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Engine
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Resource Utilization Guideline Updated LUTRAM to SRL16/LUTRAM in the description.
Updated figure to add signal RE from control to the
coefficients block.

Single Multiplier MACC FIR Filter Updated implementation description.
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stages to A/B/D inputs of DSP58, as well as updated the
input and output data width.

Three Multiplier Semi-Parallel FIR Filter Updated description to add number of taps. Updated figure
to add flop stages to inputs A and B for all the DSP58s and
added WE3 in control logic to control the output flop.

Systolic FIR Filter Added a note about swapping the A and B inputs in the
systolic multiply-add processing element. Updated figure to
add a note about C.

Symmetric Systolic FIR Filter Updated equation.

Interpolating Updated number of taps to 12. Updated figure to add a flop
stage to input B.

Figure 51: Multichannel FIR Filter Updated to add a flop stage to inputs A and B.

Decimating Updated figure to add a flop stage to input B. Updated the
equation for initial latency.
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Complex FIR Filter Updated equations.
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Chapter 1

Overview

Introduction to Versal ACAP
Versal™ adaptive compute acceleration platforms (ACAPs) combine Scalar Engines, Adaptable
Engines, and Intelligent Engines with leading-edge memory and interfacing technologies to
deliver powerful heterogeneous acceleration for any application. Most importantly, Versal ACAP
hardware and software are targeted for programming and optimization by data scientists and
software and hardware developers. Versal ACAPs are enabled by a host of tools, software,
libraries, IP, middleware, and frameworks to enable all industry-standard design flows.

Built on the TSMC 7 nm FinFET process technology, the Versal portfolio is the first platform to
combine software programmability and domain-specific hardware acceleration with the
adaptability necessary to meet today's rapid pace of innovation. The portfolio includes six series
of devices uniquely architected to deliver scalability and AI inference capabilities for a host of
applications across different markets—from cloud—to networking—to wireless communications—
to edge computing and endpoints.

The Versal architecture combines different engine types with a wealth of connectivity and
communication capability and a network on chip (NoC) to enable seamless memory-mapped
access to the full height and width of the device. Intelligent Engines are SIMD VLIW AI Engines
for adaptive inference and advanced signal processing compute, and DSP Engines for fixed point,
floating point, and complex MAC operations. Adaptable Engines are a combination of
programmable logic blocks and memory, architected for high-compute density. Scalar Engines,
including Arm® Cortex™-A72 and Cortex-R5F processors, allow for intensive compute tasks.

The Versal AI Core series delivers breakthrough AI inference acceleration with AI Engines that
deliver over 100x greater compute performance than current server-class of CPUs. This series is
designed for a breadth of applications, including cloud for dynamic workloads and network for
massive bandwidth, all while delivering advanced safety and security features. AI and data
scientists, as well as software and hardware developers, can all take advantage of the high-
compute density to accelerate the performance of any application.
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The Versal Prime series is the foundation and the mid-range of the Versal platform, serving the
broadest range of uses across multiple markets. These applications include 100G to 200G
networking equipment, network and storage acceleration in the Data Center, communications
test equipment, broadcast, and aerospace & defense. The series integrates mainstream 58G
transceivers and optimized I/O and DDR connectivity, achieving low-latency acceleration and
performance across diverse workloads.

The Versal Premium series provides breakthrough heterogeneous integration, very high-
performance compute, connectivity, and security in an adaptable platform with a minimized
power and area footprint. The series is designed to exceed the demands of high-bandwidth,
compute-intensive applications in wired communications, data center, test & measurement, and
other applications. Versal Premium series ACAPs include 112G PAM4 transceivers and integrated
blocks for 600G Ethernet, 600G Interlaken, PCI Express® Gen5, and high-speed cryptography.

The Versal architecture documentation suite is available at: https://www.xilinx.com/versal.

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you find
relevant content for your current development task. This document covers the following design
processes:

• System and Solution Planning: Identifying the components, performance, I/O, and data
transfer requirements at a system level. Includes application mapping for the solution to PS,
PL, and AI Engine. Topics in this document that apply to this design process include:

• Chapter 1: Overview: provides an overview of the DSP58 architecture and includes:

○ DSP58 Architecture

○ Features and Functional Modes

• Chapter 3: Scalar Fixed-Point ALU

• Chapter 4: Vector Fixed-Point ALU

• Chapter 5: Complex Arithmetic Unit

• Chapter 6: Floating-Point Arithmetic Unit

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, subsystem functional simulation, and evaluating the Vivado®

timing, resource use, and power closure. Also involves developing the hardware platform for
system integration. Topics in this document that apply to this design process include:

• Chapter 8: DSP58 Applications: discusses design and implementation details of DSP58 and
other new functional modes in video, wired/wireless, and networking applications.

Chapter 1: Overview

AM004 (v1.1) December 4, 2020  www.xilinx.com
Versal ACAP DSP Engine  6Send Feedback

https://www.xilinx.com/versal
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM004&Title=Versal%20ACAP%20DSP%20Engine&releaseVersion=1.1&docPage=6


DSP58 Architecture
Programmable logic devices are efficient for digital signal processing (DSP) applications because
they can implement custom, fully parallel algorithms. DSP applications use many binary
multipliers and accumulators that are best implemented in dedicated DSP resources.

Versal™ devices have many dedicated low-power DSPs combining high speed with small size
while retaining system design flexibility. The DSP resources enhance the speed and efficiency of
many applications beyond digital signal processing such as wide dynamic bus shifters, memory
address generators, wide bus multiplexers, and memory-mapped I/O registers. The DSP Engine
in the Versal architecture is defined using the DSP58 primitive.

Figure 1: DSP58 Simplified Block Diagram
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Features and Functional Modes
The DSP Engine can operate in a number of functional modes. Some highlights of the
functionality include:

• 27 × 24 + 58 two’s complement multiply-accumulator with 27-bit pre-addition and optional
product negation.

• 18 × 18 + 58 two’s complement complex multiply-accumulator using two back-to-back
DSP58s, each of the two complex inputs can be optionally conjugated.

• Single-precision floating-point (binary32) accumulation.

Chapter 1: Overview
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• Mixed-precision floating-point multiply-accumulator with multiplicand and multiplier statically
and independently selectable to be either binary16 or binary32, and binary32 biasing and
accumulation.

• Three-element two’s complement vector dot product with accumulate or post-add in INT8
mode.

• Power saving 27-bit pre-adder that optimizes symmetrical filter applications and reduces DSP
logic requirements.

• 58-bit accumulator that can be cascaded to build 116-bit and larger accumulators, adders, and
counters.

• Single-instruction-multiple-data (SIMD) arithmetic unit with dual 24-bit or quad 12-bit add/
subtract/accumulate.

• 58-bit logic unit: bitwise AND, OR, NOT, NAND, NOR, XOR, and XNOR.

• Pattern detector: terminal counts, overflow/underflow, convergent/symmetric rounding
support, and 116-bit wide AND/NOR when combined with logic unit to detect if output
matches a pattern.

• Optional pipeline registers and dedicated buses for cascading multiple DSP58s in a column for
hierarchical/composite functions such as systolic FIR filters.

In the UltraScale™ architecture, two DSP48E2s with configurable logic blocks (CLBs) and block
RAM form the DSP48 tile. The Versal™ architecture introduces the DSP58 supertile (see the
following figure) which is made up of two rows and two columns of the new version of
configurable logic block (CLBs) always next to a DSP58 to provide:

• 64 LUTMs: LUTs to be used as logic, distributed memory, or shift-register logic (SRL)

• 64 LUTLs to be used as logic resources

• 256 flip-flops

The new CLB contains exactly 50% LUTRAM/SRL capable LUTs to provide single port distributed
SRAMs to the DSP. This structure can be replicated through the device to maximize ease of
timing closure.

Figure 2: Two Back-to-Back DSP58 Supertiles
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The two back-to-back DSP58s form one complex arithmetic unit with their DSP_MODE
attributes set to CINT18 (see the following figure). The right DSP58 in a dual-DSP58 complex
arithmetic unit computes the real result PRE. Concurrently, the left DSP58 computes the
imaginary result PIM. Shared signals (for example, CLK and ASYNC_RST) are routed only to the
interconnect interface of the left DSP58.

Figure 3: One DSP58 Complex Mode Supertile
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Details on the various functional modes are provided in the following chapters.

Differences from Previous Generations
DSP58 is the sixth version of the Xilinx DSP. It is fully backwards compatible with the
UltraScale™ architecture DSP48E2. DSP58 is a superset of the DSP48E2. In addition, Versal™
architecture DSP supports floating point operations and logic that interfaces with two back-to-
back DSP58s to pair them as a tile-based 18-bit complex multiplier.

DSP58 INT8 Vector Dot Product Mode

• The INT8 multiplier mode is used to implement the dot product unit where the multiplier can
be split into three smaller multipliers and their products are summed up to feed the post-
adder. Each output of the smaller multipliers can be negated.

DSP58

• 27 × 24 multiplier:

○ B operand is increased from 18-bit to 24-bit.

• 58-bit logic unit:

○ C operand is increased from 48-bit to 58-bit.

Chapter 1: Overview
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• 116-bit wide XOR function (increased from 96-bit):

○ Wide XOR selectable for XOR12, XOR22 (new), XOR24, XOR34 (new), XOR58 (new), and
XOR116 (new).

Note: XOR48 and XOR96 are supported when migrating from the UltraScale architecture.

• The A input is a 34-bit bus. The lower 27 bits feed the A input of the multiplier and the entire
34-bit input forms the upper 34 bits of the 58-bit A:B concatenate internal bus.

• The built-in right-shift becomes 23 bits wide.

Note: The 17-bit right-shift is supported when migrating from the UltraScale architecture.

• Multiplier output (X and Y together) sign can be changed by the negate pins.

DSPFP32 Mode

• Single precision floating-point multiplier and adder to produce both floating-point product and
sum.

○ Multiplier:

- Input can be either FP32 or FP16 and the output is always FP32.

○ Adder:

- The input and output are both in FP32 only.

Note: FP32 is single precision floating-point number and FP16 is half precision floating-point number.

DSPCPLX Mode

• Two back-to-back DSP58s in the same tile can be used together to implement 18 × 18
complex multiply and accumulate.

Device Resources
The DSP resources are optimized and scalable across the Versal™ portfolio, providing a common
architecture that improves implementation efficiency, IP implementation, and design migration.
Migration within the Versal portfolio does not require any design changes to DSP58. When
migrating from the UltraScale™ architecture to Versal architecture, because DSP58 is a superset
of DSP48E2, an instantiation of the DSP48E2 is translated to DSP58.

The DSP super tiles stack vertically to form a DSP super column. The height of a DSP super tile is
the same as two configurable logic blocks (CLBs). It matches both the height of one 18K block
RAM and half a 288K UltraRAM. Two 18K block RAMs stack vertically to form a 36K block RAM
(see the following figure).
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Figure 4: DSP Super Columns and RAM Resources

36K Block RAM 36K Block RAM

DSP58 DSP58  

CL
Bs

 a
nd

 
In

te
rc

on
ne

ct

CL
Bs

 a
nd

 
In

te
rc

on
ne

ct

CL
Bs

 a
nd

 
In

te
rc

on
ne

ct

CL
Bs

 a
nd

 
In

te
rc

on
ne

ct

Left DSP Super Column

18K 
Block 
RAM

288K UltraRAM

18K 
Block 
RAM

DSP58 DSP58

CL
Bs

 a
nd

 
In

te
rc

on
ne

ct

CL
Bs

 a
nd

 
In

te
rc

on
ne

ct

CL
Bs

 a
nd

 
In

te
rc

on
ne

ct

CL
Bs

 a
nd

 
In

te
rc

on
ne

ct18K 
Block 
RAM

18K 
Block 
RAM

Right DSP Super Column

X21266-051420

The Versal adaptive compute acceleration platform (ACAPs) DSP column has 48 DSP58s per
clock region. There are 96 DSP58s per column per clock region because with the Versal
architecture, the DSP58s always come in back-to-back pairs. DSP58s can be cascaded across
clock regions up to the boundary of the device, or of a super logic region (SLR) in 3D ICs based
on SSI technology. The number of cascadeable DSPs in a column can be found using the
following Tcl command:

expr {[llength [get_sites DSP_X0* –of_objects [get_slrs SLR0]]] / 2}

The following table shows the maximum number of DSP58s that can be directly cascaded
vertically in a column, and the total number of DSP58s for the Versal ACAPs.

Table 1: Maximum Number of Cascadable DSP58s in Versal ACAPs

Device name Max Cascade Number of DSP58s
VM1102 116 472

VM1302 188 736

VM1402 188 1,504

VM1502 164 1,312

VM1802 164 1,968

VM2502 164 3,984

VM2602 188 1,880

VM2702 308 2,500

VM2902 308 3,080

VC1352 116 900

VC1502 164 1,312

VC1702 212 1,272

VC1802 164 1,600

VC1902 164 1,968
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Recommended Design Flow
Many DSP58 designs are well suited for Versal™ ACAPs. To obtain best use of the architecture,
underlying features, and capabilities must be understood so that the design entry code can take
advantage of these resources. DSP resources are used automatically for most DSP functions and
many arithmetic functions. In most cases, DSP resources must be inferred. See your preferred
synthesis tool documentation for guidelines to ensure proper inference of the DSP. Instantiation
of the DSP primitive can be used to directly access specific features. Recommendations for using
DSP58 include:

• Use signed values in HDL source

• Pipeline for performance and lower power in DSP58 and programmable logic (PL)

• Use configurable logic block (CLB) shift register LUTs (SRLs), CLB distributed RAM, and/or
block RAM to store filter coefficients

• Set USE_MULT to NONE when using only the adder/logic unit to save power

• Cascade using the dedicated resources rather than general-purpose interconnect, keeping
usage to one column for highest performance and lowest power

• Consider using time multiplexing if resources are limited in a lower-speed application

• Use the CLB carry logic to implement small multipliers, adders, and counters

For more information on design techniques, see Chapter 7: DSP58 Design Considerations.
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Chapter 2

DSP Resources

Design Entry
Xilinx offers integrated DSP design flows tailored for the unique needs of hardware, algorithm,
and traditional processor-based DSP designers, supporting all mainstream DSP design entry
methods to ensure productivity. Vivado® Design Suite includes an extensive library of device-
optimized DSP IP to quickly assemble DSP designs that deliver high-quality results without
requiring extensive programmable logic design experience. DSP algorithms implemented in RTL
can be verified from within DSP specific simulation environments such as MATLAB®/Simulink®

or C/C++. The DSP58s are inferred automatically from HDL code for most DSP functions and
many arithmetic functions when using synthesis tools. Instantiation of the DSP58 primitive can
be used to directly access specific features and provide more advanced user control.

Table 2: Design Entry Methods

Method Support
Instantiation Yes

Inference Recommended

Vivado Design Suite IP catalog Yes

Macros Yes

DSP58 is a strict superset of the DSP48E2. When re-targeting from the UltraScale™ architecture,
instantiation of the DSP48E2 is translated appropriately to the Versal architecture using the
DSP48E5 internal primitive which is used by simulation and appears in a netlist. Code for
inferring the following examples is provided by Xilinx.

• Fully pipelined 16 × 16 multiplier

• Fully pipelined 27 × 24 multiplier

• Multiply add

• 16-bit adder

• 16-bit adder, the same value on both inputs to the adder

• Loadable multiply

• Complex 18 × 18 multiplier mapping to one DSPCPLX unit

Chapter 2: DSP Resources
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• 3 × dot product of 9-bit and 8-bit two's complement fixed point numbers

Note: Inference for DSPFP32 (single and half precision) is not supported. It can be instantiated and it is
recommended that customers use the Floating Point Operator IP core in the Vivado IP catalog to
implement the function.

Primitives
The following figures show the DSP58, DSPCPLX, and DSPFP32 primitives. Each primitive shows
the input and output pins along with the bit widths of each port. The port descriptions are
consolidated in Table 3 and the attribute descriptions are consolidated in Table 4.
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Figure 5: DSP58 Primitive
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Figure 6: DSPCPLX Primitive
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Figure 7: DSPFP32 Primitive
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Port Descriptions
Table 3: Port Descriptions

DSP Tile Pin Direction

Bus
Width

(Default
for

DSP58)

DSP58 Unisim
Pin

DSPCPLX Unisim
Pin

DSPFP32
Unisim Pin Description

A1 In 34 A[33:0] A_IM[17:0]2

A_RE[17:0]
A_SIGN

A_EXP[7:0]
A_MAN[22:0]

A[26:0] is the A
input of the
multiplier or the A
input of the pre-
adder. A[33:0] are
the most
significant bits
(MSBs) of the A:B
concatenated
input to the
second-stage
adder/subtracter
or logic function.
In INT8 mode (dot-
product), port A
holds three 9-bit
two’s complement
values or three
unsigned 8-bit
values by setting
sign bits: A[26],
A[17], and A[8] to
0.

ACIN In 34 ACIN[33:0] ACIN_IM[17:0]
ACIN_RE[17:0]

ACIN_SIGN
ACIN_EXP[7:0]

ACIN_MAN[22:0]

Cascaded data
input from ACOUT
of previous DSP58
(multiplexed with
A).

ACOUT Out 34 ACOUT[33:0] ACOUT_IM[17:0]
ACOUT_RE[17:0]

ACOUT_SIGN
ACOUT_EXP[7:0]

ACOUT_MAN[22:0]

Cascaded data
output to ACIN of
the next DSP.

ALUMODE In 4 ALUMODE[3:0] ALUMODE_IM[3:0]
ALUMODE_RE[3:0]

N/A Controls the
selection of the
logic and
arithmetic function
in the second
stage add/sub/
logic unit of the
DSP.
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Table 3: Port Descriptions (cont'd)

DSP Tile Pin Direction

Bus
Width

(Default
for

DSP58)

DSP58 Unisim
Pin

DSPCPLX Unisim
Pin

DSPFP32
Unisim Pin Description

B In 24 B[23:0] B_IM[17:0]
B_RE[17:0]

B_SIGN
B_EXP[7:0]

B_MAN[22:0]

The B input of the
multiplier or the B
input of the
preadder. B[23:0]
are the least
significant bits
(LSBs) of the A:B
concatenated
input to the
second-stage
adder/subtracter
or logic function.
In INT8 mode (dot-
product), port B
holds three 8-bit
two's complement
values with sign
bits B[23], B[15]
and B[7].

BCIN In 24 BCIN[23:0] BCIN_IM[17:0]
BCIN_RE[17:0]

BCIN_SIGN
BCIN_EXP[7:0]

BCIN_MAN[22:0]

Cascaded data
input from BCOUT
of the previous
DSP (multiplexed
with B).

BCOUT Out 24 BCOUT[23:0] BCOUT_IM[17:0]
BCOUT_RE[17:0]

BCOUT_SIGN
BCOUT_EXP[7:0]

BCOUT_MAN[22:0]

Cascaded data
output to BCIN of
the next DSP58.

C In 58 C[57:0] C_IM[57:0]
C_RE[57:0]

C[31:0] Data input to the
second-stage
adder/subtracter,
pattern detector,
or logic function.

CARRYCASCIN In 1 CARRYCASCIN CARRYCASCIN_IM
CARRYCASCIN_RE

N/A Cascaded carry
input from
CARRYCASCOUT of
the previous
DSP58.

CARRYCASCOUT Out 1 CARRYCASCOUT CARRYCASCOUT_IM
CARRYCASCOUT_RE

N/A Cascaded carry
output to
CARRYCASCIN of
the next DSP. This
signal is internally
fed back into the
CARRYINSEL
multiplexer input
of the same DSP.

CARRYIN In 1 CARRYIN CARRYIN_IM
CARRYIN_RE

N/A Carry input from
the logic.

CARRYINSEL In 3 CARRYINSEL[2:0] CARRYINSEL_IM[2:0]
CARRYINSEL_RE[2:0]

N/A Selects the carry
source.
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Table 3: Port Descriptions (cont'd)

DSP Tile Pin Direction

Bus
Width

(Default
for

DSP58)

DSP58 Unisim
Pin

DSPCPLX Unisim
Pin

DSPFP32
Unisim Pin Description

CARRYOUT Out 4 CARRYOUT[3:0] CARRYOUT_IM
CARRYOUT_RE

FPA_INVALID,
FPM_INVALID

4‑bit carry output
from each 12‑bit
field of the
accumulate/
adder/logic unit.
Normal 58-bit
operation uses
only CARRYOUT[3].
Only the SIMD
mode FOUR12 can
use all the four
CARRYOUT bits
(CARRYOUT[3:0]).
In DSPFP32 mode:
FPA_INVALID is
mapped to
CARRYOUT[1]
FPM_INVALID is
mapped to
CARRYOUT[0]
In DSPCPLX mode
CARRYOUT[3] is
used as
CARRYOUT_RE and
CARRYOUT_IM

CEA1 In 1 CEA1 CEA1_IM
CEA1_RE

CEA1 Clock enable for
the first A (input)
register. A1 is only
used if AREG = 2 or
INMODE[0] = 1.
INMODE control is
for multiplier only.

CEA2 In 1 CEA2 CEA2_IM
CEA2_RE

CEA2 Clock enable for
the second A
(input) register. A2
is only used if
AREG = 1 or 2 and
INMODE[0] = 0.
INMODE control is
for multiplier only.

CEAD In 1 CEAD CEAD N/A Clock enable for
the pre-adder
output AD pipeline
register.

CEALUMODE In 1 CEALUMODE CEALUMODE_IM
CEALUMODE_RE

CEFPA Clock enable for
ALUMODE (control
inputs) registers.
In DSPFP32 this is
the clock enable
for the FPA output
registers.
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Table 3: Port Descriptions (cont'd)

DSP Tile Pin Direction

Bus
Width

(Default
for

DSP58)

DSP58 Unisim
Pin

DSPCPLX Unisim
Pin

DSPFP32
Unisim Pin Description

CEB1 In 1 CEB1 CEB1_IM
CEB1_RE

CEB Clock enable for
the first B (input)
register. B1 is only
used if BREG = 2 or
INMODE[4] = 1. In
DSPFP32 there is
only one B input
so CEB1 is
renamed CEB.
INMODE control is
for multiplier only.

CEB2 In 1 CEB2 CEB2_IM
CEB2_RE

N/A Clock enable for
the second B
(input) register. B2
is only used if
BREG = 1 or 2 and
INMODE[4] = 0. In
DSPFP32 there is
only one B input
so no CEB2 pin is
available. INMODE
control is for
multiplier only.

CEC In 1 CEC CEC_IM
CEC_RE

CEC Clock enable for
the C (input)
register. In
DSPFP32, CEC
enables all C
register stages
configured by the
FPCREG attribute.

CECARRYIN In 1 CECARRYIN CECARRYIN_IM
CECARRYIN_RE

N/A Clock enable for
the CARRYIN
(input from the
logic) register.

CECTRL In 1 CECTRL CECTRL_IM
CECTRL_RE

CEFPOPMODE Clock enable for
the OPMODE and
CARRYINSEL
(control inputs)
registers.

CED In 1 CED N/A CED Clock enable for
the D (input)
register.

CEINMODE In 1 CEINMODE CECONJUGATE_A
CECONJUGATE_B

CEFPINMODE Clock enable for
the INMODE
control input
registers. Also the
clock enable for
NEGATE control
input registers in
DSP58 mode and
for
CONJUGATE_A/B
input registers in
DSPCPLX mode.
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Table 3: Port Descriptions (cont'd)

DSP Tile Pin Direction

Bus
Width

(Default
for

DSP58)

DSP58 Unisim
Pin

DSPCPLX Unisim
Pin

DSPFP32
Unisim Pin Description

CEM In 1 CEM CEM_IM
CEM_RE

CEFPMPIPE Clock enable for
the post-multiply
M (pipeline)
register and the
internal multiply
CARRYIN register
(DSP58, DSPCPLX
only).

CEP In 1 CEP CEP_IM
CEP_RE

CEFPM Clock enable for
the P output
register in DSP58/
DSPCPLX and FPM
output register in
DSPFP32.

CLK In 1 CLK CLK CLK The DSP58 input
clock, common to
all internal
registers and flip-
flops.

D In 27 D[26:0] N/A D_SIGN
D_EXP[7:0]

D_MAN[22:0]

27-bit input to the
pre-adder. The
pre-adder
implements D ± A
or D ± B as
determined by the
attribute
PREADDINSEL. The
INMODE[3] signal
determines
whether the pre-
adder is
performing an
addition or
subtraction. In
DSPFP32, this port
is an alternative
input to the
floating-point
multiplier
(binary16 or
binary32), or
binary32 input to
the standalone
binary 32 adder.
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Table 3: Port Descriptions (cont'd)

DSP Tile Pin Direction

Bus
Width

(Default
for

DSP58)

DSP58 Unisim
Pin

DSPCPLX Unisim
Pin

DSPFP32
Unisim Pin Description

INMODE In 5 INMODE[4:0] CONJUGATE_A
CONJUGATE_B

FPINMODE These five control
bits select the
functionality of the
pre-adder, the A,
B, and D inputs,
and the input
registers. These
bits should be tied
to GND if unused.
In DSPCPLX
INMODE[3] only is
used and mapped
to CONJUGATE. In
DSPFP32
INMODE[4] is
mapped to
FPINMODE and
controls input
MUX selection
between B and D
input ports to FP
Multiplier.

MULTSIGNIN In 1 MULTISIGNIN MULTISIGNIN_IM
MULTISIGNIN_RE

N/A Signal from the
previous DSP for
MACC extension.

MULTSIGNOUT Out 1 MULTISIGNOUT MULTISIGNOUT_IM
MULTISIGNOUT_RE

N/A Signal cascaded to
the next DSP for
MACC extension.

NEGATE In 3 NEGATE[2:0] N/A N/A Select if the
multiplier input
needs to be
negated. In
DSPCPLX, the
CONJUGATE inputs
connected to
INMODE[3] is
used. For DSP58, in
INT24 mode, only
NEGATE[0] is used.
In INT8 mode, all
NEGATE bits are
used.

OPMODE In 9 OPMODE[8:0] OPMODE_IM[8:0]
OPMODE_RE[8:0]

FPOPMODE[6:0] Controls the input
to the W, X, Y, and
Z multiplexers in
DSP58 and
DSPCPLX Unisims
only. In DSPFP32
the lower 7 bits
control the P0 and
P1 inputs to the
floating point
adder.
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Table 3: Port Descriptions (cont'd)

DSP Tile Pin Direction

Bus
Width

(Default
for

DSP58)

DSP58 Unisim
Pin

DSPCPLX Unisim
Pin

DSPFP32
Unisim Pin Description

OVERFLOW Out 1 OVERFLOW OVERFLOW_IM
OVERFLOW_RE

FPA_OVERFLOW Overflow indicator
when used with
the appropriate
setting of the
pattern detector.
In DSPFP32, this
flag indicates
overflow of the
floating-point
adder.

P Out 58 P[57:0] P_IM[57:0]
P_RE[57:0]

{FPM_OUT [25:0]
FPA_OUT[31:0]}

Data output from
second stage
adder/subtracter
or logic. In
DSPFP32, bits
[57:32] are
mapped to
floating point
multiplier (FPM),
and bits [31:0] are
mapped to the
output of the
floating point
adder (FPA).

PATTERNBDETECT Out 1 PATTERNBDETECT PATTERNBDETECT_IM
PATTERNBDETECT_RE

N/A Match indicator
between P[57:0]
and the
complement of the
pattern.

PATTERNDETECT Out 1 PATTERNDETECT PATTERNDETECT_IM
PATTERNDETECT_RE

N/A Match indicator
between P[57:0]
and the pattern.

PCIN In 58 PCIN[57:0] PCIN_IM[57:0]
PCIN_RE[57:0]

PCIN[31:0] Cascaded data
input from PCOUT
of the previous
DSP58 to ALU. In
floating-point
mode, only the
lower 32 bits are
used and the
upper 26 bits are
set to zero.

PCOUT Out 58 PCOUT[57:0] PCOUT_IM[57:0]
PCOUT_RE[57:0]

PCOUT[31:0] Cascaded data
output to PCIN of
the next DSP58. In
DSPFP32, only the
lower 32 bits are
used.

RSTA In 1 RSTA RSTA_IM
RSTA_RE

RSTA Reset for both A
(input) registers.
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Table 3: Port Descriptions (cont'd)

DSP Tile Pin Direction

Bus
Width

(Default
for

DSP58)

DSP58 Unisim
Pin

DSPCPLX Unisim
Pin

DSPFP32
Unisim Pin Description

RSTALLCARRYIN In 1 RSTALLCARRYIN RSTALLCARRYIN_IM
RSTALLCARRYIN_RE

N/A Reset for the Carry
(internal multiply
round) and the
CARRYIN register
in all fixed-point
modes.

RSTALUMODE In 1 RSTALUMODE RSTALUMODE_IM
RSTALUMODE_RE

RSTFPA Reset for
ALUMODE (control
inputs) registers.
In DSPFP32 acts as
reset for FPA
output registers

RSTB In 1 RSTB RSTB_IM
RSTB_RE

RSTB Reset for both B
(input) registers.

RSTC In 1 RSTC RSTC_IM
RSTC_RE

RSTC Reset for the C
(input) register.

RSTCTRL In 1 RSTCTRL RSTCTRL_IM
RSTCTRL_RE

RSTFPOPMODE Reset for OPMODE
and CARRYINSEL
(control inputs)
registers.

RSTD In 1 RSTD N/A RSTD Reset for the D
(input) register.

RSTAD In 1 N/A RSTAD N/A Reset for the pre-
adder (output) AD
pipeline register.

RSTINMODE In 1 RSTINMODE RSTINMODE_IM
RSTINMODE_RE

RSTFPINMODE Reset for the
INMODE (control
input) registers.

RSTM In 1 RSTM RSTM_IM
RSTM_RE

RSTFPMPIPE Reset for the M
(pipeline) register.

RSTP In 1 RSTP RSTP_IM
RSTP_RE

RSTFPM Reset for P output
registers in DSP58
and DSPCPLX, and
reset for FPM
output registers in
DSPFP32.

ASYNC_RST In 1 ASYNC_RST ASYNC_RST ASYNC_RST Asynchronous
reset for all
registers. Input
only valid when
attribute
RESET_MODE =
ASYNC.
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Table 3: Port Descriptions (cont'd)

DSP Tile Pin Direction

Bus
Width

(Default
for

DSP58)

DSP58 Unisim
Pin

DSPCPLX Unisim
Pin

DSPFP32
Unisim Pin Description

UNDERFLOW Out 1 UNDERFLOW UNDERFLOW_IM
UNDERFLOW_RE

FPA_UNDERFLOW Underflow
indicator when
used with the
appropriate
setting of the
pattern detector.
In DSPFP32, this
flag indicates
underflow of the
floating-point
adder.

XOROUT Out 8 XOROUT[7:0] XOROUT_IM[7:0]
XOROUT_RE[7:0]

{FPM_UNDERFLOW
FPM_OVERFLOW,
FPM_OUT [31:26]}

Data output from
wide XOR function.
In DSPFP32:
XOROUT[5:0] are
mapped to
FPMOUT[31:26],
XOROUT[6] is
mapped to
overflow status
port for FP
multiplier and
XOROUT[7] is
mapped to the
underflow status
port of the FP
multiplier.

Notes:
1. The HW PortName is the general signal name. The specific pin name in each mode including the bus width is specified in the

columns under DSP58, DSPCPLX, and DSPFP32.
2. The ports from both DSPs are presented as unique ports in DSPCPLX. Naming convention is <Portname>_IM (imaginary) and

<Portname>_RE (real). The exception to this convention are the CONJUGATE ports, which are differentiated as CONJUGATE_A
and CONJUGATE_B.

Attributes
The synthesis attributes for the DSP(s) in various modes are described in this section. The
attributes call out pipeline registers in the control and datapaths. The value of the attribute sets
the number of pipeline registers.
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Table 4: Attribute Setting Description

Attribute Name
Settings (Default)

Description
DSP58 DSPFP32 DSPCPLX1

Register Control Attributes

ACASCREG 0, 1, 2 (1) 2 Selects the number of A
input registers on the A
cascade path, ACOUT.
This attribute must be
equal to or one less than
the AREG value:
AREG = 0: ACASCREG
must be 0
AREG = 1: ACASCREG
must be 1
AREG = 2: ACASCREG can
be 1 or 2

ADREG 0, 1 (1) N/A 0, 1 (1) Selects the number of
AD pipeline registers.
Because the common
pre-adder output in
CINT18 mode is
registered in the AD
registers of both DSPs,
only a single ADREG
attribute is used in
CINT18.

ALUMODEREG 0, 1 (1) N/A 0, 1 (1) Selects the number of
ALUMODE input
registers.

AREG 0, 1, 2 (1) Selects the number of A
input registers to the X
multiplexer to the ALU
or multiplier. For ALU,
when 1 is selected, the
A2 register is used. For
multiplier, when 1 is
selected and INMODE[0]
= 1, A1 register is used.

BCASCREG 0, 1, 2 (1) N/A 0, 1, 2 (1) Selects the number of B
input registers on the B
cascade path, BCOUT.
This attribute must be
equal to or one less than
the BREG value:
BREG = 0: BCASCREG
must be 0
BREG = 1: BCASCREG
must be 1
BREG = 2: BCASCREG
can be 1 or 2 (1 only in
floating-point mode)
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Table 4: Attribute Setting Description (cont'd)

Attribute Name
Settings (Default)

Description
DSP58 DSPFP32 DSPCPLX1

BREG 0, 1, 2 (1) N/A 0, 1, 2 (1) Selects the number of B
input registers to the X
multiplexer to the ALU
or multiplier. For ALU,
when 1 is selected, the
B2 register is used. For
multiplier, when 1 is
selected and INMODE[4]
= 1, B1 register is used.

CARRYINREG 0, 1 (1) N/A 0, 1 (1) Selects the number of
programmable logic
(PL) CARRYIN input
registers.

CARRYINSELREG 0, 1 (1) N/A 0, 1 (1) Selects the number of
CARRYINSEL input
registers.

CREG 0, 1 (1) N/A 0, 1 (1) Selects the number of C
input registers.

DREG 0, 1 (1) N/A N/A Selects the number of D
input registers.

DSP58/DSPFP32:INMODEREG
DSPCPLX:CONJUGATEREG_A/
CONJUGATEREG_B

0, 1 (1) 0, 1 (1) 0, 1 (1) Selects the number of
INMODE and NEGATE
input registers. In
DSPCPLX, the attribute
is COJUGATEREG_A and
CONJUGATEREG_B.

MREG 0, 1 (1) N/A 0, 1 (1) Selects the number of M
pipeline registers.

OPMODEREG 0, 1 (1) N/A 0, 1 (1) Selects the number of
OPMODE input
registers.

RESET_MODE SYNC, ASYNC (SYNC) Selects if the enabled
registers in the DSP are
reset by their register
specific synchronous
resets or the common
ASYNC_RST.

DSP58, DSPCPLX: PREG
DSPFP32: FPA_PREG,
FPM_PREG

0, 1 (1) Selects the number of P
output registers in non-
floating-point mode
(also used by
CARRYOUT,
PATTERNDETECT,
PATTERNBDETECT,
OVERFLOW,
UNDERFLOW, XOROUT,
CARRYCASCOUT,
MULTSIGNOUT, and
PCOUT). In DSPFP32,
FPM_PREG and
FPA_PREG select the
identical number of
registers for FPM and
FPA respectively.
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Table 4: Attribute Setting Description (cont'd)

Attribute Name
Settings (Default)

Description
DSP58 DSPFP32 DSPCPLX1

FPBREG N/A 0, 1 (1) N/A Selects number of B
input registers in
DSPFP32.

FPCREG N/A 0, 1, 2, 3 (3) N/A Selects number of C
input registers in
DSPFP32.

FPDREG N/A 0, 1 (1) N/A Selects number of D
input registers in
DSPFP32.

FPOPMREG N/A 0, 1, 2, 3 (3) N/A Select number of
OPMODE input registers
in DSPFP32.

FPMPIPEREG N/A 0, 1 (1) N/A Select number of M
registers in DSPFP32
mode.

Feature Control Attributes

DSP_MODE INT24, INT8 (INT24) (read only) CINT18 This attribute configures
the DSP for a particular
mode of operation.
INT24 is for the 27 × 24
fixed-point ALU and also
for the legacy mode.
INT8 is for the three-
element 9 × 8 vector
dot-product mode.

A_INPUT DIRECT, CASCADE (DIRECT) Selects the A input
between parallel input
(DIRECT) or the
cascaded input from the
previous DSP
(CASCADE).

B_INPUT DIRECT, CASCADE (DIRECT) Selects the B input
between parallel input
(DIRECT) or the
cascaded input from the
previous DSP
(CASCADE).

BCASCSEL N/A B, D (B) N/A Selects cascade out data
in DSPFP32 mode.

PCOUTSEL N/A FPM, FPA (FPA) N/A Select P cascade output
data.

PREADDINSEL A, B (A) N/A N/A Selects the input to be
added/subtracted with
D in the pre-adder.

AMULTSEL A, AD (A) N/A N/A Selects the input to the
27-bit A input of the
multiplier.

BMULTSEL B, AD (B) N/A N/A Selects the input to the
24-bit B input of the
multiplier.

Chapter 2: DSP Resources

AM004 (v1.1) December 4, 2020  www.xilinx.com
Versal ACAP DSP Engine  29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM004&Title=Versal%20ACAP%20DSP%20Engine&releaseVersion=1.1&docPage=29


Table 4: Attribute Setting Description (cont'd)

Attribute Name
Settings (Default)

Description
DSP58 DSPFP32 DSPCPLX1

A_FPTYPE N/A B16, B32 (B32) N/A Selects floating-point
data type for A. B16 is
for binary16 (half-
precision) and B32 is for
binary32 (single-
precision).

B_D_FPTYPE N/A B16, B32 (B32) N/A Selects floating-point
data type for B and D for
multiplication. B16 is for
binary16 (half-precision)
and B32 is for binary32
(single-precision).

Note: When set to B16, D
cannot be sent directly
to P1 for binary32
addition. It can be first
multiplied by A = 1 and
then sent to P0 as FPM
for binary32 addition.

USE_MULT NONE, MULTIPLY
(MULTIPLY)

NONE, MULTIPLY
(MULTIPLY)

N/A Selects usage of the
multiplier. Set to NONE
to save power when
using only the Adder/
Logic Unit in DSP58 or
floating-point modes.

RND 58-bit field
(00...00)

N/A 58-bit field
(00...00)

This 58-bit value is used
as the Rounding
Constant into the
WMUX.

USE_SIMD ONE58, TWO24,
FOUR12 (ONE58)

N/A Selects the mode of
operation for the adder/
subtracter. The attribute
setting can be one 58-bit
adder mode (ONE58),
two 24-bit adder mode
(TWO24), or four 12-bit
adder mode (FOUR12).
Typical Multiply-Add
operations are
supported when the
mode is set to ONE58.
When either TWO24 or
FOUR12 mode is
selected, the multiplier
must not be used, and
USE_MULT must be set
to NONE.

USE_WIDEXOR TRUE, FALSE (FALSE) N/A Determines whether the
wide XOR is used or not
used.
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Table 4: Attribute Setting Description (cont'd)

Attribute Name
Settings (Default)

Description
DSP58 DSPFP32 DSPCPLX1

XORSIMD XOR12_22,
XOR24_34_58_116

(XOR24_34_58_116)

N/A Selects the mode of
operation for the wide
XOR. The attribute
setting can be one 116-
bit, two 58-bit, two 24-bit
and two 34-bit XOR
mode
(XOR24_34_58_116), or
six 12-bit and two 22-bit
XOR mode (XOR12_22).

Pattern Detector Attributes

AUTORESET_PATDET NO_RESET,
RESET_MATCH,

RESET_NOT_MATCH
(NO_RESET)

N/A NO_RESET,
RESET_MATCH,

RESET_NOT_MATCH
(NO_RESET)

Automatically resets the
P register (accumulated
value or counter value)
on the next clock cycle, if
a pattern detect event
has occurred on this
clock cycle. The
RESET_MATCH and
RESET_NOT_MATCH
settings distinguish
between whether the
DSP58 must cause an
auto reset of the P
register on the next
cycle:
• when the pattern is

matched or
• whenever the

pattern is not
matched on the
current cycle but
was matched on the
previous clock cycle

AUTORESET_PRIORITY RESET, CEP (RESET) N/A RESET, CEP (RESET) When using the
AUTORESET_PATDET
feature, if the attribute
is set to CEP, the P
register only resets the
pending value of the
clock enable. Otherwise,
the autoreset will have
precedence.

MASK 58‑bit field
(0011...11)

N/A 58‑bit field
(0011...11)

This 58‑bit value is used
to mask out certain bits
during a pattern
detection. When a MASK
bit is set to 1, the
corresponding pattern
bit is ignored. When a
MASK bit is set to 0, the
pattern bit is compared.

PATTERN 58‑bit field
(00...00)

N/A 58‑bit field
(00...00)

This 58‑bit value is used
in the pattern detector.
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Table 4: Attribute Setting Description (cont'd)

Attribute Name
Settings (Default)

Description
DSP58 DSPFP32 DSPCPLX1

SEL_MASK MASK, C,
ROUNDING_MODE1,
ROUNDING_MODE2

(MASK)

N/A MASK, C,
ROUNDING_MODE1,
ROUNDING_MODE2

(MASK)

Selects the mask to be
used for the pattern
detector. The C and
MASK settings are for
standard uses of the
pattern detector
(counter, overflow
detection, etc.).
ROUNDING_MODE1 (C-
bar left shifted by 1) and
ROUNDING_MODE2 (C-
bar left shifted by 2)
select special masks
based off of the
optionally registered C
input. These rounding
modes can be used to
implement convergent
rounding in the DSP58
using the pattern
detector.

SEL_PATTERN PATTERN, C
(PATTERN)

N/A PATTERN, C
(PATTERN)

Selects the input source
for the pattern field. The
input source can either
be a 58-bit dynamic C
input or a 58‑bit static
attribute field.

USE_PATTERN_DETECT NO_PATDET, PATDET
(NO_PATDET)

N/A NO_PATDET, PATDET
(NO_PATDET)

Selects whether the
pattern detector and
related features,
including overflow and
underflow, are used
(PATDET) or not used
(NO_PATDET). This
attribute is used for
speed specification and
Simulation Model
purposes only.

Optional Inversion Attributes

IS_ALUMODE_INVERTED 4-bit binary
(4’b0000)

N/A 4-bit binary
(4’b0000)

Indicates if the
ALUMODE[3:0] is
optionally inverted
within the DSP. The
default 4’b0000
indicates that all bits of
the ALUMODE bus are
not inverted. Each
attribute bit controls its
respective bit of the
ALUMODE bus.

IS_ASYNC_RST_INVERTED 1-bit binary (1’b0) Indicates if the
ASYNC_RST is optionally
inverted within the DSP.
The default 1’b0
indicates that the
ASYNC_RST is not
inverted.
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Table 4: Attribute Setting Description (cont'd)

Attribute Name
Settings (Default)

Description
DSP58 DSPFP32 DSPCPLX1

IS_CARRYIN_INVERTED 1-bit binary (1’b0) N/A 1-bit binary (1’b0) Indicates if the CARRYIN
is optionally inverted
within the DSP. The
default 1’b0 indicates
that the CARRYIN is not
inverted.

IS_CLK_INVERTED 1-bit binary (1’b0) Indicates if the CLK is
optionally inverted
within the DSP. The
default 1’b0 indicates
that the CLK is not
inverted.

IS_INMODE_INVERTED
IS_FPINMODE_INVERTED
IS_CONJUGATE_INVERTED

5-bit binary
(5’b00000)

1-bit binary
(1’b0)

1-bit binary (1’b0) Indicates if the
INMODE[4:0] is
optionally inverted
within the DSP. The
default 5’b00000
indicates that all the bits
of the INMODE bus are
not inverted. Each
Attribute bit controls its
respective bit of the
INMODE bus. In
DSPFP32, the
corresponding pin is
FPINMODE. In DSPCPLX,
the corresponding pins
are CONJUGATE_A and
CONJUGATE_B.

IS_NEGATE_INVERTED 3-bit binary (1’b000) N/A N/A Indicates if all the bits of
NEGATE are optionally
inverted within the DSP.
The default 3’b000
indicates that the
NEGATE[2:0] is not
inverted.

IS_OPMODE_INVERTED
IS_FPOPMODE_INVERTED

9-bit binary
(9’b000000000)

7-bit binary
(7’b0000000)

9-bit binary
(9’b000000000)

For DSP58 and DSPCPLX,
indicates if the
OPMODE[8:0] is
optionally inverted
within the DSP. The
default 9’b000000000
indicates that all the bits
of the OPMODE bus are
not inverted. Each
attribute bit controls its
respective bit of the
OPMODE bus. In
DSPFP32, the
corresponding pins are
the FPOPMODE bus (7
bits).

IS_RSTA_INVERTED 1-bit binary (1’b0) Indicates if the RSTA is
optionally inverted
within the DSP. The
default 1’b0 indicates
that the RSTA is not
inverted.
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Table 4: Attribute Setting Description (cont'd)

Attribute Name
Settings (Default)

Description
DSP58 DSPFP32 DSPCPLX1

IS_RSTALLCARRYIN_INVERTED 1-bit binary (1’b0) N/A 1-bit binary (1’b0) Indicates if the
RSTALLCARRYIN is
optionally inverted
within the DSP. The
default 1’b0 indicates
that the RSTALLCARRYIN
is not inverted.

IS_RSTALUMODE_INVERTED
IS_RSTFPA_INVERTED

1-bit binary (1’b0) Indicates if the
RSTALUMODE is
optionally inverted
within the DSP. The
default 1’b0 indicates
that the RSTALUMODE is
not inverted. In
DSPFP32, the attribute
IS_RSTFPA_INVERTED
corresponds to the pin
RSTFPA.

IS_RSTB_INVERTED 1-bit binary (1’b0) Indicates if the RSTB is
optionally inverted
within the DSP. The
default 1’b0 indicates
that the RSTB is not
inverted.

IS_RSTC_INVERTED 1-bit binary (1’b0) Indicates if the RSTC is
optionally inverted
within the DSP. The
default 1’b0 indicates
that the RSTC is not
inverted.

IS_RSTCTRL_INVERTED
IS_RSTFPOPMODE_INVERTED

1-bit binary (1’b0) First attribute indicates
if the RSTCTRL is
optionally inverted
within the DSP. The
default 1’b0 indicates
that the RSTCTRL is not
inverted. Second
attribute is for
RSTFPOPMODE pin in
DSPFP32.

IS_RSTD_INVERTED
IS_RSTAD_INVERTED

1-bit binary (1’b0) IS_RSTD_INVERTED
Indicates if the RSTD is
optionally inverted
within the DSP. The
default 1’b0 indicates
that the RSTD is not
inverted. In DSPCPLX,
the attribute
IS_RSTAD_INVERTED
corresponds to the pin
RSTAD.
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Table 4: Attribute Setting Description (cont'd)

Attribute Name
Settings (Default)

Description
DSP58 DSPFP32 DSPCPLX1

IS_RSTINMODE_INVERTED
IS_RSTFPINMODE_INVERTED
IS_RSTCONJUGATE_INVERTED

1-bit binary (1’b0) The first attribute
indicates if the
RSTINMODE is
optionally inverted
within the DSP. The
default 1’b0 indicates
that the RSTINMODE is
not inverted.
IS_RSTFPINMODE_INVER
TED attribute is for
RSTFPINMODE pin in
DSPFP32.
IS_RSTCONJUGATE_INVE
RTED is for
RSTCONJUGATE pin in
DSPCPLX.

IS_RSTM_INVERTED
IS_RSTFPMPIPE_INVERTED

1-bit binary (1’b0) Indicates if the RSTM is
optionally inverted
within the DSP. The
default 1’b0 indicates
that the RSTM is not
inverted. The attribute
IS_RSTFPMPIPE_INVERTE
D corresponds to
RSTFPMPIPE pin in
DSP32.

IS_RSTP_INVERTED
IS_RSTFPM_INVERTED

1-bit binary (1’b0) Indicates if the RSTP is
optionally inverted
within the DSP. The
default 1’b0 indicates
that the RSTP is not
inverted. The attribute
IS_RSTFPM_INVERTED
corresponds to RSTFPM
pin in DSPFP32.

Notes:
1. The attributes listed below DSPCPLX wherever applicable exist for both DSPs and are represented as unique

attributes. The naming convention is <Attribute>_IM (imaginary) and <Attribute>_RE (real) – the exception to this are
attributes related to CONJUGATE, where the convention is <Attribute>_A and <Attribute>_B. Additionally, pin inversion
attributes follow the convention IS_<PinName>_<IM/RE/A/B>_INVERTED.

2. The value in parenthesis is the default value of the attribute.
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Chapter 3

Scalar Fixed-Point ALU

Overview
This chapter provides technical details of DSP58 in the scalar fixed-point ALU mode. In this
mode, DSP58 consists of a 27-bit pre-adder, 27 × 24 multiplier, and 58-bit ALU that serves as a
post-adder/subtracter, accumulator, or logic unit (see the following figure).

Figure 8: Detailed DSP58 Functions as a Scalar Fixed-Point ALU

*These signals are dedicated routing paths internal to the DSP58 column. They are not accessible through general-purpose routing resources.  
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The DSP58 scalar fixed-point ALU supports many independent functions. These functions
include:

• 27 × 24 two's complement multiply

• 27 × 24 + 58 two's complement multiply accumulate (MACC)

• 27 × 24 + 58 two's complement multiply add

• Four-input 58-bit add

• Barrel shifter

• Wide-bus multiplexing

• Magnitude comparator

• Bitwise logic functions

• Wide XOR function

• Pattern detect

• Wide counter

The architecture also supports cascading multiple DSP58s to form width math functions, DSP
filters, and complex arithmetic without the use of general logic.

DSP58 Features
Features of DSP58 are as follows.

• Backward compatibility with DSP48E2

• 27-bit pre-adder with D register to enhance the capabilities of the A or B path

• A or B can be selected as pre-adder input to allow for wider multiplication coefficients

• The result of the pre-adder can be sent to both inputs of the multiplier to provide squaring
capability

• INMODE control supports balanced pipelining when dynamically switching between multiply
(A*B) and add operations (A+B) for fixed point, non-complex numbers

• 27 × 24 two’s complement multiplier with optional product negation

• 34-bit A input of which the lower 27 bits feed the A input of the multiplier, and the entire 34-
bit input forms the upper 34 bits of the 58-bit A:B concatenated internal bus

• Cascading A and B input:

○ Semi-independently selectable pipelining between direct and cascade paths

○ Separate clock enables for two-deep A and B set of input registers
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• Independent 58-bit C input and C register with independent reset and clock enable

• CARRYCASCIN and CARRYCASCOUT internal cascade signals to support 116-bit
accumulators/adders/subtracters in two DSP58s, and to support cascading more than two
DSP58s

• MULTSIGNIN and MULTSIGNOUT internal cascade signals with special OPMODE setting to
support a 116-bit MACC extension

• Single instruction multiple data (SIMD) mode for four-input adder/subtracter, which precludes
the use of multiplier in first stage:

○ Dual 24-bit SIMD adder/subtracter/accumulator with two separate CARRYOUT signals

○ Quad 12-bit SIMD adder/subtracter/accumulator with four separate CARRYOUT signals

• 58-bit logic unit:

○ Bitwise logic operations—two-input AND, OR, NOT, NAND, NOR, XOR, and XNOR

○ Logic unit mode dynamically selectable through ALUMODE and OPMODE[3:2]

• 116-bit wide XOR selectable for XOR12, XOR22 (new), XOR24, XOR34 (new), XOR58 (new),
and XOR116 (new)

Note: XOR48 and XOR96 are supported when migrating from the UltraScale™ architecture.

• Pattern detector:

○ Overflow/underflow support

○ Convergent rounding support

○ Terminal count detection support and auto resetting: auto resetting can give priority to
clock enable

• Cascading 58-bit P bus supports internal low-power adder cascade: 58-bit P bus allows for
12-bit quad or 24-bit dual SIMD adder cascade support

• 23-bit right shift to enable wider multiplier implementation, 17-bit right shift is supported
when migrating from the UltraScale architecture

• Dynamic user-controlled operating modes:

○ 9-bit OPMODE control bus provides W, X, Y, and Z multiplexer select signals

○ 5-bit INMODE control bus provides selects for 2-deep A and B registers, pre-adder add-
sub control as well as mask gates for pre-adder multiplexer functions.

○ 1-bit NEGATE control bit to conditionally negate the multiplier product

○ 4-bit ALUMODE control bus selects logic unit function and accumulator add-sub control

• Carry in for the second stage adder:

○ Support for rounding
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○ Support for wider add/subtracts

○ 3-bit CARRYINSEL multiplexer

• Carry out for the second stage adder:

○ Support for wider add/subtracts

○ Available for each SIMD adder (up to four)

○ Cascaded CARRYCASCOUT and MULTSIGNOUT allows for MACC extensions up to 116
bits

• Single clock for synchronous operation

• Optional input, pipeline, and output/accumulate registers

• Optional registers for control signals (OPMODE, ALUMODE, and CARRYINSEL)

• Independent clock enable and synchronous resets with programmable polarity for greater
flexibility

• Internal multiplier and XOR logic can be gated off when unused to save power

DSP58 consists of a multiplier followed by an accumulator. At least three pipeline registers are
required for both multiply and multiply-accumulate operations to run at full speed. The multiply
operation in the first stage generates two partial products that need to be added together in the
second stage.

When only one or two registers exist in the multiplier design, the M register should always be
used to save power and improve performance.

Add/Sub and logic unit operations require at least two pipeline registers (input, output) to run at
full speed.

The cascade capabilities of DSP58 are extremely efficient at implementing high-speed pipelined
filters built on the adder cascades instead of adder trees.

Multiplexers are controlled with dynamic control signals, such as OPMODE, ALUMODE, and
CARRYINSEL, enabling a great deal of flexibility. Designs using registers and dynamic opmodes
are better equipped to take advantage of the DSP58’s capabilities than combinatorial multiplies.

In general, the DSP58 supports both sequential and cascaded operations due to the dynamic
OPMODE and cascade capabilities. Fast Fourier transforms (FFTs), floating-point, computation
(multiply, add/sub, and divide), counters, and large bus multiplexers are some applications of
DSP58.
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Additional capabilities of the DSP58 include synchronous resets and clock enables, dual A input
pipeline registers, pattern detection, Logic Unit functionality, single instruction/multiple data
(SIMD) functionality, and MACC and Add-Acc extension to 116 bits. The DSP58 supports
convergent and symmetric rounding, terminal count detection and auto-resetting for counters,
and overflow/underflow detection for sequential accumulators. Up to a 116-bit wide XOR
function can be implemented as six 12-bit and two 22-bit wide XOR, two 24-bit and two 34-bit
wide XOR, or two 48/58-bit wide XOR.

Architectural Highlights of DSP58
The DSP58 contains a pre-adder after the A and B registers with a 27-bit input vector called D.
The D register can be used either as the pre-adder register or an alternate input to the multiplier.
The DSP58 specific features are highlighted in the following figure.
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Figure 9: Hierarchical View of the DSP58 Input Registers and Pre-Adder
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Each DSP58 has a two-input multi-mode multiplier followed by multiplexers and a four-input
adder/subtracter/accumulator. The DSP58 multiplier has asymmetric inputs and accepts a 24-bit
two’s complement operand and a 27-bit two’s complement operand. The multiplier stage
produces a 51-bit two’s complement result in the form of two partial products. These partial
products are sign-extended to 58 bits in the X multiplexer and Y multiplexer and fed into four-
input adder for final summation. Therefore, when the multiplier is used, the adder effectively
becomes a three-input adder.

The second stage adder/subtracter accepts four 58-bit, two’s complement operands plus 1-bit
CARRYIN and produces a 58-bit, two’s complement result when the multiplier is bypassed by
setting USE_MULT attribute to NONE and with the appropriate OPMODE setting. In SIMD
mode, the adder/subtracter also supports dual 24-bit or quad 12-bit SIMD arithmetic operations
with CARRYOUT bits. In the second stage adder/subtracter, bitwise logic operations on two 58-
bit binary numbers (and three 58-bit binary numbers in the special XOR3 case) are also
supported with dynamic ALUMODE control signals.

Higher level DSP functions are supported by cascading individual DSP58s in a DSP column. Two
datapaths (ACOUT and BCOUT) and the DSP58 outputs (PCOUT, MULTSIGNOUT, and
CARRYCASCOUT) provide the cascade capability. The ability to cascade datapaths is useful in
filter designs. For example, a finite impulse response (FIR) filter design can use the cascading
inputs to arrange a series of input data samples and the cascading outputs to arrange a series of
partial output results. The ability to cascade provides a high-performance and low-power
implementation of DSP filter functions because the general routing in the internal logic is not
used.

The C input allows the formation of many 3-input mathematical functions, such as 3-input
addition or 2-input multiplication with an addition. One subset of this function is the valuable
support of symmetrically rounding a multiplication toward zero or toward infinity. The C input
together with the pattern detector also supports convergent rounding. Refer to Rounding for a
discussion on using the C input to implement the different rounding modes.

For multi-precision arithmetic, DSP58 provides a right wire shift by 23 bits (or 17 bits when
migrating from the UltraScale™ architecture). Thus, a partial product from one DSP58 can be
right justified and added to the next partial product computed in an adjacent DSP58 above it in
the same column. Using this technique, the DSP58s in a column can be used to build higher-
precision multipliers.

Programmable pipelining of input operands, intermediate products, and accumulator outputs
enhances throughput. The 58-bit internal bus (PCOUT/PCIN) allows for aggregation of DSPs in a
single column. CLB logic is needed when spanning multiple DSP columns.

The pattern detector at the output of the DSP58 provides support for convergent rounding,
overflow/underflow, block floating-point, and support for accumulator terminal count (counter
auto reset). The pattern detector can detect if the output of the DSP58 matches a pattern, as
qualified by a mask.
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DSP58 Operation Modes
Table 5 provides a summary of the key operation modes available in a single DSP58, showing the
largest functions available, and the key resources used. Table 6 through Table 10 show similar
operation modes extended to two, three, four, six, and eight DSP58s, cascaded.

For DSP48E2 supported operations with bit-widths derived from 27 × 18 + 48 operations, refer
to UltraScale Architecture DSP Slice User Guide (UG579).

Table 5: Operation Modes: One DSP58

Operation Mode Pre-Adder A/B/P Cascade 48-bit C Port RND Support
27 × 24 + C MULT/MACC 23/26-bit N/A Used Yes

27 × 24 Sequential Complex MACC Optional N/A Optional Yes

27 × 25 or 28 × 24 N/A N/A Used Limited

Pre-adder Squared 23-bit N/A Optional Optional

SIMD Add/Sub/Counter/ACC N/A N/A Used No

58-bit Add/Sub/Counter/ACC N/A N/A Used Yes

58-Bit 2:1 Bus MUX N/A N/A Used N/A

XOR116/58/34/24/22/12 N/A N/A Used N/A

AND116/NOR116 N/A N/A Used N/A

58 2-input Logic Operations N/A N/A Used N/A

Table 6: Operation Modes: Two DSP58s

Operation Mode Pre-Adder A/B/P Cascade 48-bit C Port RND Support
18 × 18 Complex MULT/MACC N/A N/A Used yes

27 × 24 + C MACC116 26-bit P Used Used Yes

47 × 27 + C 26-bit Yes Used Yes

47 × 28 or 48 × 27 N/A Yes Used Limited

50 × 24+ C 23-bit Yes Used Yes

50 × 25 or 51 × 24 N/A Yes Used Limited

27 × 24 + C Systolic MultAdd 2-tap Filter 23/26-bit Yes Used Yes

Sum of 2 Pre-adder Squared 23-bit P Used Optional Optional

116-bit Add/Sub/Counter/ACC N/A N/A Used Yes

24-bit Barrel Shifter N/A Yes N/A N/A

46-bit Bus Shifter N/A Yes N/A N/A

58-Bit 4:1 Bus MUX N/A P Used Used N/A

XOR232/116/68/48/44/24 N/A P Used Used N/A

AND174/NOR174 N/A P Used Used N/A

58 3-input Logic Operations (58 XOR4) N/A P Used Used N/A
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Table 7: Operation Modes: Three DSP58s

Operation Mode Pre-Adder A/B/P Cascade 48-bit C Port RND Support
26 × 23 Complex MULT/MACC 26-bit A/B Used Used Yes

70 × 27 + C 26-bit Yes Used Yes

70 × 28 or 71 × 27 N/A Yes Used Limited

73 × 24 + C 24-bit Yes Used Yes

73 × 25 or 74 × 24 N/A Yes Used Limited

27 × 24 + C Systolic MultAdd 3-tap Filter 23/26-bit Yes Used Yes

Sum of 3 Pre-adder Squared 23-bit P Used Optional Optional

174-bit Add/Sub/Counter/ACC N/A N/A Used Yes

58-Bit 6:1 Bus MUX N/A P Used Used N/A

XOR348/174/102/72/66/36 N/A P Used Used N/A

AND232/NOR232 N/A P Used Used N/A

58 4-input Logic Operations (58 XOR6) N/A P Used Used N/A

Table 8: Operation Modes: Four DSP58s

Operation Mode Pre-Adder A/B/P Cascade 48-bit C Port RND Support
27 × 25 Complex MULT N/A P Used Used Yes

27 × 24 + C Complex MULT/MACC 26-bit P Used Used Yes

50 × 47 + C N/A B/P Used Used Yes

50 × 48 or 51 × 47 N/A B/P Used Used Limited

93 × 27 + C 26-bit Yes Used Yes

93 × 28 or 94 × 27 N/A Yes Used Limited

96 × 24 + C 23-bit Yes Used Yes

96 × 25 or 97 × 24 N/A Yes Used Limited

27 × 24 + C Systolic MultAdd 4-tap Filter 23/26 bit Yes Used Yes

Sum of 4 Pre-adder Squared 23-bit P Used Optional Optional

232-bit Add/Sub/Counter/ACC N/A N/A Used Yes

58-Bit 8:1 Bus MUX N/A P Used Used N/A

XOR464/232/136/96/88/48 N/A P Used Used N/A

AND290/NOR290 N/A P Used Used N/A

58 5-input Logic Operations (58 XOR8) N/A P Used Used N/A

Table 9: Operation Modes: Six DSP58s

Operation Mode Pre-Adder A/B/P Cascade 48-bit C Port RND Support
27 × 24 + C Complex MACC116 23-bit P Used Used Yes

73 × 47 + C N/A B/P Used Used Yes

73 × 48 or 74 × 47 N/A B/P Used Used Yes

139 × 27 + C 26-bit Yes Used Yes
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Table 9: Operation Modes: Six DSP58s (cont'd)

Operation Mode Pre-Adder A/B/P Cascade 48-bit C Port RND Support
139 × 28 or 140 × 27 N/A Yes Used Limited

142 × 24 + C 23-bit Yes Used Yes

142 × 25 or 143 × 24 N/A Yes Used Limited

53 × 53 Unsigned N/A Yes Used No

27 × 24 + C Systolic MultAdd 6-tap Filter 23/26 bit Yes Used Yes

Sum of 6 Pre-adder Squared 23-bit P Used Optional Optional

348-bit Add/Sub/Counter/ACC N/A N/A Used Yes

58-Bit 12:1 Bus MUX N/A P Used Used N/A

XOR696/348/204/144/132/72 N/A P Used Used N/A

AND406/NOR406 N/A P Used Used N/A

58 7-input Logic Operations (58 XOR12) N/A P Used Used N/A

Table 10: Operation Modes: Eight DSP58s

Operation Mode Pre-Adder A/B/P Cascade 48-bit C Port RND Support
47 × 27 + C Complex MULT 26-bit B/P Used Used Yes

96 × 47 + C N/A B/P Used Used Yes

96 × 48 or 97 × 47 N/A B/P Used Used Limited

93 × 50 + C N/A B/P Used Used Yes

93 × 51 or 94 × 50 N/A B/P Used Used Limited

27 × 24 + C Systolic MultAdd 8-tap Filter 23/26-bit Yes Used Yes

Sum of 8 Pre-adder Squared 23-bit P Used Optional Optional

464-bit Add/Sub/Counter/ACC N/A N/A Used Yes

58-Bit 16:1 Bus MUX N/A P Used Used N/A

XOR928/464/272/192/176/96 N/A P Used Used N/A

AND522/NOR522 N/A P Used Used N/A

58 9-input Logic Operations (48 XOR16) N/A P Used Used N/A

Simplified DSP58 Operations
The fixed-point math portion of DSP58 consists of a 27-bit pre-adder, a 27-bit by 24-bit two’s
complement multiplier with optional product negation followed by four 58-bit datapath
multiplexers (with outputs W, X, Y, and Z). This is followed by a four-input adder/subtracter or
two-input logic unit. When using two-input logic unit, the multiplier cannot be used.
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The data and control inputs to DSP58 feed the arithmetic and logic stages. The A and B data
inputs can optionally be registered one or two times to assist the construction of different, highly
pipelined, DSP application solutions. The D path and the AD path can each be registered once.
The other data inputs and the control inputs can be optionally registered once.

The following equation summarizes the combination of W, X, Y, Z, and CIN by the adder/
subtracter. The CIN, W multiplexer output, X multiplexer output, and Y multiplexer output are
always added together. This combined result can be selectively added to or subtracted from the
Z multiplexer output. The second option is obtained by setting the ALUMODE to 0001.

Adder / Subtracter Out =  (Z ±  (W +  X +  Y +  CIN)) or ( – Z +  (W +  X +  Y +  CIN) – 1)

A typical use of DSP58 is where A and B inputs are multiplied and the result is added to or
subtracted from the C register. Selecting the multiplier function consumes both X and Y
multiplexer outputs to feed the adder. The two 51-bit partial products from the multiplier are
sign-extended to 58 bits before being sent to the adder/subtracter.

When not using the first stage multiplier, the 58-bit, dual input, bit-wise logic function
implements AND, OR, NOT, NAND, NOR, XOR, and XNOR. The inputs to these functions are:

• All 0s on the W multiplexer

• Either A:B or P on the X multiplexer

• Either all 1s or all 0s on the Y multiplexer depending on logic operation

• Either C, P, or PCIN on the Z multiplexer

Creating wider logic operations is feasible using this cascade path because PCIN is a cascade
input from a lower DSP58. A 58-bit, triple input, bit-wise XOR3 logic operation is supported
when the Y multiplexer selects the C input and ALUMODE[3:0] = 0100.

The output of the adder/subtracter or logic unit feeds the pattern detector logic. The pattern
detector allows DSP58 to support convergent rounding, counter autoreset when a count value
has been reached, and overflow, underflow, and saturation in accumulators. In conjunction with
the logic unit, the pattern detector can be extended to perform a 58-bit dynamic comparison of
two 58-bit fields.

The following figure illustrates DSP58 in a simplified form. The nine OPMODE bits control the
selection of the W, X, Y, and Z multiplexers, feeding the inputs to the adder, subtracter, or logic
unit. In all cases, the 51-bit partial product data from the multiplier to the X and Y multiplexers is
sign-extended, forming 58-bit input datapaths to the adder/subtracter. Based on 51-bit operands
and a 58-bit accumulator output, the number of guard bits (that is, bits available to guard against
overflow) is 7. To extend the number of MACC operations, the MACC_EXTEND feature must be
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used. This feature allows the MACC to extend to 116 bits with two DSP58s. If both A and B are
limited to 18 bits (sign-extended to 27 and 24), then there are 22 (58–36) guard bits for the
MACC. The CARRYOUT bits are invalid during multiply operations. Combinations of OPMODE,
ALUMODE, CARRYINSEL, and CARRYIN control the function of the adder/subtracter or logic
unit.

Figure 10: Simplified DSP58 Operation
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Input Ports
This section describes the input ports of DSP58 in detail. The input ports of DSP58 are
highlighted in the following figure.

Chapter 3: Scalar Fixed-Point ALU

AM004 (v1.1) December 4, 2020  www.xilinx.com
Versal ACAP DSP Engine  47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM004&Title=Versal%20ACAP%20DSP%20Engine&releaseVersion=1.1&docPage=47


Figure 11: Input Ports in DSP58

*These signals are dedicated routing paths internal to the DSP58 column. They are not accessible through general-purpose routing resources.
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A, B, C, and D Ports

The DSP58 input data ports support many common algorithms. DSP58 has four direct input data
ports labeled A, B, C, and D. The A data port is 34 bits wide, the B data port is 24 bits wide, the C
data port is 58 bits wide, and the pre-adder D data port is 27 bits wide.

The 27-bit A (A[26:0]) and 24-bit B ports supply input data to the 27-bit by 24-bit, two’s
complement multiplier. With the independent C port, each DSP58 is capable of multiply-add,
multiply-subtract, and multiply-round operations.

Concatenated A and B ports (A:B) bypass the multiplier and feed the X multiplexer input. The 34-
bit A input port forms the upper 34 bits of A:B concatenated datapath, and the 24-bit B input
port forms the lower 24 bits of the A:B datapath. The A:B datapath, together with the C input
port, enables each DSP58 to implement a full 58-bit adder/subtracter provided the multiplier is
not used, which is achieved by setting USE_MULT to NONE.

Chapter 3: Scalar Fixed-Point ALU

AM004 (v1.1) December 4, 2020  www.xilinx.com
Versal ACAP DSP Engine  48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM004&Title=Versal%20ACAP%20DSP%20Engine&releaseVersion=1.1&docPage=48


Each DSP58 also has two cascaded input datapaths (ACIN and BCIN) that provide a cascaded
input stream between adjacent DSP58s in the same column. The cascaded path is 34 bits wide
for the A input and 24 bits wide for the B input. Applications benefiting from this feature include
FIR filters, complex multiplication (larger than 18 × 18), multi-precision multiplication, and
complex MACCs (larger than 18 × 18).

The A and B input port and the ACIN and BCIN cascade port can have 0, 1, or 2 pipeline stages
in its datapath. The dual A, D, and pre-adder port logic is shown in Figure 12. The dual B register
port logic is shown in Figure 13. The different pipestages are set using attributes. Attributes
AREG and BREG are used to select the number of pipeline stages for A and B direct inputs to the
X multiplexer to the ALU, and INMODE[0] can dynamically change the number of pipeline stages
to the multiplier. Attributes ACASCREG and BCASCREG select the number of pipeline stages in
the ACOUT and BCOUT cascade datapaths. The allowed attribute settings are shown in Table 4.
Multiplexers controlled by configuration bits select flow through paths, optional registers, or
cascaded inputs. The data port registers allow users to typically trade off increased clock
frequency (that is, higher performance) versus data latency.

Figure 12: Dual A, D, and Pre-Adder Logic
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Figure 13: Dual B Register Logic
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The following table shows the encoding for the INMODE[4:0] dynamic control bits and
AMULTSEL, BMULTSEL, and PREADDINSEL static control bits.

These bits select the functionality of the pre-adder, the A, B, and D input registers. AMULTSEL
and/or BMULTSEL must be set to AD to enable the pre-adder functions described in the table.
Additionally, a new dynamic control port called NEGATE, is used to conditionally negate the
multiplier product.

In summary, the INMODE dynamic control signals along with AMULTSEL, BMULTSEL, and
PREADDINSEL static attributes control the pre-adder functionality and A, B, and D register bus
multiplexers that precede the multiplier, as well as the multiplier product negation controlled by
NEGATE control signals that have an effect on the multiplier. The DSP58 supports two-deep A
or B sourcing the pre-adder as well as a pre-adder squaring function.

Table 11: INMODE[4:0] Functions with Pre-Adder Options
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Table 11: INMODE[4:0] Functions with Pre-Adder Options (cont'd)
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0/1 X 0/1 0 0 0 0 0/1 A AD AD ± A2/A1 ± A2/A1 ±A[23:0]2

0/1 X 0/1 1 0 0 0 0/1 A AD A A2/A1 D ± A2/A12 ±(D[22:0] ±
A[22:0]) *
A[22:0]

0/1 0/1 0/1 1 0 0 0 0/1 B AD A A2/A1 D ± B2/B12 ±(D[22:0] ±
B[22:0]) *
A[26:0]

0/1 X 0 1 1 0 1 0/1 B AD A A2/A1 D ±D[23:0] *
A[26:0]

0/1 0/1 0/1 1 0 0 0 0/1 B AD AD D ± B2/B12 D ± B2/B12 ±(D[22:0] ±
B[22:0])2

0/1 0/1 0/1 0 0 0 0 0/1 B AD AD ± B2/B1 ± B2/B1 ±B[23:0]2

0/1 0/1 0/1 1 0 0 0 0/1 B B AD D ± B2/B12 B2/B1 ±(D[25:0] ±
B[22:0]) *
B[22:0]

A[26] 0 X 0 0 0 0 0 X B A A B = 1 |A[26:0]|

B[23] 0 X 0 0 0 0 0 X B A A = 1 B |B[23:0]|

D[26
]

0/1 0 1 1 1 0 0/1 A B AD D + Zerp B = 1 |D[26:0]|

Notes:
1. INMODE[1]A and INMODE[1]B are internal signals defined by the user settings of PREADDINSEL and INMODE[1]. If

PREADDINSEL=A, INMODE[1]A (see Figure 12) is INMODE[1] and INMODE[1]B (see Figure 13) is 0. If PREADDINSEL=B,
INMODE[1]B is INMODE[1] and INMODE[1]A is 0.

2. Set the data on the D and the A or B ports so the pre-adder, which does not support saturation, does not overflow or
underflow. See Pre-Adder.

3. A or D are limited to 24-bit (if only one bus is 0) when provided through the B port (if the pre-adder is configured as a
multiplexer). A or D are limited to 23-bit two's complement signed extended numbers when both are non-zero,
PREADDINSEL = A, BMULTSEL = AD, and the pre-adder is configured as an adder/subtracter.

4. With DSP58, set NEGATE = 1 to negate the product instead of using the pre-adder to negate one of the inputs. Doing
so skips the pre-adder stage, which at high clock frequencies, reduces one cycle of latency. Furthermore, the pre-
adder can only support 26-bit two’s complement negation whereas the NEGATE pin directly negates the product of
the 27 × 24 multiplier.

INMODE[0] selects between A1 (INMODE[0] = 1) and the A2 MUX controlled by AREG
(INMODE[0] = 0).
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INMODE[1] can be used to gate the A or B datapath to use the pre-adder to create a 2:1 bus
multiplexer along with the INMODE[2] control signal.

When INMODE[2] = 0, the D input to the pre-adder is 0. INMODE[1] and INMODE[2] enable
multiplexing between the D register and the A or B registers, without having to use resets to
force them to zero. For information on how to configure the preadder as a 2:1 multiplexer, see 
Pre-Adder Block Applications.

INMODE[3] provides pre-adder subtract control, where INMODE[3] = 1 indicates subtract and
INMODE[3] = 0 indicates add of A or B to D. When D is gated off, this dynamic inversion can
provide the absolute value of A or B.

INMODE[4] selects between B1 (INMODE[4] = 1) and the B2 MUX controlled by BREG
(INMODE[4] = 0).

The 58-bit C port is used as a general input to the W, Y, and Z multiplexers to perform add,
subtract, four-input add/subtract, and logic functions. The C input is also connected to the
pattern detector and can be used to support rounding function implementations. The C port logic
is shown in the following figure. The CREG attribute selects the number of pipestages for the C
input datapath.

Figure 14: C Port Logic
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OPMODE, ALUMODE, and CARRYINSEL Port Logic

The OPMODE, ALUMODE, and CARRYINSEL port logic support flow through or registered input
control signals. Multiplexers controlled by configuration bits select flow through or optional
registers. The control port registers allow you to trade off increased clock frequency (i.e., higher
performance) versus data latency. The registers have independent clock enables and resets. The
OPMODE and CARRYINSEL registers are reset by RSTCTRL. The ALUMODE is reset by
RSTALUMODE. The clock enables and the OPMODE, ALUMODE, and CARRYINSEL port logic
are shown in the following figure.
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Figure 15: OPMODE, ALUMODE, and CARRYINSEL Port Logic
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W, X, Y, and Z Multiplexers

The OPMODE control input contains fields for W, X, Y, and Z multiplexer selects.

The OPMODE input provides a way for you to dynamically change DSP58 functionality from
clock cycle to clock cycle (for example, when altering the internal datapath configuration of
DSP58 relative to a given calculation sequence). The OPMODE bits can be optionally registered
using the OPMODEREG attribute.

The following tables list the possible values of OPMODE and the resulting function at the
outputs of the four multiplexers (W, X, Y, and Z multiplexers). The multiplexer outputs supply
four operands to the following adder/subtracter. Not all possible combinations for the
multiplexer select bits are allowed. Some are marked in the tables as illegal selection and give
undefined results. If the multiplier output is selected, then both the X and Y multiplexers are used
to supply the multiplier partial products to the adder/subtracter.
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Table 12: OPMODE Control Bits Select W Multiplexer Outputs

W
OPMODE[8:7] Z OPMODE[6:4] Y OPMODE[3:2] X OPMODE[1:0] W Multiplexer

Output Notes

00 xxx xx xx 0 Default. Must be
selected for logic

operations.
01 xxx xx xx P Requires PREG = 1

10 xxx xx xx RND -
11 xxx xx xx C -

Table 13: OPMODE Control Bits Select X Multiplexer Outputs

W
OPMODE[8:7] Z OPMODE[6:4] Y OPMODE[3:2] X OPMODE[1:0] X Multiplexer

Output Notes

xx xxx xx 00 0 Default
xx xxx 01 01 ±M Must select with

OPMODE[3:2] = 01
M is selected

when NEGATE = 0.
–M is selected

when NEGATE = 1.
xx xxx xx 10 P Requires PREG = 1

xx xxx xx 11 A:B 58-bit wide

Table 14: OPMODE Control Bits Select Y Multiplexer Outputs

W
OPMODE[8:7] Z OPMODE[6:4] Y OPMODE[3:2] X OPMODE[1:0] Y Multiplexer

Output Notes

xx xxx 00 xx 0 Default
xx xxx 01 01 ±M Must select with

OPMODE[1:0] = 01
M is selected

when NEGATE = 0.
–M is selected

when NEGATE = 1.
xx xxx 10 xx 58'FFFFFFFFFFF

F
Used mainly for
logic unit bitwise
operations on the

X and Z
multiplexers.

xx xxx 11 xx C

Table 15: OPMODE Control Bits Select Z Multiplexer Outputs

W
OPMODE[8:7] Z OPMODE[6:4] Y OPMODE[3:2] X OPMODE[1:0] Z Multiplexer

Output Notes

xx 000 xx xx 0 Default
xx 001 xx xx PCIN -
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Table 15: OPMODE Control Bits Select Z Multiplexer Outputs (cont'd)

W
OPMODE[8:7] Z OPMODE[6:4] Y OPMODE[3:2] X OPMODE[1:0] Z Multiplexer

Output Notes

xx 010 xx xx P Requires PREG = 1

xx 011 xx xx C -
00 100 10 00 P Use for MACC

extend only.
Requires PREG = 1

xx 101 xx xx 17- or 23-bit Shift
(PCIN)

Arithmetic right
shift by 17 bits

only if DSP_MODE
is DSP48E2.

xx 110 xx xx 17- or 23-bit Shift
(P)

PREG = 1.
Arithmetic right
shift by 17 bits

only if DSP_MODE
is DSP48E2.

xx 111 xx xx xx Illegal selection.

ALUMODE Inputs

The 4-bit ALUMODE controls the behavior of the second stage adder/subtracter/logic unit.
ALUMODE = 0000 selects add operations of the form Z + (W + X + Y + CIN). CIN is the output
of the CARRYIN MUX (see Figure 16). ALUMODE = 0011 selects subtract operations of the
form Z – (W + X + Y + CIN). ALUMODE = 0001 can implement –Z + (W + X + Y + CIN) – 1.
ALUMODE = 0010 can implement –(Z + W + X + Y + CIN) – 1, which is equivalent to not (Z + W
+ X + Y + CIN). The negative of a two’s complement number is obtained by performing a bitwise
inversion and adding one, for example, –k = not (k) + 1.

Table 16: Four-Input ALUMODE Operations

DSP Operation OPMODE[8:0]
ALUMODE[3:0]

3 2 1 0
Z +W + X + Y + CIN Any legal OPMODE 0 0 0 0

Z – (W + X + Y + CIN) Any legal OPMODE 0 0 1 1

–Z + (W + X + Y + CIN) – 1 = not (Z) + W + X + Y +
CIN

Any legal OPMODE 0 0 0 1

not (Z +W + X + Y + CIN) =
–Z – W – X – Y – CIN – 1

Any legal OPMODE 0 0 1 0

Notes:
1. In two’s complement, –Z = not (Z) + 1.
2. X + Y = –M, the two’s complement negation of the product, when NEGATE = 1 and OPMODE[3:0] = 4’b0101.
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Carry Input Logic

The carry input logic result is a function of a 3-bit CARRYINSEL signal. The inputs to the carry
input logic appear in the following figure. Carry inputs used to form results for adders and
subtracters are always in the critical path. High performance is achieved by implementing this
logic in silicon. The possible carry inputs to the carry logic are gathered prior to the outputs of
the W, X, Y, and Z multiplexers. CARRYIN has no dependency on the OPMODE selection.

Figure 16: CARRYINSEL Port Logic
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The figure above shows eight inputs selected by the 3-bit CARRYINSEL control. The first input,
CARRYIN (CARRYINSEL set to binary 000), is driven from general logic. This option allows
implementation of a carry function based on user logic. CARRYIN can be optionally registered.
The next input, (CARRYINSEL is equal to binary 010) is the CARRYCASCIN input from an
adjacent DSP58. The third input (CARRYINSEL is equal to binary 100) is the CARRYCASCOUT
from the same DSP58, fed back to itself.

The fourth input (CARRYINSEL is equal to binary 110) is the complement of the sign bit of the
product (NEGATE XOR (A[26] XNOR B[23])) for symmetrically rounding multiplier outputs
towards infinity. This signal can be optionally registered to match the MREG pipeline delay. The
fifth and sixth inputs (CARRYINSEL is equal to binary 111 and 101) selects the true or inverted P
output MSB P[57] for symmetrical rounding.
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The seventh and eight inputs (CARRYINSEL is equal to binary 011 and 001) selects the true or
inverted cascaded P input MSB PCIN[57] for symmetrically rounding the cascaded P input.

The following table lists the possible values of the three carry input select bits (CARRYINSEL) and
the resulting carry inputs or sources.

Table 17: CARRYINSEL Control Carry Source

CARRYINSEL
Select Notes

2 1 0
0 0 0 CARRYIN General interconnect
0 0 1 ~PCIN[57] Rounding PCIN (round towards infinity)
0 1 0 CARRYCASCIN Larger add/sub/acc (parallel operation)
0 1 1 PCIN[57] Rounding PCIN (round towards zero)
1 0 0 CARRYCASCOUT_FB

(CARRYCASCOUT in the same
DSP58)

For larger add/sub/acc (sequential operation
through internal feedback). Requires PREG = 1

1 0 1 ~P[57] Rounding P (round towards infinity). Requires
PREG = 1

1 1 0 NEGATE XOR (A[26] XNOR B[23]) Symmetric rounding of A x B towards inifinity
1 1 1 P[57] For rounding P (round towards zero). Requires

PREG = 1

Output Ports
This section describes the output ports of DSP58 in detail. The output ports in DSP58 are
illustrated in the following figure.

Chapter 3: Scalar Fixed-Point ALU

AM004 (v1.1) December 4, 2020  www.xilinx.com
Versal ACAP DSP Engine  57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM004&Title=Versal%20ACAP%20DSP%20Engine&releaseVersion=1.1&docPage=57


Figure 17: Output Ports in DSP58

*These signals are dedicated routing paths internal to the DSP58 column. They are not accessible through general-purpose routing resources.
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All the output ports except ACOUT and BCOUT are reset by RSTP and enabled by CEP (see the
following figure). ACOUT and BCOUT are reset by RSTA and RSTB, respectively.

Figure 18: Output Port Logic
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P Port

Each DSP58 has a 58-bit output port P. This output can be connected (cascaded connection) to
the adjacent DSP58 internally through the PCOUT path. The PCOUT connects to the input of
the Z multiplexer (PCIN) in the adjacent DSP58. This path provides an output cascade stream
between adjacent DSP58s.

CARRYCASCOUT and CARRYOUT Ports

The carry out from each DSP58 can be sent to the logic resources using the CARRYOUT port.
This port is 4 bits wide. CARRYOUT[3] is the valid carry output for a two-input 58-bit adder/
subtracter or one-input accumulator. In this case, USE_SIMD = ONE58 is the default setting and
represents a non-SIMD configuration. When a two-input adder/subtracter or one-input
accumulator is used in SIMD mode, such as TWO24 or FOUR12, the valid CARRYOUT signals
are listed in the following table. The CARRYOUT signals are not valid if three-input (or four-input)
adder/subtracter (for example, A:B + C + PCIN) or two-input (or three-input) accumulator (for
example, A:B + C + P) configurations are used or if the multiplier is used.

Table 18: CARRYOUT Bit Associated with Different SIMD Modes

SIMD Mode Adder Bit Width Corresponding CARRYOUT
FOUR12 P[11:0] CARRYOUT[0]

P[23:12] CARRYOUT[1]

P[35:24] CARRYOUT[2]

P[47:36] CARRYOUT[3]

TWO24 P[23:0] CARRYOUT[1]

P[47:24] CARRYOUT[3]

ONE58 P[57:0] CARRYOUT[3]

The CARRYOUT signal is cascaded to the next adjacent DSP58 using the CARRYCASCOUT port.
Larger add, subtract, ACC, and MACC functions can be implemented in the DSP58 using the
CARRYCASCOUT output. The 1-bit CARRYCASCOUT signal corresponds to CARRYOUT[3], but
is not identical. The CARRYCASCOUT signal is also fed back into the same DSP58 through the
CARRYINSEL multiplexer.

The CARRYOUT[3] signal should be ignored when the multiplier or a 3-input (or 4-input) add/
subtract operation is used. Because a MACC operation includes a three-input adder in the
accumulator stage (feedback from the P output and two partial products from the multiplier
output), the combination of MULTSIGNOUT and CARRYCASCOUT signals is required to perform
a 116-bit MACC, spanning two DSP58s. The second DSP58’s OPMODE must be set to
MACC_EXTEND (001001000) to use both CARRYCASCOUT and MULTSIGNOUT, thereby
eliminating the ternary adder carry restriction for the upper DSP58.
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MULTISIGNOUT Logic

MULTSIGNOUT is a software abstraction of the hardware signal. It is modeled as the MSB of the
multiplier output and used only in MACC extension applications to build a 116-bit MACC.

The MSB of the multiplier output is cascaded to the next DSP58 using the MULTSIGNIN signal
and can be used only in MACC extension applications to build a 116-bit accumulator.

PATTERNDETECT and PATTERNBDETECT Logic

A pattern detector on the output of DSP58 detects if the P bus matches a specified pattern or if
it exactly matches the complement of the pattern. The PATTERNDETECT output goes High if the
output of the adder matches a set pattern. The PATTERNBDETECT output goes High if the
output of the adder matches the complement of the set pattern.

A mask field can also be used to hide certain bit locations in the pattern detector.
PATTERNDETECT computes ((P = = pattern)||mask) on a bitwise basis and then ANDs the results
to a single output bit. Similarly, PATTERNBDETECT can detect if ((P = = ~pattern)||mask). The
pattern and the mask fields can each come from a distinct 58-bit configuration field or from the
(registered) C input. When the C input is used as the PATTERN, the OPMODE must be set to
select a 0 at the input of the Z multiplexer. If all the registers are reset, PATTERNDETECT is High
for one clock cycle immediately after the RESET is deasserted.

The pattern detector allows DSP58 to support convergent rounding and counter auto reset when
a count value has been reached as well as support overflow, underflow, and saturation in
accumulators.

Overflow and Underflow Logic

The dedicated OVERFLOW and UNDERFLOW outputs of DSP58 use the pattern detector to
determine if the operation in DSP58 has overflowed beyond the P[N] bit where N is between 1
and 56, and is applied only to a sequential accumulator. The P register must be enabled while
using OVERFLOW and UNDERFLOW. This is explained further in the next section.

Embedded Functions
The embedded functions include a 27 × 24 multiplier, adder/subtracter/logic unit, and pattern
detector logic (see the following figure).
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Figure 19: Embedded Functions in DSP58

*These signals are dedicated routing paths internal to the DSP58 column. They are not accessible through general-purpose routing resources.  
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Pre-Adder

DSP58 has a 27-bit pre-adder, which is inserted in the A or B register path (shown in Figure 19
with an expanded view in Figure 12). With the pre-adder, pre-additions or pre-subtractions are
possible prior to feeding the multiplier. The pre-adder does not contain saturation logic and thus,
the designers must limit input operands to 26-bit (or 23-bit for the B path) two’s complement
sign-extended data to avoid overflow or underflow during arithmetic operations. Optionally, the
pre-adder can be bypassed, making D the new input path to the multiplier. When the D path is
not used, the output of the A or B pipeline can be negated prior to driving the multiplier. There
are up to 15 operating modes, including pre-adder squaring, making this pre-adder block very
flexible.

In the following equations, A (or B) and D are added initially through the pre-adder/subtracter.
The result of the pre-adder is then multiplied against B (or A), with the result of the multiplication
being added to the C input. The following equations facilitate efficient symmetric filters.

Final Adder / Subtracter Output =  C ±  ⎛
⎝±B × (D ±  A) +  W +  C IN

⎞
⎠ or C ±  ⎛

⎝ ± A × ⎛
⎝D ±  B⎞

⎠ +  W +  C IN
⎞
⎠

Final Adder / Subtracter Output =   C ±  ⎛
⎝±B × (D ±  B) +  W +  C IN

⎞
⎠ or C ±  ⎛

⎝ ± A × ⎛
⎝D ±  A⎞

⎠ +  W +  C IN
⎞
⎠
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Final Adder / Subtracter Output =  C ±  ⎛⎝±(D ± B)2  +  W +  C IN
⎞
⎠ or C ±  ⎛⎝ ±  (D ± A)2  +  W +  C IN

⎞
⎠

Two’s Complement Multiplier

The two’s complement multiplier in DSP58 in Figure 19 accepts a 27-bit two’s complement input
and a 24-bit two’s complement input along with a conditional product negation control input bit.
The multiplier produces two 51-bit partial products. The two partial products together give an
51-bit result at the output of the multiplier, as shown in the following figure.

Note: The product-negation input does not cause overflow and is safe to use for all values of the multiplier
inputs. Specifically, an N-bit two’s complement number is in the range [–2N-1, 2N – 1 – 1].

All values in this range can be negated to fit within N bits except –2N – 1, the most negative
integer. But the DSP58 negates the product, not the inputs. The output of the multiplier has an
inversion of the sign if Sign(A) != Sign(B). The indicator makes the inputs appear to have
grown but a wider multiplier is unnecessary to avoid overflow. As a result overflow can be
avoided even if one or both of the multiplier inputs are the most negative numbers. The DSP58
multiplier can compute the absolute value of a two’s complement number up to 27 bits. Define
the DSP58 multiplier as mult(A[26:0],[B[23:0], p) ≡ (–1)p AB , where A and B are
the 27- and 24-bit inputs, and p is the Boolean product-negation control input. Then the
absolute value of A can be computed as mult(A[26:0], 1, A[26]).

Cascading of multipliers to achieve larger products is supported with a 23-bit, right-shifted,
cascaded output bus. The right shift is used to right justify the partial products by the correct
number of bits. This cascade path feeds into the Z multiplexer, which is connected to the adder/
subtracter of an adjacent DSP58. The multiplier can emulate unsigned math by setting the MSB
of an input operand to zero.

The following figure shows an optional pipeline register (MREG) for the output of the multiplier.
Using the register provides increased performance with an increase of one clock latency.

Figure 20: Two’s Complement Multiplier Followed by Optional MREG
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Adder/Subtracter or Logic Unit

The adder/subtracter or logic unit output is a function of control and data inputs (see Figure 21).
The data inputs to the adder/subtracter are selected by the OPMODE and the CARRYINSEL
signals. The ALUMODE signals choose the function implemented in the adder/subtracter. Thus,
the OPMODE, ALUMODE, and CARRYINSEL signals together determine the functionality of the
embedded adder/subtracter/logic unit. When using the logic unit, the multiplier must not be
used. The values of OPMODEREG and CARRYINSELREG must be identical.

As with the input multiplexers, the OPMODE bits specify a portion of this function. The symbol
± in the table means either add or subtract and is specified by the state of the ALUMODE control
signal. The symbol : in the table means concatenation. The outputs of the X and Y multiplexer
and CIN are always added together. For more information, refer to ALUMODE Inputs.

Two-Input Logic Unit or Three-Input XOR Special Case

The capability to perform an addition, subtraction, and simple logic functions in DSP58 exists
through the use of a second-stage, four-input adder. The following table lists the logic functions
that can be implemented in the second stage of the four input adder/subtracter/logic unit. The
table also lists the settings of the OPMODE and ALUMODE control signals.

Setting OPMODE[3:2] to 00 selects the default 0 value at the Y multiplexer output.
OPMODE[3:2] set to 10 selects all 1s at the Y multiplexer output. OPMODE[1:0] selects the
output of the X multiplexer, OPMODE[6:4] selects the output of the Z multiplexer. For two-input
or three-input logic operations, OPMODE[8:7] must be set to 00 for the default all 0s value at
the W multiplexer output.

An XOR3 can be built by setting the OPMODE[3:2] to 11, selecting the C input at the Y
multiplexer output. The XOR3 is only valid for ALUMODE[3:0] = 0100, as shown in the following
table.

Table 19: OPMODE and ALUMODE Control Bits Select Logic Unit Outputs

Logic Unit Mode
OPMODE[3:2] ALUMODE[3:0]
3 2 3 2 1 0

X XOR Z 0 0 0 1 0 0

X XNOR Z 0 0 0 1 0 1

X XNOR Z 0 0 0 1 1 0

X XOR Z 0 0 0 1 1 1

X AND Z 0 0 1 1 0 0

X AND (NOT Z) 0 0 1 1 0 1

X NAND Z 0 0 1 1 1 0

(NOT X) OR Z 0 0 1 1 1 1

X XNOR Z 1 0 0 1 0 0
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Table 19: OPMODE and ALUMODE Control Bits Select Logic Unit Outputs (cont'd)

Logic Unit Mode
OPMODE[3:2] ALUMODE[3:0]
3 2 3 2 1 0

X XOR Z 1 0 0 1 0 1

X XOR Z 1 0 0 1 1 0

X XNOR Z 1 0 0 1 1 1

X OR Z 1 0 1 1 0 0

X OR (NOT Z) 1 0 1 1 0 1

X NOR Z 1 0 1 1 1 0

(NOT X) AND Z 1 0 1 1 1 1

X XOR Y XOR Z1 1 1 0 1 0 0

Notes:
1. Valid when Y multiplexer selects C input.

Single Instruction, Multiple Data (SIMD) Mode
The 58-bit adder/subtracter/accumulator can be split into smaller data segments where the
internal carry propagation between segments is blocked to ensure independent operation for all
segments. The adder/subtracter/accumulator can be split into four 12-bit adder/subtracter/
accumulators or two 24-bit adder/subtracter/accumulators with carry out signal per segment.
The SIMD mode segmentation is a static configuration as opposed to dynamic OPMODE type
control (see the following figure). In all non-58-bit SIMD modes the upper 10-bits of the adder/
subtracter/accumulator is disabled. This is done by driving the W/X/Y/Z inputs on the upper 10-
bits to a static 0. This means that in TWO24 and FOUR12 modes the DSP58 operates the same
as the DSP48E2, with the upper 10-bits of the P output equaling zero.
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Figure 21: SIMD Adder Configuration
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• Four segments of dual, ternary, or quad adders with 12-bit inputs, a 12-bit output, and a carry
output for each segment

• Function controlled dynamically by ALUMODE[3:0], and operand source by OPMODE[8:0]

• All four adder/subtracter/accumulators perform same function

• Two segments of dual, ternary, or quad adders with 24-bit inputs, a 24-bit output, and a carry
output for each segment is also available (not pictured).

The SIMD feature allows the 58-bit logic unit to be split into multiple smaller logic units (see the
figure above). Each smaller logic unit performs the same function. This function can also be
changed dynamically through the ALUMODE[3:0] and opmode control inputs.

Note: The Carry-In input selected by the CARRYINSEL only propagates to the lowest-order adder in SIMD
mode, that is, P[11:0] in FOUR12 and P[23:0] in TWO24 modes.

Pattern Detect Logic
The pattern detector is connected to the output of the add/subtract/logic unit in DSP58. The
pattern detector is best described as an equality check on the output of the adder/subtracter/
logic unit that produces its result on the same cycle as the P output. There is no extra latency
between the pattern detect output and the P output of DSP58. The use of the pattern detector
leads to a moderate speed reduction due to the extra logic on the pattern detect path (see the
following figure).
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Figure 22: Pattern Detector Logic
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Some of the applications that can be implemented using the pattern detector are:

• Pattern detect with optional mask

• Dynamic C input pattern match with A x B

• Overflow/underflow/saturation past P[56] (or P[46] when DSP_MODE = DSP48E2)

• A:B = = C and dynamic pattern match, for example, A:B OR C = = 0, A:B AND C == 1

• A:B {function} C = = 0

• 58-bit (48-bit for DSP_MODE = DSP48E2) counter auto reset (terminal count detection) with
option for CEP priority

• Detecting mid points for rounding operations

If the pattern detector is not being employed, it can be used for other creative design
implementations. These include:

• Duplicating a pin (for example, the sign bit) to reduce fanout and thus increase speed.

• Implementing a built-in inverter on one bit (for example, the sign bit) without having to route
out to the CLBs.
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• Checking for sticky bits in floating-point, handling special cases, or monitoring DSP58
outputs.

• Raising a flag if a certain condition is met or if a certain condition is no longer met.

A mask field can also be used to mask out certain bit locations in the pattern detector. The
pattern field and the mask field can each come from a distinct 58-bit memory cell field or from
the (registered) C input.

Note: For the mask field, all 1's are not valid because it would make PATTERNDETECT always equal to 1.

Overflow and Underflow Logic

The following discussion of overflow and underflow applies to sequential accumulators (MACC
or Adder-Accumulator) implemented in a single DSP58. The accumulator must have at least one
guard bit. When the pattern detector is set to detect a pattern equal to 00000…0 with a mask of
0011111 …1 (default settings), DSP58 flags overflow beyond 00111 … 1 or underflow beyond
11000… 0. The USE_PATTERN_DETECT attribute is set to PATDET to enable the use of the
pattern detect logic. This overflow/underflow implementation uses a redundant sign bit and
reduces the output bit width to 57 bits.

Figure 23: Overflow/Underflow Logic in Pattern Detect
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By setting the mask to other values like 0000111 …1, the bit value P[N] at which overflow is
detected can be changed. This logic supports saturation to a positive number of 2N –1 and a
negative number of 2N in two’s complement where N is the number of 1s in the mask field.

To check overflow/underflow condition for N = 2, the following example is used:

• Mask is set to 0...11.

• The (N) LSB bits are not considered for the comparison.

• For N = 2, the legal values (patterns) are 22–1 to –22, or 3 to –4.
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See the following figures for overflow and underflow examples. The pattern detect logic asserts
the overflow/underflow signal for only one clock cycle in the same cycle in which the P output
that caused the overflow/underflow is produced.

Figure 24: Overflow Condition in the Pattern Detector
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Figure 25: Underflow Condition in the Pattern Detector
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• PATTERNDETECT is 1 if P = = pattern or mask

• PATTERNBDETECT is a 1 if P = = patternb or mask

Overflow is caused by addition when the value at the output of the adder/subtracter/logic unit
goes over 3. Adding 1 to the final value of 0..0011 gives 0..0100 as the result, which causes
the PATTERNDETECT output to go to 0. When the PATTERNDETECT output goes from 1 to 0,
an overflow is flagged.

Underflow is caused by subtraction when the value goes below –4. Subtracting 1 from 1..1100
yields 1..1011 (–5), which causes the PATTERNBDETECT output to go to 0. When the
PATTERNBDETECT output goes from 1 to 0, an underflow is flagged.
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Wide XOR
DSP58 has the ability to perform a 116-bit wide XOR function. The XOR uses the X, Y, and Z
multiplexers as inputs. The W multiplexer selects all 0s at its output. The ALU logic is used for
the first stage of the wide XOR by using the proper OPMODE and ALUMODE signals as shown
in Table 19, to implement either X XOR Z, or X XOR Y XOR Z. The signals then branch out to an
XOR logic tree with dedicated outputs. Multiplexers allow selection as six 12-bit and two 22-bit
wide XOR, two 24-bit and two 34-bit wide XOR, two 58-bit wide XOR, or one 116-bit wide XOR
(see the following figure). In the following figure, the S[57:0] internal bus is not the P[57:0]
output, it is one of the 4:2 compressor buses.

Figure 26: Wide XOR Function in ALU
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The XORSIMD attribute is used to select the width of the XOR function as either 116-bit or
12/22/24/34/58 bits, as shown in the following table.
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Table 20: XOR9_XOR SIMD Mode Bits

XORSIMD Attribute XOR Width XOR INPUT Bits (A:B^C) Corresponding XOROUT
XOR12_22 6 × 12-bit

2 × 22-bit
S[5:0] XOROUT[0]

S[11:6] XOROUT[1]

S[17:12] XOROUT[2]

S[52:48, 23:18] XOROUT[3]

S[29:24] XOROUT[4]

S[35:30] XOROUT[5]

S[41:36] XOROUT[6]

S[57:53, 47:42] XOROUT[7]

XOR24_34_58_116 2 × 24-bit
2 × 34-bit

S[11:0] XOROUT[0]

S[52:48, 23:12] XOROUT[2]

S[35:24] XOROUT[4]

S[57:53, 47:36] XOROUT[6]

2 × 58-bit S[52:48, 23:0] XOROUT[1]

S[57:53, 47:24] XOROUT[5]

1 × 116-bit S[57:0] XOROUT[3]

The first level XOR can either be XOR2 or XOR3. In both cases, ALUMODE[3:0] = 0100 for the
XOR function in the ALU. When the Y multiplexer selects 0, an XOR2 is created. When the Y
multiplexer selects the C register, an XOR3 is created, supporting up to 58 XOR3 in the ALU. The
third input can come from the P output or the PCIN cascade, which provides XOR-accumulate
and cascade capability for even wider XOR functions.
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Chapter 4

Vector Fixed-Point ALU

Overview
This chapter provides details of DSP58 in the vector fixed-point ALU mode. As shown in the
following figure, DSP58 performs identically to the scalar fixed-point except for the three-
dimensional vector dot product unit that replaces the 27 × 24 multiplier.

Figure 27: Detailed DSP58 Functions as a Vector Fixed-Point ALU
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Dot Product Unit
The INT8 mode is used to implement the dot product unit (see the following figure for a
simplified block diagram), optimized for neural network and machine learning applications. It
computes the inner product of two vectors a = (a0, a1, a2) and b = (b0, b1, b2) where ai is a 9-bit
two’s complement fixed point number and bi is an 8-bit two’s complement number. The dot
product also supports element-wise product negation with the pins NEGATE[2:0]. This unit
computes the partial results u and v such that:

u + v = ±a0 b0 ± a1 b1 ± a2 b2

Taking pipelining into account, the dot product unit computes the following:

( - 1)NEG0  AMULT[8 : 0]BMULT[7 : 0] +  ( - 1)NEG1  AMULT[17 : 9]BMULT[17 : 9] +  (-1)NEG2  AMULT[26 : 18]BMULT⎡
⎣26 : 18⎤

⎦

Where NEG0, NEG1, and NEG2 are registered versions of NEGATE[2:0] or the signals
themselves. AMULT and BMULT are the vector 9 × 8 multiplier inputs. See Figure 27. Similar to
the scalar fixed-point ALU, the negation pins do not cause internal overflow, even if any of the
inputs is the most negative two’s complement number (all zeros except for the sign bit). Because
the dot-product unit is derived from the scalar ALU, other than the pre-adder and the 27 x 24
multiplier, all other features function identically.
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Figure 28: Simplified Two’s Complement Dot Product Unit (INT8 mode)
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Note: All input signals can bypass their input registers.

Pre-Adder Used as a Multiplexer
The pre-adder can be reused as a 2:1 multiplexer to select between the A[26:0] and D[26:0],
useful for connecting ping-pong buffers implemented in the programmable logic (PL) memory.
The idea is to make the pre-adder perform either A + 0, or 0 + D, where A receives data from the
ping buffer and D receives data from the pong buffer. See the following figure. The following
configurations are included.

1. Configure AMULT to receive data from AD_DATA with AMULTSEL.

2. Configure the pre-adder to select A2A1 with PREADDINSEL because B is narrower than A.
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3. Configure the pre-adder to the add mode with INMODE[3] so that the pre-adder to compute
either A + 0, or 0 + D.

4. Connect the A-D multiplexer select pin from the PL to both INMODE[1]A and INMODE[2].
When these signals are both 0, A is selected to go to AMULT, the input of the vector
multiplier; when they are both 1, D is selected.

Note: The pre-adder must not be used for selecting between B and D because B only has 24 bits whereas
D has 27 bits.
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Figure 29: Hierarchical View of the DSP58 Input Registers and Pre-Adder as a
Multiplexer
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Chapter 5

Complex Arithmetic Unit

Basic Function and Complex Adder
Two back-to-back DSP58s form one complex arithmetic unit. The two DSP58s together
compute,

P~ = Z~ ± (A
~× B~ + W~ + C

~
IN

⎞
⎠

where Ã and B̃ are 18-bit complex two’s complement numbers (18 bits real and 18 bits
imaginary), W̃, Z̃, and P̃ are complex two’s complement 58-bit fixed-point numbers and C̃in is a
one-bit complex carry-in.

The right DSP58 computes (when CONJUGATE_A = CONJUGATE_B = 0),

PRE [57 : 0] = ± Z RE [57 : 0] ±  ⎛
⎝ARE [17 : 0] × BRE [17 : 0]  –  A IM [17 : 0] × B IM [17 : 0] +  W RE [57 : 0] +  C IN, RE

⎞
⎠

while the left DSP58 computes in parallel,

P IM [57 : 0] =  ± Z IM [57 : 0] ±  ⎛
⎝ARE [17 : 0] × B IM [17 : 0] +  A IM [17 : 0] × BRE [17 : 0] +  W IM [57 : 0] +  C IN, IM

⎞
⎠

As shown in the following figures, the right DSP58 computes the real result PRE and the left
DSP58 computes the imaginary result PIM.

Chapter 5: Complex Arithmetic Unit

AM004 (v1.1) December 4, 2020  www.xilinx.com
Versal ACAP DSP Engine  76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM004&Title=Versal%20ACAP%20DSP%20Engine&releaseVersion=1.1&docPage=76


Figure 30: Right DSP58 in the Complex Arithmetic Unit to Generate the Real Part of
the Result
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Figure 31: Left DSP58 in the Complex Arithmetic Unit to Generate the Imaginary Part
of the Result
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Complex Multiplier
• Generation of Complex Conjugates for Multiplication: The 18-bit complex multiplier that

straddles two back-to-back DSP58s produces a complex product. See the complex multiplier
example in Chapter 8: DSP58 Applications for details on generation of complex conjugates
and coding example.

• Multiplier Input Sign Extension: Both Ã and B̃ are 18-bit complex values. Even though both
the A and B ports of DSP58 are wider than 18 bits, there is no need to sign-extend Ã and B̃.

• OPMODE Control: The complex multiplier generates a partial product that occupies both the
X and the Y multiplexers of the back-to-back DSP58s, leaving the W and the Z multiplexers
for two more complex inputs to go into the complex adder. Similar to the scalar fixed-point
ALU, the W and Z multiplexers in the two DSP58s can therefore accept complex inputs from
two of the following four sources:

1. The PL (the two C ports, CRE and CIM).
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2. The complex accumulator (the two P registers, PRE and PIM).

3. The complex result from an upstream DSP58 pair along the cascade (from PCINRE and
PCINIM).

4. The complex constant (in the two internal RND constants, RNDRE and RNDIM).

DSPCPLX Pipeline Configuration
In the CINT18 mode, the complete implementation of the complex multiplication algorithm
requires the preadders and multipliers in both the DSP58s, and the common section to work
together thereby allowing only specific pipeline configuration to be valid. Programmability for
each pipeline stage visible to the user in the DSPCPLX Unisim is allowed. However, invalid
attribute values generate a software DRC that instructs the user to change their attribute
settings. The following table specifies the valid attribute values for the complex mode. The figure
that follows illustrates a simplified block diagram of the complex multiply accumulator.

Note: The conjugate inputs labeled as *_A and *_B are intended to demonstrate that these are relative to
the two complex inputs rather than the real and imaginary parts. Also, the labels A_RE, B_RE, A_IM, and
B_IM show the side the signals come in physically. Internally the signals go to both DSP58s.

Table 21: CINT18 Mode Programmable Register Attributes

Case
Number AREG_RE BREG_RE DREG_RE =

AREG_RE ADREG AREG_IM BREG_IM DREG_IM Notes

Register
Delay

Required on
CONJUGATE
Inputs (RE
and IM)1

1 0 0 0 0 0 0 0 Valid
Case, ALL

REG
bypassed

0

2 1 1 1 0 1 1 1 Valid
Case

Balanced
Pipeline

1

3 2 2 1 1 2 2 1 Valid
Case Fully
Pipeline

1

Notes:
1. The value of the register delay required on the CONJUGATE inputs (both RE and IM) can be achieved by either setting

CONJUGATEREG = 1 or balancing the inmode input in the programmable logic (PL) by one clock cycle (adding latency in the PL
and setting CONJUGATEREG = 0).
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Figure 32: CINT18 Mode 18 × 18 Complex Multiplier and 58 + 58 Complex Accumulator
Simplified Block Diagram
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Chapter 6

Floating-Point Arithmetic Unit

DSPFP32 Unisim Primitive
The DSPFP32 consists of a floating point multiplier and a floating point adder with separate
outputs in the binary 32 format going into the internal logic. Each floating point multiplier input
can be in either the IEEE binary32 (FP32 or single-precision) or binary16 (FP16 or half-precision)
format, whereas the floating point adder only accepts binary32 inputs. Outputs are always in
FP32 or single precision format. The adder has an internal loop-back path to form an
accumulator in a single cycle. The multiplier output can also feed the adder internally without
logic routing to form a multiply-add (MADD) or multiply-accumulate (MACC) unit. Alternatively,
the P output of the FP adder (FPA) can feedback to a MUX with the C input with FPCREG = 3 to
form an accumulator chain supporting up to four threads of MACC computation.

The two outputs of the floating point unit are M = A × M0 and P = ±P0 ±P1, see the following
figure. Both M and P are rounded and only the IEEE round-to-nearest-even mode is supported.

Note: M0 is an internal node that can receive input from either input B or port D controlled by FPINMODE
because of the ping-pong input feature.
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Figure 33: Floating Point Multiplier and Adder (DSPFP32 Mode)
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Operational Modes
Output and Rounding Modes
The two outputs of the DSPFP32 are FPM_OUT = M1 × M0 and FPA_OUT = ±P0 ±P1 (see 
Figure 33). Both M and P are rounded and only the IEEE round-to-nearest-even mode, as
explained in the IEEE Standard for Floating-Point Arithmetic, is supported.
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Mixed Numerical Formats
M, P0, P1, and P are always in the binary32 format, whereas M1 and M0 (which is either B or D)
can be configured statically to be in the binary32 or the binary16 format—independently. The
input cascades (ACIN-ACOUT and BCIN-BCOUT) use the same formats as A and B/D (see the
following table). Because the adder can accept D as an input, when D is configured as a binary16
input for the multiplier, D cannot be used as an input to the binary32 adder.

Note: When FP data (single precision or half precision) is cascaded, the *_FPTYPE attributes for both the
source and the receiving DSPs must match (for example, if A_FPTYPE on the source DSP = B16, then the
receiving DSP must also have A_FPTYPE = B16).

Table 22: Multiplier Input Format Combination

A_FPTYPE Attribute B_D_FPTYPE Attribute A, ACIN, ACOUT B, BCIN, BCOUT, D
B32 B32 FP32 format FP32 format

B32 B16 FP32 format FP16 format

B16 B32 FP16 format FP32 format

B16 B16 FP16 format FP16 format

Arithmetic Modes
FPINMODE and FPOPMODE[6:0] controls the behavior of the floating-point arithmetic unit.

Multiplier Input Selection

FPINMODE selects between B and D to feed the multiplier input M0. The other input of the
multiplier, M1, is always a function of the primary input A.

Adder Input Selection

1. FPOPMODE[1:0] selects between the product M, PCIN, the internal input D or 0 to feed the
adder input P0. When D carries binary16 data for the multiplier, it cannot be used for the
binary32 adder.

2. FPOPMODE[4:2] selects between P, PCIN, C, or 0 to feed the adder input P1.

• P is the adder output. When looped back to P1, the P register is the accumulator.
Alternatively, P can be looped back to C with programmable logic (PL) resources to form
an accumulator chain that is up to four registers long, enabling up to four independent
threads to be time-interleaved. For instance, one input element from A can be processed
by four linear filters with coefficients at the B input. The results from the four filters are
shifted in the four-accumulator loop. While the four filters context switches in a round-
robin fashion at input B every cycle, the input element on A changes only once every four
cycles and reduces power.

• PCIN is the P output of the downstream DSP58 in a cascade.

Chapter 6: Floating-Point Arithmetic Unit

AM004 (v1.1) December 4, 2020  www.xilinx.com
Versal ACAP DSP Engine  83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM004&Title=Versal%20ACAP%20DSP%20Engine&releaseVersion=1.1&docPage=83


• C is an external input to the adder. Together with FPOPMODE[1:0], the adder can be used
independently from the multiplier to compute P = C + D.

• The input 0 is used to pass P0 directly to P. It is used, for instance, to initialize the
accumulator to the first product in a sum of products (vector dot-product) calculation.
FPOPMODE[4] is a single pin to initialize the accumulator.

The following tables outline the selection of P1 and P0.

Table 23: Selecting P1 with FPOPMODE[4:2]

FPOPMODE[4] FPOPMODE[3] FPOPMODE[2] P1
1 0 X P

1 1 0 C

1 1 1 PCIN

0 X X 0

Table 24: Selecting P0 with FPOPMODE[1:0]

FPOPMODE[1] FPOPMODE[0] P0
0 0 0

0 1 M

1 0 PCIN

1 1 D

Adder Input Negation

When FPOPMODE[5] (FPOPMODE[6]) is set to 1, it negates P0 (P1). Thus all four combinations
of input negation are possible. See the following table.

Table 25: Adder Input Negation with FPOPMODE[6:5]

FPOPMODE[6] FPOPMODE[5] P
0 0 P0 + P1

0 1 P1 – P0

1 0 P0 – P1

1 1 –P0 – P1

Subnormals
The IEEE term for denormal is subnormal. The following explains how DSP58 behaves when it
detects a subnormal input and when it creates a subnormal output.

• When the DSP58 detects a subnormal operand, it treats the operand as zero with the sign of
the original operand.
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• When the DSP58 creates a subnormal output, it flushes the output to zero and the sign is
preserved as a result of the mantissa of the adder. For the multiplier, the sign is the XOR of
the signs of both inputs.
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Chapter 7

DSP58 Design Considerations

Design for Performance
To achieve maximum performance when using DSP58, the design needs to be fully pipelined. For
multiplier-based designs, DSP58 requires a three-stage pipeline. For non-multiplier-based
designs, a two-stage pipeline must be used.

IMPORTANT! If latency is important in the design and only one or two registers can be used within
DSP58, always use the M register.

Design for Power
The USE_MULT attribute selects the multiplier to be used. This attribute can be set to NONE to
save power when using only the Adder or Logic unit. Functions implemented in DSP58 use less
power than those implemented in the programmable logic (PL). Using the cascade paths within
DSP58 instead of PL routing is another way to reduce power. A multiplier with the M register in
use, uses less power than one where the M register is not used. For operands less than 27 × 24,
PL power can be reduced by placing operands into the MSBs and zero padding unused LSBs. If
one of the multiplier input operands is a constant, then assign this to the B input to reduce Booth
Encoding logic power dissipation.

Adder Tree versus Adder Cascade
Adder Tree
In typical direct form FIR filters, an input stream of samples is presented to one input of the
multipliers in the DSP58s. The coefficients supply the other input to the multipliers. An adder
tree is used to combine the outputs from many multipliers as shown in the following figure.
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Figure 34: Traditional FIR Filter Adder Tree
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In the traditional approach, the adders in the programmable logic (PL) are usually the
performance bottleneck. The number of adders needed and the associated routing depends on
the size of the filter. The depth of the adder tree scales as the log2 of the number of taps in the
filter. Using the adder tree structure shown in the figure above could also increase the cost, logic
resources, and power.
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Adder Cascade
The adder cascade implementation accomplishes the post addition process with minimal silicon
resources by using the cascade path within the DSP58. This involves computing the additive
result incrementally, using a cascaded approach as illustrated in the following figure.

Figure 35: Adder Cascade
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It is important to balance the delay of the input sample and the coefficients in the cascaded
adder to achieve correct results. The coefficients are staggered in time.

Connecting DSP58s Across Columns
Using the cascade paths to implement adders significantly improves power consumption and
speed. The maximum number of cascades in a path is limited only by the total number of DSP58s
in one column on the chip. For more information, see Device Resources.

IMPORTANT! The height of the DSP column can differ between devices and must be considered when
porting designs.

Spanning columns is possible by taking the bus output from the top of one DSP column and
adding CLB slice pipeline registers to route this bus to the C input of the bottom DSP58 of the
adjacent DSP column. Alignment of input operands is also necessary to span multiple DSP
columns.

Time Multiplexing the DSP58
The high-speed math elements in DSP58 enable you to use time multiplexing in DSP designs.
Time multiplexing is the process of implementing more than one function within a single DSP58
at different instances of time. Time multiplexing can be done easily for designs with low sample
rates. The calculation to determine the number of functions (N) that can be implemented in one
single DSP58 is shown in the following equation.

N × Channel Frequency ≤ Maximum Frequency o f  DSP58

Implementing a time-multiplexed design using DSP58 results in reduced resource usage and
reduced power.

DSP58 contains the basic elements of classic FIR filters, a multiplier followed by an adder, delay,
or pipeline registers, and the ability to cascade an input stream (B bus) and an output stream (P
bus) without exiting to a general CLB slice.

Multichannel filtering can be viewed as time-multiplexed, single-channel filters. In a typical
multichannel filtering scenario, multiple input channels are filtered using a separate digital filter
for each channel. Due to the high performance of DSP58, a single digital filter can be used to
filter multiple input channels. As an example, eight input channels can be handled by clocking the
single filter with an 8x clock. This implementation uses 1/8th of the total resource as compared
to implementing each channel separately.
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Notes and Suggestions
• Implement small multiplies (for example, 4 × 4 multiplies) and small bit-width adders and

counters using the CLB logic LUTs and carry chain. If the design has a large number of small
add operations and/or counters, take advantage of the SIMD mode and implement the
operation in DSP58. Factor of 2x area and power savings occur, when compared to using
interconnect logic, whenever input registers are also folded into DSP58 for SIMD mode
functions.

• Always sign extend the input operands when implementing smaller bit width functions. For
lower power in the programmable logic (PL), push operands into MSBs and ground (GND)
LSBs.

• While cascading different DSP58s, match the pipestages of the different signal paths.

• Implement a count-up-by-one counter within the DSP58 using the CARRYIN input. A count-
by-N or variable-bit counter can use the C or A:B inputs.

• DSP58 counters can be used to implement control logic that runs at maximum speed.

• Use SRL16s/SRL32s in the CLB and block RAM to store filter coefficients or act as a register
file or memory elements in conjunction with DSP58. The bit pitch of the input bits is designed
to pitch match the CLB and block RAM.

• The block RAM can also be used as a fast, finite state machine to drive the control logic for
the DSP design.

• DSP58 can also be used with a processor, for example, MicroBlaze™ or PicoBlaze™
processors, for hardware acceleration of processor functions.

• Use a pipeline register at the output of an SRL16 or block RAM before connecting it to the
input of DSP58. This ensures the best performance of input operands feeding DSP58.

• The register at the output of the SRL16 in DSP58 has a reset pin and a clock-enable pin. To
reset the SRL16, a zero is input into the SRL16 for 16 clock cycles while holding the reset of
the output register High. This capability is particularly useful in implementing filters where the
SRL16s are used to store the data inputs.

Pre-Adder Block Applications
DSP58 users can benefit from the pre-adder in several applications ranging from wireless
applications (for example, in algorithms as in the Long-Term Evolution specification), in generic
filtering (FIR and IIR), in video processing (for example, alpha blending), and many others. The
most common use for the pre-adder is to pre-add corresponding values of a symmetric FIR filter
tap delay line.
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Refer to Pre-Adder Used as a Multiplexer for information on how the pre-adder can be used as a
2:1 multiplexer to dynamically select between A[26:0] and D[26:0].

Memory-Mapped I/O Register Application
To use DSP58s as memory-mapped I/O registers, you must broadcast the write data bus feeding
to all the DSP58s to be used in this manner. To have random read access, a wide multiplexer is
needed. Additional DSP58s can be configured as a wide bus multiplexer to help reduce routing
congestion. An address decoder must be implemented in programmable logic to control
individual PREG CEs to load the appropriate DSP58 output register from the write data bus.

Rounding
Arithmetic rounding is a process where a result is quantized in an intelligent manner. Given a
choice, one would like to use an implementation that minimizes the loss of precision. However, in
most cases of hardware implementation, including ones with Xilinx DSPs, one has to be aware of
the overheads associated with the various rounding techniques to make appropriate design
trade-offs. While the binary point placement and bit position where rounding occurs are
independent of each other, it is assumed that the designer’s goal is to round off the fractional bits
to an integer value.

One form of rounding is simple truncation or dropping undesired LSBs from a large result to
obtain a reduced number of result bits. The problem with truncation happens after the bits are
dropped and the new reduced result has an undesirable DC data shift toward a more negative
number. For example, if a number has the decimal value 2.8 and the fractional part of the number
is truncated, then the result is two. In this example, the original number is closer to 3 than to 2
and a rounded result of 3 is more desirable than the simple truncated result of 2.

In the next few sections, other methods of quantization with a more desirable effect, including
symmetric rounding and convergent rounding are discussed.

MACC
Word length of the result after the MACC operation is usually much larger than the word length
of the inputs. Rounding can be applied in DSP58 before truncation. As shown in the next section,
the sign of the result is needed to obtain the correct rounding. In MACC, however, it can be
difficult to determine the sign of the output ahead of time, thus the rounding can cost an extra
cycle.
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In symmetric rounding, the extra cycle can be avoided by adding the C input on the very first
cycle using dynamic OPMODE. In this case, the sign bit of the last but one cycle of the
accumulator can be used for the final rounding operation done in the final accumulate cycle.
There is a rare chance that the final accumulate operation can flip the sign of the output from the
previously accumulated value, leading to a different result from the expected one. In the case of
convergent rounding, the patterndetect result can be used. Another solution to avoid the extra
cycle is to use an extra DSP58.

Symmetric
Symmetric rounding is a method of quantization that accomplishes the more desirable effect of
quantizing numbers to keep them from becoming biased in the wrong direction. For example, in
symmetric rounding towards infinity, the midpoint number 2.5 rounds to 3.0 and –2.5 rounds to
–3.

The C port in DSP58 is used to mark the location of the decimal point. The number of
continuous ones in the C port bus plus 1 indicates the number of decimal places in the original
number; for example, in the case of 4 decimal places, C is 00 … 0111. C can be used for dynamic
or static rounding whereas RND is used for static rounding only. The sign bit determines the
symmetric rounding towards infinity or zero. For rounding toward infinity, the midpoint negative
and positive numbers are both rounded away from zero. For example, 2.5 rounds to 3 and –2.5
rounds to –3. Note that CARRYINSEL can select internal signals to implement the complemented
sign bit and to avoid using CARRYIN and programmable logic. In case of rounding toward zero,
positive and negative numbers at the midpoint are rounded towards zero. For example, 2.5
rounds to 2 and –2.5 rounds to –2. The following tables show examples of symmetric rounding.

Table 26: Round to Zero (Decimal Place = 4)

Multiplier
Output C Sign Bit Output = Multiplier Out + C + Sign Bit

0010.1000 (2.5) 0000.0111 0 0010.1111 (2 after truncation)

1101.1000 (–2.5) 0000.0111 1 1110.0000 (–2 after truncation)

0011.1000 (3.5) 0000.0111 0 0011.1111 (3 after truncation)

Table 27: Round to Infinity (Decimal Place = 4)

Multiplier
Output C Sign Bit

Complement
Output = Multiplier Out + C + Sign Bit

Complement
0010.1000 (2.5) 0000.0111 1 0011.1111 (3 after truncation)

1101.1000 (–2.5) 0000.0111 0 1101.1111 (–3 after truncation)

0011.1000 (3.5) 0000.0111 1 0100.0000 (4 after truncation)
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Convergent
In convergent rounding, the final result is rounded to the nearest even number (or odd number).
In conventional implementations, if the midpoint is detected, then the units-placed bit before the
round needs to be examined to determine whether the number is going to be rounded up or
down.

In convergent rounding towards even, the final result is rounded toward the closest even number,
for example:

2.5 rounds to 2 and –2.5 rounds to –2, but 1.5 rounds to 2 and –1.5 rounds to –2.

In convergent rounding towards odd, the final result is rounded toward the closest odd number,
for example:

2.5 rounds to 3 and –2.5 rounds to –3, but 1.5 rounds to 1 and –1.5 rounds to –1.

The convergent rounding techniques require the use of programmable logic (PL) in addition to
the DSP58. The different methods of implementing a convergent rounding scheme will be
covered in a future revision of this document.

Overflow/Underflow/Saturation
The pattern detector allows DSP58 to support convergent rounding and counter auto reset when
a count value has been reached. It also supports overflow, underflow, and saturation in
accumulators. The following discussion of overflow and underflow applies to sequential
accumulators (MACC or adder-accumulator) implemented in a single DSP58. The accumulator
must have at least one guard bit.

The dedicated overflow and underflow outputs of DSP58 use the pattern detector to determine
if the operation in DSP58 has overflowed or underflowed beyond the P[N] bit (N = 0 to 56). If
the pattern detector is set to detect a 58-bit pattern 00000 …0, with a 58-bit mask of 0011111
…1 (default settings), the DSP58 overflows beyond 00111 …1 or underflows beyond 11000…0.
In other words, DSP58 detects overflow past the 57th bit P[56]. The USE_PATTERN_DETECT
attribute is set to PATDET to enable the use of pattern logic. This overflow/underflow
implementation uses a redundant sign bit and reduces the output bit width to 57 bits.

The overflow and underflow flags remain High for only one cycle. These values must be
registered in the programmable logic if a saturation value is used in the case of an overflow or
underflow. The registered flags are used as multiplexer select signals. The inputs of the
multiplexer are tied to the maximum positive value (0011…1) or the maximum negative value
(1100..0). Depending on whether an overflow or an underflow occurred, the appropriate input
is selected at the output.
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By setting the 58-bit mask to other values, for example, 0000111 …1, the bit value P(N) at
which overflow is detected can be changed. This logic supports overflow/underflow detection
respectively for a positive number of 2N – 1 and a negative number of 2N in two's complement,
where N is the number of 1s (0 to 56) in the mask field.
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Chapter 8

DSP58 Applications

Introduction
DSP58 and the associated new functional modes (for example, CINT18) can be used efficiently in
video, wireless, and networking applications. High performance, dedicated logic to optimize
specific functions combined with low power dissipation makes DSP58 an ideal choice for the
above application segments. This chapter discusses the implementation details of the functions
associated with various applications. These functions can be the building blocks for a variety of
complex systems.

This chapter contains the following sections:

• New Functional Mode Applications

• Logic and Basic Math Applications

• Advanced Math Applications

• Filter Designs

New Functional Mode Applications
New functional modes are implemented in DSP58, including complex multiplier, floating point,
and vector dot product. The basic operation of these modes are described in earlier chapters of
this manual. This section shows coding examples of complex multiplier and dot product. A
reference design for a floating point implementation is provided in Floating Point Time-
Interleaved Dot-Product Engine.

18 × 18 Complex Multiply using DSPCPLX
A complex multiply function is:

⎛
⎝A_re ±  jA_ im⎞

⎠ × ⎛
⎝B_re ±  jB_ im⎞

⎠ =  Out _re +  jOut _ im

Of the four possible cases, for one 
⎛
⎝A_re +  jA_ im⎞

⎠ × ⎛
⎝B_re +  jB_ im⎞

⎠ , the output is given as:
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Out _re =  (A_re × B_re) –  (A_ im × B_ im)
Out _ im =  (A_re × B_ im) +  (A_ im × B_re)

In the legacy mode (UltraScale™ architecture), the implementation uses three DSP48E2s with
pre-adders. For more information, refer to the section Complex Multiplier Examples in the Vivado
Design Suite User Guide: Synthesis (UG901).

The above solution can handle a width of upto 26 × 23 in the Versal™ architecture versus 26 ×
17 in the UltraScale architecture.

A new mode is available in the Versal architecture where the 18 × 18 complex multiply can be
implemented using one DSPCPLX module (two back-to-back DSP58s). On a per-cycle basis, a
back-to-back DSP58 pair can form complex conjugates of Ã and B̃ for multiplication. See the
following table for the possible combinations of CONJUGATE_A and CONJUGATE_B.

Table 28: Complex Conjugates for Multiplication

CONJUGATE_A CONJUGATE_B Product A B
0 0 Ã × B̃ A_re + jA_im B_re + jB_im

1 0 Ã* × B̃ A_re – jA_im B_re + jB_im

0 1 Ã × B̃* A_re + jA_im B_re – jB_im

1 1 Ã*× B̃* A_re – jA_im B_re – jB_im

INT8 Integer Multiplication
As noted in Dot Product Unit, u and v are the only intermediate results that go through the X and
Y multiplexers to the ALU to generate output at P. The DSP58 is designed to do one
multiplication and addition operation with up to 27 × 24 bit multiplication and up to 58-bit
accumulation. The int9 × int8 operation in DSP58 is a new feature that allows six independent
inputs to generate three partial products. In addition, port A can hold up to three unsigned 8-bit
values by setting the sign bits to 0 to indicate non-negative values. The sign bits are A[8], A[17],
and A[26].

Coding examples will be available in Language Templates from the Vivado® Integrated Design
Environment (IDE) in a subsequent release.

Logic and Basic Math Application
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Bus Multiplexer
Wide bus multiplexers are used in many network switching applications where voice and data
need to be multiplexed. In digital signal processing, a multiplexer is used to take several separate
data streams and combine them into one single data stream at a higher rate. The DSP58 can be
used to implement high-width (up to 58 bits) multiplexers for networking and video applications.

The OPMODE bits are used to choose between the C input and the A:B input within DSP58.
Each DSP58 can multiplex between two 58-bit values. The following figure shows the
implementation of a 58-bit-wide 8:1 multiplexer. Additional pipeline registers will be used to
increase performance of the multiplexer.

Figure 36: 58-Bit-Wide 8:1 Multiplexer Using DSP58
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The ALUMODE is set to 0000. Different OPMODE settings can be used for each of the four
DSP58s. The following table lists one way of setting the OPMODEs to implement the 58-bit
multiplexer. To drive the OPMODE setting to each DSP, PL logic is used. To optimize the speed of
this multiplexer design, pipeline registers are added. The latency of the design is equal to number
of (DSPs+1), which in this case is 5 clock cycles.
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Table 29: OPMODE Settings for an 8:1 Multiplexer

OPMODE
Selected Input

DSP58_3 DSP58_2 DSP58_1 DSP58_0
000010000 000010000 000010000 000000011 in 0
000010000 000010000 000010000 000001100 in 1
000010000 000010000 000000011 000000000 in 2
000010000 000010000 000001100 000000000 in 3
000010000 000000011 000000000 000000000 in 4
000010000 000001100 000000000 000000000 in 5
000000011 000000000 000000000 000000000 in 6
000001100 000000000 000000000 000000000 in 7

Division
Binary division can be implemented in DSP58 by performing a shift and subtract or a multiply
and subtract. DSP58 includes a shifter, a multiplier, and adder/subtracter unit to implement
binary division. The division by subtraction and division by multiplication algorithms are shown in
the following sections. The algorithms assume:

1. N>D

2. N and D are both positive

If either N or D is negative, use the same algorithm by taking the absolute positive values for N
and D and making the appropriate sign change in the result. The terms N and D in the algorithm
refer to the number to be divided (N) and the divisor (D). The terms Q and R in the algorithm
refer to the quotient and the remainder, respectively.

Dividing with Subtraction

If N is an 8-bit integer and D is not more than 8-bits wide, N/D = Q + R.

1. Assign the value 00000000 to the 8-bit register R.

2. Shift the R register one bit to the left and fill in the LSB with N[8-n].

3. Calculate R – D.

4. Set R and set Q.

• If R – D is positive, set Q[8-n] to 1 and R = R – D.

• If R – D is negative, set Q[8-n] to 0 and R = R.

5. Repeat steps 2 to 4, filling in R[0] each time with N[8-n], where n is the number of the
iteration. Q[8-n] is filled each time in Step 4. The range of n is 1 to 8.

After the eighth iteration, Q[7:0] contains the quotient, and R[7:0] contains the remainder.
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Dividing with Multiplication

The multiply and subtract method consists of rewriting N/D = Q as N = D * (Q + R). The answer
is calculated using the following steps for an 8-bit N/D.

1. Set the initial value of Q[8-n] = 1 and the bits right of Q[8-n] to 0.

2. Calculate D*Q.

3. Calculate N – (D*Q).

• If step 2 is positive, N > (D*Q), set Q[8-n] to a 1.

• If step 2 is negative, N < (D*Q), set Q[8-n] to a 0.

4. Repeat steps 1 to 3.

After the eighth iteration, Q[7:0] contains the quotient and N – (D*Q) contains the remainder. To
map to DSP58, N is applied to the C input, D is applied to the B input and Q (the whole bus) is
applied to A. The initial value Q[8-n] is set at the A input and after the eighth iteration, the
output register P contains the remainder. Both of these division implementations are possible in
one DSP58 and the latency is eight clock cycles for the fully combinational case. The latency
increases if registers are used in the DSP.

Square Root
The square root of an integer number can be calculated by successive multiplication and
subtraction. It is similar to the subtraction method used to divide two numbers. The square root
of an N-bit number will have N/2 (rounded-up) bits. If the square root is a fractional number, N/2
clocks are needed for the integer part of the result, and every following clock gives one bit of the
fractional part. The logic needed to compute the square root is illustrated in the following figure.
The calculation explained here is based on the assumption that there is one stage pipelining at
the input of the multiplier.
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Figure 37: Square Root Logic
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The square root can be calculated as follows:

X = Y .Z

Y is the integer part of the root and Z is the fraction part. Registers A and B refer to the registers
found on the A and B inputs to DSP58 respectively and Register C refers to the registers found
on the C input to DSP58. The steps to calculate are listed as follows.

1. Read the number into Register C. Set the register in external programmable logic (referred to
as PL_FF) to 10000000.

2. Calculate Register C – (PL_FF * PL_FF). C is a 16-bit value in the form 0000000C00000000.

3. • If step 2 is positive, set PL_FF[(8-clock)] = 1, PL_FF[(8-clock) – 1] = 1

• If step 2 is negative, set PL_FF[(8-clock)] = 0, PL_FF[(8-clock) – 1] = 1

4. Repeat steps 2 and 3 until the required precision for the fractional part is reached.

In the case where there is only 1 stage pipelining to the input of the multiplier, four clock cycles
are required to calculate the integer part of the value Y. The number of clock cycles required for
the fraction part, Z, depends on the precision required. For an 8-bit value that has 4 bits for the
integer part and 4 bits for the fractional part, the value in PL_FF after eight clock cycles includes
the integer part given by the four MSBs and the fractional part given by the four LSBs. In the use
case design, four additional pipeline stages are added for every 1-bit value to improve timing.
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Clock Domain Crossing and Time Division
Multiplexing
For complex datapaths, multipumping is a method whereby a resource is clocked at a frequency
that is a multiple of the surrounding circuit. This allows the receiver, in this case the DSP, to be
shared among multiple uses in the same cycle. This concept maps to DSP engines which are
capable of running at higher frequencies than designs implemented in programmable logic.
Theoretically, the DSP can be fed by N memory instances in programmable logic. Assuming the
DSP runs at fck, the memories can run at slower speed of fck/N. In this use case, N=2. The
design has changed since the last release and is no longer using the handshaking mechanism. The
fabric is connected directly to the DSP. The clocks connected to the two units are considered
synchronous with a defined phase relationship.

Advanced Math Applications
27 × 24 Complex Multiply
The three DSP58s version in the legacy mode can handle up to 26 × 23 complex multiply. For full
bit width 27 × 24, four DSP58s are required. Two DSP58s implement the real part and the other
two implement the imaginary part. Up until 26 × 23, the three DSP58s version is preferable
because it uses one DSP less. However, note that the performance could lower while the power
increases because the design has to pass through programmable interconnect. The
implementation with four DSPs uses the dedicated cascade path in the DSP logic and is the
better choice for performance and power dissipation. See the following block diagrams for the
implementation of real and imaginary parts.

The implementation refers to the following case.

⎛
⎝are +  ja im 

⎞
⎠ × ⎛

⎝bre +  jb im
⎞
⎠
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Figure 38: Real Part of a 27 × 24 Bits Complex Multiplier
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Figure 39: Imaginary Part of a 27 × 24 Bits Complex Multiplier
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Complex Multiply with MACC and MADD Operations
MACC operation includes a 3-input adder (two from the multiplier partial product outputs) in the
accumulator stage and requires guard bits to prevent overflow. For more information, refer to 
MACC.

DSPCPLX
Coding examples for the implementation of the complex multiplication with attributes values
corresponding to the table in DSPCPLX Pipeline Configuration are available as Language
Templates with the Vivado® Integrated Design Environment (IDE) 2020.2 version.

Rounding and Saturation for Adder
A saturate (SAT) and round (RND) function for addition/subtraction operation can be provided by
adding a second DSP58 and by using some P output bits from the previous DSP58 to detect the
SAT condition. The following figure shows a simplified block diagram of the implementation.
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Figure 40: Rounding and Saturation for Adder
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Programmable logic is used to implement multiplexers controlled by the P output bits of the first
DSP to generate OPMODE and CARRYIN for the second DSP58. The operands for the addition/
subtraction are fed to the first DSP58 through the concatenation of A:B and C. The rounding
value is applied to the WMUX (static rounding to infinity is implemented). In the use case design,
there is a dedicated input pin (subadd) that decides whether the inputs are added or subtracted.
Considering that the output is represented as 26 bits (8 bits of the integer part and 18 bits of the
fractional part), the saturation conditions (positive or negative magnitude) are detected by
checking bits 27, 26, and 25 of P output from the first DSP. Bit 25 is the sign bit. Bits 26 and 27
are guard bits. The second guard bit is needed because in the worst case extra overflow due to
the RND addition can occur. In the case of saturation, a unique value at the input of the X and W
MUXes is selected respectively as ALU output. The output (8 bits of integer part) will be in a
decimal representation of +127 for the positive range and –128 for the negative range.

Operations on W, X, Y, Z, and CIN are controlled by setting ALUMODE as follows:

ALUMODE =  0000 ALU output =  Z +  ⎛
⎝W +  X +  Y +  CIN⎞

⎠

ALUMODE =  0001 ALU output =  ⎛
⎝W +  X +  Y +  CIN⎞

⎠ – Z – 1

For more information, refer to the ALUMODE Inputs section.

To offset the –1 for the case ALUMODE = 0001, the input pin which selects between addition
and subtraction is connected to CARRYIN port of the first DSP.
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Floating Point Time-Interleaved Dot-Product Engine
A neuron model can be represented as a nonlinear function of a biased dot product of a weight
vector. A simple representation is shown in the following figure.

Figure 41: Artificial Neuron Broadcast Model
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Artificial Neuron Model: Nonlinear function of a biased dot product
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Multiple artificial neurons are modeled as a matrix-vector multiplication. The weights are in an
M x K matrix W, the biases are in an M-dimensional vector b, and the input data (activations) are
in an K-dimensional vector x. The pre-activations are therefore in an M dimensional vector
represented as follows.

y =  Wx +  b

The following figure implements the biased vector dot products with a cascade of DSPs. For
N=64, in the bottom two DSPs, each computes a dot product for two 32-D input vectors and the
bottom DSP also adds the bias term. The top DSP accumulates the results using a two threads
accumulator loop between P and C.
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Figure 42:  Floating-Point Time-Interleaved Dot-Product Engine

32

32

32

32

B

A

C

32

32

+
P

×

32

32

M 
(Unused)

32
D

32

[1:0]

[2]

[4]

[3]

Single-Port 
Distributed Memory 

(Ping)

Single-Port 
Distributed Memory 

(Pong)

Two-Port Data 
Memory

(BRAM or URAM)

When Ping (Pong) is read, Pong 
(Ping) is available for write.

Bias Storage in
Two-Port Data 

Memory
(BRAM or URAM)

32

32

32

B

A

C

32

32

+
P

×

32

32

M 
(Unused)

32
D

32

[1:0]

[2]

[4]

[3]

Single-Port 
Distributed Memory 

(Ping)

Single-Port 
Distributed Memory 

(Pong)

Two-Port Data 
Memory

(BRAM or URAM)

32

32

32  

B

A

C

32

32

+ 32
P

×

32

32

M 
(Unused)

32
D

32
32

[1:0]

[2]

[4]

[3]

PCOUT (Unused)

32

32

FPOPMODE[6:0]
={2'b00,2[selector_offset_i],1'b0,2'b01}

O
pt

io
na

l B
in

ar
y1

6-
to

-
Bi

na
ry

32
 C

on
ve

rs
io

n
O

pt
io

na
l B

in
ar

y1
6-

to
-

Bi
na

ry
32

 C
on

ve
rs

io
n

O
pt

io
na

l B
in

ar
y1

6-
to

-
Bi

na
ry

32
 C

on
ve

rs
io

n

32

32

ce
_s

p0

ce
_s

p1

ce
_d

p0
,w

e_
dp

0,
ad

dr
_d

p0

ce_dp1,we_dp1,data_dp1,addr_dp1

FPOPMODE[6:0]
={7'b0011101}

FPOPMODE[6:0]
={2'b00,2[selector_alu_i],1'b0,2'b10}

Unused or bypassed

(Unused)

FPINMODE

data_dp0

data_sp1_0

data_sp0_0

data_sp1_1

data_sp0_1

The datapath in use in the implementation

X22726-100820

Note the following in the use case design.
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• The input and bias vectors are implemented as dual-port memories (Block RAM) where as the
weight vectors are single port memories implemented in programmable logic using ping-pong
scheme.

• The block diagram shows one column of cascading DSPs. In the design, there are two columns
that share the input vectors in the same cycle in both the middle and bottom rows of DSPs.

• There is a separate memory for bias in each column. The memories share the same controls
(CE, WE, and Addr) but separate data inputs.

• The control signals to data/weight memories and FPINMODE to the middle DSPs are delayed
(registered) versions of the ones to the bottom DSPs except the input data which are
dedicated to each memory.

Filter Designs
Introduction
DSP58 filter applications include, but are not limited to, the following:

• Wireless communications

• Image processing

• Video filtering

• Multimedia applications

• Portable electrocardiogram (ECG) displays

• Global Positioning Systems (GPS)

The main components used to implement a digital filter algorithm include adders, multipliers,
storage, and delay elements. DSP58 includes all of the above elements, making it ideal to
implement digital filter functions. For example, in the parallel FIR filter, all of the input samples
from the set of n samples are present at the input of each DSP58. Each DSP58 multiplies the
samples with the corresponding coefficients within that DSP58. The outputs of the multipliers
are combined in the cascaded adders.

Benchmarks and Requirements

A wide variety of filter architectures are available to design engineers. The type of architecture
chosen is typically determined by the amount of processing required in the available number of
clock cycles. The two most important factors are:

• Sample rate (Fs)

• Number of coefficients (N)
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On one end, there are sequential processing FIR filters, including the single-multiplier MACC FIR
filter, that usually offer the best solution when the sample rate is low. The MACC structure uses
a single multiplier with an accumulator to implement an FIR filter sequentially. At the other end,
as the sample rate increases, the architecture selected for a desired FIR filter becomes a more
parallel structure (that is, semi-parallel and parallel FIR filters) involving more multiply and add
elements. Between a single multiplier MACC FIR filter and a fully parallel full FIR filter, the trade-
off with the MACC FIR filter is that not only does it reduce hardware by a factor of N but it also
reduces filter throughput by the same factor.

Resource Utilization Guideline

In the case of slow sample rate and small number of coefficients, the single MACC FIR filter is
well suited. In the case of high sample rate and/or large number of coefficients, consider using a
semi-parallel or parallel FIR filter. As for coefficients, if the number is large and/or the width is
high, dual port block RAM is the preferred choice for the memory buffer. A high level
implementation example of this design is provided in the following figure. If the number of
coefficients and/or their width is small1, distributed memory (LUTRAM) can be used as
coefficient buffer instead of block RAM. If the data width is small1, SRL16 can be used as data
buffer instead of block RAM.

Note:

1. Based on the size, synthesis tools in Vivado Design Suite automatically maps to block RAM or SRL16/
LUTRAM. To choose between SRL16/LUTRAM and block RAM, users must compare the timing and
resource utilization in both cases to find the optimal solution.

Figure 43: Single-Multiplier MACC FIR Filter
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For block RAM implementation of the data buffer, the cyclic RAM buffer is used. For small-sized
FIR filters (typically those under 32 taps), block RAM can be underutilized as a means to store
filter input samples and coefficients. Block RAMs are not as abundant as the smaller distributed
RAMs found in a nearby DSP58, making them an excellent option for smaller FIR filters. The
following figure illustrates the actual single-multiplier MACC FIR filter implementation using
distributed RAM for the coefficient bank and an SRL16 for the data buffer.

Figure 44: 16-Tap Distributed RAM MACC FIR Filter
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MACC FIR Filter
A common filter implementation uses the multiply-accumulate (MACC) finite impulse response
(FIR) filter. This section describes the implementation using DSP58. The following cases are
covered:

• Single-multiplier MACC FIR filter

• Symmetric MACC FIR filter

Single Multiplier MACC FIR Filter

The single-multiplier MACC FIR is one of the simplest DSP filter structures. The MACC structure
uses a single multiplier with an accumulator to implement a FIR filter sequentially versus a full
parallel FIR filter. This trade-off not only reduces hardware by a factor of N, but also reduces
filter throughput by the same factor. The general FIR filter equation is a summation of products
(also known as an inner product), defined as follows.
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yn = ∑
i = 0

N - 1
X n - i  h i

In this equation, a set of N coefficients is multiplied by N respective data samples, and the inner
products are summed together to form an individual result. The values of the coefficients
determine the characteristics of the filter (for example, low-pass filter, band-pass filter, and high-
pass filter). The equation can be mapped to many different implementations (for example,
sequential, semi-parallel, or parallel) in the different available architectures.

Refer to the Resource Utilization Guideline for an implementation of the MACC FIR filter and the
guideline on choosing the resource to implement the data buffer. In the example design, the
implementation uses SRL16 for the data buffer. To support rounding toward infinity, apply the
value of (2^(fractional_part-1)) -1 to the C input. The multiplier followed by the accumulator
sums the products over the same number of cycles as there are coefficients. With this
relationship, the performance of the MACC FIR filter is calculated using the following equation.

Maximum Input Sample Rate = Clock Speed
Number o f  Taps

If the coefficients possess a symmetric shape, a slightly costlier structure is available (see 
Symmetric MACC FIR Filter), however, the maximum sampled rate is doubled. The sample rate of
the costlier structure is defined as follows.

Sample Rate =  Clock Speed
1
2 Number o f  Taps

The nature of the FIR filter, with numerous MACC operations, outputs a larger number of bits
from the filter than are present on the filters input. This effect is the bit growth or the gain of a
filter. Due to the large output width, the full precision result is typically rounded and quantized.
However, it is important to calculate the full precision output to select the correct bits from the
output of the MACC.

One technique assumes every value in the filter could be the worst possible for the size of the
two's complement numbers specified. Using the generic saturation level is a good starting point
when the coefficients are unknown, but the number of bits required to represent them is known,
for example, if the coefficients are re-loadable, as in adaptive filters. The equation of the output
width in this case is given as follows.

Output Width = ceil ⎛⎝log2 ⎛⎝1 + ⎛
⎝2

(b - 1)⎞
⎠ × ⎛⎝2

(c - 1)⎞
⎠ × N⎞

⎠ + 1⎞
⎠

where:

ceil: Rounds up to the nearest integer
b: Number of bits in the data samples
c: Number of bits in the coefficients
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It is possible to use two clocks in the MACC FIR implementation. The faster clock goes to the
DSP and the coefficient memory; the slow clock goes to the PL. It is therefore possible to avoid
the condition in which the input has to be held for the number of taps cycles (the input
throughput in the implementation using one clock only is equal to the number of taps).

Symmetric MACC FIR Filter

For symmetric FIR filter coefficients, the capable sample rate performance of a MACC FIR filter
can be doubled (assuming the same clock speed). By rearranging the following FIR filter equation
in the case of even number of taps, the coefficients are exploited as follows.

⎛
⎝x0 *c0

⎞
⎠ + … +  (xn *cn) = ⎡

⎣(x0 + xn)×c0
⎤
⎦ +  …  ⎛⎝i f  c i = c(n - i), with i = 0,1, … , ⎛

⎝n + 1
2

⎞
⎠ - 1⎞

⎠

The following figure shows the architecture for a symmetric MACC FIR filter.

Figure 45: Symmetric MACC FIR Filter
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There are limitations to using the symmetric MACC FIR filter. The data (to A and D ports) and
coefficients (to B port) are limited to 27 and 24 bits to fit into one DSP58.

Along with the three memory ports, additional filter resources are required to support symmetry.
The control portion increases in resource utilization because the data is read out of one port in a
forward direction and in reverse on the second port. This technique must only be used when
extra sample rate performance is required.
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Semi-Parallel FIR Filter
A common filter implementation to exploit available clock cycles, while still achieving moderate
to high sample rates, is the semi-parallel FIR filter (also known as folded-hardware). The DSP58
allows creation of optimum filter structures of semi-parallel nature that in turn save resources
and potential clock cycles.

In terms of the range of sample rate covered and number of coefficients, the semi-parallel FIR
structure fills in the region between parallel FIR filters and sequential FIR filters. The structure
implements the general FIR filter equation of a summation of products similar to the one
described in the single multiplier MACC FIR filter.

yn = ∑
i = 0

N - 1
X n - i  h i

Along with achievable clock speed and the number of coefficients (N), the number of multipliers
(M) is also a factor in calculating semi-parallel FIR filter performance. The following equation
demonstrates that the more multipliers used, the greater the achievable performance of the filter.

Maximum Input Sample Rate =  Clock Speed
Number o f  Coe f f icients × Number o f  Multipliers

The maximum input sample rate equation can be rearranged as follows to determine the number
of multipliers to use for a particular semi-parallel architecture.

Number o f  Multipliers =  Maximum Input Sample Rate × Number o f  Coe f f icients
Clock Speed

The number of clock cycles between each result of the FIR filter is determined by the following
equation.

Number o f  Clock Cycles per Result =  Number o f  Coe f f icients
Number o f  Multipliers

Three Multiplier Semi-Parallel FIR Filter

For the semi-parallel FIR case with moderate to high sample rate and large number of
coefficients, the filter structure is chosen to be the three-multiplier, block RAM based, semi-
parallel FIR filter. The following figure is a block diagram of the filter.
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Figure 46: Three-Multiplier, Block RAM Based, Semi-Parallel FIR Filter
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In this implementation, one memory buffer is required to hold the coefficients and also the input
data history values. The block RAM can be used in dual-port mode with a cyclic data buffer
established in the first half of the memory to serve the shifting input data series. There are 16
taps for each DSP and the overall number of taps in this design is 48.

Parallel FIR Filter
The basic parallel architecture, illustrated in the following figure, is referred to as the direct form
type 1 filter. The final stages of the adder tree structure is usually where the performance
bottleneck could increase cost, logic, and power. The adder cascade implementation
accomplishes the post addition process with minimal silicon resources by using the cascade path
within DSP58.

Figure 47: Direct Form Type 1 FIR Filter
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This structure implements the general FIR filter equation of a summation of products as defined
in the following equation.

yn = ∑
i = 0

N - 1
X n - i  h i

In the above equation, a set of N coefficients is multiplied by N respective data samples. The
results are summed together to form an individual result. The values of the coefficients
determine the characteristics of the filter (for example, a low-pass filter).

Other more optimal solutions for parallel filter architectures are covered in the following
sections.

Systolic FIR Filter

The systolic FIR filter is considered an optimal solution for parallel filter architectures. The
systolic FIR filter also uses adder chains to be able to take full advantage of the DSP58
architecture (see the following figure).

Figure 48: Systolic FIR Filter

h0

B

h1 h2 h3

P

DSP58[1] DSP58
OPMODE = 000010101

DSP58
OPMODE = 000010101

DSP58
OPMODE = 000010101

18

38
36 37 38 38

18 18 18

18

C

[1] Refer to the Rounding section of Chapter 7 for the rounding implementation.

X21482-111820

The input data is fed into a cascade of registers acting as a data buffer. Each register delivers a
sample to a multiplier where it is multiplied by the respective coefficient. The coefficients are
aligned from left to right with the first coefficients on the left side of the structure. The adder
chain stores the gradually combined inner products to form the final result. No external logic is
required to support the filter and the structure is extendable to support any number of
coefficients.

Note: Dedicated cascade connections (PCOUT and PCIN) are leveraged to achieve maximum performance
(adder chain structure versus adder tree).
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The configuration of DSP58 for each segment of the systolic FIR filter is shown in the following
figure. Apart from the very first segment, all processing elements have the same structure. If
rounding is performed, the ALU in the first segment must be driven by the C input (dynamic/
static rounding) or RND attribute (static rounding) with the correct value. For all DSP instances,
except the first instance, OPMODE is set to feed the ALU with the multiplier result of the same
instance and the result from the previous DSP in the chain through the dedicated cascade path
(PCOUT → PCIN). Notice that the two leftmost bits of OPMODE (through the WMUX) can be
used if rounding is implemented. The dedicated cascade input in the first DSP instance (BCIN)
and dedicated cascade output (BCOUT) are used to create the necessary input data buffer
cascade.

Note: This design is supported by inference, therefore, the A and B inputs can be swapped depending on
the tool choice. This means that ACIN and ACOUT (instead of BCIN and BCOUT) can be used to create
the cascade.

Figure 49: Systolic Multiply-Add Processing Element
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The advantages of using the systolic FIR filter are as follows.

• Highest Performance: Maximum performance can be achieved with this structure because
there is no high fanout input signal. Dedicated cascading avoids the need to pass through
programmable interconnect. Larger filters can be routing-limited if the number of coefficients
exceeds the number of DSP Engines in a column on a device.

• Efficient mapping to the DSP58: Mapping is enabled by the adder chain structure of the
systolic FIR filter. This extendable structure supports large and small FIR filters.

• No External Logic: No external programmable logic is required, thus enabling the highest
possible performance.

The disadvantages of using the systolic FIR filter are as follows.

• Higher Latency: The latency of the filter is a function of the number of coefficients present in
the filter. The larger the filter, the higher the latency.
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• More Resource Usage: Larger number of DSPs are used compared to the MACC FIR filter.

Coding examples will be available in Language Templates from the Vivado® Integrated Design
Environment (IDE) in a subsequent release.

Symmetric Systolic FIR Filter

Similar to the MACC FIR filters where symmetry was examined, exploiting symmetry is extremely
powerful in parallel FIR filters because it halves the required number of multipliers, which is
advantageous due to the finite number of DSP58s. The following equation is valid in the case of
even number of taps and demonstrates how the data is pre-added before being multiplied by the
single coefficient.

⎛
⎝x0 *c0

⎞
⎠ + … +  (xn *cn) = ⎡

⎣(x0 + xn)×c0
⎤
⎦ +  …  ⎛⎝i f  c i = c(n - i), with i = 0,1, … , ⎛

⎝n + 1
2

⎞
⎠ - 1 ⎞⎠

The following figure shows the implementation of a symmetric systolic FIR filter.

Figure 50: Symmetric Systolic FIR Filter
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Note: The pre-adders (shaded in gray) in DSP58 are used instead of implementing them in the
programmable logic (PL). The register delays in the input buffer time series are implemented as SRL16 and
are spread evenly across the DSP58s.

Coding examples are available in Language Templates with the Vivado® Integrated Design
Environment (IDE) 2020.2 version.
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Multichannel FIR Filter
Multichannel filtering is used in applications such as wireless communication, image processing,
and multimedia applications. The main advantage of using a multichannel filter is leveraging very
fast math elements across multiple input streams (that is, channels) with much lower sample
rates. This technique increases silicon efficiency by a factor almost equal to the number of
channels. In a typical multichannel filtering scenario, multiple input channels are filtered using a
separate digital filter for each channel. Due to the high performance of DSP58, time division
multiplexing can be used to filter up to N separate channels using one DSP58. The number of
channels N is calculated using the following equation.

N × Channel Frequency ≤ Maximum Frequency o f  DSP58

Each DSP58 is clocked using an NX clock (DSP clock that is N times faster than the one driving
the samples of each channel). The N input streams are converted to one serial, interleaved
stream using the N to one multiplexer. To ensure functionality, the multiplexer and demultiplexer
selectors must run at the same clock speed of DSP58. The N parallel interleaved streams are
stored in an N + 1 FIFO (implemented as SRLs). This implementation uses 1/Nth of the total
Versal™ ACAP resource as compared to implementing each channel separately. The following
figure shows a two-tap, N-channel filter implementation.
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Figure 51: Multichannel FIR Filter
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Multirate FIR Filter
Multirate filtering is used to change the rate or frequency of sampling of an input signal to an
arbitrary rate or frequency at the output. Multirate filtering is widely used in video applications.
DSP58 is ideally suited to implement multirate sampling because of its high speed and filter-like
structure. The cascaded data input and output paths, pipeline registers, high precision two’s
complement multiplier followed by an adder/subtracter, and accumulation capability provide
needed elements for multirate filtering.

Polyphase interpolating and decimating FIR filters are used to implement multirate filters using
up-sampling and down-sampling techniques. They are covered in the following sections.
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Interpolating

Increasing the number of samples representing a signal is called interpolating or up-sampling.
Interpolation is used in applications like medical imaging and SDTV-to-HDTV conversions. A 12-
tap 1:4 interpolator is illustrated in the following figure. A 1:4 interpolation results in four output
samples for every one input sample. The 12 taps are the 12 coefficients that are used to calculate
the four output samples. The following equations describe the relation between the input
samples (x), coefficients (h), and the output samples (y).

y0 = (h0 × xn) + (h4 × xn – 1) + (h8 × xn – 2)

y1 = (h1 × xn) + (h5 × xn – 1) + (h9 × xn – 2)

y2 = (h2 × xn) + (h6 × xn – 1) + (h10 × xn – 2)

y3 = (h3 × xn) + (h7 × xn – 1) + (h11 × xn – 2)

Figure 52: 12-Tap 1:4 Interpolator
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In the interpolating FIR filter design, the phases are related to the number of DSP58s, and the
number of coefficients is related to the memory depth (if RAM is used) or number of registers
(SRL16). Referring to the figure above, the 12 coefficients are cycled through the DSP58s. These
coefficients can be stored in shift registers (SRL16) or memories and grouped in each DSP58.

Decimating

Decimating is the process of reducing the number of samples representing a signal. Decimation is
used in video applications like 4:4:4-to-4:2:2 conversions and HDTV-to-SDTV conversions. The
following figure illustrates a 16-tap 4:1 decimator implemented using four parallel filters. The
phases are related to the number of DSP58s and the number of coefficients is related to the
memory depth (if RAM is used) or number of registers (SRL16). For every four-input sample, the
decimator produces one output sample.

Figure 53: 16-Tap 1:4 Decimator
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For the 16-tap filter, the output sample (y) is the weighted average of 16 input samples (x)
multiplied by 16 coefficients (h) as described in the following equation.

y[n] = (h0 × xn) + (h1 × xn – 1) + (h2 × xn – 2) + (h3 × xn – 3) + (h4 × xn – 4) + (h5 × xn – 5)
+ (h6 × xn – 6) + (h7 × xn – 7) + (h8 × xn – 8) + (h9 × xn – 9) + (h10 × xn – 10) + (h11 × xn –
11) + (h12 × xn – 12) + (h13 × xn – 13) + (h14 × xn – 14) + (h15 × xn – 15)

The input signals to each DSP58 are delayed by (M + 1) clocks from the previous DSP58. Shift
registers are used to achieve this delay. An initial latency is given by the following equation.

⎛
⎝Number o f  Flop Stages in Each DSP58⎞

⎠ +  ⎛
⎝Number o f  Phases –  1⎞

⎠ +  2 ⎛
⎝One Stage Be f ore and A f ter the Filter⎞

⎠

The 16-tap filter output is obtained at the fourth DSP58. The OPMODE must be changed
dynamically to ensure functionality.

Floating Point FIR Filter
The design in this use case essentially implements the single multiplier MACC FIR filter in a
floating point data format. Refer to the figure in Resource Utilization Guideline for a simplified
block diagram of the design. Note the following:

• The DSPFP32 replaces the DSP58 primitive and consists of a floating-point multiplier and a
floating-point adder.

• The input and output are in IEEE binary32 format.

• The single-port block RAM is partitioned into two: one half is dedicated to the incoming data,
the other half is used as ROM for the coefficients.

• FPOPMODE[6:0] controls the behavior of the floating-point arithmetic unit and is configured
to be {00c0001}. The OPMODE bit ‘c’ is sent to the DSP from the control logic and
dynamically selects the input to the ALU to enable or disable the P output feedback path. This
is done to reset the accumulator from one output sequence to another. This approach means
avoiding a reset to the output register, saving a clock cycle.

Complex FIR Filter
The complex FIR equation is represented as follows.

y~[n] = ∑
i = 0

L - 1
x~[n - i] a~ i

where:

the ith complex coefficient is:

a~ i = a l, i + jaQ, i
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the complex input sample is:

x~[n] = x I [n] + jxQ
⎡
⎣n⎤

⎦

the complex output sample is:

y~[n] = y I [n] + jyQ
⎡
⎣n⎤

⎦

The following figure is a simplified block diagram of the filter design.

Figure 54: Simplified Diagram of Complex FIR Filter
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Note:

• ‘x’ corresponds to complex input and maps to B_RE/B_IM ports.

• ‘a’ corresponds to complex coefficient and maps to A_RE/A_IM ports. The design is provided as an
inference example therefore, the inputs can be swapped depending on the tool choice.

• ‘c’ corresponds to cascade path from PCOUT_RE/IM ports of one DSP58 to PCIN_RE/IM ports of the
next.

In the DSPCPLX configuration, each tap in the complex FIR filter is comprised of two DSP58s
(provided they are 18 bits wide complex numbers or fewer) configured as a complex multiply-add
unit. The PCOUT/PCIN ports (real and imaginary portion) are used to cascade in the output of
the final adder from the previous tap to the next (shown as cQ and cI in the diagram, except the
first tap). The z-1 blocks represent delay stages for pipelining.
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Coding examples are available in Language Templates with the Vivado® Integrated Design
Environment (IDE) 2020.2 version.
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Appendix A

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:
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1. UltraScale Architecture DSP Slice User Guide (UG579)

2. IEEE Standard for Floating-Point Arithmetic

3. Vivado Design Suite User Guide: Synthesis (UG901)

4. Versal Architecture and Product Data Sheet: Overview (DS950)

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
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