi_vecval;

typedef struct t_vpi_strengthval {
int logic; /* vpi[0,1,X,Z] */
int s0, s1; /* refer to strength coding in the LRM */

} s_vpi_strengthval, *p_vpi_strengthval;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

568 Section 23

To get the ASCII values of UDP table entries (as explained in Table 8-1), the p_vpi_vecval Þeld shall point to an array
of s_vpi_vecval structures. The size of this array shall be determined by the size of the table entry (no. of
symbols per table entry), where array_size = ((table_entry_size-1)/4 + 1). Each symbol shall require a nibble; the
ordering of the symbols within s_vpi_vecval shall be the most signiÞcant nibble of abit Þrst, then the least
signiÞcant nibble of abit, then the most signiÞcant nibble of bbit and then the least signiÞcant nibble of bbit. Each
symbol can be either one or two characters; when it is a single character, the second half of the nibble shall be an
ASCII Ò\0Ó.

The misc Þeld in the s_vpi_value structure shall provide for alternative value types, which can be implementation
speciÞc. If this Þeld is utilized, one or more corresponding format types shall also be provided.

In the following example, the binary value of each net that is contained in a particular module and whose name begins
with a particular string is displayed. [This function makes use of the strcmp() facility normally declared in a
string.h C library.]

void display_certain_net_values(mod, target)
vpiHandle mod;
char *target;
{

static s_vpi_value value_s = {vpiBinStrVal};
static p_vpi_value value_p = &value_s;
vpiHandle net, itr;

itr = vpi_iterate(vpiNet, mod);
while (net = vpi_scan(itr))
{

char *net_name = vpi_get_str(vpiName, net);
if (strcmp(target, net_name) == 0)
{

vpi_get_value(net, value_p);
vpi_printf(ÒValue of net %s: %s\nÓ,

vpi_get_str(vpiFullName, net),value_p->value.str);
}

}
}

vpiTimeVal time Integer value of the handle using two integers

vpiVectorVal vector aval/bval representation of the value of the object

vpiStrengthVal strength Value plus strength information of a scalar object only

vpiObjectVal Ñ Return a value in the closest format of the object

NOTEÑIf the object has a real value, it shall be converted to an integer using the rounding deÞned by the Verilog
HDL before being returned in a format other than vpiRealVal.

Table 23-2ÑReturn value Þeld of the s_vpi_value structure union (continued)

Format Union member Return description

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 23 569

23.11 vpi_get_vlog_info()

The VPI routine vpi_get_vlog_info() shall obtain the following information about Verilog product execution:

Ñ The number of invocation options (argc)
Ñ Invocation option values (argv)
Ñ Product and version strings

The information shall be contained in an s_vpi_vlog_info structure. The routine shall return true on success
and false on failure.

The s_vpi_vlog_info structure used by vpi_get_vlog_info() is deÞned in vpi_user.h and is listed in Figure
23-10.

Figure 23-10ÑThe s_vpi_vlog_info structure deÞnition

vpi_get_vlog_info()

Synopsis: Retrieve information about Verilog simulation execution.

Syntax: vpi_get_vlog_info(vlog_info_p)

Type Description

Returns: bool true on success and false on failure

Type Name Description

Arguments: p_vpi_vlog_info vlog_info_p Pointer to a structure containing simulation information

typedef struct t_vpi_vlog_info {
int argc;
char **argv;
char *product;
char *version;

} s_vpi_vlog_info, *p_vpi_vlog_info;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

570 Section 23

23.12 vpi_handle()

The VPI routine vpi_handle() shall return the object of type type associated with object ref. The one-to-one
relationships that are traversed with this routine are indicated as single arrows in the object diagrams.

The following example application displays each primitive that an input net drives.

void display_driven_primitives(net)
vpiHandle net;
{

vpiHandle load, prim, itr;
vpi_printf(ÒNet %s drives terminals of the primitives: \nÓ,

vpi_get_str(vpiFullName, net));
itr = vpi_iterate(vpiLoad, net);
if (!itr)

return;
while (load = vpi_scan(itr))
{

switch(vpi_get(vpiType, load))
{

case vpiGate:
case vpiSwitch:
case vpiUdp:

prim = vpi_handle(vpiPrimitive, load);
vpi_printf(Ò\t%s\nÓ, vpi_get_str(vpiFullName, prim));

}
}

}

vpi_handle()

Synopsis: Obtain a handle to an object with a one-to-one relationship.

Syntax: vpi_handle(type, ref)

Type Description

Returns: vpiHandle Handle to an object

Type Name Description

Arguments: int type An integer constant representing the type of object for
which to obtain a handle

vpiHandle ref Handle to a reference object

Related
routines:

Use vpi_iterate() and vpi_scan() to obtain handles to objects with a one-to-many relationship
Use vpi_handle_multi() to obtain a handle to an object with a many-to-one relationship

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 23 571

23.13 vpi_handle_by_index()

The VPI routine vpi_handle_by_index() shall return a handle to an object based on the index number of the object
within a parent object. This function can be used to access all objects that can access an expression using vpiIndex.
Argument obj shall represent the parent of the indexed object. For example, to access a net-bit, obj would be the
associated net, while for a memory word, obj would be the associated memory.

vpi_handle_by_index()

Synopsis: Get a handle to an object using its index number within a parent object.

Syntax: vpi_handle_by_index(obj, index)

Type Description

Returns: vpiHandle Handle to an object

Type Name Description

Arguments: vpiHandle obj Handle to an object

int index Index number of the object for which to obtain a handle

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

572 Section 23

23.14 vpi_handle_by_name()

The VPI routine vpi_handle_by_name() shall return a handle to an object with a speciÞc name. This function can be
applied to all objects with a fullname property. The name can be hierarchical or simple. If scope is NULL, then name
shall be searched for from the top level of hierarchy. Otherwise, name shall be searched for from scope using the
scope search rules deÞned by the Verilog HDL.

vpi_handle_by_name()

Synopsis: Get a handle to an object with a speciÞc name.

Syntax: vpi_handle_by_name(name, scope)

Type Description

Returns: vpiHandle Handle to an object

Type Name Description

Arguments: char * name A character string or pointer to a string containing the name
of an object

vpiHandle scope Handle to a Verilog HDL scope

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 23 573

23.15 vpi_handle_multi()

The VPI routine vpi_handle_multi() shall return a handle to objects of type vpiInterModPath associated with a list
of output port and input port reference objects. The ports shall be of the same size and can be at different levels of the
hierarchy. This routine performs a many-to-one operation instead of the usual one-to-one or one-to-many.

vpi_handle_multi()

Synopsis: Obtain a handle to intermodule paths with a many-to-one relationship.

Syntax: vpi_handle_multi(type, ref1, ref2, ...)

Type Description

Returns: vpiHandle Handle to an object

Type Name Description

Arguments: int type An integer constant representing the type of object for
which to obtain a handle

vpiHandle ref1, ref2, ... Handles to two or more reference objects

Related
routines:

Use vpi_iterate() and vpi_scan() to obtain handles to objects with a one-to-many relationship
Use vpi_handle() to obtain handles to objects with a one-to-one relationship

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

574 Section 23

23.16 vpi_iterate()

The VPI routine vpi_iterate() shall be used to traverse one-to-many relationships, which are indicated as double
arrows in the object diagrams. The vpi_iterate() routine shall return a handle to an iterator, whose type shall be
vpiIterator, which can used by vpi_scan() to traverse all objects of type type associated with object ref. To get the
reference object from the iterator object use vpi_handle(vpiUse, iterator_handle). If there are no objects of type
type associated with the reference handle ref, then the vpi_iterate() routine shall return NULL.

The following example application uses vpi_iterate() and vpi_scan() to display each net (including the size for
vectors) declared in the module. The example assumes it shall be passed a valid module handle.

void display_nets(mod)
vpiHandle mod;
{

vpiHandle net;
vpiHandle itr;

vpi_printf(ÒNets declared in module %s\nÓ,
vpi_get_str(vpiFullName, mod));

itr = vpi_iterate(vpiNet, mod);
while (net = vpi_scan(itr))
{

vpi_printf(Ò\t%sÓ, vpi_get_str(vpiName, net));
if (vpi_get(vpiVector, net))
{

vpi_printf(Ò of size %d\nÓ, vpi_get(vpiSize, net));
}
else vpi_printf(Ò\nÓ);

}
}

vpi_iterate()

Synopsis: Obtain an iterator handle to objects with a one-to-many relationship.

Syntax: vpi_iterate(type, ref)

Type Description

Returns: vpiHandle Handle to an iterator for an object

Type Name Description

Arguments: int type An integer constant representing the type of object for
which to obtain iterator handles

vpiHandle ref Handle to a reference object

Related
routines:

Use vpi_scan() to traverse the HDL hierarchy using the iterator handle returned from vpi_iterate()
Use vpi_handle() to obtain handles to object with a one-to-one relationship
Use vpi_handle_multi() to obtain a handle to an object with a many-to-one relationship

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 23 575

23.17 vpi_mcd_close()

The VPI routine vpi_mcd_close() shall close the Þle(s) speciÞed by a multichannel descriptor, mcd. Several channels
can be closed simultaneously, since channels are represented by discrete bits in the integer mcd. On success this
routine returns a 0; on error it returns the mcd value of the unclosed channels.

vpi_mcd_close()

Synopsis: Close one or more Þles opened by vpi_mcd_open().

Syntax: vpi_mcd_close(mcd)

Type Description

Returns: unsigned int 0 if successful, the mcd of unclosed channels if unsuccessful

Type Name Description

Arguments: unsigned int mcd A multichannel descriptor representing the Þles to close

Related
routines:

Use vpi_mcd_open() to open a Þle
Use vpi_mcd_printf() to write to an opened Þle
Use vpi_mcd_name() to get the name of a Þle represented by a channel descriptor

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

576 Section 23

23.18 vpi_mcd_name()

The VPI routine vpi_mcd_name() shall return the name of a Þle represented by a single-channel descriptor, cd. On
error, the routine shall return NULL.

vpi_mcd_name()

Synopsis: Get the name of a Þle represented by a channel descriptor.

Syntax: vpi_mcd_name(cd)

Type Description

Returns: char * Pointer to a character string containing the name of a Þle

Type Name Description

Arguments: unsigned int cd A single-channel descriptor representing a Þle

Related
routines:

Use vpi_mcd_open() to open a Þle
Use vpi_mcd_close() to close Þles
Use vpi_mcd_printf() to write to an opened Þle

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 23 577

23.19 vpi_mcd_open()

The VPI routine vpi_mcd_open() shall open a Þle for writing and return a corresponding multichannel descriptor
number (mcd). The following channel descriptors are predeÞned and shall be automatically opened by the system:

Ñ Descriptor 1 is stdout
Ñ Descriptor 2 is stderr
Ñ Descriptor 3 is the current log Þle

The vpi_mcd_open() routine shall return a 0 on error. If the Þle is already opened, vpi_mcd_open() shall return the
descriptor number.

vpi_mcd_open()

Synopsis: Open a Þle for writing.

Syntax: vpi_mcd_open(file)

Type Description

Returns: unsigned int A multichannel descriptor representing the Þle that was opened

Type Name Description

Arguments: char * Þle A character string or pointer to a string containing the Þle
name to be opened

Related
routines:

Use vpi_mcd_close() to close a Þle
Use vpi_mcd_printf() to write to an opened Þle
Use vpi_mcd_name() to get the name of a Þle represented by a channel descriptor

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

578 Section 23

23.20 vpi_mcd_printf()

The VPI routine vpi_mcd_printf() shall write to one or more channels (up to 32) determined by the mcd. An mcd of
1 (bit 0 set) corresponds to Channel 1, a mcd of 2 (bit 1 set) corresponds to Channel 2, a mcd of 4 (bit 2 set)
corresponds to Channel 3, and so on. Channel 1 is stdout, channel 2 is stderr, and channel 3 is the current log Þle.
Several channels can be written to simultaneously, since channels are represented by discrete bits in the integer mcd.
The text to be written shall be controlled by one or more format strings. The format strings shall use the same format
as the C fprintf() routine. The routine shall return the number of characters printed.

vpi_mcd_printf()

Synopsis: Write to one or more Þles opened with vpi_mcd_open().

Syntax: vpi_mcd_printf(mcd, format, format, ...)

Type Description

Returns: int The number of characters written

Type Name Description

Arguments: unsigned int mcd A multichannel descriptor representing the Þles to which to
write

char * format A format string using the C fprintf() format

Related
routines:

Use vpi_mcd_open() to open a Þle
Use vpi_mcd_close() to close a Þle
Use vpi_mcd_name() to get the name of a Þle represented by a channel descriptor

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 23 579

23.21 vpi_printf()

The VPI routine vpi_printf() shall write to both stdout and the current product log Þle. The format strings shall use
the same format as the C printf() routine. The routine shall return the number of characters printed, and the
routine shall return EOF if an error occurred.

vpi_printf()

Synopsis: Write to stdout and the current product log Þle.

Syntax: vpi_printf(format, format,...)

Type Description

Returns: int The number of characters written

Type Name Description

Arguments: char * format A format string using the C printf() format

Related
routines:

Use vpi_mcd_printf() to write to an opened Þle

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

580 Section 23

23.22 vpi_put_delays()

The VPI routine vpi_put_delays() shall set the delays or timing limits of an object as indicated in the delay_p
structure. The same ordering of delays shall be used as described in the vpi_get_delays() function. If only the delay
changes, and not the pulse limits, the pulse limits shall retain the values they had before the delays where altered.

The s_vpi_delay and s_vpi_time structures used by both vpi_get_delays() and vpi_put_delays() are deÞned
in vpi_user.h and are listed in Figures 23-11 and 23-12.

Figure 23-11ÑThe s_vpi_delay structure deÞnition

Figure 23-12ÑThe s_vpi_time structure deÞnition

The da Þeld of the s_vpi_delay structure shall be a user-allocated array of s_vpi_time structures. This array
shall store the delay values to be written by vpi_put_delays(). The number of elements in this array shall be the same
as described in 23.6.

vpi_put_delays()

Synopsis: Set the delays or timing limits of an object.

Syntax: vpi_put_delays(obj, delay_p)

Type Description

Returns: void

Type Name Description

Arguments: vpiHandle obj Handle to an object

p_vpi_delay delay_p Pointer to a structure containing delay information

Related
routines:

Use vpi_get_delays() to retrieve delays or timing limits of an object

typedef struct t_vpi_delay {
struct t_vpi_time *da; /* ptr to user allocated array of delay

values */
int no_of_delays; /* number of delays */
int time_type; /* [vpiScaledRealTime, vpiSimTime] */
bool mtm_flag; /* true for mtm */
bool append_flag; /* true for append, false for replace */
bool pulsere_flag; /* true for pulsere values */

} s_vpi_delay, *p_vpi_delay;

typedef struct t_vpi_time
{

int type; /* [vpiScaledRealTime, vpiSimTime] */
unsigned int high, low; /* for vpiSimTime */
double real; /* for vpiScaledRealTime */

} s_vpi_time, *p_vpi_time;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 23 581

The following example application accepts a module path handle, rise and fall delays, and replaces the delays of the
indicated path.

void set_path_rise_fall_delays(path, rise, fall)
vpiHandle path;
double rise, fall;
{

static s_vpi_time path_da[2];
static s_vpi_delay delay_s = {NULL, 2, vpiScaledRealTime};
static p_vpi_delay delay_p = &delay_s;

delay_s.da = &path_da;
path_da[0].real = rise;
path_da[1].real = fall;

vpi_put_delays(path, delay_p);
}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

582 Section 23

23.23 vpi_put_value()

The VPI routine vpi_put_value() shall set simulation logic values on an object. The value to be set shall be stored in
an s_vpi_value structure that has been allocated. The delay time before the value is set shall be stored in an
s_vpi_time structure that has been allocated. The routine can be applied to nets, regs, variables, memory words,
system function calls, sequential UDPs, and schedule events. The ßags argument shall be used to direct the routine to
use one of the following delay modes:

vpiInertialDelay All scheduled events on the object shall be removed before this event is scheduled.

vpiTransportDelay All events on the object scheduled for times later than this event shall be removed
(modiÞed transport delay).

vpiPureTransportDelay No events on the object shall be removed (transport delay).

vpiNoDelay The object shall be set to the passed value with no delay. Argument time_p shall be
ignored and can be set to NULL.

vpiForceFlag The object shall be forced to the passed value with no delay (same as the Verilog
HDL procedural force). Argument time_p shall be ignored and can be set to NULL.

vpiReleaseFlag The object shall be released from a forced value (same as the Verilog HDL
procedural release). Argument time_p shall be ignored and can be set to NULL. The
value_p shall contain the current value of the object.

vpiCancelEvent A previously scheduled event shall be cancelled. The object passed to
vpi_put_value() shall be a handle to an object of type vpiSchedEvent.

If the ßags argument also has the bit mask vpiReturnEvent, vpi_put_value() shall return a handle of type
vpiSchedEvent to the newly scheduled event, provided there is some form of a delay and an event is scheduled. If the
bit mask is not used, or if no delay is used, or if an event is not scheduled, the return value shall be NULL.

The handle to the event can be cancelled by calling vpi_put_value() with the ßag set to vpiCancelEvent. It shall not
be an error to cancel an event that has already occurred. The scheduled event can be tested by calling vpi_get() with
the ßag vpiScheduled. If an event is cancelled, it shall simply be removed from the event queue. Any effects that
were caused by scheduling the event shall remain in effect (e.g., events that where cancelled due to inertial delay).

vpi_put_value()

Synopsis: Set a value on an object.

Syntax: vpi_put_value(obj, value_p, time_p, flags)

Type Description

Returns: vpiHandle Handle to the scheduled event caused by vpi_put_value()

Type Name Description

Arguments: vpiHandle obj Handle to an object

p_vpi_value value_p Pointer to a structure with value information

p_vpi_time time_p Pointer to a structure with delay information

int ßags Integer constants that set the delay mode

Related
routines:

Use vpi_get_value() to retrieve the value of an expression

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 23 583

Calling vpi_free_object() on the handle shall free the handle but shall not effect the event.

Sequential UDPs shall be set to the indicated value with no delay regardless of any delay on the primitive instance.

The s_vpi_value and s_vpi_time structures used by vpi_put_value() are deÞned in vpi_user.h and are
listed in Figures 23-13 and 23-14.

Figure 23-13ÑThe s_vpi_value structure deÞnition

Figure 23-14ÑThe s_vpi_time structure deÞnition

For vpiScaledRealTime, the indicated time shall be in the timescale associated with the object.

typedef struct t_vpi_value {
int format; /* vpi[[Bin,Oct,Dec,Hex]Str,Scalar,Int,Real,String,

Time,Vector,Strength,ObjType]Val*/
union {

char *str;
int scalar; /* vpi[0,1,X,Z] */
int integer;
double real;
struct t_vpi_time *time;
struct t_vpi_vecval *vector;
struct t_vpi_strengthval *strength;
char *misc;

} value;
} s_vpi_value, *p_vpi_value;

typedef struct t_vpi_time {
int type; /* for vpiScaledRealTime, vpiSimTime */
unsigned int high, low; /* for vpiSimTime */
double real; /* for vpiScaledRealTime */

} s_vpi_time, *p_vpi_time;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

584 Section 23

23.24 vpi_register_cb()

The VPI routine vpi_register_cb() is used for registration of simulation-related callbacks to a user-provided
application for a variety of reasons during a simulation. The reasons for which a callback can occur are divided into
three categories:

Ñ Simulation event
Ñ Simulation time
Ñ Simulation action or feature

How callbacks are registered for each of these categories is explained in the following paragraphs.

The cb_data_p argument shall point to a s_cb_data structure, which is deÞned in vpi_user.h and given in
Figure 23-15.

Figure 23-15ÑThe s_cb_data structure deÞnition

For all callbacks, the reason Þeld of the s_cb_data structure shall be set to a predeÞned constant, such as
cbValueChange, cbAtStartOfSimTime, cbEndOfCompile, etc. The reason constant shall determine when the user
application shall be called back. Refer to the vpi_user.h Þle listing in Annex E for a list of all callback reason
constants.

The cb_rtn Þeld of the s_cb_data structure shall be set to the application name, which shall be invoked when the
simulator executes the callback. The use of the remaining Þelds are detailed in the following subclauses.

vpi_register_cb()

Synopsis: Register simulation-related callbacks.

Syntax: vpi_register_cb(cb_data_p)

Type Description

Returns: vpiHandle Handle to the callback object

Type Name Description

Arguments: p_cb_data cb_data_p Pointer to a structure with data about when callbacks
should occur and the data to be passed

Related
routines:

Use vpi_register_systf() to register callbacks for user-deÞned system tasks and functions
Use vpi_remove_cb() to remove callbacks registered with vpi_register_cb()

typedef struct t_cb_data {
int reason;
int (*cb_rtn)();
vpiHandle obj;
p_vpi_time time; /* structure defined in vpi_user.h */
p_vpi_value value; /* structure defined in vpi_user.h */
int index; /* index of memory word or var select which changed */
char *user_data; /* user data to be passed to callback function */

} s_cb_data, *p_cb_data;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 23 585

23.24.1 Simulation-event-related callbacks

The vpi_register_cb() callback mechanism can be registered for callbacks to occur for simulation events, such as
value changes on an expression or terminal, or the execution of a behavioral statement. When the cb_data_p->reason
Þeld is set to one of the following, the callback shall occur as described below:

cbValueChange After value change on an expression or terminal

cbStmt Before execution of a behavioral statement

cbForce/cbRelease After a force or release has occurred on a simple expression

The following Þelds shall need to be initialized before passing the s_cb_data structure to vpi_register_cb():

cb_data_p->obj This Þeld shall be assigned a handle to an expression, terminal, or statement for
which the callback shall occur. For force and release callbacks, if this is set to
NULL, every force and release shall generate a callback.

cb_data_p->time->type This Þeld shall be set to either vpiScaledRealTime or vpiSimTime, depending on
what time information the user application requires during the callback. If
simulation time information is not needed during the callback, this Þeld can be set
to vpiSuppressTime.

cb_data_p->value->format This Þeld shall be set to one of the value formats indicated in Table 23-3. If value
information is not needed during the callback, this Þeld can be set to
vpiSuppressVal. For cbStmt callbacks, value information is not passed to the
callback routine, so this Þeld shall be ignored.

When a simulation event callback occurs, the user application shall be passed a single argument, which is a pointer to
an s_cb_data structure [this is not a pointer to the same structure that was passed to vpi_register_cb()]. The time
and value information shall be set as directed by the time type and value format Þelds in the call to vpi_register_cb().
The user_data Þeld shall be equivalent to the user_data Þeld passed to vpi_register_cb(). The user application can

Table 23-3ÑValue format Þeld of cb_data_p->value->format

Format Registers a callback to return

vpiBinStrVal String of binary char(s) [1, 0, x, z]

vpiOctStrVal String of octal char(s) [0Ð7, x, X, z, Z]

vpiDecStrVal String of decimal char(s) [0Ð9]

vpiHexStrVal String of hex char(s) [0Ðf, x, X, z, Z]

vpiScalarVal vpi1, vpi0, vpiX, vpiZ, vpiH, vpiL

vpiIntVal Integer value of the handle

vpiRealVal Value of the handle as a double

vpiStringVal An ASCII string

vpiTimeVal Integer value of the handle using two integers

vpiVectorVal aval/bval representation of the value of the object

vpiStrengthVal Value plus strength information of a scalar object only

vpiObjectVal Return a value in the closest format of the object

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

586 Section 23

use the information in the passed structure and information retrieved from other VPI interface routines to perform the
desired callback processing.

For a cbValueChange callback, if the obj is a memory word or a variable array, the value in the s_cb_data
structure shall be the value of the memory word or variable select that changed value. The index Þeld shall contain the
index of the memory word or variable select that changed value.

For cbForce and cbRelease callbacks, obj shall be a handle to the forced or released object, while value shall contain
the new value for a force, or the current value for a release, in the format speciÞed by the registration call.

The following example shows an implementation of a simple monitor functionality for scalar nets, using a
simulation-event-related callback.

setup_monitor(net)
vpiHandle net;
{

static s_vpi_time time_s = {vpiScaledRealTime};
static s_vpi_value value_s = {vpiBinStrVal};
static s_cb_data cb_data_s =

{cbValueChange, my_monitor, NULL, &time_s, &value_s};
char *net_name = vpi_get_str(vpiFullName, net);
cb_data_s.obj = net;
cb_data_s.user_data = malloc(strlen(net_name)+1);
strcpy(cb_data_s.user_data, net_name);
vpi_register_cb(&cb_data_s);

}

my_monitor(cb_data_p)
p_cb_data cb_data_p; {

vpi_printf(Ò%d %d: %s = %s\nÓ,
cb_data_p->time->high, cb_data_p->time->low,
cb_data_p->user_data,
cb_data_p->value->value.str);

}

23.24.2 Simulation-time-related callbacks

The vpi_register_cb() can register callbacks to occur for simulation time reasons, include callbacks at the beginning
or end of the execution of a particular time queue. The following time-related callback reasons are deÞned:

cbAtStartOfSimTime Callback shall occur before execution of events in a speciÞed time queue. A
callback can be set for any time, even if no event is present.

cbReadWriteSynch Callback shall occur after execution of events for a speciÞed time.

cbReadOnlySynch Same as cbReadWriteSynch, except that writing values or scheduling events
before the next scheduled event is not allowed.

cbNextSimTime Callback shall occur before execution of events in the next event queue.

cbAfterDelay Callback shall occur after a speciÞed amount of time, before execution of events in
a speciÞed time queue. A callback can be set for anytime, even if no event is
present.

The following Þelds shall need to be set before passing the s_cb_data structure to vpi_register_cb():

cb_data_p->time->type This Þeld shall be set to either vpiScaledRealTime or vpiSimTime, depending on
what time information the user application requires during the callback.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 23 587

cb_data_p->[time->low,time->high,time->real]
These Þelds shall contain the requested time of the callback or the delay before the
callback.

The value Þelds are ignored for all reasons with simulation-time-related callbacks.

The obj Þeld is ignored for all reasons except when the reason Þeld equals cbAfterDelay and cb_data_p->time-
>type equals vpiScaledRealTime, in which case the object determines the time scaling.

For reason vpiNextSimTime, the time structure is ignored.

When a simulation-time-related callback occurs, the user callback application shall be passed a single argument,
which is a pointer to an s_cb_data structure [this is not a pointer to the same structure that was passed to
vpi_register_cb()]. The time structure shall contain the current simulation time. The user_data Þeld shall be
equivalent to the user_data Þeld passed to vpi_register_cb().

The callback application can use the information in the passed structure and information retrieved from other
interface routines to perform the desired callback processing.

23.24.3 Simulator action and feature related callbacks

The vpi_register_cb() can register callbacks to occur for simulator action reasons or simulator feature reasons.
Simulator action reasons are callbacks such as the end of compilation or end of simulation. Simulator feature reasons
are software-product-speciÞc features, such as restarting from a saved simulation state or entering an interactive
mode. Actions are differentiated from features in that actions shall occur in all VPI-compliant products, whereas
features might not exist in all VPI-compliant products.

The following action-related callbacks shall be deÞned:

cbEndOfCompile End of simulation data structure compilation or build

cbStartOfSimulation Start of simulation (beginning of time 0 simulation cycle)

cbEndOfSimulation End of simulation (e.g., $Þnish system task executed)

cbError Simulation run-time error occurred

cbTchkViolation Timing check error occurred

Examples of possible feature related callbacks are

cbStartOfSave Simulation save state command invoked

cbEndOfSave Simulation save state command completed

cbStartOfRestart Simulation restart from saved state command invoked

cbEndOfRestart Simulation restart command completed

cbEnterInteractive Simulation entering interactive debug mode (e.g., $stop system task executed)

cbExitInteractive Simulation exiting interactive mode

cbInteractiveScopeChange Simulation command to change interactive scope executed

cbUnresolvedSystf Unknown user-deÞned system task or function encountered

The only Þelds in the s_cb_data structure that shall need to be setup for simulation action/feature callbacks are the
reason, cb_rtn, and user_data (if desired) Þelds.

When a simulation action/feature callback occurs, the user routine shall be passed a pointer to an s_cb_data
structure. The reason Þeld shall contain the reason for the callback. For cbTchkViolation callbacks, the obj Þeld
shall be a handle to the timing check. For cbInteractiveScopeChange, obj shall be a handle to the new scope. For

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

588 Section 23

cbUnresolvedSystf, user_data shall point to the name of the unresolved task or function. On a cbError callback, the
routine vpi_chk_error() can be called to retrieve error information.

The following example shows a callback application that reports cpu usage at the end of a simulation. If the user
routine setup_report_cpu() is placed in the vlog_startup_routines list, it shall be called just after the
simulator is invoked.

static int initial_cputime_g;

void report_cpu()
{

int total = get_current_cputime() - initial_cputime_g;
vpi_printf(ÒSimulation complete. CPU time used: %d\nÓ, total);

}

void setup_report_cpu()
{

static s_cb_data cb_data_s = {cbEndOfSimulation, report_cpu};
initial_cputime_g = get_current_cputime();
vpi_register_cb(&cb_data_s);

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 23 589

23.25 vpi_register_systf()

The VPI routine vpi_register_systf() shall register callbacks for user-deÞned system tasks or functions. Callbacks
can be registered to occur when a user-deÞned system task or function is encountered during compilation or execution
of Verilog HDL source code.

The systf_data_p argument shall point to a s_vpi_systf_data structure, which is deÞned in vpi_user.h and
listed in Figure 23-16.

Figure 23-16ÑThe s_vpi_systf_data structure deÞnition

23.25.1 System task and function callbacks

User-deÞned Verilog system tasks and functions that use VPI routines can be registered with vpi_register_systf().
The following system task/function-related callbacks are deÞned.

The type Þeld of the s_vpi_systf_data structure shall register the user application to be a system task or a
system function. The type Þeld value shall be an integer constant of vpiSysTask or vpiSysFunction.

The sysfunctype Þeld of the s_vpi_systf_data structure shall deÞne the type of value that a system function
shall return. The sysfunctype Þeld shall be an integer constant of vpiSysFuncInt, vpiSysFuncReal,
vpiSysFuncTime, or vpiSysFuncSized. This Þeld shall only be used when the type Þeld is set to vpiSysFunction.

The compiletf, calltf, and sizetf Þelds of the s_vpi_systf_data structure shall be pointers to the user-provided
applications that are to be invoked by the system task/function callback mechanism. Callbacks to the applications
pointed to by the compiletf and sizetf Þelds shall occur when the simulation data structure is compiled or built (or for

vpi_register_systf()

Synopsis: Register user-deÞned system task/function-related callbacks.

Syntax: vpi_register_systf(systf_data_p)

Type Description

Returns: vpiHandle Handle to the callback object

Type Name Description

Arguments: p_vpi_systf_data systf_data_p Pointer to a structure with data about when callbacks
should occur and the data to be passed

Related
routines:

Use vpi_register_cb() to register callbacks for simulation-related events

typedef struct t_vpi_systf_data {
int type; /* vpiSys[Task,Function] */
int sysfunctype; /* vpiSysFunc[Int,Real,Time,Sized] */
char *tfname; /* first character must be Ò$Ó */
int (*calltf)();
int (*compiletf)();
int (*sizetf)(); /* for vpiSysFuncSized system functions only */
char *user_data;

} s_vpi_systf_data, *p_vpi_systf_data;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

590 Section 23

the Þrst invocation if the system task or function is invoked from an interactive mode). Callbacks to the application
pointed to by the calltf routine shall occur each time the system task or function is invoked during simulation
execution.

The user_data Þeld of the s_vpi_systf_data structure shall specify a user-deÞned value, which shall be passed back to
the compiletf, sizetf, and calltf applications when a callback occurs.

The following example application demonstrates dynamic linking of a VPI system task. The example uses an
imaginary routine, dlink(), which accepts a Þle name and a function name and then links that function
dynamically. This routine derives the target Þle and function names from the target systf name.

link_systf(target)
char *target;
{

char task_name[strSize];
char file_name[strSize];
char compiletf_name[strSize];
char calltf_name[strSize];
static s_vpi_systf_data task_data_s = {vpiSysTask};
static p_vpi_systf_data task_data_p = &task_data_s;

sprintf(task_name, Ò$%sÓ, target);
sprintf(file_name, Ò%s.oÓ, target);
sprintf(compiletf_name, Ò%s_compiletfÓ, target);
sprintf(calltf_name, Ò%s_calltfÓ, target);

task_data_p->tfname = task_name;
task_data_p->compiletf = (int (*)()) dlink(file_name,
 compiletf_name);
task_data_p->calltf = (int (*)()) dlink(file_name, calltf_name);
vpi_register_systf(task_data_p);

}

23.25.2 Initializing VPI system task/function callbacks

A means of initializing system task/function callbacks and performing any other desired task just after the simulator
is invoked shall be provided by placing routines in a NULL-terminated static array, vlog_startup_routines. A
C function using the array deÞnition shall be provided as follows:

void (*vlog_startup_routines[]) ();

This C function shall be provided with a VPI-compliant product. Entries in the array shall be added by the user. The
location of vlog_startup_routines and the procedure for linking vlog_startup_routines with a software product
shall be deÞned by the product vendor. (Note that callbacks can also be registered or removed at any time during an
application routine, not just at startup time).

A primary use of the vlog_startup_routines shall be for registering system tasks and functions. User tasks and
functions that appear in a compiled description shall generally be registered by a routine in this array.

The following example uses vlog_startup_routines to register system tasks and functions and to run a user
initialization routine.

/*In a vendor product file which contains vlog_startup_routines ...*/
extern void register_my_systfs();
extern void my_init();
void (*vlog_startup_routines[])() =
{

setup_report_cpu, /* user routine example in 23.24.3 */

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 23 591

register_my_systfs, /* user routine listed below */
0 /* must be last entry in list */

}

/* In a user provided file... */
void register_my_systfs()
{

static s_vpi_systf_data systf_data_list[] = {
{vpiSysTask, , Ò$my_taskÓ, my_task_calltf, my_task_compiletf},
{vpiSysFunction, vpiFuncInt, Ò$my_funcÓ, my_func_calltf,

my_func_compiletf},
{vpiSysFunction, vpiSysFuncSized, Ò$my_funcÓ,

my_sized_calltf, my_sized_compiletf, my_size},
0};
p_vpi_systf_data systf_data_p = &(systf_data_list[0]);

while (*systf_data_p)
vpi_register_systf(systf_data_p++);

}

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

592 Section 23

23.26 vpi_remove_cb()

The VPI routine vpi_remove_cb() shall remove callbacks that were registered with vpi_register_cb(). The argument
to this routine shall be a handle to the callback object. The routine shall return a 1 (true) if successful, and a 0 (false)
on a failure.

vpi_remove_cb()

Synopsis: Remove a simulation callback registered with vpi_register_cb().

Syntax: vpi_remove_cb(cb_obj)

Type Description

Returns: bool 1 (true) if successful; 0 (false) on a failure

Type Name Description

Arguments: vpiHandle cb_obj Handle to the callback object

Related
routines:

Use vpi_register_cb() to register callbacks for simulation-related events

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Section 23 593

23.27 vpi_scan()

The VPI routine vpi_scan() shall traverse the instantiated Verilog HDL hierarchy and return handles to objects as
directed by the iterator itr. The iterator handle shall be obtained by calling vpi_iterate() for a speciÞc object type.

The following example application uses vpi_iterate() and vpi_scan() to display each net (including the size for
vectors) declared in the module. The example assumes it shall be passed a valid module handle.

void display_nets(mod)
vpiHandle mod;
{

vpiHandle net;
vpiHandle itr;

vpi_printf(ÒNets declared in module %s\nÓ,
vpi_get_str(vpiFullName, mod));

itr = vpi_iterate(vpiNet, mod);
while (net = vpi_scan(itr))
{

vpi_printf(Ò\t%sÓ, vpi_get_str(vpiName, net));
if (vpi_get(vpiVector, net))
{

vpi_printf(Ò of size %d\nÓ, vpi_get(vpiSize, net));
}
else vpi_printf(Ò\nÓ);

}
}

vpi_scan()

Synopsis: Scan the Verilog HDL hierarchy for objects with a one-to-many relationship.

Syntax: vpi_scan(itr)

Type Description

Returns: vpiHandle Handle to an object

Type Name Description

Arguments: vpiHandle itr Handle to an iterator object returned from vpi_iterate()

Related
routines:

Use vpi_iterate() to obtain an iterator handle
Use vpi_handle() to obtain handles to an object with a one-to-one relationship
Use vpi_handle_multi() to obtain a handle to an object with a many-to-one relationship

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

594 Annex A

Annex A

(normative)

Formal syntax deÞnition

The formal syntax of Verilog HDL is described using Backus-Naur Form (BNF).

A.1 Source text

source_text ::= {description}
description ::=

 module_declaration
| udp_declaration

module_declaration ::=
 module_keyword

module

_identifier [list_of_ports]

;

 { module_item }

endmodule

module_keyword ::=

module

 |

macromodule

list_of_ports ::=

(

 port {

 ,

 port }

)

port ::=
 [port_expression]
|

.

port

_identifier

(

 [port_expression]

)

port_expression ::=
 port_reference
|

{

 port_reference {

,

 port_reference}

}

port_reference ::=

port

_identifier
|

port

_identifier

[

constant_expression

]

|

port

_identifier

[

msb

_constant_expression

 :

lsb

_constant_expression

]

module_item ::=

 module_item_declaration
| parameter_override
| continuous_assign
| gate_instantiation
| udp_instantiation
| module_instantiation
| specify_block
| initial_construct
| always_construct

module_item_declaration ::=
 parameter_declaration
| input_declaration
| output_declaration
| inout_declaration
| net_declaration
| reg_declaration
| integer_declaration
| real_declaration

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Annex A 595

| time_declaration
| realtime_declaration
| event_declaration
| task_declaration
| function_declaration

parameter_override ::=

defparam

 list_of_param_assignments

;

A.2 Declarations

parameter_declaration ::=

parameter

 list_of_param_assignments

;

list_of_param_assignments ::= param_assignment

{

,

param_assignment }
param_assignment ::=

parameter

_identifier

=

 constant_expression
input_declaration ::=

input

 [range] list_of_port_identifiers

;

output_declaration ::=

output

 [range] list_of_port_identifiers

;

inout_declaration ::=

inout

 [range] list_of_port_identifiers

;

list_of_port_identifiers ::=

port

_identifier {

,

port

_identifier }
reg_declaration ::=

reg

 [range] list_of_register_identifiers

 ;

time_declaration ::=

time

 list_of_register_identifiers

;

integer_declaration ::=

integer

 list_of_register_identifiers

;

real_declaration ::=

real

 list_of_real_identifiers

;

realtime_declaration ::=

realtime

 list_of_real_identifiers

;

event_declaration ::=

event

event

_identifier {

,

event

_identifier }

 ;

list_of_real_identifiers ::=

real

_identifier {

,

real

_identifier }
list_of_register_identifiers ::= register_name {

,

 register_name }
register_name ::=

register

_identifier
|

memory

_identifier

[

upper_limit

_constant_expression

:

lower_limit

_constant_expression

]

range ::=

 [

msb

_constant_expression

:

lsb

_constant_expression

]

net_declaration ::=
 net_type [

vectored

 |

scalared

] [range] [delay3] list_of_net_identifiers

 ;

|

trireg

 [

vectored

 |

scalared

] [charge_strength] [range] [delay3] list_of_net_identifiers

;

| net_type [

vectored

 |

scalared

] [drive_strength] [range] [delay3] list_of_net_decl_assignments

;

net_type ::=

wire

|

 tri

|

 tri1

|

 supply0

|

 wand

|

 triand

|

 tri0

|

 supply1

|

 wor

|

 trior

list_of_net_identifiers ::=

net

_identifier {

,

net

_identifier }
drive_strength ::=

(

strength0

,

 strength1

)

|

(

 strength1

,

 strength0

)

|

(

 strength0

, highz1)

|

(

 strength1

, highz0)

|

(

highz1

 ,

 strength0

)

|

(

highz0 , strength1)
strength0 ::= supply0 | strong0 | pull0 | weak0
strength1 ::= supply1 | strong1 | pull1 | weak1
charge_strength ::= (small) | (medium) | (large)
delay3 ::= # delay_value | # (delay_value [, delay_value [, delay_value]])
delay2 ::= # delay_value | # (delay_value [, delay_value])
delay_value ::= unsigned_number | parameter_identifier | constant_mintypmax_expression
list_of_net_decl_assignments ::= net_decl_assignment { , net_decl_assignment }
net_decl_assignment ::= net_identifier = expression
function_declaration ::=

 function [range_or_type] function_identifier ;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

596 Annex A

 function_item_declaration {function_item_declaration}
 statement
 endfunction

range_or_type ::= range | integer | real | realtime | time
function_item_declaration ::=

 block_item_declaration
| input_declaration

task_declaration ::=
 task task_identifier ;
 {task_item_declaration}
 statement_or_null
 endtask

task_argument_declaration ::=
 block_item_declaration
| output_declaration
| inout_declaration

block_item_declaration ::=
 parameter_declaration
| reg_declaration
| integer_declaration
| real_declaration
| time_declaration
| realtime_declaration
| event_declaration

A.3 Primitive instances

gate_instantiation ::=
 n_input_gatetype [drive_strength] [delay2] n_input_gate_instance { , n_input_gate_instance } ;
| n_output_gatetype [drive_strength] [delay2] n_output_gate_instance { , n_output_gate_instance } ;
| enable_gatetype [drive_strength] [delay3] enable_gate_instance { , enable_gate_instance} ;
| mos_switchtype [delay3] mos_switch_instance { , mos_switch_instance } ;
| pass_switchtype pass_switch_instance { , pass_switch_instance } ;
| pass_en_switchtype [delay3] pass_en_switch_instance { , pass_en_switch_instance } ;
| cmos_switchtype [delay3] cmos_switch_instance { , cmos_switch_instance } ;
| pullup [pullup_strength] pull_gate_instance { , pull_gate_instance } ;
| pulldown [pulldown_strength] pull_gate_instance { , pull_gate_instance } ;

n_input_gate_instance ::= [name_of_gate_instance] (output_terminal , input_terminal { , input_terminal })
n_output_gate_instance ::= [name_of_gate_instance] (output_terminal { , output_terminal } , input_terminal)
enable_gate_instance ::= [name_of_gate_instance] (output_terminal , input_terminal , enable_terminal)
mos_switch_instance ::= [name_of_gate_instance] (output_terminal , input_terminal , enable_terminal)
pass_switch_instance ::= [name_of_gate_instance] (inout_terminal , inout_terminal)
pass_enable_switch_instance ::= [name_of_gate_instance] (inout_terminal , inout_terminal , enable_terminal)
cmos_switch_instance ::= [name_of_gate_instance] (output_terminal , input_terminal ,

 ncontrol_terminal , pcontrol_terminal)
pull_gate_instance ::= [name_of_gate_instance] (output_terminal)
name_of_gate_instance ::= gate_instance_identifier [range]
pullup_strength ::=

 (strength0 , strength1)
| (strength1 , strength0)
| (strength1)

pulldown_strength ::=
 (strength0 , strength1)
| (strength1 , strength0)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Annex A 597

| (strength0)
input_terminal ::= scalar_expression
enable_terminal ::= scalar_expression
ncontrol_terminal ::= scalar_expression
pcontrol_terminal ::= scalar_expression
output_terminal ::= terminal_identifier | terminal_identifier [constant_expression]
inout_terminal ::= terminal_identifier | terminal_identifier [constant_expression]
n_input_gatetype ::= and | nand | or | nor | xor | xnor
n_output_gatetype ::= buf | not
enable_gatetype ::= bufif0 | bufif1 | notif0 | notif1
mos_switchtype ::= nmos | pmos | rnmos | rpmos
pass_switchtype ::= tran | rtran
pass_en_switchtype ::= tranif0 | tranif1 | rtranif1 | rtranif0
cmos_switchtype ::= cmos | rcmos

A.4 Module instantiation

module_instantiation ::=
 module_identifier [parameter_value_assignment] module_instance { , module_instance } ;

parameter_value_assignment ::= # (expression { , expression })
module_instance ::= name_of_instance ([list_of_module_connections])
name_of_instance ::= module_instance_identifier [range]
list_of_module_connections ::=

 ordered_port_connection { , ordered_port_connection }
| named_port_connection { , named_port_connection }

ordered_port_connection ::= [expression]
named_port_connection ::= . port_identifier ([expression])

A.5 UDP declaration and instantiation

udp_declaration ::=
 primitive udp_identifier (udp_port_list) ;
 udp_port_declaration { udp_port_declaration }
 udp_body
 endprimitive

udp_port_list ::= output_port_identifier , input_port_identifier { , input_port_identifier }
udp_port_declaration ::=

 output_declaration
| input_declaration
| reg_declaration

udp_body ::= combinational_body | sequential_body
combinational_body ::= table combinational_entry { combinational_entry } endtable
combinational_entry ::= level_input_list : output_symbol ;
sequential_body ::= [udp_initial_statement] table sequential_entry { sequential_entry } endtable
udp_initial_statement ::= initial udp_output_port_identifier = init_val ;
init_val ::= 1Õb0 | 1Õb1 | 1Õbx | 1ÕbX | 1ÕB0 | 1ÕB1 | 1ÕBx | 1ÕBX | 1 | 0
sequential_entry ::= seq_input_list : current_state : next_state ;
seq_input_list ::= level_input_list | edge_input_list
level_input_list ::= level_symbol { level_symbol }
edge_input_list ::= { level_symbol } edge_indicator { level_symbol }

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

598 Annex A

edge_indicator ::= (level_symbol level_symbol) | edge_symbol
current_state ::= level_symbol
next_state ::= output_symbol | -
output_symbol ::= 0 | 1 | x | X
level_symbol ::= 0 | 1 | x | X | ? | b | B
edge_symbol ::= r | R | f | F | p | P | n | N | *

udp_instantiation ::= udp_identifier [drive_strength] [delay2] udp_instance { , udp_instance } ;
udp_instance ::= [name_of_udp_instance] (output_port_connection , input_port_connection

 { , input_port_connection })
name_of_udp_instance ::= udp_instance_identifier [range]

A.6 Behavioral statements

continuous_assign ::= assign [drive_strength] [delay3] list_of_net_assignments ;
list_of_net_assignments ::= net_assignment { , net_assignment }
net_assignment ::= net_lvalue = expression

initial_construct ::= initial statement
always_construct ::= always statement

statement ::=
 blocking_assignment ;
| non_blocking assignment ;
| procedural_continuous_assignments ;
| procedural_timing_control_statement
| conditional_statement
| case_statement
| loop_statement
| wait_statement
| disable_statement
| event_trigger
| seq_block
| par_block
| task_enable
| system_task_enable

statement_or_null ::= statement | ;
blocking assignment ::= reg_lvalue = [delay_or_event_control] expression
non-blocking assignment ::= reg_lvalue <= [delay_or_event_control] expression
procedural_continuous_assignment ::=

| assign reg_assignment ;
| deassign reg_lvalue ;
| force reg_assignment ;
| force net_assignment ;
| release reg_lvalue ;
| release net_lvalue ;

procedural_timing_control_statement ::=
 delay_or_event_control statement_or_null

delay_or_event_control ::=
 delay_control
| event_control
| repeat (expression) event_control

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Annex A 599

delay_control ::=
 # delay_value
| # (mintypmax_expression)

event_control ::=
 @ event_identifier
| @ (event_expression)

event_expression ::=
 expression
| event_identifier
| posedge expression
| negedge expression
| event_expression or event_expression

conditional_statement ::=
| if (expression) statement_or_null [else statement_or_null]

case_statement ::=
| case (expression) case_item {case_item} endcase
| casez (expression) case_item {case_item} endcase
| casex (expression) case_item {case_item} endcase

case_item ::=
 expression { , expression } : statement_or_null
| default [:] statement_or_null

loop_statement ::=
| forever statement
| repeat (expression) statement
| while (expression) statement
| for (reg_assignment ; expression ; reg_assignment) statement

reg_assignment ::= reg_lvalue = expression
wait_statement ::=

| wait (expression) statement_or_null
event_trigger ::=

| -> event_identifier ;
disable_statement ::=

| disable task_identifier ;
| disable block_identifier ;

seq_block ::= begin [: block_identifier { block_item_declaration }] { statement } end
par_block ::= fork [: block_identifier { block_item_declaration }] { statement } join
task_enable ::= task_identifier [(expression { , expression })] ;
system_task_enable ::= system_task_name [(expression { , expression })] ;
system_task_name ::= $identifier Note: The $ may not be followed by a space.

A.7 Specify section

specify_block ::= specify [specify_item] endspecify
specify_item ::=

 specparam_declaration
| path_declaration
| system_timing_check

specparam_declaration ::= specparam list_of_specparam_assignments ;
list_of_specparam_assignments ::= specparam_assignment { , specparam_assignment }
specparam_assignment ::=

 specparam_identifier = constant_expression
| pulse_control_specparam

pulse_control_specparam ::=

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

600 Annex A

 PATHPULSE$ = (reject_limit_value [, error_limit_value]) ;
| PATHPULSE$specify_input_terminal_descriptor$specify_output_terminal_descriptor
 = (reject_limit_value [, error_limit_value]) ;

limit_value ::= constant_mintypmax_expression
path_declaration ::=

 simple_path_declaration ;
| edge_sensitive_path_declaration ;
| state-dependent_path_declaration ;

simple_path_declaration ::=
 parallel_path_description = path_delay_value
| full_path_description = path_delay_value

parallel_path_description ::=
 (specify_input_terminal_descriptor [polarity_operator] => specify_output_terminal_descriptor)

full_path_description ::=
(list_of_path_inputs [polarity_operator] *> list_of_path_outputs)

list_of_path_inputs ::=
specify_input_terminal_descriptor { , specify_input_terminal_descriptor }

list_of_path_outputs ::=
specify_output_terminal_descriptor { , specify_output_terminal_descriptor }

specify_input_terminal_descriptor ::=
 input_identifier
| input_identifier [constant_expression]
| input_identifier [msb_constant_expression : lsb_constant_expression]

specify_output_terminal_descriptor ::=
 output_identifier
| output_identifier [constant_expression]
| output_identifier [msb_constant_expression : lsb_constant_expression]

input_identifier ::= input_port_identifier | inout_port_identifier
output_identifier ::= output_port_identifier | inout_port_identifier
polarity_operator ::= + | -
path_delay_value ::=

 list_of_path_delay_expressions
| (list_of_path_delay_expressions)

list_of_path_delay_expressions ::=
 t_path_delay_expression
| trise_path_delay_expression , tfall_path_delay_expression
| trise_path_delay_expression , tfall_path_delay_expression , tz_path_delay_expression
| t01_path_delay_expression , t10_path_delay_expression , t0z_path_delay_expression ,
 tz1_path_delay_expression , t1z_path_delay_expression , tz0_path_delay_expression
| t01_path_delay_expression , t10_path_delay_expression , t0z_path_delay_expression ,
 tz1_path_delay_expression , t1z_path_delay_expression , tz0_path_delay_expression ,
 t0x_path_delay_expression , tx1_path_delay_expression , t1x_path_delay_expression ,
 tx0_path_delay_expression , txz_path_delay_expression , tzx_path_delay_expression

path_delay_expression ::= constant_mintypmax_expression
edge_sensitive_path_declaration ::=

 parallel_edge_sensitive_path_description = path_delay_value
| full_edge_sensitive_path_description = path_delay_value

parallel_edge_sensitive_path_description ::=
 ([edge_identifier] specify_input_terminal_descriptor =>
 specify_output_terminal_descriptor [polarity_operator] : data_source_expression))

full_edge_sensitive_path_description ::=
 ([edge_identifier] list_of_path_inputs *>
 list_of_path_outputs [polarity_operator] : data_source_expression))

data_source_expression ::= expression
edge_identifier ::= posedge | negedge

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Annex A 601

state_dependent_path_declaration ::=
 if (conditional_expression) simple_path_declaration
| if (conditional_expression) edge_sensitive_path_declaration
| ifnone simple_path_declaration

system_timing_check ::=
 $setup (timing_check_event , timing_check_event , timing_check_limit [, notify_register]) ;
| $hold (timing_check_event , timing_check_event , timing_check_limit [, notify_register]) ;
| $period (controlled_timing_check_event , timing_check_limit [, notify_register]) ;
| $width (controlled_timing_check_event , timing_check_limit ,
 constant_expression [, notify_register]) ;
| $skew (timing_check_event , timing_check_event , timing_check_limit [, notify_register]) ;
| $recovery (controlled_timing_check_event , timing_check_event ,
 timing_check_limit [, notify_register]) ;
| $setuphold (timing_check_event , timing_check_event , timing_check_limit ,
 timing_check_limit [, notify_register]) ;

timing_check_event ::=
 [timing_check_event_control] specify_terminal_descriptor [&&& timing_check_condition]

specify_terminal_descriptor ::=
 specify_input_terminal_descriptor
| specify_output_terminal_descriptor

controlled_timing_check_event ::=
timing_check_event_control specify_terminal_descriptor [&&& timing_check_condition]

timing_check_event_control ::=
 posedge
| negedge
| edge_control_specifier

edge_control_specifier ::= edge [edge_descriptor [, edge_descriptor]]
edge_descriptor ::=

 01
| 10
| 0x
| x1
| 1x
| x0

timing_check_condition ::=
 scalar_timing_check_condition
| (scalar_timing_check_condition)

scalar_timing_check_condition ::=
 expression
| ~ expression
| expression == scalar_constant
| expression === scalar_constant
| expression != scalar_constant
| expression !== scalar_constant

timing_check_limit ::= expression
scalar_constant ::=

 1Õb0 | 1Õb1 | 1ÕB0 | 1ÕB1 | Õb0 | Õb1 | ÕB0 | ÕB1 | 1 | 0
notify_register ::= register_identifier

A.8 Expressions

net_lvalue ::=
 net_identifier
| net_identifier [expression]

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

602 Annex A

| net_identifier [msb_constant_expression : lsb_constant_expression]
| net_concatenation

reg_lvalue ::=
 reg_identifier
| reg_identifier [expression]
| reg_identifier [msb_constant_expression : lsb_constant_expression]
| reg_concatenation

constant_expression ::=
 constant_primary
| unary_operator constant_primary
| constant_expression binary_operator constant_expression
| constant_expression ? constant_expression : constant_expression
| string

constant_primary ::=
 number
| parameter_identifier
| constant_concatenation
| constant_multiple_concatenation

constant_mintypmax_expression ::=
 constant_expression
| constant_expression : constant_expression : constant_expression

mintypmax_expression ::=
 expression
| expression : expression : expression

expression ::=
 primary
| unary_operator primary
| expression binary_operator expression
| expression ? expression : expression
| string

unary_operator ::=
 + | - | ! | ~ | & | ~& | | | ~| | ^ | ~^ | ^~

binary_operator ::=
 + | - | * | / | % | == | != | === | !== | && | ||
| < | <= | > | >= | & | | | ^ | ^~ | ~^ | >> | <<

primary ::=
 number
| identifier
| identifier [expression]
| identifier [msb_constant_expression : lsb_constant_expression]
| concatenation
| multiple_concatenation
| function_call
| (mintypmax_expression)

number ::=
 decimal_number
| octal_number
| binary_number
| hex_number
| real_number

real_number ::=
 [sign] unsigned_number . unsigned_number
| [sign] unsigned_number [. unsigned_number] e [sign] unsigned_number
| [sign] unsigned_number [. unsigned_number] e [sign] unsigned_number

decimal_number ::=
 [sign] unsigned_number

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Annex A 603

| [size] decimal_base unsigned_number

binary_number ::= [size] binary_base binary_digit { _ | binary_digit}

octal_number ::= [size] octal_base octal_digit { _ | octal_digit}

hex_number ::= [size] hex_base hex_digit { _ | hex_digit}

sign ::= + | -

size ::= unsigned_number

unsigned_number ::= decimal_digit { _ | decimal_digit }

decimal_base ::= Õd | ÕD

binary_base ::= Õb | ÕB

octal_base ::= Õo | ÕO

hex_base ::= Õh | ÕH

decimal_digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

binary_digit ::= x | X | z | Z | 0 | 1

octal_digit ::= x | X | z | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

hex_digit ::= x | X | z | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e | f | A | B | C | D | E | F

concatenation ::= { expression { , expression} }

multiple_concatenation ::= { expression { expression { , expression } } }

function_call ::=
 function_identifier (expression { , expression})
| name_of_system_function [(expression { , expression})]

name_of_system_function ::= $identifier

string ::= Ò { Any_ASCII_Characters_except_new_line } Ó

NOTES

1ÑEmbedded spaces are illegal.

2ÑThe $ in name_of_system_function may not be followed by a space.

A.9 General

comment ::=
 short_comment
| long_comment

short_comment ::= // comment_text \n

long_comment ::= /* comment_text */

comment_text ::= { Any_ASCII_character }

identifier ::= IDENTIFIER [{ . IDENTIFIER }]

IDENTIFIER ::=
 simple_identifier
| escaped_identifier

simple_identifier ::= [a-zA-Z][a-zA-Z_$]

escaped_identifier ::= \ {Any_ASCII_character_except_white_space} white_space

white_space ::= space | tab | newline

NOTEÑThe period in identiÞer may not be preceded or followed by a space.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

604 Annex B

Annex B

(normative)

List of keywords

Keywords are predeÞned nonescaped identiÞers that deÞne Verilog language constructs. An escaped identiÞer shall
not be treated as a keyword.

always
and
assign
begin
buf
bufif0
bufif1
case
casex
casez
cmos
deassign
default
defparam
disable
edge
else
end
endcase
endmodule
endfunction
endprimitive
endspecify
endtable
endtask
event
for
force
forever
fork
function
highz0
highz1
if

ifnone
initial
inout
input
integer
join
large
macromodule
medium
module
nand
negedge
nmos
nor
not
notif0
notif1
or
output
parameter
pmos
posedge
primitive
pull0
pull1
pullup
pulldown
rcmos
real
realtime
reg
release
repeat
rnmos

rpmos
rtran
rtranif0
rtranif1
scalared
small
specify
specparam
strong0
strong1
supply0
supply1
table
task
time
tran
tranif0
tranif1
tri
tri0
tri1
triand
trior
trireg
vectored
wait
wand
weak0
weak1
while
wire
wor
xnor
xor

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

Annex C 605

Annex C

(normative)

The

acc_user.h

 Þle

/***
 * acc_user.h
 *
 * IEEE Std 1364-1995 Verilog Hardware Description Language (HDL)
* Programming Language Interface (PLI).
 *
 * This file contains the constant definitions, structure definitions, and
 * routine declarations used by the Verilog PLI procedural interface
 * access (ACC) routines.
 *
 * The file should be included with all C routines that use the PLI ACC
 * routines.
 **/
#ifndef ACC_USER_H
#define ACC_USER_H
/*--*/
/*------------------------------ definitions -------------------------------*/
/*--*/

/*---------------------------- general defines -----------------------------*/
typedef int *HANDLE;
typedef int *handle;

#define bool int
#define true 1
#define TRUE 1
#define false 0
#define FALSE 0

#define global extern
#define exfunc
#define local static
#define null 0L

/*------------------------------ object types ------------------------------*/
#define accModule 20
#define accScope 21
#define accNet 25
#define accReg 30
#define accRegister accReg
#define accPort 35
#define accTerminal 45

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

606 Annex C

#define accInputTerminal 46
#define accOutputTerminal 47
#define accInoutTerminal 48
#define accCombPrim 140
#define accSeqPrim 142
#define accAndGate 144
#define accNandGate 146
#define accNorGate 148
#define accOrGate 150
#define accXorGate 152
#define accXnorGate 154
#define accBufGate 156
#define accNotGate 158
#define accBufif0Gate 160
#define accBufif1Gate 162
#define accNotif0Gate 164
#define accNotif1Gate 166
#define accNmosGate 168
#define accPmosGate 170
#define accCmosGate 172
#define accRnmosGate 174
#define accRpmosGate 176
#define accRcmosGate 178
#define accRtranGate 180
#define accRtranif0Gate 182
#define accRtranif1Gate 184
#define accTranGate 186
#define accTranif0Gate 188
#define accTranif1Gate 190
#define accPullupGate 192
#define accPulldownGate 194
#define accIntegerParam 200
#define accIntParam accIntegerParam
#define accRealParam 202
#define accStringParam 204
#define accPath 206
#define accTchk 208
#define accPrimitive 210
#define accPortBit 214
#define accNetBit 216
#define accRegBit 218
#define accParameter 220
#define accSpecparam 222
#define accTopModule 224
#define accModuleInstance 226
#define accCellInstance 228
#define accModPath 230
#define accWirePath 234
#define accInterModPath 236
#define accScalarPort 250
#define accPartSelectPort 254
#define accVectorPort 256
#define accConcatPort 258
#define accWire 260
#define accWand 261
#define accWor 262

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Annex C 607

#define accTri 263
#define accTriand 264
#define accTrior 265
#define accTri0 266
#define accTri1 267
#define accTrireg 268
#define accSupply0 269
#define accSupply1 270
#define accNamedEvent 280
#define accEventVar accNamedEvent
#define accIntegerVar 281
#define accIntVar 281
#define accRealVar 282
#define accTimeVar 283
#define accScalar 300
#define accVector 302
#define accCollapsedNet 304
#define accExpandedVector 306
#define accUnExpandedVector 307
#define accSetup 366
#define accHold 367
#define accWidth 368
#define accPeriod 369
#define accRecovery 370
#define accSkew 371
#define accNochange 376
#define accNoChange accNochange
#define accSetuphold 377
#define accInput 402
#define accOutput 404
#define accInout 406
#define accMixedIo 407
#define accPositive 408
#define accNegative 410
#define accUnknown 412
#define accPathTerminal 420
#define accPathInput 422
#define accPathOutput 424
#define accDataPath 426
#define accTchkTerminal 428
#define accBitSelect 500
#define accPartSelect 502
#define accTask 504
#define accFunction 506
#define accStatement 508
#define accSystemTask 514
#define accSystemFunction 516
#define accSystemRealFunction 518
#define accUserTask 520
#define accUserFunction 522
#define accUserRealFunction 524
#define accNamedBeginStat 560
#define accNamedForkStat 564
#define accConstant 600
#define accConcat 610
#define accOperator 620

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

608 Annex C

#define accMinTypMax 696
#define accModPathHasIfnone 715
/*----------------- parameter values for acc_configure() -------------------*/
#define accPathDelayCount 1
#define accPathDelimStr 2
#define accDisplayErrors 3
#define accDefaultAttr0 4
#define accToHiZDelay 5
#define accEnableArgs 6
#define accDisplayWarnings 8
#define accDevelopmentVersion 11
#define accMapToMipd 17
#define accMinTypMaxDelays 19

/*----------- edge information used by acc_handle_tchk(), etc. ------------*/
#define accNoedge 0
#define accNoEdge 0
#define accEdge01 1
#define accEdge10 2
#define accEdge0x 4
#define accEdgex1 8
#define accEdge1x 16
#define accEdgex0 32
#define accPosedge 13
#define accPosEdge accPosedge
#define accNegedge 50
#define accNegEdge accNegedge

/*------------------------------ delay modes -------------------------------*/
#define accDelayModeNone 0
#define accDelayModePath 1
#define accDelayModeDistrib 2
#define accDelayModeUnit 3
#define accDelayModeZero 4
#define accDelayModeMTM 5

/*----------- values for type field in t_setval_delay structure ------------*/
#define accNoDelay 0
#define accInertialDelay 1
#define accTransportDelay 2
#define accPureTransportDelay 3
#define accForceFlag 4
#define accReleaseFlag 5
#define accAssignFlag 6
#define accDeassignFlag 7

/*----------- values for type field in t_setval_value structure ------------*/
#define accBinStrVal 1
#define accOctStrVal 2
#define accDecStrVal 3
#define accHexStrVal 4
#define accScalarVal 5
#define accIntVal 6
#define accRealVal 7
#define accStringVal 8
#define accVectorVal 10

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Annex C 609

/*----------------------------- scalar values ------------------------------*/
#define acc0 0
#define acc1 1
#define accX 2
#define accZ 3

/*--------------------------- VCL scalar values ----------------------------*/
#define vcl0 acc0
#define vcl1 acc1
#define vclX accX
#define vclx vclX
#define vclZ accZ
#define vclz vclZ

/*---------- values for vc_reason field in t_vc_record structure -----------*/
#define logic_value_change 1
#define strength_value_change 2
#define real_value_change 3
#define vector_value_change 4
#define event_value_change 5
#define integer_value_change 6
#define time_value_change 7
#define sregister_value_change 8
#define vregister_value_change 9

/*-------------------------- VCL strength values ---------------------------*/
#define vclSupply 7
#define vclStrong 6
#define vclPull 5
#define vclLarge 4
#define vclWeak 3
#define vclMedium 2
#define vclSmall 1
#define vclHighZ 0

/*---------------------- flags used with acc_vcl_add -----------------------*/
#define vcl_verilog_logic 2
#define VCL_VERILOG_LOGIC vcl_verilog_logic
#define vcl_verilog_strength 3
#define VCL_VERILOG_STRENGTH vcl_verilog_strength

/*--------------------- flags used with acc_vcl_delete ---------------------*/
#define vcl_verilog vcl_verilog_logic
#define VCL_VERILOG vcl_verilog

/*---------- values for the type field in the t_acc_time structure --------- */
#define accTime 1
#define accSimTime 2
#define accRealTime 3

/*----------------------------- product types ------------------------------*/
#define accSimulator 1
#define accTimingAnalyzer 2
#define accFaultSimulator 3

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

610 Annex C

#define accOther 4

/*--*/
/*---------------------- global variable definitions -----------------------*/
/*--*/
extern bool acc_error_flag;
typedef int (*consumer_function)();

/*--*/
/*------------------------- structure definitions --------------------------*/
/*--*/

/*---------------- data structure used with acc_set_value() ----------------*/
typedef struct t_acc_time
{
 int type;
 int low,
 high;
 double real;
} s_acc_time, *p_acc_time;

/*---------------- data structure used with acc_set_value() ----------------*/
typedef struct t_setval_delay
{
 s_acc_time time;
 int model;
} s_setval_delay, *p_setval_delay;

/*-------------------- data structure of vector values ---------------------*/
typedef struct t_acc_vecval
{
 int aval;
 int bval;
} s_acc_vecval, *p_acc_vecval;

/*----- data structure used with acc_set_value() and acc_fetch_value() -----*/
typedef struct t_setval_value
{
 int format;
 union
 {
 char *str;
 int scalar;
 int integer;
 double real;
 p_acc_vecval vector;
 } value;
} s_setval_value, *p_setval_value, s_acc_value, *p_acc_value;

/*---------------------- structure for VCL strengths -----------------------*/
typedef struct t_strengths
{
 unsigned char logic_value;
 unsigned char strength1;
 unsigned char strength2;
} s_strengths, *p_strengths;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Annex C 611

/*-------------- structure passed to callback routine for VCL --------------*/
typedef struct t_vc_record
{
 int vc_reason;
 int vc_hightime;
 int vc_lowtime;
 char *user_data;
 union
 {
 unsigned char logic_value;
 double real_value;
 handle vector_handle;
 s_strengths strengths_s;
 } out_value;
} s_vc_record, *p_vc_record;

/*------------ structure used with acc_fetch_location() routine ------------*/
typedef struct t_location
{
 int line_no;
 char *filename;
} s_location, *p_location;

/*--------- structure used with acc_fetch_timescale_info() routine ---------*/
typedef struct t_timescale_info
{
 short unit;
 short precision;
} s_timescale_info, *p_timescale_info;

/*--*/
/*------------------------- routine declarations ---------------------------*/
/*--*/
#if defined(__STDC__) || defined(__cplusplus)

#ifndef PROTO_PARAMS
#define PROTO_PARAMS(params) params
#define DEFINED_PROTO_PARAMS
#endif
#ifndef EXTERN
#define EXTERN
#define DEFINED_EXTERN
#endif

#else

#ifndef PROTO_PARAMS
#define PROTO_PARAMS(params) (/* nothing */)
#define DEFINED_PROTO_PARAMS
#endif
#ifndef EXTERN
#define EXTERN extern
#define DEFINED_EXTERN

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

612 Annex C

#endif
#endif /* __STDC__ */
EXTERN bool acc_append_delays PROTO_PARAMS((handle object, ...));
EXTERN bool acc_append_pulsere PROTO_PARAMS((handle object, double val1r,
 double val1x, ...));
EXTERN void acc_close PROTO_PARAMS((void));
EXTERN handle *acc_collect PROTO_PARAMS((handle (*p_next_routine)(),
 handle scope_object, int *aof_count));
EXTERN bool acc_compare_handles PROTO_PARAMS((handle h1, handle h2));
EXTERN bool acc_configure PROTO_PARAMS((int item, char *value));
EXTERN int acc_count PROTO_PARAMS((handle (*next_func)(),
 handle object_handle));
EXTERN int acc_fetch_argc PROTO_PARAMS((void));
EXTERN char **acc_fetch_argv PROTO_PARAMS((void));
EXTERN double acc_fetch_attribute PROTO_PARAMS((handle object, ...));
EXTERN int acc_fetch_attribute_int PROTO_PARAMS((handle object, ...));
EXTERN char *acc_fetch_attribute_str PROTO_PARAMS((handle object, ...));
EXTERN char *acc_fetch_defname PROTO_PARAMS((handle object_handle));
EXTERN int acc_fetch_delay_mode PROTO_PARAMS((handle object_p));
EXTERN bool acc_fetch_delays PROTO_PARAMS((handle object, ...));
EXTERN int acc_fetch_direction PROTO_PARAMS((handle object_handle));
EXTERN int acc_fetch_edge PROTO_PARAMS((handle acc_obj));
EXTERN char *acc_fetch_fullname PROTO_PARAMS((handle object_handle));
EXTERN int acc_fetch_fulltype PROTO_PARAMS((handle object_h));
EXTERN int acc_fetch_index PROTO_PARAMS((handle object_handle));
EXTERN double acc_fetch_itfarg PROTO_PARAMS((int n, handle tfinst));
EXTERN int acc_fetch_itfarg_int PROTO_PARAMS((int n, handle tfinst));
EXTERN char *acc_fetch_itfarg_str PROTO_PARAMS((int n, handle tfinst));
EXTERN int acc_fetch_location PROTO_PARAMS((p_location location_p,
 handle object));
EXTERN char *acc_fetch_name PROTO_PARAMS((handle object_handle));
EXTERN int acc_fetch_paramtype PROTO_PARAMS((handle param_p));
EXTERN double acc_fetch_paramval PROTO_PARAMS((handle param));
EXTERN int acc_fetch_polarity PROTO_PARAMS((handle path));
EXTERN int acc_fetch_precision PROTO_PARAMS((void));
EXTERN bool acc_fetch_pulsere PROTO_PARAMS((handle path_p, double *val1r,
 double *val1e, ...));
EXTERN int acc_fetch_range PROTO_PARAMS((handle node, int *msb,
 int *lsb));
EXTERN int acc_fetch_size PROTO_PARAMS((handle obj_h));
EXTERN double acc_fetch_tfarg PROTO_PARAMS((int n));
EXTERN int acc_fetch_tfarg_int PROTO_PARAMS((int n));
EXTERN char *acc_fetch_tfarg_str PROTO_PARAMS((int n));
EXTERN void acc_fetch_timescale_info PROTO_PARAMS((handle obj,
 p_timescale_info aof_timescale_info));
EXTERN int acc_fetch_type PROTO_PARAMS((handle object_handle));
EXTERN char *acc_fetch_type_str PROTO_PARAMS((int type));
EXTERN char *acc_fetch_value PROTO_PARAMS((handle object_handle,
 char *format_str, p_acc_value acc_value_p));
EXTERN void acc_free PROTO_PARAMS((handle *array_ptr));
EXTERN handle acc_handle_by_name PROTO_PARAMS((char *inst_name,
 handle scope_p));
EXTERN handle acc_handle_condition PROTO_PARAMS((handle obj));
EXTERN handle acc_handle_conn PROTO_PARAMS((handle term_p));
EXTERN handle acc_handle_datapath PROTO_PARAMS((handle path));
EXTERN handle acc_handle_hiconn PROTO_PARAMS((handle port_ref));

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Annex C 613

EXTERN handle acc_handle_interactive_scope PROTO_PARAMS((void));
EXTERN handle acc_handle_itfarg PROTO_PARAMS((int n, void *suena_inst));
EXTERN handle acc_handle_loconn PROTO_PARAMS((handle port_ref));
EXTERN handle acc_handle_modpath PROTO_PARAMS((handle mod_p,
 char *pathin_name, char *pathout_name, ...));
EXTERN handle acc_handle_notifier PROTO_PARAMS((handle tchk));
EXTERN handle acc_handle_object PROTO_PARAMS((char *inst_name, ...));
EXTERN handle acc_handle_parent PROTO_PARAMS((handle object_p));
EXTERN handle acc_handle_path PROTO_PARAMS((handle source,
 handle destination));
EXTERN handle acc_handle_pathin PROTO_PARAMS((handle path_p));
EXTERN handle acc_handle_pathout PROTO_PARAMS((handle path_p));
EXTERN handle acc_handle_port PROTO_PARAMS((handle mod_handle,
 int port_num, ...));
EXTERN handle acc_handle_scope PROTO_PARAMS((handle object));
EXTERN handle acc_handle_simulated_net PROTO_PARAMS((handle net_h));
EXTERN handle acc_handle_tchk PROTO_PARAMS((handle mod_p, int tchk_type,
 char *arg1_conn_name, int arg1_edgetype, ...));
EXTERN handle acc_handle_tchkarg1 PROTO_PARAMS((handle tchk));
EXTERN handle acc_handle_tchkarg2 PROTO_PARAMS((handle tchk));
EXTERN handle acc_handle_terminal PROTO_PARAMS((handle gate_handle,
 int terminal_index));
EXTERN handle acc_handle_tfarg PROTO_PARAMS((int n));
EXTERN handle acc_handle_tfinst PROTO_PARAMS((void));
EXTERN bool acc_initialize PROTO_PARAMS((void));
EXTERN handle acc_next PROTO_PARAMS((int *type_list, handle h_scope,
 handle h_object));
EXTERN handle acc_next_bit PROTO_PARAMS ((handle vector, handle bit));
EXTERN handle acc_next_cell PROTO_PARAMS((handle scope, handle cell));

EXTERN handle acc_next_cell_load PROTO_PARAMS((handle net_handle,
 handle load));
EXTERN handle acc_next_child PROTO_PARAMS((handle mod_handle, handle child));
EXTERN handle acc_next_driver PROTO_PARAMS((handle net, handle driver));
EXTERN handle acc_next_hiconn PROTO_PARAMS((handle port, handle hiconn));
EXTERN handle acc_next_input PROTO_PARAMS((handle path, handle pathin));
EXTERN handle acc_next_load PROTO_PARAMS((handle net, handle load));
EXTERN handle acc_next_loconn PROTO_PARAMS((handle port, handle loconn));
EXTERN handle acc_next_modpath PROTO_PARAMS((handle mod_p, handle path));
EXTERN handle acc_next_net PROTO_PARAMS((handle mod_handle, handle net));
EXTERN handle acc_next_output PROTO_PARAMS((handle path, handle pathout));
EXTERN handle acc_next_parameter PROTO_PARAMS((handle module_p,
 handle param));
EXTERN handle acc_next_port PROTO_PARAMS((handle ref_obj_p, handle port));
EXTERN handle acc_next_portout PROTO_PARAMS((handle mod_p, handle port));
EXTERN handle acc_next_primitive PROTO_PARAMS((handle mod_handle,
 handle prim));
EXTERN handle acc_next_scope PROTO_PARAMS((handle ref_scope_p,
 handle scope));
EXTERN handle acc_next_specparam PROTO_PARAMS((handle module_p,
 handle sparam));
EXTERN handle acc_next_tchk PROTO_PARAMS((handle mod_p, handle tchk));
EXTERN handle acc_next_terminal PROTO_PARAMS((handle gate_handle,
 handle term));
EXTERN handle acc_next_topmod PROTO_PARAMS((handle topmod));
EXTERN bool acc_object_of_type PROTO_PARAMS((handle object, int type));

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

614 Annex C

EXTERN bool acc_object_in_typelist PROTO_PARAMS((handle object,
 int *type_list));

EXTERN int acc_product_type PROTO_PARAMS((void));

EXTERN char *acc_product_version PROTO_PARAMS((void));

EXTERN int acc_release_object PROTO_PARAMS((handle obj));

EXTERN bool acc_replace_delays PROTO_PARAMS((handle object, ...));

EXTERN bool acc_replace_pulsere PROTO_PARAMS((handle object, double val1r,

 double val1x, ...));

EXTERN void acc_reset_buffer PROTO_PARAMS((void));

EXTERN bool acc_set_interactive_scope PROTO_PARAMS((handle scope,

 int callback_flag));

EXTERN bool acc_set_pulsere PROTO_PARAMS((handle path_p, double val1r,

 double val1e));

EXTERN char *acc_set_scope PROTO_PARAMS((handle object, ...));

EXTERN int acc_set_value PROTO_PARAMS((handle obj,

 p_setval_value setval_p, p_setval_delay delay_p));

EXTERN void acc_vcl_add PROTO_PARAMS((handle object_p, int (*consumer)(),

 char *user_data, int vcl_flags));

EXTERN void acc_vcl_delete PROTO_PARAMS((handle object_p,

 int (*consumer)(), char *user_data, int vcl_flags));

EXTERN char *acc_version PROTO_PARAMS((void));

#ifdef DEFINED_PROTO_PARAMS

#undef DEFINED_PROTO_PARAMS

#undef PROTO_PARAMS

#endif

#ifdef DEFINED_EXTERN

#undef DEFINED_EXTERN

#undef EXTERN

#endif

/*--*/

/*--------------------------- macro definitions ----------------------------*/

/*--*/

#define acc_handle_calling_mod_m acc_handle_parent((handle)tf_getinstance())

#endif /* ACC_USER_H */

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

Annex D 615

Annex D

(normative)

The

veriuser.h

 Þle

/***
 * veriuser.h
 *
 * IEEE Std 1364-1995 Verilog Hardware Description Language (HDL)
* Programming Language Interface (PLI).
 *
 * This file contains the constant definitions, structure definitions, and
 * routine declarations used by the Verilog PLI procedural interface
 * task/function (TF) routines.
 *
 * The file should be included with all C routines that use the PLI TF
 * routines.
 **/
#ifndef VERIUSER_H
#define VERIUSER_H

/*--*/
/*------------------------------ definitions -------------------------------*/
/*--*/

/*---------------------------- general defines -----------------------------*/
#define true 1
#define TRUE 1
#define false 0
#define FALSE 0
#define bool int

/*--------------------- defines for error interception ---------------------*/
#define ERR_MESSAGE 1
#define ERR_WARNING 2
#define ERR_ERROR 3
#define ERR_INTERNAL 4
#define ERR_SYSTEM 5

/*------------- values for reason parameter to misctf routines -------------*/
#define reason_checktf 1
#define REASON_CHECKTF reason_checktf
#define reason_sizetf 2
#define REASON_SIZETF reason_sizetf
#define reason_calltf 3
#define REASON_CALLTF reason_calltf
#define reason_save 4

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

616 Annex D

#define REASON_SAVE reason_save
#define reason_restart 5
#define REASON_RESTART reason_restart
#define reason_disable 6
#define REASON_DISABLE reason_disable
#define reason_paramvc 7
#define REASON_PARAMVC reason_paramvc
#define reason_synch 8
#define REASON_SYNCH reason_synch
#define reason_finish 9
#define REASON_FINISH reason_finish
#define reason_reactivate 10
#define REASON_REACTIVATE reason_reactivate
#define reason_rosynch 11
#define REASON_ROSYNCH reason_rosynch
#define reason_paramdrc 15
#define REASON_PARAMDRC reason_paramdrc
#define reason_endofcompile 16
#define REASON_ENDOFCOMPILE reason_endofcompile
#define reason_scope 17
#define REASON_SCOPE reason_scope
#define reason_interactive 18
#define REASON_INTERACTIVE reason_interactive
#define reason_reset 19
#define REASON_RESET reason_reset
#define reason_endofreset 20
#define REASON_ENDOFRESET reason_endofreset
#define reason_force 21
#define REASON_FORCE reason_force
#define reason_release 22
#define REASON_RELEASE reason_release
#define reason_startofsave 27
#define reason_startofrestart 28
#define REASON_MAX 28

/*-- types used by tf_typep() and expr_type field in tf_exprinfo structure --*/
#define tf_nullparam 0
#define TF_NULLPARAM tf_nullparam
#define tf_string 1
#define TF_STRING tf_string
#define tf_readonly 10
#define TF_READONLY tf_readonly
#define tf_readwrite 11
#define TF_READWRITE tf_readwrite
#define tf_rwbitselect 12
#define TF_RWBITSELECT tf_rwbitselect
#define tf_rwpartselect 13
#define TF_RWPARTSELECT tf_rwpartselect
#define tf_rwmemselect 14
#define TF_RWMEMSELECT tf_rwmemselect
#define tf_readonlyreal 15
#define TF_READONLYREAL tf_readonlyreal
#define tf_readwritereal 16
#define TF_READWRITEREAL tf_readwritereal

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Annex D 617

/*--------- types used by node_type field in tf_nodeinfo structure ---------*/
#define tf_null_node 100
#define TF_NULL_NODE tf_null_node
#define tf_reg_node 101
#define TF_REG_NODE tf_reg_node
#define tf_integer_node 102
#define TF_INTEGER_NODE tf_integer_node
#define tf_time_node 103
#define TF_TIME_NODE tf_time_node
#define tf_netvector_node 104
#define TF_NETVECTOR_NODE tf_netvector_node
#define tf_netscalar_node 105
#define TF_NETSCALAR_NODE tf_netscalar_node
#define tf_memory_node 106
#define TF_MEMORY_NODE tf_memory_node
#define tf_real_node 107
#define TF_REAL_NODE tf_real_node

/*--*/
/*------------------------- structure definitions --------------------------*/
/*--*/

/*---- structure used with tf_exprinfo() to get expression information -----*/
typedef struct t_tfexprinfo
{
 short expr_type;
 short padding;
 struct t_vecval *expr_value_p;
 double real_value;
 char *expr_string;
 int expr_ngroups;
 int expr_vec_size;
 int expr_sign;
 int expr_lhs_select;
 int expr_rhs_select;
} s_tfexprinfo, *p_tfexprinfo;

/*------- structure for use with tf_nodeinfo() to get node information ------*/
typedef struct t_tfnodeinfo
{
 short node_type;
 short padding;
 union
 {
 struct t_vecval *vecval_p;
 struct t_strengthval *strengthval_p;
 char *memoryval_p;
 double *real_val_p;
 } node_value;
 char *node_symbol;
 int node_ngroups;
 int node_vec_size;
 int node_sign;
 int node_ms_index;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

618 Annex D

 int node_ls_index;
 int node_mem_size;
 int node_lhs_element;
 int node_rhs_element;
 int *node_handle;
} s_tfnodeinfo, *p_tfnodeinfo;

/*-------------------- data structure of vector values ---------------------*/
typedef struct t_vecval
{
 int avalbits;
 int bvalbits;
} s_vecval, *p_vecval;

/*-------------- data structure of scalar net strength values --------------*/
typedef struct t_strengthval
{
 int strength0;
 int strength1;
} s_strengthval, *p_strengthval;

/*--*/
/*-------------------------- routine definitions ---------------------------*/
/*--*/
#if defined(__STDC__) || defined(__cplusplus)

#ifndef PROTO_PARAMS
#define PROTO_PARAMS(params) params
#define DEFINED_PROTO_PARAMS
#endif
#ifndef EXTERN
#define EXTERN
#define DEFINED_EXTERN
#endif

#else

#ifndef PROTO_PARAMS
#define PROTO_PARAMS(params) (/* nothing */)
#define DEFINED_PROTO_PARAMS
#endif
#ifndef EXTERN
#define EXTERN extern
#define DEFINED_EXTERN
#endif

#endif /* __STDC__ */

EXTERN void io_mcdprintf PROTO_PARAMS((int mcd, char *format, ...));
EXTERN void io_printf PROTO_PARAMS((char *format, ...));
EXTERN char *mc_scan_plusargs PROTO_PARAMS((char *plusarg));
EXTERN int tf_add_long PROTO_PARAMS((int *aof_lowtime1,
 int *aof_hightime1, int lowtime2, int hightime2));
EXTERN int tf_asynchoff PROTO_PARAMS((void));
EXTERN int tf_asynchon PROTO_PARAMS((void));
EXTERN int tf_clearalldelays PROTO_PARAMS((void));

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Annex D 619

EXTERN int tf_compare_long PROTO_PARAMS((unsigned int low1,
 unsigned int high1, unsigned int low2,
 unsigned int high2));
EXTERN int tf_copypvc_flag PROTO_PARAMS((int nparam));
EXTERN void tf_divide_long PROTO_PARAMS((int *aof_low1,
 int *aof_high1, int low2, int high2));
EXTERN int tf_dofinish PROTO_PARAMS((void));
EXTERN int tf_dostop PROTO_PARAMS((void));
EXTERN int tf_error PROTO_PARAMS((char *fmt, ...));
EXTERN int tf_evaluatep PROTO_PARAMS((int pnum));
EXTERN p_tfexprinfo tf_exprinfo PROTO_PARAMS((int pnum, p_tfexprinfo pinfo));
EXTERN char *tf_getcstringp PROTO_PARAMS((int nparam));
EXTERN char *tf_getinstance PROTO_PARAMS((void));
EXTERN int tf_getlongp PROTO_PARAMS((int *aof_highvalue, int pnum));
EXTERN int tf_getlongtime PROTO_PARAMS((int *aof_hightime));
EXTERN int tf_getnextlongtime PROTO_PARAMS((int *aof_lowtime,
 int *aof_hightime));
EXTERN int tf_getp PROTO_PARAMS((int pnum));
EXTERN int tf_getpchange PROTO_PARAMS((int nparam));
EXTERN double tf_getrealp PROTO_PARAMS((int pnum));
EXTERN double tf_getrealtime PROTO_PARAMS((void));
EXTERN int tf_gettime PROTO_PARAMS((void));
EXTERN int tf_gettimeprecision PROTO_PARAMS((void));
EXTERN int tf_gettimeunit PROTO_PARAMS((void));
EXTERN char *tf_getworkarea PROTO_PARAMS((void));
EXTERN int tf_iasynchoff PROTO_PARAMS((char *inst));
EXTERN int tf_iasynchon PROTO_PARAMS((char *inst));
EXTERN int tf_iclearalldelays PROTO_PARAMS((char *inst));
EXTERN int tf_icopypvc_flag PROTO_PARAMS((int nparam, char *inst));
EXTERN int tf_ievaluatep PROTO_PARAMS((int pnum, char *inst));
EXTERN p_tfexprinfo tf_iexprinfo PROTO_PARAMS((int pnum, p_tfexprinfo pinfo,
 char *inst));
EXTERN char *tf_igetcstringp PROTO_PARAMS((int nparam, char *inst));
EXTERN int tf_igetlongp PROTO_PARAMS((int *aof_highvalue, int pnum,
 char *inst));
EXTERN int tf_igetlongtime PROTO_PARAMS((int *aof_hightime,
 char *inst));
EXTERN int tf_igetp PROTO_PARAMS((int pnum, char *inst));
EXTERN int tf_igetpchange PROTO_PARAMS((int nparam, char *inst));
EXTERN double tf_igetrealp PROTO_PARAMS((int pnum, char *inst));
EXTERN double tf_igetrealtime PROTO_PARAMS((char *inst));
EXTERN int tf_igettime PROTO_PARAMS((char *inst));
EXTERN int tf_igettimeprecision PROTO_PARAMS((char *inst));
EXTERN int tf_igettimeunit PROTO_PARAMS((char *inst));
EXTERN char *tf_igetworkarea PROTO_PARAMS((char *inst));
EXTERN char *tf_imipname PROTO_PARAMS((char *cell));
EXTERN int tf_imovepvc_flag PROTO_PARAMS((int nparam, char *inst));
EXTERN p_tfnodeinfo tf_inodeinfo PROTO_PARAMS((int pnum, p_tfnodeinfo pinfo,
 char *inst));
EXTERN int tf_inump PROTO_PARAMS((char *inst));
EXTERN int tf_ipropagatep PROTO_PARAMS((int pnum, char *inst));
EXTERN int tf_iputlongp PROTO_PARAMS((int pnum, int lowvalue,
 int highvalue, char *inst));
EXTERN int tf_iputp PROTO_PARAMS((int pnum, int value, char *inst));

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

620 Annex D

EXTERN int tf_iputrealp PROTO_PARAMS((int pnum, double value,
 char *inst));
EXTERN int tf_irosynchronize PROTO_PARAMS((char *inst));
EXTERN int tf_isetdelay PROTO_PARAMS((int delay, char *inst));
EXTERN int tf_isetlongdelay PROTO_PARAMS((int lowdelay,
 int highdelay, char *inst));
EXTERN int tf_isetrealdelay PROTO_PARAMS((double realdelay,
 char *inst));
EXTERN int tf_isetworkarea PROTO_PARAMS((char *workarea,
 char *inst));
EXTERN int tf_isizep PROTO_PARAMS((int pnum, char *inst));
EXTERN char *tf_ispname PROTO_PARAMS((char *cell));
EXTERN int tf_istrdelputp PROTO_PARAMS((int nparam, int bitlength,
 int format_char, char *value_p, int delay,
 int delaytype, char *inst));
EXTERN char *tf_istrgetp PROTO_PARAMS((int pnum, int format_char,
 char *inst));
EXTERN int tf_istrlongdelputp PROTO_PARAMS((int nparam,
 int bitlength, int format_char, char *value_p,
 int lowdelay, int highdelay, int delaytype,
 char *inst));
EXTERN int tf_istrrealdelputp PROTO_PARAMS((int nparam,
 int bitlength, int format_char, char *value_p,
 double realdelay, int delaytype, char *inst));
EXTERN int tf_isynchronize PROTO_PARAMS((char *inst));
EXTERN int tf_itestpvc_flag PROTO_PARAMS((int nparam, char *inst));
EXTERN int tf_itypep PROTO_PARAMS((int pnum, char *inst));
EXTERN void tf_long_to_real PROTO_PARAMS((int int_lo, int int_hi,
 double *aof_real));
EXTERN char *tf_longtime_tostr PROTO_PARAMS((int lowtime,
 int hightime));
EXTERN int tf_message PROTO_PARAMS((int level, char *facility,
 char *messno, char *message, ...));
EXTERN char *tf_mipname PROTO_PARAMS((void));
EXTERN int tf_movepvc_flag PROTO_PARAMS((int nparam));
EXTERN void tf_multiply_long PROTO_PARAMS((int *aof_low1,
 int *aof_high1, int low2, int high2));
EXTERN p_tfnodeinfo tf_nodeinfo PROTO_PARAMS((int pnum, p_tfnodeinfo pinfo));
EXTERN int tf_nump PROTO_PARAMS((void));
EXTERN int tf_propagatep PROTO_PARAMS((int pnum));
EXTERN int tf_putlongp PROTO_PARAMS((int pnum, int lowvalue,
 int highvalue));
EXTERN int tf_putp PROTO_PARAMS((int pnum, int value));
EXTERN int tf_putrealp PROTO_PARAMS((int pnum, double value));
EXTERN int tf_read_restart PROTO_PARAMS((char *blockptr,
 int blocklen));
EXTERN void tf_real_to_long PROTO_PARAMS((double real,
 int *aof_int_lo, int *aof_int_hi));
EXTERN int tf_rosynchronize PROTO_PARAMS((void));
EXTERN void tf_scale_longdelay PROTO_PARAMS((char *cell,
 int delay_lo, int delay_hi, int *aof_delay_lo,
 int *aof_delay_hi));
EXTERN void tf_scale_realdelay PROTO_PARAMS((char *cell,
 double realdelay, double *aof_realdelay));
EXTERN int tf_setdelay PROTO_PARAMS((int delay));
EXTERN int tf_setlongdelay PROTO_PARAMS((int lowdelay,

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Annex D 621

 int highdelay));

EXTERN int tf_setrealdelay PROTO_PARAMS((double realdelay));

EXTERN int tf_setworkarea PROTO_PARAMS((char *workarea));

EXTERN int tf_sizep PROTO_PARAMS((int pnum));

EXTERN char *tf_spname PROTO_PARAMS((void));

EXTERN int tf_strdelputp PROTO_PARAMS((int nparam, int bitlength,

 int format_char, char *value_p, int delay,

 int delaytype));

EXTERN char *tf_strgetp PROTO_PARAMS((int pnum, int format_char));

EXTERN char *tf_strgettime PROTO_PARAMS((void));

EXTERN int tf_strlongdelputp PROTO_PARAMS((int nparam,

 int bitlength, int format_char, char *value_p,

 int lowdelay, int highdelay, int delaytype));

EXTERN int tf_strrealdelputp PROTO_PARAMS((int nparam,

 int bitlength, int format_char, char *value_p,

 double realdelay, int delaytype));

EXTERN int tf_subtract_long PROTO_PARAMS((int *aof_lowtime1,

 int *aof_hightime1, int lowtime2, int hightime2));

EXTERN int tf_synchronize PROTO_PARAMS((void));

EXTERN int tf_testpvc_flag PROTO_PARAMS((int nparam));

EXTERN int tf_text PROTO_PARAMS((char *fmt, ...));

EXTERN int tf_typep PROTO_PARAMS((int pnum));

EXTERN void tf_unscale_longdelay PROTO_PARAMS((char *cell,

 int delay_lo, int delay_hi, int *aof_delay_lo,

 int *aof_delay_hi));

EXTERN void tf_unscale_realdelay PROTO_PARAMS((char *cell,

 double realdelay, double *aof_realdelay));

EXTERN int tf_warning PROTO_PARAMS((char *fmt, ...));

EXTERN int tf_write_save PROTO_PARAMS((char *blockptr,

 int blocklen));

#ifdef DEFINED_PROTO_PARAMS

#undef DEFINED_PROTO_PARAMS

#undef PROTO_PARAMS

#endif

#ifdef DEFINED_EXTERN

#undef DEFINED_EXTERN

#undef EXTERN

#endif

#endif /* VERIUSER_H */

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

622 Annex E

Annex E

(normative)

The

vpi_user.h

 Þle

/**
 * vpi_user.h
 *
 * IEEE Std 1364-1995 Verilog Hardware Description Language (HDL)
* Programming Language Interface (PLI).
 *
 * This file contains the constant definitions, structure definitions,
 * and routine declarations used by the Verilog PLI procedural
 * interface (VPI).
 *
 * The file should be included with all C routines that use the VPI
 * routines.
 ***/
#ifndef VPI_USER_H
#define VPI_USER_H

/* basic typedefs */

typedef unsigned long *vpiHandle;

/* The following are the constant definitions. They are divided into three
 major areas:

 1) Object types
 2) Access methods
 3) Properties

 Note that most of the object types can also be used as access
 methods and that some methods can also be used a properties.
*/

/*********** OBJECT TYPES **********/
#define vpiAlways 1 /* always block */
#define vpiAssignStmt 2 /* quasi-continuous assignment */
#define vpiAssignment 3 /* procedural assignment */
#define vpiBegin 4 /* block statement */
#define vpiCase 5 /* case statement */
#define vpiCaseItem 6 /* case statement item */
#define vpiConstant 7 /* numerical constant or literal string */
#define vpiContAssign 8 /* continuous assignment */
#define vpiDeassign 9 /* deassignment statement */
#define vpiDefParam 10 /* defparam */

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Annex E 623

#define vpiDelayControl 11 /* delay statement (e.g. #10) */
#define vpiDisable 12 /* named block disable statement */
#define vpiEventControl 13 /* wait on event, e.g. @e */
#define vpiEventStmt 14 /* event trigger, e.g. ->e */
#define vpiFor 15 /* for statement */
#define vpiForce 16 /* force statement */
#define vpiForever 17 /* forever statement */
#define vpiFork 18 /* fork-join block */
#define vpiFuncCall 19 /* HDL function call */
#define vpiFunction 20 /* HDL function */
#define vpiGate 21 /* primitive gate */
#define vpiIf 22 /* if statement */
#define vpiIfElse 23 /* if-else statement */
#define vpiInitial 24 /* initial block */
#define vpiIntegerVar 25 /* integer variable */
#define vpiInterModPath 26 /* intermodule wire delay */
#define vpiIterator 27 /* iterator */
#define vpiIODecl 28 /* input/output declaration */
#define vpiMemory 29 /* behavioral memory */
#define vpiMemoryWord 30 /* single word of memory */
#define vpiModPath 31 /* module path for path delays */
#define vpiModule 32 /* module instance */
#define vpiNamedBegin 33 /* named block statement */
#define vpiNamedEvent 34 /* event variable */
#define vpiNamedFork 35 /* named fork-join block */
#define vpiNet 36 /* scalar or vector net */
#define vpiNetBit 37 /* bit of vector net */
#define vpiNullStmt 38 /* a semicolon (e.g., #10) */
#define vpiOperation 39 /* behavioral operation */
#define vpiParamAssign 40 /* module parameter assignment */
#define vpiParameter 41 /* module parameter */
#define vpiPartSelect 42 /* part select */
#define vpiPathTerm 43 /* terminal of module path */
#define vpiPort 44 /* module port */
#define vpiPortBit 45 /* bit of vector module port */
#define vpiPrimTerm 46 /* primitive terminal */
#define vpiRealVar 47 /* real variable */
#define vpiReg 48 /* scalar or vector register */
#define vpiRegBit 49 /* bit of vector register net */
#define vpiRelease 50 /* release statement */
#define vpiRepeat 51 /* repeat statement */
#define vpiRepeatControl 52 /* repeat control in an assign stmt */
#define vpiSchedEvent 53 /* vpi_put_value() event */
#define vpiSpecParam 54 /* specparam */
#define vpiSwitch 55 /* transistor switch */
#define vpiSysFuncCall 56 /* system function call */
#define vpiSysTaskCall 57 /* system task call */
#define vpiTableEntry 58 /* UDP state table entry */
#define vpiTask 59 /* HDL task */
#define vpiTaskCall 60 /* HDL task call */
#define vpiTchk 61 /* timing check */
#define vpiTchkTerm 62 /* terminal of timing check */
#define vpiTimeVar 63 /* time variable */
#define vpiTimeQueue 64 /* simulation event queue */
#define vpiUdp 65 /* user-defined primitive */
#define vpiUdpDefn 66 /* UDP definition */

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

624 Annex E

#define vpiUserSystf 67 /* user-defined system task or function */
#define vpiVarSelect 68 /* variable array selection */
#define vpiWait 69 /* wait statement */
#define vpiWhile 70 /* while statement */

/*********** METHODS ***********/
/*********** methods used to traverse one-to-one relationships ***********/
#define vpiCondition 71 /* condition expression */
#define vpiDelay 72 /* net or gate delay */
#define vpiElseStmt 73 /* else statement */
#define vpiForIncStmt 74 /* increment statement in for loop */
#define vpiForInitStmt 75 /* initialization statement in for loop */
#define vpiHighConn 76 /* higher connection to port */
#define vpiLhs 77 /* left-hand side of assignment */
#define vpiIndex 78 /* index of var select, bit select, etc. */
#define vpiLeftRange 79 /* left range of vector or part select */
#define vpiLowConn 80 /* lower connection to port */
#define vpiParent 81 /* parent object */
#define vpiRhs 82 /* right-hand side of assignment */
#define vpiRightRange 83 /* right range of vector or part select */
#define vpiScope 84 /* containing scope object */
#define vpiSysTfCall 85 /* task function call */
#define vpiTchkDataTerm 86 /* timing check data term */
#define vpiTchkNotifier 87 /* timing check notifier */
#define vpiTchkRefTerm 88 /* timing check reference term */

/*********** methods used to traverse one-to-many relationships ***********/
#define vpiArgument 89 /* argument to (system) task or function */
#define vpiBit 90 /* bit of vector net or port */
#define vpiDriver 91 /* driver for a net */
#define vpiInternalScope 92 /* internal scope in module */
#define vpiLoad 93 /* load on net or register */
#define vpiModDataPathIn 94 /* data terminal of a module path */
#define vpiModPathIn 95 /* input terminal of a module path */
#define vpiModPathOut 96 /* output terminal of a module path */
#define vpiOperand 97 /* operand of expression */
#define vpiPortInst 98 /* connected port instance */
#define vpiProcess 99 /* process in module */
#define vpiVariables 100 /* variables in module */
#define vpiUse 101 /* usage */

/**** methods that can traverse one-to-one or one-to-many relationships ****/
#define vpiExpr 102 /* connected expression */
#define vpiPrimitive 103 /* primitive (gate, switch, UDP) */
#define vpiStmt 104 /* statement in process or task */

/*********** PROPERTIES ***********/
/*********** generic object properties ***********/
#define vpiUndefined -1 /* undefined property */
#define vpiType 1 /* type of object */
#define vpiName 2 /* local name of object */
#define vpiFullName 3 /* full hierarchical name */
#define vpiSize 4 /* size of gate, net, port, etc. */
#define vpiFile 5 /* File name in which the object is used */
#define vpiLineNo 6 /* File line number where object is used */

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Annex E 625

/*********** modules properties **********/
#define vpiTopModule 7 /* top-level module (Boolean) */
#define vpiCellInstance 8 /* cell (Boolean) */
#define vpiDefName 9 /* module definition name */
#define vpiProtected 10 /* source-protected module (Boolean) */
#define vpiTimeUnit 11 /* module time unit */
#define vpiTimePrecision 12 /* module time precision */
#define vpiDefNetType 13 /* default net type */
#define vpiUnconnDrive 14 /* unconnected port drive strength */
#define vpiHighZ 1 /* No default drive given */
#define vpiPull1 2 /* default pull1 drive */
#define vpiPull0 3 /* default pull0 drive */
#define vpiDefFile 15 /* File name where the module is defined */
#define vpiDefLineNo 16 /* File line number where module is defined*/
#define vpiDefDelayMode 17 /* Delay mode of the module */
#define vpiDelayModeNone 1 /* No delay mode specified */
#define vpiDelayModePath 2 /* Path delay mode */
#define vpiDelayModeDistrib 3 /* Distributed delay mode */
#define vpiDelayModeUnit 4 /* Unit delay mode */
#define vpiDelayModeZero 5 /* Zero delay mode */
#define vpiDelayModeMTM 6 /* min:typ:max delay mode */
#define vpiDefDecayTime 18 /* Decay time for trireg net */

/*********** port and net properties ***********/
#define vpiScalar 19 /* scalar (Boolean) */
#define vpiVector 20 /* vector (Boolean) */
#define vpiExplicitName 21 /* port is explicitly named */
#define vpiDirection 22 /* direction of port: */
#define vpiInput 1 /* input */
#define vpiOutput 2 /* output */
#define vpiInout 3 /* inout */
#define vpiMixedIO 4 /* mixed input-output */
#define vpiNoDirection 5 /* no direction */
#define vpiConnByName 23 /* connected by name (Boolean) */

#define vpiNetType 24 /* net subtypes: */
#define vpiWire 1 /* wire net */
#define vpiWand 2 /* wire-and net */
#define vpiWor 3 /* wire-or net */
#define vpiTri 4 /* tri-state net */
#define vpiTri0 5 /* pull-down net */
#define vpiTri1 6 /* pull-up net */
#define vpiTriReg 7 /* tri-state reg net */
#define vpiTriAnd 8 /* tri-state wire-and net */
#define vpiTriOr 9 /* tri-state wire-or net */
#define vpiSupply1 10 /* supply 1 net */
#define vpiSupply0 11 /* supply zero net */

#define vpiExplicitScalared 25 /* explicitly scalared (Boolean) */
#define vpiExplicitVectored 26 /* explicitly vectored (Boolean) */
#define vpiExpanded 27 /* expanded vector net (Boolean) */
#define vpiImplicitDecl 28 /* implicitly declared net (Boolean) */
#define vpiChargeStrength 29 /* charge decay strength of net */

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

626 Annex E

#define vpiArray 30 /* variable array (Boolean) */
#define vpiPortIndex 31 /* port index */
/*********** gate and terminal properties ***********/
#define vpiTermIndex 32 /* Index of a primitive terminal */
#define vpiStrength0 33 /* 0-strength of net or gate */
#define vpiStrength1 34 /* 1-strength of net or gate */
#define vpiPrimType 35 /* prmitive subtypes: */
#define vpiAndPrim 1 /* and gate */
#define vpiNandPrim 2 /* nand gate */
#define vpiNorPrim 3 /* nor gate */
#define vpiOrPrim 4 /* or gate */
#define vpiXorPrim 5 /* xor gate */
#define vpiXnorPrim 6 /* xnor gate */
#define vpiBufPrim 7 /* buffer */
#define vpiNotPrim 8 /* not gate */
#define vpiBufif0Prim 9 /* zero-enabled buffer */
#define vpiBufif1Prim 10 /* one-enabled buffer */
#define vpiNotif0Prim 11 /* zero-enabled not gate */
#define vpiNotif1Prim 12 /* one-enabled not gate */
#define vpiNmosPrim 13 /* nmos switch */
#define vpiPmosPrim 14 /* pmos switch */
#define vpiCmosPrim 15 /* cmos switch */
#define vpiRnmosPrim 16 /* resistive nmos switch */
#define vpiRpmosPrim 17 /* resistive pmos switch */
#define vpiRcmosPrim 18 /* resistive cmos switch */
#define vpiRtranPrim 19 /* resistive bidirectional */
#define vpiRtranif0Prim 20 /* zero-enable resistive bidirectional */
#define vpiRtranif1Prim 21 /* one-enable resistive bidirectional */
#define vpiTranPrim 22 /* bidirectional */
#define vpiTranif0Prim 23 /* zero-enabled bidirectional */
#define vpiTranif1Prim 24 /* one-enabled bidirectional */
#define vpiPullupPrim 25 /* pullup */
#define vpiPulldownPrim 26 /* pulldown */
#define vpiSeqPrim 27 /* sequential UDP */
#define vpiCombPrim 28 /* combinational UDP */

/********** path, path terminal, timing check properties **********/
#define vpiPolarity 36 /* polarity of module path... */
#define vpiDataPolarity 37 /* ...or data path: */
#define vpiPositive 1 /* positive */
#define vpiNegative 2 /* negative */
#define vpiUnknown 3 /* unknown (unspecified) */

#define vpiEdge 38 /* edge type of module path: */
#define vpiNoEdge 0x00000000 /* no edge */
#define vpiEdge01 0x00000001 /* 0 -> 1 */
#define vpiEdge10 0x00000002 /* 1 -> 0 */
#define vpiEdge0x 0x00000004 /* 0 -> x */
#define vpiEdgex1 0x00000008 /* x -> 1 */
#define vpiEdge1x 0x00000010 /* 1 -> x */
#define vpiEdgex0 0x00000020 /* x -> 0 */
#define vpiPosedge (vpiEdgex1 | vpiEdge01 | vpiEdge0x)
#define vpiNegedge (vpiEdgex0 | vpiEdge10 | vpiEdge1x)
#define vpiAnyEdge (vpiPosedge | vpiNegedge)

#define vpiPathType 39 /* path delay connection subtypes: */

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Annex E 627

#define vpiPathFull 1 /* (a *> b) */
#define vpiPathParallel 2 /* (a => b) */
#define vpiModPathHasIfnone 40 /* state-dependent module path has ifnone
 condition specified */
#define vpiTchkType 41 /* timing check subtypes: */
#define vpiSetup 1 /* $setup */
#define vpiHold 2 /* $hold */
#define vpiPeriod 3 /* $period */
#define vpiWidth 4 /* $width */
#define vpiSkew 5 /* $skew */
#define vpiRecovery 6 /* $recovery */
#define vpiNoChange 7 /* $nochange */
#define vpiSetupHold 8 /* $setuphold */

/********** expression properties **********/
#define vpiOpType 42 /* operation subtypes: */
#define vpiMinusOp 1 /* unary minus */
#define vpiPlusOp 2 /* unary plus */
#define vpiNotOp 3 /* unary not */
#define vpiBitNegOp 4 /* bitwise negation */
#define vpiUnaryAndOp 5 /* bitwise reduction and */
#define vpiUnaryNandOp 6 /* bitwise reduction nand */
#define vpiUnaryOrOp 7 /* bitwise reduction or */
#define vpiUnaryNorOp 8 /* bitwise reduction nor */
#define vpiUnaryXorOp 9 /* bitwise reduction xor */
#define vpiUnaryXNorOp 10 /* bitwise reduction xnor */
#define vpiSubOp 11 /* binary subtraction */
#define vpiDivOp 12 /* binary division */
#define vpiModOp 13 /* binary modulus */
#define vpiEqOp 14 /* binary equality */
#define vpiNeqOp 15 /* binary inequality */
#define vpiCaseEqOp 16 /* case (x and z) equality */
#define vpiCaseNeqOp 17 /* case inequality */
#define vpiGtOp 18 /* binary greater than */
#define vpiGeOp 19 /* binary greater than or equal to */
#define vpiLtOp 20 /* binary less than */
#define vpiLeOp 21 /* binary less than or equal to */
#define vpiLShiftOp 22 /* binary left shift */
#define vpiRShiftOp 23 /* binary right shift */
#define vpiAddOp 24 /* binary addition */
#define vpiMultOp 25 /* binary multiplication */
#define vpiLogAndOp 26 /* binary logical and */
#define vpiLogOrOp 27 /* binary logical or */
#define vpiBitAndOp 28 /* binary bitwise and */
#define vpiBitOrOp 29 /* binary bitwise or */
#define vpiBitXorOp 30 /* binary bitwise xor */
#define vpiBitXNorOp 31 /* binary bitwise xnor */
#define vpiConditionOp 32 /* ternary conditional */
#define vpiConcatOp 33 /* n-ary concatenation */
#define vpiMultiConcatOp 34 /* repeated concatenation */
#define vpiEventOrOp 35 /* event or */
#define vpiNullOp 36 /* null operation */
#define vpiListOp 37 /* list of expressions */
#define vpiMinTypMaxOp 38 /* min:typ:max: delay expression */
#define vpiPosedgeOp 39 /* posedge */
#define vpiNegedgeOp 40 /* negedge */

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

628 Annex E

#define vpiConstType 43 /* constant subtypes: */
#define vpiDecConst 1 /* decimal integer */
#define vpiRealConst 2 /* real */
#define vpiBinaryConst 3 /* binary integer */
#define vpiOctConst 4 /* octal integer */
#define vpiHexConst 5 /* hexadecimal integer */
#define vpiStringConst 6 /* string literal */

#define vpiBlocking 44 /* blocking assignment (Boolean) */
#define vpiCaseType 45 /* case statement subtypes: */
#define vpiCaseExact 1 /* exact match */
#define vpiCaseX 2 /* ignore X's */
#define vpiCaseZ 3 /* ignore Z's */
#define vpiNetDeclAssign 46 /* assign part of declaration (Boolean) */

/********** system taskfunc properties *******************/
#define vpiSysFuncType 47 /* system function type */
#define vpiSysFuncInt 1 /* returns integer */
#define vpiSysFuncReal 2 /* returns real */
#define vpiSysFuncTime 3 /* returns time */
#define vpiSysFuncSized 4 /* returns sized */
#define vpiUserDefn 48 /* user defined system tf (Boolean) */

#define vpiScheduled 49 /* is object vpiSchedEvent still scheduled */

/************ I/O related definitions **************************/
#define VPI_MCD_STDOUT 0x00000001
#define VPI_MCD_STDERR 0x00000002
#define VPI_MCD_LOG 0x00000004

/*********************** STRUCTURE DEFINITIONS ****************************/
/************************** time structure ********************************/
typedef struct t_vpi_time
{
 int type; /* [vpiScaledRealTime,vpiSimTime,vpiSuppressTime]*/
 unsigned int high, low; /* for vpiSimTime */
 double real; /* for vpiScaledRealTime */
} s_vpi_time, *p_vpi_time;

/* time types */
#define vpiScaledRealTime 1
#define vpiSimTime 2
#define vpiSuppressTime 3

/************************** delay structures ******************************/
typedef struct t_vpi_delay
{
 struct t_vpi_time *da; /* prtr to user allocated array of delay values */
 int no_of_delays; /* number of delays */
 int time_type; /* [vpiScaledRealTime,vpiSimTime,vpiSuppressTime]*/
 int mtm_flag; /* true for mtm values */
 int append_flag; /* true for append */
 int pulsere_flag; /* true for pulsere values */
} s_vpi_delay, *p_vpi_delay;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Annex E 629

/************************** value structures ****************************/
/* vector value */
typedef struct t_vpi_vecval
{
 /* following fields are repeated enough times to contain vector */
 int aval, bval; /* bit encoding: ab: 00=0, 10=1, 11=X, 01=Z */
} s_vpi_vecval, *p_vpi_vecval;

/* strength (scalar) value */
typedef struct t_vpi_strengthval
{
 int logic; /* vpi[0,1,X,Z] */
 int s0, s1; /* refer to strength coding below */
} s_vpi_strengthval, *p_vpi_strengthval;

/* strength values */
#define vpiSupplyDrive 0x80
#define vpiStrongDrive 0x40
#define vpiPullDrive 0x20
#define vpiWeakDrive 0x08
#define vpiLargeCharge 0x10
#define vpiMediumCharge 0x04
#define vpiSmallCharge 0x02
#define vpiHiZ 0x01

/* generic value */
typedef struct t_vpi_value
{
 int format; /* vpi[[Bin,Oct,Dec,Hex]Str,Scalar,Int,Real,String,Vector,
 Strength,Suppress,Time,ObjType]Val */
 union
 {
 char *str; /* string value */
 int scalar; /* vpi[0,1,X,Z] */
 int integer; /* integer value */
 double real; /* real value */
 struct t_vpi_time *time; /* time value */
 struct t_vpi_vecval *vector; /* vector value */
 struct t_vpi_strengthval *strength; /* strength value */
 char *misc; /* ...other */
 } value;
} s_vpi_value, *p_vpi_value;

/* value formats */
#define vpiBinStrVal 1
#define vpiOctStrVal 2
#define vpiDecStrVal 3
#define vpiHexStrVal 4
#define vpiScalarVal 5
#define vpiIntVal 6
#define vpiRealVal 7
#define vpiStringVal 8
#define vpiVectorVal 9

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

630 Annex E

#define vpiStrengthVal 10
#define vpiTimeVal 11
#define vpiObjTypeVal 12
#define vpiSuppressVal 13

/* delay modes */
#define vpiNoDelay 1
#define vpiInertialDelay 2
#define vpiTransportDelay 3
#define vpiPureTransportDelay 4

/* force and release flags */
#define vpiForceFlag 5
#define vpiReleaseFlag 6

/* scheduled event cancle flag */
#define vpiCancelEvent 7

/* bit mask for the flags argument to vpi_put_value() */
#define vpiReturnEvent 0x1000

/* scalar values */
#define vpi0 0
#define vpi1 1
#define vpiZ 2
#define vpiX 3
#define vpiH 4
#define vpiL 5
#define vpiDontCare 6
/*
#define vpiNoChange 7 Defined under vpiTchkType, but can be used
here.
*/

/********************* system taskfunc structure ************************/
typedef struct t_vpi_systf_data
{
 int type; /* vpiSysTask, vpiSysFunc */
 int subtype; /* vpiSys[Task, Func[Int,Real,Time,Sized]] */
 char *tfname; /* first character has to be Ô$' */
 int (*calltf)();
 int (*compiletf)();
 int (*sizetf)(); /* for vpiSysFuncSized callbacks only */
 char *user_data;
} s_vpi_systf_data, *p_vpi_systf_data;

#define vpiSysTask 1
#define vpiSysFunc 2
/* the subtypes are defined under the vpiSysFuncType property */

/**************** Verilog execution information structure ***************/
typedef struct t_vpi_vlog_info
{
 int argc;
 char **argv;
 char *product;

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Annex E 631

 char *version;
} s_vpi_vlog_info, *p_vpi_vlog_info;
/**************** PLI error information structure ****************/
typedef struct t_vpi_error_info
{
 int state; /* vpi[Compile,PLI,Run] */
 int level; /* vpi[Notice,Warning,Error,System,Internal]*/
 char *message;
 char *product;
 char *code;
 char *file;
 int line;
} s_vpi_error_info, *p_vpi_error_info;

/* error types */
#define vpiCompile 1
#define vpiPLI 2
#define vpiRun 3

#define vpiNotice 1
#define vpiWarning 2
#define vpiError 3
#define vpiSystem 4
#define vpiInternal 5

/************************* callback structures ****************************/
/* normal callback structure */
typedef struct t_cb_data
{
 int reason; /* callback reason */
 int (*cb_rtn)(); /* call routine */
 vpiHandle obj; /* trigger object */
 p_vpi_time *time; /* callback time */
 p_vpi_value *value; /* trigger object value */
 int index; /* index of the memory word or var select
 that changed value */
 char *user_data;
} s_cb_data, *p_cb_data;

/* Callback Reasons */
/* Simulation-related */
#define cbValueChange 1
#define cbStmt 2
#define cbForce 3
#define cbRelease 4

/* Time-related */
#define cbAtStartOfSimTime 5
#define cbReadWriteSynch 6
#define cbReadOnlySynch 7
#define cbNextSimTime 8
#define cbAfterDelay 9

/* Action-related */
#define cbEndOfCompile 10

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

632 Annex E

#define cbStartOfSimulation 11
#define cbEndOfSimulation 12
#define cbError 13
#define cbTchkViolation 14
#define cbStartOfSave 15
#define cbEndOfSave 16
#define cbStartOfRestart 17
#define cbEndOfRestart 18
#define cbStartOfReset 19
#define cbEndOfReset 20
#define cbEnterInteractive 21
#define cbExitInteractive 22
#define cbInteractiveScopeChange 23
#define cbUnresolvedSystf 24

#if defined(__STDC__) || defined(__cplusplus)

#ifndef PROTO_PARAMS
#define PROTO_PARAMS(params) params
#define DEFINED_PROTO_PARAMS
#endif
#ifndef EXTERN
#define EXTERN
#define DEFINED_EXTERN
#endif

#else

#ifndef PROTO_PARAMS
#define PROTO_PARAMS(params) (/* nothing */)
#define DEFINED_PROTO_PARAMS
#endif
#ifndef EXTERN
#define EXTERN extern
#define DEFINED_EXTERN
#endif

#endif /* __STDC__ */

/************************ FUNCTION DECLARATIONS *************************/

/* callback related */
EXTERN vpiHandle vpi_register_cb PROTO_PARAMS((p_cb_data cb_data_p));
EXTERN int vpi_remove_cb PROTO_PARAMS((vpiHandle cb_obj));
EXTERN void vpi_get_cb_info PROTO_PARAMS((vpiHandle object,
 p_cb_data cb_data_p));
EXTERN void vpi_register_systf PROTO_PARAMS((p_vpi_systf_data
 systf_data_p));
EXTERN void vpi_get_systf_info PROTO_PARAMS((vpiHandle object,
 p_vpi_systf_data systf_data_p));

/* for obtaining handles */
EXTERN vpiHandle vpi_handle_by_name PROTO_PARAMS((char *name,
 vpiHandle scope));
EXTERN vpiHandle vpi_handle_by_index PROTO_PARAMS((vpiHandle object,
 int indx));

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Annex E 633

/* for traversing relationships */
EXTERN vpiHandle vpi_handle PROTO_PARAMS((int type,
 vpiHandle referenceHandle));
EXTERN vpiHandle vpi_iterate PROTO_PARAMS((int type,
 vpiHandle referenceHandle));
EXTERN vpiHandle vpi_scan PROTO_PARAMS((vpiHandle iterator));

/* for accesssing properties */
EXTERN int vpi_get PROTO_PARAMS((int property,
 vpiHandle object));
EXTERN char * vpi_get_str PROTO_PARAMS((int property,
 vpiHandle object));

/* delay processing */
EXTERN void vpi_get_delays PROTO_PARAMS((vpiHandle object,
 p_vpi_delay delay_p));
EXTERN void vpi_put_delays PROTO_PARAMS((vpiHandle object,
 p_vpi_delay delay_p));

/* value processing */
EXTERN void vpi_get_value PROTO_PARAMS((vpiHandle expr,
 p_vpi_value value_p));
EXTERN vpiHandle vpi_put_value PROTO_PARAMS((vpiHandle object,
 p_vpi_value value_p,
 p_vpi_time time_p, int flags));

/* time processing */
EXTERN void vpi_get_time PROTO_PARAMS((vpiHandle object,
 p_vpi_time time_p));

/* I/O routines */
EXTERN unsigned int vpi_mcd_open PROTO_PARAMS((char *fileName));
EXTERN unsigned int vpi_mcd_close PROTO_PARAMS((unsigned int mcd));
EXTERN char * vpi_mcd_name PROTO_PARAMS((unsigned int cd));
#ifndef VPI_IO_C
EXTERN int vpi_mcd_printf PROTO_PARAMS((unsigned int mcd,
 char *format,...));
EXTERN int vpi_printf PROTO_PARAMS((char *format,...));
#else
EXTERN int vpi_mcd_printf PROTO_PARAMS(());
EXTERN int vpi_printf PROTO_PARAMS(());
#endif

/* utility routines */
EXTERN int vpi_compare_objects PROTO_PARAMS((vpiHandle object1,
 vpiHandle object2));
EXTERN int vpi_chk_error PROTO_PARAMS((p_vpi_error_info
 error_info_p));
EXTERN int vpi_free_object PROTO_PARAMS((vpiHandle object));
EXTERN int vpi_get_vlog_info PROTO_PARAMS((p_vpi_vlog_info
 vlog_info_p));

#ifdef DEFINED_PROTO_PARAMS
#undef DEFINED_PROTO_PARAMS

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

634 Annex E

#undef PROTO_PARAMS
#endif
#ifdef DEFINED_EXTERN
#undef DEFINED_EXTERN
#undef EXTERN
#endif

/************************ GLOBAL VARIABLES *******************************/
extern void (*vlog_startup_routines[])(); /* array of function pointers, */
 /* last pointer should be null */
#endif /* VPI_USER_H */

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

Annex F 635

Annex F

(informative)

System tasks and functions

The system tasks and functions described in this annex are for informative purposes only and are not part of the IEEE
standard Verilog HDL.

This annex describes system tasks and functions as companions to the system tasks and functions described in Sec-
tion 14. The system tasks and functions described in this annex may not be available in all implementations of the
Verilog HDL. The following system tasks and functions are described in this annex:

The word

tool

 in this annex refers to an implementation of Verilog HDL, typically a logic simulator.

F.1 $countdrivers

Syntax:

$countdrivers

 (net, [net_is_forced, number_of_01x_drivers, number_of_0_drivers,
 number_of_1_drivers, number_of_x_drivers]);

The

$countdrivers

 system function is provided to count the number of drivers on a speciÞed net so that bus conten-
tion can be identiÞed.

This system function returns a

0

 if there is no more than one driver on the net and returns a

1

 otherwise (indicating
contention). The speciÞed net shall be a scalar or a bit-select of a vector net. The number of parameters to the system
function may vary according to how much information is desired.

$countdrivers [F.1]
$getpattern [F.2]
$incsave [F.8]
$input [F.3]
$key [F.4]
$list [F.5]
$log [F.6]
$nokey [F.4]
$nolog [F.6]
$reset [F.7]
$reset_count [F.7]

$reset_value [F.7]
$restart [F.8]
$save [F.8]
$scale [F.9]
$scope [F.10]
$showscopes [F.11]
$showvars [F.12]
$sreadmemb [F.13]
$sreadmemh [F.13]

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

636 Annex F

If additional parameters are supplied to the

$countdrivers

 function, each parameter returns the information described
in Table F-1.

F.2 $getpattern

Syntax:

$getpattern

 (mem_element);

The system function

$getpattern

 provides for fast processing of stimulus patterns that have to be propagated to a
large number of scalar inputs. The function reads stimulus patterns that have been loaded into a memory using the

$readmemb

 or

$readmemh

 system tasks.

Use of this function is limited, however: it may only be used in a continuous assignment statement where the lefthand
side is a concatenation of scalar nets, and the parameter to the system function is a memory element reference.

Example:

The following example shows how stimuli stored in a Þle can be read into a memory using

$readmemb

 and applied
to the circuit one pattern at a time using

$getpattern

.

The memory

in_mem

 is initialized with the stimulus patterns by the

$readmemb

 task. The integer variable

index

selects which pattern is being applied to the circuit. The

for

 loop increments the integer variable

index

 periodically
to sequence the patterns.

Table F-1ÑParameter return value for $countdriver function

Parameter Return value

net_is_forced 1 if net is forced
0 otherwise

number_of_01x_drivers An integer representing the number of
drivers on the net that are in 0, 1, or x
state. This represents the total number
of drivers that are not forced

number_of_0_drivers An integer representing the number of
drivers on the net that are in

0

 state

number_of_1_drivers An integer representing the number of
drivers on the net that are in

1

 state

number_of_x_drivers An integer representing the number of
drivers on the net that are in

x

 state

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Annex F 637

F.3 $input

Syntax:

$input

 ("

Þlename

");

The

$input

 system task allows command input text to come from a named Þle instead of from the terminal. At the
end of the command Þle, the input is switched back to the terminal.

F.4 $key and $nokey

Syntax:

$key

 [(

"Þlename

")] ;

$nokey

 ;

A key Þle is created whenever interactive mode is entered for the Þrst time during simulation. The key Þle contains all
of the text that has been typed in from the standard input. The Þle also contains information about asynchronous inter-
rupts.

module top;
parameter in_width=10,
 patterns=200,
 step=20;
reg [1:in_width] in_mem[1:patterns];
integer index;

// declare scalar inputs
wire i1,i2,i3,i4,i5,i6,i7,i8,i9,i10;

// assign patterns to circuit scalar inputs (a new pattern
// is applied to the circuit each time index changes value)
assign {i1,i2,i3,i4,i5,i6,i7,i8,i9,i10} = $getpattern(in_mem[index]);
initial begin

// read stimulus patterns into memory
$readmemb("patt.mem", in_mem);

// step through patterns (note that each assignment
// to index will drive a new pattern onto the circuit
// inputs from the $getpattern system task specified above
for (index = 1; index <= patterns; index = index + 1)

 #step;
end

// instantiate the circuit module - e.g.
mod1 cct (o1,o2,o3,o4,o5, i1,i2,i3,i4,i5,i6,i7,i8,i9,i10);

endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

638 Annex F

The

$nokey

 and

$key

 system tasks are used to disable and re-enable output to the key Þle. An optional Þle name
parameter for

$key

 causes the old key Þle to be closed, a new Þle to be created, and output to be directed to the new
Þle.

F.5 $list

Syntax:

$list

 [(hierarchical_name)] ;

When invoked without a parameter,

$list

 produces a listing of the module, task, function, or named block that is
deÞned as the current scope setting. If an optional parameter is supplied, it shall refer to a speciÞc module, task, func-
tion or named block, in which case the speciÞed object is listed.

F.6 $log and $nolog

Syntax:

$log

 [(

"Þlename

")] ;

$nolog

 ;

A log Þle contains a copy of all the text that is printed to the standard output. The log Þle may also contain, at the
beginning of the Þle, the host command that was used to run the tool.

The

$nolog

 and

$log

 system tasks are used to disable and re-enable output to the log Þle. The

$nolog

 task disables
output to the log Þle, while the

$log

 task re-enables the output. An optional Þle name parameter for

$log

 causes the
old Þle to be closed, a new log Þle to be created, and output to be directed to the new log Þle.

F.7 $reset, $reset_count, and $reset_value

Syntax:

$reset

 [(stop_value [, reset_value , [diagnostics_value]])] ;

$reset_count

 ;

$reset_value

 ;

The

$reset

 system task enables a tool to be reset to its ÒTime 0Ó state so that processing (e.g., simulation) can begin
again.

The

$reset_count

 system function keeps track of the number of times the tool is reset. The

$reset_value

 system
function returns the value speciÞed by the

reset_value

 parameter argument to the

$reset

 system task. The

$reset_value

 system function is used to communicate information from before a reset of a tool to the time 0 state to
after the reset.

The following are some of the simulation methods that can be employed with this system task and these system func-
tions:

Ñ Determine the

force

 statements a design needs to operate correctly, reset the simulation time to 0, enter these

force

 statements, and start to simulate again
Ñ Reset the simulation time to 0 and apply new stimuli
Ñ Determine that debug system tasks, such as

$monitor and $strobe, are keeping track of the correct nets or
registers, reset the simulation time to 0, and begin simulation again

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Annex F 639

The $reset system task tells a tool to return the processing of the design to its logical state at time 0. When a tool exe-
cutes the $reset system task, it takes the following actions to stop the process:

1) Disables all concurrent activity, initiated in either initial and always procedural blocks in the source
description or through interactive mode (disables, for example, all force and assign statements, the current
$monitor system task, and any other active tasks)

2) Cancels all scheduled simulation events

After a simulation tool executes the $reset system task, the simulation is in the following state:

Ñ The simulation time is 0.
Ñ All registers and nets contain their initial values.
Ñ The tool begins to execute the Þrst procedural statements in all initial and always blocks.

The stop_value argument indicates whether interactive mode or processing is entered immediately after resetting
of the tool. A value of 0 or no argument causes interactive mode to be entered after resetting the tool. A nonzero value
passed to $reset causes the tool to begin processing immediately.

The reset_value argument is an integer that speciÞes whose value is returned by the $reset_value system func-
tion after the tool is reset. All declared integers return to their initial value after reset, but entering an integer as this
argument allows access to what its value was before the reset with the $reset_value system function. This argument
provides a means of communicating information from before the reset of a tool to after the reset of the tool.

The diagnostic_value speciÞes the kind of diagnostic messages a tool displays before it resets the time to 0.
Increasing integer values results in increased information. A value of zero results in no diagnostic message.

F.8 $save, $restart, and $incsave

Three system tasks $save, $restart, and $incsave work in conjunction with one another to save the complete state of
simulation into a permanent Þle such that the simulation state can be reloaded at a later time and processing can con-
tinue where it left off.

Syntax:

$save("Þle_name");
$restart("Þle_name");
$incsave("incremental_Þle_name");

All three system tasks take a Þle name as a parameter. The Þle name has to be supplied as a string enclosed in quota-
tion marks.

The $save system task saves the complete state into the host operating system Þle speciÞed as a parameter.

The $incsave system task saves only what has changed since the last invocation of $save. It is not possible to do an
incremental save on any Þle other than the one produced by the last $save.

The $restart system task restores a previously saved state from a speciÞed Þle.

Restarting from an incremental save is similar to restarting from a full save, except that the name of the incremental
save Þle is speciÞed in the restart command. The full save Þle that the incremental save Þle was based upon shall still
be present, as it is required for a successful restart. If the full save Þle has been changed in any way since the incre-
mental save was performed, errors will result.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

640 Annex F

The incremental restart is useful for going back in time. If a full save is performed near the beginning of processing,
and an incremental save is done at regular intervals, then going back in time is as simple as restarting from the appro-
priate Þle.

Example:

F.9 $scale

Syntax:

$scale (hierarchical_name) ;

The $scale function takes a time value from a module with one time unit to be used in a module with a different time
unit. The time value is converted from the time unit of one module to the time unit of the module that invokes $scale.

F.10 $scope

Syntax:

$scope (hierarchical_name) ;

The $scope system task allows a particular level of hierarchy to be speciÞed as the scope for identifying objects. This
task accepts a single parameter argument that shall be the complete hierarchical name of a module, task, function, or
named block. The initial setting of the interactive scope is the Þrst top-level module.

F.11 $showscopes

Syntax:

$showscopes [(n)];

The $showscopes system task produces a complete list of modules, tasks, functions, and named blocks that are
deÞned at the current scope level. An optional integer parameter can be given to $showscopes. A nonzero parameter
value causes all the modules, tasks, functions, and named blocks in or below the current hierarchical scope to be
listed. No parameter or a zero value results in only objects at the current scope level to be listed.

module checkpoint;

initial
#500 $save("save.dat"); // full save

always begin // incremental save every 10000 units,
// files are recycled every 40000 units

#100000 $incsave("inc1.dat");
#100000 $incsave("inc2.dat");
#100000 $incsave("inc3.dat");
#100000 $incsave("inc4.dat");

end
endmodule

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG¨ HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Annex F 641

F.12 $showvars

Syntax:

$showvars [(list_of_variables)] ;

The $showvars system task produces status information for register and net variables, both scalar and vector. When
invoked without parameters, $showvars displays the status of all variables in the current scope. When invoked with a
list of variables, $showvars shows only the status of the speciÞed variables. If the list of variables includes a bit-
select or part-select of a register or net, then the status information for all the bits of that register or net are displayed.

F.13 $sreadmemb and $sreadmemh

Syntax:

$sreadmemb (mem_name , start_address , finish_address , string { , string }) ;
$sreadmemh (mem_name , start_address , finish_address , string { , string }) ;

The system tasks $sreadmemb and $sreadmemh load data into memory mem_name from a character string.

The $sreadmemh and $sreadmemb system tasks take memory data values and addresses as string arguments. The
start and Þnish addresses indicate the bounds for where the data from strings will be stored in the memory. These
strings take the same format as the strings that appear in the input Þles passed as arguments to $readmemb and
$readmemh.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

642 Annex G

Annex G

(informative)

Compiler directives

The compiler directives described in this annex are for informative purposes only and are not part of the IEEE stan-
dard Verilog HDL.

This annex describes additional compiler directives as companions to the compiler directives described in Section 16.
The compiler directives described in this annex may not be available in all implementations of the Verilog HDL. The
following compiler directives are described in this annex:

The word

tool

 in this annex refers to an implementation of Verilog HDL, typically a logic simulator.

G.1 `default_decay_time

The

`default_decay_time

 compiler directives speciÞes the decay time for the trireg nets that do not have any decay
time speciÞed in the declaration. This compiler directive applies to all of the trireg nets in all the modules that follow
it in the source description. An argument specifying the charge decay time shall be used with this compiler directive.

Syntax:

`default_decay_time

integer

_constant |

real

_constant |

infinite

Examples:

Example 1Ñ

The following example shows how the default decay time for all trireg nets can be set to 100 time units:

`default_decay_time

100

Example 2Ñ

The following example shows how to avoid charge decay on trireg nets:

`default_decay_timeinfinite

The keyword inÞnite speciÞes no charge decay for all the trireg nets that do not have decay time speciÞcation.

G.2 `default_trireg_strength

The

`default_trireg_strength

 compiler directive speciÞes the charge strength of

trireg

 nets.

`default_decay_time [G.1]
`default_trireg_strength [G.2]
`delay_mode_distributed [G.3]

`delay_mode_path [G.4]
`delay_mode_unit [G.5]
`delay_mode_zero [G.6]

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

¨

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Annex G 643

Syntax:

`default_trireg_strength

integer

_constant

The integer constant shall be between 0 and 250. It indicates the relative strength of the capacitance on the trireg net.

G.3 `delay_mode_distributed

The

`delay_mode_distributed

 compiler directive speciÞes the distributed delay mode for all modules that follow this
directive in the source description.

Syntax:

`delay_mode_distributed

This compiler directive shall be used before the declaration of the module whose delay mode is being controlled.

G.4 `delay_mode_path

The

`delay_mode_path

 compiler directive speciÞes the path delay mode for all modules that follow this directive in
the source description.

Syntax:

`delay_mode_path

This compiler directive shall be used before the declaration of the module whose delay mode is being controlled.

G.5 `delay_mode_unit

The

`delay_mode_unit

 compiler directive speciÞes the unit delay mode for all modules that follow this directive in
the source description.

Syntax:

`delay_mode_unit

This compiler directive shall be used before the declaration of the module whose delay mode is being controlled.

G.6 `delay_mode_zero

The

`delay_mode_zero

 compiler directive speciÞes the zero-delay mode for all modules that follow this directive in
the source description.

Syntax:

`delay_mode_zero

This compiler directive shall be used before the declaration of the module whose delay mode is being controlled.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

644 Annex H

Annex H

(informative)

Bibliography

[B1] IEEE Std 754-1985 (Reaff 1990), IEEE Standard for Binary Floating-Point Arithmetic (ANSI).1

1

IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-
1331, USA.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

Index 645

Index

Symbols

!
compared to ‘==0’ 34
logical negation operator 28, 33

!=
logical inequality operator 28, 33

!==
case inequality operator 28, 33

""
null string 42

$ 228, 293
$async$and$array 197
$async$and$plane 197
$async$nand$array 197
$async$nand$plane 197
$async$nor$array 197
$async$nor$plane 197
$async$or$array 197
$async$or$plane 197
$bitstoreal 144, 204
$countdrivers 635–636
$display 173–179

compared to $monitor 179
compared to $write 173
escape sequences 173
format specifications 174–175
size of displayed data 175–176

$displayb 173
$displayh 173
$displayo 173
$dist_chi_square 206
$dist_erlang 206
$dist_exponential 206
$dist_normal 206
$dist_poisson 206
$dist_t 206
$dist_uniform 206
$dumpall 209, 216
$dumpfile 207
$dumpflush 210
$dumplimit 209
$dumpoff 209, 217
$dumpon 209, 217
$dumpvars 208, 217
$fclose 180–182
$fdisplay 181–182
$fdisplayb 181
$fdisplayf 181
$fdisplayh 181
$finish 187, 460
$fmonitor 181–182

$fmonitorb 181
$fmonitorf 181
$fmonitorh 181
$fopen 180–182
$fopen() 450
$fstrobe 181–182
$fstrobebb 181
$fstrobef 181
$fstrobeh 181
$fwrite 181–182
$fwriteb 181
$fwritef 181
$fwriteh 181
$getpattern 636
$hold 188
$incsave 639–640
$input 637
$itor 204
$key 637
$list 638
$log 638
$monitor 179–180

compared to $display 179
$monitorb 179
$monitorh 179
$monitoro 179
$monitoroff 179–180
$monitoron 179–180
$nochange 192
$nokey 637
$nolog 638
$period 191
$printtimescale 183–184
$q_add 201
$q_exam 201
$q_full 201
$q_initialize 201
$q_remove 201
$random 205
$readmemb 182–183

and loading logic array personality 198
$readmemh 182–183

and loading logic array personality 198
$realtime 203
$realtobits 144, 204
$recovery 191
$reset 638
$reset_count 638
$reset_value 638
$restart 639–640
$rtoi 204
$save 639–640
$scale 640
$scope 640

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

646 Index

$setup 188
$setuphold 189
$showscopes 640
$showvars 641
$skew 191
$sreadmemb 641
$sreadmemh 641
$stime 203
$stop 187, 461
$strobe 179

compared to $display 179
$strobeb 179
$strobeh 179
$strobeo 179
$sync$and$array 197
$sync$and$plane 197
$sync$nand$array 197
$sync$nand$plane 197
$sync$nor$array 197
$sync$nor$plane 197
$sync$or$array 197
$sync$or$plane 197
$time 24, 202–203
$timeformat 184–186
$width 190
$write 173–179

compared to $display 173
escape sequences 173
format specifications 174–175
size of displayed data 175–176

$writeb 173
$writeh 173
$writeo 173
%

in format specifications 173, 175
modulus operator 27

&
bit-wise AND operator 28
reduction AND operator 28

&&
logical AND operator 28, 33

&&& 196
(??)

in state table 90
(01)

in state table 90
(0x)

in state table 90
(1x)

in state table 90
(vw)

in state table 90
(x1)

in state table 90

*
arithmetic multiplication operator 27
in state table 90

,,
in null expressions 173

/
arithmetic division operator 27

<
relational less-than operator 27, 32

<<
left shift operator 28, 36

<=
relational less-than-or-equal operator 27, 32

=
in assignment statement 50

==
logical equality operator 28, 33

===
case equality operator 28, 33

>
relational greater-than operator 27, 32

>=
relational greater-than-or-equal operator 27, 32

>>
right shift operator 28, 36

?
equivalent to z in literal number values 7, 110
in state table 90, 93

?:
conditional operator 28

@
for addressing memory 182

\
backslash character 10
for escape sequences in strings 173

\"
as " character 10

\ddd
specify character as octal digits 10

\t
tab character 10

^
bit-wise exclusive OR operator 28
reduction XOR operator 28

^~
bit-wise equivalence operator 28
reduction XNOR operator 28

`
in compiler directives 219

`celldefine 219
`default_decay_time 642
`default_nettype 219, 220
`default_trireg_strength 642
`define 220

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

®

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Index 647

and text macro substitutions 222
`delay_mode_distributed 643
`delay_mode_path 643
`delay_mode_unit 643
`delay_mode_zero 643
`else 222
`endcelldefine 219
`endif 222
`ifdef 222
`include 224
`nounconnected_drive 227
`resetall 225
`timescale 225
`unconnected_drive 227
`undef 222
{{}}

replication operator 27
{}

concatenation operator 27, 38
|

bit-wise inclusive OR operator 28
reduction OR operator 28

||
logical OR operator 28, 33

~
bit-wise negation operator 28

~&
reduction NAND operator 28

~^
bit-wise equivalence operator 28
reduction XNOR operator 28

~|
reduction NOR operator 28

‘celldefine 386
‘endcelldefine 386
‘timescale 477, 478

Numerics

0
for minimizing bit lengths of expressions 175
in state table 90
logic 0 177
logic zero 13

01 transition 93
1

in state table 90
logic 1 177
logic one 13

A

acc_append_delays() 256, 271, 281
acc_append_pulsere() 275, 281
acc_close() 235, 267, 277, 281, 379

acc_collect() 278, 343, 389, 412
acc_compare_handles() 280
acc_configure() 235, 281
acc_count() 289, 389, 412
acc_error_flag 254, 329, 331, 332
acc_fetch_argc() 290
acc_fetch_argv() 291
acc_fetch_attribute() 281, 292
acc_fetch_attribute_int() 296
acc_fetch_attribute_str() 297
acc_fetch_defname() 298
acc_fetch_delay_mode() 299
acc_fetch_delays() 256, 281, 301
acc_fetch_direction() 305
acc_fetch_edge() 306
acc_fetch_fullname() 281, 308
acc_fetch_fulltype() 310
acc_fetch_index() 313
acc_fetch_itfarg() 329
acc_fetch_itfarg_int() 331
acc_fetch_itfarg_str() 332
acc_fetch_location() 315
acc_fetch_name() 281, 317
acc_fetch_paramtype() 319
acc_fetch_paramval() 320
acc_fetch_polarity() 322
acc_fetch_precision() 323
acc_fetch_pulsere() 281, 324
acc_fetch_range() 327
acc_fetch_size() 328
acc_fetch_tfarg() 329
acc_fetch_tfarg_int() 331
acc_fetch_tfarg_str() 332
acc_fetch_timescale_info() 333
acc_fetch_type() 335
acc_fetch_type_str() 337
acc_fetch_value() 338
acc_free() 278, 343
acc_handle_by_name() 344
acc_handle_calling_mod_m() 346
acc_handle_condition() 347
acc_handle_conn() 348
acc_handle_datapath() 349
acc_handle_hiconn() 350
acc_handle_interactive_scope() 352
acc_handle_itfarg() 376
acc_handle_loconn() 353
acc_handle_modpath() 281, 354
acc_handle_notifier() 356
acc_handle_object() 357
acc_handle_parent() 359
acc_handle_path() 360
acc_handle_pathin() 361
acc_handle_pathout() 362

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

648 Index

acc_handle_port() 363
acc_handle_scope() 365
acc_handle_simulated_net() 366
acc_handle_tchk() 281, 368
acc_handle_tchkarg1() 372
acc_handle_tchkarg2() 374
acc_handle_terminal() 375
acc_handle_tfarg() 376
acc_handle_tfinst() 378
acc_initialize() 235, 267, 277, 281, 379
acc_next() 380
acc_next_bit() 384
acc_next_cell() 386
acc_next_cell_load() 387
acc_next_child() 389, 412
acc_next_driver() 390
acc_next_hiconn() 391
acc_next_input() 393, 420
acc_next_load() 387, 395
acc_next_loconn() 397
acc_next_modpath() 398
acc_next_net() 399
acc_next_output() 400, 420
acc_next_parameter() 402
acc_next_port() 403
acc_next_portout() 405
acc_next_primitive() 406
acc_next_scope() 407
acc_next_specparam() 408
acc_next_tchk() 409
acc_next_terminal() 411
acc_next_topmod() 289, 389, 412
acc_object_in_typelist() 413
acc_object_of_type() 415
acc_product_type() 417
acc_product_version() 419
acc_release_object() 420
acc_replace_delays() 256, 281, 421
acc_replace_pulsere() 425
acc_reset_buffer() 428
acc_set_interactive_scope() 429
acc_set_pulsere() 430
acc_set_scope() 281, 432
acc_set_value() 434
acc_user.h file 235, 605
acc_vcl_add() 263, 440
acc_vcl_delete() 264, 442
acc_version() 443
accAndGate 252
accAssignFlag 438
accBinStrVal 339, 435
accBitSelectPort 251
accBufGate 252
accBufif0Gate 252

accBufif1Gate 252
accCellInstance 250
accCmosGate 252
accCollapsedNet 415
accCombPrim 252
accConcatPort 251
accConstant 250
accDataPath 250
accDeassignFlag 438
accDecStrVal 339, 435
accDefaultAttr0 281, 292
accDelayModeDistrib 299
accDelayModeMTM 299
accDelayModeNone 299
accDelayModePath 299
accDelayModeUnit 299
accDelayModeZero 299
accDevelopmentVersion 235, 281
accDisplayErrors 254, 281
accDisplayWarnings 254, 281
accEdge01 306, 368
accEdge0x 306, 368
accEdge10 306, 368
accEdge1x 306, 368
accEdgex0 306, 368
accEdgex1 306, 368
accEnableArgs 281, 354, 368, 432
access routines

accessible objects 242
exception values 255
history 229
listed by category

fetch routines 236
handle routines 237
miscellaneous routines 241
modify routines 240
next routines 238
VCL routines 241

listed by functional groups
routines that operate on bits of a port 243
routines that operate on inter-module paths

245
routines that operate on module instances 242
routines that operate on module or data paths

244
routines that operate on module ports 243
routines that operate on named events 248
routines that operate on nets 246
routines that operate on parameters 248
routines that operate on primitive instances

245
routines that operate on primitive terminals

246
routines that operate on registers 247

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

®

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Index 649

routines that operate on task arguments 249
routines that operate on timing checks 249
routines that operate on top-level modules

245
routines that operate on variables 247

accExpandedVector 415
accFaultSimulator 417
accForceFlag 438
accFunction 250
accHexStrVal 339, 435
accHold 253, 368
accInertialDelay 437
accInout 305
accInoutTerminal 253
accInput 305
accInputTerminal 253
accIntegerParam 250, 253
accIntegerVar 250
accInterModPath 251
accIntermodPath 253
accIntVal 339, 435
accMapToMipd 281
accMinTypMaxDelays 257, 272, 281, 302, 422
accMixedIo 305
accModPath 251
accModPathHasIfnone 415
accModPathhasIfnone 347
accModule 250
accModuleInstance 250
accNamedBeginStat 253
accNamedEvent 250
accNamedForkStat 253
accNandGate 252
accNegative 322
accNegedge 306, 368
accNet 250
accNetBit 250
accNmosGate 252
accNochange 253, 368
accNoDelay 437
accNoedge 306, 368
accNorGate 252
accNotGate 252
accNotif0Gate 252
accNotif1Gate 252
accOctStrVal 339, 435
accOperator 250
accOrGate 252
accOther 417
accOutput 305
accOutputTerminal 253
accParameter 250
accPartSelect 250
accPartSelectPort 251

accPath 251
accPathDelayCount 257, 281, 302, 325, 426
accPathDelimStr 281, 309, 318
accPathInput 251
accPathOutput 251
accPathTerminal 251
accPeriod 253, 368
accPmosGate 252
accPort 251
accPortBit 251
accPosedge 306, 368
accPositive 322
accPrimitive 252
accPulldownGate 252
accPullupGate 252
accPureTransportDelay 437
accRcmosGate 252
accRealParam 250, 253
accRealTime 438
accRealVal 339, 435
accRealVar 252
accRecovery 253, 368
accReg 252
accRegBit 252
accReleaseFlag 438
accRnmosGate 252
accRpmosGate 252
accRtranGate 252
accRtranif0Gate 252
accRtranif1Gate 252
accScalar 415
accScalarPort 251
accScalarVal 339, 435
accScope 415
accSeqPrim 252
accSetup 253, 368
accSetuphold 253
accSimTime 438
accSimulator 417
accSkew 253, 368
accSpecparam 253
accStatement 253
accStringParam 250, 253
accStringVal 339, 435
accSupply0 250
accSupply1 250
accSystemFunction 253
accSystemRealFunction 253
accSystemTask 253
accTask 253
accTchk 253
accTchkTerminal 253
accTerminal 253
accTime 438

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

650 Index

accTimeVar 253
accTimingAnalyzer 417
accToHiZDelay 257, 281
accTopModule 250
accTranGate 252
accTranif0Gate 252
accTranif1Gate 252
accTransportDelay 437
accTri 250
accTri0 250
accTri1 250
accTriand 250
accTrior 250
accTrireg 250
accUnexpandedVector 415
accUnknown 322
accUserFunction 253
accUserRealFunction 253
accUserTask 253
accVector 415
accVectorPort 251
accVectorVal 339, 435
accWand 250
accWidth 253, 368
accWire 250
accWirePath 253
accWor 250
accXnorGate 252
accXorGate 252
addressing memory 182–183
always

and activity flow 98
ambiguous strength 70–81
and gate 61–62
arguments

data 231
for system timing checks 188
paramvc 231
reason 231
system task/function 232, 376

arithmetic operators 27, 31
- 31
% 31
* 31
+ 31
/ 31
and unknown logic values 31

arrays
element 23
format 198
index 23
no multiple dimension 23
of integers 24
of time variables 24

word 23
assign 438
assignment 50–54

continuous 50–53, 99
left hand side 50
of delays to module paths 164–166
procedural 99–106
procedural versus continuous 99
right hand side 50

assignments
scheduling implications 48

associating PLI routines to a name 231
asynchronous arrays 197
attribute names 292

B

b
binary number format 7
in state table 90

backslash character 10
base format

binary 7
decimal 7
hexadecimal 7
octal 7

begin-end block statement 107, 120
behavioral modeling 98–124
bidirectional pass gate 65
bidirectional port 142
binary display format 7

and high impedance state 176
and unknown logic value 176

binary operators 29
{} 38
precedence 29

bit-select
of vector net or register 39
out of bounds 39, 40
references of real numbers 25

bit-wise operators 34–35
AND 28
and 35
equivalence 28
exclusive nor 35
exclusive OR 28
exclusive or 35
inclusive OR 28
inclusive or 35
negation 28
unary negation 35

blank module terminal 137
block statement 119–123

fork-join 120

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

®

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Index 651

naming of 122
parallel 120
sequential 120
start and finish times 122–123
timing for embedded blocks 122

blocking assignments 99
blocking procedural assignment 99
buf gate 62–63
bufif gate 63–64

C

calltf routines 230, 590
capacitive networks 19–22
capacitive state 18
case equality operator 28
case inequality operator 28
case statement 108–111

compared to if-else-if statement 109
with don’t-care 110–111

casex 110
casez 110
cbAfterDelay 586
cbAtStartOfSimTime 586
cbEndOfCompile 587
cbEndOfRestart 587
cbEndOfSave 587
cbEndOfSimulation 587
cbEnterInteractive 587
cbError 587
cbExitInteractive 587
cbForce 585
cbInteractiveScopeChange 587
cbNextSimTime 586
cbReadOnlySynch 586
cbReadWriteSynch 586
cbRelease 585
cbStartOfRestart 587
cbStartOfSave 587
cbStartOfSimulation 587
cbStmt 585
cbTchkViolation 587
cbUnresolvedSystf 587
cbValueChange 585
cell 386, 387
cell load 387
characters

specified as octal digits 10
charge decay 85
charge storage

strength 16
charge storage strength 68
checktf routines 230
classes of PLI routines

calltf 230, 590
checktf 230
compiletf 589
consumer 230
misctf 230
sizetf 230

cmos 66
cmos gate 66–67
collapsed net 366, 415
combinational UDPs 87, 90–91

compared to level-sensitive sequential 92
input and output fields in state table 89

combined signal strengths 69–81
combined signal values 69–81
command line options 452
comments 5
compare

string operation 41
Compiler directives 12
compiler directives 219
compiletf routines 589
concatenation

and repetition multiplier 38
and unsized numbers 38
of names 147
of operands 39
of terms in synchronous and asynchronous system

calls 197
operator 27, 38
string operation 41

concurrency
of activity flow 98

condition
deterministic 196
non-deterministic 196

conditional compilation 222
conditional operator 28, 37

and ambiguous results 37
modeling tri-state output busses 37

conditional operator ?: 29
conditional statement 106–108
conditioned event 195–196

versus unconditioned event 196
configuration parameters 281

accDefaultAttr0 281, 292
accDevelopmentVersion 281
accDisplayErrors 281
accDisplayWarnings 281
accEnableArgs 281
accMapToMipd 281
accMinTypMaxDelays 281
accPathDelayCount 281
accPathDelimStr 281

conflicts 17

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

652 Index

connecting ports
by name 143–144
by position with ordered list 143
rules 145–146

connection
difference between full and parallel 162
full 161–163
parallel 161–163

constant expression 27
consumer routine 230, 264
continuous assignment 50–53

and connecting ports 145
and driving strength 68, 178
and net variables 99
and wire nets 17
driving strength of 53
explicit declaration 51
implicit declaration 51
versus procedural assignment 53

copy
string operation 41

counting number of drivers 636

D

d
decimal number format 7

data argument 231
data path 349, 393, 400
data types 13–26
deassign 438
decimal display format 7

and high impedance state 176
and unknown logic value 176
compatibility with $monitor 176

decimal notation 8
declaring

events 116
multiple module paths in a single statement 162
parameters in specify blocks 153–154

default
in case statement 108
in if-else-if statements 107

defparam 25, 139–140
delay

calculating for high impedance (z) transitions 83
calculating for unknown logic value (x) transi-

tions 83
control 114
distributed 152–168
fall 83
falling 84
for continuous assignment 52
gate 83–84

minimum:typical:maximum values 84
module path 152–168
net 83–84
propagation 58, 83
rise 83, 84
specify one value 83
specify three values 83
specify two values 83
trireg charge decay 85
turn-off 84

delay specification 58
delays

inertial 437, 508, 512, 514, 582
pure transport 437, 508, 512, 514, 582
transport 437, 508, 512, 514, 582

delimiter 293
describing simple module paths 155–156
determinism in simulation execution 47
development version 235
diagnostic messages

from $stop and $finish 187
disable

named blocks 132
tasks 132
use of 132

displaying information 173–179
don’t-care bits

in case statements 110
double quote character 10
drive strength specification 57
driven state 18
driving strength 68

compared to charge storage strength 178
keywords 53

E

e_limit 275, 324, 425, 430
edge control specifiers 193
edge transitions 193
edge-sensitive paths 156–160
edge-sensitive UDPs 92

compared to level-sensitive UDPs 92
element

of array 23
else 107
embedding modules 135, 136
enable 117
enabling tasks 125–126
end

sequential block 120
endcase 108
endfunction 129
endmodule 136

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

®

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Index 653

endprimitive 88
endspecify 152
endtable 88
endtask 126
equality operators 33

!= 33
!== 33
== 33
=== 33
and ambiguous results 33
and operands of different sizes 33
precedence 33

ERR_ERROR 482
ERR_INTERNAL 482
ERR_MESSAGE 482
ERR_SYSTEM 482
ERR_WARNING 482
escape sequences 173
escaped identifiers 11
espresso format 198
event

control 114, 115
explicit 114
expression 114
implicit 114
level sensitive control 117
named 116
OR construct 116

event control
repeat 118–119

event or 28
event queue 46
event simulation 45
event_value_change 265
exception values 255
exit simulator 187
expanded vectors 384, 416
expansion

of vector nets 15
explicit event 114
explicit zero delay 46
expressions 27–44

bit lengths 43
constant 27
self-determined 43

F

f
in state table 90

fall delay 83, 84
file inclusion 224
file output 450
finish time

in parallel block statements 122
in sequential block statements 122

for loop 112
force 105, 438

precedence over assign 105
forever loop 112
fork-join block statement 120
format specifications 174–175

ASCII character 174
b or B 174
binary 174
c or C 174
d or D 174
decimal 174
h or H 174
hexadecimal 174
hierarchical name 174
m or M 174
net signal strength 174, 177–178
o or O 174
octal 174
s or S 174
string 174, 179
t or T 174, 175
time format 174
timescales 175
v or V 174

formats
array 198
of logic array personality 198–200
plane 198

full connection 161–162
fullname 308, 572
fulltype 249, 310
functions 128–131

and scope 150
as structured procedures 123
definition 123
purpose 125
returning a value 129
rules 130

G

gate level modeling 55–86
gate type specification 57
gates

and 61–62
bidirectional pass 65
buf 62–63
bufif 63–64
cmos 66–67
compared to continuous assignments 55
connection list 58

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

654 Index

delay 83–84
MOS 64–65
nand 61–62
nor 61–62
not 62–63
notif 63–64
notif0 63–64
notif1 63–64
or 61–62
pulldown 67
pullup 67
terminal list 58
xnor 61–62
xor 61–62

glitch control, see pulse control

H

H
logic 1 or high impedance state in strength format

177
h

hexadecimal number format 7
handles

handle data type 235
vpiHandle data type 526

header files, see include files
hexadecimal display format 7

and high impedance state 176
and unknown logic value 176

Hi
high impedance in strength format 177

hiconn definition 350
hierarchical name 308
hierarchy

level 146
name referencing 146–151, 174
of modules 135
scope 146
scope rules for naming 150–151
structures 135–151
top level names 147

high impedance state
and numbers 7
and trireg nets 18
and UDPs 95
display formats 176–178
effect in different bases 7
strength display format 177
symbolic representation 13

highz0 57
highz1 57

I

identifiers 10–11
escaped 11
keywords 11

if-else statement
omitting else from nested if 107
purpose 106

If-else-if 107
if-else-if statement

compared to case statement 109
ifnone 347, 415
implicit

declarations 16, 219
event 114

include files
acc_user.h 605
veriuser.h 615
vpi_user.h 622

incremental restart 640
incremental save 639
index

of array 23
of memory 23

inertial delays 437, 508, 512, 514, 582
initial 124

and activity flow 98
for specifying waveforms 124

initial statements
in UDPs 93–95

initializing access routines 235
inout port 142
input port 142
instantiation

of modules 135, 136–139
integer 14, 24
integer_value_change 265
integers 23–24

division 31
interactive scope 352
interface mechanism 228
inter-module paths 360
intra-assignment timing controls 117–119
invocation options 452
io_mcdprintf() 447, 450
io_printf() 447, 451

J

join 121

K

keywords 11, 604

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

®

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Index 655

L

L
logic 0 or high impedance state in strength format

177
La

large capacitor in strength format 177
large 18
left shift operator 28, 36
level-sensitive

event control 117
paths 157–161
sequential UDPs 91–92
versus combinational UDP 92

level-sensitive UDPs
compared to edge-sensitive UDPs 92

lexical conventions 5–12
lexical token

comment 5
definition of 5
number 5
operator 5
types 5
white space 5

load 387, 395
loconn definition 353
logic array personality 198–200

declaration 198
formats 198–200
loading 198

logic gates
and 61–62
bidirectional pass 65
buf 62–63
bufif 63–64
cmos 66–67
compared to continuous assignments 55
delay 83–84
MOS 64–65
nand 61–62
nor 61–62
not 62–63
notif 63–64
or 61–62
pulldown 67
pullup 67
xnor 61–62
xor 61–62

logic one 13
logic planes 197
logic strength modeling 67–82
logic zero 13
logic_value_change 265
logical operators 33

! 33
&& 33
|| 33
AND 28
and ambiguous results 33
and unknown logic value 33
equality 28
inequality 28
negation 28
OR 28
precedence 33

looping statement 111–113
for loop 112
forever loop 112
repeat loop 112
while loop 112

lsb (least significant bit) 15

M

macromodule 136
mc_scan_plusargs() 452
Me

medium capacitor in strength format 177
medium 18
memory 22–23

addressing 40
assigning values to 23
index 23
real number memories 25
using temporary registers for bit- and part-selects

40
memval structure 490
minimum:typical:maximum values

delay 84
for module path delays 165, 166
format 42

minus sign(-)
arithmetic subtraction operator 27
in state table 90

misctf routines 230
mixing path and distributed delays 167
modeling

asynchronous clear/preset on an edge-triggered D
flip-flop 104

logic strength 67–82
module 135–139

and user-defined primitives(UDPs) 87
definition 135–136
hierarchy 135
instance parameter value assignment 140–141
instantiation 136–139
overriding parameter values 139–141
parameter dependencies 141

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

656 Index

port 137
terminal 137
top-level 136

module cell 386, 387
module parameter

as delay 25
as width of variables 25
compared to specify parameter 153
dependencies 141
overriding values 139–141
passing to tasks 126–127

module path 354, 361, 362, 393, 398, 400
definition 154
delay 164–168
destination 152, 155, 162
polarity 163–164
source 152, 155, 162

module path names 293
module path restrictions 155
modulus operator 27

definition 31
monitor flag 180
monitoring

continuous 179
strobed 179

MOS gate 64–65
nmos 65
pmos 65
rnmos 65
rpmos 65

MOS strength handling 82
msb (most significant bit) 15
mtm_flag 561
multi-channel descriptor 180, 181
multiple drivers

at same strength level 79
driving the same net 17
inside a module 168–171
outside a module 169

multiple module path delays
assigning in one statement 162

multi-way decisions
case statement 108
if-else-if statement 107

N

n
in state table 90

name 228, 317, 572
named blocks

and hierarchical names 146
and scope 150
purpose 122

named events 45, 116
used with event expressions 116

named objects
with acc_fetch_fullname() 308
with acc_fetch_name() 317
with acc_handle_by_name() 344
with acc_handle_object() 357

names
of hierarchical paths 146–151

nand gate 61–62
negedge 115, 193
net and register bit addressing 39
nets 13–22

delay 83–84
implicit declaration 67
initialization 16
trireg strength 69
types of 17–22
wired logic 79

new line character 10, 173
newline character 10
nmos 64–65
node

in hierarchical name tree 147
non-blocking procedural assignment 100–103

evaluating assignments 101
multiple assignments 102

non-determinism in simulation execution 47
nor gate 61–62
not gate 62–63
notif gate 63–64

notif0 64
notif1 64

notifier 193–195
in edge sensitive UDP 194–195
toggle values 194

null
expression 173

numbers 5
base format 7
size specification 7

O

o
octal number format 7

object
full name 308
fulltype 310
fulltypes, list of all 249
name 317
type 335
types, list of all 249

objects

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

®

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Index 657

supported by acc_next() 380
supported by acc_object_in_typelist() 413
supported by acc_object_of_type() 415
supported by VCL 264, 440

octal display format 7
on/off control

of monitoring tasks 180
operands 39–42

bit-select 39
concatenation 39
definition 27
function call 39
part-select 39
strings 40–42

operators 27–38
- 27
! 28, 33
!= 28, 33
!== 28, 33
% 27
& 28
&& 28, 33
* 27
*> 156–162
+ 27
/ 27
< 27, 32
<< 28, 36
<= 27, 32
= 50
== 28, 33
=== 28, 33
=> 156–162
> 27, 32
>= 27, 32
>> 28, 36
?: 28
^ 28
^~ 28
{{}} 27
{} 27, 38
| 28
|| 28, 33
~ 28
~& 28
~^ 28
~| 28
and real numbers 25
arithmetic 27, 31
binary 5, 29
bit-wise 34–35
bit-wise AND 28
bit-wise equivalence 28
bit-wise exclusive OR 28

bit-wise inclusive OR 28
bit-wise negation 28
case equality 28
case inequality 28
concatenation 27, 38
conditional 5, 28, 37
definition 5
equality 33
event or 28
left shift 28
left shift operator 36
logical 33
logical AND 28
logical equality 28
logical inequality 28
logical negation 28
logical OR 28
modulus 27
reduction 35–36
reduction AND 28
reduction NAND 28
reduction NOR 28
reduction OR 28
reduction XNOR 28
reduction XOR 28
relational 27, 32
replication 27
right shift 28
right shift operator 36
shift 36
unary 5

or gate 61–62
output

to files 180–182
output port 142
Overloading system task/function names 229
overriding module parameter values 139–141

assigning values in-line within module instances
140–141

defparam 139
compared to assignmesions 141

P

p
in state table 90

parallel block statement
finish time 122
start time 122

parallel connection 161–162
parameter

module type 25
parameter attribute name 292
Parameter Value Change flags, see PVC flags

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

658 Index

parameter, with task/function routines 444
paramvc argument 231
parentheses

and changing operator precedence 30
part-select

of vector net or register 39
references of real numbers 25

path delay, see module path
path delimiter 293
path names 309
PATHPULSE$ 170
personality

memory 197
of logic array 198–200

PLA devices
array logic types 197
array types 197
list of system tasks 197
logic array personality declaration 198
logic array personality formats 198–200
logic array personality loading 198

plane
format 198
in programmable logic arrays 197

PLI history 228
PLI interface mechanism 228
plus sign(+)

arithmetic addition operator 27
pmos 64–65
polarity 163–164

negative 163
positive 163
unknown 163

port 141–146
connecting

by name 143–144
by position with ordered list 143
rules for 145–146

declaration 142
definition 141
module 137

posedge 115, 193
power supplies

modeled by supply nets 22
precedence

binary operators 29
equality operators 33
logical operators 33
relational operators 33

primitive instance identifier 58
printing, see text output
probabilistic distribution functions 205–206

$dist_chi_square 206
$dist_erlang 206

$dist_exponential 206
$dist_normal 206
$dist_poisson 206
$dist_t 206
$dist_uniform 206

procedural assignment 99–106
and integers 24
and time variables 24
blocking 99
non-blocking 100–103
versus continuous assignment 53

procedural assignments
blocking assignment 99

procedural continuous assignment 438
procedural continuous assignments 104–106

assign 104–105
deassign 104–105
force 105
precedence 105
release 105

procedural force 438
procedural statements

in behavioral models 98
procedural timing controls 114–119

delay control 114
event control 114
fork-join block 121
intra-assignment timing controls 117–119

procedure
always construct 123
function 123
initial construct 123
task 123

process 45
programmable logic arrays

list of system tasks 197
logic types 197
personality

declaration 198
formats 198–200
loading 198

types 197
propagation delay

for gates and nets 83
Pu

pull drive in strength format 177
pull0 57
pull1 57
pulldown source 67
pullup source 67
pulse control 170, 275, 324, 425, 430, 561
pulsere_flag 561
pure transport delays 437, 508, 512, 514, 582
PVC flags 458, 473, 485, 518

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

®

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Index 659

Q

qualified paths 156–160
edge-sensitive 156–160
level-sensitive 157–162

queue management 200–202
$q_add 200, 201
$q_exam 200, 201
$q_full 200, 201
$q_initialize 200
$q_remove 200, 201
status parameters 202

queueing models 200

R

r
in state table 90

race condition 118
race conditions 47
random access memory(RAM)

modeled by register arrays 22
random number generators

probabilistic distribution functions 205
range specification 58
rcmos 66
read-only memory(ROM)

modeled by register arrays 22
real numbers 23–25, 204

and operators 25
conversion to integers 9, 25
format specifications used with 174
in port connections 144
operators with real number operands 28–29

real_value_change 265
realtime

variables 23
reason argument 231
reason constants 231
reason_calltf 231
reason_checktf 231
reason_disable 232
reason_endofcompile 232
reason_endofreset 232
reason_finish 232
reason_force 232
reason_interactive 232
reason_paramdrc 232
reason_paramvc 232, 454, 455
reason_reactivate 447, 501, 502, 503
reason_reactiviate 232
reason_release 232
reason_reset 232
reason_restart 232
reason_rosynch 232, 447, 471, 498

reason_save 232
reason_scope 232
reason_sizetf 231
reason_startofsave 232
reason_synch 232, 447, 498, 517
reducing pessimism 109
reduction operators 35–36

& 28
~& 28
inclusive OR 28
inclusive or 36
unary AND 28
unary and 36
unary exclusive or 36
unary NAND 28
unary NOR 28
XNOR 28
XOR 28

reg declaration 14
registers 14–15

and level-sensitive sequential UDPs 91
notifier 193
used in procedural assignments 54

reject_limit 275, 324, 425, 430
relational operators 27, 32

< 32
<= 32
> 32
>= 32
and unknown bit values 32
precedence 33

release 105, 438
repeat event control 118–119
repeat loop 112
repetition multiplier 38
replication

operator 27
resistive devices

modeled with tri0 and tri1 nets 22
restrictions on data types

in continuous assignments 50, 145
in procedural assignments 50, 53, 99
when connecting ports 145

right shift operator 28, 36
rise delay 83, 84
rnmos 64–65
rpmos 64–65
rtran 65
rtranif0 65
rtranif1 65
rules

for describing module paths 163

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

660 Index

S

s
in string display format 179

s_acc_time structure 437
s_acc_value structure 339
s_acc_vecval structure 340, 435
s_cb_data structure 559, 584
s_location data structure 315
s_setval_delay structure 436
s_setval_value structure 434
s_strengths structure 266
s_strengthval structure 489
s_tfexprinfo structure 465
s_tfnodeinfo structure 487
s_timescale_info structure 333
s_vc_record structure 264
s_vecval structure 465, 489
s_vpi_delay structure 560
s_vpi_error_info structure 555
s_vpi_strengthval structure 567
s_vpi_systf_data structure 564, 589
s_vpi_time structure 560, 565, 583
s_vpi_value structure 566, 583
s_vpi_vecval structure 567
s_vpi_vlog_info structure 569
scalared 16
scalars

compared to vectors 15
scalar nets and driving strength of continuous as-

signment 53
scheduling semantics 45
scientific notation 8
scope 365, 407

and hierarchical names 147
rules 150–151

seed 206
self-determined expression 43
sequential block statement 120–121

finish time 122
start time 122

sequential UDP initialization 93–95
sequential UDPs

input and output fields in state table 89
set of values (0, 1, x, z) 13
shift operators 36

<< 36
>> 36

simulated net 366, 415, 416
simulating module path delays

when driving wired logic 168–171
simulation

going back with incremental restart 640
simulation cycle 46

simulation reference model 46
simulation time 45
size of displayed data 175–176
sized numbers 6
sizetf routines 230
Sm

small capacitor in strength format 177
small 18
source

pulldown 67
pullup 67

specify block 152–171
specify block system tasks

$hold 188
$period 191
$recovery 191
$setup 188
$setuphold 189
$skew 191
$width 190

specify parameter 153–154
specify parameters

as run time constant in specify block 153
specifying the time unit of delays entered interactively

184
specifying transition delays on module paths 165–166

x transitions 166–167
specparam 153–154
specparam attribute name 292
sregister_value_change 265
St

strong drive in strength format 177
standard output 180
start time

in parallel block statements 122
in sequential block statements 122

state dependent path delays 157–162
stochastic analysis 205–206

probabilistic distribution functions 205–206
queue management 200–202

stop 187
strength 57–58

ambiguous 70–81
and logic conflicts 17
and MOS gates 82
and scalar net variables 13
charge storage 68
driving 68
gates that accept specifications 57
of combined signals 69–81
on trireg nets 18
range of possible values 70
reduction by non-resistive devices 82
reduction by resistive devices 82

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

®

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Index 661

reduction table 82
scale of strengths 69
supply net 82
tri0 82
tri1 82
trireg 82

strength display format 177–178
high impedance 177
large capacitor 177
logic value 0,1,H,L,X,Z 177
medium capacitor 177
pull drive 177
small capacitor 177
strong drive 177
supply drive 177
weak drive 177

strength_value_change 265
string buffer 428
string handling 261
strings 9–10, 40–42

definition 9
display format 174, 179
in vector variables 41
manipulation 9
operations 41
padding 10
special characters 10
value padding 41–42
variable declaration 9

strobed monitoring 179
strong0 57
strong1 57
structured procedure 123–124

always construct 123
function 123
initial construct 123
task 123

Su
supply drive in strength format 177

supply net strength 82
supply nets 22
supply0 57
supply1 57
switches

MOS 64–65
synchronous arrays 197
system functions 172–206
system task/function arguments 232
system task/function name 228
system task/functions 378
system tasks 172–206

for continuous monitoring 179
for displaying information 173–179
for interrupting the simulator 187

for processing stimulus patterns faster 636
for showing number of drivers 636
for writing formatted output to files 180–182
generating a checkpoint in the value change dump

file 209
limiting the size of the value change dump file 209
reading the value change dump file during a sim-

ulation 210
resuming the dump into the value change dump

file 209
showing the timescale of a module 183–184
specifying how %t reports time information 184–

186
specifying the name of the value change dump file

207
specifying the variables to be dumped in the value

change dump file 208
stopping the dump into the value change dump

file 209
System tasks and functions 11, 635
system tasks and functions 172–206

T

t
timescale format 175

tab character 10
table 88
task/function arguments 232, 376
task/function name 228
task/function routines

history 228
parameters 444

tasks 125–131
and hierarchical names 146
and scope 150
as structured procedures 123
definition 123
disabling within a nested chain 132
enabling 125–126
passing parameters 126–127
purpose 125

text macro substitutions 220–222
and `define 220
definition 220
redefinition 222
with arguments 220

text output
io_mcdprintf() 450
io_printf() 451
tf_error() 462
tf_message() 482
tf_text() 519
tf_warning() 523

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

662 Index

vpi_mcd_close() 575
vpi_mcd_name() 576
vpi_mcd_open() 577
vpi_mcd_printf() 578
vpi_printf() 579

tf_add_long() 453
tf_asynchoff() 446, 454
tf_asynchon() 446, 455, 458, 473, 485, 518
tf_clearalldelays() 447, 456
tf_compare_long() 457
tf_copypvc_flag() 446, 455, 458
tf_divide_long() 459
tf_dofinish() 448, 460
tf_dostop() 448, 461
tf_error() 447, 462, 483
tf_evaluatep() 445, 463
tf_exprinfo() 445, 463, 464, 487, 492
tf_getcstringp() 445, 467
tf_getinstance() 447, 468
tf_getlongp() 444, 469
tf_getlongtime() 446, 470
tf_getnextlongtime() 471
tf_getp() 444, 472
tf_getpchange() 446, 455, 473
tf_getrealp() 444, 474
tf_getrealtime() 475
tf_gettime() 446, 476
tf_gettimeprecision() 446, 477
tf_gettimeunit() 446, 478
tf_getworkarea() 447, 479, 504
tf_iasynchoff() 454
tf_iasynchon() 455, 458, 473, 485, 518
tf_iclearalldelays() 456
tf_icopypvc_flag() 458
tf_ievaluatep() 463
tf_iexprinfo() 463, 464, 487, 492
tf_igetcstringp() 467
tf_igetlongp() 469
tf_igetlongtime() 470
tf_igetp() 472
tf_igetpchange() 473
tf_igetrealp() 474
tf_igetrealtime() 475
tf_igettime() 476
tf_igettimeprecision() 477
tf_igettimeunit() 478
tf_igetworkarea() 479, 504
tf_imipname() 484
tf_imovepvc_flag() 485
tf_inodeinfo() 487, 492
tf_integer_node 488
tf_inump() 491
tf_ipropagatep() 492
tf_iputlongp() 493

tf_iputp() 494
tf_iputrealp() 495
tf_irosynchronize() 498
tf_isetdelay() 456, 501
tf_isetlongdelay() 502
tf_isetrealdelay() 503
tf_isetworkarea() 479, 504
tf_isizep() 505
tf_ispname() 506
tf_istrdelputp() 507
tf_istrgetp() 509
tf_istrlongdelputp() 511
tf_istrrealdelputp() 513
tf_isynchronize() 517
tf_itestpvc_flag() 518
tf_itypep() 520
tf_long_to_real() 480
tf_longtime_tostr() 481
tf_memory_node 488
tf_message() 447, 482, 519
tf_mipname() 447, 484
tf_movepvc_flag() 446, 455, 473, 485
tf_multiply_long() 486
tf_netscalar_node 488
tf_netvector_node 488
tf_nodeinfo() 445, 487, 492
tf_null_node 488
tf_nullparam 465, 520
tf_nump() 444, 491
tf_propagatep() 445, 492
tf_putlongp() 444, 493
tf_putp() 444, 494
tf_putrealp() 444, 495
tf_read_restart() 496
tf_readonly 465, 520
tf_readonlyreal 465, 520
tf_readwrite 465, 520
tf_readwritereal 465, 520
tf_real_node 488
tf_real_to_long() 497
tf_reg_node 488
tf_rosynchronize() 447, 498
tf_rwbitselect 465
tf_rwmemselect 465
tf_rwpartselect 465
tf_scale_delay() 446
tf_scale_longdelay() 446, 499
tf_scale_realdelay() 446, 500
tf_setdelay() 447, 456, 501
tf_setlongdelay() 502
tf_setrealdelay() 503
tf_setworkarea() 447, 479, 504
tf_sizep() 505
tf_spname() 447, 506

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

®

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Index 663

tf_strdelputp() 445, 507
tf_strgetp() 445, 509
tf_strgettime() 446, 510
tf_string 465, 520
tf_strlongdelputp() 445, 511
tf_strrealdelputp() 445, 513
tf_subtract_long() 515
tf_synchrnize() 46
tf_synchronize() 447, 498, 517
tf_testpvc_flag() 446, 455, 518
tf_text() 447, 483, 519
tf_time_node 488
tf_typep() 444, 520
tf_unscale_delay() 446
tf_unscale_longdelay() 446, 521
tf_unscale_realdelay() 446, 522
tf_warning() 447, 483, 523
tf_write_save() 496, 524
tfargs 232
time

arithmetic operations performed on time variables
24

variables 23
time precision 226
time unit 225
time_value_change 265
timing checks 187–196, 368, 372, 374

$hold 188
$period 191
$recovery 191
$setup 188
$setuphold 189
$skew 191
$width 190
arguments 188
data_event 187, 188
end_edge_offset 187, 188
hold_limit 187, 188
limit 187, 188
notifier 187, 188
reference_event 187, 188
setup_limit 187, 188
start_edge_offset 187, 188
threshold 187, 188

top-level module 136
tran 65
tranif0 65
tranif1 65
transistors 65
transitions

01 93
unspecified 92

transport delays 437, 508, 512, 514, 582
tree structure

of hierarchical names 146
tri nets 17
tri0 22
tri1 22
triand 17
trior 17
trireg

and charge storage strength 69
turn-off delay 84
type 249, 335
types of nets

supply nets 22
tri nets 17
tri0 82
tri0 nets 22
tri1 82
tri1 nets 22
triand 17
trior 17
trireg 82
trireg nets 18, 178
wire 17
wired AND 17
wired logic 79
wired nets 17
wired OR 17

U

UDPs 87–97
- in state table 90
(??) in state table 90
(01) in state table 90
(0x) in state table 90
(1x) in state table 90
(vw) in state table 90
(x1) in state table 90
* in state table 90
? in state table 90
0 in state table 90
1 in state table 90
b in state table 90
combinational UDPs 90–91
definition 87–89
edge-sensitive UDPs 92
f in state table 90
instances 95–96
level-sensitive dominance 97, 97
level-sensitive sequential UDPs 91–92
mixing level- and edge-sensitive descriptions 96–

97
n in state table 90
p in state table 90
ports 88

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995 IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

664 Index

r in state table 90
state table 89
summary of symbols in state table 89
x in state table 90

unary operators
! 33
<< 36
>> 36

unconnected port 137
undescore character 7
unexpanded vectors 416
unknown logic value

and numbers 7
display formats 176–178
effect in different bases 7
in state table 89, 90, 93
symbolic representation 13

unspecified transitions 92
upwards name referencing 149–151
user-defined primitives (UDPs) 87
user-defined system task/function name 228
user-defined system task/functions 378
using PLI access routines 234
using task/function routines 444
using VCL access routines 263
utility routines, see task/function routines

V

value change dump file 207–218
creating 207–210
format 211–218
formats of variable values 213
generating a checkpoint 209
keyword commands

$comment 214
$date 214
$dumpall 216
$dumpoff 217
$dumpon 217
$dumpvars 217
$enddefinitions 214
$scope 215
$timescale 215
$upscope 215
$var 216
$version 215

limiting the size 209
reading the value change dump file during a sim-

ulation 210
resuming the dump 209
specifying the name 207
specifying the variables to be dumped 208
stopping the dump 209

Value Change Link, see VCL
value set (0, 1, x, z) 13
values

of combined signals 69–81
VCL 440, 442
vcl_verilog 442
vcl_verilog_logic 264, 441
vcl_verilog_strength 264, 441
vcl0 266
vcl1 266
vclHighZ 266
vclLarge 266
vclMedium 266
vclPull 266
vclSmall 266
vclStrong 266
vclSupply 266
vclWeak 266
vclX 266
vclx 266
vclz 266
vector_value_change 265
vectored 15
vectors 15

and vector net expansion 15
expanded 384, 416
unexpanded 416

veriuser.h 615
vlog_startup_routines array 590
VPI object diagrams

assignments 549
case statement 551
continuous assignments 545
delay controls 549
event controls 549
expressions 546, 547
for loops 550
forever loops 550
function calls 544
functions 534
if statement 551
inter-module paths 543
IO declarations 534
memories 539
module paths 543
modules 533
named events 538, 548
nets 536
parameters 540
ports 535
primitives 541
procedural assign statement 552
procedural blocks 548
procedural deassign statement 552

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
THE VERILOG

®

 HARDWARE DESCRIPTION LANGUAGE Std 1364-1995

Index 665

procedural disable statement 552
procedural force statement 552
procedural release statement 552
processes 548
regs 537
repeat controls 549
repeat loops 550
scopes 534
specparams 540
statements 548
task calls 544
tasks 534
timing checks 543
UDPs 542
variables 538
wait control 550
while loops 550

VPI routines
callback overview 525
error handling 526
history 229
key to object diagrams 530
object access overview 526
object classifications 526

vpi_chk_error() 555
vpi_compare_objects() 556
vpi_free_object() 557
vpi_get() 558
vpi_get_cb_info() 559
vpi_get_delays() 560
vpi_get_str() 563
vpi_get_systf_info() 564
vpi_get_time() 565
vpi_get_value() 566
vpi_get_vlog_info() 569
vpi_handle() 570
vpi_handle_by_index() 571
vpi_handle_by_name() 572
vpi_handle_multi() 573
vpi_iterate() 574
vpi_mcd_close() 575
vpi_mcd_name() 576
vpi_mcd_open() 577
vpi_mcd_printf() 578
vpi_printf() 579
vpi_put_delays() 580
vpi_put_value() 582
vpi_register_cb() 46, 584
vpi_register_systf() 589
vpi_remove_cb() 592
vpi_scan() 593
vpi_user.h 622
vpiCancelEvent 582
vpiForceFlag 582

vpiHandle 526
vpiInertialDelay 582
vpiInterModPath 573
vpiIterator 574
vpiNoDelay 582
vpiPureTransportDelay 582
vpiReleaseFlag 582
vpiReturnEvent 582
vpiScaledRealTime 583
vpiSchedEvent 582
vpiScheduled 582
vpiSysFuncInt 589
vpiSysFuncReal 589
vpiSysFuncSized 589
vpiSysFuncTime 589
vpiSysFunction 589
vpiSysTask 589
vpiTimeUnit 558
vpiTransportDelay 582
vregister_value_change 265

W

wait statement
as level-sensitive event control 117
to advance simulation time 114

wand 17
warning messages 254
We

weak drive in strength format 177
weak0 57
weak1 57
while loop 112
white space 5
wired logic nets

wand 79
wired-AND configurations 17
wired-OR configurations 17
wor 79

wires 17
wor 17
word

of array 23
writing formatted output to files 180–182
writing to files 450

X

X
as display format for unknown logic value 176
unknown logic value in strength format 177

x
as display format for unknown logic value 176
in state table 89, 90
unknown logic value 13

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1364-1995

666 Index

xnor gate 61–62
xor gate 61–62

Z

Z
as display format for high impedance state 176
high impedance state in strength format 177

z
as display format for high impedance state 176
high impedance state 13

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 06,2015 at 14:07:15 UTC from IEEE Xplore. Restrictions apply.

