
Versal ACAP Configurable
Logic Block

Architecture Manual

AM005 (v1.0) July 16, 2020

https://www.xilinx.com

Revision History
The following table shows the revision history for this document.

Section Revision Summary
07/16/2020 Version 1.0

Initial release. N/A

Revision History

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=2

Table of Contents
Revision History...2

Chapter 1: Overview..4
Introduction to Versal ACAP...4
CLB Features.. 5
CLB Architecture..6
Differences from Previous Generations... 8

Chapter 2: CLB Resources.. 9
Overview...9
CLB Resources... 9
Look-Up Table..12
Storage Elements.. 18
Carry Logic... 20
Primitives..22

Appendix A: Additional Resources and Legal Notices............................. 29
Xilinx Resources...29
Documentation Navigator and Design Hubs...29
Please Read: Important Legal Notices... 30

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=3

Chapter 1

Overview

Introduction to Versal ACAP
Versal™ adaptive compute acceleration platforms (ACAPs) combine Scalar Engines, Adaptable
Engines, and Intelligent Engines with leading-edge memory and interfacing technologies to
deliver powerful heterogeneous acceleration for any application. Most importantly, Versal ACAP
hardware and software are targeted for programming and optimization by data scientists and
software and hardware developers. Versal ACAPs are enabled by a host of tools, software,
libraries, IP, middleware, and frameworks to enable all industry-standard design flows.

Built on the TSMC 7 nm FinFET process technology, the Versal portfolio is the first platform to
combine software programmability and domain-specific hardware acceleration with the
adaptability necessary to meet today's rapid pace of innovation. The portfolio includes six series
of devices uniquely architected to deliver scalability and AI inference capabilities for a host of
applications across different markets—from cloud—to networking—to wireless communications—
to edge computing and endpoints.

The Versal architecture combines different engine types with a wealth of connectivity and
communication capability and a network on chip (NoC) to enable seamless memory-mapped
access to the full height and width of the device. Intelligent Engines are SIMD VLIW AI Engines
for adaptive inference and advanced signal processing compute, and DSP Engines for fixed point,
floating point, and complex MAC operations. Adaptable Engines are a combination of
programmable logic blocks and memory, architected for high-compute density. Scalar Engines,
including Arm® Cortex™-A72 and Cortex-R5F processors, allow for intensive compute tasks.

The Versal AI Core series delivers breakthrough AI inference acceleration with AI Engines that
deliver over 100x greater compute performance than current server-class of CPUs. This series is
designed for a breadth of applications, including cloud for dynamic workloads and network for
massive bandwidth, all while delivering advanced safety and security features. AI and data
scientists, as well as software and hardware developers, can all take advantage of the high-
compute density to accelerate the performance of any application.

Chapter 1: Overview

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=4

The Versal Prime series is the foundation and the mid-range of the Versal platform, serving the
broadest range of uses across multiple markets. These applications include 100G to 200G
networking equipment, network and storage acceleration in the Data Center, communications
test equipment, broadcast, and aerospace & defense. The series integrates mainstream 58G
transceivers and optimized I/O and DDR connectivity, achieving low-latency acceleration and
performance across diverse workloads.

The Versal Premium series provides breakthrough heterogeneous integration, very high-
performance compute, connectivity, and security in an adaptable platform with a minimized
power and area footprint. The series is designed to exceed the demands of high-bandwidth,
compute-intensive applications in wired communications, data center, test & measurement, and
other applications. Versal Premium series ACAPs include 112G PAM4 transceivers and integrated
blocks for 600G Ethernet, 600G Interlaken, PCI Express® Gen5, and high-speed cryptography.

The Versal architecture documentation suite is available at: https://www.xilinx.com/versal.

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you find
relevant content for your current development task. This document covers the following design
processes:

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, subsystem functional simulation, and evaluating the Vivado®

timing, resource use, and power closure. Also involves developing the hardware platform for
system integration. Topics in this document that apply to this design process include:

• CLB Resources

• Look-Up Table

• Storage Elements

• Carry Logic

• Primitives

CLB Features
The configurable logic block (CLB) provides the most basic, flexible logic functionality in Versal™
adaptable computing acceleration platforms (ACAPs). It can map any arbitrary function into
programmable resources. Features include:

• Implementation of any arbitrary programmable logic function into functional units (LUTs)

• Flip-flops and latches for state retention and pipelining

Chapter 1: Overview

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 5Send Feedback

https://www.xilinx.com/versal
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=5

• Acceleration of wide arithmetic/logic functions

• Shift registers

• Small (64-bit) distributed RAM

CLB Architecture
The CLB is the main resource in each Versal™ device and implements programmable
combinational logic, sequential logic, and logic paths. These features enable high functionality
and routability.

The following figure shows a high-level block diagram of the CLB. There are two CLB types, one
with super long line (SLL) connections, and one without. Each CLB contains equal numbers of
LUTRAM and SRL-capable LUTs. Only one LUT type can be used in a SLICEM.

Figure 1: CLB Block Diagram
CL

B
in

te
rc

on
ne

ct

Flip-flop
LUT
LUTRAM/SRL-capable LUT
Imux register

A_L

Ca
rr

y
Lo

ok
ah

ea
d

(8
bi

t)

B_L

C_L

D_L

E_L

F_L

G_L

H_L

A_M

B_M

C_M

D_M

E_M

F_M

G_M

H_M

A_L

B_L

C_L

D_L

E_L

F_L

G_L

H_L

A_M

B_M

C_M

D_M

E_M

F_M

G_M

H_M

Ca
rr

y
Lo

ok
ah

ea
d

(8
bi

t)

Ca
rr

y
Lo

ok
ah

ea
d

(8
bi

t)

Ca
rr

y
Lo

ok
ah

ea
d

(8
bi

t)

X20616-101818

The following figure shows a Versal device SLICEL/SLICEM. Note the Imux registers, the carry
lookahead logic which now contain fast lookahead multiplexers, and input and output
multiplexers before and after the flip-flops. The multiplexers after the flip-flops are new to Versal
devices. Some of the inputs to the input multiplexer are from the SLL connections.

Chapter 1: Overview

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=6

Figure 2: SLICEL/SLICEM Block Diagram

D

PROP*

CY*

*FF

QD
CLK
SR
CE

*FF2

QD
CLK
SR
CE

*X

*_I

LAG_S

CKEN2
SR

*Q

*Q2

*_O

*6LUT SI
N

A1-6
DI

CASC

WA1-6
WE

CLK O5

O6

SO
UT

DI2WE2

*5LUT

O5A1-6

WA1-6
WE

CASC
CLK

PROPDI

CLK

*X
*_I
*1-6

IMUX REGS

*X
*_I
*1-6

CKEN2
SR

CLK

LRAM_WE
H1-6
CLK

CLK

CKEN2
SR

COUT*

C

PROP*

CY*

*FF

QD
CLK
SR
CE

*FF2

QD
CLK
SR
CE

*X

*_I

LAG_E1

LAG_S

CKEN2
SR

*Q

*Q2

*_O

*6LUT SI
N

A1-6
DI

CASC

WA1-6
WE

CLK O5

O6

SO
UT

DI2WE2

*5LUT

O5A1-6

WA1-6
WE

CASC
CLK

PROPDI

CLK

*X
*_I
*1-6

IMUX REGS

*X
*_I
*1-6

CKEN2
SR

CLK

LRAM_WE
H1-6
CLK

CLK

CKEN2
SR

B

PROP*

CY*

*FF

QD
CLK
SR
CE

*FF2

QD
CLK
SR
CE

*X

*_I

LAG_E1

CKEN1
SR

*Q

*Q2

*_O

*6LUT SI
N

A1-6
DI

CASC

WA1-6
WE

CLK O5

O6

SO
UT

DI2WE2

*5LUT

O5A1-6

WA1-6
WE

CASC
CLK

PROPDI

CLK

*X
*_I
*1-6

IMUX REGS

*X
*_I
*1-6

CKEN1
SR

CLK

LRAM_WE
H1-6
CLK

CLK

CKEN1
SR

COUT*

A

PROP*

CY*

*FF

QD
CLK
SR
CE

*FF2

QD
CLK
SR
CE

A5

*_I

LAG_E2

LAG_E2

CKEN1
SR

*Q

*Q2

*_O

*6LUT SI
N

A1-6
DI

CASC

WA1-6
WE

CLK O5

O6

SO
UT

DI2WE2

*5LUT

O5A1-6

WA1-6
WE

CASC
CLK

PROPDI

CLK

*X
*_I
*1-6

IMUX REGS

*X
*_I
*1-6

CKEN1
SR

CLK

LRAM_WE
H1-6
CLK

CLK

CKEN1
SR

F

PROP*

CY*

*FF

QD
CLK
SR
CE

*FF2

QD
CLK
SR
CE

*X

*_I

LAG_N

CKEN3
SR

*Q

*Q2

*_O

*6LUT SI
N

A1-6
DI

CASC

WA1-6
WE

CLK O5

O6

SO
UT

DI2WE2

*5LUT

O5A1-6

WA1-6
WE

CASC
CLK

PROPDI

CLK

*X
*_I
*1-6

IMUX REGS

*X
*_I
*1-6

CKEN3
SR

CLK

LRAM_WE
H1-6
CLK

CLK

CKEN3
SR

COUT*

E

PROP*

CY*

*FF

QD
CLK
SR
CE

*FF2

QD
CLK
SR
CE

*X

*_I

LAG_W2

LAG_N

CKEN3
SR

*Q

*Q2

*_O

*6LUT SI
N

A1-6
DI

CASC

WA1-6
WE

CLK O5

O6

SO
UT

DI2WE2

*5LUT

O5A1-6

WA1-6
WE

CASC
CLK

PROPDI

CLK

*X
*_I
*1-6

IMUX REGS

*X
*_I
*1-6

CKEN3
SR

CLK

LRAM_WE
H1-6
CLK

CLK

CKEN3
SR

H

PROP*

CY*

*FF

QD
CLK
SR
CE

*FF2

QD
CLK
SR
CE

*X

*_I

LAG_W1

CKEN4
SR

*Q

*Q2

*_O

*6LUT SI
N

A1-6
DI

CASC

WA1-6
WE

CLK O5

O6

SO
UT

DI2WE2

*5LUT

O5A1-6

WA1-6
WE

CASC
CLK

PROPDI

CLK

*X
*_I
*1-6

IMUX REGS

*X
*_I
*1-6

CKEN4
SR

CLK

LRAM_WE
H1-6
CLK

CLK

CKEN4
SR

COUT*

G

PROP*

CY*

*FF

QD
CLK
SR
CE

*FF2

QD
CLK
SR
CE

*X

*_I

LAG_W1

LAG_W2

CKEN4
SR

*Q

*Q2

*_O

*6LUT SI
N

A1-6
DI

CASC

WA1-6
WE

CLK O5

O6

SO
UT

DI2WE2

*5LUT

O5A1-6

WA1-6
WE

CASC
CLK

PROPDI

CLK

*X
*_I
*1-6

IMUX REGS

*X
*_I
*1-6

CKEN4
SR

CLK

LRAM_WE
H1-6
CLK

CLK

CKEN4
SR

Key

CIN

A5

CIN

LOOK
AHEAD8

COUT

SOUT

SIN

*X Primary input/output of slice

CLK Input from CLK_MOD output

SR Input from CTRL IMUX REG output

*I Input from IMUX REG output

Features in SLICEM only indicated with blue outlines and text

* Replace asterisks in labels with cell name A-H

WELRAM_WE

*X

X20617-041618

Chapter 1: Overview

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=7

Differences from Previous Generations
Differences between Versal™ adaptable computing acceleration platform (ACAP) configurable
logic blocks (CLBs) and previous generations of UltraScale™ device CLBs are as follows:

• The CLB tile has been completely redesigned. The CLB has four times more logic capacity (32
LUTs/64 slice flip-flops as opposed to 8 LUTs/16 slice flip-flops in UltraScale devices). This
results in more local routing for better performance and less general routing congestion.

• Dedicated LUT-LUT cascade paths now exist inside the CLB to reduce delays on multi-logic
level paths as well as reduce external routing demands. In addition, the LUT-LUT cascade
paths are leveraged to reduce cost and enable a more flexible carry logic structure.

• Super long line (SLL) connections are now part of the CLB (as opposed to being a dedicated
column in previous architectures). There are no dedicated registers as the SLL connections rely
on registering signals in the CLB.

• Wide function multiplexers (MUXF7, MUXF8, and MUXF9) are no longer implemented. Other
LUTs are now used to implement wide multiplexing.

• There are now three outputs per LUT/FF pair instead of four. This enhances routability by
increasing fanout per output.

• Dual LUT mode now supports 2 functions of up to 6 independent inputs.

• New cascade multiplexers enable new carry chains to start at bits 0 and 4.

• There is only one CLB type. One half of the LUTs in a CLB are capable of supporting LUTRAM
and SRL configurations.

• LUTRAMs are simplified, having dedicated hardware to support 32 and 64 bit depths. Deeper
LUTRAMs can be implemented using additional logic.

• Control sets for CLK and SR are at a coarser granularity, but CE stays the same.

• Output multiplexing in CLBs is new to Versal architecture. Each flip-flop is bypassable and can
select one of several inputs. O6 comes straight out to interconnect and in carry mode also
acts as carry_out. Both flip-flops receive O6 but each flip-flop only receives one of the O5
signals (O5_1 and O5_2).

• Additional registers (Imux registers) are embedded into the CLB and also exist in the local
interconnect block for all hard blocks connected to programmable logic routing. They allow
additional pipelining by breaking critical paths into smaller pieces to increase FMAX. They are
also used to fix hold time violations by gating data for a half cycle. This frees up routing
resources previously used for hold time fixing.

Chapter 1: Overview

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=8

Chapter 2

CLB Resources

Overview
This chapter provides a detailed view of the Versal™ adaptable computing acceleration platform
(ACAP) configurable logic block (CLB). These details are useful for design optimization and
verification, but are not necessary for initiating a design. This chapter includes:

• CLB Resources: An overview of CLB slice features.

• Look-Up Table: A description of the logical function generators.

• Storage Elements: A description of and controls for the latches and flip-flops.

• Carry Logic: Dedicated gates and cascading to implement efficient arithmetic functions.

• Primitives: Overview of the most commonly used CLB primitives.

CLB Resources
Every configurable logic block (CLB) contains four slices totaling 32 6-input look-up tables (LUTs)
and 64 slice storage elements. The LUTs in the CLB are grouped in groups of eight. Unlike
previous generations, there is only one CLB type. Groups of four SLICEM LUTs are supported.
Four logic LUTs and either four LUTRAMs or four SRLs can be placed in a SLICEM. Each CLB
contains exactly 50% LUTRAM/SRL capable LUTs. There is a carry block next to each group of
eight LUTs that can be used together with the LUTs to implement various arithmetic functions.
Multiplexers and slice flip-flops are located next to the carry block. This allows the outputs of the
LUTs and the carry logic to interface with the interconnect block directly, or through
programmable flip-flops.

The CLBs are arranged in columns. The local interconnect and super long line (SLL) connections,
located in the middle of the CLB, provide additional CLB interfaces. An interconnect block is
located on the left and right side of each CLB column. The left and right halves of the CLB are
identical. Therefore, many of the descriptions in this architecture manual only focus on one half
of the CLB.

Chapter 2: CLB Resources

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=9

Imux Register
Inverse multiplexer (Imux) registers are embedded into the CLB. Imux registers exist on the
following CLB inputs: 192 Imuxs, 64 bypasses, 16 clock enable (CE) pins, 4 set/reset (SR) pins,
and 2 write enable (WE) pins. The Imux registers are located near the interconnect/CLB
boundary and can be bypassed. CE, SR, and WE Imux control registers are located in the interior
of the CLB.

The Imux registers support a subset of CLB flip-flop features. Each Imux register has a clock
enable and synchronous or asynchronous reset capabilities. They have no readback/writeback,
and no sync /async set capability. Initialization is programmable but the options are either init=0
or init=data input (no init=1). The init=data input is necessary when using Imux registers as hold-
time fixing elements.

It is important to note that the Imux registers used for CE, SR, and WE CLB inputs have no clock
enable or reset capabilities. From a control set standpoint, Imux registers are clumped with the
CLB flip-flops that their associated LUTs drive. In other words, if an Imux drives an input on
LUTA, then the Imux register is on the same control set as CLB flip-flop A. Similarly, if a bypass
pin drives an Imux register that drives a downstream CLB flip-flop, the Imux register is on the
same control set as the downstream flip-flop. This creates control set clusters of 16 Imux
registers. The Imux control sets are shown in the following figure.

Chapter 2: CLB Resources

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=10

Figure 3: Imux Control Sets

clock

clock enable

reset

HLUT

GLUT

I
R
I
R
I
R
I
R
I
R
I
R
I
R
I
R

I
R
I
R
I
R
I
R
I
R
I
R
I
R
I
R

FLUT

ELUT

I
R
I
R
I
R
I
R
I
R
I
R
I
R
I
R

I
R
I
R
I
R
I
R
I
R
I
R
I
R
I
R

CLUT

I
R
I
R
I
R
I
R
I
R
I
R
I
R
I
R

BLUT

ALUT

I
R
I
R
I
R
I
R
I
R
I
R
I
R
I
R

I
R
I
R
I
R
I
R
I
R
I
R
I
R
I
R

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

DLUT

I
R
I
R
I
R
I
R
I
R
I
R
I
R
I
R

FF

FF

FF

FF

FF

FF

X22751-042219X21586-091818X21586-042210

The clock enable can independently be ignored for each cluster of 16 IMUX registers shown in
the red boxes in the above figure. The reset can independently be ignored for each slice which is
a cluster of 64 IMUX registers. Clock gating exists at the same cluster of 16 granularity, as well as
for each latch and slice.

Chapter 2: CLB Resources

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=11

Look-Up Table
All look-up tables (LUTs) in the configurable logic block (CLB) are 6LUTs. The 6LUT is enhanced
with additional multiplexing to enable even more functionality. All features of a LUT are shown in
the following figure.

Figure 4: LUT Features

4LUT

4LUT

4LUT

4LUT

A1 A2 A3 A4

A5 A6

O6

O5_1

O5_2

A5

prop

cascade_in

cascade_in
X21588-091818

The two multiplexers near the top and bottom of the diagram are new to Versal™ architecture.
They are static memory cell controlled muxes. These multiplexers are used for the following
purposes:

1. Cascadable LUT -> LUT connections (O6 -> A5)

2. Enables dual LUT functions of up to six inputs (five in prior architectures)

Chapter 2: CLB Resources

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=12

3. Used for carry logic paths

These multiplexers select the A5 input by default. They can also be programmed to select no
input and in that case their outputs are driven High.

There are four LUT outputs. The prop output is only used for carry logic and is not visible outside
the CLB. For standard 6LUT mode, O6 is used as the output. For dual 5LUT mode, O5_1 and
O5_2 are both used to bring out the two function outputs to the logic.

Cascade multiplexer paths exist between logically adjacent LUTs in one direction (A->B->C->D-
>E->F->G->H but not the reverse). The O6 output of one LUT connects through the cascade
multiplexer to the A5 pin of the following LUT. The intention is to create a short, fast path
between two LUT stages in order to a) reduce delay on critical paths and b) reduce external
routing consumption. Optimal use of cascades might result in swapping around LUTs inside a CLB
to place critical LUTs next to each other when the penalty to surrounding logic is low. Note that
cascade connections are self-contained within a CLB slice (8 LUTs), and do not cross slice
boundaries. Also note that the odd connections travel through the carry chain to get to the
subsequent LUT. When used as a cascade (and not for carry logic), the carry block is configured
such that the prop output is forced to make the carry logic act as a route through for those
cascade paths. The following figure is a picture of the cascade connections for one half of the
CLB (red arrows). The solid red lines represent actual wires. The dotted red lines represent logical
connections that only exist in cascade mode.

Chapter 2: CLB Resources

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=13

Figure 5: Cascade Pattern

A_L

cin

cout

Ca
rr

y
Lo

ok
ah

ea
d

(8
-b

it)

C_L

E_L

G_L

B_L

D_L

F_L

H_L

prop

A_M

cin

cout

C_M

E_M

G_M

B_M

D_M

F_M

H_M

prop

Ca
rr

y
Lo

ok
ah

ea
d

(8
-b

it)
X21773-101818

LUTRAM
Versal™ architecture LUTRAMs are simplified compared to previous architectures. Notable
changes are:

• LUTRAM cells are available for depths of 64 and 32. Anything deeper will be decomposed to a
set of those cells and a multiplexer tree.

○ No high-order address decode circuitry, and there are six write address inputs to each LUT.

○ No MUXF7, MUXF8, MUXF9 bels. Deeper LUTRAMs can be implemented using additional
logic.

○ Because hardware support for deeper LUTRAM configurations is reduced placement
restrictions exist for clusters of LUTs/SRLs/LUTRAMs to achieve optimal performance.

• Support for dual-edge clocking.

• Dedicated LRAM_WE site input for LUTRAM write-enable.

• LUTRAMs or SRLs can be combined with logic LUTs in a SLICEM.

Chapter 2: CLB Resources

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=14

As previously discussed, one half of the LUTs in every CLB are LUTRAM and SRL-capable (see
CLB Architecture, Figure 1). In LUTRAM mode, a LUT can be configured as a 32-bit or 64-bit
RAM. In SRL mode, a LUT can be configured as a 32-bit or two 16-bit shift register. Distributed
RAM can be combined to create LUTRAM or SRL blocks with various size and features.

Address line masking circuitry that exists on a per column of eight LUTs, not on a per LUT basis.
This is new to Versal architecture. As a result software packs either SRLs, LUTRAMs, or LUTs in a
8-LUT cluster but not a combination of these. The 4-LUT clusters in a SLICEM are based on
columns of LUTs. {A_M,C_M,E_M,G_M} is one cluster, and {B_M,D_M,F_M,H_M} is another. The
clusters can contain LUTRAMs, SRLs, or regular logic LUTs. Combinations of more than one LUT
type in a 4-LUT cluster are not allowed. Each half of the CLB can have LUTRAM or SRL but not
both. If LUTRAM is used in one 8-LUT cluster, the other 8-LUT cluster on the same side can only
be regular a LUT or LUTRAM. Similarly, if SRL is used in one 8-LUT cluster the other 8-LUT
cluster on the same side can only be a regular LUT or SRL. LUTRAM and SRL can be in the same
CLB but they have to be in different sides. Each 8-LUT cluster can only have regular LUTs, LUTs
configured as LUTRAM, or LUTs configured as SRL. Combinations of other LUT types in an 8-LUT
cluster are not allowed.

Another difference new to Versal architecture is the removal of wide function multiplexers
(F7,F8,F9). These were previously used to enable hardened support for deeper LUTRAM and SRL
modes. Soft logic (such as LUTs implemented as dynamic multiplexers) must be used for
LUTRAMs greater than 64 bits deep as well as SRLs greater than 32 bits that use dynamic tap
selection.

External LUTs are also necessary to create the write enable logic. Prior architectures used a
hardened write decoder, which enables faster best case timing but no placement flexibility. By
requiring the write enable logic to be soft, individual LUTs of a deeper LUTRAM configuration can
be shuffled around within a slice or even placed in different slices (although each separate slice
would require using the H-LUTs input pins for write address). The following figure illustrates
these concepts for a 512x1 LUTRAM. Blue blocks are hardened logic in the CLE, while the red
blocks are created from external LUTs. Enable signals are routed to bypass pins associated with
each LUTRAM LUT.

Chapter 2: CLB Resources

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=15

Figure 6: Write Decoder

2:4
Decoder

4:16
Decoder

WA<5:4>

WA<3:0>

Local
Decoder

LUTLocal
Decoder

LUTLocal
Decoder

LUTLocal
Decoder

LUTLocal
Decoder

LUTLocal
Decoder

LUTLocal
Decoder

LUTLocal
DecoderAX

BX

CX

DX

EX

FX

GX

HX

3:8
Soft

Enable
Decoder

8:1
Soft
Mux

WA<8:6>

HX
GX
FX
EX
DX
CX
BX
AX

X21589-091818

Versal architecture supports all LUTRAM modes supported in previous architectures. Distributed
RAM can be combined in various ways to store larger amount of data. RAM elements are
configurable to implement the following configurations:

• Single-Port 32 x (1 to 16)-bit RAM

• Dual-Port 32 x (1 to 4)-bit RAM

• Quad-Port 32 x (1 to 4)-bit RAM

• Simple Dual-Port 32 x (1 to 14)-bit RAM

• Single-Port 64 x (1 to 8)-bit RAM

• Dual-Port 64 x (1 to 4)-bit RAM

• Quad-Port 64 x (1 to 2)-bit RAM

• Octal-Port 64 x 1-bit RAM

• Simple Dual-Port 64 x (1 to 7)-bit RAM

• Single-Port 128 x (1 to 4)-bit RAM

Chapter 2: CLB Resources

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=16

• Dual-Port 128 x 1-bit RAM

• Quad-Port 128 x 1-bit RAM

• Single-Port 256 x (1 to 2)-bit RAM

• Dual-Port 256 x 1-bit RAM

• Single-Port 512 x 1-bit RAM

There is dedicated hardware support for LUTRAM 32x1, 32x2, and 64x1. Anything larger
requires soft logic created with LUTs to support read and write address decoding.

Shift Registers
Versal™ architecture CLB shift registers are very similar to those in used previous architecture
CLBs, with the 6-LUT supporting a 32-bit SRL and the 5-LUT/6-LUT pair supporting a pair of 16-
bit SRLs. The 32-SRLs can be chained together with a dedicated shift chain using the 6-LUT's SIN
and SOUT bel pins. Each slice has an initial SIN shift input and SOUT shift output, and which are
connected to the slices in the CLB below and above respectively.

Notable SRL-related changes are in how the SRLs are connected:

• The SIN/SOUT shift chain between slices in a column are broken at the center of the clock
regions and the clock region boundaries.

• The LUT6 bel output SOUT connects only to to the following LUT6's SIN input, unlike in
previous architecturres where that bel pin also could connected through a site output to
interconnect.

• SRL cannot be combined with LUTRAM or with LUT in a slice.

• Inter-LUT shift direction is from A->H, the opposite of previous architectures. The intra-LUT
shift direction is still LSB->HSB.

• Support for dual-edge clocking.

SRLs are internally cascadeable in a manner similar to the carry chain. They cascade between
logically adjacent LUTs (A_M->B_M->C_M->D_M->E_M->F_M->G_M->H_M) and also between
CLBs (H_M->A_M). This enables creation of SRLs of arbitrary lengths. There is no memory cell
output to logic like in prior architectures, the SRL output can still reach the interconnect if the
read decoder of the last LUT in the chain is used to bring out the SRL output through the LUT
output pin. The following figure shows how the LUTs can be cascaded to form long SRL chains.

Chapter 2: CLB Resources

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=17

Figure 7: SRL Cascade

CL
B

in
te

rc
on

ne
ct

Flip-flop
LUT
LUTRAM/SRL-capable LUT
Imux register

A_L

Ca
rr

y
Lo

ok
ah

ea
d

(8
bi

t)

B_L

C_L

D_L

E_L

F_L

G_L

H_L

A_M

B_M

C_M

D_M

E_M

F_M

G_M

H_M

A_L

B_L

C_L

D_L

E_L

F_L

G_L

H_L

A_M

B_M

C_M

D_M

E_M

F_M

G_M

H_M

Ca
rr

y
Lo

ok
ah

ea
d

(8
bi

t)

Ca
rr

y
Lo

ok
ah

ea
d

(8
bi

t)

Ca
rr

y
Lo

ok
ah

ea
d

(8
bi

t)

SRL_IN (from CLB below)

SRL_OUT (to CLB above)SRL_OUT (to CLB above)

SRL_IN (from CLB below)

X21774-101818

The shift order is from LUT A_M to LUT H_M which is opposite to what was in previous
architectures. However, within a LUT the shift order is still the same as in previous architectures.

Storage Elements
There are 64 slice flip-flops in the CLB. Each can be driven by one of multiple sources:

• O5/sum: LUT output in dual LUT mode and SUM output when using carry logic

• O6/cout: LUT output in 6LUT mode and Carry Out output when using carry logic (only on
even bits)

• Bypass: each flop has an independent bypass signal

• Miscellaneous: inputs from super long line SLL connections or carry-out of odd bits

Chapter 2: CLB Resources

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=18

Control Signals
There are 4 clocks, 4 SRs, and 16 CEs for each CLB as shown in the following figure.

Figure 8: Control Signals

Q1 Flop
Q2 flop

clock
clock enable
set/reset

X21757-101118

Q1 and Q2 flip-flops use the same clock enables. This is different than with previous
architectures because clock enables were interleaved between Q1 and Q2 flip-flops. Clock and
SR are on an 8-bit LUT granularity. In other words, 8 LUTs associated with the same carry chain
share a common clock and SR. SRLs use the same clock as the flip-flops associated with that LUT.

SRLs use the same write enable signal (WE) as is used for LUTRAM, which is a slice-level
granularity enable signal. SR signals are optionally ignorable on a per slice level.

CE does not have any gating features, as the granularity for CE is already on a per 4 flop basis
and a constant 1 can be provided for free in the interconnect control multiplexers feeding the
flip-flop CE pins.

For LUTRAM mode, a separate per slice (8 LUTs) write enable is provided; one for the left half of
the CLB and one for the other half. The write enable is a separate signal than the clock enable for
the flops. The LUTRAM write clock is the same as the clock that drives flops in the same slice.
Asynchronous FIFOs can still be constructed using LUTRAM but outputs would have to be
registered in a different slice in order for read and write clocks to be different.

Chapter 2: CLB Resources

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=19

LUTRAM and SRL always use the same clock as CLB flip-flops, as a result the CLB flip-flops
cannot be in latch mode in the same slice that uses LUTRAM or SRL. The CLE Imux registers and
flip-flops also share the same clock in a slice. Therefore, the latch mode for CLE flip-flop is not
compatible with any Imux register usage (hold-fix and pipeline mode).

Carry Logic
Dual 5LUT mode is supported in Versal™ architecture, meaning the carry select and the generate
inputs to the carry chain come from the dual 5LUT output pins. Bypass pins no longer feed the
carry block. The propagate, sum, and generate functions all are programmed into the LUT. Even
LUTs also include the carry select multiplexer. The external carry block only includes carry
lookahead multiplexer to accelerate carry propagation delays. Propagate is a sub-function of
sum, so an intermediate output (prop) brings the propagate signal out to the carry lookahead
logic. There is no longer any dedicated XOR (sum) logic or carry select multiplexer.

The new carry structure is very flexible in terms of carry chain lengths and starting/end points.
Because every cascade multiplexer functions as a carry chain initialization multiplexer, any LUT
can start or end a carry chain.

Chapter 2: CLB Resources

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=20

Figure 9: Carry Chain

A1

A2

A3

A4

A5

A6

A1

A2

A3

A4

A5

A6

cin

cout

O6

O5

O6

O5

prop

gen

prop

cout

cout1

cout0

sum1

Lookahead logic

Dual LUT5

Dual LUT5

Carry

A_data <0>
B_data <0>

A_data <1>
B_data <1>

Prop

sum

sum0

Prop

sum

A5

A5 (cin init)

cascaded
 multiplexers

VCC

VCC

X21590-062620

Chapter 2: CLB Resources

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=21

Primitives
LUT Primitives
The LUT primitives allow direct specifications of the look-up table configurations. The example
shown is LUT6.

Figure 10: LUT6 Primitive

I0

I1

I2

I3

I4

I5

O

LUT5

LUT6

X20618-040218

Attributes

Table 1: Attribute Name, Description, and Possible Values

Attribute Description Values
INIT Specifies logic expression 64-bit value

Port Descriptions

Table 2: Port Name, Type, and Description

Port Type Description
I0 Input LUT input

I1 Input LUT input

I2 Input LUT input

I3 Input LUT input

I4 Input LUT input

I5 Input LUT input

O Output LUT output

Chapter 2: CLB Resources

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=22

SRL Shift Register Primitives
This example of an SRL shift register primitive is the 32-bit shift register (SRLC32E).

Figure 11: SRL Shift Register Primitive

SRLC32E

Q31D

Q

Q31

Q30

Q1

Q0

A[4:0]

CE

CLK

X20619-040218

Attributes

Table 3: Attribute Name, Description, and Possible Values

Attribute Description Values
INIT Specifies logic expression. 64-bit value (hex)

IS_CLK_INVERTED
Specifies whether or not to use the
optional inversion on the clock pin
(CLK).

1’b0 or 1’b1

Chapter 2: CLB Resources

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=23

Port Descriptions

Table 4: Port Name, Type, and Description

Port Type Description

A<4:0> Input The address input selects the bit to be
read

CE Input Active-High clock enable

CLK Input Clock

D Input SRL data input

Q Output SRL data output selected by the
address inputs

Q31 Output SRL data output, provides the last bit
value of the 32-bit shift register

Distributed RAM Primitives
Examples are shown for 64-bit single-port and 64-bit dual-port distributed RAM primitives.

Figure 12: RAMS64E5 Distributed RAM Primitive (Single-Port)

RAMS64E5

I

ADR0

CLK

O
WE2

WE

ADR1
ADR2
ADR3
ADR4
ADR5

X20620-040218

Attributes

Table 5: Attribute Name, Description, and Possible Values

Attribute Description Values
INIT Specifies logic expression. 64-bit value (hex)

IS_CLK_INVERTED
Specifies whether or not to use the
optional inversion on the clock pin
(CLK).

1’b0 or 1’b1

Chapter 2: CLB Resources

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=24

Port Descriptions

Table 6: Port Name, Type, and Description

Port Type Description
O Output Data output

I Input Data input

ADDR0 Input Address input

ADDR1 Input Address input

ADDR2 Input Address input

ADDR3 Input Address input

ADDR4 Input Address input

ADDR5 Input Address input

WE Input Write enable

WE2 Input Additional WE for modes deeper than
64 bits

CLK Input Write clock (synchronous)

Figure 13: RAMD64E5 Distributed RAM Primitive (Dual-Port)

RAMD64E5

I

ADR0

CLK

O
WE2

WE

ADR1
ADR2
ADR3
ADR4
ADR5

WADR0
WADR1
WADR2
WADR3
WADR4
WADR5

X20622-040218

Attributes

Table 7: Attribute Name, Description, and Possible Values

Attribute Description Values
INIT Specifies logic expression. 64-bit value (hex)

Chapter 2: CLB Resources

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=25

Table 7: Attribute Name, Description, and Possible Values (cont'd)

Attribute Description Values

IS_CLK_INVERTED
Specifies whether or not to use the
optional inversion on the clock pin
(CLK).

1’b0 or 1’b1

Port Descriptions

Table 8: Port Name, Type, and Description

Port Type Description
O Output Data output reading from read address

I Input Data input

ADDR0 Input Read address input

ADDR1 Input Read address input

ADDR2 Input Read address input

ADDR3 Input Read address input

ADDR4 Input Read address input

ADDR5 Input Write address input

WADR0 Input Write address input

WADR1 Input Write address input

WADR2 Input Write address input

WADR3 Input Write address input

WADR4 Input Write address input

WADR5 Input Write address input

WE Input Write address input

WE2 Input Additional WE for modes deeper than
64 bits

CLK Input Write clock (synchronous)

Carry Look-Ahead Logic Primitives
One primitive is available for the carrylookahead8 which containsonly carry look-ahead
multiplexers. The following functions are pushed into the LUTS: SUM XOR, CIN multiplexers, and
Carry propagation multiplexers.

Chapter 2: CLB Resources

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=26

Figure 14: Carry Look-Ahead Logic Primitive

CYH
CYG
CYF
CYE
CYD
CYC
CYB
CYA

PROPH
PROPG
PROPF
PROPE
PROPD
PROPC
PROPB
PROPA

COUTH
COUTF
COUTD
COUTB

CIN

LOOKAHEAD8

X20623-040218

Attributes

Table 9: Attribute Name, Description, and Possible Values

Attribute Description Values

LOOKB If TRUE, enable LOOKAHEAD to bring
carry results from last stage. TRUE or FALSE

LOOKD If TRUE, enable LOOKAHEAD to bring
carry results from last stage. TRUE or FALSE

LOOKF If TRUE, enable LOOKAHEAD to bring
carry results from last stage. TRUE or FALSE

LOOKH If TRUE, enable LOOKAHEAD to bring
carry results from last stage. TRUE or FALSE

Port Descriptions

Table 10: Port Name, Type, and Description

Port Type Description
COUTB Output Output of CLA multiplexer.

COUTD Output Output of CLA multiplexer.

COUTF Output Output of CLA multiplexer.

COUTH Output Output of CLA multiplexer.

CYA Input Input of CLA multiplexer.

CYB Input Input of CLA multiplexer.

CYC Input Input of CLA multiplexer.

CYD Input Input of CLA multiplexer.

CYE Input Input of CLA multiplexer.

CYF Input Input of CLA multiplexer.

CYG Input Input of CLA multiplexer.

Chapter 2: CLB Resources

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=27

Table 10: Port Name, Type, and Description (cont'd)

Port Type Description
CYH Input Input of CLA multiplexer.

PROPA Input Input of CLA multiplexer.

PROPB Input Input of CLA multiplexer.

PROPC Input Input of CLA multiplexer.

PROPD Input Input of CLA multiplexer.

PROPE Input Input of CLA multiplexer.

PROPF Input Input of CLA multiplexer.

PROPG Input Input of CLA multiplexer.

PROPH Input Input of CLA multiplexer.

CIN Input Input of CLA multiplexer.

Chapter 2: CLB Resources

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=28

Appendix A

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

Appendix A: Additional Resources and Legal Notices

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 29Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=29

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

This document contains preliminary information and is subject to change without notice.
Information provided herein relates to products and/or services not yet available for sale, and
provided solely for information purposes and are not intended, or to be construed, as an offer for
sale or an attempted commercialization of the products and/or services referred to herein.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Appendix A: Additional Resources and Legal Notices

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 30Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=30

Copyright

© Copyright 2020 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal, Virtex,
Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United
States and other countries. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight, Cortex,
PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other countries. All
other trademarks are the property of their respective owners.

Appendix A: Additional Resources and Legal Notices

AM005 (v1.0) July 16, 2020 www.xilinx.com
Versal ACAP CLB Architecture 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM005&Title=Versal%20ACAP%20Configurable%20Logic%20Block&releaseVersion=1.0&docPage=31

	Versal ACAP Configurable Logic Block
	Revision History
	Table of Contents
	Ch. 1: Overview
	Introduction to Versal ACAP
	Navigating Content by Design Process

	CLB Features
	CLB Architecture
	Differences from Previous Generations

	Ch. 2: CLB Resources
	Overview
	CLB Resources
	Imux Register

	Look-Up Table
	LUTRAM
	Shift Registers

	Storage Elements
	Control Signals

	Carry Logic
	Primitives
	LUT Primitives
	SRL Shift Register Primitives
	Distributed RAM Primitives
	Carry Look-Ahead Logic Primitives

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	Please Read: Important Legal Notices

